LiDAR Surveys and Flood Mapping of Silaga River

ARE REPORTED OF THE PROPERTY STATES OF AN ADDRESS OF A DESCRIPTION OF A DE

An age in a location of the supervised of the

© University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Silaga River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-203pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, Phil-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-215-4

TABLE OF CONTENTS

TABLE (OF CONTENTS	iii
LIST OF	TABLES	v
LIST OF	FIGURES	.vii
LIST OF	ACRONYMS AND ABBREVIATIONS	Х
CHAPT	ER 1: OVERVIEW OF THE PROGRAM AND SILAGA RIVER	1
1	.1 Background of the Phil-LIDAR 1 Program.	1
1	.2 Overview of the Silaga River Basin.	1
СНАРТ	ER 2: LIDAR DATA ACQUISITION OF THE SILAGA FLOODPLAIN.3	
2	.1 Flight Plans	3
2	.2 Ground Base Stations.	5
2	.3 Flight Missions.	13
2	.4 Survey Coverage.	.16
CHAPT	EK 3: LIDAR DATA PROCESSING OF THE SILAGA FLOODPLAIN.18	
3	.1 LIDAR Data Processing for Sliaga Floodplain.	10
3	.1 Overview of the LIDAR Data Pre-Processing.	.18
3	.2 Trainsmittal of Acquired LiDAR Data.	.19
3	.3 Trajectory Computation.	.19
3		.21
3	.5 LIDAR Data Quality Checking.	.22
3	.6 LIDAR Point Cloud Classification and Rasterization.	.26
3	.7 LIDAR Image Processing and Orthophotograph Rectification.	.28
3	.8 DEM Editing and Hydro-Correction.	.30
3	.9 Mosaicking of Blocks.	.32
3	.10 Calibration and Validation of Mosaicked LiDAR DEM.	.34
3	.11 Integration of Bathymetric Data into the LIDAR Digital Terrain Model	.37
3	.12 Feature Extraction.	.39
	3.12.1 Quality Checking of Digitized Features' Boundary.	.39
	3.12.2 Height Extraction.	40
	3.12.3 Feature Attribution.	.40
		.4 1
CHADT	ED A. LIDAD VALIDATION CHECKING OF EXCLEDITE CULOS	•••
CHAPT	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42	12
CHAPT	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities.	.42
CHAPT 4 4	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey.	.42 .43
CHAPT 4 4 4	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing.	.42 .43 .49
CHAPT 4 4 4 4	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment.	.42 .43 .49 .50
CHAPT 4 4 4 4 4	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking.	.42 .43 .49 .50 .53
CHAPT 4 4 4 4 4 4 4	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey.	.42 .43 .49 .50 .53 .57
CHAPT 4 4 4 4 4 4 4 CHAPT	ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey.	.42 .43 .50 .53 .57 .59
CHAPT 4 4 4 4 4 4 CHAPT	S.12.4 Final Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. .7 River Bathymetric Survey. .1 Data Used for Hydrologic Modeling	.42 .43 .50 .53 .57 .59
CHAPT 4 4 4 4 4 4 CHAPT 5 5	 ST2.4 Final Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. 1 Hydrometry and Bating Curves 	.42 .43 .49 .50 .53 .57 .59
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5	 ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. 1 2 Precipitation 	.42 .43 .49 .50 .53 .57 .59 .62 .62
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5	 ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. 1 3 Bating Curves and River Outflow 	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5	 ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. 2 RIDE Station 	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62 .62
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5	 S.12.4 Final Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model 	.42 .43 .49 .50 .53 .57 .59 .62 .62 .63 .63 .65
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S.12.4 Hinal Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62 .63 .65 .67
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 S.12.4 Hinal Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 1. Summary of Activities. 2. Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. 	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62 .62 .62 .63 .65 .67 .72
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Status Status ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model.	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .63 .65 .67 .72 .73
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ST12.4 This Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. R 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model. .6 Results of HMS Calibration. .7 Calculated outflow hydrographs and discharge values for different rainfall return periods	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S12.4 Hina Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. .7 River Bathymetric Survey. .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model. .6 Results of HMS Calibration. .7 Calculated outflow hydrographs and discharge values for different rainfall return periods.	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S.12.4 Hina Quality Checking of Extracted Features. ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. .7 River Bathymetric Survey. .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model. .6 Results of HMS Calibration. .7 Calculated outflow hydrographs and discharge values for different rainfall return periods. .7 Calculated outflow hydrographs and discharge values for different rainfall return periods. .7.1 Hydrograph using the Rainfall Runoff Model. .8 River Analysis (RAS) Model Simulation	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76 .76
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S.12.4 Infal Quarty Crecking of Educes Fractices ER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN.42 .1 Summary of Activities .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 .1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model. .6 Results of HMS Calibration. .7 Calculated outflow hydrographs and discharge values for different rainfall return periods. .7.1 Hydrograph using the Rainfall Runoff Model. .8 River Analysis (RAS) Model Simulation. .9 Flow Denth and Elood Hazard	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76 .76 .77
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	States States States States <td< td=""><td>.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76 .76 .77 .78</td></td<>	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76 .76 .77 .78
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S.12.4 That Quarty Checking of Extracted Features. Summary of Activities. .1 Summary of Activities. .2 Control Survey. .3 Baseline Processing. .4 Network Adjustment. .5 Cross-section and Bridge As-Built survey and Water Level Marking. .6 Validation Points Acquisition Survey. .7 River Bathymetric Survey. R F FLOOD MODELING AND MAPPING.62 1 Data Used for Hydrologic Modeling. .1.1 Hydrometry and Rating Curves. .1.2 Precipitation. .1.3 Rating Curves and River Outflow. .2 RIDF Station. .3 HMS Model. .4 Cross-section Data. .5 Flo 2D Model. .6 Results of HMS Calibration. .7 River Analysis (RAS) Model Simulation. .9 Flow Depth and Flood Hazard. .10 Inventory of Areas Exposed to Flooding.	.42 .43 .50 .53 .57 .59 .62 .62 .62 .63 .63 .65 .67 .72 .73 .74 .76 .77 .78 .85
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Bill Processing Summary of Activities Summary of Activities Summary of Activities 2 Control Survey Saseline Processing 4 Network Adjustment Scross-section and Bridge As-Built survey and Water Level Marking 6 Validation Points Acquisition Survey Scross-section and Bridge As-Built survey and Water Level Marking 7 River Bathymetric Survey Scross-section and Bridge As-Built survey and Water Level Marking 8 Validation Points Acquisition Survey Scross-section and Bridge As-Built survey and Water Level Marking 6 Validation Points Acquisition Survey Scross-section and Bridge As-Built survey and Water Level Marking 7 River Bathymetric Survey. Scross-section and Bridge As-Built survey and Water Level Marking 8 Validation Points Acquisition Survey. Scross-section Pata 1 Data Used for Hydrologic Modeling. Scross-section Atting Curves 1.1 Hydrometry and Rating Curves. Scross-section Data 1.2 Precipitation. Scross-section Data 3 HMS Model Scross-section Data 4 Cross-section Data Scross-section Data 5 Flo 2D Model Scross-section Data 6 Results of HMS Calibration Scross-section Data 7 Calculated outflow hydrographs and discharge values for different rainfall return periods	.42 .43 .50 .53 .57 .59 .62 .62 .62 .63 .63 .65 .67 .72 .73 .74 .76 .77 .78 .85 .01 03
CHAPTI 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Supersonance Supersonance	.42 .43 .50 .53 .57 .59 .62 .62 .62 .62 .63 .65 .67 .72 .73 .74 .76 .77 .78 .85 .01 .03 .04
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Bit 24 Hind Cultury Checking of Extracted reactives. Summary of Activities. 2 Control Survey. 3 Baseline Processing. 4 Network Adjustment. 5 Cross-section and Bridge As-Built survey and Water Level Marking. 6 Validation Points Acquisition Survey. 7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 1 Data Used for Hydrologic Modeling. 1.1 Hydrometry and Rating Curves. 1.2 Precipitation. 1.3 Rating Curves and River Outflow. 2 RIDF Station. 3 HMS Model. 4 Cross-section Data. 5 Flo 2D Model. 6 Results of HMS Calibration. 7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5 7.1 Hydrograph using the Rainfall Runoff Model. 8 River Analysis (RAS) Model Simulation. 9 Flow Depth and Flood Hazard. 10 Inventory of Areas Exposed to Flooding. 11 Flood Validation. 12 Flood Validation. 13 Rivers. 14 Hydrograph using the Rainfall Runoff Model. 15 Rivers. 16 Results of HMS Calibration. 17 Calculated outflow hydrographs and discharge values for different rainfall return periods.<	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62 .62 .62 .63 .65 .72 .73 .74 .76 .77 .78 .85 .01 .03 .04
CHAPTI 4 4 4 4 4 CHAPTI 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SID: 4 mind Quality Clecking of Extracted reactions. Summary of Activities. 2 Control Survey. 3 Baseline Processing. 4 Network Adjustment. 5 Cross-section and Bridge As-Built survey and Water Level Marking. 6 Validation Points Acquisition Survey. 7 River Bathymetric Survey. ER 5: FLOOD MODELING AND MAPPING.62 1 Data Used for Hydrologic Modeling. 1.1 Hydrometry and Rating Curves. 1.2 Precipitation. 2 RIP 5 Station. 3 HMS Model. 4 Cross-section Data. 5 Flo 2D Model. 6 Results of HMS Calibration. 7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5 7.1 Hydrograph using the Rainfall Runoff Model. 8 River Analysis (RAS) Model Simulation. 9 Flow Depth and Flood Hazard. 10 Inventory of Areas Exposed to Flooding. 11 Flood Validation. 11 Flood Validation. 12 Flore Conformation of Reference Points Used in the LIDAR Survey.	.42 .43 .49 .50 .53 .57 .59 .62 .62 .62 .62 .62 .62 .62 .63 .67 .72 .73 .74 .76 .76 .77 .78 .85 .01 .03 .04 .04

Annex 4. The LIDAR Survey Team Composition.	118
Annex 5. Data Transfer Sheet for Silaga Floodplain.	119
Annex 6. Flight logs for the flight missions.	121
Annex 7. Flight status reports.	133
Annex 8. Mission Summary Reports.	143
Annex 9. Silaga Model Basin Parameters.	
Annex 10. Silaga Model Reach Parameters.	185
Annex 11. Silaga Field Validation Points.	186
Annex 12. Educational Institutions Affected by flooding in Silaga Floodplain.	
Annex 13. Health Institutions affected by flooding in Silaga Floodplain.	

LIST OF TABLES

	2
Table 1. Flight planning parameters for the Aquarius LIDAR system	3
Table 2. Flight planning parameters for the Gemini LiDAK system.	3
Table 3. Description of the recovered NAMIRIA norizontal control point SMR-53, which was used as a base station	itor
the LIDAR acquisition.	6
Table 4. Details of the recovered NAMIRIA horizontal control point SMR-56 used as a base station for the LIL	
	/
lable 5. Details of the recovered NAMRIA horizontal control point SMR-58 used as a base station for the LIL	JAR
acquisition.	8
Table 6. Details of the recovered NAMRIA vertical control point SM-286 used as a base station for the LiDAR acquisit	tion
with established coordinates.	9
Table 7. Details of the recovered NAMRIA vertical control point SM-271 used as a base station for the LiDAR acquisit	tion
with established coordinates.	10
Table 8. Details of the recovered NAMRIA horizontal control point LYT-101s used as a base station for the Li	DAR
acquisition	11
Table 9. Details of the recovered and reestablished NAMRIA horizontal control point LYT-104 used as a base stat	tion
for the LiDAR acquisition.	12
Table 10. Details of the recovered NAMRIA vertical control point SM-309 used as a base station for the Li	DAR
acquisition with established coordinates.	13
Table 11. Ground control points that were used during the LiDAR data acquisition.	13
Table 12. Flight missions for the LiDAR data acquisition of the Silaga Floodplain	14
Table 13. Actual parameters used during the LiDAR data acquisition of the Silaga Floodplain	15
Table 14. List of municipalities and cities surveyed of the Silaga Floodplain LiDAR acquisition.	16
Table 15. Self-calibration Results values for Silaga flights.	21
Table 16. List of LiDAR blocks for Silaga floodplain.	22
Table 17. Silaga classification results in TerraScan.	26
Table 18. LiDAR blocks with its corresponding areas.	30
Table 19. Shift values of each LiDAR block of Silaga Floodplain.	32
Table 20. Calibration Statistical Measures.	36
Table 21. Validation Statistical Measures	37
Table 22. Quality Checking Ratings for Silaga Building Features.	39
Table 23. Building features extracted for Silaga floodplain.	.40
Table 24. Total length of extracted roads for Silaga floodplain	40
Table 25. Number of extracted water bodies for Silaga floodplain	41
Table 26. References used and control points established in the Silaga River Survey (Source: NAMRIA, LIP-TCAGP)	44
Table 27. The Baseline processing report for the Silaga River GNSS static observation survey.	49
Table 28. Constraints applied to the adjustment of the control points	50
Table 29 Adjusted grid coordinates for the control points used in the Silaga River flood plain survey	50
Table 20. Adjusted geodetic coordinates for control points used in the Silaga River Flood Plain survey	52
Table 30. Adjusted geodetic coordinates for control points used in the Silaga River Flood Flain valuation.	ions
(Source: NAMPIA, LID TCACD)	E 2
(Source: NAIVIRIA, UP-ICAOP).	
Table 32. RIDF values for the Tacioban Kain Gauge, as computed by PAGASA.	05
Table 33. Range of calibrated values for the Silaga River Basin	/4
Table 34. Efficiency lest of the Sliaga HMS Model.	75
Table 35. Peak values of the Silaga HEC-HIVIS Model outflow using the Tacloban RIDF 24-hour values	/6
Table 36. Municipalities affected in Silaga floodplain.	/8
Table 37. Affected areas in Basey, Samar during a 5-Year Rainfall Return Period	85
Table 38. Affected areas in Pinabacdao, Samar during a 5-Year Rainfall Return Period	86
Table 39. Affected areas in Villareal, Samar during a 5-Year Rainfall Return Period.	87
Table 40. Affected areas in Santa Rita, Samar by flood level for a 5-Year Rainfall Return Period	88
Table 41. Affected areas in Santa Rita, Samar by flood level for a 5-Year Rainfall Return Period.	88
Table 42. Affected Areas in Basey, Samar during 25-Year Rainfall Return Period	90
Table 43. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period	91
Table 44. Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period	92
Table 45. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period	93
Table 46. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period	93
Figure 84. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period	94
Figure 85. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period	94
Table 47. Affected Areas in Basey, Samar during 100-Year Rainfall Return Period	95

Table 48. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period.	96
Table 49. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period.	97
Table 50. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period.	98
Table 51. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period.	98
Table 52. Areas covered by each warning level with respect to the rainfall scenarios.	100
Table 53. Actual flood vs simulated flood depth at differnent levels in the Silaga River Basin.	
Table 54. Summary of the Accuracy Assessment in the Silaga River Basin Survey.	

LIST OF FIGURES

Figure 1 Man of the Silaga River Basin (in brown)	2
Figure 2. Flight Plan and hase stations used for the Silaga Floodnlain survey	<u>ہ</u> .
Figure 3. Photo (A) shows the GPS set-up over SMR-53 located near the flagnole of San Isidro Elementa	rv
School Bray San Isidro Santa Rita Samar: while Photo (R) denicts the close-up view of NAMRIA reference	
noint SMP E2 as recovered by the field team	6
Figure 4. Photo (A) shows the CPS set up over SMR E6 legated inside Cabacungan Elementary School, Bro	.0
Figure 4. Photo (A) shows the GPS set-up over Sivik-So located inside Cabacungan Elementary School, Big	,у. Г
Cabacungan, Sta. Rita, Samar; while Photo (B) presents a close-up view of NAIVIRIA reference point Sivi	к-
56 as recovered by the field team.	./
Figure 5. Photo (A) shows the GPS set-up over SMR-58 located inside Serum Elementary School, Brg	;y.
Serum, Basey; while Photo (B) depicts a close-up view of NAMRIA reference point SMR-58 as recovered l	зу
the field team	.8
Figure 6. Photo (A) shows the GPS set-up over SM-286 located at Dalid Bridge along the National Highwa	ау
in Brgy. San Pascual, Sta. Rita, Samar; while Photo (B) offers a close-up view of NAMRIA reference poi	nt
SM-286 as recovered by the field team	.9
Figure 7. Photo (A) depicts the GPS set-up over SM-271 located beside Kilometer Post 864 along the rig	ht
side of the National Highway, Bgry. Laygayon, Pinabacdao, Samar; while Photo (B) shows a close-up view	of
NAMRIA reference point SM-271 as recovered by the field team	LO
Figure 8. Photo (A) depicts the GPS set-up over LYT-101 located within the premises of MacArthur's Landir	ng
Memorial Park, Palo, Leyte; while Photo (B) shows a close-up view of NAMRIA reference point LYT-101	as
recovered by the field team	1
Figure 9. Photo (A) displays the GPS set-up over LYT-104 located and reestablished along a rice paddy tra	il,
approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastran	a,
Leyte; while Photo (B) shows a close-up view of NAMRIA reference point LYT-104 as recovered by the fie	ld
team	12
Figure 10. Actual LiDAR survey coverage of the Silaga Floodplain	17
Figure 11. Schematic diagram for Data Pre-processing Component.	18
Figure 12. Smoothed Performance Metric Parameters of Silaga Flight 1444A.	19
Figure 13. Solution Status Parameters of Silaga Flight 1444A.	20
Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Silaga Floodplain.	21
Figure 15. Boundaries of the processed LiDAR data over the Silaga Floodplain.	22
The total area covered by the Silaga missions is 1070.01 sq.km that is comprised of twelve (12) flig	ht
acquisitions grouped and merged into eight (8) blocks as shown in Table 16	22
Figure 16. Image of data overlap for Silaga floodplain	23
Figure 17. Pulse density man of merged LiDAR data for Silaga floodplain	4
Figure 18. Elevation Difference Map between flight lines for Silaga Eloodplain Survey	25
Figure 19. Quality checking for Silaga flight 14444A using the Profile Tool of OT Modeler	26
Figure 20. Tiles for Silaga floodplain (a) and classification results (b) in TerraScan	.0
Figure 21. Point cloud before (a) and after (b) classification	7
Figure 22. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary DTM (d)
in some nortion of Silaga floodnlain	28
Figure 23 Silaga Floodplain with the available orthonhotographs	29
Figure 24. Sample orthonhotograph tiles for Silaga Floodplain	20
Figure 25. Portions in the DTM of Silaga Floodplain – a bridge before (a) and after (b) manual editing.	20
naddy field before (c) and after (d) data retrieval: and a building before (e) and after (f) manual editing.	21
Figure 28. Correlation plot between calibration survey points and LiDAP data	26
Figure 20. Correlation plot between validation survey points and LiDAR data.	50
Figure 29. Correlation plot between valuation survey points and LiDAR data.)/)0
Figure 20. Map of Silaga houpidin.	20
Figure 31. Blocks (III blue) of Silaga bulluling reduites that were subjected to QC.	11
Figure 32. Extinction reduites of the Sildge Floorpidill	+1 12
rigure 55. Extent of the bathymetric survey (in blue fine) in Slidga River.	+2
and the LIDAR Udia Valluation Survey (111 FEU).	+Z 12
FIGURE 24. THE CIVES INCLIMENT RESIDENTION THE HILD SINGLE RIVER SUIVEY.	ŀΟ
Figure 55. The downs base receiver setup, Himble" SPS 852, at SiviE-18, IOCated Inside San JOSE Elementa School, Prov. Cancilador in the Municipality of Hornani, Eastern Samar	1 Y
School, Digy. Canchedes in the Winnicipality Of Hernalli, Eastern Samar	F)
rigure 50. The approach of Llorente, Eastern Serup, at SE-85, located at the approach of Llorente Bridg	39
III DIGY. 11, WUMULPHILY UI LIVIENLE, Edstern Schuldten and State	C4
rigule 57. The GNSS (THIMDIE" SPS 882) receiver occupation, at SME-12, located in Brgy. San Migue	;1

Municipality of Balangiga, Eastern Samar	.46
Figure 38. The GNSS (Trimble® SPS 852) base occupation at SMR-3322, located at the approach of Gold	len
Bridge in Brgy. Binongtu-an in the Municipality of Basey, Samar	.46
Figure 39. The GNSS (Trimble® SPS 852) base occupation at SE-49, located in Brgy. Aguinaldo, Municipal	lity
of General MacArthur, Eastern Samar	.47
Figure 40. The GNSS (Trimble® SPS 882) base occupation , at SM-33S, located in Brgy. Pinalanga in t	the
Municipality of Marabut, Samar	.47
Figure 41. The GNSS receiver occupation, Trimble [®] SPS 882, at UP-CNG, located at the approach of Ca	an-
Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar	.48
Figure 42. The GNSS receiver occupation, Trimble [®] SPS 882, at UP-SLG, located at the approach of Sila	aga
Bridge in Brgy. Tominamos in the Municipality of Sta Rita, Samar	.48
Figure 43. Downstream side of the Silaga Bridge.	53
Figure 44. The Cross-section survey conducted at Silaga Bridge in Brgy. Tominamos, Sta. Rita, Samar	53
Figure 45. Location map of the Silaga Bridge cross-section survey.	.54
Figure 46. The Silaga Bridge cross-section survey drawn to scale.	.55
Figure 47. The Silaga Bridge as-built survey data.	.56
Figure 48. Painting of water level markings on Silaga Bridge.	.57
Figure 49. The validation point acquisition survey setup using a GNSS receiver fixed in a van along the Sila	aga
River Basin	57
Figure 50 Extent of the LiDAR ground validation survey along Samar and Eastern Samar	58
Figure 51. Photos showing (a) setup for the Bathymetric Survey in Silaga River: (b) use of portable sound	der
in measuring the deener parts of the river	59
Figure 52 Extent of the Silaga River Bathymetry Survey in Stal Rita Samar	60
Figure 52. The Silaga river had profile	61
Figure 55. The Silaga Tiver bed profile	.01
Figure 54. Location filap of the Silaga Pridge	.05
Figure 55. Cross-section piot of the Silaga Bridge in Sta. Dita Samar	.04
Figure 50. Rating curve of the Silaga Bridge in Sta. Rita, Samar	.04
Figure 57. Rainfall and outflow data of the Silaga River Basin, which was used for modeling	.05
Figure 58. Location of the Tacloban RIDF station relative to the Silaga River Basin	.66
Figure 59. Synthetic storm generated for a 24-hour period rainfail for various return periods	.66
Figure 60. Soli Map of Silaga River Basin.	.67
Figure 61. Land Cover Map of Silaga River Basin.	.68
Figure 62. Slope Map of Silaga River Basin.	.69
Figure 63. Stream Delineation Map of Silaga River Basin.	.70
Figure 64. Silaga river basin model generated in HEC-HMS.	.71
Figure 65. River cross-section of the Silaga River through the ArcMap HEC GeoRas tool	.72
Figure 66. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-	·2D
Grid Developer System Pro (FLO-2D GDS Pro).	.73
Figure 67. Outflow hydrograph of Silaga produced by the HEC-HMS model compared with observed outflo	ow.
	.74
Figure 68. The Outflow hydrograph at the Silaga Station, generated using the simulated rain events for 2	24-
hour period for Tacloban station	76
Figure 69. Sample output map of the Silaga RAS Model	.77
Figure 70. A 100-year flood hazard map for the Silaga Floodplain	.79
Figure 71. A 100-year Flow Depth Map for the Silaga Floodplain	.80
Figure 72. A 25-year Flood Hazard Map for Silaga Floodplain	.81
Figure 73. A 25-year Flow Depth Map for Silaga Floodplain	.82
Figure 74. A 5-year Flood Hazard Map for Silaga Floodplain	.83
Figure 75. A 5-year Flow depth map for Silaga floodplain.	.84
Figure 76. Affected areas in Basey, Samar during a 5-Year Rainfall Return Period	.85
Figure 77. Affected areas in Pinabacdao, Samar during a 5-Year Rainfall Return Period	.86
Figure 78. The specifically affected areas in Villareal, Samar during a 5-Year Rainfall Return Period	.87
Figure 79. The affected Areas in Santa Rita, Samar during 5-Year Rainfall Return Period.	.89
Figure 80. The specifically affected areas in Santa Rita. Samar during a 5-Year Rainfall Return Period.	.89
Figure 81. Affected Areas in Basey. Samar during 25-Year Rainfall Return Period.	.90
Figure 82. Affected Areas in Pinabacdao. Samar during 25-Year Rainfall Return Period.	.91
Figure 83. Affected Areas in Villareal. Samar during 25-Year Rainfall Return Period.	.92
Figure 86. Affected Areas in Basey. Samar during 100-Year Rainfall Return Period	.95
Figure 87. Affected Areas in Pinabacdao. Samar during 100-Year Rainfall Return Period.	.96
Figure 88. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period	.97
,	- I

Figure 89. Affected Areas in Santa Rita, Samar during 100-Year Rainfall Return Period	99
Figure 90. Affected Areas in Santa Rita, Samar during 100-Year Rainfall Return Period	99
Figure 91. Validation points for a 5-year Flood Depth Map of the Silaga Floodplain.	101
Figure 92 . Flood map depth vs actual flood depth.	102

LIST OF ACRONYMS AND ABBREVIATIONS

Х

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment fo Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM	Digital Terrain Model				
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
HC	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				
	····,				

IMU	Inertial Measurement Unit				
kts	knots				
LAS	LiDAR Data Exchange File format				
LC	Low Chord				
LGU	local government unit				
Lidar	Light Detection and Ranging				
LMS	LiDAR Mapping Suite				
m AGL	meters Above Ground Level				
MMS	Mobile Mapping Suite				
MSL	mean sea level				
NSTC	Northern Subtropical Convergence				
PAF	Philippine Air Force				
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration				
PDOP	Positional Dilution of Precision				
РРК	Post-Processed Kinematic [technique]				
PRF	Pulse Repetition Frequency				
PTM	Philippine Transverse Mercator				
QC	Quality Check				
QT	Quick Terrain [Modeler]				
RA	Research Associate				
RIDF	Rainfall-Intensity-Duration-Frequency				
RMSE	Root Mean Square Error				
SAR	Synthetic Aperture Radar				
SCS	Soil Conservation Service				
SRTM	Shuttle Radar Topography Mission				
SRS	Science Research Specialist				
SSG	Special Service Group				
ТВС	Thermal Barrier Coatings				
VSU	Visayas State University				
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry				
UTM	Universal Transverse Mercator				
WGS	World Geodetic System				

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SILAGA RIVER

Enrico C. Paringit, Dr. Eng., Engr. Florentino F. Morales, Jr., and Engr. Omar P. Jayag

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Silaga River Basin

The Silaga River Basin lies along the municipalities of Pinabacdao, Basey, and Sta. Rita in the province of Samar on the island of the same name. Based on the DENR River Basin Control Office (RBCO), it has a drainage area of 204 km2 bounded by the Samar mountain range on the east side with an estimated 388 million cubic-meter (MCM) annual run-off that drains into the San Juanico Strait between Samar and Leyte islands). Located in the Western part of Sta. Rita is Silaga River, which is part of the 28 river systems in the region of Eastern Visayas.

There are two types of climate predominant in the region under the Corona system of classification: Type II and Type IV; the former characterized by a climate with no dry season but a pronounced maximum rainfall from November to January, while the latter has an even distribution of rainfall all year round and a short period of dry season that can be observed starting February up to May. Samar Island falls under the Type II climate.

In general, the Silaga River Basin has an undulating terrain in the upper section of the basin with a maximum elevation of only 280 meters above sea level. On the other hand, the lower and central sections of the basin have flat to low slope areas, which are very suitable for agriculture. The shape of the basin is nearly circular, which will probably yield a moderate sharp peak of flood discharge than a narrow and long-shaped basin. The basin has a dendritic pattern of river networks, which is a very common pattern in the region. It also has a 4th order stream, so it is considered one of the major river basins in the Eastern Visayas province.

Santa Rita, the locality where the Silaga River is located, is categorized as a 3rd class municipality in the province of Samar. It has a total population of 41,591 people, according to the 2015 National Census (PSA, 2017). A total of 10,734 people are currently residing along the Silaga River, distributed among nine (9) barangays, namely: Tulay, Tominamos, Camayse, Anibongan, Old Manunca, New Manunca, Aslum, Lupig, and La Paz. Since most of these barangays are agricultural areas, the main source of livelihood in the aforesaid communities is farming, particularly growing lowland and upland rice and corn. Fishing, however, is still a primary source of income alongside farming. Dense mangrove areas are also found in the coastline

Figure 1. Map of the Silaga River Basin (in brown)

The municipality of Sta. Rita, Samar is also one of the most disaster-prone areas in the Philippines, as it was among the most devastated areas when Typhoon Haiyan (Local Code Name: Yolanda) struck on November 8, 2013, which was dubbed the strongest and deadliest typhoon in the country's recorded history. A year after, Sta. Rita, alongside other neighboring localities, was also hit by Typhoon Hagupit (Local Code Name: Ruby) on December 6, 2014. In times of disasters, the San Juanico Bridge serves as the main conduit for aid and relief goods and services to Santa Rita and the rest of Eastern Samar, as it is directly connected to the latter.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SILAGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Christopher Joaquin

and Jasmine Domingo.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Silaga Floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the Silaga Floodplain in Samar. These missions were planned for 14 lines each, which ran for, at most, four and a half (4.5) hours including takeoff, landing, and turning time using two sensors – the Gemini and Aquarius (See Annex 1 for sensor specifications). The flight planning parameters¹ for the LiDAR system are outlined in Table 1. Figure 2, on the other hand, shows the flight plan for the Silaga Floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33E	600	30	36	70	50	120	5
BLK33F	600	30	36	70	50	120	5
BLK33G	600	30	36	70	50	120	5
BLK33H	600	30	36	70	50	120	5

Table 1. Flight planning parameters for the Aquarius LiDAR system.

Table 2. Flight planning parameters for the Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33A	850	30	40	125	50	130	5
BLK33B	850	30	40	125	50	130	5
BLK34H	850	30	40	125	50	130	5
BLK34I	850	30	50	125	40	130	5
BLK34J	850	30	50	125	40	130	5
BLK34K	850	30	40	125	50	130	5
BLK34M	850	30	40	125	40	130	5

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2. Flight Plan and base stations used for the Silaga Floodplain survey.

2.2 Ground Base Stations

The field team for this undertaking was able to recover four (4) NAMRIA horizontal ground control points, namely: SMR-53, SMR-56, SMR-58, and LYT-101, which are all of second (2nd) order accuracy. The team also reestablished ground control point LYT-104, a NAMRIA reference point of third (3rd) order accuracy. Three (3) NAMRIA benchmarks were also recovered, specifically: SM-286, SM-271, and SM-309, which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points.

The certification for the NAMRIA reference points and benchmarks are found in Annex 2, while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey from May 3-13, 2014 and January 29-February 6, 2016. Dual frequency GPS receivers Trimble SPS 852 and SPS 985 were used to observe the base stations. Figure 2 delineates the flight plans and locations of the base stations used during the aerial LiDAR acquisition of the Silaga Floodplain. The list of team members are found in Annex 4.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Silaga Floodplain LiDAR Survey. Figure 3 to Figure 9 below depict the recovered NAMRIA reference points within the area of the floodplain, while Table 3 to Table 10 show the details about the following NAMRIA control stations and established points. Table 11, on the other hand, shows the list of all ground control points occupied during the LiDAR acquisition with their corresponding dates of utilization.

Figure 3. Photo (A) shows the GPS set-up over SMR-53 located near the flagpole of San Isidro Elementary School, Brgy. San Isidro, Santa Rita, Samar; while Photo (B) depicts the close-up view of NAMRIA reference point SMR-53 as recovered by the field team.

Table 3. Description of the recovered NAMRIA horizontal control point SMR-53, which was used as a base stationfor the LiDAR acquisition.

Station Name	SMR-53			
Order of Accuracy	2nd			
Relative Error (Horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 30' 17.85657" North 125o 1' 29.837339" East 26.13400 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	502722.403 meters 1272180.079 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 30' 13.52495" North 125o 1' 34.96980" East 87.78700 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	720874.14 meters 127513.40 meters		

(a) Figure 4. Photo (A) shows the GPS set-up over SMR-5 Cabacungan, Sta. Rita, Samar; while Photo (B) presents recovered by the Table 4. Details of the recovered NAMRIA horizontal con- the LiDAR is	6 located inside Cabacungar a close-up view of NAMRIA the field team. htrol point SMR-56, which v acquisition.	(b) (b) Elementary School, Brgy. reference point SMR-56 as vas used as a base station for
Station Name	SM	R-56
Order of Accuracy	2	nd
Relative Error (Horizontal positioning)	1:50),000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	110 23' 6.52702" North 1250 0' 23.99607" East 11.82200 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	500727.475 meters 1258927.861 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 23' 2.22413" North 125o 0' 29.13917" East 73.72700 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	718970.61 meters 1259244.38 meters

Figure 5. Photo (A) shows the GPS set-up over SMR-58 located inside Serum Elementary School, Brgy. Serum, Basey; while Photo (B) depicts a close-up view of NAMRIA reference point SMR-58 as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point SMR-58, which was used as a base station for the LiDAR acquisition.

Station Name	SMR-58				
Order of Accuracy	2nd				
Relative Error (horizontal positioning)	1:50	0,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 17' 55.05617" North 125o 7' 51.16145" East 6.30062 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	514288.239 meters 1249361.531 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 17' 50.78580" North 125o 7' 56.31100" East 68.72300 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992	Easting Northing	732600.57 meters 1249768.75 meters			

Figure 6. Photo (A) shows the GPS set-up over SM-286 located at Dalid Bridge along the National Highway in Brgy. San Pascual, Sta. Rita, Samar; while Photo (B) offers a close-up view of NAMRIA reference point SM-286 as recovered by the field team.

Table 6. Details of the recovered NAMRIA vertical control point SM-286, which was used as a base station for the LiDAR acquisition with established coordinates.

Station Name	SM-286					
Order of Accuracy	21	nd				
Relative Error (horizontal positioning)	1:50	,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 24' 35.73" North 124o 59' 44.05" East 5.47 meters				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	499516.558 meters 1261668.44 meters				
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 24' 30.81671" North 124o 59' 48.35250" East 67.268 meters				
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	717869.251 meters 1261905.903 meters				

Figure 7. Photo (A) depicts the GPS set-up over SM-271 located beside Kilometer Post 864 along the right side of the National Highway, Bgry. Laygayon, Pinabacdao, Samar; while Photo (B) shows a close-up view of NAMRIA reference point SM-271 as recovered by the field team.

Table 7. Details of the recovered NAMRIA vertical control point SM-271, which was used as a base station for the LiDAR acquisition with established coordinates.

Station Name	SM-271					
Order of Accuracy	2nd (order				
Relative Error (horizontal positioning)	1:50),000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 31' 31.48945" North 125o 01' 36.88429" East 82.083 meters				
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 31' 27.15288" North 125o 01' 34.96980" East 143.69 meters				
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	721071.742 meters 1274777.721 meters				

(a)

Figure 9. Photo (A) displays the GPS set-up over LYT-104 located and reestablished along a rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte; while Photo (B) shows a close-up view of NAMRIA reference point LYT-104 as recovered by the field team.

Station Name	LYT-104					
Order of Accuracy	2nd (order				
Relative Error (horizontal positioning)	1:50),000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11°08'38.92234" North 124o 53' 13.52786" East 33.659 meters				
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing Ellipsoidal Height	11°08'34.67033" North 124o 53' 18.69323" East 95.861 meters				
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Latitude Longitude	706089.510m 1232496.838				

Table 9. Details of the recovered and reestablished NAMRIA horizontal control point LYT-104, which was used as a base station for the LiDAR acquisition.

Table 10. Details of the recovered NAMRIA vertical control point SM-309, which was used as a base station for the LiDAR acquisition with established coordinates.

	v				
Station Name	SM-309				
Order of Accuracy		2nd order			
Relative Error (horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 17' 59.30748" North 125o 06' 56.29744" East 9.743 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 17' 55.03553" North 125o 07' 01.44700" East 72.125 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	730935.362 meters 1249887.315 meters			

Table 11. Ground control points that were used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 3, 2014	1410A	AQUATACTF123A	SMR-56 and SM-286
May 4, 2014	1414A	AQUATACTF124A	SMR-56 and LYT-101
May 10, 2014	1438A	3BLK34O130A	SMR-56 and SM-286
May 10, 2014	1440A	3BLK34OSP130B	SMR-56 and SM-286
May 11, 2014	1442A	3BLK34PS131A	SMR-56 and SM-286
May 11, 2014	1444A	3BLK34PSQ131B	SMR-56 and SM-286
May 13, 2014	1450A	3BLK34QS133A	SMR-56 and SM-286
May 13, 2014	1452A	3BLK34QS133B	SMR-56 and SM-286
January 29, 2016	3727G	2BLK34IJ029B	SMR-53 and SM-271
January 30, 2016	3729G	2BLK34HJ030A	SMR-53 and LYT-104
February 5, 2016	3753G	2BLK34K33AB036A	SMR-58 and SM-309
February 6, 2016	3757G	2BLK34K037A	SMR-58 and SM-309

2.3 Flight Missions

A total of twelve (12) flight missions were conducted to complete the LiDAR data acquisition of the Silaga Floodplain, amounting to forty-seven hours and six minutes (47+6) of flying time for aircrafts RP-C9122 and RP-C9022 (See Annex 6). All missions were acquired using the Aquarius and Gemini LiDAR systems. As shown below, the total area of actual area coverage and the corresponding flying hours are depicted in Table 12, while the actual parameters used during the LiDAR data acquisition are presented Table 13.

Table 12. Flight missions for the LiDAR data acquisition of the Silaga Floodplain.

ing urs	Min	47	11	41	11	47	35	23	53	05	11	17	05	9
FIV	H	4	m	4	m	4	4	2	m	4	4	4	m	Ó
No. of Images (Frames)		772	649	1855	686	1536	1290	507	819	NA	NA	NA	NA	47
Area Surveyed Outside the	Floodplain (km2)	128.18	67	132.41	72.31	113.12	74.76	27.75	63.91	104.54	82.5	68.14	38.06	8417
Area Surveyed	within the Floodplain (km2)	0.18	0.14	25.29	34.89	37.30	52.96	25.31	12.81	44.48	31.07	25.50	39.88	972.68
Surveyed Area (km2)		128.36	67.14	157.70	107.20	150.42	127.72	53.06	76.72	149.02	113.57	93.64	77.94	329.81
Flight Plan Area (km2)		176.92	176.92	169.38	334.03	164.65	297.68	133.03	309.95	114.1	110.62	148.61	86.64	1302.49
Flight Number		1410A	1414A	1438A	1440A	1442A	1444A	1450A	1452A	3727G	3729G	3753G	3757G	2222.53
Date Surveyed		May 3, 2014	May 4, 2014	May 10, 2014	May 10, 2014	May 11, 2014	May 11, 2014	May 13, 2014	May 13, 2014	January 29, 2016	January 30, 2016	February 5, 2016	February 6, 2016	TOTAL

ι Floodplain.
quisition of the Silaga
g the LiDAR data acc
ameters used during
Table 13. Actual par

	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
	600	30	36	70	50	120	Ω
	600	30	36	70	50	120	Ω
	600	30	36	70	50	120	Ū
	600	30	36	70	50	120	Ω
	600	30	36	70	50	120	Ω
-	600	30	36	70	50	120	5
	600	30	36	70	50	120	Ω
	600	30	36	70	50	120	Ω
	800	30	50	125	40	130	2
	650	30	40	125	50	130	5
	850	30	40	125	50	130	ъ
	850	30	40	125	50	130	2

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Silaga floodplain (See Annex 7). It is located in the province of Samar, majority of which is situated within the municipality of Santa Rita. The survey predominantly covered the municipalities of Villareal, Talalora, Santa Rita, and San Sebastian. Table 14 shows the list of municipalities and cities surveyed with at least one (1) square kilometer coverage; Figure 10, on the other hand, shows the actual coverage of the LiDAR acquisition for the Silaga Floodplain.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Eastern Samar	Balangiga	206.52	46.45	22.49%
Leyte	Lawaan	141.75	5.68	4.01%
Samar	Babatngon	136.57	42.92	31.43%
	Villareal	130.22	127.61	98.00%
	Santa Rita	250.37	243.71	97.34%
	Talalora	26.56	25.73	96.88%
	San Sebastian	15.84	15.17	95.77%
	Pinabacdao	118.38	62.12	52.48%
	Basey	627.97	206.67	32.91%
	Calbiga	216.76	71.98	33.21%
	Daram	3.18	2.91%	
TOTA	۱L	1980.20	851.22	42.99%

Table 14. List of municipalities and cities surveyed of the Silaga Floodplain LiDAR acquisition.

Figure 10. Actual LiDAR survey coverage of the Silaga Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE SILAGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Gladys Mae Apat, Engr. Ma. Ailyn L. Olanda, Jovy Anne S. Narisma, Engr. Jommer M. Medina, Nereo Joshua G. Pecson, and Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Silaga floodplain can be found in Annex 5. Missions flown during the first survey conducted on May 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system while missions acquired during the second survey on February 2016 were flown using the Gemini system over Sta. Rita, Samar.

The Data Acquisition Component (DAC) transferred a total of 168.57 Gigabytes of Range data, 2.43 Gigabytes of POS data, 82.168 Megabytes of GPS base station data, and 442.2 Gigabytes of raw image data to the data server on June 4, 2014 for the first survey and February 6, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Silaga was fully transferred on February 26, 2016, as indicated on the Data Transfer Sheets for Silaga floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1444A, one of the Silaga flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 11, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Silaga Flight 1444A.

The time of flight was from 22000 seconds to 34500 seconds, which corresponds to afternoon of May 11, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure B-2 shows that the North position RMSE peaks at 1.20 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 2.90 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Silaga Flight 1444A.

The Solution Status parameters of flight 1444A, one of the Silaga flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Most of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Silaga flights is shown in Figure 14.

Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Silaga Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 164 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Silaga floodplain are given in Table 15.

Parameter	Acceptable Value	Value
Boresight Correction stdev)	<0.001degrees	0.000498
IMU Attitude Correction Roll and Pitch Correction stdev)	<0.001degrees	0.000997
GPS Position Z-correction stdev)	<0.01meters	0.0088

The optimum accuracy were obtained for all Silaga flights based on the computed standard deviations of the orientation parameters. Standard deviation values for individual blocks are available in the Mission Summary Reports in Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundaries of the processed LiDAR data on top of a SAR Elevation Data over Silaga Floodplain.

The total area covered by the Silaga missions is 1070.01 sq.km that is comprised of twelve (12) flight acquisitions grouped and merged into eight (8) blocks as shown in Table 16.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Samar_Leyte_Blk33E	1414A	161.35
	1452A	
Samar_Leyte_Blk33E_additional	1410A	92.55
Samar_Leyte_Blk33F	1438A	227.31
	1440A	
Sama_Leyte_Blk33G	1440A	217.86
Samar_Leyte_Blk33H	1444A	174.97
	1450A	
	1452A	
Leyte_Blk33F	3753G	88.74
	3757G	
Leyte_Blk33H	3727G	78.99
Leyte_Blk33H_additional	3729G	28.24
TOTAL		1070.01 sq.km

Table 16. List of LiDAR blocks for Silaga floc	odplain.
--	----------

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Silaga floodplain.

The overlap statistics per block for the Silaga floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.89% and 46.76% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Silaga floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.72 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Silaga floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Areas indicate portions where elevations of a previous flight line. Areas with bright red or bright blue area by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue area by more to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation Difference Map between flight lines for Silaga Floodplain Survey.

A screen capture of the processed LAS data from a Silaga flight 1444A loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Silaga flight 14444A using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	416,539,503
Low Vegetation	295,000,845
Medium Vegetation	1,112,145,741
High Vegetation	1,134,827,163
Building	22,191,351

Table 17. Silaga classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Silaga floodplain is shown in Figure 20. A total of 1,566 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 17. The point cloud has a maximum and minimum height of 419.70 meters and 52.08 meters respectively.

Figure 20. Tiles for Silaga floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Silaga floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,163 1km by 1km tiles area covered by Silaga floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Silaga floodplain attained a total of 620.52 sq.km in orthophotogaph coverage comprised of 8,889 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

Figure 24. Sample orthophotograph tiles for Silaga Floodplain.

3.8 DEM Editing and Hydro-Correction

Eight (8) mission blocks were processed for Silaga flood plain. These blocks are composed of SamarLeyte and Leyte blocks with a total area of 1,070.01 square kilometers. Table 18 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Samar_Leyte_Blk33H	174.97
Samar_Leyte_Blk33G	217.86
Samar_Leyte_Blk33F	227.31
Samar_Leyte_Blk33E_additional	92.55
Samar_Leyte_Blk33E	161.35
Leyte_Blk33F	88.74
Leyte_Blk33H	78.99
Leyte_Blk33H_additional	28.24
TOTAL	1070.01 sq.km

Table 18. LiDAR blocks with its corresponding areas.

Figure 25 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 25a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 25b). Likewise, the paddy field (Figure 25c) was misclassified and removed during the classification process. To complete the surface, the paddy field (Figure 25d) was retrieved and reclassified through manual editing to allow the correct water flow. As well, a lone building (Figure 25e) was still present in the DTM after the classification process. To correct this, the building was removed through manual editing (Figure 25f).

Figure 25. Portions in the DTM of Silaga Floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Silaga floodplain is shown in Figure 26. It can be seen that the entire Silaga floodplain is 100% covered by LiDAR data.

Mission Blocks	Sł	Shift Values (meters)		
	x	У	z	
Samar_Leyte_Blk33H	1.00	0.00	-0.62	
Samar_Leyte_Blk33G	0.00	0.00	-0.62	
Samar_Leyte_Blk33F	0.00	0.00	-0.62	
Samar_Leyte_Blk33E_additional	0.00	0.00	-0.36	
Samar_Leyte_Blk33E	0.00	0.00	-0.54	
Leyte_Blk33F	-1.00	1.00	-4.56	
Leyte_Blk33H	1.00	0.00	-1.00	
Leyte_Blk33H_additional	1.00	0.00	-0.94	

Table 19. Shift values of each LiDAR block of Silaga Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Samar to collect points with which the LiDAR dataset is validated is shown in Figure 27, with the validation survey points highlighted in green. A total of 28,096 survey points were gathered for all the floodplains within Eastern and Western Samar wherein Silaga is located. However, this point dataset was not used for the calibration of the LiDAR data for the Silaga Floodplain because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Silaga can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values were also applicable to the Silaga DEM.

Figure 27. Map of Silaga Floodplain with validation survey points in green.

Calibration Statistical Measures	Value (meters)
Height Difference	0.14
Standard Deviation	0.13
Average	-0.05
Minimum	-0.65
Maximum	0.50

A total of 2,158 survey points lie within Silaga flood plain and were used for the validation of the calibrated Silaga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.12 meters, as shown in Table 21.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Silaga with 947 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.07 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Silaga integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Silaga floodplain.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Silaga floodplain, including its 200 m buffer, has a total area of 208.01 sq km. For this area, a total of 6.0 sq. km., corresponding to a total of 1031 building features, are considered for QC. Figure 31 shows the QC blocks for Silaga floodplain.

3.12.2 Height Extraction

Height extraction was done for 5,690 building features in Silaga floodplain. Of these building features, none was filtered out after height extraction, resulting to 5,690 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 8.74 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 23 summarizes the number of building features per type. On the other hand, Table 24 shows the total length of each road type, while Table 25 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	5,486
School	83
Market	1
Agricultural/Agro-Industrial Facilities	16
Medical Institutions	2
Barangay Hall	9
Military Institution	14
Sports Center/Gymnasium/Covered Court	10
Telecommunication Facilities	1
Transport Terminal	0
Warehouse	4
Power Plant/Substation	3
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	18
Bank	0
Factory	0
Gas Station	1
Fire Station	0
Other Government Offices	21
Other Commercial Establishments	21
Total	5,690

Table 24.	Total length	of extracted	roads for S	Silaga floodplain.
1 4010 2 1.	1 Ocal lengen	or enteracted	104401010	Junga Hooapiani.

Floodplain		Road I	Network Length	n (km)		Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Silaga	22.95	13.63	0.00	19.77	0.00	56.35

	Table 25. Nui	mber of extracted	l water bodies fo	r Silaga floodj	plain.		
Floodplain	Water Body Type Total						
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen		
Silaga	157	49	0	0	0	206	

A total of 44 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Silaga floodplain overlaid with its ground features.

Figure 32. Extracted features of the Silaga Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, Rodel C. Alberto, Marck Lorenz R. Taguse, and Mary Cibyl J. Atacador

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The first and second river survey in the Silaga River were conducted on September 10 to 24, 2014 (Samar Phase 1) and on December 4 to 18, 2014 (Samar Phase 2) respectively. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point; (ii) the cross-section survey, bridge as-built survey, and water level marking in the Mean Sea Level (MSL) of the Silaga Bridge (for Samar Phase 1) and (iv) the bathymetric survey of the Silaga River (for Samar Phase 2) from Brgy. Tulay down to Brgy. La Paz, where the mouth of the river is located; which reached an estimated length of 16.34 kms. using the PPK GNSS Survey Technique. Figure 33 illustrates the extent of the Silaga River Bathymetric Survey.

Figure 33. Extent of the bathymetric survey (in blue line) in Silaga River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network utilized for the Silaga River Basin is composed of three (3) loops and a baseline that was established on September 12, 13, 17, and 19, 2014, which occupied the following reference points: SME-18, a second-order GCP in Barangay Canciledes in the Municipality of Hernani and SE-85, a first-order BM in Barangay 11 Poblacion in the Municipality of Llorente; both of which are located in Eastern Samar.

Two control points were established along the approach of two bridges, namely UP-CNG at the Can-Obing Bridge in Barangay Can-Abong, Borongan City, Eastern Samar and UP-SLG at the Silaga Bridge, Brgy. Tominamos in the Municipality of Sta. Rita, Samar. Alongside this, the respective NAMRIA-established control points were also used as markers in the survey: SME-12 in Brgy. San Miguel, Municipality of Balangiga and SE-49 in Brgy. Aguinaldo, Municipality of General MacArthur; both located in the province of Eastern Samar; and SMR-3322 in Brgy. Binongtu-an, Municipality of Basey and SM-335 in Pinalanga, Municipality of Marabut; both located in the province of Samar. Table 26 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 34 shows the GNSS network established in the Silaga River Survey.

Figure 34. The GNSS Network established in the Silaga River Survey.

Ċ.	
UP-TCAGP)	
: NAMRIA, 1	
(Source	
ver Survey	
le Silaga Ri	
lished in th	
ooints estab	
nd control p	
used a	
References	
Table 26.	

ol Point	Order of Accuracy		Geographi	c Coordinates (WGS {	34)	
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
E-18	2nd Order GCP	11°21'43.08127"	125°36'37.41862"	78.217	17.66	Sep 12, 2014
-85	1st Order BM	11°24'45.65441"	125°32'20.98934"	67.52	6.31	Sep 12, 2014
E-12	Used as Marker	11°07'19.15395"	125°21'29.28283"	67.212	2.721	Sep 13, 2014
-3322	Used as Marker	11°17'40.55190"	125°07'10.82309"	70.666	6.636	Sep 17, 016
-49	Used as Marker	11°12'34.48802"	125°31'52.42238"	66.981	3.779	Sep 13, 2014
-33S	Used as Marker	11°07'33.79721"	125°12'32.14831"	68.705	3.951	Sep 17, 2014
CNG	UP Established	11°35'44.92939"	125°26'23.62776"	67.094	6.035	Sep 12, 2014
SLG	UP Established	11°27'57.66166"	125°01'08.84182"	73.078	9.958	Sep 19, 2014

Figure 35 to Figure 42 depict the setup of the GNSS on recovered reference points and established control points in the Silaga River.

Figure 35. The GNSS base receiver setup, Trimble® SPS 852, at SME-18, located inside San Jose Elementary School, Brgy. Canciledes in the Municipality of Hernani, Eastern Samar.

Figure 36. The GNSS (Trimble® SPS 882) receiver setup at SE-85, located at the approach of Llorente Bridge in Brgy. 11, Municipality of Llorente, Eastern Samar

Figure 37. The GNSS (Trimble® SPS 882) receiver occupation, at SME-12, located in Brgy. San Miguel, Municipality of Balangiga, Eastern Samar.

Figure 38. The GNSS (Trimble® SPS 852) base occupation at SMR-3322, located at the approach of Golden Bridge in Brgy. Binongtu-an in the Municipality of Basey, Samar.

Figure 39. The GNSS (Trimble® SPS 852) base occupation at SE-49, located in Brgy. Aguinaldo, Municipality of General MacArthur, Eastern Samar.

Figure 40. The GNSS (Trimble® SPS 882) base occupation , at SM-33S, located in Brgy. Pinalanga in the Municipality of Marabut, Samar.

Figure 41. The GNSS receiver occupation, Trimble® SPS 882, at UP-CNG, located at the approach of Can-Obing Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar.

Figure 42. The GNSS receiver occupation, Trimble® SPS 882, at UP-SLG, located at the approach of Silaga Bridge in Brgy. Tominamos in the Municipality of Sta Rita, Samar.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 27 presents the baseline processing results of control points in the Silaga River Basin, as generated by the TBC software.

Table 27. The Baseline processing report for the Silaga River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SME-18 SE-85	09-12-14	Fixed	0.004	0.015	305°49'17″	9586.978	-10.699
SME-18 SE-85	09-12-14	Fixed	0.005	0.033	305°49′17″	9586.977	-10.719
SME-18 UP-CNG	09-12-14	Fixed	0.003	0.013	324°17′44″	31862.046	-11.107
SME-18 SE-49	09-13-14	Fixed	0.003	0.016	207°09'17"	18943.356	-11.212
UP-CNG SE-85	09-12-14	Fixed	0.005	0.041	331°52′51″	22970.859	-0.416
SE-85 UP- CNG	09-12-14	Fixed	0.007	0.019	331°52′51″	22970.857	-0.437
SE-49 SME-12	09-13-14	Fixed	0.004	0.019	242°52′57″	21244.542	0.227
SME-12 SM-33S	09-17-14	Fixed	0.004	0.017	271°35′44″	16305.472	1.501
SME-12 SM-33S	09-17-14	Fixed	0.019	0.033	271°35′44″	16305.477	1.450
SME-12 SMR-3322	09-17-14	Fixed	0.003	0.014	306°16′15″	32291.859	3.461
SME-18 SME-12	09-13-14	Fixed	0.004	0.018	226°05′03″	38255.209	-11.019
SMR-3322 UP-SLG	09-19-14	Fixed	0.005	0.018	329°56′57″	21908.828	2.417
SMR-332 SM-33S	09-17-14	Fixed	0.004	0.014	152°23'19″	21038.056	-1.964
SMR-3322 SM-33S	09-17-14	Fixed	0.006	0.038	152°23'20"	21038.062	-1.978

As shown in Table 27, a total of fourteen (14) baselines were processed with the coordinates of SME-18 and the elevation value of reference point SE-85 held fixed; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)} < 20 cm$ and $z_e < 10 cm$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 28 to Table 31.

The eight (8) control points: SME-18, SE-85, SME-12, SMR-3322, SE-49, SM-33S, UP-CNG, and UP-CLG were occupied and observed simultaneously to form a GNSS loop. Coordinates of SME-18 and elevation values SE-85 were held fixed during the processing of the control points, as presented in Table 28. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 28. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
SE-85	Grid				Fixed
SME-18	Local	Fixed	Fixed		
Fixed = 0.00000	1 (Meter)				

Likewise, the list of adjusted grid coordinates (i.e. Northing, Easting, Elevation, and computed standard errors of the control points in the network) is indicated in Table 29. All fixed control points have no values for grid and elevation errors.

Table 29. Adjusted grid coordinates for the control points used in the Silaga River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SE-49	776407.626	0.007	1240340.446	0.005	3.779	0.050	
SE-85	777079.164	0.006	1262825.941	0.004	6.310	?	е
SM-33S	741264.593	0.010	1230815.204	0.007	3.951	0.061	
SME-12	757572.894	0.007	1230490.556	0.005	2.721	0.051	
SME18	784907.431	?	1257282.043	?	17.660	0.032	LL
SMR-3322	731377.313	0.009	1249392.087	0.007	6.636	0.060	
UP-CNG	766068.484	0.005	1282999.389	0.004	6.035	0.036	

The results of the computation for accuracy are as follows:

a.	SME-18 Horizontal Accuracy Vertical Accuracy	= =	Fixed 3.2 < 10 cm
b.	SE-85 Horizontal Accuracy	= = =	$V((0.6)^2 + (0.4)^2)$ V(0.36 + 0.16) 0.72 < 20 cm
	Vertical Accuracy	=	Fixed
c.	SME-12 Horizontal Accuracy	= = =	$V((0.7)^2 + (0.5)^2)$ V(0.49 + 0.25) 0.86 < 20 cm 5.1 < 10 cm
	Vertical Accuracy	=	5.1 < 10 cm
d.	SMR-3322 Horizontal Accuracy	= = =	$V((0.9)^2 + (0.7)^2)$ V(0.81 + 0.49) 1.14 < 20 cm 6.0 < 10 cm
	vertical Accuracy	=	6.0 < 10 cm
e.	SE-49 Horizontal Accuracy	= = =	√((0.7) ² + (0.5) ² √ (0.49 + 0.25) 0.86 < 20 cm
	Vertical Accuracy	=	5.0 < 10 cm
f.	SM-33S Horizontal Accuracy	= = =	$V((1.0)^2 + (0.7)^2)$ V(1.0 + 0.49) 1.22 < 20 cm
	Vertical Accuracy	=	6.1 < 10 cm
g.	UP-CNG Horizontal Accuracy	= = =	√((0.5) ² + (0.4) ² √ (0.25 + 0.16) 0.65 < 20 cm
	Vertical Accuracy	=	3.6 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

	J 0	1	0		
Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
SE-49	N11°12'34.48802"	E125°31'52.42238	Height	Error	
SE-85	N11°24'45.65441"	E125°32'20.98934	(Meter)	(Meter)	е
SM-33S	N11°07'33.79721"	E125°12'32.14831	66.981	0.050	
SME-12	N11°07'19.15395"	E125°21'29.28283	67.520	?	
SME18	N11°21'43.08127"	E125°36'37.41862	68.705	0.061	LL
SMR-3322	N11°17'40.55190"	E125°07'10.82309	67.212	0.051	
UP-CNG	N11°35'44.92939"	E125°26'23.62776	78.217	0.032	

Table 30. Adjusted geodetic coordinates for control points used in the Silaga River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 30. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Silaga River GNSS Static Survey are seen in Table 31.

 Table 31. The reference and control points utilized in the Silaga River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographi	UTM ZONE 51 N				
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SME-18	2nd Order, GCP	11°21'43.08127"	125°36'37.41862"	78.217	1257282.043	784907.431	17.66
SE-85	1st Order, BM	11°24'45.65441"	125°32'20.98934"	67.52	1262825.941	777079.164	6.31
SME-12	Used as Marker	11°07'19.15395"	125°21'29.28283"	67.212	1230490.556	757572.894	2.721
SMR- 3322	Used as Marker	11°17'40.55190"	125°07'10.82309"	70.666	1249392.087	731377.313	6.636
SE-49	Used as Marker	11°12'34.48802"	125°31'52.42238"	66.981	1240340.446	776407.626	3.779
SM-33S	Used as Marker	11°07'33.79721"	125°12'32.14831"	68.705	1230815.204	741264.593	3.951
UP-CNG	UP Established	11°35'44.92939"	125°26'23.62776"	67.094	1282999.389	766068.484	6.035
UP-SLG	UP Established	11°27'57.66166"	125°01'08.84182"	73.078	1268279.714	720265.267	9.958

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The cross-section and as-built survey were conducted on September 19, 2014 on the upstream side of Silaga Bridge in Brgy. Tominamos in the Municipality of Santa Rita, Samar, using Trimble® SPS 882 GNSS PPK Survey Technique, (Figure 43 and Figure 44)

Figure 43. Downstream side of the Silaga Bridge

Figure 44. The Cross-section survey conducted at Silaga Bridge in Brgy. Tominamos, Sta. Rita, Samar.

The length of the cross-sectional line surveyed Silaga Bridge is about 237.791 meters (Figure 45) with thirty (30) cross-sectional points using the control point SMR-3322 as the GNSS base station. The location map (Figure 44), cross-section diagram (Figure 45), and the accomplished bridge data form (Figure 46). An automated water level sensor is found installed in the bridge.

Figure 45. Location map of the Silaga Bridge cross-section survey.

Bri	idge Na	me:	SILAGA BRIDGE	2014			Date: Septe	mber 19. 2014	
Rin	er Nam	ie:	SILAGA RIVER BA	SIN			Time: 11:06	AM	
Lo	cation (Brev. Ci	ity, Region): Baranga	Tulay Sta. R	Rita West	ern Samar	Contraction of the second		
Su	rvey Te	am:	Patricia Dela Cruz Team	-Data Valid	ation and	Bathymetry (Component		
Flo	w cond	lition:	low (normal)) high		Weather	Condition: (fair) rainy	
Lat	itude	11 -	27 - 58 77457 " N		ongitude	125-01	- 08 98684 " F	<u> </u>	
_									
	BA2	2	0	\cap	(BA3				
BAS	-					BA4	- Bridge Approach	P-Pler LC = Low Ch	
					-	-	- ALMONIAL	area incrimenta	
		Ab1		-	Ab2				
			•		HC			*	
			Deck (Please start your me	asurement from	the left side	of the bank facing	(downstream)		
lev	ation	9	9212 m Widtl	h:	6.752 m.	Span	BA3-BA2):	50.437 m	
			Station		High	Chord Elevation	Low C	hord Elevation	
1			PIER 1		1	0.0342 M.	8	.6342 M.	
2			PIER 2			10.0972 M.		.6972 M.	
3			PIER 3	-		10.0412 M.		6212 M.	
4				-	_				
5							_		
			Bridge Approach Man	clart your measurem	est from the la	A side of the bank factor	(downstream)		
r							9-2300 g -		
		Statio	on(Distance from BA1)	Elevation	Station(Distance from		stance from	Elevation	
ł	BAI	1		0.7663.14	843	130.6	130.677 M.		
ł	DAI	10	•	0.730£ M.	DAJ	227.0	200 M	7 9593 M	
l	BA2	3	70.240 M.	9.7822 M.	BA4			1.0002	
bu	tment	is th	e abutment sloping?	Yes No:	If yes,	fill in the follow	ing information:		
	1000			9		and a second second			
		-	Station (D	Station (Distance from BA1)			Elevation		
	A	b1		79.536 M.			4.0312	4.0312 M.	
	A	b2							
	÷.		Pier (Please start your mea	surement from	the left side	of the bank facing	(downstream)		
Sh	ape:	Oblong	Number of Piers	1		Height of c	olumn footing:	N/A	
	20.20	<u> </u>	Station (Distance from	m BA1	E	evation	Pia	r Width	
	Pier 1	-	86.437 M.	II DALJ		evaluon	r ie	- Widen	
Pier 2			100.499 M		8				
	Pier 3		114.473 M.						
	Pier 4								
	Pier 5								
-	Pier 6				Sec.		i -		

Figure 47. The Silaga Bridge as-built survey data.

The water surface elevation of Silaga River was determined using a survey grade GNSS receiver Trimble® SPS 882 in PPK survey technique on September 19, 2014 at 1:51 PM with a value of 0.7352 m (MSL) as shown in Figure 46. This was translated into marking on the bridge's pier using the same technique as shown in Figure 47. It now serves as the reference for flow data gathering and depth gauge deployment of the Visayas State University (VSU), the partner HEI responsible for the monitoring of Silaga River.

Figure 48. Painting of water level markings on Silaga Bridge

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on September 14 to 15 and 17 - 20, 2014 using a survey grade GNSS rover receiver, Trimble[®] SPS 882 mounted on a pole which was attached in front of the vehicle. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced as shown in Figure 48.

Figure 49. The validation point acquisition survey setup using a GNSS receiver fixed in a van along the Silaga River Basin

The survey started from Brgy. Purok D1, Borongan City, going south through National high-way traversing Borongan City; nine (9) Municipalities of Eastern Samar, namely: Maydolong, Balangkayan, Llorente, Hernani, General Macarthur, Quinapondan, Giporlos, Balangiga and Lawaan; and four (4) Municipalities of Samar namely: Marabut, Basey, Santa Rita, and ended in Brgy. Laygayon, Municipality of Pinabacdao, Samar. A total of 30,114 points were gathered with approximate length of 296.68 km using UP-CNG, SE-49, SM-33S, SMR-3322, and SE-85 as GNSS base stations for the entire extent validation points acquisition survey, as illustrated in the map in Figure 49.

4.7 River Bathymetric Survey

A manual bathymetric survey was performed on December 11 and 16, 2014 using the Trimble[®] SPS 882 in GNSS PPK survey technique. A portable depth sounder was also used to measure the deeper potions of the river. Along with this, bamboo poles and paddles were utilized to fix the position of the boat while encoding and entering the readings, as shown in Figure 50. The team also deployed a stadia rod every 100 meters to check if the portable depth sounder is accurate and functioning properly.

Figure 51. Photos showing (a) setup for the Bathymetric Survey in Silaga River; (b) use of portable sounder in measuring the deeper parts of the river.

The survey started in Brgy. Tulay, Municipality of Santa Rita; with the coordinates 11°27'58.15752"N, 120°01'08.13964"E; and went down to the mouth of the river in Brgy. La Paz; with the coordinates 11°25'21.78886"N, 124°59'00.99025"E; also in Santa Rita, Samar. The established control point, UP-SLG, was occupied as the base station throughout the bathymetric survey.

Overall, the bathymetric survey for the Silaga River gathered a total of 704 points, covering 16.34 km of the river, traversing nine (9) barangays in the Municipality of Santa Rita, Samar (Figure 51). To further illustrate this, a CAD drawing of the riverbed profile of the Silaga River was produced. As seen in Figure 52, the highest and lowest elevation has a 9-m difference. The highest elevation observed was -0.3348 m below MSL, located at Brgy. New Manunca, while the lowest was -9.725 m below MSL, located at the downstream portion of the river in Brgy. La Paz; both situated in Santa Rita, Samar.

CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Enrico C. Paringit, Dr. Eng., Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil R. Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the VSU Flood Modeling Component (FMC) team. The ARG was installed at Brgy. Binanalan, Sta. Rita, Samar, as illustrated in Figure 52. The precipitation data collection started from July 29, 2016 at 2:20 PM to July 30, 2016 at 12:10 with a recording interval of 10 minutes.

The total precipitation for this event in the Binanalan ARG was 74.6 mm, with a peak rainfall rate of 3 mm. on July 30, 2016 at 12:00 midnight. The lag time between the peak rainfall and discharge is 10 hours and 50 minutes.

Figure 54. Location map of the Silaga HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 54) at Silaga Bridge, Sta. Rita, Samar (11°27′58.91″N, 125° 1′9.13″E) to establish the relationship between the observed water levels (H) at Silaga Bridge and the outflow (Q) of the watershed at this location.

For Silaga Bridge, the rating curve is expressed as: Q = 9.6834e1.0441H as shown in Figure 55.

This rating curve equation was used to compute the river outflow at Silaga Bridge for the calibration of the HEC-HMS model shown in Figure 56. The total rainfall for this event is 74.6mm and the peak discharge is 102.5 m3 at 12:00 noon, July 30, 2016.

Figure 57. Rainfall and outflow data of the Silaga River Basin, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge (Figure 56). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 57). This station was selected based on its proximity to the Silaga watershed. The extreme values for this watershed were computed based on a 59-year record.

	1 a D I	e 32. RIDF	alues for th	le Taciopan	Rain Gaug	e, as compt	lied by PAC	JASA	
		COMPUT	TED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	17.8	26.9	33.6	42.8	59.7	70.5	87.2	104	120.6
5	24.3	36.7	45.7	57.4	80.7	95.2	117.9	140.6	161.4
10	28.5	43.2	53.7	67.1	94.6	111.5	138.2	164.9	188.4
15	30.9	46.8	58.3	72.5	102.5	120.7	149.6	178.6	203.7
20	32.6	49.4	61.4	76.3	108	127.1	157.7	188.1	214.3
25	33.9	51.4	63.9	79.3	112.2	132.1	163.8	195.5	222.6
50	37.9	57.5	71.4	88.3	125.2	147.4	182.9	218.2	247.9
100	41.8	63.5	78.9	97.3	138.2	162.5	201.8	240.8	273

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 59. Synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Silaga River Basin are shown in Figures 60 and 61, respectively.

Figure 60. Soil Map of Silaga River Basin

Figure 61. Land Cover Map of Silaga River Basin

For Silaga, three soil classes were identified. These are clay loam, clay, and mountain soil. Moreover, two land cover classes were identified. These are brushland, and open canopy forest.

Figure 62. Slope Map of Silaga River Basin

Figure 63. Stream Delineation Map of Silaga River Basin

Using the SAR-based DEM, the Silaga basin was delineated and further subdivided into subbasins. The model consists of 43 sub basins, 21 reaches, and 20 junctions as shown in Figure 63 (See Annex 10). The main outlet is at Silaga Bridge.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 64).

Figure 65. River cross-section of the Silaga River through the ArcMap HEC GeoRas tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area (Figure 65). As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 66. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 39.55225 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h) is set at 0 m2/s. The generated hazard maps for Silaga are in Figures 69, 71, and 73.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 39 385 900.00 m2. The generated flood depth maps for Silaga are in Figures 70, 72, and 74.

There is a total of 18 419 757.72 m3 of water entering the model. Of this amount, 10 725 727.85 m3 is due to rainfall while 7 694 029.87 m3 is inflow from other areas outside the model. 3 960 626.75 m3 of this water is lost to infiltration and interception, while 12 447 417.07 m3 is stored by the flood plain. The rest, amounting up to 2 011 714.06 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Silaga HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 66 shows the comparison between the two discharge data.

120 100 Discharge (m3/s) 80 60 Actual Outflow (m3/s) 40 HEC-HMS Outflow (m3/s) 20 0 7/29/2016 3:40 7/29/2016 12:00 7/29/2016 8:20 7/30/2016 4:40 AM PM PM AM Date and Time

Table 33 shows adjusted ranges of values of the parameters used in calibrating the model.

Figure 67. Outflow hydrograph of Silaga produced by the HEC-HMS model compared with observed outflow

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	5 - 20
			Curve Number	65 - 90
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	4 - 12
			Storage Coefficient (hr)	2 - 7
	Baseflow	Recession	Recession Constant	0.9
			Ratio to Peak	0.2
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.04

Table 33. Range of calibrated values for the Silaga River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 5mm to 20mm signifies that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Silaga, the basin mostly consists of brushlands and the soil consists of clay, clay loam, and mountain soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 2 hours to 12 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.9 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.2 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness in SIlaga watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	7.00
r2	0.9809
NSE	0.95
PBIAS	0.17
RSR	0.21

Table 34. Efficiency Test of the Silaga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 7.00 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9809.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.95.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.17.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.21.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 67) shows the Silaga outflow using the synthetic storm events using the Tacloban Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 321m3 in a 5-year return period to 590.6m3 for a 100-year return period.

Figure 68. The Outflow hydrograph at the Silaga Station, generated using the simulated rain events for 24-hour period for Tacloban station

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Silaga discharge using the Tacloban Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 35.

Table 35. Peak values of the Silaga HEC-HMS Model outflow using the Tacloban RIDF 24-hour values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	161.40	24.30	321.2	22 hours
10-Year	188.40	28.25	386.10	21 hours 50 minutes
25-Year	222.60	33.90	468.50	21 hours, 40 minutes
50-Year	247.90	37.90	529.40	21 hours, 40 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the VSU-FMC base flow was calibrated. Figure 68 shows a generated sample map of the Silaga River using the calibrated HMS base flow.

Figure 69. Sample output map of the Silaga RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 68 to Figure 73 shows the 5-, 25-, and 100-year rain return scenarios of the Silaga floodplain. The floodplain, with an area of 218.63 sq. km., covers four municipalites namely Santa Rita, Basey, Pinabacdao, and Villareal. Table shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Basey	627.97	34.83	6%
Pinabacdao	118.38	19.20	16%
Santa Rita	250.37	160.08	64%
Villareal	130.22	4.43	3%

Table 36. Municipalities affected in Silaga floodplain

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Silaga River Basin, grouped accordingly by municipality. For the said basin, four (4) municipalities consisting of 35 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 4.9% of the municipality of Basey with an area of 627.97 sq. km. will experience flood levels of less 0.20 meters, while 0.16% of the area will experience flood levels of 0.21 to 0.50 meters; 0.16%, 0.18%, 0.14%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters respectively. Table 37 depicts the areas affected in Basey in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding, respectively.

Affected area	Area	of affected ba (in sq.	arangays in km.)	Basey
depth (in m.)	Bulao	Cancaiyas	Mabini	Villa Aurora
0.03-0.20	17.22	9.98	1.95	1.64
0.21-0.50	0.41	0.47	0.092	0.035
0.51-1.00	0.35	0.59	0.038	0.015
1.01-2.00	0.42	0.70	0.017	0.010
2.01-5.00	0.50	0.36	0.007	0.001
> 5.00	0.019	0.001	0	0

Table 37.	Affected	areas in	Basey, Sa	mar during	a 5-Year	Rainfall	Return	Period
			1 '		,			

For the municipality of Pinabacdao, with an area of 118.377 sq. km., 14.04% will experience flood levels of less 0.20 meters. 0.52% of the area will experience flood levels of 0.21 to 0.50 meters while 0.77%, 0.76%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Table 38 depicts the affected areas in square kilometers by flood depth per barangay.

Affected area	Ar	ea of affecte	d barangays (in sq. km.)	in Pinabacd	ао
depth (in m.)	Bugho	Laygayon	Magdawat	Parasanon	Pelaon
0.03-0.20	0.51	3.45	0.60	3.40	8.66
0.21-0.50	0.011	0.086	0.0070	0.18	0.33
0.51-1.00	0.0036	0.10	0.00055	0.32	0.49
1.01-2.00	0.00012	0.094	0	0.40	0.41
2.01-5.00	0	0.011	0	0.089	0.055
> 5.00	0	0	0	0	0

Table 38. Affected areas in Pinabacdao, Samar during a 5-Year Rainfall Return Period.

For the municipality of Villareal, with an area of 130.22 sq. km., 3.05% will experience flood levels of less 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.14%, 0.11%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Illustrated in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Affected area	Area of affecto Villareal	ed barangays in (in sq. km.)
depth (in m.)	Bulao	Cancaiyas
0.03-0.20	1.16	2.82
0.21-0.50	0.037	0.089
0.51-1.00	0.059	0.12
1.01-2.00	0.041	0.11
2.01-5.00	0.00090	0.0026
> 5.00	0	0

Table 39. Affected areas in Villareal, Samar during a 5-Year Rainfall Return Period.

Among the barangays in the municipality of Villareal, Inasudlan is projected to have the highest percentage of area that will experience flood levels of at 2.41%. On the other hand, Igot posted the percentage of area that may be affected by flood depths of at 1.0%.

Figure 78. The specifically affected areas in Villareal, Samar during a 5-Year Rainfall Return Period.

For the municipality of Santa Rita, with an area of 250.37 sq. km., 45.63% will experience flood levels of less 0.20 meters, as 3.44% of the area will experience flood levels of 0.21 to 0.50 meters, while 3.33%, 2.40%, 0.68%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters respectively. Outlined in Table 40 and Table 41 are the affected areas in square kilometers by flood depth per barangay.

Affected area					Area	of affected ba (in so	rangays in Sant q. km.)	a Rita				
depth (in m.)	Alegria	Anibongan	Aslum	Bagolibas	Binanalan	Bokinggan Poblacion	Cabacungan	Camayse	Guinbalot- An	Gumamela Poblacion	La Paz	Lupig
0.03-0.20	0.51	3.45	0.60	3.40	8.66	4.19	3.54	2.06	1.13	2.09	1.74	7.28
0.21-0.50	0.011	0.086	0.0070	0.18	0.33	0.70	0.14	0.48	0.17	0.37	0.49	0.84
0.51-1.00	0.0036	0.10	0.00055	0.32	0.49	0.49	0.11	0.24	0.17	0.18	0.19	0.67
1.01-2.00	0.00012	0.094	0	0.40	0.41	0.13	0.13	0.12	0.018	0.033	0.00080	0.32
2.01-5.00	0	0.011	0	0.089	0.055	0.00070	0.037	0.027	0.00020	0.0012	0	0.11
> 5.00	0	0	0	0	0	0	0.00040	0.033	0	0	0	0.00080

Table 41. Affected areas in Santa Rita, Samar by flood level for a 5-Year Rainfall Return Period.

Affected area (so km) hy flood					Area of a	ffected bara (in sq.	ngays in Santa km.)	Rita				
depth (in m.)	Maligaya	New Manunca	Old Manunca	Pagsulhogon	Rosal Poblacion	Salvacion	San Eduardo	San Isidro	San Pascual	Tominamos	Tulay	Union
0.03-0.20	4.41	3.10	11.85	0.44	0.010	2.37	18.52	13.59	12.18	3.77	3.19	2.15
0.21-0.50	0.17	0.48	0.66	0.010	0	0.27	0.84	0.80	0.76	0.39	0.25	0.17
0.51-1.00	0.22	0.37	0.67	0.0055	0	0.23	1.02	1.05	0.95	0.44	0.25	0.18
1.01-2.00	0.31	0.13	0.51	0.0047	0	0.10	1.00	1.06	0.61	0.33	0.17	0.14
2.01-5.00	0.087	0.038	0.21	0.00010	0	0.0014	0.39	0.33	0.15	0.073	0.046	0.041
> 5.00	0.00050	0.00040	0.0020	0	0	0	0.015	0.00070	06000.0	0.018	0.018	0.00010

Among the barangays in the municipality of Santa Rita, Binanalan is projected to have the highest percentage of area that will experience flood levels at 4.0%. On the other hand, Lupig posted the second highest percentage of area that may be affected by flood depths of at 3.69%.

Figure 80. The specifically affected areas in Santa Rita, Samar during a 5-Year Rainfall Return Period.

For the 25-year return period, 4.80% of the municipality of Basey with an area of 627.97 sq. km. will experience flood levels of less 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, 0.21%, 0.14%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area	of affected ba (in sq.	arangays in km.)	Basey
depth (in m.)	Bulao	Cancaiyas	Mabini	Villa Aurora
0.03-0.20	16.92	9.66	1.90	1.63
0.21-0.50	0.44	0.37	0.12	0.041
0.51-1.00	0.36	0.53	0.048	0.018
1.01-2.00	0.44	0.84	0.019	0.013
2.01-5.00	0.67	0.69	0.013	0.0023
> 5.00	0.10	0.0057	0	0

Table 42. Affected Areas in Basey, Samar during 25-Year Rainfall Return Period

Figure 81. Affected Areas in Basey, Samar during 25-Year Rainfall Return Period

For the municipality of Pinabacdao, with an area of 118.377 sq. km., 13.80% will experience flood levels of less 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.66%, 0.93%, and 0.39% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively.

Affected area	Area of affected barangays in Pinabacdao (in sq. km.)						
depth (in m.)	Bugho	Laygayon	Magdawat	Parasanon	Pelaon		
0.03-0.20	0.51	3.41	0.60	3.31	8.51		
0.21-0.50	0.012	0.091	0.010	0.13	0.29		
0.51-1.00	0.0054	0.084	0.00065	0.25	0.44		
1.01-2.00	0.00032	0.12	0	0.41	0.57		
2.01-5.00	0	0.031	0	0.29	0.13		
> 5.00	0	0	0	0	0		

Table 43. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period

Figure 82. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period

For the municipality of Villareal, with an area of 130.22 sq. km., 3.02% will experience flood levels of less 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.13%, 0.16%, and 0.014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters respectively. Listed in Table 44 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affected barangays in Villareal (in sq. km.)				
depth (in m.)	Bulao	Cancaiyas			
0.03-0.20	1.15	2.78			
0.21-0.50	0.034	0.080			
0.51-1.00	0.055	0.11			
1.01-2.00	0.060	0.15			
2.01-5.00	0.0027	0.016			
> 5.00	0	0			

Table 44. Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period

Figure 83. Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period

For the municipality of Santa Rita, with an area of 250.37 sq. km., 49.26% will experience flood levels of less 0.20 meters. 3.90% of the area will experience flood levels of 0.21 to 0.50 meters while 4.56%, 4.21%, 1.92%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 and Table 46 an are the affected areas in square kilometres by flood depth per barangay.

		Lupig	6.83	0.70	0.94	0.51	0.23	0.0068
		La Paz	1.48	0.32	0.56	0.061	0	0
		Gumamela Poblacion	2.01	0.26	0.34	0.065	0.0018	0
pc		Guinbalot- An	1.04	0.16	0.15	0.15	0.00020	0
l Return Perio	ta Rita	Camayse	1.74	0.50	0.33	0.30	0.045	0.046
Affected Areas in Santa Rita, Samar during 25-Year Rainfall Area of affected barangays in Sant (in sq. km.)	Cabacungan	3.42	0.12	0.12	0.18	0.12	0.0018	
	Bokinggan Poblacion	3.93	0.56	0.65	0.37	0.0022	0	
	Binanalan	6.82	0.57	0.73	0.72	0.46	0.0086	
	Bagolibas	9.75	0.44	0.45	0.51	0.34	0.0089	
Table 45		Aslum	0.98	0.20	0.17	0.095	0	0
	Anibongan	12.29	1.56	1.41	1.19	0.0085	0.0043	
	Alegria	0.93	0.29	0.16	0.0020	0.17	0.071	
	Affected area	depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 46. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period

Affected area (so. km.) by flood					Area of a	ffected bara (in sq.	ngays in Santa km.)	Rita				
depth (in m.)	Maligaya	New Manunca	Old Manunca	Pagsulhogon	Rosal Poblacion	Salvacion	San Eduardo	San Isidro	San Pascual	Tominamos	Tulay	Union
0.03-0.20	4.41	3.10	11.85	0.44	0.010	2.37	18.52	13.59	12.18	3.77	3.19	2.15
0.21-0.50	4.28	2.84	11.46	0.44	0.010	2.23	17.70	13.05	11.77	3.49	2.83	2.01
0.51-1.00	0.15	0.44	0.62	0.011	0	0.25	0.70	0.65	0.63	0.34	0.16	0.13
1.01-2.00	0.19	0.48	0.71	0.0067	0	0.30	0.94	0.96	1.00	0.43	0.24	0.18
2.01-5.00	0.37	0.22	0.75	0.0060	0	0.18	1.46	1.38	0.97	0.44	0.34	0.26
> 5.00	0.20	0.14	0.35	0.00050	0	0.0041	0.93	0.79	0.28	0.28	0.32	0.10

Figure 85. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period

For the 100-year return period, 4.73% of the municipality of Basey with an area of 627.97 sq. km. will experience flood levels of less 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.14%, 0.21%, 0.27%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affected barangays in Basey (in sq. km.)						
depth (in m.)	Bulao	Cancaiyas	Mabini	Villa Aurora			
0.03-0.20	16.73	9.51	1.87	1.62			
0.21-0.50	0.46	0.34	0.14	0.046			
0.51-1.00	0.36	0.47	0.057	0.020			
1.01-2.00	0.45	0.85	0.021	0.014			
2.01-5.00	0.73	0.92	0.018	0.0036			
> 5.00	0.20	0.024	0	0			

Table 47. Affected Areas in Basey, Samar during 100-Year Rainfall Return Period

Figure 86. Affected Areas in Basey, Samar during 100-Year Rainfall Return Period

For the municipality of Pinabacdao, with an area of 118.377 sq. km., 13.65% will experience flood levels of less 0.20 meters. 0.44% of the area will experience flood levels of 0.21 to 0.50 meters while 0.58%, 0.99%, and 0.57% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2, and 2.01 to 5 meters, respectively (Table 48).

Affected area	Area of affected barangays in Pinabacdao (in sq. km.)						
depth (in m.)	Bugho	Laygayon	Magdawat	Parasanon	Pelaon		
0.03-0.20	0.50	3.38	0.60	3.26	8.42		
0.21-0.50	0.012	0.10	0.012	0.12	0.28		
0.51-1.00	0.0067	0.083	0.00075	0.20	0.39		
1.01-2.00	0.00042	0.13	0	0.39	0.65		
2.01-5.00	0	0.049	0	0.42	0.20		
> 5.00	0	0	0	0	0		

Table 48. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period

Figure 87. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period
For the municipality of Villareal, with an area of 130.22 sq. km., 3.00% will experience flood levels of less 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 0.18%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affect Villareal	ed barangays in (in sq. km.)	
depth (in m.)	Bulao	Cancaiyas	
0.03-0.20	1.14	2.76	
0.21-0.50	0.033	0.081	
0.51-1.00	0.045	0.10	
1.01-2.00	0.075	0.16	
2.01-5.00	0.0075	0.035	
> 5.00	0	0	

Table 49. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period

Figure 88. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period

For the municipality of Santa Rita, with an area of 250.37 sq. km., 47.81% will experience flood levels of less 0.20 meters. 3.46% of the area will experience flood levels of 0.21 to 0.50 meters while 4.62%, 4.86%, 3.02%, and 0.20% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 and Table 51 are the affected areas in square kilometres by flood depth per barangay.

			I able JU. /	Allected Area	s in Santa Ki	ca, Samar during	g 20-Year Kainial	l Keturn Perio	20			
Affected area (so km) by flood					Area	of affected ba (in s	ırangays in Sant q. km.)	ta Rita				
depth (in m.)	Alegria	Anibongan	Aslum	Bagolibas	Binanalan	Bokinggan Poblacion	Cabacungan	Camayse	Guinbalot- An	Gumamela Poblacion	La Paz	Lupig
0.03-0.20	0.87	11.70	0.94	9.59	6.64	3.81	3.38	1.33	1.01	1.97	1.40	6.63
0.21-0.50	0.26	1.41	0.17	0.44	0.51	0.44	0.12	0.38	0.14	0.19	0.28	0.60
0.51-1.00	0.23	1.58	0.20	0.43	0.74	0.71	0.088	0.51	0.16	0.41	0.52	0.95
1.01-2.00	0.010	1.50	0.12	0.52	0.75	0.54	0.18	0.49	0.18	0.10	0.22	0.69
2.01-5.00	0.41	0.013	0	0.50	0.65	0.012	0.19	0.20	0.0015	0.0029	0	0.34
> 5.00	0.10	0.0049	0	0.020	0.024	0	0.0033	0.051	0	0	0	0.010

Table 51. Affected Areas in Santa Rita, Samar during 25-Year Rainfall Return Period

Affected area (so. km) hv flood					Area of a	ffected bara (in sq.	ngays in Santa km.)	Rita				
depth (in m.)	Maligaya	New Manunca	Old Manunca	Pagsulhogon	Rosal Poblacion	Salvacion	San Eduardo	San Isidro	San Pascual	Tominamos	Tulay	Union
0.03-0.20	4.41	3.10	11.85	0.44	0.010	2.37	18.52	13.59	12.18	3.77	3.19	2.15
0.21-0.50	4.22	2.68	11.20	0.43	0.010	2.17	17.36	12.76	11.55	3.36	2.70	1.96
0.51-1.00	0.14	0.42	0.60	0.012	0	0.21	0.64	0.59	0.58	0.30	0.13	0.11
1.01-2.00	0.17	0.51	0.71	0.0072	0	0.33	0.80	0.85	0.92	0.41	0.19	0.14
2.01-5.00	0.35	0.32	0.86	0.0072	0	0.22	1.51	1.41	1.17	0.45	0.27	0.29
> 5.00	0.31	0.17	0.48	0.00070	0	0:030	1.38	1.21	0.42	0.45	0.60	0.18

Among the barangays in the municipality of Basey, Bulao is projected to have the highest percentage of area that will experience flood levels at 3.01%. Meanwhile, Cancaiyas posted the second highest percentage of area that may be affected by flood depths at 1.93%.

Among the barangays in the municipality of Pinabacdao, Pelaon is projected to have the highest percentage of area that will experience flood levels at 8.40%. Meanwhile, Parasanon posted the second highest percentage of area that may be affected by flood depths at 3.71%.

Among the barangays in the municipality of Villareal, Inasudlan is projected to have the highest percentage of area that will experience flood levels of at 2.41%. Meanwhile, Igot posted the percentage of area that may be affected by flood depths of at 1.0%.

Among the barangays in the municipality of Santa Rita, San Eduardo is projected to have the highest percentage of area that will experience flood levels at 8.70%. Meanwhile, San Isidro posted the second highest percentage of area that may be affected by flood depths of at 6.73%.

Moreover, the generated flood hazard maps for the Silaga Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps ("Low", "Medium", and "High"), the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 10-year).

Warning	Area	Covered	in sq. km.
Level	5 year	25 year	100 year
Low	13.15	11.41	10.31
Medium	18.1	21.55	22.03
High	6.3	12.41	17.24
TOTAL	37.55	45.37	49.58

Table 52. Areas covered by each warning level with respect to the rainfall scenarios

Of the 24 identified Education Institute in Silaga Flood plain, three (3) schools were discovered exposed to Low-level flooding during a 5-year scenario, while three (3) schools were found exposed to Medium-level flooding in the same scenario.

In the 25-year scenario, three (3) schools were found exposed to Low-level flooding, while four (4) schools were discovered exposed to Medium-level flooding.

For the 100-year scenario, one (1) school was discovered exposed to Low-level flooding, while four (4) schools were exposed to Medium-level flooding. In the same scenario, two (2) schools were found exposed to High-level flooding; both of which are located in Barangay Parasanon, Pinabacdao.

Apart from this, two (2) Medical Institutions were identified in the Silaga Floodplain, yet only one (1) was discovered exposed to Medium-level flooding in the three (3) different scenarios in Barangay Tominamos, Santa Rita, Samar.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in the river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 91.

The flood validation consists of 235 points randomly selected all over the Silaga flood plain (Figure 90). Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.96m. Table 53 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

The flood validation data were obtained on May 25-27, 2016.

Figure 92 . Flood map depth vs actual flood depth

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	63	7	5	0	0	0	75
0.21-0.50	39	4	9	1	0	0	53
0.51-1.00	34	7	6	3	0	0	50
1.01-2.00	40	5	3	0	0	0	48
2.01-5.00	6	2	1	0	0	0	9
> 5.00	0	0	0	0	0	0	0
Total	182	25	24	4	0	0	235

Table 53. Actual flood vs simulated flood depth at differnent levels in the Silaga River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 31.06%, with 73 points correctly matching the actual flood depths. In addition, there were 68 points estimated one level above and below the correct flood depths, while there were 46 points and 42 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 25 points were overestimated, while a total of 137 points were underestimated in the modeled flood depths of Silaga Baganga. Table 54 depicts the summary of the Accuracy Assessment in the Silaga River Basin Flood Depth Map.

Table 54. Summary of the Accuracy Assessment in the Silaga River Basin Survey

	No. of Points	%
Correct	73	31.06
Overestimated	25	10.64
Underestimated	137	58.30
Total	235	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM)

Control Rack

Digitizer Camera Figure A-1.1. Aquarius Sensor

Camera Controller Tablet

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Control rack: 591 x 485 x 578 mm; 53 kg	
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

2. GEMINI SENSOR	
Waveform Digitizer Se	nsor with Built-in Camera Pilot Display
Control Rack	
Figure A-1.2. Parameters a	nd Specification of Gemini Sensor
Table A-1.2. Parameters a	nd Specification of Gemini Sensor
Parameter	Specification
	1004 pm
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
220-channel dual frequency GPS/GNSS/Galileo/I receiver	-Band
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Control rack: 650 mm (w) x 590 mm (l) x 530 mm 53 kg	n (h);
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

SMR-53 1.

April 23, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: SAMAR	(WESTERN SAMAR)				
	Station N	ame: SMR-53				
	Order	2nd				
Island: VISAYAS			Barangay:	SAN	ISIDRO	
Municipality: SANTA RITA	PRSS	92 Coordinates				
Latitude: 11º 30' 17.85657"	Longitude:	125° 1' 29.83739"	Ellipsoidal	Hgt:	26.13400 m.	
	WGS	84 Coordinates				
Latitude: 11º 30' 13.52495"	Longitude:	125° 1' 34.96980"	Ellipsoidal	Hgt:	87.78700 m.	
	PTM	1 Coordinates				
Northing: 1272180.079 m.	Easting:	502722.403 m.	Zone:	5		
	UTN	Coordinates				
Northing: 1,272,513.40	Easting:	720,874.14	Zone:	51		

Location Description

SMR-53 From Tacloban City Proper, travel about 45 km. north going to Brgy. San.Isidro. The NAMRIA monument was located about 15 m. west inside the San Isidro Elementary School, and almost near at the school building and flag pole about 5 m. north. Mark is the head of a 4" copper nail flushed in a cement block embedded in the ground with inscriptions "SMR-53; 2007; NAMRIA."

Requesting Party: Engr. Christopher Cruz/ UP-DREAM Pupose: Reference OR Number: 8796021 A T.N.: 2014-920

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch

NAMPIA OFFICES NAMeria OFFice of Main : Lawton Avenue, Fort Bonilacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3454 to 95 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. SMR-53

SMR-56							
		Republic of the P Department of En NATIONAL M	hilippines wironment and Natural APPING AND RES	Resources OURCE INFORMATION			
							April 23, 2014
			CER	TIFICATION			
This is to	ceruly un	lat according t	Province: SAMAR	(WESTERN SAMAR	c)	morme	auon is as tollows
Island: VI Municipali	SAYAS ty: SANT	A RITA	Order	ame: SMR-56 : 2nd 92 Coordinates	Baranga	y: CAB/	ACUNGAN
Latitude:	11° 23'	6.52702"	Longitude:	125° 0' 23.99607"	Ellipsoida	al Hgt	11.82200 m.
			WGS	84 Coordinates			
Latitude:	11º 23' :	2.22413"	Longitude:	125° 0' 29.13917"	Ellipsoid	al Hgt:	73.72700 m.
			PTM	I Coordinates			
Northing:	1258927	.861 m.	Easting:	500727.475 m.	Zone:	5	
Northing:	1,259,2	44.38	UTI Easting:	// Coordinates 718,970.61	Zone:	51	
			Locat	ion Description			
MR-56 rom Taclob	an City, t	ravel about 15	km. north going t	to Brgy. Cabacungan.	Before reachin	g the o	f Sta. Rita town

Pupose:

T.N.:

Requesting Party: Engr. Christopher Cruz/ UP-DREAM Reference OR Number: 8796021 A 2014-919

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch P

NAMRIA OFFICES: NAMENA UPFILED: Main : Lawlow Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 859-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (652) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. SMR-56

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

From Basey proper, travel about 20 km. north going to Brgy. Serum. From National Road, travel another 1 km. north going to Brgy. Serum. The NAMRIA was established inside the Serum Elementary School, 10 m. east from the school gate, and 15 m. north from the school building. The School site was near the River about 30 m. north. Mark is the head of a 4" copper nail flushed in a 30X30 cm. cement block embedded in the ground protruding about 20 cm., with inscriptions "SMR-58; 2007; NAMRIA."

Requesting Party: UP DREAM Purpose: Reference OR Number: 80897741 T.N.: 2016-0327

RUEL DM BELEN, MNSA Director, Mapping And Geodesy Branch

ANFIA OFFICES Malin: Lawlon Avenue, Fort Bonitacio, 1634 Tapaig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Berraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3454 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. SMR-58

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. LYT-104

Table A-3.1. LYT-104

			Processing	Summary				
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SMR-53 LYT-104 (B1)	SMR-53	LYT-104	Fixed	0.008	0.017	200°40'31"	42653.401	7.525
SMR-53 LYT-104 (B2)	SMR-53	LYT-104	Fixed	0.004	0.016	200°40'31"	42653.384	7.601

Acceptance Sum	mary
----------------	------

Processed	Passed	Flag 📔	•	Fail	•
2	2	0		0	

From:	SME	2-53								
	Grid			Lo	cal		Global			
Easting		720874.133 m	Latit	ude	N11*30'1	7.85656"	Latitude		N11°30'13.52495'	
Northing		1272513.396 m	Lon	gitude	E125°01'2	9.83738"	Longitude		E125°01'34.96980'	
Elevation		24.750 m	Heig	pht	2	26.134 m	Height		87.787 m	
To:	LYT	-104								
Grid				Local				G	ilobal	
Easting		706089.510 m	Latit	ude	N11°08'38.92234"		Latitude		N11°08'34.67033'	
Northing		1232496.838 m	Lon	gitude	E124°53'1	3.52786"	Longitude		E124°53'18.69323"	
Elevation		32.311 m	Heig	jht	3	33.659 m	Height		95.861 m	
Vector										
ΔEasting		-14784.62	23 m	NS Fwd Azimuth			200°40'31"	ΔX	7839.600 m	
∆Northing		-40016.55	58 m	Ellipsoid Dist.			42653.401 m	ΔY	15051.644 m	
		7.54	14 m	Alloight			7 525 m	47	20121 020 m	

Standard Errors

Vector errors:										
σ ∆Easting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.006 m					
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m					
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.002 m					

. SM-271										
			٦	Table A-3.2.	SM-271					
				Processing	Summary					
Observation	From	Т	0	Solution Type	H. Prec. (Meter)	V. P (Me	rec. ter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SM-271 SMR-53 (B2)	SMR-53	SM-271	Fixed		0.004		0.018	5*23'32"	2272.463	55.956
SM-271 SMR-53 (B1)	SMR-53	SM-271	Fixed		0.004		0.014	5*23'31"	2272.470	55.944
Acceptance Summary										
Processe	d		Passed		Flag	P			Fail	•
2			2 0						0	
Vector Componen	ts (Mark to Ma	rk)								
From:	SMR-53									
	Grid			Lo	cal				Global	
Easting	72087	4.133 m	Latitud	e	N11*30'17.8	5656"	Latitud	le	N11*	30'13.52495
Northing	127251	3.396 m	Longitu	ıde	E125°01'29.8	3738"	Longit	ude	E125*	01'34.96980
Elevation	2	4.750 m	Height		26.1	134 m	Heigh	t		87.787 n
To:	SM-271									
	Grid		Local				Global			

Gn	1		Loc	cal		Giobal			
Easting	721071.745 m	Latit	tude	N11*31'3	1.48932"	Latitude		N11*31'27.15275"	
Northing	1274777.717 m	Long	gitude	E125°01'3	E125°01'36.88440" Long			E125°01'42.01496"	
Elevation	80.707 m	Heig	ght	٤	32.090 m	Height		143.697 m	
Vector									
ΔEasting	197.61	12 m	NS Fwd Azimuth			5°23'32"	Δx	52.927 m	
∆Easting ∆Northing	197.61	12 m 21 m	NS Fwd Azimuth Ellipsoid Dist.			5°23'32" 2272.463 m	ΔX ΔY	52.927 m -447.483 m	

Standard Errors

Vector errors:										
σ∆Easting	0.002 m	σ NS fwd Azimuth	0*00'00"	σΔX	0.005 m					
σ∆Northing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.008 m					
σ∆Elevation	0.009 m	σ ∆Height	0.009 m	σΔZ	0.002 m					

Aposteriori Covariance Matrix (Meter²)

	x	Y	z		
x	0.0000261223				
Y	-0.0000356331	0.0000567847			
z	-0.0000091774	0.0000140863	0.0000048698		

From:	SMR-53								
	Grid		Local			Global			
Easting	720874.133	n Lati	tude	N11*30'17	7.85656"	Latitude		N11°30'13.52495	
Northing	1272513.396	n Lon	gitude	E125*01'2	9.83738"	Longitude		E125*01'34.96980'	
Elevation	24.750	n Heig	ght	2	26.134 m	Height		87.787 m	
To:	SM-271								
Grid			Local				GI	obal	
Easting	721071.738	n Lati	tude	N11°31'31.48956"		Latitude		N11°31'27.15300'	
Northing	1274777.724	n Lon	gitude	E125°01'3	6.88417"	Longitude		E125°01'42.01474"	
Elevation	80.695	n Hei	ght	8	32.078 m	Height		143.685 m	
Vector									
∆Easting	197.	605 m	NS Fwd Azimuth			5°23'31"	ΔX	52.941 m	
∆Northing	2264.	328 m	Ellipsoid Dist.			2272.470 m	ΔY	-447.490 m	
		045 m	Allaiaht			65 944 m	47	2220 066 m	

Standard Errors

Vector errors:										
σ∆Easting	0.001 m	σ NS fwd Azimuth	0*00'00"	σΔX	0.004 m					
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m					
σ ΔElevation	0.007 m	σ ∆Height	0.007 m	σΔZ	0.002 m					

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.0000168455		
Y	-0.0000221649	0.0000355369	
z	-0.0000052344	0.0000087190	0.0000031341

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

3. SM-286

	Table A-3.3. SM-286													
Processing Summary														
Observation	From	Τo	Occupation Start Time	Occupatio n Stop Time	Solutio n T∮pe	H. Prec. (Meter)	V. Prec. (Meter)	ΔX (Meter)	ΔY (Meter)	ΔZ (Meter)	Geodeti c Az.	Ellipsoi d Dist. (Meter)	∆ Height (Meter)	Satellit e Availab le
SM-286 SMR-56 (B1)	SMR-66	SM-286	5/11/2014 6:44:03 AM	5/11/2014 1:54:43 Рм	Fixed	0.003	0.009	1325.0 25	263.61 2	2667.2 92	335*34 25"	2989.9 04	-6.335	GPS: 14 GLONA SS: 13 Galileo: 0 QZSS: 0

Acceptance Summary

Processed	Passed	Flag	P	Fail	•
1	1	0		0	

Vector Components (Mark to Mark)

From:	SMR-56							
Grid		Local		Global				
Easting	718970.608 m	Latitude	N11°23'06.52702"	Latitude	N11°23'02.22413"			
Northing	1259244.377 m	Longitude	E125°00'23.99607"	Longitude	E125°00'29.13917"			
Elevation	10.345 m	Height	11.822 m	Height	73.727 m			

To:	SM	M-286							
Grid			Loc	cal		Global			
Easting		717715.152 m	Latit	ude	N11°24'3	5.12705"	Latitude		N11°24'30.81697"
Northing		1261958.553 m	Long	gitude	E124°59'4	3.21146"	Longitude		E124°59'48.35252"
Elevation		4.047 m	Heig	pht		5.488 m	Height		67.304 m
Vector									
ΔEasting		-1255.45	i6 m	NS Fwd Azimuth			335°34'25"	ΔX	1325.020 m
∆Northing		2714.17	76 m	Ellipsoid Dist.			2989.904 m	ΔY	263.518 m
∆Elevation		-6.29	98 m	∆Height			-6.335 m	ΔZ	2667.293 m

Standard Errors

Vector errors:					
σ ∆Easting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.003 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.004 m
σ ΔElevation	0.005 m	σ∆Height	0.005 m	σΔZ	0.001 m

SM-309

4.

Table A-3.4. SM-309								
	Processing Summary							
Observation	From	To	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SMR-58 SM-309 (B1)	SMR-58	SM-309	Fixed	0.002	0.003	274°29'25"	1668.981	3.442

Acceptance Summary

Processed	Passed	Flag	•	Fail	•
1	1	0		0	

Vector Compo	nents (Ma	ark to Mark)							
From:	SM	R-58							
	Grid			Loc	al			Gk	obal
Easting		732600.570 m	Latit	tude	N11°17'5	5.05616"	Latitude		N11°17'50.78580'
Northing		1249768.751 m	Long	gitude	E125°07'5	1.16148"	Longitude		E125°07'56.31100'
Elevation		4.664 m	Heig	ght		6.301 m	Height		68.723 m
Ter	CM	200							
10:	Sm	-309							
	Grid		Loca		cal		Global		
Easting		730935.362 m	Latit	tude	N11°17'5	9.30748"	Latitude		N11*17'55.03553"
Northing		1249887.315 m	Long	gitude	E125*06'56.29744"		Longitude		E125°07'01.44700"
Elevation		8.117 m	Heig	ght		9.743 m	Height		72.125 m
Vector			_						
∆Easting		-1665.20	07 m	NS Fwd Azimuth			274*29'25"	ΔX	1373.678 m
∆Northing		118.56	64 m	Ellipsoid Dist.			1668.981 m	ΔY	939.122 m
∆Elevation		3.45	53 m	∆Height			3.442 m	ΔZ	128.718 m

Standard Errors

Vector errors:					
σ∆Easting	0.001 m	σ NS fwd Azimuth	0*00'00"	σΔX	0.001 m
σ∆Northing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.001 m
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σΔZ	0.001 m

Annex 4. The LIDAR Survey Team Composition

	Table A-4.1. The LIDAR Survey Team Composition						
Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation				
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP				
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP				
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP				
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP				
		LOVELY GRACIA ACUÑA	UP-TCAGP				
	Supervising Science Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP				

Table A-4.1.	The LiDAR	Survey Tear	n Composition

FIELD TEAM

LiDAR Operation	Senior Science Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
	Senior Science Research Specialist (SSRS) 2016/ RA (2014)	PAULINE JOANNE ARCEO	UP-TCAGP
	Research Associate (RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
	RA	GRACE SINADJAN	UP-TCAGP
	RA	JONATHAN ALMALVEZ	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
LiDAR Operation	Airborne Security	SSG RANDY SISON	PHILIPPINE AIR FORCE (PAF)
		SSG RAYMUND DOMINE	PAF
	Pilot	CAPT. ALBERT PAUL LIM	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. RANDY LAGCO	AAC
		CAPT. JACKSON JAVIER	AAC
		CAPT. NIEL AGAWIN	AAC

Floodplain	
for Silaga	
er Sheet	
ita Transf	
vnnex 5. Da	

ADPARTA LOCATION 25/Mittorne_Bawl1 25/Mittorne_Bawl1 25/Mittorne_Bawl1 20/Mittorne_Bawl1 400. 21/Mittorne_Bawl1 400. 400. 400. 400. 400. 400. 400. 400	MAL NOT 100 100 100 100 100 100 100 100 100 10	Actual 20 20 20 20 20 20 20 20 20 20	00001,0000 0000 0000 0000 0000 0000 000		Base http://www.http:/	A 10000 A 1000 A 100	MA M	NAME NAME NAME NAME NAME NAME NAME NAME	MARCIN LOOK MARCINICIO MARCINICIO 200403 (11/075/17354 11/075/17354 0 11/075/17354 22/02540 622400 622400 622400 6224000 6224000 6224000 62240000000000	455-000 10.703 20 20 20 20 20 20 20 20 20 20 20 20 20	1 2010 1	PCIS must be constructed with the constructed with	LOGGA POS MMA 1:7MID 245MID 01.37 7:7MID 245MID 01.37 7:7MID 257MID 01.36 7:7MID 257MID 01.36 5:7MID 257MID 01.36 5:0MID 257MID 01.36 5:0MID 257MID 01.36 5:0MID 257MID 01.36 5:0MID 255MID 01.36 2:0MID 255MID 01.36 2:0MID 255MID 01.36 2:0MID 21.2MID 01.36 0:0MID 21.2MID 01.06 1:0MID 21.2MID 01.06 1:0MID 21.2MID 21.2MID 1:0MID 21.2MID 01.06 1:0MID 21.2MID 01.06 1:0MID 21.2MID 01.06 1:0MID 21.2MID 21.2MID 1:0MID 21.2MID 01.06 1:0MID 21.2MID 01.06	MILAG LOOGS POS Mula Kulk L.0005 P05 Mula Kulk L.17040 26.440 60.52 Kulk T.77040 26.440 60.52 Kulk T.77040 27.5440 41.45 Kulk 1.27140 25.5440 40.55 Kulk 1.27140 25.5440 70.405 Kulk 2.82840 25.5440 70.50 Kulk 2.82840 25.5440 70.50 Kulk 2.82840 25.5440 70.50 Kulk 2.82840 25.5440 70.50 Kulk 2.82840 25.55440 70.50 Kulk 2.82840 72.50 70.50 Kulk 1.0640 27.50 70.50 Kulk 1.28440 27.73440 70.50 Kulk 1.28440 27.73440 70.50 Kulk 1.28440 27.73440 70.50 Kulk 1.28440 27.73440 70.50 <	American Outload Looda Poda Mada Outload Noil, (premita) Looda 20.3. NA N 1.17Mita 20.3. NA N 7.73Mita 20.4. NA 1.77Mita 20140 20.3. NA 1.77Mita 20140 2014 NA 1.77Mita 20140 2014 NA NA 2.72Mita 2014 NA 2.011 2.55Mita 2014 NA 2.012Mita 2.012Mita 2014 NA 2.012Mita 2.012Mita 2014 NA 2.012Mita 2.012Mita 2014 NA 2.012Mita 2.012Mita 2014 NA 1.01 2.014Mita 2014 NA 1.01 2.014Mita 2014 NA 1.01 2.014Mita 2014 NA 1.01 2.014Mita 2014 NA 1.20040 2.014Mita 2.014 NA </th <th>Sensition Lotota Point Not Addiment Not Not Lotota Point Not Additation Not Not 1.17M 2.0M Point 41.15 Additation Not Not 7.7M 7.7M 41.15 2.0M Additation Not Not 7.7M 7.7M 41.15 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 2.7M 2.0M 2.0M 2.0M Additation Not Not Not 2.0M 2.0M 2.0M 2.0M 2.0M Additation Not Not Not 2.0M 2.0M 2.0M 2.0M 2.0M 2.0M<</th> <th>Interdedent interdedent Same Same Same Same Same Same Same Same</th> <th>MD Curdination Cu</th>	Sensition Lotota Point Not Addiment Not Not Lotota Point Not Additation Not Not 1.17M 2.0M Point 41.15 Additation Not Not 7.7M 7.7M 41.15 2.0M Additation Not Not 7.7M 7.7M 41.15 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 7.7M 2.7M 2.0M 2.0M Additation Not Not Not 2.7M 2.0M 2.0M 2.0M Additation Not Not Not 2.0M 2.0M 2.0M 2.0M 2.0M Additation Not Not Not 2.0M 2.0M 2.0M 2.0M 2.0M 2.0M<	Interdedent interdedent Same Same Same Same Same Same Same Same	MD Curdination Cu
100000		188	1100	_	1400	11.4MB	2	14,000	0503	8	R.	25148 24.9	1,2040 25140 75.0	NA 12040 25140 753	NA NA 120400 251468 753	ADUARUUS NA NA 1 2040 251MB 753	201/00081309 MOUNT IN NA 11 2000 25199 75.3	1484A 28U/00651368 AGUARUS MA NA 12848 25148 25148 753
84048		8	11/3	_	-	000011	N.	15,208	0.6500	00214		27546	1,2940 27948	NA 1.294/0 2794/8	NA NA 1.2948 27948	ACOUNDUS NA NA L2940 27948	39UCISO20136A AQUARIUS NA NA 1.29MB 2794B	1463A 38UGISOSEI36A AQUARUS MA WA 1,2846 27948
Excours.	9	8	1420		2	U.M.M.	8002	14,708	6229	24,858		ZT3MB	1.246/0 27360	NA 1.24MB 273MB	NA NA 1.2440 27346	ACUMBIUS NA NA 124440 ZT3MB	38JJC55C02358 AG0M80J5 MA MA 127348	1460A 38UCISCO1358 ACUMRUS MA NA 12440 27348
	004		143	_	148	7.9248	59.609	11.008	2796226929	00.600		212148	0.00840 212440	pux 0.56840 212MB	MA 044 0 00000 212MB 0	AQUADIUS NA NA Q MINU 212MB	38UCB4CL348 ACUARUS MA NA 0 99940 212MB	1454A 38UCG4C1548 ACUA/RUIS MA Nuk 0.99M40 212M8
1.00	04251	8	1420			6/41M0	8002	100011	231123517438	15,771,508		SARAN B	1.0694B 2995AB	MA. 1.00340 208M0	NA NA 1.05340 203500	ACLARCEUS MA NA 1.00000 200000	SSUCREDEDAM ACCURRENTS INA INA 1.06845 20500	140440 20LICITOTATION ACCURATE AND TARGET TARGET
20	51243	0.0	-		160	11,240	81K30	8 STOB	041948	0.108		23,0440	2.30400 230400	MA 2.354/0 2034/0	XAA NAA 2.30440 230440	AQUARTUS NA MA 230400 200400	38UE33F0E511398 AQUARIUS NA NA 2.30499 253469	1413A 388X53946£51538 AQUARUS WA WA 2.3048 23048
Z Mehoma	101000		2	_	143	10.540	60.000	001010	252 Million	34.108		132940	008430 132940	NA 80840 132660	NUA NA 9008400 1325800	ACQUARTERS NAV NAV NAV NOTICE 1000000 1000000	TRUCTINGTITIA ACQUADRUS NA IAA IKA IKONA 102940	Sector DELEDISTICAN ACCURRENTS NA INA INCIDENT 1225403
Z WORTHE	STATION SA	9.0	8		100	EVE H	8067	19709	undramated a	10.108		10100	2.02409 25409	MA 2.6245 25406	NA NA 24245 25466	ACUADUCS NA NA 210340 25446	311/C305943318 AQUADUS NA NA 21/248 25/048	VAMA 391/03905H1318 AQUADUG NA NA 2.6345 25445
Z.Withoma, P	00000		200		100	14.3845	M	100	MARCES .	808		275446	275469	NA 5,0040 275465 1	NA NA 5,0040 275409 1	ACUARCUS NA NA 8.80489 275468 1	DBUCODGS131A ACUADOUS NA NA LADARD ACTORD	NACA SELECTION ACTUATION IN NA LEADER 75900
Z.Veborne, Pan 366P	800.00	g	10 E		110	A NORM	2	1100	SNO CHART	1006	1.00.1	57MB	1 27M0 257M0 0	MA N.STMD ZSTMB 9	NA NA 12740 25745 9	ADUADUS NA NA LITHO ZETHER P	6 SHUSE SHUEL WW WW SUSPANDY VELLENDING	SIGNA SULDATIEN AQUANTIE NA NA VELLAND SUDAY
Z'Netsome_Pas 300A	0401343		2		129	11,2048	N.N.	8,24038	20643	108	14	TANK 41	7,79400 174400 41.	MA 774460 174460 41.	NA. MA P. TIME T. TRAND	ACLUARIUS NA. MA. 7.75ABN 174ABN 41.	ALCORDED ACTIVITY AND ALCORDED ALL ALCORDED	TA MARTE AND
2. Metoma, Pan 2084	Instruction of the second seco		8		001	12,1148	N.	14.108	0404040	00.708	12	243400 433.3	A.17MB 243MB 63.3	NA 1.17MB 24340 4333	MA NA 1.17MB 24389 4333	ADJUARDUS NA. NA. 1.17MB 24380 43.3	TED BACK BACK AN AN ADJANDA ADJANTA ANA	TED BACK BACK AN AN AN AUMUUN ACTERIOUS ASSAU
FOCA FIGH	KM	Actual	ionu	2	three info (NC	NAME NAME NAME NAME NAME NAME NAME NAME			PRIMI PRIMI PRIMI	Chickles of the second	1000	THE REAL		NOR. [puerth]	Output LAS FOR (sweth)	Cutipat cost. [meth]	Dudput Roll, (much)	NAL EVALUATION CONTRACT CONTRA
CANNER (4		CTOR LOGS	Continue			Contraction of	Theory of	INTERCON LONG	Ann		2	LOON NON	IN LASS LOOS POS 1	Trons Post	unitation i data inde	Access autors unations 1005 1005	

Figure A-5.1. Transfer Sheet for Silaga Floodplain - A

			LOCATION	ZIDACIRAW	ZIDACIBAW	ZIDACIRAW DATA	Z-IDACIRAW DATA	ZIDACIRAW	ZIDACIRAW			
		PLAN	KML	Ň	NA	MA	ž	ž	ž			
		FUGHT	Actual	206	500	206/209/194	082082802	290431/293	378			
		OPERATOR	(04/00)	1KB	140	148	543	1KB	1KB			
		ATTON(3)	(and)	193	1KB	1KB	140	148	845			
		BASE ST	BABE STATION(S)	42	808	3.19	3.84	43	4.51			
		Γ	DIGITIZER	N	NA	NA	NA	NA	NA	ality		-
			RANDE	22.8	20.3	24.2	11.4	16.2	10.2	42		
		MISSION LOG	FLERCASI	NA	MA	NA	W	NA	NA	ton a		1 0 0 0 0
SFER SHEET	01.0737 BLL	-	MAGENCASI	NA	NA	NA	NA	MA	NA	Vallon A		
DATA TRANS	With a second se		POS	243	243	208	172	227	111	-1-1-1		
			LOGS(MB)	169	450	NA	1,03	712	483			Υ. Υ.
		LAS	CML (swath)	322	285	50	646	659	772			0 2 1 2
		RAW	Duput LAS	NA	M	N	NA	NA	NA			
			SENSION	GEMIN	GEMINI	GEMIN	OEMN	GEMINI	GEMINI	and and		
			MISSION NAME	28UC34U0296	28U/34HU090A	28UC34UM0308	28UC33ABUC34L031A	28LK34K33A8036A	2BLK34K037A	Register A. P.		
			FLUMIT NO.	3727G	3729G	3731G	3733G	3753G	3757G			
			DING	29-Jan	30-Jan	30-Jan	31-Jan	SFeb	6-Feb			

DREAM Data Acquisition Flight Log	1 LIDAR Operator: Inco North	7 Pilot: J. JNUIEN. 8 Co-P	10 Date: MAN 3, 2014	13 Engine On: 91/ 91/	19 Weather	20 Remarks:		21 Problems and Solutions:	Acquisition Flight Agproved by Comparison Comparison Comparison Signature over Printed Name (End User Representative)	
	2 ALTM Model: AQUA	Hot: N. AGAWIN-1	12 Airport of Departure (tine Off: (> 5%		4 for Printer		No. W.	Acquisi Signatu (PAF Re	
An internal	3 Mission Name:	9 Route:	Airport, Gty/Province):	15 Total Engine Time: 4+4)		light our Abuarius Over	OF PLEAR & CIS lives		tion Flight Certified by Withour Lat AUDA LOBOU AN PAUDA LOBOU AN Protectiation)	
10.00	4 Type: VFR		12 Airport of Arrival	16 Take off:		r curred area	Genplekee)		Pilot-in-Compu	, Dis
	5 Aircraft Type: Cesnna T206H		(Airport, Gty/Province):	17 Landing:					Printed Name s	sster Risk and Exposure Assess
Flight Log No.: 1910	6 Aircraft Identification: RPC 9732			18 Total Flight Time:					idar Operator	R E A M

5

ot: J. JAVIEN 8 Co-Pilot: N. KAMMIN 9 Route: ate: May 4, bit 12 Airport of Departure (Airport, City/Province) ate: May 4, bit 12 Airport of Departure (Airport, City/Province) ate: 10.50 14 Engine Off: 3411 reather 3411 eather 3411 enarks: Completel 4cyt Frlight problems and Solutions:	1: 12 Arport of Arrival e: 16 Take off: for aductive over pue styl (g lives)	Airport, Gity/Province): 17 Landing:	18 Total Flight Time:
ate: Mary 4, 2014 12 Airport of Departure (Airport, City/Province) ngine On: 1058 146041: 1409 15 Total Engine Time reather 2411 emarks: Completel 444 right problems and Solutions:	1: 12 Airport of Arrival e: 16 Take off: for adjudritus over 13 Luc 242 (9 lives)	Airport, Gty/Province): 17 Landing:	18 Total Flight Time:
regine On: 1056 14 Engine Off: 1409 15 Total Engine Time Reather 1056 1056 1444 1444 1169ht curves area	e: 16 Take off: for aquarius over pucatu (g lives)	17 Landing:	18 Total Flight Time:
eather emarks: Completel test rlight survey area Problems and Solutions:	for advarius over 1346.542 (g lives)		
emarks: Completel leve pright survey area	ter aquarius over Bucatul (g lives)	and the second se	
Survey area	pucsty (g lives)		
Problems and Solutions:			
Problems and Solutions:			
			D-DEC
Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Certified by Grant Back of the Certified by Acquisition Flight Certified by Signature over Printed Name (End User Representative) (PMF Representative)	Pilot-in-Comp	Printed Name	Udar Operatod 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	õ	aster Risk and Exposure Assess	REAM

4 Type: VFR S Aircraft Type: CesnnaT206H 6 Aircraft Identification: R/C 9(22- port of Arrival (Airport, Gty/Province):	ke off: 17 Landing: 18 Total Flight Time:	6340.		Pilot-in-Commapd JAC Jan Level - Signature over Printed Name Signature over Printed Name	DREAM
ALTM Model: Actuatud 3 Mission Name: ପଟିଧର ୨4୦) bog 4 t: NJ- ମୁନ୍ଦୁଲୁଭାରୀ 9 Route: 2 Airport of Departure (Airport, Gty/Province): 12 Air	e Off: 15 Total Engine Time: 16 Tak 2-10	Completed is liver over But	merce.	Acquisition Flight Certified by	
AM Data Acquisition Flight Log LIJDAR Operator: PJ MC0202221 7 Pilot: J.J Avlt71 8 Co-Pilot 12 D Date: 12	13 Engine On: 13 Engine On: 729 14 Engine 14 Engine 14 Engine	20 Remarks:	21 Problems and Solutions:	Acquisition Flight Approved by Maryon Maryon Mar Signature over Printed Name (End Usar Representative)	

. m

4.

(i:), J. Jakiti, S. Carblic: (i:), J. Jakiti, Time: (i:), J. Jakiti, S. Carblic: (i:), J. Jakiti, Time: (i:), J. Jakiti, S. Carblic: (i:), J. Jakiti, Time: (i:), J. Jakiti, S. Carblic: (i:), J. Lakiti, S. C	AR Operator: (10.0 flaxins 2 ALT	M Model: MauMUS	3 Mission Name: 2024	Corto SPINOR Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 2008 -2-
Metric Description Description Description Description (1) (ot: .)IAVIER 8 Co-Pilot:	N. AGRUN	9 Route:			
Martin Martin Strate fight Time: Is Total Fight Time: Barton Is Casi Tengine Off. Is Total Fight Time: Is Total Fight Time: Gebter Activity of the fight Time: Is Total Fight Time: Is Total Fight Time: Gebter Activity of the fight Time: Is Total Fight Time: Is Total Fight Time: Gebter Activity of the fight Time: Is Total Fight Time: Is Total Fight Time: Gebter Activity of the fight Is Total Fight Time: Is Total Fight Time:	ate: MAN 10. 50 LL 12 Al	rport of Departure (Airport, Gity/Province):	12 Airport of Arrival	(Airport, Gty/Province):	
rentiti: remark	ngine On: 12 CS 14 Engine Ol	11:	15 Total Engine Time: 3484 BAAA	16 Take off:	17 Landing:	18 Total Flight Time:
ements: Curpleded IcTilues over Bild-34P Problems and Solutions: Problems and Problems and Proble	Veather					
Problem and Solution: Problem and Solution: Problem and Solution: Import Problem and Solution: Problem and Solution:	emarks:		Completed Islin	es over BUC34P		
Problems and Solutions: Acquisition Flight Agenowed by Acquisition Flight Agenowed by Benture over Finited Name Signiture over Finited Name						
Acquisition Flight Agaroved by Acquisition Flight Cartified by	Problems and Solutions:					
Aquitition Flight Agaroned by Aquistition Flight Cartified by E.S. La LL Command T.						
Acquisition Flight Approved by Acquisition Flight Certified by		1. 1. J. A. C.				
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Flight Approved by Martin Control of HIPPOL	Acquisi Signatu	tion Flight Certified by	Pilot-in-Com	la vict	Udar Operator
				۵ ,	Isaster Risk and Exposure Asses) R E A M

ልል 3 Mission Name: ጌ ቅሪራ 34% ንኳ 4 Type: VFR S Aircraft Type: Cesnna T206H 6 Aircraft Identification: ለድ 9 Route: e (Airport, Gty/Province): 12 Airport of Arrival (Airport, Gty/Province):	15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time: $4 + 47$	mpeddel 15/21 lins over Blk34 & 2 2 linus from blk348		utistion Flight Certified by Pilot-in-Commandy Uder Operator Production Pilot-in-Commandy Uder Operator Production Pilot-in-Commandy Uder Operator Pilot-in-Commandy Uder Operator Pilot-in-Comman
DAR Operator: ונגס האלאל 2 ALTM Model: געט וסנ: ט.ט.קטובאע 8 Co-Pilot: או האפאט אי מנפ:	navy 11, 2017 14 Engine Off: ngine On: 7.2.2 14 Engine Off: . Veather	emarks:	1 Problems and Solutions:	Acquisition Flight Approved by Advantus Public Approved by Signature over Printed Name (End User Representative)

<u>ە</u>.

ict: J. J. Wurdt 8. Co. 106:: W. Produce): I. The off: W. Produce): I. J. Wiport of Arrival (Mirport, City/Produce): I. 2. Aliport of Arrival (Mirport, City/Produce): I. 2. Aliportof (Mirport, City/Pr	Data Acquisition Flight Log DAR Operator: AJ ANUED	2 ALTM Model: AGUPANKX	3 Mission Name: 38LL 3468	8[3[A 4 Type: VFR	S Aircraft Type: Cesnna T206H	6 Aircraft Iden
Mill U. Alt Mail U. Alt Mail I. Alt Mail	lot: J. JAvlert 8	20-Pilot: No. AGANUM 12 Airport of Departure (J	9 Route: Nirport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Meather Remarks: Remarks: Completed IL lives one BUK34 P. & 2. lives one BUK34 P. & 2. lives one BUK34 R. a. lives one Planet Name Secure one	Engine On: 13.01	Engine Off: 1734	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight
Remarks: Comparent I in this one OK34 P. R. 2 lines one RK34 P. R. 2 lines one RK34 R	Weather					
I Problems and Solutions: I Problems and Solutions: I Problems and Solutions: Accurate of the Approved by Approved	Remarks:	lomputul	IL, lines oner 6	HK 34 P & 2	litus onu sikzya.	
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Hard Manuel Signature over Printed Name (End User Representative) (End User Representative)	1 Problems and Solutions:					
	Acquisition Flight Apgron	ed by Acquisi	tion Flight Certified by Arthon - CROU Mark are over Printed Name spresentative)	Pilotin-Come	And Velt	Lidar Operator

Filght Log No.:	(Province): (Brain 1206H) 6 Aurorant Identification: (Brain 27) (Province):	c: 18 Total Flight Time:				Udar Operator	D R E A M
to the second	KHRS IPHO 4 TYPE: VFR 5 ALTCHT 1 12 AltPort of Arrival (AltPort, City,	e: 17 Landing	à 2 voids over bix 24 W.			Pilot-in-Command U.P.S. Jon wriet Signature over Printed Name	Disaster Risk an
	.TM Model: AccuPruo) 3 Mission Name: Apr N.AcACuJ 9 Route: Urport of Departure (Airport, Gty/Province)	0ff: 15 Total Engine Time 1:2구 24·23	Camptelied mission and Bekade		en e	Acquisition Flight Certified by Acquisition Plight Certified by Action Development Signature over Printed Name (PMF Representative)	
M Data Acquisition Flight Log	UDAR Operator: 110 foo XMS 2 AL Pilot: J. UNVIEN. 8 Co-Pilot: 0 Date: 12 A	MANLIS / 2014 3 Engine On: 	0 Remarks:	21 Problems and Solutions:		Acquisition Flight Approved by Acquisition Flight Approved by Signature over Printed Name (End User Representative)	30

7.

∞.

OMA Operator: DAMA Model: (Agreent) JATAM Model: (Agreent)<	I Data Acquisition Flight Log				
Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Japatent Inter Annon Inter Annon Inter Annon Inter Annon Inter Annon	DAR Operator: PAAR UED	2 ALTM Model: ANUMUNS 3 Mission Name	:: 3BUK34& \$133A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:RRQ120-
Mark 1. Jale Jale<	ilot: J.J. Priver 8 Co-1 Date:	Pilot: N-Acenult- 9 Route: 12 Airport of Departure (Airport, Gty/Prov	nce): 12 Airport of Arrival	(Airport, City/Province):	
Remarks: (any lubble of gives lapped and BUL 4 for the article of	MAY 13, 2014 Engine On: 14 En 1413 940000 14 En Weather	ngine Off: 15 Total Engine	3+53 16 Take off:	17 Landing:	18 Total Flight Time:
Includence and Solutions: Includence Includence Includence <t< th=""><th>Remarks:</th><th>Completed 6/9 lines left on</th><th>r BLK346. problem ancounteral in -18</th><th>e aircrapt's temperatur.</th><th></th></t<>	Remarks:	Completed 6/9 lines left on	r BLK346. problem ancounteral in -18	e aircrapt's temperatur.	
Acristion flight Approved by Acristion Flight Approved by Acristion Flight Approved by Acristion Flight Approved by Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name Arrier Approved Name Arrier	21 Problems and Solutions:				
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Approved by Acquisition Flight Certified by Pilot-in-Command Signature over Printed Name Signature over Printed Name Udar Operator Signature over Printed Name Signature over Printed Name Udar Operator Out User Representative) Mr Representative) Signature over Printed Name		Control -			
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Flight Approved I PALT - MILL ALT ALT Signature over Printed Name (End User Representative)	by Acquisition Flight Certified 1 Acquisition Flight Certified 1 Signature over Printed Nam	Pllotin-Com	Mand A ULE F er Printed Name	Udar Operator RU Marture Signature Over Printed Name
Eimura A-6 & Elimht Log for Mission 1452A			0	Sisaster Risk and Exposure Asses	D R E A M
		Figure A-6	.8. Flight Log for Mission	11452A	

	Flight Log No.: 3725	entification: Rtc -9022			Sht Time:										t Mechanic/ LIDAR Technician	KrAA ure over Printed Name
	 *	6 Aircraft Ic			18 Total FII			1.1	ł						Aircat	Signa
		Aircraft Type: Cesnna T206H		port, Uty/Prownce):	7 Landing: 19: 12			MA IN S	The & the and r		-	1				Signature over Presed Name
		8 4 Type: VFR 5	VOCAL	PCLOOM	16 Take off: 1 1, 1 7		21 Remarks	U.S.	ince OULL	668					mandra /	Arthony Name
,		sion Name: 2 PUC 340.29	te: thursday	r, uty/ movince):	1 : bg Time:			Others	O LIDAR System Maintena O Aircraft Maintenance	O Phil-LUMA Aginin Activ					Pilot-in-Co	Mun A. La
		LTM Model: beautive 3 Mis	R. Cague 9Rou	Arport of Departure (Airpo	0ff: 15 To	to by		Billable 20.c (Aircraft Test Flight AAC Admin Flight	Cuerse					Acquisition Flight Certified by	Lauri Marine Nime Signatule over trinted Name (PM Representative)
	tion Hight Log	Mmatuez 2 Al	8 Co-Pilot:	171	14 Engine	þ		20.b Non	000	0		6			Ad by	ame Swel
	L-LIDAR 1 Data Acquisit	IDAR Operator: J.	Hot: A. LAM	Date: 1 - 29 - 10	Engine On: 11	Weather	Flight Classification	a Billable	O Ferry Fight	 O System Test Flight O Calibration Flight 	Problems and Solution:	O Weather Problem	 System Problem Aircraft Problem 	O Pilot Problem O Others:	Acquisition Fight Approv	L . Milleo Signature over Printed In (End User Representat

ot: A. Lim					
	8 Co-Pilot: K. Lag Lo	9 Route: "Piccon	1 LOCAL		
ate: 1- 50 -16	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, Chy/Province):	
ngine Ogi : 29	14 Engine Off: 122 40	15 Total Engine Time:	16 Take off: \$', 34	17 Landing: 12, 35	18 Total Flight Time: 4 + 0 I
leather	clour sy				
ight Classification			21 Remarks		
Billable	20.b Non Billable	20.c Others			
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Alrcraft Test Flight AAC Admin Flight Others: 	 UIDAR System Mainte Aircraft Maintenance Phil-UDAR Admin Act 	enance d	vicess pul Pli	q ht-
 Weather Problem System Problem Aircraft Problem Pilot Problem Others: 	1. Sec.				
cquisition Flight Approved by	Acquisition Flight Cert	Plot in	conners 1	DDAR OPERADY	Alrcraft Mechanic/ UDAR Technician
(End User Representative)	Signature over Printed (PAF Representativ	Name Signapti	re over Printed Name	Signature over Printed Name	Signature over Printed Name

ht Log No.: 3743	Cation: RPC-9023			me:								anic/ UDAR Technician
Flig	6 Aircraft Identif			18 Total Flight Ti 4 ± 03			4					Aircraft Mech
	ft Type: Cesnna T206H		Ity/Province):	ling: 14. 20 ·			In flight			-		BAR Operator C. Synchryf Sipsture ber Printed Name
	R SAIrcra		ival (Airport, C	17 Land		marks	fuccess pri	-				
	BOXA 4 Type: VFF	N 10001	12 Airport of Arr Picuo	16 Take off: 0:03	a la	21 Rer	hance	Nities	_			command Command
	Ission Name: 2 tuk 34 k 894	oute: Photoper	ort, City/Province):	fotal Engine Time: イガフ	Purthy chi		c Others O LIDAR System Mainter	 Aircraft Maintenance Phil-LIDAR Admin Acti 		3		Plot-ind
, Sol	2 ALTM Model: Devent 3 M	-Pilot: K-Layco 9R	12 Airport of Departure (Airp	ngine pff	tow of lands to		0.b Non Billable 20. Alrcraft Text Flight	o AAC Admin Flight o Others:			water -	Acquisition Flight Certified
IL-LIDAR 1 Data Acquisition Flight	UDAR Operator. h - Sing dyn	Pilot A. U.M. 8 Co.	Date: 2-5-10	Engine On: 14 El	Weather) Flight Classification	3.a Billable 20	O Ferry Flight O System Test Flight	O Calibration Flight	2 Problems and Solutions	A Weather Problem System Problem Aircraft Problem Pliot Problem Others	Acquisition Flight Approved by

442 -	40.02 2 ALTM Model: 2004	3 Mission Name: 2022.05. 9 Route: 76.0 Almort, Gty/Province): 15 Total Engine Time:	1 A Type: VFR Taclopec 12 Airport of Arrival 16 Take off: ,	S Aicca ft Type: Cesnna T206H (Alrport, Chty/Province): (a) (a) (a) (17 Landing:	S Alrcraft Identification: 7622 S Total Flight Time:
	HESOI	5+0	02524	1024 14	1074 2
fication sistion Flight Flight m Test Flight ration Flight	20.b Non Billable o Alrcraft Test Flight o AAC Admin Flight o Others:	20.c Others O LIDAR System Mair O Aircraft Maintenan O Phil-LIDAR Admin A	21 Remark ntenance cce kcivitles	vocess pul this	ht.
nd Solutions m Problem aft Problem Problem fs:					
Fight Approved by	Acquisition Flight Certi Acquisition Flight Certi Acquisition over Printed (PAF Representative	Siled by Pilot Pilot Number Silente	in commarks	UDAR Operator J. 477 And 164 2 Signature day Printed Name	Aircraft Mechanic/ UDAR Technician
Annex 7. Flight Status Reports

Tacloban Mission

May 3 -13, 2014 and January 29 - February 6, 2016

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1410A	BLK33E	AQUATACTF123A	I. ROXAS	May 3, 2014	Completed test flight for Aquarius over survey area BLK33E.
1414A	BLK33E	AQUATACTF124A	P. ARCEO	May 4, 2014	Completed test flight for Aquarius over survey area BLK33E.
1438A	BLK33f	3BLK34O130A	P. ARCEO	May 10, 2014	Completed 18 lines over BLK34F.
1440A	BLK33F BLK33G	3BLK34OSP130B	I. ROXAS	May 10, 2014	Completed 15 lines over BLK33G.
1442A	BLK33G	3BLK34PS131A	I. ROXAS	May 11, 2014	Completed 15/21 lines over BLK33G.
1444A	BLK33G BLK33H	3BLK34PSQ131B	P. ARCEO	May 11, 2014	Completed 16 lines over BLK33H and 2 lines over BLK33G.
1450A	BLK33H	3BLK34QS133A	P. ARCEO	May 13, 2014	Completed 6 out of 9 lines left over BLK34H, need to abort due to problem encountered in the aircraft temperature.
1452A	BLK33H BLK33E	3BLK34QS133Bf	I. ROXAS	May 13, 2014	Completed mission over BLK34H and some voids over BLK33E.
3727G	BLK34I BLK34J	2BLK34IJ029B	J. ALMALVEZ	January 29, 2016	Completed BLK34I and surveyed 15 lines at BLK34J.
3729G	BLK34H BLK34J	2BLK34HJ030A	P. ARCEO	January 30, 2016	Completed BLK34H and BLK34J.
3753G	BLK34K BLK33A BLK33B	2BLK34K33AB036A	G. SINADJAN	February 5, 2016	Surveyed BLK34K and completed BLK33A & 33B
3757G	BLK34K	2BLK34K037A	J. ALMALVEZ	February 6, 2016	Completed BLK34K

Table A-7.1. Flight Status Report

Figure A-7.1. Swath for Flight No. 1410A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-7.3. Swath for Flight No. 1438A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-7.5. Swath for Flight No. 1442A

Flight No. :	1452A			
Area:	BLK33H, BL	K33E		
Total Area:	75.806 sq. l	km.		
Mission Name:	3BLK33HSE	S133B		
Altitude:	600m			
PRF:	50 kHz	SCF:	50 Hz	
Lidar FOV:	18 deg	Sidelap:	30%	

Figure A-7.7. Swath for Flight No. 1452A

Figure A-7.11. Swath for Flight No. 3757G

Table A-8.1. Mission Summary	Report for Mission Blk33H	
Flight Area	Samar-Leyte	
Mission Name	Blk33H	
Inclusive Flights	1444A, 1450A, 1452A	
Range data size	30.84 GB	
POS data size	619 MB	
Base data size	36 MB	
Image	160.5 GB	
Transfer date	May 28, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.8	
RMSE for East Position (<4.0 cm)	1.6	
RMSE for Down Position (<8.0 cm)	2.9	
Boresight correction stdev (<0.001deg)	0.000310	
IMU attitude correction stdev (<0.001deg)	0.000915	
GPS position stdev (<0.01m)	0.0030	
Minimum % overlap (>25)	46.76%	
Ave point cloud density per sq.m. (>2.0)	3.36	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	261	
Maximum Height	328.04 m	
Minimum Height	56.94 m	
5		
Classification (# of points)		
Ground	120,058,822	
Low vegetation	54,325,156	
Medium vegetation	230,234,006	
High vegetation	163,298,807	
Building	1.762.420	
Orthophoto	Yes	
Processed by	Alion Araneta	

Figure A-8.7. Elevation difference between flight lines

Table A-8.2. Mission Summary Report for Mission Blk33G			
Flight Area	Samar-Leyte		
Mission Name	Blk33G		
Inclusive Flights	1440A, 1442A		
Range data size	28 GB		
POS data size	459 MB		
Base data size	31.8 MB		
Image	174.8 GB		
Transfer date	May 28, 2014		
Solution Status			
Number of Satellites (>6)	No		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	2.2		
RMSE for East Position (<4.0 cm)	1.9		
RMSE for Down Position (<8.0 cm)	4.3		
Boresight correction stdev (<0.001deg)	0.000322186		
IMU attitude correction stdev (<0.001deg)	0.0609276		
GPS position stdev (<0.01m)	0.034031		
Minimum % overlap (>25)	32.09%		
Ave point cloud density per sq.m. (>2.0)	3.01		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	312		
Maximum Height	365.67 m		
Minimum Height	58.80 m		
Classification (# of points)			
Ground	77,148,752		
Low vegetation	65,926,334		
Medium vegetation	201,996,077		
High vegetation	198,312,411		
Building	3,402,990		
Orthophoto	Yes		
Processed by	Antonio Chua Jr., Ailyn Biñas		

Figure A-8.14. Elevation difference between flight lines

Table A-8.3. Mission Summary Report for Mission Blk33F			
Flight Area	Leyte		
Mission Name	Blk33F		
Inclusive Flights	3781G, 23773G		
Range data size			
POS data size			
Base data size	13.57 MB		
Image	n/a		
Transfer date	March 02, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	No		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.0		
RMSE for East Position (<4.0 cm)	1.4		
RMSE for Down Position (<8.0 cm)	3.1		
Boresight correction stdev (<0.001deg)	0.001088		
IMU attitude correction stdev (<0.001deg)	0.002573		
GPS position stdev (<0.01m)	0.0113		
Minimum % overlap (>25)	41.49		
Ave point cloud density per sq.m. (>2.0)	4.86		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	315		
Maximum Height	304.65 m		
Minimum Height	52.08 m		
Classification (# of points)			
Ground	91,416,640		
Low vegetation	73,231,907		
Medium vegetation	216,370,969		
High vegetation	167,159,477		
Building	1,402,580		
Orthophoto	Yes		
Processed by	Melanie Hingpit, Monalyne Rabino		

Figure A-8.21. Elevation difference between flight lines

Flight AreaSamar-LeyteMission NameBik33E_addtionalInclusive Flights1410ARange data size15.3 GBPOS data size281 MBBase data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution StatusNumber of Satellites (>6)YesPDOP (<3)YesBaseline Length (<30km)NoProcessing Mode (<=1)NoRMSE for North Position (<4.0 cm)1.9RMSE for Fast Position (<4.0 cm)3.7Boresight correction stdev (<0.001deg)0.000358IMU attitude correction stdev (<0.001deg)0.000358IMU attitude correction stdev (<0.001deg)0.00028Minimum % overlap (>25)39 41%Ave point cloud density per sq.m. (>2.0)2.82Elevation difference between strips (<0.20 m)YesClassification (# of points)179Maximum Height419.70 mMinimum Height58.53 mClassification (# of points)Classification (# of points)Ground28,982,321Low vegetation55,588,086Building872,621OrthophotoNoProcessed byMelaine Hingpit	Table A-8.4. Mission Summary Report for Mission Blk33E_additional			
Mission NameBlk33E_addtionalInclusive Flights1410ARange data size15.3 GBPOS data size281 MBBase data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution Status1Solution Status1PODP (<3)YesPDOP (<3)YesBaseline Length (<30km)NoProcessing Mode (<=1)NoSmoothed Performance Metrics (in cm)1.9RMSE for North Position (<4.0 cm)1.9RMSE for Down Position (<4.0 cm)3.7Baresight correction stdev (<0.001deg)0.000358IMU attitude correction stdev (<0.001deg)0.000887GPS position stdev (<0.01m)0.02.82Elevation difference between strips (<0.20 m)YesNumber of 1km x 1km blocks179Maximum Height419.70 mMinimum Height58.53 mClassification (# of points)28,982,321Low vegetation28,982,321Low vegetation65,819,196High veg	Flight Area	Samar-Leyte		
Inclusive Flights1410ARange data size15.3 GBPOS data size281 MBBase data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution StatusNumber of Satellites (>6)YesPODP (<3)	Mission Name	Blk33E_addtional		
Range data size15.3 GBPOS data size281 MBBase data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution Status	Inclusive Flights	1410A		
POS data size281 MBBase data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution Status	Range data size	15.3 GB		
Base data size7.61 MBImage51 GBTransfer dateMay 28, 2014Solution StatusNumber of Satellites (>6)YesPDOP (<3)	POS data size	281 MB		
Image51 GBTransfer dateMay 28, 2014Solution Status	Base data size	7.61 MB		
Transfer dateMay 28, 2014Solution Status	Image	51 GB		
Solution StatusNumber of Satellites (>6)YesPDOP (<3)	Transfer date	May 28, 2014		
Solution StatusNumber of Satellites (>6)PDOP (<3)				
Number of Satellites (>6)YesPDOP (<3)	Solution Status			
PDOP (<3) Yes Baseline Length (<30km)	Number of Satellites (>6)	Yes		
Baseline Length (<30km)NoProcessing Mode (<=1)	PDOP (<3)	Yes		
Processing Mode (<=1)NoSmoothed Performance Metrics (in cm)	Baseline Length (<30km)	No		
Smoothed Performance Metrics (in cm)RMSE for North Position (<4.0 cm)	Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)RMSE for North Position (<4.0 cm)				
RMSE for North Position (<4.0 cm) 1.9 RMSE for East Position (<4.0 cm)	Smoothed Performance Metrics (in cm)			
RMSE for East Position (<4.0 cm) 2.3 RMSE for Down Position (<8.0 cm)	RMSE for North Position (<4.0 cm)	1.9		
RMSE for Down Position (<8.0 cm) 3.7 Boresight correction stdev (<0.001deg)	RMSE for East Position (<4.0 cm)	2.3		
Image: Construction stdev (<0.001deg)0.000358IMU attitude correction stdev (<0.001deg)	RMSE for Down Position (<8.0 cm)	3.7		
Boresight correction stdev (<0.001deg) 0.000358 IMU attitude correction stdev (<0.01m)				
IMU attitude correction stdev (<0.001deg)0.000887GPS position stdev (<0.01m)	Boresight correction stdev (<0.001deg)	0.000358		
GPS position stdev (<0.01m)0.0028Minimum % overlap (>25)39.41%Ave point cloud density per sq.m. (>2.0)2.82Elevation difference between strips (<0.20 m)	IMU attitude correction stdev (<0.001deg)	0.000887		
Minimum % overlap (>25)39.41%Ave point cloud density per sq.m. (>2.0)2.82Elevation difference between strips (<0.20 m)	GPS position stdev (<0.01m)	0.0028		
Minimum % overlap (>25)39.41%Ave point cloud density per sq.m. (>2.0)2.82Elevation difference between strips (<0.20 m)				
Ave point cloud density per sq.m. (>2.0)2.82Elevation difference between strips (<0.20 m)	Minimum % overlap (>25)	39.41%		
Elevation difference between strips (<0.20 m)YesNumber of 1km x 1km blocks179Number of 1km x 1km blocks179Maximum Height419.70 mMinimum Height58.53 mClassification (# of points)28,982,321Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Ave point cloud density per sq.m. (>2.0)	2.82		
Number of 1km x 1km blocks179Maximum Height419.70 mMinimum Height58.53 mMinimum Height58.53 mClassification (# of points)Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks179Maximum Height419.70 mMinimum Height58.53 mClassification (# of points)Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit				
Maximum Height419.70 mMinimum Height58.53 mClassification (# of points)Classification (# of points)28,982,321Ground28,320,279Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Number of 1km x 1km blocks	179		
Minimum Height58.53 mClassification (# of points)Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Maximum Height	419.70 m		
Classification (# of points)Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Minimum Height	58.53 m		
Classification (# of points)Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit				
Ground28,982,321Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Classification (# of points)			
Low vegetation28,320,279Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Ground	28,982,321		
Medium vegetation56,819,196High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Low vegetation	28,320,279		
High vegetation65,588,086Building872,621OrthophotoNoProcessed byMelanie Hingpit	Medium vegetation	56,819,196		
Building872,621OrthophotoNoProcessed byMelanie Hingpit	High vegetation	65,588,086		
OrthophotoNoProcessed byMelanie Hingpit	Building	872,621		
Processed by Melanie Hingpit	Orthophoto	No		
	Processed by	Melanie Hingpit		

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.28. Elevation difference between flight lines

Table A-8.5. Mission Summary Report for Mission Blk33E			
Flight Area	Samar-Leyte		
Mission Name	Blk33E		
Inclusive Flights	1452A		
Range data size	9.57 GB		
POS data size	233 MB		
Base data size	11.2 MB		
Image	47.1 GB		
Transfer date	May 28, 2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.58		
RMSE for East Position (<4.0 cm)	2.28		
RMSE for Down Position (<8.0 cm)	3.9		
Boresight correction stdev (<0.001deg)	0.000498		
IMU attitude correction stdev (<0.001deg)	0.000909		
GPS position stdev (<0.01m)	0.0025		
Minimum % overlap (>25)	33.85%		
Ave point cloud density per sq.m. (>2.0)	2.63		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	190		
Maximum Height	419.67 m		
Minimum Height	56.02 m		
Classification (# of points)			
Ground	31,505,889		
Low vegetation	25,749,491		
Medium vegetation	53,225,191		
High vegetation	64,445,794		
Building	866,018		
Orthophoto	Yes		
Processed by	Tox Salvacion, Ma. Ailyn Olanda		

Figure A-8.35. Elevation difference between flight lines

Table A-8.6. Mission Summary Report for Mission 33F			
Flight Area	Leyte		
Mission Name	33F		
Inclusive Flights	3781G, 23773G		
Range data size	20.36		
POS data size	386		
Base data size	13.57		
Image	n/a		
Transfer date	March 04, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	No		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.0		
RMSE for East Position (<4.0 cm)	1.4		
RMSE for Down Position (<8.0 cm)	3.1		
Boresight correction stdev (<0.001deg)	0.001088		
IMU attitude correction stdev (<0.001deg)	0.002573		
GPS position stdev (<0.01m)	0.0113		
Minimum % overlap (>25)	41.49		
Ave point cloud density per sq.m. (>2.0)	4.86		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	142		
Maximum Height	315.78 m		
Minimum Height	25.54 m		
Classification (# of points)			
Ground	25,232,203		
Low vegetation	25,048,022		
Medium vegetation	132,149,471		
High vegetation	162,406,497		
Building	2,147,712		
Orthophoto	no		

Figure A-8.42. Elevation difference between flight lines

Table A-8.7. Mission Summ	ary Report for Mission 33H
Flight Area	Leyte
Mission Name	33Н
Inclusive Flights	3727G
Range data size	22.8
POS data size	243
Base data size	4.2
Image	n/a
Transfer date	February 26, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.1
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	2.3
Boresight correction stdev (<0.001deg)	0.000793
IMU attitude correction stdev (<0.001deg)	0.033296
GPS position stdev (<0.01m)	0.0295
Minimum % overlap (>25)	26.89
Ave point cloud density per sq.m. (>2.0)	4.90
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	109
Maximum Height	383.19 m
Minimum Height	70.46 m
Classification (# of points)	
Ground	26,577,714
Low vegetation	11,614,537
Medium vegetation	149,608,781
High vegetation	257,635,432
Building	10,608,460
Orthophoto	No

Figure A-8.49. Elevation difference between flight lines

Table A-8.8. Mission Summary	Report for Mission 33H_Additional
Flight Area	Leyte
Mission Name	33H_Additional
Inclusive Flights	3729G
Range data size	20.3
POS data size	243
Base data size	608
Image	n/a
Transfer date	February 26, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.7
RMSE for East Position (<4.0 cm)	2.3
RMSE for Down Position (<8.0 cm)	4.1
Boresight correction stdev (<0.001deg)	0.003521
IMU attitude correction stdev (<0.001deg)	0.030644
GPS position stdev (<0.01m)	0.0206
Minimum % overlap (>25)	31.08
Ave point cloud density per sq.m. (>2.0)	5.18
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	58
Maximum Height	300.79 m
Minimum Height	63.31 m
Classification (# of points)	
Ground	15,617,162
Low vegetation	10,785,119
Medium vegetation	71,742,050
High vegetation	55,980,659
Building	1,280,550
Orthophoto	no

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.56. Elevation difference between flight lines

Annex 9. Silaga Model Basin Parameters

Ratio to Peak 0.2 Ratio to Peak Threshold Type **Recession Baseflow Recession Constant** 0.9 Discharge (M3/S) 0.366125 0.200238 0.221365 0.218335 0.195648 0.058335 1.062094 0.315929 0.361908 0.060275 0.205164 0.197674 0.391504 0.021907 0.593621 0.665369 0.292793 0.074077 0.131252 0.038342 0.01608 0.56993 0.35292 Initial Table A-9.1. Silaga Model Basin Parameters Discharge nitial Type Clark Unit Hydrograph Transform Coefficient 5.946029 5.374876 5.577676 5.657754 6.425048 2.895065 6.476385 5.249436 5.819896 7.602546 2.337639 7.166424 2.468344 6.675232 5.167792 3.002752 3.335935 3.402199 6.728412 11.8924 4.704857 3.49802 6.15995 Storage (HR) Concentration 4.092506 12.54626 5.256918 13.30978 6.123985 9.764839 11.77943 10.78423 11.24833 11.68633 20.82002 8.236794 10.18889 9.047255 5.840223 9.409797 5.068391 11.33821 10.40971 4.321331 9.905031 9.19019 5.95623 Time of (HR) Impervious (%) 0 SCS Curve Number Loss 91.03828 0.391504 0.021907 70.96461 88.55192 77.38181 65.70561 Number 90.2812 Curve 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 89.79 Abstraction 5.776456 5.776456 20.26012 5.776456 5.776456 5.776456 5.468635 5.776456 20.78498 26.51456 6.567476 5.776456 5.776456 5.776456 5.776456 5.000705 5.776456 5.776456 5.776456 5.776456 5.776456 5.776456 14.8485 Initial (mm) Basin Number W510 W530 W540 W550 W560 W610 W650 W660 W440 W450 W460 W470 W480 W490 W500 W520 W570 W580 W590 W600 W620 W630 W640

asin umber	scs c	urve Number L	sso	Clark Unit Hy Transfo	/drograph orm		Recess	ion Baseflov	~	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
670	17.47625	0.207182	0	10.10314	5.770915	Discharge	0.207182	0.9	Ratio to Peak	0.2
680	5.776456	0.207797	0	6.8604	3.91866	Discharge	0.207797	0.9	Ratio to Peak	0.2
069	5.776456	0.27273	0	9.49604	5.424138	Discharge	0.27273	0.9	Ratio to Peak	0.2
700	5.776456	0.269327	0	9.667173	5.521889	Discharge	0.269327	6.0	Ratio to Peak	0.2
710	5.776456	0.298811	0	9.865878	5.63539	Discharge	0.298811	6.0	Ratio to Peak	0.2
720	5.776456	0.003429	0	2.82535	1.61384	Discharge	0.003429	0.9	Ratio to Peak	0.2
730	5.776456	0.28506	0	10.50658	6.00136	Discharge	0.28506	0.9	Ratio to Peak	0.2
740	5.776456	0.22495	0	10.97801	6.270637	Discharge	0.22495	0.9	Ratio to Peak	0.2
750	5.776456	0.352652	0	12.19037	6.963138	Discharge	0.352652	0.9	Ratio to Peak	0.2
760	7.890084	0.301339	0	8.827811	5.042446	Discharge	0.301339	0.9	Ratio to Peak	0.2
770	5.776456	0.026739	0	2.946544	1.683066	Discharge	0.026739	0.9	Ratio to Peak	0.2
780	5.776456	0.073012	0	7.095053	4.052694	Discharge	0.073012	0.9	Ratio to Peak	0.2
06/	4.629274	0.206255	0	5.902831	3.371697	Discharge	0.206255	0.9	Ratio to Peak	0.2
300	5.776456	0.39715	0	10.31859	5.893977	Discharge	0.39715	0.9	Ratio to Peak	0.2
310	5.776456	1322132	0	9.9635	5.691151	Discharge	1322132	0.9	Ratio to Peak	0.2
320	5.776456	0.390716	0	9.652323	5.513407	Discharge	0.390716	0.9	Ratio to Peak	0.2
330	5.776456	0.23399	0	8.549502	4.883476	Discharge	0.23399	0.9	Ratio to Peak	0.2
340	5.776456	0.467694	0	9.381283	5.358589	Discharge	0.467694	0.9	Ratio to Peak	0.2
350	5.776456	0.218404	0	6.671221	3.810602	Discharge	0.218404	0.9	Ratio to Peak	0.2
360	5.776456	0.214213	0	5.680626	3.244774	Discharge	0.214213	0.9	Ratio to Peak	0.2

Annex 10. Silaga Model Reach Parameters

Slope Side 45 5.18437.1843 17.496 13.793 13.793 5.1843 7.1843 8.2643 8.2643 8.2643 8.2643 13.793 5.1843 17.496 Width 2.9357 2.9357 2.9357 2.9357 2.9357 3.7971 3.7971 Trapezoid Shape Manning's n **Muskingum Cunge Channel Routing** 0.04 00041639212451911303 0003337698024512234 0.0010376 0.0061326 0.0054850 0.0054850 0.0054850 0.0026026 0.0023034 0.0054850 0.0030204 0.0028871 0.0128885 0.0054850 0.0060751 0.0016534 0.0028998 0.0054850 0.0054850 0.0029257 0.0025997 Slope Length (m) 1731.8 3253.3 1954.5 895.98 952.25 1378.4 1675.4 545.56 1328.9 1498.8 3525.2 1880.4 2528.9 1554.4 70.711 962.13 641.84 1973.4 2300.7 972.13 922.13 Automatic Fixed Interval **Time Step Method** Number Reach R110 R120 R130 R170 R200 R210 R240 R100 R220 R260 R280 R290 R300 R320 R360 R370 R380 R390 R400 R90 R60

Table A-10.1. Silaga Model Reach Parameters

	r	Table	A-11.1.	Silaga Field	Validat	ion Points	
Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain
Number	(111 V	V(304)	vai (iii)				Scenario
	Lat	Long	1				
1	11.469636	125.007264	0.03	0.4	-0.37	Seniang/ December 28, 2014	5 -Year
2	11.469636	125.007264	0.03	0.55	-0.52	Ruby/ December 06,2014	5 -Year
3	11.470091	125.004375	0.03	0.3	-0.27	Ruby/ December 06,2014	5 -Year
4	11.469637	125.006777	0.03	1.2	-1.17	Ruby/ December 06,2014	5 -Year
5	11.469637	125.006777	0.03	0.3	-0.27	Yolanda/ November 08,2013	5 -Year
6	11.46931	125.006658	0.03	0.7	-0.67	Ruby/ December 06,2014	5 -Year
7	11.469111	125.006946	0.04	1.6	-1.56	Ruby/ December 06,2014	5 -Year
8	11.469023	125.007442	0.03	1.8	-1.77	Ruby/ December 06,2014	5 -Year
9	11.469023	125.007442	0.03	1.8	-1.77	Seniang/ December 28,2014	5 -Year
10	11.46897	125.007775	0.03	1.83	-1.80	Ruby/ December 06,2014	5 -Year
11	11.46897	125.007775	0.03	1.8	-1.77	Seniang/ December 28,2014	5 -Year
12	11.469434	125.008009	0.03	1	-0.97	Ruby/ December 06,2014	5 -Year
13	11.469434	125.008009	0.03	1	-0.97	Seniang/ December 28,2014	5 -Year
14	11.46963	125.007948	0.06	1	-0.94	Ruby/ December 06,2014	5 -Year
15	11.46963	125.007948	0.06	1	-0.94	Seniang/ December 28,2014	5 -Year
16	11.469345	125.009246	0.03	0.5	-0.47	Ruby/ December 06,2014	5 -Year
17	11.469121	125.010176	0.03	0.5	-0.47	Ruby/ December 06,2014	5 -Year
18	11.469121	125.010176	0.03	0.5	-0.47	Seniang/ December 28,2014	5 -Year
19	11.470988	125.011678	0.03	0.4	-0.37	Yolanda/ November 08,2013	5 -Year
20	11.470988	125.011678	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
21	11.471258	125.011856	0.03	0.1	-0.07	Ruby/ December 06,2014	5 -Year
22	11.472299	125.014507	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
23	11.471979	125.015616	0.03	0.1	-0.07	Ruby/ December 06,2014	5 -Year
24	11.470944	125.017604	0.03	2	-1.97	Ruby/ December 06,2014	5 -Year
25	11.470944	125.017604	0.03	1	-0.97	Seniang/ December 28,2014	5 -Year
26	11.471164	125.017316	0.03	2	-1.97	Ruby/ December 06,2014	5 -Year
27	11.471164	125.017316	0.03	1	-0.97	Seniang/ December 28,2014	5 -Year
28	11.46967	125.018798	0.14	1.8	-1.66	Ruby/ December 06,2014	5 -Year
29	11.469327	125.019109	0.63	3	-2.37	Ruby/ December 06,2014	5 -Year
30	11.469327	125.019109	0.63	0.3	0.33	Seniang/ December 28,2014	5 -Year
31	11.469065	125.018921	0.42	2	-1.58	Ruby/ December 06,2014	5 -Year
32	11.469065	125.018921	0.42	0.3	0.12	Seniang/ December 28,2014	5 -Year
33	11.469123	125.01918	0.06	3	-2.94	Ruby/ December 06,2014	5 -Year
34	11.469123	125.01918	0.06	0	0.06	Seniang/ December 28,2014	5 -Year
35	11.469123	125.01918	0.06	0	0.06	Yolanda/ November 08,2013	5 -Year
36	11.471914	125.021687	0.09	0.5	-0.41	Ruby/ December 06,2014	5 -Year
37	11.471914	125.021687	0.09	0.3	-0.21	Seniang/ December 28,2014	5 -Year
38	11.470777	125.020887	0.03	1.5	-1.47	Ruby/ December 06,2014	5 -Year
39	11.470536	125.020637	0.37	2	-1.63	Ruby/ December 06,2014	5 -Year
40	11.470536	125.020637	0.37	1	-0.63	Seniang/ December 28,2014	5 -Year
41	11.470239	125.020523	0.03	1.5	-1.47	Ruby/ December 06,2014	5 -Year
42	11.469678	125.02013	0.09	1.8	-1.71	Ruby/ December 06,2014	5 -Year
43	11.469079	125.019746	0.36	2.5	-2.14	Ruby/ December 06,2014	5 -Year
44	11.468933	125.019764	0.65	1.8	-1.15	Ruby/ December 06.2014	5 -Year

Annex 11. Silaga Field Validation Points

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
45	11.468933	125.019764	0.65	1.3	-0.65	Ruby/ December 06,2014	5 -Year
46	11.467811	125.019335	0.03	1	-0.97	Seniang/ December 28,2014	5 -Year
47	11.468136	125.018893	0.03	3	-2.97	Ruby/ December 06,2014	5 -Year
48	11.467619	125.018588	0.03	0.5	-0.47	Ruby/ December 06,2014	5 -Year
49	11.467308	125.018813	0.04	1.2	-1.16	Ruby/ December 06,2014	5 -Year
50	11.466865	125.018939	0.05	0.5	-0.45	Ruby/ December 06,2014	5 -Year
51	11.466632	125.019775	0.08	1	-0.92	Ruby/ December 06,2014	5 -Year
52	11.466777	125.020018	0.03	2	-1.97	Ruby/ December 06,2014	5 -Year
53	11.466777	125.020018	0.03	1.9	-1.87	Seniang/ December 28,2014	5 -Year
54	11.466962	125.020648	0.03	1.5	-1.47	Yolanda/ November 08,2013	5 -Year
55	11.466962	125.020648	0.03	1.5	-1.47	Ruby/ December 06,2014	5 -Year
56	11.465517	125.01899	0.03	2.5	-2.47	Ruby/ December 06,2014	5 -Year
57	11.46308	125.019894	0.03	1.3	-1.27	Ruby/ December 06,2014	5 -Year
58	11.46308	125.019894	0.03	1.3	-1.27	Seniang/ December 28,2014	5 -Year
59	11.453217	125.047119	0.34	0.1	0.24	Ruby/ December 06,2014	5 -Year
60	11.453313	125.046954	0.88	0.2	0.68	Ruby/ December 06,2014	5 -Year
61	11.455404	125.042216	0.57	0.5	0.07	Ruby/ December 06,2014	5 -Year
62	11.455571	125.039597	0.78	0.5	0.28	Ruby/ December 06,2014	5 -Year
63	11.455962	125.038588	0.04	0.1	-0.06	Ruby/ December 06,2014	5 -Year
64	11.459373	125.035452	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
65	11.459458	125.036073	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
66	11.453623	125.025251	0.52	0.5	0.02	Ruby/ December 06,2014	5 -Year
67	11.453811	125.025556	0.45	0.9	-0.45	Ruby/ December 06,2014	5 -Year
68	11.452287	125.023689	0.03	0.6	-0.57	Ruby/ December 06,2014	5 -Year
69	11.452061	125.022668	0.22	1	-0.78	Ruby/ December 06,2014	5 -Year
70	11.451976	125.022163	0.23	1	-0.77	Ruby/ December 06,2014	5 -Year
71	11.451855	125.021247	0.51	0.6	-0.09	Ruby/ December 06,2014	5 -Year
72	11.451733	125.020264	0.75	0.6	0.15	Ruby/ December 06,2014	5 -Year
73	11.45469	125.02051	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
74	11.454725	125.020701	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
75	11.45298	125.020502	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
76	11.452151	125.019888	0.70	0.5	0.20	Ruby/ December 06,2014	5 -Year
77	11.4511	125.019187	0.22	0.3	-0.08	Ruby/ December 06,2014	5 -Year
78	11.451026	125.019251	0.48	1.45	-0.97	Ruby/ December 06,2014	5 -Year
79	11.451026	125.019251	0.48	1.3	-0.82	Seniang/ December 28,2014	5 -Year
80	11.451026	125.019251	0.48	0.6	-0.12	Yolanda/ November 08,2013	5 -Year
81	11.450119	125.018005	0.09	0.2	-0.11	Ruby/ December 06,2014	5 -Year
82	11.449962	125.018032	0.14	0.3	-0.16	Yolanda/ November 08,2013	5 -Year
83	11.449962	125.018032	0.14	0.3	-0.16	Ruby/ December 06,2014	5 -Year
84	11.44993	125.017559	0.74	0.8	-0.06	Ruby/ December 06,2014	5 -Year
85	11.44993	125.017559	0.74	0.5	0.24	Seniang/ December 28,2014	5 -Year
86	11.449654	125.017804	1.10	0.8	0.30	Ruby/ December 06,2014	5 -Year
87	11.449654	125.017804	1.10	0.4	0.70	Seniang/ December 28,2014	5 -Year

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
88	11.448587	125.016723	0.03	2.2	-2.17	Ruby/ December 06,2014	5 -Year
89	11.447442	125.017387	0.09	0.2	-0.11	Yolanda/ November 08,2013	5 -Year
90	11.447442	125.017387	0.09	0.5	-0.41	Ruby/ December 06,2014	5 -Year
91	11.447403	125.017929	0.03	0.6	-0.57	Ruby/ December 06,2014	5 -Year
92	11.447016	125.017595	0.58	0	0.58	Ruby/ December 06,2014	5 -Year
93	11.443535	125.016897	0.12	0.5	-0.38	Ruby/ December 06,2014	5 -Year
95	11.443561	125.017043	0.21	0.6	-0.39	Ruby/ December 06,2014	5 -Year
96	11.443115	125.016657	0.03	1.5	-1.47	Ruby/ December 06,2014	5 -Year
97	11.443115	125.016657	0.03	0.5	-0.47	Seniang/December 28.2014	5 -Year
98	11.442941	125.01636	0.03	0.5	-0.47	Ruby/December 06.2014	5 -Year
99	11.442599	125.01631	0.03	0.2	-0.17	Ruby/ December 06.2014	5 -Year
100	11.443903	125.013701	0.03	1.5	-1.47	Ruby/ December 06,2014	5 -Year
101	11.444192	125.01277	0.05	1.5	-1.45	Ruby/ December 06,2014	5 -Year
102	11.444041	125.012456	0.06	1.6	-1.54	Ruby/ December 06,2014	5 -Year
103	11.444371	125.012231	0.15	0.5	-0.35	Seniang/ December 28,2014	5 -Year
104	11.444371	125.012231	0.15	1.8	-1.65	Ruby/ December 06,2014	5 -Year
105	11.444371	125.012231	0.15	1.8	-1.65	Seniang/ December 28,2014	5 -Year
106	11.444433	125.012016	0.31	1.7	-1.39	Ruby/ December 06,2014	5 -Year
107	11.444421	125.011854	0.12	2	-1.88	Ruby/ December 06,2014	5 -Year
108	11.440143	125.015952	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
109	11.439953	125.015973	0.04	0.1	-0.06	Ruby/ December 06,2014	5 -Year
110	11.434849	125.014525	0.19	0	0.19	Ruby/ December 06,2014	5 -Year
111	11.435787	125.014744	0.03	0.9	-0.87	Ruby/ December 06,2014	5 -Year
112	11.436648	125.01492	0.11	0.9	-0.79	Ruby/ December 06,2014	5 -Year
113	11.436791	125.01478	0.17	0.75	-0.58	Ruby/ December 06,2014	5 -Year
114	11.437219	125.015198	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
115	11.437396	125.015654	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
116	11.438176	125.015018	0.03	0.5	-0.47	Yolanda/ November 08,2013	5 -Year
117	11.438176	125.015018	0.03	1.3	-1.27	Ruby/ December 06,2014	5 -Year
118	11.438331	125.014507	0.13	1.3	-1.17	Ruby/ December 06,2014	5 -Year
119	11.438331	125.014507	0.13	0.5	-0.37	Yolanda/ November 08,2013	5 -Year
120	11.438331	125.014507	0.13	1.3	-1.17	Seniang/ December 28,2014	5 -Year
121	11.438731	125.014386	0.04	1	-0.96	Ruby/ December 06,2014	5 -Year
122	11.438922	125.014563	0.11	1	-0.89	Seniang/ December 28,2014	5 -Year
123	11.438922	125.014563	0.11	1	-0.89	Ruby/ December 06,2014	5 -Year
124	11.439961	125.015718	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
125	11.439283	125.015658	0.03	1.3	-1.27	Ruby/ December 06,2014	5 -Year
126	11.452703	124.947367	0.00	1.5	-1.50	Ruby/ December 06,2014	5 -Year
127	11.452703	124.947367	0.00	0.4	-0.40	Yolanda/ November 08,2013	5 -Year
128	11.450617	124.943519	0.00	0.7	-0.70	Ruby/ December 06,2014	5-Year
129	11.450617	124.943519	0.00	0	0.00	Yolanda/ November 08,2013	5-Year
130	11.45061/	124.943519	0.00	0	0.00	Seniang/ December 28,2014	5-Year
131	11.450654	124.943256	0.00	0.8	-0.80	Ruby/ December 06,2014	5 -Year
132	11.450654	124.943256	0.00	U	0.00	Yolanda/ November 08,2013	5-Year

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
133	11.470802	125.000068	0.03	1.93	-1.90	Yolanda/ November 08,2013	5 -Year
134	11.470802	125.000068	0.03	2.34	-2.31	Ruby/ December 06,2014	5 -Year
135	11.470733	125.000033	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
136	11.470757	124.999738	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
137	11.470771	124.999538	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
138	11.470776	124.998913	0.42	2.6	-2.18	Ruby/ December 06,2014	5 -Year
139	11.470776	124.998913	0.42	0	0.42	Yolanda/ November 08,2013	5 -Year
140	11.470666	124.998914	0.03	0.3	-0.27	Ruby/ December 06,2014	5 -Year
141	11.470504	124.998384	0.03	1.4	-1.37	Ruby/ December 06,2014	5 -Year
142	11.47056	124.998425	0.03	1	-0.97	Ruby/ December 06,2014	5 -Year
143	11.470424	124.997806	0.03	1.4	-1.37	Ruby/ December 06,2014	5 -Year
144	11.47028	124.997449	0.03	0.6	-0.57	Ruby/ December 06,2014	5 -Year
145	11.47028	124.997449	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
146	11.47028	124.997449	0.03	0.6	-0.57	Seniang/ December 28,2014	5 -Year
147	11.470357	124.997195	0.04	1.37	-1.33	Ruby/ December 06,2014	5 - Year
148	11.470138	124.997025	0.03	1.2	0.03	Ruby/ December 06,2014	5-rear
149	11.409512	124.990696	0.03	1.2	-1.17	Volanda / November 08 2012	5 -fedi
150	11.409512	124.990696	0.05	20	0.05	Pubu/ December 06,2013	5-fear
151	11.409297	124.997	0.03	2.8	-2.77	Kuby/ December 06,2014	5-rear
152	11.469297	124.997	0.03	0.6	-0.57	Pubu/ December 06,2013	5 -Year
153	11.408949	124.990770	0.03		-0.97	Kuby/ December 06,2014	5-rear
154	11.468949	124.996776	0.03	0.2	-0.17	Pubu/ December 06,2013	5 -rear
155	11.468244	124.99573	0.03	0.1	-0.07	Ruby/ December 06,2014	5-rear
156	11.468176	124.995287	0.04	1.2	-1.16	Ruby/ December 06,2014	5 -Year
157	11.46/655	124.994448	0.03	1.3	-1.27	Ruby/ December 06,2014	5 -Year
158	11.46/6/9	124.993825	0.03	1	-0.97	Ruby/ December 06,2014	5 -Year
159	11.46/535	124.993688	0.03	0.8	-0.77	Ruby/ December 06,2014	5 -Year
160	11.466936	124.98977	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
161	11.466936	124.98977	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
162	11.465524	124.98423	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
163	11.465524	124.98423	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
164	11.463908	124.980895	0.03	0.1	-0.07	Ruby/ December 06,2014	5 -Year
165	11.463818	124.980673	0.03	0.2	-0.17	Ruby/ December 06,2014	5 -Year
166	11.461979	124.976764	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
167	11.461902	124.976741	0.03	0.3	-0.27	Ruby/ December 06,2014	5 -Year
168	11.460744	124.971963	0.04	0.4	-0.36	Ruby/ December 06,2014	5 -Year
169	11.461114	124.968854	0.03	0.5	-0.47	Ruby/ December 06,2014	5 -Year
170	11.464359	124.964488	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
171	11.464359	124.964488	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
172	11.492136	125.027114	0.04	0.15	-0.11	Ruby/ December 06,2014	5 -Year
173	11.492136	125.027114	0.04	0.15	-0.11	Yolanda/ November 08,2013	5 -Year
174	11.513774	125.025118	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
175	11.513774	125.025118	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
176	11.509965	125.025997	0.03	0	0.03	Ruby/ December 06,2014	5 -Year

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
177	11.509965	125.025997	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
178	11.505259	125.026345	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
179	11.504752	125.026523	0.76	0.4	0.36	Ruby/ December 06,2014	5 -Year
180	11.49549	125.027427	1.12	0.6	0.52	Ruby/ December 06,2014	5 -Year
181	11.493852	125.027178	0.26	0	0.26	Ruby/ December 06,2014	5 -Year
182	11.492681	125.026986	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
183	11.490751	125.027408	0.06	0.84	-0.78	Ruby/ December 06,2014	5 -Year
184	11.490824	125.027416	0.09	0.3	-0.21	Ruby/ December 06,2014	5 -Year
185	11.461426	125.039383	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
186	11.453405	125.046976	0.93	0	0.93	Ruby/ December 06,2014	5 -Year
187	11.428831	125.012431	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
188	11.42932	125.012837	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
189	11.429864	125.013222	0.82	0.8	0.02	Ruby/ December 06,2014	5 -Year
190	11.430022	125.013345	0.59	0.5	0.09	Ruby/ December 06,2014	5 -Year
191	11.429926	125.013617	0.81	0.8	0.01	Ruby/ December 06,2014	5 -Year
192	11.430127	125.013632	0.32	0.4	-0.08	Ruby/ December 06,2014	5 -Year
193	11.430081	125.013863	0.96	1.5	-0.54	Ruby/ December 06,2014	5 -Year
194	11.430246	125.01369	0.41	0.9	-0.49	Ruby/ December 06,2014	5 -Year
195	11.426224	125.010081	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
196	11.426196	125.009795	0.03	0.7	-0.67	Ruby/ December 06,2014	5 -Year
197	11.423967	125.005536	0.03	0.1	-0.07	Ruby/ December 06,2014	5 -Year
198	11.423479	125.004859	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
199	11.423408	125.004842	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
200	11.420077	125.002661	1.07	0.6	0.47	Ruby/ December 06,2014	5 -Year
201	11.420062	125.00296	0.94	0.8	0.14	Ruby/ December 06,2014	5 -Year
202	11.419824	125.002143	0.06	0.3	-0.24	Ruby/ December 06,2014	5 -Year
203	11.417417	125.002467	0.13	1	-0.87	Ruby/ December 06,2014	5 -Year
204	11.415492	125.001831	0.23	0	0.23	Ruby/ December 06,2014	5 -Year
205	11.412609	124.999401	0.03	0.9	-0.87	Ruby/ December 06,2014	5 -Year
206	11.403375	124.996038	0.03	0.1	-0.07	Ruby/ December 06,2014	5 -Year
207	11.40329	124.995988	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
208	11.40329	124.995988	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
209	11.402726	124.995964	0.19	0.3	-0.11	Yolanda/ November 08,2013	5 -Year
210	11.402611	124.99596	0.14	0	0.14	Yolanda/ November 08,2013	5 -Year
211	11.402436	124.996065	0.03	0	0.03	Yolanda/ November 08,2013	5 -Year
212	11.402358	124.995889	0.03	0.7	-0.67	Ruby/ December 06,2014	5 -Year
213	11.401701	124.996062	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
214	11.401715	124.996043	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
215	11.401649	124.996035	0.03	0.4	-0.37	Ruby/ December 06,2014	5 -Year
216	11.400736	124.996778	0.04	0.3	-0.26	Ruby/ December 06,2014	5 -Year
217	11.400716	124.996718	0.20	0.3	-0.10	Ruby/ December 06,2014	5 -Year
218	11.400741	124.99664	0.03	0.3	-0.27	Ruby/ December 06,2014	5 -Year
219	11.400784	124.996481	0.03	0	0.03	Ruby/ December 06,2014	5 -Year

220	11.400823	124.99634	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
221	11.393882	125.001567	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
222	11.392575	125.001725	0.87	0.3	0.57	Ruby/ December 06,2014	5 -Year
223	11.392641	125.002038	0.20	0	0.20	Ruby/ December 06,2014	5 -Year
224	11.391933	125.002103	0.53	0	0.53	Ruby/ December 06,2014	5 -Year
225	11.391609	125.00214	0.63	0	0.63	Ruby/ December 06,2014	5 -Year
226	11.390185	125.0025	0.29	0	0.29	Ruby/ December 06,2014	5 -Year
227	11.386931	125.003498	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
228	11.387099	125.003563	0.28	0	0.28	Ruby/ December 06,2014	5 -Year
229	11.465299	124.983828	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
230	11.465146	124.983713	0.03	1.1	-1.07	Ruby/ December 06,2014	5 -Year
231	11.46461	124.982421	0.03	1.2	-1.17	Ruby/ December 06,2014	5 -Year
232	11.463318	124.979451	0.14	0.5	-0.36	Ruby/ December 06,2014	5 -Year
233	11.462595	124.977981	0.03	0.9	-0.87	Ruby/ December 06,2014	5 -Year
234	11.461928	124.976619	0.03	0	0.03	Ruby/ December 06,2014	5 -Year
235	11.461832	124.976654	0.03	0.6	-0.57	Ruby/ December 06,2014	5 -Year

Annex 12. Educational Institutions affected by flooding in Silaga Floodplain

	Samar			
	Pinabacdao			
Building Name	Barangay	R	ainfall Scena	rio
		5-year	25-year	100-year
DAY CARE CENTER	Laygayon			
LAYGAYON ELEMENTARY SCHOOL	Laygayon			
ALTERNATIVE LEARNING SYSTEM	Parasanon	Low	Medium	High
PARASANON ELEMENTARY SCHOOL	Parasanon	Medium	Medium	High

Table A-12.1. Educational Institutions in Pinabacdao, Samar affected by flooding in Silaga Floodplain

Table A-12.2. Educational Institutions in Santa Rita, Samar affected by flooding in Silaga Floodplain

	Santa Rita			
Building Name	Barangay	1	Rainfall Scer	nario
		5-year	25-year	100-year
ANIBANGON INTEGRATED SCHOOL	Anibongan			
CADARAGAN ELEMENTARY SCHOOL	Anibongan			
DAY CARE CENTER	Anibongan			
BAGOLIBAS ELEMENTARY SCHOOL	Bagolibas	Medium	Medium	Medium
DAY CARE CENTER	Bagolibas			
BINANALAN ELEMENTARY SCHOOL	Binanalan			
DAY CARE CENTER	Binanalan			
DAY CARE CENTER	Cabacungan			
CAMAYSE ELEMENTARY SCHOOL	Camayse			
LUPIC ELEMENTARY SCHOOL	Lupig	Medium	Medium	Medium
DAY CARE CENTER	Old Manunca			
OLD MANONGLA ELEMENTARY SCHOOL	Old Manunca	Low	Low	Medium
PARASANON NATIONAL HIGH SCHOOL	San Isidro			
SAN ISIDRO ELEMENTARY SCHOOL	San Isidro			
SAN PASCUAL ELEMENTARY SCHOOL	San Pascual	Low	Low	Low
TOMINAMOS INTEGRATED SCHOOL	Tominamos		Low	Medium
HITAAS ELEMENTARY SCHOOL	Tulay			
TULAY ELEMENTARY SCHOOL	Tulay			
DAY CARE CENTER	Union			

Annex 13. Health Institutions affected by flooding in Silaga Floodplain

Table A-13.1. Health Institutions in Santa Rita, Samar affected by flooding in Silaga Floodplain

	Samar			
	Santa Rita			
Building Name	Barangay	F	Rainfall Scenar	io
		5-year	25-year	100-year
HEALTH CARE CENTER	San Isidro	Medium	Medium	Medium
BRGY. TOMINAMOS BIRTHING FACILITY	Tominamos			