REGION 13

Agusan River Basin:

DREAM Flood Forecasting and Flood Hazard Mapping

TRAINING CENTER FOR APPLIED GEODESY AND PHOTOGRAMMETRY

2015

© University of the Philippines and the Department of Science and Technology 2015

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines Diliman Quezon City 1101 PHILIPPINES

This research work is supported by the Department of Science and Technology (DOST) Grants-in-Aid Program and is to be cited as:

UP TCAGP (2015), Flood Forecasting and Flood Hazard Mapping for Agusan Rliver Basin, Disaster Risk and Exposure Assessment for Mitigation Program (DREAM), DOST-Grants-In-Aid Program, 107 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Alfredo Mahar Francisco A. Lagmay, PhD.

Project Leader, Flood Modeling Component, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 Email: amfal2@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-9695-01-1

Table of Contents

INTRODUTIO	N		1
1.1	1.1 About the DREAM Program		
1.2	1.2 Objectives and Target Outputs 2		
1.3	General Methodological Framework		3
1.4	Scope of Work of the Flood Modeling Component		4
1.5	Limita	ations	4
1.6	Opera	itional Framework	4
THE AGUSAN	I RIVER	BASIN	5
METHODOLO	DGY .		9
3.1	Pre-pi	rocessing and Data Used	10
-	3.1.1	Elevation Data	10
	-	3.1.1.1 Hydro-corrected SRTM DEM	10
		3.1.1.2 LIDAR DEM	10
	3.1.2	Land Cover and Soil Type	12
	3.1.3	Hydrometry and Rainfall Data	12
		3.1.3.1 Hydrometry for Different Discharge Points	12
		3.1.3.2 Rainfall Intensity Duration Frequency (RIDF)	15
	3.1.4	Rating Curves	18
		3.1.4.1 Las Nieves, Agusan del Norte	18
		3.1.4.2 Andanan Bridge-Bayugan City, Agusan del Sur	18
		3.1.4.3 DRRM River Base Leon Kilat	
		Butuan City, Agusan del Norte	19
		3.1.4.4 Brgy. Poblacion, Compostela, Compostela Valley	19
	3.1.4.5 Wawa Bridge - Bayugan City, Agusan del Sur		
3.2 Ra	infall-R	unoff Hydrologic Model Development	21
	3.2.1 V	Vatershed Delineation and Basin Model Pre-processing	21
	3.2.2 E	Basin Model Calibration	23
3.3 HE	C-HMS	Hydrologic Simulations for DIscharge Computations using	
	PAC	ASA RIDF Curves	24
	3 . 3.1 [Discharge Computation using Rainfall-Runoff Hydrologic Model	24
	3.3.2 [Discharge Computation using Dr. Horritt's Recommended	
		Hydrological Method	24
		3.3.2.1 Determination of Catchment Properties	25
		3.3.2.2 HEC-HMS Implementation	26
		3.3.2.3 Discharge validation against other estimates	27
3.4 Ha	azard ar	nd Flow Depth Mapping using FLO-2D	28
	3.4.1	Floodplain Delineation	28
	3.4.2	Flood Model Generation	28
	3.4.3	Flow Depth and Hazard Map Simulation	32
	3.4.4	Hazard Map and Flow Depth Map Creation	34
RESULTS AN	D DISCI	JSSION	35
4.1 Eff	iciency	of HEC-HMS Rainfall-Runoff Models Calibrated Based on	
	Field S	Survey and Gauges Data	36
	4.1.1	Las Nieves, Agusan del Norte	36
	4.1.2	Andanan Bridge-Bayugan City, Agusan del Sur	37
	4.1.3	DRRM River Base Leon Kilat-Butuan City, Agusan del Norte	38

Table of Contents

	4.1.4 Brgy. Poblacion, Compostela, Compostela Valley	39
	4.1.5 Wawa Bridge - Bayugan City, Agusan del Sur	40
4.2	Calculated Outflow Hydrographs and Dicharge Values for	
	Different Rainfall Return Periods	41
	4.2.1 Hydrograph Using the Rainfall-Runoff Model	41
	4.2.2 Discharge Data Using Dr. Horritt's Recommended	
	Hydrological Method	58
4.3	Flood Hazard and Flow Depth Maps	59
BIBLIOGRAPH	Υ	66
APPENDICES		67
Append	dix A. Las Nieves Model Basin Parameters	68
Append	dix B. Las Nieves Model Reach Parameters	75
Append	dix C. Andanan Model Basin Parameters	77
Append	dix D. Andanan Model Reach Parameters	78
Append	dix E. DRRM Model Basin Parameters	79
Append	dix F. DRRM Model Reach Parameters	86
Append	dix G. Brgy. Panag Model Basin Parameters	88
Append	dix H. Brgy. Panag Model Reach Parameters	89
Append	dix I. Brgy. Poblacion Model Basin Parameters	90
Append	dix J. Brgy. Poblacion Model Reach Parameters	92
Append	dix K. Wawa Model Basin Parameters	93
Append	dix L. Wawa Model Reach Parameters	96
Append	dix M. Agusan River Discharge from HEC-HMS Simulation	98

List of Figures

Figure 1.	The general methodological framework of the program	2
Figure 2.	The operational framework and specific work flow	
	of the Flood Modeling Component	4
Figure 3.	The Agusan River Basin Location Map	6
Figure 4.	Agusan River Basin Soil Map	7
Figure 5.	Agusan River Basin Land Cover Map	7
Figure 6.	Summary of data needed for the purpose of flood modeling	10
Figure 7.	Digital Elevation Model (DEM) of the Agusan River Basin using	
	Light Detection and Ranging (LiDAR) technology	11
Figure 8.	The 1-meter resolution LiDAR data resampled to a 10-meter raster grid	
	In GIS software to ensure that values are properly adjusted	11
Figure 9.	Stitched Quickbird Images for Agusan River Basin	12
Figure 10.	Las Nieves Rainfall and outflow data used for modeling	13
Figure 11.	Andanan Rainfall and outflow data used for modeling	13
Figure 12.	DRRM Rainfall and outflow data used for modeling	14
Figure 13.	Poblacion Rainfall and outflow data used for modeling	14
Figure 14.	Wawa Rainfall and outflow data used for modeling	15
Figure 15.	Thiessen Polygon of Rain Intensity Duration Frequency (RIDF)	
	Stations for the whole Philippines	16
Figure 16.	Butuan Rainfall Intensity Duration Frequency Curves	17
Figure 17.	Hinatuan Rainfall Intensity Duration Frequency Curves	
	(Panag and Poblacion	17
Figure 18.	Water level vs. Discharge Curve for Las Nieves	18
Figure 19.	Water level vs. Discharge Curve for Andanan Bridge	19
Figure 20.	Water level vs. Discharge Curve for DRRM	19
Figure 21.	Water level vs. Discharge Curve for Brgy. Poblacion Bridge	20
Figure 22.	Water level vs. Discharge Curve for Wawa Bridge	20
Figure 23.	The Rainfall-Runoff Basin Model Development Scheme	21
Figure 24.	Agusan HEC-HMS Model domain generated by WMS	22
Figure 25.	Location of rain gauge used for the calibration of Agusan	
	HEC-HMS Model	23
Figure 26.	Different data needed as input for HEC-HMS discharge simulation	
	using Dr. Horritt's recommended hydrology method	24
Figure 27.	Delineation upper watershed for Agusan floodplain	
	discharge computation	25
Figure 28.	HEC-HMS simulation discharge results using Dr. Horritt's Method	27
Figure 29.	Screenshot showing how boundary grid elements are defined by line	29
Figure 30.	Screenshots of PTS files when loaded into the FLO-2D program	29
Figure 31.	Aerial Image of Agusan floodplain	30
Figure 32.	Screenshot of Manning's n value rendering	31
Figure 33.	Flo-2D Mapper Pro General Procedure	32
Figure 34.	Agusan Floodplain Generated Hazard Maps using Flo-2D Mapper	33
Figure 35.	Agusan floodplain generated flow depth map using Flo-2D Mapper	33
Figure 36.	Basic Layout and Elements of the Hazard Maps	34

List of Figures

Figure 37.	Las Nieves Bridge Outflow Hydrograph produced by the HEC-HMS	76
Figure 28	Andapan Outflow Hydrograph produced by the HEC HMS model	30
Figure 30.	compared with observed outflow	77
Figure 20	DRPM Outflow Hydrograph produced by the HEC HMS model	3/
rigule 39.		~ 0
	Compared with observed outnow	30
Figure 40.	Poblacion Outriow Hydrograph produced by the HEC-HMS model	
	compared with observed outflow	39
Figure 41.	wawa Outflow Hydrograph produced by the HEC-HMS model	
	compared with observed outflow	40
Figure 42.	Sample DREAM water Level Forecast	41
Figure 43.	Las Nieves outflow hydrograph generated using the Butuan 5-Year	
	RIDF inputted in HEC-HMS	42
Figure 44.	Las Nieves outflow hydrograph generated using the Butuan 10-Year	
	RIDF inputted in HEC-HMS	42
Figure 45.	Las Nieves outflow hydrograph generated using the Butuan 25-Year	
_	RIDF inputted in HEC-HMS	43
Figure 46.	Las Nieves outflow hydrograph generated using the Butuan 50-Year	
	RIDF inputted in HEC-HMS	43
Figure 47.	Las Nieves outflow hydrograph generated using the Butuan 100-Year	
	RIDF inputted in HEC-HMS	44
Figure 48.	Andanan outflow hydrograph generated using the Butuan 5-Year	
	RIDF inputted in HEC-HMS	45
Figure 49.	Andanan outflow hydrograph generated using the Butuan 10-Year	
	RIDF inputted in HEC-HMS	45
Figure 50.	Andanan outflow hydrograph generated using the Butuan 25-Year	
	RIDF inputted in HEC-HMS	46
Figure 51.	Andanan outflow hydrograph generated using the Butuan 50-Year	
	RIDF inputted in HEC-HMS	46
Figure 52.	Andanan outflow hydrograph generated using the Butuan100-Year	
	RIDF inputted in HEC-HMS	47
Figure 53.	DRRM Outflow hydrograph generated using the Butuan 5-Year	
	RIDF inputted in HEC-HMS	48
Figure 54.	DRRM Outflow hydrograph generated using the Butuan 10-Year	
	RIDF inputted in HEC-HMS	48
Figure 55.	DRRM Outflow hydrograph generated using the Butuan 25-Year	
	RIDF inputted in HEC-HMS	49
Figure 56.	DRRM Outflow hydrograph generated using the Butuan 50-Year	
	RIDF inputted in HEC-HMS	49
Figure 57.	DRRM Outflow hydrograph generated using the Butuan 100-Year	
	RIDF inputted in HEC-HMS	50
Figure 58.	Brgy. Poblacion outflow hydrograph generated using the Hinatuan	
	5-Year RIDF inputted in HEC-HMS	51
Figure 59.	Brgy. Poblacion outflow hydrograph generated using the Hinatuan	
	10-Year RIDF inputted in HEC-HMS	52

List of Figures

Figure 60.	Brgy. Poblacion outflow hydrograph generated using the Hinatuan		
	25-Year RIDF inputted in HEC-HMS	52	
Figure 61.	Brgy. Poblacion outflow hydrograph generated using the Hinatuan		
	50-Year RIDF inputted in HEC-HMS	53	
Figure 62.	Brgy. Poblacion outflow hydrograph generated using the Hinatuan		
	100-Year RIDF inputted in HEC-HMS	53	
Figure 63.	Wawa Bridge outflow hydrograph generated using the Butuan 5-Year		
_	RIDF inputted in HEC-HMS	54	
Figure 64.	igure 64. Wawa Bridge outflow hydrograph generated using the Butuan 10-Year		
-	RIDF inputted in HEC-HMS	55	
Figure 65.	Wawa Bridge outflow hydrograph generated using the Butuan 25-Year		
-	RIDF inputted in HEC-HMS	55	
Figure 66.	Wawa Bridge outflow hydrograph generated using the Butuan 50-Year RIDF		
-	inputted in HEC-HMS	56	
Figure 67.	Wawa Bridge outflow hydrograph generated using the Butuan 100-Year RIDF		
	inputted in HEC-HMS	56	
Figure 68.	Agusan outflow hydrograph generated using the Butuan City,		
-	Hinatuan, Malaybalay City, and Agusan City rain stations'		
	5-, 25-, 100-Year RIDF in HEC-HMS	58	
Figure 69.	100-year Flood Hazard Map for Agusan River Basin	60	
Figure 70.	100-year Flow Depth Map for Agusan River Basin	61	
Figure 71.	25-year Flood Hazard Map for Agusan River Basin	62	
Figure 72.	25-year Flow Depth Map for Agusan River Basin	63	
Figure 73.	5-year Flood Hazard Map for Agusan River Basin	64	
Figure 74.	5-year Flood Hazard Map for Agusan River Basin	65	
- · ·		-	

List of Tables

Table 1.	Methods used for the different Calculation types		
	for the hydrologic elements	22	
Table 2.	Summary of Las Nieves discharge using Butuan Station		
	Rainfall Intensity Duration Frequency (RIDF)	44	
Table 3.	Summary of Andanan discharge using Butuan Station		
	Rainfall Intensity Duration Frequency (RIDF)	47	
Table 4.	Summary of DRRM discharge using Butuan Station		
	Rainfall Intensity Duration Frequency (RIDF)	50	
Table 5.	Summary of Poblacion discharge using Hinatuan Station		
	Rainfall Intensity Duration Frequency (RIDF)	54	
Table 6.	Summary of Wawa Bridge discharge using Butuan		
	Station Rainfaill Intensity Duration Frequency (RIDF)	57	
Table 7.	Summary of Agusan river discharge using the recommended		
	hydrological method by Dr. Horritt	58	
Table 8.	Validation of river discharge estimate using the bankful method	59	

List of Equations

Equation 1.	Rating Curve	18	
Equation 2.	Determination of maximum potential retention using the average		
	curve number of the catchment	26	
Equation 3.	Lag Time Equation Calibrated for Philippine Setting	26	
Equation 4.	Ratio of river discharge of a 5-year rain return to a 2-year rain		
	return scenario from measured discharge data	27	
Equation 5.	Discharge validation equation using bankful method	27	
Equation 6.	Bankful discharge equation using measurable channel parameters	28	

List of Abbreviations

ACDP	Acoustic Doppler Current Profiler	
AOI	Area of Interest	
ARG	Automated Rain Gauge	
AWLS	Automated Water Level Sensor	
DAC	Data Acquisition Component	
DEM	Digital Elevation Model	
DOST	Department of Science and Technology	
DPC	Data Processing Component	
DREAM	Disaster Risk Exposure and Assessment for Mitigation	
DTM	Digital Terrain Model	
DVC	Data Validation Component	
FMC	Flood Modelling Component	
GDS	Grid Developer System	
HEC-HMS	Hydrologic Engineering Center – Hydrologic Modeling System	
Lidar	Light Detecting and Ranging	
PAGASA	Philippine Atmospheric, Geophysical and Astronomical Services Administration	
RIDF	Rainfall Intensity Duration Frequency	
SCS	Soil Conservation Service	
SRTM	Shuttle Radar Topography Mission	
UP-TCAGP	UP Training Center for Applied Geodesy and Photogrammetry	

1.1 About the DREAM Program

The UP Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) conducts a research program entitled "Nationwide Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program" funded by the Department of Science and Technology (DOST) Grants-in-Aid Program. The DREAM Program aims to produce detailed, up-to-date, national elevation dataset for 3D flood and hazard mapping to address disaster risk reduction and mitigation in the country.

The DREAM Program consists of four components that operationalize the various stages of implementation. The Data Acquisition Component (DAC) conducts aerial surveys to collect Light Detecting and Ranging (LiDAR) data and aerial images in major river basins and priority areas. The Data Validation Component (DVC) implements ground surveys to validate acquired LiDAR data, along with bathymetric measurements to gather river discharge data. The Data Processing Component (DPC) processes and compiles all data generated by the DAC and DVC. Finally, the Flood Modeling Component (FMC) utilizes compiled data for flood modeling and simulation.

Overall, the target output is a national elevation dataset suitable for 1:5000 scale mapping, with 50 centimeter horizontal and vertical accuracies. These accuracies are achieved through the use of state-of-the-art airborne Light Detection and Ranging (LiDAR) technology and appended with Synthetic-aperture radar (SAR) in some areas. It collects point cloud data at a rate of 100,000 to 500,000 points per second, and is capable of collecting elevation data at a rate of 300 to 400 square kilometers per day, per sensor

1.2 Objectives and Target Outputs

The program aims to achieve the following objectives:

- a) To acquire a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management,
- b) To operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country,
- c) To develop the capacity to process, produce and analyze various proven and potential thematic map layers from the 3D data useful for government agencies,
- d) To transfer product development technologies to government agencies with geospatial information requirements, and,
- e) To generate the following outputs
 - 1) flood hazard map
 - 2) digital surface model
 - 3) digital terrain model and
 - 4) orthophotograph.

1.3 General Methodological Framework

The methodology to accomplish the program's expected outputs are subdivided into four (4) major components, as shown in Figure 1. Each component is described in detail in the following section.

Figure 1. The general methodological framework of the program

1.4 Scope of Work of the Flood Modeling Component

The scope of work of the Flood Modeling Component is listed as the following:

- a) To develop the watershed hydrologic model of the Agusan River Basin;
- b) To compute the discharge values quantifying the amount of water entering the floodplain using HEC-HMS;
- c) To create flood simulations using hydrologic models of the Agusan floodplain using FLO-2D GDS Pro; and
- d) To prepare the static flood hazard and flow depth maps for the Agusan river basin.

1.5 Limitations

This research is limited to the usage of the available data, such as the following:

- Digital Elevation Models (DEM) surveyed by the Data Acquisition
 Component (DAC) and processed by the Data Processing Component (DPC)
- 2. Outflow data surveyed by the Data Validation and Bathymetric Component (DVC)
- 3. Observed Rainfall from ASTI sensors

While the findings of this research could be further used in related-studies, the accuracy of such is dependent on the accuracy of the available data. Also, this research adapts the limitations of the software used: ArcGIS 10.2, HEC-GeoHMS 10.2 extension, WMS 9.1, HEC-HMS 3.5 and FLO-2D GDS Pro.

1.6 Operational Framework

The flow for the operational framework of the Flood Modeling Component is shown in Figure 2.

Figure 2. The operational framework and specific work flow of the Flood Modeling Component

The Agusan River Basin is located in the eastern part of Mindanao and covers the provinces of Agusan Oriental, Compostela Valley, Agusan del Sur, Agusan del Norte and Surigao del Norte. It is the third largest river system in the Philippines in terms of basin size, with an estimated basin area of 10,921 square kilometers. The location of Agusan River Basin is as shown in Figure 3.

Figure 3. Agusan River Basin Location Map

The headwaters of the river come from the mountains of Compostela Valley, draining the northern portion of the island and traverses through Butuan City and the town of Magallanes in Agusan del Norte. One prominent feature of the Agusan River Basin is the presence of the Agusan Marsh, as it serves as a flood retention basin for the Agusan River, alleviating the flash floods occurring in the lower reaches of the river.

The Agusan River Basin is divided into three sub-basins based on the topographic features of each. First is the upper Agusan River basin, traversing from its headwaters in the Compostela Valley province to Santa Josefa, Agusan del Sur and finally to Veruela, Agusan del Sur. Second is the middle Agusan River basin, comprised of the section of the river from Santa Josefa to Amparo, Agusan del Sur. The last would be the lower Agusan River basin, starting from Amparo all the way to its mouth at Butuan City, Agusan del Norte. Shown in Figure 2 is the location map of Agusan River Basin.

The land and soil characteristics are important parameters used in assigning the roughness coefficient for different areas within the river basin. The roughness coefficient, also called Manning's coefficient, represents the variable flow of water in different land covers (i.e.

The Agusan River Basin

rougher, restricted flow within vegetated areas, smoother flow within channels and fluvial environments).

The shape files of the soil and land cover were taken from the Bureau of Soils, which is under the Department of Environment and Natural Resources Management, and National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Agusan River Basin are shown in Figures 4 and 5, respectively.

Figure 4. Agusan River Basin Soil Map

Figure 5. Agusan River Basin Land Cover Map

3.1 Pre-processing and Data Used

Flood modeling involved several data and parameters to achieve realistic simulations and outputs. Figure 6 shows a summary of the data needed to for the research.

Figure 6. Summary of data needed for the purpose of flood modeling

3.1.1 Elevation Data

3.1.1.1 Hydro Corrected SRTM DEM

With the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data as an input in determining the extent of the delineated water basin, the model was set-up. The Digital Elevation Model (DEM) is a set of elevation values for a range of points within a designated area. SRTM DEM has a 90 meter spatial mosaic of the entire country. Survey data of cross sections and profile points were integrated to the SRTM DEM for the hydro-correction.

3.1.1.2 LIDAR DEM

LiDAR was used to generate the Digital Elevation Model (DEM) of the different floodplains. DEMs used for flood modeling were already converted to digital terrain models (DTMs) which only show topography, and are thus cleared of land features such as trees and buildings. These terrain features would allow water to flow realistically in the models.

Figure 7 shows an image of the DEM generated through LiDAR.

Figure 7. Digital Elevation Model (DEM) of the AgusanRiver Basin using Light Detection and Ranging (LiDAR) technology

Elevation points were created from LiDAR DTMs. Since DTMs were provided as 1-meter spatial resolution rasters (while flood models for Agusan were created using a 10-meter grid), the DTM raster had to be resampled to a raster grid with a 10-meter cell size using ArcGIS.

Figure 8. The 1-meter resolution LiDAR data resampled to a 10-meter raster grid in GIS software to ensure that values are properly adjusted.

3.1.2 Land Cover and Soil Type

The land and soil characteristics are important parameters used in assigning the roughness coefficient for different areas within the river basin. The roughness coefficient, also called Manning's coefficient, represents the variable flow of water in different land covers (i.e. rougher, restricted flow within vegetated areas, smoother flow within channels and fluvial environments).

A general approach was done for the Agusan floodplain. Streams were identified against built-up areas and rice fields. Identification was done visually using stitched Quickbird images from Google Earth. Areas with different land covers are shown on Figure 9. Different Manning n-values are assigned to each grid element coinciding with these main classifications during the modeling phase.

Figure 9. Stitched Quickbird images for the Agusan floodplain.

3.1.3 Hydrometry and Rainfall Data

3.1.3.1 Hydrometry for different discharge points

3.1.3.1.1 Las Nieves, Agusan del Norte

The river outflow was computed using the derived rating curve equation. This discharge was used to calibrate the HEC-HMS model. It was taken from Las Nieves located in the municipality of Las Nieves, Agusan del Norte (11°23'31.95"N, 122°41'13.65"E). This was recorded during the typhoon Yolanda event on November 9, 2013. Peak discharge is 745.1 at 7:00 AM.

Figure 10. Las Nieves Rainfall and outflow data used for modeling.

Andanan Bridge – Bayugan City, Agusan del Sur 3.1.3.1.2

The river outflow was computed using the derived rating curve equation. This discharge was used to calibrate the HEC-HMS model. It was taken from Andanan Bridge, Agusan (8°43'51.75"N, 125°43'45.12"E). The peak discharge is 28.90 m3/s. This historical event was recorded at 2:10 P.M., January 20, 2014.

Figure 11. Andanan Rainfall and outflow data used for modeling.

3.1.3.1.3 DRRM River Base Leon Kilat – Butuan City, Agusan del Norte

The river outflow was computed using the derived rating curve equation. This discharge was used to calibrate the HEC-HMS model. It was taken from DRRM River Base, Butuan City, Agusan del Norte (8°57'4.34211''N, 125°32'37.52101''E). The recorded peak discharge is 1068.00 cms at 22:30, November 12, 2014.

Figure 12. DRRM Rainfall and outflow data used for modeling.

3.1.3.1.4 Brgy .Poblacion, Compostella, Compostella Valley

The river outflow was computed using the derived rating curve equation. This discharge was used to calibrate the HEC-HMS model. It was taken from Brgy. Poblacion, Compostela, Compostela Valley (7°40'33.64"N, 126° 5'22.50"E). The recorded peak discharge is 78.8 cms at 2:40 PM, January 19, 2014.

3.1.3.1.5 Wawa Bridge – Bayugan City, Agusan del Sur

The river outflow was computed using the derived rating curve equation. This discharge was used to calibrate the HEC-HMS model. It was taken from Wawa Bridge, Agusan (8°48'14.75762''N, 125°42'30.09845''E). The recorded peak discharge is 306.18 cms at 3:20 PM, January 19, 2014.

3.1.3.2 Rainfall Intensity Duration Frequency (RIDF)

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Butuan Rain Gauge and Hinatuan Rain Gauge. This station was chosen based on its proximity to the Agusan watershed. The extreme values for this watershed were computed based on a 26-year record.

Five return periods were used, namely, 5-, 10-, 25-, 50-, and 100-year RIDFs. All return periods are 24 hours long and peaks after 12 hours.

Figure 15. Thiessen Polygon of Rain Intensity Duration Frequency (RIDF) Stations for the whole Philippines.

Figure 17. Hinatuan Rainfall Intensity Duration Frequency Curves (Panag and Poblacion)

The Agusan outflow was computed for the five return periods, namely, 5-, 10-, 25-, 50-, and 100-year RIDFs.

3.1.4 Rating Curves

Rating curves were provided by DVC. This curve gives the relationship between the observed water levels from the AWLS used and outflow watershed at the said locations.

Rating curves are expressed in the form of Equation 1 with the discharge (Q) as a function of the gauge height (h) readings from AWLS and constants (a and n).

 $0 = a^{nh}$

Equation 1. Rating Curve

Las Nieves, Agusan del Norte Rating Curve 3.1.4.1

For Las Nieves, Agusan del Sur, the rating curve is expressed as $Q = 0.8853e^{0.0005x}$ as shown in Figure 19.

Figure 18. Water level vs. Discharge Curve for Las Nieves

Andanan Bridge – Bayugan City, Agusan del Sur 3.1.4.2 **Rating Curve**

For Andanan Bridge, Agusan, the rating curve is expressed as $Q = 3E^{-06e0.7368h}$ as shown in Figure 20.

Figure 19. Water level vs. Discharge Curve for Andanan Bridge

3.1.4.3 DRRM River Base Leon Kilat – Butuan City, Agusan del Norte Rating Curve

For DRRM River Base, Butuan City, Agusan del Norte, the rating curve is expressed as $Q = 32.67e^{1.1285h}$ as shown in Figure 20.

Figure 20. Water level vs. Discharge Curve for DRRM

3.1.4.4 Brgy. Poblacion, Compostela, Compostela Valley

For Brgy. Poblacion, Compostela Valley, the rating curve is expressed as $Q = 58.866e^{0.3168h}$ as shown in Figure 21.

Figure 21. Water level vs. Discharge Curve for Brgy. Poblacion Bridge

3.1.4.5 Wawa Bridge – Bayugan City, Agusan del Sur

For Wawa Bridge, Agusan, the rating curve is expressed as $Q = 6E-23e^{1.3765x}$ as shown in Figure 22.

Figure 22. Water level vs. Discharge Curve for Wawa Bridge

3.2 Rainfall-Runoff Hydrologic Model Development

3.2.1 Watershed Delineation and Basin Model Pre-processing

The hydrologic model of Agusan River Basin was developed using Watershed Modeling System (WMS) version 9.1. The software was developed by Aquaveo, a water resources engineering consulting firm in United States. WMS is a program capable of various watershed computations and hydrologic simulations. The hydrologic model development follows the scheme shown in Figure 23.

Figure 23. The Rainfall-Runoff Basin Model Development Scheme

Hydro-corrected SRTM DEM was used as the terrain for the basin model. The watershed delineation and its hydrologic elements, namely the subbasins, junctions and reaches, were generated using WMS after importing the elevation data and stream networks.

Figure 24. Agusan HEC-HMS Model domain generated by WMS

The parameters for the subbasins and reaches were computed after the model domain was created. There are several methods available for different calculation types for each subbasin and reach hydrologic elements. The methods used for this study is shown in Table 1. The necessary parameter values are determined by the selected methods. The initial abstraction, curve number, percentage impervious and manning's coefficient of roughness, n, for each subbasin were computed based on the soil type, land cover and land use data. The subbasin time of concentration and storage coefficient were computed based on the analysis of the topography of the basin.

Hydrologic Element	Calculation Type	Method
	Loss Rate	SCS Curve Number
Subbasin	Transform	Clark's unit hydrograph
	Baseflow	Bounded recession
Reach	Routing	Muskingum-Cunge

Table 1. Methods used for the different Calculation types for the hydrologic elements

3.2.2 Basin Model Calibration

The basin model made using WMS was exported to Hydrologic Modeling System (HEC-HMS) version 3.5, a software made by the Hydrologic Engineering Center of the US Army Corps of Engineers, to create the final rainfall-runoff model. The developers described HEC-HMS as a program designed to simulate the hydrologic processes of a dendritic watershed systems. In this study, the rainfall-runoff model was developed to calculate inflow from the watershed to the floodplain.

Precipitation data was taken from one automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This is the ARG located in Talacogon, Agusan del Sur. The location of the rain gauge is seen in Figure 25.

Figure 25. Location of rain gauge used for the calibration of Agusan HEC-HMS Model.

The outflow hydrograph for the downstream-most discharge point with field data was also encoded to the model as a basis for the calibration. Using the said data, HEC-HMS could perform rainfall-runoff simulation and the resulting outflow hydrograph was compared with the observed hydrograph. The values of the parameters were adjusted and optimized in order for the calculated outflow hydrograph to appear like the observed hydrograph. Acceptable values of the subbasin and reach parameters from the manual and past literatures were considered in the calibration.

After the calibration of the downstream-most discharge point, model calibration of the discharge points along the major tributaries of the main river/s were also performed.

3.3 HEC-HMS Hydrologic Simulations for Discharge Computations using PAGASA RIDF Curves

3.3.1 Discharge Computation using Rainfall-Runoff Hydrologic Model

The calibrated rainfall-Runoff Hydrologic Model for the Agusan River Basin using WMS and HEC-HMS was used to simulate the flow for the five return periods, namely, 5-, 10-, 25-, 50-, and 100-year RIDFs. Time-series data of the precipitation data using the Butuan RIDF curves were encoded to HEC-HMS for the aforementioned return periods, wherein each return period corresponds to a scenario. This process was performed for all discharge points. The output for each simulation was an outflow hydrograph from that result, the total inflow to the floodplain and time difference between the peak outflow and peak precipitation could be determined.

3.3.2 Discharge Computation using Dr. Horritt's Recommended Hydrological Method

The required data to be accumulated for the implementation of Dr. Horrit's method is shown on Figure 26.

Figure 26. Different data needed as input for HEC-HMS discharge simulation using Dr. Horritt's recommended hydrology method.

Flows from streams were computed using the hydrology method developed by the flood modeling component with Dr. Matt Horritt, a British hydrologist that specializes in flood research. The methodology was based on an approach developed by CH2M Hill and Horritt Consulting for Taiwan which has been successfully validated in a region with meteorology and hydrology similar to the Philippines. It utilizes the SCS curve number and unit hydrograph method to have an accurate approximation of river discharge data from measurable catchment parameters.

Determination of Catchment Properties 3.3.2.1

RADARSAT DTM data for the different areas of the Philippines were compiled with the aid of ArcMap. RADARSAT satellites provide advance geospatial information and these were processed in the forms of shapefiles and layers that are readable and can be analyzed by ArcMap. These shapefiles are digital vectors that store geometric locations.

The watershed flow length is defined as the longest drainage path within the catchment, measured from the top of the watershed to the point of the outlet. With the tools provided by the ArcMap program and the data from RADARSAT DTM, the longest stream was selected and its geometric property, flow length, was then calculated in the program.

The area of the watershed is determined with the longest stream as the guide. The compiled RADARSAT data has a shapefile with defined small catchments based on mean elevation. These parameters were used in determining which catchments, along with the area, belong in the upper watershed.

Figure 27. Delineation upper watershed for Agusan floodplain discharge computation

The value of the curve number was obtained using the RADARSAT data that contains information of the Philippine national curve number map. An ArcMap tool was used to determine the average curve number of the area bounded by the upper watershed shapefile. The same method was implemented in determining the average slope using RADARSAT with slope data for the whole country.

After determining the curve number (CN), the maximum potential retention (S) was determined by Equation 2.

$$S = \frac{1000}{CN} - 10$$

Equation 2. Determination of maximum potential retention using the average curve number of the catchment

The watershed length (L), average slope (Y) and maximum potential retention (S) are used to estimate the lag time of the upper watershed as illustrated in Equation 3.

$$T_L = \frac{L^{0.8}(S+1)^{0.7}}{560Y^{0.5}}$$

Equation 3. Lag Time Equation Calibrated for Philippine Setting

Finally, the final parameter that will be derived is the storm profile. The synoptic station which covers the majority of the upper watershed was identified. Using the RIDF data, the incremental values of rainfall in millimeter per 0.1 hour was used as the storm profile.

3.3.2.2 HEC-HMS Implementation

With all the parameters available, HEC-HMS was then utilized. Obtained values from the previous section were used as input and a brief simulation would result in the tabulation of discharge results per time interval. The maximum discharge and time-to-peak for the whole simulation as well as the river discharge hydrograph were used for the flood simulation process. The time series results (discharge per time interval) were stored as HYD files for input in FLO-2D GDS Pro.

	5	P imulation i	roject: Ik Run: Run	og Hinaba 100 S	ngan ubbasin: 1	Subbasin				Project: Dog Hina	bangan Simul	lation Run: Run 100	
Start of Run: 013an2000, 00:00 Basin Model: Basin End of Run: 023an2000, 12:00 Meteorologic Model: Met 100 Compute Time: 19Jun2014, 11:45:13 Control Specifications: Control				Start o End of Compu	f Run: 01Jan2000 Run: 02Jan2000 te Time: 19Jun2014	, 12:00 Be , 12:00 Me , 11:45:13 Co	asin Model: 8 eteorologic Model: Model: 9 ontrol Specifications: 0	Sasin Ket 100 Control					
Date	Time	Precip (HM)	Loss (MPH)	Excess (MPI)	Direc (M3/5)	Base (M3/5)	Total (M3/5)		Show Elements: All E Hydrologic	Drainage Area	me Units: MP Peak Discharge	1000 M3 So Time of Peak	viting: Hydrologic Volume
01Jan2000	00:00				0.0	0.0	0.0		Element	(K042)	(M3/5)		0440
013an2000	00:10	0.10	0.10	0.00	0.0	0.0	0.0	(B)	Subbasin	1968.538758	6868.7	013an2000, 21:30	153.96
013an2000	00:20	0.10	0.10	0.00	0.0	0.0	0.0	- F					
013an2000	00:30	0.10	0.10	0.00	0.0	0.0	0.0						
01Jan2000	00:40	0.10	0.10	0.00	0.0	0.0	0.0						
013an2000	00:50	0.10	0.10	0.00	0.0	0.0	0.0						
01Jan2000	01:00	0.10	0.10	0.00	0.0	0.0	0.0						
013ao2000	01:10	0.10	0.10	0.00	0.0	0.0	0.0						
01Jan2000	01:20	0.10	0.10	0.00	0.0	0.0	0.0						
013an2000 013an2000	01:20 01:30	0.10	0.10	0.00	0.0	0.0	0.0						
01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40	0.10 0.10 0.10	0.10 0.10 0.10	0.00	0.0	0.0	0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50	0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50 02:00	0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50 02:00 02:10	0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50 02:00 02:10 02:20	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000	01:20 01:30 01:40 02:00 02:10 02:20 02:30 02:30 02:40 02:50	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
0 13an2000 0 13an2000	01:20 01:30 01:40 02:00 02:10 02:20 02:30 02:30 02:40 02:50 03:00	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
0 13an2000 0 13an2000	01:20 01:30 01:40 02:00 02:10 02:20 02:30 02:40 02:50 03:00 03:10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000	01:20 01:30 01:40 01:50 02:00 02:10 02:20 02:30 02:40 02:50 03:00 03:10 03:20	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000 013an2000	01:20 01:30 01:40 02:00 02:10 02:20 02:30 02:40 02:40 02:40 03:10 03:10 03:20 03:30	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						

Figure 28. HEC-HMS simulation discharge results using Dr. Horritt's Method

3.3.2.3 Discharge validation against other estimates

As a general rule, the river discharge of a 2-year rain return, QMED, should approximately be equal to the bankful discharge, Qbankful, of the river. This assumes that the river is in equilibrium, with its deposition being balanced by erosion. Since the simulations of the river discharge are done for 5-, 25-, and 100-year rainfall return scenarios, a simple ratio for the 2-year and 5-year return was computed with samples from actual discharge data of different rivers. It was found out to have a constant of 0.88. This constant, however, should still be continuously checked and calibrated when necessary.

$Q_{MED} = 0.88Q_{5yr}$

Equation 4. Ratio of river discharge of a 5-year rain return to a 2-year rain return scenario from measured discharge data

For the discharge calculation to pass the validation using the bankful method, Equation 5 must be satisfied.

$50\% Q_{bankful} \le Q_{MED} \le 150\% Q_{bankful}$

Equation 5. Discharge validation equation using bankful method

The bankful discharge was estimated using channel width (w), channel depth (h), bed slope (S) and Manning's constant (n). Derived from the Manning's Equation, the equation for the bankful discharge is by Equation 6.

$$Q_{bankful} = \frac{(wh)^{\frac{5}{3}}S^{\frac{1}{2}}}{n(w+2h)^{\frac{2}{3}}}$$

Equation 6. Bankful discharge equation using measurable channel parameters

3.4 Hazard and Flow Depth Mapping using FLO-2D

3.4.1 Floodplain Delineation

The boundaries of subbasins within the floodplain were delineated based on elevation values given by the DEM. Each subbasin is marked by ridges dividing catchment areas. These catchments were delineated using a set of ArcMap tools compiled by Al Duncan, a UK Geomatics Specialist, into a single processing model. The tool allows ArcMap to compute for the flow direction and acceleration based on the elevations provided by the DEM.

Running the tool creates features representing large, medium-sized, and small streams, as well as large, medium-sized, and small catchments. For the purpose of this particular model, the large, medium-sized, and small streams were set to have an area threshold of 100,000sqm, 50,000sqm, and 10,000sqm respectively. These thresholds define the values where the algorithm refers to in delineating a trough in the DEM as a stream feature, i.e. a large stream feature should drain a catchment area totalling 100,000 sqm to be considered as such. These values differ from the standard values used (10,000sqm, 1,000 sqm and 100sqm) to limit the detail of the project, as well as the file sizes, allowing the software to process the data faster.

The tool also shows the direction in which the water is going to flow across the catchment area. This information was used as the basis for delineating the floodplain. The entire area of the floodplain was subdivided into several zones in such a way that it can be processed properly. This was done by grouping the catchments together, taking special account of the inflows and outflows of water across the entire area. To be able to simulate actual conditions, all the catchments comprising a particular computational domain were set to have outflows that merged towards a single point. The area of each subdivision was limited to 250,000 grids or less to allow for an optimal simulation in FLO-2D GDS Pro. Larger models tend to run longer, while smaller models may not be as accurate as a large one.

3.4.2 Flood Model Generation

The software used to run the simulation is FLO-2D GDS Pro. It is a GIS integrated software tool that creates an integrated river and floodplain model by simulating the flow of the water over a system of square grid elements.

After loading the shapefile of the subcatchment onto FLO-2D, 10 meter by 10 meter grids that encompassed the entire area of interest were created.

The boundary for the area was set by defining the boundary grid elements. This can either be

done by defining each element individually, or by drawing a line that traces the boundaries of the subcatchment. The grid elements inside of the defined boundary were considered as the computational area in which the simulation will be run.

Figure 29. Screenshot showing how boundary grid elements are defined by line

Elevation data was imported in the form of the DEM gathered through LiDAR. These elevation points in PTS format were extrapolated into the model, providing an elevation value for each grid element.

Figure 30. Screenshots of PTS files when loaded into the FLO-2D program

The floodplain is predominantly composed of rice fields, which have a Manning coefficient of 0.15. All the inner grid elements were selected and the Manning coefficient of 0.15 was assigned. To differentiate the streams from the rest of the floodplain, a shapefile containing all the streams and rivers in the area were imported into the software. The shapefile was generated using Al Duncan's catchment tool for ArcMap. The streams were then traced onto their corresponding grid elements.

These grid elements were all selected and assigned a Manning coefficient of 0.03. The DEM and aerial imagery were also used as bases for tracing the streams and rivers.

Figure 31. Aerial Image of Agusan floodplain

Figure 32. Screenshot of Manning's n-value rendering

After assigning Manning coefficients for each grid, the infiltration parameters were identified. Green-Ampt infiltration method by W. Heber Green and G.S Ampt were used for all the models. The initial saturations applied to the model were 0.99, 0.8, and 0.7 for 100-year, 25-year, and 5-year rain return periods respectively. These initial saturations were used in the computation of the infiltration value.

The Green-Ampt infiltration method by W. Heber Green and G.S Ampt method is based on a simple physical model in which the equation parameter can be related to physical properties of the soil. Physically, Green and Ampt assumed that the soil was saturated behind the wetting front and that one could define some "effective" matric potential at the wetting front (Kirkham, 2005). Basically, the system is assumed to consist of a uniformly wetted near-saturated transmission zone above a sharply defined wetting front of constant pressure head (Diamond & Shanley, 2003).

The next step was to allocate inflow nodes based on the locations of the outlets of the streams from the upper watershed. The inflow values came from the computed discharges that were input as hyd files.

Outflow nodes were allocated for the model. These outflow nodes show the locations where the water received by the watershed is discharged. The water that will remain in the watershed will result to flooding on low lying areas.

For the models to be able to simulate actual conditions, the inflow and outflow of each computational domain should be indicated properly. In situations wherein water flows from one subcatchment to the other, the corresponding models are processed one after the other. The outflow generated by the source subcatchment was used as inflow for the subcatchment area that it flows into.

The standard simulation time used to run each model is the time-to-peak (TP) plus an additional 12 hours. This gives enough time for the water to flow into and out of the model area, illustrating the complete process from entry to exit as shown in the hydrograph. The additional 12 hours allows enough time for the water to drain fully into the next subcatchment. After all the parameters were set, the model was run through FLO-2D GDS Pro.

3.4.3 Flow Depth and Hazard Map Simulation

After running the flood map simulation in FLO-2D GDS Pro, FLO-2D Mapper Pro was used to read the resulting hazard and flow depth maps. The standard input values for reading the simulation results are shown on Figure 24.

Figure 33. Flo-2D Mapper Pro General Procedure

In order to produce the hazard maps, set input for low maximum depth as 0.2 m, and vh,

product of maximum velocity and maximum depth (m^2/s), as greater than or equal to zero. The program will then compute for the flood inundation and will generate shapefiles for the hazard and flow depth scenario.

75.61319 907.0944

Figure 35. Agusan floodplain generated flow depth map using Flo-2D Mapper

3.4.4 Hazard Map and Flow Depth Map Creation

The final procedure in creating the maps is to prepare them with the aid of ArcMap. The generated shapefiles from FLO-2D Mapper Pro were opened in ArcMap. The basic layout of a hazard map is shown in Figure 27. The same map elements are also found in a flow depth map.

- ELEMENTS:
- 1. River Basin Name
- 2. Hazard/Flow
- Depth Shapefile
- 3. Provincial Inset
- 4. Philippine Inset
- 5. Hi-Res image of
- the area
- 6. North Arrow
- 7. Scale Text and Bar

Figure 36. Basic Layout and Elements of the Hazard Maps

4.1 Efficiency of HEC-HMS Rainfall-Runoff Models calibrated based on field survey and gauges data

4.1.1 Las Nieves, Agusan del Norte HMS Calibration Results

Figure 37. Las Nieves Bridge Outflow Hydrograph produced by the HEC-HMS model compared with observed outflow

After calibrating the Agusan (Las Nieves) HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 37 shows the comparison between the two discharge data.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 334.32.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of -0.99.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -0.027.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 1.41.

4.1.2 Andanan Bridge – Bayugan City, Agusan del Sur HMS Calibration Results

Figure 38. Andanan Outflow Hydrograph produced by the HEC-HMS model compared with observed outflow.

After calibrating the Andanan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 38 shows the comparison between the two discharge data.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 1.9.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9615.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.87.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -11.29.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.36.

4.1.3 DRRM River Base Leon Kilat – Butuan City, Agusan del Norte HMS model Calibration Results

Figure 39. DRRM Outflow Hydrograph produced by the HEC-HMS model compared with observed outflow.

After calibrating the DRRM HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 39 shows the comparison between the two discharge data.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 94.7.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9763.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.89.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is o. In the model, the PBIAS is 6.54.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of o when the error in the units of the valuable a quantified. The model has an RSR value of 0.34.

4.1.4 Brgy. Poblacion, Compostela, Compostela Valley HMS Calibration Results

Figure 40. Poblacion Outflow Hydrograph produced by the HEC-HMS model compared with observed outflow.

After calibrating the Brgy. Poblacion HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 40 shows the comparison between the two discharge data.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 33.01.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 6.16452E-14.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.25.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -3.19.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of o when the error in the units of the valuable a quantified. The model has an RSR value of 0.86.

4.1.5 Wawa Bridge – Bayugan City, Agusan del Sur HMS model Calibration Results

Figure 41. Wawa Outflow Hydrograph produced by the HEC-HMS model compared with observed outflow.

After calibrating the Wawa HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 41 shows the comparison between the two discharge data.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 27.4.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9732.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.85.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -17.18.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

The calibrated models of the other discharge points are used in flood forecasting. DREAM project offers the LGUs and other disaster mitigation agencies a water level forecast tool, which can be found on the DREAM website.

Figure 42. Sample DREAM Water Level Forecast

Given the predicted and real-time actual water level on specific AWLS, possible river flooding can be monitored and information can be disseminated to LGUs. This will help in the early evacuation of the probable affected communities. The calibrated models can also be used for flood inundation mapping.

4.2 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

4.2.1 Hydrograph using the Rainfall-Runoff Model

4.2.1.1 Las Nieves, Agusan del Norte

The outflow of Las Nieves using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAG-ASA data are shown in Figures 43-47. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

In the 5-year return period graph, the peak outflow is 5784.4 cms. This occurs after 9 hours after the peak precipitation of 24.48 mm, as shown in Figure 43.

Figure 43. Las Nieves outflow hydrograph generated using the Butuan 5-Year RIDF inputted in HEC-HMS.

In the 10-year return period graph, the peak outflow is 8707 cms. This occurs after 8 hours and 40 minutes after the peak precipitation of 28.93 mm, as shown in Figure 44.

Figure 44. Las Nieves outflow hydrograph generated using the Butuan 10-Year RIDF inputted in HEC-HMS.

In the 25-year return period graph, the peak outflow is 12764.5 cms. This occurs after 8 hours and after the peak precipitation of 34.45 mm as shown in Figure 45.

Figure 45. Las Nieves outflow hydrograph generated using the Butuan 25-Year RIDF inputted in HEC-HMS.

In the 50-year return period graph, the peak outflow is 16137.7 cms. This occurs after 7 hours and 50 minutes after the peak precipitation of 38.56 mm as shown in Figure 46.

Figure 46. Las Nieves outflow hydrograph generated using the Butuan 50-Year RIDF inputted in HEC-HMS.

In the 100-year return period graph, the peak outflow is 19714.1 cms. This occurs after 7 hours and 40 minutes after the peak precipitation of 42.67mm, as shown in Figure 47.

Figure 47. Las Nieves outflow hydrograph generated using the Butuan 100-Year RIDF inputted in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of Las Nieves discharge using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 2.

Table 2. Summary of Las Nieves discharge using Butuan Station Rainfall Intensity Duration Frequency (RIDF)

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (cms)	Time to Peak
5-Year	185.06	24.48	5784.4	9 hours
10-Year	225.22	28.93	8707	8 hours and 40 minutes
25-Year	275.97	34.45	12764.5	8 hours
50-Year	313.55	38.56	16137.7	7 hours and 50 minutes
100-Year	350.94	42.67	19714.1	7 hours and 40 minutes

4.2.1.2 Andanan Bridge – Bayugan City, Agusan del Sur

The outflow of Andanan using the Butuan Rainfai Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAG-ASA data are shown in Figures 48-52. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

In the 5-year return period graph, the peak outflow is 64.9 cms. This occurs after 3 hours and 10 minutes after the peak precipitation of 23.9 mm, as shown in Figure 48.

Figure 48. Andanan outflow hydrograph generated using the Butuan 5-Year RIDF inputted in HEC-HMS.

In the 10-year return period graph, the peak outflow is 81 cms. This occurs after 3 hours and 10 minutes after the peak precipitation of 27.6 mm, as shown in Figure 49.

Figure 49. Andanan outflow hydrograph generated using the Butuan 10-Year RIDF inputted in HEC-HMS.

45

In the 25-year return period graph, the peak outflow is 103.2 cms. This occurs after 3 hours and 20 minutes after the peak precipitation of 32.3 mm, as shown in Figure 50.

Figure 50. Andanan outflow hydrograph generated using the Butuan 25-Year RIDF inputted in HEC-HMS.

In the 50-year return period graph, the peak outflow is 120.8 cms. This occurs after 3 hours and 20 minutes after the peak precipitation of 35.8 mm, as shown in Figure 51.

Figure 51. Andanan outflow hydrograph generated using the Butuan 50-Year RIDF inputted in HEC-HMS.

In the 100-year return period graph . Outflow hydrograph generated using the Butuan100-Year RIDF inputted in HEC-HMS.the peak outflow is 138.9 cms. This occurs after 3 hours and 20 minutes after the peak precipitation of 39.2 mm, as shown in Figure 52.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of Andanan discharge using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 3.

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (cms)	Time to Peak	
5-Year	175.2	23.9	64.9	3 hours and 10 minutes	
10-Year	207.5	27.6	81	3 hours and 10 minutes	
25-Year	248.3	32.3	103.2	3 hours and 20 minutes	
50-Year	278.6	35.8	120.8	3 hours and 20 minutes	
100-Year	308.6	39.2	138.9	3 hours and 20 minutes	

Table 3. Summary of Andanan discharge using Butuan Station Rainfall Intensity Duration Frequency (RIDF)

DRRM River Base Leon Kilat – Butuan City, Agusan 4.2.1.3 del Norte

The outflow of DRRM using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on PAG-ASA dataare shown in Figures 53-57. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

In the 5-year return period graph, the peak outflow is 4499.3 cms. This occurs after 23 hours and 30 minutes after the peak precipitation of 23.9 mm, as shown in Figure 53.

HEC-HMS.

In the 10-year return period graph, the peak outflow is 6361.6 cms. This occurs after 21 hours and 10 minutes after the peak precipitation of 27.6 mm, as shown in Figure 54.

Figure 54. DRRM Outflow hydrograph generated using the Butuan 10-Year RIDF inputted in HEC-HMS.

In the 25-year return period graph, the peak outflow is 8936.0 cms. This occurs after 19 hours and 10 minutes after the peak precipitation of 32.3 mm, as shown in Figure 55.

Figure 55. DRRM Outflow hydrograph generated using the Butuan 25-Year RIDF inputted in HEC-HMS.

In the 50-year return period graph, the peak outflow is 10989.5 cms. This occurs after 18 hours and 20 minutes after the peak precipitation of 35.8 mm, as shown in Figure 56.

Figure 56. DRRM Outflow hydrograph generated using the Butuan 50-Year RIDF inputted in HEC-HMS.

In the 100-year return period graph, the peak outflow is 13381.3 cms. This occurs after 19 hours and 10 minutes after the peak precipitation of 39.2 mm, as shown in Figure 57.

Figure 57. DRRM Outflow hydrograph generated using the Butuan 100-Year RIDF inputted in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of DRRM discharge using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 4.

Table 4. Summary of Las Nieves discharge using Butuan Station Rainfall Intensity Duration Frequency (RIDF)

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (cms)	Time to Peak
5-Year	175.2	23.9	4499.3	23hours, 30 min- utes
10-Year	207.5	27.6	6361.6	21 hours, 10 min- utes
25-Year	248.3	32.3	8936.0	19 hours, 10 min- utes
50-Year	278.6	35.8	10989.5	18 hours, 20 min- utes
100-Year	308.6	39.2	13381.3	19 hours, 10 min- utes

4.2.1.4 Brgy Poblacion, Compostela, Compostela Valley

The outflow of Brgy. Poblacion using the Hinatuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAG-ASA data are shown in Figures 58-62. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

In the 5-year return period graph, the peak outflow is 3368.1 cms. This occurs after 50 minutes after the peak precipitation of 31.9 mm, as shown in Figure 58.

Figure 58. Brgy. Poblacion outflow hydrograph generated using the Hinatuan 5-Year RIDF inputted in HEC-HMS.

In the 10-year return period graph, the peak outflow is 4056.4 cms. This occurs after 50 minutes after the peak precipitation of 36.9 mm, as shown in Figure 59.

Figure 59. Brgy. Poblacion outflow hydrograph generated using the Hinatuan 10-Year RIDF inputted in HEC-HMS.

In the 25-year return period graph, the peak outflow is 4900.6 cms. This occurs after 50 minutes after the peak precipitation of 43.3 mm, as shown in Figure 60.

In the 50-year return period graph, the peak outflow is 5530.4 cms. This occurs after 50 minutes after the peak precipitation of 48.1 mm, as shown in Figure 61.

Figure 61. Brgy. Poblacion outflow hydrograph generated using the Hinatuan 50-Year RIDF inputted in HEC-HMS.

In the 100-year return period graph, the peak outflow is 6150.6 cms. This occurs after 50 minutes after the peak precipitation of 52.8 mm, as shown in Figure 62.

inputted in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of Poblacion discharge using the Hinatuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 5.

Table 5. Summary of Poblacion discharge using Hinatuan Station Rainfall Intensity Duration Frequency (RIDF)

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (cms)	Time to Peak
5-Year	276.5	31.9	3368.1	50 minutes
10-Year	326.5	36.9	4056.4	50 minutes
25-Year	389.7	43.3	4900.6	50 minutes
50-Year	436.6	48.1	5530.4	50 minutes
100-Year	483.1	52.8	6150.6	50 minutes

4.2.1.5 Wawa Bridge – Bayugan City, Agusan del Sur

The outflow of Wawa using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data are shown in Figures 63-67. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

In the 5-year return period graph, the peak outflow is 540.6 cms. This occurs after 1 hour and 40 minutes after the peak precipitation of 23.9 mm, as shown in Figure 63.

Figure 63. Wawa Bridge outflow hydrograph generated using the Butuan 5-Year RIDF inputted in HEC-HMS.

In the 10-year return period graph, the peak outflow is 748.3 cms. This occurs after 1 hour and 30 minutes after the peak precipitation of 27.6mm, as shown in Figure 64.

Figure 64. Wawa Bridge outflow hydrograph generated using the Butuan 10-Year RIDF inputted in HEC-HMS.

In the 25-year return period graph, the peak outflow is 1002.6 cms. This occurs after 1 hour and 30 minutes after the peak precipitation of 32.3 mm, as shown in Figure 65.

Figure 65. Wawa Bridge outflow hydrograph generated using the Butuan 25-Year RIDF inputted in HEC-HMS.

In the 50-year return period graph, the peak outflow is 1204.7 cms. This occurs after 1 hour and 20 minutes after the peak precipitation of 35.8 mm, as shown in Figure 66.

Figure 66. Wawa Bridge outflow hydrograph generated using the Butuan 50-Year RIDF inputted in HEC-HMS.

In the 100-year return period graph, the peak outflow is 1411 cms. This occurs after 1 hours and 20 minutes after the peak precipitation of 39.2 mm, as shown in Figure 67.

Figure 67. Wawa Bridge outflow hydrograph generated using the Butuan 100-Year RIDF inputted in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of Wawa discharge using the Butuan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 6.

Table 6. Summary of Wawa Bridge discharge using Butuan Station Rainfaill Intensity Duration Frequency (RIDF)

RIDF Period	Total Precipita- tion (mm)	Peak rainfall (mm)	Peak outflow (cms)	Time to Peak
5-Year	175.2	23.9	540.6	1 hour, 40 min- utes
10-Year	207.5	27.6	748.3	1 hour, 30 min- utes
25-Year	248.3	32.3	1002.6	1 hour, 30 min- utes
50-Year	278.6	35.8	1204.7	1 hour, 20 min- utes
100-Year	308.6	39.2	1411	1 hour, 20 min- utes

4.2.2 Discharge Data using Dr. Horritt's Recommended Hydrological Method

The river discharge values using Dr. Horritt's recommended hydrological method are shown in Figure 35 and the peak discharge values are summarized in Table 3.

Figure 68. Agusan outflow hydrograph generated using the Butuan City, Hinatuan, Malaybalay City, and Agusan City rain stations' 5-, 25-, 100-Year RIDF in HEC-HMS

Table 3. Summary of Agusan river discharge using the recommended hydrological method by Dr. Horritt

RIDF Period	Peak discharge (cms)	Time-to-peak
5-Year	9,364.6	35 hours, 50 minutes
25-Year	15,226.8	35 hours, 50 minutes
100-Year	20,214.5	35 hours, 50 minutes

The comparison of discharge values obtained from HEC-HMS, QMED, and from the bankful discharge method, Qbankful, are shown in Table 4. Using values from the DTM of Agusan, the bankful discharge for the river was computed.

Table 8. Validation of river discharge estimate using the bankful method

Discharge Point	Qbankful, cms	QMED, cms	Validation
Agusan	6,268.15	9,364.6	Pass

The discharge value from the HEC-HMS discharge estimate were able to satisfy the condition for validating the computed discharge using the bankful method. Since the computed value are based on theory, the actual discharge value was still used for flood modeling but will need further investigation for the purpose of validation. It is recommended, therefore, to use the actual value of the river discharge for higher-accuracy modeling.

4.3 Flood Hazard and Flow Depth Maps

The following images are the hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Agusan river basin.

| 61

Bibliography

- Aquaveo. (2012). Watershed Modeling HEC HMS Interface. Aquaveo.
- Asian Development Bank. (2004). Technical assistance to the Republic of the Philippines for a master plan for the Agusan River Basin. Retrieved August 12, 2015, from http://www. worldcat.org/title/technical-assistance-to-the-republic-of-the-philippines-for-a-master-plan-for-the-agusan-river-basin/oclc/58999955
- Feldman, A. D. (2000). Hydrologic Modeling System HEC-HMS Technical Reference Manual. Davis, CA: US Army Corps of Engineers Hydrologic Engineering Center.
- FLO-2D Software, I. Flo-2D Reference Manual. FLO-2D Software, Inc.
- Kundell, J. (Ed.). (2008, April 3). Water profile of Philippines. Retrieved August 12, 2015, from http://www.eoearth.org/view/article/156982/#River_Basins_and_Water_Resources
- Merwade, V. (2012). Terrain Processing and HMS- Model Development using GeoHMS. Lafayette, Indiana.
- Santillan, J. (2011). Profile and Cross Section Surveys, Inflow measurement and flood modeling of Surigao River, Surigao City for Flood Hazard Assessment Purposes. Quezon City: Training Center for Applied Geodesy and Photogrammetry (TCAGP).
- Scharffenberg, W. A., & Fleming, M. J. (2010). Hydrologic Modeling System HEC-HMS User's Manual. Davis, California: U.S Army Corps of Engineers Hydrologic Engineering Center.

68

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
_	Threshold Type	Ratio to Peak										
ssion Baseflov	Recession Constant	6.0	-	1	1	1	7	1	1	1	1	1
Rece	Initial Dis- charge (M3/S)	2.9111	3.2512	0.59291	0.97788	0.6218	0.03942	0.84978	0.72403	3.9908	11.686	1.2191
	Initial Type	Discharge										
it Hydro- ansform	Storage Coeffi- cient (HR)	0.10603	0.22222	0.11615	0.08407	0.11859	0.0172	0.11035	0.11581	0.0598	0.12763	0.0555
Clark Un graph Tr	Time of Concen- tration (HR)	6.76	14.1301	4.8672	5.33874	4.9712	1.09547	4.68686	2.19794	13.1248	12.3205	3.5776
Loss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number	Curve Number	18.335	16.6327	16.496	16.4094	17.2606	15.628	17.238	16.4652	19.454	21.36	20.729
SCS Cui	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Basın Num- ber	148B	149B	150B	151B	152B	153B	154B	155B	156B	157B	158B

Appendix

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	1	1	1	1	1	1	1	1	1	1	-
	Initial Dis- charge (M3/S)	0.01019	1.0675	3.6871	2.5197	1.3763	23.023	3.0134	2.4498	1.2362	4.7986	0.53871
Recession Baseflow	Initial Type	Discharge										
it Hydro- ansform	Storage Coeffi- cient (HR)	0.0237	0.21759	0.15789	0.08871	0.13723	0.27633	0.14996	0.11529	0.10185	0.04198	0.17217
Clark Uni graph Tr	Time of Concen- tration (HR)	1.248	9.11726	10.0603	8.83314	3.8688	27.456	9.95634	4.8672	6.48274	6.26766	4.9088
Loss	lmper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number	Curve Number	23.442	20.417	21.511	20.729	16.549	20.601	21.4885	19.976	21.589	19.289	21.511
SCS Cui	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
4.JCD	Num- ber	159B	160B	161B	162B	163B	164B	165B	166B	167B	168B	169B

69

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	1	1	1	1	1	1	1	1	1	1	1
	Initial Dis- charge (M3/S)	2.032	3.001	5.6045	6.432	2.5075	0.74956	3.9022	5.4908	1.4909	2.2237	9.8379
Recession Baseflow	Initial Type	Discharge										
it Hydro- ansform	Storage Coeffi- cient (HR)	0.1313	0.16127	2.6989	0.03464	0.27243	0.11087	0.11077	0.05129	0.08955	0.13805	0.18103
Clark Un graph Tr	Time of Concen- tration (HR)	7.28	7.62674	33.981	7.60594	3.432	4.13234	7.05806	11.2597	5.70606	3.90354	12.2235
Loss	lmper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number	Curve Number	21.4885	21.4885	21.692	21.7258	21.634	21.4885	21.4885	21.458	19.697	21.5	21.762
SCS Cui	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Num- ber	170B	171B	172B	173B	174B	175B	176B	177B	178B	179B	180B

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	1	1	1	1	1	0.90464	1	1	1	1	1
	Initial Dis- charge (M3/S)	1.1793	0.71115	2.8522	0.74452	1.3078	0.51598	4.0235	0.52964	0.44689	0.51531	0.19349
Recession Baseflow	Initial Type	Discharge										
it Hydro- ansform	Storage Coeffi- cient (HR)	0.0705	0.03471	0.06017	0.0407	0.07347	0.01974	0.05361	0.01969	0.02216	0.02651	0.02137
Clark Un graph Tr	Time of Concen- tration (HR)	4.4928	7.61966	8.95794	4.0352	4.68	2.8288	8.008	1.87893	2.1632	1.69173	1.35893
Loss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number	Curve Number	21.4885	22.343	21.868	22.164	22.4513	20.727	21.575	21.4885	21.5444	21.536	21.734
SCS Cui	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Num- ber	181B	182B	183B	184B	185B	186B	187B	188B	189B	190B	191B

S | **71**

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	L	L	1	L	L	1	1	6.0	6.0	6.0	6.0
	Initial Dis- charge (M3/S)	1.8084	0.34208	0.03594	0.24186	0.14142	0.44197	0.27792	1.268	0.00784	0.71608	0.61318
Recession Baseflow	Initial Type	Discharge										
it Hydro- ansform	Storage Coeffi- cient (HR)	0.13643	0.02013	0.02013	0.02841	0.02104	0.02839	0.01997	0.04702	0.02173	0.02439	0.02068
Clark Un graph Tr	Time of Concen- tration (HR)	6.8848	1.28267	1.248	1.8512	1.33813	1.96213	1.90667	4.68	1.248	2.3296	2.96754
Loss	lmper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number	Curve Number	22.114	21.536	21.4885	21.4885	21.4885	21.65	21.65	22.421	23.442	22.161	22.499
SCS Cu	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	basin Num- ber	192B	193B	194B	195B	196B	197B	198B	199B	200B	201B	202B

72

SCS Cui	rve Number	Loss	Clark Un graph Tr	it Hydro- ansform	Recession Baseflow				
ial Ab- action nm)	Curve Number	Imper- vious (%)	Time of Concen- tration (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
0.5	21.603	0	2.08686	0.03336	Discharge	0.83119	6.0	Ratio to Peak	0
0.5	22.781	0	7.0096	0.24987	Discharge	0.99893	6.0	Ratio to Peak	0
0.5	23.163	0	4.1392	0.11977	Discharge	0.70746	6.0	Ratio to Peak	0
0.5	23.163	0	0.94466	0.3554	Discharge	0.00795	6.0	Ratio to Peak	0
0.5	22.016	0	2.704	0.02771	Discharge	0.9341	6.0	Ratio to Peak	0
0.5	22.728	0	3.02286	0.0211	Discharge	0.44421	6.0	Ratio to Peak	0
0.5	21.106	0	2.32274	0.02426	Discharge	0.59067	6.0	Ratio to Peak	0
0.5	22.722	0	1.9968	0.02087	Discharge	0.54442	6.0	Ratio to Peak	0
0.5	22.195	0	3.02286	0.04743	Discharge	0.29998	6.0	Ratio to Peak	0
0.5	21.963	0	2.27406	0.02376	Discharge	0.59884	6.0	Ratio to Peak	0

Initial Ab-straction (mm)

Basin Num-ber

203B

0.5

204B

205B

206B

0.5

207B

208B

209B

210B

211B

212B

0

Ratio to Peak

0.9

0.30155

Discharge

0.01862

1.1856

0

21.717

0.5

213B

	SCS Cui	rve Number	Loss	Clark Un	it Hydro-	Recession				
- C				graph Tr	ansform	Baseflow				
basin Num- ber	Initial Ab- straction (mm)	Curve Number	Imper- vious (%)	Time of Concen- tration (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
214B	0.5	21.589	0	1.13013	0.01772	Discharge	0.23526	6.0	Ratio to Peak	0
215B	0.5	21.86	0	1.40053	0.022	Discharge	0.24623	6.0	Ratio to Peak	0
216B	0.5	21.4885	0	1.51147	0.02368	Discharge	0.40614	6.0	Ratio to Peak	0
217B	0.5	21.79	0	2.13554	0.05094	Discharge	0.96926	6.0	Ratio to Peak	0
218B	0.5	21.8234	0	1.11627	0.01755	Discharge	0.23224	6.0	Ratio to Peak	0
219B	0.5	21.776	0	1.2064	0.01891	Discharge	0.71239	6.0	Ratio to Peak	0
220B	0.5	21.729	0	1.066	0.401	Discharge	0.32058	6.0	Ratio to Peak	0
221B	0.5	22.3676	0	5.65074	0.08876	Discharge	3.4824	6.0	Ratio to Peak	0

Appendix B. Las Nieves Model Reach Parameters

_	Muskingum Cunge Channel Routing									
Reach Number	Time Step Method	Length (m)	Slope	Man- ning's n	Shape	Width	Side Slope			
149R	Automatic Fixed Interval	39795.6	0.00016	0.00121	Trapezoid	30	45			
150R	Automatic Fixed Interval	161327	0.00034	0.0007	Trapezoid	30	45			
151R	Automatic Fixed Interval	142557	0.00043	0.0012	Trapezoid	30	45			
152R	Automatic Fixed Interval	62250.8	0.00037	0.00175	Trapezoid	30	45			
153R	Automatic Fixed Interval	16966.8	0.00069	0.00119	Trapezoid	30	45			
154R	Automatic Fixed Interval	33384.7	0.00258	0.0001	Trapezoid	30	45			
155R	Automatic Fixed Interval	69295.1	0.0001	0.0012	Trapezoid	30	45			
156R	Automatic Fixed Interval	38155.7	0.00022	0.00179	Trapezoid	30	45			
157R	Automatic Fixed Interval	33075.1	0.00119	0.0018	Trapezoid	30	45			
158R	Automatic Fixed Interval	58815.9	0.00103	0.0012	Trapezoid	30	45			
159R	Automatic Fixed Interval	51259.7	0.00109	0.00117	Trapezoid	30	45			
160R	Automatic Fixed Interval	46673.6	0.00016	0.001	Trapezoid	30	45			
161R	Automatic Fixed Interval	42059.9	0.00489	0.00074	Trapezoid	30	45			
162R	Automatic Fixed Interval	142719	0.00538	0.00035	Trapezoid	30	45			
163R	Automatic Fixed Interval	150098	0.00471	0.00074	Trapezoid	30	45			
164R	Automatic Fixed Interval	21950.8	0.00053	0.0018	Trapezoid	30	45			
165R	Automatic Fixed Interval	20135.6	0.00039	0.0018	Trapezoid	30	45			
166R	Automatic Fixed Interval	64025.5	0.00114	0.00052	Trapezoid	30	45			
167R	Automatic Fixed Interval	85625.4	0.00019	0.00179	Trapezoid	30	45			
168R	Automatic Fixed Interval	43824.6	0.00068	0.00074	Trapezoid	30	45			
169R	Automatic Fixed Interval	30872.8	0.00018	0.0005	Trapezoid	30	45			
170R	Automatic Fixed Interval	46839.1	0.00147	0.0005	Trapezoid	30	45			
171R	Automatic Fixed Interval	50056.6	0.00246	0.0005	Trapezoid	30	45			
172R	Automatic Fixed Interval	59678.1	0.001	0.00118	Trapezoid	30	45			
173R	Automatic Fixed Interval	8117.21	0.0008	0.00401	Trapezoid	30	45			
174R	Automatic Fixed Interval	5211.94	0.00082	0.00268	Trapezoid	30	45			
175R	Automatic Fixed Interval	23979.7	0.00024	0.0018	Trapezoid	30	45			
176R	Automatic Fixed Interval	42677.5	0.00061	0.0012	Trapezoid	30	45			
177R	Automatic Fixed Interval	47129.3	0.00015	0.0012	Trapezoid	30	45			
178R	Automatic Fixed Interval	83367.5	0.0001	0.0012	Trapezoid	30	45			
179R	Automatic Fixed Interval	122373	0.00208	0.0012	Trapezoid	30	45			
180R	Automatic Fixed Interval	133097	0.00022	0.0012	Trapezoid	30	45			
181R	Automatic Fixed Interval	74386.8	0.00099	0.0012	Trapezoid	30	45			
182R	Automatic Fixed Interval	23317.9	0.00091	0.0018	Trapezoid	30	45			
183R	Automatic Fixed Interval	184249	0.00045	0.00178	Trapezoid	30	45			

	Muskingum Cunge Channel Routing										
Reach Number	Time Step Method	Length (m)	Slope	Man- ning's n	Shape	Width	Side Slope				
184R	Automatic Fixed Interval	47589.6	0.0269	0.0019	Trapezoid	30	45				
185R	Automatic Fixed Interval	47995	0.02534	0.00177	Trapezoid	30	45				
186R	Automatic Fixed Interval	23938.6	0.01462	0.00118	Trapezoid	30	45				
187R	Automatic Fixed Interval	10570.1	0.05204	0.00118	Trapezoid	30	45				
188R	Automatic Fixed Interval	19441.1	0.02234	0.00118	Trapezoid	30	45				
189R	Automatic Fixed Interval	21088.2	0.00893	0.00118	Trapezoid	30	45				
190R	Automatic Fixed Interval	18954.8	0.00852	0.00118	Trapezoid	30	45				
191R	Automatic Fixed Interval	13018.5	0.00718	0.00118	Trapezoid	30	45				
192R	Automatic Fixed Interval	21783.3	0.00197	0.00115	Trapezoid	30	45				
193R	Automatic Fixed Interval	56874.9	0.02075	0.00136	Trapezoid	30	45				
194R	Automatic Fixed Interval	12718.6	0.00102	0.00136	Trapezoid	30	45				
195R	Automatic Fixed Interval	22934.3	0.00119	0.00117	Trapezoid	30	45				
196R	Automatic Fixed Interval	59203.3	0.00001	0.00178	Trapezoid	30	45				
197R	Automatic Fixed Interval	25298.6	0.00095	0.00118	Trapezoid	30	45				
198R	Automatic Fixed Interval	45880.8	0.00109	0.00118	Trapezoid	30	45				
199R	Automatic Fixed Interval	55727	0.00017	0.00118	Trapezoid	30	45				
200R	Automatic Fixed Interval	74055.7	0.00078	0.00117	Trapezoid	30	45				
201R	Automatic Fixed Interval	95713.4	0.00405	0.00118	Trapezoid	30	45				
202R	Automatic Fixed Interval	70011.4	0.00064	0.00118	Trapezoid	30	45				
203R	Automatic Fixed Interval	51828.4	0.00081	0.00117	Trapezoid	30	45				
204R	Automatic Fixed Interval	42492	0.00043	0.00118	Trapezoid	30	45				
205R	Automatic Fixed Interval	33510.2	0.00155	0.00118	Trapezoid	30	45				
206R	Automatic Fixed Interval	27387.5	0.00115	0.00113	Trapezoid	30	45				
207R	Automatic Fixed Interval	13930.8	0.00224	0.00118	Trapezoid	30	45				
208R	Automatic Fixed Interval	23289.8	0.00168	0.00118	Trapezoid	30	45				
209R	Automatic Fixed Interval	5150.21	0.00491	0.00118	Trapezoid	30	45				
210R	Automatic Fixed Interval	30386.4	0.02309	0.00118	Trapezoid	30	45				
211R	Automatic Fixed Interval	57588.4	0.00729	0.00177	Trapezoid	30	45				
212R	Automatic Fixed Interval	46376	0.00097	0.00118	Trapezoid	30	45				
213R	Automatic Fixed Interval	32851.3	0.00091	0.00117	Trapezoid	30	45				
214R	Automatic Fixed Interval	12500.2	0.00014	0.00266	Trapezoid	30	45				
215R	Automatic Fixed Interval	27264.3	0.00063	0.00113	Trapezoid	30	45				
216R	Automatic Fixed Interval	32250.5	0.00094	0.00266	Trapezoid	30	45				

Appendix C. Andanan Model Basin Parameters

	Ratio to Peak	0	0	0	0	0	0	0	0	0
~	Threshold Type	Ratio to Peak								
ssion Baseflov	Recession Constant	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Rece	Initial Dis- charge (M3/S)	0.0135006	0.0217097	0.0208594	0.0018286	0.00085705	0.06582	0.0212935	0.0039025	0.0306374
	Initial Type	0.91421	0.70445	0.75914	0.78699	0.86946	4.7293	0.85299	2.5051	1.0783
ydrograph form	Storage Coeffi- cient (HR)	0.11811	0.12415	0.29472	0.34945	1.0480	1.3699	1.0054	0.41652	0.92482
Clark Unit H Trans	Time of Concentra- tion (HR)	12.079912	4.8981634	18.39916	22.21011	68.78898	142.62014	69.875234	96.278988	141.57546
Loss	lmper- vious (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
rve Number	Curve Number	73.1409	78.95685	40.8765	59.77335	61.64865	39.00015	46.47825	47.46945	48.5394
SCS Cu	Initial Ab- straction (mm)	52.755	1.2959	58.653	43.005	28.392	11.953	11.972	25.294	17.87
Basin	Num- ber	111B	112B	117B	118B	123B	124B	128B	129B	132B

Appendix

Appendix D. Andanan Model Reach Parameters

<u> </u>	М	uskingum Cu	nge Channe	l Routing			
Reach Numbe	Time Step Method	Length (m)	Slope	Man- ning's n	Shape	Width	Side Slope
122R	Automatic Fixed Interval	14994.944	0.035440	0.0243872	Trapezoid	30	45
123R	Automatic Fixed Interval	14998.363	0.035640	0.0001	Trapezoid	30	45
124R	Automatic Fixed Interval	50243.335	0.015520	0.0001	Trapezoid	30	45
125R	Automatic Fixed Interval	50265.873	0.015510	0.013601	Trapezoid	30	45
130R	Automatic Fixed Interval	23299.420	0.005760	0.023733	Trapezoid	30	45
131R	Automatic Fixed Interval	23299.680	0.005530	0.0001	Trapezoid	30	45
135R	Automatic Fixed Interval	37347.689	0.004130	0.0001	Trapezoid	30	45
136R	Automatic Fixed Interval	37336.095	0.004220	0.0214934	Trapezoid	30	45

Parameters
Model Basin
DRRM
Appendix E.

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M3/S)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Recession Baseflow	Initial Type	2.9111	3.2512	0.59291	0.97788	0.6218	0.039417	0.84978	0.72403	3.9908	11.686	1.2191
ydrograph form	Storage Coeffi- cient (HR)	15.26784	31.99968	16.72608	12.1056	17.07648	2.4768	15.88992	16.67712	8.6107584	18.3792	7.9914048
Clark Unit H Transf	Time of Concentra- tion (HR)	6.643	13.8855052	4.78296	5.2463348	4.88516	1.0765	4.6057452	2.1598948	12.89764	12.1072252	3.51568
oss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
irve Number L	Curve Num- ber	44.2075185	40.1032905	39.7735056	39.5648115	41.6169255	37.6808	41.5625418	39.69955	46.9055394	51.501096	49.9796919
SCS Cu	Initial Ab- straction (mm)	32.031	37.2585	37.7260773	38.026	35.211	40.8795	35.2815	37.8315	29.0925	24.798	26.1315
Basin	Num- ber	148B	149B	150B	151B	152B	153B	154B	155B	156B	157B	158B

79

Y

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M3/S)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	0.0	6.0
Recession Baseflow	Initial Type	0.01019	1.0675	3.6871	2.5197	1.3763	23.023	3.0134	2.4498	1.2362	4.7986	0.53871
t Hydro- ansform	Storage Coeffi- cient (HR)	3.4133376	31.33344	22.73664	12.77472	19.7616	39.792	21.59424	16.60224	14.66688	6.0457536	24.792
Clark Uni graph Tri	Time of Concen- tration (HR)	1.2264	8.9594652	9.8862148	8.6802548	3.80184	26.9808	9.7840148	4.78296	6.3705348	6.1591852	4.82384
SSO	lmper- vious (%)	0	0	0	0	0	0	0	0	0	0	ο
rve Number L	Curve Num- ber	56.5212	49.2274287	51.8651721	49.9796919	39.901026	49.6710711	51.8111	48.1641336	52.0532379	46.5077079	51.8651721
SCS Cu	Initial Ab- straction (mm)	20.9025	26.823	24.489	26.1315	37.545	26.4135	24.5355	27.8355	24.3321933	29.505	24.489
	Num- ber	159B	160B	161B	162B	163B	164B	165B	166B	167B	168B	169B

80

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M ₃ /S)	6.0	6.0	0.0	6.0	6.0	0.0	0.0	6.0	0.0	0.0	6.0
Recession Baseflow	Initial Type	2.032	3.001	5.6045	6.432	2.5075	0.74956	3.9022	5.4908	1.4909	2.2237	9.8379
ydrograph form	Storage Coeffi- cient (HR)	18.9072	23.22336	18	4.9886112	39.2304	15.9648	15.95136	7.3861824	12.89472	19.87872	26.06784
Clark Unit H Transi	Time of Concentra- tion (HR)	7.154	7.4947348	33.392828	7.4742948	3.3726	4.0608148	6.9359052	11.0647852	5.6073052	3.8359748	12.0119748
oss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number L	Curve Num- ber	51.8111	51.8111	52.3015812	52.382487	52.1617374	51.8111	51.8111	51.7373838	47.4914367	51.83865	52.4703582
SCS Cu	Initial Ab- straction (mm)	24.5355	24.5355	24.126	24.06	24.2415	24.5355	24.5355	24.597	28.499	24.5117754	23.988
Basin	Num- ber	170B	171B	172B	173B	174B	175B	176B	177B	178B	179B	180B

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M3/S)	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	6.0
Recession Baseflow	Initial Type	1.1793	0.71115	2.8522	0.74452	1.3078	0.51598	4.0235	0.52964	0.44689	0.51531	0.19349
łydrograph form	Storage Coefficient (HR)	10.152	4.9980864	8.6651904	5.8601088	10.58016	2.8424544	7.7204928	2.8351968	3.1905696	3.81696	3.0768
Clark Unit H Trans	Time of Concentra- tion (HR)	4.41504	7.4877852	8.8028948	3.96536	4.599	2.77984	7.8694	1.8464	2.12576	1.6625	1.3354
oss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number L	Curve Num- ber	51.8111	53.8712073	52.7259348	53.4396204	54.131874	49.9748697	52.0194825	51.8111	51.94581	51.9254496	52.4028474
SCS Cu	Initial Ab- straction (mm)	24.5355	22.8675	23.778	23.2065	22.6665	26.136	24.36	24.5355	24.4215	24.4395	24.0435
Basin	Num- ber	181B	182B	183B	184B	185B	186B	187B	188B	189B	190B	191B

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M3/S)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Recession Baseflow	Initial Type	1.8084	0.34208	0.035944	0.24186	0.14142	0.44197	0.27792	1.268	0.007837	0.71608	0.61318
it Hydro- ansform	Storage Coeffi- cient (HR)	19.6464	2.89824	2.89824	4.0915392	3.02976	4.0882272	2.87616	6.7710528	3.1288896	3.5123232	2.9785632
Clark Un graph Tr	Time of Concen- tration (HR)	6.76564	1.2605	1.2264	1.81916	1.3150	1.9282	1.8737	4.599	1.2264	2.28928	2.9161748
SSO	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number L	Curve Num- ber	53.3190654	51.9254496	51.8111	51.8111	51.8111	52.200315	52.200315	54.0592731	56.5212	53.4323871	54.2473389
SCS Cu	Initial Ab- straction (mm)	23.3025	24.4395	24.5355	24.5355	24.5355	24.21	24.21	22.7223639	20.9025	23.2125	22.578
Daria	Num- ber	192B	193B	194B	195B	196B	197B	198B	199B	200B	201B	202B

	on Threshold Ratio	nt Type to Peak	nt Type to Ratio to o Peak o	nt Type to Ratio to 0 Peak 0 Ratio to 0 Peak 0	nt Type to Ratio to 0 Peak 0 Peak 0 Peak 0 Peak 0	nt Type to Ratio to Peak 0 Peak 0 Peak 0 Peak 0 Peak 0 Peak 0 Peak 0	nt Type to Ratio to Peak Ratio to Peak Ratio to 0 Peak 0 Peak 0 Peak 0 Peak 0 Peak 0 Peak 0	nt Type to Ratio to Peak 0 Peak 0	ntTypetoRatio toPeak0PeakRatio to0PeakRatio to0Peak0PeakRatio to0PeakRatio to00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00	ntTypetoRatio toPeak0PeakRatio to0PeakRatio to0PeakRatio to0Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00	ntTypetoTypeRatio to0PeakRatio to0PeakRatio to0Peak0PeakRatio to0PeakRatio to00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00	ntTypetoTypeRatio to0PeakRatio to0PeakRatio to0Peak0PeakRatio to0PeakRatio to0PeakPeak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00Peak00
ې بې	Constant Tyre		0.001 Rati	0.001 Rati Pe 0.001 Rati	0.001 Rati Pe 0.001 Rati Pe 841	0.001 Rati Petri 0.001 Petri Petri Petri Petri Petri Petri Petri Petri	0.001 Rati Pe 0.001 Pe 0.001 Pe	0.001 Rati Pe 0.001 Pe Pe 0.001 Pe 0.001 Pe Pe 0.001 Pe Pe 0.001 Pe Pe 0.001 Pe Pe	0.001 Rati Pe 0.001 Pe Pe 0.001 Pe 0.001 Pe Pe	0.001 Rati Pe 0.001 Pe Pe 0.001 Pe 0.001 Pe Pe	0.001 Rational matrix 0.001 Periods Periods Periods	0.001 Rati Pe 0.001 Pe Pe 0.001 Pe Pe 0.001 Pe Pe 0.001 Pe Pe Pe Pe
Initial Dis- charge (M ₃ /S)		0.0		0.0	0.0 <u> </u>	0.0 <u>6.0</u> 0.0 <u>6.0</u>	0.0 <u>6.0</u> 0.0 <u>6.0</u> 0.0 <u>6.0</u>	0.0 <u>6.0</u> 0.0 <u>6.0</u> 0.0 <u>6.0</u>	0.0 <u>6.0</u> 0.0 <u>6.0</u> 0.0 <u>6.0</u> 0.0 <u>6.0</u>	0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0	0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0	0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0 0.0 9.0
ype charge (M3/S) 9 0.9	6.0 6.9		9.0 56		16 0.9	49 0.9	49 0.9 49 0.9	46 0.9 49 0.9 1 0.9 21 0.9	16 0.9 49 0.9 1 0.9 21 0.9 57 0.9	16 0.9 49 0.9 1 0.9 21 0.9 57 0.9 42 0.9	16 0.9 49 0.9 1 0.9 21 0.9 57 0.9 42 0.9 38 0.9	16 0.9 49 0.9 1 0.9 21 0.9 57 0.9 88 0.9 34 0.9
0.83119	0.83119		64044.0	0.70746		0.007949	0.007949 0.9341	0.007949 0.9341 0.44421	0.007949 0.9341 0.44421 0.59067	0.007949 0.9341 0.44421 0.59067 0.54442	0.007949 0.9341 0.44421 0.59067 0.54442 0.54442	0.007949 0.9341 0.44421 0.59067 0.59067 0.59068
Storage Coefficient (HR)		4.8031392	35.98176		17.24736	17.24736	17.24736 1.70592 3.9908736	17.24736 1.70592 3.9908736 3.0382944	17.24736 1.70592 3.9908736 3.0382944 3.4937568	17.24736 1.70592 3.9908736 3.0382944 3.4937568 3.0054432	17.24736 1.70592 3.9908736 3.0382944 3.0382944 3.0054432 3.0054432 6.82944	17.24736 1.70592 3.9908736 3.0382944 3.4937568 3.4937568 3.0054432 6.82944 6.82944 3.42144
Time of Concen- tration	(HR)	2.0507452	6.88828	,	4.06756	4.06756 0.92831	4.06756 0.92831 2.6572	4.06756 0.92831 2.6572 2.9705452	4.06756 0.92831 2.6572 2.9705452 2.2825348	4.06756 0.92831 2.6572 2.9705452 2.2825348 1.96224	4.06756 0.92831 2.6572 2.9705452 2.2825348 1.96224 1.96224 2.9705452	4.06756 0.92831 2.6572 2.9705452 2.2825348 1.96224 1.96224 2.2347052
Imper- vious	دەرەرە (%)	0	0		0	0 0	o o o	o o o o	o o o o o	o o o o o o	o o o o o o o	o o o o o o o
Curve Num-	מע	52.0869933	54.9272691		55.8486	55.8486 55.8486	55.8486 55.8486 53.0827776	55.8486 55.8486 53.0827776 54.7994808	55.8486 55.8486 53.0827776 54.7994808 50.8886766	55.8486 55.8486 53.0827776 54.7994808 50.8886766 50.8886766	55.8486 55.8486 53.0827776 54.7994808 54.7994808 54.7850142 53.5143645	55.8486 55.8486 53.0827776 54.7994808 54.7994808 54.7850142 54.7850142 53.5143645 53.5143645
Initial Ab-	straction (mm)	24.3045	22.062		21.384	21.384	21.384 21.384 23.4915	21.384 21.384 23.4915 22.158	21.384 21.384 23.4915 22.158 22.158 25.3245	21.384 21.384 23.4915 22.158 22.158 25.3245 25.3245	21.384 21.384 23.4915 22.158 22.1585 25.3245 23.1477099	21.384 21.384 23.4915 23.45685 25.3245 25.3245 23.1477099 23.1477099 23.594
	ber	203B	204B	A D C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	206B	206B 205B	2058 2068 2078 2088	205B 206B 207B 208B 209B	205B 206B 207B 208B 209B	205B 206B 207B 208B 209B 210B 211B	205B 206B 207B 208B 210B 211B 212B

	Ratio to Peak	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak							
	Recession Constant	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	Initial Dis- charge (M3/S)	6.0	6.0	6.0	0.9	6.0	6.0	0.9	6.0
Recession Baseflow	Initial Type	0.23526	0.24623	0.40614	0.96926	0.23224	0.71239	0.32058	3.4824
lydrograph form	Storage Coeffi- cient (HR)	2.55168	3.168	3.40992	7.3348704	2.52672	2.7226	1.9248	12.78144
Clark Unit H Trans	Time of Concentra- tion (HR)	1.1106	1.3763	1.4853	2.0985748	1.0969	1.18552	1.04755	5.5529348
oss.	Imper- vious (%)	0	0	0	0	0	0	0	0
rve Number L	Curve Num- ber	52.0532379	52.706646	51.8111	52.537869	52.618239	52.5041136	52.3907919	53.930949
SCS Cu	Initial Ab- straction (mm)	24.3321933	23.7945	24.5355	23.9325	23.8665	23.9596515	24.0525	22.8225
Basin	Num- ber	214B	215B	216B	217B	218B	219B	220B	221B

Appendix F. DRRM Model Reach Parameters

er h	Muskingum Cunge Channel Routing										
Reac Numb	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope				
149R	Automatic Fixed Interval	39795.62	0.00016	0.0041963	Trapezoid	150	1				
150R	Automatic Fixed Interval	161327.1	0.00034	0.0019906	Trapezoid	150	1				
151R	Automatic Fixed Interval	142557.3	0.00043	0.0028481	Trapezoid	150	1				
152R	Automatic Fixed Interval	62250.76	0.00037	0.0008151	Trapezoid	150	1				
153R	Automatic Fixed Interval	16966.75	0.00069	0.0334535	Trapezoid	150	1				
154R	Automatic Fixed Interval	33384.68	0.00258	0.0012715	Trapezoid	150	1				
155R	Automatic Fixed Interval	69295.07	0.0001	0.0044224	Trapezoid	150	1				
156R	Automatic Fixed Interval	38155.7	0.00022	0.0102747	Trapezoid	150	1				
157R	Automatic Fixed Interval	33075.1	0.00119	0.0102391	Trapezoid	150	1				
158R	Automatic Fixed Interval	58815.88	0.00103	0.0066349	Trapezoid	150	1				
159R	Automatic Fixed Interval	51259.71	0.00109	0.0074677	Trapezoid	150	1				
160R	Automatic Fixed Interval	46673.55	0.00016	0.0097260	Trapezoid	150	1				
161R	Automatic Fixed Interval	42059.94	0.00489	0.0027104	Trapezoid	150	1				
162R	Automatic Fixed Interval	142719.3	0.00538	.00026056	Trapezoid	150	1				
163R	Automatic Fixed Interval	150097.6	0.00471	0.0042137	Trapezoid	150	1				
164R	Automatic Fixed Interval	21950.79	0.00053	0.0019003	Trapezoid	150	1				
165R	Automatic Fixed Interval	20135.57	0.00039	0.0012031	Trapezoid	150	1				
166R	Automatic Fixed Interval	64025.55	0.00114	0.00078	Trapezoid	150	1				
167R	Automatic Fixed Interval	85625.37	0.00019	0.0066190	Trapezoid	150	1				
168R	Automatic Fixed Interval	43824.61	0.00068	0.000496	Trapezoid	150	1				
169R	Automatic Fixed Interval	30872.84	0.00018	.0003376	Trapezoid	150	1				
170R	Automatic Fixed Interval	46839.07	0.00147	0.000156	Trapezoid	150	1				
171R	Automatic Fixed Interval	50056.65	0.00246	0.000338	Trapezoid	150	1				
172R	Automatic Fixed Interval	59678.09	0.001	0.00085	Trapezoid	150	1				
173R	Automatic Fixed Interval	8117.206	0.0008	0.0040303	Trapezoid	150	1				
174R	Automatic Fixed Interval	5211.943	0.00082	0.0065708	Trapezoid	150	1				
175R	Automatic Fixed Interval	23979.68	0.00024	0.0177783	Trapezoid	150	1				
176R	Automatic Fixed Interval	42677.48	0.00061	0.0045477	Trapezoid	150	1				
177R	Automatic Fixed Interval	47129.33	0.00015	.00025381	Trapezoid	150	1				
178R	Automatic Fixed Interval	83367.47	0.0001	0.0026313	Trapezoid	150	1				
179R	Automatic Fixed Interval	122373.2	0.00208	0.0005488	Trapezoid	150	1				
180R	Automatic Fixed Interval	133096.7	0.00022	0.0008380	Trapezoid	150	1				
181R	Automatic Fixed Interval	74386.77	0.00099	0.0093947	Trapezoid	150	1				
182R	Automatic Fixed Interval	23317.93	0.00091	0.0027062	Trapezoid	150	1				
183R	Automatic Fixed Interval	184249.1	0.00045	0.0017844	Trapezoid	150	1				

ь er	Muskingum Cunge Channel Routing										
Reac Numb	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope				
184R	Automatic Fixed Interval	47589.57	0.0269	0.0242919	Trapezoid	150	1				
185R	Automatic Fixed Interval	47995.05	0.02534	0.0095502	Trapezoid	150	1				
186R	Automatic Fixed Interval	23938.62	0.01462	0.0152122	Trapezoid	150	1				
187R	Automatic Fixed Interval	10570.09	0.05204	0.0027762	Trapezoid	150	1				
188R	Automatic Fixed Interval	19441.08	0.02234	0.0063464	Trapezoid	150	1				
189R	Automatic Fixed Interval	21088.18	0.00893	0.0065114	Trapezoid	150	1				
190R	Automatic Fixed Interval	18954.75	0.00852	0.0028672	Trapezoid	150	1				
191R	Automatic Fixed Interval	13018.49	0.00718	0.0017413	Trapezoid	150	1				
192R	Automatic Fixed Interval	21783.27	0.00197	0.0028421	Trapezoid	150	1				
193R	Automatic Fixed Interval	56874.88	0.02075	0.0114844	Trapezoid	150	1				
194R	Automatic Fixed Interval	12718.59	0.00102	.00056098	Trapezoid	150	1				
195R	Automatic Fixed Interval	22934.26	0.00119	0.0064978	Trapezoid	150	1				
196R	Automatic Fixed Interval	59203.3	0.00001	0.0066594	Trapezoid	150	1				
197R	Automatic Fixed Interval	25298.55	0.00095	0.0151356	Trapezoid	150	1				
198R	Automatic Fixed Interval	45880.8	0.00109	0.0140707	Trapezoid	150	1				
199R	Automatic Fixed Interval	55726.97	0.00017	0.0028717	Trapezoid	150	1				
200R	Automatic Fixed Interval	74055.69	0.00078	0.000363	Trapezoid	150	1				
201R	Automatic Fixed Interval	95713.41	0.00405	0.0011626	Trapezoid	150	1				
202R	Automatic Fixed Interval	70011.36	0.00064	0.0005380	Trapezoid	150	1				
203R	Automatic Fixed Interval	51828.37	0.00081	0.0223951	Trapezoid	150	1				
204R	Automatic Fixed Interval	42492.01	0.00043	0.0003608	Trapezoid	150	1				
205R	Automatic Fixed Interval	33510.18	0.00155	0.0003660	Trapezoid	150	1				
206R	Automatic Fixed Interval	27387.52	0.00115	0.0007748	Trapezoid	150	1				
207R	Automatic Fixed Interval	13930.83	0.00224	0.0012669	Trapezoid	150	1				
208R	Automatic Fixed Interval	23289.76	0.00168	0.0091331	Trapezoid	150	1				
209R	Automatic Fixed Interval	5150.214	0.00491	0.0073668	Trapezoid	150	1				
210R	Automatic Fixed Interval	30386.39	0.02309	0.0005679	Trapezoid	150	1				
211R	Automatic Fixed Interval	57588.37	0.00729	0.0028362	Trapezoid	150	1				
212R	Automatic Fixed Interval	46375.97	0.00097	0.0012594	Trapezoid	150	1				
213R	Automatic Fixed Interval	32851.29	0.00091	0.0148293	Trapezoid	150	1				
214R	Automatic Fixed Interval	12500.24	0.00014	0.0005725	Trapezoid	150	1				
215R	Automatic Fixed Interval	27264.28	0.00063	0.0016412	Trapezoid	150	1				
216R	Automatic Fixed Interval	32250.5	0.00094	0.0252714	Trapezoid	150	1				

Appendix G. Brgy. Panag Model Basin Parameters

	o to ak				
	Ratio	0	0	0	0
	Threshold Type	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak
	Recession Constant	0	0	0	0
	Initial Dis- charge (M3/S)	66.0	66.0	66.0	66.0
Recession Baseflow	lnitial Type	277.0038	77.098	56.66554	47.634
it Hydro- ansform	Storage Coeffi- cient (HR)	2.6628	1.528098	0.5672	0.7128
Clark Un graph Tr	Time of Concen- tration (HR)	0.108668	0.041068	0.0232	0.043732
oss	Imper- vious (%)	0	0	0	0
rve Number L	Irve Number Lo Curve Num- ber		65.37	65.328	67.10286
SCS Cu	SCS Cu Initial Ab- straction (mm)		0.5	0.5	0.5
Basin – Num- ber		221B	217B	219B	212B

Appendix

88

Appendix H. Brgy. Panag Model Reach Parameters

h er	M	uskingum C	unge Char	nnel Routing			
Reac	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
184R	Automatic Fixed Interval	47589.57	0.0269	0.000237	Trapezoid	30	45
186R	Automatic Fixed Interval	23938.62	0.01462	0.000148	Trapezoid	30	45
185R	Automatic Fixed Interval	47995.05	0.02534	0.000221	Trapezoid	30	45

Appendix I. Brgy. Poblacion Model Basin Parameters

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0	0	0	0	0	0	0	0	0	0	0
	Initial Dis- charge (M3/S)	66.0	66.0	66.0	66.0	66.0	66.0	66.0	66.0	66.0	66.0	66.0
Recession Baseflow	Initial Type	4.887	3.461	0.038887	4.5698	2.1731	2.8897	2.6634	1.4676	2.9297	1.4752	1.1509
it Hydro- ansform	Storage Coeffi- cient (HR)	7.4962	3.5932	0.3554	0.831432	0.632978	0.727866	0.626134	1.4228	0.7128	0.5586	0.5316
Clark Uni graph Tr	Time of Concen- tration (HR)	0.1348	0.0796	0.018167	0.052	0.058132	0.044668	0.0384	0.058132	0.043732	0.0228	0.021733
oss	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
rve Number L	Curve Num- ber	91.124	92.6519	92.6519	88.064	90.912	84.424	90.888	88.78	87.85187	86.868	86.356
SCS Cu	Initial Ab- straction (mm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	basin Num- ber	204B	205B	206B	207B	208B	209B	210B	211B	212B	213B	214B

Appendix

90

	Ratio to Peak	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak						
	Recession Constant	0	0	0	0	0	0	0
	Initial Dis- charge (M3/S)	66.0	66.0	66.0	66.0	66.0	66.0	0.99
Recession Baseflow	Initial Type	1.2046	1.9869	4.7418	1.1361	3.4851	1.5684	17.037
t Hydro- ansform	Storage Coeffi- cient (HR)	18.394	0.7104	1.528098	2.4883	0.5672	16.247	2.6628
Clark Uni graph Tr	Time of Concen- tration (HR)	0.026933	0.029067	0.041068	0.021467	0.0232	0.0205	0.108668
oss	Imper- vious (%)	0	0	0	0	0	0	0
ve Number Lo	Curve Num- ber	66	85.95418	87.16	66	87.104	66	89.47048
SCS Cu	Initial Ab- straction (mm)	107.9	0.5	0.5	5.5217	0.5	12.362	0.5
	ber ber	215B	216B	217B	218B	219B	220B	221B

Appendix J. Brgy. Poblacion Model Reach Parameters

er h	M	Muskingum Cunge Channel Routing										
Reac	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope					
154R	Automatic Fixed Interval	33384.68	0.00258	0.0002	Trapezoid	30	45					
184R	Automatic Fixed Interval	47589.57	0.0269	0.003791	Trapezoid	30	45					
185R	Automatic Fixed Interval	47995.05	0.02534	0.003544	Trapezoid	30	45					
186R	Automatic Fixed Interval	23938.62	0.01462	0.002362	Trapezoid	30	45					
187R	Automatic Fixed Interval	10570.09	0.05204	0.5488	Trapezoid	30	45					
188R	Automatic Fixed Interval	19441.08	0.02234	0.004837	Trapezoid	30	45					
189R	Automatic Fixed Interval	21088.18	0.00893	0.002362	Trapezoid	30	45					
190R	Automatic Fixed Interval	18954.75	0.00852	0.002351	Trapezoid	30	45					
191R	Automatic Fixed Interval	13018.49	0.00718	0.002362	Trapezoid	30	45					
192R	Automatic Fixed Interval	21783.27	0.00197	0.002292	Trapezoid	30	45					
193R	Automatic Fixed Interval	56874.88	0.02075	0.002717	Trapezoid	30	45					
194R	Automatic Fixed Interval	12718.59	0.00102	0.002717	Trapezoid	30	45					
195R	Automatic Fixed Interval	22934.26	0.00119	0.002339	Trapezoid	30	45					
197R	Automatic Fixed Interval	25298.55	0.00095	0.002362	Trapezoid	30	45					
198R	Automatic Fixed Interval	45880.8	0.00109	0.002362	Trapezoid	30	45					

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0	0	0	0	0	0	0	0	0	0	0
	Initial Dis- charge (M3/S)	0.28456	L	L	0.19753	0.0260123	0.0382381	0.29037	0.011561	0.29037	0.0877915	0.19753
Recession Baseflow	Initial Type	0.37648	0.40039	0.89743	0.0986430	0.44398	0.78372	0.54648	0.61757	0.11372	0.32554	0.59900
Hydrograph sform	Storage Coefficient (HR)	27.6975	16.005	4.8783	2-3355	0.0715905	0.611805	26.4645	0.0730638	0.098448	0.16575	10.85805
Clark Unit Tran	Time of Concen- tration (HR)	7.9067	9.1206	58.36	14.916	0.70544	3.7798	14.241	0.85339	0.28315	1.4123	30.419
SSO.	lmper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
SCS Curve Number Lo	Curve Num- ber	39.4636	68.75	77.2024	40.8232	42.108	88.4631	45.6632	62.5889	89.0483	75.3489	49.0248
	Initial Ab- straction (mm)	6.8465	48.842	29.875	23.614	109.87	8.8609	34.38	44.402	45.707	43.691	48.341
	basin Num- ber	105B	106B	107B	108B	109B	110B	113B	114B	115B	116B	119B

S

	Ratio to Peak	0	0	0	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak										
	Recession Constant	0	0	0	0	0	0	0	0	0	0	0
	Initial Dis- charge (M3/S)	0.19753	0.29037	0.29037	1	0.28456	1	1	0.19753	0.0260123	0.0382381	0.29037
Recession Baseflow	Initial Type	0.21261	0.17800	0.69369	0.34875	0.37648	0.40039	0.89743	0.0986430	0.44398	0.78372	0.54648
Clark Unit Hydro- graph Transform	Storage Coeffi- cient (HR)	5.32635	26.223	16.2945	0.82545	27.6975	16.005	4.8783	5.3355	0.0715905	0.611805	26.4645
	Time of Concen- tration (HR)	18.709	50.086	31.543	0.75658	7.9067	9.1206	58.36	14.916	0.70544	3.7798	14.241
OSS	Imper- vious (%)	0	0	0	0	0	0	0	0	0	0	0
SCS Curve Number Lo	Curve Num- ber	73.0609	40.2589	59.1162	73.348	39.4636	68.75	77.2024	40.8232	42.108	88.4631	45.6632
	Initial Ab- straction (mm)	16.192	34.381	23.033	29.889	6.8465	48.842	29.875	23.614	109.87	8.8609	34.38
	Num- ber	120B	121B	122B	125B	105B	106B	107B	108B	109B	110B	113B

	Ratio to Peak	0	0	0	0	0	0	0	0
	Threshold Type	Ratio to Peak							
	Recession Constant	0	0	0	0	0	0	0	0
	Initial Dis- charge (M3/S)	0.011561	0.29037	0.0877915	0.19753	0.19753	0.29037	0.29037	1
Recession Baseflow	Initial Type	0.61757	0.11372	0.32554	0.59900	0.21261	0.17800	0.69369	0.34875
ydrograph form	Storage Coeffi- cient (HR)	0.0730638	0.098448	0.16575	10.85805	5.32635	26.223	16.2945	0.82545
Clark Unit H Trans	Time of Concen- tration (HR)	0.85339	0.28315	1.4123	30.419	18.709	50.086	31.543	0.75658
SSO	Imper- vious (%)	0	0	0	0	0	0	0	0
rve Number Lo	Curve Num- ber	62.5889	89.0483	75.3489	49.0248	73.0609	40.2589	59.1162	73.348
SCS Cu	Initial Ab- straction (mm)	44.402	45.707	43.691	48.341	16.192	34.381	23.033	29.889
	basin Num- ber	114B	115B	116B	119B	120B	121B	122B	125B

Appendix L. Wawa Model Reach Parameters

h er	Muskingum Cunge Channel Routing												
Reac	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope						
126R	Automatic Fixed Interval	14186.035	0.0091734	0.10539	Trapezoid	0.3	0.45						
127R	Automatic Fixed Interval	14168.473	0.0011525	0.0527890	Trapezoid	0.3	0.45						
128R	Automatic Fixed Interval	12272.531	0.0040612	0.0362275	Trapezoid	0.3	0.45						
129R	Automatic Fixed Interval	12303.208	0.0025234	0.0046000	Trapezoid	0.3	0.45						
141R	Automatic Fixed Interval	22504.715	0.0061133	0.0126439	Trapezoid	0.3	0.45						
142R	Automatic Fixed Interval	22490.397	0.0060722	0.0499903	Trapezoid	0.3	0.45						
143R	Automatic Fixed Interval	37241.442	0.0091438	0.0581014	Trapezoid	0.3	0.45						
144R	Automatic Fixed Interval	37229.408	0.0091532	0.0091404	Trapezoid	0.3	0.45						
145R	Automatic Fixed Interval	11499.660	0.0011525	0.0011852	Trapezoid	0.3	0.45						
146R	Automatic Fixed Interval	11442.582	0.0061232	0.0062258	Trapezoid	0.3	0.45						
147R	Automatic Fixed Interval	40865.279	0.0024904	.000393651	Trapezoid	0.3	0.45						
148R	Automatic Fixed Interval	40851.625	0.0060537	0.0031234	Trapezoid	0.3	0.45						
149R	Automatic Fixed Interval	14512.255	0.0091519	0.10919	Trapezoid	0.3	0.45						
150R	Automatic Fixed Interval	14498.902	0.0061294	0.376932	Trapezoid	0.3	0.45						

h er	Mu	skingum C	unge Cl	nannel Rou	iting		
Reac	Time Step Method	Length (m)	Slope	Man- ning's n	Shape	Width	Side Slope
80R	Automatic Fixed Interval	5436.7	0.01	0.0022	Trapezoid	15	45
81R	Automatic Fixed Interval	32244.0	0.00	0.0017	Trapezoid	15	45
82R	Automatic Fixed Interval	20500.0	0.00	0.0003	Trapezoid	15	45
83R	Automatic Fixed Interval	32337.5	0.00	0.0012	Trapezoid	15	45
84R	Automatic Fixed Interval	43199.3	0.01	0.0033	Trapezoid	15	45
85R	Automatic Fixed Interval	15752.4	0.03	0.0012	Trapezoid	15	45
86R	Automatic Fixed Interval	19948.5	0.00	0.0013	Trapezoid	15	45
87R	Automatic Fixed Interval	40384.2	0.01	0.0003	Trapezoid	15	45
88R	Automatic Fixed Interval	34330.5	0.00	0.0011	Trapezoid	15	45
89R	Automatic Fixed Interval	45395.1	0.02	0.0009	Trapezoid	15	45
90R	Automatic Fixed Interval	10816.0	0.01	0.0004	Trapezoid	15	45
91R	Automatic Fixed Interval	33575.5	0.01	0.0032	Trapezoid	15	45
92R	Automatic Fixed Interval	28124.9	0.01	0.0021	Trapezoid	15	45
93R	Automatic Fixed Interval	17568.4	0.02	0.0006	Trapezoid	15	45
94R	Automatic Fixed Interval	7638.7	0.00	0.0006	Trapezoid	15	45
95R	Automatic Fixed Interval	17770.6	0.01	0.0004	Trapezoid	15	45
96R	Automatic Fixed Interval	13235.9	0.01	0.0004	Trapezoid	15	45
97R	Automatic Fixed Interval	25949.2	0.02	0.0008	Trapezoid	15	45
98R	Automatic Fixed Interval	3893.6	0.01	0.0002	Trapezoid	15	45
99R	Automatic Fixed Interval	17543.9	0.03	0.0003	Trapezoid	15	45

Appendix M. Agusan River Discharge from HEC-HMS Simulation

DIRECT FLOW (cms)									
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year		
0	0	0	0	5.833333333	0.4	0.1	0		
0.166666667	0	0	0	6	0.5	0.1	0		
0.333333333	0	0	0	6.166666667	0.7	0.2	0		
0.5	0	0	0	6.333333333	0.9	0.2	0		
0.666666667	0	0	0	6.5	1.1	0.3	0		
0.833333333	0	0	0	6.666666667	1.4	0.5	0		
1	0	0	0	6.833333333	1.7	0.6	0		
1.166666667	0	0	0	7	2.1	0.8	0.1		
1.3333333333	0	0	0	7.166666667	2.6	1	0.1		
1.5	0	0	0	7.333333333	3.1	1.3	0.2		
1.666666667	0	0	0	7.5	3.7	1.6	0.3		
1.833333333	0	0	0	7.666666667	4.4	1.9	0.3		
2	0	0	0	7.833333333	5.1	2.3	0.5		
2.166666667	0	0	0	8	6	2.8	0.6		
2.333333333	0	0	0	8.166666667	6.9	3.3	0.7		
2.5	0	0	0	8.333333333	7.9	3.8	0.9		
2.666666667	0	0	0	8.5	9	4.4	1.1		
2.833333333	0	0	0	8.666666667	10.3	5.1	1.4		
3	0	0	0	8.833333333	11.6	5.9	1.6		
3.166666667	0	0	0	9	13.3	6.9	2		
3.333333333	0	0	0	9.166666667	15.4	8.1	2.4		
3.5	0	0	0	9.333333333	17.9	9.5	2.9		
3.666666667	0	0	0	9.5	20.7	11.2	3.6		
3.833333333	0	0	0	9.666666667	24	13.2	4.3		
4	0	0	0	9.833333333	27.8	15.5	5.2		
4.166666667	0	0	0	10	32.1	18.1	6.3		
4.333333333	0	0	0	10.16666667	36.8	21.1	7.4		
4.5	0	0	0	10.33333333	42.1	24.3	8.8		
4.666666667	0	0	0	10.5	48	28	10.3		
4.833333333	0	0	0	10.66666667	54.5	32.2	12.1		
5	0.1	0	0	10.83333333	61.8	36.9	14.2		
5.166666667	0.1	0	0	11	70.1	42.3	16.7		
5.333333333	0.1	0	0	11.16666667	79.3	48.4	19.5		
5.5	0.2	0	0	11.33333333	89.5	55.2	22.8		
5.666666667	0.3	0	0	11.5	101	63	26.6		
5.83333333	0	0	0	11.66666667	114.7	72.3	31.4		
				11.83333333	133.7	85.8	38.8		
				12	155.9	101.7	47.7		
				12.16666667	179.8	118.8	57.3		

98

DIRECT FLOW (cms)										
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year			
11.666666667	114.7	72.3	31.4	17.16666667	1842.2	1337.4	769.6			
11.83333333	133.7	85.8	38.8	17.33333333	1930.8	1402.9	808.5			
12	155.9	101.7	47.7	17.5	2023.4	1471.5	849.4			
12.16666667	179.8	118.8	57.3	17.666666667	2118.7	1542.1	891.4			
12.33333333	205.5	137.3	67.8	17.83333333	2215.6	1613.9	934.2			
6.666666667	1.4	0.5	0	18	2314.1	1686.9	977.7			
6.833333333	1.7	0.6	0	18.16666667	2414.1	1761	1021.9			
7	2.1	0.8	0.1	18.33333333	2515.6	1836.2	1066.8			
7.166666667	2.6	1	0.1	18.5	2618.5	1912.5	1112.3			
7.333333333	3.1	1.3	0.2	18.66666667	2722.8	1989.8	1158.5			
7.5	3.7	1.6	0.3	18.83333333	2828.5	2068.2	1205.3			
12.666666667	261.7	177.8	90.7	19	2935.8	2147.7	1252.7			
12.83333333	292.2	199.7	103.2	19.16666667	3044.4	2228.2	1300.9			
13	324	222.7	116.2	19.33333333	3154.6	2310	1349.7			
13.16666667	357.3	246.7	129.9	19.5	3266.6	2393	1399.2			
13.33333333	392.1	271.8	144.2	19.66666667	3380.3	2477.3	1449.6			
13.5	428.3	298	159.1	19.83333333	3495.9	2563	1500.8			
13.66666667	466	325.2	174.6	20	3614	2650.7	1553.2			
13.83333333	505.5	353.8	190.8	20.16666667	3737.2	2742.1	1608			
14	546.8	383.6	207.8	20.33333333	3865	2837.2	1665.1			
14.16666667	590.1	414.9	225.6	20.5	3995.8	2934.5	1723.6			
14.33333333	635.7	448	244.5	20.66666667	4128.7	3033.4	1783.1			
14.5	685.6	484.3	265.3	20.83333333	4263.7	3133.9	1843.5			
14.66666667	742.3	525.8	289.5	21	4400.7	3235.8	1904.8			
14.83333333	802.9	570.3	315.6	21.16666667	4539.7	3339.2	1967.1			
15	865.8	616.5	342.8	21.33333333	4680.4	3444	2030.1			
15.16666667	930.7	664.4	370.9	21.5	4822.9	3550.1	2094			
15.33333333	997.5	713.6	400	21.666666667	4967.3	3657.6	2158.7			
15.5	1066.2	764.3	429.9	21.83333333	5113.5	3766.5	2224.3			
15.66666667	1136.8	816.3	460.7	22	5261.5	3876.7	2290.6			
15.83333333	1208.8	869.5	492.1	22.166666667	5411.6	3988.5	2357.9			
16	1282.4	923.9	524.4	22.33333333	5563.9	4101.9	2426.2			
16.16666667	1357.7	979.4	557.4	22.5	5718.3	4217	2495.5			
16.33333333	1434.3	1036.1	591	22.666666667	5875.3	4333.9	2565.9			
16.5	1512.5	1093.8	625.2	22.83333333	6035.7	4453.5	2637.9			
16.66666667	1592.3	1152.8	660.2	23	6203.4	4578.7	2713.6			
16.83333333	1673.7	1212.9	695.8	23.16666667	6376.3	4707.9	2791.8			
17	1756.9	1274.4	732.3	23.33333333	6552.1	4839.4	2871.5			
17.16666667	1842.2	1337.4	769.6							
17.33333333	1930.8	1402.9	808.5							
17.5	2023.4	1471.5	849.4							
17.66666667	2118.7	1542.1	891.4							
17.83333333	2215.6	1613.9	934.2							

DIRECT FLOW (cms)												
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year					
23.5	6730.5	4972.9	2952.5	29.83333333	14640.7	10940.1	6627.3					
23.666666667	6911.1	5108.1	3034.6	30	14845.1	11095.8	6724.7					
23.83333333	7094	5244.9	3117.8	30.16666667	15048.2	11250.5	6821.7					
24	7278.9	5383.4	3202	30.33333333	15250.1	11404.3	6918.2					
24.16666667	7465.6	5523.3	3287.1	30.5	15450.4	11557.1	7014.2					
24.33333333	7654.1	5664.5	3373.1	30.66666667	15649	11708.7	7109.6					
24.5	7844.5	5807.2	3459.9	30.83333333	15845.8	11859	7204.4					
24.66666667	8036.5	5951.1	3547.6	31	16040.5	12007.9	7298.3					
24.83333333	8230.2	6096.4	3636.1	31.16666667	16232.4	12154.6	7391					
25	8425.8	6243.1	3725.5	31.333333333	16417.9	12296.5	7480.8					
25.16666667	8623.4	6391.3	3815.7	31.5	16596.2	12433	7567.1					
25.33333333	8822.9	6540.9	3906.9	31.66666667	16770.6	12566.5	7651.7					
25.5	9024.7	6692.3	3999.2	31.83333333	16942.4	12698.1	7735.1					
25.66666667	9229.6	6846.2	4093	32	17111.8	12828	7817.5					
25.83333333	9440.2	7004.4	4189.8	32.16666667	17278.9	12956.1	7898.9					
26	9654.1	7165.3	4288.3	32.33333333	17443.5	13082.5	7979.3					
26.16666667	9869.6	7327.6	4387.8	32.5	17606	13207.3	8058.8					
26.33333333	10086.5	7491	4488.2	32.66666667	17766.5	13330.6	8137.4					
26.5	10304.5	7655.4	4589.3	32.83333333	17924.8	13452.3	8215.1					
26.66666667	10523.6	7820.6	4691.1	33	18080.9	13572.5	8291.9					
26.83333333	10743.6	7986.7	4793.4	33.16666667	18235.1	13691.2	8367.8					
27	10964.3	8153.4	4896.3	33.33333333	18386.9	13808.2	8442.9					
27.16666667	11185.6	8320.6	4999.6	33.5	18536.2	13923.4	8516.9					
27.33333333	11407.3	8488.3	5103.3	33.66666667	18683	14036.8	8589.9					
27.5	11629.3	8656.2	5207.2	33.83333333	18826.9	14148	8661.6					
27.66666667	11851.5	8824.3	5311.3	34	18966.9	14256.3	8731.6					
27.83333333	12073.6	8992.5	5415.5	34.16666667	19098.6	14358.4	8797.7					
28	12295.8	9160.7	5519.8	34.33333333	19223.3	14455	8860.4					
28.16666667	12517.8	9328.9	5624.2	34.5	19344	14548.7	8921.2					
28.33333333	12739.3	9496.7	5728.3	34.66666667	19461.8	14640.1	8980.7					
28.5	12958.6	9663	5831.6	34.83333333	19576.9	14729.6	9039					
28.66666667	13174	9826.2	5933	35	19689.4	14817.1	9096.1					
28.83333333	13387.5	9988.1	6033.5	35.16666667	19799.3	14902.7	9152					
29	13599.6	10149	6133.6	35.33333333	19906.6	14986.4	9206.8					
29.16666667	13810.4	10309	6233.2	35.5	20011.7	15068.4	9260.5					
29.33333333	14019.9	10468.1	6332.4	35.66666667	20114.3	15148.4	9313.1					
29.5	14228.1	10626.3	6431.1	35.83333333	20214.5	15226.8	9364.6					
29.66666667	14434.9	10783.6	6529.4	36	20312.3	15303.4	9415.1					
29.83333333	14640.7	10940.1	6627.3									

100 | 💉

DIRECT FLOW (cms)											
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year				
36.16666667	20407.5	15378	9464.5	42.5	21636.1	16399.5	10207.5				
36.333333333	20499.8	15450.5	9512.6	42.66666667	21608.8	16381	10198.5				
36.5	20589.3	15521	9559.5	42.83333333	21576.8	16358.7	10187.1				
36.66666667	20675.5	15589	9605	43	21541.7	16334.1	10174.1				
36.83333333	20757.2	15653.5	9648.3	43.16666667	21503.8	16307.3	10159.7				
37	20829.4	15710.8	9687	43.33333333	21463.4	16278.5	10144				
37.16666667	20895.4	15763.3	9722.6	43.5	21420.6	16247.9	10127.1				
37.33333333	20957.9	15813.1	9756.5	43.66666667	21375.6	16215.5	10109				
37.5	21017.4	15860.6	9789	43.83333333	21328.8	16181.7	10090				
37.66666667	21074.4	15906.2	9820.2	44	21280	16146.4	10070				
37.83333333	21128.7	15949.8	9850.2	44.16666667	21229.3	16109.7	10049.1				
38	21180.4	15991.4	9878.8	44.33333333	21177.1	16071.7	10027.4				
38.16666667	21229.9	16031.2	9906.4	44.5	21123.1	16032.4	10004.9				
38.33333333	21277.2	16069.3	9932.9	44.66666667	21067.3	15991.7	9981.6				
38.5	21322.1	16105.6	9958.2	44.83333333	21009.8	15949.8	9957.4				
38.66666667	21364.9	16140.4	9982.5	45	20950.4	15906.4	9932.4				
38.83333333	21405.6	16173.6	10005.9	45.16666667	20889.1	15861.5	9906.4				
39	21444.1	16205	10028.2	45.33333333	20824.9	15814.5	9879.1				
39.16666667	21480.4	16234.8	10049.5	45.5	20758	15765.4	9850.5				
39.33333333	21514.3	16262.8	10069.7	45.66666667	20689.1	15714.7	9820.8				
39.5	21545.7	16288.9	10088.7	45.83333333	20618.8	15662.9	9790.5				
39.66666667	21573.6	16312.5	10106.2	46	20547.3	15610.2	9759.5				
39.83333333	21596.4	16332	10121.1	46.16666667	20474.6	15556.5	9727.8				
40	21615.5	16348.8	10134.3	46.333333333	20400.7	15502	9695.6				
40.16666667	21632.1	16363.7	10146.3	46.5	20325.9	15446.7	9662.9				
40.333333333	21646.6	16376.9	10157.3	46.66666667	20250.1	15390.6	9629.6				
40.5	21658.9	16388.6	10167.3	46.83333333	20173.2	15333.7	9595.9				
40.66666667	21669.2	16398.7	10176.3	47	20095.3	15276.1	9561.6				
40.83333333	21677.5	16407.3	10184.4	47.16666667	20016.5	15217.6	9526.8				
41	21683.9	16414.5	10191.7	47.333333333	19936.6	15158.4	9491.5				
41.16666667	21688.3	16420.3	10198	47.5	19855.6	15098.3	9455.6				
41.333333333	21690.7	16424.4	10203.4	47.66666667	19773.5	15037.4	9419.2				
41.5	21691	16427	10207.8	47.83333333	19690.3	14975.6	9382.2				
41.66666667	21689.2	16427.9	10211.1	48	19605.6	14912.6	9344.6				
41.83333333	21684.8	16427	10213.4	48.16666667	19518.5	14847.9	9305.7				
42	21677.9	16424.2	10214.5	48.333333333	19429.4	14781.6	9265.8				
42.16666667	21668.3	16419.3	10214.3	48.5	19338.9	14714.1	9225.2				
42.333333333	21655.3	16411.8	10212.4	48.66666667	19247.1	14645.7	9184				
25.16666667	8623.4	6391.3	3815.7								

Solution | 101

	DIRECT FLOW (cms)											
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year					
48.83333333	19154.2	14576.5	9142.2	55.16666667	14654.8	11199.7	7081					
49	19060.2	14506.4	9099.9	55.33333333	14513.3	11092.6	7014.6					
49.16666667	18965.2	14435.5	9057.2	55.5	14371.7	10985.4	6948.1					
49.33333333	18869.3	14364.1	9014	55.66666667	14230.1	10878.1	6881.5					
49.5	18772.6	14291.9	8970.5	55.83333333	14088.5	10770.8	6814.9					
49.66666667	18674.9	14219	8926.4	56	13947.1	10663.6	6748.2					
49.83333333	18576.3	14145.4	8882	56.16666667	13805.8	10556.5	6681.6					
50	18476.7	14071.1	8837.1	56.33333333	13665	10449.7	6615.2					
50.16666667	18376	13996	8791.6	56.5	13526	10344.3	6549.7					
50.333333333	18274.2	13920	8745.7	56.66666667	13389.4	10240.7	6485.3					
50.5	18171.3	13843.1	8699.3	56.83333333	13254	10138.1	6421.4					
50.66666667	18067.1	13765.3	8652.2	57	13119.5	10036	6357.9					
50.83333333	17961	13686	8604.2	57.16666667	12985.9	9934.6	6294.7					
51	17851	13603.7	8554.2	57.33333333	12853.2	9833.8	6231.8					
51.16666667	17738.5	13519.5	8503	57.5	12721.3	9733.6	6169.3					
51.33333333	17624.5	13434.1	8451.1	57.66666667	12590.2	9634	6107.1					
51.5	17509.2	13347.6	8398.4	57.83333333	12459.9	9534.9	6045.1					
51.66666667	17392.5	13260.2	8345.2	58	12330.3	9436.3	5983.4					
51.83333333	17274.7	13171.9	8291.3	58.16666667	12201.6	9338.4	5922.1					
52	17155.7	13082.6	8236.9	58.33333333	12073.7	9241	5861					
52.16666667	17035.6	12992.6	8181.9	58.5	11946.7	9144.2	5800.2					
52.33333333	16914.6	12901.8	8126.5	58.66666667	11820.8	9048.2	5739.9					
52.5	16792.4	12810.1	8070.5	58.83333333	11695.9	8953	5680					
52.66666667	16669.3	12717.7	8014.1	59	11572.3	8858.7	5620.6					
52.83333333	16545.2	12624.4	7957.1	59.16666667	11450.6	8765.7	5561.9					
53	16419.9	12530.4	7899.7	59.33333333	11333	8675.9	5505.3					
53.16666667	16293.4	12435.4	7841.6	59.5	11219.2	8589.1	5450.6					
53.33333333	16165.7	12339.4	7783	59.66666667	11107.3	8503.7	5396.7					
53.5	16036.5	12242.4	7723.7	59.83333333	10996.8	8419.4	5343.5					
53.66666667	15905.2	12143.7	7663.3	60	10887.5	8335.9	5290.9					
53.83333333	15770.3	12042.2	7601	60.16666667	10779.4	8253.4	5238.8					
54	15633.6	11939.1	7537.7	60.33333333	10672.4	8171.7	5187.3					
54.16666667	15495.8	11835.2	7473.8	60.5	10566.4	8090.7	5136.2					
54.33333333	15357.1	11730.6	7409.3	60.66666667	10461.3	8010.5	5085.5					
54.5	15217.7	11625.3	7344.4	60.83333333	10357.2	7930.9	5035.3					
54.66666667	15077.6	11519.5	7279	61	10253.8	7852	4985.4					
54.83333333	14937	11413.2	7213.3	61.16666667	10151.3	7773.6	4935.9					
55	14796.1	11306.6	7147.3	61.33333333	10049.7	7695.9	4886.7					
55.16666667	14654.8	11199.7	7081	61.5	9948.9	7618.9	4837.9					
55.33333333	14513.3	11092.6	7014.6	61.66666667	9849.1	7542.5	4789.5					

102

DIRECT FLOW (cms)											
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year				
55.5	14371.7	10985.4	6948.1	61.83333333	9750.2	7466.8	4741.4				
				62	9652.5	7392	4694				
				62.16666667	9557.1	7318.9	4647.5				
				62.33333333	9463.3	7247	4601.9				
				62.5	9370.5	7175.9	4556.6				
61.5	9948.9	7618.9	4837.9	67.83333333	6812.4	5212.5	3304.5				
61.66666667	9849.1	7542.5	4789.5	68	6749.2	5164	3273.6				
61.83333333	9750.2	7466.8	4741.4	68.16666667	6686.9	5116.1	3243				
62	9652.5	7392	4694	68.33333333	6625.4	5069	3213				
62.16666667	9557.1	7318.9	4647.5	68.5	6564.7	5022.4	3183.3				
62.33333333	9463.3	7247	4601.9	68.66666667	6504.7	4976.4	3154				
62.5	9370.5	7175.9	4556.6	68.83333333	6445.3	4930.9	3125				
62.66666667	9278.4	7105.3	4511.7	69	6386.5	4885.8	3096.3				
62.83333333	9186.9	7035.2	4467.1	69.16666667	6328.3	4841.2	3068				
63	9096	6965.5	4422.8	69.33333333	6270.5	4797	3039.9				
63.16666667	9005.8	6896.4	4378.8	69.5	6213.3	4753.1	3012				
63.333333333	8916.2	6827.7	4335.1	69.66666667	6156.5	4709.6	2984.4				
63.5	8827.2	6759.4	4291.6	69.83333333	6100.2	4666.5	2957				
63.66666667	8738.9	6691.7	4248.5	70	6044.3	4623.8	2929.9				
63.83333333	8651.2	6624.4	4205.7	70.16666667	5989	4581.4	2902.9				
64	8564.1	6557.6	4163.1	70.33333333	5934.1	4539.4	2876.3				
64.16666667	8477.7	6491.3	4120.9	70.5	5879.8	4497.8	2849.8				
64.33333333	8391.9	6425.5	4079	70.66666667	5825.9	4456.6	2823.7				
64.5	8306.9	6360.3	4037.4	70.83333333	5772.6	4415.7	2797.7				
64.66666667	8222.8	6295.7	3996.2	71	5719.6	4375.2	2772				
64.83333333	8139.7	6232	3955.5	71.16666667	5667	4334.9	2746.4				
65	8058.8	6169.9	3915.9	71.333333333	5614.6	4294.9	2721				
65.16666667	7979.3	6108.8	3877	71.5	5562.6	4255	2695.8				
65.33333333	7900.6	6048.4	3838.4	71.66666667	5510.8	4215.4	2670.6				
65.5	7822.7	5988.6	3800.3	71.83333333	5459.2	4175.9	2645.6				
65.66666667	7745.5	5929.3	3762.4	72	5407.9	4136.7	2620.7				
65.83333333	7668.9	5870.5	3724.9	72.16666667	5356.9	4097.6	2595.9				
66	7593.1	5812.3	3687.8	72.33333333	5306.2	4058.8	2571.3				
66.16666667	7518	5754.6	3650.9	72.5	5255.7	4020.2	2546.9				
66.33333333	7443.6	5697.5	3614.4	72.66666667	5205.7	3981.9	2522.6				
66.5	7369.9	5640.9	3578.3	72.83333333	5155.9	3943.9	2498.4				
66.66666667	7296.9	5584.8	3542.5	73	5106.6	3906.1	2474.5				
66.83333333	7224.7	5529.3	3507.1	73.16666667	5057.8	3868.7	2450.8				
67	7153.2	5474.4	3472	73.33333333	5010	3832.2	2427.7				

DIRECT FLOW (cms)										
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year			
67.16666667	7082.6	5420.1	3437.3	73.5	4963.1	3796.4	2405			
67.33333333	7012.8	5366.5	3403	73.66666667	4916.8	3761	2382.6			
67.5	6944.1	5313.7	3369.2	73.83333333	4870.9	3725.9	2360.4			
67.66666667	6877	5262.1	3336.3	74	4825.3	3691.1	2338.4			
68	6749.2	5164	3273.6	74.16666667	4780.2	3656.6	2316.7			
55.33333333	14513.3	11092.6	7014.6	74.33333333	4735.3	3622.3	2295			
55.5	14371.7	10985.4	6948.1	74.5	4690.8	3588.3	2273.5			
				62	9652.5	7392	4694			
				62.16666667	9557.1	7318.9	4647.5			
				62.33333333	9463.3	7247	4601.9			
				62.5	9370.5	7175.9	4556.6			
74.16666667	4780.2	3656.6	2316.7	80.5	3296.1	2522.2	1599.2			
74.33333333	4735.3	3622.3	2295	80.66666667	3265.2	2498.6	1584.3			
74.5	4690.8	3588.3	2273.5	80.83333333	3234.6	2475.2	1569.5			
74.66666667	4646.5	3554.5	2252.2	81	3204.2	2452	1554.8			
74.83333333	4602.4	3520.9	2231	81.16666667	3174.1	2428.9	1540.2			
75	4558.7	3487.4	2209.9	81.33333333	3144.1	2406.1	1525.7			
75.16666667	4515.1	3454.2	2188.9	81.5	3114.4	2383.4	1511.3			
75.33333333	4471.8	3421.1	2168	81.66666667	3085	2360.8	1497.1			
75.5	4428.7	3388.2	2147.3	81.83333333	3055.8	2338.5	1482.9			
75.66666667	4385.8	3355.5	2126.6	82	3026.9	2316.4	1468.8			
75.83333333	4343.2	3323	2106.1	82.16666667	2998.1	2294.3	1454.8			
76	4300.8	3290.6	2085.7	82.33333333	2969.4	2272.4	1440.9			
76.16666667	4258.7	3258.5	2065.4	82.5	2940.9	2250.6	1427.1			
76.33333333	4217	3226.6	2045.2	82.66666667	2912.6	2228.9	1413.3			
76.5	4175.5	3194.9	2025.2	82.83333333	2884.4	2207.3	1399.6			
76.66666667	4134.2	3163.4	2005.3	83	2856.4	2185.8	1385.9			
76.83333333	4093.2	3132	1985.4	83.16666667	2828.5	2164.5	1372.3			
77	4052.4	3100.8	1965.7	83.33333333	2800.8	2143.2	1358.9			
77.16666667	4011.9	3069.8	1946.1	83.5	2773.3	2122.2	1345.5			
77.33333333	3971.6	3039	1926.6	83.66666667	2746	2101.2	1332.2			
77.5	3931.5	3008.3	1907.1	83.83333333	2718.9	2080.5	1319			
77.66666667	3891.6	2977.8	1887.8	84	2692	2059.9	1305.9			
77.83333333	3852.1	2947.6	1868.6	84.16666667	2665.4	2039.5	1292.9			
78	3812.8	2917.5	1849.6	84.333333333	2639.2	2019.4	1280.2			
78.16666667	3774	2887.8	1830.7	84.5	2613.6	1999.8	1267.7			
78.33333333	3735.5	2858.3	1812	84.66666667	2588.8	1980.8	1255.7			
78.5	3697.4	2829.1	1793.4	84.83333333	2564.4	1962.1	1243.8			
78.66666667	3659.8	2800.3	1775.1	85	2540.2	1943.6	1232.1			

104

DIRECT FLOW (cms)											
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year				
78.83333333	3623	2772.1	1757.3	85.16666667	2516.3	1925.4	1220.5				
79	3588	2745.3	1740.3	85.33333333	2492.7	1907.3	1209.1				
79.16666667	3553.8	2719.2	1723.7	85.5	2469.3	1889.4	1197.7				
79.33333333	3520.2	2693.4	1707.4	85.66666667	2446	1871.6	1186.5				
79.5	3487.1	2668.1	1691.4	85.83333333	2423	1854	1175.3				
79.66666667	3454.4	2643.1	1675.6	86	2400.1	1836.5	1164.3				
79.83333333	3422.1	2618.4	1660	86.16666667	2377.3	1819.1	1153.3				
80	3390.2	2594.1	1644.6	86.33333333	2354.7	1801.8	1142.3				
80.16666667	3358.5	2569.9	1629.3	86.5	2332.3	1784.7	1131.5				
80.33333333	3327.2	2545.9	1614.2	86.66666667	2309.9	1767.6	1120.7				
55.16666667	14654.8	11199.7	7081	61.5	9948.9	7618.9	4837.9				
55.33333333	14513.3	11092.6	7014.6	61.66666667	9849.1	7542.5	4789.5				
55.5	14371.7	10985.4	6948.1	61.83333333	9750.2	7466.8	4741.4				
				62	9652.5	7392	4694				
				62.16666667	9557.1	7318.9	4647.5				
				62.33333333	9463.3	7247	4601.9				
				62.5	9370.5	7175.9	4556.6				
86.83333333	2287.8	1750.6	1109.9	93.16666667	1574.9	1205.4	764.5				
87	2265.7	1733.8	1099.3	93.33333333	1559.4	1193.5	757				
87.16666667	2243.8	1717.1	1088.7	93.5	1543.9	1181.7	749.5				
87.33333333	2222.1	1700.4	1078.2	93.66666666	1528.5	1169.9	742				
87.5	2200.6	1684	1067.7	93.83333333	1513.2	1158.2	734.6				
87.66666667	2179.1	1667.6	1057.3	94	1498	1146.5	727.2				
87.83333333	2157.9	1651.3	1047	94.16666667	1482.9	1135	719.8				
88	2136.7	1635.1	1036.7	94.33333333	1467.9	1123.5	712.5				
88.16666667	2115.6	1619	1026.5	94.5	1453	1112.1	705.3				
88.333333333	2094.7	1602.9	1016.3	94.66666667	1438.2	1100.7	698.1				
88.5	2073.8	1587	1006.2	94.83333333	1423.6	1089.5	690.9				
88.66666667	2053.1	1571.1	996.1	95	1409	1078.3	683.8				
88.83333333	2032.5	1555.4	986.1	95.16666667	1394.7	1067.3	676.8				
89	2012.1	1539.7	976.2	95.33333333	1380.4	1056.4	669.9				
89.16666667	1991.8	1524.2	966.3	95.5	1366.4	1045.7	663.1				
89.33333333	1971.7	1508.8	956.6	95.66666667	1352.8	1035.2	656.4				
89.5	1951.8	1493.5	946.9	95.83333333	1339.7	1025.2	650.1				
89.66666667	1932.1	1478.4	937.3	96	1327	1015.4	643.8				
89.83333333	1912.6	1463.5	927.8	96.16666667	1314.4	1005.8	637.7				
90	1893.4	1448.8	918.5	96.33333333	1301.9	996.3	631.7				
90.16666667	1874.9	1434.6	909.5	96.5	1289.7	986.9	625.8				
90.333333333	1856.9	1420.9	900.8	96.66666667	1277.6	977.6	619.9				

DIRECT FLOW (cms)											
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year				
90.5	1839.1	1407.2	892.1	96.83333333	1265.6	968.5	614.1				
90.66666667	1821.5	1393.8	883.7	97	1253.7	959.4	608.3				
90.83333333	1804.2	1380.6	875.3	97.16666667	1241.9	950.4	602.6				
91	1787	1367.4	867	97.33333333	1230.2	941.4	597				
91.16666667	1770	1354.5	858.8	97.5	1218.6	932.6	591.3				
91.33333333	1753.1	1341.6	850.6	97.66666667	1207.1	923.8	585.8				
91.5	1736.4	1328.8	842.6	97.83333333	1195.7	915	580.2				
91.66666667	1719.7	1316.1	834.5	98	1184.3	906.3	574.7				
91.83333333	1703.2	1303.5	826.6	98.16666667	1173.1	897.7	569.3				
92	1686.8	1290.9	818.6	98.33333333	1161.9	889.2	563.9				
92.16666667	1670.5	1278.4	810.8	98.5	1150.9	880.7	558.5				
92.33333333	1654.3	1266.1	802.9	98.66666667	1139.9	872.3	553.2				
92.5	1638.2	1253.8	795.1	98.83333333	1129	864	547.9				
92.66666667	1622.2	1241.5	787.4	99	1118.2	855.7	542.6				
92.83333333	1606.3	1229.4	779.7	99.16666667	1107.5	847.5	537.4				
93	1590.5	1217.3	772.1	99.33333333	1096.8	839.3	532.2				
68	6749.2	5164	3273.6	74.16666667	4780.2	3656.6	2316.7				
55.33333333	14513.3	11092.6	7014.6	74.33333333	4735.3	3622.3	2295				
55.5	14371.7	10985.4	6948.1	74.5	4690.8	3588.3	2273.5				
				62	9652.5	7392	4694				
				62.16666667	9557.1	7318.9	4647.5				
				62.33333333	9463.3	7247	4601.9				
				62.5	9370.5	7175.9	4556.6				
99.5	1086.1	831.2	527	106	745.9	570.7	361.7				
99.66666667	1075.6	823.1	521.8	106.1666667	738.5	565	358.1				
99.83333333	1065.1	815	516.7	106.3333333	731.2	559.4	354.5				
100	1054.6	807	511.6	106.5	724	553.9	351				
100.1666667	1044.3	799.1	506.6	106.6666667	716.9	548.4	347.6				
100.33333333	1034	791.2	501.6	106.8333333	709.9	543.1	344.2				
100.5	1023.8	783.3	496.6	107	703.2	537.9	340.9				
100.6666667	1013.7	775.6	491.7	107.1666667	696.6	532.9	337.7				
100.8333333	1003.7	767.9	486.8	107.3333333	690.1	527.9	334.6				
101	993.8	760.3	481.9	107.5	683.7	523	331.5				
101.1666667	984	752.9	477.2	107.6666667	677.3	518.2	328.4				
101.3333333	974.6	745.6	472.6	107.8333333	671.1	513.4	325.4				
101.5	965.4	738.6	468.1	108	664.8	508.6	322.4				
101.6666667	956.4	731.7	463.8	108.1666667	658.7	503.9	319.4				
101.8333333	947.5	724.9	459.4	108.3333333	652.6	499.3	316.4				
102	938.7	718.2	455.2	108.5	646.5	494.6	313.5				

	DIRECT FLOW (cms)										
Time (hr)	100-yr	25-yr	5-year	Time (hr)	100-yr	25-yr	5-year				
102.1666667	930	711.5	450.9	108.6666667	640.4	490	310.6				
102.3333333	921.3	704.9	446.8	108.8333333	634.4	485.4	307.7				
102.5	912.8	698.3	442.6	109	628.5	480.9	304.8				
102.6666667	904.3	691.9	438.5	109.1666667	622.5	476.3	301.9				
102.8333333	895.8	685.4	434.4	109.3333333	616.7	471.8	299.1				
103	887.5	679	430.4	109.5	610.8	467.4	296.3				
103.1666667	879.2	672.6	426.4	109.6666667	605	462.9	293.5				
103.3333333	870.9	666.3	422.4	109.8333333	599.3	458.5	290.7				
103.5	862.7	660.1	418.4	110	593.5	454.2	287.9				
103.6666667	854.5	653.8	414.4	110.1666667	587.9	449.8	285.1				
103.8333333	846.4	647.6	410.5	110.33333333	582.2	445.5	282.4				
104	838.4	641.5	406.6	110.5	576.6	441.2	279.7				
104.1666667	830.4	635.4	402.8	110.6666667	571	436.9	277				
104.3333333	822.5	629.3	398.9	110.8333333	565.4	432.6	274.2				
104.5	814.6	623.3	395.1	111	559.9	428.4	271.6				
104.6666667	806.8	617.3	391.3	111.1666667	554.3	424.2	268.9				
104.8333333	799	611.4	387.5	111.33333333	548.9	420	266.2				
105	791.3	605.4	383.8	111.5	543.4	415.8	263.6				
105.1666667	783.6	599.6	380	111.6666667	538	411.7	261				
105.3333333	776	593.7	376.3	111.83333333	532.7	407.6	258.4				
105.5	768.4	587.9	372.6	112	527.4	403.5	255.8				
105.6666667	760.8	582.1	368.9	112.1666667	522.1	399.5	253.2				
105.8333333	753.3	576.4	365.3	61.5	9948.9	7618.9	4837.9				
55.33333333	14513.3	11092.6	7014.6	61.66666667	9849.1	7542.5	4789.5				
55.5	14371.7	10985.4	6948.1	61.83333333	9750.2	7466.8	4741.4				
				62	9652.5	7392	4694				
				62.16666667	9557.1	7318.9	4647.5				
				62.33333333	9463.3	7247	4601.9				
				62.5	9370.5	7175.9	4556.6				
112.33333333	517	395.5	250.7	118.6666667	356.2	272.5	172.7				
112.5	511.9	391.7	248.3	118.8333333	352.9	270	171.1				
112.6666667	507	388	245.9	119	349.6	267.5	169.6				
112.8333333	502.2	384.3	243.6	119.1666667	346.4	265	168				
113	497.5	380.6	241.3	119.3333333	343.2	262.6	166.4				
113.1666667	492.7	377	239	119.5	340	260.1	164.9				
113.3333333	488.1	373.5	236.7	119.6666667	336.9	257.7	163.4				
113.5	483.5	369.9	234.5	119.8333333	333.7	255.4	161.9				
113.6666667	478.9	366.4	232.3	120	330.7	253	160.4				
113.8333333	474.3	363	230.1								

114	469.8	359.5	227.9				
114.1666667	465.3	356.1	225.8				
114.3333333	460.8	352.7	223.6				
114.5	456.4	349.3	221.5				
114.6666667	452	345.9	219.3				
114.8333333	447.6	342.6	217.2				
115	443.3	339.2	215.1				
115.1666667	438.9	335.9	213				
115.3333333	434.6	332.6	210.9				
115.5	430.4	329.4	208.9				
115.6666667	426.2	326.1	206.8				
115.8333333	422	322.9	204.8				
116	417.8	319.7	202.8				
116.1666667	413.6	316.5	200.7				
116.3333333	409.5	313.4	198.7				
116.5	405.4	310.2	196.7				
116.6666667	401.3	307.1	194.7				
116.8333333	397.2	304	192.8				
117	393.2	300.9	190.8				
117.1666667	389.2	297.8	188.9				
117.3333333	385.3	294.8	186.9				
117.5	381.3	291.8	185				
117.6666667	377.5	288.8	183.1				
117.8333333	373.7	285.9	181.3				
118	369.9	283.1	179.4				
118.1666667	366.4	280.3	177.7				
118.3333333	362.9	277.7	176				
118.5	359.5	275.1	174.4				
68	6749.2	5164	3273.6	74.16666667	4780.2	3656.6	2316.7
55.33333333	14513.3	11092.6	7014.6	74.33333333	4735.3	3622.3	2295
55.5	14371.7	10985.4	6948.1	74.5	4690.8	3588.3	2273.5
				62	9652.5	7392	4694
				62.16666667	9557.1	7318.9	4647.5
				62.33333333	9463.3	7247	4601.9
				62.5	9370.5	7175.9	4556.6

D R E A M Disaster RIsk and Exposure Assessment for Mitigation