HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Sangputan River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University





© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping of Sangputan River. Quezon City: University of the Philippines Training Center on Geodesy and Photogrammetry-103pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

**Engr. Florentino Morales, Jr.** Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales\_jr@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-214-7

# TABLE OF CONTENTS

| List of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| List of Acronyms and Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | xi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND SANGPUTAN RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.1Background of the Phil-LiDAR 1 Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 20verview of the Sangnutan River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ידז<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.1 Elight Dans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.2 Cround Dass Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | כ<br>ר                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.3 Flight Missions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.4 Survey Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHAPTER 3: LIDAR DATA PROCESSING OF THE SANGPUTAN FLOODPLAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.1 Overview of the LIDAR Data Pre-Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.2 Transmittal of Acquired LiDAR Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.3 Trajectory Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.4 LiDAR Point Cloud Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.5 LiDAR Data Quality Checking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.8 DEM Editing and Hydro-Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.9 Mosaicking of Blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.10 Calibration and Validation of Mosaicked LiDAR DEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>37</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.12 Easture Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 12 1 Quality Checking of Digitized Features' Poundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.12.2 Quality Checking of Digitized Features Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.12.2 Reigni Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.12.3 Feature Attribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.12.4 Final Quality Checking of Extracted Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SANGPUTAN RIVER BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASIN47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul><li>4.1 Summary of Activities</li><li>4.2 Control Survey</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul><li>4.1 Summary of Activities</li><li>4.2 Control Survey</li><li>4.3 Baseline Processing</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47<br>48<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47<br>48<br>53<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>71<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>78<br>78<br>78<br>78<br>78<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>                                                                                                                                                   |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data</li> <li>5.5 Flo 2D Model</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>80<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>81<br>81<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data</li> <li>5.5 Flo 2D Model</li> <li>5.6 Results of HMS Calibration</li> <li>5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47<br>48<br>53<br>55<br>58<br>63<br>63<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>81<br>82<br>82<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data</li> <li>5.5 Flo 2D Model</li> <li>5.6 Results of HMS Calibration</li> <li>5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>80<br>81<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>80<br>81<br>85<br>85<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>80<br>81<br>85<br>85<br>85<br>88                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>75<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>710<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>715<br>   |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>76<br>70<br>71<br>71<br>71<br>71<br>71<br>73<br>                                                                                                         |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model</li> <li>5.6 Results of HMS Calibration</li> <li>5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard</li> <li>5.10 Inventory of Areas Exposed to Flooding.</li> <li>5.11 Flood Validation</li> <li>REFERENCES</li> <li>ANNEXES</li> </ul>                                                                                                                                                                                                                                                                                                                                        | 47<br>48<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>76<br>70<br>71<br>71<br>71<br>71<br>71<br>                                                                                                                     |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>                                                                                                                                                                                                         |
| <ul> <li>4.1 Summary of Activities</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47<br>47<br>53<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>                                                                                                                                                         |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 Bathymetric Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.10 Inventory of Areas Exposed to Flooding.</li> <li>5.11 Flood Validation</li> <li>REFERENCES</li> <li>ANNEXES</li> <li>Annex 1. Technical Specifications of the LiDAR Sensors used in the Sangputan Floodplain Surv</li> <li>Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey</li> </ul>                                                                                                            | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>71<br>73<br>76<br>                                                                                                                                                         |
| <ul> <li>4.1 Summary of Activities</li> <li>4.2 Control Survey</li> <li>4.3 Baseline Processing</li> <li>4.4 Network Adjustment</li> <li>4.5 Cross-section and Bridge As-Built Survey and Water Level Marking</li> <li>4.6 Validation Points Acquisition Survey</li> <li>4.7 Bathymetric Survey</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling</li> <li>5.1.1 Hydrometry and Rating Curves</li> <li>5.1.2 Precipitation</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station</li> <li>5.3 HMS Model</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard</li> <li>5.10 Inventory of Areas Exposed to Flooding.</li> <li>5.11 Flood Validation</li> <li>REFERENCES</li> <li>ANNEXES</li> <li>Annex 1. Technical Specifications of the LiDAR Sensors used in the Sangputan Floodplain Surv</li> <li>Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey</li> <li>Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey</li> <li>Annex 4. The LiDAR Survey Team Composition</li> </ul> | 47<br>48<br>55<br>58<br>63<br>65<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Annex 5. Data Transfer Sheets for the Sangputan Floodplain Flights              | 176 |
|---------------------------------------------------------------------------------|-----|
| Annex 6. Flight Logs for the Flight Missions                                    | 178 |
| Annex 7. Flight Status Reports                                                  |     |
| Annex 8. Mission Summary Reports                                                | 195 |
| Annex 9. Sangputan Model Basin Parameters                                       |     |
| Annex 10. Sangputan Model Reach Parameters                                      |     |
| Annex 11. Sangputan Field Validation Points                                     |     |
| Annex 12. Educational Institutions Affected by Flooding in Sangputan Floodplain |     |
| Annex 13. Medical Institutions Affected by Flooding in Sangputan Floodplain     | 247 |

# LIST OF TABLES

| Table 1. Flight planning parameters for Aquarius LiDAR system.                                           | 3    |
|----------------------------------------------------------------------------------------------------------|------|
| Table 2. Flight planning parameters for Gemini LiDAR system                                              | 4    |
| Table 3. Details of the recovered and re-established NAMRIA horizontal control point LYT-104, used as b  | base |
| station for the LiDAR acquisition                                                                        | 8    |
| Table 4. Details of the recovered NAMRIA vertical control point LY-110, used as base station for the Lil | DAR  |
| acquisition with established coordinates                                                                 | 9    |
| Table 5. Details of the recovered NAMRIA vertical control point LY-123, used as base station for the Lil | DAR  |
| acquisition with established coordinates                                                                 | . 10 |
| Table 6. Details of the recovered NAMRIA horizontal control point SMR-56, used as base station for       | the  |
| LiDAR acquisition                                                                                        | . 11 |
| Table 7. Details of the recovered NAMRIA horizontal control point SMR-58, used as base station for       | the  |
| LiDAR acquisition.                                                                                       | . 12 |
| Table 8. Details of the recovered NAMRIA vertical control point SM-286, used as base station for the Lil | DAR  |
| acquisition with established coordinates                                                                 | . 13 |
| Table 9. Ground control points used during the LiDAR data acquisition                                    | . 14 |
| Table 10. Flight missions for LiDAR data acquisition in the Sangputan floodplain                         | . 14 |
| Table 11. Actual parameters used during the LiDAR data acquisition                                       | . 15 |
| Table 12. List of municipalities and cities surveyed during the Sangputan floodplain LiDAR survey        | . 16 |
| Table 13. Self-calibration results for the Sangputan flights                                             | . 22 |
| Table 14. List of LiDAR blocks for the Sangputan floodplain                                              | . 24 |
| Table 15. Sangputan classification results in TerraScan                                                  | . 28 |
| Table 16. LiDAR blocks with their corresponding areas                                                    | . 33 |
| Table 17. Shift values of each LiDAR block of the Sangputan floodplain                                   | . 35 |
| Table 18. Calibration Statistical Measures                                                               | . 39 |
| Table 19. Validation Statistical Measures                                                                | . 40 |
| Table 20. Quality Checking ratings for the Sangputan building features                                   | . 44 |
| Table 21. Building Features extracted for the Sangputan floodplain                                       | . 44 |
| Table 22. Total length of extracted roads for the Sangputan floodplain                                   | . 45 |
| Table 23. Number of extracted water bodies for the Sangputan floodplain                                  | . 45 |
| Table 24. List of Reference and Control Points occupied for the Sangputan River survey (Source: NAM      | RIA; |
| UP-TCAGP)                                                                                                | . 50 |
| Table 25. Baseline Processing Report for the Sangputan River Basin Static Survey                         | . 54 |
| Table 26. Control Point Constraints                                                                      | . 55 |
| Table 27. Adjusted Grid Coordinates                                                                      | . 55 |
| Table 28. Adjusted Geodetic Coordinates                                                                  | . 57 |
| Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)                  | . 58 |
| Table 30. RIDF values for the Tacloban Rain Gauge computed by PAGASA                                     | . 74 |
| Table 31. Range of Calibrated Values for Sangputan                                                       | . 83 |
| Table 32. Summary of the Efficiency Test of Sangputan HMS Model                                          | . 84 |
| Table 33. Peak values of the Sangputan HEC-HMS Model outflow using the Tacloban RIDF                     | . 85 |
| Table 34. Municipalities affected in Sangputan floodplain                                                | . 88 |
| Table 35. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period                       | . 95 |
| Table 36. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period                       | . 96 |
| Table 37. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period                       | . 97 |
| Table 38. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period                       | . 97 |
| Table 39. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period                           | 100  |

| Table 40. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period        | . 100 |
|---------------------------------------------------------------------------------------|-------|
| Table 41. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period        | . 101 |
| Table 42. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period        | . 101 |
| Table 43. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period          | . 104 |
| Table 44. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period          | . 105 |
| Table 45. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period          | . 106 |
| Table 46. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period    | . 108 |
| Table 47. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period    | . 109 |
| Table 48. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period    | . 110 |
| Table 49. Affected Areas in Tacloban City, Leyte during 5-Year Rainfall Return Period | . 112 |
| Table 50. Affected Areas in Tunga, Leyte during 5-Year Rainfall Return Period         | . 113 |
| Table 51. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period   | . 114 |
| Table 52. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period   | . 115 |
| Table 53. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period   | . 116 |
| Table 54. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period   | . 117 |
| Table 55. Affected Areas in Barugo, Leyte during 25-Year Rainfall Return Period       | . 120 |
| Table 56. Affected Areas in Barugo, Leyte during 25-Year Rainfall Return Period       | . 121 |
| Table 57. Affected Areas in Barugo, Leyte during 25-Year Rainfall Return Period       | . 122 |
| Table 58. Affected Areas in Barugo, Leyte during 25-Year Rainfall Return Period       | . 122 |
| Table 59. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period         | . 125 |
| Table 60. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period         | . 125 |
| Table 61. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period         | . 126 |
| Table 62. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period   | . 128 |
| Table 63. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period   | . 129 |
| Table 64. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period   | . 130 |
| Table 65. Affected Areas in Tacloban, Leyte during 25-Year Rainfall Return Period     | . 133 |
| Table 66. Affected Areas in Tunga, Leyte during 25-Year Rainfall Return Period        | . 134 |
| Table 67. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period  | . 135 |
| Table 68. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period  | . 136 |
| Table 69. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period  | . 137 |
| Table 70. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period  | . 139 |
| Table 71. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period      | . 141 |
| Table 72. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period      | . 142 |
| Table 73. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period      | . 143 |
| Table 74. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period      | . 143 |
| Table 75. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period        | . 147 |
| Table 76. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period        | . 147 |
| Table 77. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period        | . 148 |
| Table 78. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period  | . 151 |
| Table 79. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period  | . 152 |
| Table 80. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period  | . 152 |
| Table 81. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period  | . 155 |
| Table 82. Affected Areas in Tunga, Leyte during 100-Year Rainfall Return Period       | . 157 |
| Table 83. Area covered by each warning level with respect to the rainfall scenario    | . 158 |
| Table 84. RMSE values for each return period of flood depth map                       | . 161 |
| Table 85. Actual Flood Depth vs Simulated Flood Depth in Sangputan                    | . 163 |
| Table 86. Summary of Accuracy Assessment in Sangputan                                 | . 163 |

# LIST OF FIGURES

| List of Figures                                                                                                  |
|------------------------------------------------------------------------------------------------------------------|
| Figure 1. Location map of the Sangputan River Basin (in brown)                                                   |
| Figure 2. Flight plans and base stations used for the Sangputan flood plain using the Aquarius LiDAR             |
| system                                                                                                           |
| Figure 3. Flight plans and base stations used for the Sangputan floodplain using the Gemini LiDAR                |
| system6                                                                                                          |
| Figure 4. (a) GPS set-up over LYT-104 located and re-established along a rice paddy trail, approximately         |
| 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte; and            |
| (b) NAMRIA reference point LYT-104, as recovered by the field team                                               |
| Figure 5. (a) GPS set-up over LY-110 located along Palo-Pastrana Road, Pastrana, Leyte; and (b)                  |
| Figure 6 (a) GPS set-up over IV-123 located on a bridge at Brgy Malaibao Alang-alang Levte                       |
| Pastrana Levte: and (b) NAMRIA reference point LY-123, as recovered by the field team                            |
| Figure 7. (a) GPS set-up over SMR-56 at Cabacungan Elementary School in Barangay Cabacungan,                     |
| Sta. Rita, Samar; and (b) NAMRIA reference point SMR-56, as recovered by the field team                          |
| Figure 8. (a) GPS set-up over SMR-58 located inside Serum Elementary School, Brgy. Serum,                        |
| Sangputan; and (b) NAMRIA reference point SMR-58, as recovered by the field team12                               |
| Figure 9. (a) GPS set-up over SM-286, located at Dalid bridge along national highway in Brgy. San                |
| Pascual, Sta. Rita, Samar; and (b) NAMRIA reference point SM-286, as recovered by the field team.                |
|                                                                                                                  |
| Figure 10. Actual LIDAR survey coverage of the Sangputan floodplain                                              |
| Figure 12 Smoothed Performance Metric Parameters of Sangnutan Flight 3771G 20                                    |
| Figure 13. Solution Status Parameters of Sangputan Flight 3771G                                                  |
| Figure 14. The best estimated trajectory conducted over the Sangputan floodplain                                 |
| Figure 15. Boundaries of the processed LiDAR data over the Sangputan floodplain                                  |
| Figure 16. Image of data overlap for Sangputan floodplain25                                                      |
| Figure 17. Pulse density map of merged LiDAR data for the Sangputan floodplain                                   |
| Figure 18. Elevation difference map between flight lines for Sangputan floodplain                                |
| Figure 19. Quality checking for Sangputan floodplain; and (b) classification results in TorraScan                |
| Figure 21 Point cloud (a) before and (b) after classification                                                    |
| Figure 22. The production of (a) last return DSM and (b) DTM. (c) first return DSM and (d) secondary             |
| DTM in some portion of the Sangputan floodplain                                                                  |
| Figure 23. The Sangputan floodplain with available orthophotographs                                              |
| Figure 24. Sample orthophotographic tiles for the Sangputan floodplain                                           |
| Figure 25. Portions in the DTM of the Sangputan floodplain – a bridge (a) before and (b) after                   |
| manual editing; and a paddy field (c) before and (d) after data retrieval                                        |
| Figure 26. Map of processed LIDAR data for the Sangputan floodplain                                              |
| Figure 28. Correlation plot between the calibration survey points and the LiDAR data                             |
| Figure 29. Correlation plot between the validation survey points and the LiDAR data                              |
| Figure 30. Map of the Sangputan floodplain, with bathymetric survey points shown in blue                         |
| Figure 31. Blocks (in blue) of Sangputan building features that were subjected to QC                             |
| Figure 32. Extracted features for the Sangputan floodplain46                                                     |
| Figure 33. Extent of the bathymetric survey (in blue line) in the Sangputan River and the LiDAR data             |
| validation survey (in red)                                                                                       |
| Figure 34. GNSS Network of the Sangputan River field survey                                                      |
| in Barangay Candahog, Municipality of Palo, Leyte                                                                |
| Figure 36. GNSS base set-up. Trimble <sup>®</sup> SPS 985. at LY-106. located at the approach of the Bernard     |
| Reed Bridge along Maharlika Highway in Barangay Luntad, Municipality of Palo, Leyte                              |
| Figure 37. GNSS receiver set-up, Trimble® SPS 985, at UP-DAG, an established control point, located              |
| at the bridge approach of the Daguitan Bridge along Maharlika Highway in Barangay Fatima,                        |
| Municipality of Dulag, Leyte                                                                                     |
| Figure 38. GNSS receiver set-up, Trimble <sup>®</sup> SPS 985, at UP-O, an established control point, located at |

| the bridge approach of the Ormoc Merida Bridge along the Ormoc-Merida-Isabel-Palompon Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oad in                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barangay. Liloan, Ormoc City, Leyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                                                                                                                                                                                                        |
| Figure 39. GNSS base set-up, Trimble® SPS 852, at UP-STN, an established control point, local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted at                                                                                                                                                                                                                    |
| the Pagbanganan Bridge approach in Barangay Poblacion Zone 12, City of Baybay, Leyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53                                                                                                                                                                                                                        |
| Figure 40. Cross-section survey of Calay-Calay Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                                                                        |
| Figure 41. Calay-calay Bridge cross-section location map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                        |
| Figure 42. Calay-Calay Bridge cross-section diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61                                                                                                                                                                                                                        |
| Figure 43. Calav-Calav Bridge Data Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62                                                                                                                                                                                                                        |
| Figure 44. Water-level marking at one of the piers of the Calay-Calay Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                        |
| Figure 45. Validation points acquisition survey set-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                                                                                                                                                                                                                        |
| Figure 46. Extent of the LiDAR ground validation survey of the Sangputan River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                        |
| Figure 47. Bathymetry by boat set-up for the Sangputan River survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                                                                                                                                                                                                                        |
| Figure 48. Exent of the bathymetric survey of the Sangputan River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                                                                                                                                                                                                                        |
| Figure 49. Riverbed profile of the Sangputan River (upstream).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           |
| Figure 50. Riverbed profile of the Sangputan River (downstream)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                           |
| Figure 51. The location map of the Sangputan HEC-HMS model used for calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71                                                                                                                                                                                                                        |
| Figure 52. Cross-Section plot of the Capiliban Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                        |
| Figure 53 Rating Curve at the Caniliban Bridge San Miguel Levte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                                                                                                                        |
| Figure 54. Rainfall and outflow data at Sangnutan used for modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73                                                                                                                                                                                                                        |
| Figure 55 Location man of the Taclohan RIDE station relative to the Sangnutan River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                        |
| Figure 56. Synthetic storm generated for a 24-br period rainfall for various return periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                        |
| Figure 57 Soil Man of the Sangnutan River Bacin (Source: DA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75                                                                                                                                                                                                                        |
| Figure 58 Land Cover Man of the Sangputan River Basin (Source: NAMPIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                        |
| Figure 50. Land Cover Map of the Sangputan River Basin (Source: MAMINIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / /                                                                                                                                                                                                                       |
| Figure 59. Stope Wap of the Sangputan River Dasin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                                                                                                                                        |
| Figure 60. Stream Deminedion Map of the Sangputan River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79                                                                                                                                                                                                                        |
| Figure 61. The Sangpulan River Basin model generated in REC-Rivis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                        |
| Figure 62. River cross-section of the sangputan River generated through Archidp HEC GeoRAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1001                                                                                                                                                                                                                      |
| OI<br>Figure 62 A coreanshat of the river cub establishment with the computational area to be made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lad in                                                                                                                                                                                                                    |
| Figure 65. A screenshot of the river sub-catchment with the computational area to be mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |
| FLO-2D GD3 F10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                                                                                                                                                                                                                        |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC HMS model compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | with                                                                                                                                                                                                                      |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | with                                                                                                                                                                                                                      |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83                                                                                                                                                                                                                |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in                                                                                                                                                                                                      |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow<br>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with<br>83<br>ted in<br>85                                                                                                                                                                                                |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow<br>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS<br>Figure 66. Sample output map of the Sangputan RAS Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with<br>83<br>ted in<br>85<br>87                                                                                                                                                                                          |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow<br>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula<br>HEC-HMS<br>Figure 66. Sample output map of the Sangputan RAS Model<br>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with<br>83<br>ted in<br>85<br>87<br>89                                                                                                                                                                                    |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>89<br>90                                                                                                                                                                              |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>89<br>90<br>91                                                                                                                                                                        |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 69. 25-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with<br>83<br>ted in<br>85<br>87<br>89<br>90<br>91<br>92                                                                                                                                                                  |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>89<br>90<br>91<br>92<br>93                                                                                                                                                            |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94                                                                                                                                                            |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98                                                                                                                                                      |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flood Depth Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98                                                                                                                                                |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flood Depth Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 75. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98                                                                                                                                          |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 69. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flowd Depth Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 75. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 76. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 76. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>99<br>99                                                                                                                                    |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 69. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 76. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 77. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 77. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>99<br>99<br>99<br>99<br>92                                                                                                                  |
| <ul> <li>Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow</li> <li>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS</li> <li>Figure 66. Sample output map of the Sangputan RAS Model</li> <li>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain</li> <li>Figure 69. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 70. 25-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 72. 5-year Flood Hazard Map for the Sangputan Floodplain</li> <li>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 76. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 77. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 77. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period</li> <li>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>99<br>99<br>99<br>99<br>102<br>103                                                                                                          |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>90<br>90<br>91<br>92<br>93<br>93<br>98<br>98<br>98<br>99<br>99<br>102<br>103<br>103                                                                                                   |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow<br>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula<br>HEC-HMS<br>Figure 66. Sample output map of the Sangputan RAS Model<br>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain<br>Figure 69. 25-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 70. 25-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 72. 5-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 74. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 75. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 76. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 77. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 80. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 80. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 80. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period                                                                                                                                                    | with<br>83<br>ted in<br>85<br>87<br>90<br>90<br>91<br>92<br>93<br>93<br>98<br>98<br>99<br>99<br>103<br>103<br>104                                                                                                         |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>93<br>98<br>98<br>99<br>102<br>103<br>103<br>104<br>107                                                                                                       |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>93<br>94<br>98<br>99<br>99<br>99<br>99<br>102<br>103<br>107<br>107                                                                                            |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared<br>observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>99<br>102<br>103<br>103<br>107<br>107<br>108                                                                                                |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98<br>99<br>102<br>103<br>104<br>107<br>107<br>108<br>110                                                                                   |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>104<br>107<br>108<br>110<br>111                                                                      |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>90<br>91<br>92<br>93<br>93<br>94<br>98<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>107<br>107<br>108<br>111<br>111                                                          |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>93<br>94<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>104<br>107<br>107<br>108<br>111<br>111<br>113                                                        |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>104<br>107<br>107<br>107<br>108<br>111<br>111<br>111<br>113<br>114                                   |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow<br>Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS<br>Figure 66. Sample output map of the Sangputan RAS Model<br>Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 68. 100-year Flow Depth Map for the Sangputan Floodplain<br>Figure 69. 25-year Flow Depth Map for the Sangputan Floodplain<br>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain<br>Figure 71. 5-year Flood Hazard Map for the Sangputan Floodplain<br>Figure 72. 5-year Flood Depth Map for the Sangputan Floodplain<br>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 74. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 75. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period<br>Figure 76. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 77. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 80. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period<br>Figure 81. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period<br>Figure 82. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period<br>Figure 83. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period<br>Figure 84. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period<br>Figure 85. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period<br>Figure 88. Affected Areas in Tang Leyte during 5-Year Rainfall Return Period<br>Figure 88. Affected Areas in Tang Leyte during 5-Year Rainfall Return Period<br>Figure 88. Affected Areas in Tangue, Leyte during 5-Year Rainfall Return Period | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>104<br>107<br>107<br>107<br>108<br>110<br>111<br>111<br>111<br>113<br>114<br>118                           |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>99<br>99<br>102<br>103<br>103<br>104<br>107<br>107<br>107<br>107<br>107<br>111<br>111<br>111<br>113<br>114<br>118<br>119                    |
| Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared observed outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simula HEC-HMS.<br>Figure 65. Sample output map of the Sangputan RAS Model.<br>Figure 66. Sample output map of the Sangputan RAS Model.<br>Figure 68. 100-year Flood Hazard Map for the Sangputan Floodplain.<br>Figure 69. 25-year Flow Depth Map for the Sangputan Floodplain.<br>Figure 70. 25-year Flow Depth Map for the Sangputan Floodplain.<br>Figure 71. 5-year Flow Depth Map for the Sangputan Floodplain.<br>Figure 72. 5-year Flow Depth Map for the Sangputan Floodplain.<br>Figure 73. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period .<br>Figure 74. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period .<br>Figure 75. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period .<br>Figure 76. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period .<br>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period .<br>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period .<br>Figure 78. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period .<br>Figure 79. Affected Areas in Barugo, Leyte during 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with<br>83<br>ted in<br>85<br>87<br>90<br>91<br>92<br>93<br>94<br>98<br>98<br>98<br>98<br>98<br>99<br>102<br>103<br>103<br>103<br>104<br>107<br>107<br>108<br>110<br>111<br>111<br>111<br>113<br>114<br>119<br>119<br>119 |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                       |  |  |  |
|---------|-------------------------------------------------------------------|--|--|--|
| Ab      | abutment                                                          |  |  |  |
| ALTM    | Airborne LiDAR Terrain Mapper                                     |  |  |  |
| ARG     | automatic rain gauge                                              |  |  |  |
| ATQ     | Antique                                                           |  |  |  |
| AWLS    | Automated Water Level Sensor                                      |  |  |  |
| BA      | Bridge Approach                                                   |  |  |  |
| BM      | benchmark                                                         |  |  |  |
| CAD     | Computer-Aided Design                                             |  |  |  |
| CN      | Curve Number                                                      |  |  |  |
| CSRS    | Chief Science Research Specialist                                 |  |  |  |
| DAC     | Data Acquisition Component                                        |  |  |  |
| DEM     | Digital Elevation Model                                           |  |  |  |
| DENR    | Department of Environment and Natural<br>Resources                |  |  |  |
| DOST    | Department of Science and Technology                              |  |  |  |
| DPPC    | Data Pre-Processing Component                                     |  |  |  |
| DREAM   | Disaster Risk and Exposure Assessment for<br>Mitigation [Program] |  |  |  |
| DRRM    | Disaster Risk Reduction and Management                            |  |  |  |
| DSM     | Digital Surface Model                                             |  |  |  |
| DTM     | Digital Terrain Model                                             |  |  |  |
| DVBC    | Data Validation and Bathymetry<br>Component                       |  |  |  |
| FMC     | Flood Modeling Component                                          |  |  |  |
| FOV     | Field of View                                                     |  |  |  |
| GiA     | Grants-in-Aid                                                     |  |  |  |
| GCP     | Ground Control Point                                              |  |  |  |
| GNSS    | Global Navigation Satellite System                                |  |  |  |
| GPS     | Global Positioning System                                         |  |  |  |
| HEC-HMS | Hydrologic Engineering Center - Hydrologic<br>Modeling System     |  |  |  |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System          |  |  |  |
| HC      | High Chord                                                        |  |  |  |
| IDW     | Inverse Distance Weighted [interpolation method]                  |  |  |  |

| IMU      | Inertial Measurement Unit                                                                    |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|
| kts      | knots                                                                                        |  |  |  |
| LAS      | LiDAR Data Exchange File format                                                              |  |  |  |
| LC       | Low Chord                                                                                    |  |  |  |
| LGU      | local government unit                                                                        |  |  |  |
| Lidar    | Light Detection and Ranging                                                                  |  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |
| РРК      | Post-Processed Kinematic [technique]                                                         |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |
| ТВС      | Thermal Barrier Coatings                                                                     |  |  |  |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |
| VSU      | Visayas State University                                                                     |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |

# CHAPTER 1: OVERVIEW OF THE PROGRAM AND SANGPUTAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. George Puno, and Eric Bruno

# 1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through the Department of Science and Technology (DOST). The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017), available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the twenty-eight (28) river basins in the Visayas region. The university is located in Baybay City, Leyte.

## 1.2 Overview of the Sangputan River Basin

The Sangputan River Basin covers the Municipalities of San Miguel, Alangalang. Jaro, Barugo, and Babatngon, and the City of Ormoc, in the province of Leyte. According to the Department of Environment and Natural Resources (DENR) – River Basin Control Office (RBCO), the basin has a drainage area of 270 km<sup>2</sup>, and an estimated 513 million cubic meter (MCM) annual run-off (RBCO, 2015).



Figure 1. Location map of the Sangputan River Basin (in brown)

The river basin's main stem, the Sangputan River, locally known as the Sapiniton River, is part of the twentyeight (28) river systems in the Visayas Region.

According to the 2010 national census of the National Statistics Office (NSO), the population within the immediate vicinity of the river is 8,999 persons, distributed among eleven (11) barangays in the Municipality San Miguel. The locals are mostly fishermen, as majority of the municipality's population are situated near the coast (http://www.slideshare.net/led4lgus/smedsep-leyte-rolfspeit, 2005).

In November 2013, Super Typhoon Haiyan (local name: Yolanda) hit the area, but it was not as devastated as Tacloban City. Flooding occurred, with minimal damage.

# CHAPTER 2: LIDAR DATA ACQUISITION OF THE SANGPUTAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, and Engr. Grace B. Sinadjan

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

# 2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Sangputan floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the Sangputan floodplain in Leyte. These missions were planned for fifteen (15) lines that run for at most four (4) hours including take-off, landing and turning time. Two (2) LiDAR systems were used for the missions – Aquarius and Gemini (See Annex 1 for the sensor specifications). The flight planning parameters for the Aquarius LiDAR system is found in Table 1, while the flight planning parameters for the Gemini LiDAR system, and Figure 2 shows the flight plans for the Sangputan floodplain using the Aquarius LiDAR system, and Figure 3 shows the flight plans for the Sangputan floodplain using the Gemini LiDAR system.

| Table 1 | . Flight p | olanning | parameters | for Aquarius | 5 LiDAR | system. |
|---------|------------|----------|------------|--------------|---------|---------|
|         | 0 1        |          | T          | L L          |         | /       |

| Block<br>Name | Flying<br>Height (m<br>AGL) | Overlap<br>(%) | Field of<br>View<br>(θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|---------------|-----------------------------|----------------|-------------------------|-------------------------------------------------|---------------------------|---------------------------|-----------------------------------|
| BLK34C        | 600                         | 30             | 36                      | 50                                              | 50                        | 120                       | 5                                 |
| BLK34D        | 600                         | 30             | 36                      | 50                                              | 50                        | 120                       | 5                                 |
| BLK34E        | 600                         | 30             | 36                      | 50                                              | 50                        | 120                       | 5                                 |

## Table 2. Flight planning parameters for Gemini LiDAR system

| Block<br>Name | Flying<br>Height (m<br>AGL) | Overlap<br>(%) | Field of<br>View<br>(θ) | Pulse<br>Repetition<br>Frequency<br>(PRF)<br>(kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|---------------|-----------------------------|----------------|-------------------------|----------------------------------------------------|---------------------------|---------------------------|-----------------------------------|
| BLK34A        | 600/850/<br>1100            | 30             | 34/40/50                | 100                                                | 40/50                     | 120                       | 5                                 |
| BLK34B        | 850                         | 30             | 40                      | 100                                                | 50                        | 120                       | 5                                 |
| BLK34C        | 600/850                     | 30             | 40/50                   | 100                                                | 40/50                     | 120                       | 5                                 |
| BLK34D        | 600/1100                    | 30             | 34/50                   | 100                                                | 40/50                     | 120                       | 5                                 |
| BLK34E        | 600/1100                    | 30             | 34/50                   | 100                                                | 40/50                     | 120                       | 5                                 |
| BLK34G        | 600/850/<br>1100            | 30             | 34/40/50                | 100                                                | 40/50                     | 120                       | 5                                 |
|               |                             |                |                         |                                                    |                           |                           |                                   |



Figure 2. Flight plans and base stations used for the Sangputan floodplain using the Aquarius LiDAR system.



Figure 3. Flight plans and base stations used for the Sangputan floodplain using the Gemini LiDAR system.

## 2.2 Ground Base Stations

The field team for this undertaking was able to recover three (3) NAMRIA ground control points: LYT-104, SMR-56 and SMR-58, which are both of second (2<sup>nd</sup>) order accuracy. Three (3) NAMRIA benchmarks were also recovered: LY-110, LY-123 and SM-286, which are all of first (1<sup>st</sup>) order accuracy. These benchmarks were used as vertical reference points, and were also established as ground control points. The certifications for the NAMRIA reference points and benchmarks are found in Annex 2, while the baseline processing reports for the established control points are provided in Annex 3. These were used as the base stations during the flight operations for the entire duration of the survey, held on April 22 - May 14 2014, and January 22-24, 2016. The base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, SPS 882, and SPS 985. The flight plans and locations of base stations used during the aerial LiDAR acquisition in the Sangputan floodplain are illustrated in Figure 2 and Figure 3. The composition of the project team is shown in Annex 4.

Figure 4 to Figure 9 depict the recovered NAMRIA control stations within the area. In addition, Table 3 to Table 8 present the details about the following NAMRIA control stations and established points. Table 9 lists all ground control points occupied during the acquisition, together with the dates they were utilized during the survey.



Figure 4. (a) GPS set-up over LYT-104 located and re-established along a rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte; and (b) NAMRIA reference point LYT-104, as recovered by the field team

Table 3. Details of the recovered and re-established NAMRIA horizontal control point LYT-104, used as base station for the LiDAR acquisition

| Station Name                                                                           | LYT-104                                     |                                                                   |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|--|
| Order of Accuracy                                                                      | 2nd order                                   |                                                                   |  |  |
| Relative Error (horizontal positioning)                                                | 1:50,000                                    |                                                                   |  |  |
| Geographic Coordinates, Philippine<br>Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 11°08'38.92234" North<br>124o 53' 13.52786" East<br>33.659 meters |  |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Easting<br>Northing<br>Ellipsoidal Height   | 11°08'34.67033" North<br>124o 53' 18.69323" East<br>95.861 meters |  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Latitude<br>Longitude                       | 706089.510 meters<br>1232496.838 meters                           |  |  |



(a)

Figure 5. (a) GPS set-up over LY-110 located along Palo-Pastrana Road, Pastrana, Leyte; and (b) NAMRIA reference point LY-110, as recovered by the field team

| Table 4. Details of the recovered NAMRIA vertical control point LY-110, used as base static | эn |
|---------------------------------------------------------------------------------------------|----|
| for the LiDAR acquisition with established coordinates                                      |    |

| Station Name                                                                           |                                             | LY-110                                                              |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                     |  |
| Relative Error (horizontal positioning)                                                |                                             | 1:50,000                                                            |  |
| Geographic Coordinates, Philippine<br>Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 11o 10' 19.48389" North<br>124o 57' 32.98736" East<br>14.336 meters |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 11o 10' 15.23095" North<br>124o 57' 38.14961" East<br>76.647 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 713,942.863 meters<br>1,235,638.117 meters                          |  |



(a)

Figure 6. (a) GPS set-up over LY-123 located on a bridge at Barangay. Malaihao, Alangalang, Leyte, Pastrana, Leyte; and (b) NAMRIA reference point LY-123, as recovered by the field team

Table 5. Details of the recovered NAMRIA vertical control point LY-123, used as base station for the LiDAR acquisition with established coordinates

| Station Name                                                                           | LY-123                                      |                                                                     |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|--|
| Order of Accuracy                                                                      |                                             | 2nd                                                                 |  |  |
| Relative Error (horizontal positioning)                                                | 1:50,000                                    |                                                                     |  |  |
| Geographic Coordinates, Philippine<br>Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 11o 12' 21.48" North<br>124o 51' 07.02" East<br>34.95 m             |  |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 11o 12' 16.64155" North<br>124o 51' 11.29744" East<br>96.895 meters |  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 702335.856 meters<br>1239240.789 m meters                           |  |  |



Figure 7. (a) GPS set-up over SMR-56 at Cabacungan Elementary School in Barangay Cabacungan, Sta. Rita, Samar; and (b) NAMRIA reference point SMR-56, as recovered by the field team

Table 6. Details of the recovered NAMRIA horizontal control point SMR-56, used as base station for the LiDAR acquisition

| Station Name                                                                           | SMR-56                                      |                                                                       |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|--|
| Order of Accuracy                                                                      |                                             | 2 <sup>nd</sup>                                                       |  |
| Relative Error (horizontal positioning)                                                | 1                                           | . in 50,000                                                           |  |
| Geographic Coordinates, Philippine<br>Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 23′ 6.52702′′<br>125° 0′ 23.99607′′<br>11.82200 m                 |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)         | Easting<br>Northing                         | 500,727.475 meters<br>1,258,927.861 meters                            |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 23' 2.22413'' North<br>125° 0' 29.13917'' East<br>73.72700 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North (UTM 51N PRS<br>1992) | Easting<br>Northing                         | 718,970.61 meters<br>1,259,244.38 meters                              |  |



Figure 8. (a) GPS set-up over SMR-58 located inside Serum Elementary School, Barangay Serum, Sangputan; and (b) NAMRIA reference point SMR-58, as recovered by the field team

| Table 7. Details of the recovered NAMRIA horizontal control point SMR-58, used as base station for the LiDAR |
|--------------------------------------------------------------------------------------------------------------|
| acquisition                                                                                                  |

| Station Name                                                                     |                     | SMR-58                                  |  |
|----------------------------------------------------------------------------------|---------------------|-----------------------------------------|--|
| Order of Accuracy                                                                | 2 <sup>nd</sup>     |                                         |  |
| Relative Error (horizontal positioning)                                          |                     | 1:50,000                                |  |
|                                                                                  | Latitude            | 11º 17' 55.05617" North                 |  |
| Geographic Coordinates, Philippine Refer-<br>ence of 1992 Datum (PRS 92)         | Longitude           | 125° 7' 51.16145" East                  |  |
|                                                                                  | Ellipsoidal Height  | 6.30062 meters                          |  |
| Grid Coordinates, Philippine Transverse Mer-<br>cator Zone 5 (PTM Zone 5 PRS 92) | Easting<br>Northing | 514288.239 meters<br>1249361.531 meters |  |
|                                                                                  | Latitude            | 11º 17' 50.78580" North                 |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)             | Longitude           | 125° 7' 56.31100" East                  |  |
| System 150 + Butani (Web 0 +)                                                    | Ellipsoidal Height  | 68.72300 meters                         |  |
| Grid Coordinates, Universal Transverse Mer-<br>cator Zone 51 North               | Easting             | 732600.57 meters                        |  |
| (UTM 51N PRS 1992)                                                               | Northing            | 1249768.75 meters                       |  |



Figure 9. (a) GPS set-up over SM-286, located at Dalid Bridge along national highway in Brgy. San Pascual, Sta. Rita, Samar; and (b) NAMRIA reference point SM-286, as recovered by the field team

Table 8. Details of the recovered NAMRIA vertical control point SM-286, used as base station for the LiDAR acquisition with established coordinates

| Station Name                                                                           | SM-286                                      |                                                                     |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                     |  |
| Relative Error (horizontal positioning)                                                | 1:50,000                                    |                                                                     |  |
| Geographic Coordinates, Philippine<br>Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 24' 35.73" North<br>124° 59' 44.05" East<br>5.47 meters         |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 5 (PTM Zone 5 PRS 92)         | Easting<br>Northing                         | 499516.558 meters<br>1261668.44 meters                              |  |
| Geographic Coordinates, World Geodetic<br>System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 24' 30.81671" North<br>124° 59' 48.35250" East<br>67.268 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 717869.251 meters<br>1261905.903 meters                             |  |

|                  |               | 1 0            | L                     |
|------------------|---------------|----------------|-----------------------|
| Date Surveyed    | Flight Number | Mission Name   | Ground Control Points |
| April 22,2014    | 1366A         | 3BLK34E112A    | SMR-56 and SM-286     |
| May 14, 2014     | 1454A         | 3BLK34D134A    | SMR-56 and LY-123     |
| May 14, 2014     | 1456A         | 3BLK34C134B    | SMR-58 and LY-123     |
| January 22, 2016 | 3765G         | 2BLK34AD022A   | LYT-104 and LY-110    |
| January 22, 2016 | 3767G         | 2BLK34AG022B   | LYT-104 and LY-110    |
| January 23, 2016 | 3769G         | 2BLK34ADEG023A | LYT-104 and LY-110    |
| January 23, 2016 | 3771G         | 2BLK34BCG023B  | LYT-104 and LY-110    |
| January 24, 2016 | 3773G         | 2BLK34CG024A   | LYT-104 and LY-110    |

### Table 9. Ground control points used during the LiDAR data acquisition

## 2.3 Flight Missions

A total of eight (8) flight missions were conducted to complete the LiDAR data acquisition in the Sangputan floodplain, for a total of thirty two hours and thirty six minutes (32+36) of flying time for RP-C9122 and RP-C9022. The missions were acquired using the Aquarius and Gemini LiDAR systems. The flight logs are found in Annex 6. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 enumerates the actual parameters used during the LiDAR data acquisition.

| Date Sur-           | Flight<br>Number | Flight<br>Plan Area<br>(km²) | Surveyed   | Area Sur-<br>veyed within<br>the Floodplain<br>(km²) | Area Sur-<br>veved Outside           | No. of             | Flying<br>Hours |     |
|---------------------|------------------|------------------------------|------------|------------------------------------------------------|--------------------------------------|--------------------|-----------------|-----|
| veyed               |                  |                              | Area (km²) |                                                      | the Floodplain<br>(km <sup>2</sup> ) | Images<br>(Frames) | Hr              | Min |
| April 22,2014       | 1366A            | 111.13                       | 120.79     | 49.20                                                | 71.59                                | 1346               | 4               | 49  |
| May 14,<br>2014     | 1454A            | 174.88                       | 220.81     | 70.62                                                | 150.19                               | 256/1013           | 4               | 29  |
| May 14,<br>2014     | 1456A            | 88.96                        | 97.85      | 12.33                                                | 85.52                                | 998                | 3               | 41  |
| January 22,<br>2016 | 3765G            | 248.10                       | 180.76     | 70.15                                                | 110.61                               | 0                  | 4               | 11  |
| January 22,<br>2016 | 3767G            | 257.55                       | 148.01     | 69.90                                                | 78.11                                | 0                  | 3               | 23  |
| January 23,<br>2016 | 3769G            | 403.32                       | 171.76     | 0.80                                                 | 170.96                               | 0                  | 4               | 23  |
| January 23,<br>2016 | 3771G            | 219.11                       | 150.85     | 20.61                                                | 130.24                               | 0                  | 3               | 29  |
| January 24,<br>2016 | 3773G            | 170.85                       | 102.77     | 16.09                                                | 86.68                                | 0                  | 4               | 11  |
| TOTA                | 4L               | 1673.89                      | 1193.6     | 309.7                                                | 883.9                                | 3613               | 32              | 36  |

Table 10. Flight missions for LiDAR data acquisition in the Sangputan floodplain

| Table 11. Actual parameters used during the LiDAR data acquisition |                             |                |         |           |                           |                           |                                   |  |
|--------------------------------------------------------------------|-----------------------------|----------------|---------|-----------|---------------------------|---------------------------|-----------------------------------|--|
| Flight<br>Number                                                   | Flying<br>Height (m<br>AGL) | Overlap<br>(%) | FOV (θ) | PRF (kHZ) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |  |
| 1366A                                                              | 600                         | 30             | 36      | 50        | 50                        | 130                       | 5                                 |  |
| 1454A                                                              | 600                         | 30             | 36      | 50        | 50                        | 130                       | 5                                 |  |
| 1456A                                                              | 600                         | 30             | 36      | 50        | 50                        | 130                       | 5                                 |  |
| 3765G                                                              | 600/1100                    | 30             | 34/50   | 100       | 40/50                     | 130                       | 5                                 |  |
| 3767G                                                              | 850                         | 30             | 40      | 100       | 50                        | 130                       | 5                                 |  |
| 3769G                                                              | 600/1100                    | 30             | 34/50   | 100       | 40/50                     | 130                       | 5                                 |  |
| 3771G                                                              | 850                         | 30             | 40      | 100       | 50                        | 130                       | 5                                 |  |
| 3773G                                                              | 600                         | 30             | 50      | 100       | 40                        | 130                       | 5                                 |  |

## 2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Sangputan floodplain (See Annex 7 for the flight status reports). The Sangputan floodplain is located in the province of Leyte, with majority of the floodplain situated within the municipalities of San Miguel and Alangalang. The list of cities and municipalities surveyed, with at least one (1) square kilometer coverage, is provided in Table 12. The actual coverage of the LiDAR acquisition for the Sangputan floodplain is presented in Figure 10.

| Municipality/City | Area of<br>Municipality/City<br>(km²)                                                                                                                                                                      | Total Area<br>Surveyed<br>(km²)                                                                                                                                                                                                                                   | Percentage of Area<br>Surveyed                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Alangalang        | 145.45                                                                                                                                                                                                     | 145.44                                                                                                                                                                                                                                                            | 100%                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Barugo            | 81.25                                                                                                                                                                                                      | 81.25                                                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| San Miguel        | 103.86                                                                                                                                                                                                     | 100.87                                                                                                                                                                                                                                                            | 97%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Santa Fe          | 57.15                                                                                                                                                                                                      | 54.3                                                                                                                                                                                                                                                              | 95%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Pastrana          | 79.17                                                                                                                                                                                                      | 67.88                                                                                                                                                                                                                                                             | 86%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Dagami            | 134.08                                                                                                                                                                                                     | 77.27                                                                                                                                                                                                                                                             | 58%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Palo              | 65.34                                                                                                                                                                                                      | 36.74                                                                                                                                                                                                                                                             | 56%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Tunga             | 17.36                                                                                                                                                                                                      | 9.76                                                                                                                                                                                                                                                              | 56%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Tabontabon        | 20.46                                                                                                                                                                                                      | 11.29                                                                                                                                                                                                                                                             | 55%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Jaro              | 190.65                                                                                                                                                                                                     | 69.13                                                                                                                                                                                                                                                             | 36%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Burauen           | 205.31                                                                                                                                                                                                     | 64.73                                                                                                                                                                                                                                                             | 32%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Tacloban City     | 118.46                                                                                                                                                                                                     | 34.3                                                                                                                                                                                                                                                              | 29%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Julita            | 57.17                                                                                                                                                                                                      | 11.68                                                                                                                                                                                                                                                             | 20%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Tanauan           | 62.78                                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                                               | 13%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Carigara          | 116.61                                                                                                                                                                                                     | 13.07                                                                                                                                                                                                                                                             | 11%                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Babatngon         | 136.57                                                                                                                                                                                                     | 8.04                                                                                                                                                                                                                                                              | 6%                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| otal              | 1591.67                                                                                                                                                                                                    | 794.15                                                                                                                                                                                                                                                            | 49.89%                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                   | Municipality/City<br>Alangalang<br>Barugo<br>San Miguel<br>Santa Fe<br>Pastrana<br>Dagami<br>Palo<br>Tunga<br>Tabontabon<br>Jaro<br>Burauen<br>Tacloban City<br>Julita<br>Tanauan<br>Carigara<br>Babatngon | Area of<br>Municipality/City<br>(km²)Alangalang145.45Barugo81.25San Miguel103.86Santa Fe57.15Pastrana79.17Dagami134.08Palo65.34Tunga17.36Tabontabon20.46Jaro190.65Burauen205.31Tacloban City118.46Julita57.17Tanauan62.78Carigara116.61Babatngon136.57ptal1591.67 | Area of<br>Municipality/City<br>(km²)Total Area<br>Surveyed<br>(km²)Alangalang145.45145.44Barugo81.2581.25San Miguel103.86100.87Santa Fe57.1554.3Pastrana79.1767.88Dagami134.0877.27Palo65.3436.74Tunga17.369.76Tabontabon20.4611.29Jaro190.6569.13Burauen205.3164.73Tacloban City118.4634.3Julita57.1711.68Tanauan62.788.4Carigara116.6113.07Babatngon136.578.04otal1591.67794.15 |  |  |  |  |

Table 12. List of municipalities and cities surveyed during the Sangputan floodplain LiDAR survey



Figure 10. Actual LiDAR survey coverage of the Sangputan floodplain

# CHAPTER 3: LIDAR DATA PROCESSING OF THE SANGPUTAN FLOODPLAIN

Engr. Ma. Ailyn L. Olanda, Engr. Chelou P. Prado, and Jovy Anne S. Narisma The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

# 3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component (DAC) were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality checking to ensure that the required accuracies of the program, which are the minimum point density, and vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models (DEMs), such as the Digital Terrain Model (DTM) and the Digital Surface Model (DSM).

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry, measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was accomplished through the help of the georectified point clouds and the metadata containing the time the image was captured. These processes are summarized in the diagram shown in Figure 11.



## 3.2 <u>Transmittal</u> of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for the Sangputan floodplain can be found in Annex 5. Missions flown during the first survey, conducted in April 2014, used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Aquarius system. On the other hand, missions acquired during the last survey in January 2016 were flown using the Gemini system over Leyte. The DAC transferred a total of 146.30 Gigabytes of Range data, 1.92 Gigabytes of POS data, 56.16 Megabytes of GPS base station data, and 177.80 Gigabytes of raw image data to the data server on April 22, 2014 for the first survey, and on January 24, 2016 for the last survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Sangputan was fully transferred on February 12, 2016, as indicated on the data transfer sheets for the Sangputan floodplain.

## **3.3 Trajectory Computation**

The Smoothed Performance Metric parameters of the computed trajectory for flight 3771G, one of the Sangputan flights, which are the North, East, and Down position RMSE values, are exhibited in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell on January 23, 2016 at 00:00 hours on that week. The y-axis is the RMSE value for that particular position.



Figure 12. Smoothed Performance Metric Parameters of Sangputan Flight 3771G

The time of flight was from 541500 seconds to 553500 seconds, which corresponds to the afternoon of January 23, 2016. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaked at 0.80 centimeters, the East position RMSE peaked at 1.05 centimeters, and the Down position RMSE peaked at 2.80 centimeters, which are all within the prescribed accuracies described in the methodology.



Figure 13. Solution Status Parameters of Sangputan Flight 3771G

The Solution Status parameters of flight 3771G, one of the Sangputan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are presented in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to six (6). Majority of the time, the number of satellites tracked was between eight (8) and twelve (12). The PDOP value also did not go above the value of three (3), which indicates optimal GPS geometry. The processing mode remained at the value of zero (0) for majority of the survey with some peaks up to one (1), attributed to the turns performed by the aircraft. The value of zero (0) corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters satisfied the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sangputan flights is shown in Figure 14.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 14. The best estimated trajectory conducted over the Sangputan floodplain

# **3.4 LiDAR Point Cloud Computation**

The produced LAS data contains 113 flight lines, with each flight line containing one (1) channel, since the Gemini and Aquarius systems both contain only one (1) channel. The self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Sangputan floodplain are summarized in Table 13.

| Table 13. Self-calibration results for the Sangputan flights |                              |                |  |  |  |
|--------------------------------------------------------------|------------------------------|----------------|--|--|--|
| Parameter                                                    |                              | Computed Value |  |  |  |
| Boresight Correction stdev                                   | (<0.001degrees)              | 0.000620       |  |  |  |
| IMU Attitude Correction Roll and Pitch Correction            | ctions stdev (<0.001degrees) | 0.000999       |  |  |  |
| GPS Position Z-correction stdev                              | (<0.01meters)                | 0.0071         |  |  |  |

Optimum accuracy was obtained for all Sangputan flights, based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

# 3.5 LiDAR Data Quality Checking

The boundaries of the processed LiDAR data on top of a SAR Elevation Data over the Sangputan floodplain are illustrated in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 15. Boundaries of the processed LiDAR data over the Sangputan floodplain

The total area covered by the Sangputan missions is 716.13 sq. km., comprised of eight (8) flight acquisitions grouped and merged into seven (7) blocks, as shown in Table 14.

| LiDAR Blocks            | Flight Numbers | Area (sq. km) |  |
|-------------------------|----------------|---------------|--|
| Samar_Leyte_Blk34C      | 1456A          | 93.61         |  |
| Samar_Leyte_Blk34D      | 1454A          | 97.51         |  |
| Samar_Leyte_Blk34E      | 1366A          | 111.50        |  |
| Leyte Blk34C            | 3771G          | 145.96        |  |
|                         | 3773G          |               |  |
| Leyte Blk34D            | 3767G          | 84.89         |  |
|                         | 3773G          |               |  |
| Leyte Blk34E            | 3765G          | 171.26        |  |
|                         | 3767G          |               |  |
| Leyte Blk34E_additional | 3769G          | 11.40         |  |
| TOTAL                   | 716.13 sq.km   |               |  |

| Table 14. | List of LiDAI  | R blocks   | for the  | Sangputan | floodplain |
|-----------|----------------|------------|----------|-----------|------------|
| 100010110 | LIGE OF LIDITI | 2 010 0100 | 101 0110 | Shingp    | neeepin    |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is exhibited in Figure 16. Since the Gemini and Aquarius systems both employ only one (1) channel, it is expected to have an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 16. Image of data overlap for Sangputan floodplain

The overlap statistics per block for the Sangputan floodplain can be found in Annex 8. One (1) pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 29.29% and 53.44% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion, is presented in Figure 17. It was determined that all LiDAR data for the Sangputan floodplain satisfy the point density requirement, and that the average density for the entire survey area is 3.82 points per square meter.



Figure 17. Pulse density map of merged LiDAR data for the Sangputan floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue were investigated further using the Quick Terrain (QT) Modeler software.



Figure 18. Elevation difference map between flight lines for Sangputan floodplain

A screen capture of the processed LAS data from Sangputan flight 3771G loaded in the QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data became satisfactory. No reprocessing was done for this LiDAR dataset.



Figure 19. Quality checking for Sangputan flight 3771G using the Profile Tool of QT Modeler

# 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |  |
|-------------------|------------------------|--|
| Ground            | 384,464,263            |  |
| Low Vegetation    | 405,448,941            |  |
| Medium Vegetation | 825,932,147            |  |
| High Vegetation   | 519,361,151            |  |
| Building          | 10,153,994             |  |

Table 15. Sangputan classification results in TerraScan

The tile system that the TerraScan employed for the LiDAR data and the final classification image for a block in the Sangputan floodplain is presented in Figure 20. A total of 906 1km by 1km tiles were produced. The number of points classified according to the pertinent categories is illustrated in Table 15. The point cloud had a maximum and minimum height of 582.56 meters and 59.09 meters, respectively.
Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 20. (a) Tiles for the Sangputan floodplain; and (b) classification results in TerraScan

An isometric view of an area before and after running the classification routines is provided in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy were classified correctly, due to the density of the LiDAR data.



Figure 21. Point cloud (a) before and (b) after classification

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, and the first (S\_ASCII) and last (D\_ASCII) return DSM of the area, in top view display are illustrated in Figure 22. It shows that DTMs are the representation of the bare earth, while the DSMs reflect all features that are present, such as buildings and vegetation.



Figure 22. The production of (a) last return DSM and (b) DTM, (c) first return DSM and (d) secondary DTM in some portion of the Sangputan floodplain

## 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 454 1km by 1km tiles area covered by the Sangputan floodplain is shown in Figure 23. After employing tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Sangputan floodplain survey attained a total of 302.27 sq. km. in orthophotogaphic coverage, comprised of 3,277 images. Zoomed-in versions of sample orthophotographs, identified by their tile numbers, are exhibited in Figure 24.



Figure 23. The Sangputan floodplain with available orthophotographs



Figure 24. Sample orthophotographic tiles for the Sangputan floodplain

## 3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for the Sangputan floodplain. These blocks are composed of SamarLeyte and Leyte blocks, with a total area of 716.13 square kilometers. Table 16 lists the name and corresponding area of each block, in square kilometers.

| LiDAR Blocks            | Area (sq.km) |
|-------------------------|--------------|
| SamarLeyte_Blk34D       | 97.51        |
| SamarLeyte_Blk34E       | 111.50       |
| Leyte_Blk34C            | 145.96       |
| SamarLeyte_Blk34C       | 93.61        |
| Leyte_Blk34D            | 84.89        |
| Leyte_Blk34E            | 171.26       |
| Leyte_Blk34E_additional | 11.40        |
| TOTAL                   | 716.13 sq.km |

Table 16. LiDAR blocks with their corresponding areas

Figure 25 shows portions of the DTM before and after manual editing. As evident in the figure, areas with no data along water bodies had to be interpolated for hydrologic correction. The bridge (Figure 25a) was considered to be an impedance to the flow of water along the river, and had to be removed (Figure 25b). The paddy field (Figure 25c) had been misclassified and removed during the classification process, and had to be retrieved to complete the surface (Figure 25d), to allow for the correct flow of water.



Figure 25. Portions in the DTM of the Sangputan floodplain – a bridge (a) before and (b) after manual editing; and a paddy field (c) before and (d) after data retrieval

# 3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM, overlapping with the blocks to be mosaicked. Table 17 enumerates the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for the Sangputan floodplain is shown in Figure 26. It is visible that the entire Sangputan floodplain is 100% covered by LiDAR data.

| Mission Blocks          | Shift Values (meters) |                       |                       |  |  |  |
|-------------------------|-----------------------|-----------------------|-----------------------|--|--|--|
|                         | x                     | У                     | Z                     |  |  |  |
| SamarLeyte_Blk34D       | 0.00                  | 0.00                  | -0.59                 |  |  |  |
| SamarLeyte_Blk34E       | 0.00                  | 0.00                  | -0.59                 |  |  |  |
| Leyte_Blk34C            | 0.00                  | -1.00                 | -1.13                 |  |  |  |
| SamarLeyte_Blk34C       | 0.00                  | 0.00                  | -0.67                 |  |  |  |
| Leyte_Blk34D            | 0.00                  | 0.00                  | 0.48                  |  |  |  |
| Leyte_Blk34E            | 0.00                  | 0.00                  | -1.22                 |  |  |  |
| Leyte_Blk34E_additional | No Overlapped<br>Area | No Overlapped<br>Area | No Overlapped<br>Area |  |  |  |

Table 17. Shift values of each LiDAR block of the Sangputan floodplain



Figure 26. Map of processed LiDAR data for the Sangputan floodplain

## 3.10 Calibration and Validation of Mosaicked LiDAR DEM

To undertake the data validation of the Mosaicked LiDAR DEMs, the DVBC conducted a validation survey along the Sangputan floodplain. The extent of the validation survey in Sangputan to collect points with which the LiDAR dataset was validated is shown in Figure 27, with the validation survey points highlighted in green. A total of 3,325 survey points were gathered for the Sangputan floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Sangputan because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Sangputan can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and the ground survey elevation values is reflected in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points, to assess the quality of data and to obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters, with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, from the Tacloban mosaicked LiDAR data. Table 18 summarizes the statistical values of the compared elevation values between the Tacloban LiDAR data and the calibration data. These values are also applicable to the Sangputan DEM.



Figure 27. Map of the Sangputan floodplain, with validation survey points in green



Figure 28. Correlation plot between the calibration survey points and the LiDAR data

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 0.14           |
| Standard Deviation               | 0.13           |
| Average                          | -0.05          |
| Minimum                          | -0.32          |
| Maximum                          | 0.22           |

#### Table 18. Calibration Statistical Measures

A total of 1,236 survey points lie within the Sangputan floodplain, and were used for the validation of the calibrated Sangputan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is presented in Figure 29. The computed RMSE between the calibrated LiDAR DTM and the validation elevation values is 0.15 meters, with a standard deviation of 0.08 meters, as shown in Table 19.



Figure 29. Correlation plot between the validation survey points and the LiDAR data

| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.15           |
| Standard Deviation              | 0.08           |
| Average                         | -0.13          |
| Minimum                         | -0.28          |
| Maximum                         | 0.02           |
|                                 |                |

#### Table 19. Validation Statistical Measures

## 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Sangputan, with 18,995 bathymetric survey points. The resulting raster surface produced was accomplished by employing the Kernel interpolation with barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.28 meters. The extent of the bathymetric survey done by the DVBC in Sangputan, integrated with the processed LiDAR DEM, is shown in Figure 30.



Figure 30. Map of the Sangputan floodplain, with bathymetric survey points shown in blue

### **3.12 Feature Extraction**

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, consisting of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks, comprised of main thoroughfares such as highways and municipal and barangay roads, are essential for routing disaster response efforts. These features are represented by a network of road centerlines.

#### 3.12.1 Quality Checking of Digitized Features' Boundary

The Sangputan floodplain, including its 200-m buffer, has a total area of 192.20 sq. km. Of this area, a total of 6.0 sq. km, corresponding to a total of 1,194 building features, were considered for quality checking (QC). Figure 31 illustrate the QC blocks for the Sangputan floodplain.



| FLOODPLAIN | COMPLETENESS | CORRECTNESS | QUALITY | REMARKS |
|------------|--------------|-------------|---------|---------|
| Sangputan  | 100.00       | 100.00      | 99.92   | PASSED  |

#### 3.12.2 Height Extraction

Height extraction was done for 14,448 building features in the Sangputan floodplain. Of these building features, 118 were filtered out after height extraction, resulting in 14,330 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 6.98 m.

#### 3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified, and then all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table. Table 21 summarizes the number of building features per type. Table 22 shows the total length of each road type, and Table 23 provides the number of water features extracted per type.

| Facility Type                           | No. of Features |  |  |
|-----------------------------------------|-----------------|--|--|
| Residential                             | 13,527          |  |  |
| School                                  | 438             |  |  |
| Market                                  | 44              |  |  |
| Agricultural/Agro-Industrial Facilities | 12              |  |  |
| Medical Institutions                    | 14              |  |  |
| Barangay Hall                           | 45              |  |  |
| Military Institution                    | 0               |  |  |
| Sports Center/Gymnasium/Covered Court   | 10              |  |  |
| Telecommunication Facilities            | 4               |  |  |
| Transport Terminal                      | 1               |  |  |
| Warehouse                               | 16              |  |  |
| Power Plant/Substation                  | 0               |  |  |
| NGO/CSO Offices                         | 1               |  |  |
| Police Station                          | 3               |  |  |
| Water Supply/Sewerage                   | 3               |  |  |
| Religious Institutions                  | 74              |  |  |
| Bank                                    | 0               |  |  |
| Factory                                 | 3               |  |  |
| Gas Station                             | 3               |  |  |
| Fire Station                            | 2               |  |  |
| Other Government Offices                | 35              |  |  |
| Other Commercial Establishments         | 95              |  |  |
| Total                                   | 14,330          |  |  |

Table 21. Building Features extracted for the Sangputan floodplain

| Table 22. Total length of extracted roads for the Sangputan floodplain |                  |                        |                    |                  |        |        |
|------------------------------------------------------------------------|------------------|------------------------|--------------------|------------------|--------|--------|
| Road Network Length (km)                                               |                  |                        |                    |                  |        |        |
| Floodplain                                                             | Barangay<br>Road | City/Municipal<br>Road | Provincial<br>Road | National<br>Road | Others | Total  |
| Sangputan                                                              | 134.25           | 21.49                  | 9.20               | 39.29            | 0.00   | 204.23 |

Table 23. Number of extracted water bodies for the Sangputan floodplain

| Floodplain | Rivers/<br>Streams | Lakes/<br>Ponds | Sea | Dam | Fish Pen | Total |
|------------|--------------------|-----------------|-----|-----|----------|-------|
| Sangputan  | 104                | 0               | 0   | 0   | 2        | 106   |

A total of seventy-six (76) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

#### 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 presents the Digital Surface Model (DSM) of the Sangputan floodplain, overlaid with its ground features.



# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SANGPUTAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Engr. Mark Lester D. Rojas, Geol. Anthony Felix J. Abogado, and Engr. Caren Joy S. Ordoña

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

# **4.1 Summary of Activities**

The DVBC conducted field surveys in the Sangputan River on September 10-24, 2014 and March 9 – 23, 2016, with the following scope of work: (i.) initial reconnaissance; (ii.) control survey for the establishment of a control point; (iii.) cross-section survey of the Calay-Calay Bridge in Barangay Caray-Caray, Municipality of San Miguel, Leyte; (iv.) validation points data acquisition of about 33 km; and (v.) bathymetric survey from Barangay Guinciama down to the mouth of the river in Barangay Malpag in the Municipality of San Miguel, with an approximate length of 20.755 km., using Ohmex<sup>™</sup> single beam echo sounder and Trimble<sup>\*</sup> SPS 882 GNSS PPK survey technique (Figure 33).



Figure 33. Extent of the bathymetric survey (in blue line) in the Sangputan River and the LiDAR data validation survey (in red)

# 4.2 Control Survey

The GNSS network used for the Sangputan River Basin is composed of three (3) loops established on September 18 to 20, 2014 occupying the following reference points: (i.) LYT-101, a second-order GCP, located in Barangay Candahog, Municipality of Palo; and (ii.) LY-106, a second-order GCP, located in Barangay Luntad, Municipality of Palo.

Three (3) control points were established at the approach of bridges namely: (i.) UP-DAG at the Daguitan Bridge in Barangay Fatima, Municipality of Dulag; (ii.) UP-O at the Ormoc Merida Bridge in Barangay Liloan, Ormoc City; and (iii.) UP-STN at the Calay-calay Bridge in Barangay Caraycaray, Municipality of San Miguel. Two (2) arbitrary points were also observed to complete the network. These are AP1 and AP2, located at the corner of Maharlika Highway and an unnamed street going to Campetic Road in Barangay Campetik, Municipality of Palo; and inside the Burauen Church Plaza at the Julita Burauen Road corner Burauen-Dagami Road in Barangay Poblacion VII, Municipality of Burauen, Province of Leyte, respectively. The summary of reference and control points and their corresponding locations is given in Table 24, while the GNSS network established is illustrated in Figure 34.



Figure 34. GNSS Network of the Sangputan River field survey

| (Source: NAMRIA; UP-TCAGP) |                                 |                      |                       |                           |                         |                     |  |  |  |
|----------------------------|---------------------------------|----------------------|-----------------------|---------------------------|-------------------------|---------------------|--|--|--|
|                            | Geographic Coordinates (WGS 84) |                      |                       |                           |                         |                     |  |  |  |
| Control<br>Point           | Order of<br>Accuracy            | Latitude             | Longitude             | Ellipsoidal<br>Height (m) | MSL<br>Elevation<br>(m) | Date<br>Established |  |  |  |
| LYT-101                    | 2nd order,<br>GCP               | 11°10'19.64869"<br>N | 125°00'43.78230"<br>E | 69.228                    | -                       | 09-20-2014          |  |  |  |
| LY-106                     | 1st order, BM                   | -                    | -                     | 68.051                    | 4.028                   | 2007                |  |  |  |
| UP-DAG                     | UP<br>Established               | -                    | -                     | -                         | -                       | 09-20-2014          |  |  |  |
| UP-O                       | UP<br>Established               | -                    | -                     | -                         | -                       | 09-19-2014          |  |  |  |
| UP-STN                     | UP<br>Established               | -                    | -                     | -                         | -                       | 09-11-2014          |  |  |  |
| AP1                        | Arbitrary                       | -                    | -                     | -                         | -                       | 09-18-2014          |  |  |  |
| AP2                        | Arbitrary                       | -                    | -                     | -                         | -                       | 09-20-2014          |  |  |  |

The GNSS set-ups established at the locations of the reference and control points are exhibited in Figure 35 to Figure 39.



Figure 35. GNSS base set-up, Trimble® SPS 852, at LYT-101, located at the General McArthur Shrine in Barangay Candahog, Municipality of Palo, Leyte



Figure 36. GNSS base set-up, Trimble® SPS 985, at LY-106, located at the approach of the Bernard Reed Bridge along Maharlika Highway in Barangay Luntad, Municipality of Palo, Leyte



Figure 37. GNSS receiver set-up, Trimble® SPS 985, at UP-DAG, an established control point, located at the bridge approach of the Daguitan Bridge along Maharlika Highway in Barangay Fatima, Municipality of Dulag, Leyte



Figure 38. GNSS receiver set-up, Trimble® SPS 985, at UP-O, an established control point, located at the bridge approach of the Ormoc Merida Bridge along the Ormoc-Merida-Isabel-Palompon Road in Barangay. Liloan, Ormoc City, Leyte



Figure 39. GNSS base set-up, Trimble® SPS 852, at UP-STN, an established control point, located at the Pagbanganan Bridge approach in Barangay Poblacion Zone 12, City of Baybay, Leyte

### 4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions, with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal of portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a re-survey is initiated. The baseline processing results of the control points in the Sangputan River Basin, generated by TBC software, is summarized in Table 25.

|                          |                        | 0 1              | 01                 |                    |              | ,                          |
|--------------------------|------------------------|------------------|--------------------|--------------------|--------------|----------------------------|
| Observation              | Date of<br>Observation | Solution<br>Type | H.Prec.<br>(Meter) | V.Prec.<br>(Meter) | Geodetic Az. | Ellipsoid Dist.<br>(Meter) |
| UP-STN<br>UP-O (B2)      | 09-19-2014             | Fixed            | 0.003              | 0.013              | 219°39'13"   | 45132.753                  |
| LY-106 AP1<br>(B4)       | 09-18-2014             | Fixed            | 0.003              | 0.012              | 12°44'49"    | 2489.516                   |
| LY-106 UP-<br>STN (B11)  | 09-18-2014             | Fixed            | 0.005              | 0.042              | 317°02′38″   | 29477.609                  |
| LYT-101<br>UP-O (B1)     | 09-19-2014             | Fixed            | 0.005              | 0.013              | 254°12'03"   | 52970.388                  |
| LYT-101AP1<br>(B6)       | 09-18-2014             | Fixed            | 0.002              | 0.003              | 307°32′43″   | 1903.266                   |
| LYT-101 UP-<br>STN (B10) | 09-18-2014             | Fixed            | 0.005              | 0.039              | 312°31'18"   | 30045.665                  |

Table 25. Baseline Processing Report for the Sangputan River Basin Static Survey

As shown in Table 25, a total of twelve (12) baselines were processed, with reference points LYT-101 and LY-106 held fixed for grid and elevation values, respectively. All of the baselines satisfied the required accuracy.

## 4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the adjusted grid coordinates in Table 27 of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm, or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$  <20cm and  $z_e < 10 \ cm$ 

Where:

 $x_{e}$  is the Easting Error,  $y_{e}$  is the Northing Error, and  $z_{e}$  is the Elevation Error

z<sub>e</sub> is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 26 to Table 28 for the complete details.

The five (5) control points, LY-338, LYT-737, LYT- 742, UP-CAM, and UP-PAG, and two (2) arbitrary points were occupied and observed simultaneously to form a GNSS loop. The coordinates of point LYT-101 and the elevation value of LY-106 were held fixed during the processing of the control points, as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points were computed.

| Table 26. Control Point Constraints |       |                   |                    |                     |                        |  |  |  |
|-------------------------------------|-------|-------------------|--------------------|---------------------|------------------------|--|--|--|
| Point ID                            | Туре  | East σ<br>(Meter) | North σ<br>(Meter) | Height σ<br>(Meter) | Elevation σ<br>(Meter) |  |  |  |
| LYT-101                             | Local | Fixed             | Fixed              |                     |                        |  |  |  |
| LY-106                              | Grid  |                   |                    |                     | Fixed                  |  |  |  |
| Fixed = 0.000001(Meter)             |       |                   |                    |                     |                        |  |  |  |

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, are indicated in Table 27. The fixed control point LYT-101 has no values for grid errors; and LY-106, for elevation error.

| Point ID | Easting<br>(Meter) | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| LYT-101  | 1235759.250        | ?                        | 719729.823          | ?                            | 5.141                | 0.040                         | LL         |
| LY-106   | 1234476.732        | 0.007                    | 717679.601          | 0.006                        | 4.028                | ?                             | е          |
| UP-DAG   | 1209628.100        | 0.013                    | 720942.270          | 0.009                        | 5.993                | 0.077                         | е          |
| UP-O     | 1220991.402        | 0.014                    | 668855.819          | 0.010                        | 8.719                | 0.076                         |            |
| UP-STN   | 1255916.567        | 0.009                    | 697443.625          | 0.007                        | 8.835                | 0.070                         |            |
| AP1      | 1236908.994        | 0.007                    | 718212.616          | 0.007                        | 4.834                | 0.051                         |            |
| AP2      | 1213793.946        | 0.012                    | 706851.618          | 0.010                        | 56.317               | 0.079                         |            |

Table 27. Adjusted Grid Coordinates

The network was fixed at reference points LYT-101 with known coordinates, and LY-106 with known elevation. As indicated in Table 27, the standard errors (x<sub>e</sub> and y<sub>e</sub>) of LY-106 are 0.70 cm and 0.60 cm; UP-DAG with 1.30 cm and 0.90 cm; UP-O with 1.40 and 1.10 cm; UP-STN with 0.90 cm and 0.70 cm; AP1 with 0.70 cm and 0.70 cm; and AP2 with 1.20 cm and 1.0 cm, respectively. With the mentioned equation, for horizontal and for the vertical, the computations for accuracy are as follows:

#### LYT-101

| Horizontal Accuracy = | Fixed          |
|-----------------------|----------------|
| Vertical Accuracy =   | 4.0 cm < 10 cm |
|                       |                |

#### LY-106

| Horizontal Accuracy =           | $\sqrt{((1.30)^2 + (0.90)^2)}$                |  |  |  |  |
|---------------------------------|-----------------------------------------------|--|--|--|--|
| =                               | √ (0.49 + 0.81)                               |  |  |  |  |
| =                               | 1.14 cm < 20 cm                               |  |  |  |  |
| Vertical Accuracy =             | Fixed                                         |  |  |  |  |
| UP-DAG<br>Horizontal Accuracy = | √((0.70) <sup>2</sup> + (0.90) <sup>2</sup> ) |  |  |  |  |
| , =                             | √ (1.69 + 0.81)                               |  |  |  |  |
| =                               | 1.58 cm < 20 cm                               |  |  |  |  |
| Vertical Accuracy = 7.7         | 0 cm < 10 cm                                  |  |  |  |  |
|                                 |                                               |  |  |  |  |

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

```
UP-O
   Horizontal Accuracy = \sqrt{((1.40)^2 + (1.10)^2)}
        = √ (1.96 + 1.21)
        = 1.78 cm < 20 cm
Vertical Accuracy = 7.60 cm < 10 cm
UP-STN
   Horizontal Accuracy = \sqrt{(0.90)^2 + (0.70)^2}
       = \sqrt{(0.81 + 0.49)}
       = 1.14 cm < 20 cm
Vertical Accuracy = 7.0 cm < 10 cm
AP1
    Horizontal Accuracy = \sqrt{(0.70)^2 + (0.70)^2}
       = \sqrt{(0.49 + 0.49)}
       = 0.98 cm < 20 cm
Vertical Accuracy = 5.10 cm < 10 cm
AP2
    Horizontal Accuracy = \sqrt{((1.20)^2 + (1.0)^2)}
       = \sqrt{(1.44 + 1.0)}
        = 1.56 cm < 20 cm
Vertical Accuracy = 7.9 cm < 10 cm
```

Following the given formula, the horizontal and vertical accuracy results of the two (2) occupied control points are within the required precision.

|          |                  | -                  |         |                            |            |
|----------|------------------|--------------------|---------|----------------------------|------------|
| Point ID | Latitude         | Latitude Longitude |         | Height<br>Error<br>(Meter) | Constraint |
| LY-106   | N11°09'38.36982" | E124°59'35.93684"  | 68.051  | ?                          | е          |
| UP-DAG   | N10°56'09.12671" | E125°01'17.90763"  | 70.609  | 0.077                      |            |
| UP-O     | N11°02'28.97646" | E124°32'44.58922"  | 71.626  | 0.076                      |            |
| UP-STN   | N11°21'20.28504" | E124°48'33.44650"  | 71.793  | 0.070                      |            |
| AP1      | N11°10′57.39411″ | E124°59'54.04241"  | 68.821  | 0.051                      |            |
| AP2      | N10°58'27.65859" | E124°53'34.80074"  | 120.385 | 0.079                      |            |

Table 28. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy, as shown in Table 28. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The computed coordinates of the reference and control points used in the Sangputan River GNSS Survey are summarized in Table 29.

| Table 29. Reference and control points used and its location (Source, INAMIRIA, UP-TCAGP) |                               |                 |                       |                           |                 |                |                    |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------|-----------------|-----------------------|---------------------------|-----------------|----------------|--------------------|--|--|
| Control<br>Point                                                                          |                               | Geograph        | ic coordinates (WGS 8 | UTM ZONE 51 N             |                 |                |                    |  |  |
|                                                                                           | Order of<br>Accuracy          | Latitude        | Longitude             | Ellipsoidal<br>Height (m) | Northing<br>(m) | Easting<br>(m) | BM<br>Ortho<br>(m) |  |  |
| LYT-101                                                                                   | 2 <sup>nd</sup> Order,<br>GCP | 11°10'19.64869" | 125°00'43.78230"      | 69.228                    | 1235759.250     | 719729.823     | 5.141              |  |  |
| LY-106                                                                                    | 1 <sup>st</sup> order, BM     | 11°09′38.36982″ | 124°59'35.93684"      | 68.051                    | 1234476.732     | 717679.601     | 4.028              |  |  |
| UP-DAG                                                                                    | UP<br>Established             | 10°56'09.12671" | 125°01′17.90763″      | 70.609                    | 1209628.100     | 720942.270     | 5.993              |  |  |
| UP-O                                                                                      | UP<br>Established             | 11°02'28.97646" | 124°32′44.58922″      | 71.626                    | 1220991.402     | 668855.819     | 8.719              |  |  |
| UP-STN                                                                                    | UP<br>Established             | 11°21'20.28504" | 124°48′33.44650″      | 71.793                    | 1255916.567     | 697443.625     | 8.835              |  |  |
| AP1                                                                                       | Arbitrary<br>Point            | 11°10'57.39411" | 124°59'54.04241"      | 68.821                    | 1236908.994     | 718212.616     | 4.834              |  |  |
| AP2                                                                                       | Arbitrary<br>Point            | 10°58′27.65859″ | 124°53′34.80074″      | 120.385                   | 1213793.946     | 706851.618     | 56.317             |  |  |

#### Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

## 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

The cross-section and as-built survey was conducted on September 15, 2014 at the downstream side of the Calay-Calay Bridge located in Barangay Caray-Caray in the Municipality of San Miguel, using a survey-grade GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique, as depicted in Figure 40.



Figure 40. Cross-section survey of Calay-Calay Bridge

The length of the cross-sectional line in the Calay-Calay Bridge is about 297.921 m, with 51 cross-sectional points acquired using UP-STN as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 41, Figure 42, and Figure 43, respectively.



| vidas                           | Nam                           | or Cal                  | av Calay Bridge                                                                                                                                                                            |                                                                                                                                             |                                                                                | <u></u><br>D-+                                                                                                                                                         | o. 0/1E/14                                                                                                              |                                                                                                              |  |
|---------------------------------|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Bridge Name: Calay-Calay Bridge |                               |                         |                                                                                                                                                                                            | Date: <u>9/15/14</u>                                                                                                                        |                                                                                |                                                                                                                                                                        |                                                                                                                         |                                                                                                              |  |
| River Name: Sapiniton River     |                               |                         |                                                                                                                                                                                            |                                                                                                                                             |                                                                                | Tim                                                                                                                                                                    | ne: <u>1:00 PM</u>                                                                                                      |                                                                                                              |  |
| ocatio                          | on: Br                        | gy. Ca                  | ray-Caray, San Miguel, Le                                                                                                                                                                  | yte                                                                                                                                         |                                                                                |                                                                                                                                                                        |                                                                                                                         |                                                                                                              |  |
| urvey                           | / Tean                        | n: Tea                  | m JMSon Calalang                                                                                                                                                                           |                                                                                                                                             |                                                                                |                                                                                                                                                                        |                                                                                                                         |                                                                                                              |  |
| Flow condition: normal          |                               |                         |                                                                                                                                                                                            |                                                                                                                                             | Weather Condition: fair                                                        |                                                                                                                                                                        |                                                                                                                         |                                                                                                              |  |
| atitud                          | de: <u>11</u>                 | <u>l°21'2</u>           | <u>2.45003" N</u>                                                                                                                                                                          |                                                                                                                                             |                                                                                | Longitude: <u>124</u>                                                                                                                                                  | °48'35.74978″                                                                                                           | <u>'E</u>                                                                                                    |  |
| 3A1                             | BA2                           | Ab1                     |                                                                                                                                                                                            |                                                                                                                                             | Ab2                                                                            | BA4<br>BA = Br<br>Ab = At                                                                                                                                              | l:<br>idge Approach P =<br>putment D =                                                                                  | = Pier LC = Low C<br>= Deck HC = High (                                                                      |  |
| lovotio                         | on:                           | 8.639                   | Deck (Please start your me<br><u>m</u> Width: 8                                                                                                                                            | asurement from<br>.8 m.                                                                                                                     | the left si                                                                    | de of the bank facing do<br>Span (B.                                                                                                                                   | wnstream)<br><b>A3-BA2): 94.27</b>                                                                                      | 2 m.                                                                                                         |  |
| evalio                          |                               | St                      | ation (Distance from BA2)                                                                                                                                                                  |                                                                                                                                             | Hig                                                                            | h Chord Elevation                                                                                                                                                      | Low Ch                                                                                                                  | nord Elevation                                                                                               |  |
|                                 |                               | St                      | ation (Distance from BA2)                                                                                                                                                                  |                                                                                                                                             | Hig                                                                            | h Chord Elevation                                                                                                                                                      | Low Cł                                                                                                                  | nord Elevation                                                                                               |  |
|                                 |                               | St                      | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s                                                                                                                              | tart your measurem                                                                                                                          | Hig                                                                            | h Chord Elevation<br>8.674                                                                                                                                             | Low Ch                                                                                                                  | nord Elevation<br>7.584                                                                                      |  |
|                                 |                               | St                      | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s                                                                                                                              | itart your measurem                                                                                                                         | Hig<br>ent from the                                                            | h Chord Elevation<br>8.674<br>left side of the bank facing dow                                                                                                         | Low Cł                                                                                                                  | nord Elevation<br>7.584                                                                                      |  |
|                                 |                               | Statio                  | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s<br>Dn(Distance from BA1)                                                                                                     | tart your measurem                                                                                                                          | Hig<br>ent from the                                                            | h Chord Elevation<br>8.674<br>left side of the bank facing dov<br>Station(Distanc                                                                                      | Low Ch<br>wnstream)<br>e from BA1)                                                                                      | 7.584<br>Elevation                                                                                           |  |
| B/                              | A1                            | Statio                  | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s<br>on(Distance from BA1)<br>0                                                                                                | tart your measurem<br>Elevation<br>4.565 m                                                                                                  | Hig<br>ent from the<br>BA3                                                     | h Chord Elevation<br>8.674<br>left side of the bank facing dow<br>Station(Distanc<br>221.2                                                                             | Low Ch<br>wnstream)<br>e from BA1)<br>27                                                                                | 7.584<br>Elevation<br>8.656 m                                                                                |  |
| B/                              | A1<br>A2                      | Statio                  | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s<br>on(Distance from BA1)<br>0<br>126.955                                                                                     | Elevation<br>4.565 m<br>8.639 m                                                                                                             | Hig<br>ent from the<br>BA3<br>BA4                                              | h Chord Elevation<br>8.674<br>left side of the bank facing dov<br>Station(Distanc<br>221.2<br>261.6                                                                    | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43                                                                          | 7.584<br>Elevation<br>8.656 m<br>8.352 m                                                                     |  |
| B/<br>B/<br>B/                  | A1<br>A2<br>nent:             | Statio                  | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping?                                                                               | Elevation<br>4.565 m<br>8.639 m<br>Yes ;                                                                                                    | Hig<br>ent from the<br>BA3<br>BA4<br>If yes                                    | h Chord Elevation<br>8.674<br>left side of the bank facing dow<br>Station(Distanc<br>221.2<br>261.6<br>, fill in the following                                         | Low Cr<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:                                                          | Elevation<br>8.656 m<br>8.352 m                                                                              |  |
| B/<br>B/<br>butm                | A1<br>A2<br>nent:             | Statio                  | ation (Distance from BA2)<br>150<br>Bridge Approach (Please s<br>on(Distance from BA1)<br>0<br>126.955<br>ne abutment sloping?<br>Station (Di                                              | Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance fror                                                                                    | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)                          | h Chord Elevation<br>8.674<br>left side of the bank facing dow<br>Station(Distanc<br>221.2<br>261.6<br>;, fill in the following                                        | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio                                              | Elevation<br>8.656 m<br>8.352 m                                                                              |  |
| B/<br>B/<br>butm                | A1<br>A2<br>nent:             | Statio<br>Is th         | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di                                                                   | tart your measurem<br>Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance fror<br>133.986                                                   | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)                          | h Chord Elevation<br>8.674<br>left side of the bank facing dow<br>Station(Distanc<br>221.2<br>261.6<br>; fill in the following                                         | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r                                   | nord Elevation<br>7.584<br>Elevation<br>8.656 m<br>8.352 m                                                   |  |
| B/                              | A1<br>A2<br>hent:<br>Ab       | Station<br>Is the<br>ol | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di                                                                   | Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance fror<br>133.986<br>212.678                                                              | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)                          | h Chord Elevation 8.674 left side of the bank facing dov Station(Distanc 221.2 261.6 5, fill in the following                                                          | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r<br>2.556 r                        | Elevation<br>8.656 m<br>8.352 m                                                                              |  |
| B/                              | A1<br>A2<br>nent:<br>Ab<br>Ab | Statio<br>Is the<br>01  | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di 2 Pier (Please start your mea                                     | tart your measurem<br>Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance fror<br>133.986<br>212.678<br>surement from                       | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)<br>the left sid          | h Chord Elevation 8.674 left side of the bank facing dov Station(Distanc 221.2 261.6 ;, fill in the following de of the bank facing dov                                | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r<br>2.556 r<br>wnstream)           | ord Elevation         7.584         Elevation         8.656 m         8.352 m         on         n         n |  |
| B/                              | A1<br>A2<br>hent:<br>Ab       | Statio                  | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di Pier (Please start your mea Shape:                                | Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance from<br>133.986<br>212.678<br>surement from<br>Circular                                 | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)<br>the left sid          | h Chord Elevation 8.674 left side of the bank facing dov Station(Distanc 221.2 261.6 s, fill in the following de of the bank facing dov er of Piers: 2                 | Low Ch<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r<br>2.556 r<br>wnstream)           | nord Elevation<br>7.584<br>Elevation<br>8.656 m<br>8.352 m<br>0n<br>n<br>n                                   |  |
| B/                              | A1<br>A2<br>nent:<br>Ab       | Statio                  | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di Pier (Please start your mea Shape: Station (Distance from         | tart your measurem<br>Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance fror<br>133.986<br>212.678<br>surement from<br>Circular<br>n BA1) | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)<br>the left sic<br>Numbe | h Chord Elevation 8.674 left side of the bank facing dov Station(Distanc 221.2 261.6 5, fill in the following de of the bank facing dov er of Piers: 2 Elevation       | Low Cr<br>wnstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r<br>2.556 r<br>wnstream)<br>Pier   | Tord Elevation<br>7.584<br>Elevation<br>8.656 m<br>8.352 m<br>n<br>n<br>Width                                |  |
| B/                              | A1<br>A2<br>nent:<br>Ab<br>Ab | Station<br>Is the<br>ol | ation (Distance from BA2) 150 Bridge Approach (Please s on(Distance from BA1) 0 126.955 ne abutment sloping? Station (Di Pier (Please start your mea Shape: Station (Distance fror 158.084 | Elevation<br>4.565 m<br>8.639 m<br>Yes ;<br>istance from<br>133.986<br>212.678<br>surement from<br>Circular<br>n BA1)                       | Hig<br>ent from the<br>BA3<br>BA4<br>If yes<br>m BA1)<br>the left sid<br>Numbe | h Chord Elevation 8.674 left side of the bank facing dov Station(Distanc 221.2 261.6 s, fill in the following de of the bank facing dov er of Piers: 2 Elevation 8.662 | Low Ch<br>winstream)<br>e from BA1)<br>27<br>43<br>information:<br>Elevatio<br>3.228 r<br>2.556 r<br>winstream)<br>Pier | Elevation<br>7.584<br>Elevation<br>8.656 m<br>8.352 m<br>0n<br>n<br>n<br>Width<br>L.4                        |  |

51

The water surface elevation in MSL of the Sangputan River, as shown in Figure 44, was determined using Trimble<sup>®</sup> SPS 882 in PPK mode technique on March 23, 2016 at 10:11 hours, with a value of 0.658 m in MSL. This was translated into a marking on one of the bridge's piers using digital level, which was used by the VSU Phil-LiDAR 1 Team as reference for flow data gathering and depth gauge deployment for the Sangputan River.



Figure 44. Water-level marking at one of the piers of the Calay-Calay Bridge

## 4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on September 23, 2014 using a survey-grade GNSS Rover receiver, Trimble<sup>®</sup> SPS 882, mounted on a pole attached to the side of vehicle, as exhibited in Figure 45. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.560 m, measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode, with UP-STN occupied as the GNSS base station throughout the conduct of the survey.



Figure 45. Validation points acquisition survey set-up

The validation points acquisition survey for the Sangputan River Basin traversed the following municipalities in the province of Leyte: Carigara, Barugo, San Miguel and Alangalang. The route of the survey aimed to traverse LiDAR flight strips perpendicularly along the basin. A total of 4,375 points, with an approximate length of 33 km, was acquired for the validation point acquisition survey. This is presented in the map in Figure 46.



Figure 46. Extent of the LiDAR ground validation survey of the Sangputan River Basin

# 4.7 Bathymetric Survey

A bathymetric survey was executed on March 20-21, 2016 using a Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique on continuous topo mode, and an Ohmex<sup>™</sup> single beam echo sounder, as illustrated in Figure 47. The survey started at the mid-upstream side of the river in Barangay Bahay in the Municipality of San Miguel, with coordinates 11°22′04.19744″N, 124°47′58.63076″E; and ended at the mouth of the river in Barangay Malpag in San Miguel, with coordinates 11°22′04.19744″N, 124°47′58.63076″E; and ended at the mouth of the river in Barangay Malpag in San Miguel, with coordinates 11°22′44.47751″N, 124°47′48.01063″E.

On the other hand, a manual bathymetric survey was conducted on March 21-22, 2016, using a Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique on continuous topo mode. The survey ran from the uppermost extent of the survey in Barangay Guinciaman in the Municipality of San Miguel, with coordinates 11°17′47.12757″N, 124°51′34.26959″E. The survey team then traversed down by foot, and ended at the starting point of bathymetric survey by boat. The control point UP-STN was used as the GNSS base station all throughout the survey.



Figure 47. Bathymetry by boat set-up for the Sangputan River survey

The planned bathymetric survey for the Sangputan River only covers 5.42 km of the river, from the mouth of the river until the Calay-Calay Bridge. However, the VSU Phil-Lidar 1 Team requested to extend the bathymetric survey. According to them, the water-level downstream of the Calay-Calay Bridge is still affected by the tide. The VSU Phil-LiDAR 1 Team also stated that there are still communities residing near the upstream side of the river, justifying their deployment site for flow-data gathering. The deployment site is located 15 km from the bridge, which is the most upstream point of the actual bathymetric survey. The bathymetric survey gathered a total of 19,422 points, covering 11.254 km of the river. The survey traversed the following barangays from the upstream side of the river: Barangay Guinciaman, Barangay Canap, Barangay Santol,Barangay Kinamalasan, Barangay Impo, Barangay. Caraycaray, Barangay San Andres, and Barangay Malpag. A CAD drawing was also produced to illustrate the riverbed profile of the Sangputan River. As shown in Figure 49, the highest and lowest elevation has a 12-meter difference. The highest elevation observed was 6.951 m above MSL, located in Barangay Guinciaman, while the lowest was 5.234 m below MSL, located in Barangay Caraycaray.









# **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 5.1 Data Used for Hydrologic Modeling

#### 5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which are components and data that affect the hydrologic cycle of the river basin, were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from two (2) automatic rain gauges (ARGs) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). These are the Alangalang and the Kaglawan ARGs. The locations of the rain gauges are seen in Figure 51.

Total rain collected from the Kaglawan rain gauge measured 17.80 mm. It peaked at 0.40 mm on December 30, 2014 at 12:30 hours. The lag time between the peak rainfall and discharge was 5 hours and 50 minutes. For the Alangalang rain gauge, total rain for this event was 145 mm. Peak rain of 12.5 mm was recorded on December 29, 2014 at 21:45 hours. The lag time between the peak rainfall and discharge was 8 hours and 35 minutes.



#### 5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 52) at the Capilihan Bridge in Barangay Capilihan, San Miguel, Leyte (11°17'43.69"N, 124°51'35.88"E) to establish the relationship between the observed water levels (H) at the Capilihan Bridge and the outflow (Q) of the watershed at this location.



For the Capilihan Bridge, the rating curve is expressed as  $Q = 0.0856e^{1.0439H}$ , as shown in Figure 53.

Figure 53. Rating Curve at the Capilihan Bridge, San Miguel, Leyte

Expon. (Field Data Points)

This rating curve equation was used to compute for the river outflow at the Capilihan Bridge for the calibration of the HEC-HMS model, as presented in Figure 54. Total rain from the Kaglawan rain gauge is 17.80 mm. It peaked at 0.40 mm on December 30, 2014 at 12:30 hours. For the Alangalang rain gauge, total rain for this event was 145 mm. Peak rain of 12.5 mm was recorded on December 29, 2014 at 21:45 hours. Peak discharge was 175.4 cubic meters per second on December 30, 2014 at 5:40 hours. The lag time between the peak rainfall of Kaglawan and discharge was 5 hours and 50 minutes. The lag time between the peak rainfall of the Alangalang rain gauge and discharge was 8 hours and 35 minutes.

## 5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for the Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge (Table 30). This station chosen based on its proximity to the Sangputan watershed (Figure 55). The RIDF rainfall amount for twenty-four (24) hours was converted into a synthetic storm by interpolating and re-arranging the values such that certain peak values were attained at a certain time. The extreme values for this watershed were computed based on a 59-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |      |       |       |       |        |        |
|--------------------------------------------------|---------|---------|---------|------|-------|-------|-------|--------|--------|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 2                                                | 17.8    | 26.9    | 33.6    | 42.8 | 59.7  | 70.5  | 87.2  | 104    | 120.6  |
| 5                                                | 24.3    | 36.7    | 45.7    | 57.4 | 80.7  | 95.2  | 117.9 | 140.6  | 161.4  |
| 10                                               | 28.5    | 43.2    | 53.7    | 67.1 | 94.6  | 111.5 | 138.2 | 164.9  | 188.4  |
| 15                                               | 30.9    | 46.8    | 58.3    | 72.5 | 102.5 | 120.7 | 149.6 | 178.6  | 203.7  |
| 20                                               | 32.6    | 49.4    | 61.4    | 76.3 | 108   | 127.1 | 157.7 | 188.1  | 214.3  |
| 25                                               | 33.9    | 51.4    | 63.9    | 79.3 | 112.2 | 132.1 | 163.8 | 195.5  | 222.6  |
| 50                                               | 37.9    | 57.5    | 71.4    | 88.3 | 125.2 | 147.4 | 182.9 | 218.2  | 247.9  |
| 100                                              | 41.8    | 63.5    | 78.9    | 97.3 | 138.2 | 162.5 | 201.8 | 240.8  | 273    |

Table 30. RIDF values for the Tacloban Rain Gauge computed by PAGASA







Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods

# 5.3 HMS Model

The soil shapefile was taken from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). These soil datasets were taken before 2004. The soil and land cover of the Sangputan River Basin are shown in Figures 57 and 58, respectively.




Figure 58. Land Cover Map of the Sangputan River Basin (Source: NAMRIA)

For Sangputan, the soil classes identified were silt, clay, sandy loam, rough mountainous land, and undifferentiated soil. The land cover types identified were forest plantations, marshlands, built-up land, and cultivated areas.





Figure 60. Stream Delineation Map of the Sangputan River Basin

Using the SAR-based DEM, the Sangputan basin was delineated and further subdivided into sub basins. The model consists of seventeen (17) sub basins, eight (8) reaches, and seven (7) junctions, as illustrated in Figure 61. The main outlet is at the Capilihan Bridge. The Sangputan Model Reach Parameters are provided in Annex 10. Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 61. The Sangputan River Basin model generated in HEC-HMS

## 5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 62).



124° 50'0"E

Figure 62. River cross-section of the Sangputan River generated through Arcmap HEC GeoRAS tool

## 5.5 Flo 2D Model

[insert 2d report]



Figure 63. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D GDS Pro

## 5.6 Results of HMS Calibration

After calibrating the Sangputan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 64 shows the comparison between the two discharge data. See Annex 9 for the Sangputan Model Basin Parameters.



Figure 64. Outflow Hydrograph of Sangputan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

|                       | Table               | 31. Range of Calibrated Val | ues for Sangputan          |                                  |
|-----------------------|---------------------|-----------------------------|----------------------------|----------------------------------|
| Hydrologic<br>Element | Calculation<br>Type | Method                      | Parameter                  | Range of<br>Calibrated<br>Values |
|                       | Locs                | SCS Curve number            | Initial Abstraction (mm)   | 5 — 50                           |
|                       | LUSS                | SCS Curve number            | Curve Number               | 44 - 86                          |
| Decin                 | Transform           | Clark Unit Undragraph       | Time of Concentration (hr) | 3 – 30                           |
| DdSIII                | ITANSIOTTI          |                             | Storage Coefficient (hr)   | 0.4 – 5                          |
|                       | Deceflow            | Decession                   | Recession Constant         | 0.8                              |
|                       | Basenow             | Recession                   | Ratio to Peak              | 0.1                              |
| Reach                 | Routing             | Muskingum-Cunge             | Manning's Coefficient      | 0.05                             |

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 5mm to 50mm for initial abstraction means that there is a minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as the curve number increases. The range of 44 to 86 for the curve number is advisable for Philippine watersheds, depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Sangputan, the basin mostly consists of brushlands, and the soil consists of clay, clay loam, and mountain soil.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.4 hours to 30 hours determines the reaction time of the model, with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

The recession constant is the rate at which baseflow recedes between storm events; and ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.8 indicates that the basin is unlikely to quickly return to its original discharge and will be higher instead. A ratio to peak of 0.1 indicates a steeper receding limb of the outflow hydrograph.

A Manning's roughness coefficient of 0.05 corresponds to a higher roughness compared to the common roughness of Philippine watersheds.

| RMSE  | 13.6   |
|-------|--------|
| r²    | 0.9991 |
| NSE   | 0.88   |
| PBIAS | -14.06 |
| RSR   | 0.21   |

Table 32. Summary of the Efficiency Test of Sangputan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 13.6 (m3/s).

The Pearson correlation coefficient (r<sup>2</sup>) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it was measured at 0.9991.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.88.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is -14.06.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error units of the values are quantified. The model has an RSR value of 0.36.

# 5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods

#### 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Sangputan outflow using the Tacloban RIDF in five (5) different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal a significant increase in outflow magnitude as the rainfall intensity increases, for a range of durations and return periods.



Figure 65. Outflow hydrograph at the Sangputan Station generated using Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Sangputan discharge using the Tacloban RIDF in five (5) different return periods is given in Table 33.

| 1 di               | SIE 55. FEAK VALUES OF THE SA |                       | woder outflow using t   |                     |
|--------------------|-------------------------------|-----------------------|-------------------------|---------------------|
| <b>RIDF</b> Period | Total Precipitation<br>(mm)   | Peak rainfall<br>(mm) | Peak outflow (m<br>3/s) | Time to Peak        |
| 5-Year             | 161.40                        | 24.30                 | 341.60                  | 8 hours, 20 minutes |
| 10-Year            | 188.40                        | 28.50                 | 435                     | 8 hours, 10 minutes |
| 25-Year            | 222.60                        | 33.90                 | 557.70                  | 7 hours, 30 minutes |
| 50-Year            | 247.90                        | 37.90                 | 650.60                  | 7 hours, 40 minutes |
| 100-Year           | 273                           | 41.80                 | 745.20                  | 7 hours, 30 minutes |

Table 33. Peak values of the Sangputan HEC-HMS Model outflow using the Tacloban RIDF

## 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section, for every time step, for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining the real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is presented, since only the DVC high flow was calibrated. The sample generated map of the Sangputan River using the calibrated HMS high flow is shown in Figure 66.



Figure 66. Sample output map of the Sangputan RAS Model

### 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 67 to Figure 72 exhibit the 5-, 25-, and 100-year rain return scenarios of the Sangputan floodplain.

The floodplain, with an area of 287.75 sq. km., covers Tacloban City, and five (5) municipalities, namely Alangalang, Barugo, Jaro, San Miguel, and Tunga. Table 34 summarizes the percentage of area affected by flooding per municipality.

| City /<br>Municipality | Total Area | Area Flooded | % Flooded |  |
|------------------------|------------|--------------|-----------|--|
| Alangalang             | 145.45     | 68.91        | 47%       |  |
| Barugo                 | 81.25      | 64.41        | 79%       |  |
| Jaro                   | 190.65     | 39.88        | 21%       |  |
| San Miguel             | 103.86     | 93.17        | 90%       |  |
| Tacloban City          | 118.46     | 13.01        | 11%       |  |
| Tunga                  | 17.36      | 7.95         | 46%       |  |

Table 34. Municipalities affected in Sangputan floodplain



Figure 67. 100-year Flood Hazard Map for the Sangputan Floodplain







## 5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Sangputan River Basin, grouped by municipality, are listed below. For the said basin, six (6) municipalities consisting of 118 barangays are expected to experience flooding when subjected to 5-year rainfall return period.

For the 5-year return period, 30.685% of the Municipality of Alangalang, with an area of 145.445 sq. km., will experience flood levels of less 0.20 meters. 7.404% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.953%, 2.214%, 0.9199%, and 0.2483% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 35-38 are the affected areas, in square kilometers, by flood depth per barangay.

Table 35. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period

|                | soria       | 539196      | 570901      | 0              | 0              | 0           | 0           |
|----------------|-------------|-------------|-------------|----------------|----------------|-------------|-------------|
|                | Divi        | 0.0135      | 0.000       |                |                |             |             |
|                | Cavite      | 37474861    | 59258523    | 14490295       | 57409308       | 12871361    | 50525539    |
|                |             | 0.28        | 0.15        | 3 0.24         | )0.0{          | 0.0         | 0.0(        |
|                | Calaasan    | 0.97536167  | 0.43181175  | 0.600911578    | 0.024632054    | 0.0011      | 0           |
| lang           | abadsan     | 72035524    | 31071584    | 25326826       | 73484554       | 24822154    | 0849375     |
| Alanga         | Ű           | 1 0.9       | 0.33        | 0.2            | 0.0            | 0.0         | 0.0         |
| 3arangays in / | Bugho       | 5.013123984 | 2.72654549  | 2.245891381    | 0.534435717    | 0.023746996 | 0           |
| ffected B      | seth        | 521385      | 262717      | 552279         | 47138          | 149909      | 0           |
| 4              | Bor         | 1.8825      | 0.3602      | 0.1615         | 0.098          | 0.1332      |             |
|                | Blumentritt | 0.110359174 | 0.043373645 | 0.017288429    | 0.007379594    | 0.0013      | 0           |
|                | Binotong    | 2.632708935 | 0.451685344 | 0.322149087    | 0.108660466    | 0.053111093 | 0.041703132 |
|                | Binongto-An | 0.223406475 | 0.258738049 | 0.379613308    | 0.15678624     | 0.054052109 | 0           |
|                | IAN BASIN   | 0.03-0.20   | 0.21-0.50   | 0.51-1.00      | 1.01-2.00      | 2.01-5.00   | > 5.00      |
|                | DADNAC      |             | ее          | ed Are<br>km.) | fecte.<br>(sd. | ţA          |             |

Table 36. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period

|               |           |             |              |               | Affected I  | Barangays in Al | angalang    |             |             |              |
|---------------|-----------|-------------|--------------|---------------|-------------|-----------------|-------------|-------------|-------------|--------------|
| DADNIAC       |           | Ekiran      | Holy Child I | Holy Child II | Hubang      | Hupit           | Lourdes     | Lukay       | Milagrosa   | P. Barrantes |
|               | 0.03-0.20 | 2.559135194 | 0.362407622  | 0.113783735   | 1.322150107 | 2.294192946     | 1.522735414 | 1.347062262 | 0.047567555 | 1.942103708  |
| ea            | 0.21-0.50 | 0.949031047 | 0.032419709  | 0.008518028   | 0.321662385 | 0.356802376     | 0.235606634 | 0.347528942 | 0.006272045 | 0.573264744  |
| km.)<br>km.)  | 0.51-1.00 | 0.545485606 | 0.010487785  | 0.001551135   | 0.492951682 | 0.152292109     | 0.197781484 | 0.231119668 | 0           | 0.629711075  |
| fecte.<br>bs) | 1.01-2.00 | 0.173349683 | 0.004275214  | 0.00163666    | 0.264497958 | 0.173052215     | 0.134521111 | 0.040133069 | 0           | 0.131518844  |
| ţΑ            | 2.01-5.00 | 0.104738492 | 0.002862426  | 0.0001        | 0.038639139 | 0.108797577     | 0.01864114  | 0.019054922 | 0.000385116 | 0.023548842  |
|               | > 5.00    | 0.044412536 | 0            | 0             | 0.000691714 | 0               | 0           | 0.031483698 | 0           | 0.002308286  |
|               |           |             |              |               |             |                 |             |             |             |              |

| n Period |
|----------|
| Returr   |
| all      |
| ainf     |
| Ľ.       |
| Yea      |
| Ń        |
| luring   |
| Leyte    |
| galang,  |
| Alan     |
| eas in   |
| Ā        |
| ected .  |
| H        |
| 37. A    |
| e.       |
| []       |
| Тa       |
|          |

|                 |           |                        |                          |                       | Affected              | Barangays in Al | angalang    |           |             |       |
|-----------------|-----------|------------------------|--------------------------|-----------------------|-----------------------|-----------------|-------------|-----------|-------------|-------|
| SANGPUT         | IAN BASIN | Salvacion<br>Poblacion | San Antonio<br>Poblacion | San Francisco<br>East | San Francisco<br>West | San Roque       | San Vicente | Santiago  | Santo Niño  | Sa    |
|                 | 0.03-0.20 | 0.204692116            | 0.000861301              | 2.82124687            | 1.96095603            | 0.1545830       | 2.9253316   | 3.4819639 | 0.043568705 | 2.94  |
| ee              | 0.21-0.50 | 0.019332864            | 0.0001                   | 0.750062314           | 0.262183547           | 0.0161503       | 0.8265203   | 0.4143592 | 0           | 0.125 |
| ad Ard<br>(.ms) | 0.51-1.00 | 0.005945153            | 0                        | 0.405178801           | 0.143054979           | 0.0042512       | 0.7112839   | 0.2360926 | 0           | 0.14( |
| fecte.<br>(sg.  | 1.01-2.00 | 0                      | 0                        | 0.025662827           | 0.11644992            | 0.0021872       | 0.3083276   | 0.2912944 | 0           | 0.18  |
| ţA              | 2.01-5.00 | 0                      | 0                        | 0.004914333           | 0.0085                | 0.0006          | 0.2427699   | 0.3245405 | 0           | 0.10  |
|                 | > 5.00    | 0                      | 0                        | 0.002113468           | 0                     | 0               | 0.107075384 | 0.0547854 | 0           | 0.00  |

Table 38. Affected Areas in Alangalang, Leyte during 5-Year Rainfall Return Period

| in Alangalang  | Veteranos  | 0.090027274 | 0.00301871  | 0.001514406  | 0.000395747    | 0          | 0      |
|----------------|------------|-------------|-------------|--------------|----------------|------------|--------|
| Affected Areas | Tabangohay | 6.3837511   | 0.758038511 | 0.546742148  | 0.298986102    | 0.00369641 | 0      |
| AN BASIN       |            | 0.03-0.20   | 0.21-0.50   | 0.51-1.00    | 1.01-2.00      | 2.01-5.00  | > 5.00 |
| SANGPUT        |            |             | ea          | km.)<br>km.) | fecte.<br>(sd. | ţA         |        |





For the 5-year return period, 64.247% of the Municipality of Barugo, with an area of 81.25 sq. km., will experience flood levels of less 0.20 meters. 5.5906% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 3.8263%, 3.2985%, 1.9287%, and 0.3887% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 39-42 are the affected areas, in square kilometers, by flood depth per barangay.

| ı Period   |
|------------|
| all Returr |
| Year Rainf |
| during 5.  |
| igo, Leyte |
| as in Baru |
| fected Are |
| ble 39. Af |
| Ца         |

|                |           |          |          |          | Affecte  | d Barangays in | Barugo    |           |               |          |
|----------------|-----------|----------|----------|----------|----------|----------------|-----------|-----------|---------------|----------|
| DADNAC         | IAN BASIN | Amahit   | Balud    | Bukid    | Bulod    | Busay          | Cabarasan | Cabolo-An | Calingcaguing | Can-Isak |
|                | 0.03-0.20 | 0.50489  | 3.23792  | 0.177973 | 3.737766 | 2.993216       | 1.581557  | 5.069372  | 0.94564       | 1.765703 |
| ea             | 0.21-0.50 | 0.059132 | 0.253111 | 0.010075 | 0.254828 | 0.146048       | 0.434281  | 0.179717  | 0.087895      | 0.179536 |
| km.)<br>km.)   | 0.51-1.00 | 0.017467 | 0.119062 | 0.012069 | 0.199656 | 0.10557        | 0.150166  | 0.128753  | 0.065378      | 0.345203 |
| fecte.<br>(sd. | 1.01-2.00 | 0.002373 | 0.036846 | 0.013048 | 0.153744 | 0.105267       | 0.014543  | 0.086339  | 0.034879      | 0.423756 |
| ţΑ             | 2.01-5.00 | 0        | 0.005461 | 0.000981 | 0.044573 | 0.042512       | 0         | 0.044902  | 0.017681      | 0.213889 |
|                | > 5.00    | 0        | 0        | 0        | 0        | 0              | 0         | 0.0015    | 0.015593      | 0.007337 |
|                |           |          |          |          |          |                |           |           |               |          |

|                    |                 | Minuhang   | 1.174538  | 0.388312  | 0.13431        | 0.017792       | 0         | 0        |  |
|--------------------|-----------------|------------|-----------|-----------|----------------|----------------|-----------|----------|--|
|                    |                 | lbag       | 2.334919  | 0.090403  | 0.094861       | 0.069416       | 0.011154  | 0        |  |
|                    |                 | Hinugayan  | 0.921733  | 0.04875   | 0.062394       | 0.081115       | 0.023305  | 0.002102 |  |
| fall Return Period | Barugo          | Hilaba     | 0.356604  | 0.073984  | 0.041867       | 0.043639       | 0.070783  | 0        |  |
| ıring 5-Year Rainl | ed Barangays in | Hiagsam    | 1.079958  | 0.04366   | 0.077399       | 0.169796       | 0.0795    | 0.0014   |  |
| ı Barugo, Leyte du | Affecte         | Guindaohan | 0.743882  | 0.071053  | 0.008478       | 0.001598       | 0         | 0        |  |
| Affected Areas in  |                 | Duka       | 4.724823  | 0.210589  | 0.143052       | 0.137958       | 0.047161  | 0.0002   |  |
| Table 40.          |                 | Domogdog   | 0.552476  | 0.116176  | 0.003612       | 0              | 0         | 0        |  |
|                    |                 | Cuta       | 2.458271  | 0.486287  | 0.10561        | 0.002701       | 0         | 0        |  |
|                    |                 | TAN BASIN  | 0.03-0.20 | 0.21-0.50 | 0.51-1.00      | 1.01-2.00      | 2.01-5.00 | > 5.00   |  |
|                    |                 | SANGPUT    |           | ea        | ed Are<br>km.) | fecte.<br>(sd. | ţA        | _        |  |

|                 |           |          | Table 4  | l. Affected Areas in | Barugo, Leyte dui     | ing 5-Year Rain        | fall Return Period    |                      |                       |          |
|-----------------|-----------|----------|----------|----------------------|-----------------------|------------------------|-----------------------|----------------------|-----------------------|----------|
|                 |           |          |          |                      | Affecte               | d Barangays in         | Barugo                |                      |                       |          |
| DADNIAC         |           | Pikas    | Pitogo   | Poblacion<br>Dist. I | Poblacion<br>Dist. II | Poblacion<br>Dist. III | Poblacion<br>Dist. IV | Poblacion<br>Dist. V | Poblacion<br>Dist. VI | Pongso   |
|                 | 0.03-0.20 | 3.355602 | 2.155041 | 0.151929             | 0.153018              | 0.094611               | 0.11809               | 0.15514              | 0.123264              | 2.425209 |
| ea              | 0.21-0.50 | 0.280649 | 0.100356 | 0.034784             | 0.035274              | 0.022993               | 0.005499              | 0.04698              | 0.029866              | 0.195402 |
| a A re<br>km.)  | 0.51-1.00 | 0.334581 | 0.117015 | 0.002067             | 0.007629              | 0.003027               | 0                     | 0.005719             | 0.005967              | 0.239786 |
| fecte<br>(sd. l | 1.01-2.00 | 0.30854  | 0.058531 | 0                    | 0.003819              | 0                      | 0                     | 0                    | 0                     | 0.374246 |
| ţΑ              | 2.01-5.00 | 0.351404 | 0.005128 | 0                    | 0                     | 0                      | 0                     | 0                    | 0                     | 0.230885 |
|                 | > 5.00    | 0.167858 | 0        | 0                    | 0                     | 0                      | 0                     | 0                    | 0                     | 0.0263   |
|                 |           |          |          |                      |                       |                        |                       |                      |                       |          |
|                 |           |          | Table 4  | 2. Affected Areas in | ı Barugo, Leyte du    | ring 5-Year Rain       | fall Return Period    |                      |                       |          |
|                 |           |          |          |                      | Affecte               | d Barangays in         | Barugo                |                      |                       |          |
| DADNAC          | NICED NE  | Rooseve  | lt       | San Isidro           | San Roqu              | e S                    | anta Rosa             | Santarin             | •                     | Iutug-An |
|                 | 0.03-0.20 | 1.96542  |          | 0.613062             | 1.023126              | 7                      | 4.299734              | 0.044913             |                       | 1.16159  |
| е               | 0.21-0.50 | 0.138198 | 8        | 0.09238              | 0.043028              |                        | 0.250386              | 0.026835             |                       | 0.105938 |

0.109615

0.032252

0

0.0003

3.18E-05

0

0.060964

> 5.00

0.045503

0.02792

0.262983

0.034896

0.000702

0.168127

1.01-2.00

0.117651

0.006252

0

0.144205

2.01-5.00

0

0.089307

0.035053

0.245089

0.046075

0.047394

0.115224

0.51-1.00

Affected Area (.my .ps)





For the 5-year return period, 16.779% of the Municipality of Jaro, with an area of 190.65 sq. km., will experience flood levels of less 0.20 meters. 1.8737% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.9473%, 0.868%, 0.4034%, and 0.0579% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 43-45 are the affected areas, in square kilometers, by flood depth per barangay.

| Affected Barangays in Jaro           vista         Bukid         Buri         Canapuan         Canapuan         Daro         District           055         3.213216         2.309978         2.345971         0.521564         0.268453         0.342079           059         3.213216         2.309978         2.345971         0.521564         0.268453         0.342079           059         0.269336         0.22013         0.277677         0.094244         0.0003         0.004589           069         0.220163         0.131597         0.207237         0.094244         0.0003         0.0005697           341         0.165439         0.131597         0.092297         0.022133         0         0.005697           368         0.0092         0.156314         0.136307         0.019718         0         0         0.003749           68         0         0         1E-04         0         0         0         0         0         0 |                                  |                        |               | Table 4 | 3. Affected Areas i | n Jaro, Leyte duri | ing 5-Year Rainfa | ll Return Period |             |          |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|---------------|---------|---------------------|--------------------|-------------------|------------------|-------------|----------|------------|
| vistaBukidBuriCanapuanCanapuanDaroDistrict0553.2132162.3099782.3459710.5215640.2684530.3420791990.2693360.220130.2776770.0942440.00030.0045890900.2201630.220130.2776770.0942440.00030.0045893410.1315970.0922970.0942440.000300.0056973410.1654390.1315970.0922970.019718000.0056973080.00920.0570940.0137490.00314000.0071566801E-04000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NISAN                            |                        |               |         |                     | Affec              | ted Barangays i   | n Jaro           |             |          |            |
| 055         3.213216         2.30978         2.345971         0.521564         0.268453         0.342079           499         0.269336         0.22013         0.277677         0.094244         0.0003         0.004589           009         0.220163         0.131597         0.207297         0.094244         0.0003         0.004589           010         0.220163         0.131597         0.092297         0.094244         0.0033         0.005697           030         0.220163         0.131597         0.092297         0.02213         0         0         0.005697           341         0.165439         0.131597         0.0922197         0.02213         0.003749         0           368         0.0092         0.06268         0.057094         0.00314         0         0         0.007156           68         0         0         16-04         0         0         0         0         0         0                                 | Alahag Bias Zabala B             | Alahag Bias Zabala B   | Bias Zabala B | 8       | uenavista           | Bukid              | Buri              | Canapuan         | Canhandugan | Daro     | District I |
| 4900.2693360.220130.2776770.0942440.00030.0045890090.2201630.1315970.0922970.092213000.0056973410.1654390.13153070.0922070.019718000.0056973080.00920.062680.0570940.00314000.00715668001E-0400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03-0.20 0.443863 0.969822 2.   | 0.443863 0.969822 2.   | 0.969822 2.   | 2.      | 716095              | 3.213216           | 2.309978          | 2.345971         | 0.521564    | 0.268453 | 0.342079   |
| 009         0.220163         0.131597         0.092297         0.02213         0         0.005697           341         0.165439         0.136307         0.019718         0         0         0.003749           368         0.0092         0.06568         0.057094         0.00314         0         0         0.007156           68         0         1E-04         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.21-0.50 0.04402 0.165758 0.5   | 0.04402 0.165758 0.5   | 0.165758 0.5  | 0.5     | 56499               | 0.269336           | 0.22013           | 0.277677         | 0.094244    | 0.0003   | 0.004589   |
| 341         0.165439         0.156314         0.136307         0.019718         0         0.003749           308         0.0092         0.06268         0.057094         0.00314         0         0.007156           68         0         1E-04         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51-1.00 0.024127 0.052052 0.39 | 0.024127 0.052052 0.35 | 0.052052 0.35 | 0.39    | 3009                | 0.220163           | 0.131597          | 0.092297         | 0.02213     | 0        | 0.005697   |
| 308         0.0092         0.06268         0.057094         0.00314         0         0.007156           68         0         1E-04         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.01-2.00 0.010058 0.049806 0.40 | 0.010058 0.049806 0.40 | 0.049806 0.40 | 0.40    | 07341               | 0.165439           | 0.156314          | 0.136307         | 0.019718    | 0        | 0.003749   |
| 68 0 1E-04 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.01-5.00 0.001 0.00674 0.2      | 0.001 0.00674 0.2      | 0.00674 0.2   | 0.2     | 14808               | 0.0092             | 0.06268           | 0.057094         | 0.00314     | 0        | 0.007156   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > 5.00 0 0 0.0                   | 0 0 0.0                | 0.0           | 0.0     | 0968                | 0                  | 1E-04             | 0                | 0           | 0        | 0          |

| g            |
|--------------|
| ц.           |
| و ا          |
| H            |
| IJ           |
| E            |
| G            |
| R            |
|              |
| f            |
| ÷            |
| S            |
| Ľ            |
| ca.          |
| ž            |
| ìÒ           |
| 60           |
| . Е          |
| E            |
| Ę            |
| e.           |
| X            |
| وم ا         |
| Ţ            |
| 5<br>C       |
| Ja           |
| ʻ dʻ         |
| · 🗆          |
| g            |
| re           |
| $\mathbf{A}$ |
| ğ            |
| Ę            |
| S            |
| Ĥ            |
| A            |
| 4.           |
| 4            |
| le           |
| - <u>2</u>   |
| Ĥ            |
| -            |

|                 | Malobago     | 1.443191  | 0.199029  | 0.10025      | 0.083265      | 0.0117    | 0        |   |
|-----------------|--------------|-----------|-----------|--------------|---------------|-----------|----------|---|
|                 | Macopa       | 0.41565   | 0.042408  | 0.014787     | 0.0004        | 0         | 0        | ¢ |
|                 | Macanip      | 0.889135  | 0.150479  | 0.10653      | 0.091984      | 0.011343  | 0        |   |
| n Jaro          | Kalinawan    | 1.213472  | 0.098499  | 0.016722     | 0.018759      | 0.003962  | 0        |   |
| ed Barangays ir | Kaglawaan    | 1.328859  | 0.183635  | 0.023843     | 0.003024      | 0         | 0        |   |
| Affect          | Hiagsam      | 0.323625  | 0.01828   | 0.011775     | 0.008853      | 0.014749  | 0.006918 | 5 |
|                 | District IV  | 0.471467  | 0.036323  | 0.013891     | 0.018464      | 0.016697  | 0        |   |
|                 | District III | 0.497452  | 0.012266  | 6.03E-05     | 0             | 0         | 0        |   |
|                 | District II  | 0.414993  | 0.008081  | 0.004639     | 0.002601      | 0         | 0        |   |
|                 | AN BASIN     | 0.03-0.20 | 0.21-0.50 | 0.51-1.00    | 1.01-2.00     | 2.01-5.00 | > 5.00   |   |
|                 | ANGPUL       |           | ee        | km.)<br>km.) | fecte<br>(sg. | ţΑ        |          |   |

Table 45. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period

|                |           |          |          | Affected Bara | ngays in Jaro |          |          |
|----------------|-----------|----------|----------|---------------|---------------|----------|----------|
| DIDNIEC        |           | Olotan   | Pitogo   | Sagkahan      | Santo Ni§o    | Tuba     | Uguiao   |
|                | 0.03-0.20 | 1.240276 | 2.039843 | 1.221589      | 0.18093       | 5.46333  | 1.715744 |
| Бе             | 0.21-0.50 | 0.234105 | 0.306363 | 0.204024      | 0.019207      | 0.283558 | 0.14347  |
| km.)<br>km.)   | 0.51-1.00 | 0.034045 | 0.103932 | 0.112109      | 0.00791       | 0.2914   | 0.023189 |
| fecte.<br>(sd. | 1.01-2.00 | 0.006054 | 0.063935 | 0.071491      | 0.001899      | 0.282291 | 0.053064 |
| ţΑ             | 2.01-5.00 | 0        | 0.029551 | 0.108335      | 0             | 0.204842 | 0.006082 |
|                | > 5.00    | 0        | 0        | 0.009128      | 0             | 0.084643 | 0        |





Figure 83. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period

For the 5-year return period, 65.286% of the Municipality of San Miguel, with an area of 103.86 sq. km., will experience flood levels of less 0.20 meters. 8.7015% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 7.7691%, 6.0965%, 1.8356%, and 0.0848% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46-48 are the affected areas, in square kilometers, by flood depth per barangay.

|                     |                 | Cayare Guinciaman | 2.225294 10.95976 | 0.274953 1.07906 | 0.126813 1.246262 | 0.03551 1.243128 | 0.009197 0.505036 |
|---------------------|-----------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|
| ġ                   |                 | Caraycaray        | 4.491204          | 0.407426         | 0.559178          | 0.447748         | 0.285734          |
| ntall Keturn Perio  | Miguel          | Capilihan         | 6.866351          | 1.095277         | 1.303479          | 1.376654         | 0.288919          |
| uring 5-Year Kai    | arangays in San | Canap             | 3.956149          | 0.493338         | 0.412121          | 0.149699         | 0.0014            |
| San Miguel, Leyte ( | Affected B      | Cabatianuhan      | 2.164271          | 0.603032         | 0.402874          | 0.283608         | 0.027517          |
| Alfected Areas in   |                 | Bairan            | 1.383273923       | 0.397367952      | 0.317529629       | 0.062596757      | 0.01100986        |
| l able 46.          |                 | Ваћау             | 11.39944          | 1.389709         | 1.416112          | 1.421574         | 0.359178          |
|                     |                 | Bagacay           | 0.068808          | 0.007894         | 0.0005            | 0                | 0                 |
|                     |                 |                   | 0.03-0.20         | 0.21-0.50        | 0.51-1.00         | 1.01-2.00        | 2.01-5.00         |
|                     |                 | DADNAC            |                   | ee               | km.)<br>km.)      | fecte.<br>(sd.   | ţΑ                |

Table 47. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period

|   |                  | Pinarigusan  | 0.00186     | 0           | 0            | 0              | 0         | 0        |  |
|---|------------------|--------------|-------------|-------------|--------------|----------------|-----------|----------|--|
|   |                  | Patong       | 4.614479    | 0.714156    | 0.375878     | 0.18118        | 0.126044  | 0        |  |
|   |                  | Mawodpawod   | 1.914446    | 0.167366    | 0.082425     | 0.039427       | 0.006944  | 0        |  |
|   | an Miguel        | Malpag       | 0.977716    | 0.250752    | 0.111154     | 0.031503       | 0.005193  | 0        |  |
| ) | d Barangays in S | Malaguinabot | 2.146815    | 0.44103     | 0.328971     | 0.036613       | 0.0026    | 0        |  |
|   | Affecte          | Lukay        | 2.831217    | 0.655561    | 0.277451     | 0.099983       | 0.0079    | 0        |  |
|   |                  | Libtong      | 0.700731624 | 0.094252853 | 0.108145919  | 0.093068037    | 0.0085    | 0        |  |
|   |                  | Kinalumsan   | 2.580005    | 0.124291    | 0.147316     | 0.202779       | 0.035909  | 0.001935 |  |
|   |                  | Impo         | 0.907919    | 0.157036    | 0.205733     | 0.051369       | 0.024108  | 0        |  |
|   |                  |              | 0.03-0.20   | 0.21-0.50   | 0.51-1.00    | 1.01-2.00      | 2.01-5.00 | > 5.00   |  |
|   |                  | DAINGLO      |             | ee          | km.)<br>km.) | fecte.<br>(sd. | ţA        |          |  |

0.0215

0

0.059531

0.0001

0

0

0

0.0033

0

> 5.00

|                                                   |            | Affecte    | ed Barangays in San | Miguel                                                                                  |
|---------------------------------------------------|------------|------------|---------------------|-----------------------------------------------------------------------------------------|
| SANGPU                                            | JIAN BASIN | San Andres | Santa Cruz          | Santol                                                                                  |
|                                                   | 0.03-0.20  | 1.247327   | 0.384423            | 5.984576446                                                                             |
| e                                                 | 0.21-0.50  | 0.185566   | 0.063281            | 0.436050328                                                                             |
| ed Are<br>km.)                                    | 0.51-1.00  | 0.20625    | 0.026231            | 0.414562257                                                                             |
| fecte<br>(sq.                                     | 1.01-2.00  | 0.119949   | 0.002767            | 0.452649863                                                                             |
| Af                                                | 2.01-5.00  | 0.023978   | 0.00092             | 0.176328368                                                                             |
|                                                   | > 5.00     | 0.001      | 0                   | 0.0007                                                                                  |
| 4.5                                               |            |            |                     |                                                                                         |
| 5<br>4.5<br>4<br>3.5<br>3                         |            |            |                     | <br>Flood<br>Depth (n<br>> 5.00                                                         |
| 5<br>4.5<br>4<br>3.5<br>3<br>2.5                  |            |            |                     | Flood<br>Depth (n<br>> 5.00<br>2.01-5.00                                                |
| 5<br>4.5<br>4<br>3.5<br>3<br>2.5<br>2<br>15       |            |            |                     | Flood<br>Depth (n<br>> 5.00<br>= 2.01-5.00<br>= 1.01-2.00<br>= 0.51-1.00                |
| 5<br>4.5<br>4<br>3.5<br>3<br>2.5<br>2<br>1.5<br>1 |            |            |                     | Flood<br>Depth (m<br>> 5.00<br>= 2.01-5.00<br>= 1.01-2.00<br>= 0.51-1.00<br>= 0.21-0.50 |

Table 48. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period



Figure 86. Affected Areas in San Miguel, Leyte during 5-Year Rainfall Return Period

For the 5-year return period, 9.4055% of the City of Tacloban, with an area of 118.457 sq. km., will experience flood levels of less 0.20 meters. 0.6501% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.5339%, 0.307%, 0.0831%, and 0.0014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas, in square kilometers, by flood depth per barangay.

|                                         | Tuble 19.1  |                | uelobuli eley, Leye |                 |             |                                                                                  |
|-----------------------------------------|-------------|----------------|---------------------|-----------------|-------------|----------------------------------------------------------------------------------|
| SANCO                                   |             |                | Affected            | Barangays in Ta | cloban      |                                                                                  |
| SANGP                                   | UTAN DASIN  | Barangay 100   | Barangay 103        | Barangay 106    | Barangay 93 | Barangay 98                                                                      |
|                                         | 0.03-0.20   | 1.465799       | 0.439695            | 0.27649         | 3.339615    | 5.619986                                                                         |
| ga                                      | 0.21-0.50   | 0.13239        | 0.01484             | 0.007807        | 0.23969     | 0.375392                                                                         |
| d Are<br>km.)                           | 0.51-1.00   | 0.109793       | 0.005079            | 0.002807        | 0.141395    | 0.373363                                                                         |
| fecte<br>(sq.                           | 1.01-2.00   | 0.029839       | 0.0007              | 0.001398        | 0.074703    | 0.257024                                                                         |
| Af                                      | 2.01-5.00   | 0.0003         | 0.0001              | 0.000564        | 0.005871    | 0.091576                                                                         |
|                                         | > 5.00      | 0              | 0                   | 0               | 0           | 0.0017                                                                           |
|                                         |             |                |                     |                 |             |                                                                                  |
| 1.2<br>1<br>0.8 (sd. km.)<br>0.6<br>0.4 | Barangay 10 | 0 Barangay 103 | Barangay 106        | Barangay 93     | Barangay 98 | Flood<br>Depth (m)<br>> 5.00<br>2.01-5.00<br>1.01-2.00<br>0.51-1.00<br>0.21-0.50 |

Table 49. Affected Areas in Tacloban City, Leyte during 5-Year Rainfall Return Period

Figure 87. Affected Areas in Tacloban City, Leyte during 5-Year Rainfall Return Period

For the 5-year return period, 31.09% of the Municipality of Tunga, with an area of 17.3625 sq. km., will experience flood levels of less 0.20 meters. 4.4424% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.83%, 3.4073%, 1.7265%, and 0.3791% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas, in square kilometers, by flood depth per barangay.

|       |      | 10010      |          |          | , <i>Leyte during</i> 5 |               |            |             |
|-------|------|------------|----------|----------|-------------------------|---------------|------------|-------------|
| C A   |      |            |          |          | Affected Ba             | rangay in Tun | ga         |             |
| JA    | INGP | UTAN DASIN | Astorga  | Balire   | Banawang                | San Pedro     | San Roque  | San Vicente |
|       |      | 0.03-0.20  | 1.548981 | 0.003604 | 3.176827                | 0.401533      | 0.230182   | 0.036973    |
| ea l  |      | 0.21-0.50  | 0.429428 | 0.00096  | 0.172792                | 0.132864      | 0.034106   | 0.001174    |
| d Are | km.) | 0.51-1.00  | 0.513981 | 0.000886 | 0.140407                | 0.16023       | 0.020246   | 0.002863    |
| fecte | (sq. | 1.01-2.00  | 0.346188 | 0        | 0.173852                | 0.049351      | 0.015642   | 0.006566    |
| ¥     |      | 2.01-5.00  | 0.115068 | 0        | 0.157334                | 0.024097      | 0.003272   | 0           |
|       |      | > 5.00     | 0        | 0        | 0.065826                | 0             | 0          | 0           |
| -     |      |            |          |          |                         | ·             | •          |             |
|       |      |            |          |          |                         |               |            |             |
|       |      |            |          |          |                         |               |            |             |
|       | 1.6  |            |          |          |                         |               |            |             |
|       | 1.4  |            |          |          |                         |               |            |             |
| 2     | 1.2  |            |          |          |                         |               |            | Flood       |
| ۲¥.   |      |            |          |          |                         |               |            | Depth (m)   |
| s,    | 1    |            |          |          |                         |               |            | ■ > 5.00    |
| Area  | 0.8  |            |          |          |                         |               |            | 2.01-5.00   |
| ed    | 06   |            |          |          |                         |               |            | 1.01-2.00   |
| ffect | 0.0  |            |          |          |                         |               |            | 0.51-1.00   |
| ৰ     | 0.4  |            |          |          |                         |               |            | 0.21-0.50   |
|       | 0.2  | <u> </u>   |          | _        | _                       |               |            |             |
|       | 0    |            |          |          |                         |               |            |             |
|       | Ŭ    | Astorga    | Balire   | Banawang | San Pedro               | San Roque S   | an Vicente |             |
|       |      |            |          | Barar    | ngays                   |               |            |             |
|       |      |            |          |          |                         |               |            |             |

Table 50. Affected Areas in Tunga, Leyte during 5-Year Rainfall Return Period

Figure 88. Affected Areas in Tunga, Leyte during 5-Year Rainfall Return Period

For the 25-year return period, 25.34% of the Municipality of Alangalang, with an area of 145.445 sq. km., will experience flood levels of less 0.20 meters. 7.396% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.017%, 4.83%, 1.535%, and 0.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 51-54 are the affected areas, in square kilometers, by flood depth per barangay.

| curn Períod        |
|--------------------|
| -Year Rainfall Ret |
| 5, Leyte during 25 |
| eas in Alangalang  |
| le 51. Affected Ar |
| Tab                |

| Affected Area (.m.) (.m.) | AN BASIN<br>0.03-0.20<br>0.21-0.50<br>0.51-1.00<br>1.01-2.00<br>2.01-5.00 | Binongto-An<br>0.069873257<br>0.180124683<br>0.433697321<br>0.313950908<br>0.313950908<br>0.074150013 | Binotong           2.289190186           0.586158792           0.428216621           0.204413267           0.06153606 | Blumentritt<br>0.029367584<br>0.046897065<br>0.07361078<br>0.073251078<br>0.00239585 | Affected<br>Borseth<br>1.565150671<br>0.451587456<br>0.304043028<br>0.139762128<br>0.173763002 | Barangays in Al<br>Bugho<br>3.66147454<br>1.610189666<br>3.103533216<br>1.885826785<br>0.28271936 | angalang<br>Cabadsan<br>0.792494771<br>0.393574285<br>0.316768982<br>0.316768982<br>0.097340678<br>0.026916067 | Calaasan<br>0.771009397<br>0.30986446<br>0.593468907<br>0.593468907<br>0.35807429<br>0.0014 | Cavite<br>0.235679604<br>0.122155341<br>0.241654652<br>0.156402858<br>0.043202362 | Divisoria 0.0128947: 0.0013153( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|---------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| <u>.</u>                  | > 5.00                                                                    | 0.0008                                                                                                | 0.042303132                                                                                                           | 0                                                                                    | 0.001690731                                                                                    | 0                                                                                                 | 0.00903961                                                                                                     | 0                                                                                           | 0.063025539                                                                       | 0                                                                     |

Table 52. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period

|                |           |             |              |               | Affected    | Barangays in Ala | angalang    |             |             |              |
|----------------|-----------|-------------|--------------|---------------|-------------|------------------|-------------|-------------|-------------|--------------|
| IDADNIAC       |           | Ekiran      | Holy Child I | Holy Child II | Hubang      | Hupit            | Lourdes     | Lukay       | Milagrosa   | P. Barrantes |
|                | 0.03-0.20 | 2.269125886 | 0.284126412  | 0.105146926   | 0.844983068 | 1.89203537       | 1.357654443 | 1.208792796 | 0.038304223 | 1.459505467  |
| ee             | 0.21-0.50 | 1.126248145 | 0.082867086  | 0.015030029   | 0.458818757 | 0.523928276      | 0.255510294 | 0.372532918 | 0.01376279  | 0.542000571  |
| d Are<br>km.)  | 0.51-1.00 | 0.620767329 | 0.032101152  | 0.002937594   | 0.482539087 | 0.272218734      | 0.238242715 | 0.284724888 | 0.001672693 | 0.755332305  |
| fecte<br>∙.ps) | 1.01-2.00 | 0.209660171 | 0.00719015   | 0.002375008   | 0.592269287 | 0.202812249      | 0.200274504 | 0.099112227 | 9.98927E-05 | 0.506558105  |
| ţΑ             | 2.01-5.00 | 0.106338492 | 0.005943034  | 0.0001        | 0.060991072 | 0.196851012      | 0.060103829 | 0.021136033 | 0.000310038 | 0.035250766  |
|                | > 5.00    | 0.044312536 | 0.000224921  | 0             | 0.000991714 | 0.001391582      | 0           | 0.031783698 | 7.50785E-05 | 0.003808286  |
|                |           |             |              |               |             |                  |             |             |             |              |

|                    |                 | Santol                   | 2.9411733   | 0.125726859 | 0.146787394    | 0.183068661  | 0.102059953 | 0.007576835 |
|--------------------|-----------------|--------------------------|-------------|-------------|----------------|--------------|-------------|-------------|
|                    |                 | Santo Niño               | 0.043568705 | 0           | 0              | 0            | 0           | 0           |
| po                 |                 | Santiago                 | 3.4819639   | 0.4143592   | 0.2360926      | 0.2912944    | 0.3245405   | 0.0547854   |
| infall Return Peri | angalang        | San Vicente              | 2.9253316   | 0.8265203   | 0.7112839      | 0.3083276    | 0.2427699   | 0.107075384 |
| uring 25-Year Ra   | Barangays in Al | San Roque                | 0.1545830   | 0.0161503   | 0.0042512      | 0.0021872    | 0.0006      | 0           |
| angalang, Leyte d  | Affected        | San Francisco<br>West    | 1.96095603  | 0.262183547 | 0.143054979    | 0.11644992   | 0.0085      | 0           |
| ected Areas in Al  |                 | San Francisco<br>East    | 2.82124687  | 0.750062314 | 0.405178801    | 0.025662827  | 0.004914333 | 0.002113468 |
| Table 53. Aff      |                 | San Antonio<br>Poblacion | 0.088527274 | 0.004017861 | 0.00170085     | 0.000710153  | 0           | 0           |
|                    |                 | Salvacion<br>Poblacion   | 5.885655557 | 0.752319486 | 0.828489633    | 0.460583183  | 0.064166391 | 0           |
|                    |                 | AN BASIN                 | 0.03-0.20   | 0.21-0.50   | 0.51-1.00      | 1.01-2.00    | 2.01-5.00   | > 5.00      |
|                    |                 | SANGPUT                  |             | ea          | ed Are<br>km.) | .ps)<br>.ps) | ţΑ          |             |

Table 54. Affected Areas in Alangalang, Leyte during 25-Year Rainfall Return Period

| SANGPUT        | AN BASIN  | Affected Areas | in Alangalang |
|----------------|-----------|----------------|---------------|
|                |           | Tabangohay     | Veteranos     |
|                | 0.03-0.20 | 5.885655557    | 0.088527274   |
| ea             | 0.21-0.50 | 0.752319486    | 0.004017861   |
| a A re<br>km.) | 0.51-1.00 | 0.828489633    | 0.00170085    |
| fecte.<br>(sd. | 1.01-2.00 | 0.460583183    | 0.000710153   |
| ţΑ             | 2.01-5.00 | 0.064166391    | 0             |
|                | > 5.00    | 0              | 0             |

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)





For the 25-year return period, 59.537% of the Municipality of Barugo, with an area of 81.25 sq. km., will experience flood levels of less 0.20 meters. 6.058% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.837%, 4.35%, 3.712%, and 0.786% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 55-58 are the affected areas, in square kilometers, by flood depth per barangay.

|                  | Can-Isak                     | 1.654509                                                                                                                                                                   | 0.117462                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.273045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.541277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.333895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Calingcaguing                | 0.853457                                                                                                                                                                   | 0.11443                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.093334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.059274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.021008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | Cabolo-An                    | 4.987442                                                                                                                                                                   | 0.181637                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.158461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.115038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.065405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3arugo           | Cabarasan                    | 1.26443                                                                                                                                                                    | 0.467212                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.072595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d Barangays in I | Busay                        | 2.919097                                                                                                                                                                   | 0.146086                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.137562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.117447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Affected         | Bulod                        | 3.52247                                                                                                                                                                    | 0.283515                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.206305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.098812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | Bukid                        | 0.171278                                                                                                                                                                   | 0.009171                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.018755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Balud                        | 3.120183                                                                                                                                                                   | 0.277012                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.193558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.052032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.010114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Amahit                       | 0.47653                                                                                                                                                                    | 0.071373                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.032742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                              | 0.03-0.20                                                                                                                                                                  | 0.21-0.50                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.51-1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01-2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.01-5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | > 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | VI NABNIAC                   |                                                                                                                                                                            | еe                                                                                                                                                                                                                                                                                                                                                                                                                          | a A re<br>km.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fecte.<br>(sd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ţΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Affected Barangays in Barugo | Affected Barangays in Barugo         SANGPUTAN BASIN         Amahit       Balud       Bulod       Busay       Cabarasan       Cabolo-An       Calingcaguing       Can-Isak | Affected Barangays in Barugo           Affected Barangays in Barugo           SANGPUTAN BASIN           Amahit         Balud         Bukid         Bulod         Busay         Cabarasan         Cabolo-An         Calingcaguing         Can-Isak           0.03-0.20         0.47653         3.120183         0.171278         3.52247         2.919097         1.26443         4.987442         0.853457         1.654509 | Affected Barangays in Barugo           Affected Barangays in Barugo           SANGPUTAN BASIN           Amahit         Balud         Bukid         Bulod         Busay         Cabarasan         Cabingcaguing         Can-Isak           0.03-0.20         0.47653         3.120183         0.171278         3.52247         2.919097         1.26443         4.987442         0.853457         1.654509           0         0.21-0.50         0.071373         0.277012         0.009171         0.283515         0.146086         0.467212         0.181637         0.11443         0.117462 | Affected Barangays in Barugo           Affected Barangays in Barugo           Andhit         Bukid         Bukid         Busay         Cabarasan         Calingcaguing         Can-Isak           0.03-0.20         0.171278         3.52247         2.919097         1.26443         0.853457         1.654509           0         0.011373         0.009171         0.283515         0.146086         0.467212         0.11443         0.117462           0         0.032742         0.032742         0.01296         0.137562         0.13762         0.137641         0.03334         0.273045 | SandPUTAL Basin         Affected Barangays in Barugo           Amahit         Balud         Bulod         Busay         Cabarasan         Cabolo-An         Calingcaguing         Can-Isak           0.03-0.20         0.47653         3.120183         0.171278         3.52247         2.919097         1.26443         4.987442         0.853457         1.654509 <ul> <li>0.21-0.50</li> <li>0.071373</li> <li>0.277012</li> <li>0.009171</li> <li>0.283515</li> <li>0.146086</li> <li>0.467212</li> <li>0.18763</li> <li>0.137562</li> <li>0.37631</li> <li>0.18463</li> <li>0.117467</li> <li>0.032742</li> <li>0.093334</li> <li>0.273045</li> </ul> <ul> <li>0.112-0.0</li> <li>0.032742</li> <li>0.18755</li> <li>0.137562</li> <li>0.37631</li> <li>0.158461</li> <li>0.093334</li> <li>0.273045</li> </ul> <ul> <li>0.117447</li> <li>0.072595</li> <li>0.115038</li> <li>0.059274</li> <li>0.541277</li> </ul> | Affected Barangays in Barugo           Amahit         Balud         Bukid         Busay         cabarasan         can-Isak           0.03-0.20         0.171278         3.52247         2.919097         1.26443         cabolo-An         can-Isak           ©         0.03-0.20         0.171278         3.52247         2.919097         1.26443         cabolo-An         can-Isak           ©         0.071373         0.171278         3.52247         2.914607         0.1865450         0.117462           ©         0.0011443         0.11443         0.117462           ©         0.137562         0.13762         0.117442         0.23344         0.011443         0.117462           ©         0.032122 |

| fall Return Perioc | Barugo           |             |
|--------------------|------------------|-------------|
| ing 25-Year Rain   | d Barangays in I |             |
| Barugo, Leyte dur  | Affecte          | Cuinadoobaa |
| Affected Areas in  |                  | 0,1,0       |
| Table 56. <i>i</i> |                  | Domocrator  |
|                    |                  | ç           |

| Affected Barangays in Barugo | Cuta Domogdog Duka Guindaohan Hiagsam Hilaba Hinugayan Ibag Minuhang | 18513         0.482943         4.608905         0.683224         1.029045         0.268982         0.81389         2.288559         0.840557 | 58874         0.167101         0.231442         0.125984         0.03499         0.101514         0.04513         0.088183         0.46394 | 37258 0.02222 0.175707 0.009712 0.0396 0.08066 0.061495 0.102166 0.309339 | 08359 0 0 0.158184 0.00609 0.113503 0.047596 0.114617 0.099906 0.100616 | 0 0 0.088845 0 0.229666 0.088127 0.094975 0.02244 0.0005 | 0 0 0.0007 0 0.004908 0 0.009293 0 0 |
|------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|
|                              | Domogdog Duka Guinc                                                  | 0.482943 4.608905 0.68                                                                                                                       | 0.167101 0.231442 0.12                                                                                                                     | 0.02222 0.175707 0.00                                                     | 0 0.158184 0.00                                                         | 0 0.088845                                               | 0 0.0007                             |
|                              | Cuta                                                                 | 2.118513                                                                                                                                     | 0.68874                                                                                                                                    | 0.237258                                                                  | 0.008359                                                                | 0                                                        | 0                                    |
|                              | SANGPUTAN BASIN                                                      | 0.03-0.20                                                                                                                                    | 0.21-0.50                                                                                                                                  | ed Are                                                                    | fecte<br>(sq.                                                           | ₹<br>2.01-5.00                                           | > 5.00                               |

| iod                                                      |  |
|----------------------------------------------------------|--|
| cas in Barugo, Leyte during 25-Year Rainfall Return Peri |  |
| Table 57. Affected Ar                                    |  |

|                  |                        |           | 6         | 3               | 6              | 4         | 2        |
|------------------|------------------------|-----------|-----------|-----------------|----------------|-----------|----------|
|                  | Pongsc                 | 2.2629(   | 0.15171   | 0.15453         | 0.38213        | 0.48947   | 0.05100  |
|                  | Poblacion<br>Dist. VI  | 0.106073  | 0.03666   | 0.016364        | 0              | 0         | 0        |
|                  | Poblacion<br>Dist. V   | 0.140982  | 0.044318  | 0.022538        | 0              | 0         | 0        |
| 3arugo           | Poblacion<br>Dist. IV  | 0.112189  | 0.011399  | 0               | 0              | 0         | 0        |
| d Barangays in E | Poblacion<br>Dist. III | 0.085076  | 0.026675  | 0.00888         | 0              | 0         | 0        |
| Affecte          | Poblacion<br>Dist. II  | 0.117869  | 0.051051  | 0.026001        | 0.003557       | 0.001262  | 0        |
|                  | Poblacion<br>Dist. I   | 0.135101  | 0.046323  | 0.007356        | 0              | 0         | 0        |
|                  | Pitogo                 | 2.068872  | 0.101596  | 0.135805        | 0.113585       | 0.015925  | 0.000288 |
|                  | Pikas                  | 2.891837  | 0.219405  | 0.334211        | 0.49314        | 0.596198  | 0.263844 |
|                  | NICED NA               | 0.03-0.20 | 0.21-0.50 | 0.51-1.00       | 1.01-2.00      | 2.01-5.00 | > 5.00   |
|                  | 10 JONIAC              |           | ee        | ed Are<br>(.m.) | fecte.<br>(sg. | ţA        |          |

|                |           |           |            | Affected Baran | gays in Barugo |          |          |
|----------------|-----------|-----------|------------|----------------|----------------|----------|----------|
| DADNAC         | AN BASIN  | Roosevelt | San Isidro | San Roque      | Santa Rosa     | Santarin | Tutug-An |
|                | 0.03-0.20 | 1.708106  | 0.544939   | 0.959156       | 4.014607       | 0.032403 | 1.089356 |
| ea             | 0.21-0.50 | 0.108634  | 0.137223   | 0.037711       | 0.210977       | 0.025803 | 0.098464 |
| ed Are<br>km.) | 0.51-1.00 | 0.153377  | 0.066667   | 0.045371       | 0.230612       | 0.043699 | 0.089409 |
| .ps)<br>(sd.   | 1.01-2.00 | 0.179778  | 0.00471    | 0.06702        | 0.352076       | 0.030039 | 0.073925 |
| ţΑ             | 2.01-5.00 | 0.306353  | 0          | 0.042647       | 0.306601       | 0.002776 | 0.126881 |
|                | > 5.00    | 0.135894  | 0          | 0.001504       | 0.06127        | 0        | 0.06617  |
|                |           |           |            |                |                |          |          |

Table 58. Affected Areas in Barugo, Leyte during 25-Year Rainfall Return Period




Figure 96. Affected Areas in Barugo, Leyte during 25Year Rainfall Return Period

For the 25-year return period, 15.11% of the Municipality of Jaro, with an area of 190.65 sq. km., will experience flood levels of less 0.20 meters. 2.522% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.353%, 1.145%, 0.6924%, and 0.1116% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 59-61 are the affected areas, in square kilometers, by flood depth per barangay.

0.034073

0

0.031739

0.014412

0

0.018252

0.024139

0

0

2.01-5.00

0

0

0

0

0

0.0109

0

0

0

> 5.00

| Period    |
|-----------|
| Return    |
| ainfall   |
| -Year F   |
| uring 25  |
| Leyte d   |
| n Jaro,   |
| Areas i   |
| ffected   |
| ole 61. A |
| Tal       |

|               |          |          |          | Affected Bara | ngays in Jaro |          |          |
|---------------|----------|----------|----------|---------------|---------------|----------|----------|
| DIDNIEC       |          | Olotan   | Pitogo   | Sagkahan      | Santo Ni§o    | Tuba     | Uguiao   |
|               | 1.083984 | 1.695722 | 0.842448 | 0.170089      | 5.181465      | 1.594091 | 1.715744 |
| ее            | 0.356382 | 0.563416 | 0.323098 | 0.02695       | 0.283245      | 0.245535 | 0.14347  |
| km.)<br>km.)  | 0.062324 | 0.145811 | 0.250203 | 0.008328      | 0.318359      | 0.023987 | 0.023189 |
| fecte<br>(sg. | 0.012109 | 0.085084 | 0.151416 | 0.004578      | 0.38175       | 0.042331 | 0.053064 |
| łA            | 0        | 0.050842 | 0.142566 | 0             | 0.290084      | 0.035605 | 0.006082 |
|               | 0        | 0.0037   | 0.016945 | 0             | 0.156463      | 0        | 0        |





Figure 99. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period

For the 25-year return period, 57.915% of the Municipality of San Miguel, with an area of 103.86 sq. km., will experience flood levels of less 0.20 meters. 7.94% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.95%, 9.54%, 5.11%, and 0.317% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 62-64 are the affected areas, in square kilometers, by flood depth per barangay.

Table 63. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period

0.088479

0.006812

0.106977

0.000407

0.000498

0

0

0.073012

0

> 5.00

|                   | an           | 6           |             |                |               |             |          |  |
|-------------------|--------------|-------------|-------------|----------------|---------------|-------------|----------|--|
|                   | Pinarigus    | 0.0018      | 0           | 0              | 0             | 0           | 0        |  |
|                   | Patong       | 4.015013    | 0.647546    | 0.660055       | 0.418519      | 0.24425     | 0.029309 |  |
|                   | Mawodpawod   | 1.808621    | 0.187392    | 0.142085       | 0.060554      | 0.011956    | 0        |  |
| an Miguel         | Malpag       | 0.760685    | 0.175305    | 0.311783       | 0.114332      | 0.014214    | 0        |  |
| ed Barangays in S | Malaguinabot | 1.893872    | 0.552092    | 0.424062       | 0.082902      | 0.0043      | 0        |  |
| Affecte           | Lukay        | 2.133761    | 0.835048    | 0.620306       | 0.224556      | 0.058847    | 0        |  |
|                   | Libtong      | 0.500235804 | 0.058285157 | 0.102217176    | 0.178950703   | 0.165009593 | 0        |  |
|                   | Kinalumsan   | 2.482284    | 0.108553    | 0.13184        | 0.278222      | 0.082181    | 0.009155 |  |
|                   | Impo         | 0.814112    | 0.10096     | 0.212005       | 0.181627      | 0.035956    | 0.001507 |  |
|                   |              | 0.03-0.20   | 0.21-0.50   | 0.51-1.00      | 1.01-2.00     | 2.01-5.00   | > 5.00   |  |
|                   | INJONIES     |             | еe          | ed Are<br>km.) | fecte<br>.ps) | ţĄ          |          |  |

103

| Table 64.     | Affected Areas in San | Miguel, Leyte during | 25-Year Rainfall Retu | ırn Period  |  |
|---------------|-----------------------|----------------------|-----------------------|-------------|--|
| CANCEUT       |                       | Affecte              | d Barangays in San    | Miguel      |  |
| SANGPUT       |                       | San Andres           | Santa Cruz            | Santol      |  |
|               | 0.03-0.20             | 1.090297             | 0.341168              | 5.366445537 |  |
| ea a          | 0.21-0.50             | 0.134755             | 0.071026              | 0.351823047 |  |
| d Are<br>km.) | 0.51-1.00             | 0.273216             | 0.047152              | 0.489810089 |  |
| fecte<br>(sq. | 1.01-2.00             | 0.208538             | 0.015997              | 0.801874785 |  |
| Af            | 2.01-5.00             | 0.074432             | 0.002278              | 0.444717603 |  |
|               | > 5.00                | 0.002931             | 0                     | 0.0104962   |  |





Figure 100. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period



Figure 102. Affected Areas in San Miguel, Leyte during 25-Year Rainfall Return Period

For the 25-year return period, 9.18% of the City of Tacloban, with an area of 118.45 sq. km., will experience flood levels of less 0.20 meters. 0.584% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.593%, 0.484%, 0.134%, and 0.0046% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 65 are the affected areas, in square kilometers, by flood depth per barangay.



Table 65. Affected Areas in Tacloban, Leyte during 25-Year Rainfall Return Period

Figure 103. Affected Areas in Tacloban City, Leyte during 25-Year Rainfall Return Period

For the 25-year return period, 27.754% of the Municipality of Tunga, with an area of 17.36 sq. km., will experience flood levels of less 0.20 meters. 4.26% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.75%, 5.06%, 2.36%, and 0.6833% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 66 are the affected areas, in square kilometers, by flood depth per barangay.

|                                                                                                                                              |     | 14                  |    |          |          |             |               |            |             |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|----|----------|----------|-------------|---------------|------------|-------------|
| CAN                                                                                                                                          | CD  |                     |    |          |          | Affected Ba | rangay in Tun | ga         |             |
| SAIN                                                                                                                                         | GP  | UTAN DAS            |    | Astorga  | Balire   | Banawang    | San Pedro     | San Roque  | San Vicente |
|                                                                                                                                              |     | 0.03-0.2            | 20 | 1.293415 | 0.00309  | 3.011618    | 0.285611      | 0.190279   | 0.034805    |
| g                                                                                                                                            |     | 0.21-0.5            | 0  | 0.376761 | 0.001324 | 0.18155     | 0.138969      | 0.040337   | 0.001241    |
| d Are                                                                                                                                        |     | 0.51-1.0            | 0  | 0.614295 | 0.001036 | 0.1622      | 0.181144      | 0.038162   | 0.001918    |
| fecte                                                                                                                                        | -he | 1.01-2.0            | 0  | 0.511106 | 0        | 0.210105    | 0.12583       | 0.026105   | 0.005421    |
| Af                                                                                                                                           |     | 2.01-5.0            | 0  | 0.157769 | 0        | 0.203826    | 0.036721      | 0.008565   | 0.004191    |
|                                                                                                                                              |     | > 5.00              |    | 0.0004   | 0        | 0.118238    | 0             | 0          | 0           |
|                                                                                                                                              |     |                     |    |          |          | ·           | ·             | •          |             |
|                                                                                                                                              |     |                     |    |          |          |             |               |            |             |
|                                                                                                                                              |     |                     |    |          |          |             |               |            |             |
| 1.                                                                                                                                           | 8   |                     |    |          |          |             |               |            |             |
| 1.                                                                                                                                           | 6   |                     |    |          |          |             |               |            |             |
| <b>7</b> <sup>1.</sup>                                                                                                                       | .4  |                     |    |          |          |             |               |            | Flood       |
| <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | 2   |                     |    |          |          |             |               |            | Depth (m)   |
| a (sq                                                                                                                                        | 1   |                     |    |          |          |             |               |            | ■ > 5.00    |
| _Arec                                                                                                                                        | 8   |                     |    |          |          |             |               |            | 2.01-5.00   |
| fed                                                                                                                                          |     |                     |    |          |          |             |               |            | 1.01-2.00   |
| ue<br>Uego                                                                                                                                   | .6  |                     |    |          |          |             |               |            | 0.51-1.00   |
| <b>*</b> 0.                                                                                                                                  | 4   | <b>├</b> ─ <b> </b> |    |          |          |             |               |            | 0.21-0.50   |
| 0.                                                                                                                                           | 2   | + ·                 |    |          | _        |             |               |            |             |
|                                                                                                                                              | 0   | ļ                   |    |          | ,        | ,           |               |            |             |
|                                                                                                                                              |     | Astorg              | а  | Balire   | Banawang | San Pedro   | San Roque     | an Vicente |             |
|                                                                                                                                              |     |                     |    |          | Barai    | пдауз       |               |            |             |

Table 66. Affected Areas in Tunga, Leyte during 25-Year Rainfall Return Period

Figure 104. Affected Areas in Tunga, Leyte during 25-Year Rainfall Return Period

For the 100-year return period, 22.687% of the Municipality of Alangalang, with an area of 145.445 sq. km., will experience flood levels of less 0.20 meters. 6.94% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.27%, 6.99%, 2.149%, and 0.367% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 67-70 are the affected areas, in square kilometers, by flood depth per barangay.

Table 67. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period

|                |           |             |             |             | Affected I  | 3arangays in Al | angalang    |             |             |             |
|----------------|-----------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|
| DADNAC         |           | Binongto-An | Binotong    | Blumentritt | Borseth     | Bugho           | Cabadsan    | Calaasan    | Cavite      | Divisoria   |
|                | 0.03-0.20 | 0.03481857  | 2.066107438 | 0.008086211 | 1.361846921 | 3.113390516     | 0.711815154 | 0.660082785 | 0.207239643 | 0.012594736 |
| ea             | 0.21-0.50 | 0.115361725 | 0.676019447 | 0.01342701  | 0.446554178 | 1.086920985     | 0.399400593 | 0.263550419 | 0.110903994 | 0.001615362 |
| km.)<br>km.)   | 0.51-1.00 | 0.403157602 | 0.472592842 | 0.084310501 | 0.432855726 | 2.589345667     | 0.369812474 | 0.445211404 | 0.232389234 | 0           |
| fecte.<br>(sd. | 1.01-2.00 | 0.425581655 | 0.286859139 | 0.067740366 | 0.173662737 | 3.07268601      | 0.117331534 | 0.662884785 | 0.203595308 | 0           |
| ţΑ             | 2.01-5.00 | 0.09237663  | 0.06843606  | 0.006136753 | 0.206920885 | 0.681400389     | 0.029335028 | 0.002087661 | 0.043979925 | 0           |
|                | > 5.00    | 0.0013      | 0.042603132 | 0           | 0.013896185 | 0               | 0.00893961  | 0           | 0.064125539 | 0           |
|                |           |             |             |             |             |                 |             |             |             |             |

0.045784815 0.484119065 0.760480932 0.004508286 1.175618721 P. Barrantes 0.83194368 0.017051396 0.031594579 0.000290201 9.49153E-05 0.005093732 9.98927E-05 Milagrosa 0.022541925 0.403040204 0.031783698 1.116513929 0.292344448 0.153358357 Lukay 0.286025793 1.240130342 0.253162282 0.107623427 0.22574394 Lourdes Affected Barangays in Alangalang 0 0.584799115 0.251784506 0.234702506 0.003689556 1.631130501 0.38753104 Hupit 0.322570396 0.001391714 0.770459142 0.659878404 0.593963147 0.092330181 Hubang 0.024556325 0.004904609 0.004318163 Holy Child II 0.09051046 0.0013 0 0.065635649 0.082219434 0.000505085 0.006263148 0.23329482 0.02453462 Holy Child I 0.044212536 0.107938492 0.236226412 2.090118292 0.675545757 1.22241107 Ekiran 0.03-0.20 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00 > 5.00 SANGPUTAN BASIN (.mx .ps) Affected Area

Table 68. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period

Table 69. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period

|                |           |                        |                          |                       | )                     | )               |             |             |            |             |
|----------------|-----------|------------------------|--------------------------|-----------------------|-----------------------|-----------------|-------------|-------------|------------|-------------|
|                |           |                        |                          |                       | Affected              | Barangays in Al | angalang    |             |            |             |
| SANGPUT        | FAN BASIN | Salvacion<br>Poblacion | San Antonio<br>Poblacion | San Francisco<br>East | San Francisco<br>West | San Roque       | San Vicente | Santiago    | Santo Niño | Santol      |
|                | 0.03-0.20 | 0.174191489            | 0.000776672              | 2.048501859           | 1.624185152           | 0.130332873     | 2.180435666 | 1.971993916 | 0          | 2.710006999 |
| ee             | 0.21-0.50 | 0.044761784            | 0.000184629              | 0.806647672           | 0.421082263           | 0.029443023     | 0.836630992 | 0.62434722  | 0          | 0.137084546 |
| ed Are<br>km.) | 0.51-1.00 | 0.01101686             | 0                        | 0.799527622           | 0.226833894           | 0.013032485     | 0.778076127 | 0.934482725 | 0          | 0.139148091 |
| fecte.<br>(sd. | 1.01-2.00 | 0                      | 0                        | 0.345845012           | 0.179372335           | 0.004112882     | 0.871168622 | 0.558121678 | 0          | 0.223671644 |
| ţΑ             | 2.01-5.00 | 0                      | 0                        | 0.006388841           | 0.041170831           | 0.000850704     | 0.316765063 | 0.596135928 | 0          | 0.243041569 |
|                | > 5.00    | 0                      | 0                        | 0.002267607           | 0                     | 0               | 0.143228744 | 0.117954812 | 0          | 0.053440225 |
|                |           |                        |                          |                       |                       |                 |             |             |            |             |



Figure 105. Affected Areas in Alangalang, Leyte during 100-Year Rainfall Return Period





For the 100-year return period, 56.22% of the Municipality of Barugo, with an area of 81.25 sq. km., will experience flood levels of less 0.20 meters. 5.909% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.4%, 5.5%, 5.226%, and 0.978% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 71-74 are the affected areas, in square kilometers, by flood depth per barangay.

|               | Table (1. | Allected Aleas III | i Barugo, Leyte ut | ing 100-1 car Ka | IIIIaii Ketuiii Feli | .00            |     |           |
|---------------|-----------|--------------------|--------------------|------------------|----------------------|----------------|-----|-----------|
| SANCOUT       |           |                    |                    |                  | Affecte              | d Barangays in | Baı | rugo      |
| SANGPUT       | AN DASIN  | Amahit             | Balud              | Bukid            | Bulod                | Busay          |     | Cabarasan |
|               | 0.03-0.20 | 0.455067           | 3.054627           | 0.168046         | 3.367556             | 2.869284       |     | 1.023098  |
| ea            | 0.21-0.50 | 0.085384           | 0.279087           | 0.007442         | 0.227544             | 0.146447       |     | 0.422496  |
| d Are<br>km.) | 0.51-1.00 | 0.037867           | 0.229997           | 0.012054         | 0.321357             | 0.157521       |     | 0.503871  |
| fecte<br>(sq. | 1.01-2.00 | 0.005071           | 0.075956           | 0.022423         | 0.33495              | 0.123905       |     | 0.228311  |
| Af            | 2.01-5.00 | 0.000473           | 0.013833           | 0.004181         | 0.13746              | 0.095056       |     | 0.002771  |
|               | > 5.00    | 0                  | 0                  | 0                | 0.0017               | 0.0004         |     | 0         |

#### Table 71. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period

#### Table 72. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period

|                |           |          |          |          | Affecte    | d Barangays in | Bar | ugo      |
|----------------|-----------|----------|----------|----------|------------|----------------|-----|----------|
| SANGPUT        | AN BASIN  | Cuta     | Domogdog | Duka     | Guindaohan | Hiagsam        |     | Hilaba   |
|                | 0.03-0.20 | 1.831845 | 0.431141 | 4.538387 | 0.647391   | 1.00263        |     | 0.246006 |
| ea             | 0.21-0.50 | 0.741584 | 0.200671 | 0.233684 | 0.156056   | 0.034525       |     | 0.105614 |
| ed Are<br>km.) | 0.51-1.00 | 0.348802 | 0.040352 | 0.194643 | 0.012473   | 0.039932       |     | 0.091936 |
| fecte<br>(sq.  | 1.01-2.00 | 0.130538 | 0.0001   | 0.173543 | 0.00909    | 0.075466       |     | 0.050305 |
| Af             | 2.01-5.00 | 9.98E-05 | 0        | 0.121226 | 0          | 0.28661        |     | 0.093018 |
|                | > 5.00    | 0        | 0        | 0.0023   | 0          | 0.01255        |     | 0        |

#### Table 73. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period

| SANCOUT                 |           | Affected Barangays in Barugo |          |                      |                       |                        |         |                      |  |  |
|-------------------------|-----------|------------------------------|----------|----------------------|-----------------------|------------------------|---------|----------------------|--|--|
| SANGPUT                 | AN DASIN  | Pikas                        | Pitogo   | Poblacion<br>Dist. I | Poblacion<br>Dist. II | Poblacion<br>Dist. III | Pc<br>I | oblacion<br>Dist. IV |  |  |
|                         | 0.03-0.20 | 2.705663                     | 2.024495 | 0.122507             | 0.108434              | 0.080062               | 0.      | .106238              |  |  |
| ea                      | 0.21-0.50 | 0.15296                      | 0.098626 | 0.053953             | 0.051763              | 0.025207               | C       | ).01735              |  |  |
| fected Are<br>(sq. km.) | 0.51-1.00 | 0.256401                     | 0.134158 | 0.01232              | 0.034124              | 0.015362               |         | 0                    |  |  |
|                         | 1.01-2.00 | 0.564744                     | 0.154421 | 0                    | 0.003741              | 0                      |         | 0                    |  |  |
| Af                      | 2.01-5.00 | 0.809082                     | 0.023571 | 0                    | 0.001678              | 0                      |         | 0                    |  |  |
|                         | > 5.00    | 0.309784                     | 0.000802 | 0                    | 0                     | 0                      |         | 0                    |  |  |

Table 74. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period



Figure 108. Affected Areas in Barugo, Leyte during 100-Year Rainfall Return Period





For the 100-year return period, 14.013% of the Municipality of Jaro, with an area of 190.65 sq. km., will experience flood levels of less 0.20 meters. 2.845% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.657%, 1.369%, 0.902%, and 0.153% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 75-77 are the affected areas, in square kilometers, by flood depth per barangay.

|                |           |             | Table 75.    | Affected Areas ir | ı Jaro, Leyte durin | ıg 100-Year Rainfa | all Return Period |             |          |            |
|----------------|-----------|-------------|--------------|-------------------|---------------------|--------------------|-------------------|-------------|----------|------------|
|                |           |             |              |                   | Affect              | ted Barangays ii   | n Jaro            |             |          |            |
| DADNAC         |           | Alahag      | Bias Zabala  | Buenavista        | Bukid               | Buri               | Canapuan          | Canhandugan | Daro     | District I |
|                | 0.03-0.20 | 0.383775    | 0.824748     | 1.698619          | 2.940703            | 1.955163           | 2.052063          | 0.457846    | 0.263314 | 0.313847   |
| ee             | 0.21-0.50 | 0.069055    | 0.215761     | 0.735544          | 0.324733            | 0.377074           | 0.406346          | 0.093888    | 0.005437 | 0.02773    |
| d Are<br>km.)  | 0.51-1.00 | 0.042666    | 0.100155     | 0.762265          | 0.266566            | 0.209985           | 0.127417          | 0.074818    | 1.57E-06 | 0.002432   |
| fecte<br>.ps)  | 1.01-2.00 | 0.023015    | 0.079792     | 0.635257          | 0.278246            | 0.190816           | 0.141899          | 0.021789    | 0        | 0.009156   |
| ţΑ             | 2.01-5.00 | 0.004556    | 0.023721     | 0.439226          | 0.068393            | 0.148313           | 0.182366          | 0.012454    | 0        | 0.01026    |
|                | > 5.00    | 0           | 0            | 0.03114           | 0                   | 0.0006             | 5.42E-05          | 0           | 0        | 4.58E-05   |
|                |           |             | Table 76.    | Affected Areas in | 1 Jaro, Leyte durin | ıg 100-Year Rainfi | all Return Period |             |          |            |
|                |           |             |              |                   | Affect              | ted Barangays ir   | n Jaro            |             |          |            |
| SANGPUL        | AN BASIN  | District II | District III | District IV       | Hiagsam             | Kaglawaan          | Kalinawan         | Macanip     | Macopa   | Malobago   |
|                | 0.03-0.20 | 0.391063    | 0.476022     | 0.434192          | 0.263967            | 1.118524           | 1.115794          | 0.7213      | 0.354584 | 1.221718   |
| еe             | 0.21-0.50 | 0.02772     | 0.033043     | 0.04338           | 0.026203            | 0.336097           | 0.155475          | 0.155107    | 0.092831 | 0.267346   |
| ed Are<br>km.) | 0.51-1.00 | 0.005509    | 0.000713     | 0.033737          | 0.029026            | 0.076728           | 0.051331          | 0.180136    | 0.024031 | 0.1703     |
| fecte.<br>(sd. | 1.01-2.00 | 0.005822    | 0            | 0.020151          | 0.028256            | 0.008402           | 0.00851           | 0.145025    | 0.0018   | 0.118375   |
| ţA             | 2.01-5.00 | 0.0002      | 0            | 0.029475          | 0.022296            | 0.0001             | 0.020704          | 0.048202    | 0        | 0.059695   |
|                | > 5.00    | 0           | 0            | 0                 | 0.014952            | 0                  | 0                 | 0           | 0        | 0          |

| n Period |
|----------|
| l Retur  |
| uinfall  |
| r Ra     |
| -Yea     |
| 100      |
| uring    |
| eyte d   |
| ľo, L    |
| ı Jaı    |
| Areas ir |
| ffected  |
| 7. A     |
| Table 7  |

|            |   |          | Affected Bara | ngays in Jaro |          |          |
|------------|---|----------|---------------|---------------|----------|----------|
| Olotan     |   | Pitogo   | Sagkahan      | Santo Ni§o    | Tuba     | Uguiao   |
| Olotan     |   | Pitogo   | Sagkahan      | Santo Ni린린o   | Tuba     | Uguiao   |
| 0.989094   |   | 1.454419 | 0.621728      | 0.163394      | 4.996027 | 1.50404  |
| 0.425767 ( |   | 0.722029 | 0.243712      | 0.030822      | 0.291782 | 0.317351 |
| 0.085336 0 | 0 | .198412  | 0.367166      | 0.008752      | 0.316089 | 0.026787 |
| 0.015397 0 | 0 | .100073  | 0.298498      | 0.006978      | 0.433229 | 0.039688 |
| 0          | 0 | 0.062342 | 0.171027      | 0             | 0.362506 | 0.053683 |
| 0          |   | 0.0078   | 0.024544      | 0             | 0.212731 | 0        |





Figure 114. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period

For the 100-year return period, 54.025% of the Municipality of San Miguel, with an area of 103.86 sq. km., will experience flood levels of less 0.20 meters. 7.083% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 8.915%, 10.797%, 8.38%, and 0.594% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Tables 78-80 are the affected areas, in square kilometers, by flood depth per barangay

Table 78. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period

|   |                 | Guinciaman   | 9.246275    | 0.552419    | 0.847467       | 1.482594       | 2.728413    | 0.207049 |
|---|-----------------|--------------|-------------|-------------|----------------|----------------|-------------|----------|
|   |                 | Cayare       | 1.540064    | 0.377548    | 0.297596       | 0.297214       | 0.152148    | 0.007197 |
|   |                 | Caraycaray   | 4.072856    | 0.226836    | 0.474121       | 0.884757       | 0.453249    | 0.139102 |
|   | Miguel          | Capilihan    | 5.322855    | 0.816235    | 1.451647       | 1.958437       | 1.379773    | 0.001834 |
| ) | arangays in San | Canap        | 3.58724     | 0.303053    | 0.463593       | 0.498811       | 0.161276    | 0.001335 |
|   | Affected Ba     | Cabatianuhan | 1.528103    | 0.715845    | 0.583013       | 0.554003       | 0.104363    | 0.0002   |
|   |                 | Bairan       | 1.131326205 | 0.451400689 | 0.410544709    | 0.14747806     | 0.032828457 | 0        |
|   |                 | Bahay        | 9.85874     | 0.886991    | 1.29165        | 1.937022       | 1.882537    | 0.13337  |
|   |                 | Bagacay      | 0.063799    | 0.01188     | 0.001523       | 0              | 0           | 0        |
|   | TANDACIA        |              | 0.03-0.20   | 0.21-0.50   | 0.51-1.00      | 1.01-2.00      | 2.01-5.00   | > 5.00   |
|   |                 | DADNAC       |             | ee          | ad Are<br>km.) | fecte.<br>(sq. | ţΑ          |          |

Pinarigusan 0.00186 0 0 0 0 0 3.590189 0.549645 0.673973 0.679958 0.466308 Patong 0.05538 Mawodpawod 0.016756 0.185868 0.169817 0.082537 1.75553 0.0001 0.033945 0.648595 0.235222 0.301367 0.15719 Malpag Affected Barangays in San Miguel 0 Malaguinabot 0.110178 1.769169 0.452499 0.621083 0.005 0 1.868488 0.803389 0.081835 0.804517 0.31439 Lukay 0 0.095748396 0.176930974 0.468216199 0.047538271 0.216264594 Libtong 0 Kinalumsan 0.116335 0.109154 0.164592 2.425664 0.255937 0.020554 0.153418 0.075735 0.316084 0.008644 0.739984 0.052301 lmpo 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00 0.03-0.20 SANGPUTAN BASIN > 5.00 (.my .ps) Affected Area

Table 79. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period

| CANCOUT                  |           | Affecte    | d Barangays in San | Miguel      |
|--------------------------|-----------|------------|--------------------|-------------|
| SANGPUT                  | AN BASIN  | San Andres | Santa Cruz         | Santol      |
|                          | 0.03-0.20 | 1.019346   | 0.316951           | 5.154669544 |
| fected Area<br>(sq. km.) | 0.21-0.50 | 0.106926   | 0.071031           | 0.285508628 |
|                          | 0.51-1.00 | 0.237519   | 0.056677           | 0.44424213  |
|                          | 1.01-2.00 | 0.316859   | 0.030676           | 0.868773336 |
| Af                       | 2.01-5.00 | 0.098485   | 0.002286           | 0.675106542 |
|                          | > 5.00    | 0.004933   | 0                  | 0.037067081 |



Table 80. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period

Figure 115. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period



Figure 117. Affected Areas in San Miguel, Leyte during 100-Year Rainfall Return Period

For the 100-year return period, 9.059% of the City of Tacloban, with an area of 118.457 sq. km., will experience flood levels of less 0.20 meters. 0.5517% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.605%, 0.576%, 0.1828%, and 0.0066% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 81 are the affected areas, in square kilometers, by flood depth per barangay.



Table 81. Affected Areas in Tacloban, Leyte during 100-Year Rainfall Return Period

Figure 118. Affected Areas in Tacloban City, Leyte during 100-Year Rainfall Return Period

For the 100-year return period, 25.707% of the Municipality of Tunga, with an area of 17.36 sq. km., will experience flood levels of less 0.20 meters. 4.1215% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.75%, 6.4%, 2.89%, and 1.0068% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 82 are the affected areas, in square kilometers, by flood depth per barangay.

|                | Table 8   | 52. Affected Af | eas in Tunga, | Leyte during 10 | 0- rear Kainian | Return Period |             |
|----------------|-----------|-----------------|---------------|-----------------|-----------------|---------------|-------------|
| SANCE          |           |                 |               | Affected Ba     | rangay in Tun   | ga            |             |
| SANGP          |           | Astorga         | Balire        | Banawang        | San Pedro       | San Roque     | San Vicente |
|                | 0.03-0.20 | 1.137135        | 0.001743      | 2.917299        | 0.219261        | 0.154814      | 0.033224    |
| d Area<br>«m.) | 0.21-0.50 | 0.327297        | 0.002371      | 0.18825         | 0.143642        | 0.052911      | 0.001133    |
|                | 0.51-1.00 | 0.620133        | 0.001337      | 0.161848        | 0.168983        | 0.044637      | 0.002106    |
| fecte<br>(sq.  | 1.01-2.00 | 0.663045        | 0             | 0.216852        | 0.189972        | 0.037921      | 0.004074    |
| Af             | 2.01-5.00 | 0.204596        | 0             | 0.230123        | 0.047516        | 0.013265      | 0.007038    |
|                | > 5.00    | 0.0014          | 0             | 0.173406        | 0               | 0             | 0           |





Figure 119. Affected Areas in Tunga, Leyte during 100-Year Rainfall Return Period

Among the barangays in the Mmunicipality of Alangalang, Bugho is projected to have the highest percentage of area that will experience flood levels, at 7.249%. Meanwhile, Tabangohay posted the second highest percentage of area that may be affected by flood depths, at 5.494%.

Among the barangays in the Municipality of Barugo, Cabolo-An is projected to have the highest percentage of area that will experience flood levels, at 6.783%. Meanwhile, Duka posted the second highest percentage of area that may be affected by flood depths, at 6.4785%.

Among the barangays in the Mmunicipality of Jaro, Buenavista is projected to have the highest percentage of area that will experience flood levels, at 2.256%. Meanwhile, Cabapuan posted the second highest percentage of area that may be affected by flood depths, at 1.5264%.

Among the barangays in the Municipality of San Miguel, Bahay is projected to have the highest percentage of area that will experience flood levels, at 15.396%. Meanwhile, Guinciaman posted the second highest percentage of area that may be affected by flood depths, at 14.504%.

Among the barangays in the City of Tacloban, San Barangay 98 is projected to have the highest percentage of area that will experience flood levels, at 5.67%. Meanwhile, Barangay 93 posted the second highest percentage of area that may be affected by flood depths, at 3.209%.

Among the barangays in the Municipality of Tunga, Banawang is projected to have the highest percentage of area that will experience flood levels, at 22.392%. Meanwhile, Astorga posted the second highest percentage of area that may be affected by flood depths, at 17.011%.

The generated flood hazard maps for the Sangputan floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for the hazard maps – "Low", "Medium", and "High" – the affected institutions were given an individual assessment for each flood hazard scenario (5-year, 25-year, and 100-year).

|               | Are    | a Covered in sq. l | km.      |
|---------------|--------|--------------------|----------|
| Warning Level | 5 year | 25 year            | 100 year |
| Low           | 30.19  | 30.81              | 29.67    |
| Medium        | 33.14  | 44.71              | 49.80    |
| High          | 12.58  | 23.74              | 32.92    |
| Total         | 75.91  | 99.26              | 112.39   |

Table 83. Area covered by each warning level with respect to the rainfall scenario

Of the ninety-one (91) identified educational institutions in the Sangputan floodplain, eighteen (18) schools were assessed to be exposed to Low-level flooding during a 5-year scenario, while ten (10) were assessed to be exposed to Medium-level flooding, and one (1) to High-level flooding in the same scenario. In the 25-year scenario, twenty-three (23) schools were assessed to be exposed to Low-level flooding, fifteen (15) schools were assessed to be exposed to be exposed to be exposed to Medium-level flooding, and four (4) were projected to be exposed to High-level flooding. For the 100-year scenario, twenty-one (21) schools were assessed to be exposed to Low-level flooding, nineteen (19) schools to Medium-level flooding, and six (6) schools to High-level flooding. See Annex 12 for a detailed enumeration of the schools within the Sangputan floodplain.

Of the fourteen (14) identified medical institutions in the Sangputan floodplain, one (1) was assessed to be exposed to Low-level flooding during a 5-year scenario, while none were assessed to be exposed to Medium- and High-level flooding in the same scenario. In the 25-year scenario, two (2) were assessed to be exposed to Low-level flooding, while one (1) was assessed to be exposed to Medium-level flooding. For the 100-year scenario, two (2) schools were assessed to be exposed to Low-level flooding, and one (1) to Medium-level flooding. See Annex 13 for a detailed enumeration of the medical institutions within the Sangputan floodplain.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was conducted through assistance from a local DRRM office to obtain maps or situation reports about the past flooding events, or through interviews with some residents with knowledge or experience of flooding in the particular area.

After which, the actual data from the field were compared with the simulated data to assess the accuracy of the flood depth maps produced, and to improve on the results of the flood map. The points in the flood map versus the corresponding validation depths are illustrated in Figures 122 and 123.

The flood validation consists of 202 points, randomly selected all over the Sangputan floodplain. The points were grouped depending on the RIDF return period of the event. Table 85 shows a contingency matrix of the comparison. The validation points are found in Annex 11.



#### The RMSE values for each flood depth map are listed in Table 84 below:

Table 84. RMSE values for each return period of flood depth map

| Return Period | RMSE |
|---------------|------|
| 5-year        | 0.60 |
| 100-year      | 0.62 |



Figure 122. Flood map depth vs actual flood depth for 5-year return period



|                        |           | 1 able 85. Ac           | tual Flood De | epth vs Simula | ated Flood De | pth in Sangpi | itan   |       |  |
|------------------------|-----------|-------------------------|---------------|----------------|---------------|---------------|--------|-------|--|
|                        |           | Modeled Flood Depth (m) |               |                |               |               |        |       |  |
| JIBAIA                 | ANG BASIN | 0-0.20                  | 0.21-0.50     | 0.51-1.00      | 1.01-2.00     | 2.01-5.00     | > 5.00 | Total |  |
|                        | 0-0.20    | 54                      | 6             | 7              | 6             | 0             | 0      | 73    |  |
| Actual Flood Depth (m) | 0.21-0.50 | 39                      | 11            | 8              | 8             | 1             | 0      | 67    |  |
|                        | 0.51-1.00 | 11                      | 4             | 8              | 7             | 0             | 0      | 30    |  |
|                        | 1.01-2.00 | 7                       | 8             | 6              | 10            | 1             | 0      | 32    |  |
|                        | 2.01-5.00 | 0                       | 0             | 0              | 0             | 0             | 0      | 0     |  |
|                        | > 5.00    | 0                       | 0             | 0              | 0             | 0             | 0      | 0     |  |
|                        | Total     | 111                     | 29            | 29             | 31            | 2             | 0      | 202   |  |

The overall accuracy generated by the flood model is estimated at 41.09%, with eighty-three (83) points correctly matching the actual flood depths. There were seventy-one (71) points estimated one (1) level above and below the correct flood depths, while there were thirty-four (34) points and fourteen (14) points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood, respectively. A total of forty-four (44) points were overestimated, while a total of seventy-five (75) points were underestimated in the modeled flood depths of Sangputan.

Table 86. Summary of Accuracy Assessment in Sangputan

|                | No. of Points | %     |
|----------------|---------------|-------|
| Correct        | 83            | 41.09 |
| Overestimated  | 44            | 21.78 |
| Underestimated | 75            | 37.13 |
| Total          | 202           | 100   |

# REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# ANNEXES

# Annex 1. Technical Specifications of the LiDAR Sensors used in the Sangputan Floodplain Survey

Aquarius Sensor



Figure A-1.1. Aquarius Sensor

Table A-1.1. Parameters and Specifications of the Aquarius Sensor

| Parameter                        | Specification                                                                   |
|----------------------------------|---------------------------------------------------------------------------------|
| Operational altitude             | 300-600 m AGL                                                                   |
| Laser pulse repetition rate      | 33, 50. 70 kHz                                                                  |
| Scan rate                        | 0-70 Hz                                                                         |
| Scan half-angle                  | 0 to ± 25 °                                                                     |
| Laser footprint on water surface | 30-60 cm                                                                        |
| Depth range                      | 0 to > 10 m (for k < 0.1/m)                                                     |
| Topographic mode                 |                                                                                 |
| Operational altitude             | 300-2500                                                                        |
| Range Capture                    | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns           |
| Intensity capture                | 12-bit dynamic measurement range                                                |
| Position and orientation system  | POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS) |
| Data Storage                     | Ruggedized removable SSD hard disk (SATA III)                                   |
| Power                            | 28 V, 900 W, 35 A                                                               |
| Image capture                    | 5 MP interline camera (standard); 60 MP full frame (optional)                   |
| Full waveform capture            | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                   |
| Dimensions and weight            | Sensor:250 x 430 x 320 mm; 30 kg;<br>Control rack: 591 x 485 x 578 mm; 53 kg    |
| Operating temperature            | 0-35°C                                                                          |
| Relative humidity                | 0-95% no-condensing                                                             |

| Gemini Senor                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waveform Digitizer   Waveform Digitizer   Control Rack   Fr   Tablia A 1 2 Darrame | Sensor with Built-in Camera<br>Pilot Display<br>Filot Display<br>Fi |
| Darameter                                                                          | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                    | 150-4000 m AGL nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                    | 1064 pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Horizontal accuracy (2)                                                            | 1/5 500 x altitude (m AGL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Elevation accuracy (2)                                                             | <5-25 cm 1 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Effective laser repetition rate                                                    | Programmable 33-167 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Position and orientation system                                                    | POS AV™ AP50 (OEM);<br>220-channel dual frequency GPS/GNSS/Galileo/L-Band<br>receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Scan width (WOV)                                                                   | Programmable, 0-50°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Scan frequency (5)                                                                 | Programmable, 0-70 Hz (effective)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sensor scan product                                                                | 1000 maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beam divergence                                                                    | Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Roll compensation                                                                  | Programmable, ±5° (FOV dependent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Range capture                                                                      | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Intensity capture                                                                  | Up to 4 intensity returns for each pulse, including last (12 bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Video Camera                                                                       | Internal video camera (NTSC or PAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Image capture                                                                      | Compatible with full Optech camera line (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Full waveform capture                                                              | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data storage                                                                       | Removable solid state disk SSD (SATA II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Power requirements                                                                 | 28 V; 900 W;35 A(peak)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dimensions and weight                                                              | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Operating temperature                                                              | -10°C to +35°C (with insulating jacket)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relative humidity                                                                  | 0-95% no-condensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey

1. LY-110





NAMRIA OFFICES:

Main : Lawton Avenue, Fort Banifack, 1834 Taguig City, Philippines Tel. No. (632) 818-4831 to 41 Branch : 421 Sameos St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3454 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. LY-110
Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)









NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. SMR-56

| NATIONAL                                                                                                                                                                                                  | f Environment and Natural Resources<br>. MAPPING AND RESOURCE INFORMATION                                                                                                                                                                                                                                                                                                                             | AUTHORITY                                                                                                                        |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| AT WE THE                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                       |
|                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  | February 10, 2016                     |
|                                                                                                                                                                                                           | CERTIFICATION                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |                                       |
| This is to certify that accordin                                                                                                                                                                          | g to the records on file in this office, the rec                                                                                                                                                                                                                                                                                                                                                      | quested survey inform                                                                                                            | ation is as follows -                 |
|                                                                                                                                                                                                           | Province: SAMAR (WESTERN SAMAR)                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                       |
|                                                                                                                                                                                                           | Station Name: SMR-58                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |                                       |
|                                                                                                                                                                                                           | Order: 2nd                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                       |
| Island: VISAYAS<br>Municipality: BASEY                                                                                                                                                                    | Barangay: SERUM<br>MSL Elevation:                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                       |
|                                                                                                                                                                                                           | PRS92 Coordinates                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                       |
| Latitude: 11º 17' 55.05617"                                                                                                                                                                               | Longitude: 125º 7' 51.16145"                                                                                                                                                                                                                                                                                                                                                                          | Ellipsoidal Hgt                                                                                                                  | 6.30062 m.                            |
|                                                                                                                                                                                                           | WGS84 Coordinates                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                       |
| Latitude: 11º 17' 50.78580"                                                                                                                                                                               | Longitude: 125° 7' 56.31100"                                                                                                                                                                                                                                                                                                                                                                          | Ellipsoidal Hgt                                                                                                                  | 68.72300 m.                           |
|                                                                                                                                                                                                           | PTM / PRS92 Coordinates                                                                                                                                                                                                                                                                                                                                                                               | 12/2012                                                                                                                          |                                       |
| Northing: 1249361.531 m.                                                                                                                                                                                  | Easting: 514288.239 m.                                                                                                                                                                                                                                                                                                                                                                                | Zone: 5                                                                                                                          |                                       |
| Northing: 1,249,768.75                                                                                                                                                                                    | UTM / PRS92 Coordinates<br>Easting: 732,600.57                                                                                                                                                                                                                                                                                                                                                        | Zone: 51                                                                                                                         |                                       |
|                                                                                                                                                                                                           | from the school building. The School site w                                                                                                                                                                                                                                                                                                                                                           | as near the River abo<br>mbedded in the ground                                                                                   | ut 30 m. north.<br>I protruding about |
| he school gate, and 15 m. north<br>Mark is the head of a 4" copper n<br>20 cm., with inscriptions "SMR-58<br>Requesting Party: UP DREAM<br>Purpose: Reference<br>OR Number: 8089774 I<br>T.N.: 2016-0327  | all flushed in a 30,30 cm. cement block er<br>8; 2007; NAMRIA.*                                                                                                                                                                                                                                                                                                                                       | RUEL DM BELEN, M                                                                                                                 | INSA<br>esy Branch                    |
| the school gate, and 15 m. north<br>Mark is the head of a 4" copper n<br>20 cm., with inscriptions "SMR-58<br>Requesting Party: UP DREAM<br>Purpose: Reference<br>DR Number: 8089774 I<br>T.N.: 2016-0327 | ali flushed in a 30,30 cm. cement block er<br>8; 2007; NAMRIA.*                                                                                                                                                                                                                                                                                                                                       | RUEL DM BELEN, M<br>ar, Mapping And Geod                                                                                         | INSA<br>esy Branch                    |
| he school gate, and 15 m. north<br>Mark is the head of a 4" copper n<br>20 cm., with inscriptions "SMR-58<br>Requesting Party: UP DREAM<br>Purpose: Reference<br>OR Number: 8089774 I<br>T.N.: 2016-0327  | Directo                                                                                                                                                                                                                                                                                                                                                                                               | RUEL DM BELEN, M<br>pr. Mapping And Geod                                                                                         | INSA<br>esy Branch                    |
| the school gate, and 15 m. north<br>Mark is the head of a 4" copper n<br>20 cm., with inscriptions "SMR-58<br>Requesting Party: UP DREAM<br>Purpose: Reference<br>DR Number: 8089774 I<br>T.N.: 2016-0327 | NAVRIM OFFICES:<br>Main: Landon Avenue, Fort Benthado, 1634 Taguig City, Philippines, Tel. No. 6532<br>www.n.amria.gov.ph<br>ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORM                                                                                                                                                                                                               |                                                                                                                                  | INSA<br>esy Branch                    |
| the school gate, and 15 m. north<br>Mark is the head of a 4" copper n<br>20 cm., with inscriptions "SMR-58<br>Requesting Party: UP DREAM<br>Purpose: Reference<br>OR Number: 8089774 I<br>T.N.: 2016-0327 | NAMEIA OFFICES:<br>Main: Lawton Avenue, Fort Beenfacio, 1654 Taguig City, Philippines Tel. No.<br>Beends: 421 Bernade St. Ben Nockes, 1654 Taguig City, Philippines Tel. No.<br>Beends: 421 Bernade St. Ben Nockes, 1654 Taguig City, Philippines Tel. No.<br>Beends: 421 Bernade St. Ben Nockes, 1654 Taguig City, Philippines Tel. No.<br>50 9901: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORM | RUEL DM BELEN, M<br>pr, Mapping And Geod<br>0 2 1 0 2 0 1 1 1 2<br>1 (82) 613 481 10 41<br>1 (241-344 10 98)<br>ATICN MANAGEMENT | INSA<br>esy Branch                    |



## Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

#### LYT-104

#### Table A-3.1. LYT-104

| Processing Summary     |        |         |               |                     |                     |                 |                               |                    |  |
|------------------------|--------|---------|---------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|--|
| Observation            | From   | То      | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |  |
| SMR-53 LYT-104<br>(B1) | SMR-53 | LYT-104 | Fixed         | 0.008               | 0.017               | 200°40'31"      | 42653.401                     | 7.525              |  |
| SMR-53 LYT-104<br>(B2) | SMR-53 | LYT-104 | Fixed         | 0.004               | 0.016               | 200°40'31"      | 42653.384                     | 7.601              |  |

| Acceptance Summary |        |      |   |      |   |  |  |  |
|--------------------|--------|------|---|------|---|--|--|--|
| Processed          | Passed | Flag | Þ | Fail | Þ |  |  |  |
| 2                  | 2      | 0    |   | 0    |   |  |  |  |

#### Vector Components (Mark to Mark)

| From:       | SMR-53        | 3-53                |             |         |             |    |                   |  |
|-------------|---------------|---------------------|-------------|---------|-------------|----|-------------------|--|
|             | Grid          | Lo                  | ocal        |         |             | G  | lobal             |  |
| Easting     | 720874.133 m  | Latitude            | N11°30'17.  | 85656"  | Latitude    |    | N11°30'13.52495"  |  |
| Northing    | 1272513.396 m | Longitude           | E125°01'29. | 83738"  | Longitude   |    | E125°01'34.96980" |  |
| Elevation   | 24.750 m      | Height              | 26          | 6.134 m | Height      |    | 87.787 m          |  |
| To: LYT-104 |               |                     |             |         |             |    |                   |  |
|             | Grid          | Local               |             |         | Global      |    |                   |  |
| Easting     | 706089.510 m  | Latitude            | N11°08'38   | 92234"  | Latitude    |    | N11°08'34.67033"  |  |
| Northing    | 1232496.838 m | Longitude           | E124°53'13. | 52786"  | Longitude   |    | E124°53'18.69323" |  |
| Elevation   | 32.311 m      | Height              | 33          | 8.659 m | Height      |    | 95.861 m          |  |
| Vector      |               |                     |             |         |             |    |                   |  |
| ΔEasting    | -14784.62     | 3 m NS Fwd Azimuth  | I           |         | 200°40'31"  | ΔX | 7839.600 m        |  |
| ∆Northing   | -40016.55     | 8 m Ellipsoid Dist. |             |         | 42653.401 m | ΔY | 15051.644 m       |  |
| ∆Elevation  | 7.56          | 61 m ∆Height        |             |         | 7.525 m     | ΔZ | -39131.928 m      |  |

#### Standard Errors

| Vector errors:            |         |                   |          |     |         |  |  |  |
|---------------------------|---------|-------------------|----------|-----|---------|--|--|--|
| σ ΔEasting                | 0.003 m | σ NS fwd Azimuth  | 0°00'00" | σΔΧ | 0.006 m |  |  |  |
| σ ΔNorthing               | 0.002 m | σ Ellipsoid Dist. | 0.002 m  | σΔΥ | 0.007 m |  |  |  |
| $\sigma \Delta Elevation$ | 0.009 m | σ ΔHeight         | 0.009 m  | σΔZ | 0.002 m |  |  |  |

| LYT-110                |               |           |                     |               |                           |          |          |                 |                               |                    |
|------------------------|---------------|-----------|---------------------|---------------|---------------------------|----------|----------|-----------------|-------------------------------|--------------------|
|                        |               |           |                     | Table A-      | 3.2. LYT-11               | .0       |          |                 |                               |                    |
|                        |               |           |                     | Processing    | Summary                   |          |          |                 |                               |                    |
| Observation            | From          | Т         | 0                   | Solution Type | H. Prec.<br>(Meter)       | V.<br>(M | Prec. (  | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
| LYT 104 LY 110<br>(B1) | LYT 104       | LY 110    | Fixed               |               | 0.0                       | 104      | 0.013    | 68°33'52        | 8457.064                      | -19.323            |
| LY 110 LYT 104<br>(B2) | LYT 104       | LY 110    |                     | Fixed         | 0.0                       | 04       | 0.015    | 68°33'52        | 8457.047                      | -19.343            |
|                        | •             | •         |                     |               |                           |          |          |                 |                               |                    |
|                        |               |           |                     | Acceptance    | Summary                   | -        |          | _               |                               |                    |
| Processe               | d             |           | Pass                | sed           | Flag                      | ŀ        | >        |                 | Fail                          | •                  |
| 2                      |               |           | 2                   |               |                           | 0        |          |                 | 0                             |                    |
| Vector Component       | ts (Mark to M | Mark)     |                     |               |                           |          |          |                 |                               |                    |
| From:                  | LYT 104       |           |                     |               |                           |          |          |                 |                               |                    |
|                        | Grid          |           |                     | Loc           | al                        |          |          |                 | Global                        |                    |
| Easting                | 706           | 089.510 m | Latitud             | de            | N11°08'38.92234" Latitude |          |          | N11°0           | 8'34.67033"                   |                    |
| Northing               | 1232          | 496.838 m | Longit              | ude           | E124°53'13.52786" Longitu |          | Longitud | itude E124      |                               | 53'18.69323"       |
| Elevation              |               | 32.311 m  | Height              | t             | 33.659 m Height           |          |          |                 | 95.861 m                      |                    |
| To:                    | LY 110        |           |                     |               |                           |          |          |                 |                               |                    |
| (                      | Grid          |           |                     | Loc           | al                        |          |          |                 | Global                        |                    |
| Easting                | 713           | 942.863 m | Latitud             | de            | N11°10'1                  | 9.48389" | Latitude |                 | N11°1                         | 0'15.23095"        |
| Northing               | 1235          | 638.117 m | Longit              | ude           | E124°57'3                 | 2.98736" | Longitud | е               | E124°5                        | 57'38.14961"       |
| Elevation              |               | 12.819 m  | Height              | t             | 1                         | 4.336 m  | Height   |                 |                               | 76.647 m           |
| Vector                 |               |           |                     |               |                           |          |          |                 |                               |                    |
| ∆Easting               |               | 7853.35   | 3 m N               | S Fwd Azimuth |                           |          | 68°33    | '52" <b>∆X</b>  |                               | -6101.546 m        |
| ΔNorthing              |               | 3141.27   | 9 m Ellipsoid Dist. |               |                           |          | 8457.06  | 4 m ΔY          |                               | -5012.598 m        |
| ΔElevation             |               | -19.49    | 2 m 🛆               | Height        |                           | -19.323  |          | 3 m ΔΖ          |                               | 3027.816 m         |
|                        |               |           |                     |               |                           |          |          |                 |                               |                    |
| Standard Errors        |               |           |                     |               |                           |          |          |                 |                               |                    |
| Vector errors:         |               |           |                     |               |                           |          |          |                 |                               |                    |

| Vector errors:           |         |                   |          |     |         |  |  |  |  |
|--------------------------|---------|-------------------|----------|-----|---------|--|--|--|--|
| σ ΔEasting               | 0.002 m | σ NS fwd Azimuth  | 0°00'00" | σΔΧ | 0.004 m |  |  |  |  |
| $\sigma \Delta Northing$ | 0.001 m | σ Ellipsoid Dist. | 0.002 m  | σΔΥ | 0.005 m |  |  |  |  |
| σ ΔElevation             | 0.007 m | σ ΔHeight         | 0.007 m  | σΔΖ | 0.002 m |  |  |  |  |

### SM-286

|                       | Table A-3.3. SM-286        |        |                          |                             |                   |                        |                        |               |               |               |                  |                                |                        |                                                              |
|-----------------------|----------------------------|--------|--------------------------|-----------------------------|-------------------|------------------------|------------------------|---------------|---------------|---------------|------------------|--------------------------------|------------------------|--------------------------------------------------------------|
|                       | Baseline Processing Report |        |                          |                             |                   |                        |                        |               |               |               |                  |                                |                        |                                                              |
|                       | Processing Summary         |        |                          |                             |                   |                        |                        |               |               |               |                  |                                |                        |                                                              |
| Observation           | From                       | То     | Occupation<br>Start Time | Occupatio<br>n Stop<br>Time | Solutio<br>n T∮pe | H.<br>Prec.<br>(Meter) | V.<br>Prec.<br>(Meter) | ΔX<br>(Meter) | ΔY<br>(Meter) | ΔZ<br>(Meter) | Geodeti<br>c Az. | Ellipsoi<br>d Dist.<br>(Meter) | ∆<br>Height<br>(Meter) | Satellit<br>e<br>Availab<br>le                               |
| SM-286<br>SMR-56 (B1) | SMR-56                     | SM-286 | 5/11/2014<br>6:44:03 AM  | 5/11/2014<br>1:54:43<br>Рм  | Fixed             | 0.003                  | 0.009                  | 1325.0<br>25  | 263.51<br>2   | 2667.2<br>92  | 335*34<br>25"    | 2989.9<br>04                   | -6.335                 | GPS:<br>14<br>GLONA<br>SS: 13<br>Galileo:<br>0<br>QZSS:<br>0 |

| Acceptance Summary |                                |  |   |  |  |  |  |  |
|--------------------|--------------------------------|--|---|--|--|--|--|--|
| Processed          | Processed Passed Flag P Fail 🏲 |  |   |  |  |  |  |  |
| 1                  | 1 0                            |  | 0 |  |  |  |  |  |

#### Vector Components (Mark to Mark)

| From:      | SMR-56        | MR-56         |                    |                     |                |    |                   |  |
|------------|---------------|---------------|--------------------|---------------------|----------------|----|-------------------|--|
|            | Grid          | Local         |                    |                     | Global         |    |                   |  |
| Easting    | 718970.608 m  | Latitude      | N11°23'0           | 6.52702"            | Latitude       |    | N11°23'02.22413"  |  |
| Northing   | 1259244.377 m | Longitude     | E125°00'2          | 3.99607"            | Longitude      |    | E125°00'29.13917" |  |
| Elevation  | 10.345 m      | Height        | 1                  | 11.822 m            | Height         |    | 73.727 m          |  |
| To:        | To: SM-286    |               |                    |                     |                |    |                   |  |
|            | Grid          | Local         |                    |                     | Global         |    |                   |  |
| Easting    | 717715.152 m  | Latitude      | Latitude N11°24'35 |                     | '05'' Latitude |    | N11°24'30.81697"  |  |
| Northing   | 1261958.553 m | Longitude     | E124°59'4          | 43.21146" Longitude |                |    | E124°59'48.35252' |  |
| Elevation  | 4.047 m       | Height        |                    | 5.488 m             | Height         |    | 67.304 m          |  |
| Vector     |               |               |                    |                     |                |    |                   |  |
| ΔEasting   | -1255.45      | 6 m NS Fwd    | Azimuth            |                     | 335°34'25"     | ΔX | 1325.020 m        |  |
| ∆Northing  | 2714.17       | 6 m Ellipsoid | Dist.              |                     | 2989.904 m     | ΔY | 263.518 m         |  |
| ∆Elevation | -6.29         | 8 m ∆Height   |                    |                     | -6.335 m       | ΔZ | 2667.293 m        |  |

| Standard Errors | tandard Errors |                   |          |     |         |  |  |  |  |
|-----------------|----------------|-------------------|----------|-----|---------|--|--|--|--|
| Vector errors:  |                |                   |          |     |         |  |  |  |  |
| σ ΔEasting      | 0.001 m        | σ NS fwd Azimuth  | 0°00'00" | σΔX | 0.003 m |  |  |  |  |
| σ ΔNorthing     | 0.001 m        | σ Ellipsoid Dist. | 0.001 m  | σΔY | 0.004 m |  |  |  |  |
| σ ΔElevation    | 0.005 m        | σ ΔHeight         | 0.005 m  | σΔZ | 0.001 m |  |  |  |  |

| Annex 4. The LiDAR                             | Annex 4. The LiDAR Survey Team Composition                          |                                      |                                             |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|---------------------------------------------|--|--|--|--|--|--|
|                                                | Table A-4.1. LiDAR Surve                                            | y Team Composition                   |                                             |  |  |  |  |  |  |
| Data Acquisition Compo-<br>nent Sub-Team       | Designation                                                         | Name                                 | Agency/<br>Affiliation                      |  |  |  |  |  |  |
| PHIL-LIDAR 1                                   | Program Leader                                                      | ENRICO C. PARINGIT, D.ENG            | UP-TCAGP                                    |  |  |  |  |  |  |
| Data Acquisition Component<br>Leader           | Data Component Project<br>Leader – I                                | ENGR. CZAR JAKIRI SARMIENTO          | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                | Chief Science Research<br>Specialist (CSRS)                         | ENGR. CHRISTOPHER CRUZ               | UP-TCAGP                                    |  |  |  |  |  |  |
| Survey Supervisor                              | Supervising Science Re-<br>search Specialist (Supervis-<br>ing SRS) | ENGR. LOVELYN ASUNCION               | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                | FIELD TE                                                            | AM                                   |                                             |  |  |  |  |  |  |
|                                                | Supervising SRS                                                     | LOVELY GRACIA ACUÑA                  | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | JULIE PEARL MARS                     | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                | Senior Science Research                                             | ENGR. GEROME HIPOLITO                | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | PAULINE JOANNE ARCEO                 | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | ENGR. DAN CHRISTOFFER ALDOVI-<br>NO  | UP-TCAGP                                    |  |  |  |  |  |  |
| LiDAR Operation                                |                                                                     | FAITH JOY SABLE                      | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                | Research Associate (RA)                                             | MARY CATHERINE ELIZABETH<br>BALIGUAS | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | ENGR. IRO NIEL ROXAS                 | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | ENGR. LARAH KRISELLE PARAGAS         | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | GRACE SINADJAN                       | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                |                                                                     | JONATHAN ALMALVEZ                    | UP-TCAGP                                    |  |  |  |  |  |  |
| Ground Survey, Data Down-<br>load and Transfer | RA                                                                  | JERIEL PAUL ALAMBAN, GEOL.           | UP-TCAGP                                    |  |  |  |  |  |  |
|                                                | Airborne Security                                                   | SSG. RAYMUND DOMINE                  | PHILIPPINE AIR<br>FORCE (PAF)               |  |  |  |  |  |  |
|                                                |                                                                     | SSG. RANDY SISON                     | PAF                                         |  |  |  |  |  |  |
| LiDAR Operation                                |                                                                     | CAPT. JACKSON JAVIER                 | ASIAN AERO-<br>SPACE CORPO-<br>RATION (AAC) |  |  |  |  |  |  |
|                                                | Pilot                                                               | CAPT. NEIL ACHILLES AGAWIN           | AAC                                         |  |  |  |  |  |  |
|                                                |                                                                     | CAPT. ALBERT PAUL LIM                | AAC                                         |  |  |  |  |  |  |
|                                                |                                                                     | CAPT. RANDY LAGCO                    | AAC                                         |  |  |  |  |  |  |

| ERVER        | CATION        | ome_Raw1        | orne_Raw1       | orne_Raw1       | ome_Raw1        | orne_Raw11      | orne_Raw1       | orne_Raw/1      | orne_Raw/1      | orne_Raw1       | orne_Rawi1 | ome_Raw/1       | ome_Raw/1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 9             | Z:VAIrb<br>358A | Z:VAirb<br>360A | Z:VAirb<br>366P | Z:VAIrb<br>442A | Z:VAIrb<br>444A | Z:\Airb<br>450A | Z:VAirb<br>452A | Z:VAirb<br>454A | Z:Vairb<br>456P | B Z:Vairb  | Z:Vairb<br>462A | Z:VAirb<br>464A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LAN          | KML           | 773/12KB        | 649/12KB        | 889/10KB        | 2652KB          | 2813/700<br>KB  | 1019KB          | 512KB           | 1522KB          | 641KB           | 476/807KE  | 842KB           | 786KB           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FLIGHT P     | Actual        | KB              | KB              | KB              | A               | /5KB            | KB              | /10KB           | /2KB            | KB              | /5KB       | /4KB            | KB              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PERATOR LOGS | (OPLOG)       | 1KB 6           | 1KB 6           | 1KB 5           | 1KB N           | 1KB 5           | 1KB 5           | 1KB 6           | 1KB 5           | 1KB 5           | 1KB 5      | 1KB 5           | 1KB             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (2)          | : Info (.txt) |                 |                 |                 |                 |                 |                 |                 |                 |                 |            |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E STATION(   | (S) Base      | 1KB             | 1KB        | 1KB             | 1KB             | 5814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BAS          | BASE          | 12.1MB          | 11.3MB          | 8.53MB          | 14.3MB          | 14.3MB          | 10.5MB          | 11.2MB          | 8.41MB          | 7.92MB          | 11.4MB     | 11.6MB          | 11.4MB          | 5/28/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DIGITIZER    |               | A               | A               | A               | A               | 29GB            | 7.0GB           | 6.8GB           | DEGB            | 8.6GB           | 35GB       | A               | ×               | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAMOF        |               | 1.1GB N         | 26GB N          | 1,9GB N         | 5.6GB N         | 5.2GB 22        | 07GB 8          | 57GB 81         | 4.6GB 21        | 1.6GB 5         | 4.7GB 2    | 5.2GB N         | 4.0GB N         | 1-1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MISSION LOG  | ILE/CASI LOGS | /510/87KB 1/    | 06KB 8.         | 18/1/263KB      | 9/697/KB 16     | ///515/1/139K   | 57KB 6.         | /415KB 9.       | 3/102/517KB     | 78/226KB 1      | 22KB 1-    | 85KB 11         | 37KB 1-         | Haior K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RAW          | GES/CASI F    | V10.7GB 3       | GB 2            | GB 4            | GB 5            | GB B            | GB 2            | GB 1            | /71.5GB 2       | GB 2            | GB 6       | GB 6            | GB 6            | Namo<br>Namo<br>Grature<br>Grature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| sue          | III           | 3MB 63.         | 4MB 41.         | 7MB 95.         | 5MB 108         | 4MB 79.         | 2MB 34.         | 3MB 47.         | BMB 15.         | 2MB 66.         | 3MB 74.    | 5MB 91.         | 1MB 76.         | 2 – 0)<br>2 – 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 000          |               | B 24            | B 17            | B 25            | B 27            | B 25            | 13              | B 23            | B 26            | B 21            | B 27       | B 27            | B 25            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | (t)           | 1.17M           | 7.75M           | 1.37M           | 5.86M           | 2.82M           | 906KE           | 2.33M           | 1.88M           | 0.98M           | 1.24M      | 1.29M           | 1.20M           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W LAS        | KML (swi      | NA              | NA              | NA              | NA              | NN              | NA              | NA              | NA              | NA              | NA         | NA              | NA              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RA           | Output<br>LAS | Ŕ               | NA N            | NA.             | N.              | W.              | NA.             | A.              | A               | AA              | AA         | AA              | AA              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CENCOD       |               | QUARIUS N       |                 | QUARIUS N       | AQUARIUS P      | AQUARIUS P      | NOUARIUS P | AQUARIUS 1      | AUARIUS A       | USUPAR A CONTRACT OF CONTRACT |
|              |               | 34F110A A       | 34FS110B A      | 34E112A A       | 3GS131A A       | 3GSH131B A      | I3HS133A A      | HSES133B A      | 34D134A A       | 34C134B A       | SCD135B A  | 5DSE136A A      | ISES136B AC     | om<br>andition<br>protuce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MICCH        |               | 3BLK            | 3BLK            | 3BLK            | 381/G           | 3BLK3           | 3BLK3           | 3BLK35          | 3BLK            | 3BLK            | 3BLKG      | 3BLK3           | 3BLK            | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FLIGHT       | NO.           | 1358A           | 1360A           | 1366A           | 1442A           | 1444A           | 1450A           | 1452A           | 1454A           | 1456A           | 1460A      | 1462A           | 1464A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DATE         | 100           | 1/20/2014       | /20/2014        | /22/2014        | /11/2014        | /11/2014        | /13/2014        | /13/2014        | /14/2014        | /14/2014        | /15/2014   | /16/2014        | /16/2014        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Ann

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-5.1. Transfer Sheet for Sangputan Floodplain – A

|                          | SERVER                         | Z:IDACIRAW<br>DATA          | Z:\DAC\RAW<br>DATA | Z:UDACIRAW<br>DATA | ZIDACIRAW<br>DATA | Z:IDACIRAW<br>DATA |                                     |  |
|--------------------------|--------------------------------|-----------------------------|--------------------|--------------------|-------------------|--------------------|-------------------------------------|--|
|                          | T PLAN<br>KML                  | na                          | na                 | na                 | na                | na                 |                                     |  |
|                          | FLIGH                          | 23/57/22/58/<br>21/55/21/21 | 57/11              | na                 | 57/22             | 27/26/59           |                                     |  |
|                          | OPERATOR<br>LOGS<br>(OPLOG)    | 1KB                         | 1KB                | 1KB                | 1KB               | 1KB                |                                     |  |
|                          | VTION(S)<br>Base Info          | 1KB                         | 1KB                | 1KB                | 1KB               | 1KB                |                                     |  |
|                          | BASE STA<br>BASE<br>CTATIONIEN | 4.38                        | 3.4                | 9.58               | 9.2               | 4.74               |                                     |  |
|                          | DIGITIZER                      | na                          | na                 | na                 | na                | na                 | E E                                 |  |
|                          | RANGE                          | 25.2                        | 19.1               | 23.8               | 20.3              | 16.8               | 4                                   |  |
|                          | SSION LOG<br>FILE/CASI<br>LOGS | na                          | na                 | na                 | na                | na                 | of the                              |  |
| ER SHEET                 | RAW                            | na                          | па                 | na                 | na                | na                 | prature AC                          |  |
| VTA TRANSFI<br>Leyte 2/1 | POS                            | 265                         | 204                | 260                | 212               | -248               | ž Z ŭ ō                             |  |
| â                        | OGS(MB)                        | 690                         | 490                | 670                | 526               | 582                |                                     |  |
|                          | L (swath) L                    | 83                          | 75                 | 82                 | 11                | 63                 |                                     |  |
|                          | RAW LA                         | NA                          | NA                 | NA                 | NA                | NA                 |                                     |  |
|                          | ISOR Out                       |                             |                    |                    |                   |                    | 7                                   |  |
|                          | SE                             | gemin                       | gemin              | 8A gemin           | B gemin           | A gemin            |                                     |  |
|                          | VISSION NAME                   | 2BLK34AD022A                | 2BLK34AG022E       | 2BLK34ADEG023      | 2BLK34BCG023      | 2BLK34CG024/       | Received from Asian Control Postion |  |
|                          | LIGHT NO.                      | 3765G                       | 3767G              | 3769G              | 3771G             | 3773G              |                                     |  |
|                          | DATE                           | 22-Jan                      | 22-Jan-16          | 23-Jan-16          | 23-Jan-16         | 24-Jan-16          |                                     |  |

Figure A-5.2. Transfer Sheet for Sangputan Floodplain – B

# Annex 6. Flight Logs for the Flight Missions

### Flight Log for 1366A Mission

|                                                                                | 21 Prob           | 20 Rema    | 19 Weath | 13 Engin                   | 10 Date:                  | 7 Pilot:         | 1 LIDAR (                    | <b>REAM Data</b>       |
|--------------------------------------------------------------------------------|-------------------|------------|----------|----------------------------|---------------------------|------------------|------------------------------|------------------------|
| Acquisition Flight Age                                                         | lems and Solution | rks :      | her      | e On:<br>ه۲۱               | APRIL 22, 2014            | J. JAMER         | Operator: PJARCED            | Acquisition Flight Lo, |
| proved by<br>d Name                                                            | <u>с</u>          |            | FAIR     | 14 Engine Off:<br>II 20    | 4 12 Airport o            | 8 Co-Pilot: N- A | 2 ALTM Mod                   | ñ                      |
| Acquisition                                                                    |                   | MISSION    |          | 15                         | of Departure (Airj        | ANNIN 9F         | del: ABUANUS 3 N             |                        |
| Flight Certified by<br>ARDDAL H<br>V ARDAL H<br>Ver Printed Name<br>sentative) |                   | COMPLETED. |          | Total Engine Time:<br>4+29 | port, City/Province):     | loute:           | Vission Name: 3844.34        |                        |
| Pilot-in-Comp                                                                  |                   |            |          | 16 Take off:               | 12 Airport of Arrival     |                  | JI 2A 4 Type: VFR            |                        |
| and<br>Guiet<br>Printed Name                                                   |                   |            |          | 17 Landing:                | (Airport, City/Province): |                  | 5 Aircraft Type: CesnnaT206  |                        |
| Lidar Operator                                                                 |                   |            |          | 18 Total Flight Time:      |                           |                  | 6H 6 Aircraft Identification |                        |
|                                                                                |                   |            |          |                            |                           |                  | RPC 9122                     | Log No.:/~~            |

Figure A-6.1. Flight Log for Mission 1366A





| Aircraft Identification: $90$ J    |                           | 8 Total Flight Time:<br>4 + 0) |             |                         | -                                                                                              |                     |                                                                                                                                                      | Aircraft Mechanic/ UDAR Tecl                                                                                        |  |
|------------------------------------|---------------------------|--------------------------------|-------------|-------------------------|------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 5 Aircra ft Type: Cesnna T206H 6   | ki rport, City/Province): | 17 Landing: 11<br>12:08        |             |                         | stul tuqut.                                                                                    |                     |                                                                                                                                                      | LIDAR Operator                                                                                                      |  |
| A 4 Type: VFR                      | 12 Airport of Arrival (A  | 16 Take off:<br>07:57          | 31 Ramarks  |                         | tenance JUCC &                                                                                 |                     |                                                                                                                                                      | e.in.commend<br>IV. M.M.<br>store over Printed Name                                                                 |  |
| 3 Mission Name: 2 8LK 34Apt        | 9 Route: JALLUETA         | 15 Total Engine Time:<br>は キル  | ·           | 20.c Others             | <ul> <li>LIDAR System Main</li> <li>Aircraft Maintenanc</li> <li>Phil-LIDAR Admin A</li> </ul> |                     |                                                                                                                                                      | Pilot<br>Down in Det H                                                                                              |  |
| t Log<br>2 ALTM Model: \$ \$1Mi71  | 0-Pilot: Kandy hallo      | Engine Off:<br>12:13 PM        | gesty clark | 0.b Non Billable        | <ul> <li>Aircraft Test Flight</li> <li>AAC Admin Flight</li> <li>Others:</li> </ul>            |                     |                                                                                                                                                      | Acquisition Flight Cert<br>SSG Paul Manual<br>Signature over Phinte<br>(PAF Representati                            |  |
| IL-LIDAR 1 Data Acquisition Flight | Pilot: Mput Lien 80       | 3 Engine On: AN 14             | 9 Weather   | 0 Flight Classification | <ul> <li>Acquisition Flight</li> <li>Ferry Flight</li> <li>System Test Flight</li> </ul>       | O Calibration meric | <ul> <li>Weather Problem</li> <li>System Problem</li> <li>Aircraft Problem</li> <li>Pilot Problem</li> <li>Pilot Problem</li> <li>Others:</li> </ul> | Acquisition Flight Approved by<br>P CW 11, rECH, Mrce/D<br>Signature over Philwed Name<br>(End User Representative) |  |



Figure A-6.5. Flight Log for Mission 3767G

| -LiDAR 1 Data Acquisiti                                                                                       | on Flight Log                                                               |                                                                                             |                                        |                               | Flight Log No.: 3 7(n               |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------|
| DAR Operator: J_ H<br>lot: Albert Linn                                                                        | Madlue 1 2 ALTM Model: DEMINI                                               | 3 Mission Name: 2 Buc 3480<br>9 Route:                                                      | (025 B 4 Type: VFR                     | 5 Aircraft Type: Cesnna T206H | 6 Aircraft Identification: kPC 9022 |
| late: 1-29 -1(p                                                                                               | 12 Airport of Departure                                                     | Airport, City/Province):                                                                    | 12 Airport of Arrival (                | Airport, City/Province):      |                                     |
| ngine On:<br>7: 4 (p                                                                                          | 14 Engine Off: $ 2^{\circ}_{10}0 $                                          | 15 Total Engine Time:<br>はすこう                                                               | 16 Take off:<br>7: <b>G</b> /          | 17 Landing:<br>12:04.         | 18 Total Flight Time:               |
| /eather                                                                                                       | dad                                                                         |                                                                                             |                                        |                               |                                     |
| ight Classification                                                                                           |                                                                             |                                                                                             | 21 Remarks                             | -                             |                                     |
| Billable<br>Acquisition Flight<br>O Ferry Flight<br>O System Test Flight<br>O Calibration Flight              | 20.b Non Billable<br>o Aircraft Test Flight<br>o AAdmin Flight<br>o Others: | 20.c Others<br>O LIDAR System Mainten<br>O Aircraft Maintenance<br>O Phil-LIDAR Admin Activ | nance D.C.                             | + uby + How +                 |                                     |
| Weather Problem           System Problem           Aircraft Problem           Pilot Problem           Others: |                                                                             | •                                                                                           |                                        | •                             |                                     |
| Tuistion Flight Approved L<br>Du I / N THV 20<br>Thure over Printed Name<br>End User Representative)          | Acquisition Flight Certifi                                                  | Dedriver Date Pilot-In-Co                                                                   | mmand<br>Multisen<br>over Printed Name | LIDAR Operator                | Aircraft Mechanic/ LIDAR Technician |
|                                                                                                               |                                                                             |                                                                                             |                                        |                               |                                     |

Figure A-6.6. Flight Log for Mission 3769G



Figure A-6.7. Flight Log for Mission 3771G

| No.                                 | on: RPC -6022                      |                                     |                                                                    |         |                       |                   |                                                                                                                      |                       |                                                                                                                               | LIDAR Technician                                                                                                  |   |
|-------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------------------------------|---------|-----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---|
| Hight L                             | esnnaT206H 6 Aircraft Identificati | ice):                               | 18 Total Flight Time:<br>4+01                                      |         |                       |                   | tright.                                                                                                              |                       |                                                                                                                               | or Aircraft Mechanic/<br>Aircraft Mechanic/<br>Africta Juve 2<br>Frinted Name Signature over Prir                 | • |
|                                     | 4 Type: VFR S Aircraft Type: (     | port of Arrival (Ai port, Cty/Provi | ke off:         17 Landing:           Ø:         Ø0         122:01 |         | 21 Remarks            |                   | Successor)                                                                                                           |                       |                                                                                                                               | Linda Operat                                                                                                      |   |
|                                     | 3 Mission Name: 2846 5966024 8     | irport, City/Province): 12 Ai       | L5 Total Engine Time: 16 Ta                                        |         |                       | 20.c Others       | <ul> <li>LIDAR System Maintenance</li> <li>Aircraft Maintenance</li> <li>Phil-LiDAR Admin Activities</li> </ul>      |                       | 5                                                                                                                             | brinke Part Historian                                                                                             |   |
| int Log                             | NEZ 2 ALTM Model: PEUWIN           | 12 Airport of Departure (A          | LEngine Off:<br>12:D6                                              | clindy  | 2                     | 20.b Non Billable | o Aircraft Test Flight<br>o AAC Admin Flight<br>o Others:                                                            |                       |                                                                                                                               | Acquisition Flight Certifie                                                                                       |   |
| <br>L-LIDAR 1 Data Acquisition Filg | DAR Operator: J. Amal              | Date: 1-24.16                       | Engine On: 7: 77 14                                                | Veather | Flight Classification | a Billable        | <ul> <li>Acquisition Flight</li> <li>Ferry Flight</li> <li>System Test Flight</li> <li>Calibration Flight</li> </ul> | roblems and Solutions | <ul> <li>Weather Problem</li> <li>System Problem</li> <li>Aircraft Problem</li> <li>Pilot Problem</li> <li>Others:</li> </ul> | Acquisition Filght Approved by<br>and I in the Apcaro<br>Signature over Heighed Name<br>(End User Representative) |   |

Figure A-6.8. Flight Log for Mission 3773G

# Annex 7. Flight Status Reports

|              | Table A-7-1. Flight Status Report    |                |                |                  |                                                                            |  |  |  |  |  |  |  |  |  |
|--------------|--------------------------------------|----------------|----------------|------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|              |                                      |                | LEYTE-SAMA     | R                |                                                                            |  |  |  |  |  |  |  |  |  |
| FLIGHT<br>NO | AREA                                 | MISSION        | OPERATOR       | DATE<br>FLOWN    | REMARKS                                                                    |  |  |  |  |  |  |  |  |  |
| 1366A        | BLK34E                               | 3BLK34E112A    | P. Arceo       | April<br>22,2014 | Mission completed                                                          |  |  |  |  |  |  |  |  |  |
| 1454A        | BLK34D<br>BLK33E                     | 3BLK34D134A    | I. Roxas       | May 14,<br>2014  | Completed mission over<br>BLK34D and some voids over<br>BLK33E.            |  |  |  |  |  |  |  |  |  |
| 1456A        | BLK34D                               | 3BLK34C134B    | P. Arceo       | May 14,<br>2014  | Completed mission over<br>BLK34D and voids over BLK33E.                    |  |  |  |  |  |  |  |  |  |
| 3765G        | BLK34A<br>BLK34D                     | 2BLK34AD022A   | J.Almalvez     | Jan. 22,<br>2016 | Surveyed 7 lines at BLK34D and 10 lines at BLK34A.                         |  |  |  |  |  |  |  |  |  |
| 3767G        | BLK34A<br>BLK34G                     | 2BLK34AG022B   | G.<br>Sinadjan | Jan. 22,<br>2016 | Surveyed 7 lines at BLK34A and 16 lines at BLK34G.                         |  |  |  |  |  |  |  |  |  |
| 3769G        | BLK34A<br>BLK34D<br>BLK34E<br>BLK34G | 2BLK34ADEG023A | J.Almalvez     | Jan. 23,<br>2016 | Completed BLK34A, BLK34D<br>and BLK 34E. Surveyed 6 lines<br>at BLK34G.    |  |  |  |  |  |  |  |  |  |
| 3771G        | BLK34B<br>BLK34C<br>BLK34G           | 2BLK34BCG023B  | G.<br>Sinadjan | Jan. 23,<br>2016 | Completed BLK34B. Surveyed<br>10 lines at BLK34C and 4 lines<br>at BLK34G. |  |  |  |  |  |  |  |  |  |
| 3773G        | BLK34C<br>BLK34G                     | 2BLK34CG024A   | J. Almalvez    | Jan. 24,<br>2016 | Completed BLK34C and BLK34G.                                               |  |  |  |  |  |  |  |  |  |

## LAS/SWATH PER FLIGHT MISSION Flight No. : 1366A BLK34E Area: Mission Name: 3BLK34E112A Total Area: 121.43 sq. km Altitude: 600m PRF: SCF: 50 Hz 50 kHz Lidar FOV: 18 deg Sidelap:30% Barugo arigara San Miguel BLK34C BLK34D BLK34E Tunga Alangalang mSanta Fe Jaro © 20 Imag 14.0 km Image © 20 Data SIO, NOAA, L

Figure A-7.1. Swath for Flight No. 1366A

| Flight No. :<br>Area:<br>Total Area:<br>Mission Name:<br>Altitude:<br>PRF:<br>Lidar FOV: | 1454A<br>BLK34D & BLK3<br>138.839 sq. km<br>3BLK34D134A<br>600m<br>50 kHz<br>18 deg | 4E<br>SCF:<br>Sidelap: | 50 Hz<br>30%                               |                                                                           |                                       |                  |      |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|------------------|------|
| Caibiran                                                                                 |                                                                                     |                        |                                            | Allareal<br>BLK33<br>BLK33G<br>BLK33F                                     | D                                     |                  |      |
|                                                                                          |                                                                                     | Baba                   | tngon                                      | BLK33E                                                                    |                                       |                  |      |
|                                                                                          | Carigara <sup>a</sup> BLK34C                                                        | ELK34D                 | BLK34E                                     |                                                                           | Basey<br>Jinamoc Isla<br>acloban City | and              |      |
|                                                                                          | 0<br>188 km                                                                         | Jaro                   | © 2<br>Ima<br>Image © 2<br>Data SIO, NOAA, | HI<br>14 Google<br>6 Lancsat<br>14 Digital Globe<br>J.S. Navy, NGA, GEBCO | San Pedro an                          | od San Pablo Bay | arth |

Figure A-7.2. Swath for Flight No. 1454A

| Flight No. :  | 1456A          |          |       |  |  |
|---------------|----------------|----------|-------|--|--|
| Area:         | BLK34C         |          |       |  |  |
| Total Area:   | 98.421 sq. km. |          |       |  |  |
| Mission Name: | 3BLK34C134B    |          |       |  |  |
| Altitude:     | 600m           |          |       |  |  |
| PRF:          | 50 kHz         | SCF:     | 50 Hz |  |  |
| Lidar FOV:    | 18 deg         | Sidelap: | 30%   |  |  |
|               |                |          |       |  |  |



Figure A-7.3. Swath for Flight No. 1456A



Figure A-7.4. Swath for Flight No. 3765G

| START        | STOP         | LINE# | ALT  | PRF | FREQ  | ANGLE | MP  | DIV | RC | MPM | HDG    | Plan File                |
|--------------|--------------|-------|------|-----|-------|-------|-----|-----|----|-----|--------|--------------------------|
| 00:33:39.345 | 00:33:51.77  | 20    | 818  | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 00:39:03.043 | 00:44:47.236 | 20    | 1212 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 00:46:57.49  | 00:53:03.348 | 23    | 1216 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@1100LYT104.pln |
| 00:56:12.181 | 01:01:35.629 | 19    | 1207 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 01:03:47.493 | 01:09:54.181 | 22    | 1220 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@1100LYT104.pln |
| 01:13:33.354 | 01:18:56.742 | 18    | 1203 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 01:25:27.664 | 01:31:11.217 | 23    | 945  | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@850LYT104.pln  |
| 01:37:39.524 | 01:43:47.442 | 28    | 632  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@600LYT104.pln  |
| 01:57:05.277 | 01:58:31.191 | 28    | 592  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@600LYT104.pln  |
| 02:07:24.673 | 02:15:05.335 | 71    | 691  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 02:17:23.449 | 02:25:59.311 | 67    | 686  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 127.03 | LEYTE_New@600LYT104.pln  |
| 02:31:41.644 | 02:34:33.843 | 70    | 654  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 02:31:41.644 | 02:35:58.793 | 70    | 685  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 02:39:50.507 | 02:47:20.039 | 70    | 672  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 02:49:39.738 | 02:57:59.426 | 68    | 661  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 127.03 | LEYTE_New@600LYT104.pln  |
| 03:00:26.88  | 03:08:07.342 | 69    | 659  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 03:00:26.88  | 03:08:19.227 | 69    | 663  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 03:10:15.317 | 03:18:12.774 | 72    | 675  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 127.03 | LEYTE_New@600LYT104.pln  |
| 03:20:49.349 | 03:28:01.001 | 73    | 678  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 03:30:11.401 | 03:37:48.178 | 74    | 659  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 127.03 | LEYTE_New@600LYT104.pln  |
| 03:40:37.743 | 03:47:28.916 | 75    | 640  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@600LYT104.pln  |
| 03:49:24.55  | 03:56:58.098 | 76    | 658  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 127.03 | LEYTE_New@600LYT104.pln  |



Figure A-7.5. Swath for Flight No. 3767G

| START                          | STOP         | LINE# | ALT | PRF | FREQ  | ANGLE | MP  | DIV | RC | MPM | HDG Plan File            |
|--------------------------------|--------------|-------|-----|-----|-------|-------|-----|-----|----|-----|--------------------------|
| 06:25:43.612                   | 06:32:32.645 | 71    | 963 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 307.03 LEYTE_New@850.pln |
| 06:34:58.854                   | 06:41:57.612 | 72    | 946 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 307.03 LEYTE_New@850.pln |
| 06:44:15.856                   | 06:50:28.824 | 73    | 956 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 127.03 LEYTE_New@850.pln |
| 06:52:46.489                   | 06:59:15.317 | 74    | 954 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 127.03 LEYTE_New@850.pln |
| 07:01:33.721                   | 07:07:19.164 | 75    | 945 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 307.03 LEYTE_New@850.pln |
| 07:09:31.584                   | 07:16:03.106 | 76    | 957 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 127.03 LEYTE_New@850.pln |
| 07:17:57.791                   | 07:23:46.924 | 77    | 918 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 307.03 LEYTE_New@850.pln |
| 07:27:14.723                   | 07:30:12.042 | 77    | 933 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 307.03 LEYTE_New@850.pln |
| 07:36:38.11                    | 07:40:31.219 | 320   | 937 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 133.03 LEYTE_New@850.pln |
| 07:42:44.693                   | 07:47:06.076 | 321   | 946 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 313.03 LEYTE_New@850.pln |
| 07:49:10.761                   | 07:53:15.534 | 322   | 949 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 313.03 LEYTE_New@850.pln |
| 07:55:14.869                   | 07:59:24.692 | 319   | 945 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 133.03 LEYTE_New@850.pln |
| 08:01:37.732                   | 08:05:33.15  | 318   | 934 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 313.03 LEYTE_New@850.pln |
| 08:07:46.835                   | 08:13:57.012 | 317   | 944 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 133.03 LEYTE_New@850.pln |
| 08:17:02.431                   | 08:19:03.081 | 333   | 940 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 45.97 LEYTE_New@850.pln  |
| 08:20:50.225                   | 08:22:36.12  | 334   | 936 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 225.97 LEYTE_New@850.pln |
| 08:24:33.629                   | 08:26:41.398 | 332   | 944 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 225.97 LEYTE_New@850.pln |
| 08:28:36.838                   | 08:30:23.977 | 331   | 949 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 45.97 LEYTE_New@850.pln  |
| 08:32:26.051                   | 08:34:24.806 | 330   | 963 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 45.97 LEYTE_New@850.pln  |
| 08:36:16.365                   | 08:38:12.084 | 329   | 950 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 45.97 LEYTE_New@850.pln  |
| 08:40:07.734                   | 08:42:15.738 | 328   | 941 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 225.97 LEYTE_New@850.pln |
| 08:44:02.367                   | 08:46:01.911 | 327   | 944 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 225.97 LEYTE_New@850.pln |
| 08:47:52.911                   | 08:50:02.565 | 326   | 961 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 45.97 LEYTE_New@850.pln  |
| 08:51:54.809                   | 08:53:52.054 | 325   | 954 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 225.97 LEYTE_New@850.pln |
| hu, suggeste in sign varietien |              |       |     |     |       |       |     |     |    |     |                          |



Figure A-7.6. Swath for Flight No. 3769G

| START        | STOP         | LINE# | ALT  | PRF | FREQ  | ANGLE | MP  | DIV | RC | MPM | HDG    | Plan File                |
|--------------|--------------|-------|------|-----|-------|-------|-----|-----|----|-----|--------|--------------------------|
| 00:22:31.78  | 00:26:20.698 | 72    | 1211 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@1100LYT104.pln |
| 00:28:37.812 | 00:31:16.126 | 73    | 1193 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@1100LYT104.pln |
| 00:35:24.269 | 00:37:33.159 | 74    | 1224 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 307.03 | LEYTE_New@1100LYT104.pln |
| 00:40:39.812 | 00:41:30.702 | 74    | 1207 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 127.01 | LEYTE_New@1100LYT104.pln |
| 00:48:05.129 | 00:53:46.931 | 24    | 1205 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 00:55:33.871 | 01:01:07.443 | 28    | 1208 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@1100LYT104.pln |
| 01:03:10.442 | 01:08:58.935 | 25    | 1205 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 01:10:53.874 | 01:16:49.566 | 27    | 1212 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@1100LYT104.pln |
| 01:19:28.82  | 01:25:08.443 | 26    | 1212 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 01:29:09.126 | 01:30:14.996 | 24    | 1192 | 100 | 50.00 | 17.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@1100LYT104.pln |
| 01:36:23.963 | 01:39:08.327 | 2     | 690  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 01:40:33.271 | 01:43:43.215 | 8     | 661  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 01:44:58.119 | 01:47:39.883 | 3     | 683  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 01:49:25.737 | 01:52:23.296 | 7     | 695  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 01:54:07.941 | 01:56:51.769 | 4     | 684  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 01:58:40.714 | 02:01:44.517 | 9     | 718  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:03:20.157 | 02:06:08.861 | 5     | 683  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:08:12.91  | 02:11:24.969 | 10    | 679  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:12:56.988 | 02:15:43.177 | 6     | 692  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:17:57.036 | 02:21:14.385 | 15    | 704  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:22:41.799 | 02:25:42.018 | 11    | 682  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:22:41.799 | 02:25:42.018 | 11    | 681  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:26:59.208 | 02:30:06.887 | 16    | 713  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:31:32.886 | 02:34:31.04  | 12    | 674  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:38:46.379 | 02:41:45.777 | 17    | 682  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:43:14.947 | 02:46:16.721 | 13    | 683  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:47:39.07  | 02:50:12.384 | 18    | 686  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 02:51:46.069 | 02:54:51.693 | 14    | 671  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 260.00 | LEYTE_New@600LYT104.pln  |
| 02:58:54.526 | 03:01:12.241 | 19    | 679  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 03:04:38.069 | 03:06:50.924 | 19    | 702  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 80.00  | LEYTE_New@600LYT104.pln  |
| 03:11:20.722 | 03:15:25.216 | 88    | 691  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@600LYT104.pln  |
| 03:16:32.95  | 03:19:39.779 | 93    | 688  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@600LYT104.pln  |
| 03:21:01.809 | 03:25:02.922 | 89    | 669  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@600LYT104.pln  |
| 03:25:59.182 | 03:29:14.811 | 92    | 692  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@600LYT104.pln  |
| 03:30:41.01  | 03:34:40.869 | 90    | 681  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@600LYT104.pln  |
| 03:36:02.318 | 03:39:28.072 | 91    | 694  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@600LYT104.pln  |
| 03:41:36.076 | 03:42:46.301 | 88    | 641  | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@600LYT104.pln  |
|              |              |       |      |     |       |       |     |     |    |     |        |                          |

FLIGHT NO.:3771GAREA:LeyteMISSION NAME:2BLK34BCG023BALT:850 mSURVEYED AREA:143.4 km²

SCAN ANGLE: 20



Figure A-7.7. Swath for Flight No. 3771G

| START        | STOP         | LINE# | ALT | PRF | FREQ  | ANGLE | MP  | DIV | RC | MPM | HDG    | Plan File               |
|--------------|--------------|-------|-----|-----|-------|-------|-----|-----|----|-----|--------|-------------------------|
| 06:35:50.577 | 06:39:05.031 | 92    | 957 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 133.03 | LEYTE_New@850LYT104.pln |
| 06:41:21.246 | 06:44:51.86  | 91    | 940 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@850LYT104.pln |
| 06:47:00.754 | 06:50:13.578 | 90    | 957 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 180.00 | LEYTE_New@850LYT104.pln |
| 06:52:20.328 | 06:55:54.407 | 89    | 948 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@850LYT104.pln |
| 06:59:06.001 | 07:01:55.615 | 43    | 946 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:04:23.724 | 07:07:40.653 | 42    | 970 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:09:27.792 | 07:12:48.761 | 41    | 949 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 07:14:45.411 | 07:19:03.689 | 40    | 995 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 07:14:45.411 | 07:19:03.689 | 40    | 998 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 07:22:30.443 | 07:26:26.447 | 39    | 947 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:29:17.041 | 07:31:04.62  | 39    | 958 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:34:35.484 | 07:38:18.518 | 38    | 933 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 07:40:19.587 | 07:44:00.311 | 37    | 940 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:46:35.415 | 07:50:29.218 | 36    | 943 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 07:53:02.767 | 07:56:56.151 | 35    | 946 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 308.02 | LEYTE_New@850LYT104.pln |
| 07:59:03.52  | 08:03:27.419 | 34    | 952 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 128.02 | LEYTE_New@850LYT104.pln |
| 08:05:49.663 | 08:09:57.871 | 60    | 949 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 08:12:18.735 | 08:16:57.524 | 59    | 965 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 130.02 | LEYTE_New@850LYT104.pln |
| 08:19:25.488 | 08:24:05.456 | 58    | 944 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 130.02 | LEYTE_New@850LYT104.pln |
| 08:26:08.015 | 08:30:54.088 | 57    | 944 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 130.02 | LEYTE_New@850LYT104.pln |
| 08:33:10.808 | 08:37:45.911 | 56    | 951 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 08:39:57.74  | 08:45:00.053 | 55    | 973 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 130.02 | LEYTE_New@850LYT104.pln |
| 08:46:48.528 | 08:48:48.057 | 61    | 956 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 08:50:51.951 | 08:53:44.495 | 61    | 951 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 08:56:35.949 | 09:01:09.127 | 54    | 917 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 09:03:11.426 | 09:08:11.744 | 53    | 958 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 130.02 | LEYTE_New@850LYT104.pln |
| 09:10:28.919 | 09:14:22.267 | 52    | 962 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 310.02 | LEYTE_New@850LYT104.pln |
| 09:20:26.535 | 09:22:07.164 | 91    | 949 | 100 | 50.00 | 20.00 | OFF | NAR | ON | OFF | 360.00 | LEYTE_New@850LYT104.pln |
|              |              |       |     |     |       |       |     |     |    |     |        |                         |

| FLIGHT NO.:    | 3773G                |               |
|----------------|----------------------|---------------|
| AREA:          | Leyte                |               |
| MISSION NAME:  | 2BLK34CG             | 024A          |
| ALT:           | 600 m                | SCAN FREQ: 40 |
| SURVEYED AREA: | 90.6 km <sup>2</sup> |               |
| SURVEYED AREA: | 90.6 km²             |               |



SCAN ANGLE: 25

Figure A-7.8. Swath for Flight No. 3773G

| START        | STOP         | LINE# | ALT | PRF | FREQ  | ANGLE | MP  | DIV | RC | MPM | HDG    | Plan File             |
|--------------|--------------|-------|-----|-----|-------|-------|-----|-----|----|-----|--------|-----------------------|
| 00:41:26.291 | 00:45:37.304 | 54    | 673 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 129,99 | levtevoiDSnew@600.pln |
| 00:47:19.499 | 00:47:47.129 | 50    | 670 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 309.99 | levtevoIDSnew@600.pln |
| 00:48:00.128 | 00:49:49.973 | 50    | 642 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 309.99 | levtevoIDSnew@600.pln |
| 00:55:27.525 | 00:59:52.439 | 55    | 680 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 129.99 | levtevoIDSnew@600.pln |
| 01:02:18.758 | 01:06:11.696 | 53    | 626 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 309.99 | levtevoIDSnew@600.pln |
| 01:11:13.674 | 01:14:14.473 | 51    | 635 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 129.99 | levtevoIDSnew@600.pln |
| 01:16:42.357 | 01:20:10.02  | 52    | 670 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 309.99 | levtevoIDSnew@600.pln |
| 01:20:49.76  | 01:21:04.42  | 54    | 673 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 310.00 | leytevoIDSnew@600.pln |
| 01:24:38.359 | 01:25:37.498 | 54    | 664 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 130.00 | leytevoIDSnew@600.pln |
| 01:30:49.756 | 01:32:51.7   | 50    | 665 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 129.99 | leytevoIDSnew@600.pln |
| 01:37:16.759 | 01:39:56.043 | 131   | 686 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leyteVOIDSnew@600.pln |
| 01:41:54.187 | 01:44:07.646 | 136   | 677 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 216.01 | leytevoIDSnew@600.pln |
| 01:46:06.62  | 01:48:48.959 | 132   | 723 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leytevoIDSnew@600.pln |
| 01:50:32.703 | 01:52:38.423 | 137   | 724 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 216.01 | leytevoIDSnew@600.pln |
| 01:54:26.957 | 01:56:40.186 | 133   | 675 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leyteVOIDSnew@600.pln |
| 01:58:22.395 | 02:00:28.59  | 138   | 677 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 216.01 | leyteVOIDSnew@600.pln |
| 02:02:11.674 | 02:04:57.128 | 134   | 683 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leytevoIDSnew@600.pln |
| 02:06:30.502 | 02:08:37.931 | 139   | 682 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 216.01 | leytevoIDSnew@600.pln |
| 02:10:13.101 | 02:12:54.015 | 135   | 693 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leytevoIDSnew@600.pln |
| 02:14:21.569 | 02:16:27.344 | 140   | 681 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 216.01 | leytevoIDSnew@600.pln |
| 02:18:30.538 | 02:21:11.317 | 141   | 693 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leyteVOIDSnew@600.pln |
| 02:23:48.796 | 02:25:34.795 | 141   | 729 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 36.01  | leytevoIDSnew@600.pln |
| 02:28:25.509 | 02:30:35.513 | 120   | 692 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 130.00 | leyteVOIDSnew@600.pln |
| 02:32:05.188 | 02:34:04.657 | 124   | 675 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 310.00 | leyteVOIDSnew@600.pln |
| 02:35:54.016 | 02:38:07.216 | 121   | 691 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 130.00 | leytevoIDSnew@600.pln |
| 02:39:35.88  | 02:41:22.769 | 125   | 706 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 310.00 | leytevoIDSnew@600.pln |
| 02:42:45.769 | 02:44:49.598 | 122   | 695 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 130.00 | leyteVOIDSnew@600.pln |
| 02:46:19.373 | 02:47:57.102 | 126   | 697 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 310.00 | leytevoiDSnew@600.pln |
| 02:50:03.911 | 02:52:14.036 | 123   | 677 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 130.00 | leytevoiDSnew@600.pln |
| 02:54:49.325 | 02:56:02.074 | 123   | 667 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 128.98 | leytevoIDSnew@600.pln |
| 02:58:39.883 | 03:00:18.348 | 145   | 698 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 308.98 | leytevoIDSnew@600.pln |
| 03:01:59.887 | 03:03:42.777 | 143   | 685 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 308.98 | leyteVOIDSnew@600.pln |
| 03:05:27.966 | 03:07:08.375 | 144   | 689 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 315.00 | leytevoIDSnew@600.pln |
| 03:08:34.69  | 03:09:55.629 | 149   | 707 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 315.00 | leytevoIDSnew@600.pln |
| 03:11:43.889 | 03:13:06.778 | 148   | 667 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 315.00 | leytevoIDSnew@600.pln |
| 03:15:53.122 | 03:17:54.942 | 152   | 709 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 231.49 | leytevoIDSnew@600.pln |
| 03:20:17.491 | 03:22:19.975 | 153   | 686 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 231.49 | leytevoIDSnew@600.pln |
| 03:28:30.043 | 03:29:27.943 | 85    | 629 | 100 | 40.00 | 25.00 | OFF | NAR | ON | OFF | 307.01 | leytevoIDSnew@600.pln |
|              |              |       |     |     |       |       |     |     |    |     |        |                       |

| Table A-8.1. Mission Summary                  | Report for Mission Blk 34C                                            |  |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Flight Area                                   | Samar-Leyte                                                           |  |  |  |  |  |  |
| Mission Name                                  | Blk 34C                                                               |  |  |  |  |  |  |
| Inclusive Flights                             | 1456A                                                                 |  |  |  |  |  |  |
| Range data size                               | 11.6 GB                                                               |  |  |  |  |  |  |
| Base data size                                | 7.92 MB                                                               |  |  |  |  |  |  |
| POS                                           | 212 MB                                                                |  |  |  |  |  |  |
| Image                                         | 66.6 GB                                                               |  |  |  |  |  |  |
| Transfer date                                 | May 28, 2014                                                          |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Solution Status                               |                                                                       |  |  |  |  |  |  |
| Number of Satellites (>6)                     | Yes                                                                   |  |  |  |  |  |  |
| PDOP (<3)                                     | Yes                                                                   |  |  |  |  |  |  |
| Baseline Length (<30km)                       | Yes                                                                   |  |  |  |  |  |  |
| Processing Mode (<=1)                         | Yes                                                                   |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                       |  |  |  |  |  |  |
| RMSE for North Position (<4.0 cm)             | 1.3                                                                   |  |  |  |  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.2                                                                   |  |  |  |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 2.6                                                                   |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000399354                                                           |  |  |  |  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.0089118                                                             |  |  |  |  |  |  |
| GPS position stdev (<0.01m)                   | 0.0169262                                                             |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Minimum % overlap (>25)                       | 40.85%                                                                |  |  |  |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 3.01                                                                  |  |  |  |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                   |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Number of 1km x 1km blocks                    | 143                                                                   |  |  |  |  |  |  |
| Maximum Height                                | 151.03 m                                                              |  |  |  |  |  |  |
| Minimum Height                                | 59.09 m                                                               |  |  |  |  |  |  |
|                                               |                                                                       |  |  |  |  |  |  |
| Classification (# of points)                  |                                                                       |  |  |  |  |  |  |
| Ground                                        | 63,841,063                                                            |  |  |  |  |  |  |
| Low vegetation                                | 73,433,267                                                            |  |  |  |  |  |  |
| Medium vegetation                             | 90,859,082                                                            |  |  |  |  |  |  |
| High vegetation                               | 26,640,847                                                            |  |  |  |  |  |  |
| Building                                      | 1,833,370                                                             |  |  |  |  |  |  |
| Orthophoto                                    | Yes                                                                   |  |  |  |  |  |  |
| Processed by                                  | Engr. Carlyn Ann Ibañez, Engr. Chelou Prado,<br>Engr. Gladys Mae Apat |  |  |  |  |  |  |



Figure A-8.2. Smoothed Performance Metrics Parameters



Figure A-8.4. Coverage of LiDAR data



Figure A-8.6. Density map of merged LiDAR data



Figure A-8.7. Elevation difference between flight lines

| Flight Area                                   | Samar-Leyte                                                         |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| Mission Name                                  | Blk 34D                                                             |  |  |  |  |  |
| Inclusive Flights                             | 1454A                                                               |  |  |  |  |  |
| Range data size                               | 14.6 GB                                                             |  |  |  |  |  |
| Base data size                                | 8.41 MB                                                             |  |  |  |  |  |
| POS                                           | 268 MB                                                              |  |  |  |  |  |
| Image                                         | 87.2 GB                                                             |  |  |  |  |  |
| Transfer date                                 | May 28, 2014                                                        |  |  |  |  |  |
|                                               |                                                                     |  |  |  |  |  |
| Solution Status                               |                                                                     |  |  |  |  |  |
| Number of Satellites (>6)                     | Yes                                                                 |  |  |  |  |  |
| PDOP (<3)                                     | Yes                                                                 |  |  |  |  |  |
| Baseline Length (<30km)                       | No                                                                  |  |  |  |  |  |
| Processing Mode (<=1)                         | Yes                                                                 |  |  |  |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                     |  |  |  |  |  |
| RMSE for North Position (<4.0 cm)             | 2.2                                                                 |  |  |  |  |  |
| RMSE for East Position (<4.0 cm)              | 1.7                                                                 |  |  |  |  |  |
| RMSE for Down Position (<8.0 cm)              | 3.9                                                                 |  |  |  |  |  |
| Deresight correction stday (<0.001 dog)       | 0.000408                                                            |  |  |  |  |  |
| IN the attitude correction stdey (<0.001deg)  | 0.001408                                                            |  |  |  |  |  |
| GPS position stdey (<0.001deg)                | 0.001494                                                            |  |  |  |  |  |
|                                               | 0.0227                                                              |  |  |  |  |  |
| Minimum % overlap (>25)                       | 29.29%                                                              |  |  |  |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 2.73                                                                |  |  |  |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                 |  |  |  |  |  |
| Number of 1km v 1km blocks                    | 1/0                                                                 |  |  |  |  |  |
| Maximum Height                                | 141 70 m                                                            |  |  |  |  |  |
| Minimum Height                                | 34.19 m                                                             |  |  |  |  |  |
| ¥                                             |                                                                     |  |  |  |  |  |
| Classification (# of points)                  |                                                                     |  |  |  |  |  |
| Ground                                        | 63,755,821                                                          |  |  |  |  |  |
| Low vegetation                                | 79,475,355                                                          |  |  |  |  |  |
| Medium vegetation                             | 77,581,284                                                          |  |  |  |  |  |
| High vegetation                               | 15,167,004                                                          |  |  |  |  |  |
| Building                                      | 849,062                                                             |  |  |  |  |  |
| Orthophoto                                    | Yes                                                                 |  |  |  |  |  |
| Processed by                                  | Ma. Victoria Rejuso, Engr. Harmond Santos,<br>Engr. Gladys Mae Apat |  |  |  |  |  |

Table A-8.2. Mission Summary Report for Mission Blk 34D



Figure A-8.9. Smoothed Performance Metrics Parameters



Figure A-8.11. Coverage of LiDAR data



Figure A-8.13. Density map of merged LiDAR data


Figure A-8.14. Elevation difference between flight lines

| Elight Area                                   | Samar Louto                                                            |
|-----------------------------------------------|------------------------------------------------------------------------|
| Mission Name                                  |                                                                        |
|                                               | 1266 4                                                                 |
| Pange data size                               | 14.0 GB                                                                |
| Rase data size                                | 2 52 MD                                                                |
|                                               | 257 MP                                                                 |
| F03                                           | 05.5 CR                                                                |
| Transfor data                                 | 55.5 GB                                                                |
|                                               | Ividy 28, 2014                                                         |
| Solution Status                               |                                                                        |
| Number of Satellites (>6)                     | Yes                                                                    |
|                                               | Vec                                                                    |
| Baseline Length (<30km)                       | No                                                                     |
|                                               | Voc                                                                    |
|                                               | 103                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                        |
| RMSE for North Position (<4.0 cm)             | 1.7                                                                    |
| RMSE for Fast Position (<4.0 cm)              | 2.0                                                                    |
| RMSE for Down Position (<8.0 cm)              | 3.8                                                                    |
|                                               |                                                                        |
| Boresight correction stdev (<0.001deg)        | 0.000518                                                               |
| IMU attitude correction stdev (<0.001deg)     | 0.026089                                                               |
| GPS position stdev (<0.01m)                   | 0.0388                                                                 |
|                                               |                                                                        |
| Minimum % overlap (>25)                       | 53.44%                                                                 |
| Ave point cloud density per sq.m. (>2.0)      | 3.08                                                                   |
| Elevation difference between strips (<0.20 m) | Yes                                                                    |
|                                               |                                                                        |
| Number of 1km x 1km blocks                    | 169                                                                    |
| Maximum Height                                | 313.64 m                                                               |
| Minimum Height                                | 59.54 m                                                                |
|                                               |                                                                        |
| Classification (# of points)                  |                                                                        |
| Ground                                        | 108,115,249                                                            |
| Low vegetation                                | 76,412,876                                                             |
| Medium vegetation                             | 82,519,137                                                             |
| High vegetation                               | 16,810,372                                                             |
| Building                                      | 540,046                                                                |
| Orthophoto                                    | Yes                                                                    |
| Processed by                                  | Engr. Jennifer Saguran, Engr. Harmond Santos,<br>Engr. Gladys Mae Apat |

| Table A-8.3. Mission Summary | v Report f | for Mission | Blk34E |
|------------------------------|------------|-------------|--------|
|------------------------------|------------|-------------|--------|







Figure A-8.16. Smoothed Performance Metrics Parameters





Figure A-8.20. Density map of merged LiDAR data



Figure A-8.21. Elevation difference between flight lines

| Table A-8.4. Mission Summ                     | ary Report for Mission Blk 34C                                      |
|-----------------------------------------------|---------------------------------------------------------------------|
| Flight Area                                   | Leyte                                                               |
| Mission Name                                  | Blk 34C                                                             |
| Inclusive Flights                             | 3773G, 3771G                                                        |
| Range data size                               | 37.1 GB                                                             |
| Base data size                                | 460 MB                                                              |
| POS                                           | 13.94 MB                                                            |
| Image                                         | n/a                                                                 |
| Transfer date                                 | February 12, 2016                                                   |
|                                               |                                                                     |
| Solution Status                               |                                                                     |
| Number of Satellites (>6)                     | Yes                                                                 |
| PDOP (<3)                                     | Yes                                                                 |
| Baseline Length (<30km)                       | Yes                                                                 |
| Processing Mode (<=1)                         | Yes                                                                 |
|                                               |                                                                     |
| Smoothed Performance Metrics (in cm)          |                                                                     |
| RMSE for North Position (<4.0 cm)             | 0.8                                                                 |
| RMSE for East Position (<4.0 cm)              | 1.0                                                                 |
| RMSE for Down Position (<8.0 cm)              | 2.8                                                                 |
|                                               |                                                                     |
| Boresight correction stdev (<0.001deg)        | 0.000620                                                            |
| IMU attitude correction stdev (<0.001deg)     | 0.004668                                                            |
| GPS position stdev (<0.01m)                   | 0.0133                                                              |
|                                               |                                                                     |
| Minimum % overlap (>25)                       | 35.68                                                               |
| Ave point cloud density per sq.m. (>2.0)      | 4.41                                                                |
| Elevation difference between strips (<0.20 m) | Yes                                                                 |
|                                               |                                                                     |
| Number of 1km x 1km blocks                    | 190                                                                 |
| Maximum Height                                | 293.50 m                                                            |
| Minimum Height                                | 85.36 m                                                             |
|                                               |                                                                     |
| Classification (# of points)                  |                                                                     |
| Ground                                        | 73,091,228                                                          |
| Low vegetation                                | 68,546,439                                                          |
| Medium vegetation                             | 272,398,780                                                         |
| High vegetation                               | 231,908,658                                                         |
| Building                                      | 3,024,175                                                           |
| Orthophoto                                    | None                                                                |
| Processed by                                  | Engr. Analyn Naldo, Engr. Harmond Santos, Maria<br>Tamsyn Malabanan |



Figure A-8.23. Smoothed Performance Metric Parameters



Figure A-8.25. Coverage of LiDAR Data



Figure A-8.27. Density map of merged LiDAR data



Figure A-8.28. Elevation difference between flight lines

| Flight AreaMission NameInclusive FlightsRange data sizeBase data size                 | Leyte<br>Blk34D<br>3767G, 3773G<br>35.9 GB<br>452 MB<br>8.14 MB<br>n/a<br>February 12, 2016 |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Mission Name         Inclusive Flights         Range data size         Base data size | Blk34D<br>3767G, 3773G<br>35.9 GB<br>452 MB<br>8.14 MB<br>n/a<br>February 12, 2016          |
| Inclusive Flights Range data size Base data size                                      | 3767G, 3773G<br>35.9 GB<br>452 MB<br>8.14 MB<br>n/a<br>February 12, 2016                    |
| Range data size     Base data size                                                    | 35.9 GB<br>452 MB<br>8.14 MB<br>n/a<br>February 12, 2016                                    |
| Base data size                                                                        | 452 MB<br>8.14 MB<br>n/a<br>February 12, 2016                                               |
|                                                                                       | 8.14 MB<br>n/a<br>February 12, 2016                                                         |
| POS                                                                                   | n/a<br>February 12, 2016                                                                    |
| Image                                                                                 | February 12, 2016                                                                           |
| Transfer date                                                                         |                                                                                             |
|                                                                                       |                                                                                             |
| Solution Status                                                                       |                                                                                             |
| Number of Satellites (>6)                                                             | Yes                                                                                         |
| PDOP (<3)                                                                             | Yes                                                                                         |
| Baseline Length (<30km)                                                               | No                                                                                          |
| Processing Mode (<=1)                                                                 | Yes                                                                                         |
|                                                                                       |                                                                                             |
| Smoothed Performance Metrics (in cm)                                                  |                                                                                             |
| RMSE for North Position (<4.0 cm)                                                     | 1.0                                                                                         |
| RMSE for East Position (<4.0 cm)                                                      | 1.3                                                                                         |
| RMSE for Down Position (<8.0 cm)                                                      | 2.2                                                                                         |
|                                                                                       |                                                                                             |
| Boresight correction stdev (<0.001deg)                                                | 0.000942                                                                                    |
| IMU attitude correction stdev (<0.001deg)                                             | 0.002535                                                                                    |
| GPS position stdev (<0.01m)                                                           | 0.0116                                                                                      |
|                                                                                       |                                                                                             |
| Minimum % overlap (>25)                                                               | 42.76                                                                                       |
| Ave point cloud density per sq.m. (>2.0)                                              | 4.23                                                                                        |
| Elevation difference between strips (<0.20 m)                                         | Yes                                                                                         |
|                                                                                       |                                                                                             |
| Number of 1km x 1km blocks                                                            | 126                                                                                         |
| Maximum Height                                                                        | 205.76 m                                                                                    |
| Minimum Height                                                                        | 10.90 m                                                                                     |
|                                                                                       |                                                                                             |
| Classification (# of points)                                                          |                                                                                             |
| Ground                                                                                | 37,541,051                                                                                  |
| Low vegetation                                                                        | 64,452,630                                                                                  |
| Medium vegetation                                                                     | 157,969,342                                                                                 |
| High vegetation                                                                       | 87,019,402                                                                                  |
| Building                                                                              | 1,194,655                                                                                   |
| Orthophoto                                                                            | No                                                                                          |
| Processed by                                                                          | Engr. Jennifer Saguran, Engr. Ma. Joanne Balaga, Jovy<br>Narisma                            |

| Table A-85     | Mission    | Summary | Report f | or Mission    | RIL34D |
|----------------|------------|---------|----------|---------------|--------|
| 1 abic 11 0.5. | 1011331011 | Jummary | Report   | 01 1011331011 | DIKJID |







Figure A-8.30. Smoothed Performance Metric Parameters



Figure A-8.31. Best Estimated Trajectory



Figure A-8.32. Coverage of LiDAR Data



Figure A-8.34. Density map of merged LiDAR data



Figure A-8.35. Elevation difference between flight lines

| Flight Area                                   | Leyte                                                                       |
|-----------------------------------------------|-----------------------------------------------------------------------------|
| Mission Name                                  | Blk 34E                                                                     |
| Inclusive Flights                             | 3767G, 3765G                                                                |
| Range data size                               | 44.3 GB                                                                     |
| Base data size                                | 459 MB                                                                      |
| POS                                           | 7.78 MB                                                                     |
| Image                                         | n/a                                                                         |
| Transfer date                                 | February 12, 2016                                                           |
|                                               |                                                                             |
| Solution Status                               |                                                                             |
| Number of Satellites (>6)                     | Yes                                                                         |
| PDOP (<3)                                     | No                                                                          |
| Baseline Length (<30km)                       | No                                                                          |
| Processing Mode (<=1)                         | Yes                                                                         |
|                                               |                                                                             |
| Smoothed Performance Metrics (in cm)          |                                                                             |
| RMSE for North Position (<4.0 cm)             | 1.9                                                                         |
| RMSE for East Position (<4.0 cm)              | 1.5                                                                         |
| RMSE for Down Position (<8.0 cm)              | 6.0                                                                         |
|                                               |                                                                             |
| Boresight correction stdev (<0.001deg)        | 0.000478                                                                    |
| IMU attitude correction stdev (<0.001deg)     | 0.003642                                                                    |
| GPS position stdev (<0.01m)                   | 0.0029                                                                      |
|                                               |                                                                             |
| Minimum % overlap (>25)                       | 34.99                                                                       |
| Ave point cloud density per sq.m. (>2.0)      | 4.65                                                                        |
| Elevation difference between strips (<0.20 m) | Yes                                                                         |
|                                               |                                                                             |
| Number of 1km x 1km blocks                    | 93                                                                          |
| Maximum Height                                | 415.68 m                                                                    |
| Minimum Height                                | 63.54 m                                                                     |
|                                               |                                                                             |
| Classification (# of points)                  |                                                                             |
| Ground                                        | 35,181,518                                                                  |
| Low vegetation                                | 42,803,820                                                                  |
| Medium vegetation                             | 136,496,439                                                                 |
| High vegetation                               | 111,171,628                                                                 |
| Building                                      | 2,703,347                                                                   |
| Orthophoto                                    | None                                                                        |
| Processed by                                  | Engr. Sheila-Maye Santillan, Engr. Justine<br>Francisco, Marie Denise Bueno |

## Table A-8.6. Mission Summary Report for Mission Blk 34E



Figure A-8.37. Smoothed Performance Metric Parameters



Figure A-8.39. Coverage of LiDAR Data



Figure A-8.41. Density map of merged LiDAR data



Figure A-8.42. Elevation difference between flight lines

|                                               | <b>-</b>                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------|
| Flight Area                                   | Leyte                                                                       |
| Mission Name                                  | Blk 34E_Additional                                                          |
| Inclusive Flights                             | 3769G                                                                       |
| Range data size                               | 23.8 GB                                                                     |
| Base data size                                | 260 MB                                                                      |
| POS                                           | 9.58 MB                                                                     |
| Image                                         | n/a                                                                         |
| Transfer date                                 | February 12, 2016                                                           |
|                                               |                                                                             |
| Solution Status                               |                                                                             |
| Number of Satellites (>6)                     | Yes                                                                         |
| PDOP (<3)                                     | Yes                                                                         |
| Baseline Length (<30km)                       | No                                                                          |
| Processing Mode (<=1)                         | Yes                                                                         |
|                                               |                                                                             |
| Smoothed Performance Metrics (in cm)          |                                                                             |
| RMSE for North Position (<4.0 cm)             | 1.1                                                                         |
| RMSE for East Position (<4.0 cm)              | 1.2                                                                         |
| RMSE for Down Position (<8.0 cm)              | 3.3                                                                         |
|                                               |                                                                             |
| Boresight correction stdev (<0.001deg)        | 0.000767                                                                    |
| IMU attitude correction stdev (<0.001deg)     | 0.004064                                                                    |
| GPS position stdev (<0.01m)                   | 0.0063                                                                      |
|                                               |                                                                             |
| Minimum % overlap (>25)                       | 6.16                                                                        |
| Ave point cloud density per sq.m. (>2.0)      | 4.62                                                                        |
| Elevation difference between strips (<0.20 m) | Yes                                                                         |
|                                               |                                                                             |
| Number of 1km x 1km blocks                    | 36                                                                          |
| Maximum Height                                | 582.56 m                                                                    |
| Minimum Height                                | 61.27 m                                                                     |
|                                               |                                                                             |
| Classification (# of points)                  |                                                                             |
| Ground                                        | 2,938,333                                                                   |
| Low vegetation                                | 324,554                                                                     |
| Medium vegetation                             | 8,108,083                                                                   |
| High vegetation                               | 30,643,240                                                                  |
| Building                                      | 9,339                                                                       |
| Orthophoto                                    | None                                                                        |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Harmond Santos, Engr.<br>Krisha Marie Bautista |





Figure A-8.44. Smoothed Performance Metric Parameters



Figure A-8.46. Coverage of LiDAR Data



Figure A-8.48. Density map of merged LiDAR data



Figure A-8.49. Elevation difference between flight lines

| Parameters |
|------------|
| Basin      |
| Model      |
| Sangputan  |
| Annex 9.   |

Table A-9.1. Sangputan Model Basin Parameters

|                     | Ratio<br>to Peak                    | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           | 0.1           |
|---------------------|-------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                     | Threshold<br>Type                   | Ratio to Peak |
| on Baseflow         | <b>Recession</b><br><b>Constant</b> | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 8.0           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           | 0.8           |
| Recessi             | Initial Discharge<br>(m3/s)         | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          | 0.08          |
|                     | Initial Type                        | Discharge     |
| ph Transform        | Storage<br>Coefficient              | 0.38394       | 1.17678       | 0.8454        | 0.44022       | 4.4835        | 2.21604       | 1.44981       | 2.54775       | 1.89318       | 1.4442        | 0.9501        | 0.85989       | 0.81372       | 0.55809       | 0.6225        | 1.11372       | 0.85236       |
| Clark Unit Hydrogra | Time of<br>Concentration            | 2.5596        | 7.8452        | 5.636         | 2.9348        | 29.89         | 14.7736       | 9.6654        | 16.985        | 12.6212       | 9.628         | 6.334         | 5.7326        | 5.4248        | 3.7206        | 4.15          | 7.4248        | 5.6824        |
| Loss                | Impervious<br>%                     | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             | 0             |
| urve Number         | Curve<br>Number                     | 85.93032      | 44.1          | 82.8541       | 84.55342      | 68.98612      | 78.6058       | 49.73696      | 81.45466      | 77.69636      | 72.65916      | 76.77614      | 78.03054      | 77.89236      | 81.34         | 74.1223       | 58.653        | 62.20354      |
| SCS C               | Initial<br>Abstraction              | 5.70824       | 49.6712       | 7.42904       | 6.46304       | 17.092        | 10.0272       | 39.436        | 8.2552        | 10.62         | 14.1736       | 11.2344       | 10.4008       | 10.4912       | 8.324         | 13.092        | 27.2632       | 23.3872       |
|                     | Sub basin                           | W180          | W190          | W200          | W210          | W220          | W230          | W240          | W250          | W260          | W270          | W280          | W290          | W300          | W310          | W320          | W330          | W340          |

Annex 10. Sangputan Model Reach Parameters

Side Slope 45 45 45 45 45 45 45 45 14.806 23.406 Width 6.3525 18.851 12.787 23.832 37.283 14.63 Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Shape Manning's n 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.000355802143705370 8.963823447561998E-5 0.000759177253726277 0.0015396 0.0020884 0.0104460 0.0053901 0.0157862 Slope 3469.0 3031.6 2927.6 Length 1757.9 4884.3 814.12 15217 15414 Automatic Fixed Interval Time Step Method Reach R100 R110 R150 R30 R40 R90 R20 R60

Table A-10.1. Sangputan Model Reach Parameters

Annex 11. Sangputan Field Validation Points

Table A-11.1. Sangputan Validation Points for 5-year Flood Depth Map

| Point  | Validation ( | Coordinates |                 | Validation Points | L      |                                      | Rain Return / |
|--------|--------------|-------------|-----------------|-------------------|--------|--------------------------------------|---------------|
| Number | Lat          | Long        | iviodel var (m) | (m)               | Error  | Event/ Date                          | Scenario      |
| 504    | 11.188450°   | 124.784863° | 0.490           | 0.2               | 0.290  | Typhoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 508    | 11.184357°   | 124.797975° | 0:030           | 0.4               | -0.370 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 509    | 11.196058°   | 124.791744° | 0:030           | 0.8               | -0.770 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 512    | 11.202591°   | 124.807698° | 0.140           | 0.5               | -0.360 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 517    | 11.211108°   | 124.814508° | 0.150           | 2                 | -1.850 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 517    | 11.217271°   | 124.823583° | 0:030           | 0.4               | -0.370 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 519    | 11.225920°   | 124.817280° | 0.150           | 0.3               | -0.150 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 526    | 11.217280°   | 124.850085° | 0:030           | 0.5               | -0.470 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 527    | 11.22359°    | 124.851490° | 0.060           | 0.6               | -0.540 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 532    | 11.229743°   | 124.849714° | 0.610           | 0.3               | 0.310  | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 534    | 11.237016°   | 124.856709° | 0.320           | 0.6               | -0.280 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 535    | 11.238605°   | 124.857545° | 0.030           | 0.7               | -0.670 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
| 536    | 11.242109°   | 124.860112° | 0.030           | 0.5               | -0.470 | Tyhpoon Yolanda/<br>November 8, 2013 | 5 -Year       |
|        |              |             |                 |                   |        |                                      |               |

| Rain Return /     | Scenario        | 5 -Year                              |                                      |  |
|-------------------|-----------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| Firmet (Date      | Event/ Date     | Tyhpoon Yolanda/<br>November 8, 2013 |  |
| <br>              | EITOT           | -1.190                               | -0.110                               | -0.280                               | -0.170                               | 0.290                                | 0.180                                | -0.270                               |  |
| Validation Points | (m)             | 1.4                                  | 0.4                                  | 0.4                                  |                                      | 0.6                                  | 0.3                                  | 0.3                                  |  |
|                   | iviodel var (m) | 0.210                                | 0.290                                | 0.120                                | 0.030                                | 0.890                                | 0.480                                | 0.030                                |  |
| cordinates        | Long            | 124.855207°                          | 124.828779°                          | 124.829540°                          | 124.825773°                          | 124.820874°                          | 124.830354°                          | 124.830479                           |  |
| Validation C      | Lat             | 11.257573°                           | 11.229932°                           | 11.235762°                           | 11.235670°                           | 11.238782°                           | 11.239547°                           | 11.3014877                           |  |
| Point             | Number          | 546                                  | 5511                                 | 552                                  | 553                                  | 554                                  | 556                                  | 382                                  |  |

|                                                                 | Rain Return /     | Scenario      | 100 -Year                             |
|-----------------------------------------------------------------|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                                                                 |                   | Event/Date    | Tyhpoon Seniang/<br>December 30, 2014 | Typhoon Seniang/<br>December 30, 2014 |
| -11.2. Sangputan Validation Points for 100-year Flood Depth Map |                   | Error         | 0.070                                 | -0.260                                | 0.030                                 | -0.970                                | 0.270                                 | 0.460                                 | 1.270                                 | -0.360                                | -0.760                                | -0.370                                | -0.290                                | -0.320                                | 0.150                                 | 0.030                                 |
|                                                                 | Validation Points | (m)           | 0.00                                  | 0.30                                  | 0.00                                  | 1.00                                  | 0.00                                  | 0.30                                  | 0.00                                  | 0.40                                  | 0.80                                  | 0.50                                  | 0.50                                  | 0.50                                  | 0.00                                  | 0.00                                  |
|                                                                 |                   | Model Var (m) | 0.07                                  | 0.04                                  | 0.03                                  | 0.03                                  | 0.27                                  | 0.76                                  | 1.27                                  | 0.04                                  | 0.04                                  | 0.13                                  | 0.21                                  | 0.18                                  | 0.15                                  | 0.03                                  |
| Table A                                                         | Coordinates       | Long          | 11.189845°                            | 11.185940°                            | 11.184439°                            | 11.185390°                            | $11.184881^{\circ}$                   | 11.185681°                            | 11.183935°                            | 11.184357°                            | 11.196058°                            | 11.196337°                            | 11.200985°                            | 11.202591°                            | 11.201717°                            | 11.211395°                            |
|                                                                 | Validation (      | Lat           | 11.189845°                            | 11.185940°                            | 11.184439°                            | 11.185390°                            | 11.184881°                            | 11.185681°                            | 11.183935°                            | 11.184357°                            | 11.196058°                            | 11.196337°                            | 11.200985°                            | 11.202591°                            | 11.201717°                            | 11.211395°                            |
|                                                                 | Point             | Number        | 500                                   | 501                                   | 502                                   | 503                                   | 505                                   | 506                                   | 507                                   | 508                                   | 509                                   | 510                                   | 511                                   | 512                                   | 513                                   | 514                                   |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | -1.390                                | 0.610                                 | 0.210                                 | 0.030                                 | 0.230                                 | 0.020                                 | -0.270                                | 1.420                                 | 0.000                                 | 0.210                                 | 0.070                                 | 0.690                                 | 1.060                                 | 0.140                                 | 0.790                                 |
| Validation Points | (m)           | 2.00                                  | 0.00                                  | 0.40                                  | 0.00                                  | 0.30                                  | 0.30                                  | 0.50                                  | 0.00                                  | 0.00                                  | 0.60                                  | 0.30                                  | 0.00                                  | 0.40                                  | 0.00                                  | 0.30                                  |
|                   | Model Var (m) | 0.61                                  | 0.61                                  | 0.61                                  | 0.03                                  | 0.53                                  | 0.32                                  | 0.23                                  | 1.42                                  | 00.00                                 | 0.81                                  | 0.37                                  | 0.69                                  | 1.46                                  | 0.14                                  | 1.09                                  |
| oordinates        | Long          | 11.211108°                            | 11.210841°                            | 11.217271°                            | 11.222374°                            | 11.225920°                            | 11.208569°                            | 11.210040°                            | 11.204472°                            | 11.210893°                            | 11.222359°                            | 11.224580°                            | 11.213904°                            | 11.221423°                            | 11.225893°                            | 11.229743°                            |
| Validation C      | Lat           | 11.211108°                            | 11.210841°                            | 11.217271°                            | 11.222374°                            | 11.225920°                            | 11.208569°                            | 11.210040°                            | 11.204472°                            | 11.210893°                            | 11.22359°                             | 11.224580°                            | 11.213904°                            | 11.221423°                            | 11.225893°                            | 11.229743°                            |
| Point             | Number        | 516                                   | 516                                   | 517                                   | 518                                   | 519                                   | 522                                   | 523                                   | 524                                   | 525                                   | 527                                   | 528                                   | 529                                   | 530                                   | 5311                                  | 532                                   |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | 0.410                                 | 0.140                                 | -0.630                                | -0.470                                | -0.460                                | 090.0                                 | -0.260                                | -0.470                                | 090.0                                 | -0.370                                | -0.010                                | 090.0                                 | -1.140                                | -0.550                                | 0.190                                 |
| Validation Points | (m)           | 0.40                                  | 0.60                                  | 0.70                                  | 0.50                                  | 0.50                                  | 00.00                                 | 0.50                                  | 0.50                                  | 00.0                                  | 0.40                                  | 0.10                                  | 00.0                                  | 1.40                                  | 0.80                                  | 0.00                                  |
|                   | Model Var (m) | 0.81                                  | 0.74                                  | 0.07                                  | 0.03                                  | 0.04                                  | 0.06                                  | 0.24                                  | 0.03                                  | 0.06                                  | 0.03                                  | 0.09                                  | 0.06                                  | 0.26                                  | 0.25                                  | 0.19                                  |
| cordinates        | Long          | 11.233144°                            | 11.237016°                            | 11.238605°                            | 11.242109°                            | 11.230377°                            | 11.233633°                            | 11.234754°                            | 11.242043°                            | 11.243150°                            | 11.246368°                            | 11.251984°                            | 11.254013°                            | 11.257573°                            | 11.221280°                            | 11.227005°                            |
| Validation Co     | Lat           | 11.233144°                            | 11.237016°                            | 11.238605°                            | 11.242109°                            | 11.230377°                            | 11.233633°                            | 11.234754°                            | 11.242043°                            | 11.243150°                            | 11.246368°                            | 11.251984°                            | 11.254013°                            | 11.257573°                            | 11.221280°                            | 11.227005°                            |
| Point             | Number        | 533                                   | 534                                   | 535                                   | 536                                   | 537                                   | 538                                   | 539                                   | 540                                   | 5411                                  | 542                                   | 543                                   | 544                                   | 546                                   | 547                                   | 548                                   |

-

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | 0.440                                 | 0.030                                 | 0.100                                 | -0.170                                | 0.530                                 | -0.170                                | 0.720                                 | 0.360                                 | -0.260                                | 0.290                                 | 0.450                                 | 0.110                                 | -0.370                                | -0.270                                | -0.170                                |
| Validation Points | (m)           | 00.00                                 | 00.00                                 | 0.40                                  | 0.20                                  | 0.60                                  | 0.30                                  | 0.30                                  | 0.60                                  | 0.30                                  | 0.30                                  | 0.20                                  | 0.30                                  | 0.40                                  | 0.30                                  | 0.20                                  |
|                   | Model Var (m) | 0.44                                  | 0.03                                  | 0.50                                  | 0.03                                  | 1.13                                  | 0.13                                  | 1.02                                  | 0.96                                  | 0.04                                  | 0.59                                  | 0.65                                  | 0.41                                  | 0.03                                  | 0.03                                  | 0.03                                  |
| cordinates        | Long          | 11.221722°                            | 11.226411°                            | 11.229932°                            | 11.235670°                            | 11.238782°                            | 11.240647°                            | 11.239547°                            | 11.246493°                            | 11.298066                             | 11.301496                             | 11.306124                             | 11.308551                             | 11.317684                             | 11.326560                             | 11.328879                             |
| Validation C      | Lat           | 11.221722°                            | 11.226411°                            | 11.229932°                            | 11.235670°                            | 11.238782°                            | 11.240647°                            | 11.239547°                            | 11.246493°                            | 11.2980659                            | 11.3014962                            | 11.3061245                            | 11.3085512                            | 11.3176845                            | 11.3265605                            | 11.3288788                            |
| Point             | Number        | 549                                   | 550                                   | 5511                                  | 553                                   | 554                                   | 555                                   | 556                                   | 557                                   | 14                                    | 15                                    | 16                                    | 17                                    | 18                                    | 19                                    | 20                                    |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
| I                 | Error         | -0.270                                | -0.270                                | -0.270                                | -0.270                                | -0.170                                | -0.350                                | -0.130                                | -0.270                                | -0.270                                | 0.030                                 | 0.050                                 | 0.030                                 | 0.030                                 | 1.260                                 | 0.030                                 |
| Validation Points | (m)           | 0.30                                  | 0.30                                  | 0.30                                  | 0.30                                  | 0.20                                  | 0.40                                  | 0.30                                  | 0.30                                  | 0.30                                  | 0.00                                  | 0.00                                  | 0.00                                  | 0.00                                  | 0.00                                  | 0.00                                  |
|                   | Model Var (m) | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.05                                  | 0.17                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.05                                  | 0.03                                  | 0.03                                  | 1.26                                  | 0.03                                  |
| Coordinates       | Long          | 11.331491                             | 11.330256                             | 11.329255                             | 11.327394                             | 11.326020                             | 11.323685                             | 11.322965                             | 11.323443                             | 11.324431                             | 11.334747                             | 11.338999                             | 11.342305                             | 11.334688                             | 11.348628                             | 11.355073                             |
| Validation (      | Lat           | 11.3314911                            | 11.3302559                            | 11.3292548                            | 11.3273943                            | 11.3260198                            | 11.3236854                            | 11.3229652                            | 11.3234427                            | 11.3244313                            | 11.334747                             | 11.3389988                            | 11.3423045                            | 11.3346881                            | 11.3486278                            | 11.3550731                            |
| Point             | Number        | 21                                    | 22                                    | 23                                    | 24                                    | 25                                    | 26                                    | 27                                    | 28                                    | 29                                    | 30                                    | 31                                    | 32                                    | 33                                    | 34                                    | 35                                    |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | 1.060                                 | 0.670                                 | -0.760                                | 0.690                                 | 0.030                                 | 0.160                                 | 0.030                                 | 1.750                                 | 0.800                                 | 0.840                                 | 1.030                                 | -0.470                                | 0.150                                 | 0.420                                 | -0.220                                |
| Validation Points | (m)           | 00.00                                 | 00.00                                 | 1.30                                  | 0.30                                  | 00.00                                 | 00.00                                 | 00.00                                 | 00.00                                 | 0.50                                  | 1.00                                  | 0.50                                  | 1.67                                  | 1.30                                  | 1.00                                  | 0.50                                  |
|                   | Model Var (m) | 1.06                                  | 0.67                                  | 0.54                                  | 0.99                                  | 0.03                                  | 0.16                                  | 0.03                                  | 1.75                                  | 1.30                                  | 1.84                                  | 1.53                                  | 1.20                                  | 1.45                                  | 1.42                                  | 0.28                                  |
| oordinates        | Long          | 11.361939                             | 11.354822                             | 11.354866                             | 11.354704                             | 11.355029                             | 11.354979                             | 11.355387                             | 11.355512                             | 11.354813                             | 11.355468                             | 11.355376                             | 11.355273                             | 11.355199                             | 11.357854                             | 11.359943                             |
| Validation C      | Lat           | 11.3619394                            | 11.354822                             | 11.3548664                            | 11.3547036                            | 11.3550289                            | 11.3549791                            | 11.3553866                            | 11.3555121                            | 11.3548125                            | 11.3554676                            | 11.355376                             | 11.3552729                            | 11.3551991                            | 11.3578545                            | 11.3599432                            |
| Point             | Number        | 36                                    | 37                                    | 38                                    | 39                                    | 40                                    | 41                                    | 42                                    | 43                                    | 45                                    | 46                                    | 47                                    | 48                                    | 49                                    | 50                                    | 51                                    |
| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
| I                 | Error         | -0.470                                | -0.370                                | -0.200                                | -0.800                                | -0.670                                | -0.460                                | -0.440                                | -0.590                                | -1.140                                | -1.110                                | 0.050                                 | 0.030                                 | 0.030                                 | 0.040                                 | -0.150                                |
| Validation Points | (m)           | 0.50                                  | 1.50                                  | 1.30                                  | 1.30                                  | 1.30                                  | 1.50                                  | 1.50                                  | 1.50                                  | 1.50                                  | 1.50                                  | 0.00                                  | 0.00                                  | 0.00                                  | 0.00                                  | 0.30                                  |
|                   | Model Var (m) | 0.03                                  | 1.13                                  | 1.10                                  | 0.50                                  | 0.63                                  | 1.04                                  | 1.06                                  | 0.91                                  | 0.36                                  | 0.39                                  | 0.05                                  | 0.03                                  | 0.03                                  | 0.04                                  | 0.15                                  |
| Coordinates       | Long          | 11.360706                             | 11.360488                             | 11.360155                             | 11.360086                             | 11.360100                             | 11.360358                             | 11.360523                             | 11.361270                             | 11.366173                             | 11.370584                             | 11.380160                             | 11.379148                             | 11.379140                             | 11.377502                             | 11.378761                             |
| Validation (      | Lat           | 11.3607056                            | 11.3604877                            | 11.3601551                            | 11.3600863                            | 11.3601004                            | 11.3603582                            | 11.3605233                            | 11.3612698                            | 11.3661733                            | 11.3705837                            | 11.3801604                            | 11.3791484                            | 11.3791402                            | 11.377502                             | 11.3787605                            |
| Point             | Number        | 52                                    | 53                                    | 54                                    | 55                                    | 56                                    | 57                                    | 58                                    | 59                                    | 60                                    | 61                                    | 62                                    | 63                                    | 64                                    | 65                                    | 67                                    |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | -0.130                                | -0.120                                | 0.080                                 | 0.060                                 | -0.130                                | 0.030                                 | -1.470                                | -1.360                                | -0.450                                | 1.450                                 | 0.900                                 | 0.160                                 | 0.060                                 | -0.020                                | 0.150                                 |
| Validation Points | (m)           | 0.20                                  | 0.20                                  | 00.00                                 | 00.00                                 | 0.20                                  | 00.00                                 | 1.50                                  | 1.50                                  | 0.50                                  | 0.30                                  | 0.50                                  | 1.00                                  | 00.0                                  | 0.05                                  | 0.00                                  |
|                   | Model Var (m) | 0.07                                  | 0.08                                  | 0.08                                  | 0.06                                  | 0.07                                  | 0.03                                  | 0.03                                  | 0.14                                  | 0.05                                  | 1.75                                  | 1.40                                  | 1.16                                  | 0.06                                  | 0.03                                  | 0.15                                  |
| oordinates        | Long          | 11.380006                             | 11.380416                             | 11.379400                             | 11.379840                             | 11.377771                             | 11.374925                             | 11.372062                             | 11.364041                             | 11.360356                             | 11.357218                             | 11.357002                             | 11.355984                             | 11.355864                             | 11.355829                             | 11.355824                             |
| Validation C      | Lat           | 11.3800061                            | 11.380416                             | 11.3793997                            | 11.3798401                            | 11.3777706                            | 11.3749251                            | 11.3720621                            | 11.3640406                            | 11.3603561                            | 11.3572179                            | 11.3570016                            | 11.355984                             | 11.3558635                            | 11.3558289                            | 11.3558244                            |
| Point             | Number        | 69                                    | 70                                    | 75                                    | 76                                    | 17                                    | 78                                    | 62                                    | 80                                    | 81                                    | 82                                    | 83                                    | 84                                    | 85                                    | 86                                    | 87                                    |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | -0.020                                | -1.640                                | 0.800                                 | 0.030                                 | 0.270                                 | 0.670                                 | 0.030                                 | 0.030                                 | 0.110                                 | -0.850                                | -0.170                                | -0.820                                | -0.490                                | -1.160                                | -0.470                                |
| Validation Points | (m)           | 0.05                                  | 1.67                                  | 00.0                                  | 00.00                                 | 0.00                                  | 00.0                                  | 00.00                                 | 00.00                                 | 1.70                                  | 1.10                                  | 0.20                                  | 1.50                                  | 1.80                                  | 1.20                                  | 0.50                                  |
|                   | Model Var (m) | 0.03                                  | 0.03                                  | 0.80                                  | 0.03                                  | 0.27                                  | 0.67                                  | 0.03                                  | 0.03                                  | 1.81                                  | 0.25                                  | 0.03                                  | 0.68                                  | 1.31                                  | 0.04                                  | 0.03                                  |
| Coordinates       | Long          | 11.355769                             | 11.355045                             | 11.355832                             | 11.354309                             | 11.352422                             | 11.351967                             | 11.350740                             | 11.345860                             | 11.344688                             | 11.338853                             | 11.337412                             | 11.336867                             | 11.336310                             | 11.335365                             | 11.328473                             |
| Validation (      | Lat           | 11.3557693                            | 11.3550445                            | 11.3558315                            | 11.3543089                            | 11.3524216                            | 11.3519669                            | 11.3507399                            | 11.3458597                            | 11.3446879                            | 11.3388534                            | 11.3374115                            | 11.3368674                            | 11.3363097                            | 11.3353646                            | 11.3284728                            |
| Point             | Number        | 88                                    | 89                                    | 91                                    | 93                                    | 94                                    | 95                                    | 96                                    | 97                                    | 98                                    | 333                                   | 334                                   | 335                                   | 337                                   | 339                                   | 340                                   |

-

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | -0.470                                | -0.470                                | -1.470                                | -0.770                                | -0.770                                | -0.470                                | -0.470                                | -0.470                                | -0.470                                | -0.570                                | -0.740                                | -0.770                                | -1.260                                | -0.430                                | 0.270                                 |
| Validation Points | (m)           | 0.50                                  | 0.50                                  | 1.50                                  | 0.80                                  | 0.80                                  | 0.50                                  | 0.50                                  | 0.50                                  | 0.50                                  | 1.50                                  | 1.00                                  | 0.80                                  | 1.40                                  | 0.50                                  | 0.60                                  |
|                   | Model Var (m) | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.93                                  | 0.26                                  | 0.03                                  | 0.14                                  | 0.07                                  | 0.87                                  |
| cordinates        | Long          | 11.327506                             | 11.325336                             | 11.323245                             | 11.322603                             | 11.321574                             | 11.320723                             | 11.319620                             | 11.318496                             | 11.317585                             | 11.315527                             | 11.313671                             | 11.311317                             | 11.306635                             | 11.303468                             | 11.302558                             |
| Validation C      | Lat           | 11.3275058                            | 11.3253356                            | 11.3232449                            | 11.322603                             | 11.3215742                            | 11.3207226                            | 11.3196202                            | 11.318496                             | 11.3175847                            | 11.3155273                            | 11.3136705                            | 11.3113172                            | 11.3066346                            | 11.3034681                            | 11.3025577                            |
| Point             | Number        | 341                                   | 342                                   | 343                                   | 344                                   | 345                                   | 346                                   | 347                                   | 348                                   | 349                                   | 350                                   | 351                                   | 352                                   | 354                                   | 355                                   | 356                                   |

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 |
|                   | Error         | -1.230                                | -0.770                                | -0.040                                | 0.710                                 | 0.480                                 | 0.000                                 | 0.120                                 | 1.810                                 | 060.0-                                | -0.530                                | 0.030                                 | -0.820                                | 0.080                                 | 0.510                                 | -0.240                                |
| Validation Points | (m)           | 1.60                                  | 0.80                                  | 0.50                                  | 1.30                                  | 0.00                                  | 1.00                                  | 1.00                                  | 0.30                                  | 1.50                                  | 1.00                                  | 0.00                                  | 1.30                                  | 1.00                                  | 0.50                                  | 1.00                                  |
|                   | Model Var (m) | 0.37                                  | 0.03                                  | 0.46                                  | 2.01                                  | 0.48                                  | 1.00                                  | 1.12                                  | 2.11                                  | 1.41                                  | 0.47                                  | 0.03                                  | 0.48                                  | 1.08                                  | 1.01                                  | 0.76                                  |
| Coordinates       | Long          | 11.302397                             | 11.298436                             | 11.294868                             | 11.293734                             | 11.293370                             | 11.292943                             | 11.293427                             | 11.292916                             | 11.289303                             | 11.289092                             | 11.289094                             | 11.289080                             | 11.288013                             | 11.288064                             | 11.288232                             |
| Validation (      | Lat           | 11.3023971                            | 11.2984362                            | 11.294868                             | 11.2937343                            | 11.2933704                            | 11.2929432                            | 11.2934266                            | 11.2929157                            | 11.2893033                            | 11.2890916                            | 11.289094                             | 11.2890801                            | 11.2880125                            | 11.2880645                            | 11.288232                             |
| Point             | Number        | 357                                   | 358                                   | 359                                   | 360                                   | 361                                   | 362                                   | 363                                   | 364                                   | 365                                   | 366                                   | 367                                   | 368                                   | 369                                   | 370                                   | 371                                   |

-

| Rain Return /     | Scenario      | 100 -Year                             |
|-------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
|                   | Event/Date    | Typhoon Seniang/<br>December 30, 2014 | Iyphoon Seniang/<br>December 30, 2014 |
|                   | Error         | -0.570                                | 0:030                                 | 0:030                                 | 0:030                                 | 0.040                                 | 0.060                                 | 0.290                                 | 0.110                                 | 0.910                                 | 0.070                                 | 060.0                                 | 0.030                                 | 0.370                                 | 1.170                                 | 0.120                                 | 0.140                                 |
| Validation Points | (m)           | 0.60                                  | 0.00                                  | 0.00                                  | 00.00                                 | 0.00                                  | 00.0                                  | 0.00                                  | 0.80                                  | 00.00                                 | 0.00                                  | 0.00                                  | 0.00                                  | 1.00                                  | 0.20                                  | 0.00                                  | 0.00                                  |
|                   | Model Var (m) | 0.03                                  | 0.03                                  | 0.03                                  | 0.03                                  | 0.04                                  | 0.06                                  | 0.29                                  | 0.91                                  | 0.91                                  | 0.07                                  | 0.09                                  | 0.03                                  | 1.37                                  | 1.37                                  | 0.12                                  | 0.14                                  |
| coordinates       | Long          | 11.298406                             | 11.295427                             | 11.295511                             | 11.295624                             | 11.294855                             | 11.293044                             | 11.293232                             | 11.294509                             | 11.294511                             | 11.293952                             | 11.293092                             | 11.293574                             | 11.291848                             | 11.291845                             | 11.289412                             | 11.289710                             |
| Validation (      | Lat           | 11.2984057                            | 11.2954268                            | 11.2955106                            | 11.2956239                            | 11.2948552                            | 11.2930443                            | 11.2932318                            | 11.2945088                            | 11.2945105                            | 11.2939521                            | 11.2930919                            | 11.293574                             | 11.2918483                            | 11.2918446                            | 11.2894117                            | 11.2897099                            |
| Point             | Number        | 383                                   | 384                                   | 385                                   | 386                                   | 387                                   | 388                                   | 389                                   | 390                                   | 391                                   | 393                                   | 394                                   | 395                                   | 396                                   | 397                                   | 398                                   | 399                                   |

## Annex 12. Educational Institutions Affected by Flooding in Sangputan Floodplain

Table A-12.1. Educational Institutions in Alangalang, Leyte affected by flooding in Sangputan Floodplain

|                                             | LEYTE              |        |              |          |
|---------------------------------------------|--------------------|--------|--------------|----------|
| ALA                                         | NGALANG            |        |              |          |
| Duilding Norre                              | Deveneeu           | Ra     | infall Scena | ario     |
| Building Name                               | Barangay           | 5-year | 25-year      | 100-year |
| Brgy. San Francisco East Day Care Center    | Binotong           |        |              |          |
| Salazar Elementary School                   | Binotong           |        | Low          | Medium   |
| Salazar National High School                | Binotong           |        | Low          | Low      |
| San Francisco East Primary School           | Binotong           |        | Low          | Low      |
| Lukay Elementary School                     | Borseth            | Medium | Medium       | Medium   |
| Veteranos Elementary School                 | Bugho              | Low    | Low          | Medium   |
| Day Care Center                             | Calaasan           |        |              |          |
| Tinaisan Elementary School                  | Calaasan           |        |              |          |
| Alangalang II Binongtuan Central            | Cavite             | Low    | Medium       | Medium   |
| VSU Alangalang Campus                       | Cavite             | Medium | Medium       | Medium   |
| Andres C. Yu Sr. Memorial Elementary School | Ekiran             |        |              |          |
| Brgy. Bugho Day Care Center                 | Ekiran             | Low    | Low          | Low      |
| Brgy. Ekiran Day Care Center                | Ekiran             |        |              |          |
| Bugho Elementary School                     | Ekiran             | Low    | Low          | Low      |
| Alangalang Central School                   | Holy Child I       |        |              |          |
| Alangalang Central School                   | Holy Child II      |        |              |          |
| Brgy. San Roque Daycare Center              | Holy Child II      |        |              |          |
| P. Barrantes Community School               | Hubang             |        |              |          |
| Brgy. Hubang Day Care Center                | Lukay              |        |              |          |
| Hubang Elementary School                    | Lukay              |        |              |          |
| Lukay Elementary School                     | Lukay              |        |              |          |
| M. Casaus Elementary School                 | Milagrosa          | Low    | Low          | Low      |
| P. Barrantes Community School               | P. Barrantes       |        |              |          |
| Trinidad B. Caidic National High School     | P. Barrantes       |        |              |          |
| Brgy. Caalasan Day Care Center              | San Francisco East |        |              | Low      |
| Caalasan Elementary School                  | San Francisco East | Low    | Medium       | Medium   |
| Hubang Elementary School                    | San Francisco East |        |              | Low      |
| Alangalang Agro-Industrial School           | San Vicente        | High   | High         | High     |
| Alangalang Agro-Industrial School           | San Vicente        | Medium | High         | High     |
| Alangalang II Binongtuan Central            | San Vicente        | Medium | Medium       | Medium   |
| Brgy. Binongtuan Daycare Center             | San Vicente        | Medium | Medium       | High     |
| Cavite Primary School                       | San Vicente        | Low    | Low          | Medium   |
| San Vicente Daycare Center                  | San Vicente        |        |              |          |
| San Vicente Elementary School               | San Vicente        |        |              |          |
| San Vicente Elementary School Stage         | San Vicente        |        |              |          |
| Tombo Elementary School                     | Santiago           |        |              |          |
| Alangalang Central School                   | Santo Niño         | Low    | Low          | Low      |

LEYTE BARUGO **Rainfall Scenario Building Name** Barangay 5-year 25-year 100-year Balud Elementary School Balud Brgy. Balud Daycare Center Balud Busay Elementary School Bulod Low Low Brgy. Cabarasan Daycare Center Busay Low Low Cabarasan Primary School Cabarasan Celestino de Guzman National High School Cabarasan Brgy. Duka Daycare Center Duka Low Low Low Duka Elementary School Duka Low Low Low

Table A-12.2. Educational Institutions in Barugo, Leyte affected by flooding in Sangputan Floodplain

|                                       | LEYTE       |        |              |          |
|---------------------------------------|-------------|--------|--------------|----------|
|                                       | JARO        |        |              |          |
| Duilding Name                         | Barangay    | R      | ainfall Scen | ario     |
| Building Name                         | Багапдау    | 5-year | 25-year      | 100-year |
| Brgy. San Isidro Day Care Center      | Alahag      |        |              |          |
| San Isidro Elementary School          | Alahag      |        |              | Low      |
| Buenavista Elementary School          | Buenavista  | Medium | Medium       | Medium   |
| Brgy. Buri Day Care Center            | Buri        |        |              |          |
| Buri Elementary School                | Buri        |        |              | Low      |
| Granja-Kalinawan National High School | District I  |        | Low          | Low      |
| Granja Central School                 | District I  |        |              |          |
| Jaro District 1 Elementary School     | District I  |        |              |          |
| Notre Dame of Jaro, Inc.              | District I  |        |              |          |
| Sparkies Baptist Academy              | District I  |        |              |          |
| Brgy. 1 Daycare Center                | District IV | Medium | Medium       | Medium   |
| Jaro District 1 Elementary School     | District IV |        | Low          | Low      |
| Jaro Senior High School               | District IV |        |              |          |
| Notre Dame of Jaro, Inc.              | District IV |        |              |          |
| Granja Central School                 | Kalinawan   |        |              |          |
| Macanip Elementary School             | Macanip     |        |              |          |
| Olotan Elementary School              | Olotan      | Low    | Low          | Low      |
| Brgy. Pitogo Day Care Center          | Pitogo      |        |              |          |
| Pitogo Elementary School              | Pitogo      | Low    | Low          | Low      |
| Brgy. Sagcahan Daycare Center         | Sagkahan    |        |              |          |
| Sagcahan Elementary School            | Sagkahan    | Low    | Low          | Medium   |

|                                        | LEYTE        |        |              |          |
|----------------------------------------|--------------|--------|--------------|----------|
| SA                                     | N MIGUEL     |        |              |          |
|                                        |              | Ra     | ainfall Scen | ario     |
| Building Name                          | Barangay     | 5-year | 25-year      | 100-year |
| Sta. Cruz Elementary School            | Bagacay      |        |              |          |
| Bahay Elementary School                | Bahay        | Low    | Low          | Medium   |
| Brgy. Cabatianuhan Daycare Center      | Bairan       |        |              |          |
| Cabatianuhan Elementary School         | Bairan       | Low    | Low          | Low      |
| Brgy. Canap Daycare Center             | Canap        |        |              |          |
| Canap Elementary School                | Canap        |        |              |          |
| Brgy. Caray-Caray Daycare Center       | Caraycaray   | Medium | Medium       | High     |
| Brgy. San Andres Daycare Center        | Caraycaray   | Low    | Medium       | Medium   |
| Caray-Caray Elementary School          | Caraycaray   | Medium | Medium       | Medium   |
| San Andres Primary School              | Caraycaray   | Low    | Medium       | Medium   |
| Home Economics Building                | Cayare       |        | High         | High     |
| San Miguel Adventist Multigrade School | Cayare       |        | High         | High     |
| San Miguel Central School              | Cayare       |        | Low          | Low      |
| San Miguel National High School        | Cayare       |        |              |          |
| Guinciaman Elementary School           | Guinciaman   |        |              |          |
| Bairan Primary School                  | Libtong      |        | Medium       | Medium   |
| Brgy. Bairan Daycare Center            | Libtong      | Low    | Medium       | Medium   |
| San Miguel National High School        | Libtong      |        | Low          | Low      |
| Lukay Elementary School                | Lukay        |        |              |          |
| Brgy. Malaguinabot Daycare Center      | Malaguinabot |        |              |          |
| Malaguinabot Elementary School         | Malaguinabot | Medium | Medium       | Medium   |
| Mawodpawod Elementary School           | Mawodpawod   |        |              |          |
| Sta. Cruz Daycare Center               | Santa Cruz   |        |              |          |
| Sta. Cruz Elementary School            | Santa Cruz   |        |              |          |
| Santol Elementary School               | Santol       |        | Low          | Medium   |

Table A-12.4. Educational Institutions in San Miguel, Leyte affected by flooding in Sangputan Floodplain

## Annex 13. Medical Institutions Affected by Flooding in Sangputan Floodplain

|                                           | LEYTE         |        |               |          |
|-------------------------------------------|---------------|--------|---------------|----------|
| ALA                                       | NGALANG       |        |               |          |
| Duilding Nome                             | Demonstra     |        | Rainfall Scen | ario     |
| Building Name                             | вагапдау      | 5-year | 25-year       | 100-year |
| Brgy. Cabadsan Daycare Center and SK Hall | Binotong      | Low    | Medium        | Medium   |
| Brgy. Veteranos Health Center             | Bugho         |        |               | Low      |
| Brgy. Ekiran Health Center                | Ekiran        |        |               |          |
| Brgy. Blumentritt Health Center           | Holy Child I  |        |               |          |
| Brgy. San Roque Health Center             | Holy Child II |        |               |          |

Table A-13.1. Medical Institutions in Alangalang, Leyte affected by flooding in Sangputan Floodplain

Table A-13.2. Medical Institutions in Barugo, Leyte affected by flooding in Sangputan Floodplain

|                               | LEYTE        |        |              |          |
|-------------------------------|--------------|--------|--------------|----------|
|                               | BARUGO       |        |              |          |
|                               | Demonstrativ | Ra     | infall Scena | ario     |
| Building Name                 | Darangay     | 5-year | 25-year      | 100-year |
| Brgy. Cabarasan Health Center | Cabarasan    |        |              |          |

Table A-13.3. Medical Institutions in Jaro, Leyte affected by flooding in Sangputan Floodplain

|                              | LEYTE       |        |              |          |
|------------------------------|-------------|--------|--------------|----------|
|                              | JARO        |        |              |          |
|                              | Damana      | R      | ainfall Scen | ario     |
| Building Name                | Barangay    | 5-year | 25-year      | 100-year |
| Jaro Municipal Health Office | District IV |        |              |          |
| Khing's Farmacia             | District IV |        |              |          |

Table A-13.4. Medical Institutions in San Miguel, Leyte affected by flooding in Sangputan Floodplain

| LEYTE                            |              |                   |         |          |
|----------------------------------|--------------|-------------------|---------|----------|
| SAN MIGUEL                       |              |                   |         |          |
| Building Name                    | Barangay     | Rainfall Scenario |         |          |
|                                  |              | 5-year            | 25-year | 100-year |
| Brgy. Cabatianuhan Health Center | Bairan       |                   |         |          |
| Brgy. Canap Health Center        | Canap        |                   |         |          |
| Brgy. Guinciaman Health Center   | Guinciaman   |                   |         |          |
| Brgy. Lukay Health Center        | Lukay        |                   |         |          |
| Brgy. Malaguinabot Health Center | Malaguinabot |                   | Low     | Low      |
| Brgy. Santol Health Center       | Santol       |                   | Low     | Medium   |