HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Sulat River



Site-



University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University

APRIL 2017

© University of the Philippines and Visayas State University 2017



© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F. Morales Jr. (Eds.). (2017), LiDAR Surveys and Flood Mapping of Sulat River. Quezon City University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 117pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales\_jr@yahoo.com

#### Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-217-8

## **TABLE OF CONTENTS**

| TABL | E OF  | CONTENTS                                                                                    | ii  |
|------|-------|---------------------------------------------------------------------------------------------|-----|
| LIST | OF TA | ABLES                                                                                       | .iv |
| LIST | OF FI | GURES                                                                                       | v   |
| LIST | OF AG | CRONYMS AND ABBREVIATIONS                                                                   | vii |
| СНА  | PTER  | 1: OVERVIEW OF THE PROGRAM AND SULAT RIVER                                                  | 1   |
|      | 1.1   | Background of the Phil-LIDAR 1 Program                                                      | 1   |
|      | 1.2   | Overview of the Sulat River Basin                                                           | 1   |
| CHA  | PTER  | 2: LIDAR DATA ACQUISITION OF THE SULAT FLOODPLAIN                                           | 3   |
|      | 2.1   | Flight Plans                                                                                | 3   |
|      | 2.2   | Ground Base Stations                                                                        | 5   |
|      | 2.3   | Flight Missions                                                                             | 7   |
|      | 2.4   | Survey Coverage                                                                             | 7   |
| CHA  | PTER  | 3: LIDAR DATA PROCESSING OF THE SULAT FLOODPLAIN                                            | 9   |
|      | 3.1   | Overview of the LIDAR Data Pre-Processing                                                   | 9   |
|      | 3.2   | Transmittal of Acquired LiDAR Data                                                          | 10  |
|      | 3.3   | Trajectory Computation                                                                      | 11  |
|      | 3.4   | LiDAR Point Cloud Computation                                                               | 14  |
|      | 3.5   | LiDAR Quality Checking                                                                      | 15  |
|      | 3.6   | LiDAR Point Cloud Classification and Rasterization                                          | 19  |
|      | 3.7   | LiDAR Image Processing and Orthophotograph Rectification                                    | 22  |
|      | 3.8   | DEM Editing and Hydro-Correction                                                            | 23  |
|      | 3.9   | Mosaicking of Blocks                                                                        | 24  |
|      | 3.10  | Calibration and Validation of Mosaicked LiDAR DEM                                           | 26  |
|      | 3.11  | Integration of Bathymetric Data into the LiDAR Digital Terrain Model                        | 30  |
|      | 3.12  | Feature Extraction                                                                          | 31  |
|      |       | 3.12.1 Quality Checking (QC) of Digitized Features' Boundary                                | 31  |
|      |       | 3.12.2 Height Extraction                                                                    | 31  |
|      |       | 3.12.3 Feature Attribution                                                                  | 32  |
|      |       | 3.12.4 Final Quality Checking of Extracted Features                                         | 33  |
| СНА  | PTER  | 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SULAT RIVER BASIN                        | 34  |
|      | 4.1   | Summary of Activities                                                                       | 34  |
|      | 4.2   | Control Survey                                                                              | 36  |
|      | 4.3   | Baseline Processing                                                                         | 41  |
|      | 4.4   | Network Adjustment                                                                          | 42  |
|      | 4.5   | Cross-section and Bridge As-Built survey and Water Level Marking                            | 45  |
|      | 4.6   | Validation Points Acquisition Survey                                                        | 50  |
|      | 4.7   | River Bathymetric Survey                                                                    | 52  |
| CHA  | PTER  | 5: FLOOD MODELING AND MAPPING                                                               | 55  |
|      | 5.1   | Data Used for Hydrologic Modeling                                                           | 55  |
|      |       | 5.1.1 Hydrometry and Rating Curves                                                          | 55  |
|      |       | 5.1.2 Precipitation                                                                         | 55  |
|      |       | 5.1.3 Rating Curves and River Outflow                                                       | 56  |
|      | 5.2   | RIDF Station                                                                                | 58  |
|      | 5.3   | HMS Model                                                                                   | 60  |
|      | 5.4   | Cross-section Data                                                                          | 64  |
|      | 5.5   | Ho 2D Model                                                                                 | 65  |
|      | 5.6   | Results of HMS Calibration                                                                  | 66  |
|      | 5.7   | Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods . | 68  |
|      |       | 5./.1 Hydrograph using the Raintall Runoff Model                                            | 68  |
|      | 5.8   | River Analysis (RAS) Model Simulation                                                       | 69  |
|      | 5.9   | Flow Depth and Flood Hazard                                                                 | 70  |
|      | 5.10  | Inventory of Areas Exposed to Flooding                                                      | 77  |
|      | 5.11  | Flood Validation                                                                            | 90  |

| REFERENCES |                                                                                   | <b>1</b> 2     |
|------------|-----------------------------------------------------------------------------------|----------------|
| ANNEX      |                                                                                   | )2<br>)3       |
| ANNEX 1.   | Technical Specifications of the LIDAR Sensors used in the Sulat Floodplain Survey | <del>)</del> 3 |
| ANNEX 2.   | NAMRIA Certificate of Reference Points Used in the LiDAR Survey                   | 94             |
| ANNEX 3.   | Baseline Processing Reports of Control Points used in the LiDAR Survey            | 95             |
| ANNEX 4.   | The LiDAR Survey Team Composition                                                 | <del>)</del> 6 |
| ANNEX 5.   | Data Transfer Sheet for Sulat Floodplain                                          | 97             |
| ANNEX 6.   | Flight logs for the flight missions                                               | 98             |
| ANNEX 7.   | Flight status reports10                                                           | )0             |
| ANNEX 8.   | Mission Summary Reports                                                           | )3             |
| ANNEX 9.   | Sulat Model Basin Parameters10                                                    | )8             |
| ANNEX 10.  | Sulat Model Reach Parameters10                                                    | )9             |
| ANNEX 11.  | Sulat Field Validation Points1                                                    | 10             |
| ANNEX 12.  | Educational Institutions affected by flooding in Sulat Flood Plain1               | 16             |
| ANNEX 13.  | Medical Institutions affected by flooding in Sulat Flood Plain 1                  | 17             |

# LIST OF TABLES

| Table 1.  | Flight planning parameters for the Aquarius LiDAR system                                         |
|-----------|--------------------------------------------------------------------------------------------------|
| Table 2.  | Details of the recovered NAMRIA horizontal control point SME-3139 used as base station           |
|           | for the LiDAR acquisition                                                                        |
| Table 3.  | Details of the recovered NAMRIA horizontal control point SE-16 used as base station for          |
|           | the LiDAR acquisition                                                                            |
| Table 4.  | Ground control points used during the LiDAR data acquisition.                                    |
| Table 5.  | Flight missions for LiDAR data acquisition in Sulat floodplain7                                  |
| Table 6.  | Actual parameters used during LiDAR data acquisition7                                            |
| Table 7.  | List of municipalities and cities surveyed during Sulat floodplain LiDAR survey                  |
| Table 8.  | Self-calibration Results values for Sulat flights 14                                             |
| Table 9.  | List of LiDAR blocks for the Sulat floodplain 15                                                 |
| Table 10. | Sulat classification results in TerraScan19                                                      |
| Table 11. | LiDAR blocks with its corresponding areas                                                        |
| Table 12. | Shift values of each LiDAR block of Sulat Floodplain                                             |
| Table 13. | Calibration Statistical Measures 28                                                              |
| Table 14. | Validation Statistical Measures 29                                                               |
| Table 15. | Details of the quality checking ratings for the building features extracted for the              |
|           | Sulat River Basin                                                                                |
| Table 16. | Building features extracted for Sulat Floodplain 32                                              |
| Table 17. | Total length of extracted roads for Sulat Floodplain                                             |
| Table 18. | Number of extracted water bodies for Sulat Floodplain                                            |
| Table 19. | List of reference and control points used during the survey in Sulat River                       |
|           | (Source: NAMRIA, UP-TCAGP)                                                                       |
| Table 20. | The Baseline processing report for the Sulat River GNSS static observation survey41              |
| Table 21. | Constraints applied to the adjustment of the control points 42                                   |
| Table 22. | Adjusted grid coordinates for the control points used in the Sulat River flood plain survey 42   |
| Table 23. | Adjusted geodetic coordinates for control points used in the Sulat River Flood Plain             |
|           | validation                                                                                       |
| Table 24. | The reference and control points utilized in the Sulat River Static Survey, with their           |
|           | corresponding locations (Source: NAMRIA, UP-TCAGP)                                               |
| Table 25. | RIDF values for the Sulat River Basin based on average RIDF data of Borongan station, as         |
|           | computed by PAGASA                                                                               |
| Table 26. | Range of calibrated values for the Sulat River Basin                                             |
| Table 27. | Summary of the Efficiency Test of the Sulat HMS Model                                            |
| Table 28. | The peak values of the Sulat HEC-HMS Model outflow using the Borongan RIDF                       |
| Table 29. | Municipalities affected in Sulat floodplain                                                      |
| Table 30. | Affected Areas in San Julian, Eastern Samar during 5-Year Rainfall Return Period                 |
| Table 31. | Affected Areas in Sulat, Eastern Samar during 5-Year Rainfall Return Period                      |
| Table 32. | Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period                       |
| Table 33. | Affected Areas in San Julian, Eastern Samar during 25-Year Rainfall Return Period                |
| Table 34. | Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period                     |
| Table 35. | Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period                      |
| Table 36. | Affected Areas in San Julian, Eastern Samar during 100-Year Rainfall Return Period               |
| Table 37. | Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period                    |
| Table 38. | Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period                     |
| Table 39. | Area covered by each warning level with respect to the rainfall scenarios                        |
|           | Actual Flood Depth Versus Simulated Flood Depth at different levels in the Sulat River Basin. 91 |
| iable 41. | Summary of the Accuracy Assessment in the Sulat River Basin Survey                               |
| 1         |                                                                                                  |

## LIST OF FIGURES

| Figure 1.  | Map of Sulat River Basin (in brown)                                                                  | 2    |
|------------|------------------------------------------------------------------------------------------------------|------|
| Figure 2.  | Flight plans and base stations used for Sulat floodplain using Aquarius LiDAR system.                | 4    |
| Figure 3.  | GPS set-up over SME-3139 located along the highway in Brgy. Sto. Nino, Sulat, Eastern                |      |
| U          | Samar (a) and NAMRIA reference point SME-3139 (b) as recovered by the field team                     | 5    |
| Figure 4.  | GPS set-up over SE-16 located in front of the flagpole of Gregorio Moralizon Elementary              |      |
| Ū          | School II (a) and NAMRIA reference point DVE-19 (b) as recovered by the field team                   | 6    |
| Figure 5.  | Actual LiDAR survey coverage for Sulat floodplain.                                                   | 8    |
| Figure 6.  | Schematic diagram for the data pre-processing.                                                       | 9    |
| Figure 7.  | Smoothed Performance Metric Parameters of Sulat Flight 1560A.                                        | . 11 |
| Figure 8.  | Solution Status Parameters of Sulat Flight 1560A.                                                    | . 12 |
| Figure 9.  | Best Estimated Trajectory of the LiDAR missions conducted over the Sulat Floodplain                  | . 13 |
| Figure 10. | Boundaries of the processed LiDAR data over the Sulat Floodplain.                                    | . 15 |
| Figure 11. | Image of data overlap for Sulat floodplain                                                           | . 16 |
| Figure 12. | Pulse density map of the merged LiDAR data for Sulat floodplain                                      | . 17 |
| Figure 13. | Elevation difference Map between flight lines for the Sulat Floodplain Survey                        | . 17 |
| Figure 14. | Quality checking for Sulat flight 1560A using the Profile Tool of QT Modeler                         | . 18 |
| Figure 15. | Tiles for Sulat floodplain (a) and classification results (b) in TerraScan                           | . 19 |
| Figure 16. | Point cloud before (a) and after (b) classification.                                                 | . 20 |
| Figure 17. | The production of last return DSM (a) and DTM (b), first return DSM (c) and                          |      |
| -          | secondary DTM (d) in some portion of Sulat floodplain.                                               | . 21 |
| Figure 18. | Sulat floodplain with the available orthographs.                                                     | . 22 |
| Figure 19. | Sample orthophotograph tiles for Sulat floodplain                                                    | . 22 |
| Figure 20. | Portions in the DTM of the Sulat Floodplain – a bridge before (a) and after (b) manual               |      |
| -          | editing; a paddy field before (c) and after (d) data retrieval.                                      | . 23 |
| Figure 21. | Map of processed LiDAR data for the Sulat Floodplain                                                 | . 25 |
| Figure 22. | Map of Sulat Floodplain with validation survey points in green                                       | . 27 |
| Figure 23. | Correlation plot between calibration survey points and LiDAR data.                                   | . 28 |
| Figure 24. | Correlation plot between the validation survey points and the LiDAR data                             | . 29 |
| Figure 25. | Map of Sulat floodplain with bathymetric survey points in blue.                                      | . 30 |
| Figure 26. | Block (in blue) of Sulat building features that was subjected to QC.                                 | . 31 |
| Figure 27. | Extracted features of the Sulat Floodplain.                                                          | . 33 |
| Figure 28. | Sulat River Survey Extent                                                                            | 35   |
| Figure 29. | Sulat River Basin Control Survey Extent.                                                             | . 37 |
| Figure 30. | GNSS base set up, Trimble <sup>®</sup> SPS 852, SME-18, located within the grounds of San Jose       |      |
| U          | Elementary School in Brgy. Canciledes, Municipality of Hernani, Eastern Samar                        | . 38 |
| Figure 31. | GNSS receiver set up, Trimble <sup>®</sup> SPS 882, at SMR-41, located in Brgy. Fatima, Municipality |      |
| 0          | of Hinabangan, Samar.                                                                                | 38   |
| Figure 32. | GNSS receiver set up, Trimble <sup>®</sup> SPS 855 at SE-172, located in Brgy. Nato, Municipality of |      |
| U          | Taft, Eastern Samar                                                                                  | 39   |
| Figure 33. | GNSS receiver set up, Trimble <sup>®</sup> SPS 855, at UP-BOR, located at the approach of Can-       |      |
| U          | Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar                                        | . 39 |
| Figure 34. | GNSS receiver set up, Trimble <sup>®</sup> SPS 985, at UP-SUL, located at the approach of Sulat      |      |
| U          | Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar                                       | . 40 |
| Figure 35. | GNSS receiver setup. Trimble <sup>®</sup> SPS 855, at UP-ULO-2, located at the approach of Can-Avid  |      |
| 0          | Bridge in Brgy. Canteros. Municipality of Can-Avid. Eastern Samar                                    | . 40 |
| Figure 36. | Sulat Bridge facing upstream.                                                                        | 45   |
| Figure 37. | As-built survey conducted at Sulat Bridge.                                                           | . 45 |
| Figure 38. | Location map of the Sulat Bridge Cross Section                                                       | . 46 |
| Figure 39  | The Sulat Bridge cross-section diagram.                                                              | . 47 |
| Figure 40. | The Sulat Bridge as-built survey data                                                                | . 48 |
| Figure 41  | Water-level markings on Sulat Bridge.                                                                | . 49 |
| Figure 42. | GNSS Receiver Trimble <sup>®</sup> SPS 882 installed on a vehicle for Ground Validation Survey.      | . 50 |
| Figure 43  | The extent of the LiDAR ground validation survey (in red) for Sulat River Basin.                     | . 51 |
| 0          | -/ -/ -/                                                                                             |      |

| Figure 44. | Set up of the bathymetric survey at Sulat River using Trimble® SPS 882 in GNSS PPK     |    |
|------------|----------------------------------------------------------------------------------------|----|
|            | survey technique                                                                       | 52 |
| Figure 45. | The extent of the Sulat River Bathymetry Survey.                                       | 53 |
| Figure 46. | The Sulat Riverbed Profile                                                             | 54 |
| Figure 47. | Location Map of the Sulat HEC-HMS model used for calibration                           | 55 |
| Figure 48. | Cross-Section Plot of Sulat Bridge                                                     | 56 |
| Figure 49. | The rating curve at Sulat Bridge, Sulat, Samar                                         | 56 |
| Figure 50. | Rainfall and outflow data at Sulat Bridge, which was used for modeling                 | 57 |
| Figure 51. | The location of the Borongan RIDF station relative to the Sulat River Basin            | 58 |
| Figure 52. | The synthetic storm generated for a 24-hour period rainfall for various return periods | 59 |
| Figure 53. | Soil Map of Sulat River Basin                                                          | 60 |
| Figure 54. | Land Cover Map of Sulat River Basin                                                    | 61 |
| Figure 55. | Slope Map of the Sulat River Basin.                                                    | 62 |
| Figure 56. | Stream Delineation Map of Sulat River Basin                                            | 62 |
| Figure 57. | Sulat river basin model generated in HEC-HMS.                                          | 63 |
| Figure 58. | River cross-section of the Sulat River through the ArcMap HEC GeoRas tool              | 64 |
| Figure 59. | A screenshot of the river sub-catchment with the computational area to be modeled in   |    |
|            | FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)                                      | 65 |
| Figure 60. | Outflow Hydrograph of Sulat produced by the HEC-HMS model compared with observed       |    |
|            | outflow                                                                                | 66 |
| Figure 61. | The Outflow hydrograph at the Sulat Station, generated using the Borongan RIDF         |    |
|            | simulated in HEC-HMS                                                                   | 68 |
| Figure 62. | Sample output map of the Sulat RAS Model                                               | 69 |
| Figure 63. | A 100-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery      | 71 |
| Figure 64. | A 100-year Flow Depth Map for Sulat Floodplain overlaid on Google Earth imagery        | 72 |
| Figure 65. | A 25-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery       | 73 |
| Figure 66. | A 25-year Flow Depth Map for Sulat Floodplain overlaid on Google Earth imagery         | 74 |
| Figure 67. | A 5-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery.       | 75 |
| Figure 68. | A 5-year Flood Depth Map for Sulat Floodplain overlaid on Google Earth imagery         | 76 |
| Figure 69. | Affected Areas in San Julian, Eastern Samar during 5-Year Rainfall Return Period.      | 77 |
| Figure 70. | Affected Areas in Sulat, Eastern Samar during 5-Year Rainfall Return Period.           | 79 |
| Figure 71. | Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period.            | 80 |
| Figure 72. | Affected Areas in San Julian, Eastern Samar during 25-Year Rainfall Return Period.     | 81 |
| Figure 73. | Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period.          | 83 |
| Figure 74. | Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period.           | 84 |
| Figure 75. | Affected Areas in San Julian, Eastern Samar during 100-Year Rainfall Return Period.    | 85 |
| Figure 76. | Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period.         | 87 |
| Figure 77. | Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period.          | 88 |
| Figure 78. | Validation Points for a 5-year Flood Depth Map of the Sulat Floodplain                 | 90 |
| Figure 79. | Flood Map depth versus Actual Flood Depth                                              | 91 |

## LIST OF ACRONYMS AND ABBREVIATIONS

| AAC                                                                                                           | Asian Aerospace Corporation                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ab                                                                                                            | abutment                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| ALTM                                                                                                          | Airborne LiDAR Terrain Mapper                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ARG                                                                                                           | automatic rain gauge                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| AWLS                                                                                                          | Automated Water Level Sensor                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| BA                                                                                                            | Bridge Approach                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BM                                                                                                            | benchmark                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| CAD                                                                                                           | Computer-Aided Design                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| CN                                                                                                            | Curve Number                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| CSRS                                                                                                          | Chief Science Research Specialist                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| DAC                                                                                                           | Data Acquisition Component                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| DEM                                                                                                           | Digital Elevation Model                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| DENR                                                                                                          | Department of Environment and<br>Natural Resources                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| DOST                                                                                                          | Department of Science and<br>Technology                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| DPPC                                                                                                          | Data Pre-Processing Component                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| DREAM                                                                                                         | Disaster Risk and Exposure<br>Assessment for Mitigation [Program]                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| DRRM                                                                                                          | Disaster Risk Reduction and Management                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| DRRM<br>DSM                                                                                                   | Disaster Risk Reduction and<br>Management<br>Digital Surface Model                                                                                                                                                                                                                                                                                                                                                   |  |  |
| DRRM<br>DSM<br>DTM                                                                                            | Disaster Risk Reduction and<br>Management<br>Digital Surface Model<br>Digital Terrain Model                                                                                                                                                                                                                                                                                                                          |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC                                                                                    | Disaster Risk Reduction and<br>Management<br>Digital Surface Model<br>Digital Terrain Model<br>Data Validation and Bathymetry<br>Component                                                                                                                                                                                                                                                                           |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC                                                                             | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling Component                                                                                                                                                                                                                                                               |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>FOV                                                                      | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentField of View                                                                                                                                                                                                                                                  |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>FOV<br>GiA                                                               | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentField of ViewGrants-in-Aid                                                                                                                                                                                                                                     |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>FOV<br>GiA<br>GCP                                                        | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentField of ViewGrants-in-AidGround Control Point                                                                                                                                                                                                                 |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>FOV<br>GiA<br>GCP<br>GNSS                                                | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentField of ViewGrants-in-AidGround Control PointGlobal Navigation Satellite System                                                                                                                                                                               |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>FOV<br>GiA<br>GCP<br>GNSS<br>GPS                                         | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentField of ViewGrants-in-AidGround Control PointGlobal Navigation Satellite SystemGlobal Positioning System                                                                                                                                                      |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>GiA<br>GCP<br>GNSS<br>GPS<br>HEC-HMS                                     | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentFlood Modeling ComponentGrants-in-AidGround Control PointGlobal Navigation Satellite SystemGlobal Positioning SystemHydrologic Engineering Center -<br>Hydrologic Modeling System                                                         |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>6<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS<br>HEC-HMS<br>HEC-RAS              | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentFlood Modeling ComponentGrants-in-AidGround Control PointGlobal Navigation Satellite SystemGlobal Positioning SystemHydrologic Engineering Center - River<br>Analysis System                                                              |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>GiA<br>GCP<br>GNSS<br>GPS<br>HEC-HMS<br>HEC-RAS                          | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentFlood Modeling ComponentGrants-in-AidGround Control PointGlobal Navigation Satellite SystemGlobal Positioning SystemHydrologic Engineering Center - River<br>Analysis SystemHigh Chord                                                    |  |  |
| DRRM<br>DSM<br>DTM<br>DVBC<br>FMC<br>GiA<br>GCP<br>GIA<br>GCP<br>GNSS<br>GPS<br>HEC-HMS<br>HEC-RAS<br>HEC-RAS | Disaster Risk Reduction and<br>ManagementDigital Surface ModelDigital Terrain ModelDigital Terrain ModelData Validation and Bathymetry<br>ComponentFlood Modeling ComponentFlood Modeling ComponentGrants-in-AidGround Control PointGlobal Navigation Satellite SystemGlobal Positioning SystemHydrologic Engineering Center - River<br>Analysis SystemHigh ChordInverse Distance Weighted<br>[interpolation method] |  |  |

| kts      | knots                                                                                        |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|
| LAS      | LiDAR Data Exchange File format                                                              |  |  |  |
| LC       | Low Chord                                                                                    |  |  |  |
| LGU      | local government unit                                                                        |  |  |  |
| Lidar    | Light Detection and Ranging                                                                  |  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |
| NAMRIA   | National Mapping and Resource<br>Information Authority                                       |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |
| РРК      | Post-Processed Kinematic<br>[technique]                                                      |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |
| TBC      | Thermal Barrier Coatings                                                                     |  |  |  |
| UP-TCAGP | University of the Philippines –<br>Training Center for Applied Geodesy<br>and Photogrammetry |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |
| VSU      | Visayas State University                                                                     |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |
|          |                                                                                              |  |  |  |



## CHAPTER 1: OVERVIEW OF THE PROGRAM AND SULAT RIVER

Engr. Florentino Morales Jr. and Enrico C. Paringit, Dr. Eng.

#### **1.1 Background of the Phil-LIDAR 1 Program**

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Easter Visayas Region. The university is located in Baybay City in the province of Leyte.

### 1.2 Overview of the Sulat River Basin

Sulat River Basin covers the municipalities of Sulat, San Julian and small portions of Hinabangan and Taft in the province of Eastern Samar. The DENR River Basin Control Office identified the basin to have a drainage area of 129 km² and an estimated 245 million cubic meter (MCM) annual run-off (RBCO, 2015).



Figure 1. Map of Sulat River Basin (in brown).

Its main stem, Sulat River, is part of the 19 river systems in the Eastern Visayas Region. According to the 2015 national census of NSO, a total of 5,343 persons are residing within the immediate vicinity of the river which is distributed among seven (7) barangays from the municipality of Sulat, Eastern Samar (NSO, 2015). The primary source of revenue of Eastern Samar is fishery and agriculture which includes production of coconut, copra, corn, rice, sugar and vegetables. There is also a big tourism potential in the province centered in Guiauan, Calicoan and Homonhon Islands. (http://philgis.org/province-page/eastern-samar, 2017). On December 06, 2014, Typhoon Ruby, internationally known as *Hagupit*, made landfall in Eastern Samar. The aftermath of the typhoon caused massive destruction in the province with 8 casualties. In the municipality of Sulat, a total of 18 barangays with 4,214 families were directly affected by the typhoon. (http://ndrrmc.gov.ph/attachments/article/1356/FINAL\_REPORT\_re\_Effects\_of\_Typhoon\_RUBY\_(HAGUPIT)\_04\_-\_10DEC2014.pdf, 2017).

## **CHAPTER 2: LIDAR DATA ACQUISITION OF THE** SULAT FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 2.1 **Flight Plans**

To initiate the LiDAR acquisition survey of the Sulat floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Sulat Floodplain in Eastern Samar. These flight missions were planned for 17 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Sulat floodplain survey.

| Table 1.Flight planning parameters for the Aquarius LiDAR system. |                             |                |                      |                                                 |                           |                        |                                   |
|-------------------------------------------------------------------|-----------------------------|----------------|----------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| Block Name                                                        | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
| BLK33J                                                            | 500                         | 20             | 44                   | 50                                              | 45                        | 120                    | 5                                 |



Figure 2. Flight plans and base stations used for Sulat floodplain using Aquarius LiDAR system.

#### 2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA horizontal ground control point: SME-3139 which is of fourth (4<sup>th</sup>) order accuracy. One (1) NAMRIA benchmark was recovered, SE-16, which was used as vertical reference point and was also established as ground control point.

The certifications for the base stations are found in ANNEX 2 while the baseline processing reports for the established control points are found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey on June 9, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Sulat floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Sulat Floodplain LiDAR Survey. Figure 3 to Figure 4 show the recovered NAMRIA reference points within the area of the floodplain, while Table 2 to Table 3 show the details about the following NAMRIA control stations and established points. Table 4, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.



Figure 3. GPS set-up over SME-3139 located along the highway in Brgy. Sto. Nino, Sulat, Eastern Samar (a) and NAMRIA reference point SME-3139 (b) as recovered by the field team.

| Table 2. | Details of the recovered NAMRIA horizontal control point SME-3139 used as base station |
|----------|----------------------------------------------------------------------------------------|
|          | for the LiDAR acquisition.                                                             |

| Station Name                                                                          | SME-3139                                    |                                                                       |  |
|---------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|--|
| Order of Accuracy                                                                     | 4 <sup>th</sup> Order                       |                                                                       |  |
| Relative Error (horizontal positioning)                                               | 1:                                          | 10,000                                                                |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)             | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 30' 17.85657" North<br>125° 1' 29.837339" East<br>26.13400 meters |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)     | Easting<br>Northing                         | 502722.403 meters<br>1272180.079 meters                               |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)               | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 30' 13.52495" North<br>125° 1' 34.96980" East<br>87.78700 meters  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS1992) | Easting<br>Northing                         | 720874.14 meters<br>1272513.40 meters                                 |  |



Figure 4. GPS set-up over SE-16 located in front of the flagpole of Gregorio Moralizon Elementary School II (a) and NAMRIA reference point DVE-19 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point SE-16 used as base station for the LiDARacquisition.

| Station Name                                                                          | SE-16                                       |                                                                     |  |
|---------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                     | 4 <sup>th</sup> order                       |                                                                     |  |
| Relative Error (horizontal positioning)                                               | 1:10,000                                    |                                                                     |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)             | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 50' 03.05106" North<br>125° 26' 03.03429" East<br>0.472 meters  |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)               | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 49' 58.67117" North<br>125° 26' 08.13400" East<br>62.301 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS1992) | Easting<br>Northing                         | 765219.942 meters<br>1309292.154 meters                             |  |

| Table 4. | Ground control | points used | during the LiD | AR data acquisition. |
|----------|----------------|-------------|----------------|----------------------|
|----------|----------------|-------------|----------------|----------------------|

| Date Surveyed | Flight Number | Mission Name | Ground Control Points |
|---------------|---------------|--------------|-----------------------|
| June 9, 2014  | 1558A         | 3BLK33J160A  | SE-16,SME-3139        |
| June 9, 2014  | 1560A         | 3BLK33JS160B | SE-16,SME-3139        |

## 2.3 Flight Missions

A total of two (2) missions were conducted to complete the LiDAR data acquisition in Sulat floodplain, for a total of seven hours and ninety-four minutes (7+94) of flying time for RP-9122 (See ANNEX 6). All missions were acquired using Aquarius LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 5, while the actual parameters used during the LiDAR data acquisition are presented in Table 6.

|                  |                  | -                  |                                     | -                                                                                                           |                                       | -                                                           |              |     |
|------------------|------------------|--------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|--------------|-----|
|                  |                  | Flight             | Elight                              | rveyed<br>a (km <sup>2</sup> ) Area<br>Surveyed<br>within the<br>Floodplain<br>(km <sup>2</sup> ) Floodplai | Area<br>Surveyed                      | rea<br>veyed<br>tside<br>the<br>dplain<br>tm <sup>2</sup> ) | Flying Hours |     |
| Date<br>Surveyed | Flight<br>Number | Plan Area<br>(km²) | Surveyed<br>Area (km <sup>2</sup> ) |                                                                                                             | outside<br>the<br>Floodplain<br>(km²) |                                                             | Hr           | Min |
| June 9, 2014     | 1558A            | 225.57             | 117.98                              | 8.17                                                                                                        | 19.59                                 | 98                                                          | 4            | 41  |
| June 9, 2014     | 1560A            | 225.57             | 127.54                              | NA                                                                                                          | 27.76                                 | 1294                                                        | 3            | 53  |
| TOTAL            |                  | 451.14             | 245.52                              | 8.17                                                                                                        | 47.35                                 | 1392                                                        | 7            | 94  |

Table 5. Flight missions for LiDAR data acquisition in Sulat floodplain.

Table 6. Actual parameters used during LiDAR data acquisition.

| Date Surveyed | Flight<br>Number | Flying Height<br>(AGL) (m) | Overlap<br>(%) | Field of<br>View | PRF (kHz) | Scan<br>Frequency<br>(Hz) | Speed<br>of Plane<br>(Kts) |
|---------------|------------------|----------------------------|----------------|------------------|-----------|---------------------------|----------------------------|
| 1558A         | 500              | 30                         | 44             | 50               | 45        | 120                       | 5                          |
| 1560A         | 500              | 20                         | 44             | 50               | 45        | 120                       | 5                          |

#### 2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Sulat floodplain (See ANNEX 7). It is located in the province of Eastern Samar with majority of the floodplain situated within the municipality of Sulat. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 7. Figure 5, on the other hand, shows the actual coverage of the LiDAR acquisition for the Sulat floodplain.

Table 7. List of municipalities and cities surveyed during Sulat floodplain LiDAR survey.

| Province      | Municipality/City | Area of Municipality/<br>City (km <sup>2</sup> ) | Total Area<br>Surveyed (km <sup>2</sup> ) | Percentage of Area<br>Surveyed |
|---------------|-------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|
| Eastern Samar | Sulat             | 150.05                                           | 39.95                                     | 26.63%                         |
|               | San Julian        | 127.43                                           | 22.72                                     | 17.83%                         |
|               | Borongan City     | 596.08                                           | 69.2                                      | 11.61%                         |
|               | Sulat             | 230.27                                           | 1.95                                      | 0.85%                          |
| Tota          | l                 | 1,103.83                                         | 133.82                                    | 12.12%                         |



Figure 5. Actual LiDAR survey coverage for Sulat floodplain.

## CHAPTER 3: LIDAR DATA PROCESSING OF THE SULAT FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat, Engr. Harmond F. Santos , Engr. Ma. Ailyn L. Olanda, Engr. Erica Erin E. Elazegui, Jovy Anne S. Narisma, Engr. Karl Adrian P. Vergara

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.



These processes are summarized in the flowchart shown in Figure 6.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Sulat Floodplain can be found in ANNEX 5. The missions flown during the conduct of the survey in June 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system over Sulat, Eastern Samar.

The Data Acquisition Component (DAC) transferred a total of 26.30 Gigabytes of Range data, 0.50 Gigabytes of POS data, 32.20 Megabytes of GPS base station data, and 167.90 Gigabytes of raw image data to the data server on June 19, 2014 which was verified for accuracy and completeness by the DPPC. The whole dataset for the Sulat Floodplain was fully transferred on June 19, 2014, as indicated on the Data Transfer Sheets for the Sulat floodplain.

#### 3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for Flight 1560A, one of the Sulat flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of June 9, 2014, 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.



Figure 7. Smoothed Performance Metric Parameters of Sulat Flight 1560A.

The time of flight was from 529500 seconds to 537800 seconds, which corresponds to afternoon of June 9, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 2.40 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 5.90 centimeters, which are within the prescribed accuracies described in the methodology.



Figure 8. Solution Status Parameters of Sulat Flight 1560A.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Sulat Flight 1560A are shown in Figure 8. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 10 and 12, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also stayed at the value of 0 for the majority of the survey stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sulat flights is shown in Figure 9.



Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Sulat Floodplain.

#### 3.4 LiDAR Point Cloud Computation

The produced LAS contains 28 flight lines, with each flight line contains one channel, since the Aquarius system contains only one channel. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Sulat floodplain are given in Table 8. Self-calibration Results values for Sulat flights..

| Table 8.Self-calibration Results values for Sulat flights. |                  |                |  |  |
|------------------------------------------------------------|------------------|----------------|--|--|
| Parameter                                                  | Acceptable Value | Computed Value |  |  |
| Boresight Correction stdev)                                | < 0.001 degrees  | 0.000327       |  |  |
| IMU Attitude Correction Roll and Pitch Corrections stdev)  | <0.001degrees    | 0.000898       |  |  |
| GPS Position Z-correction stdev)                           | <0.01meters      | 0.0098         |  |  |

The optimum accuracy values for all Sulat flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (ANNEX 8).

#### **LiDAR Quality Checking** 3.5

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Sulat Floodplain is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 10. Boundaries of the processed LiDAR data over the Sulat Floodplain.

A total area of 174.99 square kilometers (sq. kms.) were covered by the Sulat flight missions as a result of two (2) flight acquisitions, which were grouped and merged into one (1) block accordingly, as portrayed in Table 9.

| AR Blocks |          | Flight Numbers                         | Area (so |  |
|-----------|----------|----------------------------------------|----------|--|
|           | Table 9. | List of LiDAR blocks for the Sulat flo | odplain. |  |

| LiDAR Blocks       | Flight Numbers | Area (sq. km) |  |
|--------------------|----------------|---------------|--|
| Comor Louto DI/221 | 1558A          | 174.00        |  |
| Samar_Leyte_Bik33J | 1560A          | 174.99        |  |
| то                 | 174.99 sq.km   |               |  |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 11. Since the Aquarius system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 11. Image of data overlap for Sulat floodplain.

The overlap statistics per block for the Sulat floodplain can be found in the Mission Summary Reports (ANNEX 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlap is 36.01%, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 12. As seen in the figure below, it was determined that all LiDAR data for the Sulat Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 2.71 points per square meter.



Figure 12. Pulse density map of the merged LiDAR data for Sulat floodplain..

The elevation difference between overlaps of adjacent flight lines is shown in Figure 13. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.



Figure 13. Elevation difference Map between flight lines for the Sulat Floodplain Survey.

A screen-capture of the processed LAS data from Sulat flight 1560A loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.





#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 110,486,647            |
| Low Vegetation    | 51,277,620             |
| Medium Vegetation | 61,095,498             |
| High Vegetation   | 151,119,077            |
| Building          | 2,518,830              |

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Sulat floodplain is shown in Figure 15. A total of 291 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 11 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 248.48 meters and 49.30 meters respectively.



Figure 15. Tiles for Sulat floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.



Figure 16. Point cloud before (a) and after (b) classification.

The production of the last return (V\_ASCII) and secondary (T\_ASCII) DTM as well as the first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are show in Figure 17. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.



Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Sulat floodplain.

#### 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 292 1km by 1km tiles area covered by Sulat floodplain is shown in Figure 18. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Sulat floodplain has a total of 219.66 sq.km orthophotogaph coverage comprised of 2,657 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 19.



Figure 18. Sulat floodplain with the available orthographs.



Figure 19. Sample orthophotograph tiles for Sulat floodplain.

#### 3.8 DEM Editing and Hydro-Correction

One (1) mission block was processed for the Sulat Floodplain Survey. The block is from the Samar\_Leyte mission with a total area of 174.99 square kilometers. Table 11 shows the name and corresponding area of each block in square kilometers.

| Table 11. | LiDAR blocks | with its co | orresponding | areas. |
|-----------|--------------|-------------|--------------|--------|
|-----------|--------------|-------------|--------------|--------|

| LiDAR Blocks       | Area (sq.km) |
|--------------------|--------------|
| Samar_Leyte_Blk33J | 174.99       |
| TOTAL              | 174.99 sq.km |

Figure 20 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 20a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 20b). The paddy field (Figure 20c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 20d) to allow the correct flow of water.



Figure 20. Portions in the DTM of the Sulat Floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

#### 3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Sulat Floodplain is shown in Figure 21. It can be seen that the entire Sulat floodplain is 14.04% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

| Table 12. Shift values of each LiDAR block of Sulat Floodplain. |                       |      |       |  |  |
|-----------------------------------------------------------------|-----------------------|------|-------|--|--|
|                                                                 | Shift Values (meters) |      |       |  |  |
| Mission Blocks                                                  | x                     | У    | Z     |  |  |
| Samar_Leyte_Blk33J                                              | -1.00                 | 2.00 | -1.00 |  |  |
|                                                                 |                       |      |       |  |  |



Figure 21. Map of processed LiDAR data for the Sulat Floodplain.

#### 3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Sulat to collect points with which the LiDAR dataset is validated is shown in Figure 22, with the validation survey points highlighted in green. A total of 101 survey points were gathered for the Sulat floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Sulat because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore the mosaicked DEM of Sulat can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of the data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters, with a standard deviation of 0.13 meters. The calibration of the Tacloban LiDAR data was accomplished by subtracting the height difference value of 0.14 meters to the Tacloban mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between the Tacloban LiDAR data and the calibration data. These values were also applicable to the Sulat DEM.


Figure 22. Map of Sulat Floodplain with validation survey points in green.



All survey points were used to validate the calibrated Sulat DTM. A good correlation between the calibrated mosaicked LiDAR elevation and the ground survey elevation values, which point toward the quality of the LiDAR DTM is shown in Figure 24. The computed RMSE value between the calibrated LiDAR DTM and the validation elevation values is at 0.20 meters with a standard deviation of 0.05 meters, as shown in Table 14.





| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.20           |
| Standard Deviation              | 0.05           |
| Average                         | 0.20           |
| Minimum                         | 0.10           |
| Maximum                         | 0.30           |

## 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Sulat with a total of 5,184 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.50 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Sulat integrated with the processed LiDAR DEM is shown in Figure 25.



Figure 25. Map of Sulat floodplain with bathymetric survey points in blue.

## 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

# 3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Sulat floodplain, including its 200-m buffer, has a total area of 33.79 sq km. For this area, a total of 1.0 sq. km., corresponding to a total of 128 building features, were considered for QC. Figure 26 shows the QC block for the Sulat floodplain.



|                                                                  | Floodplain | Completeness | Correctness | Quality | Remarks |
|------------------------------------------------------------------|------------|--------------|-------------|---------|---------|
| Sulat         100.00         100.00         99.92         PASSED | Sulat      | 100.00       | 100.00      | 99.92   | PASSED  |

# 3.12.2 Height Extraction

Height extraction was done for 477 building features in Sulat floodplain. Of these building features, 4 were filtered out after height extraction, resulting to 473 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 7.14 meters.

#### 3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. A DSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 16 summarizes the number of building features per type, while Table 17 shows the total length of each road type. Table 18, on the other hand, shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 449             |
| School                                  | 15              |
| Market                                  | 0               |
| Agricultural/Agro-Industrial Facilities | 0               |
| Medical Institutions                    | 1               |
| Barangay Hall                           | 1               |
| Military Institution                    | 0               |
| Sports Center/Gymnasium/Covered Court   | 0               |
| Telecommunication Facilities            | 0               |
| Transport Terminal                      | 0               |
| Warehouse                               | 0               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 0               |
| Police Station                          | 0               |
| Water Supply/Sewerage                   | 0               |
| Religious Institutions                  | 3               |
| Bank                                    | 0               |
| Factory                                 | 0               |
| Gas Station                             | 1               |
| Fire Station                            | 0               |
| Other Government Offices                | 1               |
| Other Commercial Establishments         | 2               |
| Total                                   | 473             |

Table 16. Building features extracted for Sulat Floodplain.

Table 17. Total length of extracted roads for Sulat Floodplain.

| Floodplain | Barangay<br>Road | City/<br>Municipal<br>Road | Provincial<br>Road | National Road | Others | Total |
|------------|------------------|----------------------------|--------------------|---------------|--------|-------|
| Sulat      | 7.36             | 0                          | 0                  | 3.93          | 0.00   | 11.29 |
| 00.100     |                  |                            |                    | 0.00          | 0.00   |       |

| Table 18. Number of extracted water bodies for Sulat Floodplain. |                    |             |     |     |          |       |  |
|------------------------------------------------------------------|--------------------|-------------|-----|-----|----------|-------|--|
|                                                                  | Water Body Type    |             |     |     |          |       |  |
| Floodplain                                                       | Rivers/<br>Streams | Lakes/Ponds | Sea | Dam | Fish Pen | Total |  |
| Sulat                                                            | 8                  | 0           | 0   | 0   | 0        | 8     |  |

A total of 6 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

# **3.12.4 Final Quality Checking of Extracted Features**

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 27 shows the completed Digital Surface Model (DSM) of the Sulat floodplain overlaid with its ground features.



Figure 27. Extracted features of the Sulat Floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SULAT RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Mr. Michael Anthony C. Labrador, Mr. Erlan Patrick T. Mendoza, Engr. Romalyn Francis P. Boado, For. Maridel P. Miras, For. Rodel C. Alberto, Engr. Caren Joy S. Ordoña

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

## 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Sulat River on December 5 to 16, 2016 with the following scope: reconnaissance; control survey; cross-section and asbuilt survey at Sulat Bridge in Brgy. Maramara, Sulat, Eastern Samar; validation points acquisition of about 43 km covering the municipalities of Sulat, San Julian and Borongan City, Eastern Samar; and bathymetric survey from its upstream in Brgy. San Juan to the mouth of the river located in Brgy. Tabi, Sulat with an approximate length of 6.709 km using Ohmex<sup>™</sup> single beam echo sounder and Trimble<sup>®</sup> SPS 882 GNSS PPK survey technique. The entire survey extent is illustrated in Figure 28.



### 4.2 Control Survey

The GNSS network used for Sulat River survey is composed of four (4) loops established on December 10, 2016, occupying the following reference points: SME-18, a 2<sup>nd</sup> order NAMRIA GCP in Brgy. Canciledes, Municipality of Hernani, Eastern Samar; SMR-41, a 2<sup>nd</sup> order NAMRIA GCP in Brgy. Fatima, Municipality of Hinabangan, Samar; and, SE-172, a 1<sup>st</sup> order BM in Brgy. Nato, Municipality of Taft, Eastern Samar.

Three (3) control points were established in the area: UP-BOR located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar; UP-SUL located at the approach of Sulat Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar; and UP-ULO-2 located at the approach of Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar.

Table 19 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 29 shows the GNSS network established in the Sulat River Survey.

| (source, manning, Or TCAOP).        |                            |                                           |                    |         |                           |                               |  |  |
|-------------------------------------|----------------------------|-------------------------------------------|--------------------|---------|---------------------------|-------------------------------|--|--|
|                                     |                            | Geographic Coordinates (WGS UTM Zone 52N) |                    |         |                           |                               |  |  |
| Control<br>Point                    | Order of<br>Accuracy       | Latitude                                  | Latitude Longitude |         | Elevation<br>(MSL)<br>(m) | Date of<br>Establish-<br>ment |  |  |
| Control Survey on December 10, 2016 |                            |                                           |                    |         |                           |                               |  |  |
| SME-18                              | 2 <sup>nd</sup> Order, GCP | 11°21'43.08128"                           | 125°36'37.41861"   | 78.216  | 17.659                    | 12-10-16                      |  |  |
| SMR-41                              | 2 <sup>nd</sup> Order, GCP | 11°49'03.09527"                           | 125°13'56.04672"   | 232.562 | -                         | 12-10-16                      |  |  |
| SE-172                              | 1 <sup>st</sup> Order, BM  | -                                         | -                  | 61.761  | 3.155                     | 12-6-16                       |  |  |
| UP-BOR                              | UP established             | -                                         | -                  | 67.048  | -                         | 12-6-16                       |  |  |
| UP-SUL                              | UP established             | -                                         | -                  | 64.565  | -                         | 12-6-16                       |  |  |
| UP-ULO-2                            | UP established             | -                                         | -                  | 63.77   | -                         | 12-9-16                       |  |  |

 Table 19.
 List of reference and control points used during the survey in Sulat River (Source: NAMRIA, UP-TCAGP).



Figure 30 to Figure 35 depict the setup of the GNSS on recovered reference points and established control points in the Sulat River.



Figure 30. GNSS base set up, Trimble® SPS 852, SME-18, located within the grounds of San Jose Elementary School in Brgy. Canciledes, Municipality of Hernani, Eastern Samar



Figure 31. GNSS receiver set up, Trimble® SPS 882, at SMR-41, located in Brgy. Fatima, Municipality of Hinabangan, Samar.



Figure 32. GNSS receiver set up, Trimble® SPS 855 at SE-172, located in Brgy. Nato, Municipality of Taft, Eastern Samar



Figure 33. GNSS receiver set up, Trimble® SPS 855, at UP-BOR, located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar



Figure 34. GNSS receiver set up, Trimble® SPS 985, at UP-SUL, located at the approach of Sulat Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar



Figure 35. GNSS receiver setup, Trimble® SPS 855, at UP-ULO-2, located at the approach of Can-Avid Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar

## 4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 22 presents the baseline processing results of control points in the Sulat River Basin, as generated by the TBC software.

| Observation          | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | Δ Height<br>(m) |
|----------------------|------------------------|------------------|---------------------|---------------------|-----------------|-------------------------------|-----------------|
| SMR-41 SE-172 (B1)   | 12-10-16               | Fixed            | 0.003               | 0.019               | 60°19'56"       | 23782.994                     | -170.787        |
| SMR-41 UP-ULO-2 (B2) | 12-10-16               | Fixed            | 0.004               | 0.027               | 51°26'56"       | 29152.677                     | -168.797        |
| SE-172 UP-ULO-2 (B3) | 12-10-16               | Fixed            | 0.003               | 0.014               | 18°29'10"       | 6742.890                      | 2.008           |
| SMR-41 SE-172 (B6)   | 12-10-16               | Fixed            | 0.003               | 0.017               | 60°19'55"       | 23782.982                     | -170.797        |
| SMR-41 UP-SUL (B7)   | 12-10-16               | Fixed            | 0.003               | 0.025               | 91°37'24"       | 23648.007                     | -168.014        |
| SME-18 UP-SUL (B8)   | 12-10-16               | Fixed            | 0.005               | 0.019               | 340°32'04"      | 52735.660                     | -13.625         |
| UP-SUL SE-172 (B9)   | 12-10-16               | Fixed            | 0.003               | 0.018               | 346°36'16"      | 12792.116                     | -2.807          |
| UP-BOR UP-SUL (B10)  | 12-10-16               | Fixed            | 0.003               | 0.014               | 2°25'05"        | 23870.045                     | -2.491          |
| SMR-41 UP-BOR (B11)  | 12-10-16               | Fixed            | 0.003               | 0.018               | 137°16'15"      | 33379.379                     | -165.537        |
| SME-18 UP-BOR (B12)  | 12-10-16               | Fixed            | 0.003               | 0.012               | 324°17'43"      | 31862.093                     | -11.163         |

Table 20. The Baseline processing report for the Sulat River GNSS static observation survey.

As shown in Table 20, a total of ten (10) baselines were processed with the coordinates and the elevation value of reference points SME-18, SMR-41, and SE-172 held fixed; it is apparent that all baselines passed the required accuracy.

#### 4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$\sqrt{((x_p)^2 + (y_p)^2)} < 20 \text{ cm}$$
 and  $z_e < 10 \text{ cm}$ 

Where:

 $x_{e}$  is the Easting Error,  $y_{e}$  is the Northing Error, and  $z_{e}$  is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 21 to Table 24.

The three (3) control points, UP-BOR, UP-SUL, and UP-ULO-2 were occupied and observed simultaneously to form a GNSS loop. The coordinate values of SME-18 and SMR-41; elevation value of SME-18 and SE-172; and fixed values of SME-18, SMR-41, and SE-172 were held fixed during the processing of the control points as presented in Table 21. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

|           |      | <b>N 1</b>            | East                 | 11-1-1-1-1        |  |
|-----------|------|-----------------------|----------------------|-------------------|--|
| Table 21. | Cons | traints applied to th | ne adjustment of the | e control points. |  |

| Point ID                | Туре   | North<br>(Meter) | East<br>(Meter) | Height<br>(Meter) | Elevation<br>(Meter) |  |  |
|-------------------------|--------|------------------|-----------------|-------------------|----------------------|--|--|
| SME-18                  | Grid   | Fixed            | Fixed           |                   | Fixed                |  |  |
| SMR-41                  | Global | Fixed            | Fixed           |                   |                      |  |  |
| SE-172                  | Grid   |                  |                 |                   | Fixed                |  |  |
| Fixed = 0.000001(Meter) |        |                  |                 |                   |                      |  |  |

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 22.

Table 22. Adjusted grid coordinates for the control points used in the Sulat River flood plain survey.

| Point ID | Easting<br>(Meter) | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| SME-18   | 784907.431         | ?                        | 1257282.043         | ?                            | 17.659               | ?                             | ENe        |
| SMR-41   | 743218.063         | ?                        | 1307346.858         | ?                            | 171.203              | 0.041                         | LL         |
| SE-172   | 763795.614         | 0.007                    | 1319288.604         | 0.006                        | 3.155                | ?                             | е          |
| UP-BOR   | 766068.889         | 0.006                    | 1282998.400         | 0.005                        | 5.989                | 0.039                         |            |
| UP-SUL   | 766869.986         | 0.007                    | 1306865.645         | 0.006                        | 5.374                | 0.042                         |            |
| UP-ULO-2 | 765878.376         | 0.010                    | 1325704.856         | 0.009                        | 5.912                | 0.05                          |            |

The results of the computation for accuracy are as follows

| a. SME-18                                |                                                                                             | e.   | UP-SUL           |                                                                            |
|------------------------------------------|---------------------------------------------------------------------------------------------|------|------------------|----------------------------------------------------------------------------|
| horizontal accuracy<br>vertical accuracy | = Fixed<br>= Fixed                                                                          | hori | izontal accuracy | $= \sqrt{(0.7)^2 + (0.6)^2}$<br>= $\sqrt{(0.49 + 0.36)}$<br>= 0.92 < 20 cm |
| b. SMR-41                                |                                                                                             | vert | tical accuracy   | = 4.2 < 10 cm                                                              |
| horizontal accuracy<br>vertical accuracy | = Fixed<br>= 4.1 < 10 cm                                                                    | f.   | UP-ULO-2         |                                                                            |
| c. SE-172                                |                                                                                             | hori | izontal accuracy | $= \sqrt{((1)^2 + (0.9)^2)}$<br>= $\sqrt{(1.81 + 1.44)}$                   |
| horizontal accuracy                      | $= \sqrt{((0.7)^2 + (0.6)^2)^2}$<br>= $\sqrt{(0.49 + 0.36)^2}$<br>= 1.77 < 20 cm            | vert | tical accuracy   | = 1.35 < 20 cm<br>= 5.3 < 10 cm                                            |
| vertical accuracy                        | = Fixed                                                                                     |      |                  |                                                                            |
| d. UP-BOR                                |                                                                                             |      |                  |                                                                            |
| horizontal accuracy<br>vertical accuracy | $= \sqrt{(0.6)^2 + (0.5)^2}$<br>= $\sqrt{(0.36 + 0.25)}$<br>= 0.78 < 20 cm<br>= 3.9 < 10 cm |      |                  |                                                                            |

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

|          | , ,              | 1                 |                   |                         |            |
|----------|------------------|-------------------|-------------------|-------------------------|------------|
| Point ID | Latitude         | Longitude         | Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
| SME-18   | N11°21'43.08128" | E125°36'37.41861" | 78.216            | ?                       | ENe        |
| SMR-41   | N11°49'03.09527" | E125°13'56.04672" | 232.562           | 0.041                   | LL         |
| SE-172   | N11°55'25.95794" | E125°25'18.96211" | 61.761            | ?                       | е          |
| UP-BOR   | N11°35'44.89710" | E125°26'23.64085" | 67.048            | 0.039                   |            |
| UP-SUL   | N11°48'41.00280" | E125°26'56.90219" | 64.565            | 0.042                   |            |
| UP-ULO-2 | N11°58'54.06226" | E125°26'29.62952" | 63.770            | 0.053                   |            |

Table 23. Adjusted geodetic coordinates for control points used in the Sulat River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Sulat River GNSS Static Survey are seen in Table 24. 

 Table 24. The reference and control points utilized in the Sulat River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

| Control<br>Point | Order of<br>Accuracy       | Geographic      | Coordinates (WGS 8 | UTM ZONE 51 N                |              |                |                    |  |
|------------------|----------------------------|-----------------|--------------------|------------------------------|--------------|----------------|--------------------|--|
|                  |                            | Latitude        | Longitude          | Ellipsoidal<br>Height<br>(m) | Northing (m) | Easting<br>(m) | BM<br>Ortho<br>(m) |  |
| SME-18           | 2 <sup>nd</sup> Order, GCP | 11°21'43.08128" | 125°36'37.41861"   | 78.216                       | 1257282.043  | 784907.431     | 17.659             |  |
| SMR-41           | 2 <sup>nd</sup> Order, GCP | 11°49'03.09527" | 125°13'56.04672"   | 232.562                      | 1307346.858  | 743218.063     | 171.203            |  |
| SE-172           | 1 <sup>st</sup> Order, BM  | 11°55'25.95794" | 125°25'18.96211"   | 61.761                       | 1319288.604  | 763795.614     | 3.155              |  |
| UP-BOR           | UP established             | 11°35'44.89710" | 125°26'23.64085"   | 67.048                       | 1282998.400  | 766068.889     | 5.989              |  |
| UP-SUL           | UP established             | 11°48'41.00280" | 125°26'56.90219"   | 64.565                       | 1306865.645  | 766869.986     | 5.374              |  |
| UP-ULO-2         | UP established             | 11°58'54.06226" | 125°26'29.62952"   | 63.77                        | 1325704.856  | 765878.376     | 5.912              |  |

## 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on December 8, 2016 at the downstream side of Sulat Bridge in Brgy. Maramara, Municipality of Sulat, Eastern Samar. GNSS receiver Trimble® SPS 985 in PPK survey technique was utilized for this survey (Figure 36 and Figure 37).



Figure 36. Sulat Bridge facing upstream.



Figure 37. As-built survey conducted at Sulat Bridge.

The length of the cross-sectional line surveyed at Sulat Bridge is about 281.712 (Figure 36) with three hundred sixty three (363) cross-sectional points acquired using the control point UP-SUL as the GNSS base station. The location map, cross-section diagram and the accomplished bridge data form are shown in Figure 38, Figure 39 and Figure 40.









The water surface elevation of Sulat River was determined by a survey grade GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique on December 8, 2016 at 5:31 PM at Sulat Bridge with a value of -0.369 m in MSL as shown in Figure 39. This was translated into marking on the bridge's deck as shown in Figure 41. It now serves as the reference for flow data gathering and depth gauge deployment of the Visayas State University, the partner HEI responsible for the monitoring of the Sulat River.



Figure 41. Water-level markings on Sulat Bridge.

# 4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on December 7, 2016 using a survey GNSS rover receiver Trimble<sup>®</sup> SPS 882 mounted on a range pole, which was attached in front of the vehicle as shown in Figure 42. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.305 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-SUL occupied as the GNSS base station in the conduct of the survey.



Figure 42. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The survey started from Barangay Can-Abong, Borongan City going north along national highway covering thirty-four (34) barangays in in Borongan City, San Julian and Taft, ended in Brgy. Mantang, Municipality of Taft, Eastern Samar. A total of 8,323 points were gathered with approximate length of 43 km using UP-SUL as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 43.



Figure 43. The extent of the LiDAR ground validation survey (in red) for Sulat River Basin.

#### 4.7 River Bathymetric Survey

A bathymetric survey was performed on December 7, 2016 using an Ohmex ™ single beam echo sounder and Trimble® SPS 882 in GNSS PPK survey technique in continuous topo mode as shown in Figure 44.



Figure 44. Set up of the bathymetric survey at Sulat River using Trimble® SPS 882 in GNSS PPK survey technique.

The survey started in Brgy. San Juan, Municipality of Sulat with coordinates 11°49'19.10658"N, 125°24'41.59389"E, traversed down the river by boat and ended at the mouth of the river in Brgy. Tabi, Municipality of Sulat, Eastern Samar with coordinates 11°49'00.15238"N, 125°27'07.65940"E. The control points UP-SUL was used as GNSS base stations all throughout the entire survey.

Overall, the bathymetric survey for Sulat River gathered a total of 6,721 points of the river traversing Brgy. San Juan, Municipality of Sulat Eastern Samar. The extent of the bathymetric survey for the Sulat River is shown in Figure 45. To further illustrate this, a CAD drawing of the riverbed profile of the Sulat River was produced. As seen in Figure 46, the highest and lowest elevation has a 5.739-m difference. The highest elevation observed was -0.510 m below MSL located at the downstream part of the river; while the lowest was -6.249 m below MSL located in the middle portion of the river.





# **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, and Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

# 5.1 Data Used for Hydrologic Modeling

## 5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Sulat River Basin were monitored, collected, and analyzed.

# 5.1.2 Precipitation

Precipitation data was taken from a pre-installed automatic rain gauge (ARG). The location of the Aet ARG is illustrated in Figure 47.

The total precipitation for this event in the installed rain gauge was 80.5 mm. It has a peak rainfall of 14.5 mm. on January 10, 2017 at 7:45 AM. The lag time between the peak rainfall and discharge is 7 hours and 45 minutes.



# 5.1.3 Rating Curves and River Outflow

A rating curve was developed at Sulat Bridge, Sulat, Eastern Samar (11° 48'.39.09"N, 125°26'57.96E) to establish the relationship between the observed water levels (H) at Sulat Bridge and outflow (Q) of the watershed at this location.



This rating curve equation was used to compute the river outflow at Sulat Bridge for the calibration of the HEC-HMS model for Sulat shown in Figure 50. The total rainfall for this event in Aet rain gauge is 80.5 mm and peaked to 14.5mm at 7:45 AM of January 10, 2017.



Figure 50. Rainfall and outflow data at Sulat Bridge, which was used for modeling.

## 5.2 **RIDF Station**

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Borongan Rain Gauge (Table 25). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 51). This station was selected based on its proximity to the Sulat watershed. The extreme values for this watershed were computed based on a 36-year record.

| PAGASA.                                          |         |         |         |       |       |       |       |        |        |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|
| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 2                                                | 22.5    | 35.3    | 44.5    | 60.6  | 83.7  | 100.8 | 133.7 | 170.7  | 201.4  |
| 5                                                | 31.5    | 49.1    | 61      | 82.3  | 116.1 | 140.8 | 186.5 | 241    | 283.8  |
| 10                                               | 37.4    | 58.2    | 71.9    | 96.6  | 137.6 | 167.2 | 221.4 | 287.6  | 338.4  |
| 15                                               | 40.7    | 63.3    | 104.7   | 104.7 | 149.8 | 182.1 | 241.2 | 313.9  | 369.2  |
| 20                                               | 43      | 66.9    | 110.4   | 110.4 | 158.3 | 192.6 | 255   | 332.3  | 390.8  |
| 25                                               | 44.8    | 69.7    | 114.8   | 114.8 | 164.8 | 200.6 | 265.6 | 346.4  | 407.4  |
| 50                                               | 50.4    | 78.2    | 128.3   | 128.3 | 185   | 225.4 | 298.4 | 390.1  | 458.6  |
| 100                                              | 55.9    | 86.7    | 141.6   | 141.6 | 205   | 205   | 330.9 | 433.4  | 509.4  |
|                                                  |         |         |         |       |       |       |       |        |        |

Table 25. RIDF values for the Sulat River Basin based on average RIDF data of Borongan station, as computed by<br/>PAGASA.





## 5.3 HMS Model

These soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Sulat River Basin are shown in Figure 53 and Figure 54, respectively.



Figure 53. Soil Map of Sulat River Basin.



Figure 54. Land Cover Map of Sulat River Basin.

For Sulat, two soil classes were identified. These are clay loam, and undifferentiated land. Moreover, three land cover classes were identified. These are forest plantation, open forest, and closed forest.



Figure 56. Stream Delineation Map of Sulat River Basin
Using the SAR-based DEM, the Sulat basin was delineated and further subdivided into subbasins. The model consists of 9 sub basins, 4 reaches, and 4 junctions as shown in Figure 57. The main outlet is Outlet 1 at Sulat Bridge.



Figure 57. Sulat river basin model generated in HEC-HMS.

#### 5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 58).



Figure 58. River cross-section of the Sulat River through the ArcMap HEC GeoRas tool.

#### 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.



Figure 59. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 53.15430 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m<sup>2</sup>/s. The generated hazard maps for Sulat are in Figure 63, Figure 65, and Figure 67.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 20 409 100.00 m<sup>2</sup>. The generated flood depth maps for Sulat are in Figure 64, Figure 66, and Figure 68.

There is a total of 142 591 389.45 m<sup>3</sup> of water entering the model. Of this amount, 8 999 786.63 m<sup>3</sup> is due to rainfall while 133 591 602.81 m<sup>3</sup> is inflow from other areas outside the model. 2 344 289.25 m<sup>3</sup> of this water is lost to infiltration and interception, while 1 180 884.23 m<sup>3</sup> is stored by the flood plain. The rest, amounting up to 139 066 229.25 m<sup>3</sup>, is outflow.

## 5.6 Results of HMS Calibration

After calibrating the Sulat HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.



Figure 60. Outflow Hydrograph of Sulat produced by the HEC-HMS model compared with observed outflow.

| Table 2 | 6 shows | the adjuste | d ranges of | values of | f the p | arameters | used in | calibrating t | ne model. |
|---------|---------|-------------|-------------|-----------|---------|-----------|---------|---------------|-----------|
|         |         |             |             |           |         |           |         |               |           |

| Table 20. Range of calibrated values for the Sulat River Basin. |                     |                       |                            |                               |  |  |  |
|-----------------------------------------------------------------|---------------------|-----------------------|----------------------------|-------------------------------|--|--|--|
| Hydrologic<br>Element                                           | Calculation<br>Type | Method                | Parameter                  | Range of Calibrated<br>Values |  |  |  |
| Basin                                                           | Loco                | SCS Curve Number      | Initial Abstraction (mm)   | 0.001 - 0.01                  |  |  |  |
|                                                                 | LOSS                | SCS Curve Number      | Curve Number               | 99                            |  |  |  |
|                                                                 | Transform           | Clark Unit Undragraph | Time of Concentration (hr) | 5 - 16                        |  |  |  |
|                                                                 | Iransiorm           | Clark Unit Hydrograph | Storage Coefficient (hr)   | 0.05 - 0.2                    |  |  |  |
|                                                                 | Deseflerr           | Decession             | Recession Constant         | 0.7                           |  |  |  |
|                                                                 | Baseflow            | Recession             | Ratio to Peak              | 0.3                           |  |  |  |
| Reach                                                           | Routing             | Muskingum-Cunge       | Manning's Coefficient      | 0.04                          |  |  |  |

Table 26. Range of calibrated values for the Sulat River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.001mm to 0.01mm means that there is very minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The value of 99 for curve number is the highest value possible for watersheds.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.05 hours to 16 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.7 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.3 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness in the Sulat watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

| Accuracy measure | Value  |
|------------------|--------|
| RMSE             | 11.9   |
| r <sup>2</sup>   | 0.9764 |
| NSE              | 0.85   |
| PBIAS            | -8.82  |
| RSR              | 0.38   |

Table 27. Summary of the Efficiency Test of the Sulat HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 11.9 m<sup>3</sup>/s.

The Pearson correlation coefficient (r<sup>2</sup>) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9674.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.85.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -8.82.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

## 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

## 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) shows the Sulat outflow using the Borongan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.



Figure 61. The Outflow hydrograph at the Sulat Station, generated using the Borongan RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sulat discharge using the Borongan Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 28.

| Table 28. | The peak values | of the Sulat | HEC-HMS | Model | outflow | using the | Borongan | RIDF. |
|-----------|-----------------|--------------|---------|-------|---------|-----------|----------|-------|
|           | T               |              |         |       |         | 0         | 0        |       |

| <b>RIDF</b> Period | Total Precipitation<br>(mm) | Peak rainfall<br>(mm) | Peak outflow<br>(m³/s) | Time to Peak |
|--------------------|-----------------------------|-----------------------|------------------------|--------------|
| 5-Year             | 278.6                       | 33.2                  | 797.9                  | 4 hours      |
| 10-Year            | 344.7                       | 40.6                  | 972                    | 4 hours      |
| 25-Year            | 428.2                       | 50.1                  | 1192                   | 4 hours      |
| 50-Year            | 490.2                       | 57.1                  | 1355.6                 | 4 hours      |
| 100-Year           | 551.7                       | 64                    | 1517.6                 | 4 hours      |

## 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 62 shows a generated sample map of the Sulat River using the calibrated HMS base flow.



Figure 62. Sample output map of the Sulat RAS Model.

### 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 63 to Figure 68 shows the 5-, 25-, and 100-year rain return scenarios of the Sulat floodplain. The floodplain, with an area of 54.62 sq. km., covers three municipalites namely San Julian, Sulat, and Taft. Table 29 shows the percentage of area affected by flooding per municipality.

|                     | -          | -            |           |
|---------------------|------------|--------------|-----------|
| City / Municipality | Total Area | Area Flooded | % Flooded |
| San Julian          | 127.43     | 1.79         | 1%        |
| Sulat               | 150.05     | 50.14        | 33%       |
| Taft                | 230.27     | 2.68         | 1%        |

Table 29. Municipalities affected in Sulat floodplain.



Figure 63. A 100-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery.





Figure 65. A 25-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery.





75





## 5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Sulat River Basin, grouped accordingly by municipality. For the said basin, three municipalities are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 1.37% of the municipality of San Julian with an area of 127.43 sq. km. will experience flood levels of less 0.20 meters. 0.022% of the area will experience flood levels of 0.21 to 0.50 meters while 0.011%, 0.014% and 0.014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 30 are the affected areas in San Julian in square kilometers by flood depth per barangay. ANNEX 12 and ANNEX 13 show the educational and health institutions exposed to flooding.

Table 30. Affected Areas in San Julian, Eastern Samar during 5-Year Rainfall Return Period.

| Affected area                          | Areas of affected Barangays in San Julian (in sq.km.) |        |        |  |  |  |  |
|----------------------------------------|-------------------------------------------------------|--------|--------|--|--|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Casoroy Nena                                          |        | Putong |  |  |  |  |
| 0.03-0.20                              | 0.26                                                  | 0.98   | 0.5    |  |  |  |  |
| 0.21-0.50                              | 0.0022                                                | 0.015  | 0.011  |  |  |  |  |
| 0.51-1.00                              | 0                                                     | 0.0071 | 0.0071 |  |  |  |  |
| 1.01-2.00                              | 0.0001                                                | 0.014  | 0.0044 |  |  |  |  |
| 2.01-5.00                              | 0                                                     | 0.017  | 0.0012 |  |  |  |  |
| > 5.00                                 | 0                                                     | 0      | 0      |  |  |  |  |



Figure 69. Affected Areas in San Julian, Eastern Samar during 5-Year Rainfall Return Period.

For the municipality of Sulat, with an area of 150.05 sq. km., 27.46% will experience flood levels of less 0.20 meters. 1.08% of the area will experience flood levels of 0.21 to 0.50 meters while 1.11%, 1.43%, 1.65% and 0.8% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 31 are the affected areas in Sulat in square kilometers by flood depth per barangay.

| radie 51. Affecteu Areas în Sulat, Eastern Samar during 5-Year Rainiali Return Period. |       |                                                  |            |        |          |          |           |            |             |  |  |
|----------------------------------------------------------------------------------------|-------|--------------------------------------------------|------------|--------|----------|----------|-----------|------------|-------------|--|--|
| Affected Area<br>(sq. km.) by<br>flood depth<br>(in m.)                                |       | Areas of affected Barangays in Sulat (in sq.km.) |            |        |          |          |           |            |             |  |  |
|                                                                                        | A-Et  | Del Remedio                                      | Kandalakit | Mabini | Maglipay | San Juan | San Mateo | Santo Niño | Santo Tomas |  |  |
| 0.03-0.20                                                                              | 4.54  | 2.99                                             | 9.36       | 5.7    | 0.09     | 5.24     | 4.95      | 2.73       | 5.62        |  |  |
| 0.21-0.50                                                                              | 0.14  | 0.058                                            | 0.18       | 0.11   | 0.011    | 0.15     | 0.37      | 0.45       | 0.16        |  |  |
| 0.51-1.00                                                                              | 0.12  | 0.042                                            | 0.19       | 0.074  | 0.0041   | 0.22     | 0.33      | 0.51       | 0.18        |  |  |
| 1.01-2.00                                                                              | 0.34  | 0.04                                             | 0.25       | 0.087  | 0.0025   | 0.21     | 0.55      | 0.41       | 0.24        |  |  |
| 2.01-5.00                                                                              | 0.41  | 0.058                                            | 0.27       | 0.1    | 0.0015   | 0.94     | 0.35      | 0.12       | 0.24        |  |  |
| > 5.00                                                                                 | 0.029 | 0.059                                            | 0.033      | 0.33   | 0        | 0.5      | 0.24      | 0.0059     | 0           |  |  |



Figure 70. Affected Areas in Sulat, Eastern Samar during 5-Year Rainfall Return Period.

For the municipality of Taft, with an area of 230.27 sq. km., 1.09% will experience flood levels of less 0.20 meters. 0.025% of the area will experience flood levels of 0.21 to 0.50 meters while 0.018%, 0.02%, 0.024% and 0.005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters respectively. Listed in Table 32 are the affected areas in square kilometres by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Areas of affected Barangays in<br>Taft (in sq.km.) |         |  |  |  |  |
|-------------------------------|----------------------------------------------------|---------|--|--|--|--|
| (in m.)                       | Malinao                                            | Mantang |  |  |  |  |
| 0.03-0.20                     | 1.19                                               | 1.33    |  |  |  |  |
| 0.21-0.50                     | 0.029                                              | 0.029   |  |  |  |  |
| 0.51-1.00                     | 0.021                                              | 0.021   |  |  |  |  |
| 1.01-2.00                     | 0.022                                              | 0.023   |  |  |  |  |
| 2.01-5.00                     | 0.029                                              | 0.026   |  |  |  |  |
| > 5.00                        | 0.00018                                            | 0.011   |  |  |  |  |

Table 32. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period.



For the 25-year return period, 1.35% of the municipality of San Julian with an area of 127.43 sq. km. will experience flood levels of less 0.20 meters. 0.029% of the area will experience flood levels of 0.21 to 0.50 meters while 0.013%, 0.014%, 0.019% and 0.0002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 33 are the affected areas in San Julian in square kilometers by flood depth per barangay.

| Affected Area          | Areas of affected Barangays in San Julian (in sq.km.) |        |        |  |  |  |  |
|------------------------|-------------------------------------------------------|--------|--------|--|--|--|--|
| flood depth<br>(in m.) | Casoroy                                               | Nena   | Putong |  |  |  |  |
| 0.03-0.20              | 0.26                                                  | 0.97   | 0.5    |  |  |  |  |
| 0.21-0.50              | 0.0042                                                | 0.021  | 0.012  |  |  |  |  |
| 0.51-1.00              | 0                                                     | 0.0086 | 0.0085 |  |  |  |  |
| 1.01-2 .00             | 0.0001                                                | 0.012  | 0.0056 |  |  |  |  |
| 2.01-5.00              | 0                                                     | 0.023  | 0.0024 |  |  |  |  |
| > 5.00                 | 0                                                     | 0.0003 | 0      |  |  |  |  |

Table 33. Affected Areas in San Julian, Eastern Samar during 25-Year Rainfall Return Period.



Figure 72. Affected Areas in San Julian, Eastern Samar during 25-Year Rainfall Return Period.

For the municipality of Sulat, with an area of 150.05 sq. km., 26.48% will experience flood levels of less 0.20 meters. 1.14% of the area will experience flood levels of 0.21 to 0.50 meters while 1.07%, 1.43%, 2.12% and 1.3% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 34 are the affected areas in Sulat in square kilometers by flood depth per barangay.

| Table 54. Affected Afeas in Sulat, Eastern Samar during 25-Tear Kannan Keturn Period. |       |                                                  |            |        |          |          |           |            |             |  |  |
|---------------------------------------------------------------------------------------|-------|--------------------------------------------------|------------|--------|----------|----------|-----------|------------|-------------|--|--|
| Affected Area                                                                         |       | Areas of affected Barangays in Sulat (in sq.km.) |            |        |          |          |           |            |             |  |  |
| flood depth<br>(in m.)                                                                | A-Et  | Del Remedio                                      | Kandalakit | Mabini | Maglipay | San Juan | San Mateo | Santo Niño | Santo Tomas |  |  |
| 0.03-0.20                                                                             | 4.44  | 2.93                                             | 9.24       | 5.51   | 0.083    | 5.07     | 4.56      | 2.37       | 5.52        |  |  |
| 0.21-0.50                                                                             | 0.12  | 0.066                                            | 0.19       | 0.12   | 0.016    | 0.14     | 0.42      | 0.48       | 0.17        |  |  |
| 0.51-1.00                                                                             | 0.098 | 0.043                                            | 0.17       | 0.072  | 0.0049   | 0.19     | 0.38      | 0.49       | 0.16        |  |  |
| 1.01-2.00                                                                             | 0.13  | 0.04                                             | 0.23       | 0.071  | 0.002    | 0.21     | 0.55      | 0.7        | 0.21        |  |  |
| 2.01-5.00                                                                             | 0.7   | 0.05                                             | 0.37       | 0.16   | 0.0023   | 0.81     | 0.56      | 0.16       | 0.37        |  |  |
| > 5.00                                                                                | 0.083 | 0.11                                             | 0.073      | 0.47   | 0        | 0.84     | 0.33      | 0.026      | 0.012       |  |  |

Table 34. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period.



Figure 73. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period.

For the municipality of Taft, with an area of 230.27 sq. km., 1.08% will experience flood levels of less 0.20 meters. 0.027% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.02%, 0.03% and 0.011% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Areas of affected Barangays in<br>Taft (in sq.km.) |         |  |  |  |  |
|-------------------------------|----------------------------------------------------|---------|--|--|--|--|
| (in m.)                       | Malinao                                            | Mantang |  |  |  |  |
| 0.03-0.20                     | 1.18                                               | 1.31    |  |  |  |  |
| 0.21-0.50                     | 0.032                                              | 0.03    |  |  |  |  |
| 0.51-1.00                     | 0.023                                              | 0.024   |  |  |  |  |
| 1.01-2.00                     | 0.021                                              | 0.026   |  |  |  |  |
| 2.01-5.00                     | 0.04                                               | 0.026   |  |  |  |  |
| > 5.00                        | 0.0012                                             | 0.023   |  |  |  |  |

Table 35. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period.



Figure 74. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period.

For the 100-year return period, 1.34% of the municipality of San Julian with an area of 127.43 sq. km. will experience flood levels of less 0.20 meters. 0.034% of the area will experience flood levels of 0.21 to 0.50 meters while 0.015%, 0.013%, 0.023% and 0.0009% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 36 are the affected areas in San Julian in square kilometers by flood depth per barangay.

| Affected Area          | Areas of affected | Barangays in San | Julian (in sq.km.) |
|------------------------|-------------------|------------------|--------------------|
| flood depth<br>(in m.) | Casoroy           | Nena             | Putong             |
| 0.03-0.20              | 0.26              | 0.96             | 0.49               |
| 0.21-0.50              | 0.0054            | 0.024            | 0.014              |
| 0.51-1.00              | 0.00005           | 0.01             | 0.009              |
| 1.01-2 .00             | 0.0001            | 0.011            | 0.006              |
| 2.01-5.00              | 0                 | 0.027            | 0.0032             |
| > 5.00                 | 0                 | 0.0011           | 0                  |

Table 36. Affected Areas in San Julian, Eastern Samar during 100-Year Rainfall Return Period.



Figure 75. Affected Areas in San Julian, Eastern Samar during 100-Year Rainfall Return Period.

For the municipality of Sulat, with an area of 150.05 sq. km., 25.83% will experience flood levels of less 0.20 meters. 1.13% of the area will experience flood levels of 0.21 to 0.50 meters while 1.15%, 1.45%, 2.26% and 1.7% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 37 are the affected areas in Sulat in square kilometers by flood depth per barangay.

|                        | rable 57. Allecteu Areas în Sulat, Eastern Samar during 100-Year Rainiali Return Period. |             |            |        |          |          |           |            |             |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------|-------------|------------|--------|----------|----------|-----------|------------|-------------|--|--|--|--|--|--|
| Affected Area          | Areas of affected Barangays in Sulat (in sq.km.)                                         |             |            |        |          |          |           |            |             |  |  |  |  |  |  |
| flood depth<br>(in m.) | A-Et                                                                                     | Del Remedio | Kandalakit | Mabini | Maglipay | San Juan | San Mateo | Santo Niño | Santo Tomas |  |  |  |  |  |  |
| 0.03-0.20              | 4.38                                                                                     | 2.89        | 9.16       | 5.39   | 0.078    | 4.97     | 4.32      | 2.1        | 5.46        |  |  |  |  |  |  |
| 0.21-0.50              | 0.1                                                                                      | 0.074       | 0.19       | 0.13   | 0.02     | 0.15     | 0.36      | 0.5        | 0.17        |  |  |  |  |  |  |
| 0.51-1.00              | 0.089                                                                                    | 0.045       | 0.17       | 0.074  | 0.0056   | 0.17     | 0.46      | 0.56       | 0.15        |  |  |  |  |  |  |
| 1.01-2.00              | 0.11                                                                                     | 0.042       | 0.23       | 0.074  | 0.002    | 0.19     | 0.53      | 0.8        | 0.19        |  |  |  |  |  |  |
| 2.01-5.00              | 0.7                                                                                      | 0.051       | 0.4        | 0.15   | 0.0026   | 0.7      | 0.74      | 0.22       | 0.43        |  |  |  |  |  |  |
| > 5.00                 | 0.19                                                                                     | 0.14        | 0.12       | 0.58   | 0        | 1.08     | 0.38      | 0.038      | 0.031       |  |  |  |  |  |  |

Table 27 Affected American Sulat Eastern Seman during 100 Year Dainfall Deturn Devied



Figure 76. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period.

For the municipality of Taft, with an area of 230.27 sq. km., 1.07% will experience flood levels of less 0.20 meters. 0.029% of the area will experience flood levels of 0.21 to 0.50 meters while 0.022%, 0.021%, 0.031% and 0.014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters respectively. Listed in Table 38 are the affected areas in square kilometres by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Areas of affected Barangays in<br>Taft (in sq.km.) |         |  |  |  |  |  |  |  |
|-------------------------------|----------------------------------------------------|---------|--|--|--|--|--|--|--|
| (in m.)                       | Malinao                                            | Mantang |  |  |  |  |  |  |  |
| 0.03-0.20                     | 1.17                                               | 1.3     |  |  |  |  |  |  |  |
| 0.21-0.50                     | 0.036                                              | 0.032   |  |  |  |  |  |  |  |
| 0.51-1.00                     | 0.023                                              | 0.027   |  |  |  |  |  |  |  |
| 1.01-2.00                     | 0.021                                              | 0.026   |  |  |  |  |  |  |  |
| 2.01-5.00                     | 0.045                                              | 0.026   |  |  |  |  |  |  |  |
| > 5.00                        | 0.0031                                             | 0.03    |  |  |  |  |  |  |  |

Table 38. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period.



Figure 77. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period.

Among the barangays in the municipality of San Julian, Nena is projected to have the highest percentage of area that will experience flood levels at 0.81%. Meanwhile, Putong posted the second highest percentage of area that may be affected by flood depths at 0.41%.

Among the barangays in the municipality of Sulat, Kandalakit is projected to have the highest percentage of area that will experience flood levels at 6.85%. Meanwhile, San Juan posted the second highest percentage of area that may be affected by flood depths at 4.84%.

Among the barangays in the municipality of Taft, Mantang is projected to have the highest percentage of area that will experience flood levels of at 0.62%. Meanwhile, Malinao posted the percentage of area that may be affected by flood depths of at 0.56%.

Moreover, the generated flood hazard maps for the Sulat Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 100-year).

| 10,510,531,11 |        |                        |          |
|---------------|--------|------------------------|----------|
| Manning Loval |        | Area Covered in sq. km |          |
| warning Level | 5 year | 25 year                | 100 year |
| Low           | 1.69   | 1.77                   | 1.77     |
| Medium        | 2.94   | 2.76                   | 2.93     |
| High          | 4.79   | 6.41                   | 7.26     |

Table 39. Area covered by each warning level with respect to the rainfall scenarios

Of the four (4) identified Education Institute in Sulat Flood plain, two schools were discovered exposed to Medium-level flooding for the 5- and 25-year scenarios. For the 100 year scenario, these 2 schools were assessed for High level flooding.

Only one medical institution was identified in Sulat Floodplain, namely Sto Niño Health Center. The institution was assessed to be exposed to the Medium level flooding during a 5, 25, and 100 year scenario.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 78.

The flood validation consists of 181 points randomly selected all over the Sulat flood plain Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.67 m. Table 40 shows a contingency matrix of the comparison. The validation points are found in ANNEX 11.



Figure 78. Validation Points for a 5-year Flood Depth Map of the Sulat Floodplain.



Figure 79. Flood Map depth versus Actual Flood Depth

| cu     |           |        |           | MODEL     | ED FLOOD DE | PTH (m)   |        |       |
|--------|-----------|--------|-----------|-----------|-------------|-----------|--------|-------|
| 50     | LAI DASIN | 0-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00   | 2.01-5.00 | > 5.00 | Total |
|        | 0-0.20    | 70     | 17        | 18        | 7           | 1         | 0      | 113   |
| j<br>L | 0.21-0.50 | 28     | 11        | 1         | 5           | 5         | 0      | 50    |
| Dept   | 0.51-1.00 | 12     | 3         | 0         | 1           | 0         | 0      | 16    |
| ] po   | 1.01-2.00 | 1      | 0         | 0         | 0           | 1         | 0      | 2     |
| al Flo | 2.01-5.00 | 0      | 0         | 0         | 0           | 0         | 0      | 0     |
| Actua  | > 5.00    | 0      | 0         | 0         | 0           | 0         | 0      | 0     |
|        | Total     | 111    | 31        | 19        | 13          | 7         | 0      | 181   |

Table 40. Actual Flood Depth versus Simulated Flood Depth at different levels in the Sulat River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 44.75%, with 81 points correctly matching the actual flood depths. In addition, there were 51 points estimated one level above and below the correct flood depths while there were 35 points and 14 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 56 points were overestimated while a total of 44 points were underestimated in the modelled flood depths of Sulat. Table 41 depicts the summary of the Accuracy Assessment in the Sulat River Basin Flood Depth Map.

Table 41. Summary of the Accuracy Assessment in the Sulat River Basin Survey.

|                | No. of Points | %     |
|----------------|---------------|-------|
| Correct        | 81            | 44.75 |
| Overestimated  | 56            | 30.94 |
| Underestimated | 44            | 24.31 |
| Total          | 181           | 100   |

## REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

## ANNEX

# ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Sulat Floodplain Survey

1. AQUARIUS SENSOR



Control Rack

Camera Digitizer

Camera Controller Tablet

Figure A-1.1 Aquarius Sensor

Table A-1.1 Parameters and Specifications of Aquarius Sensor

| Parameter                        | Specification                                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------|
| Operational altitude             | 300-600 m AGL                                                                                                |
| Laser pulse repetition rate      | 33, 50. 70 kHz                                                                                               |
| Scan rate                        | 0-70 Hz                                                                                                      |
| Scan half-angle                  | 0 to ± 25 °                                                                                                  |
| Laser footprint on water surface | 30-60 cm                                                                                                     |
| Depth range                      | 0 to > 10 m (for k < 0.1/m)                                                                                  |
| Topographic mode                 |                                                                                                              |
| Operational altitiude            | 300-2500                                                                                                     |
| Range Capture                    | Up to 4 range measurements, including 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> , and last returns |
| Intensity capture                | 12-bit dynamic measurement range                                                                             |
| Position and orientation system  | POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)                              |
| Data Storage                     | Ruggedized removable SSD hard disk (SATA III)                                                                |
| Power                            | 28 V, 900 W, 35 A                                                                                            |
| Image capture                    | 5 MP interline camera (standard); 60 MP full frame (optional)                                                |
| Full waveform capture            | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                |
| Dimensions and weight            | Sensor:250 x 430 x 320 mm; 30 kg;<br>Control rack: 591 x 485 x 578 mm; 53 kg                                 |
| Operating temperature            | 0-35°C                                                                                                       |
| Relative humidity                | 0-95% no-condensing                                                                                          |

#### ANNEX 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. SME-3139



# ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. SE-16

| SME-3                  | 3139 - SE-16 (6:11:03 AM-11:04:02 AM) (S2) |
|------------------------|--------------------------------------------|
| Baseline observation:  | SME-3139 SE-16 (B2)                        |
| Processed:             | 6/30/2014 5:42:19 PM                       |
| Solution type:         | Fixed                                      |
| Frequency used:        | Dual Frequency (L1, L2)                    |
| Horizontal precision:  | 0.001 m                                    |
| Vertical precision:    | 0.002 m                                    |
| RMS:                   | 0.000 m                                    |
| Maximum PDOP:          | 3.434                                      |
| Ephemeris used:        | Broadcast                                  |
| Antenna model:         | Trimble Relative                           |
| Processing start time: | 6/9/2014 6:11:10 AM (Local: UTC+8hr)       |
| Processing stop time:  | 6/9/2014 11:04:02 AM (Local: UTC+8hr)      |
| Processing duration:   | 04:52:52                                   |
| Processing interval:   | 1 second                                   |
|                        |                                            |

#### Vector Components (Mark to Mark)

| From:      | SME-3139      |                      |                   |           |    |                   |  |
|------------|---------------|----------------------|-------------------|-----------|----|-------------------|--|
| Grid       |               |                      | Local             | Global    |    |                   |  |
| Easting    | 765219.591 r  | n Latitude           | N11°50'02.95701"  | Latitude  |    | N11°49'58.57713"  |  |
| Northing   | 1309289.260 r | n Longitude          | E125°26'03.02189" | Longitude |    | E125°26'08.12160" |  |
| Elevation  | 2.987 r       | n Height             | 0.356 m           | Height    |    | 62.185 m          |  |
| To:        | SE-16         |                      |                   |           |    |                   |  |
| Grid       |               |                      | Local             | Global    |    |                   |  |
| Easting    | 765219.942 r  | n Latitude           | N11°50'03.05106"  | Latitude  |    | N11°49′58.67117"  |  |
| Northing   | 1309292.154 r | n Longitude          | E125°26'03.03429" | Longitude |    | E125°26'08.13400" |  |
| Elevation  | 3.103 r       | n Height             | 0.472 m           | Height    |    | 62.301 m          |  |
| Vector     |               |                      |                   |           |    |                   |  |
| ∆Easting   | 0.3           | 50 m NS Fwd Azimu    | th                | 7°23'58"  | ΔX | -0.028 m          |  |
| ∆Northing  | 2.8           | 94 m Ellipsoid Dist. |                   | 2.914 m   | ΔY | -0.608 m          |  |
| ∆Elevation | 0.1           | 16 m ∆Height         |                   | 0.116 m   | ΔZ | 2.852 m           |  |

#### Standard Errors

| Vector errors: |         |                   |          |     |         |
|----------------|---------|-------------------|----------|-----|---------|
| σ∆Easting      | 0.000 m | σ NS fwd Azimuth  | 0°00'35" | σΔX | 0.001 m |
| σ∆Northing     | 0.000 m | σ Ellipsoid Dist. | 0.000 m  | σΔΥ | 0.001 m |
| σ ∆Elevation   | 0.001 m | σ∆Height          | 0.001 m  | σΔZ | 0.000 m |

## ANNEX 4. The LiDAR Survey Team Composition

|                                                                                                                                                                                                                                                                                                       | Table A-4.1 The                                | LiDAR Survey Team Composition        |                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------------|--|
| Data Acquisition<br>Component<br>Sub-Team                                                                                                                                                                                                                                                             | Designation                                    | Name                                 | Agency / Affiliation          |  |
| PHIL-LIDAR 1                                                                                                                                                                                                                                                                                          | Program Leader                                 | ENRICO PARINGIT, D.ENG               |                               |  |
| Data Acquisition                                                                                                                                                                                                                                                                                      | Data Component                                 | ENGR. CZAR JAKIRI SARMIENTO          |                               |  |
| Component Leader                                                                                                                                                                                                                                                                                      | Project Leader - I                             | ENGR. LOUIE P. BALICANTA             |                               |  |
| Sumaa Sunamiaan                                                                                                                                                                                                                                                                                       | Chief Science<br>Research Specialist<br>(CSRS) | ENGR. CHRISTOPHER CRUZ               | UP-TCAGP                      |  |
| Survey Supervisor                                                                                                                                                                                                                                                                                     | Supervising Science                            | LOVELY GRACIA ACUÑA                  |                               |  |
|                                                                                                                                                                                                                                                                                                       | (Supervising SRS)                              | LOVELYN ASUNCION                     |                               |  |
|                                                                                                                                                                                                                                                                                                       |                                                | FIELD TEAM                           |                               |  |
| Data Acquisition<br>Component LeaderData Component<br>Project Leader - IESurvey SupervisorChief Science<br>Research Specialist<br>(CSRS)ESupervising Science<br>Research Specialist<br>(Supervising SRS)LLiDAR OperationResearch Associate<br>(RA)FGround Survey,<br>Data Download and<br>TransferRAJ | PAULINE JOANNE ARCEO                           |                                      |                               |  |
| LiDAR Operation                                                                                                                                                                                                                                                                                       | (RA)                                           | MARY CATHERINE ELIZABETH<br>BALIGUAS | UP-TCAGP                      |  |
| Ground Survey,<br>Data Download and<br>Transfer                                                                                                                                                                                                                                                       | RA                                             | JERIEL PAUL ALAMBAN                  |                               |  |
|                                                                                                                                                                                                                                                                                                       | Airborne Security                              | SSG. RAYMUND DOMINE                  | PHILIPPINE AIR<br>FORCE (PAF) |  |
| LiDAR Operation                                                                                                                                                                                                                                                                                       | Pilot                                          | CAPT. NEIL ACHILLES AGAWIN           | ASIAN AEROSPACE               |  |
|                                                                                                                                                                                                                                                                                                       | FIIOL                                          | CAPT. JACKSON JAVIER                 | (AAC)                         |  |

| [ |           |               | [ [           | 1        |               | 1           | [     | ſ   | - r           |                     | 1                     | [            | 1               | 1                | Г — Г                    | ſ      |      | Г Г                       | [[ |
|---|-----------|---------------|---------------|----------|---------------|-------------|-------|-----|---------------|---------------------|-----------------------|--------------|-----------------|------------------|--------------------------|--------|------|---------------------------|----|
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     | DAT/<br>6/19/ | A TRANSFER          | R SHEET<br>r - Leyte) | quan         |                 |                  |                          |        |      |                           |    |
|   | DATE      | FLIGHT<br>NO. | MISSION NAME  | SENSOR   | RA            | W LAS       | LOGS  | POS | RAW<br>IMAGES | MISSION<br>LOG FILE | RANGE                 | DIGITIZER    | BASE STA        | ATION(S)         | OPERATOR LOGS<br>(OPLOG) | FLIGHT | PLAN | SERVER                    |    |
|   |           |               |               |          | Output<br>LAS | KML (swath) |       | MB  | GA            |                     | GB                    |              | BASE STATION(S) | Base Info (.txt) |                          | Actual | KML  |                           |    |
|   | 30-May-14 | 1520A         | 3BLK33VSS150A | Aquarius | NA            | 424/602     | 1.48  | 289 | 88.5          | 748                 | 14                    | 164          | 10.5            | 1KB              | 1KB                      | 4      | NA   | X:VAirborne_Raw1<br>520A  |    |
|   | 31-May-14 | 1522A         | 3BLK33SS151A  | Aquarius | NA            | 288         | 469KB | 112 | 9.78/21       | 164/69              | 4.87                  | 59.1         | 4.53            | 1КВ              | 1KB                      | 5      | NA   | 522A                      |    |
|   | 1-Jun-14  | 1526A         | 3BLK33SSR152A | Aquarius | NA            | 456/784     | 1.68  | 277 | 119           | 403                 | 15.5                  | 204          | 8.36            | 1KB              | 1KB                      | 6      | NA   | 526A                      |    |
|   | 2-Jun-14  | 1530A         | 3BLK33RSQ153A | Aquarius | NA            | 353/605     | 1.48  | 254 | 30.9/80.2     | 555/246             | 15.6                  | 165          | 7.88            | 1KB              | 1KB                      | 3      | NA   | 530A                      |    |
|   | 3-Jun-14  | 1534A         | 3BLK33QS154A  | Aquarius | NA            | 1175        | 1.49  | 250 | 56.9/35.1     | 399/154             | 14.5                  | 114/95.5     | 6.6             | 1KB              | 1KB                      | 7      | NA   | 534A                      |    |
|   | 7-Jun-14  | 1550A         | 3BLK33P158A   | Aquarius | NA            | 657         | 1.03  | 199 | 52.9          | na                  | 10.8                  | 149          | 7               | 1KB              | 1KB                      | 3      | NA   | 550A                      |    |
|   | 8-Jun-14  | 1554A         | 3BLK33PSM159A | Aquarius | NA            | 533/1012    | 1.78  | 257 | 99.8          | 695                 | 14.5                  | 27.2/59/32.2 | 16.4            | 1KB              | 1KB                      | 3      | NA   | 554A                      |    |
|   | 8-Jun-14  | 1556A         | 3BLK33MS159B  | Aquarius | NA            | 982         | 1.52  | 291 | 97.2          | 477                 | 15.9                  | 216          | 16.4            | 1KB              | 1KB                      | 5      | NA   | 556A<br>X:\Airborne Raw\1 |    |
|   | 9-Jun-14  | 1558A         | 3BLK33J160A   | Aquarius | NA            | 833         | 1.27  | 277 | 95.7          | 452                 | 14.2                  | 95.6/80.5    | 16.1            | 1KB              | 1KB                      | 4      | NA   | 558A<br>X:\Airborne_Raw\1 |    |
|   | 9-JUN-14  | 156UA         | 3DLK33J       | Aquanus  | INA           | 1583        | 1.67  | 223 | 72.2          | 357                 | 12.1                  | 123          | 16.1            | IND              | IND .                    | 5      |      | 560A                      |    |
|   |           |               | Received from | · 1040.  |               |             |       |     | Received I    | by                  | 00                    | m            |                 |                  |                          |        |      |                           |    |
|   |           |               | Position      | PA       |               |             |       |     | Position      | JUIU                | RS A                  |              | 6/19/4          |                  |                          |        |      |                           |    |
|   |           |               | Signature     | 281      | -             |             |       |     | Signature     | DI                  | 1-1                   |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               | 1                   |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               | ]           |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |
|   |           |               |               |          |               |             |       |     |               |                     |                       |              |                 |                  |                          |        |      |                           |    |

## ANNEX 6. Flight logs for the flight missions

1. Flight Log for 1558A Mission

| 7 Pilot:       J. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 Total Flight Time |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 10 Date:       12 Airport of Departure (Airport, City/Province):       12 Airport of Arrival (Airport, City/Province):         13 Engine On:       14 Engine Off:       15 Total Engine Time:       16 Take off:       17 Landing:       18 T         19 Weather       20 Remarks:       20 Remarks:       21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 Total Flight Time |
| 13 Engine On:       14 Engine Off:       15 Total Engine Time:       16 Take off:       17 Landing:       18 T         19 Weather       10 We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 Total Flight Time |
| 19 Weather 20 Remarks: 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 20 Remarks:<br>21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| 21 Problems and Solutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command? Lidar On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| Note the fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lidar Operator       |
| the second | Lidar Operator       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lidar Operator       |
| LOVENTACYTA ALC PAPPUNING O LEVANA JRS JANEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lidar Operator       |
| Leventa         Alc Pathward 0         Verans         JR 5 Journer           Signature over Printed Name         Signature over Printed Name         Signature over Printed Name         Signature over Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lidar Operator       |

Figure A-6.1 Flight Log for Mission 7320GC
### 2. Flight Log for 1560A Mission

| 1 LIDAR Operator: C. BAL                                                                                                                                                                          | IGUAS   | 2 ALTM Model: AQVA                                                                  | 3 Mis      | sion Name:381K33J                  | -DR 4                           | Type: VFR        | 5 Aircraft Ty      | me Cosna T2064                                   | C Alimental Ida att                 | 7 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------|------------|------------------------------------|---------------------------------|------------------|--------------------|--------------------------------------------------|-------------------------------------|---|
| 7 Pilot: J JAVIER                                                                                                                                                                                 | 8 Co-Pi | lot: N. AGAWIN                                                                      | 9 Rou      | te:                                | 1000                            |                  | printere in i      | pe. cesima izoon                                 | o Andan Identification: 9122        |   |
| 10 Date: Og JUNE 14                                                                                                                                                                               |         | 12 Airport of Departur                                                              | e (Airport | , City/Province):                  | 12 Airp                         | ort of Arrival ( | Airport, City/I    | Province):                                       |                                     |   |
| L3 Engine On:                                                                                                                                                                                     | 14 Engi | ne Off:                                                                             | 15 Tot     | al Engine Time:<br>153             | 16 Take                         | off:             | 17 Landing:        |                                                  | 18 Total Flight Time:               |   |
| 19 Weather                                                                                                                                                                                        |         |                                                                                     |            |                                    |                                 |                  |                    |                                                  |                                     |   |
| 0 Flight Classification                                                                                                                                                                           |         |                                                                                     |            |                                    |                                 | 21 Remarks       |                    |                                                  |                                     |   |
| 20.a Billable                                                                                                                                                                                     | 20.b I  | Non Billable                                                                        | 20.c O     | hers                               |                                 |                  |                    |                                                  |                                     |   |
| 1                                                                                                                                                                                                 |         |                                                                                     |            |                                    |                                 | Mis              | ion come           | leted over bu                                    | - 2 - 2                             |   |
| Acquisition Flight     Econor Flight                                                                                                                                                              |         | O Aircraft Test Flight                                                              | C          | LiDAR System Mainte                | nance                           |                  | in comp            | BLI                                              |                                     |   |
| O System Test Elight                                                                                                                                                                              |         | O AAC Admin Flight                                                                  | 0          | Aircraft Maintenance               |                                 |                  |                    |                                                  |                                     |   |
| O Calibration Flight                                                                                                                                                                              |         | 5 Oulers,                                                                           | - 0        | Phil-LiDAR Admin Acti              | vities                          |                  |                    |                                                  |                                     |   |
| O Weather Problem                                                                                                                                                                                 |         |                                                                                     |            |                                    |                                 |                  |                    |                                                  |                                     |   |
| <ul> <li>Weather Problem</li> <li>System Problem</li> <li>Aircraft Problem</li> <li>Pilot Problem</li> <li>Others:</li> </ul>                                                                     |         |                                                                                     |            |                                    |                                 |                  |                    |                                                  |                                     |   |
| <ul> <li>Weather Problem</li> <li>System Problem</li> <li>Aircraft Problem</li> <li>Pilot Problem</li> <li>Others:</li> </ul>                                                                     |         | -                                                                                   |            |                                    |                                 |                  |                    |                                                  |                                     |   |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem     Others: Acquisition Flight Approved by                                                                              |         | Acquisition Flight Cer                                                              | tified by  | Pilot-in-C                         | ommand                          |                  | LIDAR C            | operator                                         | Aircraft Mechanic/ LIDAR Technician |   |
| O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by                                                                                    |         | Acquisition Flight Cer                                                              | tified by  | Pilot-in-C                         | ommand                          |                  | UDARC              | perator                                          | Aircraft Mechanic/ LIDAR Technician |   |
| O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by                                                                                    |         | Acquisition Flight Cer                                                              | tified by  | Pilot-in-C<br>(<br>JR              | ommand                          |                  | UDAR C             | operator<br>Zul Ma                               | Aircraft Mechanic/ UDAR Technician  |   |
| O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by                                                                                    |         | Acquisition Flight Cer<br>Signature over Printee                                    | tified by  | Pilot-in-C<br>(<br>JR<br>Signature | ommand<br>Avie<br>over Printe   | d Name           | UDAR C             | Operator<br>Control Name                         | Aircraft Mechanic/ UDAR Technician  |   |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem     Others:  Acquisition Flight Approved by <u>Junt</u> Signature over Printed Name     (End User Representative)       |         | Acquisition Flight Cer<br>Signature over Printee<br>(PAF Representation             | tified by  | Pilot-in-C<br>C<br>JR<br>Signature | ommand<br>Avie<br>over Printe   | d Namje          | LiDAR C<br>Signatu | Operator<br>Control Mana<br>re over Printed Name | Aircraft Mechanic/ UDAR Technician  |   |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem     Others:  Acquisition Flight Approved by <u>Junt</u> Signature over Printed Name     (End User Representative)       |         | Acquisition Flight Cer<br>K. H.L.<br>Signature over Printed<br>(PAF Representation  | tified by  | Pilot-in-C<br><br>                 | ommand<br>Deview<br>over Printe | d Name           | LIDAR C            | Operator<br>WAA<br>re over Printed Name          | Aircraft Mechanic/ UDAR Technician  |   |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem     Others:     Acquisition Flight Approved by <u>Jungary</u> Signature over Printed Name     (End User Representative) |         | Acquisition Flight Cer<br>K. J. J.<br>Signature over Printer<br>(PAF Representation | tified by  | Pilot-in-C<br>JR<br>Signature      | ommand<br>Avient                | d Name           | LiDAR C            | Operator<br>Zun Ma<br>re over Printed Name       | Aircraft Mechanic/ LIDAR Technician |   |
| O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:  Acquisition Flight Approved by Signature over Printed Name (End User Representative)                             |         | Acquisition Flight Cer<br>K. H.L.<br>Signature over Printed<br>(PAF Representation  | tified by  | Pilot-in-C<br>JR<br>Signature      | ommand<br>Quien<br>over Printe  | d Name           | LiDAR C            | Operator<br>Carlos<br>Pre over Printed Name      | Aircraft Mechanic/ UDAR Technician  |   |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem     Others:  Acquisition Flight Approved by <u>Junt</u> Signature over Printed Name     (End User Representative)       |         | Acquisition Flight Cer<br>K. H.L.<br>Signature over Printed<br>(PAF Representation  | tified by  | Pilot-in-C<br>JR<br>Signature      | ommand<br>Quien<br>over Printe  | d Name           | LiDAR C            | Operator<br>WWW<br>re over Printed Name          | Aircraft Mechanic/ UDAR Technician  |   |

Figure A-6.2 Flight Log for Mission 1560A

# ANNEX 7. Flight status reports

Sulat Mission

June 9, 2014

Table A-7.1 Flight Status Report

| Flight No | Area   | Mission      | Operator     | Date Flown | Remarks                        |  |
|-----------|--------|--------------|--------------|------------|--------------------------------|--|
| 1558A     | BLK33J | 3BLK33J160A  | PJ ARCEO     | 9 JUN 14   | Completed 12 lines over BLK33J |  |
| 1560A     | BLK33J | 3BLK33JS160B | MCE BALIGUAS | 9 JUN 14   | Mission completed over BLK33J  |  |

#### SWATH PER FLIGHT MISSION

| Flight No. :  | 1558A          |
|---------------|----------------|
| Area:         | BLOCK 33J      |
| Total Area:   | 115.55 sq. km. |
| Mission Name: | 3BLK33J60A     |
| Altitude:     | 500m           |
| PRF:          | 50 kHz         |
| SCF:          | 45 Hz          |
| Lidar FOV:    | 22 deg         |
| Sidelap:      | 30%            |



Figure A-7.1 Swath for Flight No. 1558A

#### LIDAR Surveys and Flood Mapping of Sulat River

| Flight No. :  | 1560A          |
|---------------|----------------|
| Area:         | BLOCK 33J      |
| Total Area:   | 105.37 sq. km. |
| Mission Name: | 3BLK33JS60A    |
| Altitude:     | 500m           |
| PRF:          | 50 kHz         |
| SCF:          | 45 Hz          |
| Lidar FOV:    | 22 deg         |
| Sidelap:      | 25%            |
|               |                |



# ANNEX 8. Mission Summary Reports

Table A-8.1 Mission Summary Report for Mission Blk33J

| Flight Area                                   | Samar-Leyte                                                            |
|-----------------------------------------------|------------------------------------------------------------------------|
| Mission Name                                  | Blk33J                                                                 |
| Inclusive Flights                             | 1560A, 1558A                                                           |
| Range data size                               | 26.3 GB                                                                |
| POS                                           | 500 MB                                                                 |
| Image                                         | 167.9 GB                                                               |
| Transfer date                                 | June 19, 2014                                                          |
|                                               |                                                                        |
| Solution Status                               |                                                                        |
| Number of Satellites (>6)                     | Yes                                                                    |
| PDOP (<3)                                     | Yes                                                                    |
| Baseline Length (<30km)                       | No                                                                     |
| Processing Mode (<=1)                         | No                                                                     |
|                                               |                                                                        |
| Smoothed Performance Metrics (in cm)          |                                                                        |
| RMSE for North Position (<4.0 cm)             | 2.1                                                                    |
| RMSE for East Position (<4.0 cm)              | 2.2                                                                    |
| RMSE for Down Position (<8.0 cm)              | 3.1                                                                    |
| Boresight correction stdev (<0.001deg)        | 0.000327                                                               |
| IMU attitude correction stdev (<0.001deg)     | 0.000898                                                               |
| GPS position stdev (<0.01m)                   | 0.0098                                                                 |
|                                               |                                                                        |
| Minimum % overlap (>25)                       | 36.01%                                                                 |
| Ave point cloud density per sq.m. (>2.0)      | 2.71                                                                   |
| Elevation difference between strips (<0.20 m) | Yes                                                                    |
|                                               |                                                                        |
| Number of 1km x 1km blocks                    | 291                                                                    |
| Maximum Height                                | 248.48 m                                                               |
| Minimum Height                                | 49.30 m                                                                |
|                                               |                                                                        |
| Classification (# of points)                  |                                                                        |
| Ground                                        | 110,486,647                                                            |
| Low vegetation                                | 51,277,620                                                             |
| Medium vegetation                             | 61,095,498                                                             |
| High vegetation                               | 151,119,077                                                            |
| Building                                      | 2,518,830                                                              |
|                                               |                                                                        |
| Orthophoto                                    | Yes                                                                    |
| Processed by                                  | Engr. Jommer Medina, Engr. Edgardo Gubatanga,<br>Engr. Gladys Mae Apat |





#### LIDAR Surveys and Flood Mapping of Sulat River





Figure A-8.7 Elevation difference between flight lines

## ANNEX 9. Sulat Model Basin Parameters

|        | Table A-9.1 Sulat Model Basin Parameters |                 |                   |                                  |                                |              |                               |                       |                |               |  |  |
|--------|------------------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------|-------------------------------|-----------------------|----------------|---------------|--|--|
| Rasin  | SCS Cu                                   | irve Numbe      | r Loss            | Clark<br>Hydrograph              | Unit<br>Transform              |              |                               | Recession Basefl      | aflow          |               |  |  |
| Number | Initial<br>Abstraction<br>(mm)           | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | Initial Type | Initial<br>Discharge<br>(cms) | Recession<br>Constant | Threshold Type | Ratio to Peak |  |  |
| W100   | 0.0016135                                | 99              | 0                 | 7.024965                         | 0.07241                        | Discharge    | 7.80984                       | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W110   | 0.0057635                                | 99              | 0                 | 15.8745                          | 0.163628                       | Discharge    | 12.8376                       | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W120   | 0.006752                                 | 99              | 0                 | 4.649015                         | 0.047918                       | Discharge    | 3.47805                       | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W130   | 0.001434                                 | 99              | 0                 | 11.7553                          | 0.12117                        | Discharge    | 9.0306                        | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W140   | 0.001752                                 | 99              | 0                 | 7.615865                         | 0.0785                         | Discharge    | 8.02008                       | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W150   | 0.009919                                 | 99              | 0                 | 12.6293                          | 0.130174                       | Discharge    | 9.9819                        | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W160   | 0.0080782                                | 99              | 0                 | 15.01285                         | 0.154742                       | Discharge    | 12.8844                       | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W170   | 0.001017                                 | 99              | 0                 | 5.5784                           | 0.0575                         | Discharge    | 5.6376                        | 0.7                   | Ratio to Peak  | 0.3           |  |  |
| W180   | 0.0018285                                | 99              | 0                 | 7.328015                         | 0.075532                       | Discharge    | 9.5202                        | 0.7                   | Ratio to Peak  | 0.3           |  |  |

## ANNEX 10. Sulat Model Reach Parameters

|        | Table A-10.1 Sulat Model Reach Parameters |            |           |             |           |        |            |  |  |  |  |
|--------|-------------------------------------------|------------|-----------|-------------|-----------|--------|------------|--|--|--|--|
| Reach  | Muskingum Cunge Channel Routing           |            |           |             |           |        |            |  |  |  |  |
| Number | Time Step Method                          | Length (m) | Slope     | Manning's n | Shape     | Width  | Side Slope |  |  |  |  |
| R10    | Automatic Fixed Interval                  | 2561.1     | 0.0200445 | 0.04        | Trapezoid | 15.706 | 1          |  |  |  |  |
| R20    | Automatic Fixed Interval                  | 4601.7     | 0.01      | 0.04        | Trapezoid | 25.252 | 1          |  |  |  |  |
| R30    | Automatic Fixed Interval                  | 6846.2     | 0.0146860 | 0.04        | Trapezoid | 18.758 | 1          |  |  |  |  |
| R70    | Automatic Fixed Interval                  | 5896.1     | 0.0112919 | 0.04        | Trapezoid | 19.566 | 1          |  |  |  |  |

## **ANNEX 11. Sulat Field Validation Points**

| Doint  | Validation | Coordinates | Model   | Validation |           |                                  | Rain                |
|--------|------------|-------------|---------|------------|-----------|----------------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error (m) | Event/Date                       | Return/<br>Scenario |
| 1      | 11.84077   | 125.4378    | 0.058   | 0.4        | 0.34      | Ruby/December 6, 2014            | 5-year              |
| 2      | 11.84077   | 125.4378    | 0.058   | 1.04       | 0.98      | Low Pressure/January 10,<br>2017 | 2-year              |
| 3      | 11.84027   | 125.438     | 0.058   | 0.5        | 0.44      | Ruby/December 6, 2014            | 5-year              |
| 4      | 11.83982   | 125.4379    | 0.031   | 1          | 0.97      | Ruby/December 6, 2014            | 5-year              |
| 5      | 11.83969   | 125.4371    | 0.03    | 1          | 0.97      | Ruby/December 6, 2014            | 5-year              |
| 6      | 11.83922   | 125.4379    | 0.03    | 0.5        | 0.47      | Ruby/December 6, 2014            | 5-year              |
| 7      | 11.83922   | 125.4379    | 0.03    | 0.7        | 0.67      | Low Pressure/January 10,<br>2017 | 2-year              |
| 8      | 11.83862   | 125.4374    | 0.319   | 0.5        | 0.18      |                                  |                     |
| 9      | 11.83808   | 125.4372    | 0.448   | 0.5        | 0.05      | Yolanda/November 8, 2013         | 5-year              |
| 10     | 11.83808   | 125.4372    | 0.448   | 0.3        | -0.15     | Ruby/December 6, 2014            | 5-year              |
| 11     | 11.83808   | 125.4372    | 0.448   | 0.3        | -0.15     | Low Pressure/January 10,<br>2017 | 2-year              |
| 12     | 11.83785   | 125.4373    | 0.031   | 0.5        | 0.47      |                                  |                     |
| 13     | 11.83753   | 125.4369    | 0.433   | 0.6        | 0.17      | Yolanda/November 8, 2013         | 5-year              |
| 14     | 11.83753   | 125.4369    | 0.433   | 0.3        | -0.13     | Ruby/December 6, 2014            | 5-year              |
| 15     | 11.83753   | 125.4369    | 0.433   | 0.3        | -0.13     | Low Pressure/January 10,<br>2017 | 2-year              |
| 16     | 11.83794   | 125.4367    | 0.056   | 0.5        | 0.44      |                                  |                     |
| 17     | 11.83709   | 125.4368    | 0.391   | 0          | -0.39     |                                  |                     |
| 18     | 11.83704   | 125.4365    | 0.138   | 0          | -0.14     |                                  |                     |
| 19     | 11.83667   | 125.4366    | 0.49    | 0          | -0.49     |                                  |                     |
| 20     | 11.83645   | 125.4367    | 0.03    | 0          | -0.03     |                                  |                     |
| 21     | 11.83619   | 125.4366    | 0.03    | 0          | -0.03     |                                  |                     |
| 22     | 11.83575   | 125.4367    | 0.032   | 0          | -0.03     |                                  |                     |
| 23     | 11.83521   | 125.4359    | 0.059   | 0          | -0.06     |                                  |                     |
| 24     | 11.83503   | 125.436     | 0.361   | 0          | -0.36     |                                  |                     |
| 25     | 11.83495   | 125.4363    | 0.176   | 0          | -0.18     |                                  |                     |
| 26     | 11.8345    | 125.4364    | 0.073   | 0          | -0.07     |                                  |                     |
| 27     | 11.83448   | 125.436     | 0.03    | 0          | -0.03     |                                  |                     |
| 28     | 11.83445   | 125.4355    | 0.132   | 0          | -0.13     |                                  |                     |
| 29     | 11.83458   | 125.4346    | 0.068   | 0          | -0.07     |                                  |                     |
| 30     | 11.83406   | 125.4361    | 0.079   | 0          | -0.08     |                                  |                     |
| 31     | 11.83389   | 125.4358    | 0.03    | 0          | -0.03     |                                  |                     |
| 32     | 11.8335    | 125.4357    | 0.03    | 0          | -0.03     |                                  |                     |

Table A-11.1 Sulat Field Validation Points

| Point  | Validation | Coordinates | Model   | Validation |           |                                  | Rain                |
|--------|------------|-------------|---------|------------|-----------|----------------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error (m) | Event/Date                       | Return/<br>Scenario |
| 33     | 11.83321   | 125.4356    | 0.03    | 0          | -0.03     |                                  |                     |
| 34     | 11.83227   | 125.4352    | 0.03    | 0          | -0.03     |                                  |                     |
| 35     | 11.83118   | 125.4346    | 0.03    | 0.5        | 0.47      |                                  |                     |
| 36     | 11.83095   | 125.4345    | 0.03    | 0.5        | 0.47      |                                  |                     |
| 37     | 11.83027   | 125.4343    | 0.031   | 0.5        | 0.47      |                                  |                     |
| 38     | 11.83006   | 125.4342    | 0.03    | 0.5        | 0.47      |                                  |                     |
| 39     | 11.82946   | 125.4339    | 0.316   | 0.5        | 0.18      |                                  |                     |
| 40     | 11.82897   | 125.4339    | 0.264   | 0          | -0.26     |                                  |                     |
| 41     | 11.82571   | 125.435     | 0.032   | 0          | -0.03     |                                  |                     |
| 42     | 11.82409   | 125.4357    | 0.03    | 0          | -0.03     |                                  |                     |
| 43     | 11.82196   | 125.4353    | 0.74    | 0          | -0.74     |                                  |                     |
| 44     | 11.82144   | 125.4356    | 0.03    | 0          | -0.03     |                                  |                     |
| 45     | 11.8216    | 125.4361    | 0.03    | 0          | -0.03     |                                  |                     |
| 46     | 11.82099   | 125.4359    | 0.559   | 0          | -0.56     |                                  |                     |
| 47     | 11.82003   | 125.4371    | 0.031   | 0          | -0.03     |                                  |                     |
| 48     | 11.81971   | 125.4372    | 0.09    | 0          | -0.09     |                                  |                     |
| 49     | 11.81936   | 125.4381    | 0.129   | 0.3        | 0.17      |                                  |                     |
| 50     | 11.81956   | 125.4389    | 0.73    | 0.3        | -0.43     |                                  |                     |
| 51     | 11.81944   | 125.4395    | 0.03    | 0.3        | 0.27      |                                  |                     |
| 52     | 11.81916   | 125.4402    | 0.039   | 0          | -0.04     |                                  |                     |
| 53     | 11.81265   | 125.4302    | 0.032   | 0.3        | 0.27      | Yolanda/November 8, 2013         | 5-year              |
| 54     | 11.8136    | 125.4297    | 0.03    | 0.3        | 0.27      | Yolanda/November 8, 2013         | 5-year              |
| 55     | 11.81691   | 125.4235    | 0.083   | 0.4        | 0.32      | Ruby/December 6, 2014            | 5-year              |
| 56     | 11.81691   | 125.4235    | 0.083   | 0.5        | 0.42      | Low Pressure/January 10,<br>2017 | 2-year              |
| 57     | 11.81589   | 125.4209    | 1.842   | 0.4        | -1.44     | Ruby/December 6, 2014            | 5-year              |
| 58     | 11.81589   | 125.4209    | 1.842   | 0.5        | -1.34     | Low Pressure/January 10,<br>2017 | 2-year              |
| 59     | 11.81631   | 125.4207    | 2.403   | 0          | -2.4      |                                  |                     |
| 60     | 11.82033   | 125.42      | 2.545   | 0.4        | -2.15     | Ruby/December 6, 2014            | 5-year              |
| 61     | 11.82033   | 125.42      | 2.545   | 0.5        | -2.05     | Low Pressure/January 10,<br>2017 | 2-year              |
| 62     | 11.82324   | 125.4277    | 0.03    | 0          | -0.03     |                                  |                     |
| 63     | 11.82401   | 125.4347    | 0.887   | 0          | -0.89     |                                  |                     |
| 64     | 11.82336   | 125.4219    | 0.603   | 0          | -0.6      |                                  |                     |
| 65     | 11.82265   | 125.4228    | 0.876   | 0          | -0.88     |                                  |                     |
| 66     | 11.82338   | 125.4209    | 1.274   | 0          | -1.27     |                                  |                     |
| 67     | 11.82414   | 125.4223    | 0.031   | 0          | -0.03     |                                  |                     |
| 68     | 11.83374   | 125.4345    | 0.067   | 0          | -0.07     |                                  |                     |

### LIDAR Surveys and Flood Mapping of Sulat River

| Validation Coordin |          | Coordinates | Model   | Validation |           |                               | Rain                |
|--------------------|----------|-------------|---------|------------|-----------|-------------------------------|---------------------|
| Number             | Lat      | Long        | Var (m) | Points (m) | Error (m) | Event/Date                    | Return/<br>Scenario |
| 69                 | 11.81614 | 125.4199    | 0.335   | 0.4        | 0.06      | Ruby/December 6, 2014         | 5-year              |
| 70                 | 11.81614 | 125.4199    | 0.335   | 0.4        | 0.06      | Low Pressure/January 10, 2017 | 2-year              |
| 71                 | 11.82844 | 125.4328    | 1.077   | 0          | -1.08     |                               |                     |
| 72                 | 11.82916 | 125.4334    | 0.996   | 0          | -1        |                               |                     |
| 73                 | 11.8344  | 125.4325    | 0.233   | 0          | -0.23     |                               |                     |
| 74                 | 11.83623 | 125.4362    | 0.246   | 0          | -0.25     |                               |                     |
| 75                 | 11.83725 | 125.4365    | 0.137   | 0          | -0.14     |                               |                     |
| 76                 | 11.83823 | 125.4371    | 0.198   | 0          | -0.2      |                               |                     |
| 77                 | 11.84034 | 125.4374    | 0.031   | 1          | 0.97      | Ruby/December 6, 2014         | 5-year              |
| 78                 | 11.84096 | 125.4381    | 0.233   | 0.7        | 0.47      | Yolanda/November 8, 2013      | 5-year              |
| 79                 | 11.84096 | 125.4381    | 0.233   | 0.6        | 0.37      | Ruby/December 6, 2014         | 5-year              |
| 80                 | 11.81709 | 125.4229    | 0.03    | 0          | -0.03     |                               |                     |
| 81                 | 11.81954 | 125.4368    | 0.121   | 0          | -0.12     |                               |                     |
| 82                 | 11.8192  | 125.4377    | 0.031   | 0          | -0.03     |                               |                     |
| 83                 | 11.82111 | 125.4365    | 1.188   | 0          | -1.19     |                               |                     |
| 84                 | 11.82151 | 125.4352    | 0.34    | 0          | -0.34     |                               |                     |
| 85                 | 11.82268 | 125.4359    | 0.031   | 0          | -0.03     |                               |                     |
| 86                 | 11.8275  | 125.4338    | 0.03    | 0          | -0.03     |                               |                     |
| 87                 | 11.83173 | 125.4349    | 0.418   | 0          | -0.42     |                               |                     |
| 88                 | 11.83395 | 125.4351    | 0.03    | 0          | -0.03     |                               |                     |
| 89                 | 11.83473 | 125.435     | 0.314   | 0          | -0.31     |                               |                     |
| 90                 | 11.83318 | 125.4361    | 0.031   | 0          | -0.03     |                               |                     |
| 91                 | 11.83484 | 125.4367    | 0.05    | 0          | -0.05     |                               |                     |
| 92                 | 11.83666 | 125.4369    | 0.122   | 0          | -0.12     |                               |                     |
| 93                 | 11.83445 | 125.4349    | 0.095   | 0          | -0.09     |                               |                     |
| 94                 | 11.83329 | 125.4351    | 0.965   | 0          | -0.96     |                               |                     |
| 95                 | 11.8359  | 125.4364    | 0.03    | 0          | -0.03     |                               |                     |
| 96                 | 11.82345 | 125.4214    | 0.963   | 0          | -0.96     |                               |                     |
| 97                 | 11.82372 | 125.4226    | 0.103   | 0          | -0.1      |                               |                     |
| 98                 | 11.83363 | 125.4353    | 0.589   | 0          | -0.59     |                               |                     |
| 99                 | 11.83432 | 125.4358    | 0.036   | 0          | -0.04     |                               |                     |
| 100                | 11.82836 | 125.4344    | 0.134   | 0          | -0.13     |                               |                     |
| 101                | 11.83751 | 125.4372    | 0.031   | 0          | -0.03     |                               |                     |
| 102                | 11.83821 | 125.4369    | 0.031   | 0.6        | 0.57      |                               | 5-year              |
| 103                | 11.83821 | 125.4369    | 0.031   | 0.3        | 0.27      |                               | 5-year              |
| 104                | 11.83821 | 125.4369    | 0.031   | 0.3        | 0.27      |                               | 2-year              |
| 105                | 11.83652 | 125.4364    | 0.361   | 0          | -0.36     |                               |                     |

| Point  | Validation | Coordinates | Model                    | Validation |           |                                  | Rain                |
|--------|------------|-------------|--------------------------|------------|-----------|----------------------------------|---------------------|
| Number | Lat        | Long        | Var (m)                  | Points (m) | Error (m) | Event/Date                       | Return/<br>Scenario |
| 106    | 11.83421   | 125.4345    | 0.218                    | 0          | -0.22     |                                  |                     |
| 107    | 11.83497   | 125.4347    | 0.03                     | 0          | -0.03     |                                  |                     |
| 108    | 11.83297   | 125.4354    | 0.349                    | 0          | -0.35     |                                  |                     |
| 109    | 11.8297    | 125.4346    | 0.14                     | 0          | -0.14     |                                  |                     |
| 110    | 11.82259   | 125.4262    | 0.03                     | 0          | -0.03     |                                  |                     |
| 111    | 11.82107   | 125.4355    | 0.571                    | 0          | -0.57     |                                  |                     |
| 112    | 11.83625   | 125.4368    | 0.03                     | 0          | -0.03     |                                  |                     |
| 113    | 11.83781   | 125.437     | 0.319                    | 0.5        | 0.18      |                                  |                     |
| 114    | 11.84149   | 125.4379    | 0.03                     | 0.8        | 0.77      | Yolanda/November 8, 2013         | 5-year              |
| 115    | 11.84149   | 125.4379    | 0.03                     | 0.5        | 0.47      | Ruby/December 6, 2014            | 5-year              |
| 116    | 11.84177   | 125.4381    | 0.03                     | 0.9        | 0.87      | Yolanda/November 8, 2013         | 5-year              |
| 117    | 11.84177   | 125.4381    | 0.03                     | 0.5        | 0.47      | Ruby/December 6, 2014            | 5-year              |
| 118    | 11.83938   | 125.4375    | 0.032                    | 0          | -0.03     |                                  |                     |
| 119    | 11.81792   | 125.4199    | 2.345                    | 0.4        | -1.95     | Ruby/December 6, 2014            | 5-year              |
| 120    | 11.81792   | 125.4199    | 2.345                    | 1.04       | -1.31     | Low Pressure/January 10,<br>2017 | 2-year              |
| 121    | 11.8196    | 125.4386    | 1.177                    | 0.3        | -0.88     |                                  |                     |
| 122    | 11.82383   | 125.4222    | 0.052                    | 0          | -0.05     |                                  |                     |
| 123    | 11.8143    | 125.4528    | Not<br>Covered<br>On Map | 0.1        |           | Ruby/December 6, 2014            | 5-year              |
| 124    | 11.81419   | 125.4524    | Not<br>Covered<br>On Map | 0.1        |           | Ruby/December 6, 2014            | 5-year              |
| 125    | 11.81382   | 125.4523    | Not<br>Covered<br>On Map | 0.1        |           | Ruby/December 6, 2014            | 5-year              |
| 126    | 11.81382   | 125.4523    | Not<br>Covered<br>On Map | 0.1        |           | Yolanda/November 8, 2013         | 5-year              |
| 127    | 11.81582   | 125.4542    | Not<br>Covered<br>On Map | 0.2        |           | Yolanda/November 8, 2013         | 5-year              |
| 128    | 11.8169    | 125.4459    | Not<br>Covered<br>On Map | 0          |           |                                  |                     |
| 129    | 11.81801   | 125.4436    | Not<br>Covered<br>On Map | 0          |           |                                  |                     |
| 130    | 11.81754   | 125.4439    | Not<br>Covered<br>On Map | 0          |           |                                  |                     |
|        |            |             |                          |            |           |                                  |                     |

| Point  | Validation Coordinates |          | Model Validation         |            |           |                                  | Rain                |
|--------|------------------------|----------|--------------------------|------------|-----------|----------------------------------|---------------------|
| Number | Lat                    | Long     | Var (m)                  | Points (m) | Error (m) | Event/Date                       | Return/<br>Scenario |
| 131    | 11.81683               | 125.4425 | Not<br>Covered<br>On Map | 0          |           |                                  |                     |
| 132    | 11.81951               | 125.4399 | 0.043                    | 0          | -0.04     |                                  |                     |
| 133    | 11.81916               | 125.4397 | 0.031                    | 0          | -0.03     |                                  |                     |
| 134    | 11.82041               | 125.4372 | 0.03                     | 0          | -0.03     |                                  |                     |
| 135    | 11.82244               | 125.4353 | 1.079                    | 0          | -1.08     |                                  |                     |
| 136    | 11.83453               | 125.4354 | 0.309                    | 0          | -0.31     |                                  |                     |
| 137    | 11.83608               | 125.4365 | 0.172                    | 0          | -0.17     |                                  |                     |
| 138    | 11.83696               | 125.4366 | 0.297                    | 0          | -0.3      |                                  |                     |
| 139    | 11.83765               | 125.4367 | 0.16                     | 0.5        | 0.34      |                                  |                     |
| 140    | 11.82344               | 125.4216 | 0.745                    | 0          | -0.75     |                                  |                     |
| 141    | 11.83374               | 125.4356 | 0.327                    | 0          | -0.33     |                                  |                     |
| 142    | 11.8344                | 125.4352 | 0.52                     | 0          | -0.52     |                                  |                     |
| 143    | 11.83433               | 125.4364 | 0.03                     | 0          | -0.03     |                                  |                     |
| 144    | 11.8384                | 125.4374 | 0.03                     | 0.6        | 0.57      | Yolanda/November 8, 2013         | 5-year              |
| 145    | 11.8384                | 125.4374 | 0.03                     | 0.3        | 0.27      | Ruby/December 6, 2014            | 5-year              |
| 146    | 11.8384                | 125.4374 | 0.03                     | 0.3        | 0.27      | Low Pressure/January 10,<br>2017 | 2-year              |
| 147    | 11.83981               | 125.4382 | 0.045                    | 1          | 0.95      | Ruby/December 6, 2014            | 5-year              |
| 148    | 11.81843               | 125.42   | 1.925                    | 0.4        | -1.52     | Ruby/December 6, 2014            | 5-year              |
| 149    | 11.81843               | 125.42   | 1.925                    | 0.5        | -1.42     | Yolanda/November 8, 2013         | 5-year              |
| 150    | 11.81843               | 125.42   | 1.925                    | 0.6        | -1.32     | Low Pressure/January 10,<br>2017 | 2-year              |
| 151    | 11.81633               | 125.4209 | 2.984                    | 0.4        | -2.58     | Ruby/December 6, 2014            | 5-year              |
| 152    | 11.81633               | 125.4209 | 2.984                    | 0.4        | -2.58     | Low Pressure/January 10,<br>2017 | 2-year              |
| 153    | 11.82369               | 125.4211 | 0.786                    | 0          | -0.79     |                                  |                     |
| 154    | 11.82312               | 125.4221 | 0.792                    | 0          | -0.79     |                                  |                     |
| 155    | 11.82389               | 125.4225 | 0.105                    | 0          | -0.1      |                                  |                     |
| 156    | 11.83368               | 125.4361 | 0.105                    | 0          | -0.1      |                                  |                     |
| 157    | 11.83321               | 125.4358 | 0.03                     | 0          | -0.03     |                                  |                     |
| 158    | 11.83452               | 125.4351 | 0.238                    | 0          | -0.24     |                                  |                     |
| 159    | 11.83685               | 125.4369 | 0.103                    | 0.3        | 0.2       | Ruby/December 6, 2014            | 5-year              |
| 160    | 11.83685               | 125.4369 | 0.103                    | 0.4        | 0.3       | Yolanda/November 8, 2013         | 5-year              |
| 161    | 11.83148               | 125.4346 | 1.401                    | 0          | -1.4      |                                  |                     |
| 162    | 11.82354               | 125.4219 | 0.535                    | 0          | -0.54     |                                  |                     |
| 163    | 11.83417               | 125.436  | 0.03                     | 0          | -0.03     |                                  |                     |
| 164    | 11.83414               | 125.4363 | 0.03                     | 0          | -0.03     |                                  |                     |

| Point  | Validation Coordinates |          | Model                    | Validation |           |                          | Rain                |
|--------|------------------------|----------|--------------------------|------------|-----------|--------------------------|---------------------|
| Number | Lat                    | Long     | Var (m)                  | Points (m) | Error (m) | Event/Date               | Return/<br>Scenario |
| 165    | 11.83511               | 125.4362 | 0.399                    | 0          | -0.4      |                          |                     |
| 166    | 11.84009               | 125.4376 | 0.041                    | 1          | 0.96      | Ruby/December 6, 2014    | 5-year              |
| 167    | 11.83431               | 125.4333 | 0.032                    | 0          | -0.03     |                          |                     |
| 168    | 11.83868               | 125.4378 | 0.03                     | 0.5        | 0.47      |                          |                     |
| 169    | 11.8353                | 125.4366 | 0.03                     | 0          | -0.03     |                          |                     |
| 170    | 11.81317               | 125.4298 | 0.037                    | 0.3        | 0.26      | Yolanda/November 8, 2013 | 5-year              |
| 171    | 11.82361               | 125.4208 | 1.023                    | 0          | -1.02     |                          |                     |
| 172    | 11.84048               | 125.4379 | 0.087                    | 1          | 0.91      | Ruby/December 6, 2014    | 5-year              |
| 173    | 11.83718               | 125.437  | 0.03                     | 0          | -0.03     |                          |                     |
| 174    | 11.8117                | 125.4518 | Not<br>Covered<br>On Map | 0          |           |                          |                     |
| 175    | 11.81028               | 125.4506 | Not<br>Covered<br>On Map | 0          |           |                          |                     |
| 176    | 11.81124               | 125.4508 | Not<br>Covered<br>On Map | 0          |           |                          |                     |
| 177    | 11.83392               | 125.4363 | 0.069                    | 0          | -0.07     |                          |                     |
| 178    | 11.82146               | 125.4359 | 1.168                    | 0          | -1.17     |                          |                     |
| 179    | 11.83349               | 125.4355 | 0.628                    | 0          | -0.63     |                          |                     |
| 180    | 11.83484               | 125.4364 | 0.03                     | 0          | -0.03     |                          |                     |
| 181    | 11.83467               | 125.4353 | 0.563                    | 0          | -0.56     |                          |                     |
| 182    | 11.83063               | 125.4344 | 0.122                    | 0.3        | 0.18      | Yolanda/November 8, 2013 | 5-year              |
| 183    | 11.8217                | 125.4355 | 0.604                    | 0          | -0.6      |                          |                     |
| 184    | 11.81955               | 125.4374 | 0.115                    | 0          | -0.12     |                          |                     |
| 185    | 11.81751               | 125.4449 | Not<br>Covered<br>On Map | 0          |           |                          |                     |
| 186    | 11.81644               | 125.4465 | Not<br>Covered<br>On Map | 0          |           |                          |                     |
| 187    | 11.82359               | 125.4362 | 0.159                    | 0          | -0.16     |                          |                     |
| 188    | 11.83367               | 125.4358 | 0.03                     | 0          | -0.03     |                          |                     |
| 189    | 11.83957               | 125.438  | 0.048                    | 1          | 0.95      | Ruby/December 6, 2014    | 5-year              |
| 190    | 11.81944               | 125.4376 | 0.054                    | 0          | -0.05     |                          |                     |
| 191    | 11.83909               | 125.4376 | 0.371                    | 0.5        | 0.13      |                          |                     |
| 192    | 11.83594               | 125.4367 | 0.032                    | 0          | -0.03     |                          |                     |
| 193    | 11.83388               | 125.4362 | 0.03                     | 0          | -0.03     |                          |                     |
| 194    | 11.81975               | 125.4369 | 0.14                     | 0          | -0.14     |                          |                     |
| 195    | 11.81949               | 125.4392 | 0.03                     | 0.3        | 0.27      |                          |                     |

# ANNEX 12. Educational Institutions affected by flooding in Sulat Flood Plain

Table A-12.1 Educational Institutions in Sulat, Eastern Samar affected by flooding in Sulat Flood Plain

| EASTERN SAMAR                  |            |                   |         |          |  |  |  |  |  |
|--------------------------------|------------|-------------------|---------|----------|--|--|--|--|--|
| SULAT                          |            |                   |         |          |  |  |  |  |  |
| Puilding Name                  | Barangay   | Rainfall Scenario |         |          |  |  |  |  |  |
| buluing Name                   |            | 5-year            | 25-year | 100-year |  |  |  |  |  |
| Hamorawon Day Care Center      | San Juan   | Medium            | Medium  | High     |  |  |  |  |  |
| Hamorawon Elementary School    | San Juan   | Medium            | Medium  | High     |  |  |  |  |  |
| Sto. Niño Elementary School    | Santo Niño |                   |         |          |  |  |  |  |  |
| Sto. Niño National High School | Santo Niño |                   |         |          |  |  |  |  |  |

# ANNEX 13. Medical Institutions affected by flooding in Sulat Flood Plain

Table A-13.1 Medical Institutions in Sulat, Eastern Samar affected by flooding in Sulat Flood Plain

| EASTERN SAMAR           |            |                   |         |          |  |  |  |  |
|-------------------------|------------|-------------------|---------|----------|--|--|--|--|
| SULAT                   |            |                   |         |          |  |  |  |  |
| <b>Duilding Nome</b>    | D          | Rainfall Scenario |         |          |  |  |  |  |
| building Name           | Darangay   | 5-year            | 25-year | 100-year |  |  |  |  |
| Sto. Niño Health Center | Santo Niño | Medium            | Medium  | Medium   |  |  |  |  |

### HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1) LIDAR SURVEYS AND FLOOD MAPPING OF SULAT RIVER

UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES