Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Palo River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University Department of Science and Technology

APRIL 2017

© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). 2017), LiDAR Surveys and Flood Mapping of Palo River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. 280 pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP-TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr. Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-211-6

TABLE OF CONTENTS

LIST OF TABLES	4
LIST OF FIGURES	5
LIST OF ACRONYMS AND ABBREVIATIONS	6
CHAPTER 1: OVERVIEW OF THE PROGRAM AND PALO RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Palo River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE PALO FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Station	6
2.3 Flight Missions	. 15
2.4 Survey Coverage	. 17
CHAPTER 3: LIDAR DATA PROCESSING OF THE PALO FLOODPLAIN	.19
3.1 Overview of the LiDAR Data Pre-Processing	.19
3.2 Transmittal of Acquired LiDAR Data	.20
3.3 Trajectory Computation	. 20
3.4 LiDAR Point Cloud Computation	.22
3.5 LiDAR Data Quality Checking	.25
3.6 LiDAR Point Cloud Classification and Rasterization	.27
3.7 LiDAR Image Processing and Orthophotograph Rectification	.29
3.8 DEM Editing and Hydro-Correction	.31
3.9 Mosaicking of Blocks	. 32
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	.35
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.38
3.12 Feature Extraction	.40
3.12.1 Quality Checking of Digitized Features' Boundary	.40
3.12.2 Height Extraction	.40
3.12.3 Feature Attribution	.41
3.12.4 Final Quality Checking of Extracted Features	.42
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PALO RIVER BASIN	.43
4.1 Summary of Activities	.43
4.2 Control Survey	. 45
4.3 Baseline Processing	. 49
4.4 Network Adjustment	. 50
4.5 Cross-section and Bridge As-Built Survey	.53
4.6 Validation Points Acquisition Survey	.57
4.7 Bathymetric Survey	. 60
CHAPTER 5: FLOOD MODELING AND MAPPING	.63
5.1 Data used	. 63
5.1.1 Hydrometry and Rating Curves	.63
5.1.2 Precipitation	. 63
5.1.3 Rating Curves and River Outflow	.64
5.2 RIDF Station	. 65
5.3 HMS Model	. 67
5.4 Cross-section Data	.70
5.5 Flo 2D Model	.71
5.6 Results of HMS Calibration	.72
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods	.74
5.7.1 Hydrograph using the Rainfall Runoff Model	.74
5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method	.75
5.8 River Analysis Model Simulation	.79
5.9 Flood Hazard and Flow Depth Map	.79
5.10 Affected Areas	. 83
5.11 Flood Validation1	105
REFERENCES1	108
ANNEXES	109
Annex 1. OPTECH Technical Specification of the Sensor1	107
Annex 2. NAMRIA Certificates of Reference Points Used1	109
Annex 3 Baseline Processing Report for the Established Ground Control Point	112

Annex 4. The Survey Team	117
Annex 5. Data Transfer Sheet for Palo Floodplain	118
Annex 6. Flight Logs	123
Annex 7. Flight Status Report	140
Annex 8. Mission Summary Report	159
Annex 9. Palo Model Basin Parameters	244
Annex 10. Palo Model Reach Parameters	248
Annex 11. Palo Field Validation	249
Annex 12. Educational Institutions Affected in Palo Floodplain	255
Annex 13. Medical Institutions Affected in Palo Floodplain	257

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system.	3
Table 2. Flight planning parameters for Gemini LiDAR system	3
fable 3. Details of the reprocessed NAMIRIA Benchmark LY-881 used as base station	7
Table 4. Details of the recovered NAMPIA borizontal control point IVT-101 used as base	/
station for the LiDAR Acquisition	8
Table 5. Details of the recovered NAMRIA horizontal control point SMR-53 used as hase	0
station for the LiDAR acquisition	9
Table 6. Details of the reprocessed NAMRIA Benchmark SM-286 used as base station	
for LiDAr acquisition.	. 10
Table 7. Details of the recovered NAMRIA horizontal control point SMR-56 used as base	
station for the LiDAR acquisition.	.11
Table 8. Details of the recovered NAMRIA horizontal control point LYT-104 with processed	
coordinates used as base station for the LiDAR acquisition	.12
Table 9. Details of the reprocessed NAMRIA Benchmark LY-123 used as base station for LiDAR	
acquisition	. 12
Table 10. Details of the reprocessed NAMRIA Benchmark LY-110 used as base station for	
LiDAR acquisition	.13
Table 11. Ground Control Points used during LiDAR Data Acquisition.	.13
Table 12. Flight Missions for LiDAR Data Acquisition in Palo Floodplain.	.14
Table 13. Actual Parameters used during LiDAR Data Acquisition	.14
Table 14. List of Municipalities/Cities Surveyed during Palo Floodplain LiDAR survey	.15
Table 15. Self-Calibration Results values for Palo flights.	.20
Table 16. List of LiDAR blocks for Palo Floodplain.	.22
Table 17. Palo classification results in Terrascan.	.25
Table 18. LIDAR blocks with its corresponding area.	.29
Table 19. Shift values of each LiDAR BIOCK of Palo Flooupiain.	.51
Table 20. Calibilation Statistical Measures	26
Table 22. Quality Checking Ratings for Palo Building Features	28
Table 23. Ruilding Features Extracted for Palo Floodnlain	20
Table 24. Total Length of Extracted Roads for Palo Floodplain	39
Table 25. Number of Extracted Water Bodies for Palo Floodplain	.40
Table 26. List of references and control points used during the survey in Levte (Source:	
NAMRIA and UP-TCAGP)	.44
Table 27. Baseline Processing Report for Palo River Basin Static Survey	.48
Table 28. Control Point Constraints	.49
Table 29. Adjusted Grid Coordinates	.49
Table 30. Adjusted Geodetic Coordinates	. 50
Table 31. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	.51
Table 32. RIDF values for Tacloban Rain Gauge computed by PAGASA	.63
Table 33. Range of Calibrated Values for Palo	.71
Table 34. Summary of the Efficiency Test of Palo HMS Model	.72
Table 35. Peak values of the Palo HEC-HMS Model outflow using the Tacloban RIDF	.73
Table 36. Summary of Palo river (1) discharge generated in HEC-HMS	. 75
Table 37. Summary of Palo river (2) discharge generated in HEC-HMS.	.76
Table 38. Summary of Palo river (3) discharge generated in HEC-HIVIS	.76
Table 39. Summary of Palo river (4) discharge generated in HEC-HIVIS	.70
Table 40. Multicipalities affected in Palo Flooupidin	.70
Table 42. Affected Areas in Palo, Leyte during 5-Year Painfall Peturn Period	.//
Table 43 Affected Areas in Palo Leyte during 5-Year Rainfall Return Period	.02 82
Table 44. Affected Areas in Santa Fe. Levte during 5-Year Rainfall Return Period	.82
Table 45. Affected Areas in Tacloban City, Levte during 5-Year Rainfall Return Period	.84
Table 46. Affected Areas in Tacloban City. Levte during 5-Year Rainfall Return Period	.85
Table 47. Affected Areas in Tanauan, Levte during 5-Year Rainfall Return Period	.85
Table 48. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period	.87

Table 49. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	87
Table 50. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	
Table 51. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	
Table 52. Affected Areas in Santa Fe, Leyte during 25-Year Rainfall Return Period	
Table 53. Affected Areas in Tacloban City, Leyte during 25-Year Rainfall Return Period	91
Table 54. Affected Areas in Tacloban City, Leyte during 25-Year Rainfall Return Period	92
Table 55. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	92
Table 56. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	94
Table 57. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	94
Table 58. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	96
Table 59. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	96
Table 60. Affected Areas in Santa Fe, Leyte during 100-Year Rainfall Return Period	96
Table 61. Affected Areas in Tacloban City, Leyte during 100-Year Rainfall Return Period	98
Table 62. Affected Areas in Tacloban City, Leyte during 100-Year Rainfall Return Period	99
Table 63. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	99
Table 64. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	
Table 65. Area covered by each warning level with respect to the rainfall scenario	
Table 66. Actual Flood Depth vs Simulated Flood Depth in Palo	
Table 67. Summary of Accuracy Assessment in Palo	
Table 68. Summary of accuracy assessment in Palo	

LIST OF FIGURES

Figure 1. Map of Palo River Basin	2
Figure 2 Flight plan and hase stations for Palo Floodplain using the Aquarius sensor	<u> </u>
Figure 2. Flight plan and base stations for Palo Floodplain using the Gemini sensor	5
Figure 4. CDS set up over IV 991 at the concrete foundation of Coverner Center Welcome	
righter 4. GPS set-up over LI-861 at the concrete foundation of Governor Center Welcome	rial
sign at the junction of the road going to Ormoc, Samar, Tacioban and MacArthur Landing Memol	nai
Park in Brgy. Pawing, Paio, Leyte (a) and NAIVIRIA reference point LY-881 (b) as recovered by	_
the field team.	/
Figure 5. GPS set-up over LYT-101 situated within the premises of MacArthur's Landing Memoria	I
Park, Palo, Leyte (a) and NAMRIA reference point LYT-101 (b) as recovered by the field team	8
Figure 6. GPS set-up over SMR-53 located near the school building flag pole of San Isidro	
Elementary, Brgy. San Isidro, Santa Rita (a) and NAMRIA reference point SMR-53 (b) as recovered	l by
the field team	9
Figure 7. GPS set-up over SM-286 at Dalid Bridge along National Highway in Brgy. San Pascual,	
Sta. Rita, Samar (a) and NAMRIA reference point SM-286 (b) as recovered by the field team	10
Figure 8. GPS set-up over SMR-56 located inside Cabacungan Elementary School in Brgy.	
Cabacungan, Sta. Rita, Samar (a) and NAMRIA reference point SMR-56 (b) as recovered by	
the field team	11
Figure 9 GPS set-up over IVT-104 located and re-established along rice naddy trail	
annrovimately 90 meters from the centerline, east side of Pastrana-Santa Fe Road. District IV	
Pastrana Levte (a) and NAMBIA reference point IVT-104 (b) as recovered by the field team	12
Fastialia, Leyte (a) and NAMMA reference point LT-104 (b) as recovered by the field team	16
Figure 10. Actual LIDAN data acquisition for Palo Floodplain	17
Figure 11. Schematic Diagram for Data Pre-Processing Component	1/
Figure 12. Smoothed Performance Metric Parameters of Palo Flight 1020A	18
Figure 13. Solution Status Parameters of Palo Flight 1020A	19
Figure 14. Best Estimated Trajectory for Palo Floodplain	20
Figure 15. Boundary of the processed LiDAR data over Palo Floodplain	21
Figure 16. Image of data overlap for Palo Floodplain	23
Figure 17. Density map of merged LiDAR data for Palo Floodplain.	23
Figure 18. Elevation difference map between flight lines for Palo Floodplain.	24
Figure 19. Quality checking for Palo flight 1020A using the Profile Tool of QT Modeler.	25
Figure 20. Tiles for Palo Floodplain (a) and classification results (b) in TerraScan	26
Figure 21. Point cloud before (a) and after (b) classification.	26
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	/
DTM (d) in some portion of Palo Floodplain.	27
Figure 23. Palo Floodplain with available orthophotographs.	28
Figure 24. Sample orthophotograph tiles for Palo Floodplain	28
Figure 25. Portions in the DTM of Palo Floodplain – a bridge before (a) and after (b) manual editi	ng.
and a fish nond before (c) and after (d) data retrieval	30
Figure 26. Man of Processed LiDAR Data for Palo Floodnlain	30
Figure 27. Map of Palo Eloodalain with validation survey points in green	21
Figure 27. Map of Palo Floouplain with valuation survey points in green	34 25
Figure 20. Correlation plot between calibration survey points and LiDAR data	22
Figure 29. Correlation plot between valuation survey points and LIDAR data	30
Figure 30. Map of Palo Floodplain with bathymetric survey points shown in blue	3/
Figure 31. QC blocks for Palo building features.	38
Figure 32. Extracted features for Palo Floodplain	40
Figure 33. Palo River survey extent	42
Figure 34. GNSS Network in Palo River Field Survey	43
Figure 35. GNSS base set up, Trimble [®] SPS 852, at LYT-101, located at the General McArthur	
Shrine in Brgy. Candahog, Municipality of Palo, Leyte	44
Figure 36. GNSS base set up, Trimble [®] SPS 985, at LY-106, located at the approach of Bernard	
Reed Bridge along Maharlika Highway, Brgy. Luntad, Municipality of Palo, Leyte	45
Figure 37. Trimble [®] SPS 985 GNSS set up at UP-ABG in Cadacan Bridge, Abuyog, Leyte	45
Figure 38. GNSS receiver set up, Trimble [®] SPS 985, at UP DAG, an established control point,	
located at the bridge approach of the Daguitan Bridge along Maharlika Highway in	
Brgy. Fatima, Municipality of Dulag, Province of Levte	46
	-

Figure 39. GNSS receiver set up, Trimble [®] SPS 985, at UP-O, an established control point, located	
at the bridge approach of the Ormoc Merida Bridge along Ormoc-Merida-Isabel-Palompon Road	
in Broy Liloan City of Ormoc Province of Leyte	46
Eigure 40 CNSS base set up Trimble® SDS 952 at UD STN an established control point located	0
at Calayealay Bridge approach in Bray, Bray, Deblacian Zone 12, City of Baybay, Layte	47
at Calaycalay Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte	47
Figure 41. Cross-section survey using Trimble® SPS 882 – (A) bridge approach and (B) bridge	
deck of Bernard Reed Bridge, Palo, Leyte	51
Figure 42. Bernard Reed bridge cross-section location map	52
Figure 43. Palo (Bernard Reed) Bridge cross-section diagram	53
Figure 44. Palo (Bernard Reed) Bridge Data Form	54
Figure 45. Trimble [®] SPS 882 and RTK antenna set-up in a van for LiDAR validation survey	55
Figure 46 Validation Points Acquisition survey along Palo Levte	56
Figure 47 LiDAP Aquarius Validation Survey Set-up	57
Figure 47. LIDAR Aquarius validation survey slave the coast of Teelahan City and	
Figure 48. LIDAR Aquarius valuation survey along the coast of factoban City, and	50
Figure 49. Bathymetric survey using an OHMEX [™] Single Beam Echo Sounder with a mounted	
Trimble [®] SPS 882	59
Figure 50. Bathymetric points gathered in Palo River	59
Figure 51. Riverbed profile of Palo River	60
Figure 52. The location map of Palo HEC-HMS model used for calibration	61
Figure 53. Cross-Section Plot of San Jose Hanging Bridge	62
Figure 54 Rating Curve at San Jose Hanging Bridge	62
Figure 55. Rainfall and outflow data at San Jose Hanging Bridge used for modeling	63
Figure 55. Nannan and Outhow data at San Jose Hanging Druge discutor modeling	61
Figure 50. Location of Taclobali RIDF station relative to Palo River Basin	64
Figure 57. Synthetic storm generated for a 24-hr period rainfall for various return periods	.64
Figure 58. Soil Map of Palo River Basin	65
Figure 59. Land Cover Map of Palo River Basin	66
Figure 60. Slope Map of the Palo River Basin	67
Figure 61. Stream Delineation Map of the Palo River Basin	67
Figure 62. The Palo river basin model generated using HEC-HMS	.68
Figure 63. River cross-section of Palo River generated through ArcMan HEC GeoRAS tool	69
Figure 64. Screenshot of subcatchment with the computational area to be modeled in EIO_2D	.05
CDS Pro	70
	70
Figure 65. Outflow Hydrograph of San Jose Hanging Bridge generated in HEC-HMS model	
compared with observed outflow	71
Figure 66. Outflow hydrograph at Palo Station generated using Tacloban RIDF simulated in	
HEC-HMS	73
Figure 67. Palo river (1) generated discharge using 5-, 25-, and 100-year Tacloban City rainfall	
intensity-duration-frequency (RIDF) in HEC-HMS.	74
Figure 68 Palo river (2) generated discharge using 5- 25- and 100-year Taclohan City rainfall	
intensity duration frequency (PIDE) in HEC HMS	7/
Figure CO. Dela vivor (2) generated discharge using 5 - 25 - and 100 year Teelahan City minfall	/4
Figure 69. Paio river (3) generated discharge using 5-, 25-, and 100-year racioban City rainfair	
Intensity-duration-frequency (RIDF) in HEC-HMS.	.75
Figure 70. Palo river (4) generated discharge using 5-, 25-, and 100-year Tacloban City rainfall	
intensity-duration-frequency (RIDF) in HEC-HMS	75
Figure 71. Sample output Palo RAS Model	77
Figure 72. 100-year Flood Hazard Map for Palo Floodplain overlaid on Google Earth imagery	78
Figure 73, 100-year Flow Denth Man for Palo Floodnlain overlaid on Google Farth imagery	78
Figure 74, 25-year Flood Hazard Man for Palo Floodplain overlaid on Google Earth imagery	70
Figure 74. 25-year Flow Donth Man for Dala Floodplain overlaid on Google Earth imagery	70
Figure 75. 25-year Flow Depth Map for Palo Floodplain overlaid on Google Earth imagery	.79
Figure 76. 5-year Flood Hazard Map for Palo Floodplain overlaid on Google Earth Imagery	.80
Figure 77. 5-year Flow Depth Map for Palo Floodplain overlaid on Google Earth imagery	.80
Figure 78. Affected Areas in Palo, Leyte during 5-Year Rainfall Return Period	83
Figure 79. Affected Areas in Palo, Leyte during 5-Year Rainfall Return Period	83
Figure 80. Affected Areas in Palo, Leyte during 5-Year Rainfall Return Period	84
Figure 81. Affected Areas in Santa Fe. Levte during 5-Year Rainfall Return Period	85
Figure 82 Affected Areas in Taclohan City Levte during 5-Year Rainfall Return Period	86
Figure 83. Affected Areas in Tacloban City, Leyte during 5 Year Painfall Paturn Dariod	00
Figure 03. Affected Areas in Tacioball City, Leyte during 5-red Rallial Return Pariod	26
ENTRE AN ADELED MEAS IN FADALAN FEMA DUDINO 5-YOAR KAINTAII KOTUM KOTUM	86
Figure 04. Affected Aleas in Tanadan, Leyte during 5-fear Raman Return renouting and	.86 .87
Figure 85. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period	.86 .87 .88
Figure 85. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period Figure 86. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	86 87 88 90

Figure 88. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	91
Figure 89. Affected Areas in Santa Fe, Leyte during 25-Year Rainfall Return Period	92
Figure 90. Affected Areas in Tacloban City, Leyte during 25-Year Rainfall Return Period	93
Figure 91. Affected Areas in Tacloban City, Leyte during 25-Year Rainfall Return Period	93
Figure 92. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	94
Figure 93. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	95
Figure 94. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	97
Figure 95. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	97
Figure 96. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	98
Figure 97. Affected Areas in Santa Fe, Leyte during 100-Year Rainfall Return Period	99
Figure 98. Affected Areas in Tacloban City, Leyte during 100-Year Rainfall Return Period	100
Figure 99. Affected Areas in Tacloban City, Leyte during 100-Year Rainfall Return Period	100
Figure 100. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	101
Figure 101. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	102
Figure 102. Validation points for 5-year Flood Depth Map of Palo Floodplain	104
Figure 103. Flood map depth vs actual flood depth	104

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation					
Ab	abutment					
ALTM	Airborne LiDAR Terrain Mapper					
ARG	automatic rain gauge					
ATQ	Antique					
AWLS	Automated Water Level Sensor					
BA	Bridge Approach					
BM	benchmark					
CAD	Computer-Aided Design					
CN	Curve Number					
CSRS	Chief Science Research Specialist					
DAC	Data Acquisition Component					
DEM	Digital Elevation Model					
DENR	Department of Environment and Natural Resources					
DOST	Department of Science and Technolog					
DPPC	Data Pre-Processing Component					
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]					
DRRM	Disaster Risk Reduction and Management					
DSM	Digital Surface Model					
DTM	Digital Terrain Model					
DVBC	Data Validation and Bathymetry Component					
FMC	Flood Modeling Component					
FOV	Field of View					
GiA	Grants-in-Aid					
GCP	Ground Control Point					
GNSS	Global Navigation Satellite System					
GPS	Global Positioning System					
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System					
HEC-RAS	Hydrologic Engineering Center - River Analysis System					
HC	High Chord					
IDW	Inverse Distance Weighted [interpolation method]					

IMU	Inertial Measurement Unit						
kts	knots						
LAS	LiDAR Data Exchange File format						
LC	Low Chord						
LGU	local government unit						
Lidar	Light Detection and Ranging						
LMS	LiDAR Mapping Suite						
m AGL	meters Above Ground Level						
MMS	Mobile Mapping Suite						
MSL	mean sea level						
NSTC	Northern Subtropical Convergence						
PAF	Philippine Air Force						
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration						
PDOP	Positional Dilution of Precision						
РРК	Post-Processed Kinematic [technique]						
PRF	Pulse Repetition Frequency						
PTM	Philippine Transverse Mercator						
QC	Quality Check						
QT	Quick Terrain [Modeler]						
RA	Research Associate						
RIDF	Rainfall-Intensity-Duration-Frequency						
RMSE	Root Mean Square Error						
SAR	Synthetic Aperture Radar						
SCS	Soil Conservation Service						
SRTM	Shuttle Radar Topography Mission						
SRS	Science Research Specialist						
SSG	Special Service Group						
TBC	Thermal Barrier Coatings						
UPC	University of the Philippines Cebu						
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry						

CHAPTER 1: OVERVIEW OF THE PROGRAM AND PALO RIVER

Engr. Florentino Morales, Jr., and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 12 river basins in the Leyte Province (LiDAR covered area, you may leave this blank). The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Palo River Basin

Palo River Basin covers portions of the Municipalities of Santa Fe, Palo, Alangalang, Pastrama, Dagami, Jaro, Buaren, and Ormoc City in Leyte. The DENR-RCBO identified it as one of the 140 critical watersheds in the Philippines, having a drainage area of 259 km2 and an estimated 492 million cubic meter annual run-off.

Its main stem, Palo River, passes along the Municipality of Santa Fe down to the Municipality of Palo. It is part of the 12 river systems in Leyte Province. An estimated population of 29,443 people resides in the immediate vicinity of the river which is distributed among the 12 barangays, namely: Baras, Buri, Guindapunan, Arado, San Fernando, Cavite West, San Miguel, Salvacion, Cavite East, Santa Cruz, Naga-Naga, and Cogon (NSO, 2010). The river is rich in mineral resources such as copper. On November 8, 2013, flooding caused by Super Typhoon Yolanda left 1,381 casualties in the vicinity of Palo, Leyte. A flood event before Super Typhoon Yolanda was on 16 March 2011 which affected 32 barangays in Palo.

Figure 1. Map of the Palo River Basin

CHAPTER 2: LIDAR DATA ACQUISITION OF THE PALO FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Grace B. Sinadjan, Ms. Jonalyn S. Gonzales

The methods applied in this chapter were based on the DREAM methods manual (Sarmiento et al., 2014) and further enhanced and updated in Paringit et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Palo Floodplain in Leyte and Samar. These missions were planned for 13 lines that run for at most three and a half (3.5) hours including take-off, landing, and turning time. The flight planning parameters for Aquarius and Gemini LiDAR systems are found in Table 1 and Table 2. Figure 2 and Figure 3 show the flight plan for Palo Floodplain survey using the Aquarius and Gemini sensors, respectively.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34F	600	30	36	50	50	120	5
BLK33A							
BLK34D	600	30	36	50	50	120	5
BLK33E	600	30	36	50	50	120	5
BLK33H	600	30	36	70	50	120	5

Table 1. Flight planning parameters for Aquarius LiDAR system.

Table 2. Flight planning parameters for Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34A	1200/600/850	30	34/50/40	100	50/40	120	5
BLK34D	1200/600	30	34/50	100	50/40	120	5
BLK34E	1200/600	30	34/50	100	50/40	120	5
BLK34G	1200/600/850	30	34/50/40	100	50/40	120	5
BLK34B	850	30	40	100	50	120	5
BLK34C	850/600	30	40/50	100	50/40	120	5

Figure 2. Flight plan and base stations for Palo Floodplain using the Aquarius sensor.

Figure 3. Flight plan and base stations for Palo Floodplain using the Gemini sensor

2.2 Ground Base Stations

The project team was able to recover three NAMRIA reference points: LYT-101, SMR-56, and SMR-53, which are of second-order accuracy. The project team also reprocessed four NAMRIA benchmarks LY-881, SM-286, LY-123, and LY-110, and one NAMRIA horizontal point, LYT-104. The certifications for the base stations are found in ANNEX 2 while the baseline processing report for the reprocessed points is found in ANNEX 3. These points were used as base stations during flight operations for the entire duration of the survey (January 24-30, 2014, April 20-22, 2014, May 14, 2014, and January 22-24, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS R8, TRIMBLE SPS 852, and TRIMBLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Palo Floodplain are shown in Figure 2 and Figure 3.

Figure 4 to Figure 9 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 11 show the details about the NAMRIA control stations while Table 12 shows the list of all ground control points occupied during the acquisition together with the dates they were utilized during the survey.

(a)

Figure 4. GPS set-up over LY-881 at the concrete foundation of Governor Center Welcome sign at the junction of the road going to Ormoc, Samar, Tacloban and MacArthur Landing Memorial Park in Brgy. Pawing, Palo, Leyte (a) and NAMRIA reference point LY-881 (b) as recovered by the field team.

Table 3. Details of the reprocessed NAMRIA Benchmark LY-881 used as base station for the LiDAR acquisition.

Station Name	LY-881		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1: 50, 000		
	Latitude	11° 10' 49.44332" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 00' 04.69148" East	
	Ellipsoidal Height	5.992 meters	
Grid Coordinates, Philippine Transverse Mercator	Easting	718540.093 meters	
Zone 5 (PTM Zone 5 PRS 92)	Northing	1236589.610 meters	
	Latitude	11º 10' 45.19188" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	125° 00' 09.85261" East	
	Ellipsoidal Height 68.386 meters		

Figure 5. GPS set-up over LYT-101 situated within the premises of MacArthur's Landing Memorial Park, Palo, Leyte (a) and NAMRIA reference point LYT-101 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point LYT-101 used as base station for the LiDAR Acquisition.

Station Name	LY-881		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1: 50, 000		
	Latitude	11° 10' 49.44332" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 00' 04.69148" East	
	Ellipsoidal Height	5.992 meters	
Grid Coordinates, Philippine Transverse Mercator	Easting	718540.093 meters	
Zone 5 (PTM Zone 5 PRS 92)	Northing	1236589.610 meters	
	Latitude	11º 10' 45.19188" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	125° 00' 09.85261" East	
	Ellipsoidal Height	68.386 meters	

Figure 6. GPS set-up over SMR-53 located near the school building flag pole of San Isidro Elementary, Brgy. San Isidro, Santa Rita (a) and NAMRIA reference point SMR-53 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point SMR-53 used as base station for the LiDAR acquisition.

Station Name	SMR-53		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	11º 30' 17.85657" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 1' 29.837339" East	
	Ellipsoidal Height	26.13400 meters	
Grid Coordinates, Philippine Transverse Merca-	Easting	502722.403 meters	
tor Zone 5 (PTM Zone 5 PRS 92)	Northing	1272180.079 meters	
	Latitude	11º 30' 13.52495" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	125° 1' 34.96980" East	
	Ellipsoidal Height	87.78700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	720874.14 meters	
(UTM 51N PRS 1992)	Northing	1272513.40 meters	

Figure 7. GPS set-up over SM-286 at Dalid Bridge along National Highway in Brgy. San Pascual, Sta. Rita, Samar (a) and NAMRIA reference point SM-286 (b) as recovered by the field team

Table 6. Details of the reprocessed NAMRIA Benchmark SM-286 used as base station for LiDAr acquisition.

Station Name	LYT-101		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
	Latitude	11° 30' 17.85657" North	
Geographic Coordinates	Longitude	125° 1' 29.837339" East	
	Ellipsoidal Height	26.13400 meters	
		502722.403 meters	
Philippine Reference of 1992 Datum (PRS 92)	Latitude	1272180.079 meters	
	Latitude	11º 30' 13.52495" North	
Longitude	Longitude	125° 1' 34.96980" East	
	Ellipsoidal Height	87.78700 meters	

Figure 8. GPS set-up over SMR-56 located inside Cabacungan Elementary School in Brgy. Cabacungan, Sta. Rita, Samar (a) and NAMRIA reference point SMR-56 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point SMR-56 used as base station for the LiDAR acquisition

Station Name	SMR-53	
Order of Accuracy	2nd	
Relative Error (horizontal positioning)	1:50,000	
		11º 30' 17.85657" North
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	125° 1' 29.837339" East
		26.13400 meters
		502722.403 meters
Longitude	Latitude	1272180.079 meters
		11º 30' 13.52495" North
Ellipsoidal Height	11o 30' 17.85657" North	125° 1' 34.96980" East
		87.78700 meters

Figure 9. GPS set-up over LYT-104 located and re-established along rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte (a) and NAMRIA reference point LYT-104 (b) as recovered by the field team.

Table 8. Details of the recovered NAMRIA horizontal control point LYT-104 with processed coordinates used as base station for the LiDAR acquisition.

Station Name	LYT-104	
Order of Accuracy	2 nd order	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11°08'38.92234" North 124° 53' 13.52786" East 33.659 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing Ellipsoidal Height	11°08'34.67033" North 124° 53' 18.69323" East 95.861 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Latitude Longitude	706089.510m 1232496.838

Table 9. Details of the reprocessed NAMRIA Benchmark LY-123 used as base station for LiDAR acquisition

Station Name	LY-123		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1: 50, 000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 12′ 20.91223″ North 124° 51′ 06.13717″ East 34.930 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	702180.961 meters 1239293.641 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 12′ 16.64155″ North 124° 51′ 11.29744″ East 96.895 meters	

Table 10. Details of the reprocessed NAMRIA Benchmark LY-110 used as base station for LiDAR acquisition.

Station Name	LY-110	
Order of Accuracy	2 nd Order	
Relative Error (horizontal positioning)	1: 50, 000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 10' 19.48389" North 124° 57' 32.98736" East 12.819 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	713942.863 meters 1235638.117 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 10' 15.23095" North 124° 57' 38.14961" East 76.647 meters

Table 11. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
24 Jan 2014	1016A	3BLK33A024A	LYT-101
24 Jan 2014	1018A	3BLK33A024B	LYT-101
25 Jan 2014	1020A	3BLK33B025A	LYT-101
26 Jan 2014	1024A	3BLK33AS34A026A	LYT-101
26 Jan 2014	1026A	3BLK34AS026A	LYT-101
27 Jan 2014	1028A	3BLK 34ABS027A	LYT-101
29 Jan 2014	1036A	3BLK33DS0929A	LYT-101
30 Jan 2014	1040A		LYT-101
20 April 2014	1358A	3BLK34F110A	LY-881 and LYT-101
20 April 2014	1360A	3BLK34FS110B	LY-881 and SMR-53
22 April 2014	1366A	3BLK34E112A	SM-286 and SMR-56
14 May 2014	1454A	3BLK34D134A	LY-123 and SMR-56
14 May 2014	1456A	3BLK34D134B	LY-123 and SMR-56
22 Jan 2016	3765G	2BLK34AD022A	LY-110 and LYT-104
22 Jan 2016	3767G	2BLK34AG022B	LY-110 and LYT 104
23 Jan 2016	3769G	2BLK34ADEG023A	LY-110 and LYT-104
23 Jan 2016	3771G	2BLK34BCG023B	LY-110 and LYT-104
24 Jan 2016	3773G	2BLK34CG024A	LY-110 and LYT-104

2.3 Flight Missions

Eighteen missions were conducted to complete the LiDAR data acquisition in Palo Floodplain, for a total of sixty-six hours and five minutes (66+5) of flying time for RP-C9122 and RP-C9022. All missions were acquired using the Aquarius and Gemini LiDAR systems. Table 12 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 13 presents the actual parameters used during the LiDAR data acquisition.

				Area	Area		Flying	Hours
Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km ²)	Surveyed within the Floodplain (km ²)	Surveyed Outside the Floodplain (km ²)	No. of Images (Frames)	Ηŗ	Min
24 Jan 2014	1016A	195.58	107.33	12.28	95.05	661	3	0
24 Jan 2014	1018A	129.99	107.33	12.28	95.05	NA	1	54
25 Jan 2014	1020A	156.71	193.60	12.75	180.85	963	4	6
26 Jan 2014	1024A	251.35	146.11	24.28	121.83	857	4	17
26 Jan 2014	1026A	286.61	102.51	10.18	92.33	857	2	47
27 Jan 2014	1028A	315.51	199.77	64.45	135.32	1564	4	25
29 Jan 2014	1036A	32.79	48.19	NA	48.19	397	2	11
30 Jan 2014	1040A	33.95	58.61	3.38	55.23	592	3	41
20 April 2014	1358A	145.52	121.30	57.46	63.84	1194	4	11
20 April 2014	1360A	145.52	71.46	40.76	30.7	670	3	23
22 April 2014	1366A	103.86	120.79	42.87	77.92	1346	4	29
14 May 2014	1454A	147.57	220.81	74.50	146.31	1269	4	29
14 May 2014	1456A	82.68	97.85	21.76	76.09	998	3	41
22 Jan 2016	3765G	673.17	180.53	83.94	96.59	NA	4	11
22 Jan 2016	3767G	1390.56	148.01	18.65	129.36	NA	3	23
23 Jan 2016	3769G	673.17	171.76	79.68	92.08	NA	3	23
23 Jan 2016	3771G	1390.56	150.85	107.08	43.77	NA	4	23
24 Jan 2016	3773G	676.64	101.92	69.17	32.75	NA	4	11
TOTAL		6831.74	2348.73	735.47	1613.26	11368	66	5

Table 12. Flight missions for LiDAR data acquisition in Palo Floodplain

Table 13. Actual parameters used during LiDAR data acquisition

Date Surveyed	Flight Number	Flying Height (AGL) (m)	Overlap (%)	Max. Field of View	Scan Frequency	Speed of Plane (Kts)
24 Jan 2014	1016A	600	40	50	40	120
24 Jan 2014	1018A	600	40	50	40	120
24 Jan 2014	1020A	600	40	50	40	120
25 Jan 2014	1024A	600	40	50	40	120
26 Jan 2014	1026A	600	40	50	40	120
26 Jan 2014	1028A	600	40	50	40	120
27 Jan 2014	1036A	600	40	50	40	120
29 Jan 2014	1040A	600	35	40	40	120
30 Jan 2014	1358A	600	30	36	50	120
20 April 2014	1360A	600	30	36	50	120
20 April 2014	1366A	600	40	36	50	120
22 April 2014	1454A	600	40	36	50	120
14 May 2014	1456A	600	40	36	50	120
14 May 2014	3765G	1100	30	34	50	120
22 Jan 2016	3767G	850	30	40	50	120
22 Jan 2016	3769G	1100	30	34	50	120
23 Jan 2016	3771G	850	30	40	50	120
23 Jan 2016	3773G	600	30	50	40	120

2.4 Survey Coverage

Palo Floodplain is situated within the municipalities of Leyte and Samar with most of the Floodplain located in Leyte. The municipalities of Alangalang, Barugo, Julita, and Tabontabon are fully covered during the survey. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage is shown in Table 14. The actual coverage of the LiDAR acquisition for Palo Floodplain is presented in Figure 10.

	Table 14. List of municipalities/cities surveyed during Palo Floodplain LIDAR survey					
Pr	ovince	Municipality/City	Area of Municipality/City	Total Area Surveyed	Percentage of Area Surveyed	
		Alangalang	145.45	145.45	100%	
		Barugo	81.25	81.25	100%	
		Julita	57.17	57.17	100%	
		Tabontabon	20.46	20.46	100%	
		Santa Fe	57.15	57.11	99.94%	
		Palo	65.33	64.89	99.32%	
		Tolosa	28.17	27.53	97.72%	
		San Miguel	103.86	100.88	97.12%	
		Tanauan	62.78	60.94	97.07%	
	outo	Dulag	63.65	59.86	94.05%	
L	eyte	Pastrana	79.17	68.07	85.98%	
		Tacloban City	118.46	74.08	62.54%	
		Dagami	134.08	77.81	58.03%	
		Tunga	17.36	9.76	56.23%	
		Burauen	205.31	69.17	33.69%	
		Jaro	190.65	69.13	36.26%	
		Carigara	116.61	13.07	11.21%	
		La paz	136.02	14.74	10.84%	
		Babatngon	136.57	8.05	5.89%	
		Mayorga	39.45	2.03	5.14%	
S	amar	Marabut	148.82	40.02	26.89%	
		Total	2007.77	1121.47	65.62%	

Table 14 List of municipalities / oities of d during Dala Elas dulain I (DAD

Figure 10. Actual LiDAR data acquisition for Palo Floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE PALO FLOODPLAIN

Engr. Ma. Ailyn L. Olanda, Engr. Jovelle Anjeanette S. Canlas, Jovy Anne S. Narisma

The methods applied in this chapter were based on the DREAM methods manual (Ang et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic diagram for data pre-processing component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Palo Floodplain can be found in ANNEX 5. Missions flown over eastern Leyte during the first and second surveys conducted on January 2014 and April 2014, respectively, used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system while missions acquired during the third survey on January 2016 were flown using the Gemini system. The Data Acquisition Component (DAC) transferred a total of 256.08 Gigabytes of Range data, 3.68 Gigabytes of POS data, 195.36 Megabytes of GPS base station data, and 638.80 Gigabytes of raw image data to the data server on February 3, 2014 for the first survey, on May 22, 2014 for the second survey, and on February 11, 2016 for the third survey. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Palo was fully transferred on February 11, 2016, as indicated on the data transfer sheets for Palo Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1020A, one of the Palo flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on January 25, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Palo Flight 1020A.

The time of flight was from 522,000 seconds to 533,500 seconds, which corresponds to morning of January 25, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.25 centimeters, the East position RMSE peaks at 1.30 centimeters, and the Down position RMSE peaks at 3.35 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Palo Flight 1020A.

The Solution Status parameters of flight 1020A, one of the Palo flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Most of the time, the number of satellites tracked was between 6 and 11. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Palo flights is shown in Figure 14.

Figure 14. Best estimated trajectory of LiDAR missions conducted over the Palo Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 492 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Palo Floodplain are given in Table 15.

Parameter	Computed Value
Boresight Correction stdev (<0.001degrees)	0.000620
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000999
GPS Position Z-correction stdev (<0.01meters)	0.0071

Table 15. Self-calibration results values for Palo flights.

The optimum accuracy was obtained for all Palo flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Palo Floodplain.

The total area covered by the Palo missions is 1478.12 sq.km comprised of 17 flight acquisitions grouped and merged into 17 blocks as shown in Table 16.

LiDAR Blocks	Flight Numbers	Area (sq km.)
Leyte_Blk34C	3771G 3773G	145.82
Leyte_Blk34D	3767G 3773G	84.81
Leyte_Blk34E	3765G 3767G	170.21
Leyte_Blk34G_additional2	3773G	20.02
Leyte_Blk34G_supplement	3771G 3773G	54.24
Leyte_Blk34I	3769G	50.78
Leyte_Blk34J	3765G	62.39
Samar_Leyte_Blk34C	1456A	94.98
Samar_Leyte_Blk34D	1454A	100.89
Samar_Leyte_Blk34E	1366A	113.91
Samar_Leyte_Blk34F	1358A 1360A	165.93
Tacloban_1016A	1016A	26.27
Tacloban_1018A	1018A	14.56
Tacloban_1020A	1020A	65.17
Tacloban_1024A	1024A	43.52
Tacloban_1026A	1026A 1028A	232.71
Tacloban_1040A	1040A	31.91
TOTAL		1478.12 sq km.

Table 16. List of LiDAR blocks for Palo Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is shown in Figure 16. Since the Gemini and Aquarius systems both employ one channel, an average value of 1 (blue) would be expected for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Palo Floodplain.

The overlap statistics per block for the Palo Floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.64% and 53.44%, respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Palo floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.11 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Palo Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Areas indicate portions where elevations of a previous flight line. Areas with bright red or bright blue area by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue area by more to be investigated further using Quick Terrain Modeler software.

Figure 18. Map of elevation difference between flight lines for Palo Floodplain.

A screen capture of the processed LAS data from Palo flight 1020A loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Palo flight 1020A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 17. Palo classification results in TerraScan.

Pertinent Class	Total Number of Points	
Ground	737,656,757	
Low Vegetation	816,494,587	
Medium Vegetation	1,551,393,038	
High Vegetation	659,666,680	
Building	24,196,664	

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Palo Floodplain is shown in Figure 20. A total of 2,122 1 km-by-1 km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 17. The point cloud has a maximum and minimum height of 491.90 meters and 34.19 meters.
Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 20. Tiles for Palo Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b); first return DSM (c) and secondary DTM (d) in some portion of Palo Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,214 1 km-by-1 km tiles area covered by Palo Floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Palo Floodplain attained a total of 841.36 sq km in orthophotogaph coverage comprised of 9,116 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

Figure 23. Palo Floodplain with available orthophotographs.

Figure 24. Sample orthophotograph tiles for Palo Floodplain.

3.8 DEM Editing and Hydro-Correction

Seventeen mission blocks were processed for Palo Floodplain. These blocks are composed of SamarLeyte and Leyte blocks with a total area of 1,478.12 square kilometers. Table 18 shows the name and corresponding area of each block in square kilometers.

Table 18. LiDAR blocks with its corresponding area.

LiDAR Blocks	Area (sq km)
Leyte_Blk34C	145.82
Leyte_Blk34D	84.81
Leyte_Blk34E	170.21
Leyte_Blk34G_additional2	20.02
Leyte_Blk34G_supplement	54.24
Leyte_Blk34I	50.78
Leyte_Blk34J	62.39
Samar_Leyte_Blk34C	94.98
Samar_Leyte_Blk34D	100.89
Samar_Leyte_Blk34E	113.91
Samar_Leyte_Blk34F	165.93
Tacloban_Blk1016A	26.27
Tacloban_Blk1018A	14.56
Tacloban_Blk1020A	65.17
Tacloban_Blk1024A	43.52
Tacloban_Blk1026A	232.71
Tacloban_Blk1040A	31.91
TOTAL	1478.12 sq km.

Portions of DTM before and after manual editing are shown in Figure 25. The bridge (Figure 25a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b) in order to hydrologically correct the river. The fishpond embankments (Figure 25c) have been misclassified and removed during classification process and have to be retrieved to complete the surface (Figure 25d) to allow the correct flow of water.

Figure 25. Portions in the DTM of Palo Floodplain—a bridge before (a) and after (b) manual editing; and a fish pond before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Palo Floodplain is shown in Figure 26. It can be seen that the entire Palo Floodplain is 99.13% covered by LiDAR data.

Table 19. Shift values of each LiDAR Block of Palo Floodplain.

Mission Blocks		Shift Values (meters)	
	Х	У	Z
SamarLeyte_Blk34F	0.00	1.00	-1.01
SamarLeyte_Blk34C	0.00	0.00	-0.67
SamarLeyte_Blk34D	0.00	0.00	-0.59
SamarLeyte_Blk34E	0.00	0.00	-0.59
Leyte_Blk34J	0.00	-1.00	-1.04
Leyte_Blk34I	0.00	0.00	-0.79
Leyte_Blk34G_ supplement	0.00	0.00	-20.90
Leyte_Blk34C	0.00	-1.00	-1.13
Leyte_Blk34D	0.00	0.00	0.48
Leyte_Blk34G_ additional2	-1.00	-2.00	-21.05
Leyte_Blk34E	0.00	0.00	-1.22
Tacloban_Blk1026A	0.00	0.00	0.00
Tacloban_Blk1024A	0.00	0.00	0.00
Tacloban_Blk1016A	0.00	0.00	0.00
Tacloban_Blk1040A	0.00	0.00	0.00
Tacloban_Blk1018A	0.00	0.00	0.00
Tacloban_Blk1020A	0.00	0.00	0.00

Figure 26. Map of processed LiDAR data for Palo Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Palo to collect points with which the LiDAR dataset was validated is shown in Figure 27. A total of 3,471 survey points were gathered for the Palo Floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Palo because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Palo can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values are also applicable to the Palo DEM.

Figure 27. Map of Palo Floodplain with validation survey points in green.

All survey points were used for the validation of the calibrated Palo DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.13 meters with a standard deviation of 0.09 meters, as shown in Table 21.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Palo with 587 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.67 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Palo integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Palo Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Palo Floodplain, including its 200 m buffer, has a total area of 421.61 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4731 building features, are considered for QC. Figure 31 shows the QC blocks for Palo Floodplain.

3.12.2 Height Extraction

Height extraction was done for 22,789 building features in Palo Floodplain. Of these building features, 410 were filtered out after height extraction, resulting in 22,379 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 11.06 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 23 summarizes the number of building features per type. On the other hand, Table 24 illustrates the total length of each road type, while Table 25 shows the number of water features extracted per type.

Facility Type	No. of Features	
Residential	20,730	
School	568	
Market	32	
Agricultural/Agro-Industrial Facilities	62	
Medical Institutions	34	
Barangay Hall	85	
Military Institution	0	
Sports Center/Gymnasium/Covered Court	17	
Telecommunication Facilities	5	
Transport Terminal	0	
Warehouse	22	
Power Plant/Substation	1	
NGO/CSO Offices	5	
Police Station	61	
Water Supply/Sewerage	0	
Religious Institutions	140	
Bank	2	
Factory	0	
Gas Station	19	
Fire Station	3	
Other Government Offices	162	
Other Commercial Establishments	414	
Abandoned Buildings	17	
Total	22,379	
		_

Table 23. Building features extracted for Palo Floodplain.

Table 24. Total length of extracted roads for Palo Floodplain.

Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Palo	289.89	86.58	0	31.22	0	407.69

Table 25. Number of extracted water bodies for Palo Floodplain.

Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Palo	220	0	0	9	0	229

A total of 132 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Palo Floodplain overlaid with its ground features.

Figure 32. Extracted features for Palo Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PALO RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Engr. Mark Lester D. Rojas, Geol. Anthony Felix J. Abogado, Engr. Caren Joy S. Ordoña

The methods applied in this chapter were based on the DREAM methods manual (Balicanta et al., 2014) and further enhanced and updated in Paringit et al. (2017).

4.1 Summary of Activities

The DVBC conducted three field surveys in Palo River. The initial fieldwork conducted was from January 8 to 20, 2014 which involved acquisition of ground validation points of about 45.847 km from Tacloban City, passing through the Municipalities of Palo, Tanauan, Tolosa, and Dulag. The second fieldwork was from September 10 to 24, 2014 with the following scope of work: control survey for the establishment of a control point; cross-section and bridge as-built of Bernard Reed Bridge. The third fieldwork was conducted frrom January 6 to 20, 2015 with the following scope of work: bathymetric survey from Brgy. San Miguel down to its mouth in Brgy. Salvacion, Leyte with an estimated length of 3.574 km and acquisition of validation points for Aquarius LIDAR.

Figure 33. Extent of the bathymetric survey (in blue) in Palo River and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network used for Palo River Basin is composed of three loops established on September 18 to 20, 2014 occupying the following reference points: LYT-101, a second-order GCP, in Brgy. Candahog, Municipality of Palo; and LY-106, a second-order GCP, in Brgy. Luntad, Municipality of Palo.

Three control points were established at the approach of bridges namely: UP-DAG at Daguitan Bridge, in Brgy. Fatima, Municipality of Dulag; UP-O at Ormoc Merida Bridge, in Brgy. Liloan, Ormoc City; and UP-STN at Calay-calay Bridge, in Brgy. Caraycaray, Municipality of San Miguel. Two arbitrary points were also observed to complete the network. AP1 and AP2 are located at the corner of Maharlika Highway and an unnamed street going to Campetic Road, in Brgy. Campetik, Municipality of Palo and inside Burauen Church Plaza, Julita Burauen Road corner Burauen – Dagami Road, Brgy. Poblacion VII, Municipality of Burauen, Province of Leyte, respectively.

The summary of reference and control points and its location is summarized in Table 26 while GNSS network established is illustrated in Figure 34.

Figure 34. GNSS Network in Palo River field survey

Table 26. List of references and control points used during the survey in Leyte (Source: NAMRIA and UP-TCAGP)

Control Point	Order of					
	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
LYT-101	2nd order, GCP	11°10'19.64869" N	125°00'43.78230" E	69.228	-	09-20-2014
LY-106	1st order, BM	-	-	68.051	4.028	2007
UP-DAG	UP Established	-	-	-	-	09-20-2014
UP-O	UP Established	-	-	-	-	09-19-2014
UP-STN	UP Established	-	-	-	-	09-11-2014
AP1	Arbitrary	-	-	-	-	09-18-2014
AP2	Arbitrary	-	-	-	-	09-20-2014

The GNSS set-up made in the location of the reference and control points are shown in Figure 35 to Figure 40.

Figure 35. GNSS base set-up, Trimble® SPS 852, at LYT-101, located at the General McArthur Shrine in Brgy. Candahog, Municipality of Palo, Leyte

Figure 36. GNSS base set-up, Trimble® SPS 985, at LY-106, located at the approach of Bernard Reed Bridge along Maharlika Highway , Brgy. Luntad, Municipality of Palo, Leyte

Figure 37. Trimble® SPS 985 GNSS set-up at UP-ABG in Cadacan Bridge, Abuyog, Leyte

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 38. GNSS receiver set-up, Trimble® SPS 985, at UP DAG, an established control point, located at the bridge approach of the Daguitan Bridge along Maharlika Highway in Brgy. Fatima, Municipality of Dulag, Province of Leyte

Figure 39. GNSS receiver set-up, Trimble® SPS 985, at UP-O, an established control point, located at the bridge approach of the Ormoc Merida Bridge along Ormoc-Merida-Isabel-Palompon Road in Brgy. Liloan, City of Ormoc, Province of Leyte

Figure 40. GNSS base set-up, Trimble® SPS 852, at UP-STN, an established control point, located at Calaycalay Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Palo River Basin is summarized in Table 27 generated by TBC software.

Observation	Date of Observation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
UP-STN UP-O (B2)	09-19-2014	Fixed	0.003	0.013	219°39'13″	45132.753
LY-106 AP1 (B4)	09-18-2014	Fixed	0.003	0.012	12°44'49"	2489.516
LY-106 UP-STN (B11)	09-18-2014	Fixed	0.005	0.042	317°02'38"	29477.609
LYT-101 UP-O (B1)	09-19-2014	Fixed	0.005	0.013	254°12'03"	52970.388
LYT-101 AP1 (B6)	09-18-2014	Fixed	0.002	0.003	307°32'43"	1903.266
LYT-101 UP-STN (B10)	09-18-2014	Fixed	0.005	0.039	312°31'18"	30045.665
LYT-101 UP-STN (B3)	09-18-2014	Fixed	0.003	0.011	312°31'18"	30045.649
LYT-101 LY-106 (B7)	09-20-2014	Fixed	0.003	0.016	238°21'43"	2417.850
LYT-101 LY-106 (B5)	09-20-2014	Fixed	0.002	0.004	238°21'42"	2417.858
LYT-101 UPDAG (B13)	09-20-2014	Fixed	0.004	0.011	177°43'46"	26154.013
LYT-101 AP2 (B12)	09-20-2014	Fixed	0.003	0.012	210°46'11"	25458.032
UP-DAG AP2 (B14)	09-20-2014	Fixed	0.004	0.014	286°51'16"	14691.113

Table 27. Baseline processing report for Palo River Basin static survey

As shown in Table 27, a total of 12 baselines were processed with reference points LYT-101 and LY-106 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates (Table 29) of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

for each control point. See the Network Adjustment Report shown in Table 28 to Table 30 for the complete details.

The seven control points, LYT-101, LY-106, UP-DAG, UP-O, UP-STN, and two arbitrary points were occupied and observed simultaneously to form a GNSS loop. The coordinates of point LYT-101 and elevation value of LY-106 were held fixed during the processing of the control points as presented in Table 28. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Table 28. Control point constraints						
Point ID	Туре	East o (Meter	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
LYT-101	Local	Fixed	Fixed			
LY-106	Grid				Fixed	
Fixed = 0.000001(Meter)						

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 29. The fixed control points LYT-101 has no values for grid errors; and LY-106, for elevation error.

Table 29.	Adjusted	l grid	coordinates
-----------	----------	--------	-------------

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LYT-101	1235759.250	?	719729.823	?	5.141	0.040	LL
LY-106	1234476.732	0.007	717679.601	0.006	4.028	?	е
UP-DAG	1209628.100	0.013	720942.270	0.009	5.993	0.077	е
UP-O	1220991.402	0.014	668855.819	0.010	8.719	0.076	
UP-STN	1255916.567	0.009	697443.625	0.007	8.835	0.070	
AP1	1236908.994	0.007	718212.616	0.007	4.834	0.051	
AP2	1213793.946	0.012	706851.618	0.010	56.317	0.079	

The network is fixed at reference points LYT-101 with known coordinates and LY-106 with known elevation. With the mentioned equation, IIV((xI_e)I^2+II(yI_e)I^2)<20cm for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

```
LYT-101
```

	horizontal accura	асу	=	Fixed
vertical	accuracy =	4.0 cm <	< 10 cm	
LY-106	horizontal accura	асу	=	√((0.7) ² + (0.6) ²) √ (0.49 + 0.36)
vertical	accuracy =	Fixed	=	0.92 cm < 20 cm
UP-DAG	horizontal accura	асу 7 70 ст	= = = < 10 cm	√((1.3) ² + (0.9) ²) √ (1.69 + 0.81) 1.58 cm < 20 cm
vertical	accuracy –	7.70 cm	< 10 cm	
UP-O	horizontal accura	асу	=	$\sqrt{((1.40)^2 + (1.10)^2)}$ $\sqrt{(1.96 + 1.21)}$ 1.78 cm < 20 cm
vertical	accuracy	=	- 7.60 cm	1.70 cm

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

UP-STN	horizontal accu	racy	=	√((0.90) ² + (0.70) ² √ (0.81 + 0.49)
vertical	accuracy	=	= 7.0 cm ·	1.14 cm < 20 cm < 10 cm
AP1	horizontal accu	racy	= =	$\sqrt{((0.70)^2 + (0.70)^2}$ $\sqrt{(0.49 + 0.49)}$
vertical	accuracy	=	- 5.10 cm	n < 10 cm
AP2	horizontal accu	racy	= = =	√((1.20) ² + (1.0) ² √ (1.44 + 1.0) 1.56 cm < 20 cm
vertical	accuracy	=	7.9 cm	< 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
LY-106	N11°09'38.36982"	E124°59'35.93684"	68.051	?	е
UP-DAG	N10°56'09.12671"	E125°01'17.90763"	70.609	0.077	
UP-O	N11°02'28.97646"	E124°32'44.58922"	71.626	0.076	
UP-STN	N11°21'20.28504"	E124°48'33.44650"	71.793	0.070	
AP1	N11°10'57.39411"	E124°59'54.04241"	68.821	0.051	
AP2	N10°58'27.65859"	E124°53'34.80074"	120.385	0.079	

Table 30. Adjusted geodetic coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 30. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 31.

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)			UTM ZONE 51 N		
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LYT-101	2nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.228	1235759.250	719729.823	5.141
LY-106	1st order, BM	11°09'38.36982"	124°59'35.93684"	68.051	1234476.732	717679.601	4.028
UP-DAG	UP Established	10°56'09.12671"	125°01'17.90763"	70.609	1209628.100	720942.270	5.993
UP-O	UP Established	11°02'28.97646"	124°32'44.58922"	71.626	1220991.402	668855.819	8.719
UP-STN	UP Established	11°21'20.28504"	124°48'33.44650"	71.793	1255916.567	697443.625	8.835
AP1	Arbitrary Point	11°10'57.39411"	124°59'54.04241"	68.821	1236908.994	718212.616	4.834
AP2	Arbitrary Point	10°58'27.65859"	124°53'34.80074"	120.385	1213793.946	706851.618	56.317

Table 31. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built Survey

Cross-section and as-built survey were conducted on September 14, 2014 along downstream side of Bernard Reed Bridge in Municipality of Palo, Leyte using a GNSS receiver, Trimble[®] SPS 882, in PPK survey technique as exhibited in Figure 41. The control point LY-106 was used as the GNSS base station for the survey.

Figure 41. Cross-section survey using Trimble® SPS 882 – (A) bridge approach and (B) bridge deck of Bernard Reed Bridge, Palo, Leyte

The cross-sectional line for Bernard Reed Bridge is about 59.69 m with a total of 23 points. The summary of gathered cross-section location map and diagram are shown in Figure 42 and Figure 43, while the as-built bridge data form is shown in to Figure 44.

Figure 42. Bernard Reed bridge cross-section location map

Figure 44. Palo (Bernard Reed) Bridge data form

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on January 9, 2015 using a survey-grade GNSS Rover receiver mounted on a pole which was tied in front of the vehicle. It was secured with cable ties to ensure that it was horizontally and vertically balanced as shown in Figure 45. The antenna height was 1.33 meters which was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The survey was conducted using RTK and PPK technique on a continuous topography mode.

The ground validation started from Brgy. 101, Palo and traversed major roads going to Brgy. Salvacion, Dulag. The reference point LYT-101 was occupied as the GNSS base station for the survey.

Figure 45. Trimble® SPS 882 and RTK antenna set-up in a van for LiDAR validation survey

The survey acquired 4,826 ground validation points with an approximate length of 45.8 km, as shown in the map in Figure 46.

Figure 46. Validation points acquisition survey along Palo, Leyte

In addition to ground validation survey, LiDAR Aquarius validation survey was done on January 10, 2015 along the coastal areas of Tacloban City and the Municipalities of Palo and Tanauan. A boat was rented with installed OHMEX[™] Single Beam Echo Sounder with a mounted Trimble[®] SPS 882 GNSS receiver as shown in Figure 47.

Figure 47. LiDAR Aquarius validation survey set-up

A total of 16,432 points were acquired with an approximate length of 21 km occupying LYT-101 as the GNSS base station as shown in Figure 48.

Figure 48. LiDAR Aquarius validation survey along the coast of Tacloban City, and the Municipalities of Palo and Tanauan

4.7 River Bathymetric Survey

Bathymetric survey was done on January 8, 2015 using an OHMEX™ Single Beam Echo Sounder with a mounted Trimble[®] SPS 882 GNSS receiver in PPK survey technique

attached on a rented boat as shown in Figure 49. The survey started in the upstream part of Palo River in Brgy. San Miguel, Municipality of Palo with coordinates 11°09′40.54396″ 124°59′34.49898″, down to the mouth of the river in Brgy. Salvacion, Palo with coordinates 11°09′27.72233″ 125°00′23.96538″.

Figure 49. Bathymetric survey using an OHMEX[™] Single Beam Echo Sounder with a mounted Trimble® SPS 882

The survey acquired 966 points with an approximate length of 3.57 km occupying LY-106 as the GNSS base station as shown in Figure 50.

Figure 50. Bathymetric points gathered in Palo River

A CAD drawing was also produced to illustrate the Palo riverbed profile. As shown in Figure 51, the highest elevation observed was -0.943 m in MSL located in Brgy. San Miguel and the lowest elevation observed was -4.247 m below MSL located in Brgy. Cogon.

Figure 51. Riverbed profile of Palo River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Lagmay et al., 2014) and further enhanced and updated in Paringit et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the river basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI) and named as Sta Fe ARG. The location of the rain gauge is seen in Figure 52.

The total precipitation for this event in Sta. Fe ARG is 84.5 mm. It peaked to 8.67 mm on July 29, 2016 at 4:30 am. The lag time between the peak rainfall and discharge is 28 hours.

Figure 52. The location map of Palo HEC-HMS model used for calibration
5.1.3 Rating Curves and River Outflow

A rating curve was developed at San Jose Hanging Bridge, San Jose, Palo, Leyte (11°10′9.04″N, 124°58′34.28″E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

For San Jose Hanging Bridge, the rating curve is expressed as Q = 0.029e3.2605h as shown in Figure 54.

Figure 53. Cross-section plot of San Jose Hanging Bridge

This rating curve equation was used to compute the river outflow at San Jose Hanging Bridge for the calibration of the HEC-HMS model shown in Figure 55. River outflow gathered during typhoon Carina was used to calibrate the HEC-HMS model. This was recorded on July 29-30, 2016.

Figure 55. Rainfall and outflow data at San Jose Hanging Bridge used for modeling.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value would be attained at a certain time. This station was chosen based on its proximity to Palo watershed. The extreme values for this watershed were computed based on a 59-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION								
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	17.8	26.9	33.6	42.8	59.7	70.5	87.2	104	120.6
5	24.3	36.7	45.7	57.4	80.7	95.2	117.9	140.6	161.4
10	28.5	43.2	53.7	67.1	94.6	111.5	138.2	164.9	188.4
15	30.9	46.8	58.3	72.5	102.5	120.7	149.6	178.6	203.7
20	32.6	49.4	61.4	76.3	108	127.1	157.7	188.1	214.3
25	33.9	51.4	63.9	79.3	112.2	132.1	163.8	195.5	222.6
50	37.9	57.5	71.4	88.3	125.2	147.4	182.9	218.2	247.9
100	41.8	63.5	78.9	97.3	138.2	162.5	201.8	240.8	273

Table 32. RIDF values for Tacloban Rain Gauge computed by PAGASA

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Palo River Basin are shown in Figure 58 and Figure 59, respectively.

Figure 58. Soil map of Palo River Basin

Figure 62. The Palo River Basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 63. River cross-section of Palo River generated through ArcMap HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modeling process allowed for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modeling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water would generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements, respectively.

Figure 64. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro.

The simulation was then run through FLO-2D GDS Pro. This particular model had a computer run time of 43.08716 hours. After the simulation, FLO-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) was set at 0.2 m while the minimum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Palo are in Figure 72, Figure 74, and Figure 76.

The creation of a flood hazard map from the model also automatically created a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper was not a good representation of the range of flood inundation values, so a different legend was used for the layout. In this particular model, the inundated parts covered a maximum land area of 57,070,700.00 m2. The generated flood depth maps for Palo are in Figure 73, Figure 75, and Figure 77.

There is a total of 30,252,978.23 m3 of water entering the model. Of this amount, 15,537,038.38 m3 is due to rainfall while 14,715,939.85 m3 is inflow from other areas outside the model. Moreover, 8,438,570.00 m3 of this water is lost to infiltration and interception, while 19,552,993.99 m3 is stored by the floodplain. The rest, amounting up to 2,261413.84 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Palo HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 12 shows the comparison between the two discharge data.

Figure 65. Outflow hydrograph of San Jose Hanging Bridge generated in HEC-HMS model compared with observed outflow.

Enumerated in Table 33 are the adjusted ranges of values of the parameters used in calibrating the model.

Basin/Reach Characteristic	Method	Parameter	Range of Calibrated Values
	SCS Curvo numbor	Initial Abstraction (mm)	0.06 - 0.62
LUSS	SCS Curve number	Curve Number	99
Transform	Clark Unit Undragraph	Time of Concentration (hr)	1- 66
Iransiorm	Clark Unit Hydrograph	Storage Coefficient (hr)	0.05 - 2.17
Deceflow	Desession	Recession Constant	1
Basenow	Recession	Ratio to Peak	0.01
Douting	Muckingum Cungo	Slope	0.0002 - 0.02
Routing	wuskingum-cunge	Manning's n	0.04

Table 33. Ra	inge of Calibra	ted Values for Palo.
--------------	-----------------	----------------------

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.06 mm to 0.62 mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The value of 99 for curve number is at the highest value for Philippine watersheds depending on the soil and land cover of the area.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 1 hours to 66 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and will instead be higher. Ratio to peak of 0.01 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Palo watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Table 34. Summar	y of the Efficiency	Test of Palo HMS Model
------------------	---------------------	------------------------

r2	0.982
NSE	0.91
PBIAS	-2.77
RSR	0.31

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It computed as 2.8 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.982.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.91.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -2.77.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.31.

5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Periods

5.7.1 Hydrograph Using the Rainfall Runoff Model

The summary graph (Figure 66) shows the Palo outflow using the Tacloban RIDF in five different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 66. Outflow hydrograph at Palo Station generated using Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of Palo discharge using the Tacloban RIDF in five different return periods is shown in Table 35.

Table 35. Peak values of the Palo HEC-HMS Model outflow 1	using the Tacloban RIDF.
---	--------------------------

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m3/s)	Time to Peak
5-Year	161.4	24.3	348.1	16 hours, 10 minutes
10-Year	188.4	28.5	401.2	15 hours, 50 minutes
25-Year	222.6	33.9	468.4	15 hours, 30 minutes
50-Year	247.9	37.9	517.6	15 hours, 20 minutes

5.7.2 Discharge Data Using Dr. Horritts's Recommended Hydrologic Method

The river discharges entering the floodplain are shown in Figure 67 to Figure 70 and the peak values are summarized in Table 36 to Table 39.

Figure 67. Palo river (1) generated discharge using 5-, 25-, and 100-year Tacloban City RIDF in HEC-HMS.

Figure 68. Palo river (2) generated discharge using 5-, 25-, and 100-year Tacloban City RIDF in HEC-HMS

Figure 69. Palo river (3) generated discharge using 5-, 25-, and 100-year Tacloban City RIDF in HEC- $\rm HMS$

Figure 70. Palo river (4) generated discharge using 5-, 25-, and 100-year Tacloban City RIDF in HEC- $\rm HMS$

Table 36. Summary of Palo River (1) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	530.6	18 hours, 30 minutes
25-Year	406.7	18 hours, 30 minutes
5-Year	259.5	18 hours, 30 minutes

Table 27 Commence	a al Dala Diara	- ()) dischange generated in TIEC IIMC
Lable 57 Summary	v of Pato Rive	- 1 /	1 (IISCHARGE GENERALE() IN HEUZHWIS
rubic J. Oummun	y of 1 and 1 and 1	- (-	, albeitaige generated in file finite
			/ 00

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	154.9	17 hours, 40 minutes
25-Year	118.0	17 hours, 40 minutes
5-Year	74.3	17 hours, 40 minutes

Table 38. Summary of Palo River (3) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	123.1	16 hours, 10 minutes
25-Year	94.9	16 hours, 10 minutes
5-Year	61.3	16 hours, 10 minutes

Table 39. Summary of Palo River (4) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	1182.7	19 hours
25-Year	904.7	19 hours
5-Year	575.9	19 hours

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 40.

Table 40. Validation of river discharge estimates.

Discharge				VALI	DATION
Point	Q _{MED(SCS)} , cms	Q _{BANKFUL} , cms	Q _{MED(SPEC)} , cms	Bankful Discharge	Specific Discharge
Palo (1)	228.360	34.716	235.941	Fail	Pass
Palo (2)	65.384	8.084	97.480	Fail	Pass
Palo (3)	53.944	73.860	67.640	Pass	Pass
Palo (4)	665.016	505.928	116.846	Pass	Fail

5.8 River Analysis Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the VSU-FMC base flow was calibrated. The sample generated map of Palo River using the calibrated HMS base flow is shown in Figure 71.

Figure 71. Sample output Palo RAS Model

5.9 Flood Hazard and Flow Depth

The resulting hazard and flow depth maps have a 10 m resolution. Figure 72 to Figure 77 show the 100-, 25-, and 5-year rain return scenarios of the Palo Floodplain.

The floodplain, with an area of 65.19 sq km., covers Tacloban City and three municipalities namely Palo, Santa Fe, and Tanauan. Table 41 shows the percentage of area affected by flooding per municipality.

Total Area	Area Flooded	% Flooded
65.34	38.03	58%
57.14	10.33	18%
118.46	11.04	9%
62.78	4.86	8%
	Total Area 65.34 57.14 118.46 62.78	Total AreaArea Flooded65.3438.0357.1410.33118.4611.0462.784.86

Table 41. Municipalities affected in Palo Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 72. 100-year flood hazard map for Palo Floodplain overlaid on Google Earth imagery.

Figure 76. 5-year flood hazard map for Palo Floodplain overlaid on Google Earth imagery.

Figure 77. 5-year flow depth map for Palo Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Palo river basin, grouped by municipality, are listed below. For the said basin, four municipalities consisting of 52 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 32.09% of the municipality of Palo with an area of 65.34 sq km will experience flood levels of less 0.20 meters; 10.5% of the area will experience flood levels of 0.21 to 0.50 meters; while 9.09%, 5.64% and 0.99% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 42 to Table 44 are the affected areas in square kilometers by flood depth per barangay.

Table 42. Affected areas in Palo, Leyte during a 5-year rainfall return period.

Table 43. Affected areas in Palo, Leyte during a 5-year rainfall return period

Table 44. Affected areas in Palo, Leyte during a 5-year rainfall return period.

						Affected Baran	igays in Palo				
PALC		Pawing	Salvacion	San Antonio	San Fernando	San Isidro	San Joaquin	San Jose	San Miguel	Santa Cruz	Tacuranga
	0.03-0.20	0.61	0.53	0.17	0.54	1.63	2.54	0.49	0.047	0.051	0.43
rea	0.21-0.50	0.15	0.3	0.13	0.035	0.36	1.2	0.092	0.08	0.033	0.44
A b: (.m)	0.51-1.00	0.026	0.24	0.13	0.0091	0.05	2.46	0.026	0.023	0.08	0.1
ətəə	1.01-2.00	0	0.15	0.00043	0	0.0083	1.9	0.013	0.01	0.0047	0.021
₩A	2.01-5.00	0	0.016	0	0	0	0.11	0	0.025	0	0
	> 5.00	0	0	0	0	0	0	0	0	0	0

Figure 79. Affected areas in Palo, Leyte during a 5-year rainfall return period.

For the municipality of Santa Fe with an area of 57.14 sq km, 12.51% will experience flood levels of less 0.20 meters; 0.95% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.46%, 1.83%, and 1.33% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively.

Table 45. Affected areas in Santa Fe, Leyte during a 5-year faintair feturif period.	Table 45.	Affected	areas in	Santa Fe	, Leyte	during a	5-year	rainfall	return	period.
--	-----------	----------	----------	----------	---------	----------	--------	----------	--------	---------

DALO	DACINI	Affect	ed Barangays ir	i Santa Fe
PALO	DASIN	Badiangay	Milagrosa	San Miguelay
	0.03-0.20	5.97	0.026	1.15
rea	0.21-0.50	0.44	0.035	0.068
A b (.m)	0.51-1.00	0.6	0.057	0.18
ecte sq l	1.01-2.00	0.76	0.22	0.068
Affe)	2.01-5.00	0.55	0.21	0.0017
	> 5.00	0	0	0

Figure 81. Affected areas in Santa Fe, Leyte during a 5-year rainfall return period.

For the city of Tacloban with an area of 118.46 sq km, 7.94% will experience flood levels of less 0.20 meters; 1.05% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.28%, 0.04%, and 0.0004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more that 2 meters, respectively. Listed in Table 46 and Table 47 are the affected areas in square kilometers by flood depth per barangay.

DALC			Afl	ected Barangay	rs in Tacloban Ci	ity	
PALC	DASIN	Brgy 78	Brgy 79	Brgy 80	Brgy 81	Brgy 82	Brgy 87
	0.03-0.20	0.4	0.39	0.55	0.27	0.37	0.2
rrea (0.21-0.50	0.0035	0.024	0.042	0.012	0.12	0.0015
A bî Â	0.51-1.00	0	0.0058	0.02	0.0036	0.021	0
ecte [sq l	1.01-2.00	0	0.0000071	0.0097	0.00037	0.0031	0
) Affi	2.01-5.00	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0

Table 46. Affected areas in Tacloban City, Leyte during a 5-year rainfall return period.

Table 47. Affected areas in Tacloban City, Leyte during a 5-year rainfall return period.

DALO	DACINI		Affected E	Barangays in Tac	loban City	
PALO	DASIN	Brgy 88	Brgy 89	Brgy 90	Brgy 95	Brgy 96
	0.03-0.20	0.55	2.24	1.25	1.97	1.21
rea	0.21-0.50	0.017	0.3	0.16	0.26	0.31
A bi	0.51-1.00	0.0055	0.074	0.044	0.1	0.062
ecte sq l	1.01-2.00	0.003	0.012	0.005	0.013	0.0057
Affe	2.01-5.00	0	0	0	0.0005	0
	> 5.00	0	0	0	0	0

Figure 82. Affected areas in Tacloban City, Leyte during a 5-year rainfall return period.

Figure 83. Affected areas in Tacloban City, Leyte during a 5-year rainfall return period.

For the municipality of Tanauan with an area of 62.78 sq km, 1.02% will experience flood levels of less 0.20 meters; 1.23% of the area will experience flood levels of 0.21 to 0.50 meters; while 3.21%, 2.28%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 48 and Table 49 are the affected areas in square kilometers by flood depth per barangay.

Table 48. Affected area	as in Tanauan, 1	Leyte during a	. 5-year raintal	l return period	

DALO	DACIN		Affected	d Barangays in T	anauan	
PALO	BASIN	Atipolo	Balud	Baras	Calogcog	Camire
	0.03-0.20	0.0004	0.17	0	0.25	0.01
rea (0.21-0.50	0.0039	0.084	0.013	0.28	0.064
d A ()	0.51-1.00	0.3	0.19	0.16	0.12	0.38
ecte [sq l	1.01-2.00	0.06	0.21	0.45	0.0044	0.25
))	2.01-5.00	0	0.01	0	0	0
	> 5.00	0	0	0	0	0

Table 49. Affected areas in Tanauan, Leyte during a 5-year rainfall return period.

			Affecte	d Barangays in 1	Tanauan	
PALO	DASIN	Magay	Mohon	San Roque	Santa Cruz	Solano
	0.03-0.20	0.072	0.018	0.033	0.082	0.0011
) rea	0.21-0.50	0.06	0.18	0.0035	0.068	0.016
k bi	0.51-1.00	0.055	0.22	0.0034	0.56	0.028
ecte sq l	1.01-2.00	0.015	0.041	0	0.4	0.0073
Aff(2.01-5.00	0	0	0	0	0
	> 5.00	0	0	0	0	0

Figure 84. Affected areas in Tanauan, Leyte during a 5-year rainfall return period.

Figure 85. Affected areas in Tanauan, Leyte during a 5-year rainfall return period.

For the 25-year return period, 23.75% of the municipality of Palo with an area of 65.34 sq km will experience flood levels of less 0.20 meters; 9.81% of the area will experience flood levels of 0.21 to 0.50 meters; while 10.93%, 10.844% and 3.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 50 to Table 52 are the affected areas in square kilometers by flood depth per barangay.

period.
l return
rainfal
25-year
luring a
Leyte c
in Palo,
d areas
Affecte
Table 50.

					Affect	ed Barangays in	Palo			
PAL	LO BASIN	Arado	Baras	Barayong	Buri	Cabarasan Guti	Campetik	Candahug	Cangumbang	Canhidoc
	0.03-0.20	0.97	0.42	1.35	0.11	0.38	1.61	0.63	0.42	0.37
691 F	0.21-0.50	0.23	0.044	0.2	0.029	0.099	0.35	0.091	0.69	0.53
A b: (.m>	0.51-1.00	0.41	0.024	0.34	0.031	0.3	0.15	0.02	0.5	0.47
l ps) ecte	1.01-2.00	0.43	0.034	0.3	0.035	0.41	0.012	0.0022	0.76	0.38
₩A	2.01-5.00	0.26	0	0.035	0.013	0.18	0.0098	0	0.74	0.00026
	> 5.00	0	0	0	0	0	0	0	0	0

Table 51. Affected areas in Palo, Leyte during a 25-year rainfall return period.

					Affect	ed Barangays in	Palo			
PA	VLO BASIN	Capirawan	Cavite East	Cavite West	Cogon	Gacao	Guinda- punan	Libertad	Luntad	Naga-Nag
	0.03-0.20	0.21	0.083	0.11	0.29	0.33	2.09	1.18	0.1	0.12
e91	0.21-0.50	0.29	0.029	0.058	0.097	0.39	0.4	0.11	0.013	0.041
A b: (.m>	0.51-1.00	0.12	0.06	0.1	0.28	0.51	0.23	0.15	0.012	0.064
l ps) 9129	1.01-2.00	0.0072	0.0083	0.071	0.45	0.16	0.032	0.08	0.0037	0.014
₩A	2.01-5.00	0	0	0	0	0	0.019	0.14	0.012	0
	> 5.00	0	0	0	0	0	0	0	0	0

Table 52. Affected areas in Palo, Leyte during a 25-year rainfall return period

					Affecte	ed Barangays in	Palo				
PAL	LO BASIN	Pawing	Salvacion	San Anto- nio	San Fernando	San Isidro	San Joaquin	San Jose	San Miguel	Santa Cruz	Tacurang
	0.03-0.20	0.53	0.42	0.074	0.51	1.29	1.39	0.29	0.039	0.027	0.18
e91	0.21-0.50	0.21	0.24	0.07	0.065	0.55	0.87	0.25	0.07	0.027	0.35
A b: (.m)	0.51-1.00	0.056	0.39	0.19	0.015	0.18	2	0.059	0.04	0.05	0.39
ətəə	1.01-2.00	0.0001	0.18	0.1	0	0.024	3.42	0.022	0.011	0.067	0.066
₩A	2.01-5.00	0	0.022	0	0	0	0.52	0	0.026	0	0
	> 5.00	0	0	0	0	0	0	0	0	0	0

Figure 86. Affected areas in Palo, Leyte during a 25-year rainfall return period.

Figure 87. Affected areas in Palo, Leyte during a 25-year rainfall return period.

Figure 88. Affected areas in Palo, Leyte during a 25-year rainfall return period.

For the municipality of Santa Fe with an area of 57.14 sq km, 12.08% will experience flood levels of less 0.20 meters; 0.61% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.29%, 2.06%, and 2.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively.

		Affected Bara	ngays in Santa F	e
PALO DAS		Badiangay	Milagrosa	San Miguelay
	0.03-0.20	5.77	0.0011	1.13
_	0.21-0.50	0.29	0.0094	0.047
Vrea	0.51-1.00	0.54	0.052	0.15
d be	1.01-2.00	0.87	0.18	0.13
km ecte	2.01-5.00	0.85	0.31	0.011
Aff (sq	> 5.00	0.0001	0.0001	0

Table 53. Affected areas in Santa Fe, Leyte during a 25-year rainfall return period.

Figure 89. Affected areas in Santa Fe, Leyte during a 25-year rainfall return period.

For the city of Tacloban with an area of 118.46 sq km, 7.15% will experience flood levels of less 0.20 meters; 1.58% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.52%, 0.072%, and 0.0044% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 54 and Table 55 are the affected areas in square kilometers by flood depth per barangay.

|--|

			Af	fected Baranga	ys in Tacloban C	ity	
PAL	U BASIN	Brgy 78	Brgy 79	Brgy 80	Brgy 81	Brgy 82	Brgy 87
	0.03-0.20	0.4	0.37	0.43	0.24	0.31	0.2
rea (0.21-0.50	0.0046	0.037	0.16	0.035	0.15	0.0018
A b m	0.51-1.00	0.00077	0.014	0.028	0.0072	0.048	0
ecte sq I	1.01-2.00	0	0.00013	0.012	0.00093	0.0041	0
Affe)	2.01-5.00	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0

Table 55. Affected areas in Tacloban City, Leyte during a 25-year rainfall return period.

DAL			Affected B	arangays in Tac	loban City	
PAL	J DASIN	Brgy 88	Brgy 89	Brgy 90	Brgy 95	Brgy 96
	0.03-0.20	0.55	2.05	1.07	1.88	0.99
rea	0.21-0.50	0.014	0.41	0.3	0.3	0.46
d A (m.)	0.51-1.00	0.013	0.15	0.083	0.14	0.13
ecte sq l	1.01-2.00	0.0031	0.022	0.012	0.021	0.011
Aff()	2.01-5.00	0	0	0	0.0052	0
	> 5.00	0	0	0	0	0

Figure 90. Affected areas in Tacloban City, Leyte during a 25-year rainfall return period.

Figure 91. Affected areas in Tacloban City, Leyte during a 25-year rainfall return period.

For the municipality of Tanauan with an area of 62.78 sq km, 0.64% will experience flood levels of less 0.20 meters; 0.67% of the area will experience flood levels of 0.21 to 0.50 meters; while 2.83%, 3.41%, and 0.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 56 and Table 57 are the affected areas in square kilometers by flood depth per barangay.

			Affecte	d Barangavs in	Tanauan	
PALO	BASIN	Atipolo	Balud	Baras	Calogcog	Camire
	0.03-0.20	0	0.089	0	0.15	0.0046
, rea	0.21-0.50	0.0016	0.074	0.00081	0.21	0.0068
k bi km.	0.51-1.00	0.24	0.13	0.092	0.29	0.33
ecte [sq l	1.01-2.00	0.13	0.29	0.51	0.01	0.33
Aff.	2.01-5.00	0	0.089	0.02	0	0.033
	> 5.00	0	0	0	0	0

Table 56. Affected areas in Tanauan, Leyte during a 25-year rainfall return period.

Table 57. Affected areas in Tanauan, Leyte during a 25-year rainfall return period.

DALO	DACINI		Affecte	d Barangays in	Tanauan	
PALO	DASIN	Magay	Mohon	San Roque	Santa Cruz	Solano
	0.03-0.20	0.055	0.0029	0.033	0.066	0.0006
rea (0.21-0.50	0.037	0.038	0.0039	0.033	0.008
A b A	0.51-1.00	0.09	0.31	0.0035	0.27	0.03
ecte sq l	1.01-2.00	0.019	0.11	0	0.74	0.014
Aff(2.01-5.00	0	0	0	0	0
	> 5.00	0	0	0	0	0

Figure 92. Affected areas in Tanauan, Leyte during a 25-year rainfall return period.

Figure 93. Affected areas in Tanauan, Leyte during a 25-year rainfall return period.

For the 100-year return period, 14.93% of the municipality of Palo with an area of 65.34 sq km will experience flood levels of less 0.20 meters; 7.01% of the area will experience flood levels of 0.21 to 0.50 meters; while 7.30%, 11.70% and 4.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 58 to Table 60 are the affected areas in square kilometers by flood depth per barangay.

			Table 58. A	lfected areas i	n Palo, Leyte d	uring a 100-year ra	uinfall return p	eríod.		
-	PALO BASIN	Arado	Baras	Barayong	Buri	CabarasanGuti	Campetik	Cano	dahug	dahug Cangumbang
	0.03-0.20	0.82	0.41	1.3	0.11	0.34	1.47	9.0		0.26
rea	0.21-0.50	0.23	0.054	0.17	0.015	0.097	0.39	0.11		0.64
A b .m>	0.51-1.00	0.38	0.027	0.29	0.043	0.26	0.25	0.029		0.56
l ps) ecte	1.01-2.00	0.53	0.035	0.42	0.035	0.47	0.016	0.003		0.46
ò₩A)	2.01-5.00	0.34	0	0.043	0.018	0.2	0.011	0		1.18
	> 5.00	0	0	0	0	0	0	0		0
			Table 59. Al	ffected areas i	n Palo, Leyte d	luring a 100-year ra	tinfall return p	eríod.		
Č	NISA CI				A	offected Barangays ir	Palo ר			
Ž		Capirawan	Cavite East	Cavite West	Cogon	Gacao	Guindapunan	Libertad		Luntad
	0.03-0.20	0.16	0.061	0.09	0.26	0.48	1.95	1.13		0.1
) LGg	0.21-0.50	0.27	0.038	0.063	0.063	0.33	0.46	0.072		0.012
A b .m>	0.51-1.00	0.15	0.025	0.083	0.12	0.39	0.29	0.12		0.015
bs] ətcə	1.01-2.00	0.043	0.057	0.11	0.65	0.2	0.044	0.17		0.0037
))	2.01-5.00	0	0	0.0001	0.027	0	0.02	0.16		0.013

Table 60. Affected areas in Palo, Leyte during a 100-year rainfall return period.

0.0004

> 5.00

č					A	ffected Barangay	/s in Palo				
ž		Pawing	Salvacion	San Antonio	San Fernando	San Isidro	San Joaquin	San Jose	San Miguel	Santa Cruz	Tacuranga
	0.03-0.20	0.49	0.35	0.059	0.46	1.23	0.91	0.23	0.034	0.023	0.21
) LGg	0.21-0.50	0.23	0.24	0.046	0.1	0.58	0.66	0.27	0.063	0.014	0.26
A b .m>	0.51-1.00	0.078	0.34	0.13	0.021	0.15	1.4	0.093	0.051	0.03	0.4
atoa İps)	1.01-2.00	0.0001	0.29	0.2	0.0001	0.084	4.22	0.026	0.012	0.1	0.13
)))	2.01-5.00	0	0.029	0	0	0	1.03	0.0004	0.026	0	0.002
	> 5.00	0	0	0	0	0	0	0	0	0	0

Figure 95. Affected areas in Palo, Leyte during a 100-year rainfall return period.

For the municipality of Santa Fe with an area of 57.14 sq km, 11.91% will experience flood levels of less 0.20 meters; 0.51% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.94%, 2.04%, and 2.67% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively.

Table 61. Affected areas in Santa Fe, Leyte during a 100-year rainfall return period.

PALO BASIN		Affected Barangays in Santa Fe			
		Badiangay	Milagrosa	San Miguelay	
	0.03-0.20	5.69	0.00059	1.12	
rea	0.21-0.50	0.25	0.00013	0.041	
A bi	0.51-1.00	0.41	0.014	0.12	
ecte sq l	1.01-2.00	0.88	0.11	0.18	
Aff∈)	2.01-5.00	1.09	0.42	0.015	
	> 5.00	0.0015	0.014	0	

Figure 97. Affected areas in Santa Fe, Leyte during 100-year rainfall return period.

For the city of Tacloban with an area of 118.46 sq km, 6.5% will experience flood levels of less 0.20 meters; 1.94% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.79%, 0.10%, and 0.005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 62 and Table 63 are the affected areas in square kilometers by flood depth per barangay.

PALO BASIN		Affected Barangays in Tacloban City						
		Brgy 78	Brgy 79	Brgy 80	Brgy 81	Brgy 82	Brgy 87	
	0.03-0.20	0.4	0.3	0.35	0.18	0.28	0.2	
rea	0.21-0.50	0.0064	0.092	0.23	0.089	0.14	0.0022	
d A (m.)	0.51-1.00	0.0015	0.027	0.037	0.014	0.081	0	
ecte sq l	1.01-2.00	0	0.0012	0.013	0.0016	0.006	0	
Affe)	2.01-5.00	0	0	0	0	0	0	
	> 5.00	0	0	0	0	0	0	

Table 62. Affected areas in Tacloban City, Leyte during a 100-year rainfall return period.

Table 63. Affected areas in Tacloban City, Leyte during a 100-year rainfall return period.

PALO BASIN		Affected Barangays in Tacloban City						
		Brgy 88	Brgy 89	Brgy 90	Brgy 95	Brgy 96		
	0.03-0.20	0.54	1.9	0.91	1.8	0.84		
rea (0.21-0.50	0.016	0.47	0.39	0.33	0.54		
A bi	0.51-1.00	0.014	0.23	0.15	0.18	0.19		
ecte sq l	1.01-2.00	0.0034	0.03	0.018	0.031	0.016		
Aff.	2.01-5.00	0	0	0	0.0062	0		
	> 5.00	0	0	0	0	0		

Figure 98. Affected areas in Tacloban City, Leyte during a 100-year rainfall return period.

Figure 99. Affected areas in Tacloban City, Leyte during a 100-year rainfall return period.

For the municipality of Tanauan with an area of 62.78 sq km, 0.49% will experience flood levels of less 0.20 meters; 0.52% of the area will experience flood levels of 0.21 to 0.50 meters; while 1.92%, 4.25%, and 0.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 64 and Table 65 are the affected areas in square kilometers by flood depth per barangay.

			Affected Barangays in Tanauan						
PAL	O BASIN	Atipolo	Balud	Baras	Calogcog	Camire			
	0.03-0.20	0	0.066	0	0.11	0.0024			
rea (0.21-0.50	0	0.072	0	0.16	0.0046			
A b Â	0.51-1.00	0.069	0.13	0.046	0.35	0.13			
ecte (sq l	1.01-2.00	0.29	0.25	0.5	0.038	0.48			
Aff.	2.01-5.00	0.0007	0.15	0.073	0	0.078			
	> 5.00	0	0	0	0	0			

Table 64. Affected areas in Tanauan, Leyte during a 100-year rainfall return period.

Table 65. Affected areas in Tanauan, Leyte during a 100-year rainfall return period.

PALO BASIN		Affected Barangays in Tanauan						
		Magay	Mohon	San Roque	Santa Cruz	Solano		
	0.03-0.20	0.044	0.0012	0.032	0.047	0.00033		
rea (0.21-0.50	0.038	0.0065	0.0045	0.04	0.0032		
A b Ê	0.51-1.00	0.098	0.23	0.0032	0.12	0.027		
ecte sq l	1.01-2.00	0.023	0.2	0.0006	0.86	0.022		
Affe Affe	2.01-5.00	0	0.024	0	0.04	0		
	> 5.00	0	0	0	0	0		

Figure 100. Affected areas in Tanauan, Leyte during a 100-year rainfall return period.

Figure 101. Affected areas in Tanauan, Leyte during a 100-year rainfall return period.

Among the barangays in the municipality of Palo, San Joaquin is projected to have the highest percentage of area that will experience flood levels at 12.56%. Meanwhile, Cangumbang posted the second highest percentage of area that may be affected by flood depths at 4.73%.

Among the barangays in the municipality of Santa Fe, Badiangay is projected to have the highest percentage of area that will experience flood levels at 14.55%. Meanwhile, San Miguelay posted the second highest percentage of area that may be affected by flood depths at 2.57%.

Among the barangays in the city of Tacloban, Barangay 89 is projected to have the highest percentage of area that will experience flood levels of at 2.217%. Meanwhile, Barangay 95 posted the second highest percentage of area that may be affected by flood depths of at 1.98%.

Among the barangays in the municipality of Tanauan, Santa Cruz is projected to have the highest percentage of area that will experience flood levels at 1.77%. Meanwhile, Camire posted the second highest percentage of area that may be affected by flood depths of at 1.12%.

Moreover, the generated flood hazard maps for the Palo Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps——"Low", "Medium", and "High"—the affected institutions were given their individual assessment for each flood hazard scenario (5-year, 25-year, and 100-year).

	Δrea	Covered in sa kr	n
Warning Level	5 year	25 year	100 year
Low	3.66	9.19	8.91
Medium	0	17.79	17.05
High	0	7.25	10.38

Table 66. Area covered by each warning level with respect to the rainfall scenario.

Of the 45 identified educational institutions in Palo Floodplain, 4 schools were assessed to be exposed to low-level flooding in a 5-year scenario. In the 25-year scenario, 7 schools were assessed to be exposed to low-level flooding, 12 to medium-level flooding, and 1 to high-level flooding. In the 100-year scenario, 11 schools were assessed for low-level flooding and 13 for medium-level flooding. See ANNEX 12 for a detailed enumeration of schools inside Palo Floodplain.

Of the 15 identified health institutions in Palo Floodplain, 2 were assessed to be exposed to low-level flooding in a 5-year scenario. In the 25-year scenario, 2 were assessed to be exposed to low-level flooding, 6 to medium-level flooding, and 1 to high-level flooding. For the 100-year scenario, 2 schools were assessed for low-level flooding and 6 for medium-level flooding, and 1 for high-level flooding. See ANNEX 13 for a detailed enumeration of health institutions inside Palo Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done by contacting a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

Figure 102. Validation points for 5-year flood depth map of Palo Floodplain.

Figure 103. Flood map depth vs. actual flood depth.

				Modeled F	lood Depth (m)		
PALC) BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
٦ آ	0-0.20	41	16	4	2	1	0	64
th (i	0.21-0.50	49	14	7	3	0	0	73
Dep	0.51-1.00	21	9	6	5	0	0	41
po	1.01-2.00	19	16	9	13	0	0	57
I Flo	2.01-5.00	19	6	0	3	0	0	28
ctua	> 5.00	0	0	0	0	0	0	0
Ac	Total	149	61	26	26	1	0	263

Table 67. Actual flood depth vs. simulated flood depth in Palo.

The overall accuracy generated by the flood model is estimated at 28.14%, with 74 points correctly matching the actual flood depths. In addition, there were 98 points estimated one level above and below the correct flood depths while there were 44 points and 47 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 38 points were overestimated while a total of 151 points were underestimated in the modeled flood depths of Palo.

Table 68. Summary of accuracy assessment in Palo.

	No. of Points	%
Correct	74	28.14
Overestimated	38	14.45
Underestimated	151	57.41
Total	263	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP-TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Palo Floodplain Survey.

1. Aquarius

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
	Sensor:250 x 430 x 320 mm; 30 kg;
Dimensions and weight	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

2. Gemini

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galile- o/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (option- al)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitiz- er (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

LYT-101

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

January 20, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LEYTE		
	Station Name: LYT-101		
Island: VISAYAS Municipality: PALO	Order: 2nd	Barangay:	
	PRS92 Coordinates		
Latitude: 11º 10' 23.89707"	Longitude: 125° 0' 38.62071"	Ellipsoidal Hgt:	6.58600 m.
Latitude: 11º 10' 19.64869"	WGS84 Coordinates Longitude: 125° 0' 43.78230"	Ellipsoidal Hgt:	69.02100 m.
	PTM Coordinates		
Northing: 1235497.253 m.	Easting: 501171.719 m.	Zone: 5	
Northing: 1,235,811.61	UTM Coordinates Easting: 719,575.03	Zone: 51	

Location Description

Station is located in the province of Leyte, municipality of Palo. From Tacloban City travel SE to McArthur Park. The point is located infront of Gen. Douglas McArthur Shrine and is approximately 10 m away and adjacent to center of lower step. Station mark is a concrete nail on center of a 20 x 20 cm. cement putty on the concrete ground.

Requesting Party:UP-DREAMPupose:ReferenceOR Number:8795097 AT.N.:2014-94

LYT-101

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 4

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Annex 3. Baseline Processing Reports of Control Points Used in the LiDAR Survey

LY-881

LY-881 - LYT-101 (1:48:33 PM-5:01:31 PM) (S1)

	1.40.001 M-0.01.011 M/ (01)
Baseline observation:	LY-881 LYT-101 (B1)
Processed:	6/10/2014 4:31:22 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.002 m
Vertical precision:	0.003 m
RMS:	0.000 m
Maximum PDOP:	6.041
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	5/6/2014 1:48:59 PM (Local: UTC+8hr)
Processing stop time:	5/6/2014 5:01:31 PM (Local: UTC+8hr)
Processing duration:	03:12:32
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	LYT-101	LYT-101						
0	Brid		Loc	cal		Global		obal
Easting	719575.001 m	Latitud	e	N11°10'2	3.89752" Latitude			N11°10'19.64869"
Northing	1235811.576 m	Longitu	ude	E125°00'3	8.62063"	Longitude		E125°00'43.78230"
Elevation	4.934 m	Height			6.587 m	Height		69.021 m
To: LY-881								
0	Grid		Loc	ocal		Global		obal
Easting	718540.093 m	Latitud	e	N11°10'49.44332"		Latitude		N11°10'45.19188"
Northing	1236589.610 m	Longitu	ude	E125°00'04.69148"		Longitude		E125°00'09.85261"
Elevation	4.367 m	Height	Height		5.992 m Height			68.386 m
Vector								
∆Easting	-1034.90	09 m NS	S Fwd Azimuth			307°19'31"	ΔX	930.803 m
∆Northing	778.03	34 m Ell	lipsoid Dist.			1294.498 m	ΔY	465.453 m
∆Elevation	-0.56	67 m ∆⊦	Height			-0.594 m	ΔZ	769.860 m

Vector errors:					
σ ∆Easting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.001 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m
σ ΔElevation	0.001 m	σ∆Height	0.001 m	σΔZ	0.001 m

SM-286

SMR-56 - SM-286 (6:40:03 AM-5:37:41 PM) (S1)

	5111 (66 - 511 266 (6.46.66 / 111 6.67.41 + 111) (51)	
Baseline observation:	SMR-56 SM-286 (B1)	
Processed:	6/10/2014 6:11:29 PM	
Solution type:	Fixed	
Frequency used:	Dual Frequency (L1, L2)	
Horizontal precision:	0.003 m	
Vertical precision:	0.007 m	
RMS:	0.002 m	
Maximum PDOP:	3.152	
Ephemeris used:	Broadcast	
Antenna model:	Trimble Relative	
Processing start time:	5/10/2014 6:40:03 AM (Local: UTC+8hr)	
Processing stop time:	5/10/2014 5:37:41 PM (Local: UTC+8hr)	
Processing duration:	10:57:38	
Processing interval:	1 second	

Vector Components (Mark to Mark)

From:	SM	IR-56								
	Grid			Lo	cal		Glo		obal	
Easting		718970.608 m	Latit	tude	N11°23'0	6.52702"	Latitude		N11°23'02.22413"	
Northing		1259244.377 m	Long	gitude	E125°00'2	3.99607"	Longitude		E125°00'29.13917"	
Elevation		10.345 m	Heig	ght	1	11.822 m	Height		73.727 m	
To:	SM	1-286								
Grid		Local		Global		obal				
Easting		717715.151 m	Latit	tude	N11°24'35.12654"		Latitude		N11°24'30.81645"	
Northing		1261958.537 m	Long	gitude	E124°59'43.21142"		" Longitude		E124°59'48.35248"	
Elevation		3.975 m	3.975 m Height		5.416 m Height		Height	67.232		
Vector										
∆Easting		-1255.45	57 m	NS Fwd Azimuth			335°34'24"	ΔX	1325.060 m	
∆Northing		2714.16	50 m	Ellipsoid Dist.			2989.890 m	ΔY	263.463 m	
∆Elevation		-6.37	70 m	∆Height			-6.407 m	ΔZ	2667.263 m	

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.002 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.003 m
σ ΔElevation	0.003 m	σ∆Height	0.003 m	σΔZ	0.001 m

LY-123

SMR-56 - LY-123 A (7	':39:33 AM-12:21:26 PM) (S1)
Baseline observation:	SMR-56 LY-123 A (B1)
Processed:	6/17/2014 11:23:48 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.003 m
Vertical precision:	0.013 m
RMS:	0.002 m
Maximum PDOP:	2.591
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	5/14/2014 7:40:11 AM (Local: UTC+8hr)
Processing stop time:	5/14/2014 12:21:26 PM (Local: UTC+8hr)
Processing duration:	04:41:15
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	SMR-56						
G	irid	Lo	cal	cal		Global	
Easting	718970.608 m	Latitude	N11°23'0	6.52702"	Latitude		N11°23'02.22413"
Northing	1259244.377 m	Longitude	E125°00'23	3.99607"	Longitude		E125°00'29.13917"
Elevation	10.345 m	Height	1	1.822 m	Height		73.727 m
To:	LY-123 A						
G	irid	Local		Global		bal	
Easting	702180.961 m	Latitude	N11°12'20.91223"		Latitude		N11°12'16.64155"
Northing	1239293.641 m	Longitude	E124°51'0	6.13717"	Longitude		E124°51'11.29744"
Elevation	33.586 m	Height	34.930 m		Height		96.895 m
Vector							
∆Easting	-16789.64	7 m NS Fwd Azimuth			220°28'33"	ΔX	11632.589 m
∆Northing	-19950.73	6 m Ellipsoid Dist.		:	26071.470 m	ΔY	12890.711 m
∆Elevation	23.24	1 m ∆Height			23.108 m	ΔZ	-19448.320 m

Vector errors:								
σ∆Easting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m			
σ∆Northing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.006 m			
σ ∆Elevation	0.007 m	σ∆Height	0.007 m	σΔZ	0.002 m			

LY-110

rooter componiona (main to mainy

From:	LYT 104								
G	rid		Loc	al			Global		
Easting	706089.510 m	Latitud	de	N11°08'38	8.92234*	Latitude		N11°08'34.67033"	
Northing	1232496.838 m	Longit	tude	E124°53'13	3.52786*	Longitude		E124°53'18.69323*	
Elevation	32.311 m	Height	ıt	3	33.659 m	Height		95.861 m	
To: LY 110									
G	rid	Local			Giobal		bel		
Easting	713942.863 m	Latitud	de	N11°10'19	9.48389"	Latitude		N11°10'15.23095"	
Northing	1235638.117 m	Longit	tude	E124°57'32	2.98736*	Longitude		E124°57'38.14961*	
Elevation	12.819 m	Height	ĸ	1	4.336 m	Height		76.647 m	
Vector									
ΔEasting	7853.35	i3 m N	IS Fwd Azimuth			68°33'52"	ΔX	-6101.546 m	
ΔNorthing	3141.27	79 m E	ilipsoid Dist.			8457.064 m	ΔY	-5012.598 m	
∆Elevation	-19.49)2 m 🛆	Height			-19.323 m	ΔZ	3027.816 m	

Standard Errors

Vector errors:								
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m			
σ ΔNorthing	0.001 m	σ Ellipsold Dist.	0.002 m	σΔY	0.005 m			
σ ΔElevation	0.007 m	σ∆Height	0.007 m	σΔZ	0.002 m			

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
x	0.0000143938		
Y	-0.0000177190	0.0000287509	
Z	-0.0000052060	0.0000075812	0.0000037601

LYT-104

Vector Components (Mark to Mark)

From:	SMR-53						
G	Frid	Lo	cal			G	lobal
Easting	720874.133 m	Latitude	N11°30'17	.85656"	Latitude		N11°30'13.52495"
Northing	1272513.396 m	Longitude	E125°01'29	.83738"	Longitude		E125°01'34.96980"
Elevation	24.750 m	Height	20	6.134 m	Height		87.787 m
To:	LYT-104						
G	Grid	Lo	cal			G	lobal
Easting	706089.510 m	Latitude	N11°08'38	.92234"	Latitude		N11°08'34.67033"
Northing	1232496.838 m	Longitude	E124°53'13	.52786"	Longitude		E124°53'18.69323"
Elevation	32.311 m	Height	3(3.659 m	Height		95.861 m
Vector							
ΔEasting	-14784.62	3 m NS Fwd Azimuth			200°40'31"	ΔX	7839.600 m
∆Northing	-40016.55	8 m Ellipsoid Dist.			42653.401 m	ΔY	15051.644 m
∆Elevation	7.56	61 m ∆Height			7.525 m	ΔZ	-39131.928 m

Vector errors:					
σ ΔEasting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.006 m
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.002 m

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
Program Leader	Program Leader –I	ENRICO C. PARINGIT, D. Eng.	UP-TCAGP
Data Acquisition	Data Component	ENGR. CZAR JAKIRI S. SARMIENTO	UP-TCAGP
		ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	Senior Science	JULIE PEARL MARS	UP-TCAGP
LiDAR Operation	Research Specialist	ENGR. GEROME HIPOLITO	
	(SSRS)	JASMINE ALVIAR	UP-TCAGP
		FAITH JOY SABLE	UP-TCAGP
		DAN ALDOVINO	UP-TCAGP
	Research Associate	PAULINE JOANNE ARCEO	UP-TCAGP
LiDAR Operation	(RA)	IRO NIEL ROXAS	UP-TCAGP
		ENGR. GRACE SINADJAN	UP-TCAGP
		JONATHAN ALMALVEZ	UP-TCAGP
Ground Survey	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
	Airborne Security	SSG. RAYMUND DOMINE	PILIPPINE AIR
	And office Security	SSG RANDY SISON	FORCE (PAF)
LiDAR Operation		CAPT. JEFFREY ALAJAR	ASIAN
	Pilot	CAPT. JACKSON JAVIER	AEROSPACE
		CAPT. ALBERT PAUL LIM	CORPORATION
		CAPT. RANDY LAGCO	(AAC)

Annex 4. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheet for Palo Floodplain

	SERVER		Airborne_Raw\1 BA	Airborne_Raw1	Airbome_Raw/1 5P	Airborne_Raw/1 2A	Airborne_Raw/1 4A	Airborne_Raw/1 DA	Airborne_Raw/1 2A	Airborne_Raw\1 4A	Airborne_Raw\1 6P	Airborne_Raw\1 0A	Airborne_Raw/1 2A	Airborne_Raw/1 4A						
	z	KML	73/12KB 21	49/12KB 2/	59/10KB 23	552KB Z1	B13/700 Z:\ B	019KB 21	12KB 21	522KB 21	41KB 21	76/807KB 21	42KB 21	21 86KB 46						
	FLIGKT PL/	Actual	KB 7	KB 6	KB 8	A 2	SKB 2	KB	10KB	2KB	KB	/5KB	/4KB	KB						
	PERATOR LOGS (OPLOG)	_	1KB 6	1KB 64	1KB SI	1KB N	1KB 5/	1KB 54	1KB 64	1KB 5/	1KB 5I	1KB 5.	1KB 5	1KB 4						
	TION(S)	Base Info (.bt)	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	+					
	BASE STA	STATION(S)	12.1MB	11.3MB	8.53MB	14.3MB	14.3MB	10.5MB	11.2MB	8.41MB	7.92MB	11.4MB	11.6MB	11.4MB	5/28/201					
	DIGITIZER		NA	NA	NA	NA	229GB	87.0GB	86.8GB	206GB	58.6GB	235GB	NA	NA	A LE JA					
	RANGE		4.1GB	26GB	4.9GB	6.6GB	5.2GB	.07GB	.57GB	4.6GB	1.6GB	4.7GB	5.2GB	4.0GB						
Origoing/	ISSION LOG		510/87KB 1	6KB 8	8/1/263KB 1	V697/KB 1	1/515/1/139K	7KB 6	415KB 9	1102/517KB	'8/226KB 1	2KB 1	SSKB 1	1 1	AdioL 22					
122/2014 (Leyte	RAW R		3.3/10.7GB 3/	1.1GB 20	6.5GB 41	08GB 55	9.3GB B	4.1GB 25	7.1GB 1/	5.7/71.5GB 23	6.6GB 21	4.8GB 62	11.2GB 68	6.9GB	teceived by Name Position Signature					
2	sod		BMB 6	4MB 4	7MB 9	5MB 1	4MB 7	2MB 3	3MB 4	SMB 1	2MB 6	3MB 7	5MB	1MB	-					
	roes		7MB 240	SMB 174	7MB 25	3MB 27!	26- 25-	KB 13	3MB 23:	BMB 26	BMB 21	4MB 27	9MB 27	DMB 25						
	AS	fL (sweth)	1.1	7.7	1.3	5.8	2.8	306	2.3	1.8	0.0	1.2	1.2	12						
	RAWL	IN KI	NA	NA	NA	NA	N	NA	NA	NA	NA	NA	N	Na	1.	Π				
	(SOR	Ino	ARIUS NA	ARIUS NA	ARIUS NA	IARIUS NA	JARIUS NA	JARIUS NA	JARIUS NA	RIUS NA	Herovino pagi Associate									
	SE		AQL	NQL	AQL	AQI	AQU	- Aller												
	MISSION NAME		3BLK34F110A	3BLK34FS110B	3BLK34E112A	3BLK33GS131A	3BLK33GSH131B	3BLK33HS133A	3BLK33HSES133B	3BLK34D134A	3BLK34C134B	3BLK35CD135B	3BLK35DSE136A	3BLK35ES136B	scelved from Name Position Signature					
	FLIGHT		1358A	1360A	1366A	1442A	1444A	1450A	1452A	1454A	1456A	146DA	1462A	1464A	d					
	DATE		20/2014	20/2014	22/2014	1/2014	1/2014	3/2014	3/2014	4/2014	4/2014	5/2014	6/2014	6/2014						

Image: state Image: state<																			
Image: constrained biology Image: constrained biology <th< th=""><th></th><th>SERVER</th><th></th><th>58A</th><th>66A</th><th>:Nairborne_Rawn</th><th>::Vairborne_Raw/1 194A</th><th>2:VAirborne_Raw/1 198A</th><th>2:VAirborne_Raw\1 502A</th><th>2:\Airborne_Raw\1 504A</th><th>2:Vairborne_Raw1 506A</th><th>2:Vairborne_Raw/1 508A</th><th>Z:VAirborne_Raw1 510A</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		SERVER		58A	66A	:Nairborne_Rawn	::Vairborne_Raw/1 194A	2:VAirborne_Raw/1 198A	2:VAirborne_Raw\1 502A	2:\Airborne_Raw\1 504A	2:Vairborne_Raw1 506A	2:Vairborne_Raw/1 508A	Z:VAirborne_Raw1 510A						
Image: constrained by the second of		AN	KML	3	A	AA A	A	AN N	AN N	A	NA	NA	NA						
True Matrix Matri Matri Matri		FLIGHT PL	Actual	-	-	-													
Turbin Mathematical Consistent Mathematical		DPERATOR LOGS	(outroo)	1KB 6	1KB 4	1KB 6	1KB 5	1KB 5	1KB 5	1KB 5	1KB 4	1KB 5	1KB 5						
Tradition Matrix Control Matrix Mat		ion(s)	Base Info (.txt)	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB						
Fuent assont MAME sensor Advance and		BASE STA	BASE STATION(S)	4.6	.95	17	.64	3.04	15.7	15.7	15	15	5.85	6 10 14					
Fuent Masson NAME Series of the masson NAME Mont Las Mon		IGITIZER		1	1 7	80	2	47 8	1	6.0	5.2/32.5	A	55	R.S					
Fuent Mission MARE Striktor Main Last Loosinus Pool Main Lister No. Mission MARE Striktor Striktor Striktor Loosinus Pool Hue No. Bitulosistista Acuvenus Striktor Loosinus Pool Hue 1454 Bitulosistista Acuvenus acuve		ANGE		8.3 N/	3 18	1 21	4.7 16	23 9.	3.9 10	1.4 20	4.4 56	1.5 N	8.5 11	in sit					
Fuert Mission NAME Serieson RAW LAS Locasima Poss Massion NAME No. 38,14354354 Mission NAME Serieson Output Kull. (swaeth) Pos Massion Pis <	(fittof-uo	NOISSION	LOGS	3 13	6/563 16	9 14	6 1/	1	13	30	37 1.	3/409 1	34 1	AQUOL					
FLERT MISSION MAME SENSOR MANULAS LOGGMBB POS M No. 4166M aussion MAME SENSOR Output KAMULAS LOGGMBB POS M 1456M aburdstills na SENSOR AcUMERUS na SENSOR 224 277 8 1494A jaburdstills na 6125551-1144A AcUMERUS na 612659 1.20 224 221 12 1494A jaburdstills na 6125559 AcUMERUS na 612659 1.22 224 2 1 150A jaburdstills na MARRUS na 663 1.2 223 1 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 3 1 1 3 1 2 1 2 1 2 2	14 Sama	RAW	SI IS	1.7 58	4.7 13	0.2 58	9.2 65	8.7 64	6.7 40	1.3 41	7.2 7	.1/53.6 6	14 5	Received by					
FLERT MISSION NAME SENSOR RAW LAS No. aussion NAME SENSOR Output KOM. (swath) 1456A aburdstills na Cobput KoM. (swath) 1456A aburdstills na Cobput KoM. (swath) 1456A aburdstills na 120 224 2 1494A aburdstills na 6126690 1.120 2 2 1494A aburdstills na 612650 1.120 2 2 2 2 1502A aburdstills na 6127314A AcUARIUS na 6127590 1.12 2 150A aburdstills na 6223146A AcUARIUS na 1.12 2 150A aburdstills na 615772 1.61 1.2 2 150A aburdstills na 5104813 na 5104814 2 150A aburdstills na 51123 2 1.2	10/1/1/1		2	77 8'	84 9	91 8	82 8	82	78 8	65 6	276 9	232 8	269 1						
FLERIT AIRSION MARE ENHOR AIRSION AIRSIN AIRSION AIRSION AIRSIN AIRSION			(guilleon)	24 2	29 2	61	1 25 1	C 2 1		37 1.4	34		.61						
FLER SENSOR CAM No. 1456A 3BL/SSE135A Current 1456A 3BL/SSE135A ACUARUS 7 1456A 3BL/SSE135A ACUARUS 7 1456A 3BL/SSE135A ACUARUS 7 1494A 3BL/SSE131A ACUARUS 7 1494A 3BL/SSE15145A ACUARUS 7 1494A 3BL/SSE15145A ACUARUS 7 1502A 3BL/SSE15146A ACUARUS 7 1504A 3BL/SSE15146A ACUARUS 7 1505A 3BL/SSE15146A ACUARUS 7 1506A 3BL/SSE1546A ACUARUS 7 1506A 3BL/SSE1546A ACUARUS 7 1506A 3BL/SSE146A ACUARUS 7 1506A 3BL/SSE146A<		LAS	KML (swath)	30 2	383 1.	1484 1	312/599	1622	766	513/850 1	864 1	249/1243 2	815/172						
Fuent assiston name sensor 1458A suksse135.4 acuverus n 1458A suksse135.4 acuverus n 1458A suksse135.4 acuverus n 1494A suksse137.4 acuverus n 1494A suksse135.4 acuverus n 1494A suksse135.4 acuverus n 1494A suksse135.4 acuverus n 1494A suksse134.5 acuverus n 1494A suksse134.5 acuverus n 1494A suksse134.5 acuverus n 15043 suksse134.6 acuverus n 15043 suksse134.7 acuverus n 15043 suksse134.74 acuverus n		RAM	Output							2 0	g	a	a	22					
Fugert No MISSION NAME No MISSION NAME No MISSION NAME 1456A BLK356135A A A 1494A BLK356131AA 1494A BLK356134A 1495A BLK356134A 1495A BLK356134A 1494A BLK3561345A 1504A BLK3515145A 1504A BLK3351145A 1504A BLK33515145A 1504A BLK3315144A 1504A BLK3315144A 1506A BLK3315144A 1506A BLK3315144A 1506A BLK3315144A 1506A BLK3315144A 1506A BLW3915144A 1506A BLW9			SENSOR	QUARIUS	QUARIUS n	OUARIUS IN	OUARIUS n	U SI IIANI IO	GIIGVIO	CITARII IS	QUARIUS	AQUARIUS		100 mayou					
ниант 1458A 1465A 1474A 1474A 1474A 1475A 1500A 1500A 1500A 1500A 1500A 1510A			MISSION NAME	A	V VCCTQCCVIQS	3BLK35F13/A	3BLK35G139A	3BLK35GSH144A	3BLK35HSI145A	3BLK35IS146A	3BLK35AI51466	A14105015		Received from Name Position Signature					
			NO.	1458A	1466A	14740		1494A	1498A	1502A	1504A	VODT	VOLT.						

RP-CAIDA				×
Flight 6 Aircraft Identification:	18 Total Flight Time:		·	Lidar Operator
、 Aircraft Type: CesnnaT206H	port, Gty/Province): 7 Landing:			2 Jacor Co.
33 bart 4 Type: VFR 5	12 Airport of Arrival (Air 700,000 Arrival (Air 16 Take off:			Pilot-in-Command In Cleter Ro
Miy 3 Mission Name: 3BLK	9 Route: ture (Airport, Gty/Province): (100m (11) 15 Total Engine Time: (100	on the card side	digifizer (nongs)	Acquisition Flight Certified by
ition Flight Log or: [21]41, 2020 [2 ALTM Model: //al	\mathbb{Z} , 2014 12 Airport of Depa 12 Airport of Depa 14 Engine Off: 12 $12 \sqrt{5}$	for out due to tennin a	and solutions: Les Pass communication (stion Flight Approved by Dor Maring The over Printed Name User Representative)
I Data Acquis DAR Operat	7 Pilot: 10 Date: JJA 13 Engine On: S14 19 Weather	20 REMARKS:	21 Problems	Acqui Signa CEnd

Flight Log for 1024A Mission

Flight Log No.:	ation: A- C417		:e:			1 ⁸
	6 Aircraft Identific		18 Total Flight Tim		-	udar Operator NOV Signature over Printed Na
	5 Aircraft Type: CesnnaT206H	Airport, City/Province):	17 Landing:			d Brood S. Jan 44.
	AND TYPE: VFR	12 Airport of Arrival (16 Take off: J			Pilot-in-Commar Dencles en
	3 Mission Name: 34,3345	Airport, City/Province):	15 Total Engine Time: リナリ子	alt fix	Herdy.)	on Flight Certified by
	2 ALTM Model: MUM	12 Airport of Departure (ine off: ByJ	ferrit on the	annumerton (Digitize	Acquisit
uisition Flight Log	rator: Per New	AN 261204	n: AJS 14 Engi	line cut due th	ns and solutions:	quisition Flight Approved by
DREAM Data Acq	1 LiDAR Ope	10 Date: J	13 Engine Ο. ζ 19 Weather	20 Remarks:	21 Problem	Et is in the second sec

Flight Log for 1026A Mission Flight Log No.: 1036 6 Aircraft Identification: RP-C9/70 18 Total Flight Time: signature over Printed Name Lidar Operator 5 Aircraft Type: CesnnaT206H 12 Airport of Arrival (Airport, City/Province): 02 U1.0 1 17 Landing: Signature over Printed Nam Jacksen 1886 Pilot-in-Command 1 LiDAR Operator: U. Aldwirth 2 ALTM Model: Murrieli 3 Mission Name: 30U 2400 4 4 Type: VFR 7 Pilot: 8 Co-Pilot: 9 Route: 10 Date: 7 M 12 Airport of Departure (Airport, City/Province): 12 Airport of Arriva 13 Engine On: 14 Engine Off: 15 Total Engine Time: 16 Take off: communication (dualitien heave are the cut Signature over Printed Name (PAF Representative) Acquisition Flight Certified b Rayman 8 enzin 14 Engine Off 4 due Pill tho Signature over Printed Name (End User Representative) Acquisition Flight Approved by Ma **DREAM Data Acquisition Flight Log** 21 Problems and Solutions: 10 M Pin 13 Engine On: 19 Weather 20 Remarks:

Flight Log for 1028A Mission

Flight Log for 1036A Mission Flight Log No. 036 6 Aircraft Identification: 18 Total Flight Time: te over Printed Name Lidar Operato 5 Aircraft Type: CesnnaT206H 12 Airport of Arrival (Airport, City/Province): 17 Landing: Signature over Printed Name Pilot-in-Command S 3014 330 509 A 16 Take off: BUR33D & remaining lare 8 Co-Pilot: 9 Route: 12 Airport of Departure (Airport, City/Province): 15 Total Engine Time: 2 ALTM Model A Mussion Name: Acquisition Flight Certified by Haven Christian A Signature over Printed Name (PAF Representative) area m 14 Engine Off: cover undy ved by Signature over Printed Name (End User Representative) 1 LiDAR Operation Nov 7 Pilot: DREAM Data Acquisition Flight Log 21 Problems and Solutions: P Acquisition FI 5 13 Engine On: 20 Remarks: 19 Weather 10 Date:

Flight Log for 1040A Mission Flight Log No. 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: wer Printed Name 18 Total Flight Time: Lidar Opera 12 Airport of Arrival (Airport, City/Province): 17 Landing: r Printed Name 3BUK3374 UPIDSD72A e: 4 Type: VFR Signature 16 Take off: 1 LiDAR Operator:DC みんらか、 2 ALTM mourguey 9 Route: 7 Pilot: 8 Co-Pilot: 12 Airport of Departure (Airport, City/Province): 15 Total Engine Time: PDT amited Ptr Signature over Printed Name Acquisition Flight Certified by (PAF Representative) Encended Reift 30, 201 Ha Engine Off 37U Acquisitigmif light Approved by Signature over Printed Name (End User Representative) **DREAM Data Acquisition Flight Log** 21 Problems and Solutions: 13 Engine On 20 Remarks: 19 Weather

t Log No.:	1: KNC 912.2						10.92.	
Fligh	6 Aircraft Identification			18 Total Flight Time:			D PHOTOCOPY	ignature over Printed Name
	5 Aircraft Type: Cesnna T206H		irport, Gty/Province):	17 Landing:				orinted Name
	o A 4 Type: VFR		12 Airport of Arrival (A	16 Take off:				Pilet-in-compres
	Mission Name: 3BUc34kl	3 Route:	irport, City/Province):	L5 Total Engine Time: 4 41/		18/24 lince.		on Flight Certified by ALCON J. C.C.D. V. 2012 RUNDY J. C.C.D. V. 2012 RUNDY J. C.C.D. V. 2012 Prosertative)
	2 ALTM Model: ASumptus	VIOT: NJ. AGAININ	12 Airport of Departure (A	gine Off: 103	hanoto	completed		Acquist
de Aconicition Flight Log	II Onerator: PAU AR.OFD	16. 16. 16/16/2 8 Co-P	(6: devis des. sold	gine On: 6.5 2 14 Eng	ather	marks:	roblems and Solutions:	Acquisition Flight Approved by L.H. Joo U. Getto M. E. H. J. P.U.L. T. Signature over Printed Mame [End User Representative]

Martine Automatical (Automatic) Automatical (Automatic) Automatical (Automatic) Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic) • Automatical (Automatic)	Accuricition Elight Log				Flight Log No.: 260
Jumber Jacobien Josephend Josephend Antonic 20, shut 20, shut 20, shut 20, shut 20, shut Antonic 20, shut 20, shut 20, shut 20, shut 20, shut Antonic 10, str 10 shut 10 shut 10 shut 10 shut Antonic 10, str 10 shut 10 shut 10 shut 10 shut Antonic 10, str 10 shut 10 shut 10 shut 10 shut Antonic 10, str 10 shut 10 shut 10 shut 10 shut Antonic 10, str 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut Antonic 10 shut 10 shut 10 shut 10 shut 10 shut	Operator: PJ CABLE 2 ALTM Model: A944	Mussion Name: Budden	the 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Alrcraft Identification: Percentary
mark 1. 20: Add	J. JAVIER. 8 Co-Pilot: N. AGRIMIN 12 Airport of Depart	9 Route: ure (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Is at late Landy In Landy Landy Int Landy	APILI 20, 2014	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
Active Lepty and Guidon: Completed 6 liver Lepty and Ke pirst mission: Interna and Solutions: Interna and Solutions: International Reprint Control of Reprint Con	her clower				
Items and Solutions: Aquitien flight Anonoed by Aquitien	iks: Comple	tel 6 livre left tra	n the pirst a	1.6101.	
Aquisition Flight Approved by Pagasition Flight Approved by	liems, and Solutions:				
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Udar Ophetic Command Comma Command Command Com					DeHOLOCOPY
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Fight Approved by Regently of the observed by Signature over Printed Name (End User Representative)	kopulation Flight Certified by	Pilotin-Corre	Jes unter	Lidar Oppreter
			۵	Isaster Risk and Exposure Asse	OREAM

Flight Log for 1360A Mission

10:13/60	G122								ł		[-		
ight Log N	ion: KRC										v	19 UNBU	1-1	vezin () Vezin (j	(D
	entificat			tht Time							-	hf	-	Interves	N M igation
	6 Aircraft Id			18 Total Flig							Neu	JULUH	EUS	BIANDER	R E A
	snnaT206H		e):											58 88	D Ssure Assessm
	rcraft Type: Ce		rt, Gty/Provinc	anding:										A Name	Risk and Expo
	5 Air		al (Airpor	171										a vie	Disaster {
	ype: VFR		rt of Arriv	off:										Pilotin-Con	5
	12A 4T		12 Ai rpoi	16 Take											
	15the stal		:(a	:01										The second se	
	Name: 3		//Provinci	4 + 2 q			ERT.							Vified by	
	Mission	Route:	rport, Gb	5 Total Er			Idwon							n Flight Cer	
	Builthus 3	6 7	srture"(Ai	<u> </u>			MICSIEM							Acquistio	
	fodel: At	- AGAINIT	t of Depa				-					•		E	
	Z ALTM N	ot: N	12 Airpoi	II 2.0	In										
20		8 Co-Pi	+	14 Engl	PA			۲		:52				ed Name	
m Flight Lo	PUMAGET	TERC	21. 201	EI I						Solution				A Flight A	
Acquisitio	perator:	そつうう	APRUL	:uo	ler	rks:				lems and				Acquisition	
M Data	UDAR O	Flot:	ODate:	Engine	Weath	Remar				21 Probl					
IDAR Operator: ICD LONAS	Z ALTM Model: AGUA	3 Mission Name: 9 Route:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	Flight Log No.: / Y.J V 6 Aircraft Identification:										
--	----------------------------	---	-----------------------	---	---										
Date: In Man. Pold	12 Airport of Departure (/	Nirport, City/Province):	12 Airport of Arrival	(Airport, Gty/Province):											
Engine On: 14 E	ngine Off: [218	15 Total Engine Time: サインラ	16 Take off:	17 Landing:	18 Total Filght Time:										
Remarks:	ompleted miccion ou	ar Butavo and v	vids area Bukzy	2											
Acquisition Flight Approved by Signature	Acquisition	A Flight Certified by Cr. Nort Printed Name Sectative)	Pilot in Company	d Lida VL L-27 Inted Name Sign	r Operator										

Flight Log for 1456A Mission Flight Log No.: (453 6 Aircraft Identification: over Printed Name 18 Total Flight Time: Udar Operato Signatupé 5 Aircraft Type: Cesnna T206H 12 Airport of Arrival (Airport, Gty/Province): 17 Landing: Printed Na 110AR Operator: Part Area 2 ALTM Model: AGUA 3 Mission Name: 3812346343 4 Type: VFR 7 Pillot: J. Jawer 8 Co. Pilot: N. Andrew 9 Route: 12 Airport of Artive 10 Date: 12 Airport of Artive Pilot-in-Co 16 Take off: Completed mission nor BUKSYC 15 Total Engine Time: 3441 Acquisition Flight Certified by Signature over Printed Name PAF Representative) E 14 Engine Off: 153 ed by **REAM Data Acquisition Flight Log** 21 Problems and Solutions: Acquisition Flight / 10 Date: Ju May Jely 13 Engine On: hter 20 Remarks: 19 Weather

1 A and Box subs .	6 Aircraft Identification: 902.2		-	18 Total Filght Time: 3 + /3						Alrcraft Mechanic/ UDAR Technician
	5 Aircraft Type: Cesnna T206H		Airport, City/Province):	17 Landing:				cerepul Flight		UDAR Operator L b - J - J - J - J - J
	24.9 4 Type: VFR	LOCAL	12 Airport of Arrival (16 Take off: 位, 65			21 Remarks	nance inities		command 2 A M MM 5 overphilited Name
	3 Mission Name: 28/L3/0/02	9 Route: -PK.LOGAJ	Airport, Gty/Province):	15 Total Engine Time: 3 4 2 3				20.c Others O LIDAR System Mainte O Alrcraft Maintenance O Phil-UDAR Admin Acti	2	ed by Pilotin Control Pilotin
Flight Log	Avia 2 ALTM Model: (Swini	8 Co-Pilot: Pandu lotte	12 Airport of Departure	14 Engine Off: Lar 1 3	andle deader	1 0		20.b Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:		Acquisition Flight Certif
BUUDAR 1 Data Acquisition I	100AR Operator: 14. Sivel	Hot deland I have	20ate: -7.7 - 110	Bingine On: NO	3 Weather		2/Hght Classification	 Magnitistion Flight Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	2Problems and Solutions O Weather Problem O Aircraft Problem O Pilot Problem O Others:	Acquisition Fight Approved by $ P_{ij,0} i + k e_{introd} Approved by Spature over Printed Name (End User Representative)$

Flight Log for 3769G Mission Flight Log for 3701G (renamed 3771G) Mission Flight Log No.: 3 7 0 / KPC 5023 Aircraft Mechanic/ LIDAR Technician Signature over Printed Name 6 Aircraft Identification: 24 18 Total Flight Time: 6 + 1 5 Alrcraft Type: Cesnna T206H 200 aturye over Printed Name 12 Airport of Arrival (Airport, City/Prownce): R 12:04 17 Landing: buress F. ... 21 Remarks Derator: J_ Mindly 1 2 ALTM Model: DENIN, 3 Mission Name: 204434240243 4 Type: VFR Signature over Printed Name 16 Take off: 7: GI 114 Local LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities 2 Pllot-In-Com PRUCEsal \$10 Alper Ling 8 co-prilot: Kardy Lages 9 Route: Perce J. 23 - 1/6 12 Airport of Departure (Airport, CEV/ Province); 15 Total Engine Time: 4 123 SG Raymond Domin. Der 20.c Others Acquisition Flight Certified by Signature over frinted Name (PAF Representative) Aircraft Test Flight AAC Admin Flight 00 Others; 20.b Non Billable 14 Engine Off: 12:00 2 0 081 Data Acquisition Flight Log Aquisition Flight Approved by 140000 Sprature over Printed Name (End User Representative) 6 Ferry Flight 9 System Test Flight 0 Calibration Flight Weather Problem System Problem Alicraft Problem Pllot Froblem Others: 1-29-16 Weather Problem Aquisition Filght phems and Solutions tdassification alp: Pavinet IN ON: 5

÷.	3703	ECC 610 223							[Technician
	Flight Log N	6 Aircraft Identification:		18 Total Flight Time:	6140						Aircraft Machanic/ LIDAR KAA
		rcraft Type: Cesnna T206H	rt, Ctty/Province):	anding: P · 3 4.				P) Hight.			Linka Operation-
		344 Type: VFR 5 Al	Airport of Arrival (Airpo	Take off: 17 L		21 Remarks		Ou coess.			ad line to the second s
		Route: ThCACOM LICK	rport, City/Province): 12 /	5 Total Englne Time: 161			0.c Others	 UDAR System Maintenance Aircraft Maintenance Phil-UDAR Admin Activities 			ov Pilotin Comma
	IIEnt Log	CURINIZALIM Model: GETTINI 3 8 Co-Pilot: Par dv Innin 9	12 Airport of Departure (Ai	14 Engine Off: 11 17・4 イ	clarty	0	20.b Non Billable 20	 Alrcraft flest Flight AAC Admin Flight Others: 			Acquisition Flight Certified
Theory of the Association	UOD OT A LOUGH PART I COM	lot Arbus I'm	1-23 - 16	ngine On:	leather	ight Classification	Bilable	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	robients and Solutions	0 Weather Problem 0 System Problem 0 Alticraft Problem 0 Ribt Problem 0 Others:	utation Flyts Approved by (1) 11 112 4 Approved by (1) 11 112 4 Aproved by First apresentative) (1) 11 bit Representative)

Annex 7. Flight Status Reports

FLIGHT STATUS REPORT CAMARINES SUR & QUEZON (May 10-17, 2016)

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1016A	BLK 33A AND BLK 33D	3BLK33A024A	DC ALDOVINO	24 Jan 14	Lines cut due to terrain on the east side
1018A	BLK 33A	3BLK33A024B	PEARL MARS	24 Jan 14	Lines cut due to terrain on the east side
1020A	BLK 33B	3BLK33B025A	FAITH SABLE	25 Jan 14	Loss POS comm(digitizer hanged) Lines cut due to terrain on the east side
1024A	BLK 33A AND BLK 34A	3BLK33AS34A026A	PEARL MARS	26 Jan 14	Loss POS comm(digitizer hanged) Lines cut due to terrain on the east side
1026A	BLK 34A	3BLK34AS026A	DC ALDOVINO	26 Jan 14	Loss POS comm(digitizer hanged) Lines cut due to terrain on the east side
1028A	BLK 34A AND BLK 34B	3BLK 34ABS027A	DC ALDOVINO	27 Jan 14	Completed BLK 34A and covered some lines in BLK 34B
1036A	BLK 33D	3BLK33DS0929A	PEARL MARS	29 Jan 14	Remaining lines completed
1040A	BLK 33 and BLK 34 voids	3BLK3334V030A	DC ALDOVINO	30 Jan 14	Covered voids
1358A	BLK34F	3BLK34F110A	PJ ARCEO	20 APR 14	Completed 18/ 24 lines over BLK34F.
1360A	BLK34F	3BLK34FS110B	FJ SABLE	20 APR 14	Completed mission 8 lines left from the morning flight.
1366A	BLK34E	3BLK34E112A	PJ ARCEO	22 APR 14	Mission completed
1454A	BLK34D BLK33E	3BLK34D134A	IN ROXAS	14 MAY 14	Completed mission over BLK34D and some voids over BLK33E.
1456A	BLK34D BLK33E	3BLK34D134B	PJ ARCEO	14 MAY 14	Completed mission over BLK34D and voids over BLK33E.
3765G	Leyte	2BLK34AD022A	J ALMALVEZ	22 JAN 2016	Surveyed 7 lines at BLK34D and 10 lines at BLK34A.
3767G	Leyte	2BLK34AG022B	G SINADJAN	22 JAN 2016	Surveyed 7 lines at BLK34A and 16 lines at BLK34G.
3769G	Leyte	2BLK34ADEG023A	J ALMALVEZ	23 JAN 2016	Completed BLK34A, BLK34D and BLK 34E. Surveyed 6 lines at BLK34G.
3771G	Leyte	2BLK34BCG023B	G SINADJAN	23 JAN 2016	Completed BLK34B. Surveyed 10 lines at BLK34C and 4 lines at BLK34G.
3773G	Leyte	2BLK34CG024A	J ALMALVEZ	24 JAN 2016	Completed BLK34C and BLK34G.

SWATH PER FLIGHT MISSION

Flight No. :	1016A
Area:	BLK33A AND BLK 33D
Mission Name:	3BLK33A024A
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40%

Flight No. :	1018A
Area:	BLK33A
Mission Name:	3BLK33A024B
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40%

Flight No. :	1020A
Area:	BLK33B
Mission Name:	3BLK33B025A
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40

Flight No. :	1024A
Area:	BLK33B AND BLK34A
Mission Name:	3BLK33AS34A026A
Parameters:	Alt: 600m; Scan Fz: 40; Scan ange: 25; Overlap: 40

Flight No. :	1026A
Area:	BLK34A AND BLK 34B
Mission Name:	3BLK34AS026B
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40

Flight No. :	1028A
Area:	BLK34A AND BLK34B
Mission Name:	3BLK34ABS027A
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40%

Flight No. :	1036A
Area:	BLK33A
Mission Name:	3BLK33DS0929A
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40%

Flight No. :	1040A
Area:	BLK 33 and BLK 34 voids
Mission Name:	3BLK3334V030A
Parameters:	Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40%

Flight No. :	1358A		
0			
Area:	BLK34F		
Mission Name:	3BLK34F110A		
Total Area:	122.03 sq km		
Altitude:600m			
PRF:	50 kHz	SCF:	50 Hz
Lidar FOV:	18 deg	Sidelap: 30%	

Flight No. :	1360A		
Area:	BLK34K		
Mission Name:	3BLK34K110B		
Total Area:	74.498 sq km		
Altitude:600m			
PRF:	50 kHz	SCF:	50 Hz
Lidar FOV:	18 deg	Sidelap: 30%	

Flight No. :	1366A		
Area:	BLK34E		
Mission Name:	3BLK34E112A		
Total Area:	121.43 sq km		
Altitude:600m			
PRF:	50 kHz	SCF:	50 Hz
Lidar FOV:	18 deg	Sidelap: 30%	
1			

Flight No. :	1454A							
Area:	BLK34D & BLK34	E						
Total Area:	138.839 sq km.							
Mission Name:	3BLK34D134A							
Altitude:600m								
PRF:	50 kHz	SCF:	50 Hz					
Lidar FOV:	18 deg	Sidelap: 30%						

Γ

Flight No. :	1456A		
Area:	BLK34C		
Total Area:	98.421 sq km.		
Mission Name:	3BLK34C134B		
Altitude:600m			
PRF:	50 kHz	SCF:	50 Hz
Lidar FOV:	18 deg	Sidelap: 30%	

FLIGHT NO.:	3765	
AREA:	Leyte	
MISSION NAME: 2BLK34A	AD022A	
ALT: 1100m & 600m	SCAN FREQ: 50	SCAN ANGLE: 17
SURVEYED AREA:	172.8	

FLIGHT NO.:	3767	
AREA:	Leyte	
MISSION NAME:	2BLK34AG022B	
ALT: 850m	SCAN FREQ: 50	SCAN ANGLE: 20
SURVEYED AREA:	144.5 km²	

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
06:25:43.612	06:32:32.645	71	963	100	50.00	20.00	OFF	NAR	ON	OFF	307.03	LEYTE_New@850.pln
06:34:58.854	06:41:57.612	72	946	100	50.00	20.00	OFF	NAR	ON	OFF	307.03	LEYTE_New@850.pln
06:44:15.856	06:50:28.824	73	956	100	50.00	20.00	OFF	NAR	ON	OFF	127.03	LEYTE_New@850.pln
06:52:46.489	06:59:15.317	74	954	100	50.00	20.00	OFF	NAR	ON	OFF	127.03	LEYTE_New@850.pln
07:01:33.721	07:07:19.164	75	945	100	50.00	20.00	OFF	NAR	ON	OFF	307.03	LEYTE_New@850.pln
07:09:31.584	07:16:03.106	76	957	100	50.00	20.00	OFF	NAR	ON	OFF	127.03	LEYTE_New@850.pln
07:17:57.791	07:23:46.924	77	918	100	50.00	20.00	OFF	NAR	ON	OFF	307.03	LEYTE_New@850.pln
07:27:14.723	07:30:12.042	77	933	100	50.00	20.00	OFF	NAR	ON	OFF	307.03	LEYTE_New@850.pln
07:36:38.11	07:40:31.219	320	937	100	50.00	20.00	OFF	NAR	ON	OFF	133.03	LEYTE_New@850.pln
07:42:44.693	07:47:06.076	321	946	100	50.00	20.00	OFF	NAR	ON	OFF	313.03	LEYTE_New@850.pln
07:49:10.761	07:53:15.534	322	949	100	50.00	20.00	OFF	NAR	ON	OFF	313.03	LEYTE_New@850.pln
07:55:14.869	07:59:24.692	319	945	100	50.00	20.00	OFF	NAR	ON	OFF	133.03	LEYTE_New@850.pln
08:01:37.732	08:05:33.15	318	934	100	50.00	20.00	OFF	NAR	ON	OFF	313.03	LEYTE_New@850.pln
08:07:46.835	08:13:57.012	317	944	100	50.00	20.00	OFF	NAR	ON	OFF	133.03	LEYTE_New@850.pln
08:17:02.431	08:19:03.081	333	940	100	50.00	20.00	OFF	NAR	ON	OFF	45.97	LEYTE_New@850.pln
08:20:50.225	08:22:36.12	334	936	100	50.00	20.00	OFF	NAR	ON	OFF	225.97	LEYTE_New@850.pln
08:24:33.629	08:26:41.398	332	944	100	50.00	20.00	OFF	NAR	ON	OFF	225.97	LEYTE_New@850.pln
08:28:36.838	08:30:23.977	331	949	100	50.00	20.00	OFF	NAR	ON	OFF	45.97	LEYTE_New@850.pln
08:32:26.051	08:34:24.806	330	963	100	50.00	20.00	OFF	NAR	ON	OFF	45.97	LEYTE_New@850.pln
08:36:16.365	08:38:12.084	329	950	100	50.00	20.00	OFF	NAR	ON	OFF	45.97	LEYTE_New@850.pln
08:40:07.734	08:42:15.738	328	941	100	50.00	20.00	OFF	NAR	ON	OFF	225.97	LEYTE_New@850.pln
08:44:02.367	08:46:01.911	327	944	100	50.00	20.00	OFF	NAR	ON	OFF	225.97	LEYTE_New@850.pln
08:47:52.911	08:50:02.565	326	961	100	50.00	20.00	OFF	NAR	ON	OFF	45.97	LEYTE_New@850.pln
08:51:54.809	08:53:52.054	325	954	100	50.00	20.00	OFF	NAR	ON	OFF	225.97	LEYTE_New@850.pln

FLIGHT NO.:	3769	
AREA:	Leyte	
MISSION NAME: 2BLK34A	ADEG023A	
ALT: 1100 m & 600m	SCAN FREQ: 50	SCAN ANGLE: 17
SURVEYED AREA:	167.25km ²	

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG Plan File
00.22.31 78	00.26.20 698	72	1211	100	50.00	17 00	OFF	NAP	ON	OFF	307 03 LEVTE New@1100LVT104 plp
00:28:37.812	00:31:16.126	73	1193	100	50.00	17.00	OFF	NAR	ON	OFF	307.03 LEYTE New@1100LYT104.pln
00:35:24.269	00:37:33.159	74	1224	100	50.00	17.00	OFF	NAR	ON	OFF	307.03 LEYTE New@1100LYT104.pln
00:40:39.812	00:41:30.702	74	1207	100	50.00	17.00	OFF	NAR	ON	OFF	127.01 LEYTE_New@1100LYT104.pln
00:48:05.129	00:53:46.931	24	1205	100	50.00	17.00	OFF	NAR	ON	OFF	180.00 LEYTE_New@1100LYT104.pln
00:55:33.871	01:01:07.443	28	1208	100	50.00	17.00	OFF	NAR	ON	OFF	360.00 LEYTE_New@1100LYT104.pln
01:03:10.442	01:08:58.935	25	1205	100	50.00	17.00	OFF	NAR	ON	OFF	180.00 LEYTE_New@1100LYT104.pln
01:10:53.874	01:16:49.566	27	1212	100	50.00	17.00	OFF	NAR	ON	OFF	360.00 LEYTE_New@1100LYT104.pln
01:19:28.82	01:25:08.443	26	1212	100	50.00	17.00	OFF	NAR	ON	OFF	180.00 LEYTE_New@1100LYT104.pln
01:29:09.126	01:30:14.996	24	1192	100	50.00	17.00	OFF	NAR	ON	OFF	180.00 LEYTE_New@1100LYT104.pln
01:36:23.963	01:39:08.327	2	690	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEYTE_New@600LYT104.pln
01:40:33.271	01:43:43.215	8	661	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pln
01:44:58.119	01:47:39.883	3	683	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEYTE_New@600LYT104.pln
01:49:25.737	01:52:23.296	7	695	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pln
01:54:07.941	01:56:51.769	4	684	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEYTE_New@600LYT104.pln
01:58:40.714	02:01:44.517	9	718	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pln
02:03:20.15/	02:06:08.861	5	683	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEYTE_New@600LYT104.pln
02:08:12.91	02:11:24.969	10	6/9	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pin
02:12:56.988	02:15:43.1//	0	692	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEYTE_New@600LYT104.pin
02:17:57.036	02:21:14.385	15	/04	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pln
02:22:41.799	02:25:42.018	11	082	100	40.00	25.00	OFF	NAK	ON	OFF	260.00 LEVIE_New@600LVII04.pln
02:22:41.799	02:25:42.018	11	081	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEVIE_New@600LVII04.pin
02:20:59.208	02:30:06.88/	10	/13	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEYTE_New@600LYT104.pTh
02:31:32.880	02:34:31.04	17	692	100	40.00	25.00	OFF	NAK	ON	OFF	200.00 LEVIE_New@000LVII04.pln
02.30.40.3/9	02.41.43.777	17	692	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LETTE_New@000LTT104.pT
02.45.14.947	02.40.10.721	19	686	100	40.00	25.00	OFF	NAR	ON	OFF	200.00 LETTE_New@000LTT104.pTh
02:51:46 060	02:50:12:504	14	671	100	40.00	25.00	OFF	NAR	ON	OFF	260.00 LEVTE Now@600LVT104.pln
02:58:54 526	02.04.01.093	10	679	100	40.00	25.00	OFF	NAP	ON	OFF	80 00 LEVTE New@600LTT104.pTn
03:04:38 069	03:06:50 924	19	702	100	40.00	25.00	OFF	NAR	ON	OFF	80.00 LEVTE New@600LVT104.pln
03.11.20 722	03.15.25 216	88	691	100	40.00	25 00	OFF	NAR	ON	OFF	360 00 LEYTE New@600LYT104 pln
03:16:32.95	03:19:39.779	93	688	100	40.00	25.00	OFF	NAR	ON	OFF	180.00 LEYTE New@600LYT104.pln
03:21:01.809	03:25:02.922	89	669	100	40.00	25.00	OFF	NAR	ON	OFF	360.00 LEYTE New@600LYT104.pln
03:25:59.182	03:29:14.811	92	692	100	40.00	25.00	OFF	NAR	ON	OFF	180.00 LEYTE New@600LYT104.pln
03:30:41.01	03:34:40.869	90	681	100	40.00	25.00	OFF	NAR	ON	OFF	360.00 LEYTE New@600LYT104.pln
03:36:02.318	03:39:28.072	91	694	100	40.00	25.00	OFF	NAR	ON	OFF	180.00 LEYTE New@600LYT104.pln
03:41:36.076	03:42:46.301	88	641	100	40.00	25.00	OFF	NAR	ON	OFF	180.00 LEYTE_New@600LYT104.pln

FLIGHT NO.:	3771	
AREA:	Leyte	
MISSION NAME:	2BLK34BCG023B	
ALT: 850 m	SCAN FREQ: 50	SCAN ANGLE: 20
SURVEYED AREA:	143.4 km ²	

	START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG Plan File
	06:35:50.577	06:39:05.031	92	957	100	50.00	20.00	OFF	NAR	ON	OFF	133.03 LEYTE New@850LYT104.pln
	06:41:21.246	06:44:51.86	91	940	100	50,00	20.00	OFF	NAR	ON	OFF	360,00 LEYTE New@850LYT104.pln
	06:47:00.754	06:50:13.578	90	957	100	50,00	20.00	OFF	NAR	ON	OFF	180.00 LEYTE New@850LYT104.pln
	06:52:20.328	06:55:54.407	89	948	100	50,00	20.00	OFF	NAR	ON	OFF	360.00 LEYTE New@850LYT104.pln
	06:59:06.001	07:01:55.615	43	946	100	50,00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE New@850LYT104.pln
	07:04:23.724	07:07:40.653	42	970	100	50,00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE New@850LYT104.pln
	07:09:27.792	07:12:48.761	41	949	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE New@850LYT104.pln
	07:14:45.411	07:19:03.689	40	995	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE New@850LYT104.pln
	07:14:45.411	07:19:03.689	40	998	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE_New@850LYT104.pln
	07:22:30.443	07:26:26.447	39	947	100	50.00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE_New@850LYT104.pln
	07:29:17.041	07:31:04.62	39	958	100	50.00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE_New@850LYT104.pln
	07:34:35.484	07:38:18.518	38	933	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE_New@850LYT104.pln
	07:40:19.587	07:44:00.311	37	940	100	50.00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE_New@850LYT104.pln
	07:46:35.415	07:50:29.218	36	943	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE_New@850LYT104.pln
	07:53:02.767	07:56:56.151	35	946	100	50.00	20.00	OFF	NAR	ON	OFF	308.02 LEYTE_New@850LYT104.pln
	07:59:03.52	08:03:27.419	34	952	100	50.00	20.00	OFF	NAR	ON	OFF	128.02 LEYTE_New@850LYT104.pln
	08:05:49.663	08:09:57.871	60	949	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	08:12:18.735	08:16:57.524	59	965	100	50.00	20.00	OFF	NAR	ON	OFF	130.02 LEYTE_New@850LYT104.pln
	08:19:25.488	08:24:05.456	58	944	100	50.00	20.00	OFF	NAR	ON	OFF	130.02 LEYTE_New@850LYT104.pln
	08:26:08.015	08:30:54.088	57	944	100	50.00	20.00	OFF	NAR	ON	OFF	130.02 LEYTE_New@850LYT104.pln
	08:33:10.808	08:37:45.911	56	951	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	08:39:57.74	08:45:00.053	55	973	100	50.00	20.00	OFF	NAR	ON	OFF	130.02 LEYTE_New@850LYT104.pln
	08:46:48.528	08:48:48.057	61	956	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	08:50:51.951	08:53:44.495	61	951	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	08:56:35.949	09:01:09.127	54	917	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	09:03:11.426	09:08:11.744	53	958	100	50.00	20.00	OFF	NAR	ON	OFF	130.02 LEYTE_New@850LYT104.pln
	09:10:28.919	09:14:22.267	52	962	100	50.00	20.00	OFF	NAR	ON	OFF	310.02 LEYTE_New@850LYT104.pln
	09:20:26.535	09:22:07.164	91	949	100	50.00	20.00	OFF	NAR	ON	OFF	360.00 LEYTE_New@850LYT104.pln
1												

FLIGHT NO.:	3773	
AREA:	Leyte	
MISSION NAME:	2BLK34CG024A	
ALT: 600 m	SCAN FREQ: 40	SCAN ANGLE: 25
SURVEYED AREA:	90.6 km ²	

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
00:41:26.291	00:45:37.304	54	673	100	40.00	25.00	OFF	NAR	ON	OFF	129.99	leyteVOIDSnew@600.pln
00:47:19.499	00:47:47.129	50	670	100	40.00	25.00	OFF	NAR	ON	OFF	309.99	leytevoIDSnew@600.pln
00:48:00.128	00:49:49.973	50	642	100	40.00	25.00	OFF	NAR	ON	OFF	309.99	leytevoIDSnew@600.pln
00:55:27.525	00:59:52.439	55	680	100	40.00	25.00	OFF	NAR	ON	OFF	129.99	leytevoIDSnew@600.pln
01:02:18.758	01:06:11.696	53	626	100	40.00	25.00	OFF	NAR	ON	OFF	309.99	leyteVOIDSnew@600.pln
01:11:13.674	01:14:14.473	51	635	100	40.00	25.00	OFF	NAR	ON	OFF	129.99	leyteVOIDSnew@600.pln
01:16:42.357	01:20:10.02	52	670	100	40.00	25.00	OFF	NAR	ON	OFF	309.99	leytevoIDSnew@600.pln
01:20:49.76	01:21:04.42	54	673	100	40.00	25.00	OFF	NAR	ON	OFF	310.00	leyteVOIDSnew@600.pln
01:24:38.359	01:25:37.498	54	664	100	40.00	25.00	OFF	NAR	ON	OFF	130.00	leyteVOIDSnew@600.pln
01:30:49.756	01:32:51.7	50	665	100	40.00	25.00	OFF	NAR	ON	OFF	129.99	leytevoIDSnew@600.pln
01:37:16.759	01:39:56.043	131	686	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leytevoIDSnew@600.pln
01:41:54.187	01:44:07.646	136	677	100	40.00	25.00	OFF	NAR	ON	OFF	216.01	leyteVOIDSnew@600.pln
01:46:06.62	01:48:48.959	132	723	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leytevoIDSnew@600.pln
01:50:32.703	01:52:38.423	137	724	100	40.00	25.00	OFF	NAR	ON	OFF	216.01	leytevoIDSnew@600.pln
01:54:26.957	01:56:40.186	133	675	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leytevoIDSnew@600.pln
01:58:22.395	02:00:28.59	138	677	100	40.00	25.00	OFF	NAR	ON	OFF	216.01	leytevoIDSnew@600.pln
02:02:11.674	02:04:57.128	134	683	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leytevoIDSnew@600.pln
02:06:30.502	02:08:37.931	139	682	100	40.00	25.00	OFF	NAR	ON	OFF	216.01	leytevoIDSnew@600.pln
02:10:13.101	02:12:54.015	135	693	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leytevoIDSnew@600.pln
02:14:21.569	02:16:27.344	140	681	100	40.00	25.00	OFF	NAR	ON	OFF	216.01	leyteVOIDSnew@600.pln
02:18:30.538	02:21:11.317	141	693	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leyteVOIDSnew@600.pln
02:23:48.796	02:25:34.795	141	729	100	40.00	25.00	OFF	NAR	ON	OFF	36.01	leyteVOIDSnew@600.pln
02:28:25.509	02:30:35.513	120	692	100	40.00	25.00	OFF	NAR	ON	OFF	130.00	leyteVOIDSnew@600.pln
02:32:05.188	02:34:04.657	124	675	100	40.00	25.00	OFF	NAR	ON	OFF	310.00	leyteVOIDSnew@600.pln
02:35:54.016	02:38:07.216	121	691	100	40.00	25.00	OFF	NAR	ON	OFF	130.00	leytevoIDSnew@600.pln
02:39:35.88	02:41:22.769	125	706	100	40.00	25.00	OFF	NAR	ON	OFF	310.00	leyteVOIDSnew@600.pln
02:42:45.769	02:44:49.598	122	695	100	40.00	25.00	OFF	NAR	ON	OFF	130.00	leytevoIDSnew@600.pln
02:46:19.373	02:47:57.102	126	697	100	40.00	25.00	OFF	NAR	ON	OFF	310.00	leyteVOIDSnew@600.pln
02:50:03.911	02:52:14.036	123	677	100	40.00	25.00	OFF	NAR	ON	OFF	130.00	leyteVOIDSnew@600.pln
02:54:49.325	02:56:02.074	123	667	100	40.00	25.00	OFF	NAR	ON	OFF	128.98	leytevoIDSnew@600.pln
02:58:39.883	03:00:18.348	145	698	100	40.00	25.00	OFF	NAR	ON	OFF	308.98	leyteVOIDSnew@600.pln
03:01:59.887	03:03:42.777	143	685	100	40.00	25.00	OFF	NAR	ON	OFF	308.98	leyteVOIDSnew@600.pln
03:05:27.966	03:07:08.375	144	689	100	40.00	25.00	OFF	NAR	ON	OFF	315.00	leytevoIDSnew@600.pln
03:08:34.69	03:09:55.629	149	707	100	40.00	25.00	OFF	NAR	ON	OFF	315.00	leytevoIDSnew@600.pln
03:11:43.889	03:13:06.778	148	667	100	40.00	25.00	OFF	NAR	ON	OFF	315.00	leyteVOIDSnew@600.pln
03:15:53.122	03:17:54.942	152	709	100	40.00	25.00	OFF	NAR	ON	OFF	231.49	leytevoIDSnew@600.pln
03:20:17.491	03:22:19.975	153	686	100	40.00	25.00	OFF	NAR	ON	OFF	231.49	leyteVOIDSnew@600.pln
03:28:30.043	03:29:27.943	85	629	100	40.00	25.00	OFF	NAR	ON	OFF	307.01	leyteVOIDSnew@600.pln
stor all three stars												

Annex 8. Mission Summary Reports

Flight Area	Samar-Leyte
Mission Name	Blk34F
Inclusive Flights	1358A, 1360A
Range data size	22.36 GB
Base data size	12.1 MB
POS	417 MB
Image	115.1 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.9
RMSE for East Position (<4.0 cm)	3.5
RMSE for Down Position (<8.0 cm)	5.5
Boresight correction stdev (<0.001deg)	0.000685
IMU attitude correction stdev (<0.001deg)	0.002555
GPS position stdev (<0.01m)	0.0083
Minimum % overlap (>25)	43.14%
Ave point cloud density per sq.m. (>2.0)	3.13
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	221
Maximum Height	268.28 m
Minimum Height	66.43 m
Classification (# of points)	
Ground	127,167,999
Low vegetation	167,959,671
Medium vegetation	145,772,139
High vegetation	22,065,261
Building	1,152,046
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Aljon Rie Araneta, Jovy Narisma

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.4 Coverage of LiDAR data

Figure A-8.6 Density map of merged LiDAR data

Figure A-8.7 Elevation difference between flight lines

Flight Area	Samar-Levte
Mission Name	Blk 34C
Inclusive Flights	1456A
Range data size	11.6 GB
Base data size	7 92 MB
POS	212 MB
Image	66.6 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	2.6
Boresight correction stdev (<0.001deg)	0.000399354
IMU attitude correction stdev (<0.001deg)	0.0089118
GPS position stdev (<0.01m)	0.0169262
Minimum % overlap (>25)	40.85%
Ave point cloud density per sq.m. (>2.0)	3.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	143
Maximum Height	151.03 m
Minimum Height	59.09 m
Classification (# of a sinte)	
Crownd	62.941.062
	03,841,063
Low vegetation	/3,433,20/
Iviedium vegetation	90,859,082
High vegetation	20,040,847
Building	1,833,370
Urthophoto	Yes
Processed by	Engr. Carlyn Ann Ibañez, Engr. Velina Angela Bemida, Engr. Gladys Mae Apat

Figure A-8.9 Smoothed Performance Metric Parameters

Figure A-8.11 Coverage of LiDAR data

Pastrana

124°50'0"E

gh : 1224

Figure A-8.14 Elevation difference between flight lines

Flight Area	Samar-Levte
Mission Name	Blk 34D
Inclusive Flights	1454A
Range data size	146 GB
Base data size	8 41 MB
POS	268 MB
Image	87.2 GB
Transfer data	May 28, 2014
	Nay 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.2
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.9
Boresight correction stdev (<0.001deg)	0.000408
IMU attitude correction stdev (<0.001deg)	0.001494
GPS position stdev (<0.01m)	0.0227
Minimum % overlap (>25)	29.29%
Ave point cloud density per sq.m. (>2.0)	2.73
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	149
Maximum Height	141.70 m
Minimum Height	34.19 m
Classification (# of points)	
Ground	63,755,821
Low vegetation	79,475,355
Medium vegetation	77,581,284
High vegetation	15,167,004
Building	849,062
Orthophoto	Yes
Processed by	Victor Rejuso, Engr. Harmond Santos, Engr. Gladys Mae Apat

Figure A-8.16 Smoothed Performance Metric Parameters

Figure A-8.18 Coverage of LiDAR data

Figure A-8.21 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	Blk34E
Inclusive Flights	1366A
Range data size	14.9 GB
Base data size	8.53 MB
POS	257 MB
Image	95.5 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.0
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000518
IMU attitude correction stdev (<0.001deg)	0.026089
GPS position stdev (<0.01m)	0.0388
Minimum % overlap (>25)	53.44%
Ave point cloud density per sq.m. (>2.0)	3.08
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	169
Maximum Height	313.64 m
Minimum Height	59.54 m
Classification (# of points)	
Ground	108,115,249
Low vegetation	76,412,876
Medium vegetation	82,519,137
High vegetation	16,810,372
Building	540,046
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Harmond Santos, Engr. Gladys Mae Apat

Figure A-8.23 Smoothed Performance Metric Parameters

Figure A-8.27 Density map of merged LiDAR data

Figure A-8.28 Elevation difference between flight lines

Flight Area	Levte
Mission Name	Blk34J
Inclusive Flights	3765G
Range data size	25.2 GB
Base data size	4.38 MB
POS	225 MB
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	6.0
Boresight correction stdev (<0.001deg)	0.003377
IMU attitude correction stdev (<0.001deg)	0.001525
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	27.64
Ave point cloud density per sq.m. (>2.0)	3.52
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	108
Maximum Height	246.28 m
Minimum Height	78.27 m
Classification (# of points)	
Ground	23,439,051
Low vegetation	27,359,793
Medium vegetation	97,600,486
High vegetation	50,609,486
Building	826,294
Orthophoto	No
Processed by	Engr. Sheila Mae Santillan, Engr. Ma Joanne Balaga, Marie Denise Bueno

Figure A-8.30 Smoothed Performance Metric Parameters

Figure A-8.32 Coverage of LiDAR data

Figure A-8.33 Image of data overlap

Figure A-8.34 Density map of merged LiDAR data

Figure A-8.35 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34I
Inclusive Flights	3769G
Range data size	23.8 GB
Base data size	9.58 MB
POS	260 MB
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	3.3
Boresight correction stdev (<0.001deg)	0.003871
IMU attitude correction stdev (<0.001deg)	0.003796
GPS position stdev (<0.01m)	0.0138
· · · · · · · · · · · · · · · · · · ·	
Minimum % overlap (>25)	27.82
Ave point cloud density per sq.m. (>2.0)	3.21
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	86
Maximum Height	266.62 m
Minimum Height	75.43 m
Classification (# of points)	
Ground	20,398,103
Low vegetation	20,790,546
Medium vegetation	70,517,058
High vegetation	26,392,425
Building	302.229
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Kathryn Claudyn Zarate

Figure A-8.37 Smoothed Performance Metric Parameters

Figure A-8.38 Best Estimated Trajectory

Figure A-8.39 Coverage of LiDAR data

Figure A-8.40 Image of data overlap

Figure A-8.41 Density map of merged LiDAR data

Figure A-8.42 Elevation difference between flight lines

Flight Area	Levte
Mission Name	Blk34G Supplement
Inclusive Flights	3773G
Range data size	16 8 GB
Base data size	4 74 MB
POS	248 MB
Image	n/a
Transfer date	February 12 2016
	1 cordary 12, 2010
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smooth of Doutomman on Matrices (in and)	
Smoothea Performance Metrics (in cm)	1.0
RMSE for Fort Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000314
IMU attitude correction stdev (<0.001deg)	0.000292
GPS position stdev (<0.01m)	0.0020
	20.50
Minimum % overlap (>25)	38.70
Ave point cloud density per sq.m. (>2.0)	4.35
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	77
Maximum Height	331.30 m
Minimum Height	84.63 m
Classification (# of points)	
Ground	30,109,919
Low vegetation	49,355,383
Medium vegetation	102,195,429
High vegetation	45,790,210
Building	1,350,028
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Jovelle Anjeanette Canlas, Engr. Monalyne Rabino

Figure A-8.44 Smoothed Performance Metric Parameters

Figure A-8.45 Best Estimated Trajectory

Figure A-8.46 Coverage of LiDAR data

Figure A-8.47 Image of data overlap

Figure A-8.48 Density map of merged LiDAR data

Figure A-8.49 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34C
Inclusive Flights	3773G, 3771G
Range data size	37.1 GB
Base data size	13.94 MB
POS	460 MB
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.8
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	2.8
Boresight correction stdev (<0.001deg)	0.000620
IMU attitude correction stdev (<0.001deg)	0.004668
GPS position stdev (<0.01m)	0.0133
Minimum % overlap (>25)	35.68
Ave point cloud density per sq.m. (>2.0)	4.41
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	190
Maximum Height	293.50 m
Minimum Height	85.36 m
Classification (# of points)	
Ground	73,091,228
Low vegetation	68,546,439
Medium vegetation	272,398,780
High vegetation	231,908,658
Building	3,024,175
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Harmond Santos, Maria Tamsyn Malabanan

Figure A-8.51 Smoothed Performance Metric Parameters

Figure A-8.52 Best Estimated Trajectory

Figure A-8.53 Coverage of LiDAR data

Figure A-8.54 Image of data overlap

Figure A-8.55 Density map of merged LiDAR data

Figure A-8.56 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34D
Inclusive Flights	3767G, 3773G
Range data size	35.9 GB
Base data size	8.14 MB
POS	452 MB
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	2.2
Boresight correction stdev (<0.001deg)	0.000942
IMU attitude correction stdev (<0.001deg)	0.002535
GPS position stdev (<0.01m)	0.0116
Minimum % overlap (>25)	42.76
Ave point cloud density per sq.m. (>2.0)	4.23
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	126
Maximum Height	205.76 m
Minimum Height	10.90 m
Classification (# of points)	
Ground	37,541,051
Low vegetation	64,452,630
Medium vegetation	157,969,342
High vegetation	87,019,402
Building	1,194,655
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Ma Joanne Balaga, Jovy Narisma

Figure A-8.58 Smoothed Performance Metric Parameters

Figure A-8.59 Best Estimated Trajectory

Figure A-8.60Coverage of LiDAR data

Figure A-8.61 Image of data overlap

Figure A-8.62 Density map of merged LiDAR data

Figure A-8.63 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34G Additional2
Inclusive Flights	
Range data size	16.8 GB
Base data size	4.74 MB
POS	248 MB
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000314
IMU attitude correction stdev (<0.001deg)	0.000292
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	33.93
Ave point cloud density per sq.m. (>2.0)	4.04
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	35
Maximum Height	170.45
Minimum Height	87.83
Classification (# of points)	
Ground	15334500
Low vegetation	24902871
Medium vegetation	30122526
High vegetation	5180576
Building	125338
Orthophoto	None
Processed by	Engr. Regis Guhiting, Engr. Velina Angela Bemida, Engr. Gladys Mae Apat

Figure A-8.65 Smoothed Performance Metric Parameters

Figure A-8.66 Best Estimated Trajectory

Figure A-8.67 Coverage of LiDAR data

Figure A-8.68 Image of data overlap

Figure A-8.69 Density map of merged LiDAR data

Figure A-8.70 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34E
Inclusive Flights	3767G, 3765G
Range data size	44.3 GB
Base data size	7.78 MB
POS	459 MB
Image	n/a
Transfer date	February 12, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.9
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	6.0
Boresight correction stdev (<0.001deg)	0.000478
IMU attitude correction stdev (<0.001deg)	0.003642
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	34.99
Ave point cloud density per sq.m. (>2.0)	4.65
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	93
Maximum Height	415.68 m
Minimum Height	63.54 m
Classification (# of points)	
Ground	35,181,518
Low vegetation	42,803,820
Medium vegetation	136,496,439
High vegetation	111,171,628
Building	2,703,347
Orthophoto	No
Processed by	Engr. Sheila Mae Santillan, Engr. Justine Francisco, Marie Denise Bueno

Figure A-8.72 Smoothed Performance Metric Parameters

Figure A-8.73 Best Estimated Trajectory

Figure A-8.74 Coverage of LiDAR data

Figure A-8.75 Image of data overlap

Figure A-8.76 Density map of merged LiDAR data

Figure A-8.77 Elevation difference between flight lines

Flight Area	Tacloban
Mission Name	1026A
Inclusive Flights	1026A
Range data size	11.6 GB
Base data size	20.0 MB
POS	137 MB
Image	55.2 GB
Transfer date	February 3, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.6
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000559
IMU attitude correction stdev (<0.001deg)	0.007980
GPS position stdev (<0.01m)	0.0379
Minimum % overlap (>25)	42.17%
Ave point cloud density per sq.m. (>2.0)	2.33
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	314
Maximum Height	386.42 m
Minimum Height	42.55 m
Classification (# of points)	
Ground	83,757,366
Low vegetation	78,700,823
Medium vegetation	165,907,507
High vegetation	4,928,508
Building	1,722,190
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Ryan James Nicholai Dizon

Figure A-8.79 Smoothed Performance Metric Parameters

Figure A-8.81 Coverage of LiDAR data

Figure A-8.82 Image of data overlap

Figure A-8.83 Density map of merged LiDAR data

Figure A-8.84 Elevation difference between flight lines

Flight Area	Tacloban
Mission Name	1024A
Inclusive Flights	1024A
Range data size	16.3 GB
Base data size	20.0 MB
POS	247 MB
Image	55.2 GB
Transfer date	February 3, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.002232
IMU attitude correction stdev (<0.001deg)	0.003852
GPS position stdev (<0.01m)	0.0430
Minimum % overlap (>25)	1.78%
Ave point cloud density per sq.m. (>2.0)	1.56
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	91
Maximum Height	267.05 m
Minimum Height	59.03 m
Classification (# of points)	
Ground	12,809,270
Low vegetation	8,880,857
Medium vegetation	21,804,521
High vegetation	1,514,514
Building	559,382
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Jovy Narisma

Figure A-8.86 Smoothed Performance Metric Parameters

Figure A-8.88 Coverage of LiDAR data

Figure A-8.90 Density map of merged LiDAR data

Flight Area	Tacloban
Mission Name	1016A
Inclusive Flights	1016A
Range data size	9.96 GB
Base data size	14.4 MB
POS	159 MB
Image	41.2 GB
Transfer date	February 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.4
RMSE for East Position (<4.0 cm)	2.8
RMSE for Down Position (<8.0 cm)	6.8
Boresight correction stdev (<0.001deg)	0.000560
IMU attitude correction stdev (<0.001deg)	0.001226
GPS position stdev (<0.01m)	0.0140
Minimum % overlap (>25)	36.23%
Ave point cloud density per sq.m. (>2.0)	2.21
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	44
Maximum Height	403.16 m
Minimum Height	54.21 m
Classification (# of points)	
Ground	8,206,350
Low vegetation	6,347,280
Medium vegetation	20,067,295
High vegetation	3,485,057
Building	2,045,618
Orthophoto	Yes
Processed by	Engr. Joida Prieto, Celina Rosete, Ailyn Biñas

Figure A-8.93 Smoothed Performance Metric Parameters

Figure A-8.95 Coverage of LiDAR data

Figure A-8.97 Density map of merged LiDAR data

Figure A-8.98 Elevation difference between flight lines

Flight Area	Tacloban
Mission Name	1040A
Inclusive Flights	1040A
Range data size	9.33 GB
Base data size	11.7 MB
POS	217 MB
Image	16.2 GB
Transfer date	February 3, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	4.6
Boresight correction stdev (<0.001deg)	0.035516
IMU attitude correction stdev (<0.001deg)	0.173307
GPS position stdev (<0.01m)	0.0332
Minimum % overlap (>25)	29.93%
Ave point cloud density per sq.m. (>2.0)	2.65
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	79
Maximum Height	407.51 m
Minimum Height	59.98 m
Classification (# of points)	
Ground	10,100,919
Low vegetation	9,632,051
Medium vegetation	27,972,442
High vegetation	3,440,624
Building	2,191,175
Orthophoto	Yes
Processed by	Engr. Benjamin Jonah Magallon, Engr. Christy Lubiano, Jovy Narisma

Figure A-8.100 Smoothed Performance Metric Parameters

Figure A-8.101 Best Estimated Trajectory

Figure A-8.102 Coverage of LiDAR data

Figure A-8.103 Image of data overlap

Figure A-8.104 Density map of merged LiDAR data

Figure A-8.105 Elevation difference between flight lines

Flight Area	Tacloban
Mission Name	1018A
Inclusive Flights	1018A
Range data size	2.63 GB
Base data size	14.4 MB
POS	81 MB
Image	N/A
Transfer date	February 3, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.7
RMSE for East Position (<4.0 cm)	3.7
RMSE for Down Position (<8.0 cm)	4.6
Boresight correction stdev (<0.001deg)	0.007721
IMU attitude correction stdev (<0.001deg)	0.005490
GPS position stdev (<0.01m)	0.0036
Minimum % overlap (>25)	9.57%
Ave point cloud density per sq.m. (>2.0)	1.46
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	55
Maximum Height	239.52
Minimum Height	1.82
Classification (# of points)	
Ground	4,390,391
Low vegetation	1,640,662
Medium vegetation	2,606,014
High vegetation	6,460,257
Building	559,780
Orthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Melanie Hingpit, Jovy Narisma

Figure A-8.107 Smoothed Performance Metric Parameters

Figure A-8.108 Best Estimated Trajectory

Figure A-8.109 Coverage of LiDAR data

Figure A-8.110 Image of data overlap

Figure A-8.111 Density map of merged LiDAR data

Figure A-8.112 Elevation difference between flight lines

Flight AreaTaclobanMission Name1020AInclusive Flights1020ARange data size15.1 GBBase data size20.7 MBPOS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution StatusNumber of Satellites (>6)YesYesPDOP (<3)YesBaseline Length (<30km)YesProcessing Mode (<=1)YesSmoothed Performance Metrics (in cm)1.4RMSE for North Position (<4.0 cm)1.4RMSE for Down Position (<4.0 cm)5.5Postifit correction stdev (<0.001deg)0.004840IMU attitude correction stdev (<0.001deg)0.004840IMU attitude correction stdev (<0.001deg)0.0286Minimum % overlap (>25)37.54%Ave point cloud density per sq.m. (>2.0)YesMumber of Ikm x Ikm blocks142Maximum Height491.9Minimum Height491.9Minimum Height15.800.263Minimum Height15.800.263Minimum Height15.800.263Minimum Height15.800.263Minimum Height15.800.263Minimum Height15.800.263Minimum Height15.800.263Minimum Height10.163.635Building3.217.929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Elainne Lopez		Í.
Mission Name1020AInclusive Flights1020ARange data size15.1 GBBase data size20.7 MBPOS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution Status1000000000000000000000000000000000000	Flight Area	Tacloban
Inclusive Flights1020ARange data size15.1 GBBase data size20.7 MBPOS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution StatusNumber of Satellites (>6)YesPDOP (<3)	Mission Name	1020A
Range data size15.1 GBBase data size20.7 MBPOS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution Status1Number of Satellites (>6)YesPDOP (<3)	Inclusive Flights	1020A
Base data size20.7 MBPOS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution StatusNumber of Satellites (>6)YesPDOP (<3)	Range data size	15.1 GB
POS237 MBImage67.7GBTransfer dateFebruary 3, 2014Solution StatusFebruary 3, 2014Number of Satellites (>6)YesPDOP (<3)	Base data size	20.7 MB
Image67.7GBTransfer dateFebruary 3, 2014Transfer dateFebruary 3, 2014Solution StatusInternational StatusNumber of Satellites (>6)YesPDOP (<3)	POS	237 MB
Transfer dateFebruary 3, 2014Image: Construct of StatusImage: Construct of StatusNumber of Satellites (>6)YesPDOP (<3)	Image	67.7GB
Image: set of the	Transfer date	February 3, 2014
Solution StatusNumber of Satellites (>6)YesPDOP (<3)		
Number of Satellites (>6)YesPDOP (<3)	Solution Status	
PDOP (<3)YesBaseline Length (<30km)	Number of Satellites (>6)	Yes
Baseline Length (<30km)YesProcessing Mode (<=1)	PDOP (<3)	Yes
Processing Mode (<=1)YesSmoothed Performance Metrics (in cm)I.4RMSE for North Position (<4.0 cm)	Baseline Length (<30km)	Yes
Smoothed Performance Metrics (in cm)RMSE for North Position (<4.0 cm)	Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)I.4RMSE for North Position (<4.0 cm)		
RMSE for North Position (<4.0 cm)1.4RMSE for East Position (<4.0 cm)	Smoothed Performance Metrics (in cm)	
RMSE for East Position (<4.0 cm)2.1RMSE for Down Position (<8.0 cm)	RMSE for North Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)5.5Boresight correction stdev (<0.001deg)	RMSE for East Position (<4.0 cm)	2.1
Boresight correction stdev (<0.001deg)0.004840IMU attitude correction stdev (<0.001deg)	RMSE for Down Position (<8.0 cm)	5.5
Boresight correction stdev (<0.001deg)0.004840IMU attitude correction stdev (<0.001deg)		
IMU attitude correction stdev (<0.001deg) 0.186271 GPS position stdev (<0.01m)	Boresight correction stdev (<0.001deg)	0.004840
GPS position stdev (<0.01m)0.0286Minimum % overlap (>25)37.54%Ave point cloud density per sq.m. (>2.0)2.07Elevation difference between strips (<0.20 m)	IMU attitude correction stdev (<0.001deg)	0.186271
Minimum % overlap (>25) 37.54% Ave point cloud density per sq.m. (>2.0) 2.07 Elevation difference between strips (<0.20 m)	GPS position stdev (<0.01m)	0.0286
Minimum % overlap (>25)37.54%Ave point cloud density per sq.m. (>2.0)2.07Elevation difference between strips (<0.20 m)		
Ave point cloud density per sq.m. (>2.0)2.07Elevation difference between strips (<0.20 m)	Minimum % overlap (>25)	37.54%
Elevation difference between strips (<0.20 m)YesNumber of 1km x 1km blocks142Maximum Height491.9Minimum Height41.27Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Ave point cloud density per sq.m. (>2.0)	2.07
Number of 1km x 1km blocks142Maximum Height491.9Minimum Height41.27Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks142Maximum Height491.9Minimum Height41.27Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez		
Maximum Height491.9Minimum Height41.27Image: Classification (# of points)Image: Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Number of 1km x 1km blocks	142
Minimum Height41.27Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Maximum Height	491.9
Classification (# of points)Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Minimum Height	41.27
Classification (# of points)20,416,959Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez		
Ground20,416,959Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Classification (# of points)	
Low vegetation15,800,263Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Ground	20,416,959
Medium vegetation49,003,557High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Low vegetation	15,800,263
High vegetation10,163,635Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Medium vegetation	49,003,557
Building3,217,929OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	High vegetation	10,163,635
OrthophotoYesProcessed byEngr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Building	3,217,929
Processed by Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez	Orthophoto	Yes
	Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Elainne Lopez

Figure A-8.114 Smoothed Performance Metric Parameters

Figure A-8.116 Coverage of LiDAR data

Figure A-8.118 Density map of merged LiDAR data

Figure A-8.119 Elevation difference between flight lines

Annex 9. Palo Model Basin Parameters

SCS Curve	Curve	Numb	ber	U	lark Unit			Reces	sion Baseflo	3	
				Нy	dropgraph					:	
Initial Curve Imner	Curve	ueum]	ione	Time o	of S	otorage	Initial	Initial Discharge	Recession	Threshold	Ratio
Abstraction Number miles	Number miles		spor	Concentra	ation Co	efficient	Type	(m3/s)	Constant	Type	Peak
0.09862 99 0	0 66	0		24.7734	0.808	86	Discharge	1.13592	1	Ratio to Peak	0.01
0.09469 99 0	0 66	0		29.85934	0.974	61	Discharge	1.15114	1	Ratio to Peak	0.01
0.14995 99 0	0 66	0		14.61505	0.477(.04	Discharge	1.33427	1	Ratio to Peak	0.01
0.13981 99 0	0 66	0		11.23064	0.366	57	Discharge	1.00995	1	Ratio to Peak	0.01
0.10405 99 0	0 66	0		7.48211	0.244	.22	Discharge	0.31285	1	Ratio to Peak	0.01
0.09669 99 0	0 66	0		16.73068	0.546	60	Discharge	1.60159	1	Ratio to Peak	0.01
0.10405 99 0	0 66	0		19.5061	0.636	68	Discharge	0.65534	1	Ratio to Peak	0.01
0.10405 99 0	0 66	0		13.93521	0.454	.85	Discharge	0.74514	1	Ratio to Peak	0.01
0.07314 99 0	0 66	0		34.12289	1.113	77	Discharge	1.65823	1	Ratio to Peak	0.01
0.07116 99 0	0 66	0		29.89572	0.975	58	Discharge	1.19128	1	Ratio to Peak	0.01
0.10188 99 0	0 66	0		21.57576	0.704	.23	Discharge	0.93276	1	Ratio to Peak	0.01
0.10405 99 0	0 66	0		17.16975	0.560	42	Discharge	0.44567	1	Ratio to Peak	0.01

		SCS C	urve Numb	er	U	Clark Unit		Reces	sion Baseflo	3	
Ba	asin _				H,	dropgraph					
Nun	mber	Initial	Curve		Time	of Storage	Initial	Initial Discharze	Recession	Threshold	Ratio
		Abstraction	Number	Impervious	Concentr	ation Coefficien	t Type	uiscnarge (m3/s)	Constant	Type	to Peak
Ň	700	0.07742	66	0	23.98785	0.78296	Discharge	0.59904	1	Ratio to Peak	0.01
N.	069	0.08906	66	0	66.39008	2.16697	Discharge	2.38386	1	Ratio to Peak	0.01
Ŵ	680	0.10405	66	0	12.96306	0.42311	Discharge	0.21675	1	Ratio to Peak	0.01
) M	670	0.09884	66	0	18.38707	0.60015	Discharge	1.54928	1	Ratio to Peak	0.01
W.	660	0.08703	66	0	10.00376	0.32652	Discharge	0.11816	1	Ratio to Peak	0.01
Ŵ	650	0.06279	66	0	27.60182	0.90092	Discharge	0.72024	1	Ratio to Peak	0.01
Ň	640	0.06465	66	0	31.09459	1.01493	Discharge	0.82861	1	Ratio to Peak	0.01
Ŵ	630	0.06279	66	0	31.29493	1.02147	Discharge	0.36012	1	Ratio to Peak	0.01
Ŵ	620	0.07788	66	0	50.59242	1.65134	Discharge	2.7386	1	Ratio to Peak	0.01
W61	10	0.06426	66	0	22.1663	0.7235	L Discharge	0.28296	1	Ratio to Peak	0.01
WGC	00	0.09486	66	0	6.94491	0.2266	3 Discharge	0.59767	1	Ratio to Peak	0.01
W59	06	0.06344	66	0	38.28229	1.2495	3 Discharge	0.90777	1	Ratio to Peak	0.01
W58	80	0.07379	66	0	7.26426	0.2371	L Discharge	0.09284	1	Ratio to Peak	0.01

Baseflow	Ratio	ession Threshold to stant Type Peak	ession Threshold to Istant Type Peak Peak 1 Ratio to 0.01 Peak 0.01	ession Threshold to stant Type Peak 1 Ratio to 0.01 Peak 0.01 Peak 0.01 Peak 0.01 Peak 0.01	essionThresholdtostantTypePeak1Ratio to0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01	essionThresholdtostantTypePeak1Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01Peak0.01Peak0.011Ratio to0.01Peak0.01PeakPeak1Ratio to0.01PeakPeak1Peak1Peak1Peak1Peak1Peak1Peak1Peak1Peak1Peak1Peak1PeakPeak0.01	essionThresholdtostantTypepeak1Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01Peak0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01Peak0.01	essionThresholdtostantTypepeak1Ratio to0.01Peak0.01	essionThreshold Typeto peak1Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01Peak0.011Ratio to0.01Peak0.01Peak0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01	essionThresholdtostantTypepeak1Ratio to0.01Peak0.011Ratio to0.01Peak0.011Ratio to0.01Peak0.01	EasionThresholdstantTypepeak1Ratio to0.01Peak0.01Peak1Ratio to0.01Peak0.01Peak1Ratio to0.01Peak0.01Peak1Ratio to0.01Peak0.01	EasionThresholdtostantTypepeak0.01Peak1Ratio to0.01Peak0.01<	essionThresholdtostantTypepeak0.01Peak1Ratio to0.01Peak1Peak0.01Peak1Peak0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Peak0.01Peak1Peak0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Ratio to0.01Peak1Peak0.01Peak1Peak0.01Peak1Peak
	Be Constant Type		541Ratio to211Ratio to	541Ratio to211Ratio to231Ratio to131Ratio to131Ratio to	541Ratio to212Peak231Ratio to131Ratio to281Ratio to281Ratio to	541Ratio to212Peak231Ratio to131Ratio to281Ratio to281Ratio to071Ratio to071Ratio to071Ratio to281Ratio to	541Ratio to212Peak231Ratio to231Ratio to281Ratio to281Ratio to231Ratio to231Ratio to231Ratio to231Ratio to231Ratio to241Ratio to	541Ratio to212Peak231Ratio to282Peak281Ratio to281Ratio to071Ratio to231Ratio to261Ratio to261Ratio to261Ratio to261Ratio to261Ratio to261Ratio to	541Ratio to211Ratio to231Ratio to281Ratio to281Ratio to281Ratio to231Ratio to231Ratio to241Ratio to251Ratio to271Ratio to	541Ratio to211Ratio to231Ratio to281Ratio to281Ratio to071Ratio to231Ratio to231Ratio to231Ratio to231Ratio to231Ratio to231Ratio to241Ratio to251Ratio to271Ratio to281Ratio to291Ratio to291Ratio to211Ratio to231Ratio to2421251Ratio to271Ratio to281Ratio to291Ratio to291Ratio to201Ratio to	541Ratio to211Ratio to231Ratio to281Ratio to071Ratio to071Ratio to231Ratio to261Ratio to271Ratio to281Ratio to281Ratio to281Ratio to2961Ratio to261Ratio to271Ratio to281Ratio to2961Ratio to201Ratio to	541Ratio to211Ratio to211Ratio to231Ratio to281Ratio to0721Ratio to071Ratio to231Ratio to241Ratio to251Ratio to261Ratio to271Ratio to281Ratio to291Ratio to211Ratio to231Ratio to241Ratio to251Ratio to261Ratio to271Ratio to281Ratio to291Ratio to2141Ratio to2141Ratio to2141Ratio to2141Ratio to2141Ratio to	541Ratio to2121Ratio to211Ratio to231Ratio to2821Ratio to2721Ratio to231Ratio to24271271Ratio to281Ratio to292722121Ratio to231Ratio to2422251Ratio to261Ratio to271Ratio to281Ratio to291Ratio to2141Ratio to2491Ratio to2491Ratio to2491Ratio to2491Ratio to2491Ratio to2491Ratio to2491Ratio to2491Ratio to2401Ratio to2411Ratio to2421Ratio to2431Ratio to2441Ratio to2441Ratio to2441Ratio to
nitial charge m3/s) Constant	-	2.39954	1.68921	0.01213	L.68921	L.68921 .01213 .00228 .83707	L.68921 L.68921 L.68921 L.68921 L.68921 L.68923 L.26923 L.2692 L.	L.68921 L.68921 L.68921 L.68921 L.68921 L.68923 L.26923 L.2526 L.25226 L.25222 L.25222 L.25226 L.25222 L.25222 L.25226 L.25222 L.25226 L.25226 L.25226 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.2526 L.25222 L.25226 L.25222 L.25226 L.25222 L.25226 L.25226 L.25226 L.25226 L.25226 L.25226 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.25226 L.25222 L.2522 L.252222 L.25222 L.25222 L.25222 L.25222 L.252222	L.68921 .01213 .00228 .00228 .83707 .26923 .2526 .131727	I.68921 I.68921 0.01213 I.01213 0.00228 I.31727 2.2526 I.31727 0.00898	1.68921 1 1.01213 1 1.01213 1 1.00228 1 1.83707 1 1.83707 1 2.26923 1 2.2526 1 2.2526 1 1.31727 1 1.31727 1 0.00898 1 0.17896 1	I.68921 I.68921 J.01213 J.01228 J.00228 J.83707 J.83707 J.26923 J.2526 J.17896 J.17896 J.17896 J.17896 J.17896	I.68921 I.68921 J.01213 J.01213 J.00228 J.00228 J.83707 J.83707 J.83707 J.2526 J.25266 J.17896 J.17896 J.17896 J.17896 J.17896 J.17896 J.17896 J.65449 J.65449
Initial Discharge (m3/s) e 2.39954	ء 2.39954	2 1.68921		<u>ء</u> 0.01213	e 0.00228	e 0.01213 e 0.00228 e 0.83707	2 0.01213 2 0.00228 2 0.83707 2 2.26923	2 0.01213 2 0.00228 2 0.83707 2 2.26923 2 2.2526	2 0.01213 2 0.00228 2 0.83707 2 2.26923 2 2.2526 2 1.31727	0.01213 0.00228 0.083707 2.26923 2.2526 1.31727 0.00898	0.01213 0.00228 0.00228 0.83707 2.26923 2.2526 1.31727 1.31727 0.00898 0.17896	 0.01213 0.00228 0.83707 0.83707 2.26923 2.26923 2.2526 1.31727 1.31727 0.00898 0.00898 0.17896 0.17896 0.80514 	 0.01213 0.00228 0.83707 0.83707 0.83707 2.26923 2.2526 2.2526 1.31727 1.31727 0.00898 0.17896 0.17896 0.17896 0.17896 0.65449
Initial Di Type () Discharge () Discharge ()	Discharge Discharge		Discharge		Discharge	Discharge	Discharge Discharge Discharge	Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge Discharge Discharge	Discharge Discharge Discharge Discharge Discharge Discharge Discharge Discharge
Storage Coefficient 1.625 Di 1.7571	1.7571 Di		0.05708 Di	0.04775 Di		0.20597 Di	0.20597 Di 1.36032 Di	0.20597 Di 1.36032 Di 1.22837 Di	0.20597 Di 0.20597 Di 1.36032 Di 1.22837 Di 0.43937 Di	0.20597 Di 0.20597 Di 1.36032 Di 1.22837 Di 0.43937 Di 0.43937 Di	0.20597 Di 1.36032 Di 1.22837 Di 0.43937 Di 0.43937 Di 1.12231 Di	0.20597 Di 1.36032 Di 1.22837 Di 0.43937 Di 0.43937 Di 1.12231 Di 1.32863 Di	0.20597 Di 1.36032 Di 1.22837 Di 0.43937 Di 0.43937 Di 1.12231 Di 1.32863 Di 1.32863 Di 1.46972 Di
Time of Concentration 0 9.78548 3.83276 3.83276	9.78548 3.83276 1.74877	1.74877		1.46292		5.31028	5.31028 1.67649	5.31028 1.67649 7.63397	5.31028 1.67649 7.63397 13.4611	5.31028 1.67649 7.63397 13.4611 1.58146	5.31028 1.67649 7.63397 13.4611 1.58146 1.58146	5.31028 1.67649 7.63397 13.4611 1.58146 1.58146 1.38447 3.70543	5.31028 1.67649 7.63397 7.63397 13.4611 13.4611 1.58146 1.58146 1.58146 1.58146 3.02823 5.02823
T T vervious Coni 0 49.78 0 53.83 0 53.83	0 49.78 0 53.83 0 1.74	0 1.74		0 1.46		0 6.31	0 6.31	0 6.31	0 6.31 0 41.67 0 37.63 0 13.4	0 6.31 0 41.67 0 37.63 0 13.4 0 13.4	0 6.31 0 41.67 0 37.63 0 13.4 0 1.58 0 1.58	0 6.31 0 41.67 0 37.63 0 13.4 0 1.58 0 34.38 0 34.38	0 6.31 0 41.67 0 37.63 0 13.4 0 1.58 0 34.38 0 40.70 0 45.02
Curve Impo Jumber 99	66 00	<u>עע</u>	66	66	-	66	66 66	66 66 66	66 66 66 66 66	66 66 66	66 66 66 66	66 66 66 66 66	66 66 66 66 66 66
Initial Abstraction N 0.07869	0.07869	0.08878	0.06279	0.0907		0.1557	0.1557 0.08255	0.1557 0.08255 0.08869	0.1557 0.08255 0.08869 0.08869	0.1557 0.08255 0.08869 0.26668 0.26668	0.1557 0.08255 0.08869 0.26668 0.26668 0.25223	0.1557 0.08255 0.08869 0.26668 0.26668 0.25223 0.44486 0.44486	0.1557 0.08255 0.08869 0.26668 0.25223 0.25233 0.177 0.25832
lumber		V570 V560	V550	N540	-	N530	N530 N520	V530 V520 V510	V530 V520 V510 V500	V530 V520 V510 V500 V490	N530 N520 N510 N500 N490 N480	V530 V520 V510 V500 V490 V470	N530 N520 N510 N500 N490 N470 N470 N460

Image: Clark UnitClark UnitSCS Curve NumberHydropgraphFind InitialCurveInitialCurveInitialInitialInitialRecession BaseflowDefDistractionNumberTime ofStorageInitialInitialInitialRecessionThresholdAbstractionNumberImperviousConcentrationConficientTypeInitialInitialInitialRecessionThresholdRatio0.620899904.931770.16097Discharge0.003251Ratio to0.010.15919904.931771.48767Discharge0.003251Ratio to0.010.159199045.578211.48767Discharge2.060381Ratio to0.010.2882799015.266620.4983Discharge1.170121Ratio to0.01							
Clark UnitsClark UnitsFix Clark UnitsPoint InitialRecession BaseflowPoint InitialClark UnitsPoint InitialClark UnitsAbstractionNumberTime ofStorageInitialInitialRecession BaseflowAbstractionNumberImperviousConcentrationCoefficientTypeInitialRecessionType0.62089990.994.931770.16097Discharge0.003250.01326ParkPark0.1591990.045.578210.16097Discharge0.003250.01326ParkPark0.02882799015.26621.48767Discharge1.170121.17012ParkPark0.02882799015.26620.01325Discharge1.170121.17012Park0.02882799015.26620.01325Discharge1.170121.17012Park			Ratio	Peak	0.01	0.01	0.01
Image: Clark UnitClark UnitClark UnitClark UnitClark UnitClark UnitInitialNumberTure ofStorageInitialRecessionAbstractionNumberTime ofStorageInitialInitialRecessionO.62089990.990.004.93177CoefficientTypeInitialInitialRecession0.052089990.04.931770.16097Discharge0.003250.10325110.1591990.04.5578211.48767Discharge0.003251110.2882799015.266621.48767Discharge2.0603811		8	Threshold	Type	Ratio to Peak	Ratio to Peak	Ratio to Peak
Image: Clark UnitsNational Clark UnitsNoticitsNoticitsNumberAbstractionCurveTime ofStorageInitialAbstractionNumberConcentrationCoefficientNipeNinalsAbstraction0.6208999994.931770.16097Discharge0.0032500.01591990.04.931770.16097Discharge0.0032500.01591990.04.5578211.48767Discharge2.0603800.0288279900.5266671.48767Discharge2.0603800.0288279900.5266620.03880.003260.00325	offered action	sion basetio	Recession	Constant	1	1	T
Interpretation Clark Unit Clark Unit Initial Initial </td <th></th> <th>Keces</th> <td>Initial Diceborgo</td> <td>uisuiaige (m3/s)</td> <td>0.00325</td> <td>2.06038</td> <td>1.17012</td>		Keces	Initial Diceborgo	uisuiaige (m3/s)	0.00325	2.06038	1.17012
Clark Unit SCS Curve Number Hydropgraph Der Clark Unit Der Lark Unit Abstraction Curve Number Impervious Concentration Coefficient O.62089 099 0.4.93177 Coefficient O.01591 09 45.57821 O.16097 O.01591 09 0 45.57821 - O.028827 09 0 - - D 0.28827 - - D - - - - - - - - - - -			Initial	Type	Discharge	Discharge	Discharge
n Clark Un n SCS Curve Number $Hydropgra$ n Initial $Imtal obr Initial Curve Abstraction Number Concentration n 0.62089 999 4.93177 n 0.1591 99 4.93177 n 0.1591 99 0.15 n 0.1581 99 0.15.0662 $	it	hd	Storage	Coefficient	0.16097	1.48767	0.4983
n SCS Curve Number H Der Initial Curve Der Initial Curve Abstraction Number Impervious O.62089 99 0.0 O.1591 99 0.0 O.028827 99 0.15.26662	Clark Un	ydropgra	of	ration			
SCS Curve Number net SCS Curve Number net Initial net Initial Abstraction Number 0.62089 99 0.1591 99 0.1591 99 0.28827 99			Time	Concent	4.93177	45.57821	15.26662
n ber Initial Curve Numk Abstraction Number 0.62089 99 0.1591 99		Jer	mpervious		0	0	0
n ber Initial Abstraction 0.62089 0.1591		urve Numr	Curve	Number	66	66	66
- i - i - i - i - i - i - i - i - i - i		202	Initial	Abstraction	0.62089	0.1591	0.28827
Basi Numt W440 W430 W420		Basin	Number		W440	W430	W420

Annex 10. Palo Model Reach Parameters

		Musk	kingum Cunge Ch	annel Routing			
Number	Time Step Method	Length	Slope	Manning's n	Shape	Width	Side Slope
R10	Automatic Fixed Interval	199.35	0.000670553	0.04	Trapezoid	10	60
R40	Automatic Fixed Interval	1844.7	0.000731987	0.04	Trapezoid	10	60
R60	Automatic Fixed Interval	274.2	0.0002	0.04	Trapezoid	13	60
R80	Automatic Fixed Interval	2369	0.0013517	0.04	Trapezoid	8	60
R90	Automatic Fixed Interval	1638.5	0.0002	0.04	Trapezoid	14	60
R110	Automatic Fixed Interval	106.21	0.0002	0.04	Trapezoid	16	60
R120	Automatic Fixed Interval	543.14	0.0179847	0.04	Trapezoid	18	60
R130	Automatic Fixed Interval	1648.4	0.0017266	0.04	Trapezoid	18	60
R150	Automatic Fixed Interval	64.497	0.0179847	0.04	Trapezoid	5	60
R170	Automatic Fixed Interval	2426.4	0.000426368	0.04	Trapezoid	20	60
R200	Automatic Fixed Interval	3588.1	0.000233175	0.04	Trapezoid	19.5	60
R210	Automatic Fixed Interval	14058	0.0018671	0.04	Trapezoid	13.667	60
R220	Automatic Fixed Interval	1036.9	0.000482207	0.04	Trapezoid	24	60
R240	Automatic Fixed Interval	10562	0.0015068	0.04	Trapezoid	10	60
R250	Automatic Fixed Interval	2610.8	0.00080245	0.04	Trapezoid	24.8	60
R260	Automatic Fixed Interval	4393.1	0.0011626	0.04	Trapezoid	10.333	60
R280	Automatic Fixed Interval	2065.3	0.0033513	0.04	Trapezoid	7	60
R310	Automatic Fixed Interval	3034.7	0.0035496	0.04	Trapezoid	13.667	60
R350	Automatic Fixed Interval	1732.7	0.0065957	0.04	Trapezoid	12	60
R380	Automatic Fixed Interval	14273	0.0012044	0.04	Trapezoid	12	60

Validation Coordinates Point Model Validation Rain Return / Event/Date Error Number Var (m) Points (m) Scenario Lat Long 11.17935 125.000893 0.04 0 0.04 Yolanda / November 2013 5 -Year 1 2 11.180158 124.999386 0.33 0.1 0.23 Yolanda / November 2013 5 -Year 3 11.182829 125.003131 0.06 -0.54 Yolanda / November 2013 0.6 5 -Year 4 11.182808 125.003545 0.06 -1.94 Yolanda / November 2013 5 -Year 2 125.002881 5 11.186373 0.05 -0.65 Yolanda / November 2013 5 -Year 0.7 6 11.186374 125.002897 0.05 0.3 -0.25 Ruby / December 2014 5 -Year 11.193553 Yolanda / November 2013 7 125.00455 0.27 0.5 -0.23 5 -Year 8 11.19359 125.004488 0.27 0.3 -0.03 2010 5 -Year 9 11.194262 125.002521 0.31 Yolanda / November 2013 0.5 -0.19 5 -Year 10 11.193412 125.001643 0.17 0 0.17 Yolanda / November 2013 5 -Year 11 11.193598 125.000784 0.35 0.2 0.15 Yolanda / November 2013 5 -Year 12 11.197564 125.002602 0.05 -1.05 Yolanda / November 2013 5 -Year 1.1 0.05 -0.75 13 11.197564 125.002602 0.8 Ruby / December 2014 5 -Year Amihan / January-February 5 -Year 14 11.197564 125.002602 0.05 0.5 -0.45 2016 0.50 Yolanda / November 2013 5 -Year 15 11.200699 125.002549 0.8 -0.30 16 11.200699 125.002549 0.50 0.8 -0.30 January 2011 5 -Year 17 11.200699 125.002549 0.50 0.8 -0.30 Ruby / December 2014 5 -Year Seniang / December 2014 18 11.197696 -0.62 125.008409 0.18 0.8 5 -Year Amihan / January-February 5 -Year 19 11.197696 125.008409 0.18 0.5 -0.32 2016 125.008409 20 11.197696 0.18 0 0.18 Ruby / December 2014 5 -Year 11.20277 125.007916 0.06 0.95 -0.89 Yolanda / November 2013 21 5 -Year Amihan / January-February 5 -Year 125.007916 22 11.20277 0.06 -0.44 0.5 2016 0.06 23 11.20277 125.007916 0.5 -0.44Ruby / December 2014 5 -Year 24 11.20196 125.009871 0.24 2 -1.76 Yolanda / November 2013 5 -Year 25 11.20196 125.009871 0.24 0.5 -0.26 Ruby / December 2014 5 -Year Amihan / January-February 5 -Year 26 11.207533 125.00949 0.07 0.5 -0.43 2016 11.207533 125.00949 0.07 0.07 Yolanda / November 2013 27 0 5 -Year 11.207533 125.00949 0.07 0.65 -0.58 Ruby / December 2014 5 -Year 28 29 0 11.20862 125.015388 0.05 0.05 Yolanda / November 2013 5 -Year 0.05 30 11.20862 125.015388 0.5 -0.45 Ruby / December 2014 5 -Year 11.20862 31 125.015388 0.05 0.5 -0.45 Seniang / December 2014 5 -Year 11.200107 0.04 3 -2.96 32 125.022895 Yolanda / November 2013 5 -Year 11.200107 0.04 -0.56 33 125.022895 0.6 Seniang / December 2014 5 -Year 34 11.200107 125.022895 0.04 0.6 -0.56 Ruby / December 2014 5 -Year Amihan / January-February 5 -Year 35 11.200107 125.022895 0.04 0.3 -0.26 2016 36 11.202944 125.019436 0.05 2 -1.95 Yolanda / November 2013 5 -Year 37 11.202944 125.019436 0.05 0.2 -0.15 Ruby / December 2014 5 -Year Amihan / January-February 5 -Year 38 11.202944 125.019436 0.05 0.3 -0.25 2016 39 11.19844 125.021161 0.07 4 -3.93 Yolanda / November 2013 5 -Year 40 11.19844 125.021161 0.07 0 0.07 Ruby / December 2014 5 -Year 41 125.016959 0.05 2 -1.95 Yolanda / November 2013 11.19679 5 -Year

Annex 11. Palo Field Validation Points

Point	Validation	Coordinates	Model Var (m)	Validation	Error	Event/Date	Rain Return/
42	Lat	125.016050		0.2	0.15	Pubu / December 2014	E Voor
42	11.19679	125.016959	0.05	0.2	-0.15	Ruby / December 2014	5-rear
43	11.194801	125.01/1/5	0.04	3	-2.96	Yolanda / November 2013	5 -Year
44	11.194801	125.017175	0.04	0	0.04	Ruby / December 2014	5 -Year
45	11.195039	125.018519	0.31	3	-2.69	Yolanda / November 2013	5 -Year
46	11.195039	125.018519	0.31	0.2	0.11	Ruby / December 2014	5 -Year
47	11.195039	125.018519	0.31	0.2	0.11	Seniang / December 2014	5 -Year
48	11.195039	125.018519	0.31	0.3	0.01	Amihan / January-February 2016	5 -Year
49	11.19021	125.014119	0.03	2	-1.97	Yolanda / November 2013	5 -Year
50	11.19021	125.014119	0.03	0.2	-0.17	Ruby / December 2014	5 -Year
51	11.19021	125.014119	0.03	0.2	-0.17	Seniang / December 2014	5 -Year
52	11.188844	125.013745	0.08	3	-2.92	Yolanda / November 2013	5 -Year
53	11.188844	125.013745	0.08	0.3	-0.22	Amihan / January-February 2016	5 -Year
54	11.188844	125.013745	0.08	0	0.08	Ruby / December 2014	5 -Year
55	11.189561	125.008909	0.08	2	-1.92	Yolanda / November 2013	5 -Year
56	11.189561	125.008909	0.08	0	0.08	Ruby / December 2014	5 -Year
57	11 193101	125 009602	0.33	2	-1 67	Yolanda / November 2013	5 -Year
58	11 193101	125.005002	0.33	0	0.33	Ruby / December 2014	5 -Vear
50	11 1055/	125.005002	0.33	13	-1 09	Volanda / November 2013	5 -Vear
59	11.19554	125.00978	0.21	1.5	-1.09	Buby (December 2014	5-fear
60	11.19554	125.00978	0.21	0	0.21	Seniong / December 2014	5-fear
61	11.19554	125.00978	0.21	0	0.21	Seniarig / December 2014	5 -Year
62	11.183/15	125.014762	0.13	2	-1.87	Public (Descention 2014	5-Year
63	11.183662	125.014764	0.13	0.5	-0.37	Ruby / December 2014	5 -Year
64	11.183662	125.014764	0.13	0.5	-0.37	Seniang / December 2014	5-Year
65	11.180857	125.015864	0.10	0	0.10	1999/2000	5 -Year
66	11.180857	125.015864	0.10	0	0.10	Yolanda / November 2013	5 -Year
67	11.180857	125.015864	0.10	0.5	-0.40	Ruby / December 2014	5 -Year
68	11.180857	125.015864	0.10	1.1	-1.00	Seniang / December 2014	5 -Year
69	11.180827	125.014584	0.22	3	-2.78	Yolanda / November 2013	5 -Year
70	11.180827	125.014584	0.22	0.8	-0.58	Ruby / December 2014	5 -Year
71	11.180827	125.014584	0.22	0.8	-0.58	Seniang / December 2014	5 -Year
72	11.180827	125.014584	0.22	0.27	-0.05	Amihan / January-February 2016	5 -Year
73	11.18074	125.014129	0.21	0.2	0.01	Amihan / January-February 2016	5 -Year
74	11.188562	124.992907	0.10	0	0.10	Amihan / January-February 2016	5 -Year
75	11.195079	124.996141	0.61	0.5	0.11	Yolanda / November 2013	5 -Year
76	11.195079	124.996141	0.61	0.2	0.41	Ruby / December 2014	5 -Year
77	11.196898	124.99505	0.07	0.5	-0.43	Yolanda / November 2013	5 -Year
78	11.196898	124.99505	0.07	0	0.07	Ruby / December 2014	5 -Year
79	11.198839	124.992754	0.11	0.5	-0.39	Heavy Rain / May-June 2016	5 -Year
80	11.203374	124.991501	0.03	0.5	-0.47	Heavy Rain / May-June 2016	5 -Year
81	11.203374	124.991501	0.03	0.8	-0.77	Yolanda / November 2013	5 -Year
82	11.203405	124.991495	0.03	0.5	-0.47	Ruby / December 2014	5 -Year
83	11.203405	124.991495	0.03	0.5	-0.47	Seniang / December 2014	5 -Year
84	11.20547	124.991392	0.28	0	0.28	Yolanda / November 2013	5 -Year

Point Number	Validation	Coordinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
85	11 20547	124 991392	0.28	0	0.28	Ruby / December 2014	5 -Year
86	11 207844	124.001002	0.20	0.5	0.20	Ruby / December 2014	5 -Vear
87	11 207844	124.555545	0.70	0.5	0.20	Seniang / December 2014	5 -Vear
88	11.208878	124.993364	0.08	0.5	-0.42	Amihan / January-February 2016	5 -Year
89	11.208874	124.993389	0.08	0.5	-0.42	Yolanda / November 2013	5 -Year
90	11.208874	124.993389	0.08	0.5	-0.42	Ruby / December 2014	5 -Year
91	11.208874	124,993389	0.08	0.5	-0.42	Seniang / December 2014	5 -Year
92	11.207606	124.995816	0.46	0	0.46	Yolanda / November 2013	5 -Year
93	11.207606	124.995816	0.46	0	0.46	Ruby / December 2014	5 -Year
94	11.207316	125.004143	0.04	0.5	-0.46	Yolanda / November 2013	5 -Year
95	11.207316	125.004143	0.04	0.4	-0.36	Continuous rain / 2000	5 -Year
96	11.208446	125.001458	0.21	0.8	-0.59	Yolanda / November 2013	5 -Year
97	11.208446	125.001458	0.21	0.5	-0.29	Continuous rain / 2000	5 -Year
98	11.208446	125.001458	0.21	0.5	-0.29	Ruby / December 2014	5 -Year
99	11.208446	125.001458	0.21	0.5	-0.29	Amihan / January-February 2016	5 -Year
100	11.210057	124.989483	0.04	0.2	-0.16	Yolanda / November 2013	5 -Year
101	11.21009	124.989542	0.05	0.9	-0.85	Habagat / 2011	5 -Year
102	11.18423	124.99169	0.05	0.2	-0.15	Amihan / January-February 2016	5 -Year
103	11.18423	124.99169	0.05	0.3	-0.25	Ruby / December 2014	5 -Year
104	11.18423	124.99169	0.05	0.3	-0.25	Seniang / December 2014	5 -Year
105	11.18423	124.99169	0.05	0.3	-0.25	Habagat / 2011	5 -Year
106	11.190024	124.987926	0.48	3	-2.52	Yolanda / November 2013	5 -Year
107	11.190024	124.987926	0.48	0	0.48	Ruby / December 2014	5 -Year
108	11.190002	124.988023	0.03	0	0.03	Ruby / December 2014	5 -Year
109	11.190002	124.988023	0.03	0	0.03	Yolanda / November 2013	5 -Year
110	11.175195	125.013527	0.07	0.6	-0.53	Low Pressure / March 1, 2012	5 -Year
111	11.175006	125.013687	0.07	5	-4.93	Yolanda / November 2013	5 -Year
112	11.17124	125.010663	0.03	5	-4.97	Yolanda / November 2013	5 -Year
113	11.17124	125.010663	0.03	0.4	-0.37	Ruby / December 2014	5 -Year
114	11.169019	125.008849	0.04	0.5	-0.46	Ruby / December 2014	5 -Year
115	11.168641	125.008467	0.06	3	-2.94	Yolanda / November 2013	5 -Year
116	11.168641	125.008467	0.06	1.1	-1.04	Seniang / December 2014	5 -Year
117	11.168641	125.008467	0.06	0.35	-0.29	Ruby / December 2014	5 -Year
118	11.169987	125.007371	0.08	5	-4.92	Yolanda / November 2013	5 -Year
119	11.169255	125.007915	0.08	5	-4.92	Yolanda / November 2013	5 -Year
120	11.169255	125.007915	0.08	0.6	-0.52	Ruby / December 2014	5 -Year
121	11.169855	125.007111	0.07	2	-1.93	Yolanda / November 2013	5 -Year
122	11.169855	125.007111	0.07	0	0.07	-	5 -Year
123	11.169378	125.006933	0.06	2	-1.94	Yolanda / November 2013	5 -Year
124	11.169378	125.006933	0.06	0.5	-0.44	Seniang / December 2014	5 -Year
125	11.167092	125.006767	0.07	3	-2.93	Yolanda / November 2013	5 -Year
126	11.167022	125.006792	0.07	3	-2.93	Yolanda / November 2013	5 -Year
127	11.167022	125.006792	0.07	0.3	-0.23	Ruby / December 2014	5 -Year
128	11.166596	125.006578	0.07	3	-2.93	Yolanda / November 2013	5 -Year
129	11.167077	125.005887	0.06	5	-4.94	Yolanda / November 2013	5 -Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	var (m)	Points (m)			Scenario
130	11.167077	125.005887	0.06	3	-2.94	Seniang / December 2014	5 -Year
131	11.167077	125.005887	0.06	0.5	-0.44	Ruby / December 2014	5 -Year
132	11.16443	125.005666	0.09	5	-4.91	Yolanda / November 2013	5 -Year
133	11.16443	125.005666	0.09	0.2	-0.11	Ruby / December 2014	5 -Year
134	11.16443	125.005666	0.09	0.1	-0.01	Seniang / December 2014	5 -Year
135	11.16414	125.002526	0.07	1.4	-1.33	Yolanda / November 2013	5 -Year
136	11.16414	125.002526	0.07	0.5	-0.43	Ruby / December 2014	5 -Year
137	11.164661	125.002835	0.07	2	-1.93	Yolanda / November 2013	5 -Year
138	11.164661	125.002835	0.07	0.5	-0.43	Seniang / December 2014	5 -Year
139	11.154819	125.003111	0.48	0.2	0.28	Seniang / December 2014	5 -Year
140	11.156526	125.000622	0.30	3	-2.70	Yolanda / November 2013	5 -Year
141	11.152382	124.998826	0.03	5	-4.97	Yolanda / November 2013	5 -Year
142	11.152382	124.998826	0.03	0.5	-0.47	Ruby / December 2014	5 -Year
143	11.157353	124.993016	0.07	0.2	-0.13	Yolanda / November 2013	5 -Year
144	11.157353	124.993016	0.07	0.1	-0.03	Ruby / December 2014	5 -Year
145	11.157353	124.993016	0.07	0.1	-0.03	Seniang / December 2014	5 -Year
146	11.172911	124.996375	0.05	0	0.05	-	5 -Year
147	11.171515	124.995976	0.23	1	-0.77	Yolanda / November 2013	5 -Year
148	11.171144	124.998677	0.04	5	-4.96	Yolanda / November 2013	5 -Year
149	11.171144	124.998677	0.04	0.5	-0.46	Ruby / December 2014	5 -Year
150	11.171144	124.998677	0.04	0.5	-0.46	Seniang / December 2014	5 -Year
151	11.167	124.996448	0.04	0	0.04	-	5 -Year
152	11.16422	124.995166	0.03	0.1	-0.07	Yolanda / November 2013	5 -Year
153	11.161532	124.990526	0.03	0.1	-0.07	Seniang / December 2014	5 -Year
154	11.161532	124.990526	0.03	0.1	-0.07	Ruby / December 2014	5 -Year
155	11.161956	124.990174	0.03	2	-1.97	Seniang / December 2014	5 -Year
156	11.161956	124.990174	0.03	2	-1.97	Ruby / December 2014	5 -Year
157	11.161508	124.992149	0.03	3	-2.97	Yolanda / November 2013	5 -Year
158	11.161508	124.992149	0.03	1.6	-1.57	Ruby / December 2014	5 -Year
159	11.161508	124.992149	0.03	1.1	-1.07	Seniang / December 2014	5 -Year
160	11.16188	124.993533	0.14	0.5	-0.36	Yolanda / November 2013	5 -Year
161	11.16188	124.993533	0.14	0.2	-0.06	Seniang / December 2014	5 -Year
162	11.16188	124.993533	0.14	0.2	-0.06	Ruby / December 2014	5 -Year
163	11.160743	124.995523	0.47	5	-4.53	Yolanda / November 2013	5 -Year
164	11.160743	124.995523	0.47	1.3	-0.83	Ruby / December 2014	5 -Year
165	11.160743	124.995523	0.47	2	-1.53	Seniang / December 2014	5 -Year
166	11.160743	124.995523	0.47	0.7	-0.23	Nona	5 -Year
167	11.161127	124.99449	0.50	5	-4.50	Yolanda / November 2013	5 -Year
168	11.161127	124.99449	0.50	1.8	-1.30	Ruby / December 2014	5 -Year
169	11.161127	124.99449	0.50	1.2	-0.70	Seniang / December 2014	5 -Year
170	11.162191	124.986524	0.58	0.5	0.08	Seniang / December 2014	5 -Year
171	11.163064	124.986552	0.87	1	-0.13	Seniang / December 2014	5 -Year
172	11.163858	124.983407	1.25	0.5	0.75	Ruby / December 2014	5 -Year
173	11.163858	124.983407	1.25	0.5	0.75	Seniang / December 2014	5 -Year
174	11.165632	124.980886	0.77	0.5	0.27	Before Yolanda / November 2013	5 -Year
175	11.166273	124.979509	0.91	0	0.91	-	5 -Year
176	11.169448	124.97504	0.52	1.5	-0.98	Ruby / December 2014	5 -Year

Point	Validation	Coordinates	Model	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	var (III)	Points (iii)			Scenario
177	11.172776	124.980239	0.06	0	0.06	-	5 -Year
178	11.172879	124.978285	0.11	0	0.11	-	5 -Year
179	11.172833	124.975712	0.05	0.3	-0.25	Ruby / December 2014	5 -Year
180	11.172833	124.975712	0.05	0.5	-0.45	Yolanda / November 2013	5 -Year
181	11.173408	124.97409	0.15	0	0.15	-	5 -Year
182	11.168384	124.976213	1.23	1.5	-0.27	Ruby / December 2014	5 -Year
183	11.16704	124.975834	1.48	1	0.48	Ruby / December 2014	5 -Year
184	11.16704	124.975834	1.48	1.5	-0.02	Yolanda / November 2013	5 -Year
185	11.166541	124.973043	2.09	0	2.09	-	5 -Year
186	11.165584	124.973226	0.90	0.5	0.40	Ruby / December 2014	5 -Year
187	11.165584	124.973226	0.90	0.5	0.40	Seniang / December 2014	5 -Year
188	11.168074	124.969182	1.59	0	1.59	-	5 -Year
189	11.171549	124.967141	0.19	0.5	-0.31	Ruby / December 2014	5 -Year
190	11.171036	124.964422	0.52	1.6	-1.08	Seniang / December 2014	5 -Year
191	11.171036	124.964422	0.52	1.6	-1.08	Ruby / December 2014	5 -Year
192	11.170872	124.964444	0.36	1.5	-1.14	Seniang / December 2014	5 -Year
193	11.170872	124.964444	0.36	1.5	-1.14	Ruby / December 2014	5 -Year
194	11.177179	124.956013	1.37	2	-0.63	Seniang / December 2014	5 -Year
195	11.177354	124.957192	1.46	1.6	-0.14	Seniang / December 2014	5 -Year
196	11.177354	124.957192	1.46	1	0.46	Ruby / December 2014	5 -Year
197	11.177503	124.957552	2.00	2	0.00	Ruby / December 2014	5 -Year
198	11.177503	124.957552	2.00	2	0.00	Seniang / December 2014	5 -Year
199	11.177503	124.957552	2.00	0.2	1.80	Yolanda / November 2013	5 -Year
200	11.179552	124.957371	1.46	1	0.46	Ruby / December 2014	5 -Year
201	11.179552	124.957371	1.46	2.5	-1.04	Seniang / December 2014	5 -Year
202	11.123073	125.015063	0.53	0.65	-0.12	Ruby / December 2014	5 -Year
203	11.121831	125.015451	0.58	0.6	-0.02	Seniang / December 2014	5 -Year
204	11.121736	125.015067	0.63	0	0.63	Ruby / December 2014	5 -Year
205	11.121736	125.015067	0.63	1.8	-1.17	Seniang / December 2014	5 -Year
206	11.119518	125.016683	0.57	0.4	0.17	Seniang / December 2014	5 -Year
207	11.119518	125.016683	0.57	0.4	0.17	Ruby / December 2014	5 -Year
208	11.12472	125.02169	0.04	0.5	-0.46	Seniang / December 2014	5 -Year
209	11.125284	125.022364	0.16	1	-0.84	Seniang / December 2014	5 -Year
210	11.125751	125.023335	0.39	0.6	-0.21	Seniang / December 2014	5 -Year
211	11.125751	125.023335	0.39	0.3	0.09	Ruby / December 2014	5 -Year
212	11.125971	125.02205	0.61	1.2	-0.59	Seniang / December 2014	5 -Year
213	11.127793	125.009345	0.42	1.4	-0.98	Seniang / December 2014	5 -Year
214	11.129036	125.009319	0.37	1.47	-1.10	Seniang / December 2014	5 -Year
215	11.128825	125.008687	0.54	1.15	-0.61	Seniang / December 2014	5 -Year
216	11.134181	125.007242	0.82	0.8	0.02	Seniang / December 2014	5 -Year
217	11.135378	125.006332	1.12	1.7	-0.58	Seniang / December 2014	5 -Year
218	11.138991	125.006079	0.73	0.8	-0.07	Seniang / December 2014	5 -Year
219	11.139071	125.00547	0.72	1.4	-0.68	Seniang / December 2014	5 -Year
220	11.14276	125.005348	0.30	0.3	0.00	Seniang / December 2014	5 -Year
221	11.147131	125.001841	1.07	0.8	0.27	Seniang / December 2014	5 -Year
222	11.149789	125.003424	0.31	0.8	-0.49	Seniang / December 2014	5 -Year
223	11,150286	125.003617	0.05	0.7	-0.65	Seniang / December 2014	5 -Year
				•	5.00		

Point	Validation	Coordinates	Model	Validation	_	5	Rain Return/
Number	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
224	11.152729	124.998917	0.03	0.8	-0.77	Seniang / December 2014	5 -Year
225	11.154078	124.992504	0.26	0.1	0.16	Seniang / December 2014	5 -Year
226	11.152629	124.98901	0.77	0.88	-0.11	Seniang / December 2014	5 -Year
227	11.144658	124.985819	0.04	0.6	-0.56	Seniang / December 2014	5 -Year
228	11.144658	124.985819	0.04	0.1	-0.06	Ruby / December 2014	5 -Year
229	11.139176	124.983665	0.04	1.2	-1.16	Seniang / December 2014	5 -Year
230	11.137986	124.983751	0.29	1.4	-1.11	Seniang / December 2014	5 -Year
231	11.137986	124.983751	0.29	0.5	-0.21	Yolanda / November 2013	5 -Year
232	11.138166	124.983916	0.26	1.6	-1.34	Seniang / December 2014	5 -Year
233	11.138166	124.983916	0.26	0	0.26	Ruby / December 2014	5 -Year
234	11.131487	124.980642	1.34	2.4	-1.06	Seniang / December 2014	5 -Year
235	11.131487	124.980642	1.34	1.2	0.14	Yolanda / November 2013	5 -Year
236	11.131487	124.980642	1.34	0.6	0.74	Ruby / December 2014	5 -Year
237	11.133444	124.975172	0.19	1.05	-0.86	Seniang / December 2014	5 -Year
238	11.126194	124.978243	0.41	1.6	-1.19	Seniang / December 2014	5 -Year
239	11.124228	124.977363	0.62	1.8	-1.18	Seniang / December 2014	5 -Year
240	11.119073	124.975691	0.08	0.9	-0.82	Seniang / December 2014	5 -Year
241	11.119073	124.975691	0.08	0.7	-0.62	Ruby / December 2014	5 -Year
242	11.130892	124.983622	0.11	2.5	-2.39	Seniang / December 2014	5 -Year
243	11.130892	124.983622	0.11	0.4	-0.29	Yolanda / November 2013	5 -Year
244	11.130892	124.983622	0.11	0.8	-0.69	Ruby / December 2014	5 -Year
245	11.154232	124.985747	0.81	1.36	-0.55	Seniang / December 2014	5 -Year
246	11.15376	124.981727	0.43	1.5	-1.07	Seniang / December 2014	5 -Year
247	11.153976	124.97994	0.32	0.3	0.02	Seniang / December 2014	5 -Year
248	11.153717	124.976561	0.38	0.5	-0.12	Seniang / December 2014	5 -Year
249	11.154375	124.9728	0.09	0.6	-0.51	Seniang / December 2014	5 -Year
250	11.154375	124.9728	0.09	0.3	-0.21	Seniang / December 2014	5 -Year
251	11.151513	124.972117	0.19	0.5	-0.31	Seniang / December 2014	5 -Year
252	11.143602	124.965134	0.09	0.7	-0.61	Seniang / December 2014	5 -Year
253	11.143602	124.965134	0.09	0.2	-0.11	Ruby / December 2014	5 -Year
254	11.140522	124.974099	0.08	0	0.08	Seniang / December 2014	5 -Year
255	11.13903	124.980608	0.03	0.3	-0.27	Seniang / December 2014	5 -Year
256	11.122397	124.997956	1.61	2	-0.39	Seniang / December 2014	5 -Year
257	11.12288	125.000219	1.55	2.2	-0.65	Seniang / December 2014	5 -Year
258	11.12288	125.000219	1.55	1.8	-0.25	Ruby / December 2014	5 -Year
259	11.133005	125.002468	1.04	1.8	-0.76	Seniang / December 2014	5 -Year
260	11.133005	125.002468	1.04	0.3	0.74	Ruby / December 2014	5 -Year
261	11.129941	124.999613	1.28	2	-0.72	Seniang / December 2014	5 -Year
262	11.129941	124.999613	1.28	1.1	0.18	Ruby / December 2014	5 -Year
263	11.12592	124.994367	0.37	1.8	-1.43	Seniang / December 2014	5 -Year
264	11.123937	124.992665	0.04	0.2	-0.16	Seniang / December 2014	5 -Year
265	11.12308	124.992526	0.04	0.5	-0.46	Seniang / December 2014	5 -Year

Annex 12. Educational Institutions Affected by Flooding in Palo Floodplain

IFY	/TF			
BA	10			
ra Ta		P	ainfall Scon	ario
Building Name	Barangay	5-vear	25-vear	100-vear
San Jose Elementary School	Arado	5 year	20 year	200 year
Baras Elementary School	Baras			
Day Care Center	Baras			
San Fernando Elementary School	Baras			
Cabarasan Guti Primary School	Cabarasan Guti			
Bethel International School	Campetik			
Campetik Elementary School	Campetik			
Pawing Elementary School	Campetik			
Philippine Science High School ADMIN Building	Campetik			
Philippine Science High School Guard House	Campetik		Low	Low
Philippine Science High School Room	Campetik			
St. Paul's School of Professional Studies	Campetik		Medium	Medium
Cangumbang Elementary School	Cangumbang		High	High
Day Care Center	Cangumbang		High	High
Canhidoc Elementary School	Canhidoc			Low
Palo I Central School	Cavite East			
Palo National High School	Cavite West			
Gacao Elementary School	Gacao			Low
Caloogan Elementary School	Guindapunan		Medium	Medium
Day Care Center	Guindapunan			
Guidapunan Elementary School	Guindapunan			
Leyte Academic Center	Guindapunan			Low
Zion Bible College	Guindapunan			Low
Day Care Center	Naga-Naga		Medium	Medium
St. Mary Academy	Naga-Naga		Medium	Medium
Philippine Science High School ADMIN Building	Pawing			
Philippine Science High School Room	Pawing			
Brgy. Salvacion Day Care Center	Salvacion		Low	Low
Luntad Elementary School	Salvacion	Low	Low	Low
Naga-Naga Elementary School	Salvacion		Medium	Medium
Sacred Heart Seminary	Salvacion			
Salvacion Elementary School	Salvacion	Low	Low	Low
Gacao Elementary School	San Isidro			Low
Brgy. Tacuranga, Day Care Center	San Joaquin		Medium	Medium
Day Care Center	San Joaquin		Medium	Medium
San Joaquin Central School	San Joaquin		Medium	Medium
Tacuranga Elementary School	San Joaquin		Medium	Medium
Ilawod Day Care Center	San Miguel	Low	Low	Low

LEY	ΤE			
РА	LO			
Duilding Nows	Devener	R	ainfall Scer	ario
Building Name	вагапдау	5-year	25-year	100-year
Luntad Elementary School	San Miguel	Low	Low	Low
St. Mary Academy	Santa Cruz		Low	Medium

LEYTE						
SANTA FE						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Day Care Center	Badiangay		Medium	Medium		
Kauswagan National High School	Badiangay					
Libertad Elementary School	Milagrosa		High			

LEYTE					
TANAUAN					
	D	Rainfall Scenario			
Building Name	вагапдау	5-year	25-year	100-year	
Brgy. Muhon Day Care Center	Camire		Medium	Medium	
Muhon Elementary School	Camire		Medium	Medium	

LEYTE					
PALO					
	D	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
Brgy. Health Center	Arado				
Birthing Clinic	Campetik				
Cangumbang Health Center	Cangumbang		High	High	
Mother Bles Birthing Clinic	Cavite East	Low	Low	Low	
Palo Maternity House	Luntad		Medium	Medium	
Brgy. Salvacion, Health Center	Salvacion		Low	Low	
C-Gen Pharma & Medical Clinic	Salvacion				
Schistosomiasis Control & Research Center	Salvacion				
Schistosomiasis Hospital	Salvacion				
7th Angel Family Health Care & Maternity Clini	San Joaquin		Medium	Medium	
Brgy. Health Center	San Joaquin		Medium	Medium	
Brgy. Tacuranga, Health Center	San Joaquin		Medium	Medium	
Canhidoc Health Center	San Joaquin				
Feeding Center	San Joaquin		Medium	Medium	
Brgy. Health Center	Tacuranga				

Annex 13. Health Institutions Affected by Flooding in Palo Floodplain

LEYTE					
SANTA FE					
	Damasa	Rainfall Scenario			
Building Name	вагапдау	5-year	25-year	100-year	
Health Center	Badiangay	Low	Medium	Medium	