# **REGION 4A**

# Lucena River Flood Plain:

DREAM LiDAR Data Acquistion and Processing Report



TRAINING CENTER FOR APPLIED GEODESY AND PHOTOGRAMMETRY

2015





© University of the Philippines and the Department of Science and Technology 2015

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines Diliman Quezon City 1101 PHILIPPINES

This research work is supported by the Department of Science and Technology (DOST) Grantsin-Aid Program and is to be cited as:

UP-TCAGP (2015), DREAM LIDAR Data Acquisition and Processing for Lucena River Floodplain, Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program, DOST Grants-In-Aid Program, 55pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgment. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Engr. Czar Jakiri S. Sarmiento, MSRS

Project Leader, Data Acquisition Component, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 Email: czarjakiri@gmail.com

#### Engr. Ma. Rosario Concepcion O. Ang, MSRS

Project Leader, Data Processing Component, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 Email: concon.ang@gmail.com

#### Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 Email: paringit@gmail.com

National Library of the Philippines ISBN: 978-621-9695-03-5



# **Table of Contents**

| 1.       |         |          | ON                                                        | 1  |
|----------|---------|----------|-----------------------------------------------------------|----|
|          | 1.1     |          | t the DREAM Program                                       | 2  |
|          | 1.2     | -        | tives and Target Outputs                                  | 2  |
|          | 1.3     |          | al Methodological Framework                               | 3  |
| 2.       | STUD    | Y AREA   | ••••••                                                    | 5  |
| 3.       | METH    | IODOLC   | DGY                                                       | 9  |
|          | 3.1     | Acqui    | sition Methodology                                        | 10 |
|          |         | 3.1.1    | Pre-Site Preparations                                     | 10 |
|          |         |          | 3.1.1.1 Creation of Flight Plans                          | 10 |
|          |         |          | 3.1.1.2 Collection of Existing Reference Points           |    |
|          |         |          | and Benchmarks                                            | 12 |
|          |         |          | 3.1.1.3 Preparation of Field Plan                         | 12 |
|          |         | 3.1.2    | Ground Base Set-up                                        |    |
|          |         | 3.1.3    | Acquisition of Digital Elevation Data (LiDAR Survey)      | 14 |
|          |         | 3.1.4    | Transmittal of Acquired LiDAR Data                        | 14 |
|          |         | 3.1.5    | Equipment (ALTM Pegasus)                                  | 15 |
|          | 3.2     |          | ssing Methodology                                         | 17 |
|          | 2•ر     | 3.2.1    | Data Transfer                                             | 17 |
|          |         | 3.2.2    | Trajectory Computation                                    | 18 |
|          |         | -        | LiDAR Point Cloud Rectification                           | 18 |
|          |         | 3.2.3    |                                                           |    |
|          |         | 3.2.4    | LiDAR Data Quality Checking                               | 19 |
|          |         | 3.2.5    | LiDAR Point Cloud Classification and Rasterization        |    |
|          | DECL    | 3.2.6    | DEM Editing and Hydro-correction                          | 25 |
| 4.       |         |          | D DISCUSSION                                              | 27 |
|          | 4.1     |          | Acquisition in Lucena Floodplain                          | 28 |
|          |         | 4.1.1    | Flight Plans                                              | 28 |
|          |         | 4.1.2    | Ground Base Station                                       | 30 |
|          | 4.2     | Lidar    | Data Processing                                           | 34 |
|          |         | 4.2.1    | Trajectory Computation                                    | 34 |
|          |         | 4.2.2    | LiDAR Point Cloud Computation                             | 37 |
|          |         | 4.2.3    | LiDAR Data Quality Checking                               | 37 |
|          |         | 4.2.4    | LiDAR Point Cloud Classification and Rasterization        | 41 |
|          |         | 4.2.5    | DEM Editing and Hydro-correction                          | 42 |
| 5.       | ANNE    | EX       |                                                           | 47 |
| Anne     | x a. Op | tech tec | hnical specification of the pegasus sensor                | 48 |
|          | -       |          | chnical specification of the d-8900 aerial digital camera | 49 |
|          |         |          | team                                                      | 50 |
|          |         |          | tification                                                | 51 |
|          |         |          | fer sheets                                                | 53 |
|          |         | ht logs  |                                                           | 54 |
| 7 01110. | 1. 1.   | -        | Log for 1LUC184A Mission                                  |    |
|          |         | -        |                                                           | 54 |
|          | 2.      | Fiight   | Log for 1LUC185A Mission                                  | 55 |



# List of Figures

| Figure 1.  | The General Methodological Framework Of The Program                       | 3  |
|------------|---------------------------------------------------------------------------|----|
| Figure 2.  | Lucena River Basin Location Map                                           | 6  |
| Figure 3.  | Lucena River Basin Soil Map                                               | 7  |
| Figure 4.  | Lucena River Basin Land Cover Map                                         | 7  |
| Figure 5.  | Flowchart Of Project Methodology                                          | 10 |
| Figure 6.  | Concept Of Lidar Data Acquisition Parameters                              | 11 |
| Figure 7.  | Lidar Data Management For Transmittal                                     | 15 |
| Figure 8.  | The Altm Pegasus System: A) Parts Of The Pegasus System,                  |    |
| -          | B) The System As Installed In Cessna T206h                                | 16 |
| Figure 9.  | Schematic Diagram Of The Data Processing                                  | 17 |
| Figure 10. | Misalignment Of A Single Roof Plane From Two Adjacent Flight Lines,       |    |
| -          | Before Rectification (Left). Least Squares Adjusted Roof Plane,           |    |
|            | After Rectification (Right)                                               | 19 |
| Figure 11. | Elevation Difference Between Flight Lines Generated                       |    |
|            | From Lastools                                                             | 20 |
| Figure 12. | Profile Over Roof Planes (A) And A Zoomed-In Profile On The               |    |
|            | Area Encircled In Yellow (B)                                              | 21 |
| Figure 13. | Ground Classification Technique Employed In Terrascan                     | 22 |
| Figure 14. | Resulting Dtm Of Ground Classification Using The Default                  |    |
|            | Parameters (A) And Adjusted Parameters (B)                                | 23 |
| Figure 15. | Default Terrascan Building Classification Parameters                      | 24 |
| Figure 16. | Different Examples Of Air Points Manually Deleted                         |    |
|            | In The Terrascan Window                                                   | 24 |
| Figure 17. | Lucena Floodplain Flight Plan                                             | 29 |
| Figure 18. | Namria Control Station MSE-3241 Is Located Along The National             |    |
|            | Highway On The SE Corner Of Masin Bridge (106+600)                        |    |
|            |                                                                           | 30 |
| Figure 19. |                                                                           | 32 |
| Figure 20. | Lucena Floodplain Data Acquisition LAS Output                             |    |
| Figure 21. | Smoothed Performance Metric Parameters Of The Lucena Flight               | 35 |
| Figure 22. | Solution Status Parameters Of Lucena Flight                               | 36 |
| Figure 23. | Coverage Of Lidar Data For The Lucena Mission                             | 37 |
| Figure 24. | Image Of Data Overlap For The Lucena Mission                              | 38 |
| Figure 25. |                                                                           | 38 |
| Figure 26. | · · ·                                                                     | 39 |
| Figure 27. |                                                                           | 40 |
| Figure 28. | (A) Lucena Floodplains And (B) Lucena Classification Results In Terrascan | 41 |
| Figure 29. | Point Cloud (A) Before And (B) After Classification                       | 42 |
| Figure 30. | Images Of DTMs Before And After Manual Editing                            | 42 |
| Figure 31. | Map Of Lucena River System With Validation Survey Shown In                |    |
| •          | Blue                                                                      | 43 |
| Figure 32. | One-One Correlation Plot Between Topographic And Lidar Data               | 43 |
| Figure 33. | Final DTM Of Lucena With Validation Survey Shown In Blue                  | 44 |
| Figure 34. | Final DSM In Lucena                                                       | 45 |
| Figure 35. | Sample 1X1 Square Kilometer DSM                                           | 45 |
| Figure 36. | Sample 1X1 Square Kilometer DTM                                           | 46 |



## List of Tables

| Table 1.  | Relevant Lidar Parameters                                            | 11 |
|-----------|----------------------------------------------------------------------|----|
| Table 2.  | List Of Target River Systems In The Philippines                      | 13 |
| Table 3.  | Smoothed Solution Status Parameters In Pospac MMS v6.2               | 18 |
| Table 4.  | Parameters Investigated During Quality Checks                        | 20 |
| Table 5.  | Ground Classification Parameters Used In Terrascan                   |    |
|           | For Floodplain And Watershed Area                                    | 23 |
| Table 6.  | Classification Of Vegetation According To The Elevation              |    |
|           | Of Points                                                            | 23 |
| Table 7.  | Parameters Used In Lidar System During Flight Acquisition            | 28 |
| Table 8.  | Details of the recovered NAMRIA horizontal control point             |    |
|           | QZN-23 use as base station for the LiDAR acquisition                 | 31 |
| Table 9.  | Flight Missions For Lidar Data Acquisition In Lucena Floodplain      | 34 |
| Table 10. | Area Of Coverage (in sq. km) Of The Lidar Data Acquisition In Lucena |    |
|           | Floodplain                                                           | 34 |
| Table 11. | Lucena Classification Results In Terrascan                           | 41 |
| Table 12. | Statistical Values For The Calibration Of Flights                    | 44 |
|           | -                                                                    |    |



# Abbreviations

| ALTM   | Airborne Laser Terrain Mapper                       |
|--------|-----------------------------------------------------|
| DAC    | Data Acquisition Component                          |
| DEM    | Digital Elevation Model                             |
| DSM    | Digital Surface Model                               |
| DTM    | Digital Terrain Model                               |
| DVC    | Data Validation Component                           |
| FOV    | Field of View                                       |
| FTP    | File Transfer Protocol                              |
| GPS    | Global Positioning System                           |
| GNSS   | Global Navigation Satellite System                  |
| POS    | Position Orientation System                         |
| PRF    | Pulse Repetition Frequency                          |
| NAMRIA | National Mapping and Resource Information Authority |
|        |                                                     |









### 1.1 About the DREAM Program

The UP Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) conducts a research program entitled "Nationwide Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program" funded by the Department of Science and Technology (DOST) Grants-in-Aid Program. The DREAM Program aims to produce detailed, up-to-date, national elevation dataset for 3D flood and hazard mapping to address disaster risk reduction and mitigation in the country.

The DREAM Program consists of four components that operationalize the various stages of implementation. The Data Acquisition Component (DAC) conducts aerial surveys to collect Light Detecting and Ranging (LiDAR) data and aerial images in major river basins and priority areas. The Data Validation Component (DVC) implements ground surveys to validate acquired LiDAR data, along with bathymetric measurements to gather river discharge data. The Data Processing Component (DPC) processes and compiles all data generated by the DAC and DVC. Finally, the Flood Modeling Component (FMC) utilizes compiled data for flood modeling and simulation.

Overall, the target output is a national elevation dataset suitable for 1:5000 scale mapping, with 50 centimeter horizontal and vertical accuracies. These accuracies are achieved through the use of state-of-the-art airborne Light Detection and Ranging (LiDAR) technology and appended with Synthetic-Aperture Radar (SAR) in some areas. It collects point cloud data at a rate of 100,000 to 500,000 points per second, and is capable of collecting elevation data at a rate of 300 to 400 square kilometers per day, per sensor.

### **1.2 Objectives and Target Outputs**

The program aims to achieve the following objectives:

- a) To acquire a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management;
- b) To operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country;
- c) To develop the capacity to process, produce and analyze various proven and potential thematic map layers from the 3D data useful for government agencies;
- d) To transfer product development technologies to government agencies with geospatial information requirements, and;
- e) To generate the following outputs:
  - 1) flood hazard map
  - 2) digital surface model
  - 3) digital terrain model and
  - 4) orthophotograph



### 1.3 General Methodological Framework

The methodology employed to accomplish the project's expected outputs are subdivided into four (4) major components, as shown in Figure 1. Each component is described in detail in the following sections.



Figure 1. The General Methodological Framework of the Program









Lucena City is the capital city of the province of Quezon located in the southeastern portion (Region IV-A- CALABARZON) specifically in the 2nd district. It has an area of 80.21 square kilometers, and is bounded by the Municipality of Pagbilao in the north and northeast, Tayabas Bay in the south and southeast, Municipality of Sariaya in the southwest, and Municipality of Tayabas in the northwest. The city is jammed between two big rivers, the Dumacaa River in the east, and the Iyam River in the west. There are 22 barangays and coastal villages in the city which are prone to flashfloods since the said barangays are located near the Iyam and Dumacaa river channels.

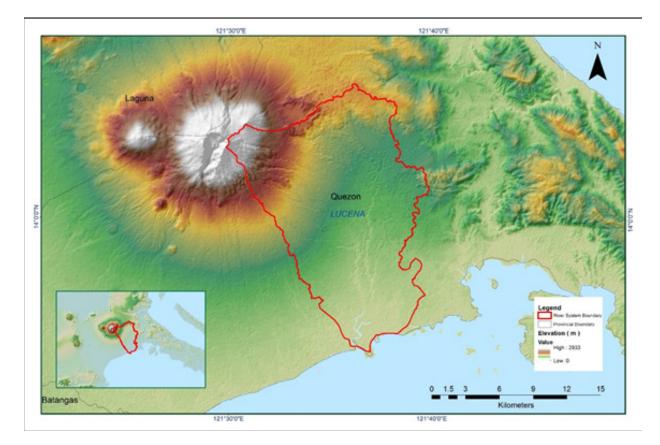



Figure 2. Lucena River System

Some of the important parameters to be used in the characterization of the river basin (e.g., Manning's coefficient – a representation of the variable flow of water in different land covers) are the land cover and soil use. The shape files of the soil and land cover were taken from the Bureau of Soils, which is under the Department of Environment and Natural Resources (DENR), and National Mapping and Resource Information Authority (NAM-RIA). The land and soil cover of Lucena River System are as shown in Figure 3 and Figure 4.



# **Study Area**

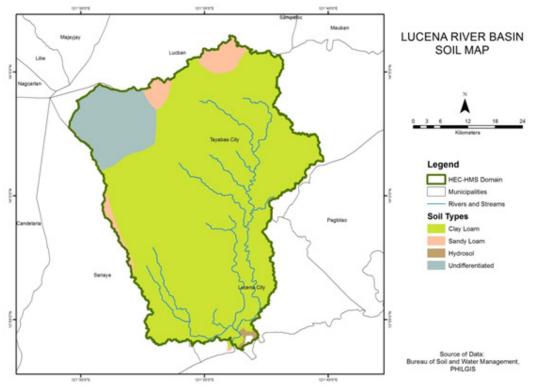



Figure 3. Lucena River Basin Soil Map

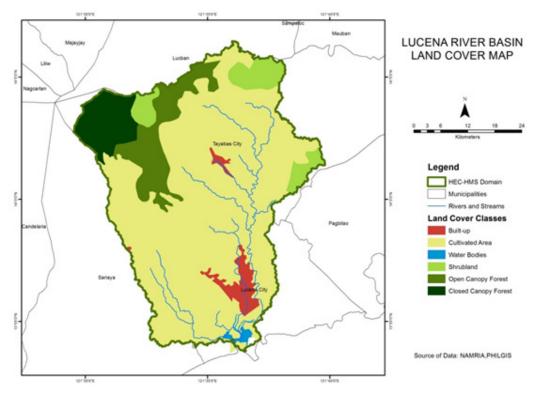



Figure 4. Lucena River Basin Land Cover Map









### 3.1 Acquisition Methodology

The methodology employed to accomplish the project's expected outputs are subdivided into four (4) major components, as shown in Figure 5. Each component is described in detail in the following sections.

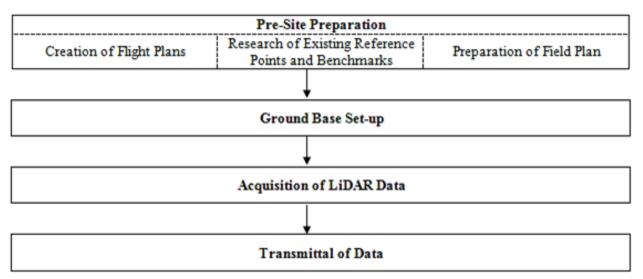



Figure 5. Flowchart of Project Methodology

#### 3.1.1 Pre-site Preparations

#### 3.1.1.1 Creation of Flight Plans

Flight planning is the process of configuring the parameters of the aircraft and LiDAR system (i.e. altitude, angular field of view (FOV), speed of the aircraft, scans frequency and pulse repetition frequency) to achieve a target of two points per square meter point density for the floodplain. This ensures that areas of the floodplain that are most susceptible to floods will be covered. LiDAR parameters and their computations are shown in Table 1.

The parameters set in the LiDAR sensor to optimize the area coverage following the objectives of the project and to ensure the aircraft's safe return to the airport (base of operations) are shown in Table 1. Each flight acquisition is designed for four operational hours. The maximum flying hours for Cessna 206H is five hours.



| Parar               | neter             | Formula                                 | Description                                                                                                                           |
|---------------------|-------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| SW (Swat            | th Width)         | SW = 2 * H * tan (θ/2)                  | Η – altitude<br>Θ – angular FOV                                                                                                       |
| Pointing            | ΔXacross          | ΔXacross = (Θ * H) /<br>(Ncos2(Θ/2))    | ΔXacross – point spacing across<br>the flight line<br>H – altitude<br>Θ – angular FOV<br>N – number of points in one<br>scanning line |
| Space               | ΔXalong           | ΔXalong = v / fsc                       | ΔXalong- point spacing along the<br>flight line<br>v – forward speed (m/s)<br>fsc – scanning rate or scan fre-<br>quency              |
| Point den           | sity, dmin        | dmin = 1 / ( ΔXacross * ΔXalong)        | ΔXacross, ΔXalong<br>point spacings                                                                                                   |
| Flight line<br>tior | e separa-<br>n, e | e = SW * ( 1 – overlapping fac-<br>tor) | SW – swath width                                                                                                                      |
| # of fligh          | t lines, n        | n = w / [(1 – overlap) * SW]            | w-width of the map that will be<br>produce in meters. The direction<br>of flights will be perpendicular to<br>the width.              |



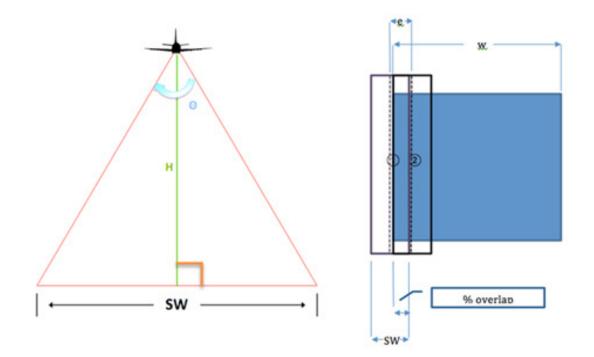



Figure 6. Concept of LiDAR data acquisition parameters



The relationship among altitude, swath, and FOV is show in Figure 6. Given the altitude of the survey (H) and the angular FOV, the survey coverage for each pass (swath) can be calculated by doubling the product of altitude and tangent of half the field of view.

#### **Collection of Existing Reference Points** 3.1.1.2 and Benchmarks

Collection of pertinent technical data, available information, and coordination with the National Mapping and Resource Information Authority (NAMRIA) is conducted prior to the surveys. Reference data collected includes locations and descriptions of horizontal and vertical control (elevation benchmarks) points within or near the project area. These control points are used as base stations for the aerial survey operations. Base stations are observed simultaneously with the acquisition flights.

#### Preparation of Field Plan 3.1.1.3

In preparation for the field reconnaissance and actual LiDAR data acquisition, a field plan is prepared by the implementation team. The field plan serves as a guide for the actual fieldwork and included personnel, logistical, financial, and technical details. Three major factors are included in field plan preparation: priority areas for the major river basin system; budget; and accommodation and vehicle rental.

LiDAR data are acquired for the floodplain area of the river system as per order of priority based on history of flooding, loss of lives, and damages of property. The order of priority in which LiDAR data surveys are conducted by the team for the floodplain areas of the 18 major river systems and 3 additional systems is shown in Table 2.



| Table 2. List of | Target River | Systems in | the   | Philippines |
|------------------|--------------|------------|-------|-------------|
|                  | larget niver | Systems in | I UIC | i imppines  |

|     | Target River System | Location | Area of the<br>River Sys-<br>tem (km <sup>2</sup> ) | Area of the<br>Flood Plain<br>(km <sup>2</sup> ) | Area of the<br>Watershed<br>(km <sup>2</sup> ) |
|-----|---------------------|----------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| 1   | Cagayan de Oro      | Mindanao | 1,364                                               | 25                                               | 1,338.51                                       |
| 1.1 | Iponan              | Mindanao | 438                                                 | 33                                               | 404.65                                         |
| 2   | Mandulog            | Mindanao | 714                                                 | 7                                                | 707.41                                         |
| 2.1 | Iligan              | Mindanao | 153                                                 | 7                                                | 146.38                                         |
| 2.2 | Agus                | Mindanao | 1,918                                               | 16                                               | 1,901.60                                       |
| 3   | Pampanga            | Luzon    | 11,160                                              | 4458                                             | 6702                                           |
| 4   | Agno                | Luzon    | 6,220                                               | 1725                                             | 4495                                           |
| 5   | Bicol               | Luzon    | 3,173                                               | 585                                              | 2,587.79                                       |
| 6   | Panay               | Visayas  | 2,442                                               | 619                                              | 1823                                           |
| 7   | Jalaur              | Visayas  | 2,105                                               | 713                                              | 1,392                                          |
| 8   | Ilog Hilbangan      | Visayas  | 2,146                                               | 179                                              | 1967                                           |
| 9   | Magasawang Tubig    | Luzon    | 1,960                                               | 483                                              | 1,477.08                                       |
| 10  | Agusan              | Mindanao | 11,814                                              | 262                                              | 11,551.62                                      |
| 11  | Tagoloan            | Mindanao | 1,753                                               | 30                                               | 1,722.90                                       |
| 12  | Davao               | Mindanao | 1,609                                               | 54                                               | 1555                                           |
| 13  | Tagum               | Mindanao | 2,504                                               | 595                                              | 1,909.23                                       |
| 14  | Buayan              | Mindanao | 1,589                                               | 201                                              | 1,388.21                                       |
| 15  | Mindanao            | Mindanao | 20,963                                              | 405                                              | 20,557.53                                      |
| 16  | Lucena              | Luzon    | 238                                                 | 49                                               | 189.31                                         |
| 17  | Infanta             | Luzon    | 1,029                                               | 90                                               | 938.61                                         |
| 18  | Boracay             | Visayas  | 43.34                                               | 43.34                                            | N/A                                            |
| 19  | Cagayan             | Luzon    | 28,221                                              | 10386                                            | 17,835.14                                      |



#### 3.1.2 Ground Base Set-up

A reconnaissance is conducted one day before the actual LiDAR survey for purposes of recovering control point monuments on the ground and site visits of the survey area set in the flight plan for the floodplain. Coordination meetings with the Airport Manager, regional DOST office, local government units and other concerned line government agencies are also held.

Ground base stations are established within 30-kilometer radius of the corresponding survey area in the flight plan. This enables the system to establish its position in three-dimensional (3D) space so that the acquired topographic data will have an accurate 3D position since the survey required simultaneous observation with a base station on the ground using terrestrial Global Navigation Satellite System (GNSS) receivers.

### 3.1.3 Acquisition of Digital Elevation Data (LiDAR Survey)

Acquisition of LiDAR data is done by following the flight plans. The survey uses a LiDAR instrument mounted on the aircraft with its sensor positioned through a specially modified peep hole on the belly of the aircraft. The pilots are guided by the flight guidance software which uses the data out of the flight planning program with a mini-display at the pilot's cockpit showing the aircraft's real-time position relative to the current survey flight line. The reference points established by NAMRIA are also monitored and used to calibrate the data.

As the system collected LiDAR data, the ranges and intensities are also recorded on hard drives dedicated to the system while the images are stored on the camera hard drive. Position Orientation System (POS) data is recorded on the POS computer inside the control rack. It can only be accessed and downloaded via file transfer protocol (ftp) to the laptop computer. GPS observations were downloaded each day for efficient data management.

#### 3.1.4 Transmittal of Acquired LiDAR Data

All surrendered data are monitored, inspected and re-checked by securing a data transfer checklist signed by the downloader (Data Acquisition Component) and the receiver (Data Processing Component). The data transfer checklist shall include the following: date of survey, mission name, flight number, disk size of the necessary data (LAS, LOGS, POS, Images, Mission Log File, Range, Digitizer and the Base Station), and the data directory within the server. Figure 7 shows the arrangement of folders inside the data server.



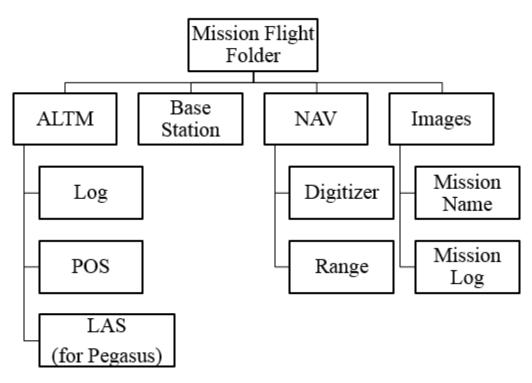



Figure 7. LiDAR Data Management for transmittal

#### 3.1.5 Equipment (ALTM Pegasus)

The ALTM Pegasus (Optech, Inc) is a laser based system suitable for topographic survey (Figure 8). It has a dual output laser system for maximum density capability. The LiDAR system is equipped with an Inertial Measurement Unit (IMU) and GPS for geo-referencing of the acquired data (Annex A contains the technical specification of the system).

The camera of the Pegasus sensor is tightly integrated with the system. It has a footprint of 8,900 pixels across by 6,700 pixels along the flight line (Annex B contains the technical specification of the D-8900 aerial digital camera).



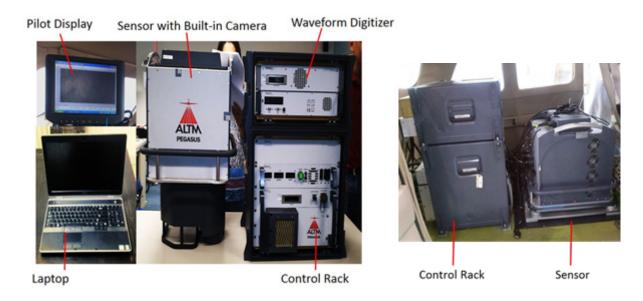



Figure 8. The ALTM Pegasus System: a) parts of the Pegasus system, b) the system as installed in Cessna T206H



### 3.2 Processing Methodology

The schematic diagram of the workflow implemented by the Data Processing Component (DPC) is shown in Figure 9. The raw data collected by the Data Acquisition Component (DAC) is transferred to DPC. Pre-processing of this data starts with the computation of trajectory and georectification of point cloud, in which the coordinates of the LiDAR point cloud data are adjusted and checked for gaps and shifts, using POSPac, LMS, LAStools and Quick Terrain (QT) Modeler software.

The unclassified LiDAR data then undergoes point cloud classification, which allows cleaning of noise data that are not necessary for further processing, using TerraScan software. The classified point cloud data in ASCII format is used to generate a data elevation model (DEM), which is edited and calibrated with the use of validation and bathymetric survey data collected from the field by the Data Validation and Bathymetry Component (DVBC). The final DEM is then used by the Flood Modeling Component (FMC) to generate the flood models for different flooding scenarios.

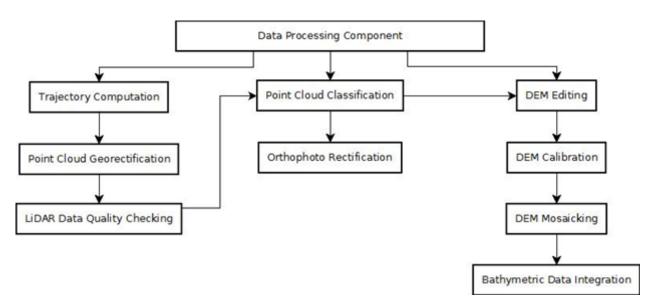



Figure 9. Schematic diagram of the data processing

#### 3.2.1 Data Transfer

The Lucena mission, named 1LUC184A, was flown with the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) by Pegasus system on July 4, 2013. The Data Acquisition Component (DAC) transferred 13.30 Gigabytes of Range data, 214 Megabytes of POS data, 7.11 Megabytes of GPS base station data, and 40.2 Gigabytes of raw image data to the data server on September 18, 2013.



#### 3.2.2 Trajectory Computation

The trajectory of the aircraft is computed using the software POSPAC MMS v6.2. It combines the POS data from the integrated GPS/INS system installed on the aircraft, and the Rinex data from the GPS base station located within 25 kilometers of the area. It then computes the Smoothed Best Estimated Trajectory (SBET) file, which contains the best estimated trajectory of the aircraft, and the Smoothed Root Mean Square Estimation error file (SMRMSG), which contains the corresponding standard deviations of the position parameters of the aircraft at every point on the computed trajectory.

The key parameters checked to evaluate the performance of the trajectory are the Solution Status parameters and the Smoothed Performance Metrics parameters. The Solution Status parameters characterize the GPS satellite geometry and baseline length at the time of acquisition, and the processing mode used by POSPAC. The acceptable values for each Solution Status parameter are shown in Table 3.

The Smoothed Performance Metrics parameters describe the root mean square error (RMSE) for the north, east and down (vertical) position of the aircraft for each point in the computed trajectory. A RMSE value of less than 4 cm for the north and east position is acceptable, while a value of less than 8 cm is acceptable for the down position.

| Parameter                      | Optimal Value                                                                          |
|--------------------------------|----------------------------------------------------------------------------------------|
| Number of satellites           | More than 6 satellites                                                                 |
| Position Dilution of Precision | Less than 3                                                                            |
| Baseline Length                | Less than 30 km                                                                        |
| Processing mode                | Less than or equal to 1, however short burtsts of values greater than 1 are acceptable |

Table 3. Smoothed Solution Status parameters in POSPAC MMS v6.2.

#### 3.2.3 LiDAR Point Cloud Rectification

The trajectory file (SBET) and its corresponding accuracy file (SMRMSG) generated in POSPAC are merged with the Range file to compute the coordinates of each individual point. The coordinates of points within the overlap region of contiguous strips vary due to small deviations in the trajectory computation for each strip. These strip misalignments are corrected by matching points from overlapping laser strips. This is done by the LiDAR Mapping Suite (LMS) software developed by Optech.

LMS is a LiDAR software package used for automated LiDAR rectification. It has the capability to extract planar features per flight line and to form correspondence among the identical planes available in the overlapping areas (illustrated in Figure 10). In order to produce geometrically correct point cloud, the redundancy in the overlapping areas of flight lines is used to determine the necessary corrections for the observations.



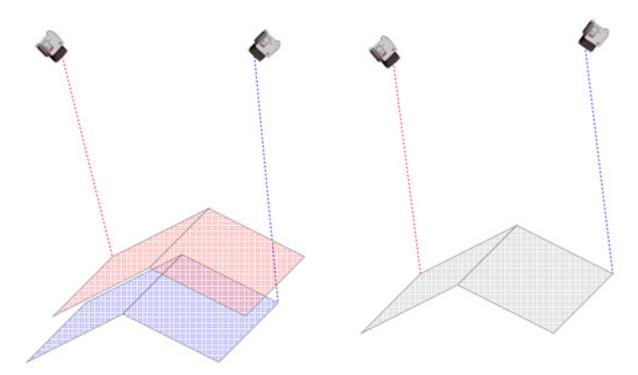



Figure 10. Misalignment of a single roof plane from two adjacent flight lines, before rectification (left). Least squares adjusted roof plane, after rectification (right).

The orientation parameters are corrected in LMS by using least squares adjustment to obtain the best-fit parameters and improve the accuracy of the LiDAR data. The primary indicators of the LiDAR rectification accuracy are the standard deviations of the corrections of the orientation parameters. These values are seen on the Boresight corrections, GPS position corrections, and IMU attitude corrections, all of which are located on the LMS processing summary report. Optimum accuracy is obtained if the Boresight and IMU attitude correction standard deviations are less than 0.001°, and if the GPS position standard deviations are below 0.01 m.

#### 3.2.4 LiDAR Data Quality Checking

After the orientation parameters are corrected and the point cloud coordinates are computed, the entire point cloud data undergoes quality checking, to see if: (a) there are remaining horizontal and vertical misalignments between contiguous strips, and; (b) to check if the density of the point cloud data reach the target density for the site. The LAStools software is used to compute for the elevation difference in the overlaps between strips and the point cloud density. It is a software package developed by Rapidlasso GmbH for filtering, tiling, classifying, rasterizing, triangulating and quality checking Terabytes of LiDAR data, using robust algorithms, efficient I/O tools and memory management. LAStools can quickly create raster representing the computed quantities, which provide guiding images in determining areas where further quality checks are necessary. The target requirements for floodplain acquisition, computed by LAStools, are shown in Table 4.



| Criteria                                            | Requirement |
|-----------------------------------------------------|-------------|
| Minimum per cent overlap                            | 25%         |
| Average point cloud density per square meter        | 2.0         |
| Elevation difference between strips (on flat areas) | 0.20 meters |

Table 4. Parameters investigated during quality checks.

LAStools can provide guides where elevation differences probably exceed the 20 cm limit. An example of LAStools output raster visualizing points in the flight line overlaps with a vertical difference of +/- 20 cm (displayed as dense red/blue areas) is shown in Figure 11.

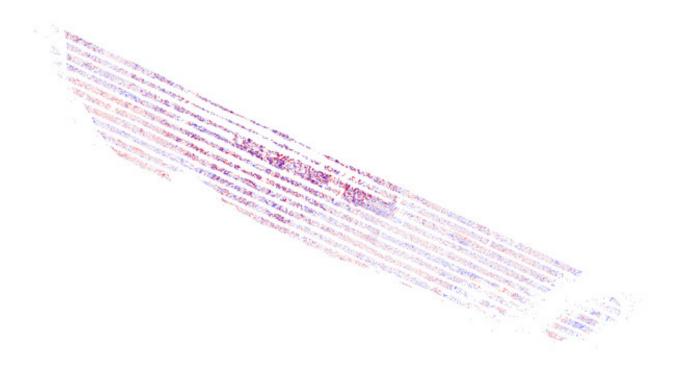



Figure 11. Elevation difference between flight lines generated from LAStools

To investigate the occurrences of elevation differences in finer detail, the profiling tool of Quick Terrain Modeler software is used. Quick Terrain Modeler (QT Modeler) is a 3D point cloud and terrain visualization software package developed by Applied Imagery, Inc. The profiling capability of QT Modeler is illustrated in Figure 12.



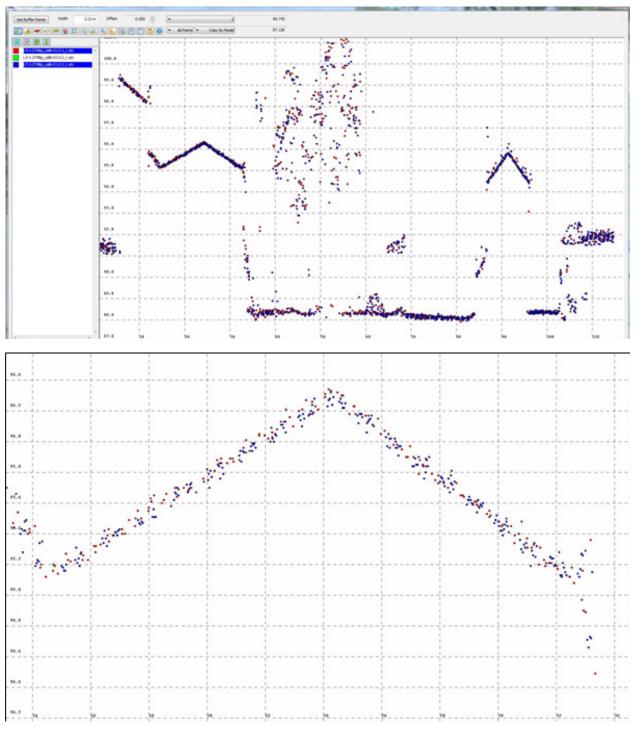



Figure 12. Profile over roof planes (a) and a zoomed-in profile on the area encircled in yellow (b)

The profile (e.g., over a roof plane) shows the overlapping points from different flight lines which serve as a good indicator that the correction applied by LMS for individual flight lines is good enough to attain the desired horizontal and vertical accuracy requirements. Flight lines that do not pass quality checking are subject for reprocessing in LMS until desired accuracies are obtained.



21

### 3.2.5 LiDAR Point Cloud Classification and Rasterization

Point cloud classification commences after the point cloud data has been rectified. TerraScan is a TerraSolid LiDAR software suite used for the classification of point clouds. It can read airborne and vehicle-based laser data in raw laser format, LAS, TerraScan binary or other AS-CII-survey formats. Its classification and filtering routines are optimized by dividing the whole data into smaller geographical datasets called blocks, to automate the workflow and increase efficiency. In this study, the blocks were set to 1 km by 1 km with a 50 m buffer zone to prevent edge effects.

The process includes the classification of all points into Ground, Low Vegetation, Medium Vegetation, High Vegetation and Buildings. The classifier tool in TerraScan first filters air points and low points by finding points that are 5 standard deviations away from the median elevation of a search radius, which is 5 meters by default. It then divides the region into 6 om by 6 om search areas (the maximum area where at least one laser point hits the ground) and assigns the lowest points in these areas as the initial ground points from which a triangulated ground model is derived. The classifier then iterates through all the points and adds the points to the ground model by testing if it is (a) within the maximum iteration angle of 4° by default from a triangle plane, and (b) if it is within the maximum iteration distance (1.2 m by default) from a triangle plane. The ground plane is continuously updated from these iterations. The ground classification technique is illustrated in Figure 13. It is apparent that the smaller the iteration angle, the less eager the classifier is to follow changes in the point cloud (small undulations in terrain or hits on low vegetation). An angle close to 4° is used in flat terrain areas while an angle of 10° is used in mountainous or hilly terrains.



ground model points

Figure 13. Ground classification technique employed in Terrascan

The parameters for ground classification routines used in floodplain and watershed areas are listed in Table 5.



| Classification maximums     | Floodplain<br>(default) | Watershed<br>(adjusted) |
|-----------------------------|-------------------------|-------------------------|
| Iteration angle (degrees)   | 4                       | 8                       |
| Iteration distance (meters) | 1.20                    | 1.50                    |

Table 5. Ground classification parameters used in Terrascan for floodplain and watershed areas

The comparison between the produced DTM using the default parameters versus the adjusted is shown in Figure 14. The default parameters may fail to capture the sudden change in the terrain, resulting to less points being classified as ground that makes the DTM interpolated (Figure 14a). The adjusted parameters work better in these spatial conditions as shown in Figure 14b. Statistically, the number of ground points and model key points correctly classified can increase by as much as fifty percent (50%) when using the adjusted parameters.

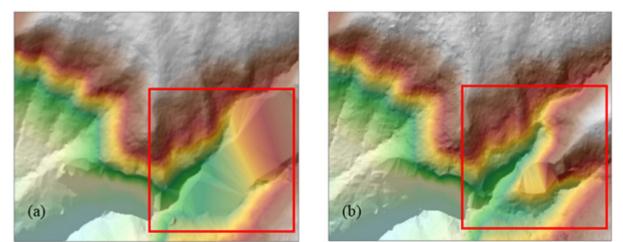



Figure 14. Resulting DTM of ground classification using the default parameters (a) and adjusted parameters (b)

The classification to Low, Medium and High vegetation is a straightforward testing of how high a point is from the ground model. The range of elevation values and its corresponding classification is shown in Table 6.

Table 6. Classification of Vegetation according to the elevation of points

| Elevation of points Classification |                   |
|------------------------------------|-------------------|
| (meters)                           |                   |
| 0.05 to 0.15                       | Low Vegetation    |
| 0.15 to 2.50                       | Medium Vegetation |
| 2.50 to 50.0                       | High Vegetation   |



The classification to Buildings routine tests points above two meters (2.0 m) if they only have one echo, and if they form a planar surface of at least 40 square meters with points adjacent to them. Minimum size and Z tolerance are the parameters used in the classify buildings routine as shown in Figure 15.

| Ground class: | 2 - Ground 🔹          |                        |   |  |
|---------------|-----------------------|------------------------|---|--|
| From class:   | 5 - High Vegetation 💌 |                        |   |  |
| To class:     | 6 - Buildi            | ng                     | - |  |
|               | 📄 Insid               | e fence only           |   |  |
| Accept using: | Normal                | ules                   | _ |  |
| Minimum size: | 40                    | m <sup>2</sup> buildin | g |  |
| Z tolerance:  | 0.20                  | m                      |   |  |
|               | Use                   | echo information       |   |  |

Figure 15. Default TerraScan building classification parameters

Minimum size is set to the smallest building footprint size of 40 m2 while the Z tolerance of 20cm is the approximate elevation accuracy of the laser points.

The point cloud data are examined for possible occurrences of air points which are to be deleted manually in the TerraScan window. Air points are defined as groups of points which are significantly higher or lower from the ground points. The different examples of air points are shown in Figure 16.

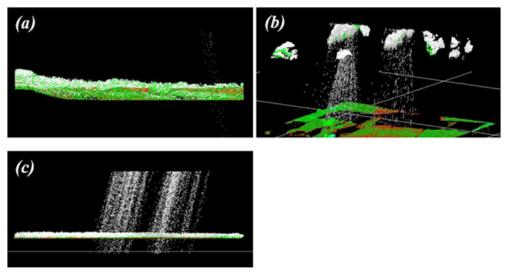



Figure 16. Different examples of air points manually deleted in the TerraScan window



The noise data can be as negligible as shown in Figure 16a or can be as severe as the one shown in Figure 16c. A combination of cloud points and shower of short ranges is displayed in Figure 16b. Shower of short ranges are caused by signal interference from the radio transmission of the tower and the aircraft. During every transmission on a specific frequency (around 120MHz), the signal is getting distorted due to the interference causing showers of short ranges in the output LAS.

Classified LiDAR point clouds that are free of air points, noise and unwanted data are processed in TerraScan to produce Digital Terrain Model (DTM) and the corresponding first and last return Digital Surface Models (DSM). These ground models are produced in the American Standard Code for Information Interchange format (ASCII) format. DTMs are produced by rasterizing all points classified to ground and model key points in a 1 m by 1 m grid. The last return DSMs are produced by rasterizing all last returns from all classifications (Ground, Model Key Points, Low, Medium, High Vegetation, Buildings and Default) in a 1 m by 1 m grid. The first return DSMs on the other hand are produced by rasterizing all first returns from all classifications. Power lines are usually included in this model. All of these ground models are used in the mosaicking, manual editing and hydro correction of the topographic dataset, in preparation for the floodplain hydraulic modelling.

#### 3.2.6 DEM Editing and Hydro-correction

Even though the parameters of the classification routines are optimized, various digital elevation models (DTM, first and last return DSM) that are automatically produced may still display minor errors that still need manual correction to make the DEMs suitable for fine-scale flood modelling. This is true especially for features that are under heavy canopy. Natural embankments on the side of the river might be flattened or misrepresented because no point pierced the canopy on that area. The same difficulty might also occur on smaller streams that are under canopy. The DTM produced might have discontinuities on these channels that might affect the flood modelling negatively. Manual inspection and correction is still a very important part of quality checking the LiDAR DEMs produced.

To correctly portray the dynamics of the flow of water on the floodplain, the river geometry must also be taken into consideration. The LiDAR data must be made consistent to the topographic surveys done for the area, and the bathymetric data must be "burned", or integrated, into the DEM to make the dataset suitable for hydraulic analyses. However, no cross-sectional survey was performed for this area.





# Results and Discussion



### 4.1 LiDAR Acquisition in Lucena Floodplain

#### 4.1.1 Flight Plans

Plans were made to acquire LiDAR data within the flood plain. Each flight mission had an average of 10 flight lines and ran for at most 2 hours including take-off, landing and turning time. The parameter used in the LiDAR system for acquisition is found in Table 7.

| Fixed Variables                                 | Values   |        |           |
|-------------------------------------------------|----------|--------|-----------|
| Flying Height (AGL - Above<br>Ground Level) (m) | 750m     | 1000 m | 1200 M    |
| Overlap                                         | 30 %     | 30%    | 30 %      |
| Max. field of View                              | 50       | 50     | 50        |
| Speed of Plane (kts)                            | 130      | 130    | 130       |
| Turn around minutes                             | 5        | 5      | 5         |
| Swath                                           | 661.58 m | 882 m  | 1058.53 m |

Table 7. Parameters used in LiDAR System during Flight Acquisition.

The parameters that set in the LiDAR sensor to optimize the area coverage following the objectives of the project and to ensure the aircraft's safe return to the airport (base of operations) are shown in Table 7. Each flight acquisition is designed for four operational hours. The maximum flying hours for Cessna 206H is five hours.



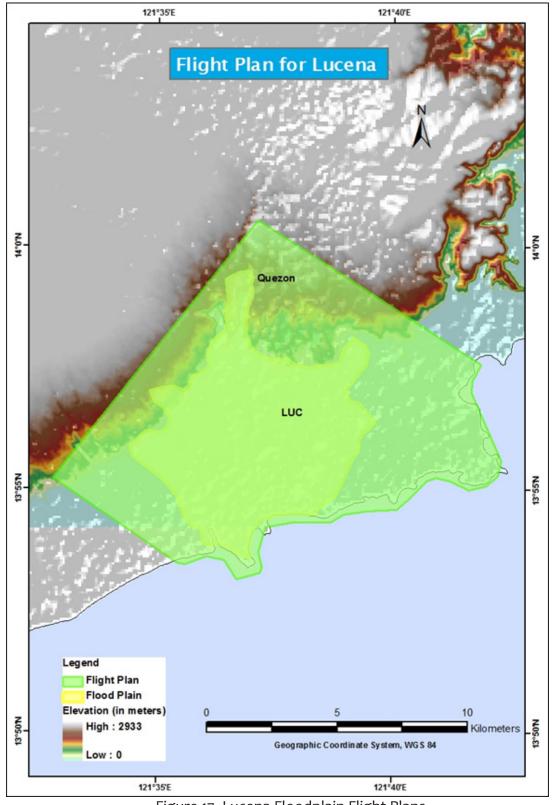



Figure 17. Lucena Floodplain Flight Plans.



#### 4.1.2 Ground Base Station

The project team was able to recover one (1) NAMRIA control station (QZN-23) with second (2rd) order accuracy and Bench Mark (QZ-301). The certification for the base station is found in Annex D. The ground control point (GCP) was used as reference point during flight operations using TRIMBLE SPS R8, a dual frequency GPS receiver.



Figure 18. NAMRIA control station MSE-3241 is located along the national highway on the SE corner of Masin bridge (106+600) in Candelaria, Quezon.



Table 8. Details of the recovered NAMRIA horizontal control point QZN-23 use as base station for the LiDAR Acquisition.

| Station Name                                            | QZI                | N-23                    |
|---------------------------------------------------------|--------------------|-------------------------|
| Order of Accuracy                                       | 2r                 | nd                      |
| Relative Error (horizontal posi-<br>tioning)            | 1 in 10            | 0,000                   |
| Geographic Coordinates, Philip-                         | Latitude           | 13° 56' 11.37883"       |
| pine Reference of 1992 Datum                            | Longitude          | 121° 25' 11771"         |
| (PRS 92)                                                | Ellipsoidal Height | 78.31300 meters         |
| Grid Coordinates, Philippine                            | Easting            | 545989.271 meters       |
| Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)       | Northing           | 1541188.355 meters      |
| Geographic Coordinates, World                           | Latitude           | 13° 56' 6.15095" North  |
| Geodetic System 1984 Datum                              | Longitude          | 121° 25' 37.06686" East |
| (WGS 84)                                                | Ellipsoidal Height | 124.52500 meters        |
| Grid Coordinates, Universal                             | Easting            | 329910.19 meters        |
| Transverse Mercator Zone 51<br>North (UTM 51N WGS 1984) | Northing           | 1541170.73 meters       |



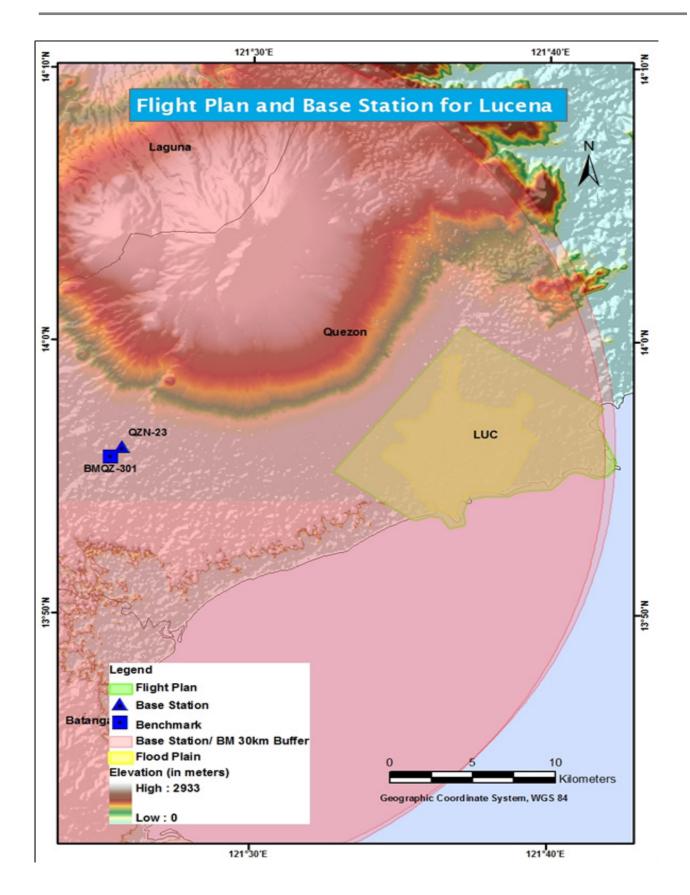



Figure 19. Lucena floodplain flight plans and base stations



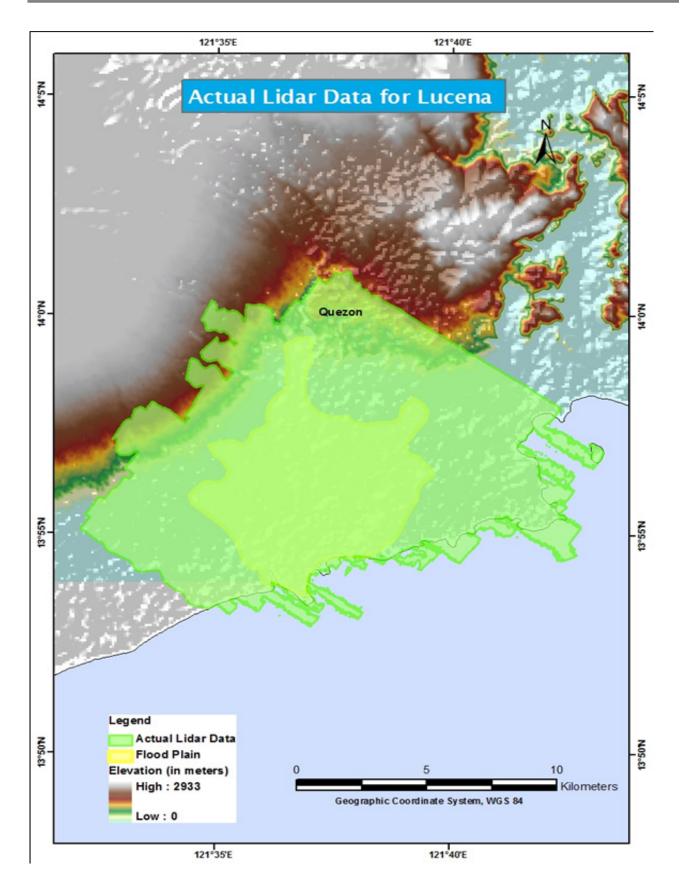



Figure 20. Lucena floodplain data acquisition LAS output



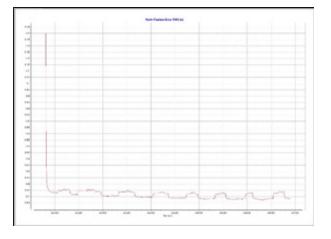
| Date          | Name   | Flight                | Sur-                   | Area                                    | Area                                     | No. of              | Flyin | g Hours |
|---------------|--------|-----------------------|------------------------|-----------------------------------------|------------------------------------------|---------------------|-------|---------|
| Surveyed      |        | Plan<br>Area<br>(km2) | veyed<br>Area<br>(km2) | Sur-<br>veyed<br>within<br>the<br>River | Sur-<br>veyed<br>Outside<br>the<br>River | Images<br>(Frames)  | Hours | Minutes |
|               |        |                       |                        | System<br>(km2)                         | Sys-<br>tems<br>(km2)                    |                     |       |         |
| July 4-5 2013 | LUCENA | 127.07                | 182.84                 | 91.981                                  | 90.859                                   | No cam-<br>era data | 6     | 32      |

Table 9. Flight Missions for LiDAR Data Acquisition in Lucena floodplain.

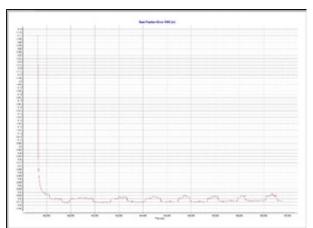
Three (3) missions were conducted to complete the LiDAR Data Acquisition in Lucena floodplain, for a total of six hours and thirty-two minutes (6 hr. and 32 min.) of flying time for RP-C9022. All three (3) missions were acquired using the Pegasus LiDAR System. The total area to be surveyed according to the flight plan and the total area of actual coverage per mission is shown in Table 9.

Lucena floodplain was surveyed by Mark Ano and Christopher Joaquin from July 4-5, 2013 as shown in Table 10.

| Location | Date Sur-<br>veyed | Operator   | Mission<br>Name | Flood-<br>plain<br>Surveyed<br>Area<br>(km2) | Total<br>Flood-<br>plain<br>Area<br>(km2) | Water-shed<br>Surveyed<br>Area (km2) | Total Wa-<br>ter-shed<br>Area<br>(km2) |
|----------|--------------------|------------|-----------------|----------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------|
| LUCENA   | July 4,<br>2013    | C. Joaquin | 1LUC184A        | 31.878                                       | 49                                        | 29.382                               | 189.31                                 |
|          | July 5,<br>2013    | M. Ano     | 1LUC185A        | 44.785                                       |                                           | 17.294                               |                                        |


Table 10. Area of Coverage (in sq km) of the LiDAR Data Acquisition in Lucena floodplain.

## 4.2 LiDAR Data Processing


4.2.1 Trajectory Computation



#### North Position Error RMS (m)



#### East Position Error RMS (m)



#### Down Position Error RMS (m)

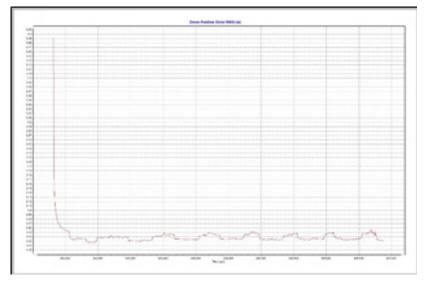



Figure 21. Smoothed Performance Metrics of Lucena flight

The Smoothed Performance Metric parameters of the Lucena flight are shown in Figure 21. The x-axis is the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week. The y-axis is the RMSE value for a particular aircraft position with respect to GPS survey time. The North (Figure 21a) and east (Figure 21b) position RMSE values fall within the prescribed accuracy of 4 centimeters, and all Down (Figure 21c) position RMSE values fall within the prescribed accuracy of 8 centimeters.



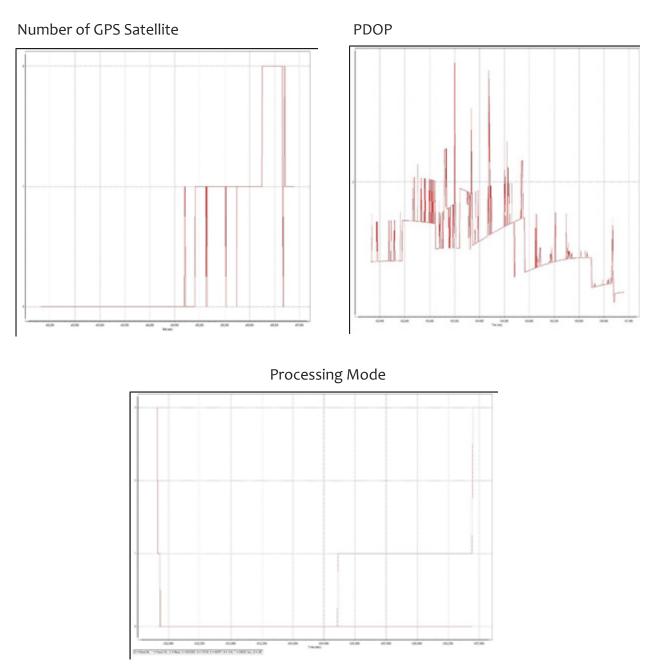



Figure 22. Solution Status Parameters of Lucena flight

The Solution Status parameters of the computed trajectory for Lucena flight 299P, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used are shown in Figure 22. The processing mode (Figure 22a) stays at a value of o, which corresponds to a Fixed, Narrow-Lane mode, which indicates an optimum solution for trajectory computation by POSPac MMS v6.2. The PDOP (Figure 22b) value does not exceed the value of 3, indicating optimal GPS geometry. The number of GPS satellites (Figure 22c) graph indicates that the number of satellites during the acquisition was between 7 and 9. All of the parameters satisfied the accuracy requirements for optimal trajectory solutions as indicated in the methodology.



#### 4.2.2 LiDAR Point Cloud Computation

The LAS data output contains 51 flight lines, with each flight line containing two channels, a feature of the Pegasus system. The result of the boresight correction standard deviation values for both channel 1 and channel 2 are better than the prescribed 0.001°. The position of the LiDAR system is also accurately computed since all GPS position standard deviations are less than 0.04 meter. The attitude of the LiDAR system passed accuracy testing since the standard deviation of the corrected roll and pitch values of the IMU attitudes are less than 0.001°.

### 4.2.3 LiDAR Data Quality Checking

The LAS boundary of the LiDAR data on top of the SRTM elevation data is shown in Figure 23. The map shows gaps in the LiDAR coverage that are attributed to cloud cover present during the survey.

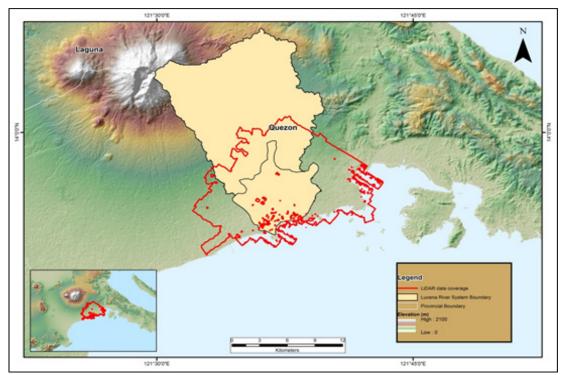



Figure 23. Coverage of LiDAR data for the Lucena mission



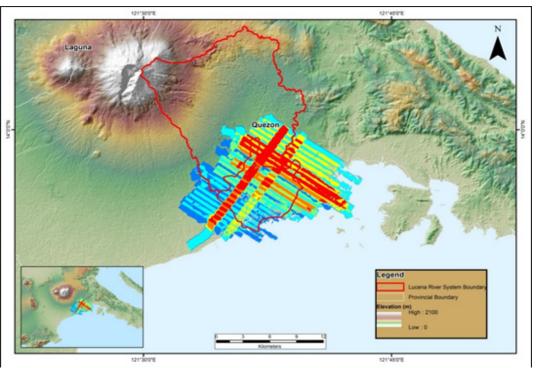



Figure 24. Image of data overlap for the Lucena mission

The density map for the merged LiDAR data, with the red areas showing the portions of the data that satisfy the 2 points per square meter requirement, is shown in Figure 25. It was determined that 90.48% of the total area satisfied the point density requirement, and the average density for the entire survey area is 2.93 points per square meter.

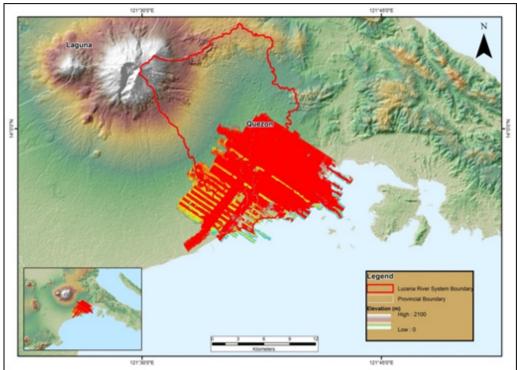



Figure 25. Density map of merged LiDAR data for the Lucena mission



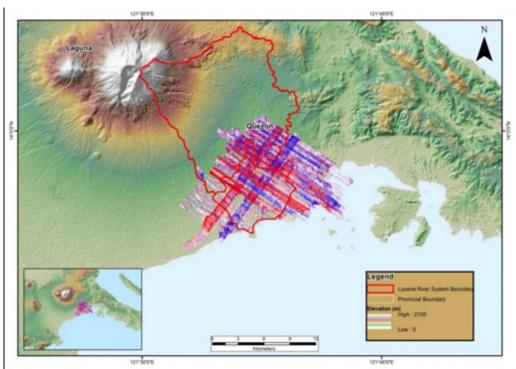



Figure 26. Elevation difference map between flight lines

A screen capture of the LAS data loaded in QT Modeler is shown in Figure 27a. A line graph showing the elevations of the points from all of the flight strips traversed by the profile in red line is shown in Figure 27b. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. No reprocessing was necessary for this LiDAR dataset.



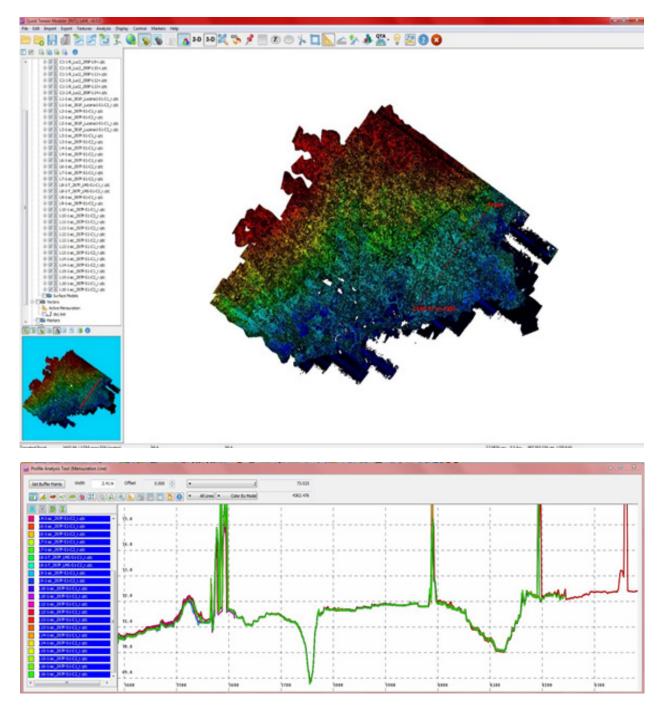



Figure 27. Quality checking with the profile tool of QT Modeler



### 4.2.4 LiDAR Point Cloud Classification and Rasterization

The block system that TerraScan employed for the LiDAR data is shown in Figure 28a generated a total of 300 1 kilometer by 1 kilometer blocks. The final classification of the point cloud for a mission in the Lucena floodplain is shown in Figure 28b. The number of points classified to the pertinent categories along with other information for the mission is shown in Table 11.

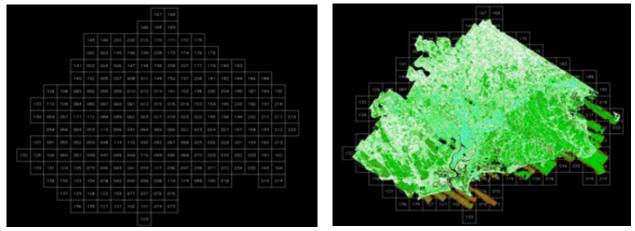



Figure 28. (a) Lucena floodplains and (b) Lucena classification results in TerraScan

| Pertinent Class          | Count       |  |
|--------------------------|-------------|--|
| Ground                   | 200,466,480 |  |
| Low vegetation           | 211,809,795 |  |
| Medium vegetation        | 194,717,750 |  |
| High vegetation          | 34,464,021  |  |
| Building                 | 300         |  |
| Number of 1 km x 1<br>km | 300         |  |
| Maximum Height           | 473.98 m    |  |
| Minimum Height           | 65.86 m     |  |

Table 11. Lucena classification results in TerraScan

An isometric view of an area before (a) and after (b) running the classification routines for the mission is shown in Figure 29. The ground points are in brown, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.



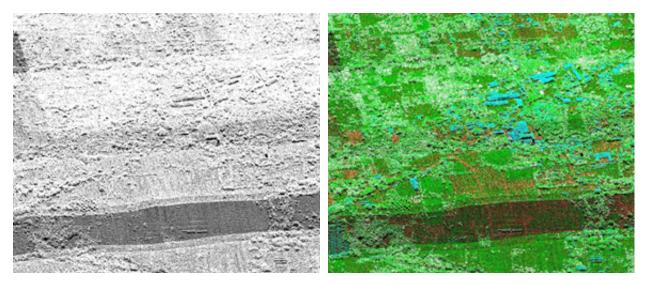



Figure 29. Point cloud (a) before and (b) after classification

#### 4.2.5 DEM Editing and Hydro-correction

Portions of DTMs before and after manual editing are shown in Figure 30. It shows that the embankment might have been drastically cut by the classification routine in Figure 30a and clearly needed to be retrieved to complete the surface as in Figure 30b to allow the hydrologically correct flow of water. A small stream suffers from discontinuity of flow due to an existing bridge in Figure 30c. The bridge is removed also in order to hydrologically correct the flow of water through the river in Figure 30d.

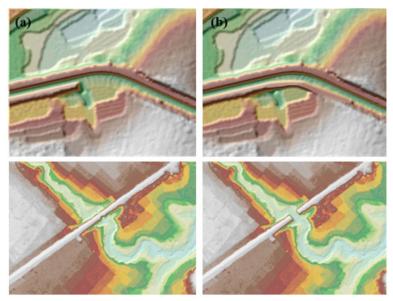



Figure 30. Images of DTMs before and after manual editing



The extent of the validation survey done by the Data Validation Component (DVC) in Lucena to collect points with which the LiDAR dataset is validated is shown in Figure 31. A total of 2997 control points were collected. The good correlation between the airborne LiDAR elevation values and the ground survey elevation values, which reflects the quality of the LiDAR DTM is shown in Figure 32. The computed RMSE between the LiDAR DTM and the surveyed elevation values is 6.288 centimeters with a standard deviation of 6.289 centimeters. The LE 90 value represents the linear vertical distance that 90% of the sampled DEM points and their respective DVC validation point counterparts should be found from each other. Other statistical information can be found in Table 12. The final DTM and extent of the bathymetric survey done along the river is shown in Figure 33.

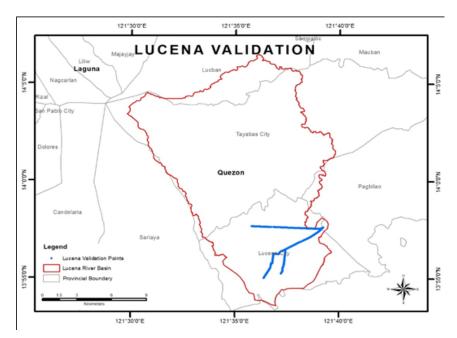



Figure 31. Map of Lucena River System with validation survey shown in blue

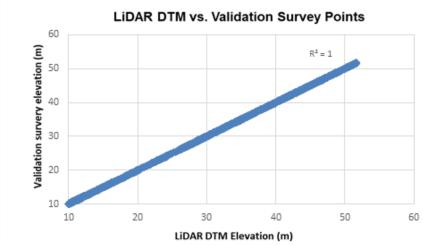



Figure 32. One-one Correlation plot between topographic and LiDAR data



| Statistical Information | Values (cm) |
|-------------------------|-------------|
| Min                     | -22.262     |
| Max                     | 23.971      |
| RMSE                    | 6.288       |
| Stdev                   | 6.289       |
| LE90                    | 10.728      |

Table 12. Statistical values for the calibration of flights

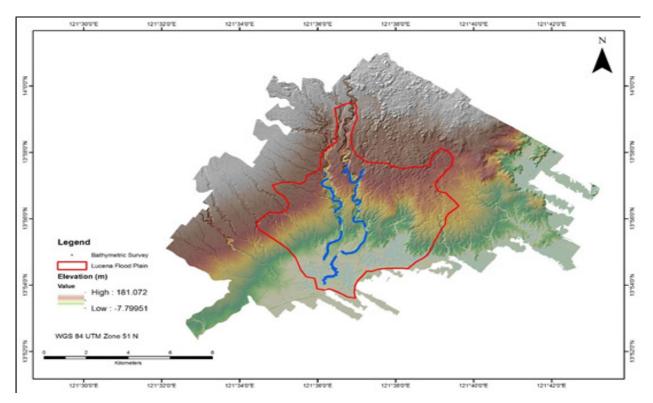



Figure 33. Final DTM of Lucena with validation survey shown in blue

The floodplain extent for Lucena is also presented, showing the completeness of the LiDAR dataset and DSM produced, is shown in Figure 34. Samples of 1 kilometer by 1 kilometer of DSM and DTM are shown in Figure 35 and Figure 36, respectively.



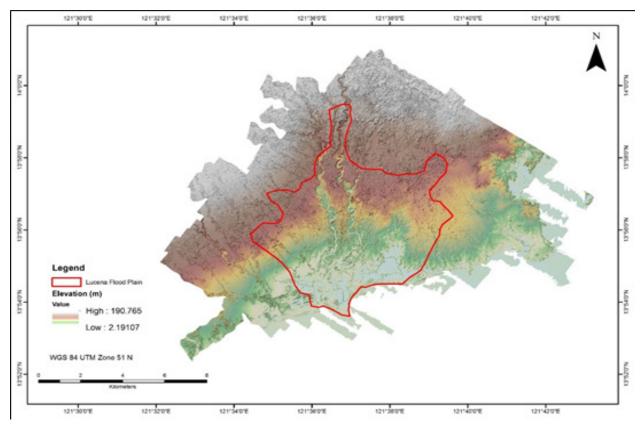
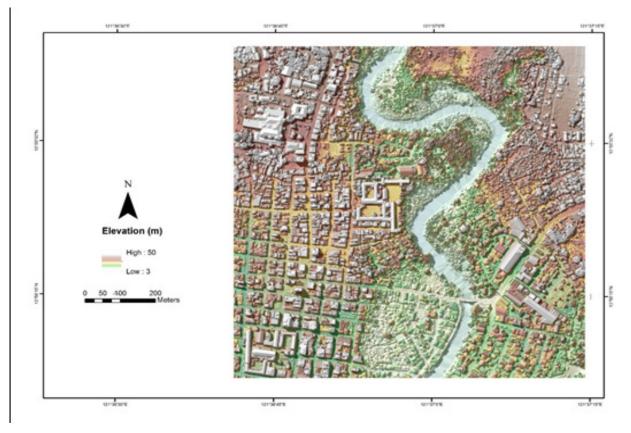




Figure 34. Final DSM in Lucena







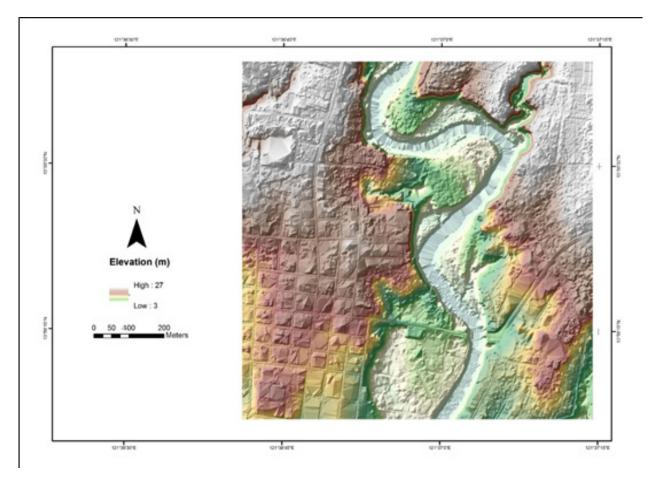
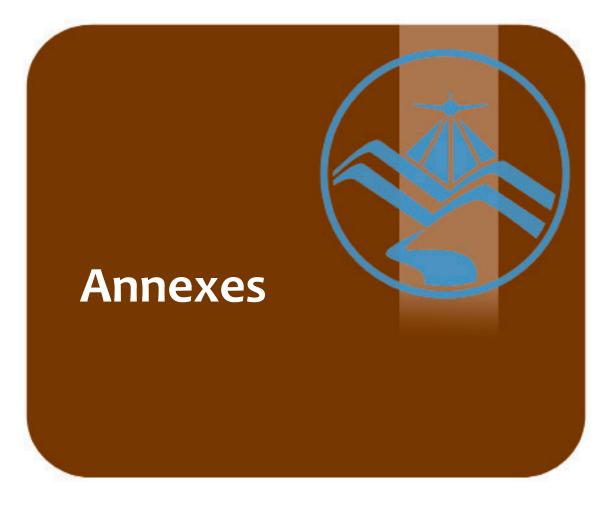




Figure 36. Sample 1x1 square kilometer DTM







# ANNEX A. OPTECH TECHNICAL SPECIFICATION OF THE PEGASUS SENSOR

| Parameter                           | Specification                                                          |  |
|-------------------------------------|------------------------------------------------------------------------|--|
| Operational envelope (1,2,3,4)      | 150-5000 m AGL, nominal                                                |  |
| Laser wavelength                    | 1064 nm                                                                |  |
| Horizontal accuracy (2)             | 1/5,500 x altitude, 1σ                                                 |  |
| Elevation accuracy (2)              | < 5-20 cm, 1σ                                                          |  |
| Effective laser repetition rate     | Programmable, 100-500 kHz                                              |  |
| Position and orientation system     | POS AV ™AP50 (OEM)                                                     |  |
| Scan width (FOV)                    | Programmable, 0-75 °                                                   |  |
| Scan frequency (5)                  | Programmable, 0-140 Hz (effective)                                     |  |
| Sensor scan product                 | 800 maximum                                                            |  |
| Beam divergence                     | 0.25 mrad (1/e)                                                        |  |
| Roll compensation                   | Programmable, ±37° (FOV dependent)                                     |  |
| Vertical target separation distance | <0.7 m                                                                 |  |
| Range capture                       | Up to 4 range measurements, including 1st, 2n<br>3rd, and last returns |  |
| Intensity capture                   | Up to 4 intensity returns for each pulse, includ-<br>ing last (12 bit) |  |
| Image capture                       | 5 MP interline camera (standard); 60 MP full<br>frame (optional)       |  |
| Full waveform capture               | 12-bit Optech IWD-2 Intelligent Waveform Digi-<br>tizer                |  |
| Data storage                        | Removable solid state disk SSD (SATA II)                               |  |
| Power requirements                  | 28 V, 800 W, 30 A                                                      |  |
| Dimensions and weight               | Sensor: 630 x 540 x 450 mm; 65 kg;                                     |  |
| Dimensions and weight               | Control rack: 650 x 590 x 490 mm; 46 kg                                |  |
| Operating Temperature               | -10°C to +35°C                                                         |  |
| Relative humidity                   | 0-95% non-condensing                                                   |  |

1 Target reflectivity ≥20%

 $_2$  Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint

5 Dependent on system configuration



# ANNEX B. OPTECH TECHNICAL SPECIFICATION OF THE D-8900 AERIAL DIGITAL CAMERA

| Parameter              | Specification                                                                                                                                                          |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Camera Head                                                                                                                                                            |
| Sensor type            | 60 Mpix full frame CCD, RGB                                                                                                                                            |
| Sensor format (H x V)  | 8, 984 x 6, 732 pixels                                                                                                                                                 |
| Pixel size             | 6μm x 6 μm                                                                                                                                                             |
| Frame rate             | 1 frame/2 sec.                                                                                                                                                         |
| FMC                    | Electro-mechanical, driven by piezo technology (patented)                                                                                                              |
| Shutter                | Electro-mechanical iris mechanism 1/125 to 1/500++ sec.<br>f-stops: 5.6, 8, 11, 16                                                                                     |
| Lenses                 | 50 mm/70 mm/120 mm/210 mm                                                                                                                                              |
| Filter                 | Color and near-infrared removable filters                                                                                                                              |
| Dimensions (H x W x D) | 200 x 150 x 120 mm (70 mm lens)                                                                                                                                        |
| Weight                 | ~4.5 kg (70 mm lens)                                                                                                                                                   |
|                        | Controller Unit                                                                                                                                                        |
| Computer               | Mini-ITX RoHS-compliant small-form-factor embedded<br>computers with AMD TurionTM 64 X2 CPU<br>4 GB RAM, 4 GB flash disk local storage<br>IEEE 1394 Firewire interface |
| Removable storage unit | ~500 GB solid state drives, 8,000 images                                                                                                                               |
| Power consumption      | ~8 A, 168 W                                                                                                                                                            |
| Dimensions             | 2U full rack; 88 x 448 x 493 mm                                                                                                                                        |
| Weight                 | ~15 kg                                                                                                                                                                 |
|                        | Image Pre-Processing Software                                                                                                                                          |
| Capture One            | Radiometric control and format conversion, TIFF or JPEG                                                                                                                |
| Image output           | 8,984 x 6,732 pixels<br>8 or 16 bits per channel (180 MB or 360 MB per image)                                                                                          |



## ANNEX C. THE SURVEY TEAM

| Data Acquisition<br>Component<br>Sub-team         | Designation                                      | Name                              | Agency/<br>Affiliation        |
|---------------------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------|
| Data Acquisition<br>Component Leader              | Data Component<br>Project Leader –I              | ENGR. CZAR JAKIRI<br>S. SARMIENTO | UP TCAGP                      |
| Survey Supervisor                                 | Chief Science Re-<br>search Specialist<br>(CSRS) | ENGR. CHRISTOPHER<br>CRUZ         | UP TCAGP                      |
| LiDAR Operation                                   | Senior Science Re-<br>search Specialist          | MARK GREGORY<br>ANO               | UP TCAGP                      |
| LiDAR Operation                                   | Senior Science Re-<br>search Specialist          | JASMINE ALVIAR                    | UP TCAGP                      |
| LiDAR Operation/<br>Data Download and<br>Transfer | Research Associate                               | CHRISTOPHER JOA-<br>QUIN          | UP TCAGP                      |
| Ground Survey                                     | Senior Science Re-<br>search Specialist          | ENGR. GEROME<br>HIPOLITO          | UP TCAGP                      |
| Ground Survey                                     | Research Associate                               | MARVY FUNTILON                    | UP TCAGP                      |
| LiDAR Operation                                   | Airborne Security                                | SSG. LEE JAY PUN-<br>ZALAN        | Philippine Air Force<br>(PAF) |



## NAMRIA CERTIFICATION FOR LUCENA

**A. QZN-23** 



Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 17, 2013

#### CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

|                                           | Provin     | ce: QUEZON         |           |          |             |
|-------------------------------------------|------------|--------------------|-----------|----------|-------------|
|                                           | Station I  | Name: QZN-23       |           |          |             |
| Island: LUZON<br>Municipality: CANDELARIA | Orde       | r: 2nd             | Baranga   | ay: MAS  | ALUKOT I    |
|                                           | PRS        | 92 Coordinates     |           |          |             |
| Latitude: 13º 56' 11.37883"               | Longitude: | 121° 25' 32.11771" | Ellipsoid | ial Hgt: | 78.31300 m. |
|                                           | WGS        | 84 Coordinates     |           |          |             |
| Latitude: 13° 56' 6.15095"                | Longitude: | 121° 25' 37.06686" | Ellipsoid | al Hgt:  | 124.52500 m |
|                                           | PTI        | M Coordinates      |           |          |             |
| Northing: 1541188.355 m.                  | Easting:   | 545989.271 m.      | Zone:     | 3        |             |
|                                           | UTI        | M Coordinates      |           |          |             |
| Northing: 1,541,170.73                    | Easting:   | 329,910.19         | Zone:     | 51       |             |

QZN-23

Location Description

Is located on the NW corner of VSJ Subd., Brgy. Masalukot I, Candelaria. It is about 5 m. from the centerline of the subd. road and about 20 m. from the road intersection. S of the station is the Veteran's Federation of the Philippines Headquarters, 2nd Quezon Veteran's District, R-IV.

 Requesting Party:
 UP-TCAGP

 Pupose:
 Reference

 OR Number:
 3943939 B

 T.N.:
 2013-0700

RUE DM. BELEN, MNSA Director, Mapping and Geodesy Department Um





NAMRIA OFFICES: Main : Lowton Avenue, Fort Bonifacia, 1634 Taguig City, Philippines Tel. No.: (332) 810-4831 to 41 Bronch : 421 Barrocs St. San Nicolos, 1010 Manila, Philippines, Tel. No. (532) 241-3494 to 98 www.namria.gov.ph



## **B. QZN-301**



Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 17, 2013

#### CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Island: LUZON

Elevation: 61.8177 m.

Municipality: CANDELARIA

Province: QUEZON Station Name: QZ-301

Barangay: MASIN NORTE

Order: 1st Order

Datum: Mean Sea Level

Location Description

BM QZ-301

BM QZ 301 is in the island of Luzon, province of Quezon, town of Candelaria, barangay Masin Norte. Station is along the national highway, 4m S of the road centerline. It is on top of the concrete pavement of the SE corner of Masin bridge at sta. 106 + 600. Mark is the head of a 4" copper nail, cemented and flushed, with the inscription: "QZ 301, 2007, NAMRIA."

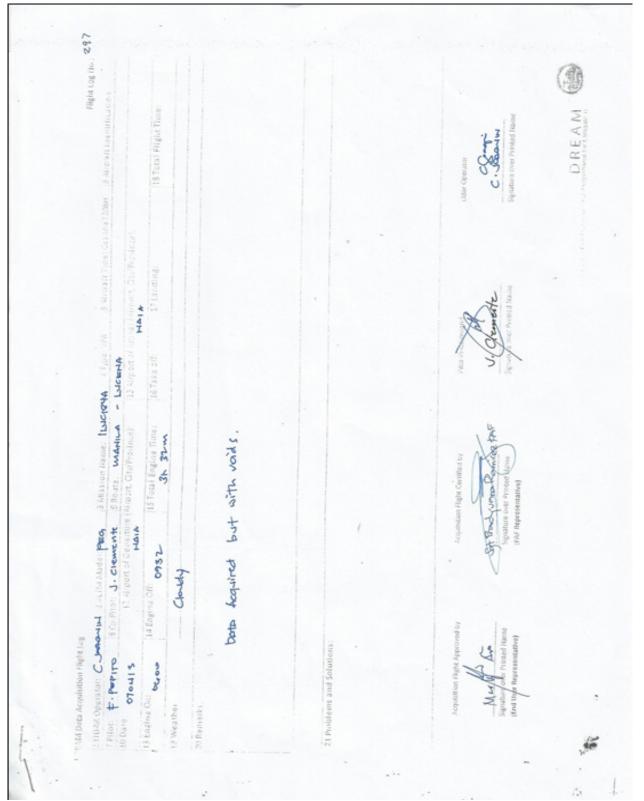
Requesting Party: UP-TCAGP Pupose: Reference OR Number: 3943939 B T.N.: 2013-0699

RUELOM. BELEN MNSA Director, Mapp ing and Geodesy Department der



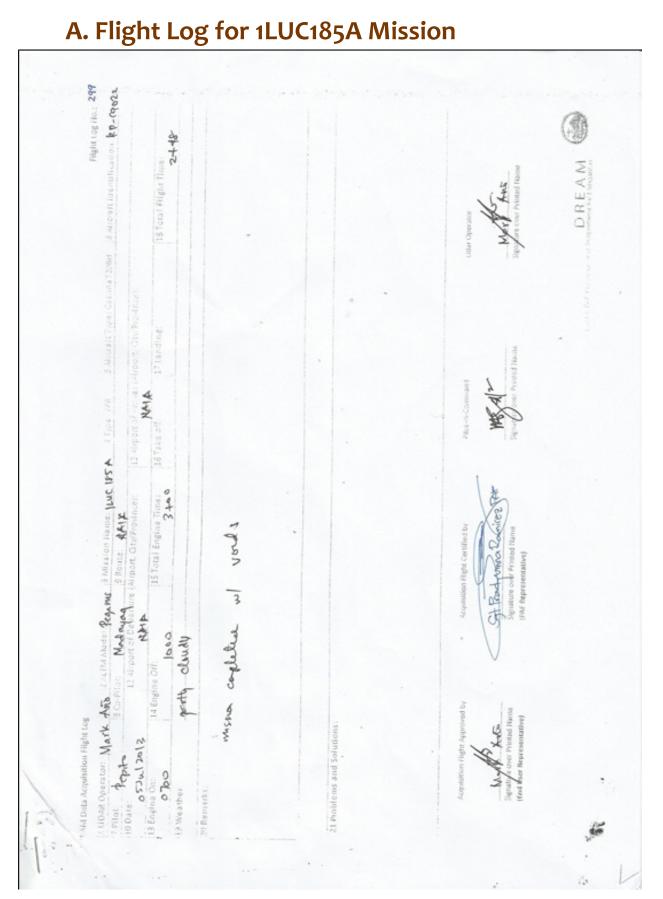


NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Toguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch - 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph




|                     | SERVER                             | Z:Witbome_R<br>aw/297P | Z:Wittome_R<br>aw/299P | Z:Mirborne_R<br>aw/301P  | Z:Mithome_R<br>aw/303P         | Z:Mirborne_R<br>aw/306P              |                                                                                    |  |
|---------------------|------------------------------------|------------------------|------------------------|--------------------------|--------------------------------|--------------------------------------|------------------------------------------------------------------------------------|--|
|                     | FLIGHT                             | 56KB                   | 23.5KB                 | 27/28KB                  | 27/28KB                        |                                      |                                                                                    |  |
|                     | OPERATOR<br>COMMENTS<br>(DPC LOGS) | 4568                   | 2558                   | 1478                     | 5728                           |                                      |                                                                                    |  |
|                     | RANGE DIGITIZER BASE STATION(S)    | 7.11MB                 | 6.43MB                 | 6.27MB/8.99MB            | 7.75MB                         | .4.0                                 |                                                                                    |  |
|                     | DIGITIZER                          | N/A                    | NIA                    | NIA                      | NIA                            | MIA                                  | aller.                                                                             |  |
|                     | RANGE                              | 13.3GB                 | 10.5GB                 | 10.3GB                   | 11.5G8                         |                                      | and the                                                                            |  |
| R SHEET             | MISSION<br>LOG FILE                | NIA                    | NIN                    | N/N                      | N/A 1                          | N/A 0                                | Benglight                                                                          |  |
| DATA TRANSFER SHEET | RAW IMAGES                         | NIA                    | NIA                    | NIA                      |                                | NIN                                  | Raceived by<br>NameSignature BCA profile and a strangention.<br>Position 5(R 1) 15 |  |
| DATA                | POS                                | 214MB                  | 180MB                  | 222MB N                  | NIN BIMBWB                     | 192MB                                |                                                                                    |  |
|                     | rogs                               |                        | 3MB 1.06MB 1           | 5MB/ 422KB/78<br>5MB 5KB |                                |                                      | 50 - 31-5<br>1-31-5                                                                |  |
|                     | RAW<br>LAS                         | 119MB                  | 92.3MB                 | 31.5MB/ 4<br>47.9MB 8    | 65.3MB/ 842KB/29<br>24.3MB 3KB | 26.1/17. 6<br>9A69 5                 | toplated                                                                           |  |
|                     | SENSOR                             | PEGASUS 119MB 1.17MB   | PEGASUS 92             | PEGASUS 47.              | PEGASUS                        | PEGASUS 26.1/17, 690KB/40<br>BMB 5KB | C-Jones in the state                                                               |  |
|                     | MISSION NAME                       | 1LUC184A               | 1LUC185A               | 1INFB186A                | INFA187A                       | 1INFS190A                            | Received from Marnessignature C. Jocia                                             |  |
|                     | FLIGHT<br>NO.                      |                        |                        |                          |                                |                                      |                                                                                    |  |
|                     | DATE                               | Jul 4, 2013 297P       | Jul 5, 2013/200P       | Jul 6, 2013 301P         | Jul 7, 2013 303P               | Jul 10, 2013 305P                    |                                                                                    |  |

## Annex G


## FLIGHT LOGS

## A. Flight Log for 1LUC184A Mission



54

## **FLIGHT LOGS**









D R E A M Disaster RIsk and Exposure Assessment for Mitigation