HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Pagsangahan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visavas State University

APRIL 2017

© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Pagsangahan River. Quezon City: University of the Philippines Training Center on Geodesy and Photogrammetry — **340pp**.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr. Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

Nationnal Library of the Philippines ISBN: 978-621-430-210-9

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND PAGSANGAHAN RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Pagsangahan River Basin	
CHAPTER 2: LIDAR DATA ACQUISITION OF THE PAGSANGAHAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE PAGSANGAHAN FLOODPLAIN	19
3.1 Overview of the LIDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR DEM	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PAGSANGAHAN RIVER BASI	
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built Survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.7.2 Discharge data using Dr. Horritts' recommended hydrologic method	
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	

5.11 Flood Validation	
REFERENCES	
ANNEX	
ANNEX 1. Technical Specifications of the LiDAR Sensors used in the Pagsangahan	
Floodplain Survey	
ANNEX 2. NAMRIA Certification of Reference Points used in the LiDAR Survey	
ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	
ANNEX 4. The LiDAR Survey Team Composition	
ANNEX 5. Data Transfer Sheets for the Pagsangahan Floodplain Flights	
ANNEX 6. Flight Logs for the Flight Missions	
ANNEX 7. Flight Status Reports	
ANNEX 8. Mission Summary Reports	177
ANNEX 9. Pagsangahan Model Basin Parameters	
ANNEX 10. Pagsangahan Model Reach Parameters	
ANNEX 11. Pagsangahan Field Validation Points	
ANNEX 12. Educational Institutions Affected by Flooding in Pagsangahan Floodplain	
ANNEX 13. Medical Institutions Affected by Flooding in Pagsangahan Floodplain	

LIST OF TABLES

	С
Table 1. Flight planning parameters for the Aquarius LiDAR System	
Table 2. Flight planning parameters for the Gemini LiDAR System	
Table 3. Details of the recovered NAMRIA horizontal control point LYT-37, used as a base station for the	
LiDAR acquisition	. 0
Table 4. Details of the recovered NAMRIA benchmark LY-606, used as a base station for the LiDAR	_
	. /
Table 5. Details of the recovered NAMRIA benchmark LY-672, used as a base station for the LiDAR	_
	. 8
Table 6. Details of the recovered NAMRIA horizontal control point CBU-340, used as a base station for	
the LiDAR acquisition	. 9
Table 7. Details of the recovered NAMRIA benchmark LY-672, used as a base station for the LiDAR	
acquisition	
Table 8. Details of the recovered NAMRIA horizontal control point LYT-89, used as a base station for the	
LiDAR acquisition	
Table 9. Details of the recovered NAMRIA horizontal control point LYT-90, used as a base station for the	
LiDAR acquisition	
Table 10. Details of the recovered NAMRIA horizontal control point LYT-690, used as a base station for	
the LiDAR acquisition	11
Table 11. Details of the recovered NAMRIA horizontal control point LYT-704, used as a base station for	
the LiDAR acquisition	11
Table 12. Details of the recovered NAMRIA horizontal control point LYT-731, used as a base station for	
the LiDAR acquisition	12
Table 13. Details of the established NAMRIA horizontal control point LYT-704bak, used as a base station	
for the LiDAR acquisition	
Table 14. Details of the established NAMRIA horizontal control point RM-9, used as a base station for t	
LiDAR acquisition	
Table 15. Details of the established NAMRIA horizontal control point W-22, used as a base station for t	
LiDAR acquisition	
LiDAR acquisition Table 16. Ground control points used during the LiDAR data acquisition	13
Table 16. Ground control points used during the LiDAR data acquisition	13 14
Table 16. Ground control points used during the LiDAR data acquisition Table 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplain	13 14 15
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisition	13 14 15 16
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR survey	13 14 15 16 17
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan flights	13 14 15 16 17 22
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplain	13 14 15 16 17 22 24
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScan	13 14 15 16 17 22 24 27
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areas	13 14 15 16 17 22 24 27 31
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplain	13 14 15 16 17 22 24 27 31 33
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measures	13 14 15 16 17 22 24 27 31 33 37
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measures	13 14 15 16 17 22 24 27 31 33 37 38
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan building features	 13 14 15 16 17 22 24 27 31 33 37 38 40
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan building featuresTable 28. Building features extracted for the Pagsangahan floodplain	13 14 15 16 17 22 24 27 31 33 37 38 40 41
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan flightsTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplain	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan building featuresTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted vader bodies for the Pagsangahan floodplainTable 29. Number of extracted water bodies for the Pagsangahan floodplain	 13 14 15 16 17 22 24 27 31 33 37 38 40 41 42
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 42
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static survey	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 42 46 49
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static surveyTable 33. Constraints applied to the adjustments of the control points	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 42 46 49 50
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static survey.Table 33. Constraints applied to the adjustments of the control points used in the Pagsangahan floodplain survey a	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 42 46 49 50
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static surveyTable 33. Constraints applied to the adjustments of the control points used in the Pagsangahan floodplain survey .Table 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain survey .	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 46 49 50 50
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan building featuresTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static surveyTable 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain surveyTable 35. Table 35. Adjusted geodetic coordinates for control points used in the Pagsangahan floodplain surver	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 46 49 50 50
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan floodplainTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8, 2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static survey.Table 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain survey on January 8, 2045 (Source: Static survey)Table 35. Table 35. Adjusted geodetic coordinates for control points used in the Pagsangahan floodplain survey .Table 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain survey .Table 35. Table 35. Adjusted geodetic coordinates for control points used in the Pagsangahan floodplain	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 46 49 50 50 51
Table 16. Ground control points used during the LiDAR data acquisitionTable 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplainTable 18. Actual parameters used during the LiDAR data acquisitionTable 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR surveyTable 20. Self-calibration results for the Pagsangahan floodplainTable 21. List of LiDAR blocks for the Pagsangahan floodplainTable 22. Pagsangahan classification results in TerraScanTable 23. LiDAR blocks with their corresponding areasTable 24. Shift values of each LiDAR block of the Pagsangahan floodplainTable 25. Calibration statistical measuresTable 26. Validation statistical measuresTable 27. Quality checking ratings for the Pagsangahan building featuresTable 28. Building features extracted for the Pagsangahan floodplainTable 29. Total length of extracted roads for the Pagsangahan floodplainTable 30. Number of extracted water bodies for the Pagsangahan floodplainTable 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8,2015 (Source: NAMRIA and UP-TCAGP)Table 32. Baseline Processing Report for the Pagsangahan River Basin static surveyTable 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain surveyTable 35. Table 35. Adjusted geodetic coordinates for control points used in the Pagsangahan floodplain surver	13 14 15 16 17 22 24 27 31 33 37 38 40 41 42 42 46 49 50 50 51 51

Table 38. Range of calibrated values for the Pagsangahan River Basin Model	L
Table 39. Summary of the Efficiency Test of the Pagsangahan HMS Model	2
Table 40. Peak values of the Pagsangahan HEC-HMS Model outflow using the Tacloban RIDF	3
Table 41. Summary of the Pagsangahan River (1) discharge generated in HEC-HMS	5
Table 42. Summary of the Pagsangahan River (2) discharge generated in HEC-HMS	5
Table 43. Validation of river discharge estimates 75	
Table 44. Municipalities affected in the Pagsangahan floodplain	
Table 45. Affected areas in Matag-Ob, Leyte during a 5-year rainfall return period	L
Table 46. Affected areas in Merida, Leyte during a 5-year rainfall return period	
Table 47. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period	3
Table 48. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period	3
Table 49. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period	
Table 50. Affected areas in Palompon, Leyte during a 5-year rainfall return period	;
Table 51. Affected areas in Matag-Ob, Leyte during a 25-year rainfall return period	
Table 52. Affected areas in Merida, Leyte during a 25-year rainfall return period	1
Table 53. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period	3
Table 54. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period)
Table 55. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period	
Table 56. Affected areas in Palompon, Leyte during a 25-year rainfall return period	
Table 57. Affected areas in Matag-Ob, Leyte during a 100-year rainfall return period	
Table 58. Affected areas in Merida, Leyte during a 25-year rainfall return period	
Table 59. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period	
Table 60. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period	
Table 61. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period	
Table 62. Affected areas in Palompon, Leyte during a 100-year rainfall return period	
Table 63. Area covered by each warning level with respect to the rainfall scenario 98	
Table 64. RMSE values for each return period of flood depth map 101	
Table 65. Actual flood depth vs. Simulated flood depth in Pagsangahan, in the 5-year return scenario 102	
Table 66. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 5-year return	
scenario103	
Table 67. Actual flood depth vs. Simulated flood depth in Pagsangahan, in the 25-year return scenario103	
Table 68. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 25-year return	
scenario	
Table 69. Actual flood depth vs. Simulated flood depth in Pagsangahan, in the 25-year return scenario104	4
Table 70. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 100-year	
return scenario 104	ł

LIST OF FIGURES

Figure 1. Map of Sulat River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Sulat floodplain using Aquarius LiDAR system	
Figure 3. GPS set-up over SME-3139 located along the highway in Brgy. Sto. Nino, Sulat, Eastern Samai	
(a) and NAMRIA reference point SME-3139 (b) as recovered by the field team	
Figure 4. GPS set-up over SE-16 located in front of the flagpole of Gregorio Moralizon Elementary	
School II (a) and NAMRIA reference point DVE-19 (b) as recovered by the field team.	6
Figure 5. Actual LiDAR survey coverage for Sulat floodplain.	
Figure 6. Schematic diagram for the data pre-processing	
Figure 7. Smoothed Performance Metric Parameters of Sulat Flight 1560A	
Figure 8. Solution Status Parameters of Sulat Flight 1560A.	
Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Sulat Floodplain	
Figure 10. Boundaries of the processed LiDAR data over the Sulat Floodplain	
Figure 11. Image of data overlap for Sulat floodplain.	
Figure 12. Pulse density map of the merged LiDAR data for Sulat floodplain	
Figure 13. Elevation difference Map between flight lines for the Sulat Floodplain Survey.	
Figure 14. Quality checking for Sulat flight 1560A using the Profile Tool of QT Modeler.	
Figure 15. Tiles for Sulat floodplain (a) and classification results (b) in TerraScan	
Figure 16. Point cloud before (a) and after (b) classification	. 17
Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and	
secondary DTM (d) in some portion of Sulat floodplain	
Figure 18. Sulat floodplain with the available orthographs	
Figure 19. Sample orthophotograph tiles for Sulat floodplain	. 19
Figure 20. Portions in the DTM of the Sulat Floodplain – a bridge before (a) and	
after (b) manual editing; a paddy field before (c) and after (d) data retrieval	. 20
Figure 21. Map of processed LiDAR data for the Sulat Floodplain	. 22
Figure 22. Map of Sulat Floodplain with validation survey points in green	. 24
Figure 23. Correlation plot between calibration survey points and LiDAR data	. 25
Figure 24. Correlation plot between the validation survey points and the LiDAR data	. 26
Figure 25. Map of Sulat floodplain with bathymetric survey points in blue	. 27
Figure 26. Block (in blue) of Sulat building features that was subjected to QC	
Figure 27. Extracted features of the Sulat Floodplain.	
Figure 28. Sulat River Survey Extent	
Figure 29. Sulat River Basin Control Survey Extent	
Figure 30. GNSS base set up, Trimble [®] SPS 852, SME-18, located within the grounds of San Jose	
Elementary School in Brgy. Canciledes, Municipality of Hernani, Eastern Samar	. 35
Figure 31. GNSS receiver set up, Trimble [®] SPS 882, at SMR-41, located in Brgy. Fatima, Municipality of	
Hinabangan, Samar	
Figure 32. GNSS receiver set up, Trimble [®] SPS 855 at SE-172, located in Brgy. Nato, Municipality of Taf	
Eastern Samar	
Figure 33. GNSS receiver set up, Trimble [®] SPS 855, at UP-BOR, located at the approach of Can-Obing	
Bridge in Brgy. Can-Abong, Borongan City, Eastern Samar	36
Figure 34. GNSS receiver set up, Trimble® SPS 985, at UP-SUL, located at the approach of Sulat Bridge	
Brgy. Maramara, Municipality of Sulat, Eastern Samar	
Figure 35. GNSS receiver setup, Trimble® SPS 855, at UP-ULO-2, located at the approach of Can-Avid	. 57
Bridge in Brgy. Canteros, Municipality of Can-Avid, Eastern Samar	27
Figure 36. Sulat Bridge facing upstream Figure 27. As built survey conducted at Sulat Bridge	
Figure 37. As-built survey conducted at Sulat Bridge	
Figure 38. Location map of the Sulat Bridge Cross Section	
Figure 39. The Sulat Bridge cross-section diagram	
Figure 40. The Sulat Bridge as-built survey data	
Figure 41. Water-level markings on Sulat Bridge	
Figure 42. GNSS Receiver Trimble [®] SPS 882 installed on a vehicle for Ground Validation Survey	
Figure 43. The extent of the LiDAR ground validation survey (in red) for Sulat River Basin	. 46

Figure 44. Set up of the bathymetric survey at Sulat River using Trimble® SPS 882 in GNSS PPK survey	
technique	47
Figure 45. The extent of the Sulat River Bathymetry Survey	48
Figure 46. The Sulat Riverbed Profile	
Figure 47. Location Map of the Sulat HEC-HMS model used for calibration.	50
Figure 48. Cross-Section Plot of Sulat Bridge	51
Figure 49. The rating curve at Sulat Bridge, Sulat, Samar	51
Figure 50. Rainfall and outflow data at Sulat Bridge, which was used for modeling	52
Figure 51. The location of the Borongan RIDF station relative to the Sulat River Basin	53
Figure 52. The synthetic storm generated for a 24-hour period rainfall for various return periods	53
Figure 53. Soil Map of Sulat River Basin	54
Figure 54. Land Cover Map of Sulat River Basin	55
Figure 55. Slope Map of the Sulat River Basin	56
Figure 56. Stream Delineation Map of Sulat River Basin	
Figure 57. Sulat river basin model generated in HEC-HMS	
Figure 58. River cross-section of the Sulat River through the ArcMap HEC GeoRas tool	58
Figure 59. A screenshot of the river sub-catchment with the computational area	
to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	59
Figure 60. Outflow Hydrograph of Sulat produced by the HEC-HMS model compared with observed	
outflow	60
Figure 61. The Outflow hydrograph at the Sulat Station, generated using the Borongan RIDF	
simulated in HEC-HMS	
Figure 62. Sample output map of the Sulat RAS Model	
Figure 63. A 100-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 64. A 100-year Flow Depth Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 65. A 25-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 66. A 25-year Flow Depth Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 67. A 5-year Flood Hazard Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 68. A 5-year Flood Depth Map for Sulat Floodplain overlaid on Google Earth imagery	
Figure 69. Affected Areas in San Julian, Eastern Samar during 5-Year Rainfall Return Period	
Figure 70. Affected Areas in Sulat, Eastern Samar during 5-Year Rainfall Return Period	
Figure 71. Affected Areas in Taft, Eastern Samar during 5-Year Rainfall Return Period	
Figure 72. Affected Areas in San Julian, Eastern Samar during 25-Year Rainfall Return Period	
Figure 73. Affected Areas in Sulat, Eastern Samar during 25-Year Rainfall Return Period	
Figure 74. Affected Areas in Taft, Eastern Samar during 25-Year Rainfall Return Period	
Figure 75. Affected Areas in San Julian, Eastern Samar during 100-Year Rainfall Return Period	
Figure 76. Affected Areas in Sulat, Eastern Samar during 100-Year Rainfall Return Period	
Figure 77. Affected Areas in Taft, Eastern Samar during 100-Year Rainfall Return Period	
Figure 78. Validation Points for a 5-year Flood Depth Map of the Sulat Floodplain	
Figure 79. Flood Map depth versus Actual Flood Depth	83

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
BM	benchmark			
BSWM	Bureau of Soils and Water Management			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DA	Department of Agriculture			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			
IMU	Inertial Measurement Unit			
kts	knots			

LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
Lidar	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					
m AGL	meters Above Ground Level					
MMS	Mobile Mapping Suite					
MSL	mean sea level					
NAMRIA	National Mapping and Resource Information Authority					
NDRRMC	National Disaster Risk Reduction and Management Council					
NSO	National Statistics Office					
NSTC	Northern Subtropical Convergence					
PAF	Philippine Air Force					
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration					
PDOP	Positional Dilution of Precision					
РРК	Post-Processed Kinematic [technique]					
PRF	Pulse Repetition Frequency					
PTM	Philippine Transverse Mercator					
QC	Quality Check					
QT	Quick Terrain [Modeler]					
RA	Research Associate					
RBCO	River Basin Control Office					
RIDF	Rainfall-Intensity-Duration- Frequency					
RMSE	Root Mean Square Error					
SAR	Synthetic Aperture Radar					
SCS	Soil Conservation Service					
SRTM	Shuttle Radar Topography Mission					
SRS	Science Research Specialist					
SSG	Special Service Group					
TBC	Thermal Barrier Coatings					
UP- TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry					
UTM	Universal Transverse Mercator					
VSU	Visayas State University					
WGS	World Geodetic System					

CHAPTER 1: OVERVIEW OF THE PROGRAM AND PAGSANGAHAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. George Puno, and Eric Bruno

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient a resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for a 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through the DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017), available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the twenty-seven (27) river basins in the Eastern Visayas region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Pagsangahan River Basin

The Pagsangahan River Basin is located in Eastern Visayas, at the northwestern portion of the province of Leyte. It traverses through the Municipalities of Capoocan, Villaba, Kananga, Matag-ob, and the City of Ormoc. It covers an area of 406 square kilometers, and travels for approximately 31.5 kilometers from its source to its mouth in the Ormoc Bay.

The Department of Environment and Natural Resources – River Basin Control Office (DENR-RBCO) identified the Pagsangahan River Basin as one of the one hundred and forty (140) critical watersheds in the Philippines, having a drainage area of 453 km², and an estimated 871 million cubic meter annual run-off.

The river basin's main stem, the Pagsangahan River, is part of the twelve (12) river systems in the Visayas Region.

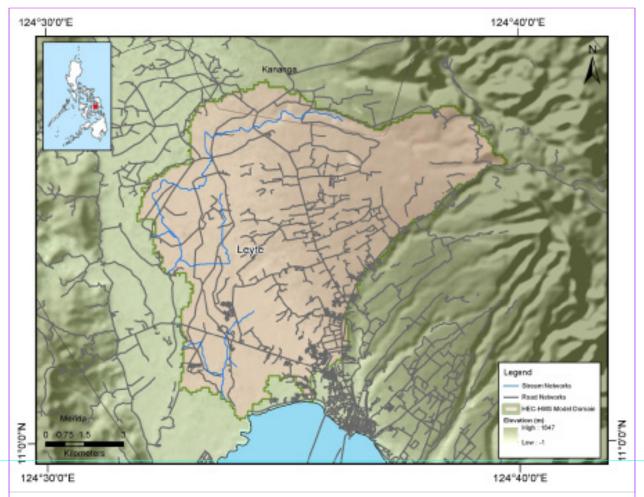


Figure 1. Location map of the Pagsangahan River Basin (in brown)

According to the 2010 national census of the National Statistics Office (NSO), the population of residents within the immediate vicinity of the river is 8,309 people, which are under the jurisdiction of two (2) barangays in Ormoc City, namely Liloan and Lao.

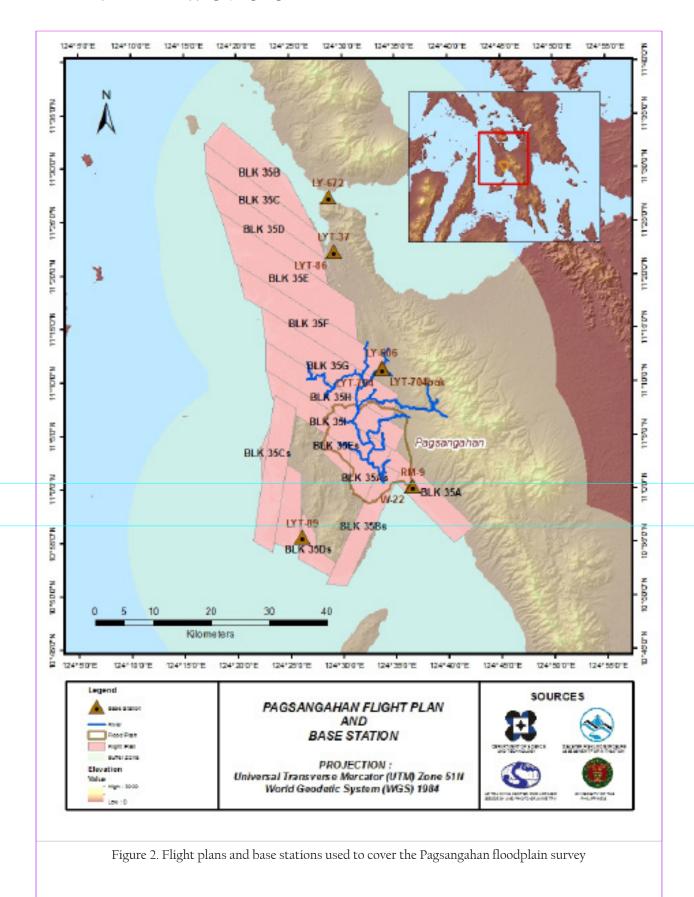
Settlements in the area face the constant threat of flooding due to frequent heavy rainfall, especially in the months of June to February. On November 8, 2013, Super Typhoon Haiyan (local name, Yolanda) induced a storm surge that brought about flooding and devastation in the province. The official list of the National Disaster Risk Reduction and Management Council (NDRRMC) reports that Typhoon Haiyan caused the deaths of 6,193 people, most of whom are from the provinces of Samar and Leyte.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE PAGSANGAHAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Rowena M. Gabua

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans


To initiate the LiDAR acquisition survey of the Pagsangahan floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the floodplain in Leyte. These missions were planned for nineteen (19) lines that ran for at most four and a half (4.5) hours, including take-off, landing, and turning time. The Aquarius and Gemini LiDAR systems were used for the flight missions (See ANNEX 1 for the sensor specifications). The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 2 illustrates the flight plans for the Pagsangahan floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 35A	600, 700, 550, 500	30, 35	50, 36	70, 50	40, 50, 35, 30	130	5
BLK 35B	700, 600, 550	30, 35	36	50	50, 35, 30	130	5
BLK 35C	700, 550, 600	30	36	50, 33	50, 30	130	5
BLK 35D	700, 550, 600	30	36	50, 33	50, 30	130	5
BLK 35E	700, 550, 600	30	36	50, 33	50, 30	130	5
BLK 35F	600	30	36	50	50	130	5
BLK 35G	700	30	36	50	50	130	5
BLK 35H	700, 800	30	36	50	50	130	5
BLK 351	800, 700, 600	30, 55, 40, 50	36	50	50	130	5

Table 1. Flight planning parameters for the Aquarius LiDAR System

Table 2. Flight planning parameters for the Gemini LiDAR System

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 35A	800, 1000	30	40	100	30	130	5
BLK 35B	800, 1000	30	40	100	30	130	5
BLK 35C	1100	30	40	100	30	130	5

2.2 Ground Base Stations

The field team for this undertaking was able to recover eight (8) NAMRIA control stations: (i.) LYT-89, which is of first (1st) order accuracy; (ii.) CBU-340, (iii.) LYT-86, (iv.) LYT-90, (v.) LYT-690, (vi.) LYT-704, and (vii.) LYT-731, which are of second (2nd) order accuracy; and (viii.) LYT-37, which is of fourth (4th) order accuracy. The field team also established three (3) control points: RM-9, W-22 and LYT-704bak. Two (2) benchmarks were processed: LY-606 and LY-672. These were used as base stations during the flight operations for the entire duration of the survey, held on January 28, 2014; May 15-26, 2014; January 21-February 17, 2015; March 9-19, 2016; and April 16, 2016. The base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, SPS 882 SPS 985, and TOPCON GR-5. The flight plans and the locations of the base stations used during the aerial LiDAR acquisition in the Pagsangahan floodplain are shown in Figure 2. The certifications for the NAMRIA reference points are found in ANNEX 2, while the baseline processing reports for the established control points are provided in ANNEX 3. The composition of the project team is presented in ANNEX 4.

Figure 3 to Figure 5 exhibit the recovered NAMRIA reference points within the area. Table 3 to Table 15 provide the details about the NAMRIA control stations and established points. Table 16 lists all of the ground control points occupied during the acquisition, together with the dates of utilization during the survey.

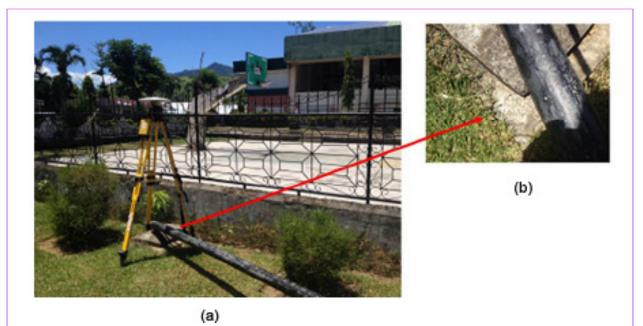
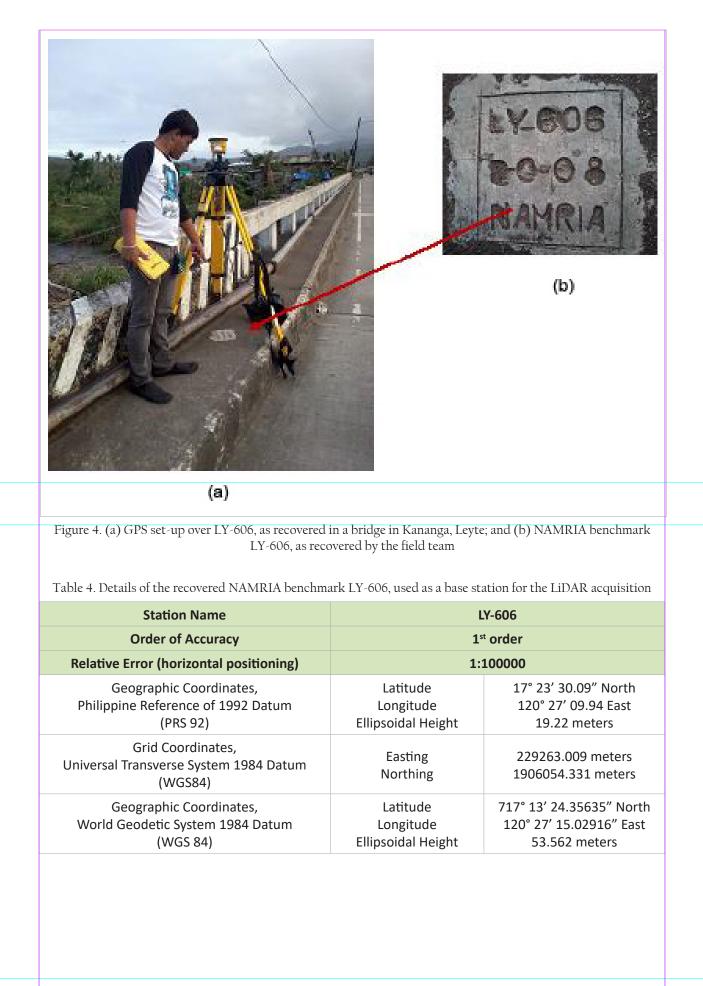



Figure 3. (a) GPS set-up over LYT-37, as recovered inside the town plaza of the Municipality of Leyte, Leyte; and (b) NAMRIA horizontal control point LYT-37, as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point LYT-37, used as a base station for the LiDAR acquisition

Station Name	LYT-37				
Order of Accuracy	2 nd Order				
Relative Error (horizontal positioning)	1:50000				
Geographic Coordinates,	Latitude	11° 22' 17.79271" North			
Philippine Reference of 1992 Datum	Longitude	124° 29' 07.61910" East			
(PRS 92)	Ellipsoidal Height	5.33900 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	443839 meters 1257489.277 meters			
Geographic Coordinates,	Latitude	11°22'13.44918" North			
World Geodetic System 1984 Datum	Longitude	124°29'12.76807" East			
(WGS 84)	Ellipsoidal Height	65.99800 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	662088.45 meters 1257404.79 meters			

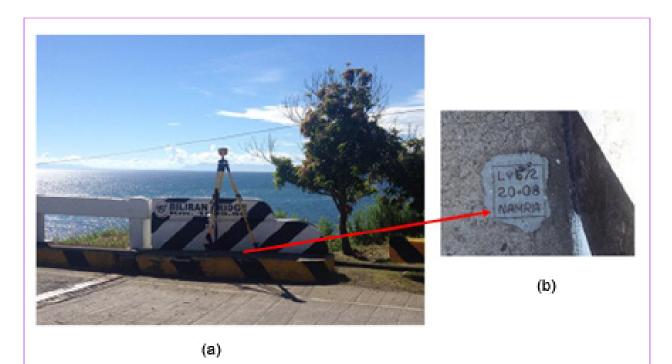


Figure 5. Figure 5. (a) GPS set-up over LY-672, as recovered at the concrete sidewalk of the Biliran Bridge between the Municipality of Leyte, Leyte and the Municipality of Biliran, Biliran; and (b) NAMRIA reference point LY-672, as recovered by the field team

Table 5. Details of the recovered NAMRIA benchmark LY-672, used as a base station for the LiDAR acquisition

Station Name	LY-672		
Order of Accuracy	1 st Order		
Relative Error (horizontal positioning)	1:100000		
Geographic Coordinates,	Latitude	11° 27' 23.02" North	
Philippine Reference of 1992 Datum	Longitude	124° 28' 39.82" East	
(PRS 92)	Ellipsoidal Height	20.86 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	443013.31 meters 1266859.739 meters	
Geographic Coordinates,	Latitude	11° 27' 18.15339" North	
World Geodetic System 1984 Datum	Longitude	124° 28' 44.13652" East	
(WGS 84)	Ellipsoidal Height	81.2745 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	661327.389 meters 1266708.04 meters	

Table 6. Details of the recovered NAMRIA horizontal control point CBU-340, used as a base station for the LiDAR acquisition

acquisition					
Station Name	CBU-340				
Order of Accuracy	2 nd order				
Relative Error (horizontal positioning)	1:50000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°38'14.87646" North 124°28'04.68006" East 15.533 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°38'10.71737" North 124°28'09.89389" East 77.920 meters			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	660577.527 meters 1176200.458 meters			

Table 7. Details of the recovered NAMRIA benchmark LY-672, used as a base station for the LiDAR acquisition

Station Name	LYT-86			
Order of Accuracy	2 nd Order			
Relative Error (horizontal positioning)	1:50000			
Geographic Coordinates, Philippine Reference of 1992 Datum	Latitude Longitude	11°22′16.75118″ North 124°29′08.10940″ East		
(PRS 92)	Ellipsoidal Height	15.43100 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	443853.897 meters 1257448.25 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°22'12.40727" North 124°29'13.25847" East 66.09100 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	662103.47 meters 1257372.86 meters		

Table 8. Details of the recovered NAMRIA horizontal control point LYT-89, used as a base station for the LiDAR acquisition

acquisition				
Station Name	LYT-89			
Order of Accuracy	1 st Order			
Relative Error (horizontal positioning)	1:100000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°55'37.75929" North 124°25'59.22187" East 2.53400 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	438033.007 meters 1208330.431 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°55'33.52339" North 124°26'4.41045" East 64.14500 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	656614.72 meters 1208220.77 meters		

Table 9. Details of the recovered NAMRIA horizontal control point LYT-90, used as a base station for the LiDAR acquisition

Station Name	LYT-90		
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1:50000		
Geographic Coordinates,	Latitude	11°00'17.75728" North	
Philippine Reference of 1992 Datum	Longitude	124°36'28.24066" East	
(PRS 92)	Ellipsoidal Height	15.532 meters	
Geographic Coordinates,	Latitude	11°00'13.51665" North	
World Geodetic System 1984 Datum	Longitude	124°36'33.42083" East	
(WGS 84)	Ellipsoidal Height	77.386 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	675667.875 meters 1216919.360 meters	

Table 10. Details of the recovered NAMRIA horizontal control point LYT-690, used as a base station for the LiDAR acquisition

acquisition				
Station Name	LYT-690			
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1:50000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11°00'17.68909" North 124°36'28.25530" East 4.361 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°00'13.44846" North 124°36'33.43548" East 66.214 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	67568.331 meters 1216917.267 meters		

Table 11. Details of the recovered NAMRIA horizontal control point LYT-704, used as a base station for the LiDAR acquisition

Station Name Order of Accuracy		۲۲-704 ^d order
Relative Error (horizontal positioning)	1:50000	
Geographic Coordinates,	Latitude	11°11′16.35419″ North
Philippine Reference of 1992 Datum (PRS 92)	Longitude Ellipsoidal Height	124°33'36.47427" East 38.29100 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	451959.944 meters 1237144.619 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°11'12.06307" North 124°33'41.63876" East 99.58400 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	670347.64 meters 1237125.91 meters

Table 12. Details of the recovered NAMRIA horizontal control point LYT-731, used as a base station for the LiDAR acquisition

wequisition				
Station Name	LYT-731			
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1	:50000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	5, Latitude 10°42'47.			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	479165.977 meters 1184617.338 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°42'43.44572" North 124°48'39.54791" East 78.65700 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	697902.97 meters 1184777.35 meters		

Table 13. Details of the established NAMRIA horizontal control point LYT-704bak, used as a base station for the LiDAR acquisition

Station Name	LYT-704bak		
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1:50000		
Geographic Coordinates,	Latitude	11°11'16.44188" North	
Philippine Reference of 1992 Datum	Longitude	124°33'37.00349" East	
(PRS 92)	Ellipsoidal Height	38.093 meters	
Geographic Coordinates,	Latitude	11°11'12.15076" North	
World Geodetic System 1984 Datum	Longitude	124°33'42.16798" East	
(WGS 84)	Ellipsoidal Height	99.386 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	670363.675 meters 1237128.684 meters	

Table 14. Details of the established NAMRIA horizontal control point RM-9, used as a base station for the LiDAR acquisition

acquisition				
Station Name RM-9				
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1:50000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11°00'18.53023" North 124°36'28.25559" East 4.384 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°00'14.28954" North 124°36'33.79880" East 65.114 m		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	675679.222 meters 1216943.169 meters		

Table 15. Details of the established NAMRIA horizontal control point W-22, used as a base station for the LiDAR acquisition

Station Name		W-22	
Order of Accuracy	1 st order		
Relative Error (horizontal positioning)	1:100000		
Geographic Coordinates,	Latitude	11°00'18.93705" North	
Philippine Reference of 1992 Datum (PRS 92)	Longitude Ellipsoidal Height	124°36'24.81698" East 7.666 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°00'14.69624" North 124°36'29.99714" East 69.516 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	675563.750 meters 1216955.050 meters	

Table 16. Ground control points used during the LiDAR data acquisition							
Date Surveyed	Flight Number Mission Name Ground Control Point						
January 28, 2014	1032A	2BLK35A028A	LY-606, LYT-704				
May 15, 2014	1458A	3BLK35B135A	LYT-37, LYT-86				
May 15, 2014	1460A	3BLK35CD135B	LYT-37, LYT-86				
May 16, 2014	1462A	3BLK35DSE136A	LYT-37, LY-672				
May 16, 2014	1464A	3BLK35ES136B	LYT-37, LY-672				
May 17, 2014	1466A	3BLK35F137A	LYT-37, LY-672				
May 19, 2014	1474A	3BLK35G139A	LYT-37, LY-672				
May 24, 2014	1494A	3BLK35GSH144A	LY-606, LYT-704				
May 25, 2014	1498A	3BLK35HSI145A	LY-606, LYT-704				
May 26, 2014	1502A	3BLK35IS146A	LYT-690, LYT-704				
May 26, 2014	1504A	3BLK35AIS146B	LYT-690, LYT-704				
January 21, 2015	7753AC	AC 3BLK35B021A LY					
January 25, 2015	7760AC	3BLK35A025A	LYT-690, RM-9				
February 04, 2015	7780AC	3BLK35AX035A	LYT-690, RM-9				
February 05, 2015	7782AC	3BLK35AX036A	LYT-690, RM-9				
February 15, 2015	7802AC	3BLK35SV046A	LYT-690, RM-9				
February 17, 2015	7806AC	3BLK35X1048A	LYT-690, LYT-731				
March 09, 2016	8389AC	3BLK35A069A	LYT-89, W-22				
March 10, 2016	8391AC	3BLK35EC070A	LYT-89, W-22				
March 10, 2016	8392AC	3BLK35BD070B	LYT-89, W-22				
March 11, 2016	8394AC	3BLK35BD071B	LYT-90, W-22				
March 19, 2016	8408AC	3BLK48BD079A	LYT-89, CBU-340				
March 19, 2016	8409AC	3BLK34079B	LYT-89, CBU-340				
April 16, 2016	3945G	2BLK35AB107A	LYT-704, LYT-704bak				
April 16, 2016	3947G	2BLK35CS107B	LYT-704, LYT-704bak				

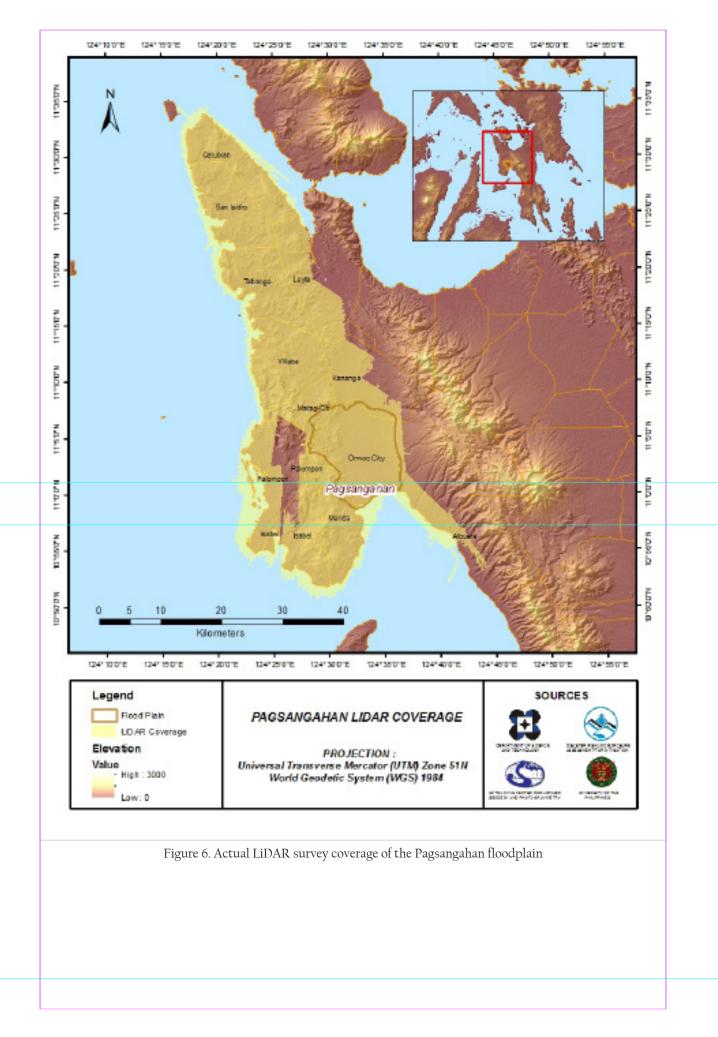
Table 16. Ground control points used during the LiDAR data acquisition

2.3 Flight Missions

A total of twenty-five (25) flight missions were conducted to complete the LiDAR data acquisition in the Pagsangahan floodplain, for a total of one hundred hours and fifty-six minutes (100+56) of flying time for RP-C9022, RP-C9122 and RP-C9322. All missions were acquired using the Aquarius and Gemini LiDAR systems. The flight logs of the missions are found in ANNEX 6. Table 17 indicates the total area of actual coverage and the corresponding flying hours per mission, and Table 18 presents the actual parameters used during the LiDAR data acquisition.

		Flight		Area	Area Surveyed	No. of	Flying	Hours
Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km ²)	Surveyed within the Floodplain (km ²)	outside the Floodplain (km²)	Images (Frames)	Hr	Min
28-Jan-14	1032A	84.59	86.05	27.39	58.66	867	4	41
15-May-14	1458A	97.25	108.72	NA	108.72	1174	4	35
15-May-14	1460A	176.02	119.23	NA	119.23	1128	4	35
16-May-14	1462A	240.97	115.47	NA	115.47	1347	4	41
16-May-14	1464A	151.06	119.82	NA	119.82	1258	4	11
17-May-14	1466A	116.84	124.66	NA	124.66	1383	4	47
19-May-14	1474A	124.69	124.90	NA	124.90	1189	4	53
24-May-14	1494A	110.19	113.80	16.76	97.04	1294	4	53
25-May-14	1498A	201.35	108.30	48.87	59.43	1293	4	41
26-May-14	1502A	175.76	73.08	38.54	34.54	1236	4	41
26-May-14	1504A	91.17	84.46	30.09	54.37	943	4	23
21-Jan-15	7753AC	75.59	79.73	20.38	59.35	NA	3	5
25-Jan-15	7760AC	94.30	78.99	NA	78.99	NA	4	11
04-Feb-15	7780AC	84.59	19.98	5.00	14.98	NA	1	17
05-Feb-15	7782AC	84.59	83.53	27.31	56.22	NA	4	23
15-Feb-15	7802AC	169.90	71.43	3.91	67.52	NA	4	11
17-Feb-15	7806AC	84.59	55.81	28.67	27.14	NA	3	23
09-Mar-16	8389AC	33.78	35.25	24.22	11.03	NA	4	17
10-Mar-16	8391AC	51.67	68.05	16.72	51.33	NA	4	23
10-Mar-16	8392AC	81.66	67.21	NA	67.21	NA	3	29
11-Mar-16	8394AC	81.66	33.55	NA	33.55	NA	2	47
19-Mar-16	8408AC	51.67	43.43	2.16	41.27	NA	3	35
19-Mar-16	8409AC	75.59	33.57	2.82	30.75	NA	2	5
16-Apr-16	3945G	109.37	108.02	70.92	37.1	NA	4	22
16-Apr-16	3947G	18.51	153.94	25.60	128.34	NA	4	27
TOTAL		2667.38	2110.98	389.36	1721.62	13112	100	56

Table 17. Flight missions for the LiDAR data acquisition in the Pagsangahan floodplain


Table 18. Actual parameters used during the LiDAR data acquisition						1	
Date Surveyed	Flight Number	Flying Height (AGL) (m)	Overlap (%)	Field of View	PRF (kHz)	Scan Frequency (Hz)	Speed of Plane (Kts)
1032A	600	30	50	70	40	130	5
1458A	700	30	36	50	50	130	5
1460A	700	30	36	50	50	130	5
1462A	700	30	36	50	50	130	5
1464A	700	30	36	50	50	130	5
1466A	600	30	36	50	50	130	5
1474A	700	30	36	50	50	130	5
1494A	700	30	36	50	50	130	5
1498A	800	30	36	50	50	130	5
1502A	700	55, 40, 50	36	50	50	130	5
1504A	600	30	36	50	50	130	5
7753AC	600	35	36	50	35	130	5
7760AC	550	35	36	50	35	130	5
7780AC	500	35	36	50	35	130	5
7782AC	600	35	36	50	35	130	5
7802AC	600	35	36	50	35	130	5
7806AC	600	35	36	50	35	130	5
8389AC	600	30	36	50	30	130	5
8391AC	550	30	36	50	30	130	5
8392AC	550	30	36	50	30	130	5
8394AC	550	30	36	50	30	130	5
8408AC	600	30	36	33	30	130	5
8409AC	600	30	36	50	30	130	5
3945G	800, 1000	30	40	100	30	130	5
3947G	1100	30	40	100	30	130	5

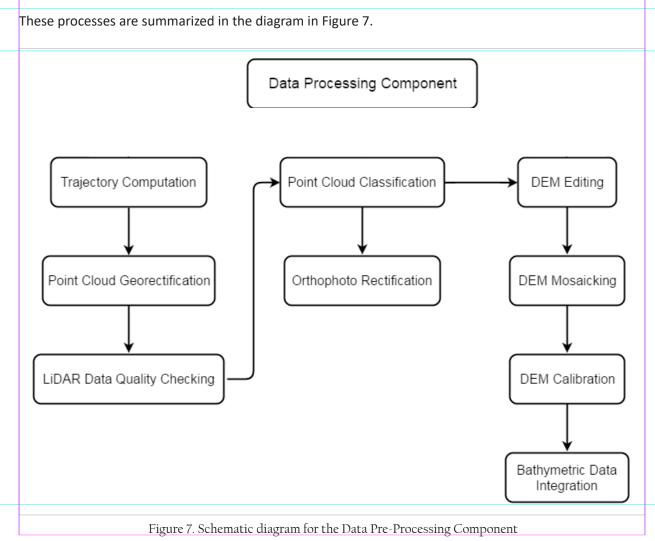
2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Pagsangahan floodplain located in the province of Leyte, with majority of the floodplain situated within the municipality of Ormoc City. The Municipalities of Calubian, Merida, San Isidro, Tabango, and Villaba were mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is presented in Table 19. The actual coverage of the LiDAR acquisition for the Pagsangahan floodplain is illustrated in Figure 6. ANNEX 7 provides the flight status reports of the survey.

Province	Municipality/City	Area of Municipality/ City (km ²)	Total Area Surveyed (km ²)	Percentage of Area Surveyed
	Albuera	167.61	13.43	8%
	Calubian	102.58	102.58	100%
	Isabel	102.07	93.35	91%
	Kananga	145.85	85.7	59%
	Leyte	240.2	105.78	44%
Leyte	Matag-ob	63.46	60.32	95%
	Merida	101.48	101.36	100%
	Ormoc City	451.96	198.13	44%
	Palompon	125.87	79.25	63%
	San Isidro	112.26	112.26	100%
	Tabango	115.97	115.97	100%
	Villaba	133.68	133.38	100%
Total		1862.99	1201.51	64.49%

Table 19. List of municipalities and cities surveyed during the Pagsangahan floodplain LiDAR survey

CHAPTER 3: LIDAR DATA PROCESSING OF THE PAGSANGAHAN FLOODPLAIN


Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, and Jovy Anne S. Narisma

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the DAC were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality checking to ensure that the required accuracies of the program, which are the minimum point density, and vertical and horizontal accuracies, were met. The point clouds were then categorized into various classes before generating Digital Elevation Models (DEMs), such as the Digital Terrain Model (DTM) and the Digital Surface Model (DSM).

Using the elevation of points gathered from the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry, measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was accomplished through the help of the georectified point clouds, and the metadata containing the time the image was captured.

3.2 Transmittal of Acquired LiDAR Data

The data transfer sheets for all the LiDAR missions for the Pagsangahan floodplain can be found in ANNEX 5. Missions flown during the first survey conducted in April 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system; while missions acquired during the second survey in January 2016 were flown using the Gemini system over Ormoc, Leyte. The DAC transferred a total of 287.50 Gigabytes of Range data, 5.83 Gigabytes of POS data, 1600.83 Megabytes of GPS base station data, and 1175.8 Gigabytes of raw image data to the data server on January 28, 2014 for the first survey, and on April 16, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for the Pagsangahan River survey was fully transferred on May 6, 2016, as indicated on the data transfer sheets for the Pagsangahan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1462A, one of the Pagsangahan flights, which are the North, East, and Down position RMSE values, are demonstrated in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell on May 16, 2014 at 00:00 hrs. on that week. The y-axis represents the RMSE value for that particular position.

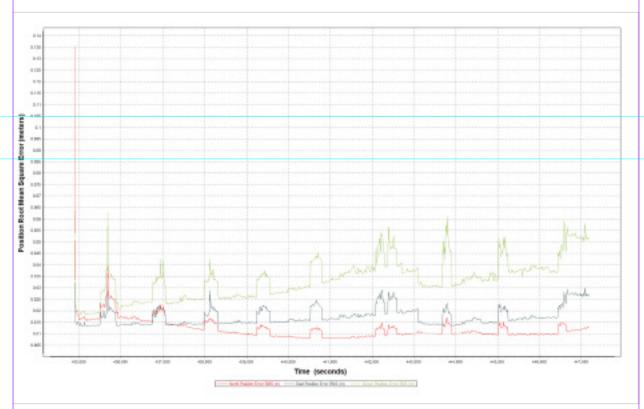


Figure 8. Smoothed Performance Metrics of a Pagsangahan Flight 1462A

The time of flight was from 435000 seconds to 447000 seconds, which corresponds to the morning of May 16, 2014. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE values of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values corresponds to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 depicts that the North position RMSE peaked at 4.00 centimeters, the East position RMSE peaked at 3.00 centimeters, and the Down position RMSE peaked at 6.50 centimeters, which are all within the prescribed accuracies described in the methodology.

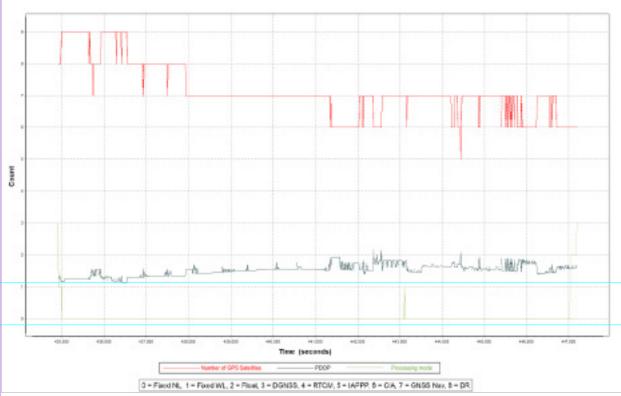


Figure 9. Smoothed Performance Metric Parameters of a Pagsangahan Flight 1462A

The Solution Status parameters of flight 1462A, one of the Pagsangahan flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are presented in Figure 9. The graphs indicate that the number of satellites during the acquisition did go down to six (6). Most of the time, the number of satellites tracked was between five (5) and nine (9). The PDOP value did not go above the value of three (3), which indicates optimal GPS geometry. The processing mode remained at zero (0) for majority of the survey with some peaks to up to two (2), attributed to the turns performed by the aircraft. The value of zero (0) corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters satisfied the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Pagsangahan flights is exhibited in Figure 10.

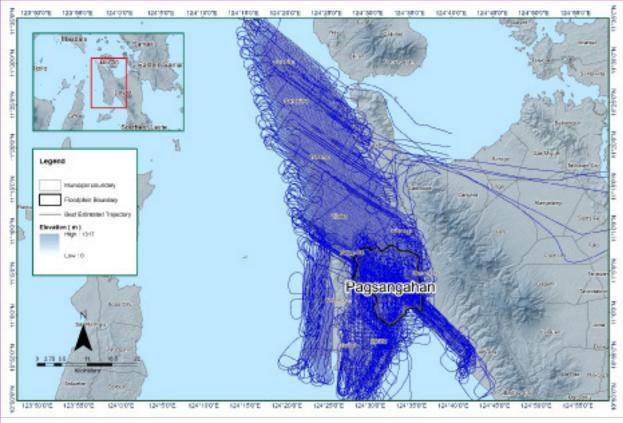


Figure 10. The best estimated trajectory conducted over the Pagsangahan floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 506 flight lines, with each flight line containing one (1) channel, since the Gemini and Aquarius systems both contain only one (1) channel. The summary of the self-calibration results for all flights over the Pagsangahan floodplain, obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software, is given in Table 20.

Parameter	Computed Value
Boresight Correction stdev (<0.001degrees)	0.000208
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000943
GPS Position Z-correction stdev (<0.01meters)	0.0082

Optimum accuracy was obtained for all Pagsangahan flights, based on the computed standard deviations of the orientation parameters. The standard deviation values for the individual blocks are available in ANNEX 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundaries of the processed LiDAR data are represented in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

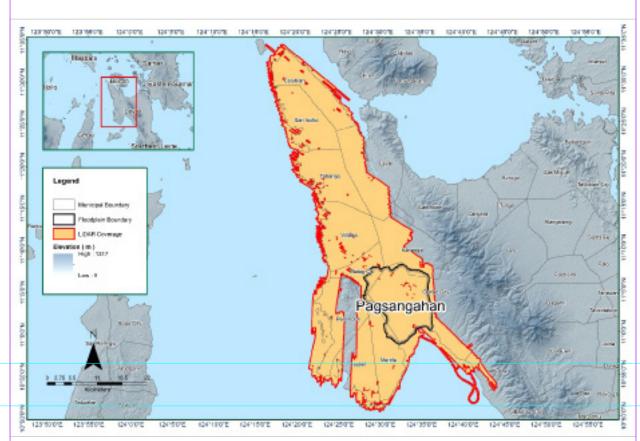


Figure 11. Boundaries of the processed LiDAR data on top of a SAR Elevation Data over the Pagsangahan floodplain.

The total area covered by the Pagsangahan missions is 1799.76 sq. km., comprised of twenty-five (25) flight acquisitions grouped and merged into thirty (30) blocks, as reflected in Table 21.

Table 21. List of LiDAI	R blocks for the Pagsangahan fl	oodplain
LiDAR Blocks	Flight Numbers	Area (sq. km)
Samar_Leyte_Blk35A	1504A	68.59
	1502A	64.25
Samar_Leyte_Blk35I	1504A	04.25
Samar Leyte Blk35I additional	1502A	13.55
Sanai_Leyte_BikSSi_additional	1504A	13.33
Samar_Leyte_Blk35H_supplement	1498A	104.32
Samar_Leyte_Blk35F	1466A	158.46
Sanai_Leyte_bikSSi	1474A	130.40
Samar Leyte Blk35E	1464A	116.20
Sallal_Leyte_BitSSL	1474A	110.20
Samar_Leyte_Blk35D	1462A	110.56
Samar Leyte Blk35C	1460A	118.95
Samai_Leyte_DINSSC	1474A	110.75
Samar_Leyte_Blk35B	1458A	79.46
Samar_Leyte_Blk35H	1494A	108.32
Samar_Leyte_Blk35H_supplement2	1498A	0.18
Ormoc_Blk35A_supplement	7806AC	74.91
Ormoc_Blk35A	7780AC	86.29
OTTIOC_BIKSSA	7782AC	00.29
Ormoc_Blk35B	7753AC	68.76
Ormoc_Blk35A_additional	7760AC	74.78
Ormoc_Blk35B_additional	7802AC	25.57
Ormoc_Blk35CD_additional	7806AC	6.43
Ormoc_Camotes_Blk35E	8391AC	36.84
Ormoc_Camotes_Blk35E_additional	8408AC	8.87
Ormoc_Camotes_Blk35E_supplement	8389AC	61.52
Ormoc_Camotes_Bk35F	8391AC	25.65
Ormoc_Camotes_Blk35F_additional	8408AC	8.34
Ormoc_Camotes_Blk35G	8392AC	52.24
Ormoc_Camotes_Blk35H	8392AC	11.11
Ormoc_Camotes_Blk35H_supplement	8408AC	20.80
Ormoc_Camotes_Blk35J	8409AC	19.16
Ormoc_South_Blk35A	3945G	106.48
	3945G	F0.04
Ormoc_South_Blk35B	3947G	59.81
Ormoc_South_Blk35C	3947G	96.01
Tacloban_Blk1032A	1032A	13.35
TOTAL		1799.76 sq.km

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is illustrated in Figure 12. Since the Gemini and Aquarius systems both employ one (1) channel, it is expected to have an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

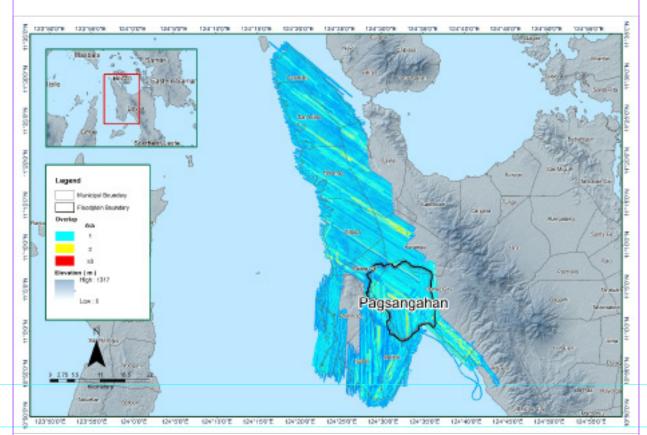


Figure 12. Image of data overlap for the Pagsangahan floodplain

The overlap statistics per block for the Pagsangahan floodplain can be found in ANNEX 8. One (1) pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.50% and 68.60%, respectively, which satisfied the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion, is illustrated in Figure 13. It was determined that all LiDAR data for the Pagsangahan floodplain satisfy the point density requirement, and that the average density for the entire survey area is 3.45 points per square meter.

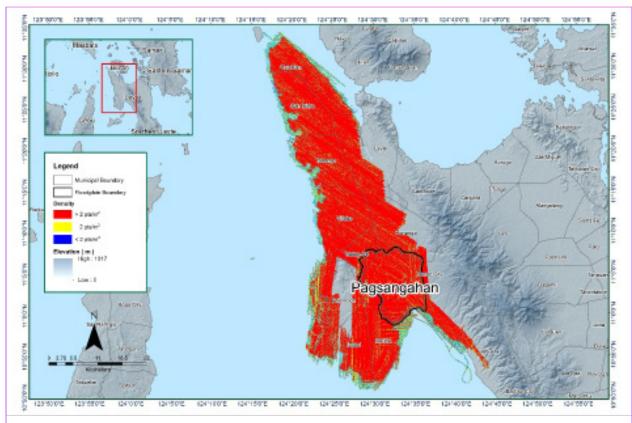


Figure 13. Pulse density map of merged LiDAR data for the Pagsangahan floodplain

The elevation difference between overlaps of adjacent flight lines is depicted in Figure 14. The default color range is from blue to red, Bright blue areas represent portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 meters relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are than 0.20 meters relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 meters relative to elevations of its adjacent flight line. Areas with bright red or bright blue were investigated further using the Quick Terrain (QT) Modeler software.

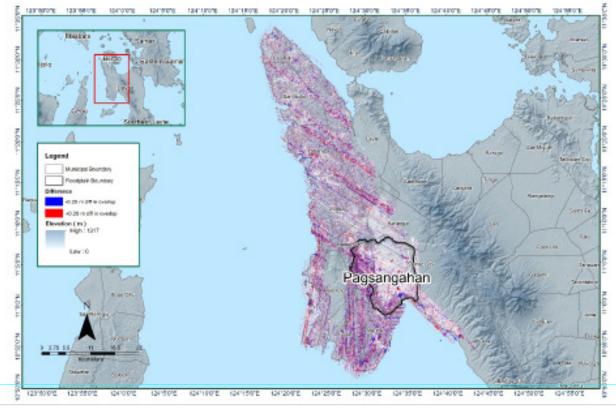


Figure 14. Pulse density map of merged LiDAR data for the Pagsangahan floodplain

A screen capture of the processed LAS data from a Pagsangahan flight 1462A loaded in the QT Modeler is provided in Figure 15. The upper left image shows the elevations of the points from two (2) overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the researcher was satisfied with the quality of the LiDAR data. No reprocessing was done for this LiDAR dataset.

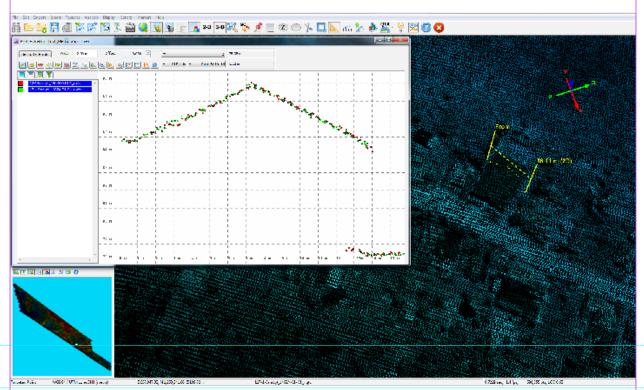


Figure 15. Quality checking for Pagsangahan flight 1462A using the Profile Tool of the QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,193,199,945
Low Vegetation	1,297,574,181
Medium Vegetation	2,126,173,720
High Vegetation	1,242,378,242
Building	56,017,725

Table 22. Pagsangahan classification results in TerraScan

The tile system that the TerraScan employed for the LiDAR data, as well as the final classification image for a block in Pagsangahan floodplain, are presented in Figure 16. A total of 2,737 1km by 1km tiles were produced. The number of points classified according to the pertinent categories is illustrated in Table 22. The point cloud had a maximum and minimum height of 664.42 meters and 36.39 meters, respectively.

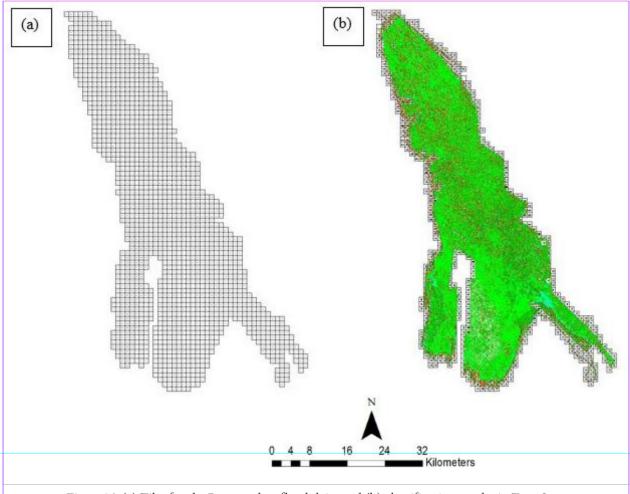


Figure 16. (a) Tiles for the Pagsangahan floodplain; and (b) classification results in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It is evident that residential structures adjacent or even below canopy were classified correctly, due to the density of the LiDAR data.

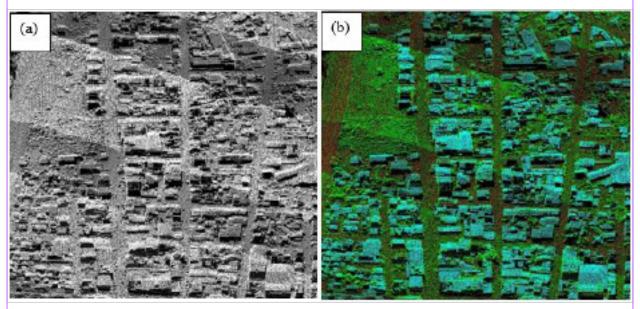


Figure 17. Point cloud (a) before and (b) after classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, and the first (S_ASCII) and last (D_ASCII) return DSM of the area are presented in Figure 18, in top view display. It shows that DTMs are a representation of the bare earth, while the DSMs reflect all features that are present, such as buildings and vegetation.

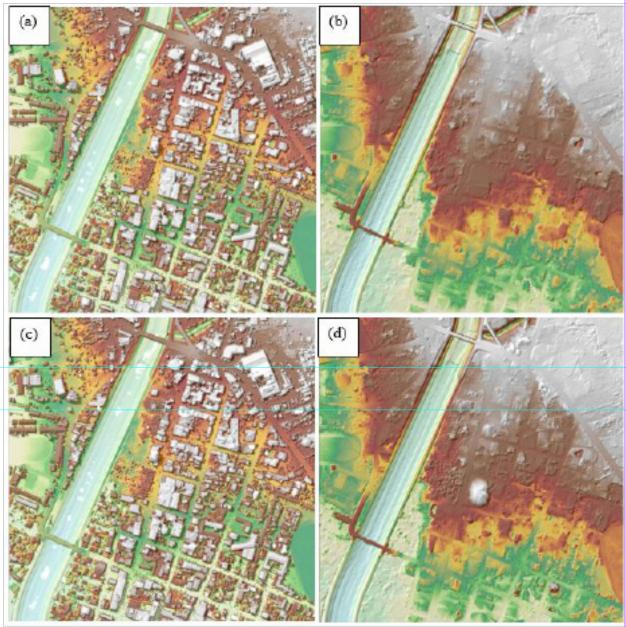


Figure 18. The production of (a) last return DSM and (b) DTM; (c) first return DSM and (d) secondary DTM in some portion of Pagsangahan floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,134 1km by 1km tiles area covered by the Pagsangahan floodplain is illustrated in Figure 19. After employing tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Pagsangahan floodplain survey attained a total of 774.39 sq. km. in orthophotographic coverage, comprised of 9,430 images. Zoomed-in versions of sample orthophotographs, identified by their tile numbers, are provided in Figure 20.

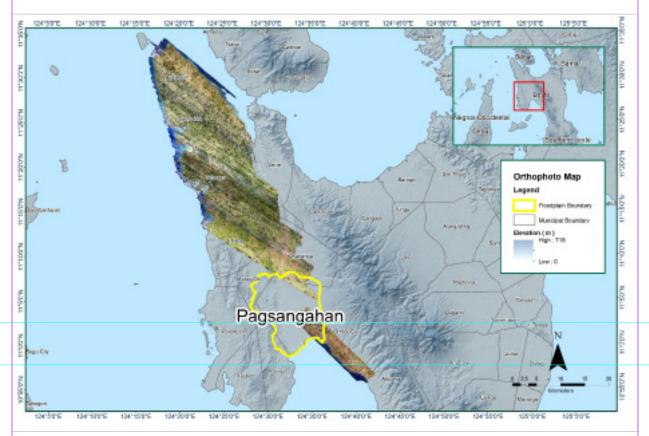


Figure 19. The Pagsangahan floodplain with available orthophotographs

Figure 20. Sample orthophotograph tiles for the Pagsangahan floodplain

3.8 DEM Editing and Hydro-Correction

Thirty (30) mission blocks were processed for the Pagsangahan floodplain survey. These blocks are composed of Samar_Leyte, Ormoc, Ormoc_South, and Ormoc_Camotes blocks, with a total area of 1,799.76 square kilometers. Table 23 indicates the name and corresponding area of each block, in square kilometers.

Table 25. EIDAR Blocks with their ee	an espensing en ene
LiDAR Blocks	Area (sq.km)
Samar_Leyte_Blk35A	68.59
Samar_Leyte_Blk35I	64.25
Samar_Leyte_Blk35I_additional	13.55
Samar_Leyte_Blk35H_supplement	104.32
Samar_Leyte_Blk35F	158.46
Samar_Leyte_Blk35E	116.20
Samar_Leyte_Blk35D	110.56
Samar_Leyte_Blk35C	118.95
Samar_Leyte_Blk35B	79.46
Samar_Leyte_Blk35H	108.32
Samar_Leyte_Blk35H_supplement2	0.18
Ormoc_Blk35A_ supplement	74.91
Ormoc_Blk35A	86.29
Ormoc_Blk35B	68.76
Ormoc_Blk35A_ additional	74.78
Ormoc_Blk35B_additional	25.57
Ormoc_Blk35CD_ additional	6.43
Ormoc_Camotes_Blk35E	36.84
Ormoc_Camotes_Blk35E_ additional	8.87
Ormoc_Camotes_Blk35E_ supplement	61.52
Ormoc_Camotes_Blk35F	25.65
Ormoc_Camotes_Blk35F_ additional	8.34
Ormoc_Camotes_Blk35G	52.24
Ormoc_Camotes_Blk35H	11.11
Ormoc_Camotes_Blk35H_ supplement	20.80
Ormoc_Camotes_Blk35J	19.16
Ormoc_South_Blk35A	106.48
Ormoc_South_Blk35B	59.81
Ormoc_South_Blk35C	96.01
Tacloban_Blk1032A	13.35
TOTAL	1799.76 sq.km

Table 23. LiDAR blocks with their corresponding areas

Portions of the DTM before and after manual editing are represented in Figure 21. The bridge and other misclassified objects on the river (Figure 21a) were considered to be impedances to the flow of water and had to be removed (Figure 21b) in order to hydrologically correct the river. The paddy field embankment (Figure 21c) was misclassified and removed during the classification process, and had to be retrieved to complete the surface (Figure 21d) to allow for the correct flow of water.

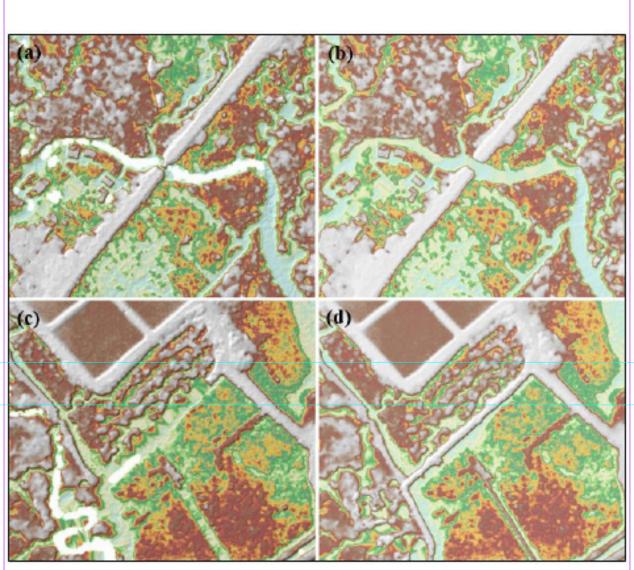
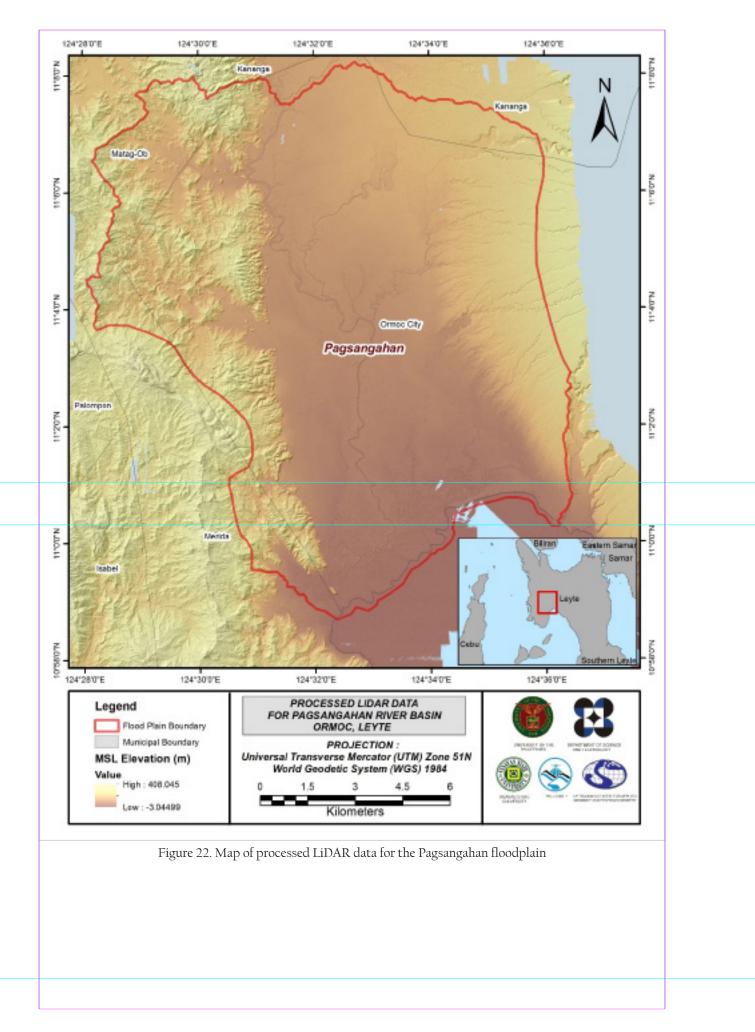


Figure 21. Figure 21. Portions in the DTM of the Pagsangahan floodplain – a bridge and other obstructions on the river (a) before and(b) after manual editing; a paddy field embankment (c) before and (d) after manual editing

3.9 Mosaicking of Blocks


The Samar_Leyte_Blk35I block was used as the reference block at the start of mosaicking, because this was the first available block for processing in the floodplain. Table 24 summarizes the shift values applied to each LiDAR block during the mosaicking process.

The mosaicked LiDAR DTM for the Pagsangahan floodplain is exhibited in Figure 22. It demonstrates that the entire Pagsangahan floodplain is 99.92% covered by LiDAR data.

		Shift Values (meters)	
Mission Blocks	x	у	Z
Samar Leyte Blk351	0.00	0.00	0.00
Ormoc_Blk35A	0.00	0.00	-0.30
Ormoc_Blk35B	0.00	0.00	-0.32
Ormoc_Blk35A_supplement	0.00	0.00	-0.18
Ormoc_Blk35A_additional	0.00	1.00	0.00
Samar_Leyte_Blk35H_supplement	0.00	0.00	0.00
Samar_Leyte_Blk35H	0.00	0.00	0.00
Samar_Leyte_Blk35F	1.00	0.00	-0.32
Samar_Leyte_Blk35E	2.00	0.00	-0.32
Samar_Leyte_Blk35D	2.00	1.00	-0.32
Samar_Leyte_Blk35C	2.00	2.00	-0.27
Samar_Leyte_Blk35B	3.00	2.00	-0.27
Ormoc_Blk35F	0.00	0.00	-0.14
Ormoc_Blk35CD_ additional	0.00	0.00	-0.69
Samar_Leyte_Blk35I_ additional	0.00	0.00	0.00
Samar_Leyte_Blk35A	0.00	0.00	0.00
Ormoc_Camotes_Blk35E	0.00	0.00	0.00
Ormoc_Camotes_Blk35E_supplement	0.00	0.00	0.03
Ormoc_Camotes_Blk35G	0.50	-0.50	0.64
Ormoc_Camotes_Blk35F_additional	0.00	0.00	0.15
Ormoc_Camotes_Blk35H_supplement	-1.00	0.50	0.30
Ormoc_Camotes_Blk35H	-2.00	0.50	0.24
Ormoc_Camotes_Blk35E_ additional	0.00	0.50	0.00
Ormoc_South_Blk35B	0.00	0.50	-0.55
Ormoc_South_Blk35A	0.00	0.00	-0.79
Ormoc_South_Blk35C	0.00	0.00	-0.60
SamarLeyte_Blk35H_ supplement2	0.00	0.00	0.00
Ormoc_Blk35B_additional	0.00	0.00	-0.31
Ormoc_Camotes_Blk35J	0.00	-2.00	-11.23
Tacloban_Blk1032A	0.00	0.00	0.00

Table 24. Shift values of each LiDAR block of the Pagsangahan floodplain

LIDAR Surveys and Flood Mapping of Pagsangahan River

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Ormoc City and Bato Municipality to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 25,710 survey points were gathered for all the flood plains within Ormoc City and Bato Municipality wherein the Pagsangahan is located. Random selection of 80% of the survey points, resulting to 20,568 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.26 meters with a standard deviation of 0.19 meters. Calibration of the LiDAR data was done by adding the height difference value, 0.26 meters, to the mosaicked LiDAR data. Table 25 shows the statistical values of the compared elevation values between the LiDAR data.

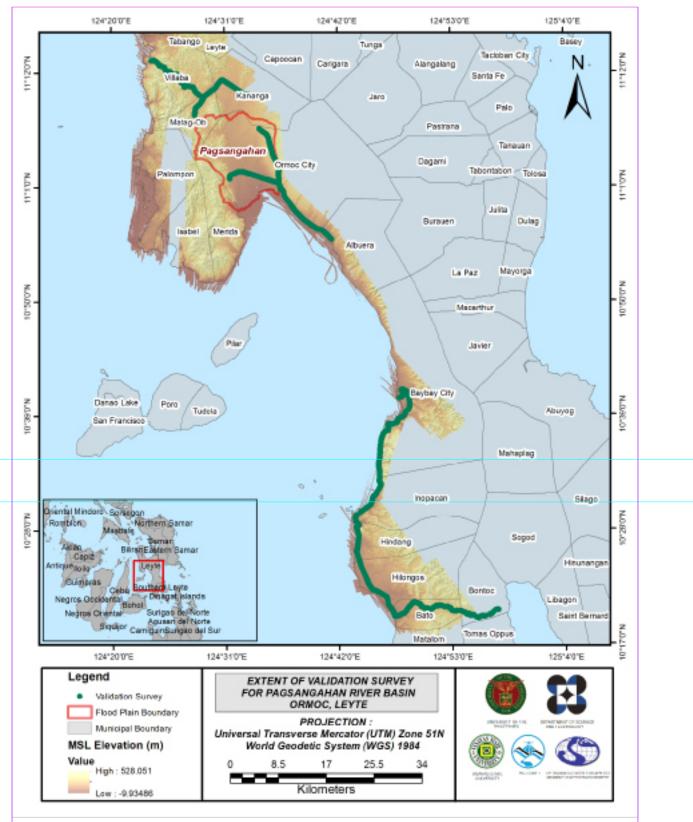
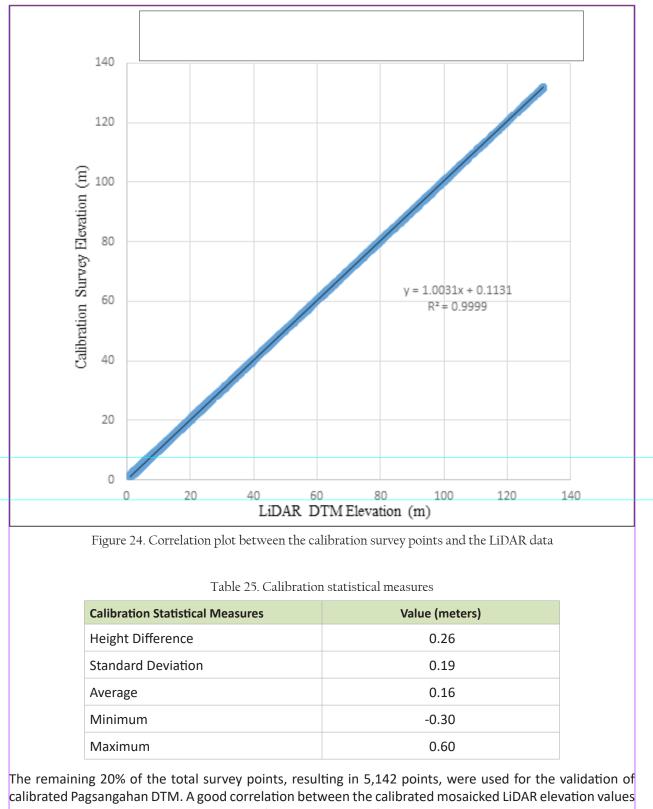



Figure 23. Map of the Pagsangahan floodplain, with validation survey points in green

The remaining 20% of the total survey points, resulting in 5,142 points, were used for the validation of calibrated Pagsangahan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is demonstrated in Figure 25. The computed RMSE between the calibrated LiDAR DTM and the validation elevation values is 0.20 meters, with a standard deviation of 0.18 meters, as shown in Table 26.

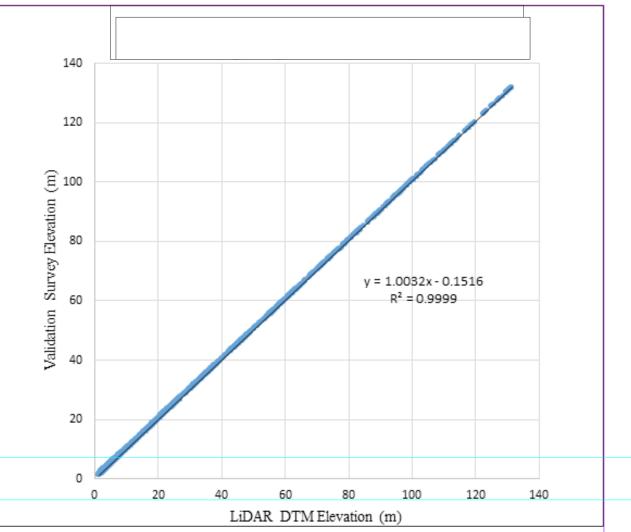
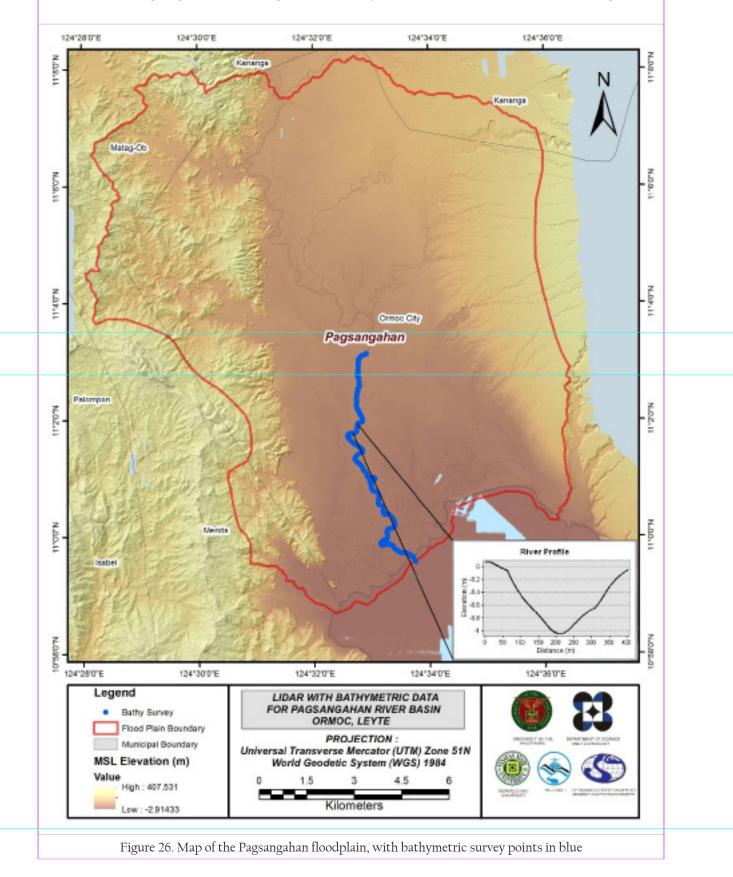
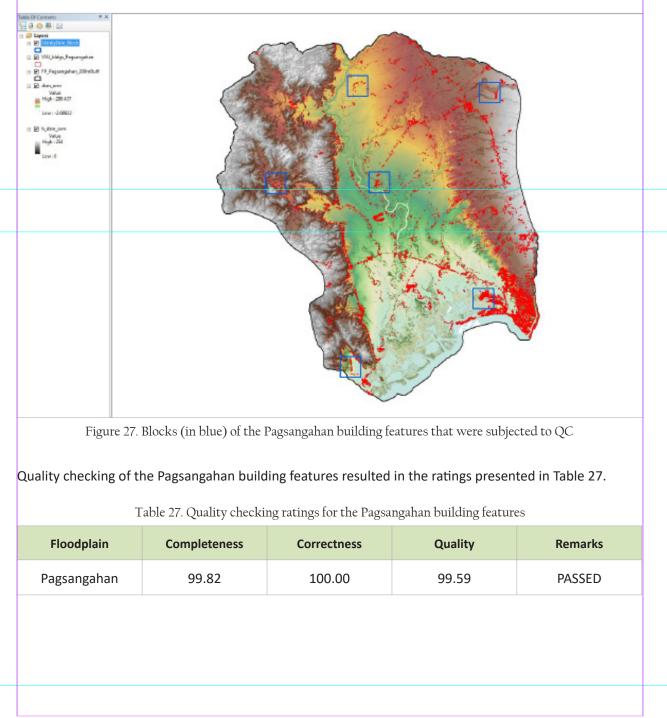



Figure 25. Correlation plot between the validation survey points and the LiDAR data.

Calibration Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.18
Average	-0.10
Minimum	-0.47
Maximum	0.29

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data were available for Pagsangahan, with 4,352 bathymetric survey points. The resulting raster surface produced was obtained through the Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.68 meters. The extent of the bathymetric survey done by the DVBC in the Pagsangahan River, integrated with the processed LiDAR DEM, is illustrated in Figure 26.



3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-meter buffer zone. Mosaicked LiDAR DEM with a 1-meter resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks – comprised of main thoroughfares, such as highways, and municipal and barangay roads – are essential for routing disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

The Pagsangahan floodplain, including its 200-meter buffer zone, has a total area of 192.38 sq. km. Of this area, a total of 6.0 sq. km., corresponding to a total of 2,285 building features, was considered for quality checking (QC). Figure 27 exhibits the QC blocks for the Pagsangahan floodplain.

3.12.2 Height Extraction

Height extraction was performed for 31,264 building features in the Pagsangahan floodplain. Of these building features, 147 were filtered out after height extraction, resulting in 31,117 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 6.73 meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; and then all other buildings were coded as residential. A normalized DSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 28 summarizes the number of building features per type. Table 29 presents the total length of each road type, and Table 30 lists the number of water features extracted per type.

Facility Type	No. of Features
Residential	29,464
School	656
Market	80
Agricultural/Agro-Industrial Facilities	51
Medical Institutions	40
Barangay Hall	52
Military Institution	0
Sports Center/Gymnasium/Covered Court	35
Telecommunication Facilities	1
Transport Terminal	7
Warehouse	154
Power Plant/Substation	6
NGO/CSO Offices	13
Police Station	4
Water Supply/Sewerage	17
Religious Institutions	144
Bank	5
Factory	23
Gas Station	24
Fire Station	1
Other Government Offices	99
Other Commercial Establishments	217
New Buildings	14
Abandoned Buildings	10
Total	31,117

Table 28. Building features extracted for the Pagsangahan floodplain

Table 29. Total length of extracted roads for the Pagsangahan floodplain							
Road Network Length (km)							
Floodplain	hin Barangay City/ Provincial National Road Others Road						
Pagsangahan	Pagsangahan 245.53 12.93 0.00 37.71 0.00						
	Table 30. Nu	mber of extracte	d water bodies fo	or the Pagsangaha	an floodplain		
			Water Body Type	9			
Floodplain	alain Rivers/ Streams Lakes/Ponds Sea Dam Fish Pen						
Pagsangahan	55	91	0	1	0	147	

A total of sixty-one (61) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the Pagsangahan floodplain. This completes the feature extraction phase of the project.

Figure 28 represents the Digital Surface Model (DSM) of the Pagsangahan floodplain, overlaid with its ground features.

Figure 28. Extracted features for the Pagsangahan floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PAGSANGAHAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, and Engr. Dexter T. Lozano

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The DVBC conducted field surveys in the Pagsangahan River on January 6-20, 2015, and on September 10-24, 2014, with the following scope of work: (i.) initial reconnaissance; (ii.) control survey for the establishment of a control point; (iii.) bridge as-built cross-section; (iv.) water level marking in MSL of the Pagsangahan Bridge in Ormoc City, Leyte; (v.) Aquarius LiDAR Validation of about 15.4 km; and (vi.) bathymetric survey from Barangay Liloan down to the mouth of the river in Barangay Lao, with an estimated length of 9.45 km., using an OHMEX[™] Single Beam Echo Sounder and GNSS PPK survey technique. The extent of the survey is shown by the map in Figure 29.

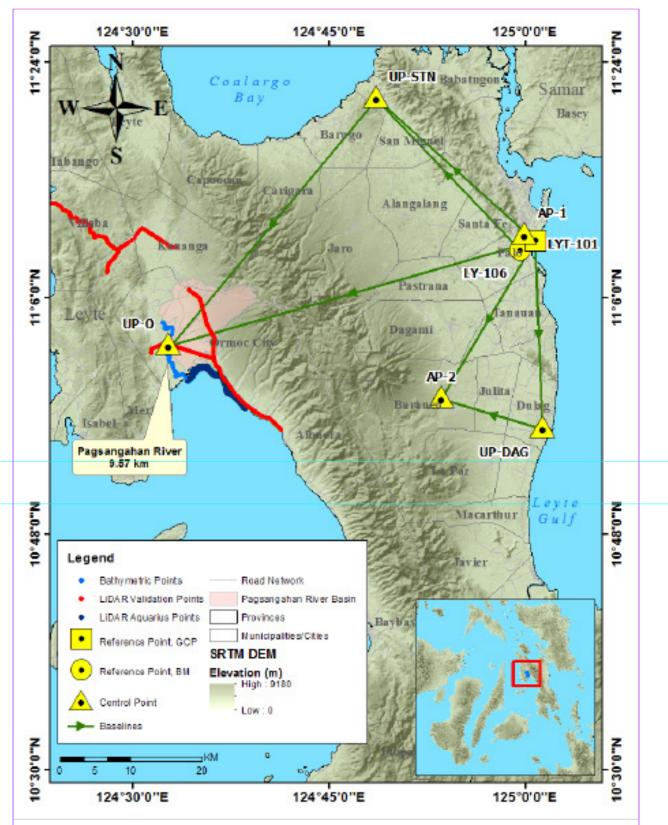


Figure 29. Extent of the bathymetric survey (in blue line) in the Pagsangahan River and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network used for the Pagsangahan River Basin is composed of three (3) loops established on September 18-20, 2014, occupying the following reference points: (i.) LYT-101, a second-order GCP, located in Barangay Candahog, Municipality of Palo; and (ii.) LY-106, a second-order GCP, located in Barangay Luntad, Municipality of Palo.

Three (3) control points were established at the approach of bridges, namely: (i.) UP-DAG at the Daguitan Bridge in Barangay Fatima, Municipality of Dulag; (ii.) UP-O at the Ormoc Merida Bridge in Barangay Liloan, Ormoc City; and (iii.) UP-STN at the Calay-calay Bridge in Barangay Caraycaray, Municipality of San Miguel. Two (2) arbitrary points were also observed to complete the network, AP1 and AP2. The former is located at the corner of the Maharlika Highway and an unnamed street going to Campetic Road in Barangay Campetik, Municipality of Palo, and the latter is located inside the Burauen Church Plaza on the Julita Burauen Road corner Burauen – Dagami Road, in Barangay Poblacion VII, Municipality of Burauen, Province of Leyte.

The summary of reference and control points and their respective locations is provided in , while the GNSS network established is illustrated in .

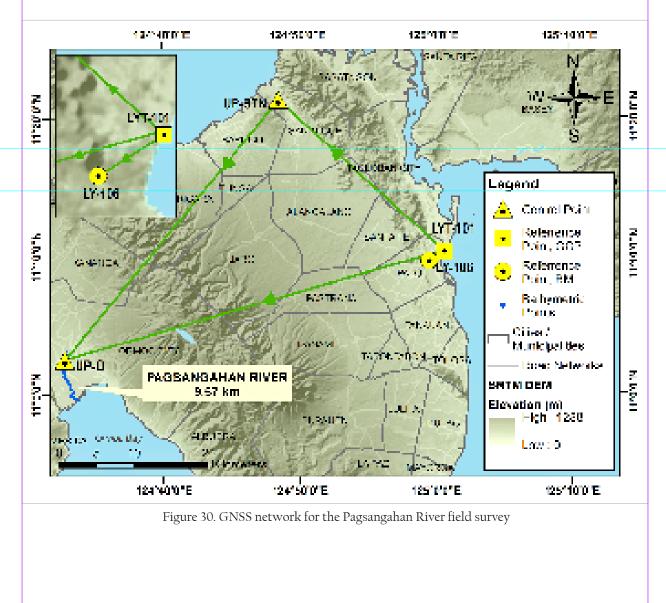


Table 31. Table 31. List of reference and control points used in the Pagsangahan Survey on January 8, 2015(Source: NAMRIA and UP-TCAGP)

	(Source, WAWRIA and OF TEAST)							
		Geo	Geographic Coordinates (WGS UTM Zone 52N)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establish- ment		
LYT-101	2 nd order, GCP	11°10'19.64869" N	125°00'43.78230" E	69.228	-	09-20-2014		
LY-106	1 st order, BM	-	-	68.051	4.028	2007		
UP-DAG	UP Established	-	-	-	-	09-20-2014		
UP-O	UP Established	-	-	-	-	09-19-2014		
UP-STN	UP Established	-	-	-	-	09-11-2014		
AP1	Arbitrary	-	-	-	-	09-18-2014		
AP2	Arbitrary	-	-	-	-	09-20-2014		

The GNSS set-ups established in the locations of the reference and control points are exhibited in Figure 31 to 35.

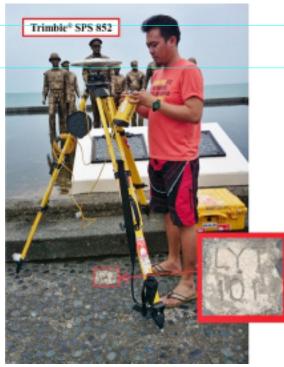


Figure 31. GNSS base set-up, Trimble® SPS 852, at LYT-101, located at the General McArthur Shrine in Barangay. Candahog, Municipality of Palo, Leyte

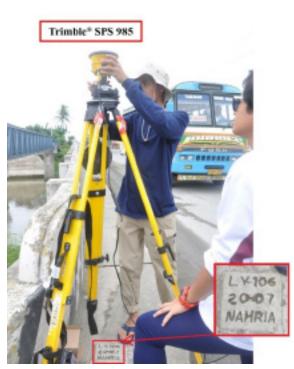


Figure 32. GNSS base set-up, Trimble® SPS 985, at LY-106, located at the approach of the Bernard Reed Bridge along Maharlika Highway, Barangay Luntad, Municipality of Palo, Leyte

Figure 33. GNSS receiver set-up, Trimble® SPS 985, at UP DAG, an established control point, located at the bridge approach of the Daguitan Bridge along Maharlika Highway in Barangay Fatima, Municipality of Dulag, Leyte

Figure 34. GNSS receiver set-up, Trimble® SPS 985, at UP-O, an established control point, located at the bridge approach of the Ormoc Merida Bridge along Ormoc-Merida-Isabel-Palompon Road in Barangay Liloan, City of Ormoc, Leyte

Figure 35. GNSS base set-up, Trimble® SPS 852, at UP-STN, an established control point, located at the Pagbanganan Bridge approach in Barangay Poblacion Zone 12, City of Baybay, Leyte

4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions, with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a re-survey is initiated. The baseline processing results of the control points in the Pagsangahan River Basin, generated by the TBC software, are summarized in

	Table 52. Dasenne Processing Report for the Pagsanganan River Dasin static survey							
Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)		
UP-STN UP-O (B2)	09-19-2014	Fixed	0.003	0.013	219°39'13"	45132.753		
LY-106 AP1 (B4)	09-18-2014	Fixed	0.003	0.012	12°44'49"	2489.516		
LY-106 UP-STN (B11)	09-18-2014	Fixed	0.005	0.042	317°02'38"	29477.609		
LYT-101 UP-O (B1)	09-19-2014	Fixed	0.005	0.013	254°12'03"	52970.388		
LYT-101AP1 (B6)	09-18-2014	Fixed	0.002	0.003	307°32'43"	1903.266		
LYT-101 UP-STN (B10)	09-18-2014	Fixed	0.005	0.039	312°31'18"	30045.665		
LYT-101 UP-STN (B3)	09-18-2014	Fixed	0.003	0.011	312°31'18"	30045.649		
LYT-101 LY-106 (B7)	09-20-2014	Fixed	0.003	0.016	238°21'43"	2417.850		
LYT-101 LY-106 (B5)	09-20-2014	Fixed	0.002	0.004	238°21'42"	2417.858		
LYT-101 UPDAG (B13)	09-20-2014	Fixed	0.004	0.011	177°43'46"	26154.013		
LYT-101 AP2 (B12)	09-20-2014	Fixed	0.003	0.012	210°46'11"	25458.032		
UP-DAG AP2 (B14)	09-20-2014	Fixed	0.004	0.014	286°51'16"	14691.113		

Table 32. Baseline Processing Report for the Pagsangahan River Basin static survey

As reflected in a total of twelve (12) baselines were processed, with reference points LYT-101 and LY-106 held fixed for grid values and elevation values, respectively. All of the baselines satisfied the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the adjusted grid coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm, and z less than 10 cm, or in equation form:

$$\sqrt{((x_{\rm e})^2+(y_{\rm e})^2}$$
) < 20 cm and $z_{\rm e}$ < 10 cm

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown in [] to [] for the complete details.

The seven (7) control points – LYT-101, LY-106, UP-DAG, UP-O, UP-STN, and two (2) arbitrary points – were occupied and observed simultaneously to form a GNSS loop. The coordinates of point LYT-101 and the elevation value of LY-106 were held fixed during the processing of the control points, as presented in [].

Through these reference points, the coordinates and elevation values of the unknown control points were computed.

	Table 33. Constraints applied to the adjustments of the control points						
Point ID	Туре	North (Meter)	East (Meter)	Height (Meter)	Elevation (Meter)		
LYT-101	Local	Fixed	Fixed				
LY-106	Grid				Fixed		
	Fixed = 0.000001(Meter)						

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in . The fixed control points, LYT-101 and LY-106, have no values for grid errors and for elevation errors, respectively.

Table 34. Adjusted grid coordinates for the control points used in the Pagsangahan floodplain survey

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LYT-101	1235759.250	?	719729.823	?	5.141	0.040	LL
LY-106	1234476.732	0.007	717679.601	0.006	4.028	?	е
UP-DAG	1209628.100	0.013	720942.270	0.009	5.993	0.077	е
UP-O	1220991.402	0.014	668855.819	0.010	8.719	0.076	
UP-STN	1255916.567	0.009	697443.625	0.007	8.835	0.070	
AP1	1236908.994	0.007	718212.616	0.007	4.834	0.051	
AP2	1213793.946	0.012	706851.618	0.010	56.317	0.079	

The network is was fixed at reference points LYT-101 with known coordinates, and LY-106 with known elevation. With the mentioned equation, $V((x_e)^2 + (y_e)^2) < 20 \text{ cm}$ for horizontal accuracy and $z_e < 10 \text{ cm}$ for the vertical accuracy,; the computations for the accuracy are as follows:

a. LYT-101

e. UP-STN

Horizontal Accuracy Vertical Accuracy	= Fixed = 4.0 cm < 10 cm	Horizontal Accuracy	$= \sqrt{((0.90)^2 + (0.70)^2)^2}$ = $\sqrt{(0.81 + 0.49)^2}$ = 1.14 cm < 20 cm
b. LY-106		Vertical Accuracy	= 7.0 cm < 10 cm
Horizontal Accuracy	$= \sqrt{((1.30)^2 + (0.6^2))}$ $= \sqrt{(0.49 + 0.36)}$	f. AP1	
Vertical Accuracy	= 0.92 cm < 20 cm = Fixed	Horizontal Accuracy	$= \sqrt{((0.70)^2 + (0.70)^2)^2}$ = $\sqrt{(0.49 + 0.49)^2}$
c. UP-DAG		Vertical Accuracy	= 0.98 cm < 20 cm = 5.10 cm < 10 cm
Horizontal Accuracy	$= \sqrt{((1.3)^2 + (0.90)^2)}$ = $\sqrt{(1.69 + 0.81)}$	g. AP2	
Vertical Accuracy	= 1.58 cm < 20 cm = 7.70 cm < 10 cm	Horizontal Accuracy	$= \sqrt{((1.20)^2 + (1.0)^2)^2}$ = $\sqrt{(1.44 + 1.0)^2}$ = 1.56 cm < 20 cm
d. UP-O		Vertical Accuracy	= 1.56 cm < 20 cm
Horizontal Accuracy	= √((1.40) ² + (1.10) ²) = √ (1.96 + 1.21) = 1.78 cm < 20 cm		
Vertical Accuracy	= 7.60 cm < 10 cm		

Following the given formula, the horizontal and vertical accuracy results of the two (2) occupied control points are within the required precision.

Table 35. Table 35. Adjusted geodetic coordinates for control points used in the Pagsangahan River floodplain validation

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
LY-106	N11°09'38.36982"	E124°59'35.93684"	68.051	?	е
UP-DAG	N10°56'09.12671"	E125°01'17.90763"	70.609	0.077	
UP-O	N11°02'28.97646"	E124°32'44.58922"	71.626	0.076	
UP-STN	N11°21'20.28504"	E124°48'33.44650"	71.793	0.070	
AP1	N11°10'57.39411"	E124°59'54.04241"	68.821	0.051	
AP2	N10°58'27.65859"	E124°53'34.80074"	120.385	0.079	

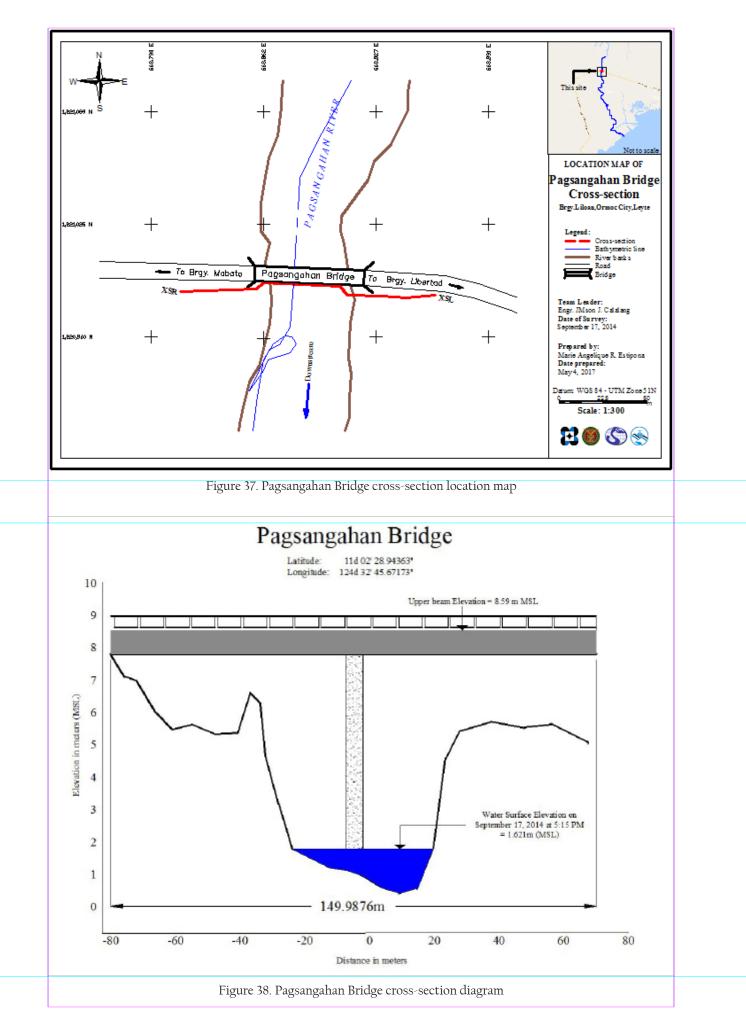
The corresponding geodetic coordinates of the observed points are within the required accuracy, as shown in . Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The computed coordinates of the reference and control points utilized in the Pagsangahan River GNSS Static Survey are indicated in .

 Table 36. Reference and control points used in the Pagsangahan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

		Geographi	c Coordinates (WGS 84	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LYT-101	2 nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.228	1235759.250	719729.823	5.141
LY-106	1 st order, BM	11°09'38.36982"	124°59'35.93684"	68.051	1234476.732	717679.601	4.028
UP-DAG	UP Established	10°56'09.12671"	125°01'17.90763"	70.609	1209628.100	720942.270	5.993
UP-O	UP Established	11°02'28.97646"	124°32'44.58922"	71.626	1220991.402	668855.819	8.719
UP-STN	UP Established	11°21'20.28504"	124°48'33.44650"	71.793	1255916.567	697443.625	8.835
AP1	Arbitrary Point	11°10'57.39411"	124°59'54.04241"	68.821	1236908.994	718212.616	4.834
AP2	Arbitrary Point	10°58'27.65859"	124°53'34.80074"	120.385	1213793.946	706851.618	56.317

4.5 Cross-section and Bridge As-Built Survey and Water Level Marking


The cross-section and bridge as-built surveys were performed on September 17, 2014 along the upstream side of the Ormoc-Merida (Pagsangahan) Bridge in Ormoc City, Leyte. The survey was conducted with the application of PPK technique using a survey-grade GPS, Trimble[®] SPS 882, as exhibited in .

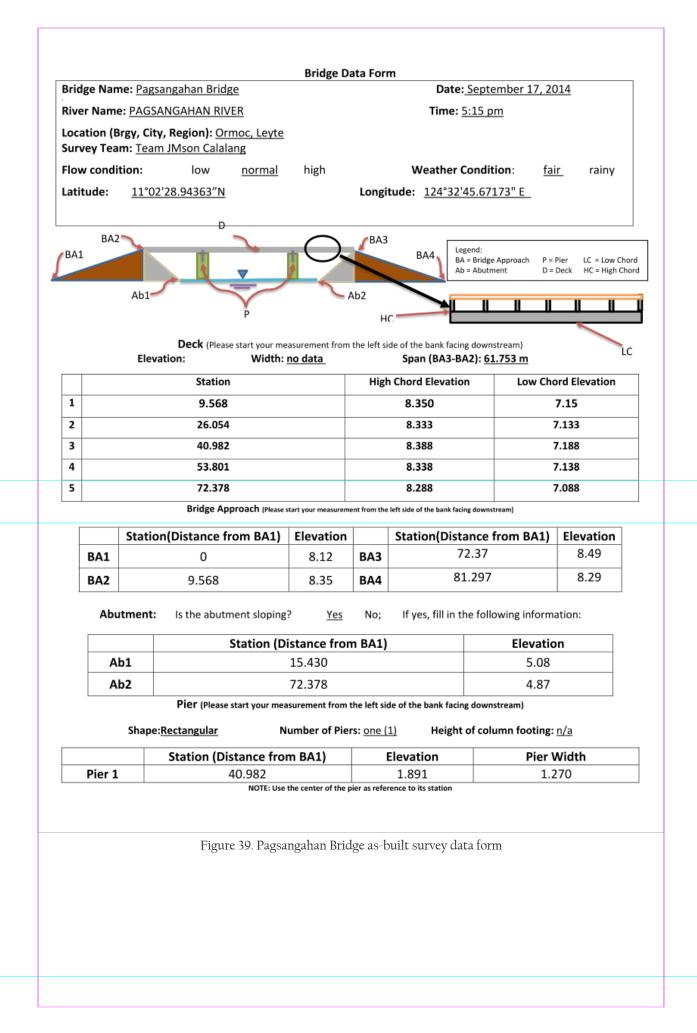


Figure 36. (a) Acquisition of water surface elevation (b) cross Section survey using Trimble® SPS 882 at Pagsangahan Bridge in City of Ormoc and (c) water level marking of bridge pier for Pagsangahan River

The length of the cross-sectional line surveyed in the Pagsangahan Bridge is about 150 meters with a total of twenty-six (26) points acquired, using UP-O as the GNSS base station. The location map, cross-section diagram, and bridge as-built form are presented in to .

The water surface elevation in MSL of the Pagsangahan River was determined using Trimble[®] SPS 882 in PPK mode technique on September 17, 2014 at 17:15 hrs., with a value of 1.21 m in MSL (see). This was translated into markings on one of the bridge's piers using digital levels, which were used by the VSU PHIL-LiDAR 1 Team as their reference for flow data gathering and depth gauge deployment for the Pagsangahan River (Figure 36).

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on September 23, 2014. As depicted in , a Trimble[®] SPS 882 was attached to the side of a vehicle to measure points, utilizing Continuous Topography Method in PPK Survey Technique. The height of the instrument was measured and noted at 2.404 meters, measured from the ground up to the bottom of the notch. Points were gathered along major concrete roads with the aid of a vehicle that moved at a speed of 20-40 kilometers per hour, cutting across the flight strips of the DAC, with the aid of available topographic maps and Google EarthTM images.

The ground validation started in the Municipality of Villaba, traversing the major roads of Matag-ob and Kananga, and ended in the City of Ormoc. The established control point UP-O was used as the base station all throughout the conduct of the survey.

Figure 40. Ground validation se-up: a Trimble® SPS 882, mounted on a 2-meter pole and attached on the side of the vehicle

The map in illustrates the extent of the ground validation survey, which acquired 6,872 ground validation points, with an approximate length of 34.9 km. using the base station UP-O.

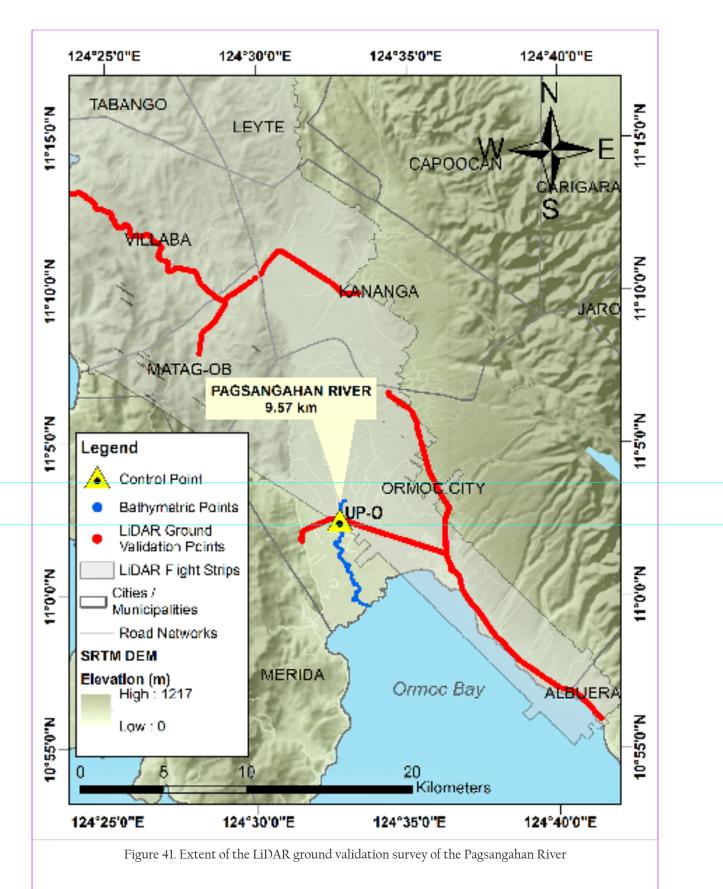
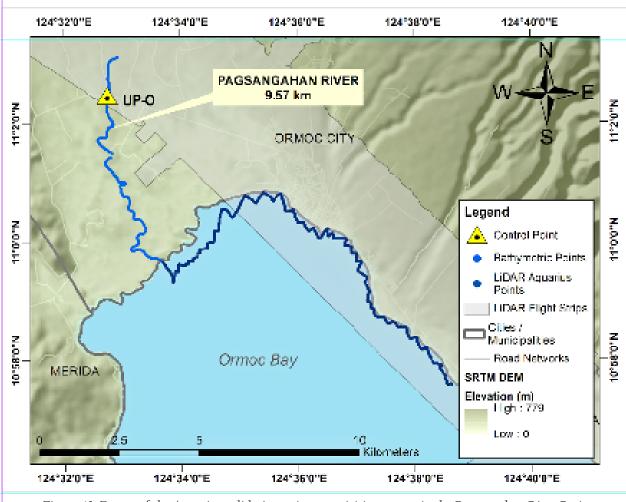
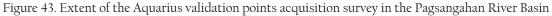




Figure 42. Acquisition of validation points for the Aquarius LiDAR system in the Ormoc Bay

In addition to the ground validation survey, an Aquarius LiDAR validation was also conducted along the coast of Ormoc City (Figure 42). The total length for the Aquarius LiDAR validation survey is 18.50 km., with a total of 8,652 points. The map in illustrates the results of the Aquarius LiDAR validation.

4.7 Bathymetric Survey

A manual bathymetric survey was conducted on January 15, 2014 in the Pagsangahan River using a boat with an installed Hi-Target[™] Single Beam Echo Sounder and a mounted Trimble[®] SPS 882 GNSS receiver in GNSS PPK survey technique, as demonstrated in . The survey began in the upstream side of the river in Barangay Liloan, Ormoc City, Leyte, with coordinates 11°03′07.50056″ 124°32′55.32941″; and ended at the mouth of the river in Barangay Lao, Ormoc City, with coordinates 10°59′34.20739″ 124°33′45.04847″. The map in exhibits the extent of the conducted bathymetric survey.

Figure 44. Bathymetry set-up using Ohmex™ Single Beam Echo Sounder with Trimble® SPS 882

The bathymetric line of the Pagsangahan River had an estimated length of 9.57 km., gathering a total of 4,386 points acquired using UP-O as the GNSS base station. A CAD drawing was also produced to illustrate the Pagsangahan riverbed profile, presented in . The profile shows that there is no abrupt change in elevation on the riverbed, mainly because the area is on lowland. The highest elevation observed was 1.28 meters in MSL in the upstream part of the river; while the lowest elevation observed was -7.72 meters below MSL in Barangay Lao, near the mouth of the river.

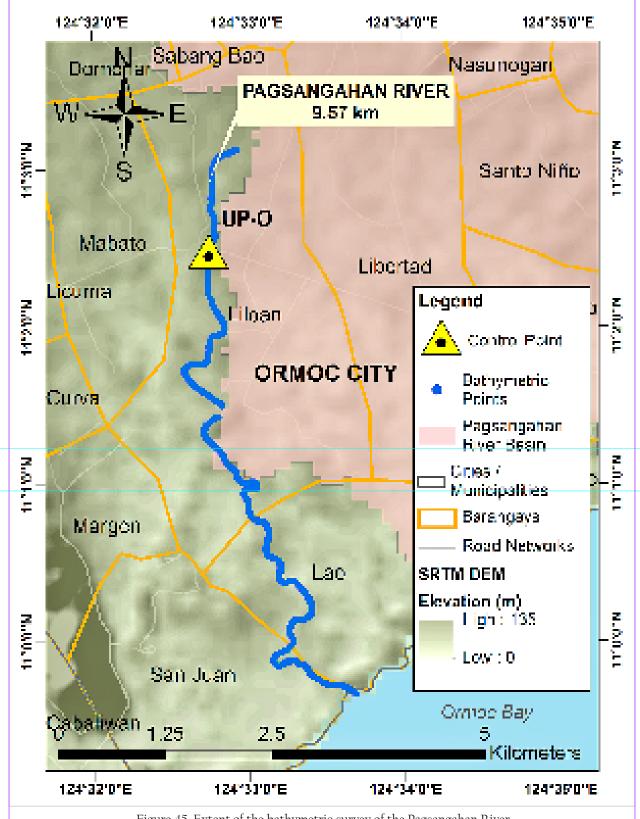
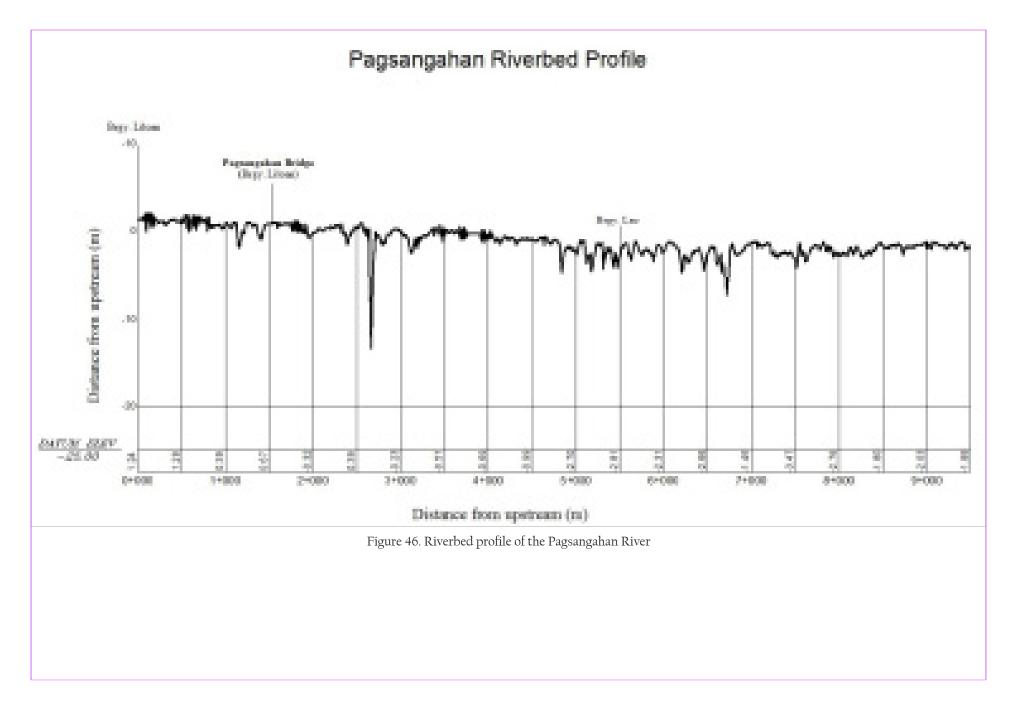



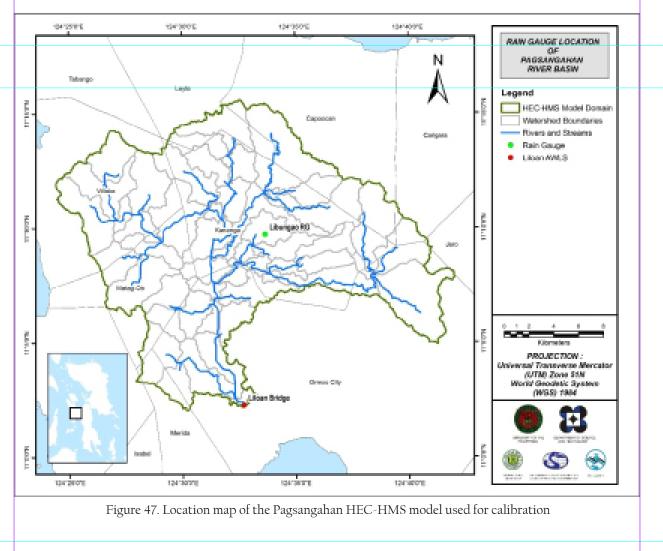
Figure 45. Extent of the bathymetric survey of the Pagsangahan River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

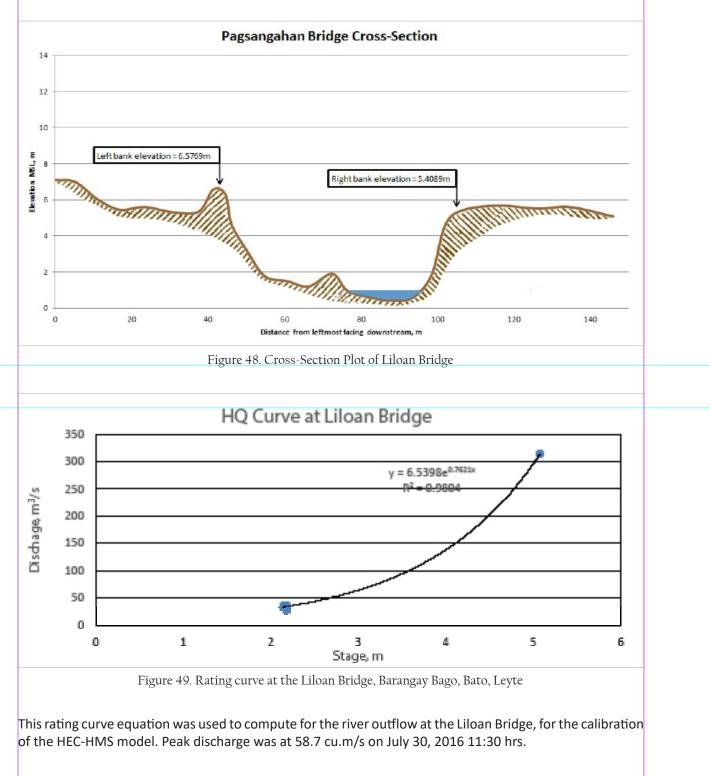
The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling


5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which are all components and data that affect the hydrologic cycle of the Pagsangahan River Basin, were monitored, collected, and analyzed.

5.1.2 Precipitation


Precipitation data was taken from the automatic rain gauge (ARG) installed by the Flood Modeling Component (FMC) at Barangay Libungao, Kananga, Leyte. The location of the rain gauge is seen in Figure 47.

Total rain from the Libungao rain gauge was 52.4 mm. It peaked at 10.8 mm on 29 July 2016 at 4:20 hours. The lag time between the peak rainfall and discharge was five (5) hours and fifty (50) minutes.

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 48) at the Liloan Bridge, Barangay Liloan, Ormoc City, Leyte, to establish the relationship between the observed water levels (H) at the Liloan Bridge and the outflow (Q) of the watershed at this location.

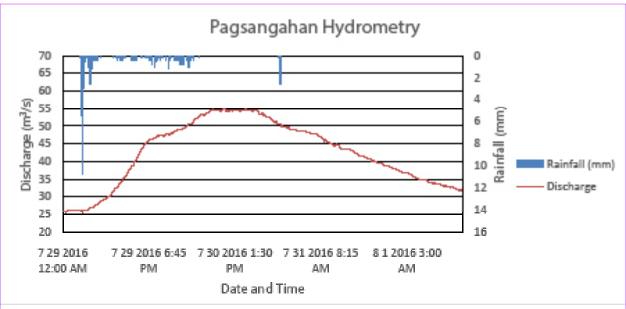
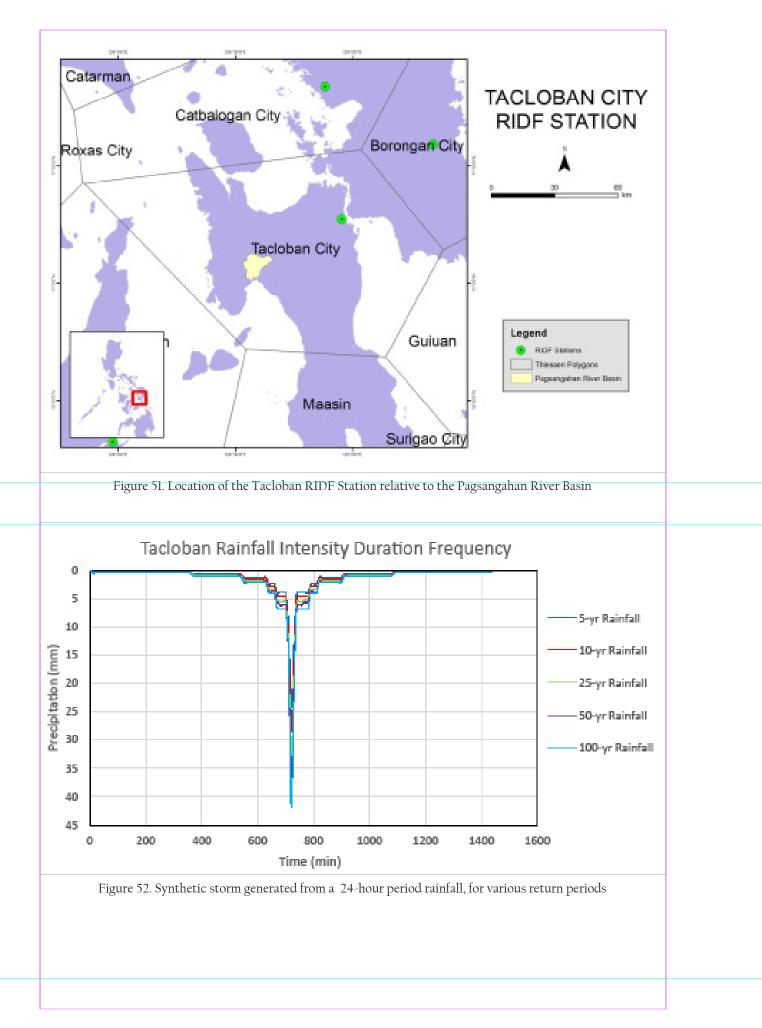



Figure 50. Rainfall and outflow data at Pagsangahan used for modeling

5.2 RIDF Station

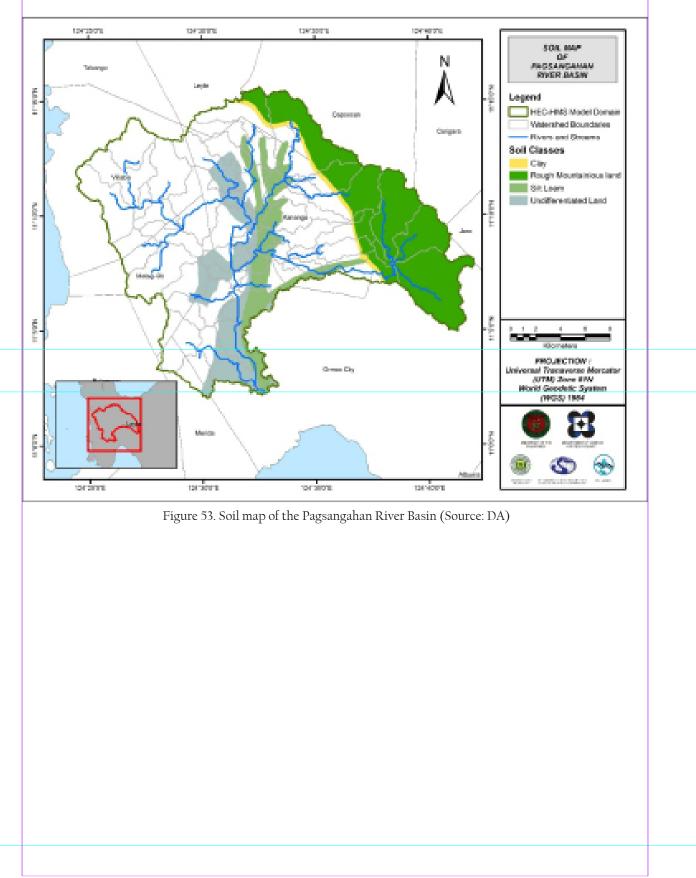

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge (Table 37). This station chosen based on its proximity to the Pagsangahan watershed (Figure 51). The RIDF rainfall amount for twenty-four (24) hours was converted into a synthetic storm by interpolating and re-arranging the values such that certain peak values were attained at a certain time. The extreme values for this watershed were computed based on a 59-year record.

Table 37. RIDF values for the Tacloban Rain Gauge computed by PAGASA													
COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION													
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs				
2	17.8	26.9	33.6	42.8	59.7	70.5	87.2	104	120.6				
5	24.3	36.7	45.7	57.4	80.7	95.2	117.9	140.6	161.4				
10	28.5	43.2	53.7	67.1	94.6	111.5	138.2	164.9	188.4				
15	30.9	46.8	58.3	72.5	102.5	120.7	149.6	178.6	203.7				
20	32.6	49.4	61.4	76.3	108	127.1	157.7	188.1	214.3				
25	33.9	51.4	63.9	79.3	112.2	132.1	163.8	195.5	222.6				
50	37.9	57.5	71.4	88.3	125.2	147.4	182.9	218.2	247.9				
100	41.8	63.5	78.9	97.3	138.2	162.5	201.8	240.8	273				

5.3 HMS Model

The soil shapefile was taken from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). These soil datasets were obtained before 2004. The soil and land cover maps of the Pagsangahan River Basin are presented in Figures 53 and 54, respectively.

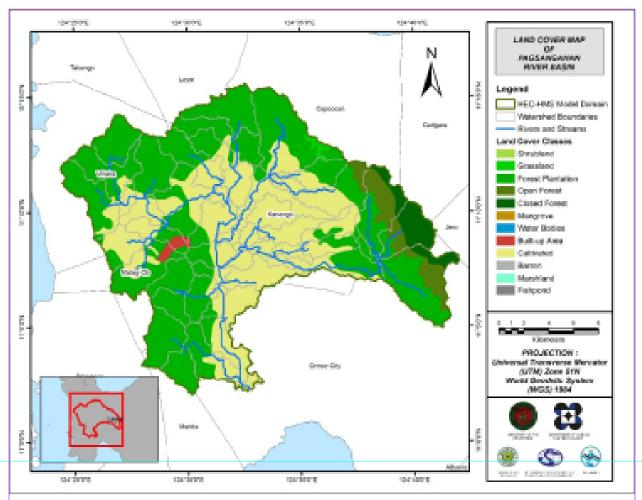
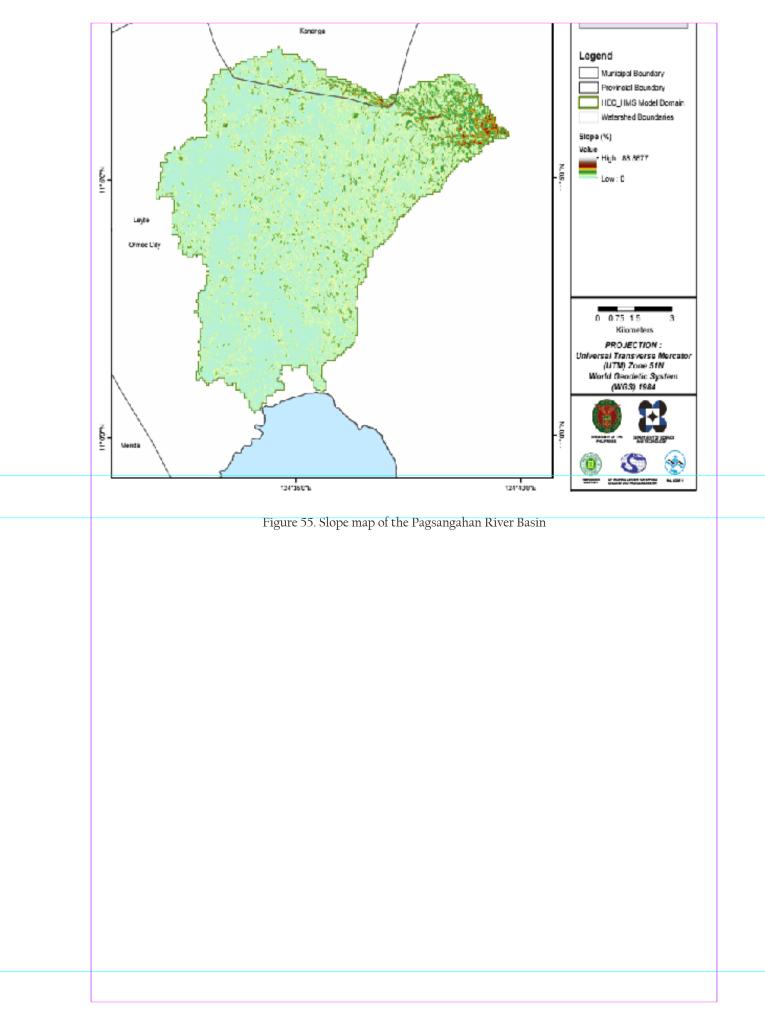



Figure 54. Land cover map of the Pagsangahan River Basin (Source: NAMRIA)

For the Pagsangahan River Basin, the soil classes identified were clay, rough mountainous land, silt loam, and undifferentiated land. The land cover types identified were grasslands, forest plantations, open forests, closed forests, built-up areas, and cultivated land.

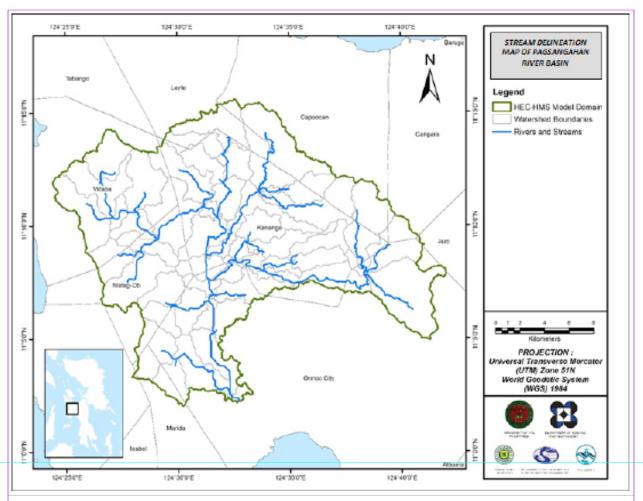


Figure 56. Stream delineation map of the Pagsangahan River Basin

Using the SAR-based DEM, the Pagsangahan basin was delineated and further subdivided into sub-basins. The model consists of fifty-one (51) sub-basins, twenty-five (25) reaches, and fifty-five (55) junctions. The main outlet is at the Liloan Bridge. See ANNEX 10 for the Pagsangahan Model Reach Parameters

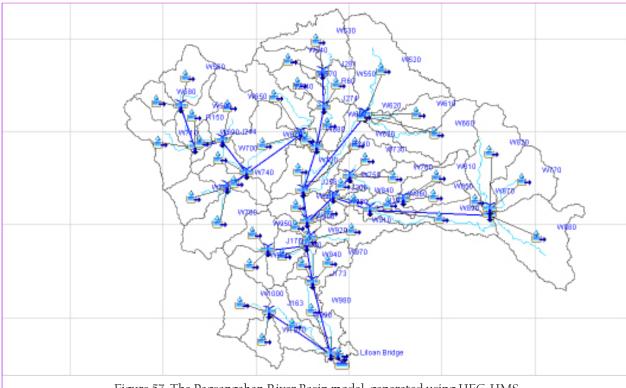


Figure 57. The Pagsangahan River Basin model, generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model were derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 58).

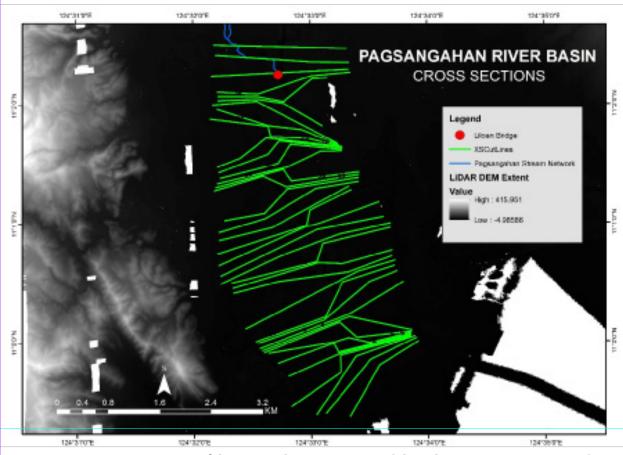


Figure 58. River cross-section of the Pagsangahan River, generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the north of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

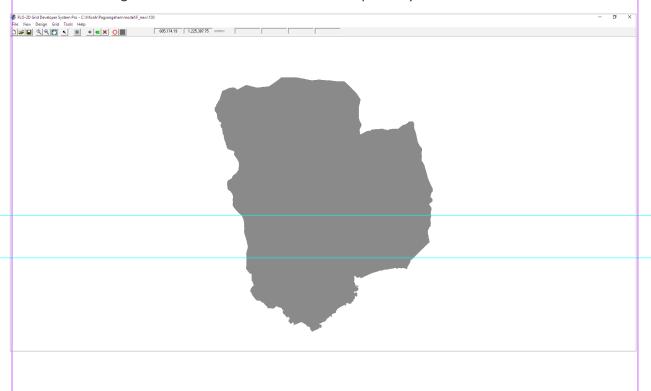


Figure 59. Screenshot of a sub-catchment with the computational area to be modeled in the FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 81.55957 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 94 945 000.00 m2.

There is a total of 51 334 327.54 m3 of water entering the model. Of this amount, 24 436 414.50 m3 is due to rainfall while 26 897 913.04 m3 is inflow from other areas outside the model. 13 151 253.00 m3 of this water is lost to infiltration and interception, while 29 852 675.29 m3 is stored by the flood plain. The rest, amounting up to 8 330 411.25 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Pagsangahan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 demonstrates the comparison between the two (2) discharge data. ANNEX 9 presents the Pagsangahan Model Basin Parameters.

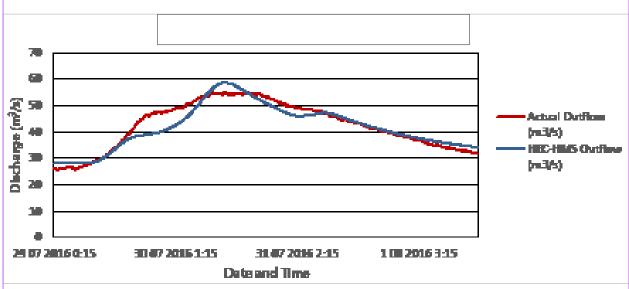


Figure 60. Outflow hydrograph of Pagsangahan produced by the HEC-HMS model, compared with observed outflow

Enumerated in Table 38 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loca	SCS Curve number	Initial Abstraction (mm)	
	Loss	SCS Curve number	Curve Number	
Dacin	Transform	Clark Unit Hydrograph	Time of Concentration (hr.)	
Basin	Iransiorm		Storage Coefficient (hr.)	
	Baseflow	_ ·	Recession Constant	
		Recession	Ratio to Peak	
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	

Table 38. Range of calibrated values for the Pagsangahan River Basin Model

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as the initial abstraction decreases. The range of values from 9 to 30 mm for initial abstraction means that there is a minimal to average amount of infiltration or rainfall interception by vegetation, per sub-basin.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as the curve number increases. The range of 40 to 60 for the curve number is relatively low compared to the advisable values for Philippine watersheds, depending on the soil and land cover of the area.

The time of concentration and the storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.2 to 9 hours determines the reaction time of the model, with respect to the rainfall. The peak magnitude of the hydrograph decreases when these parameters are increased.

The recession constant is the rate at which the baseflow recedes between storm events; and ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.98 indicates that the basin is unlikely to quickly return to its original discharge, and will be higher instead. A ratio to peak of 0.1 to 0.3 indicates a steeper receding limb of the outflow hydrograph.

A Manning's roughness coefficient of 0.04 corresponds to the common roughness of the Pagsangahan watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	2.9
r ²	0.89
NSE	0.88
PBIAS	0.84
RSR	0.34

 Table 39. Summary of the Efficiency Test of the Pagsangahan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.9 (m³/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. A coefficient value close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it was measured at 0.89.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.88.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate a bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is 0.84.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error units of the values are quantified. The model has an RSR value of 0.34.

5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) reflects the Pagsangahan outflow using the Tacloban RIDF curves in five (5) different return periods (i.e., 5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series), based on the data from PAGASA. The simulation results reveal a significant increase in outflow magnitude as the rainfall intensity increases, for a range of durations and return periods.

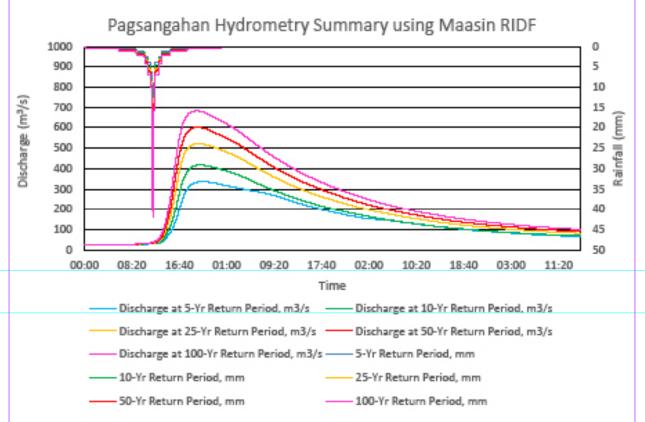
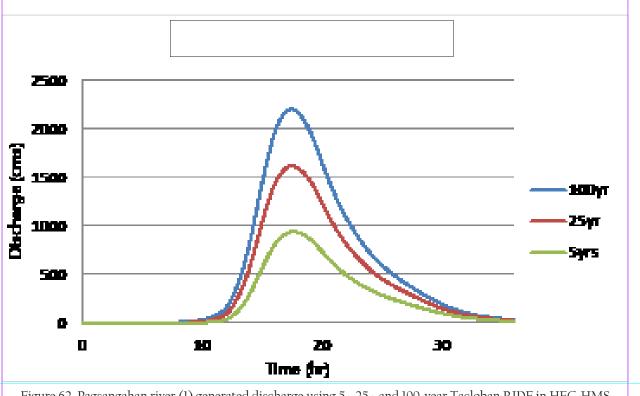


Figure 61. Outflow hydrograph at Pagsangahan Station generated using Tacloban RIDF simulated in HEC-HMS


A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Pagsangahan discharge using the Tacloban RIDF curves in five (5) different return periods is outlined in Table 40.

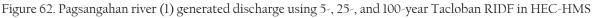

Tuble 10. Feak values of the Fagsanganan files filvis would outlow doing the Factoball Kibr							
RIDF Period	Total Precipitation (mm)			Time to Peak			
5-Year	161.4	24.3	336.7	8 hours, 45 minutes			
10-Year	188.4	28.5	417.4	8 hours, 15 minutes			
25-Year	222.6	33.9	522.6	8 hours, 00 minutes			
50-Year	247.9	37.9	601.3	7 hours, 45 minutes			
100-Year	273.0	41.8	681.9	7 hours, 45 minutes			

Table 40. Peak values of the Pagsangahan HEC-HMS Model outflow using the Tacloban RIDF

5.7.2 Discharge data using Dr. Horritts' recommended hydrologic method

The river discharge values for the nine (9) rivers entering the floodplain are shown in [] to []., and the peak values are summarized in [] to [].

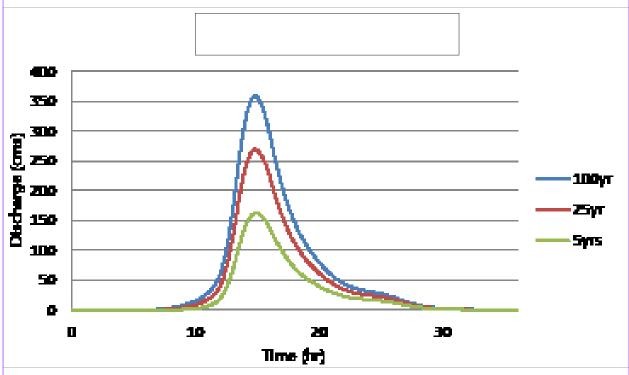


Figure 63. Pagsangahan River (2) generated discharge using 5-, 25-, and 100-year Tacloban RIDF in HEC-HMS

17 hours, 30 minutes

17 hours, 30 minutes

Table	41. Summary of th	ne Pagsangahan River (1	l) discharge generated in HEC
	RIDF Period	Peak discharge (cms)	Time-to-peak
	100-Year	2206.7	17 hours, 30 minutes

Table 42. Summary of the Pagsangahan River (2) discharge generated in HEC-HMS

1621.3 936.7

25-Year

5-Year

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	359.1	14 hours, 50 minutes
25-Year	269.8	14 hours, 50 minutes
5-Year	162.1	14 hours, 50 minutes

Table 43. Validation of river discharge estimates

				VALID	ATION
Discharge Point	QMED(SCS), cms	QBANKFUL, cms	QMED(SPEC), cms	Bankful Discharge	Specific Discharge
Pagsangahan (1)	824.296	846.408	525.539	Pass	Fail
Pagsangahan (2)	142.648	99.949	127.626	Pass	Pass

Two (2) values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the Bankful method; and one did not satisfy the specific discharge methods and will need recalculation. The passing values are based on theory but are supported by other discharge computation methods; thus, they are applicable for flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain the actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section, for every time step, for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining the extent of real-time flood inundation of the river, after it has been automated and uploaded on the DREAM website. For this publication, a sample output for the river flow during Typhoon Carina is provided, since the model was calibrated from this event. The sample generated map of the Pagsangahan River using the calibrated HEC-HMS model for Typhoon Carina is presented in Figure 64.

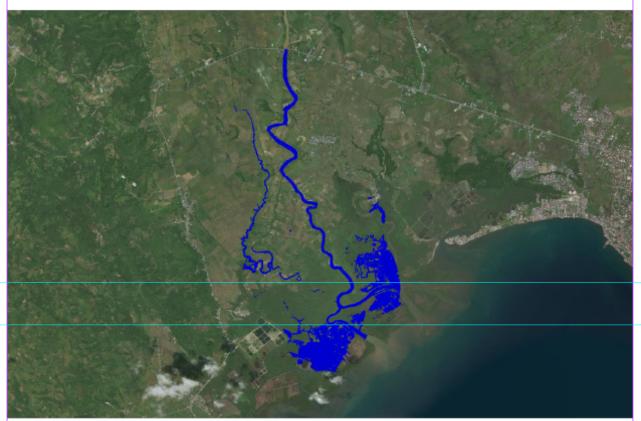


Figure 64. Sample output map of the Pagsangahan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting flood hazard and flow depth maps for the 5-year, 25-year, and 100-year rain return scenarios of the Pagsangahan floodplain are exhibited in Figure 65 to 70. The floodplain, with an area of 96.71 sq. km., covers four (4) municipalities, namely Matag-Ob, Merida, Ormoc City, and Palompon. Table 44 enumerates the percentage of area affected by flooding per municipality.

Table 44. Municipalities affected in the Pagsangahan floodplain							
City / Municipality	Total Area	Area Flooded	% Flooded				
Matag-Ob	63.4592	2.334299	367.84%				
Merida	101.477	13.51544	1331.87%				
Ormoc City	451.96	80.6196	1783.78%				
Palompon	125.866	0.113434	9.01%				

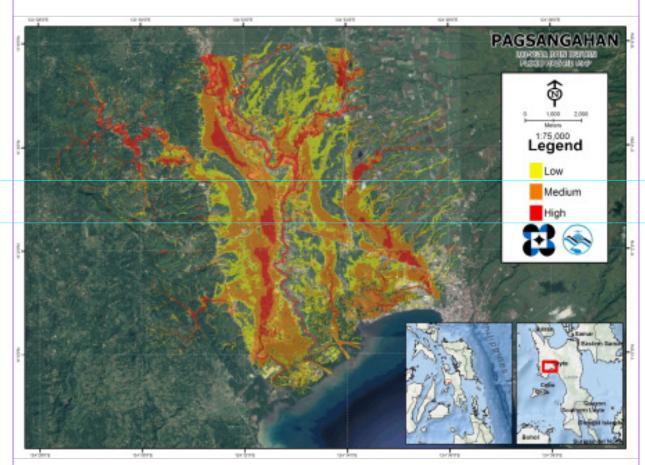
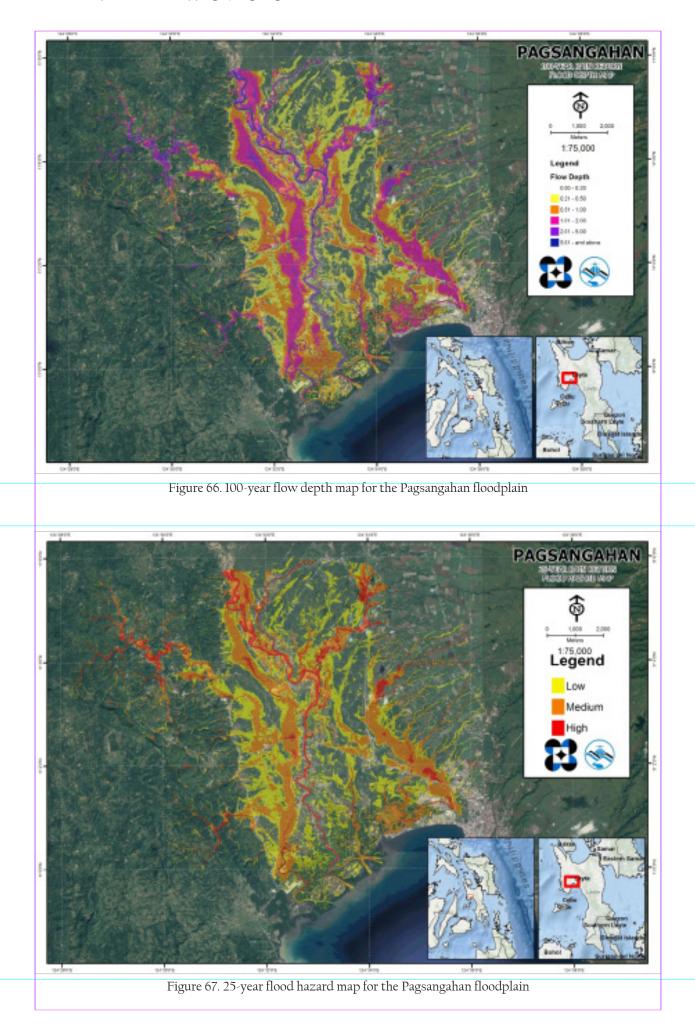
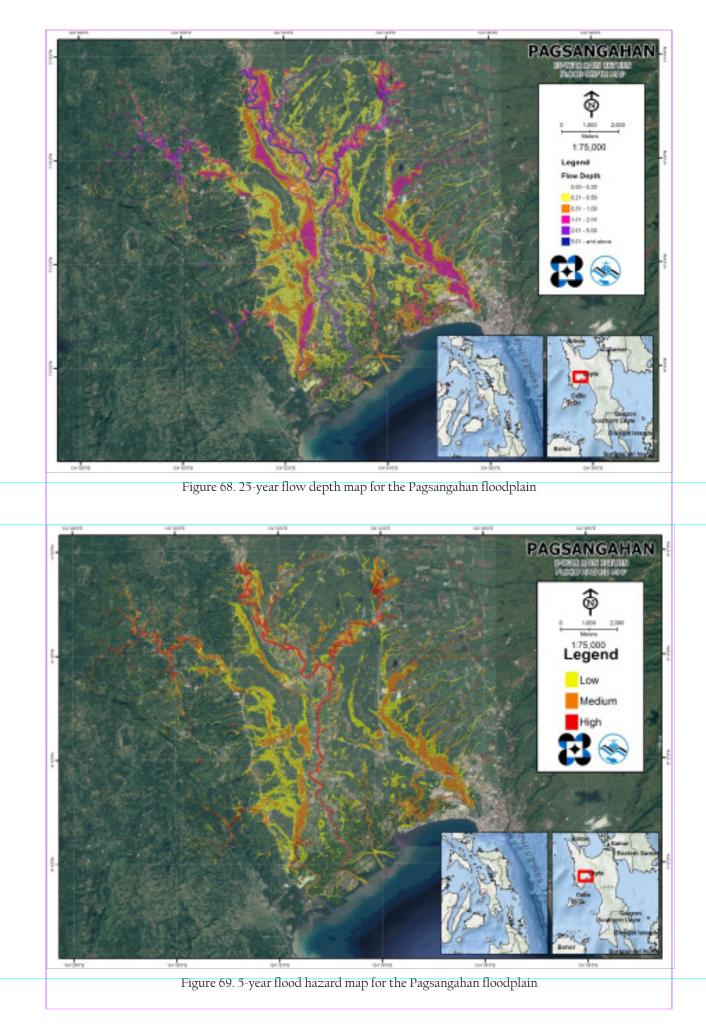
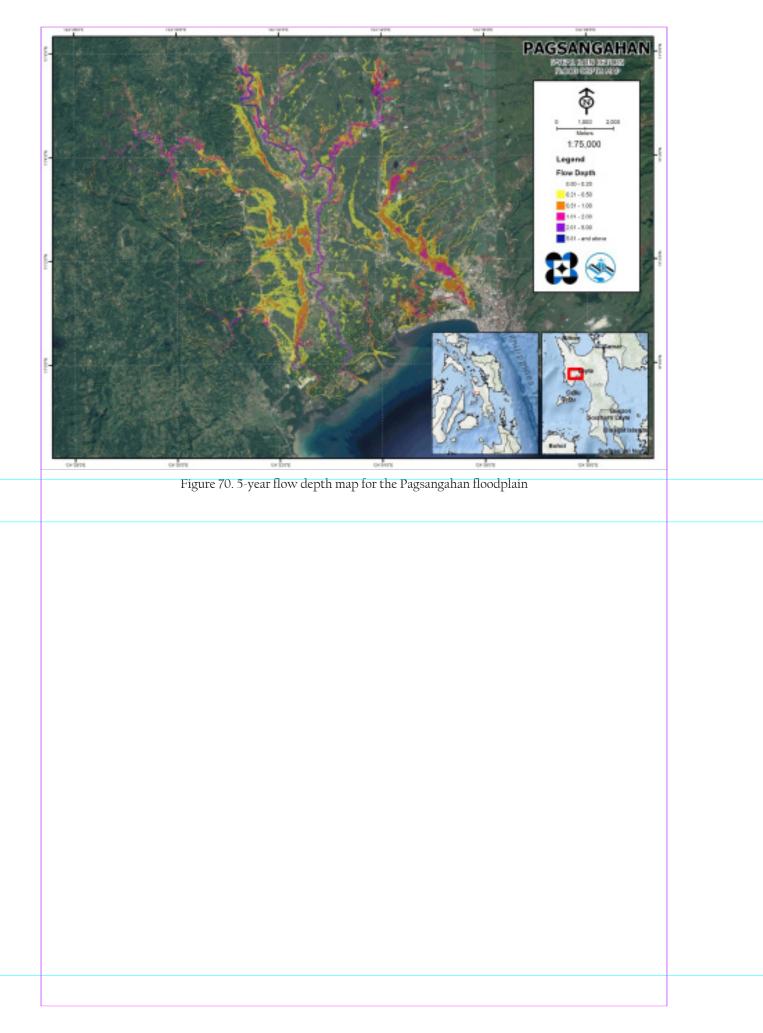
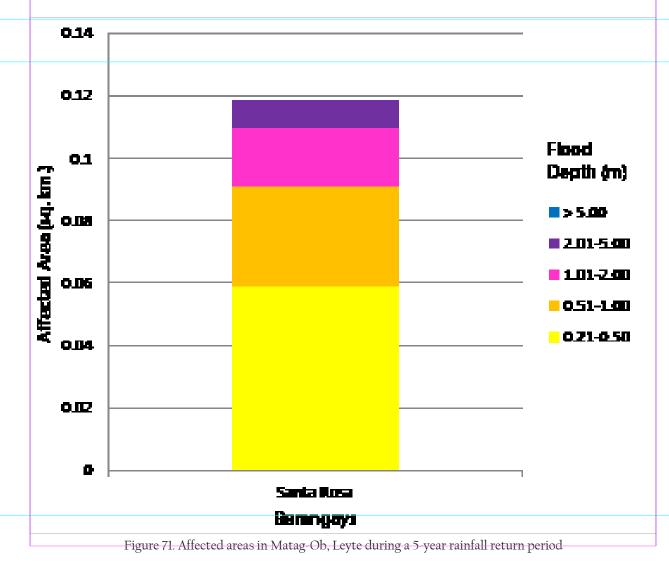





Figure 65. 100-year flood hazard map for the Pagsangahan floodplain

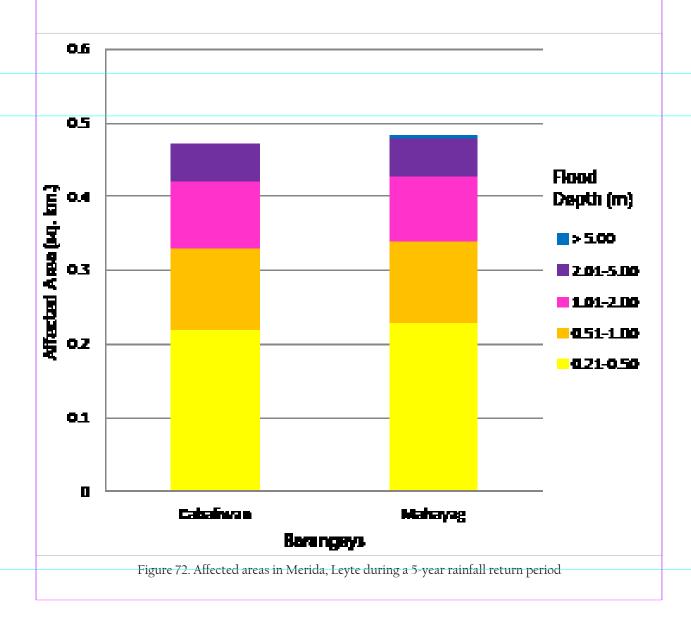

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected in the Pagsangahan River Basin, grouped accordingly by municipality. For the said basin, four (4) municipalities consisting of thirty (30) barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 3.50% of the Municipality of Matag-Ob, with an area of 63.46 sq. km., will experience flood levels of less than 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.03%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Table 45 depicts the areas affected in Matag-Ob, in square kilometers, by flood depth per barangay.

Table 45. Affected areas in Matag-Ob, Leyte during a 5-year rainfall return period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Matag- Ob (in sq. km.) Santa Rosa
0.03-0.20	2.22
0.21-0.50	0.059
0.51-1.00	0.032
1.01-2.00	0.019
2.01-5.00	0.0082
> 5.00	0



For the Municipality of Merida, with an area of 101.48 sq. km., 12.38% will experience flood levels of less than 0.20 meters. 0.44% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.22%, 0.18%, 0.10%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively.

[] depicts the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Merida (in sq. km.)				
flood depth (in m.)	Cabaliwan	Mahayag			
0.03-0.20	5.91	6.65			
0.21-0.50	0.22	0.23			
0.51-1.00	0.11	0.11			
1.01-2.00	0.093	0.089			
2.01-5.00	0.049	0.052			
> 5.00	0	0.002			

Table 46. Affected areas in Merida, Leyte during a 5-year rainfall return period

For the Municipality of Ormoc City, with an area of 451.96 sq. km., 9.14% will experience flood levels of less than 0.20 meters. 2.23% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.45%, 2.47%, 1.41%, and 0.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 47-49 depict the affected areas, in square kilometers, by flood depth per barangay.

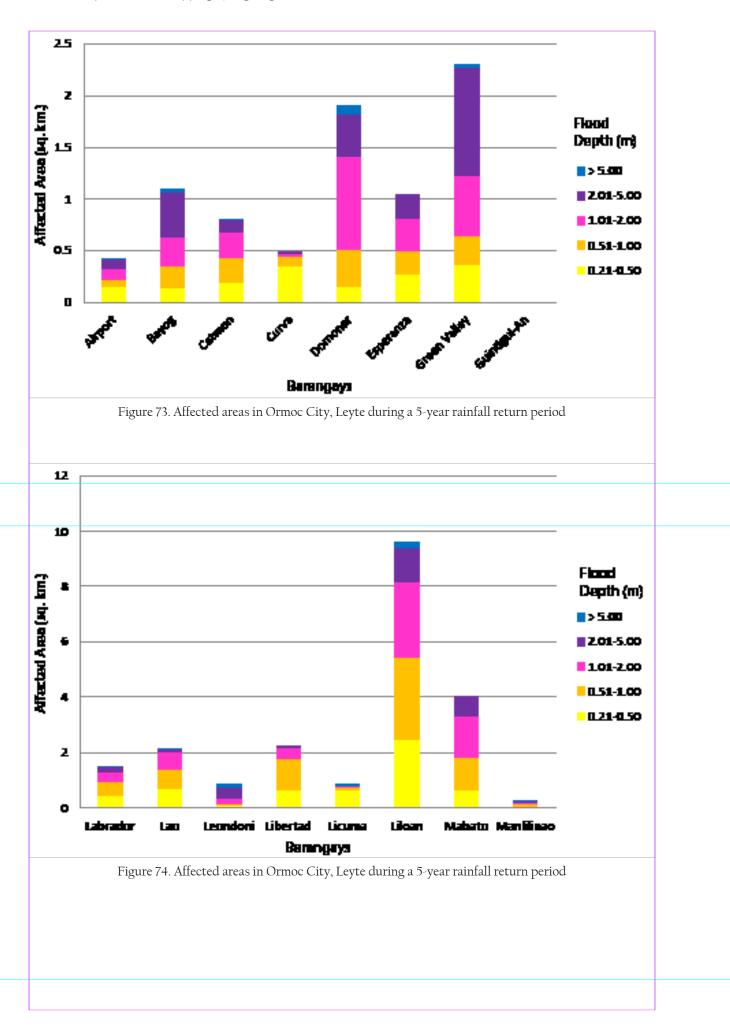

Table 47. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period										
Affected		Area of affected barangays in Ormoc City (in sq. km.)								
area (sq. km.) by flood depth (in m.)	Airport	Bayog	Catmon	Curva	Domonar	Esperanza	Green Valley	Guintigui- An		
0.03-0.20	1.11	0.19	1.56	2.08	0.44	5.35	1.4	0.039		
0.21-0.50	0.16	0.14	0.2	0.36	0.16	0.27	0.37	0.0001		
0.51-1.00	0.066	0.22	0.24	0.093	0.35	0.23	0.27	0		
1.01-2.00	0.097	0.27	0.24	0.027	0.9	0.32	0.59	0		
2.01-5.00	0.1	0.44	0.12	0.015	0.42	0.23	1.04	0		
> 5.00	0.0045	0.024	0.0011	0	0.079	0	0.032	0		

Table 48. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period

Affected		А	Area of affected barangays in Ormoc City (in sq. km.)						
area (sq. km.) by flood depth	Labrador	Lao	Leondoni	Libertad	Licuma	Liloan	Mabato	Manlilinao	
(in m.)									
0.03-0.20	1.41	1.89	0.57	2.2	2.4	1.37	0.46	2.26	
0.21-0.50	0.47	0.68	0.088	0.64	0.64	2.49	0.64	0.076	
0.51-1.00	0.47	0.71	0.08	1.16	0.13	2.96	1.2	0.063	
1.01-2.00	0.35	0.63	0.17	0.4	0.04	2.75	1.46	0.074	
2.01-5.00	0.19	0.096	0.4	0.0008	0.0078	1.2	0.72	0.031	
> 5.00	0.029	0.001	0.097	0	0.0021	0.21	0	0.0002	

Table 49. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period

Affected	Area of affected barangays in Ormoc City (in sq. km.)								
area (sq. km.) by flood depth (in m.)	Margen	Mas-In	Nasunogan	Nueva Sociedad	Rufina M. Tan	Sabang Bao	San Jose	San Juan	San Vicente
0.03-0.20	1.97	2.41	0.49	1.92	0.64	0.85	3.42	1.21	3.65
0.21-0.50	0.6	0.28	0.068	0.065	0.06	0.62	0.3	0.56	0.15
0.51-1.00	0.35	0.24	0.005	0.027	0.047	0.88	0.038	1.18	0.077
1.01-2.00	0.36	0.11	0.0059	0.015	0.24	0.63	0.017	1.41	0.041
2.01-5.00	0.23	0.0067	0.0043	0.0032	0.45	0.4	0.0017	0.24	0.0095
> 5.00	0	0	0	0	0.11	0.13	0	0	0.0001

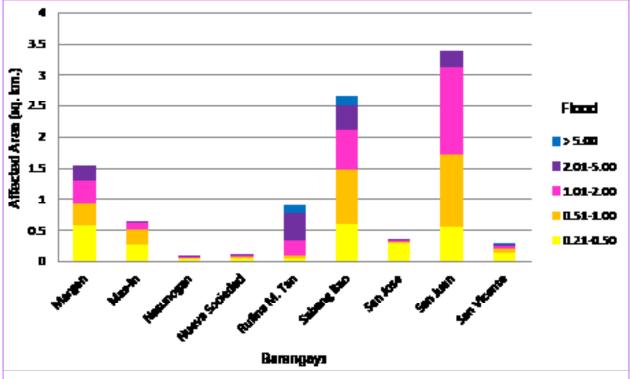
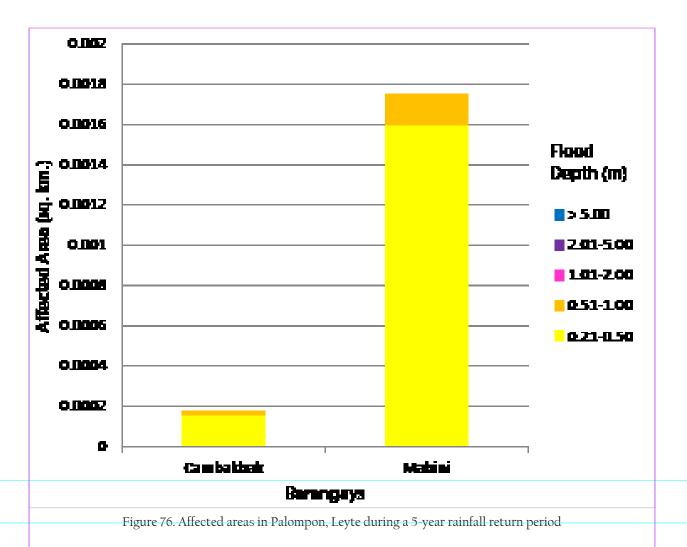



Figure 75. Affected areas in Ormoc City, Leyte during a 5-year rainfall return period

For the Municipality of Palompon, with an area of 125.87 sq. km., 0.09% will experience flood levels of less than 0.20 meters. 0.001% of the area will experience flood levels of 0.21 to 0.50 meters, and 0.0001% of the area will experience flood depths of 0.51 to 1 meter. Table 50 depicts the affected areas, in square kilometers, by flood depth per barangay.

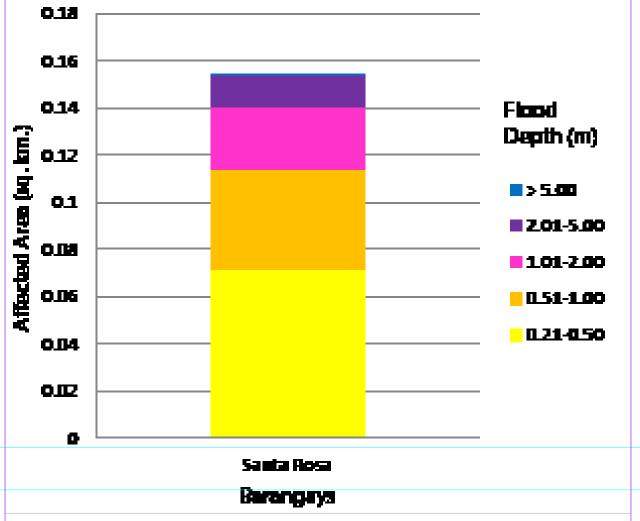
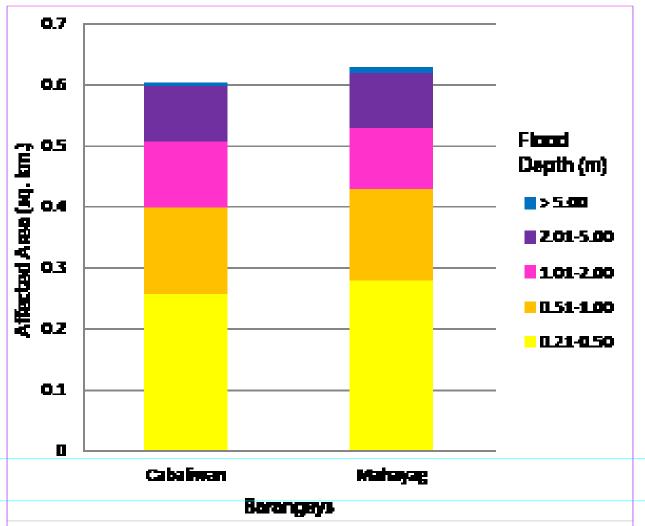
Affected area (sq. km.) by	Area of affected barangays in Palompon (in sq. km.)				
flood depth (in m.)	Cambakbak	Mabini			
0.03-0.20	0.043	0.069			
0.21-0.50	0.00016	0.0016			
0.51-1.00	0.000013	0.00015			
1.01-2.00	0	0			
2.01-5.00	0	0			
> 5.00	0	0			

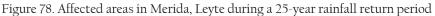
Table 50. Affected areas in Palompon, Leyte during a 5-year rainfall return period

For the 25-year return period, 3.44% of the Municipality of Matag-Ob, with an area of 63.46 sq. km., will experience flood levels of less than 0.20 meters, while 0.11% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.07%, 0.04%, 0.02%, and 0.0005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 51 depicts the areas affected in Matag-Ob, in square kilometers, by flood depth per barangay.

Table 51. Affected areas in Matag-Ob, Leyte during a 25-year rainfall return period

Affected area (sq. km.) by flood depth	Area of affected barangays in Matag- Ob (in sq. km.)
(in m.)	Santa Rosa
0.03-0.20	2.18
0.21-0.50	0.072
0.51-1.00	0.042
1.01-2.00	0.027
2.01-5.00	0.013
> 5.00	0.0003

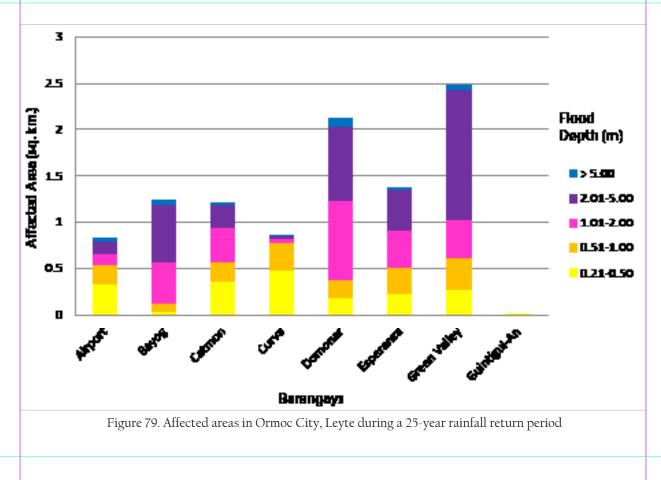

Figure 77. Affected areas in Matag-Ob, Leyte during a 25-year rainfall return period

For the Municipality of Merida, with an area of 101.48 sq. km., 12.09% will experience flood levels of less than 0.20 meters. 0.53% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.29%, 0.21%, 0.18%, and 0.006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 52 depicts the affected areas, in square kilometers, by flood depth per barangay.

	, ,				
Affected area (sq. km.) by	Area of affected barangays in Merida (in sq. km.)				
flood depth (in m.)	Cabaliwan	Mahayag			
0.03-0.20	5.77	6.5			
0.21-0.50	0.26	0.28			
0.51-1.00	0.14	0.15			
1.01-2.00	0.11	0.1			
2.01-5.00	0.091	0.091			
> 5.00	0.0005	0.0057			

Table 52. Affected areas in Merida, Leyte during a 25-year rainfall return period

For the Municipality of Ormoc City, with an area of 451.96 sq. km., 7.19% will experience flood levels of less than 0.20 meters. 1.78% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.32%, 4.06%, 2.27%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 53-55 depict the affected areas, in square kilometers, by flood depth per barangay.


Affected	Area of affected barangays in Ormoc City (in sq. km.)									
area (sq. km.) by flood depth (in m.)	Airport	Bayog	Catmon	Curva	Domonar	Esperanza	Green Valley	Guintigui- An		
0.03-0.20	0.73	0.042	1.15	1.72	0.23	5.01	1.21	0.039		
0.21-0.50	0.33	0.037	0.36	0.48	0.19	0.23	0.28	0.00021		
0.51-1.00	0.21	0.089	0.21	0.29	0.19	0.28	0.33	0		
1.01-2.00	0.12	0.44	0.37	0.05	0.85	0.4	0.42	0		
2.01-5.00	0.14	0.62	0.25	0.03	0.81	0.45	1.4	0		
> 5.00	0.018	0.055	0.011	0.0002	0.086	0.016	0.043	0		

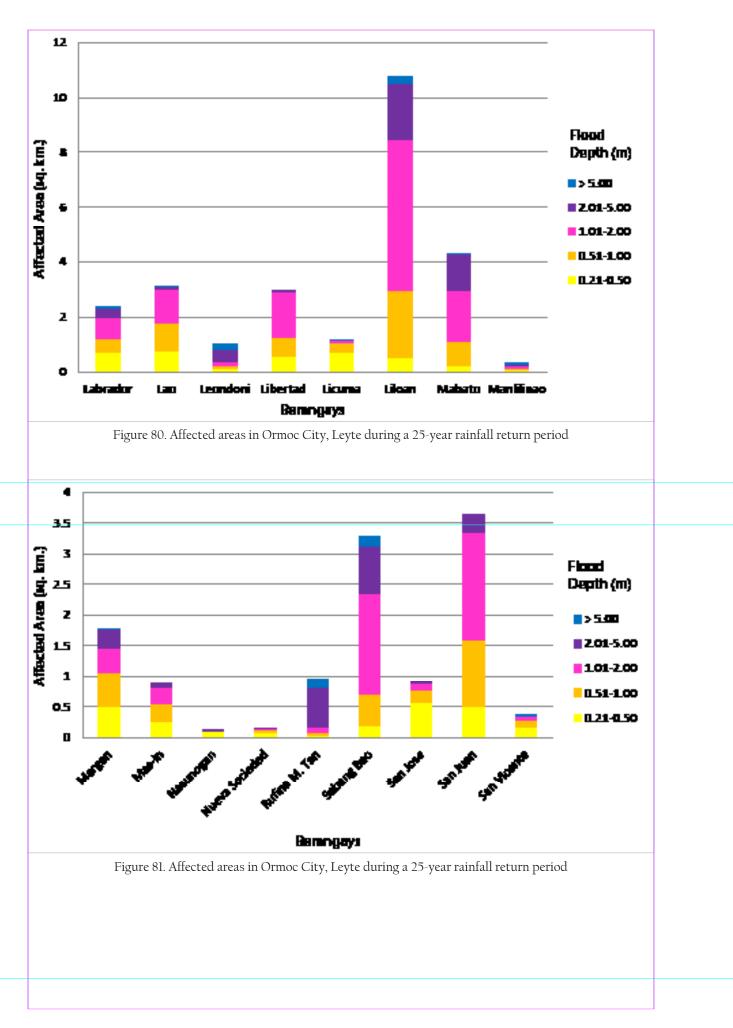
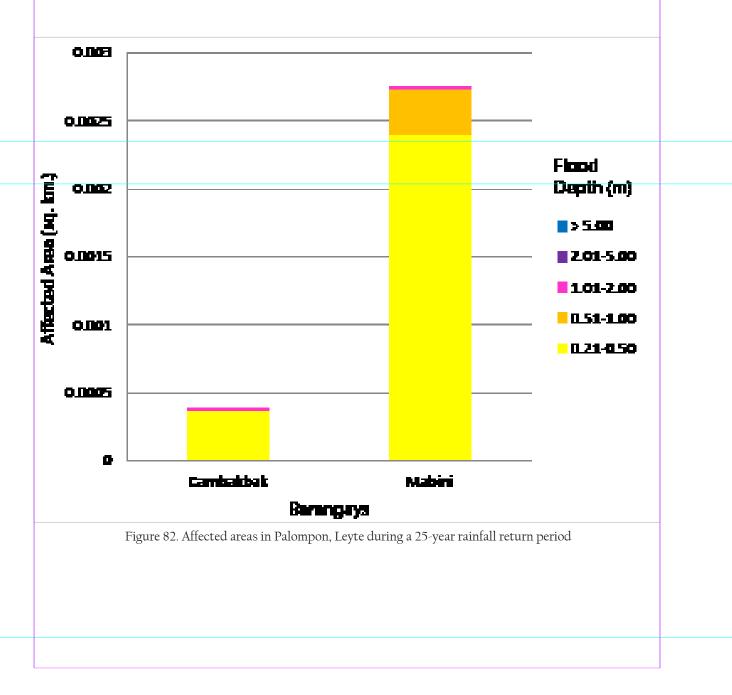

Table 53. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period

	Table 54. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period										
Affected	Area of affected barangays in Ormoc City (in sq. km.)										
area (sq. km.) by flood depth (in m.)	Labrador	Lao	Leondoni	Libertad	Licuma	Liloan	Mabato	Manlilinao			
0.03-0.20	0.56	0.88	0.38	1.42	2.06	0.21	0.19	2.21			
0.21-0.50	0.71	0.76	0.11	0.56	0.7	0.53	0.23	0.08			
0.51-1.00	0.5	1.01	0.098	0.69	0.36	2.43	0.89	0.066			
1.01-2.00	0.79	1.23	0.15	1.68	0.08	5.49	1.85	0.089			
2.01-5.00	0.32	0.12	0.48	0.036	0.016	2.08	1.32	0.063			
> 5.00	0.039	0.0006	0.17	0	0.0027	0.23	0.0005	0.0008			

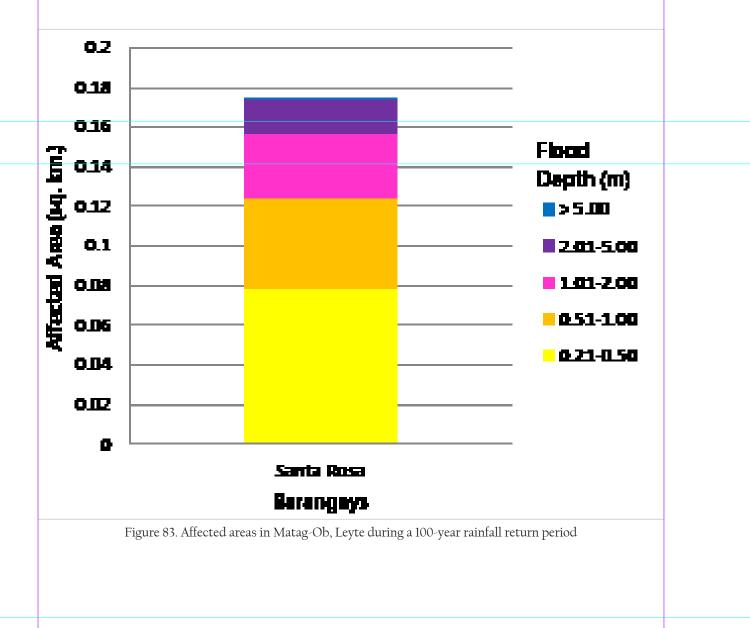
Table 55. Affected areas in Ormoc City, Leyte during a 25-year rainfall return period

Affected		ity (in sq. km.)							
area (sq. km.) by flood depth (in m.)	Margen	Mas-In	Nasunogan	Nueva Sociedad	Rufina M. Tan	Sabang Bao	San Jose	San Juan	San Vicente
0.03-0.20	1.74	2.18	0.45	1.88	0.6	0.21	2.88	0.94	3.56
0.21-0.50	0.5	0.25	0.093	0.087	0.047	0.2	0.58	0.51	0.17
0.51-1.00	0.55	0.29	0.01	0.035	0.043	0.5	0.2	1.09	0.11
1.01-2.00	0.4	0.28	0.0047	0.02	0.07	1.66	0.11	1.75	0.058
2.01-5.00	0.32	0.056	0.0081	0.0082	0.65	0.77	0.022	0.29	0.021
> 5.00	0.0002	0	0	0	0.14	0.16	0	0	0.0001



For the Municipality of Palompon, with an area of 125.87 sq. km., 0.09% will experience flood levels of less than 0.20 meters. 0.002% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.0003%, and 0.00002% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Table 56 depicts the affected areas, in square kilometers, by flood depth per barangay.

56. Atte	ected areas in Pal	ompon, Leyte durir	ng a 25-year rainfall	return			
	Affected area (sq. km.) by		Area of affected barangays in Palompon (in sq. km.)				
	flood depth (in m.)	Cambakbak	Mabini				
	0.03-0.20	0.043	0.068				
	0.21-0.50	0.00037	0.0024				
	0.51-1.00	0	0.00034				
	1.01-2.00	0.000013	0.000014				
	2.01-5.00	0	0				
	> 5.00	0	0				


Table 56. Affected areas in Palompon, Leyte during a 25-year rainfall return period

For the 100-year return period, 3.40% of the Municipality of Matag-Ob, with an area of 63.46 sq. km., will experience flood levels of less than 0.20 meters, while 0.12% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.07%, 0.05%, 0.03%, and 0.0007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 57 depicts the areas affected in Matag-Ob, in square kilometers, by flood depth per barangay.

Table 57. Affected areas in Matag-Ob, Leyte during a 100-year rainfall return period

Affected area (sq. km.) by flood depth	Area of affected barangays in Matag- Ob (in sq. km.)
(in m.)	Santa Rosa
0.03-0.20	2.16
0.21-0.50	0.079
0.51-1.00	0.046
1.01-2.00	0.032
2.01-5.00	0.017
> 5.00	0.00047

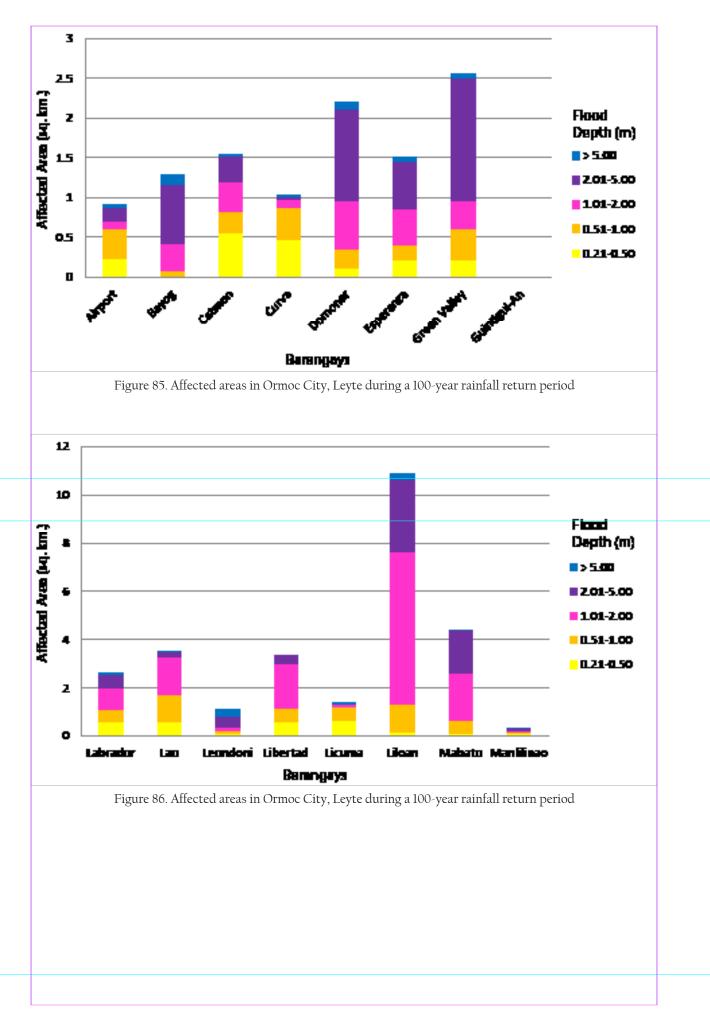
For the Municipality of Merida, with an area of 101.48 sq. km., 11.93% will experience flood levels of less than 0.20 meters. 0.59% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.33%, 0.23%, 0.23%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 58 depicts the affected areas, in square kilometers, by flood depth per barangay.

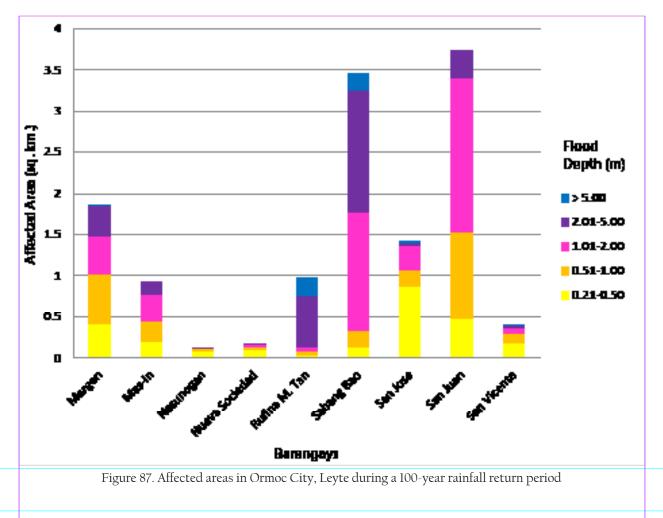
Table 58. Af	Table 58. Affected areas in Merida, Leyte during a 25-year rainfall return period								
	Affected area (sq. km.) by	Area of affecte Merida (i							
	flood depth (in m.)	Cabaliwan	Mahayag						
	0.03-0.20	5.7	6.41						
	0.21-0.50	0.29	0.31						
	0.51-1.00	0.16	0.17						
	1.01-2.00	0.12	0.11						
	2.01-5.00	0.12	0.11						
	> 5.00	0.0019	0.011						

B.O 0.7 0.6 Affected Area (14, 15m.) Flood Depth (m) 0.5 > 5.00 0.4 201-5.00 101-2.00 0.3 051-1.00 0Z 021-0.50 01 Cabalincan Mahayag Berengeys Figure 84. Affected areas in Merida, Leyte during a 25-year rainfall return period

For the Municipality of Ormoc City, with an area of 451.96 sq. km., 6.40% will experience flood levels of less than 0.20 meters. 1.64% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2%, 4.38%, 3.12%, and 0.30% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Tables 59-61 depict the affected areas, in square kilometers, by flood depth per barangay.

Table 59. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period											
Affected	Area of affected barangays in Ormoc City (in sq. km.)										
area (sq. km.) by flood depth (in m.)	Airport	Bayog	Catmon	Curva	Domonar	Esperanza	Green Valley	Guintigui- An			
0.03-0.20	0.64	0.0045	0.82	1.55	0.15	4.89	1.13	0.039			
0.21-0.50	0.24	0.023	0.55	0.48	0.12	0.21	0.22	0.00025			
0.51-1.00	0.36	0.054	0.27	0.39	0.24	0.2	0.39	0			
1.01-2.00	0.11	0.35	0.38	0.11	0.61	0.45	0.36	0			
2.01-5.00	0.17	0.74	0.33	0.041	1.14	0.59	1.54	0			
> 5.00	0.027	0.11	0.016	0.0026	0.092	0.05	0.055	0			


Table 59. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period


Table 60. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period

Affected		А	rea of affecte	ed barangays	s in Ormoc C	ity (in sq. k	: m.)	
area (sq. km.) by flood depth	Labrador	Lao	Leondoni	Libertad	Licuma	Liloan	Mabato	Manlilinao
(in m.)								
0.03-0.20	0.28	0.52	0.27	1.04	1.86	0.075	0.063	2.18
0.21-0.50	0.64	0.64	0.091	0.59	0.67	0.19	0.14	0.085
0.51-1.00	0.48	1.09	0.13	0.59	0.53	1.14	0.55	0.067
1.01-2.00	0.9	1.57	0.16	1.82	0.14	6.28	1.92	0.09
2.01-5.00	0.57	0.19	0.46	0.35	0.023	3.03	1.81	0.086
> 5.00	0.053	0.0005	0.28	0	0.0028	0.25	0.0015	0.0014

Table 61. Affected areas in Ormoc City, Leyte during a 100-year rainfall return period

Affected			Area of af	fected bara	ngays in Or	moc City (i	in sq. km.)		
area (sq. km.) by flood depth (in m.)	Margen	Mas-In	Nasunogan	Nueva Sociedad	Rufina M. Tan	Sabang Bao	San Jose	San Juan	San Vicente
0.03-0.20	1.65	2.11	0.44	1.86	0.57	0.036	2.37	0.85	3.52
0.21-0.50	0.42	0.2	0.093	0.097	0.043	0.14	0.87	0.48	0.18
0.51-1.00	0.61	0.25	0.02	0.044	0.044	0.2	0.21	1.05	0.12
1.01-2.00	0.46	0.33	0.0051	0.022	0.047	1.44	0.29	1.87	0.074
2.01-5.00	0.37	0.15	0.0094	0.011	0.62	1.48	0.039	0.33	0.03
> 5.00	0.0009	0	0	0	0.22	0.2	0.0001	0	0.0001

For the Municipality of Palompon, with an area of 125.87 sq. km., 0.09% will experience flood levels of less than 0.20 meters. 0.003% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.0003%, and 0.00002% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Table 62 depicts the affected areas, in square kilometers, by flood depth per barangay.

Table 62. Affected areas in Palo	ompon, Leyte durin	g a 100-year rainfal	l return period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Palompon (in sq. km.)		
	Cambakbak	Mabini	
0.03-0.20	0.042	0.066	
0.21-0.50	0.0006	0.0037	
0.51-1.00	0.000031	0.00034	
1.01-2.00	0.000013	0.000014	
2.01-5.00	0	0	
> 5.00	0	0	

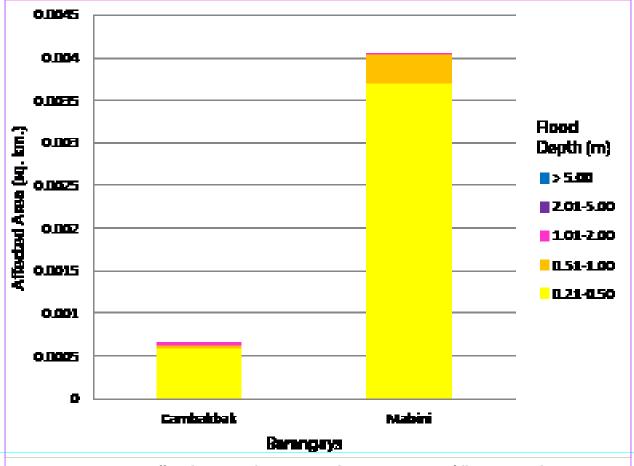


Figure 88. Affected areas in Palompon, Leyte during a 100-year rainfall return period

Among the barangays in the Municipality of Matag-Ob, Santa Rosa is projected to have the highest percentage of area that will experience flood levels, at 3.68%.

Among the barangays in the Municipality of Merida, Mahayag is projected to have the highest percentage of area that will experience flood levels, at 7.03%. On the other hand, Cabaliwan posted the second highest percentage of area that may be affected by flood depths, at 6.29%.

Among the barangays in the Municipality of Ormoc City, Liloan is projected to have the highest percentage of area that will experience flood levels, at 2.43%. On the other hand, Ezperanza posted the second highest percentage of area that may be affected by flood depths, at 1.42%.

Among the barangays in the Municipality of Palompon, Mabini is projected to have the highest percentage of area that will experience flood levels, at 0.06%. On the other hand, Cambakbak posted the second highest percentage of area that may be affected by flood depths, at 0.03%.

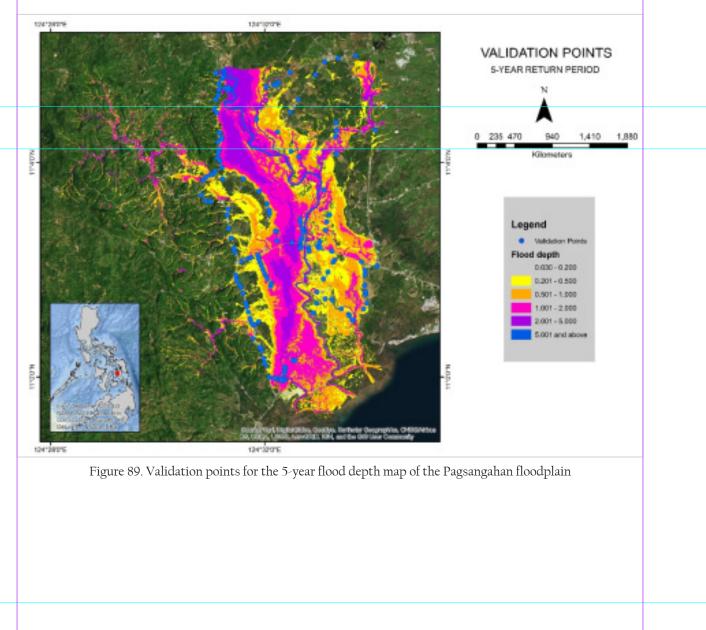
The generated flood hazard maps for the Pagsangahan floodplain were also used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for the flood hazard maps – "Low", "Medium", and "High" – the affected institutions were given an individual assessment for each flood hazard scenario (i.e., 5-year, 25-year, and 100-year).

Table 63. Area covered by each warning level with respect to the rainfall scenario				
Area Covered in sq. km				
5 year	25 year	100 year		
10.60	8.66	8.13		
18.42	22.40	19.65		
11.48	18.55	25.59		
	5 year 10.60 18.42	Area Covered in sq. km 5 year 25 year 10.60 8.66 18.42 22.40		

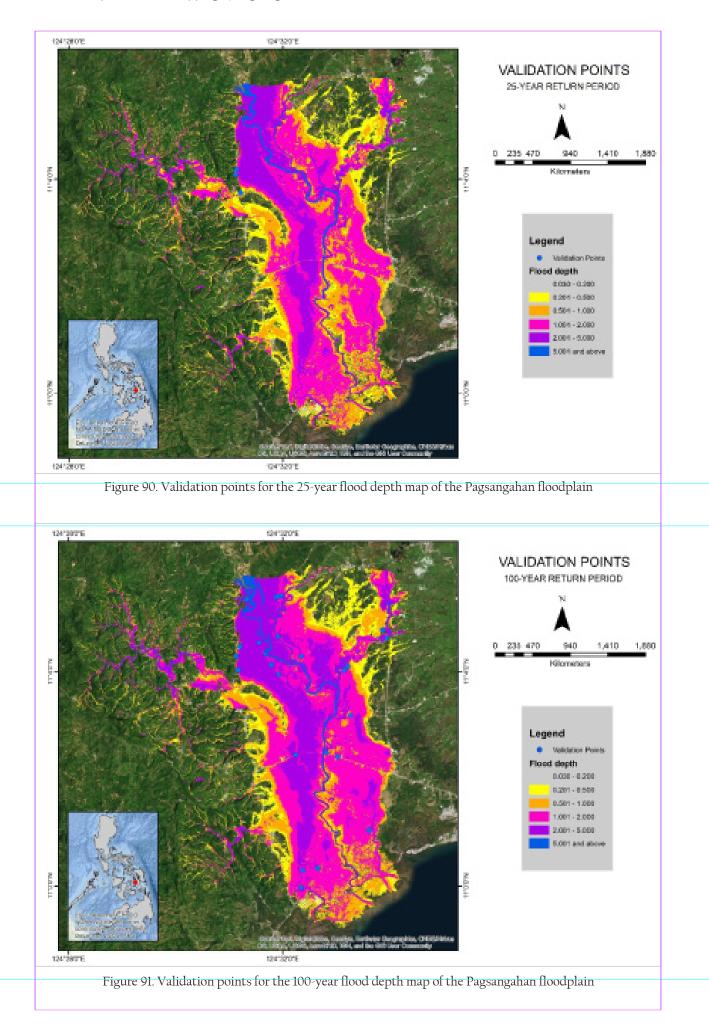
Of the thirty (30) identified educational institutions in the Pagsangahan floodplain, seven (7) schools were assessed to be exposed to Low-level flooding during a 5-year scenario; while six (6) schools were assessed to be exposed to Medium-level flooding, and one (1) school was assessed to be exposed to High-level flooding in the same scenario. In the 25-year scenario, three (3) schools were assessed to be exposed to Low-level flooding, and one (1) to High-level flooding. For the 100-year scenario, two (2) schools were assessed to be exposed to be exposed to Medium-level flooding. In the same scenario, three (3) schools are expected to be exposed to High-level flooding. See ANNEX 12 for a detailed enumeration of schools exposed to flooding within the Pagsangahan floodplain.

Of the eight (8) identified medical institutions in the Pagsangahan floodplain, four (4) were assessed to be exposed to Medium-level flooding during a 5-year scenario. In the 25-year scenario, three (3) institutions were assessed to be exposed to Medium-level flooding, while one (1) was assessed to be exposed to High-level flooding. For the 100-year scenario, two (2) centers were assessed to be exposed to Low-level flooding, and one (1) to Medium-level flooding. In the same scenario, three (3) were assessed to be subjected to High-level flooding, which are health centers in Barangay Green Valley, Liloan, and Mabato. See ANNEX 13 for a detailed enumeration of the medical institutions exposed to flooding within the Pagsangahan floodplain.

5.11 Flood Validation


In order to check and validate the extent of flooding in the different river systems, there is a need to perform validation survey work. For this purpose, field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by the Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.


The validation personnel went to the specified points identified in a river basin to gather data regarding the actual flood levels in each location. Data gathering was conducted through assistance from a local DRRM office to obtain maps or situation reports about the past flooding events, or through interviews with some residents with knowledge or experience of flooding in a particular area.

After which, the actual data from the field were compared with the simulated data to assess the accuracy of the flood depth maps produced, and to improve on results of the flood map. The points in the flood maps versus the corresponding validation depths are illustrated in Figures 92-94.

The flood validation consists of 243 points, randomly selected all over the Pagsangahan floodplain. The points were grouped depending on the RIDF return period of the event. The field validation points are available in ANNEX 11.

LIDAR Surveys and Flood Mapping of Pagsangahan River

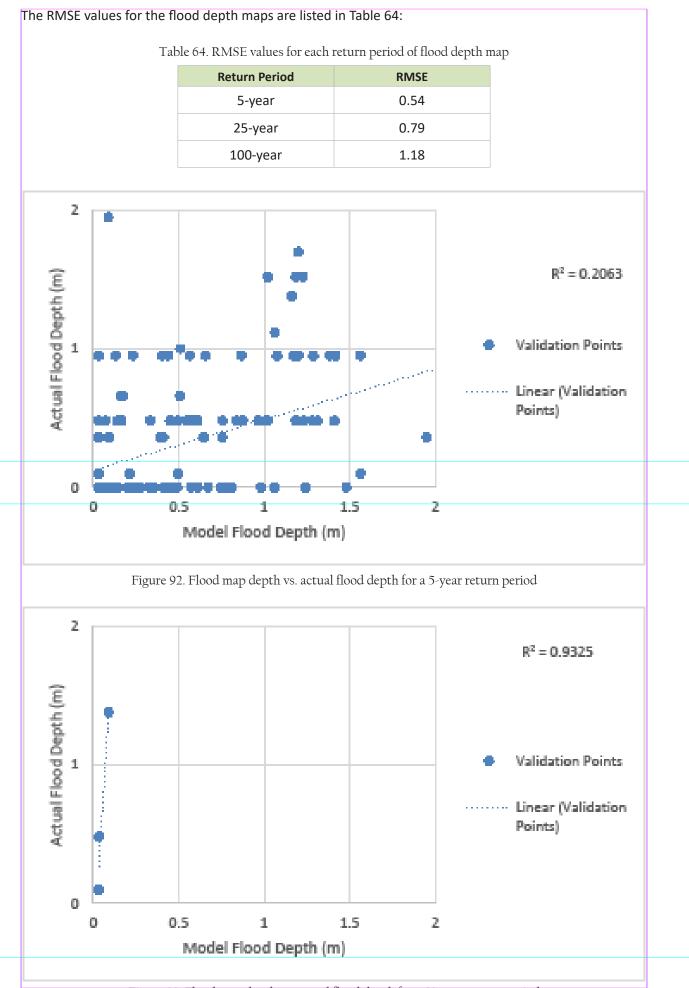


Figure 93. Flood map depth vs. actual flood depth for a 25-year return period

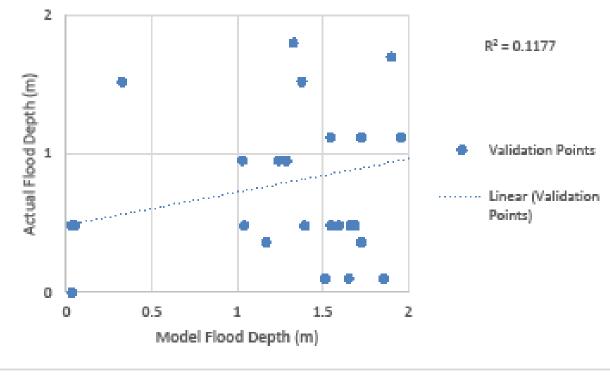


Figure 94. Flood map depth vs. actual flood depth for a 100-year return period

PAG	SANGAHAN			MODEL	ED FLOOD DE	PTH (m)		
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	91	21	8	4	1	0	125
h (m)	0.21-0.50	14	5	11	8	3	0	41
Depth	0.51-1.00	5	3	5	10	0	0	23
od E	1.01-2.00	1	0	0	6	0	0	7
Actual Flood	2.01-5.00	0	0	0	1	0	0	1
Actua	> 5.00	0	0	0	0	0	0	0
	Total	111	29	24	29	4	0	197

Table 65. Actual flood depth vs. Simulated flood depth in Pagsangahan, in the 5-year return scenario

The overall accuracy generated by the flood model in the 5-year return scenario is estimated at 54.31%. with one hundred and seven (107) points correctly matching the actual flood depths. There were fiftyseven (57) points estimated one (1) level above and below the correct flood depths. On the other hand, there were twenty-one (21) points and nine (9) points that were estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood depths, respectively. A total of four (4) points were overestimated, while a total of twenty-four (24) points were underestimated in the modeled flood depths of the Pagsangahan floodplain. Table 66. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 5-year return scenario

	No. of Points	%
Correct	81	44.75
Overestimated	56	30.94
Underestimated	44	24.31
Total	181	100

Table 67. Actual flood depth vs. Simulated flood depth in Pagsangahan, in the 25-year return scenario

PAG	SANGAHAN			MODEL	ED FLOOD DEI	PTH (m)		
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	1	0	0	0	0	0	1
(m) h	0.21-0.50	1	0	0	0	0	0	1
Depth	0.51-1.00	0	0	0	0	0	0	0
Flood [1.01-2.00	1	0	0	0	0	0	1
al Flo	2.01-5.00	0	0	0	0	0	0	0
Actual	> 5.00	0	0	0	0	0	0	0
1	Total	3	0	0	0	0	0	3

The overall accuracy generated by the flood model for the 25-year return scenario is estimated at 33.33%, with one (1) point correctly matching the actual flood depths. There was one (1) point estimated one (1) level above and below the correct flood depths; while there were zero (0) points and one (1) point estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood levels, respectively. A total of four (4) points were overestimated, while a total of two (2) points were underestimated in the modeled flood depths of the Pagsangahan floodplain.

Table 68. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 25-year return scenario

	No. of Points	%
Correct	1	33.33
Overestimated	0	0.00
Underestimated	2	66.67
Total	3	100.00

LIDAR Surveys and Flood Mapping of Pagsangahan River

	Table 69.	Actual flood d	epth vs. Simul	ated flood dep	th in Pagsanga	han, in the 25	year return sc	enario
PAG	SANGAHAN			MODEL	ED FLOOD DEI	PTH (m)		
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	1	0	0	3	0	0	4
(m) r	0.21-0.50	2	0	0	9	2	0	13
Depth	0.51-1.00	0	0	0	3	0	0	3
Flood D	1.01-2.00	0	1	0	6	4	0	11
al Flo	2.01-5.00	0	0	0	1	0	0	1
Actual	> 5.00	0	0	0	0	0	0	0
	Total	3	1	0	22	6	0	32

The overall accuracy generated by the flood model for the 100-year return scenario is estimated at 21.88%, with seven (7) points correctly matching the actual flood depths. Additionally, there were ten (10) points estimated one (1) level above and below the correct flood depths. Meanwhile, there were ten (10) points and five (5) points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood depths, respectively. A total of four (4) points were overestimated, while a total of four (4) points were underestimated in the modeled flood depths of the Pagsangahan River Basin survey.

Table 70. Summary of Accuracy Assessment in the Pagsangahan River Basin Survey for the 100-year return scenario

	No. of Points	%
Correct	7	21.88
Overestimated	21	65.63
Underestimated	4	12.50
Total	32	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEX

ANNEX 1. Technical Specifications of the LiDAR Sensors used in the Pagsangahan Floodplain Survey

1. AQUARIUS SENSOR

Table A-1.1. Technical specifications of the Aquarius sensor

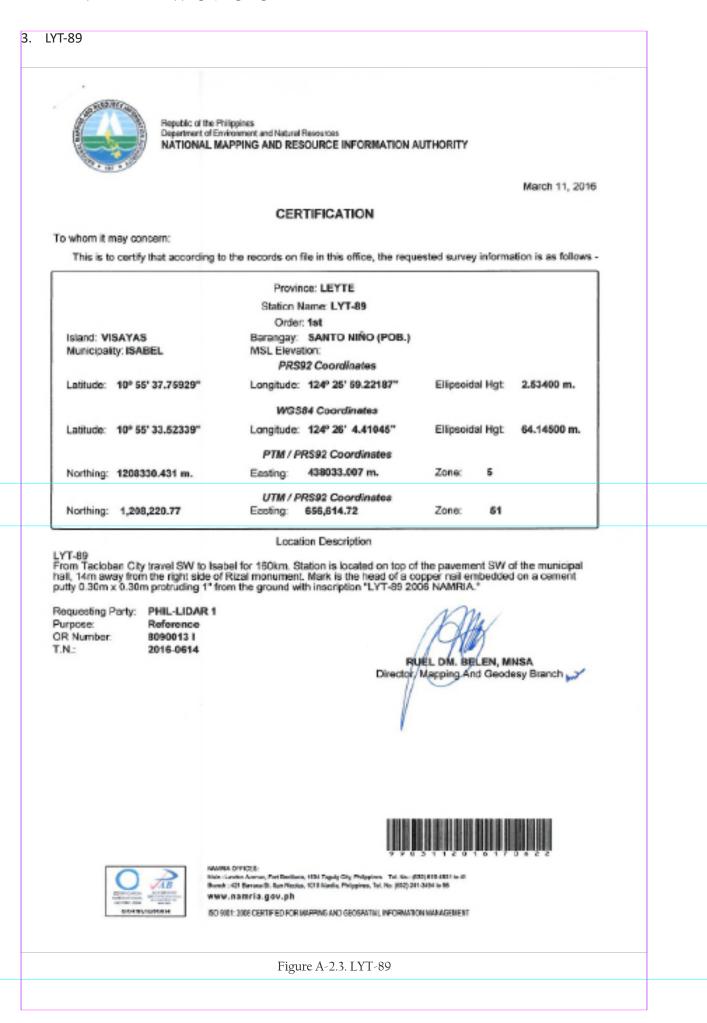
Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1 st , 2 nd , 3 rd , and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Table A-1.2. Technical specifications of the Gemini sensor

Control Rack

Laptop

Figure	A-1.2.	Gemini	Sensor
--------	--------	--------	--------


Table A-1.2.	Technical	specifications	s of the Gen	nini sensor

Parameter	Specification
Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
220-channel dual frequency GPS/ GNSS/Galileo/L-Band receiver	300-2500
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1 st , 2 nd , 3 rd , and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA Certification of Reference Points used in the LiDAR Survey

	Republic of the Department of NATIONAL	Engineering and Matural	Resources	AUTHORITY	
Wite.				A STICKIT	
					April 23, 2014
To whom it		CER	TIFICATION		
	may concern: o certify that according	to the records on F	in this office st		
			le in this office, the req	uested survey inform	ation is as follows -
			Se: LEYTE		
		Station N Order:	ame: LYT-37 4th		
Island: V Municipal	ISAYAS ity: LEYTE	01001		Barangay: POB	LACION
		PRS9	2 Coordinates		
Latitude:	11º 22' 17.79271"	Longitude:	124° 29' 7,61910"	Ellipsoidal Hgt:	5.33900 m.
		WGSa	4 Coordinates		
Latitude:	11° 22° 13.44918"	Longitude:	124° 29' 12.76807"	Ellipsoidal Hgt:	65.99800 m.
		PTM	Coordinates		
Northing:	1257480.277 m.	Easting:	443839.088 m.	Zone: 5	
Northing	1,257,404.79		Coordinates		
	1,257,404.79	Easting: 6	62,088.45	Zone: 51	
LYT-37			n Description		
Court and 10	11 22 3 mile COC ().	e centerline of Gab	em Leyte. It is situate a town plaza in betweer aldon Street, 75 om SV r a 4" copper nail cente	I UNE DATE ADD THE DO	Chrometer I and unt
Requesting P	arty: Engr. Christop	her Cruz/ UP-DRE	0.M		
Pupose: OR Number: T.N.:	Reference 8796021 A 2014-918			Am	
			RU	EL DM. BELEN, MM	ISA
			Director	Mapping And Geode	sy Branch
			/		0.
		A GPF ICES:			I
	J JAII Branch	Limbers descents. First Resetance, and	Tagaag City, Philippines Tel. No. (82) 20 Manila, Philippines, Tel. No. (82)	2 2 2 0 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	I NN

		0
Republic of the Ph		\sim
B Department of Em	fionment and Natural Resources APPING AND RESOURCE INFORMATION /	NUTHORITY
A. W. I		
		April 23, 2014
	CERTIFICATION	
o whom it may concern:		
	the records on file in this office, the requ	ested survey information is as follows
	Province: LEYTE	
	Station Name: LYT-704	
Island: VISAYAS	Order: 2nd	Barangay: POBLACION
Municipality: KANANGA	PRS92 Coordinates	
Latitude: 11º 11' 16.35419"	Longitude: 124° 33' 36.47427"	Ellipsoidal Hgt: 38.29100 m.
	WGS84 Coordinates	
Latitude: 11º 11' 12.06307"	Longitude: 124° 33' 41.63876"	Ellipsoidal Hgt: 99.58400 m.
	PTM Coordinates	
Northing: 1237144.619 m.	Easting: 451959.944 m.	Zone: 5
	UTM Coordinates	
Northing: 1,237,125.91	Easting: 670,347.64	Zone: 51
	Location Description	
	embedded in a cement block with inscript	
lementary School, 4 m. northwest a	e NAMRIA monument was established a way from the school's entrance gate, 4 n 20 m. away from the school stage and e ity and to Brgy. Lemon about 5 m. north.	 northwest near the basketball court.
	her Cruz/ UP-DREAM	.1
Pupose: Reference DR Number: 8796021 A		/ Man/
.N.: 2014-916	R	UEL DM. BELEN, MNSA
	Director	, Mapping And Geodesy Branch
		/
	WOFFICER	0 4 2 3 2 0 1 4 1 5 4 7 5 4
VAN Bare	Lawton Avenue, Port Bunitacio, 1634 Tagaig Oly, Philippines Tel. No.: h : 621 Banaca St. Son Nicotos, 1018 Mania, Philippines, Tel. No. (532) 2 and paper file paper phil.	(135) 810-4831 to 41 241-3404 to 95
50708-000 minute	w.namria.gov.ph 801:208 CERTIFIED FOR NAPPING AND GEOSPATIAL INFORMAT	TION WAVAGENENT

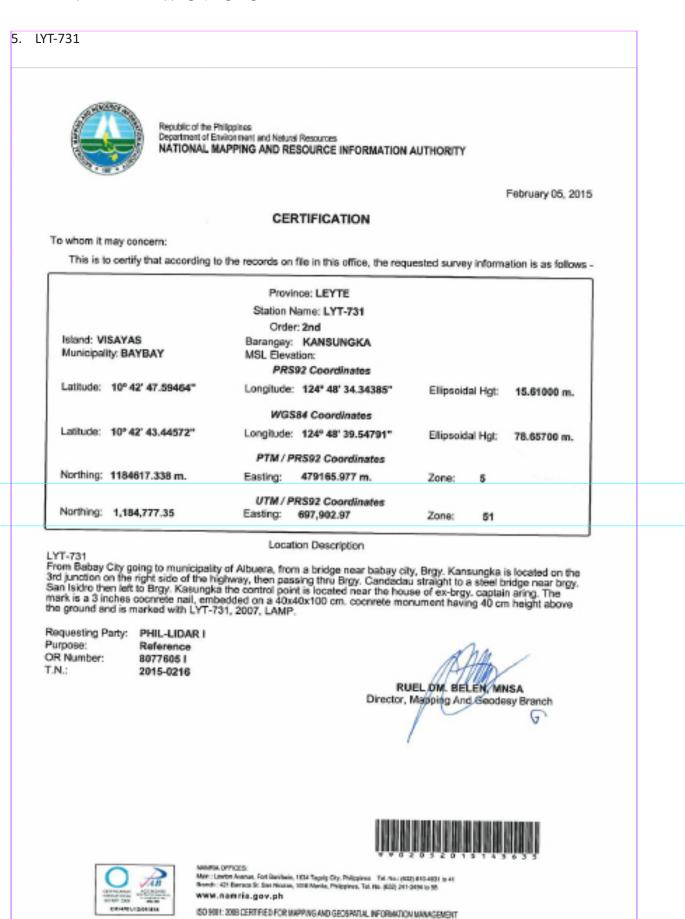
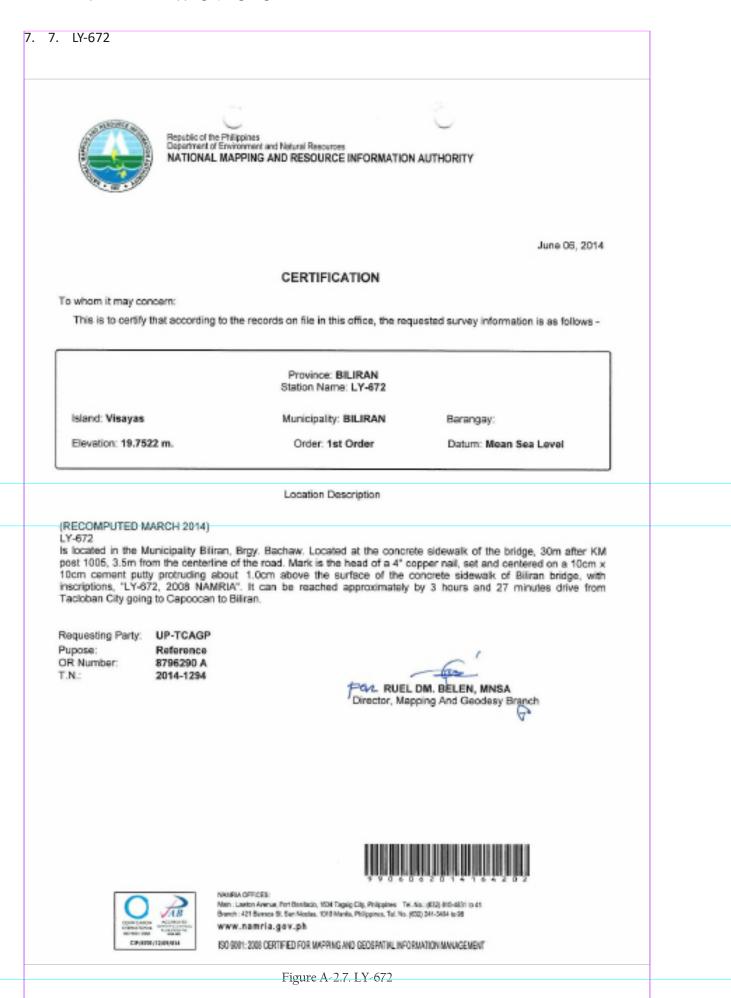



Figure A-2.5. LYT-731

ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. LY-606

Table A-3.1. LY-606

LY-606 - LYT-704 (7:59:03 AM-1:36:37 PM) (S1)

Baseline observation:	LY-606 LYT-704 (B1)
Processed:	10/21/2014 5:29:42 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.000 m
Maximum PDOP:	2.520
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	1/28/2014 7:59:03 AM (Local: UTC+8hr)
Processing stop time:	1/28/2014 1:38:37 PM (Local: UTC+8hr)
Processing duration:	05:37:34
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	LYT-704					
Grid		Lo	cal	Global		obal
Easting	670347.639 m	Latitude	N11*11*16.32654*	Latitude		N11*11'12.03542
Northing	1237125.056 m	Longitude	E124°33'36.47427"	Longitude		E124°33'41.63876'
Elevation	37.077 m	Height	38.292 m	Height		99.584 m
To:	LY-606					
Grid		Local		Global		obal
Easting	670395.829 m	Latitude	N11*11'28.07059*	Latitude		N11*11'23.77869
Northing	1237486.135 m	Longitude	E124°33'38.12565'	Longitude		E124°33'43.28985'
Elevation	40.261 m	Height	41.477 m	Height		102.763 m
Northing	670395.829 m 1237486.135 m	Latitude Longitude	N11*11/28.07069* E124*33/38.12565*	Longitude	G	N11*11*23.778 E124*33*43.28
∆Easting	48.19	0 m NS Fwd Azimuth		7*54*17*	ΔX	-3.302 n
ΔNorthing	361.07	9 m Ellipsoid Dist.		364.296 m	ΔY	-83.507 m
a second second						

Standard Errors

Vector errors:							
σ∆Easting	0.000 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.001 m		
σ∆Northing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔY	0.001 m		
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m		

2. LY-672

Table A-3.2. LY-672						
LYT-37 - LY-672 (8:25:12 AM-1:23:02 PM) (S1)						
Baseline observation:	LYT-37 LY-672 (B1)					
Processed:	6/17/2014 10:02:52 AM					
Solution type:	Fixed					
Frequency used:	Dual Frequency (L1, L2)					
Horizontal precision:	0.004 m					
Vertical precision:	0.015 m					
RMS:	0.003 m					
Maximum PDOP:	2.424					
Ephemeris used:	Broadcast					
Antenna model:	Trimble Relative					
Processing start time:	5/19/2014 8:25:27 AM (Local: UTC+8hr)					
Processing stop time:	6/19/2014 1:23:02 PM (Local: UTC+8hr)					
Processing duration:	04:57:35					
Processing interval:	1 second					

Vector Components (Mark to Mark)

From:	LYT-37					
Grid			Local		Global	
Easting	662088.439 m	Latitude	N11°22'17.79317*	Latitude		N11°22'13.44918"
Northing	1257404.801 m	Longitude	E124°29'07.61902"	Longitude		E124*29*12.76807*
Elevation	4.299 m	Height	5.339 m	Height		65.998 m
To:	LY-672					
	Grid		Local		Global	
Easting	661172.874 m	Latitude	N11°27'22.51942"	Latitude		N11*27*18.15341*
Northing	1266762.334 m	Longitude	E124*28*38.99619*	Longitude		E124"28'44.13687"
Elevation	19.616 m	Height	20.793 m	Height		81.224 m
Vector						
∆Easting	-915.66	6 m NS Fwd Azin	nuth	354"42'21"	ΔX	1755.906 m
∆Northing	9357.53	3 m Ellipsoid Dist	1	9402.938 m	ΔY	-1023.439 m
AElevation	15.31	7 m ∆Height		15.454 m	NZ	9180.687 m

Standard Errors

Vector errors:					2.0
o ∆Easting	0.002 m	o NS fwd Azimuth	0,00,00.	σΔX	0.004 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m
σ∆Elevation	0.007 m	σ∆Height	0.007 m	σΔZ	0.002 m

3. LYT-90

Table A-3.3. LYT-90

From:	CBU-340					
	Grid		Local		G	lobal
Easting	660577.527 m	Latitude	N10°38'14.87646"	Latitude		N10"38"10.71737"
Northing	1176200.458 m	Longitude	E124°28'04.68006"	Longitude		E124"28'09.89389"
Elevation	14.571 m	Height	15.533 m	Height		77.920 m
To:	LYT-90					
	Grid		Local		G	lobal
Easting	675667.875 m	Latitude	N11"00'17.75728"	Latitude		N11"00"13.51665"
Northing	1216919.360 m	Longitude	E124°36'28.24066"	" Longitude		E124"36'33.42083
Elevation	14.187 m	Height	15.532 m	Height		77.386 m
LIGTORON						
Vector	15090.34	8 m NS Fwd Azim	uth	20°36'38"	ΔX	-8272.921 m
Vector ΔEasting ΔNorthing		18 m NS Fwd Azim 12 m Ellipsoid Dist.		20°36'38" 43427.367 m		-8272.921 m

4. LYT-690

Table A-3.4. LYT-690

From:	LYT-704					
	Grid		Local		G	ilobal
Easting	670347.634 m	Latitude	N11"11'16.35419"	Latitude		N11°11'12.06307
Northing	1237125.905 m	Longitude	E124"33'36.47427*	Longitude		E124'33'41.63876
Elevation	37.077 m	Height	38.292 m	Height		99.584 n
To:	LYT-690					
	Grid		Local		Global	
Easting	675668.331 m	Latitude	N11*00'17.68909*	9" Latitude		N11*00'13.44846
Northing	1216917.267 m	Longitude	E124"36'28.25530"	28.25530" Longitude		E124"36'33.43548
Elevation	3.015 m	Height	4.361 m	m Height		66.214 n
Vector						
ΔEasting	5320.68	7 m NS Fwd Azin	nuth	165"32'59"	ΔX	-6484.391 n
ΔNorthing	-20208.63	8 m Ellipsoid Dist	t.	20897.960 m	ΔY	219.769 n
ΔElevation	-34.06	2 m ΔHeight		-33.931 m	47	-19865.343 n

Standard Errors

Vector errors:							
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0"00'00"	σΔX	0.003 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.005 m		
σ ΔElevation	0.006 m	σ ΔHeight	0.006 m	σΔZ	0.002 m		

5. RM-9

Table A-3.5. RM-9

RM-9 - LYT-690 (1:21:40 PM-5:25:55 PM) (S1)

Baseline observation:	RM-9 LYT-690 (B1)
Processed:	2/25/2015 4:28:35 PM
Solution type:	Fored
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.002 m
Vertical precision:	0.003 m
RMS:	0.002 m
Maximum PDOP:	2.189
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	1/25/2016 1:22:03 PM (Local: UTC+Bhr)
Processing stop time:	1/25/2015 5:25:55 PM (Local: UTC+6hr)
Processing duration:	04:03:52
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	LYT-690	LYT-890					
	Grid		Local		G	lobal	
Easting	675668.340 m	Latitude	N11'00'17.68890"	Latitude		N11'00'13.44827"	
Nothing	1216917.262 m	Longitude	E124'36'28.25559'	Longitude		E124'36'33.43578"	
Elevation	3.039 m	Height	4.384 m	Height		66.238 m	
To:	RM-9						
	Grid	Local		Global		lobal	
Easting	675679.222 m	Latitude	N11'00'18.53023"	Latitude		N11'00'14.28954"	
Northing	1216943.169 m	Longitude	E124'36'28.61863"	Longitude		E124'36'33.79880'	
Elevation	1.915 m	Height	3.260 m	Height		65.114 m	
Vector							
ΔEasting	10.8	82 m NS Fwd Azin	nuth	23'05'28"	ΔX	-5.641 m	
ΔNorthing	25.9	06 m Ellipsoid Dist	t.	28.101 m	ΔY	-11.228 m	
AElevation		24 m AHeight		-1.123 m	47	25.160 m	

Standard Errors

Vector errors:						
σ∆Easting	0.001 m	σ NS fwd Azimuth	0100'05*	σΔX	0.001 m	
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m	
σ ΔElevation	0.002 m	σ <u>Al</u> Height	0.002 m	σΔΖ	0.001 m	

2

6. LYT-704bak

Table A-3.6. LYT-704bak

Vector Components (Mark to Mark)

From:	LYT-704					
	Grid		Local		G	lobal
Easting	670347.634 m	Latitude	N11'11'16.35419"	Latitude		N111112.06307
Northing	1237125.905 m	Longitude	E124"33'38.47427"	Longitude		E124'33'41.63876'
Elevation	37.077 m	Height	38.292 m	Height		99.584 m
To:	LYT-704bak					
	Grid		Local		G	lobal
Easting	670363.675 m	Latitude	N111116.44188*	Latitude		N111112.15076
Northing	1237128.684 m	Longitude	E124"33'37.00349"	Longitude		E124"33'42.16798"
Elevation	36.879 m	Height	38.093 m	Height		\$9.385 m
Vector						
ΔEasting	16.04	1 m NS Fwd Azin	nuth	80"28'28"	ΔX	-12.816 m
ΔNorthing	2.77	9 m Ellipsoid Dist	4 · · · · · · · · · · · · · · · · · · ·	16.281 m	ΔY	-9.699 m
ΔElevation	-0.18	9 m ∆Height		-0.198 m	۵Z	2.605 m

Standard Errors

Vector errors:					
σ ΔE asting	0.001 m	σ NS fwd Azimuth	0100'04*	σΔΧ	0.001 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.001 m
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔΖ	0.000 m

Aposteriori Covariance Matrix (Meter*)

	х	Y	Z
x	0.0000004270		
Y	-0.0000001498	0.0000005232	
z	-0.0000000477	0.0000000726	0.0000001116

7. CBU-340

Table A-3.7. CBU-340

LYT-89 - CBU-340 (11:38:45 AM-4:56:27 PM) (S3)

Baseline observation:	LYT-89 CBU-340 (B3)
Processed:	3/30/2016 6:34:43 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.003 m
Vertical precision:	0.013 m
RMS:	0.003 m
Maximum PDOP:	2.939
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	3/19/2016 11:38:45 AM (Local: UTC+6hr)
Processing stop time:	3/19/2016 4:56:27 PM (Local: UTC+8hr)
Processing duration:	05:17:42
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	CBU-340					
	Grid		Local		G	lobal
Easting	660577.527 n	n Latitude	N10"38'14.87646"	Latitude		N10"38'10.71737"
Northing	1176200.458 m	Longitude	E124'28'04.68006"	Longitude		E124'28'09.89389'
Elevation	14.571 m	Height	15.533 m	Height		77.920 m
To:	LYT-89 Grid		Local		0	lobal
Easting	656814.260 m	n Latitude	N10'55'37.82577*	Labitude		N10'55'33.58987*
Northing	1208222.807 n	h Longitude	E124"25'59.20715"	Longitude		E124'26'04.39573"
Elevation	12.453 n	Height	13.758 m	Height		75.369 m
Vector						
ΔEasting	-3963.2	67 m NS Fwd Azir	muth	353113'09"	ΔX	6536.228 m
ΔNorthing	32022.3	49 m Ellipsoid Dis	t.	32269.539 m	ΔY	-2787.852 m
AElevation		18 m AHeight		-1.775 m		31477.438 m

Standard Errors

Vector errors:					
σ ΔE asting	0.001 m	σ NS fwd Azimuth	0.00.00.	σΔX	0.004 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m
σ ΔElevation	0.007 m	σ ΔHeight	0.007 m	σΔΖ	0.002 m

2

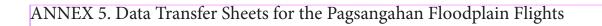

8. W-22

Table A-3.8. W-22

From:	W-22					
	Grid		Local		G	llobal
Easting	675563.750 m	Latitude	N11°00'18.93705'	Latitude		N11°00'14.69624'
Northing	1216955.050 m	Longitude	E124°36'24.81698'	Longitude		E124°36'29.99714'
Elevation	6.321 m	Height	7.666 m	Height		69.516 m
To:	LYT-89					
	Grid		Local		G	ilobal
Easting	656614.289 m	Latitude	N10°55'37.85585'	Latitude		N10°55'33.61994
Northing	1208223.732 m	Longitude	E124°25'59.20825'	Longitude		E124°26'04.39683'
Elevation	6.075 m	Height	7.380 m	Height		68.991 m
Vector						
	-18949.46	1 m NS Fwd Azim	uth	245"34'01"	ΔX	14718.902 n
Vector ΔEasting ΔNorthing		31 m NS Fwd Azimi 18 m Ellipsoid Dist.	uth	245*34'01* 20865.492 m		14718.902 n 12117.344 n

ANNEX 4. The LiDAR Survey Team Composition

	Table A-4.1. I	IDAR Survey Team Composition				
Data Acquisition Component Sub-Team	Designation	Name	Agency / Affiliation			
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP			
Data Acquisition	Data Component	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP			
Component Leader	Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP			
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP			
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUNA	UP-TCAGP			
	(Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP			
		FIELD TEAM				
	Senior Science	JULIE PEARL MARS	UP-TCAGP			
	Research Specialist	JASMINE ALVIAR	UP-TCAGP			
	(SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP			
		PAULINE JOANNE ARCEO	UP-TCAGP			
LiDAR Operation		MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP			
	Research Associate	GRACE SINDJAN	UP-TCAGP			
	(RA)	LARAH KRISELLE PARAGAS	UP-TCAGP			
		JONALYN GONZALES	UP-TCAGP			
		FRANK NICOLAS ILEJAY	UP-TCAGP			
		IRO NIEL ROXAS	UP-TCAGP			
Ground Survey, Data Download and	RA	FRANK NICOLAS ILEJAY	UP-TCAPG			
Transfer		DAN CHRISTOFFER ALDOVINO	UP-TCAGP			
		JERIEL PAUL ALAMBAN, GEOL.	UP-TCAPG			
		SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)			
	Airborne Security	SSG. RANDY SISON	PAF			
		TSG. SANDY UY	PAF			
LiDAR Operation		CAPT. JACKSON JAVIER	ASIAN AEROSPACE CORPORATION (AAC)			
		CAPT. JEFFREY JEREMY ALAJAR	AAC			
	Pilot	CAPT. NIEL ACHILLES AGAWIN	AAC			
		CAPT. JEROME MOONEY	AAC			
		CAPT. ANTHONY DAYO	AAC			
		CAPT. FERDINAND DE OCAMPO	AAC			

							DAD	A TRAMSI	TER SHE	T					_	10	
								Feb 3, 3	2014				-				
				RA	W LAS				1000010			D.A	50	OPERA	FLIGHT	PLAN	
DATE	FLIGHT NO.	MISSION	SENSO R	the second s	HallL (awath)	LOGS	POS	RAW IMAGES CG(G)	NISSIO NLOG		DIGITIZER	BASE STATIO N(S)	Base Info (.txt)	TOR LOGS (OPLO	Actual	KOWL	SERVER
28-Jan 34	9783.8	RELICISACION	Aquarius	MOL	N/0.	927 88	SH.G MD	57 4	246 88	13.7.68	30.1 60		SE BATES	651 OVTES	4.09.65	546.68	Y/Airbome_Ra \1252A
29-Jan-34		SRUKSBDSDSDSA			H,OL	541.68	117 MB	27.2 685	201.88	6.12 GB	28.7 08	18.2 MB	73 BATES	269 877163	2.86.88	243.18	Y/Airborne_Ra \1096A
30-Jan-14		381,638349/030A			N/A	724 109	217 MB	34-5	1	9.33 08			305 BATES	14610	6.65 KB	395 88	WyAirborne_Ra (1040A,

Received from

Raticia. a Cantor A Name Position CA Signature alenter

Received by

lama	JOLDA	F.	PRINTO	
Position	Ss	e.s		
ignature				

Figure A-5.1. Data Transfer Sheet for Pagsangahan Floodplain – A

	0.000			19	er.Jes							BAR IT	(10mp)	OPERATOR LODG	FL/047	ri Alt	NEWER
MR	18.	MISSIOH KANE	515524	Datyset LAS	Stat. (sweeth)	1.009	100	MeddacAsi	No. Toories Toole	SACK!	068301	GADE HTM ONES	Research (160	loarnei	Attact	68.	LOGATION
4/22/2214	11005	BUCHPITCH.	AQUARIUS	84.	144.	LINES	2406.0	63.3/11.708	34108793	14.108	8.4	12.198	189	110	80	7781090	2 Materia, And 2004
4/08/0814	1900%	10004631100	AQUARIUS	24	84.	TIME	17468	41.138	3090	a parties.	5.4	11.040	190	198	80	646/1365	2"Ariberta_Riter 1954
4(22/2014	13003	MICHELLSA.	40.901.5	5.4	84	1.5790	25758	95.508	+941528248	14,800	14	0.110.0	1980	140	040	008/10/3	Architectus, Pass 2007
5/13/2014	14025	100203543115	43,449,5	5.4	8.4	5.5518	27848	LONGS.	IMPORTANT	18.858	104	14:08:0	700	180	101	0453-3	2 Anderson, Rose 4423
\$11/2014	(such	5808330581508	10,000,0	84	84	2.02940	25454	191000	Contractions In	15,258	2958	14,548	100	163	NINE .	SPERCENT POR	C'Arbeire, Apa 1915
5/13/2014	0825	1023040105	A2.4.0.0	14	54	105405	1025-8	54.1425	10740	6.1708	17.103	10.168	10	160	940	101842	25Actions_Res HIGA
1/11/2014	0.6(4	301.030+5251358	40,849,8	124	10	2.00%8	2004	47.100	STORE .	8.5768	0.808	11,260	100	1825	0103	PERSONAL PROPERTY AND INC.	Presidente Alter Maria
5/34/2034	107.01	MERNENIMA	ACUARUS	101	10	UNN	205/8	15,291,650	SVID-FIRE	14,808	SINCH.	6.0548	163	1400	3243	1009-0	Conductions, France
6/56/2010	14534	38.63401548	ADAMAS	-	1.01	1.50540	0.004	48.350	275239-8	11.058	91.908	7.92568	-948	90	8.8	04.0428	2 million Part
5/15/2014	14884	158-55C01588	ASSAMUS	10.	198.	1,0440	11545	74,808	529-8	11,708	59658	11.000	168	100	146	415/00/00	Exchange, Paul 1992
5/36/3036	14854	301.050521349	AGRAMINS	10.	128.	1.285/8	379/9	\$1,208	10043	11.208	104	11.948	13	90	6463	84243	Z Molecow, First
\$/16/2014	14844	NUCCESSION	AQUER DO	-		1,0040	10.000	78,000	400-2	14.0008		11.000	158	100	4.8	19948	2 workserve, Plant

Reported from

Norte Problem Charles Address of ALC: N Republics

Reddened By: 3/23/2+19 Pario Pastori JH D Series.

Figure A-5.2. Data Transfer Sheet for Pagsangahan Floodplain – B

	_		-	1	_			-	_	-					PLICET	10.45	
	PUBNT		1	89	ON LAS	LOOSENIE	POR	BAN	LOS	PARA	047258	6416.17		OPERATOR LODG		-	L20ATION
DATE	100.	MISSION NAUER	BRABOR	Chilipped	Kill, (medic	Considence.			PLECKE LOGE			BASE ENCLOSED	Base Mile (34)		Actual	Kill,	
			AQUABUS	LAS	110	2.04	217	81.7	1995	0.1	na.	14.6	168	190	6	13	Enforceme_Rand" attail
015/2014		201025301254	-	-	110	1.09	2010	104.7	120/00/3	18	1.01	2.00	10	140	4	54	Z:Mytome_Rev*
9/11/2014	MODA	INLX19713DA	AGUARUS	104		1.81	281	00.2	500	14	218	QT.	158	110	6	104	2 Materia, Rad. 1795
5/25/3014	14746	350835010M	AGGMEUS	14	5484		-	-	108	14.7	-163	1.0+	10	110		500	Z Williams_Rowl
5/24/2014	14544	38LK35559H144A	ADDARES	ne -	10,000	1.35		88.2					-	73		14	2.Vidence_Flash
\$/25/2014	14564	38LK35H91145A	ACLINICIS	-	1603	1.7	202	18.7	-854	5.29	8.4T	8.9	195			1	2 Videone_Rest
		291835/5345A	49,999.8	10	266	1.2	126	91.7	494	10.8	100	18.7	1.000	73	5	140	3024
			ACLARIUS	100	515/880	har	198	01.5	480	11.4	10.8	0.7	140	168	8	pet.	2048 Barriel Barriel
		384/354/51468	-	-	104	1.54	179	197.2	157	14.4	08.202.5	-15	908	110	4	86	Patrices, Real BODA
5/27/2014	15064	SALKEBUG47A	AQUARIAS	104		1.0-	-	-	125-249	11.5	5,4	18	2.0	193	5	5.5	ZhAstonno_Rowi IsonA
6/27/2014	1505A	38UK33UST1479	ADDMIDIE	10	2481240	2	232	0.981.6	-	11.0		8.05	9.8	193		55	ZW/teme_faw StillA

C. Johnner Name Pasition Separation

KREP (dight) 12. Harri Postiari Sayratare 6 10 14

ANNEX 6. Flight Logs for the Flight Missions

1. Flight Log for 1032A Mission

1 LIDAR Operator: Turk	AND ALTM MOR	del: Mut 3 Mission Name: With	TANA A Type: VFR	5 Aircraft Type: Ceanna T206H	6 Aircraft Identification: 12-091
7 Pilot:	8 Co-Pilot:	9 Route:			
53 Dates Jan 21,2619	12 Airport o	M Departure (Airport, City/Province):	12 Airport of Artival 0	Sirport, City/Province):	
13 Engine On	14 Engine Off: 13 V.O	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
29 Weather		())			
20 Remarks:					
av no menta.					
Sulleys ful	Hight				
surres fur	1 non in				
21 Problems and Solution	s:				
L					
Acquisition Fields Aug	prevent by	Acquisition Flight Certified by	Nilot-in-Comma	wi	tidar Opgatar
n IV	1	- man		5	d'A.
per no	2	Lapren Horning	NOFFRENCH	BAN ALADAR	-Mr
Signiftane over Printe		Signature over Printed Name	Signature bear		Signature over Printed Name
(End User Represent	aliwoj	(PAF Representative)	1/		1'

2. Flight Log for 1458A Mission

Flight Log No.7 455 3848441352 **DEAM Data Acquisition Flight Log** 6 Aircraft Identification: 5 Aircraft Type : Ceanne T206H 2 ALTM Model: D.G.U. 3 Mission Name 4 Type: MFR LUDAR Operator: 100 Doxed 9 Route: B CO-Pilot: N. Again TPilot: James 12 Airport of Arrival (Airport, City/Province): 12 Airport of Departure (Airport, Oty/Province): 10 Date: 13 Engine On: 18 Total Flight Time: 16 Take off: 17 Landing: 15 Total Engine Time: 14 Engine Off: 4+25 1226 Æ 19 Weather 20 Remarks: compreted mission our BLESSB 21 Problems and Solutions: Acquisition Flight Approved by Acquisition Flight Certified by Pilei-In-Command Udar Convior Signature over Printed Name Signature over Printed Name Signature over Printed Name We Printed Name en a taip (End User Representativo) (PMF Representative) Figure A-6.2. Flight Log for Mission 1458A

3. Flight Log for 1460A Mission

						Flight Log No.1 4
1 LIDAR Operator: F. AA	2/	ALTM Model: A avia	3 Mission Name: 394(c3;500)	SCI4 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 142
7 Pilot: u-skylage.		t N- AGAN IN	9 Route:			
10 Date: 15 MAH 221-	12	Airport of Departure	(Airport, Gty/Province):	12 Airport of Arrival	(Airport, City/Province):	
13 Engine On: 13-3-2	14 Engine	e Off: 1809	15 Total Engine Time: 41435	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather						
20 Remarks:						
		Concluded mixed	ion over blkasc an	d some lines all	BIRSED.	
		ford to the surre	in the pricebo ma		and dedress by	
21 Problems and Solution	ons:					
21 Problems and Solution	ons:					
21 Problems and Solution	ons:					
21 Problems and Solution	ons:					
21 Problems and Solution	ons:					
21 Problems and Solution	ions :					
21 Problems and Solution	ons:					
21 Problems and Solution		Acquis	ition Flight CertiFied by	Flot-in-Comm	P1	Uder Operator
		Acquis	ition Flight Certified by	Plot-in-Com	2	Udar Operator
	Approved by	Acquis		Platin-Comm	James	e the
Acquisition Flight A	Approved by	Signation of the second	The ever Printed Name	JAS	James	4
Acquitation Flight A とないをしてい	Approved by	Signation of the second	The constitution	JAS	James	e the
Acquisition Flight A	Approved by	Signation of the second	The ever Printed Name	JAS	James	e the
Acquisition Flight A	Approved by	Signation of the second	The ever Printed Name	JAS	James	e the
Acquisition Flight A	Approved by	Signation of the second	The ever Printed Name	JAS	Jaw et Printed Barrie	e the

4. Flight Log for 1462A Mission

1 UDAR Operator: f. Addes 2 ALTM Model: AgeA 3 Mission Name: 3404: 380af; 1364 4 Type: VFR S Aircraft Type: Cesnna T206H 6 Aircraft Identification: 90-3 7 Pilot: J. J. J. VERK 8 Co-Pilot: N. ALAWIN 9 Route: 12 Airport of Arrival (Airport, Gty/Province): 12 Airport of Arrival (Airport, Gty/Province): 13 Engine On: 14 Engine Off: 13 Alt 3 15 Total Engine Time: 4+1 16 Take off: 17 Landing: 18 Total Flight Time: 19 Weather 20 Remarks: 20 Remarks: 21 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time:	
10 Date: 12 Airport of Departure (Airport, Gtg/Province): 12 Airport of Arrival (Airport, Gtg/Province): 13 Engine On: 14 Engine Off: 15 Total Engine Time: 19 Weather 19 Weather	
IC MAP WAP Wap 13 Engine On: 0 % 0L 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time: 19 Weather	_
13 Engine On: 이 및 6L 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 18 Total Flight Time: 19 Weather	
19 Weather	
20 Remarks:	
Completed mission over BLK250 and to lines over BLK355	
21 Problems and Selutions :	
Acquisition Right Approved by Acquinison Right Cartilled by Picelin-Commgréj Uder Operator	
Die III III III	
salant Discours that Af	
Lavera and source JRS James of the	
salant Discours that Af	
Leview Acrusta Signature over Printed Name Signature over Printed Name Signature over Printed Name	
Leview Acmara Signature over Printed Name Signature over Printed Name Signature over Printed Name	
Signature over Frinted Name Signature over Frinted Name Signature over Frinted Name	
Hat-its and Sensor JR James Is Printed Name Sensor Printed Name Signature over Printed Name	
Signature over Frinted Name Signature over Frinted Name Signature over Frinted Name	

5. Flight Log for 1464A Mission

DREAM Data Acquisition Flight Lo	og					Flight Log No.: No.: No.:	4
1 UDAR Operator: P . Jm. 0		LTM Model: ALLA	3 Mission Name: 1012.15	A Type: VFR	5 Aircraft Type: CesnnaT2	06H 6 Aircraft Identification: 9112	
7 Pilet: J. JAVER		N-ALMAIN	9 Route:				
10 Date: IL MAN tape	17		(Airport, City/Province):	12 Airport of Arriv	al (Airport, City/Province):		5
13 Engine On: 13 44	14 Engine	011:	15 Total Engine Time: 식부익	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather		1120	444				
20 Remarks:							
	Conde	La dia travit					
	Compte	was after the total I	off over BLK335				
					-		
21 Problems and Solution	15:						
21 Problems and Solution	15:				-		
21 Problems and Solution	15:				-		
21 Problems and Solution	15:				-		
21 Problems and Solution	15:				-		
21 Problems and Solution	15:				-		
21 Problems and Solution	15:				-		
			lation: Flate Certified by	Piotin-Co	mugd	Lider Operator	
Acquisitien Flight Ap		Асци	Iddison Flight Certified by	Plint-in-Co		Lidar Operator	
Acquisition Figir. Ap	proved by	Acqu	Idison Flate Certified by	Plintin-Co		Licer Operator	
Acquisition Flate Ap Significant LOYEVY 4-200	by the second	1864	mill con per	JRS	Javier	Lider Operator	
Acquisition Figir. Ap	eproved by	and Service		JRS		Antin	
Acquisition Flatr. Ap Signature over Arten Signature over Arten	eproved by	and Service	per la con per	JRS	Javier	Antin	
Acquisition Flatr. Ap Signature over Arten Signature over Arten	eproved by	and Service	per la con per	JRS	Javier	Antin	
Acquisition Flatr. Ap Signature over Arten Signature over Arten	eproved by	and Service	per la con per	JRS	Javier	Antin	

6. Flight Log for 1466A Mission

DREAM Data Acquisition Flig 1 LIDAR Operator: P. A- 7 Pilot: V. J4vi£/K. 10 Date: 17 MAY 14 13 Engine On: 074/3 19 Weather 20 Remarks:	RCE® 2 ALTM Mi 8-Co-Pilot: 9 - Arc 12 Airport			5 Aircraft Type: Gesn Ival (Alrport, City/Province) 17 Landing:		
7 Pilot: 나 J4viEn 10 Date: 17 MAY 14 13 Engine On: 0구43 19 Weather	8-Co-Pilot: 9 - 6-2 12 Airport 14 Engine Off:	د مرسول (Airport, City/Provinc of Departure (Airport, City/Provinc 15 Total Engine Tin	e): 12 Airport of An	Ival (Alrport, City/Province)		
10 Date: 17 rv4~ 14 13 Engine On: 07-43 19 Weather	12 Airport 14 Engine Off:	of Departure (Airport, Oty/Provinc				
13 Engine On: 속구시3 19 Weather	14 Engine Off:		te: 16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather		1				
20 Remarks :						
	Cont	leted mission over BURD.	it with write due	to share wind		
		app and app		, mg ma.		
21 Problems and Solu	alans.					
az ricarente ana pers						
			Finite		Lidar Downster	
Acquisities Fig	hr. Approval by	Acquisition Flight Certified by	Pilot-in-	angand	Lidar Operator	
Acquisities Fig	Mr. Approval by	Acquilities Flight Cartified by	, Flatin-		Lidar Operator	
401-	+	Acquisition Flight Cartified by	Platin-	angene Ugwer	Lidar Operator	
50-	Acuma	an JANER PROMINE]8	Javier	Lidar Operator	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	GR.	p Aria	
50-	Ar Own JA	an JANER PROMINE]8	Javier	p Aria	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Javier	p Aria	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Javier	p Aria	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Javier	El Artico Signature over Printed Name	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Javier	El Artico Signature over Printed Name	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Guier		
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Guier	El Artico Signature over Printed Name	
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Guier		
Signature over1	Ar Own JA	Stor DANON LEVEN]8	Guier		

	~						
D	REAM Data Acquisition Flight Lo				-	Flight Log No.: /	474
	1 LIDAR Operator: 4 4440		3 Mission Name:1844-35	GISELA 4 Type: VFR	5 Aircraft Type: CesnnaT206	H 6 Aircraft Identification: 9122	-
	7 Pilot: J-JAVIER	8 Co-Pilot: N ACAMIN	9 Route:	100 Aliment of Arriva	I (Airport, City/Province):		-
	10 Date: (9 May 14	12 Airport of Departure	(Airport, City/Province):	12 Aerport of Arriva	in (hitpon, citigrinovince):		_
	13 Engine Cn: 이석5구	14 Engine Off: 19.26	15 Total Engine Time: ប†រទ	16 Take off:	17 Landing:	18 Tatal Flight Time:	
	19 Weather	-					-
	20 Remarks:						
		Concluded W	Is convage from BU		111 C		
				F S P, E Z F &	one or true thanks		
		BLK 35	Q -				
14							-
	21 Problems and Solution	15:					-
	21 Problems and Solution	15:					-
	21 Problems and Solution	15 :					-
	21 Problems and Solution	161					-
	21 Problems and Solution	161					
	21 Problems and Solution	18:					-
	21 Problems and Solution	15 :					_
			inter the Post for the	Etais Con		Lifar Operator	
	21 Problems and Solution Control Contr		altion Flight Cortified by	Flot-in-Cor	Adam	Udar Operator	
	Acquisition Flight App بالمحالية	proved by Acqu	Boonet	of the	Y	Udar Operator	-
	Acquisition Flight App نوید ا	proved by Acqu	THE WALL HERE	JRSJ	lawet_	Udar Operator	-
	Acquisition Flight App بالمحالية	proved by Acqui	Boonet	JRSJ	Y	etatio	
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JRSJ	lawet_	etatio	
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JRSJ	lawet_	etatio	
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JRSJ	la w CA we Printed Narra	Life In Signature over Printed Name	-
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JR5. Signature on	le w C+ ver Printed Narrie	Signature over Printed Name	-
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JR5. Signature on	la w CA we Printed Narra	Signature over Printed Name	-
	Acquisition Flight App خونات نووی کی Signature over Printe	proved by Acqui	THAN ON FIRE MINE	JR5. Signature on	le w C+ ver Printed Narrie	Signature over Printed Name	-

8. Flight Log for 1494A Mission

DREAM Data Acquisition Fligh	tlog				ь.	Flight Log No.1 RJ
1 UDAR Operator: r . M		MModel: And	3 Mission Name: 3018-347	Sisteria 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: Waa
7 Pilot: J.J.A.M.	8 Co-Pilot:	and the second	9 Route:			
10 Date: 24 4/44 14	12 Alr	port of Departure ((Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
13 Engine On: 0743	14 Engine Of		15 Total Engine Time: 41 5 3	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather						
20 Remarks:						
21 Emblans and Solut	loos					
21 Problems and Solut	lons:					
21 Problems and Solut	ions:					
21 Problems and Solut Acquiation Flight		Acquiri	Bion Flight Centified by	Pilot-in-Come	n341 -	Lider Operator
	Approved by	Signalu	Rion Flight Cartified by	JAS	nam Ja syst w Hirted Name	Lidar Operator A <u>P</u> Ngracund over Printed Name
Acquisition Flight 4-15-1 Lov Firt _x Signature over Pr	Approved by	Signalu	AND LOW AT	JAS	James	RI MELOO

1	_						
	REAM Data Acquisition Flight I	Log			•	Flight Log No.:	478
	1 UDAR Operator: C. MAL	A ALTM Model: Acus	3 Mission Name: 3448-35	ASING 4 Type: VER	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 9/42	-
	7 Pilot U. JAVIER	8 Co-Pilot: N + HANIN	9 Route:				_
	10 Date: Ja MAY 14	12 Airport of Departure	e (Airport, City/Province):	12 Airport of Arriv	al (Airport, City/Province):		
	13 Engine On: 0350	14 Engine Off: 12.3/	15 Total Engine Time: +++++	16 Take off:	17 Landing:	18 Total Flight Time:	
			1.114				_
	19 Weather						_
1							_
	21 Problems and Solutio	ins:					-
	21 Problems and Solutio	ans:					-
	21 Problems and Solution Acquisition Flight A Government Signature over Prin (End User Represent	logoroved by Acqu Acqu Marka Sign tad Name Sign	ultition Right Certified by Decay Source over Printed Harne Hepresentiative)	the second se	rgepart Ver with over Minted Name	Lider Operator Mary A CATHENINE MAILUNE Signatube over Printed Warse	

Figure A-6.9. Flight Log for Mission 1498A

10. Flight Log for 1502A Mission

7 Pilot: 0.0	iter: MOE #MALCHET			1		e al mode i de estificación de a s
		2 ALTM Model: AD-A	3 Mission Name:>6+F354:25	si 46 G 4 Type: VFR	5 Aircraft Type: Cesnna 1206H	6 Alroraft Identification: จำรว
	NIER B CO-FIL	of: J. Asswers/	9 Route: (Airport, City/Province):	12 Almort of Arrival	(Airport, City/Province):	
10 Date: 36	M44 14					The second second second
13 Engine On	dibb 14 Engin	ne Office puth	15 Total Engine Time:	36 Take off:	17 Landing:	18 Total Flight Time:
19 Weather			5.310			
as weather						
20 Remarks:						
			hundra a second	the second second		
		Completed mission i	over BUK95A and 2 h	NES DIEP BURGSSI		
21 Problem	and Solutions:					
Acc	uisition Flight Approved by	Acquir	ition Flight Certified by	Pilot-in-Comm	nage's	Lidar Operator
	hard		DIG-15	6	hit	11- Q
		1200	The way i have	10		Martin
	NEW ACHUN		Contra D	5/65 .	Jaries	CATA DAUZIN
San	ature over Printed Name d User Representative)		une over Printed Name Impresentative)	Signature over	er Printed Name	Signatore over Printed Neme
	Liser representative)	proce at	representativel			
						-
					C	
				D	isaster Risk and Exposure Asses	

11. Flight Log for 1504A Mission

DREAM Data A	Acquisition Flight Lo	ng l	384835	TES/46.A		Flight Log No	
		A GUAC 2 ALTM Model: AQUA	3 Mission Name: Sectors		5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 914.3.	
7 Pilot: J	the second se	8 Co-Pilot: N . ACAMIN	9 Route:				
10 Date:	to many 14	12 Airport of Departure	e (Airport, City/Province):	12 Airport of Arrive	al (Airport, City/Province):		
13 Engine		14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
		14.11	4723				
19 Weath	er						
20 Remark	ks:						
		Completed mission	ONLY BIRSSY.				
21 Proble	ems and Solution	15 :					
							_
	Armúltina Elgér Arr	avout by the	sidion Ride Cartified by	Plint-in-Corr	enasé7	Lider Operator	_
	Acquisition Flight App	proved by Acts	isition Right Certified by	Pilot-in-Con	22	Lider Operator	
	Acquistion Flight: App	proved by Acqu	isition Right Certified by	Pilot-in-Con	anna 2	Lider Operator	_
	421-	t	billion Right Cartified by	Pliet-in-Con JRS	freit	Litter Operator	
		the ser	isition Right Certified by	JRS	Start -	Kingh	_
	LOVELY AN	H Star	pour Com Ar	JRS	Javier	CATH WALLS	
	LOVELY AN	H Star	DAUGU CARU FAT	JRS	Javier	CATH WALLS	
	LOVELY AN	H Star	DAUGU CARU FAT	JRS	Javier	CATH WALLS	
	LOVELY AN	H Star	DAUGU CARU FAT	JRS	Javier	CATH WALLS	_
	LOVELY AN	H Star	DAUGU CARU FAT	JRS	Ja vi Et Ver Winted Name	CATH WALLS OF	_
	LOVELY AN	H Star	DAUGU CARU FAT	_JRS Signature of	Var Vinted Name		0
	LOVELY AN	H Star	DAUGU CARU FAT	_JRS Signature of	Var Vinted Name		
	LOVELY AN	H Star	DAUGU CARU FAT	_JRS Signature of	Ja vi Et Ver Winted Name		
	LOVELY AN	H Star	DAUGU CARU FAT	_JRS Signature of	Var Vinted Name		
	LOVELY AN	H Star	DAUGU CARU FAT	_JRS Signature of	Var Vinted Name		

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

12. Flight Log for 7753AC Mission

1 UDAR Operator: 1. Por	agos 2 ALTM Model: Annon	3 Mission Name:	4 Type: WFR	Aircraft Type: CesnnaT2	Flight Log No.:	
7 Pilot: F. De Occomp	We will be a set of the set of th	9 Route: Ormor e (Airport, City/Province):			06H 6 Alreaft Identification:	9- 69322
Jan. 21, 2015	12 Airport of Departur	e (Airport, City/Province):	12 Airport of Arri	vel (Airport, City/Province):		
	14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	10.20	04+11	062	015	CY to J	
20 Right Classification			21 Rem		-	
20.a Billable	20.b Non Billable	20.c Others	G	ampleted 14 lines of	BUK 35B	
Acquisition Flight	O Altoraft Test Flight	O LIDAR System Maint				
 Ferry Hight System Test Flight 	 AAC Admin Flight Others: 	O Aircraft Maintenance	8			
 Celibration Fight 	o ones:	 Phil-UDAR Admin Ac 	thities			
					in the	
22 Problems and Solutions						
O Weather Problem						
 System Problem 						
 Aircraft Problem Pliot Problem 						
O Others:						
			1			
Activisition Flight Approved by	Acquisition Flight Car	tilled by Pilot-is	Compliand	LIDAR Operator	Aircreft Meshanic/ UDAR Tec	chnician
Pelling	SST. RAHON	OSH t	D Star	, gy gr		
			PR. CCRVND	Signature aver Philotechia	me Signature over Printed Navy	-
Signature over Printed Name	Signature over Printed					
(End River Representative)	(PAt Represental)		1 ,	., .,	STRUCTURE OVER PIERED AGETS	

13. Flight Log for 7760AC Mission

	t 1 Data Acquisition Flight Log				63	:: 1760
1 LIDAR	Deratoria Gradian ZALTH		8 85 35 A0 75: 44 TVD4 : VFR	5 Aircraft Type: Cesnina T206H	6 Aircraft Identification: 532	2
7 Pilot: 30 Date	AGGINIA SCO-PHOT: 1	PC O CA M y 0 9 Route: port of DepArture (Airport, City/Province		I (Airport, Gity/Province):		
13 Engi	01-25-15.	OIMEC	16 Take off:	17 Landling:	18 Total Flight Time:	
13 Engi	ATZ8 17-F	39	1.3 + 32	17+54	4.4.01	
19 Wea	her Faik	-				-
20 Rem	rks:					
	r	ampleted Ble 35A	with Naiton			
			with white			
		NO CASI				
21 Pro	lems and Solutions:					
		a state of the state of the state	Sart-m-C	undant	Lidor Querator	
	Acquisition Flight Approved by	Acquisition Hight Certified by	-	Altrent	a.I.	
	R-max	BUT PATEN 1 98	11	WHE AGAULU	GRA-CEL OTTY PROPERTY Segreture Eventführtet Name	
	Standure over Painted Name	Signature over Printed Name (PAP Representative)	Signation	was Arister Rural	Philippine aver figure wave	
	(Exd User Representative)	0.00.000	/			

14. Flight Log for 7780AC Mission

P				Hight Log No.2 7	780
	III-LIDAR 1 Data Acquisition Hight Log	Mission Name: 38/ Terax 4 Type: VFR	5 Ai reraft Type: CesnnaT206H	6 Aircraft Identification:	
1	HIDAR Operator: C. 9: p. A.M. 2 ALTM Model: Atc 3 HIDAR Operator: C. 9: p. A.M. 2 ALTM Model: Atc 3 HIDA: 9	Route: 035A	I (Airport, Gty/Province):		1
	Date: A 2 - Aut du	OPMIL		18 Total Flight Time:	1
	Fourier Com 14 Engine Off;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 Landing: (1 + 0 7	1+08	
	9754 11 + 11	1417- 7759			
3	9 Weather Fair Repair y				
	0 Remarks :				Ē
10	rlicht cla	ited the to strong	1. 1. I		
	F119111 6150	The ene to strong	wind		
- 1					
				1	1
1					
	and the second				
	21 Problems and Solutions:				
					-
					-
		Dist.inc	Contrart	Udar Operator	-
	Acquision Agent formerval by Acqu	istibu Flega Cartilled by Pilot-In-C	Conversed		-
	Acquision Agent formewood by Acqu	25 Sierer the them	unt D. smothys	and a proven	
	Acquirition Hart Approved by	ASTAL SERVICE AND THE OVER OVER OVER OVER OVER OVER OVER OVE	Ar	Utar Operator	
	Acquirition Hart Approved by	ADDY J CREAK THE PARTY	unt D. smothys	and a proven	
	Acquirition Hant Approved in Signature over Printed Name Sign	ASTAL SERVICE AND THE OVER OVER OVER OVER OVER OVER OVER OVE	unt D. smothys	and a proven	

15. Flight Log for 7782AC Mission

					-	10:7782
	IDAR 1 Date Acquisition Flight Log					10: 170 -
PHIL	A RE Provende ATTM Model: A-TC	3 Mission Name: 28/4-35-4	Y OU 4 Type: VFR	S Aircraft Type: CesnneT206H	6 Aircraft identification:	
	AR Operator: C.K. Fullows A. W. Kokey(V) 8 Costiliot: F. Dr O CAMP P. 12 Airport of Departure 12 Airport of Departure) 9 Route:		(Alroort, City/Province):		
101	ite: D2-05-15 12 Airport of Departure		01.5m1 C		18 Total Flight Time:	
13.6	also On: 14 Engine Off:		16 Take off: 9 + 1 g	17 Landing: /3 / 3 Z	4 +14	
	9+13 13+36	4+23	1718	<i>() / .) &</i>		
19 \	eather Fair & band	У				
201	marks:					
	Comple	that Blk 35 AX Strong wind.	, Curvy .	swath due to		
			11.11 1210	i.N. CASI		
		Strong wind.	NIN DIG	177 VO CH 31		
2	Problems and Solutions:					
	1.4		The in C	hoursed beaming	Udar Operator	
	Acquisities Flight Approved by	Accuisition Flight Centrified by	Coloring	former t	Udar Operator	
	Acquisition Ellent Approved by	Accussion Fight Centrified by	There is a	American A	LK edragas	
	p Waxi as	(RI Sanz-	- UR	Constant	Udar Operator <u> <u> <u> <u> <u> </u> <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> </u></u></u></u></u>	
		PARIDA 1 PLACU	- UR	formation of the second second	LK edragas	
	D Martine Printed Parse	PARTON STATUS	- UR	formation of the second second	LK edragas	
	D Martine Printed Parse	PARTON STATUS	- UR	formation of the second second	LK edragas	
	D Martine Printed Parse	PARTON STATUS	- UR	formation of the second second	LK edragas	

16. Flight Log for 7802AC Mission

Flight Log No.: 7542 5 Aircraft Type: Ceseria 720EH 6 Aircraft Identification: 2322 PRE-EDARD Date Acquisition right Log SUSAN Operator UK, Kapag ab 2 ALTM Madel: A. + C 3 Massion Name 38 Kassyo 46A 4 Type: VFR N- AGANIN & CO-PILOE F. YOS OLAMAD 9 ROUTE: 12 Airport of Antivel [Airport, City/Province]: 12 Airport of Departure (Airport, City/Insvince)-7 Pilat: OLMOU 18 Total Flight Time: (Dole: 62-15-15 DILMA (17 Landing 16 Take off: 15 Total Engine Time: 14 Engine Off: 9+11 13 Engine Orc 9140 345 CHOURS 19 Westher 20 Benarks: short varges of BUK 33 w/ digitizer. * Surveyed Joids & OAS1. ND 21 Problems and Solutions: Lidar Operally ritor in Command Acquisition Flight Certified by Appaisition 1 FIRE IN MILES TR 1000 600 Ser. PAWAY Signature over Printed Navio Signature over Printed Nome Signature over Printed North visited Name Signature of (PAF Representative) (End User temperentative) Figure A-6.16. Flight Log for Mission 7802AC

17. Flight Log for 7806AC Mission

111 78 701 331	10 I Dato Acquidition might Lop 10 Operator: LL Group as 2 ALTIM Model: 11 N. Marvi N 8 Co-Pilot: F. MC 80 12 August of Data 13 August of Data 14 Engine Off: 14 - 13 14 Engine Off: 14 - 13 15 Engine Off: 15 Engine Off: 14 - 13 15 Engine Off: 15 Engine Off: 16 Engine Off: 17 Engine Off: 17 Engine Off: 18 Engin Off: 18 Engine Off: 18 Engin Off: 18 Engine Off: 18 Engine	Sarture (Airport, Gity Province): 5)24th 6 15 Total Engine Time:	Dyg 14 Type: VFR S AI reruft Type: Cean 12 Airport of Aerival (Airport, City/Province) Big24ne of 16 Take off: 17 Landing:	and the second se	
	krarks:	BLK-35 With dia	Hizer. No CASI.	1 	
	icensistion such Approved by <u><u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u>	Acquisition Highs Curtilied by Sec. Signal Signature aver Printed Harris (PAF Representative)	Plot-in-Command A Des Canado Signature ofer Drived Harre	Lider Operator Like Aug # Signature over tetrized Harne	

18. Flight Log for 8389AC Mission

11 ILDAR Operator: L. Pornece, PALTM Model: Apunoles, 2 Mission Numeric: 4 Type: VFR 5 Alcraft Type: Cesnna 7205H 6 Alcraft Identifical 2 Filot: C. Allpace, I Storfilot: J. Deile 9 Route: Ormace, 10 Provide, 12 Alignet of Departure (Alignet, ClayProvince): 12 Alignet, ClayProvince): 12 Alignet, ClayProvince): 0 Store 14 Engine Off: 12 Alignet, Off. 13 Total Engine Time: 10 Take off: 13 Landing: 18 Total Flight Time 0 P3:0 1142 0 P17 0 P3:5C 11 4 2 0 P07 19 Weather 20 Flight Classification 20 Lib Non Billable 20 Lib Non Billable 20 Lib Non Billable 20 Lib Others 21 Remarks 20 a Billable 20 Lib Non Billable 20 Lib Others: 0 Plait BAR Admis Activities 21 Remarks 22 a Billable 20 Lib Non Billable 20 Lib Others: 0 Plait BAR Admis Activities 21 Remarks 22 Problem Fight 0 Alcraft Multimerance 0 Plait BAR Admis Activities 21 Remarks Surveyed Patgic Angelown fff @ Sob m 22 Problem and Sobritors 0 Others: 0 Plait BAR Admis Activities 0 Plait BAR Operator Accell Mechanic 22 Problem and Sobritors 0 Others: 0 Plait BAR Operator <th></th>	
13 Engline On: D4 Engline Off: 15 Total Engline Time: 10 Take off: 17 Landing: 18 Total Flight Time 19 Weather 04 17 073.C 1142 0407 20 Flight Classification 20.6 Non Billable 20.6 Others 21 Remarks 20.6 Billable 20.6 Non Billable 20.6 Others 21 Remarks 20.6 Fills 0.4 Acquisition Flight 0.4 Acquisition Flight 0.4 Under System Maintenance 0.7 Setup Flight 0.4 Acquisition Flight 0.4 Under System Maintenance Serveged 0.7 Setup Flight 0.4 Acquisition Flight 0.4 Under System Maintenance Serveged 0.7 Setup Flight 0.4 Acquisition Flight 0.4 Under Activities Serveged 22 Problems and Solutions 0.4 Acquisition Flight 0.4 Bill UDAR Admis Activities Serveged 22 Problems and Solutions 0.4 Acquisition Flight Certified by Plot-in-Command UDAR Operator 14 Acquisition Flight Certified by Plot-in-Command UDAR Operator Arcosti Mechanics	
O3-09-2016 D4 Engine Off: D5 Total Engine Time: D6 Take off: D7 Landing: D8 Total Flight Time O730 IU47 O4 07 0730 IU42 O4 07 19 Weather 20 Flight Classification 22 Remarks 22 Remarks Surveyed Pagicangolnen Pf @ 580 m 20 Flight Classification 20 Lb Non Bilable 20 c Others 21 Remarks Surveyed Pagicangolnen Pf @ 580 m 20 A copatition Flight O Accoding Flight O Accoding Flight O Uback System Maintenance Surveyed Pagicangolnen Pf @ 580 m 21 Problems and Solutions O Others: O PhildDAR Admis Activities Surveyed Pagicangolnen Pf @ 580 m 22 Problems and Solutions O Others: O PhildDAR Admis Activities Accoding Problem 0 System Problem Others: O Others: Acquisition Flight Certified by Plot-in-Command UBAR Operator Anoth Mechanics	
0730 II43 0417 0730 II42 0407 19 Weather 20 Hight Classification 21 Bernarks 21 Bernarks 20 Hight Classification 20 Lb Non Billable 20 L Others 21 Bernarks 20 A Billable 20 Lb Non Billable 20 L Others Surveyed Pageongohon Fr @ 556 m 3, Acquisition Flight 0 Alroaft Test Flight 0 LDAR System Maintenance Surveyed Pageongohon Fr @ 556 m 0 System Test Hight 0 Others: 0 Phil-BIDAR Admis Activities Surveyed Pageongohon Fr @ 556 m 22 Problem; and Sobritons 0 Phil-BIDAR Admis Activities Alroaft Mediane Activities Alroaft Problem 0 System Problem System Problem Alroaft Problem Alroaft Problem 0 Others: Alroaft Problem Alroaft Problem Alroaft Mediane 0 Others: Alroaft Problem Alroaft Mediane Alroaft Mediane	
19 Weather 20 Hight Classification 20 A Billable 20 b Non Billable 20 A Reliable 20 b Non Billable 20 A count of the second of	
20-a Billable 20.b Non Billable 20.c Others Surveyed Polg(angolven Pr © 566 m 0 Acquisition Flight 0 Alteralt Maintenance Surveyed Polg(angolven Pr © 566 m 0 System Test Flight 0 Alteralt Maintenance 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 20 System Test Flight 0 Others: 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg angolven Pr © 566 m 22 Problem: and Solution 0 Macraft Problem 0 Polg angolven	
20-a Billable 20.b Non Billable 20.c Others Surveyed Polg(angolven Pr © 566 m 0 Acquisition Flight 0 Alteralt Maintenance Surveyed Polg(angolven Pr © 566 m 0 System Test Flight 0 Alteralt Maintenance 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 20 System Test Flight 0 Others: 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg(angolven Pr © 566 m 22 Problem: and Solutions 0 Poll-UDAR Admin Activities Surveyed Polg angolven Pr © 566 m 22 Problem: and Solution 0 Macraft Problem 0 Polg angolven	
b. Acquisition Flight O Aircraft Test Flight O UDAR System Maintenance O Ferry Flight O AAC Admin Flight O Aircraft Maintenance O System Test Flight O Others: O Phil-UDAR Admin Activities 22 Problems and Solutions O O Phil-UDAR Admin Activities O 22 Problems and Solutions O System Problem System Problem O System Problem O System Problem O Phile UDAR Admin Activities O Phile UDAR Admin Activities 1 Acquisition Flight Activities O Phile UDAR Admin Activities 22 Problems and Solutions O Phile UDAR Admin Activities 3/stem Problem System Problem O Phile UDAR Admin Activities O Others: O Others: O Image: Acquisition Flight Approved By Acquisition Flight Certified by Plot-in-Coremand UDAR Operator Arcsaft Mechanic Her Her Her Her	
b. Acquisition Flight O Aircraft Test Flight O UDAR System Maintenance O Ferry Flight O AAC Admin Flight O Aircraft Maintenance O System Test Flight O Others: O Phil-UDAR Admin Activities 22 Problems and Solutions O O Phil-UDAR Admin Activities O 22 Problems and Solutions O System Problem System Problem O System Problem O System Problem O Phile UDAR Admin Activities O Phile UDAR Admin Activities 1 Acquisition Flight Activities O Phile UDAR Admin Activities 22 Problems and Solutions O Phile UDAR Admin Activities 3/stem Problem System Problem O Phile UDAR Admin Activities O Others: O Others: O Image: Acquisition Flight Approved By Acquisition Flight Certified by Plot-in-Coremand UDAR Operator Arcsaft Mechanic Her Her Her Her	
Centry Flight O AAC Admin Flight O Atcaraft Maintenanca System Test Flight O Others: O Phil-LIDAR Admin Activities	
Collbration Flight 22 Problems and Solutions Weather Problem System Problem System Problem Others: Acquisition Flight Approved by Acquisition Flight Certified by Plot-in-Command LiDAR Operator Alyosit Mechanic	
22 Problems and Solutions 0 Weather Problem 0 Spitem Problem 0 Aliscuit Problem 0 Plot Problem 0 Plot Problem 0 Others:	
Weather Problem System Problem Aircraft Problem Pilot Problem Others: Acquisition Flight Certified by Plot-in-Command LDAR Operator Aircraft Mechanic	
Weather Problem System Problem Aircraft Problem Pilot Problem Others: Acquisition Flight Certified by Plot-in-Command LDAR Operator Aircraft Mechanic	
System Problem Aircraft Problem Others: Acquisition Flight Approved By Acquisition Flight Certified by Plot-in-Command LiDAR Operator Aircraft Mechanic	
Alectaft Problem O Pilot Problem O Others: Acquisition Flight Certified by Pilot-in-Command LiDAR Operator Alectantic	
O Fliot Problem O Others: Acquisition Flight Approved By Acquisition Flight Certified by Plot-In-Command LIDAR Operator Aircraft Mechanic	
Acquisition Flight Approved By Acquisition Flight Certified by Plot-In-Command LIDAR Operator Aircraft Mechanic	
A AL	
A AL	
A A A A A A A A A A A A A A A A A A A	
A AL	
	UDAR Technician
Alman C. The Carrier allower the	
J. John Standard View C- Alteria Marie Standard over Printed Name Standard over Printed Name Standard over Printed Name Standard over Printed Name	and the second
(End ther Representative) (PAF Representative)	noed Marrie

19. Flight Log for 8391AC Mission

100400 10	Flight Log	JAK JSE				Flight Log No.: 83°
1 UDAR Operator: J. Com	Roles 2 ALTM Model: An	+CASIMission Name:	4 Type: WR	5 Ain	craft Type: Cesnna T206H	6 Aircraft Identification: RP-09
7 Pilot: C. Alfonso J. 10 Date: 03-10-2016	B Co-Pilot: J. Jeciel 12 Airport of Depart	9 Route: Orly ture (Airport, City/Province):	12 Airport of Arrive	al (Airport	t, City/Province):	
13 Engine On:	14 Engine Off:	15 Total Engine Time	16 Take off:	17 La	nding:	18 Total Flight Time:
0928	1151	0123	07:33		1146	DIS
19 Weather	110.1					
20 Flight Classification			21 Rema	rks		
20.a Billable	20.b Non Billable	20.c Others	5.	iverged	Pagiangohan A	Pand Portempon
				0		1
Acquisition Flight	o Aircraft Test Flight	- merelenne				
 Ferry Flight System Test Flight 	 AAC Admin Flight O Others: 	O Aircraft Mainte O Phil-LiDAR Adm				
O Calibration Flight	C CHARLE MILLION	o metawaran	III ACONDES			
O Aircraft Problem O Pilot Problem O Others:						
Acquisition Fight Approved by J. Day and Signature over Prioted Nerve (End Uker Representative)	V Acquisition Figh	Mu state	Viet-in-Command Lean Algerico II C. MGariso II Ignistan over Printeel Name		LIDAR Operator Service Survey Service over Printed Runs	Alectaft Meshanic/ UDAR Robridan

20. Flight Log for 8392AC Mission

Date: "	Co-Pilot: J. Jeriel	3 Mission Name:						
10 Date:	Co-Pilot La La La	9 Route: Domer.	419	pe: VFR S Ai	rcraft Type: Cesn	inaT206H 6 Ain	maft Identification: RP.	09822
02-10-2616	12 Airport of Departure	(Airport, City/Province):	12 Airport	of Arrival (Airpo	rt, City/Province):			
13Engine On: 14	Engine Off:	15 Total Engine Time:	16 Take o		anding:	18 To	tal Flight Time:	
19 Weather	752	034 29	N2:	8	1747		03+19	
The And Gallet.								
20 Flight Classification				21 Remarks				
20.a Billable	20.b Non Billable	20.c Others		Sweeped	Western	heyte coast	4	
Acquisition Flight O Ferry Flight	 Aircraft Test Flight AAC Admin Flight 	 UDAR System Mainte Aircraft Maintenanca 		,		0		
O System Test Flight O Calibration Flight	o Others:	 PhiHUDAR Admin Act 	luities					
22 Problems and Solutions								
 Weather Problem System Problem 								
 Alsoraft Problem 								
 Pilot Problem 								
o Others								
Atquisition Flight Approved by	Acquisition Flight Cort	Ded by Dilation						
No	A	Qa	an albert	II.	UDAR Operator	~	Alecteft Mechanic/ UDAR Technic	San
Standard over Printed Name	49- Jondy U	yC.	Alfinso I		L. Barag	(25)	_	
(End ther Representative)	Sightphayl over Pfinted (PAF Representative	Name Signature	over Printed #	Garged	Standare over Prila	4efi Name	Signature over Printed Name	

LIDAR Surveys and	Flood Mapping of	[:] Pagsangahan River
-------------------	------------------	--------------------------------

21.	Flight Log for	8394AC Mission
-----	----------------	----------------

	() () () () () () () () () ()									
procession and the second	0AR 1 Data Acquisition	-	Polising 4 (PC)	36	1.35 BDOMB					Flight
1 LIDA	R Operator: U. Go	notes	2 ALTM Model:	3 Missi	on Name:	4.7	pe: VER	5 Aircra ft 1	ype: Cesnina T206H	6 Aircraft Identific
7 Pilot	C. Alfonso I	8 Co-PI	12 Airport of Departu	9 Route	· Dama					
10 Dat	A:		12 Airport of Departu	re (Airport,	City/Province):	12 Airpor	t of Arrival (Airport, City	Province):	
19 6	2-11-2016 ine On:	lese	04	lac as a		-				
TO FLIG			ne Off:		Engine Time:	16 Take e		17 Landing		18 Total Flight Tim
19 Wei	650	-	337	- C	12+ 17-	1053		332		02+37
		1.00								
20 Filgh	t Classification						21 Remarks			
20.4 8	lishis	202.5.1	Von Billable	20 - 00		1	(at typo	
	100012	207.01	AG11 NUMBER	20.¢ Oth	675		3ALC	reyed b	er vibb	
10	Acquisition Flight		o Alicraft Test Flight	a	LiDAR System Maint	enance				
	Farry Hight		o AAC Admin Flight	0	Aircraft Maintenanc					
	System Test Flight		o Others:		Phil-LiDAR Admin Ag	fivities				
0	Collibration Flight			-						
22 Prot	lems and Solutions									
									1	
	Weather Problem				3					
	System Problem									
	Aircraft Problem									
	Pilot Problem									
0	Others:		-		-					
	the second s						Contraction of the local division of the loc	the second s		

22. Flight Log for 8408AC Mission

Flight Log No.: 9408 Date Acquisition Flight Log 1 UDAR Dperator: M. Belignas 2 ALTU Medel: ADJ2 + 6 Aircraft Idantification: 9,322-3 Mission Nama: 3.822 28 474.07 4 Type: VFR 5 Al result Type: Ces nna T206H UFSI 9 Route: Ormoc -RCo-Pilot J. Maria marc 7 Pilot: C. MURONIS'S 12 Airport of Arrival (Airport, City/Province): Orange 17 Landing: 17 Landing: 10 240 H 12 Airport of Departure (Airport, City/Province): 10 Date: trues, 19, 2010 Omaco 18 Total Flight Time: 16 Take off: 15 Total Engine Time: 14 Engine Off: 13 Engine On: 1045 A 0715A 3+25 0710 4 3 +35 19 Weather gully about 21 Remorks 20 Flight Classification Surveyed gays in Blk 34 20.a Billable 20.b Non Billable 20.c Others Acquisition Fight o Alresoft Test Flight LIDAR System Maintenance O Aircraft Maintenance O AAC Admin Flight o Ferry Flight O Phil-UDAR Admin Activities o Dhetz, o System Test Flight o Calibration Flight 22 Problems and Solutions O Weather Problem System Problem D Aircraft Problem o Pilot Problem o Others: Littler Opprator Aircraft Mechanicy' Technician Ampublies Male Carified by Pflet-In-Coremand Acquisition Flight Approved by TS SAMOY V WY Seg. 61150 Signature over Printed Name Signature over Printed Nome Signature over Printed Name Signature over Printed Name Stgratuge over Printed Name (PAF Representative) (Engl User Representative) Figure A-6.22. Flight Log for Mission 8408AC

23. Flight Log for 8409AC Mission

					Flight Log No.: 9901
Data Acquisition Flight Log	1 have det	3 Mission Name: # Blagger	4 Type: VFR	5 Aircraft Type: Ceanna T206H	6 Arcmft I dentification 4342
7 Pilot: C. ALPONGO	B Co-Pilot J- JE Co.	9 Route: Downer	Orwood	Airport, City/Prevince):	
10 Date: Mail 19, 24		(Airport, City/Proxince):	12 Airport of Acrival	(Airport, City/Prevince):	
the last set of a second set of the last set of the last second sec	14 Engine Off:	25 Total Engine Time:	16 Take off:	17 Landing:	18 Tots 1 Flight Time:
13 Engine On: /340 #	1548H	2+05	139512	15-40 12	1+51-
19 Weather	Faw				
8	7				
20 Flight Classification			21 Remarks		
20.a Billable	20.b Non Billable	20.c Others		Surveyed Blk 70	7
TAT'S DAUGHTE					
 Acquisition Flight 	 Aircraft Test Flight AAC Admin Flight 	 LIDAR System Maint Aircraft Maintenano 			
 Ferry Flight System Test Flight 	o Othen:	 Phi-UDAR Admin Ad			
o Calibration Flight	0 00000				
22 Problems and Solutions					
O Weather Problem					
 System Problem 					
 Aircraft Problem 					
 Pilot Problem Others: 	,				
O Differs					
				1	
			e-Commend	Udar Operation	Aircraft Mechanic/ Technician
a state rate to see a	Acaminitian Flight Co	stilled by Pilot-i			
Acquisision Flight Approved	ay Acquisition FilePic Do	stilled by Pilot-i	Allente	1 10	1 .
Acquisition Flight Approved	-Mo		alforst	S. F. Landa	14th
J. Mia	Yorna ar	vw	Alfinst	S. Eugenton Sanara con Michael Tim	/7.4
Signature after Frinted Harm	TS ST NOY Sprature dury Prints	V WY	Alfense H	Sentar over Winted Wer	/7.4
J. Mia	TS ST NOY Sprature dury Prints	V WY	Alfinst	Samue over Winted the	/7.4
J. Mainen Signature afer Frinted Harm	TS ST NOY Sprature dury Prints	V WY	Alfinst	Sammare over Winlast ther	/7.4
J. Main	TS ST NOY Sprature dury Prints	V WY	Alfinst	Sammare over Winlast ther	/7.4
J. Main	TS ST NOY Sprature dury Prints	V WY	Alfinst	Stantan Over Winlad ther	/7.4
J. Marian Segreture ofer Filmed Reem	TS ST NOY Sprature dury Prints	V WY	Alfinst	Stantare over Winked Ner	17.4

24. Flight Log for 3945G Mission

PHIL-UDAR 1 Data Acquisitie	m Flight Log				Flight Log No.1 99456	
1 LIDAR Operator: N .		3 Mission Name: 3(KB)		5 Aircraft Type: Cesnire T2	06H 6 Aircraft identification: PEC-9	022
7 Pilot: J.MODALY	S CO-Pilot A Dayd	9 Routa: (7710				_
10 Date: 4-16-16	12 Al port of Departure	: (Airport, City/Province): 2	12 Airport of Arriva	I (Airport, City/Province):		
13 Engine On: 8 C	14 Engine Off: 11-2(j	15 Total Engine Time:	16 Take off: \$.09	17 Landing: 12,121	18 Total #Hight Time: 64 1 (2-	
19 Weather						1
			21 Remar			-
20 Flight Classification						
20.a Billable	20.b Non Billable	20.¢ Others	- Sir	ospul plant l	insulled BCK 35A	
O Acquisition Flight	o Alcraft Test Flight	O LIEAR System Man	Cenance	astra 1 1	and for inter	
O Ferry Hight	 AAC Admin Flight 	o Atroalt Maintenar		A 35B		
O System Test Flight	o Others:	 PhiHUDAR Admin. 	Activities			
 Calibration Flight 						
Weather Problem Systam Problem Aircraft Problem Pilot Problem Others:						
*						
Acquisition Flight Approve	day Acquisition Flight Co	rtilied by . Plice	in Commind	ULLA Openant -	Alroaft Medianic/ IDAR Technician	
0 and	Q2	/ /.	W	the fer		
1- trat.	Sta Paromital	Debmin 4	Moreley &	O. Hejay		
Signature over Printed Nor			iture over Printed Name	Signature over Printed 8	lama Signature over Printed Namo	
(End User Representativ				••	÷ •	
(End User Representativ	 (PAP Representation) 	reej			÷ *	

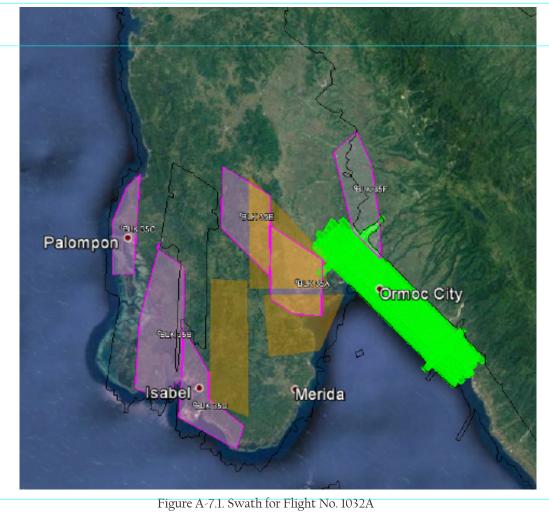
25. Flight Log for 3947G Mission

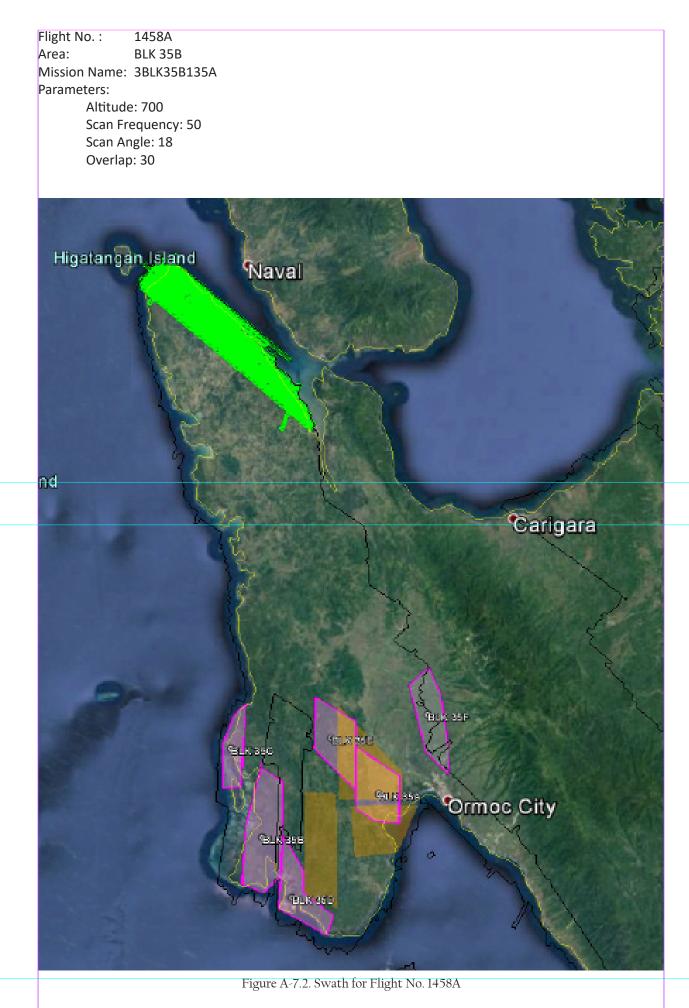
PHIL-UDAR 1 Data Acquisition	Eishelor				Flight Log No.: Sp. 7/	
1UDAR Operator: 下: 竹		a Mission Name: 2502.5P	The ATANA MER	5 Aircraft Type: CesnnaT2	011/0	
	BCO-PILOT: A. DAUS	9 Route: SP-ALBC	LOGAL	poncrant type: cesnoa ta	Work in Aircrait Identification: 200 - 2002	-2
10 Date: 1	12 Airport of Departure			I (Airport, City/Province):		
1-110-10	p12.14	PC.	OD2Ma	c		
13 Engine On:	14 Engine Off: リン・マラ	15 Total Engine Time:	16 Take off:	17 Landing: 17 : 48	38 Total Flight Time:	
19:26	1	M. **	15:3	11.43	4 + 17	
19 Weather						
20 Flight Classification			21 Remark	fei		
			0	1 1.11	1 1 5/16377	
20.a Billable	20.b Mon Billable	20.c Others	- W	Wester Pright.	amujed BESEC	
Q- Acquisition Flight	o Aircraft Test Flight	O LIDAR System Main	denance	1	Smuled BIE372	
O Ferry flight	 AAC Admin Flight 	O Aircraft Maintenan	50	+ antrict Void	5 07468 226 12 T	
 System Test Fight Calibration Flight 	o Others:	 Phil-LiDAR Admin A 	ctivities	FB.		
o contration of					· · · · ·	
Weather Problem System Problem Aircraft Problem Piloc Problem Others:						
O System Problem O Aircraft Problem O Pilot Problem		N.				
System Problem Aircraft Problem Piloc Problem O Others	han demoktiva Field Ge	*	Colorand /	UDAR Creation	Arcoft Mericaria/ (ID45 Tachaidan	
System Problem Aircraft Problem Piloc Problem O Others:	by Acquisition Flight Cer	*	the state of the s	LIDAR Operator	Aircoft Medianic/ UDAR Technician	
System Problem Aircraft Problem Piloc Problem O Others		*	Webney	WONR CONTRACT	Aircoft Medianic/ UDAR Technician	
System Problem Aircraft Problem Piloc Problem Others: Arquintino Fight Approved b P Arr Car	Sy Payment	Dibomini).	Mobily	LIDAR Operator KAN day D Signeture (over Printed)	1	
System Problem Aircraft Problem Piloc Problem O Others	Sig Atturnavel	High Downing)- Anne Signal	17-Collegrand Med New ture over Printed Masse	KAPOLYC	1	
System Problem Aircraft Problem Piloc Problem O Others Arquiettico Flight Approved I P Ar Celu Signature over Primed Name	Sig Atturnavel	High Downing)- Anne Signal	Mobily	KAPOLYC	Nama Signatures over Printed Name	
System Problem Aircraft Problem Piloc Problem O Others Arquiettico Flight Approved I P Ar Celu Signature over Primed Name	Sig Atturnavel	High Downing)- Anne Signal	Mobily	KAPOLYC	Nama Signatures over Printed Name	
System Problem Aircraft Problem Piloc Problem O Others Arquiettico Flight Approved I P Ar Celu Signature over Primed Name	Sig Atturnavel	High Downing)- Anne Signal	Mobily	KAPOLYC	Nama Signatures over Printed Name	

ANNEX 7. Flight Status Reports

Table A-7-1. Flight Status Report

PAGSANGAHAN FLOODPLAIN

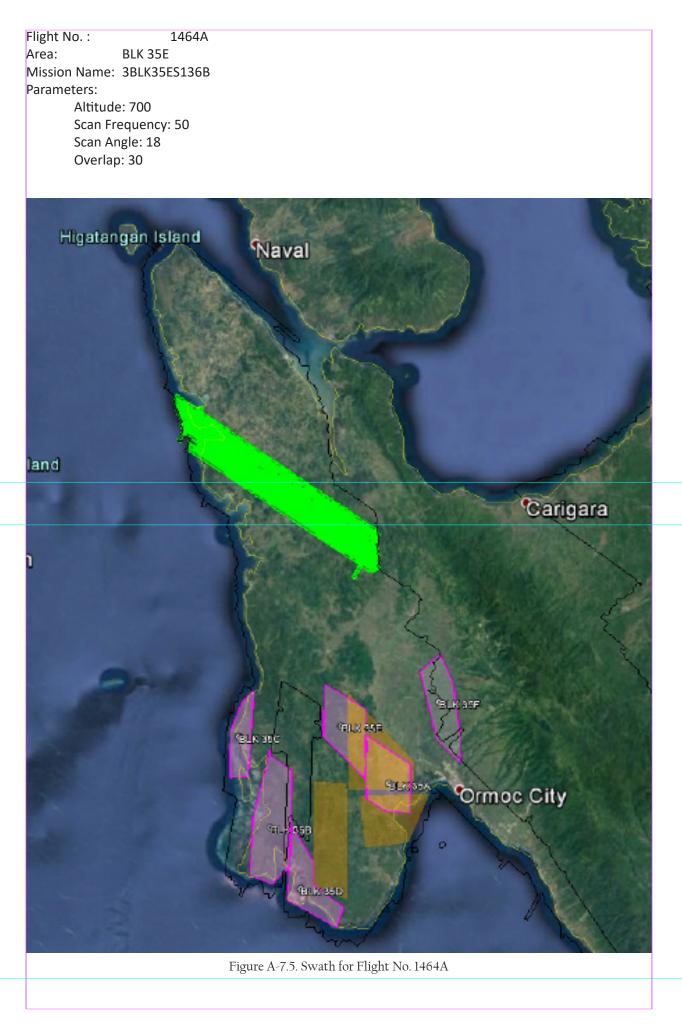

(January 28, May 15-26, 2014; January 21-February 17, 2015; March 9-19, April 16, 2016)


Flight No	Area	Mission	Operator	Date Flown	Remarks
1032A	BLK 35A	2BLK35A028A	F. Sable	28-Jan-14	Successful flight
1458A	BLK 35B	3BLK35B135A	I. Roxas	15-May-14	Completed mission over BLK35B
1460A	BLK 35C & 35D	3BLK35CD135B	P. Arceo	15-May-14	Completed mission over BLK35C and some lines over BLK35D
1462A	BLK 35D & 35E	3BLK35DSE136A	P. Arceo	16-May-14	Completed mission over BLK35D and 6 lines over BLK35E
1464A	BLK 35E	3BLK35ES136B	P. Arceo	16-May-14	Completed 14/22 lines left over BLK35E
1466A	BLK 35F	3BLK35F137A	P. Arceo	17-May-14	Completed mission over BLK35F with voids due to strong winds.
1474A	BLK 35G	3BLK35G139A	P. Arceo	19-May-14	Completed voids coverage from BLK C, D, E & F AND 6 lines from BLK 35G.
1494A	BLK 35G & 35H	3BLK35GSH144A	P. Arceo	24-May-14	Completed mission over BLK 35G and four lines over BLK 35H.
1498A	BLK 35H & 35I	3BLK35HSI145A	P. Arceo	25-May-14	Completed mission over BLK 35H and four lines over BLK 35I.
1502A	BLK 35I	3BLK35IS146A	P. Arceo	26-May-14	Completed mission over BLK 35I
1504A	BLK 35A & 35I	3BLK35AIS146B	M. Baliguas	26-May-14	Completed mission over BLK 35A and 2 lines over BLK 35I
7753AC	BLK 35B	3BLK35B021A	L. Paragas	21-Jan-15	Completed 14 lines of Blk35B. Experienced red swath (short ranges).
7760AC	BLK 35A	3BLK35A025A	G. Sinadjan	25-Jan-15	Completed Blk35A with digitizer. Experienced red swath (short ranges) No CASI
7780AC	BLK 35A	3BLK35AX035A	G. Sinadjan	04-Feb-15	Completed 3 lines. Flight aborted due to strong winds. With digitizer. No CASI
7782AC	BLK 35A	3BLK35AX036A	L. Paragas	05-Feb-15	Over Ormoc. Flight aborted due to strong winds. With digitizer. No CAS
7802AC	BLK 35 Voids	3BLK35SV046A	L. Paragas	15-Feb-15	Surveyed voids and short ranges of BLK35 with digitizer. No CASI
7806AC	BLK 35 Voids	3BLK35X1048A	L. Paragas	17-Feb-15	Surveyed voids and short ranges of BLK35 with digitizer. No CASI
8389AC	BLK 35A	3BLK35A069A	L. Paragas	09-Mar-16	Surveyed BLK 35A
8391AC	BLK 35EC	3BLK35EC070A	J. Gonzales	10-Mar-16	Surveyed BLK 35EC
8392AC	BLK 35BD	3BLK35BD070B	L. Paragas	10-Mar-16	Surveyed BLK 35BD

Flight No	Area	Mission	Operator	Date Flown	Remarks
8394AC	BLK 35BD	3BLK35BD071B	J. Gonzales	11-Mar-16	Surveyed BLK 35BD
8408AC	BLK 35DCE	3BLK48BD079A	M. Baliguas	19-Mar-16	Surveyed BLK 35DCE
8409AC	BLK 48DS	3BLK34079B	J. Gonzales	19-Mar-16	Surveyed coastal area west of Ormoc Bay
3945G	BLK 35AB	2BLK35AB107A	F. Ilejay	16-Apr-16	Surveyed BLK 35A and 35B
3947G	BLK 35CS	2BLK35CS107B	K. Andaya	16-Apr-16	Surveyed BLK 35C and covered voids over BLK 35A and 35B

SWATH PER FLIGHT MISSION

Flight No. : 1032A Area: BLK 35A Mission Name: 2BLK35A028A Parameters: Altitude: 600 Scan Frequency: 40 Scan Angle: 25 Overlap: 30


Flight No. : 1460A Area: BLK 35C & 35D Mission Name: 3BLK35CD135B Parameters: Altitude: 700 Scan Frequency: 50 Scan Angle: 18 Overlap: 30 Higatangan Island Naval sland Carigara yan K 35F SEN SAE 250 Ormoc City 23.5

Bagatao Is

Figure A-7.3. Swath for Flight No. 1460A

91 K.95D

Flight No. : 1462A Area: BLK 35D & 35E Mission Name: 3BLK35DSE136A Parameters: Altitude: 700 Scan Frequency: 50 Scan Angle: 18 Overlap: 30 Higatangan Island Naval nd Carigara 3.5E GILK ANE BLK 35C GLT STATE Ormoc City HUR SHE Figure A-7.4. Swath for Flight No. 1462A

Flight No. : 1466A Area: BLK 35F Mission Name: 3BLK35F137A Parameters: Altitude: 600 Scan Frequency: 50 Scan Angle: 18 Overlap: 30

Figure A-7.6. Swath for Flight No. 1466A

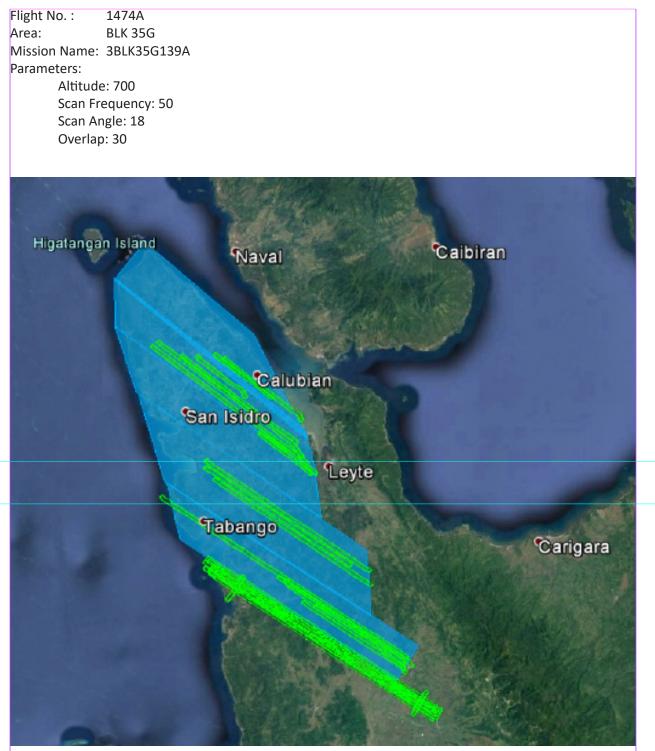
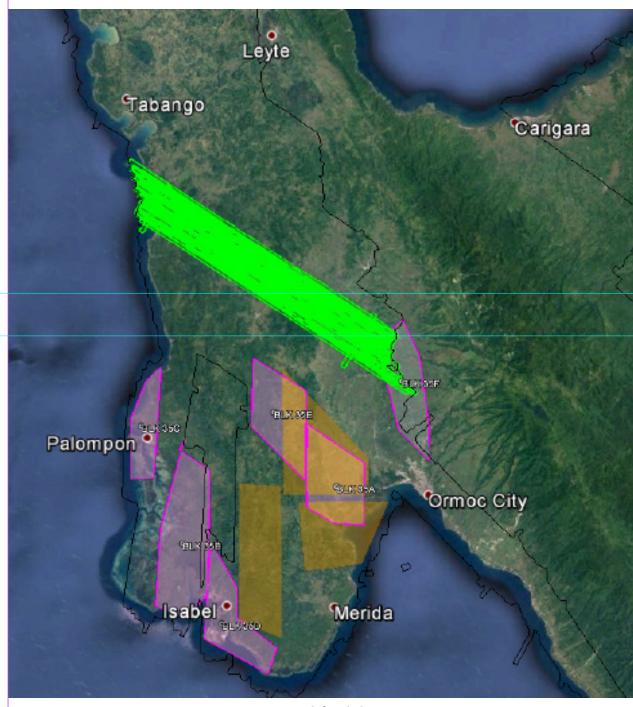



Figure A-7.7. Swath for Flight No. 1474A

Flight No. : 1494A Area: BLK 35G & 35H Mission Name: 3BLK35GSH144A Parameters: Altitude: 700 Scan Frequency: 50 Scan Angle: 18

Overlap: 30

Figure A-7.8. Swath for Flight No. 1494A

Flight No. : 1498A Area: BLK 35H & 35I Mission Name: 3BLK35HSI145A Parameters: Altitude: 800 Scan Frequency: 50 Scan Angle: 18 Overlap: 30

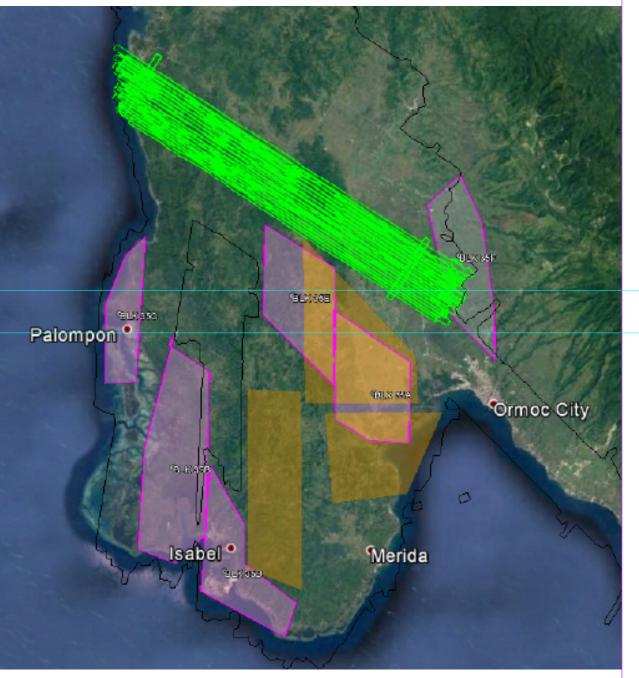


Figure A-7.9. Swath for Flight No. 1498A

Flight No. : 1502A Area: BLK 35A & 35I Mission Name: 3BLK35AIS146B Parameters: Altitude: 700 Scan Frequency: 50 Scan Angle: 18 Overlap: 55, 40, 50

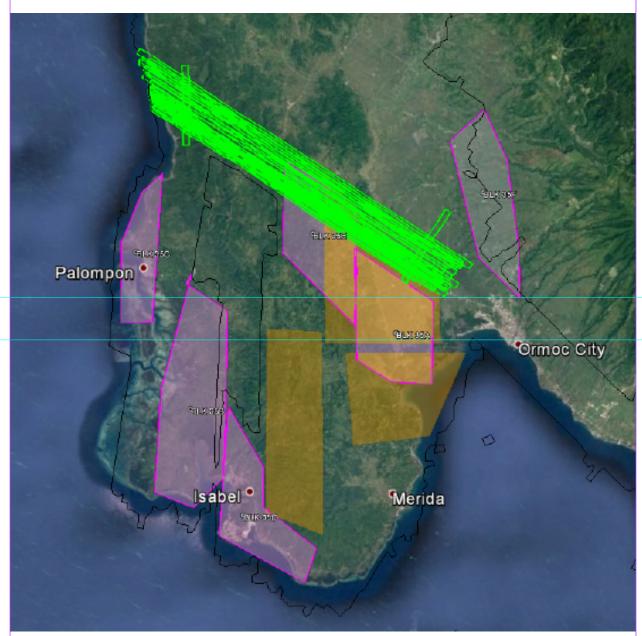
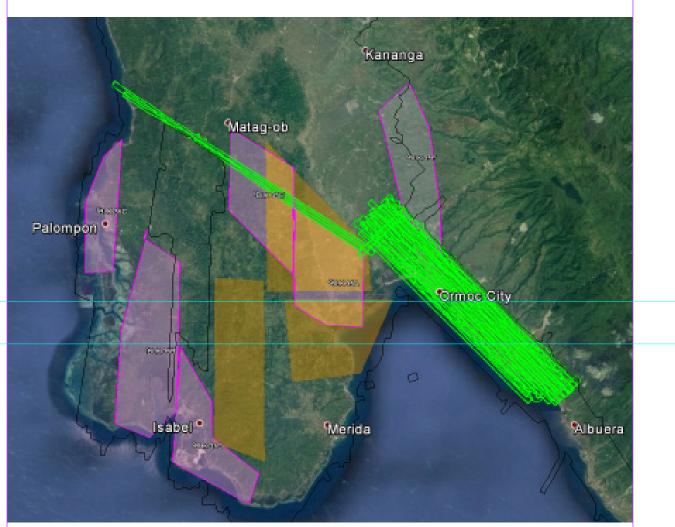
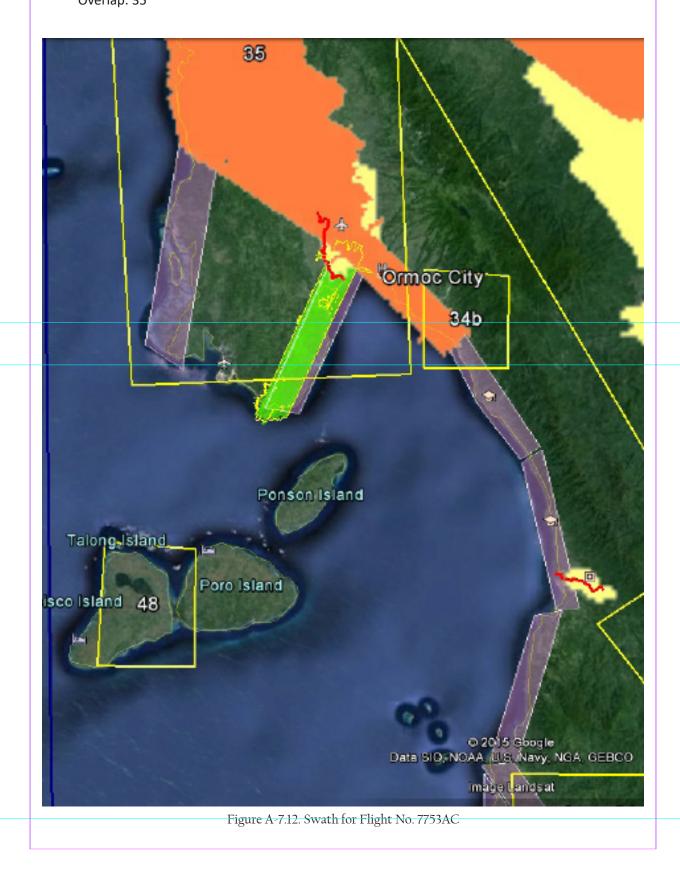
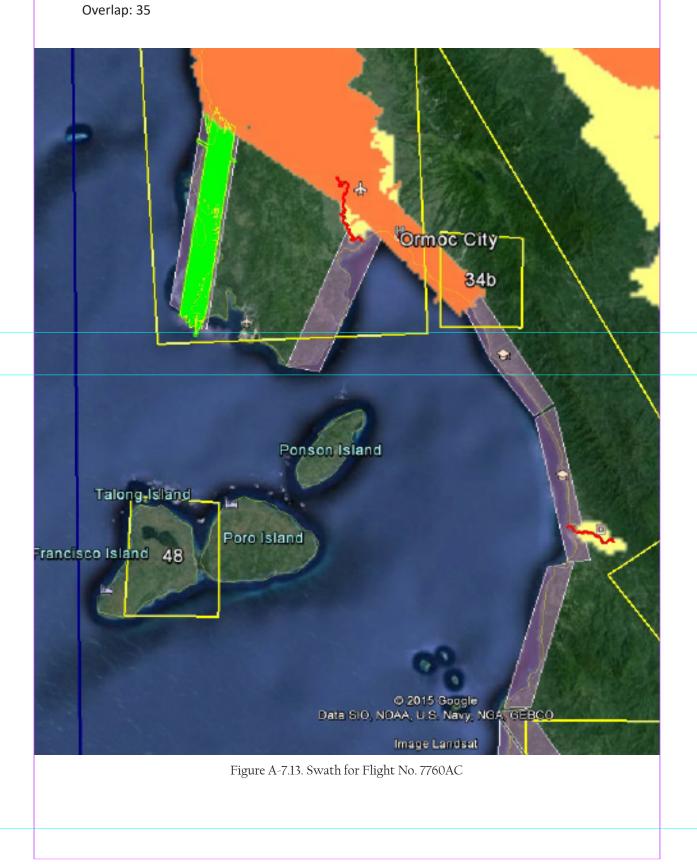


Figure A-7.10. Swath for Flight No. 1502A

LIDAR Surveys and Flood Mapping of Pagsangahan River

Flight No. : 1504A Area: BLK 35I Mission Name: 3BLK35IS146A Parameters: Altitude: 600 Scan Frequency: 50 Scan Angle: 18 Overlap: 30


Figure A-7.11. Swath for Flight No. 1504A

Flight No. : 7753AC Area: BLK 35B Mission Name: 3BLK35B21A Parameters: Altitude: 600 m Scan Frequency: 45 Scan Angle: 18 Overlap: 35

LIDAR Surveys and Flood Mapping of Pagsangahan River

Flight No. : 7760AC Area: BLK 35A Mission Name: 3BLK35A025A Parameters: Altitude: 550 Scan Frequency: 45 Scan Angle: 18

Flight No. : 7780AC Area: BLK 35A Mission Name: 3BLK35AX035A Parameters: Altitude: 500 Scan Frequency: 45 Scan Angle: 18 Overlap: 35

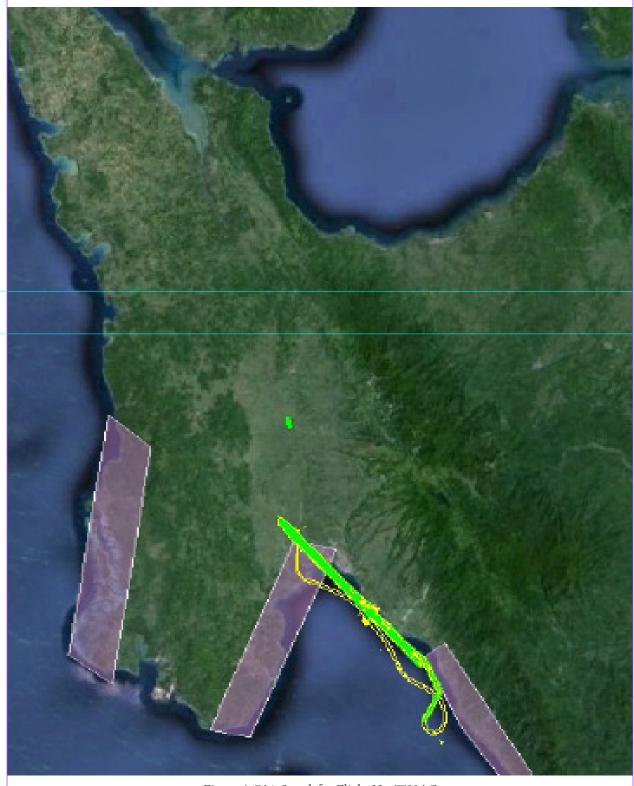


Figure A-7.14. Swath for Flight No. 7780AC

LIDAR Surveys and Flood Mapping of Pagsangahan River

Flight No. : 7782AC Area: BLK 35A Mission Name: 3BLK35AX036A Parameters: Altitude: 600 Scan Frequency: 45 Scan Angle: 18 Overlap: 35

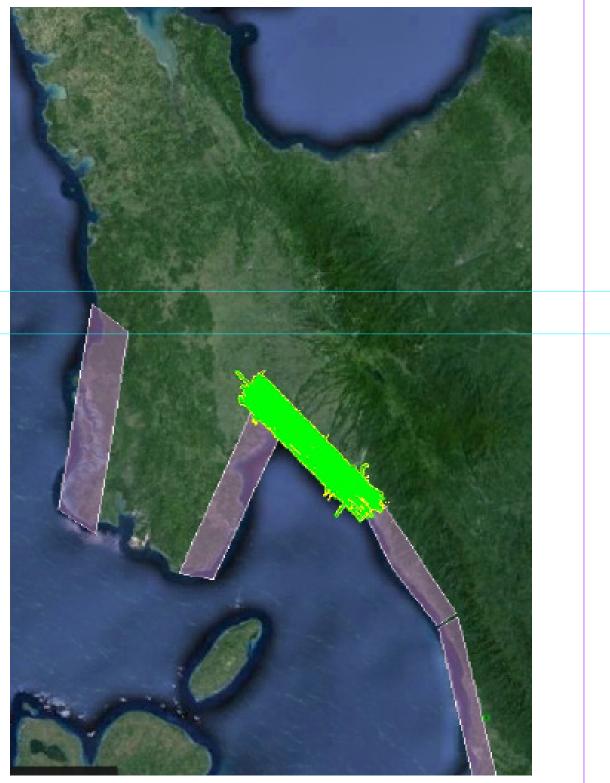


Figure A-7.15. Swath for Flight No. 7782AC

Flight No. : 7802AC Area: BLK 35 Voids Mission Name: 3BLK35SV046A Parameters: Altitude: 600 Scan Frequency: 45 Scan Angle: 18 Overlap: 35

Figure A-7.16. Swath for Flight No. 7802AC

Flight No. : 7806AC Area: BLK 35 Voids Mission Name: 3BLK35X1048A Parameters: Altitude: 600 Scan Frequency: 45 Scan Angle: 18 Overlap: 35

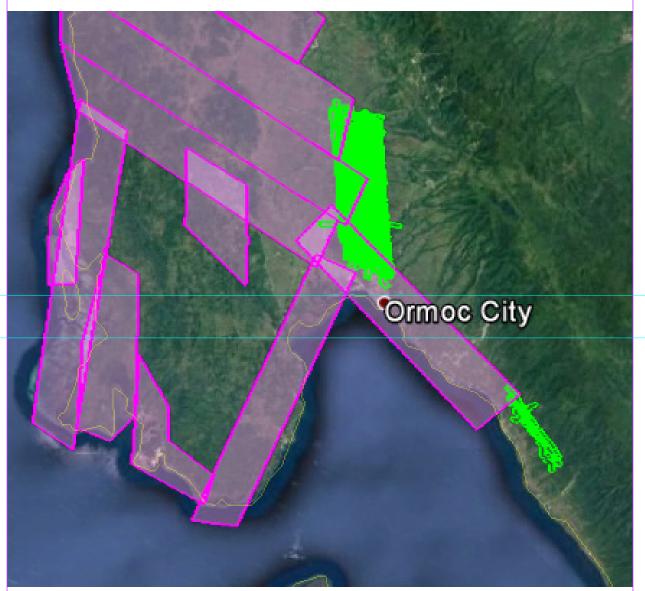
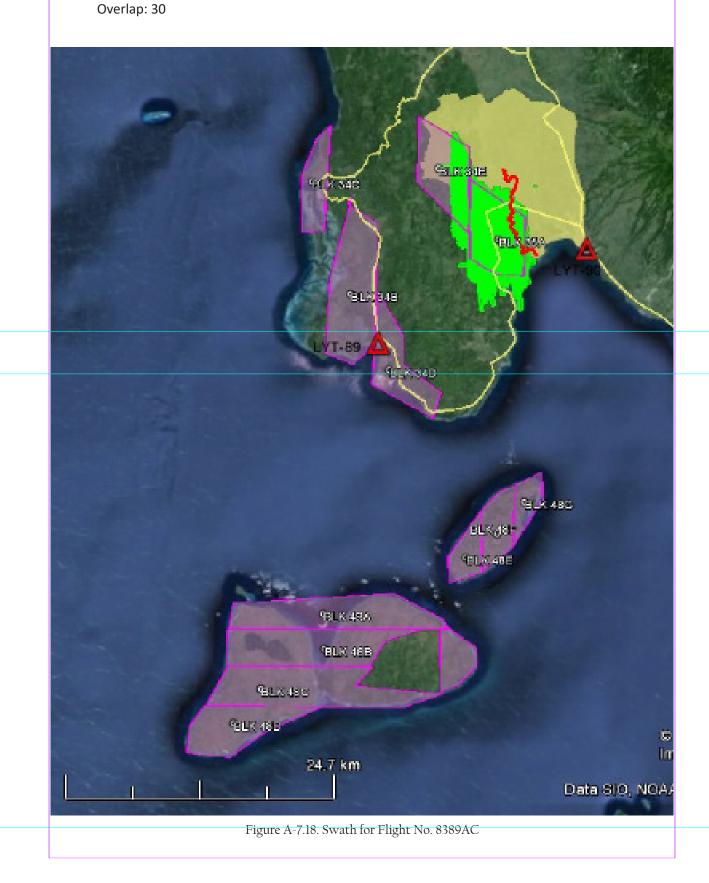
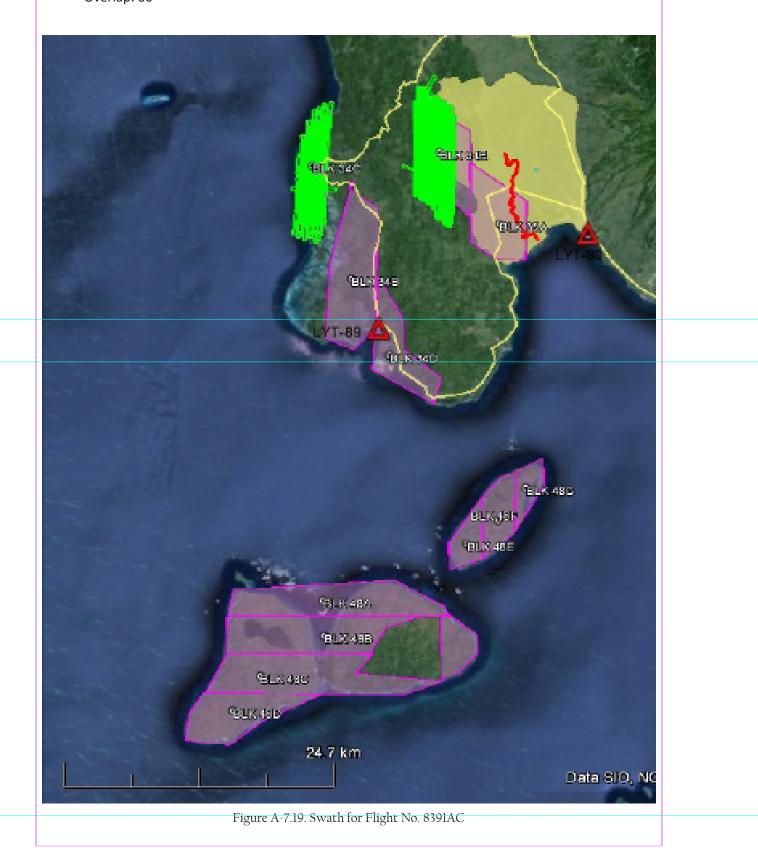
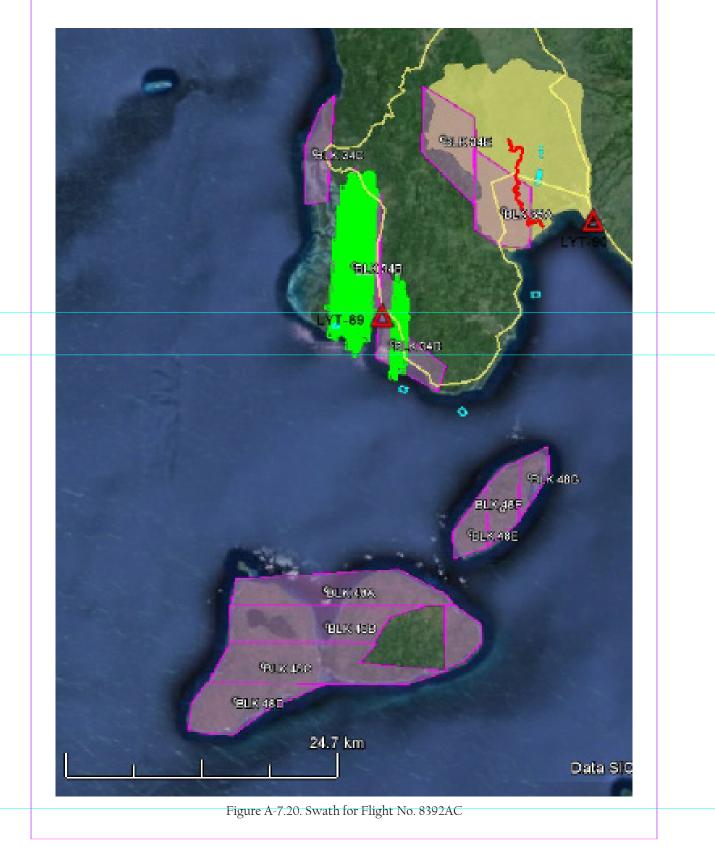
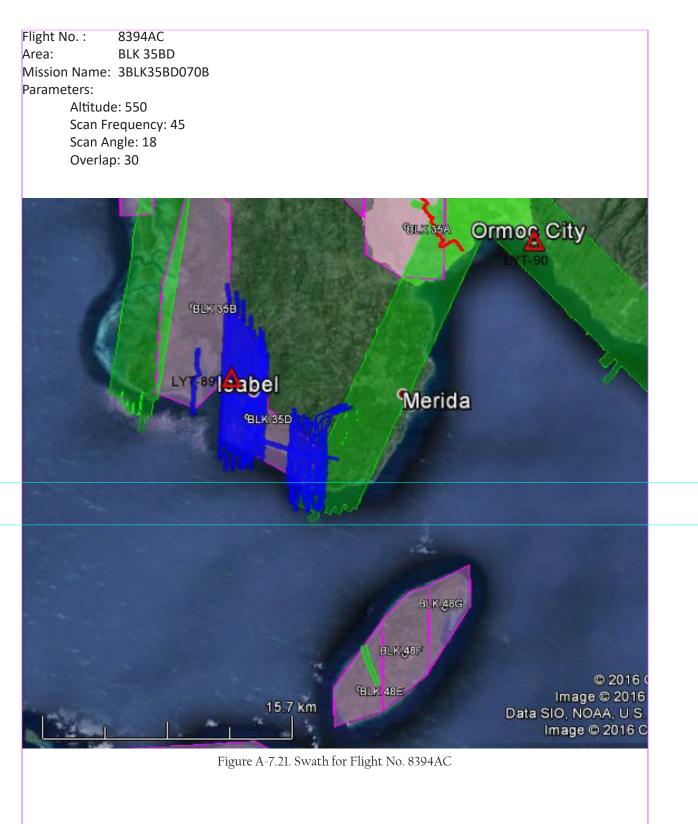




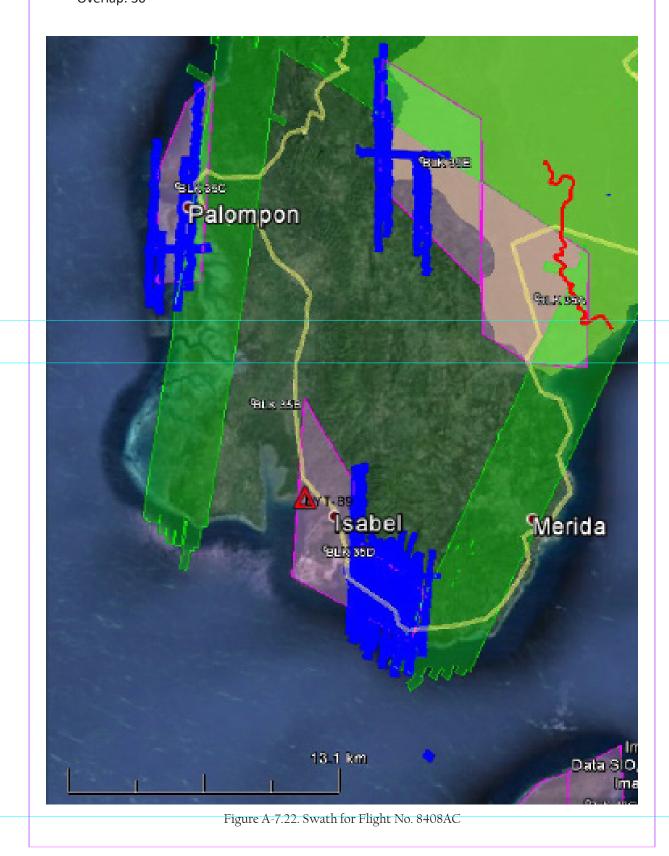
Figure A-7.17. Swath for Flight No. 7806AC

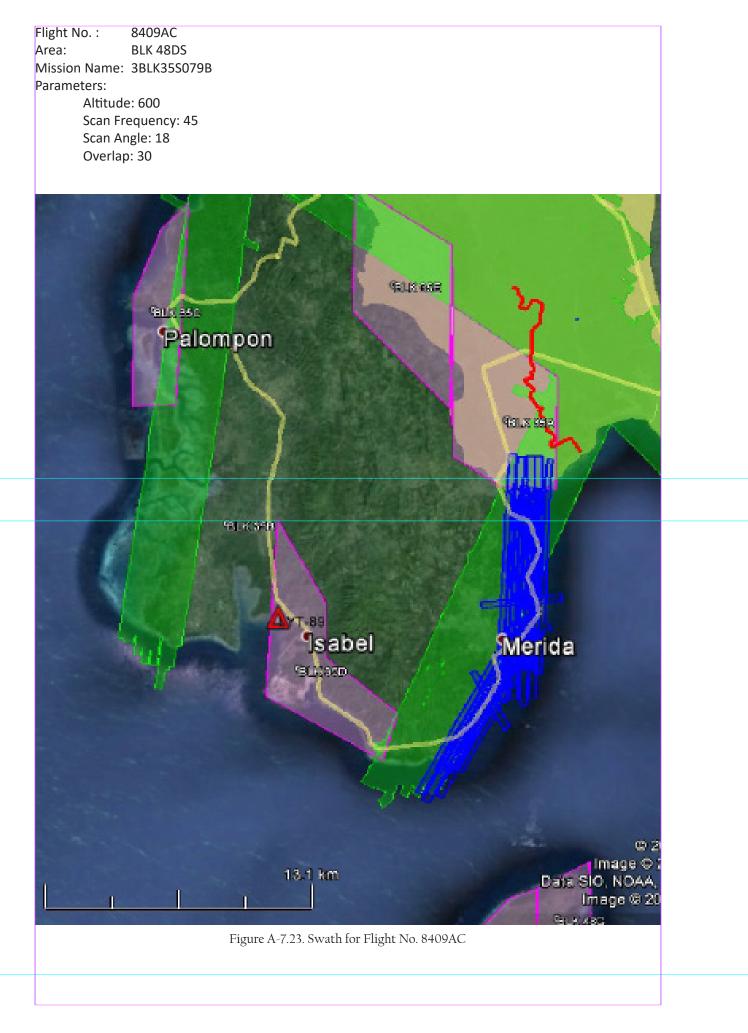
Flight No. : 8389AC Area: BLK 35A Mission Name: 3BLK35A068A Parameters: Altitude: 600 Scan Frequency: 45 Scan Angle: 18



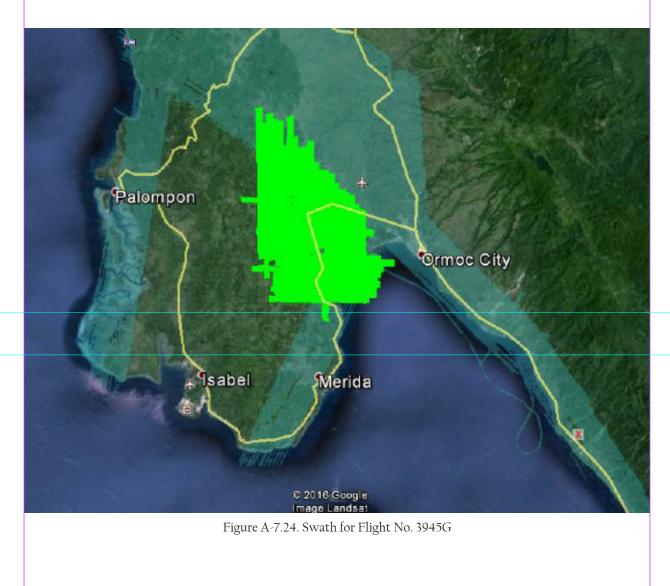

Flight No. : 8391AC Area: BLK 35EC Mission Name: 3BLK35EC069A Parameters: Altitude: 550 Scan Frequency: 45 Scan Angle: 18 Overlap: 30

Flight No. : 8392AC Area: BLK 35BD Mission Name: 3BLK35BD069B Parameters: Altitude: 550 Scan Frequency: 45


Scan Angle: 18 Overlap: 30



Flight No. : 8408AC Area: BLK 35DCE Mission Name: 3BLK35S079A Parameters: Altitude: 600 Scan Frequency: 45


Scan Angle: 18 Overlap: 30

Flight No. : 3945G Area: BLK 35A and 35B Mission Name: 2BLK35AB107A Parameters: Altitude: 800, 1000 Scan Frequency: 45

Scan Angle: 20 Overlap: 30

Flight No. : 3947G Area: BLK 35CS Mission Name: 2BLK35CS107B Parameters: Altitude: 1100 Scan Frequency: 45 Scan Angle: 20 Overlap: 30

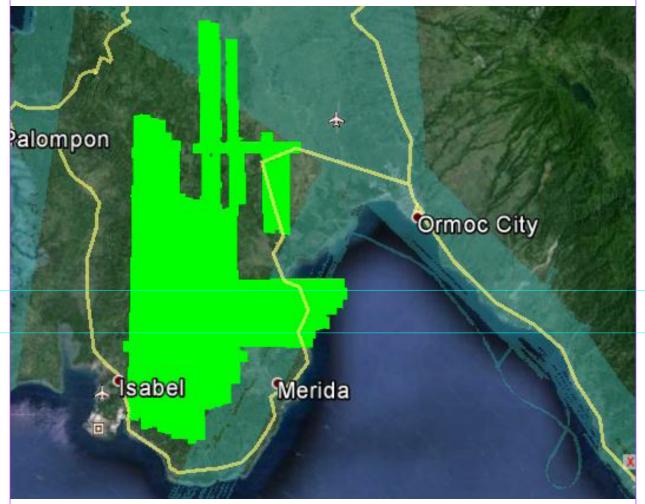
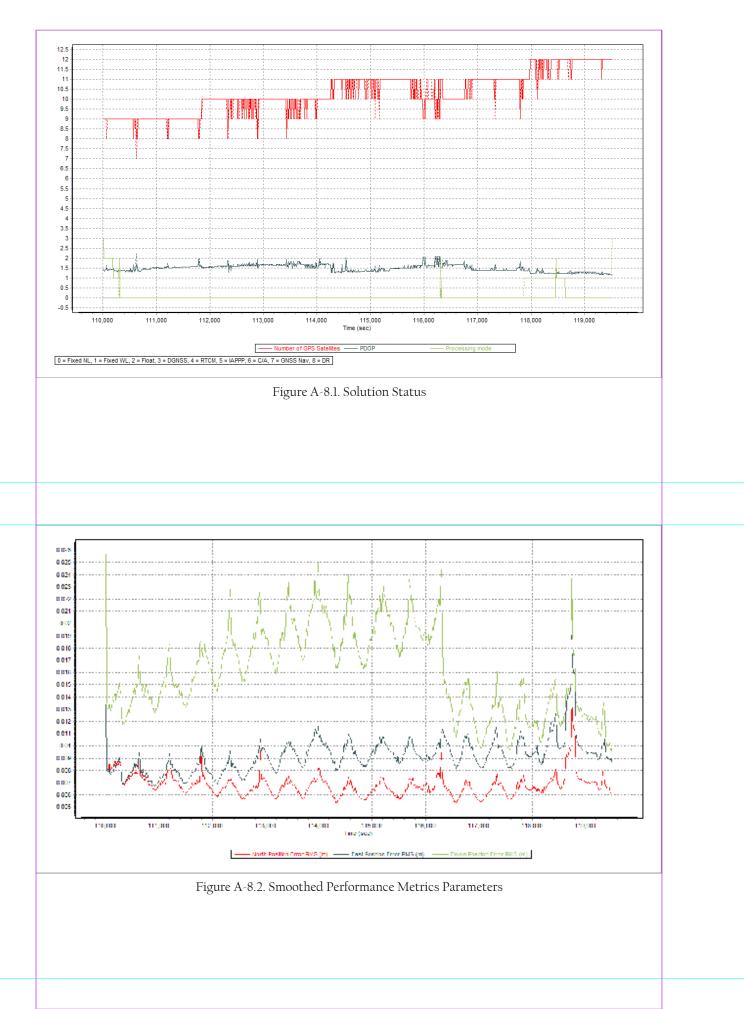
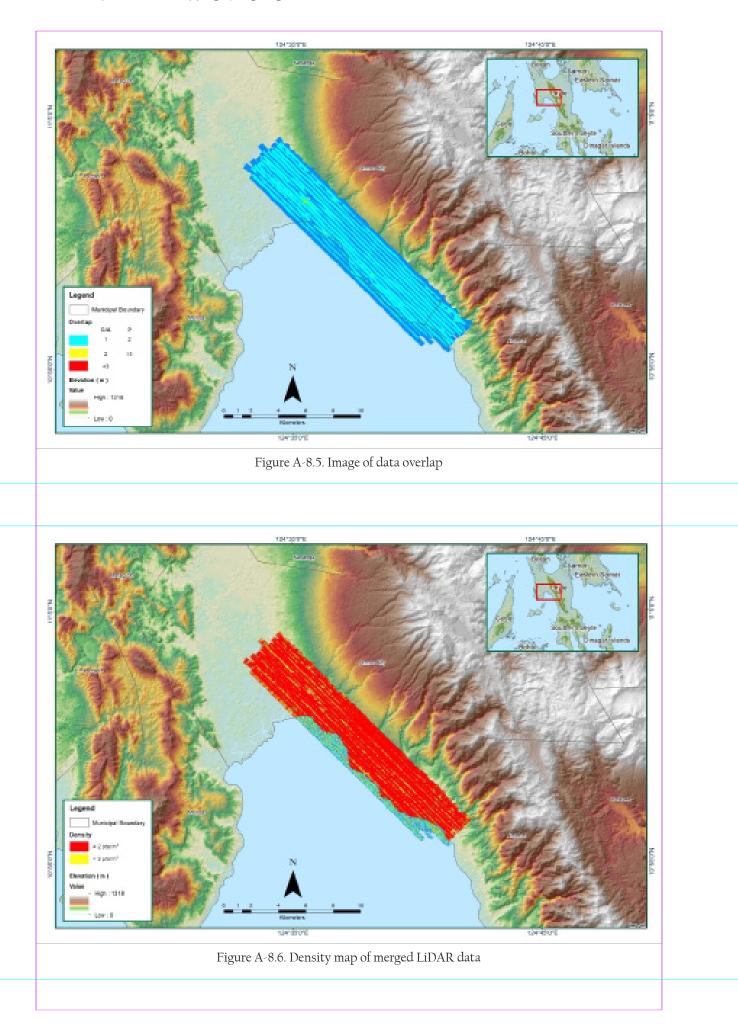
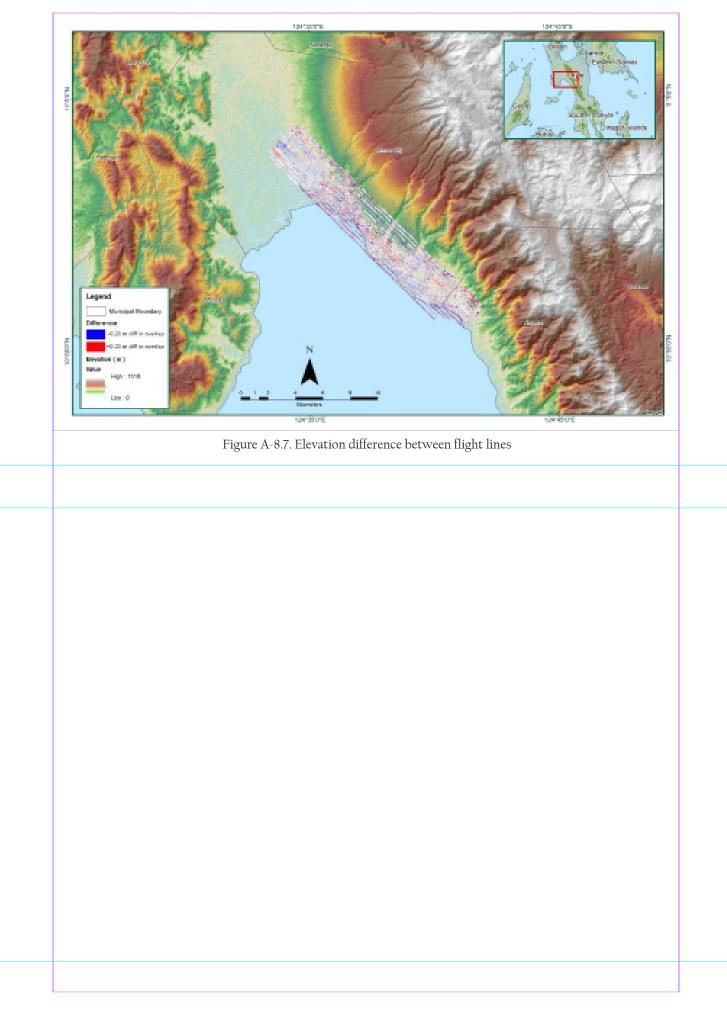
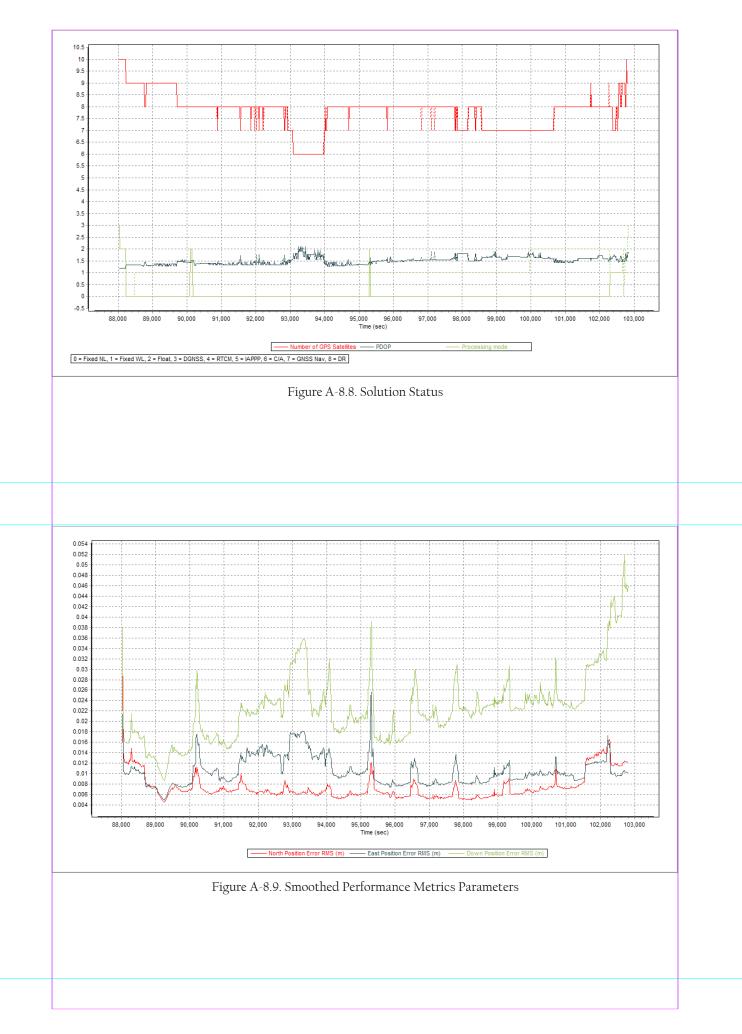



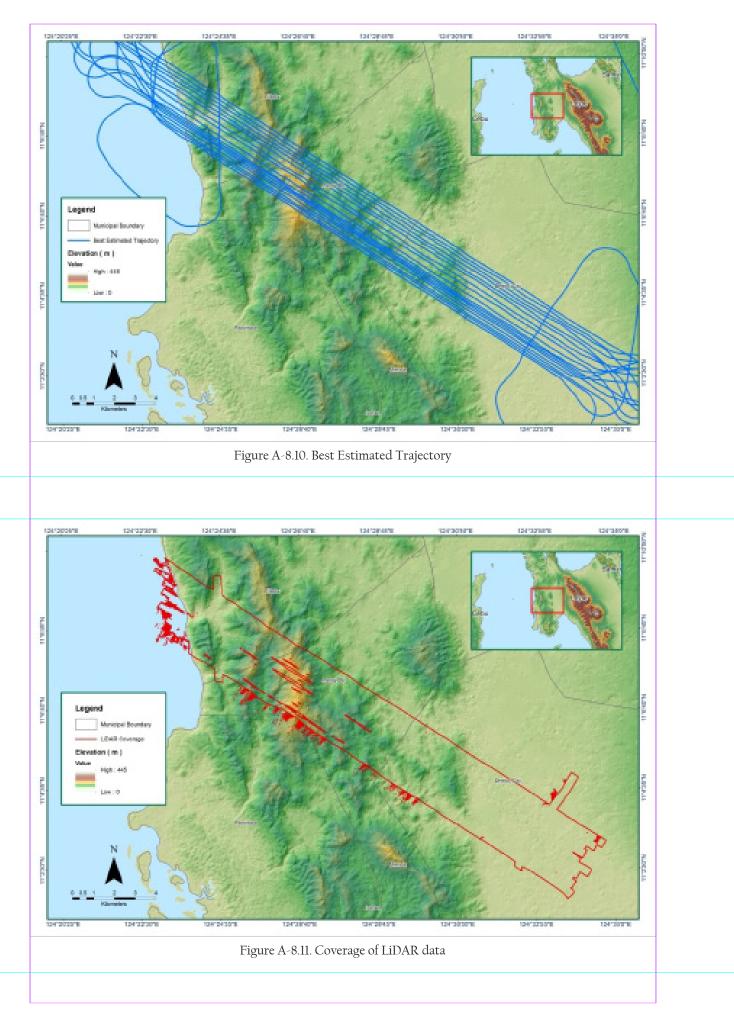
Figure A-7.25. Swath for Flight No. 3947G

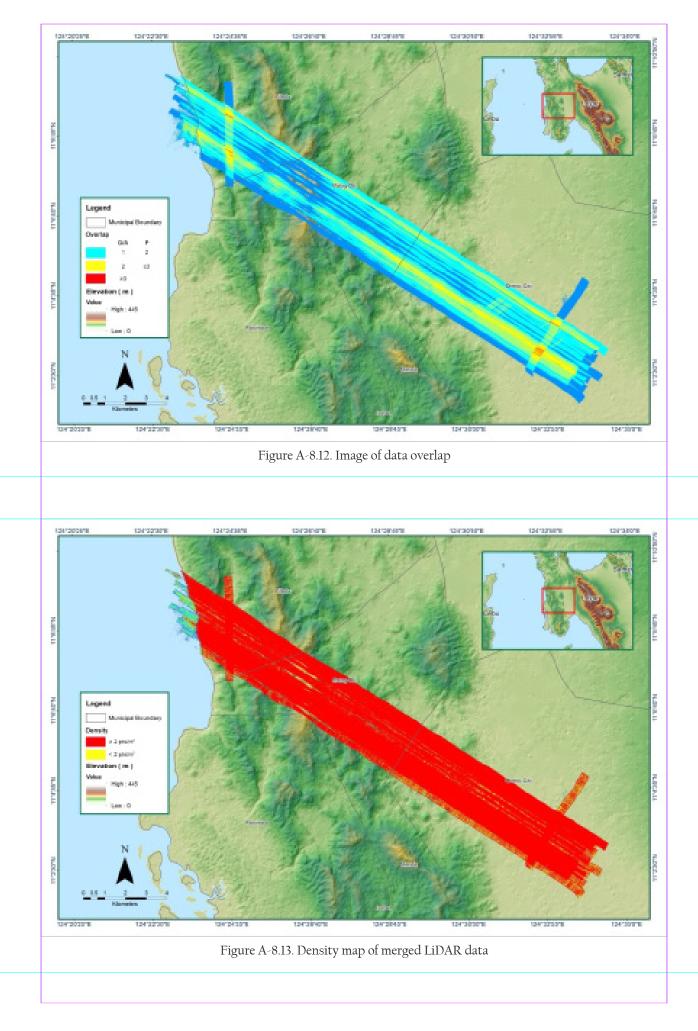

ANNEX 8. Mission Summary Reports

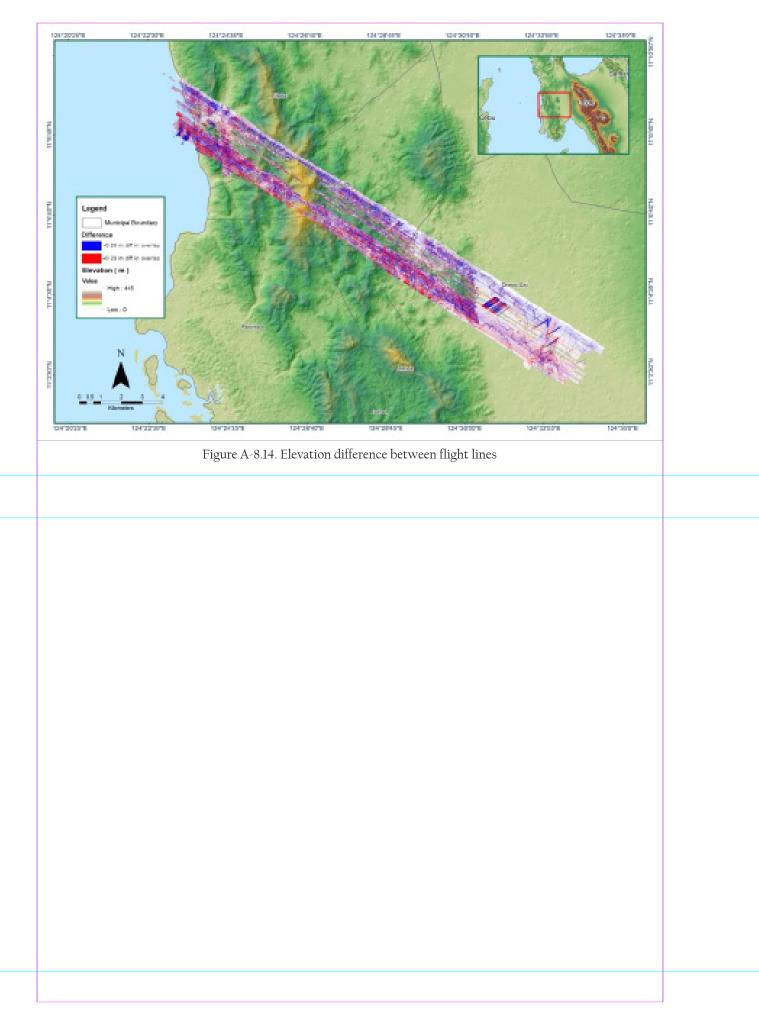

Table A-8.1. Mission Summary Report for Mission Blk35A

Flight Area	Samar-Leyte
Mission Name	Blk35A
Inclusive Flights	1504A
Range data size	11.4 GB
POS	265 MB
Image	15.7 MB
Transfer date	61.3 GB
	June 10, 2014
Solution Status	
Number of Satellites (>6)	
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	1.9
· /	2.5
Boresight correction stdev (<0.001deg)	
IMU attitude correction stdev (<0.001deg)	0.000264
GPS position stdev (<0.01m)	0.001690
	0.0085
Minimum % overlap (>25)	
Ave point cloud density per sq.m. (>2.0)	52.02%
Elevation difference between strips (<0.20 m)	3.13
	Yes
Number of 1km x 1km blocks	
Maximum Height	107
Minimum Height	184.83 m
	57.11 m
Classification (# of points)	
Ground	
Low vegetation	51,584,742
Medium vegetation	65,607,742
High vegetation	63,615,309
Building	9,673,867
	5,271,987
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Chelou Prado, Engr. Jeffrey Delica

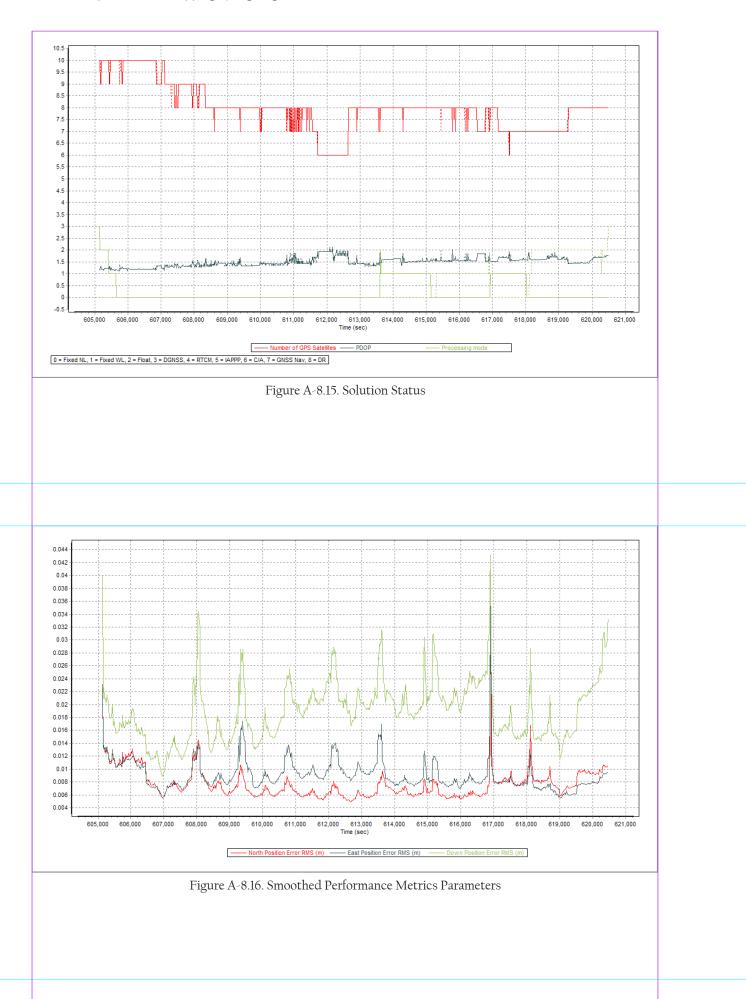


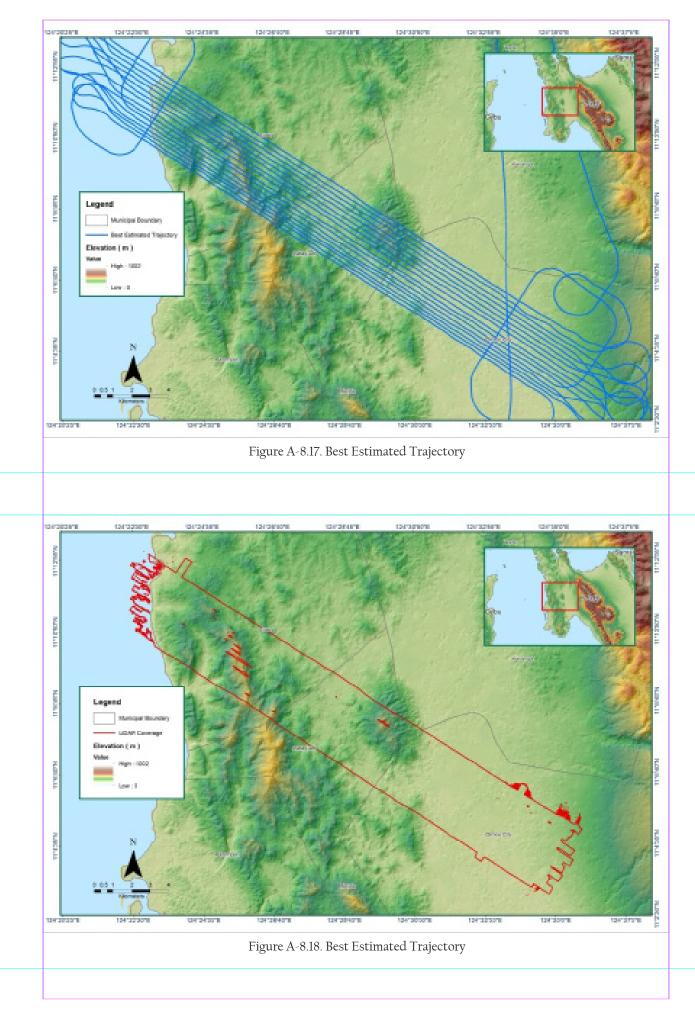


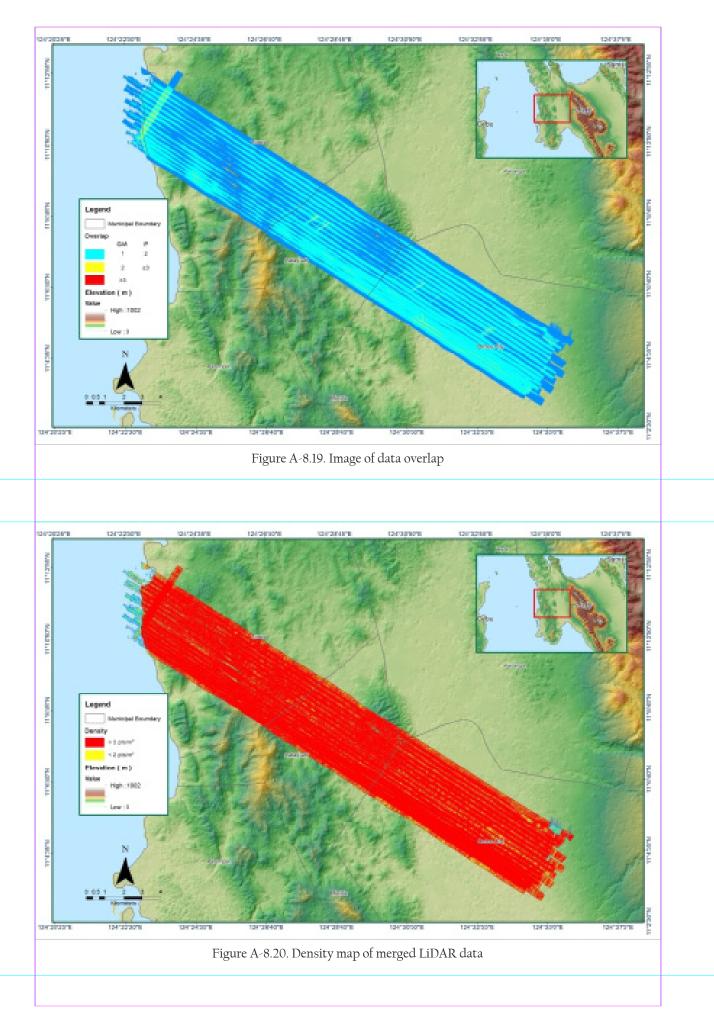


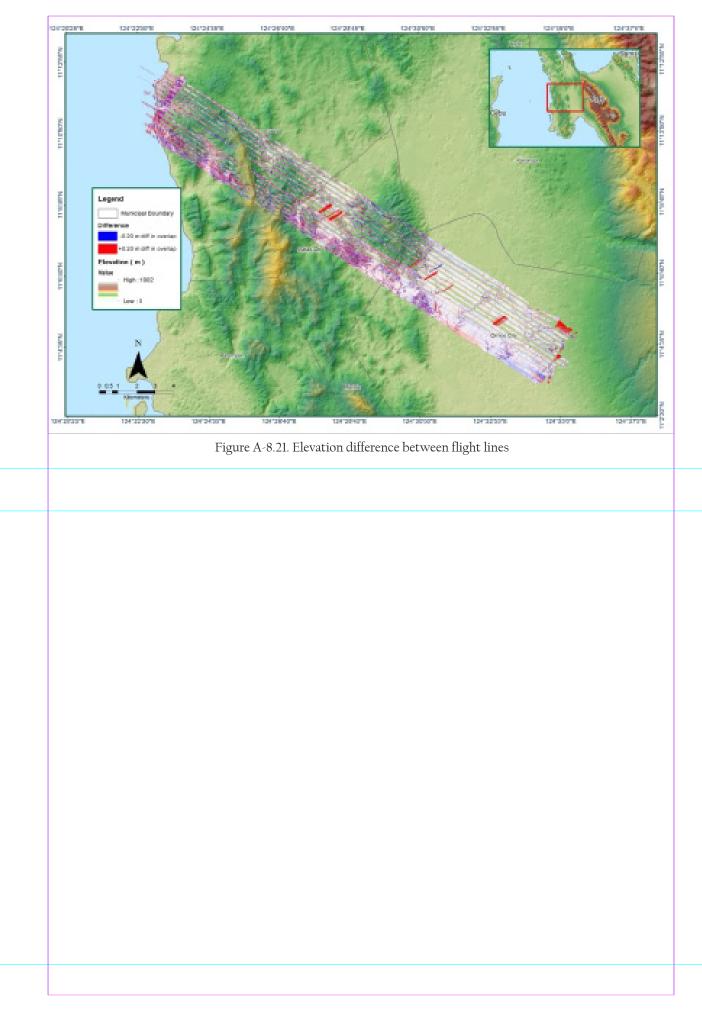


ight Area	Samar-Leyte
ission Name	Blk35I
usive Flights	1502A, 1504A
ge data size	25.3 GB
S data size	543 MB
e data size	31.4 MB
ge	148 GB
nsfer date	June 10, 2014
tion Status	
nber of Satellites (>6)	Yes
PP (<3)	Yes
eline Length (<30km)	No
ocessing Mode (<=1)	No
oothed Performance Metrics (in cm) Figur	e A-8.1. Solution Status
SE for North Position (<4.0 cm)	2.945
SE for East Position (<4.0 cm)	2.56
SE for Down Position (<8.0 cm)	5.176
· · ·	
resight correction stdev (<0.001deg)	
U attitude correction stdev (<0.001deg)	
S position stdev (<0.01m)	
· · · ·	
imum % overlap (>25)	68.60%
e point cloud density per sq.m. (>2.0)	5.18
vation difference between strips (<0.20 m)	Yes
nber of 1km x 1km blocks	109
iximum Height	514.41 m
iimum Height	52.26 m
ssification (# of points)	
ound	55,725,687
w vegetation	70,544,651
dium vegetation	140,006,924
h vegetation	51,430,148
Figure 4-8.2 Smoot	1,264,171 hed Performance Metrics Parameters
hophoto	No
ocessed by	Engr. Irish Cortez, Engr. Harmond Santos Engr. Gladys Mae Apat

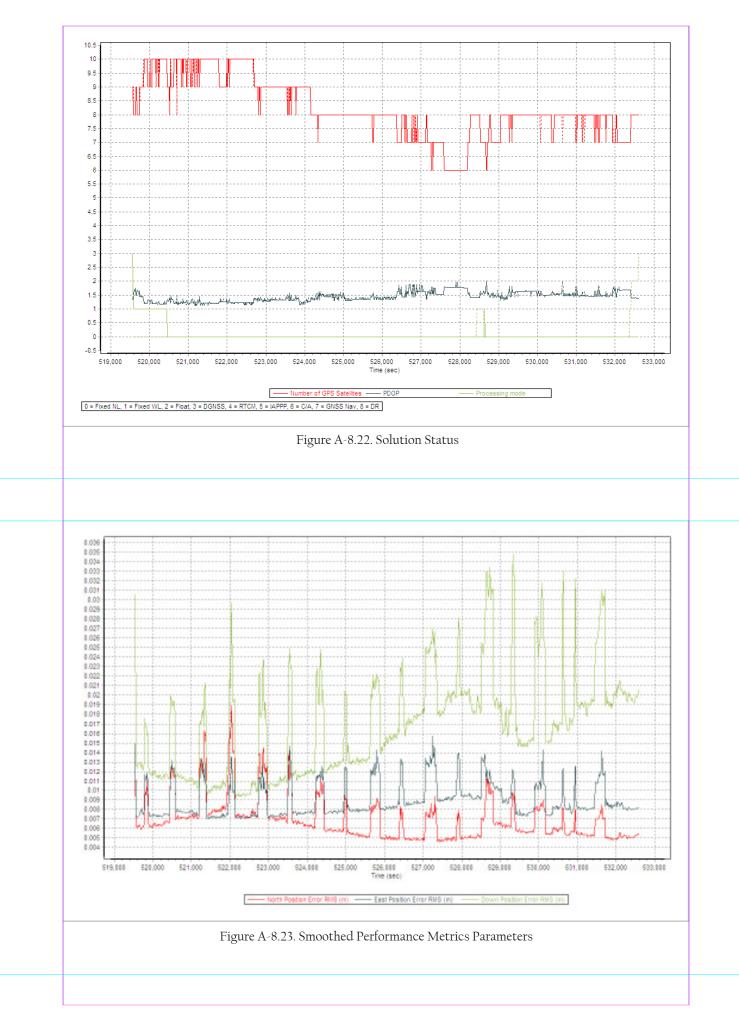


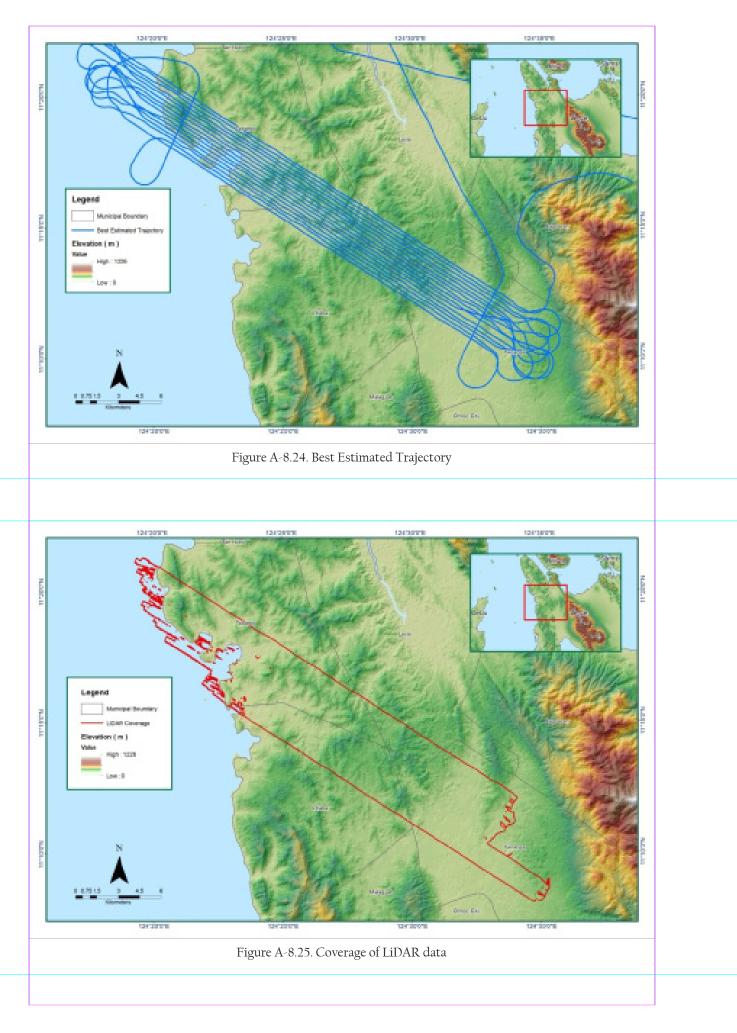


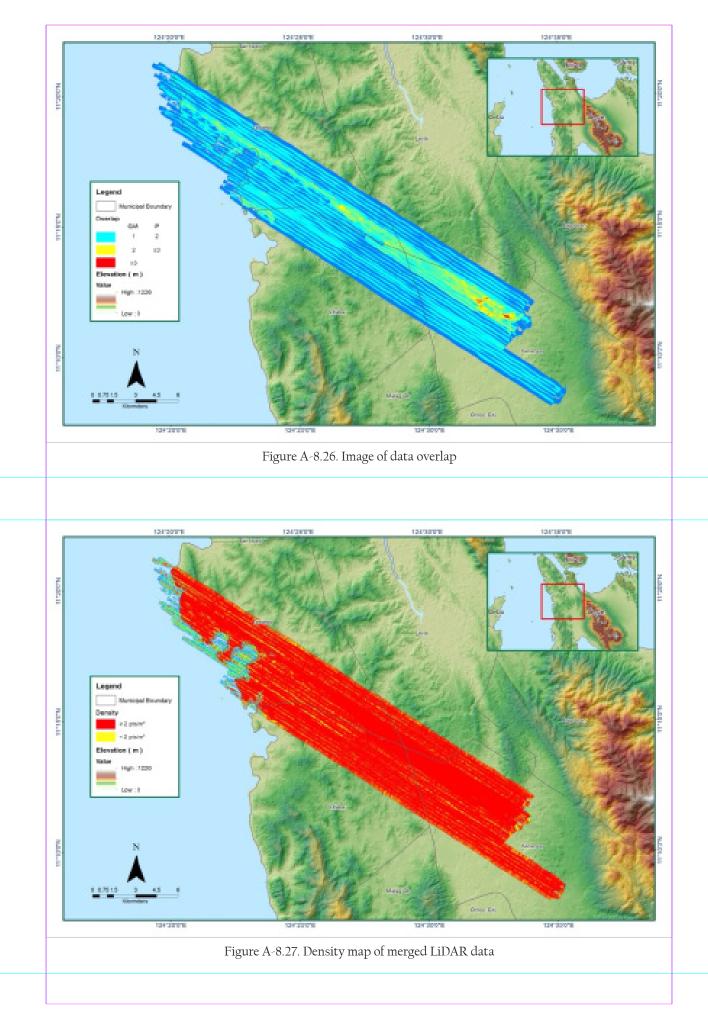


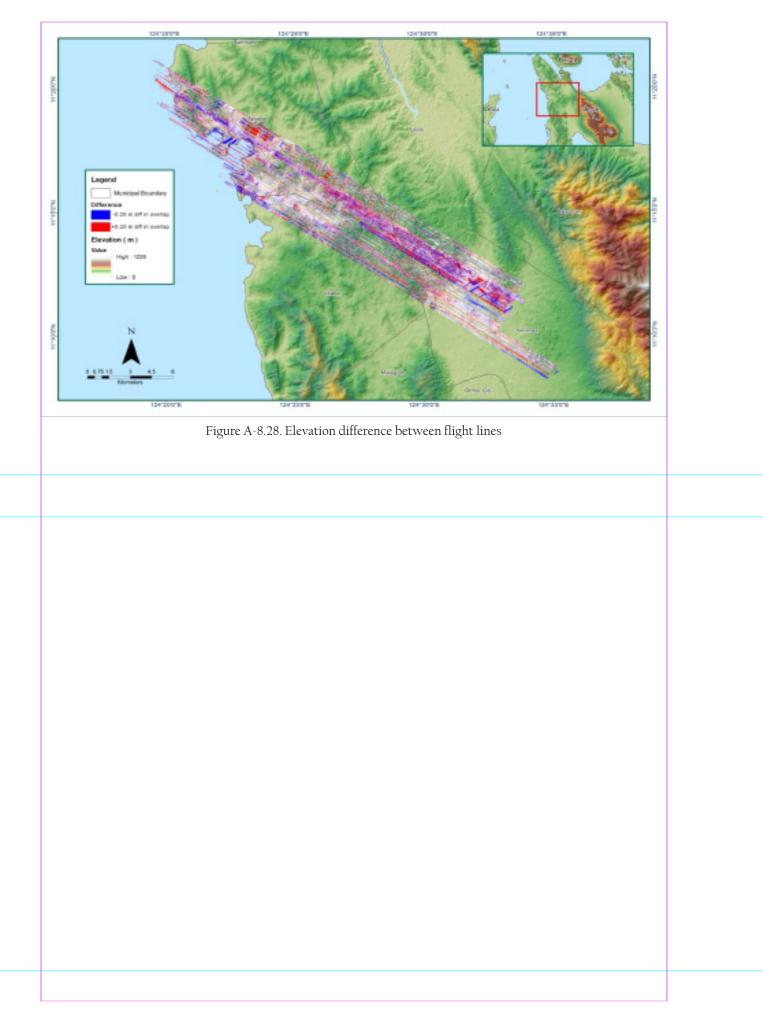


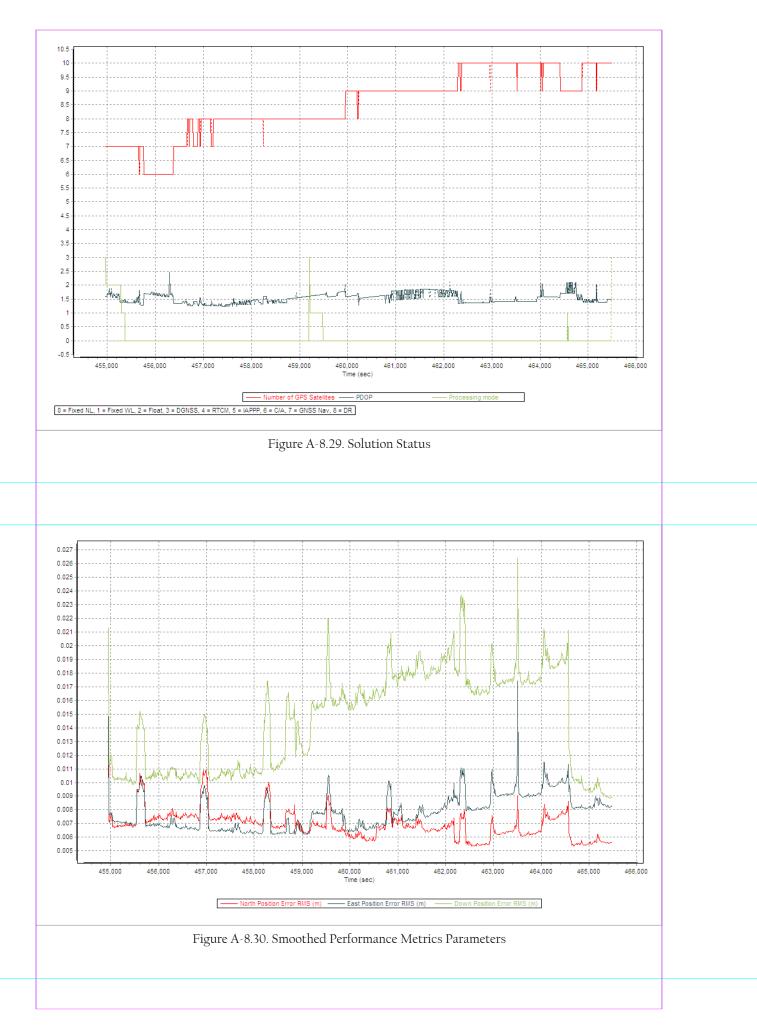
Flight Area	Samar-Leyte
Mission Name	Blk35H_Supplement
Inclusive Flights	1498A
Range data size	3.23 GB
POS data size	282 MB
Base data size	8.04 MB
Image	88.7 GB
Transfer date	June 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.34
RMSE for East Position (<4.0 cm)	3.776
RMSE for Down Position (<8.0 cm)	4.315
Boresight correction stdev (<0.001deg)	0.000283
IMU attitude correction stdev (<0.001deg)	0.000568
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	51.18%
Ave point cloud density per sq.m. (>2.0)	3.66
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	151
Maximum Height	433.53 m
Minimum Height	53.21 m
Classification (# of points)	
Ground	77,606,477
Low vegetation	87,206,288
Medium vegetation	130,999,621
High vegetation	43,330,044
Building	1,222,961
Orthophoto	No
	Engr. Irish Cortez, Engr. Melanie Hingpit, Jovy Narisma

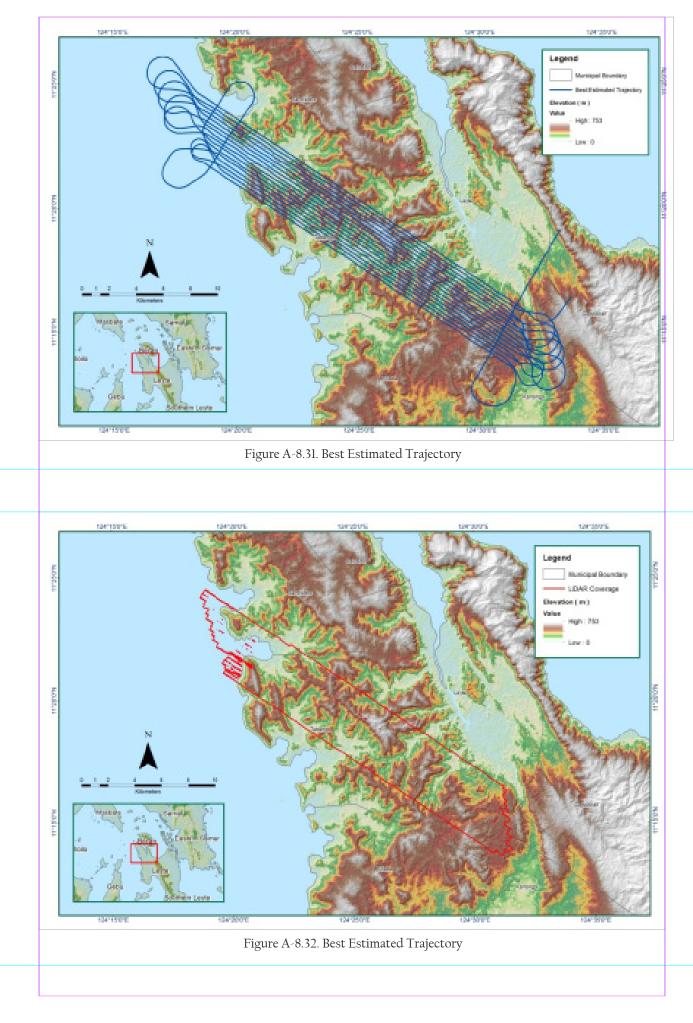


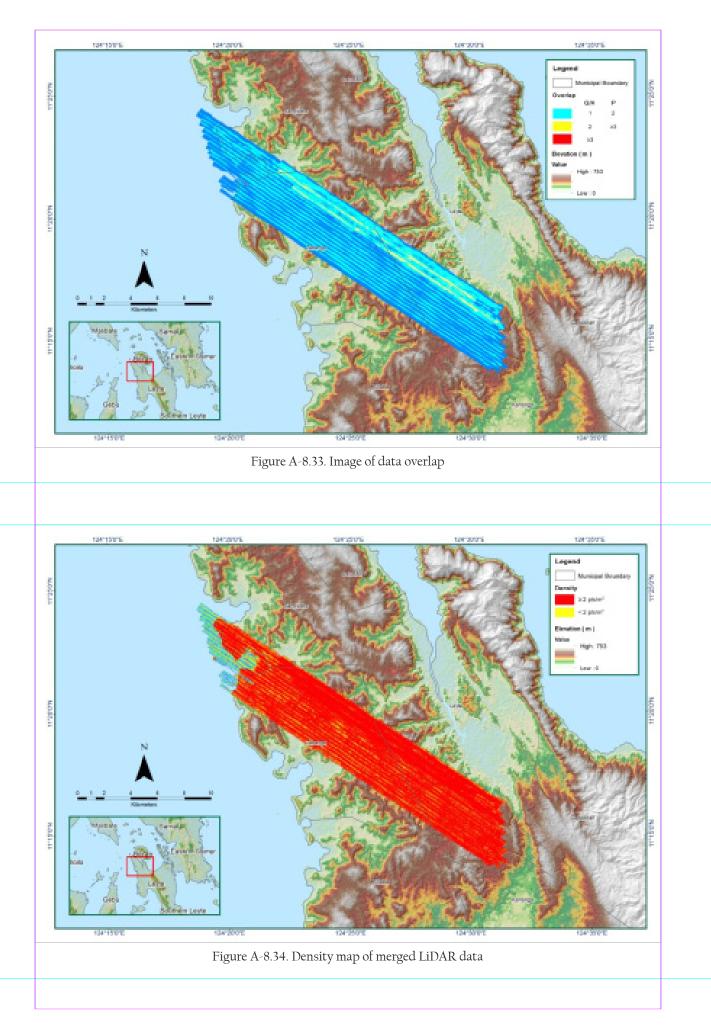


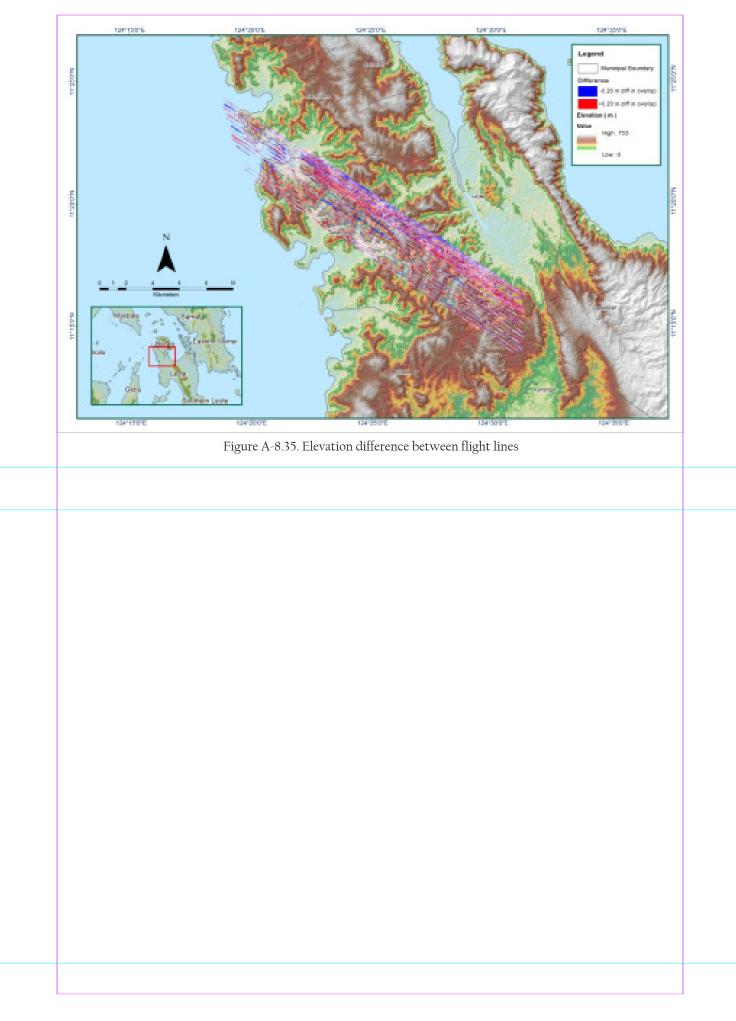



Flight Area	Samar-Leyte
Vission Name	Blk 35F
nclusive Flights	1474A,1466A
ange data size	30 GB
OS data size	575 MB
ase data size	17.65 MB
nage	174.9 GB
Fransfer date	June 10, 2014
olution Status	
lumber of Satellites (>6)	Yes
DOP (<3)	Yes
aseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
moothed Performance Metrics (in cm)	
MSE for North Position (<4.0 cm)	1.9
MSE for East Position (<4.0 cm)	1.6
MSE for Down Position (<8.0 cm)	3.5
oresight correction stdev (<0.001deg)	0.000407
AU attitude correction stdev (<0.001deg)	0.002146
iPS position stdev (<0.01m)	0.0037
1inimum % overlap (>25)	56.25%
ve point cloud density per sq.m. (>2.0)	3.81
levation difference between strips (<0.20 m)	Yes
lumber of 1km x 1km blocks	223
Aaximum Height	311.59 m
Vinimum Height	53.60 m
Classification (# of points)	
iround	116,883,933
ow vegetation	125,309,279
ledium vegetation	226,434,578
ligh vegetation	62,847,226
Building	1,471,558
Drthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Melanie Hingpit, Engr. Gladys Mae Apat

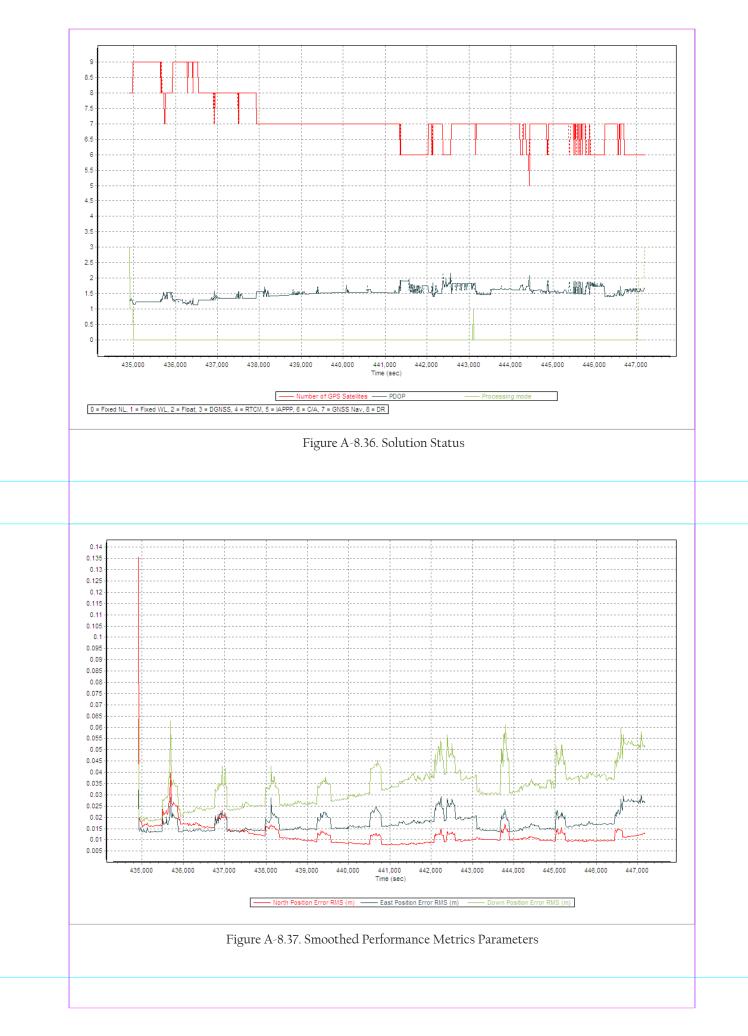

LIDAR Surveys and Flood Mapping of Pagsangahan River

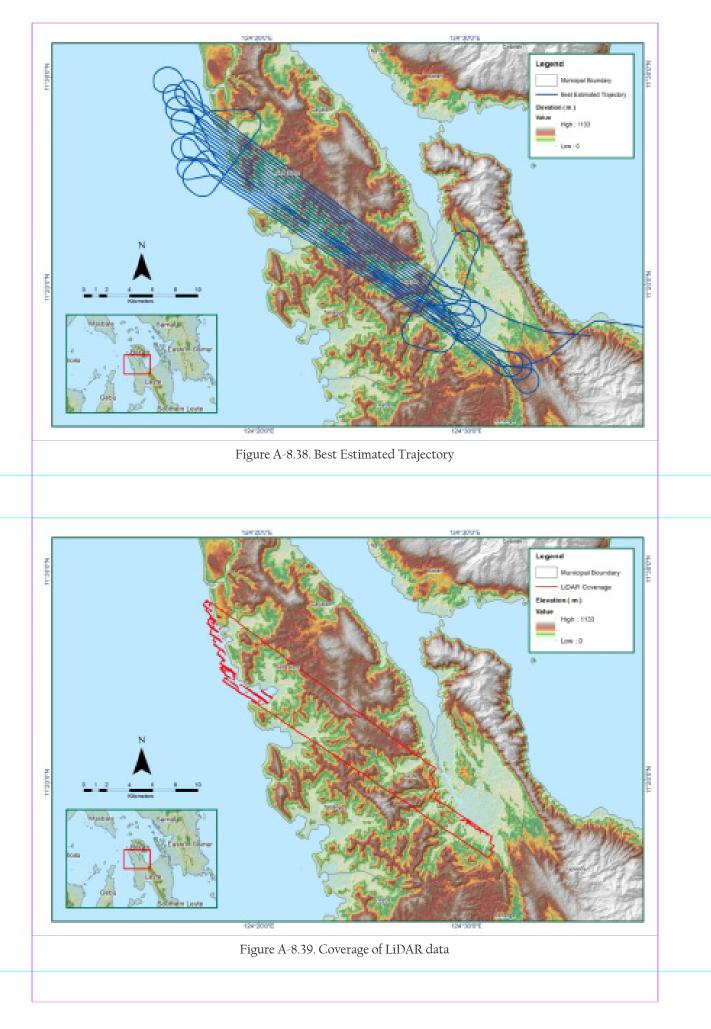


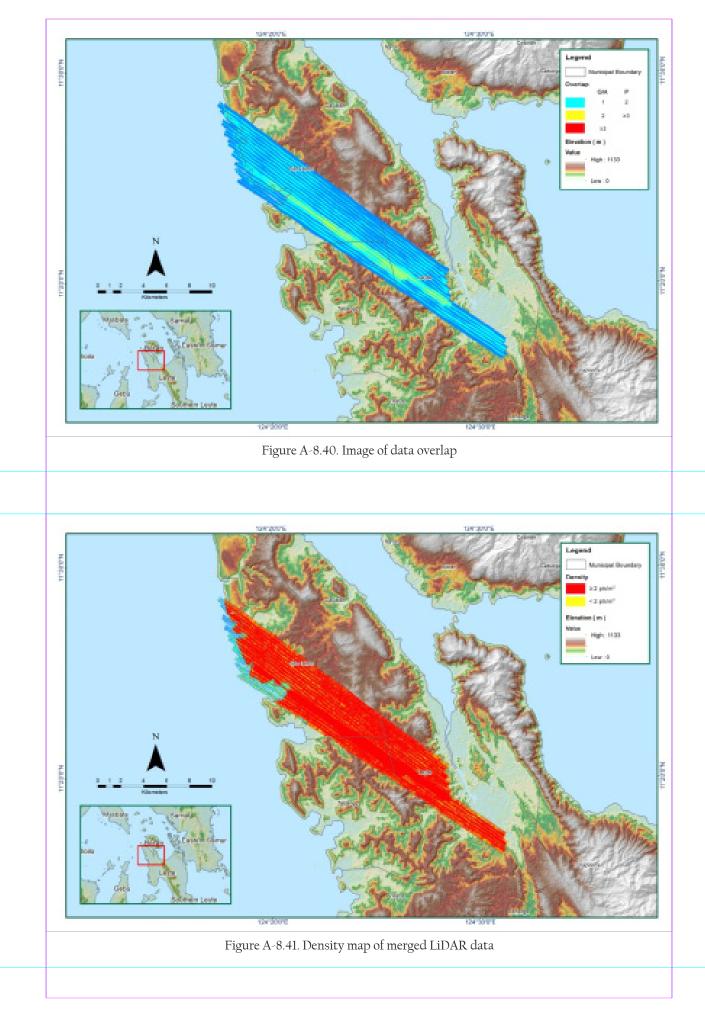


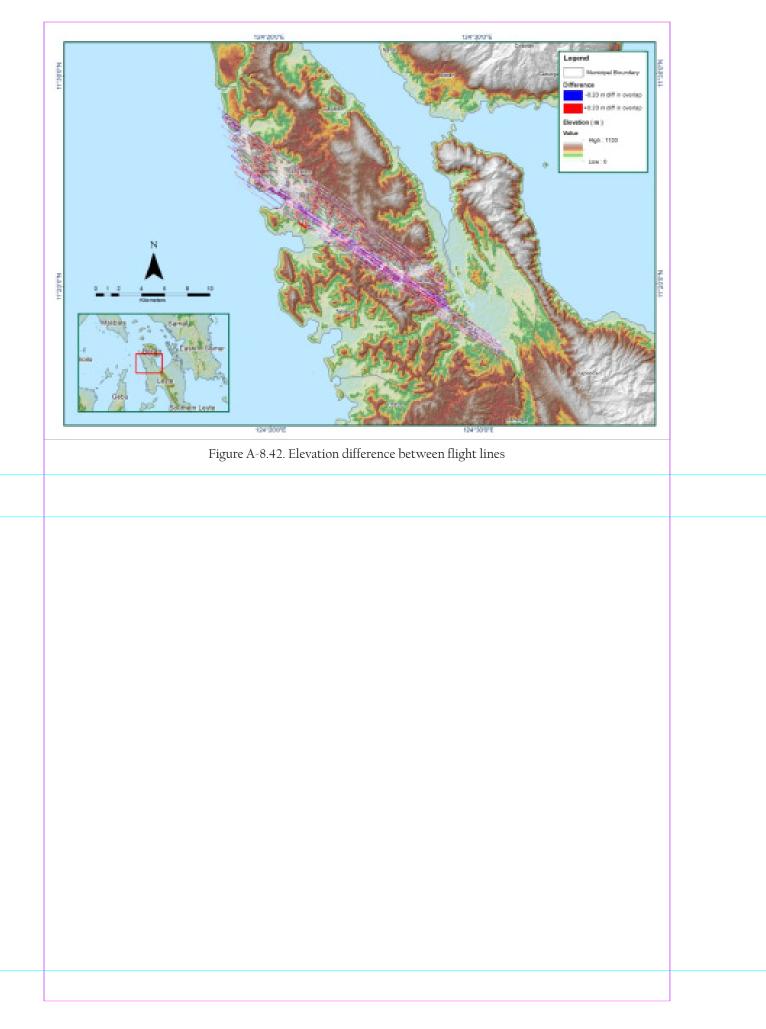


ight Area	Samar-Leyte
Mission Name	Blk 35E
Inclusive Flights	1464A,1474A
Range data size	28 GB
POS data size	542 MB
Base data size	21.1 MB
Image	157.1 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	2.6
Boresight correction stdev (<0.001deg)	0.000213
IMU attitude correction stdev (<0.001deg)	0.001121
GPS position stdev (<0.01m)	0.0095
Minimum % overlap (>25)	46.83%
Ave point cloud density per sq.m. (>2.0)	3.43
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	163
Maximum Height	349.46 m
Minimum Height	51.38 m
•	
Classification (# of points)	
Ground	79,052,774
Low vegetation	66,377,258
Medium vegetation	141,587,277
High vegetation	63,584,547
Building	638,371
Orthophoto	Yes
	Engr. Jommer Medina, Engr. Angelo Carlo Bongat,
Processed by	Engr. Melanie Hingpit, Engr. Gladys Mae Apat

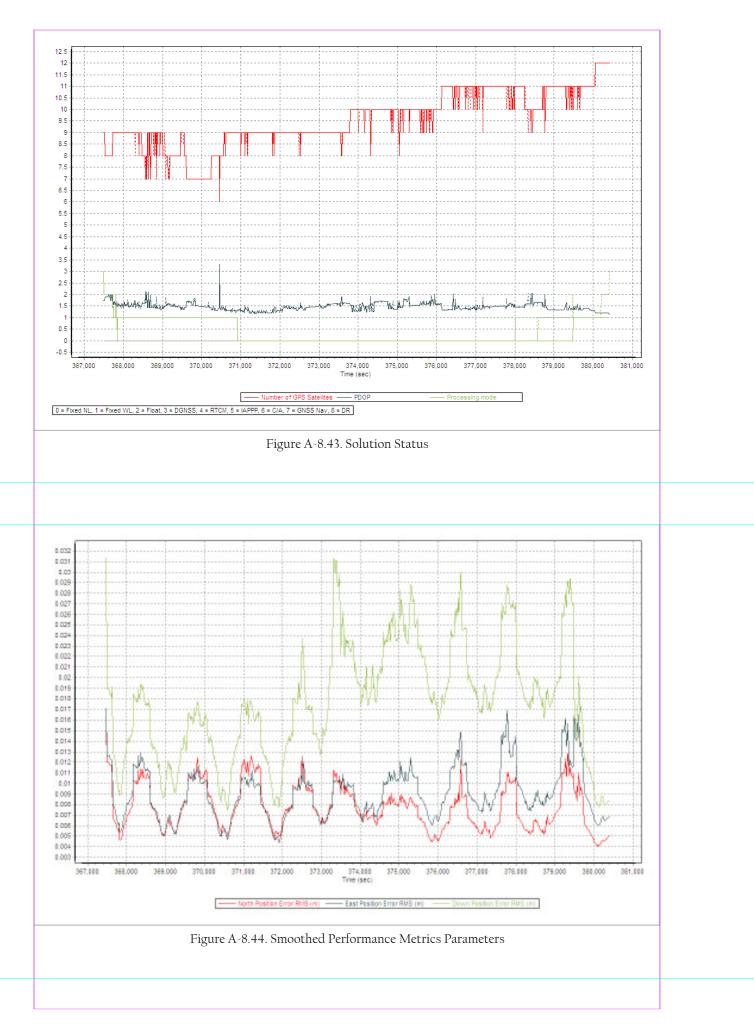


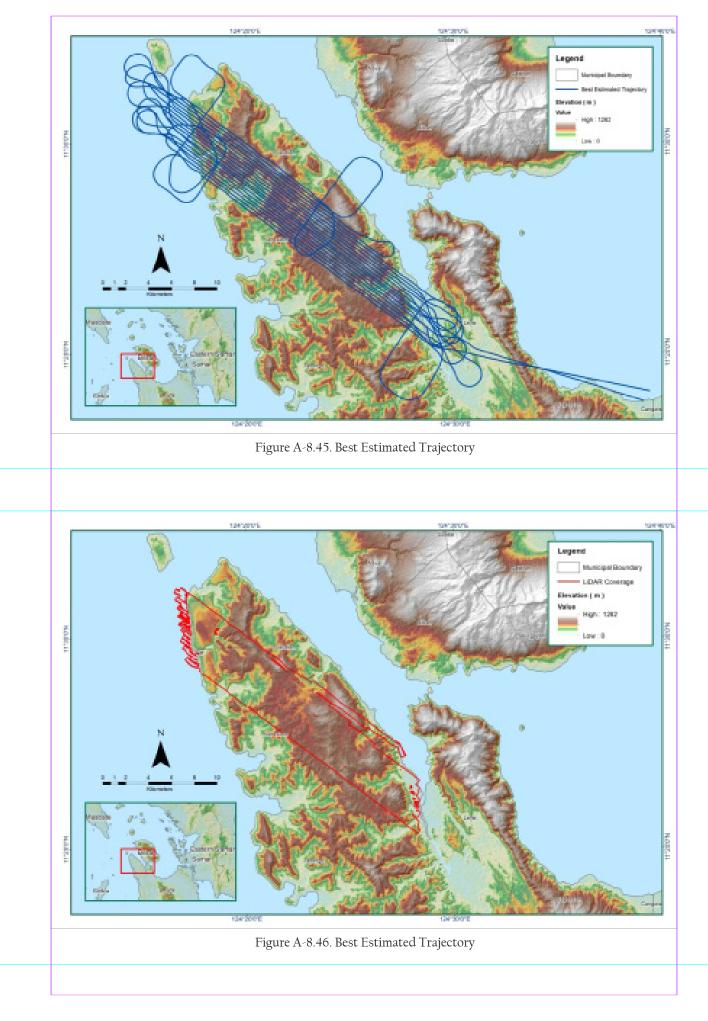


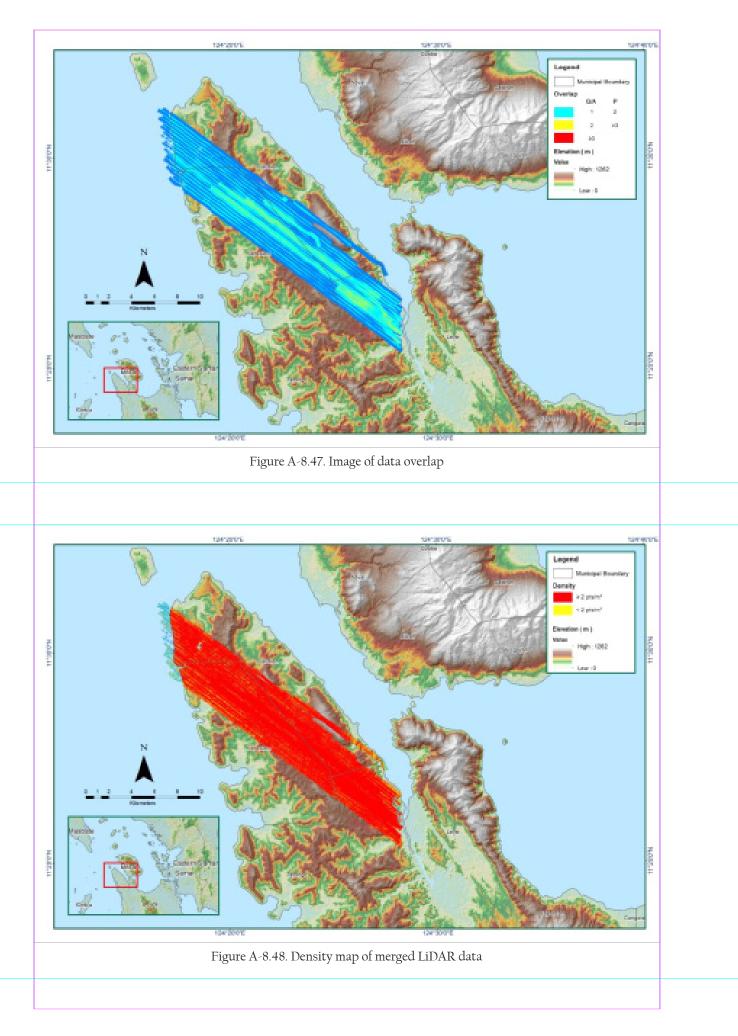


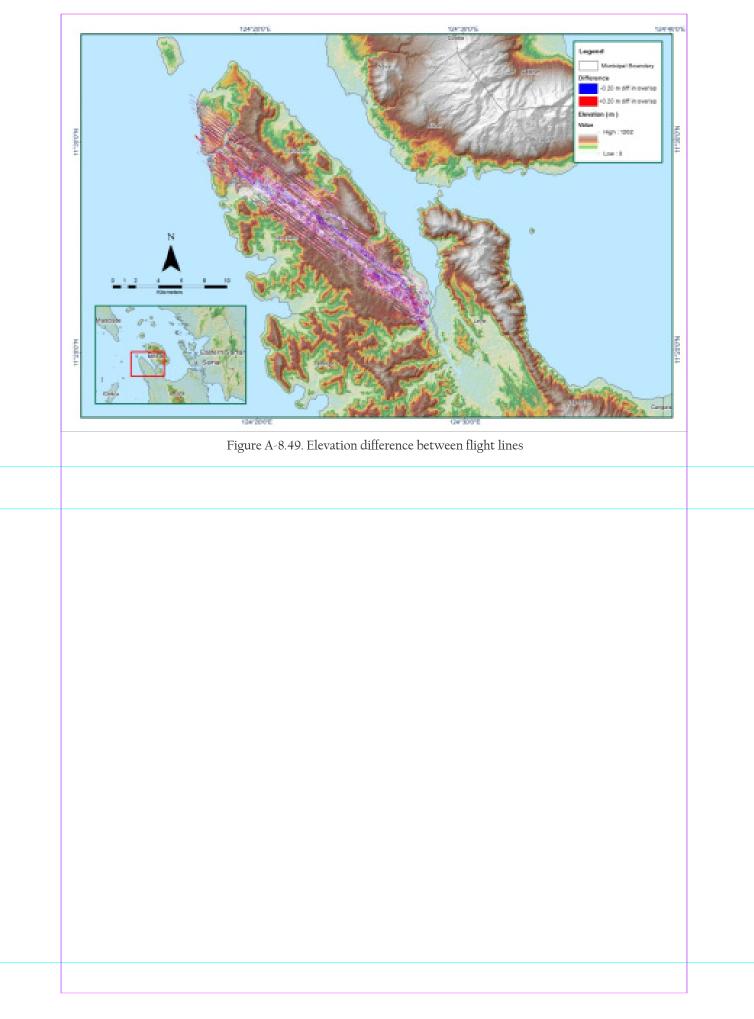


ight Area	Samar-Leyte
lission Name	Blk 35D
usive Flights	1462A
ge data size	15.2 GB
data size	275 MB
e data size	11.6 MB
age	91.2 GB
ansfer date	May 28, 2014
tion Status	
mber of Satellites (>6)	No
OP (<3)	Yes
seline Length (<30km)	Yes
ocessing Mode (<=1)	Yes
oothed Performance Metrics (in cm)	
ISE for North Position (<4.0 cm)	1.4
ISE for East Position (<4.0 cm)	3.2
ISE for Down Position (<8.0 cm)	6.5
· · ·	
resight correction stdev (<0.001deg)	0.000208
J attitude correction stdev (<0.001deg)	0.000943
S position stdev (<0.01m)	0.0082
· ·	
iimum % overlap (>25)	43.84%
point cloud density per sq.m. (>2.0)	3.43
vation difference between strips (<0.20 m)	Yes
mber of 1km x 1km blocks	169
ximum Height	302.81 m
nimum Height	52.60 m
assification (# of points)	
bund	53,485,834
w vegetation	77,120,403
dium vegetation	115,497,563
h vegetation	68,908,955
ilding	1,177,955
hophoto	Yes
-	Engr. Jommer Medina, Engr. Chelou Prado
cessed by	Engr. Gladys Mae Apat

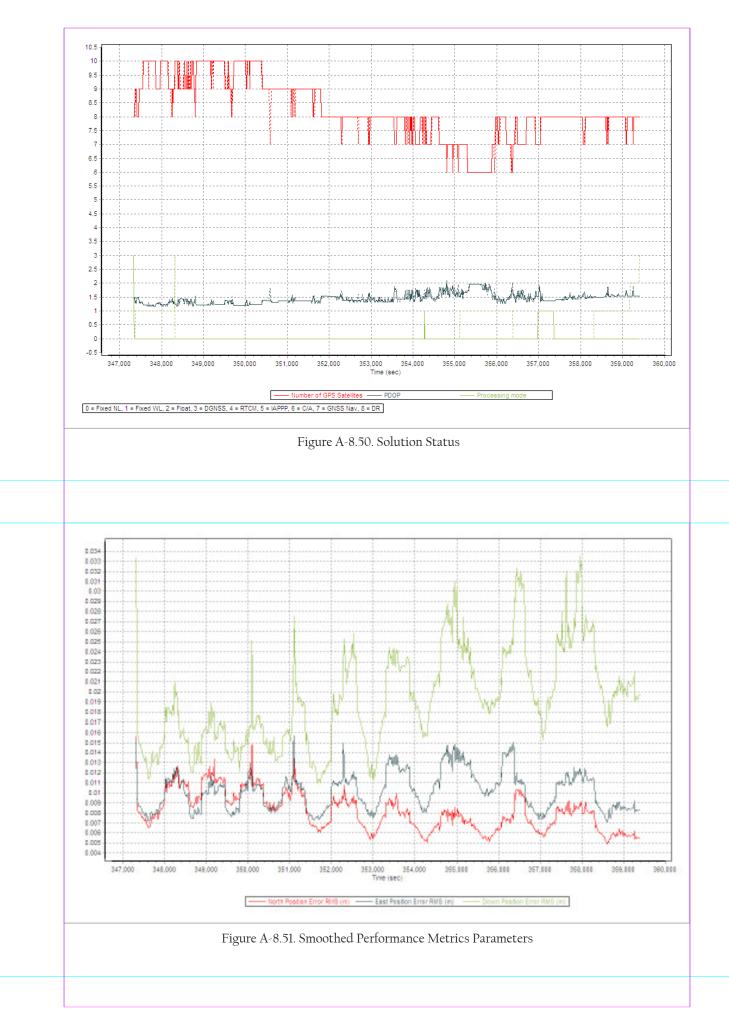


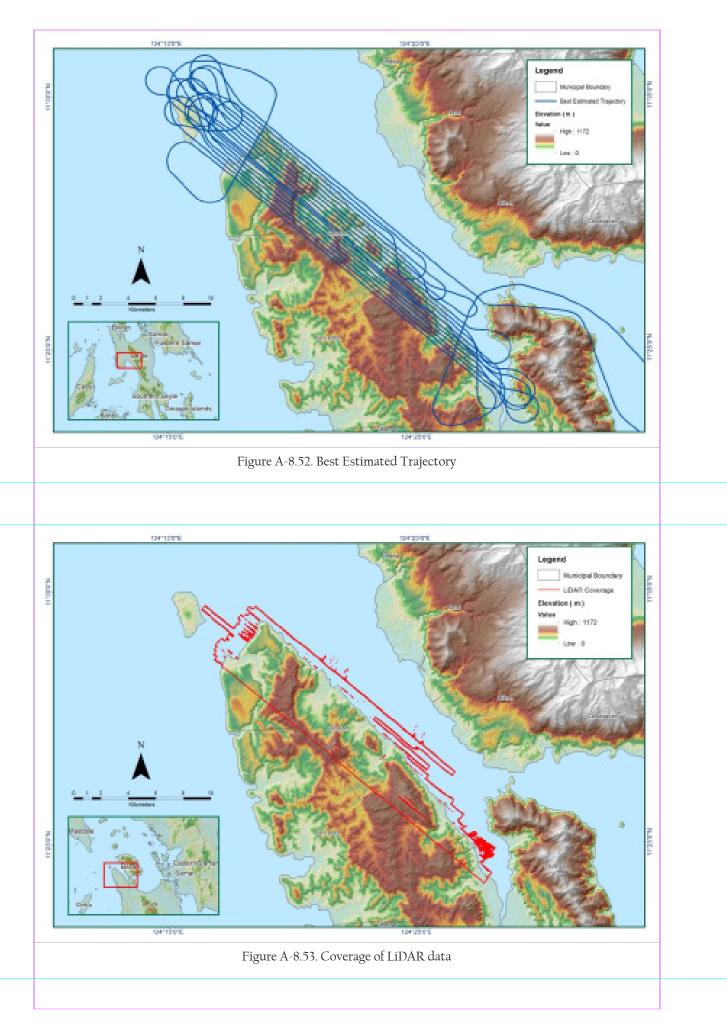


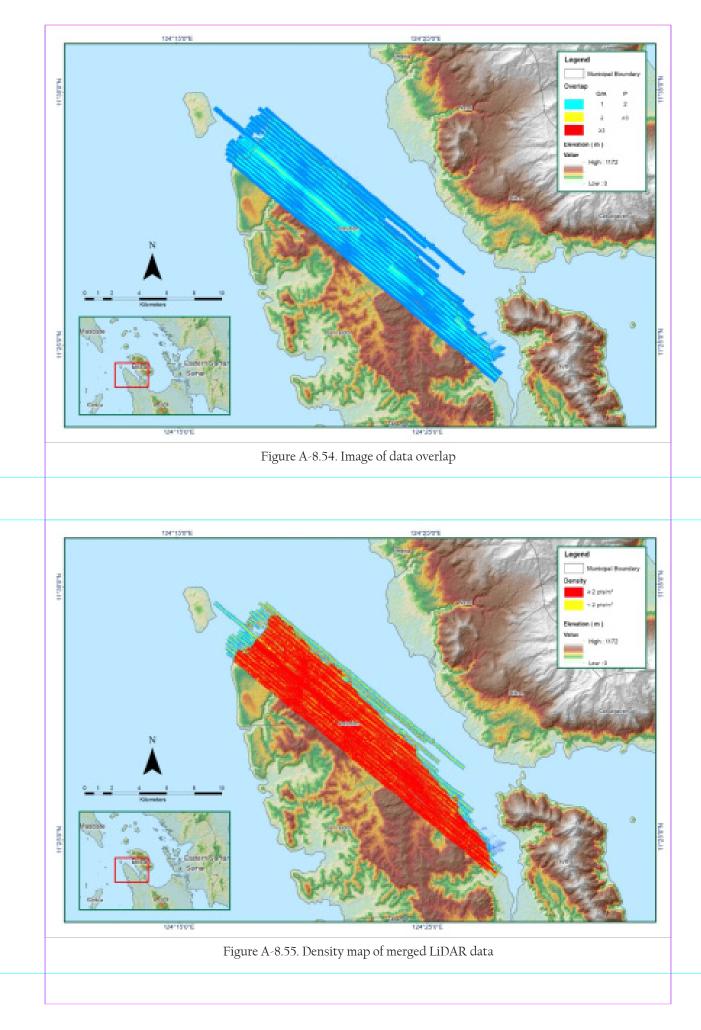


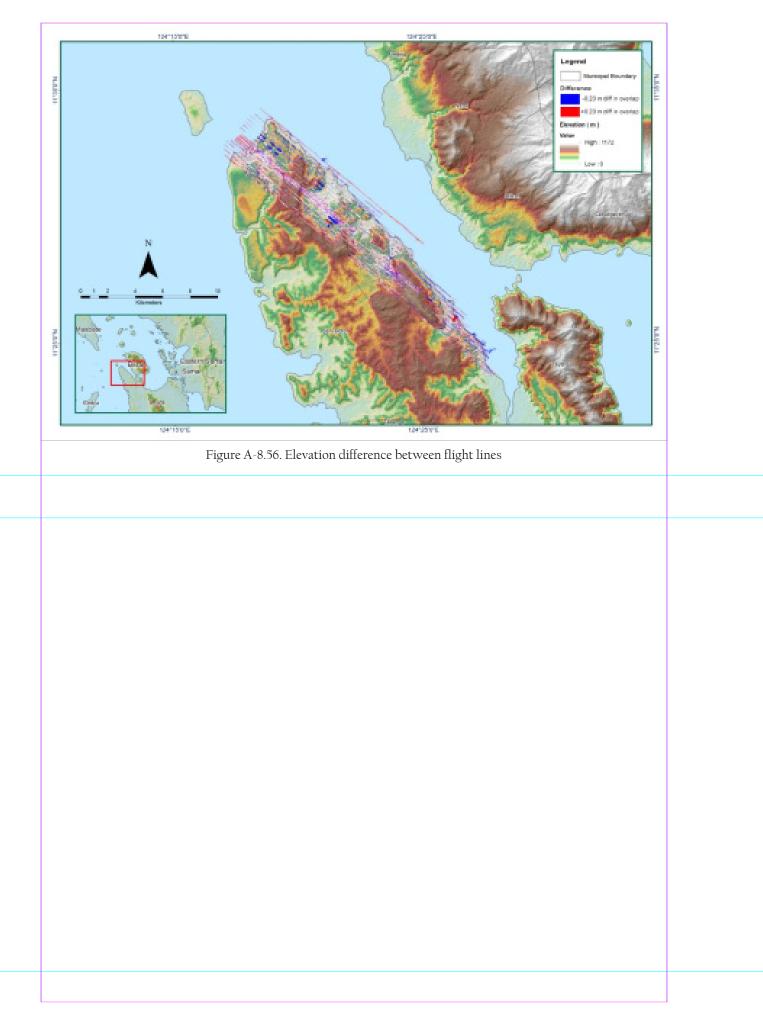


light Area	Samar-Leyte
Vission Name	Blk 35C
Inclusive Flights	1460A,1474A
Range data size	28.1 GB
POS data size	564 MB
Base data size	21.1 MB
Image	155 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000328
IMU attitude correction stdev (<0.001deg)	0.002158
GPS position stdev (<0.01m)	0.0033
Minimum % overlap (>25)	44.94%
Ave point cloud density per sq.m. (>2.0)	3.84
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	174
Maximum Height	387.55 m
Minimum Height	50.52 m
Classification (# of points)	
Ground	96,313,140
Low vegetation	89,828,817
Medium vegetation	138,400,766
High vegetation	97,602,353
Building	1,270,216
Orthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Chelou Prado, Engr. Gladys Mae Apat

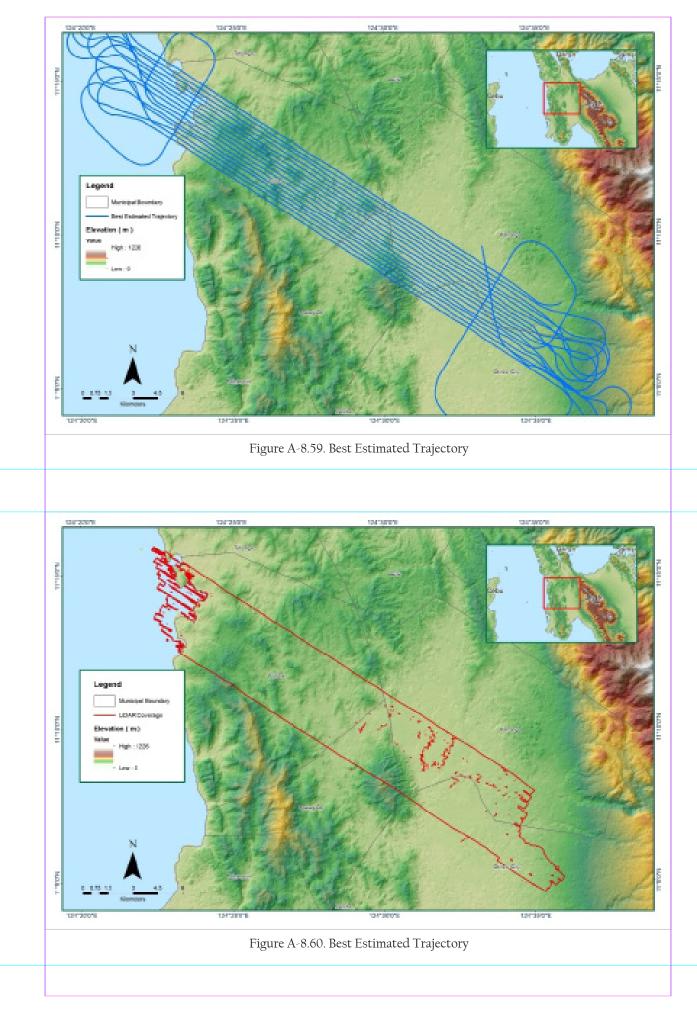


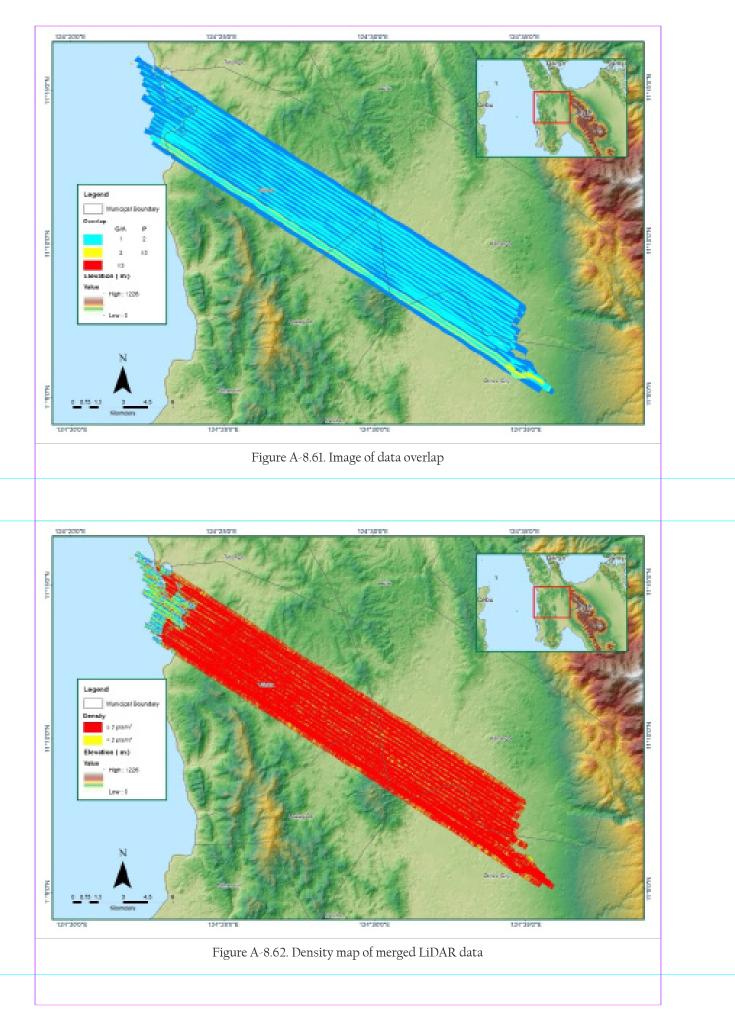


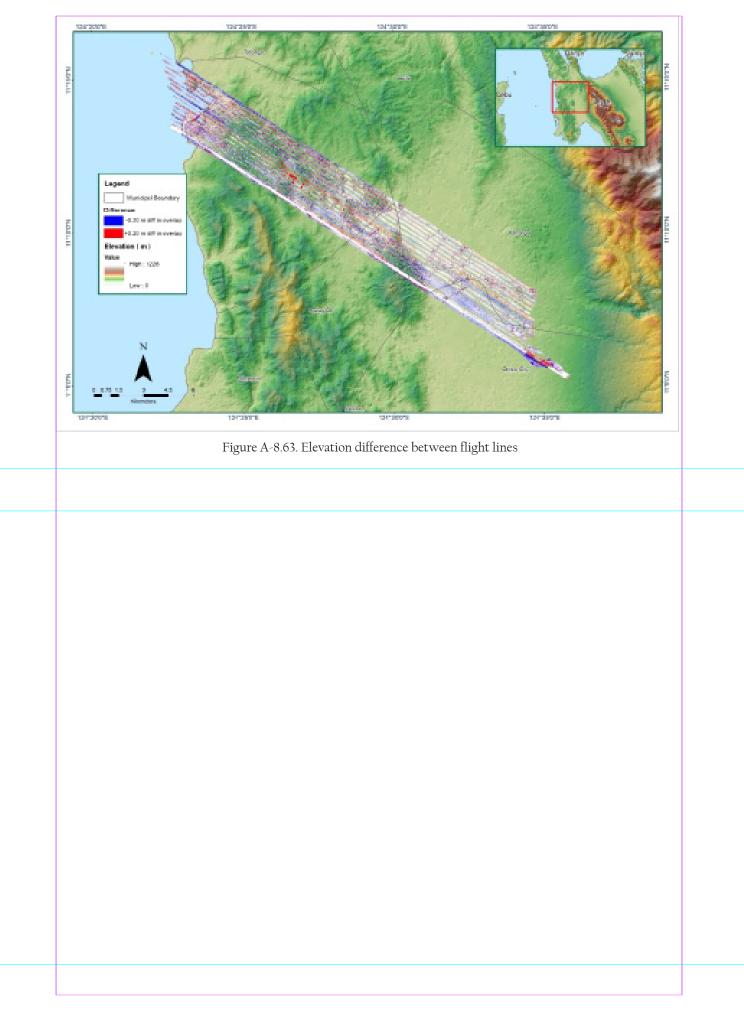




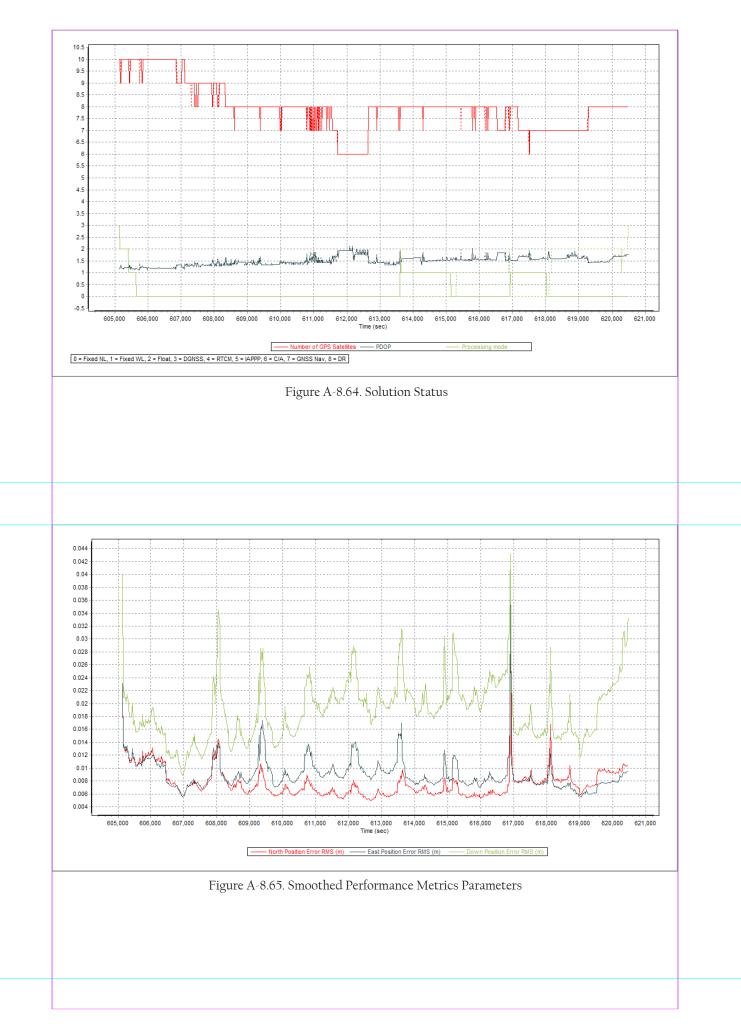
ight Area	Samar-Leyte
lission Name	Blk 35B
usive Flights	1458A
ge data size	13.3 GB
data size	277 MB
e data size	14.6 MB
age	81.7 GB
insfer date	June 10, 2014
ution Status	
nber of Satellites (>6)	Yes
OP (<3)	Yes
seline Length (<30km)	No
cessing Mode (<=1)	Yes
pothed Performance Metrics (in cm)	1.0
SE for North Position (<4.0 cm)	1.6
ISE for East Position (<4.0 cm)	1.6
E for Down Position (<8.0 cm)	3.4
esight correction stdev (<0.001deg)	0.000294
attitude correction stdev (<0.001deg)	0.006535
position stdev (<0.01m)	0.0036
mum % overlap (>25)	33.13%
point cloud density per sq.m. (>2.0)	2.90
ation difference between strips (<0.20 m)	Yes
mber of 1km x 1km blocks	147
kimum Height	387.51 m
nimum Height	51.24 m
confrontion (# of noise)	
ssification (# of points)	04 275 200
und	94,275,309
v vegetation	78,485,696
dium vegetation	117,061,039
h vegetation	90,631,637
ding	2,390,506
hophoto	Yes
cessed by	Engr. Angelo Carlo Bongat, Engr. Chelou Prado Engr. Gladys Mae Apat

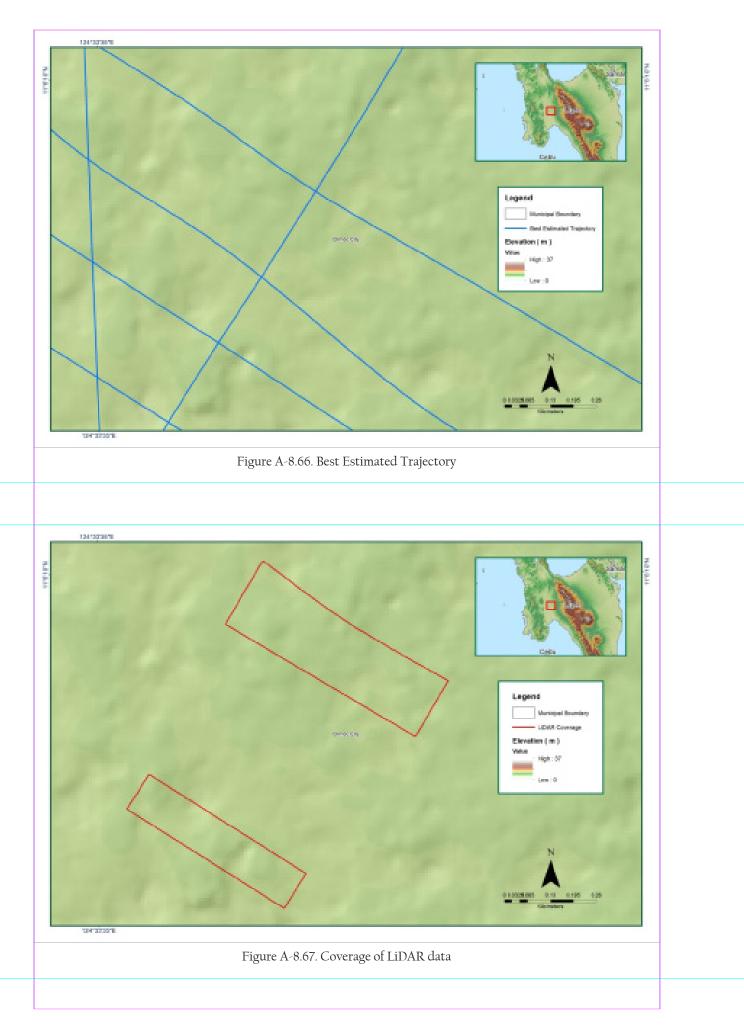


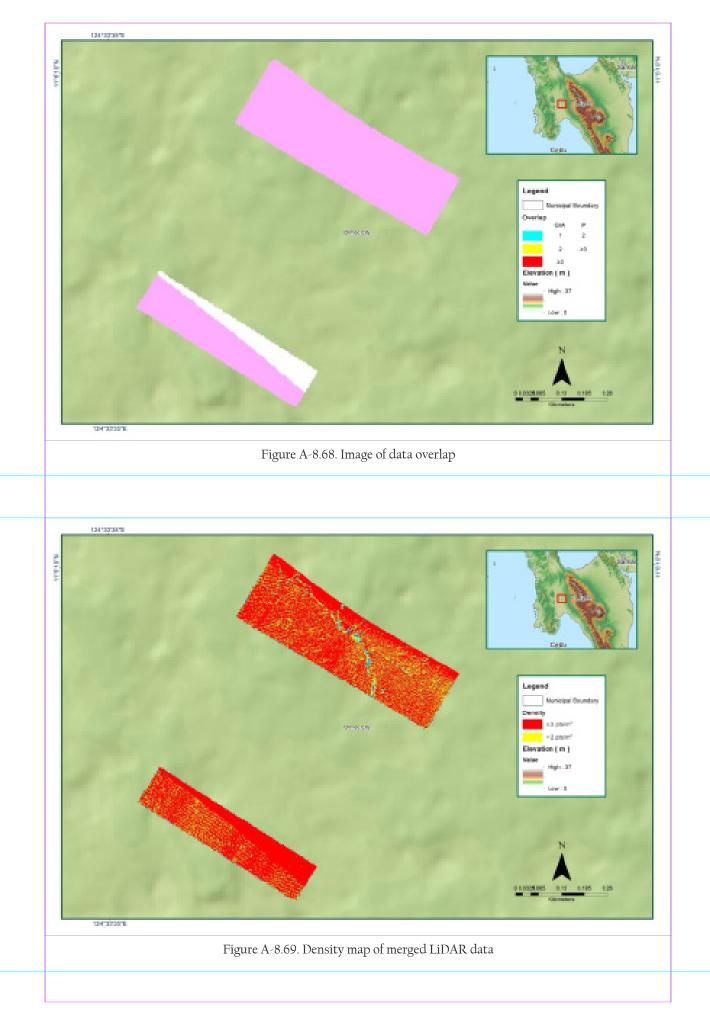


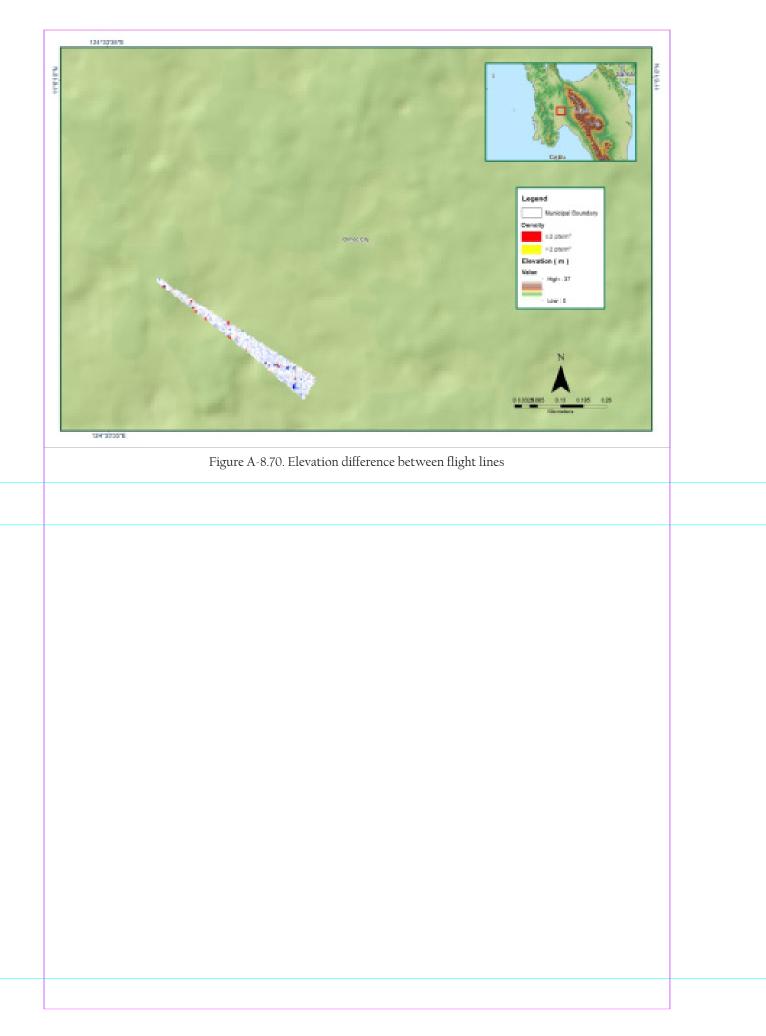


Flight Area	Samar-Leyte
Mission Name	Blk35H
Inclusive Flights	1494A
Range data size	14.7 GB
POS data size	282 MB
Base data size	7.64 MB
Image	89.2 GB
Transfer date	June 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.5
RMSE for East Position (<4.0 cm)	1.674
RMSE for Down Position (<8.0 cm)	4.64
Boresight correction stdev (<0.001deg)	0.000283
IMU attitude correction stdev (<0.001deg)	0.000568
GPS position stdev (<0.01m)	0.0028
	0.0028
Minimum % overlap (>25)	52.72%
Ave point cloud density per sq.m. (>2.0)	3.48
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	158
Maximum Height	376.65 m
Minimum Height	36.39 m
Classification (# of points)	
Ground	82,689,374
Low vegetation	99,097,253
Medium vegetation	126,198,163
High vegetation	25,741,043
Building	1,206,583
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Gladys Mae Apat

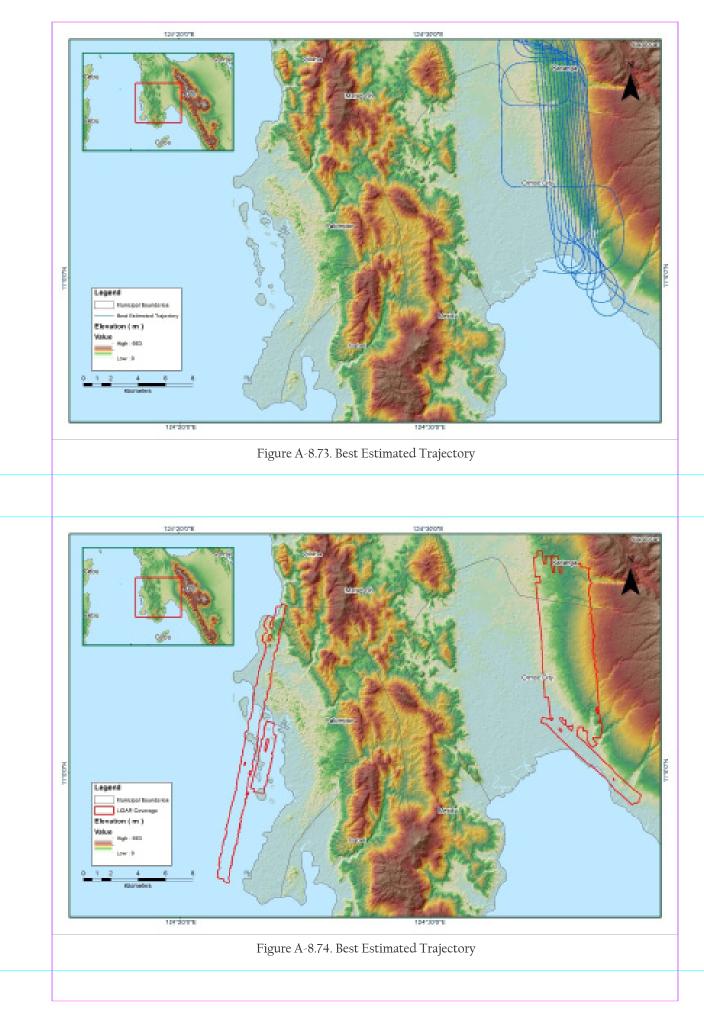


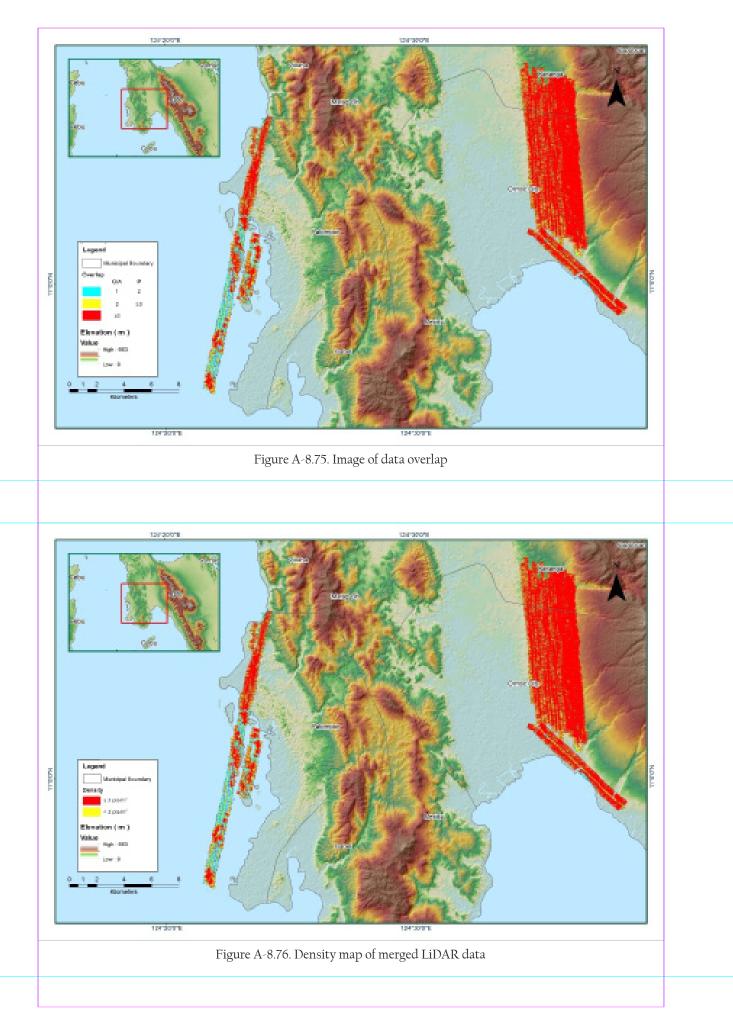


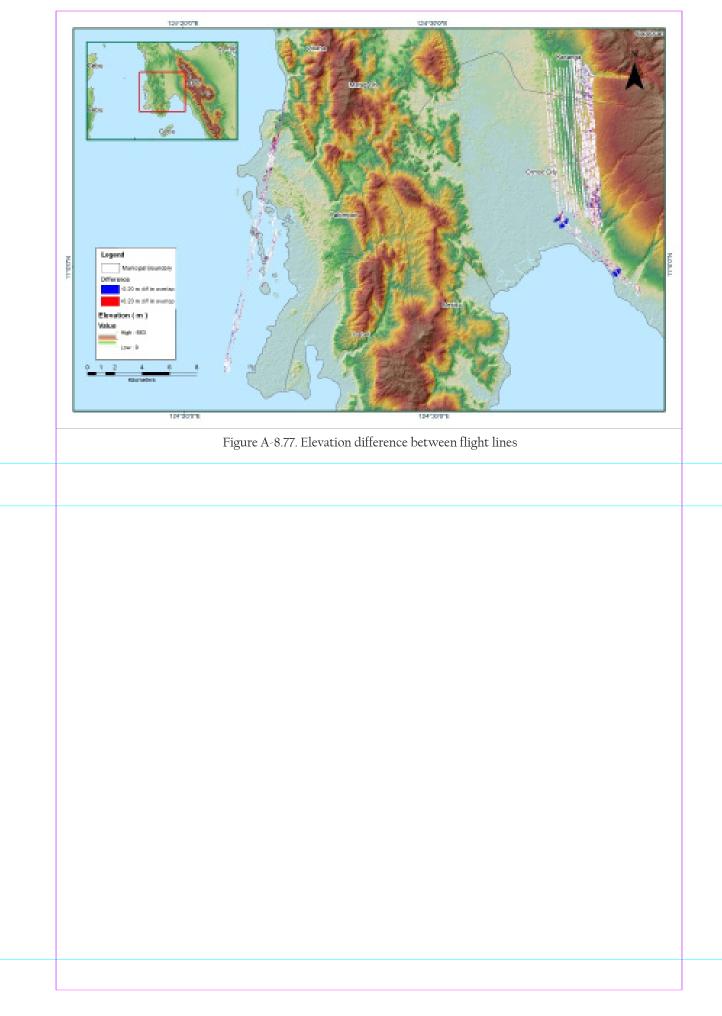




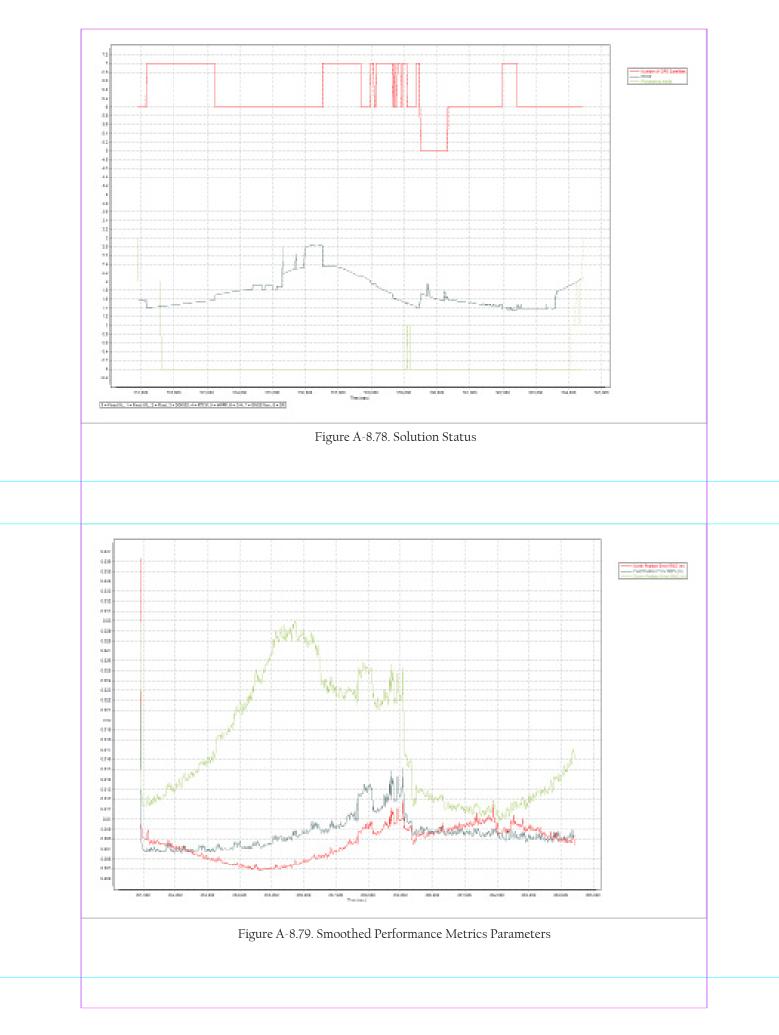
Flight Area	Samar-Leyte	
Mission Name	Blk35H_Supplement2	
Inclusive Flights	1498A	
Range data size	3.23 GB	
POS data size	282 MB	
Base data size	8.04 MB	
Image	88.7 GB	
Transfer date	June 10, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	3.3	
RMSE for East Position (<4.0 cm)	3.7	
RMSE for Down Position (<8.0 cm)	4.3	
Boresight correction stdev (<0.001deg)	0.000283	
MU attitude correction stdev (<0.001deg)	0.000568	
GPS position stdev (<0.01m)	0.0028	
Ainimum % overlap (>25)	11.00%	
Ave point cloud density per sq.m. (>2.0)	2.40	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	3	
Maximum Height	107.84 m	
Minimum Height	80.85 m	
Classification (# of points)		
Ground	121,532	
ow vegetation	138,860	
Medium vegetation	116,706	
High vegetation	15,470	
Building	1,666	
Orthophoto	No	
Processed by	Engr. Irish Cortez, Aljon Rie Araneta, Engr. Gladys Mae Apat	

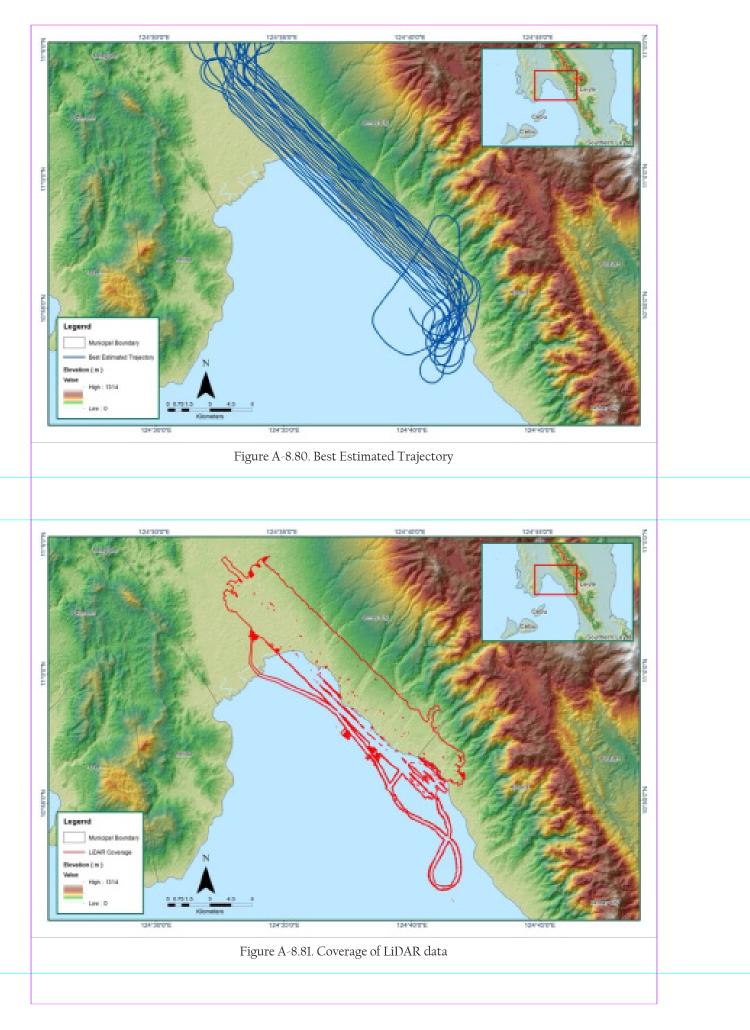


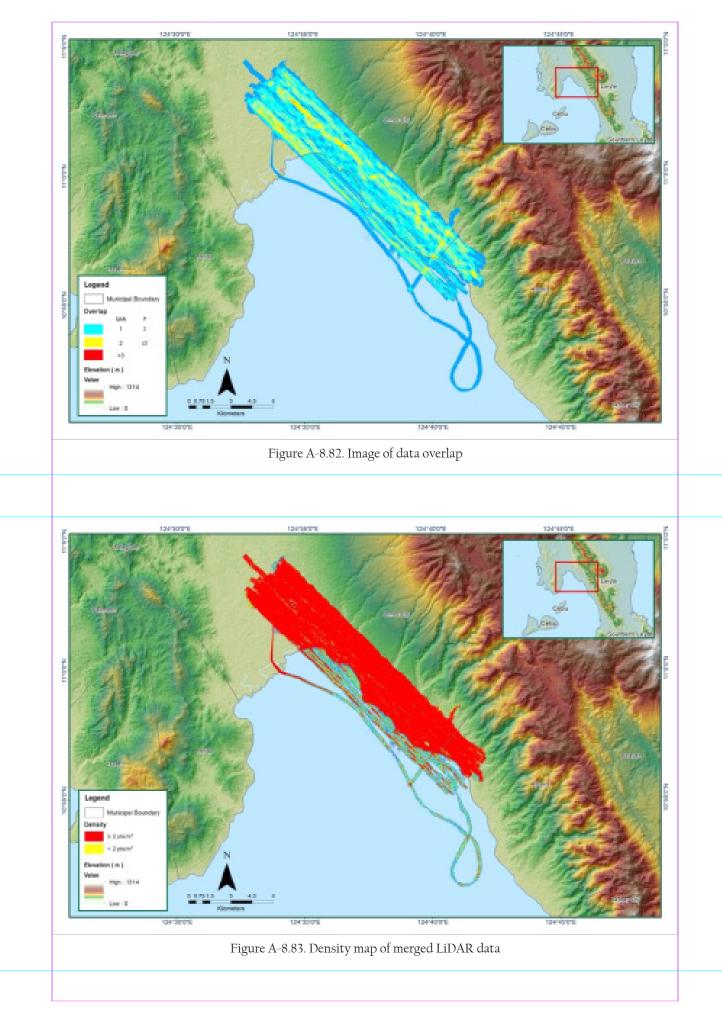


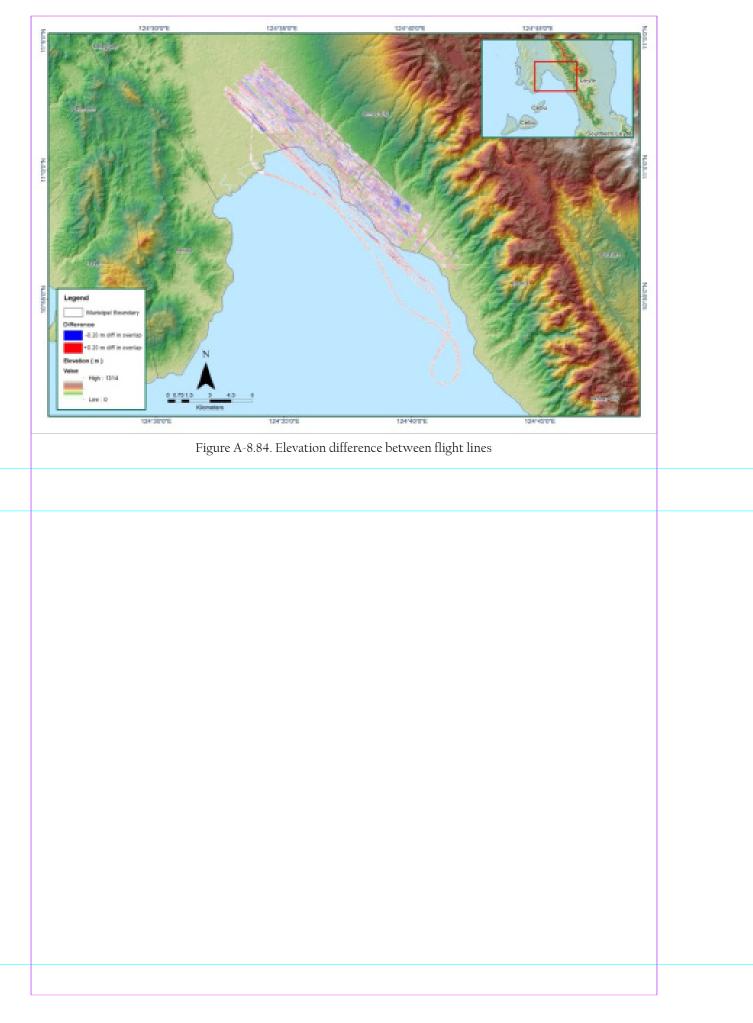


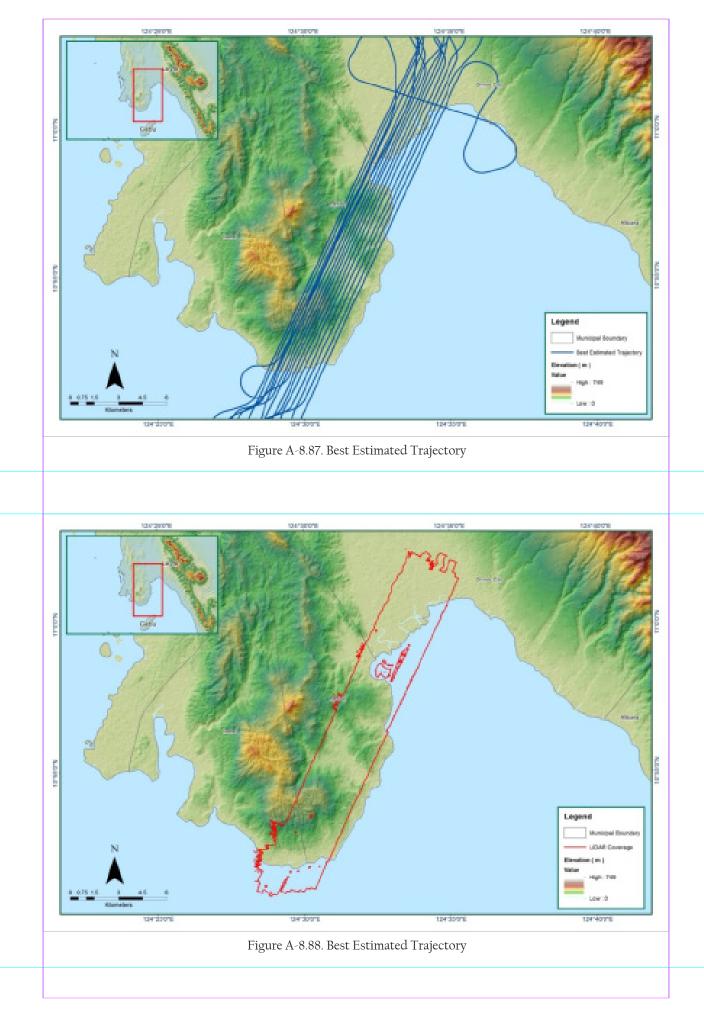
light Area	Ormoc
Vission Name	Blk35A_supplement
Inclusive Flights	7806AC
Range data size	8.2 GB
POS data size	195 MB
Base data size	27 MB
Image	NA
Transfer date	February 25, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.398
RMSE for East Position (<4.0 cm)	1.825
RMSE for Down Position (<8.0 cm)	2.963
Boresight correction stdev (<0.001deg)	0.000271
IMU attitude correction stdev (<0.001deg)	0.000619
GPS position stdev (<0.01m)	0.0071
Minimum % overlap (>25)	38.68
Ave point cloud density per sq.m. (>2.0)	3.58
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	138
Maximum Height	273.06
Minimum Height	57.10
Classification (# of points)	
Ground	48,561,341
Low vegetation	55,772,317
Medium vegetation	72,199,910
High vegetation	12,108,287
Building	5,014,837
Orthophoto	None
Processed by	Engr. Abigail Joy Ching, Engr. Antonio Chua, Jr., Engr. Krisha Marie Bautista

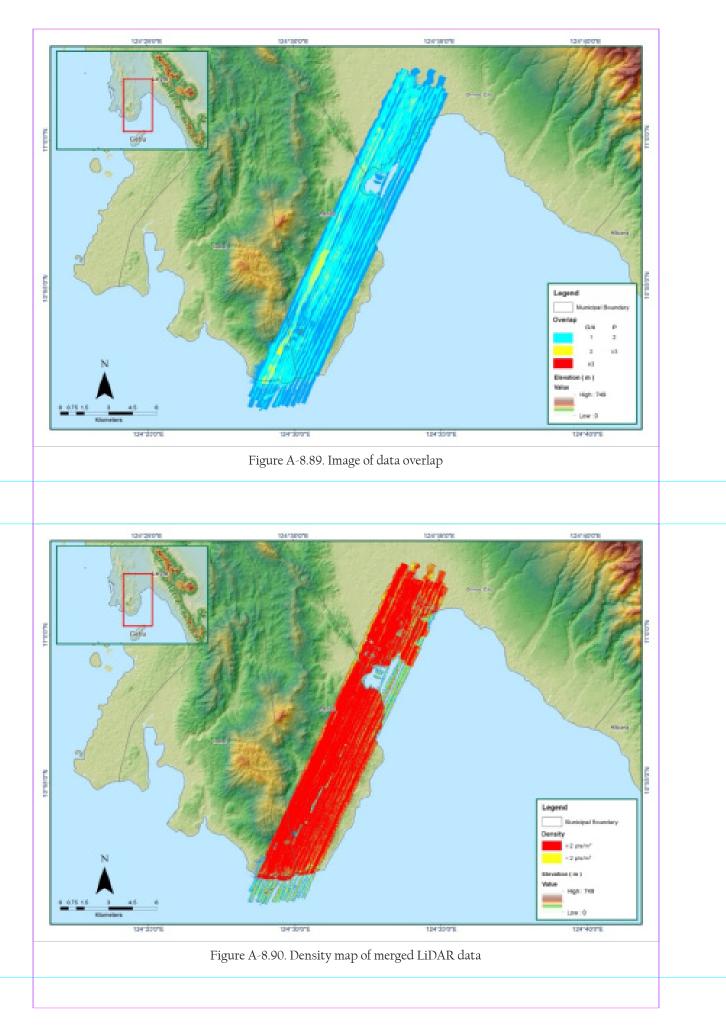


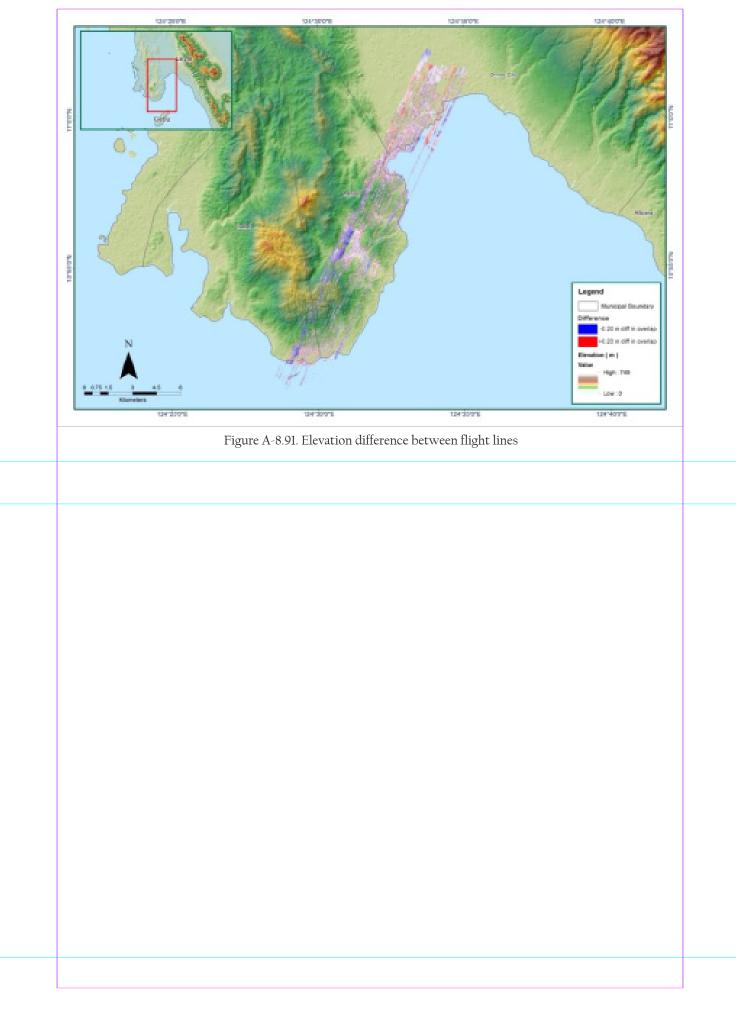




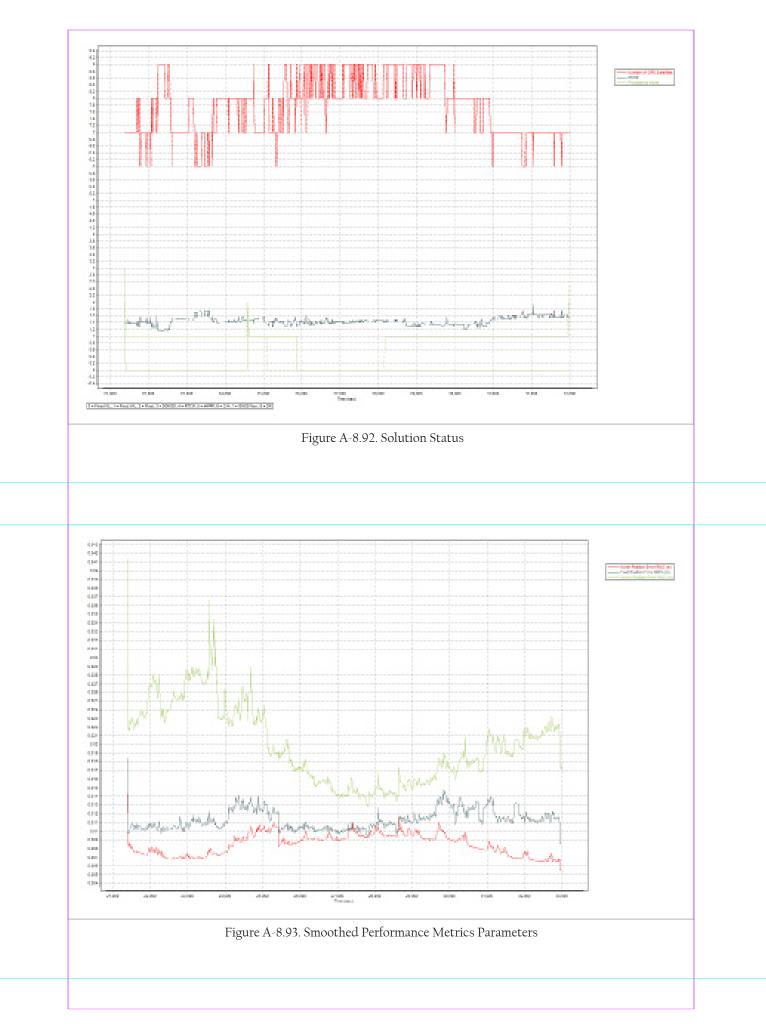

light Area	Ormoc
lission Name	BIk35A
clusive Flights	7780AC, 7782AC
nge data size	18.92 GB
S	314.4 MB
age	0 GB
ansfer date	March 9 2015
lution Status	
umber of Satellites (>6)	No
0OP (<3)	Yes
seline Length (<30km)	Yes
ocessing Mode (<=1)	Yes
noothed Performance Metrics (in cm)	
MSE for North Position (<4.0 cm)	1.19
MSE for East Position (<4.0 cm)	1.51
MSE for Down Position (<8.0 cm)	3.00
resight correction stdev (<0.001deg)	0.000320
U attitude correction stdev (<0.001deg)	0.002289
S position stdev (<0.01m)	0.0035
nimum % overlap (>25)	68.46
e point cloud density per sq.m. (>2.0)	4.24
evation difference between strips (<0.20 m)	Yes
imber of 1km x 1km blocks	160
aximum Height	178.37 m
inimum Height	57.53 m
assification (# of points)	
ound	72,108,209
w vegetation	118,219,687
edium vegetation	115,199,347
gh vegetation	21,276,179
ilding	10,881,118
hophoto	No
ocessed by	Engr. Irish Cortez, Engr. Christy Lubiano Kathryn Claudyn Zarate

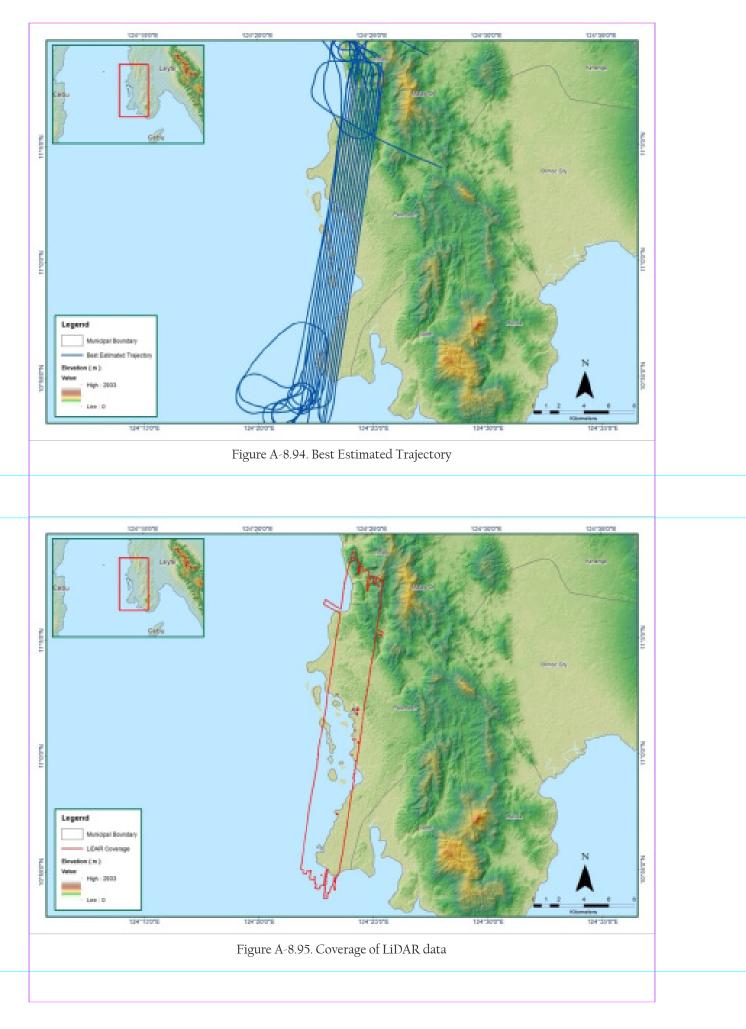


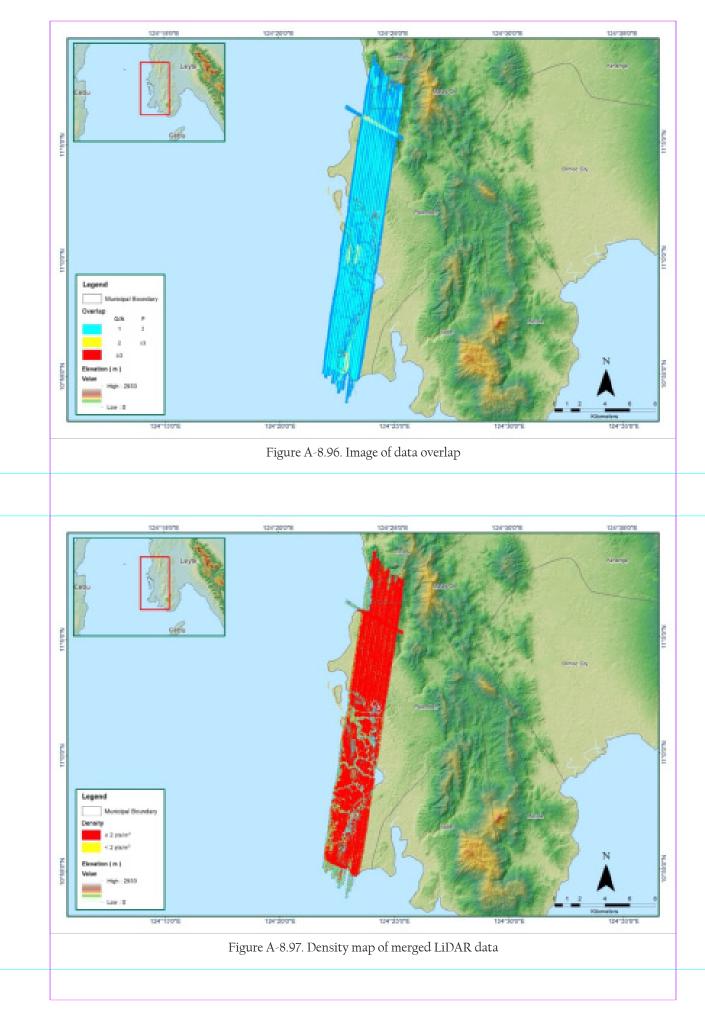

LIDAR Surveys and Flood Mapping of Pagsangahan River

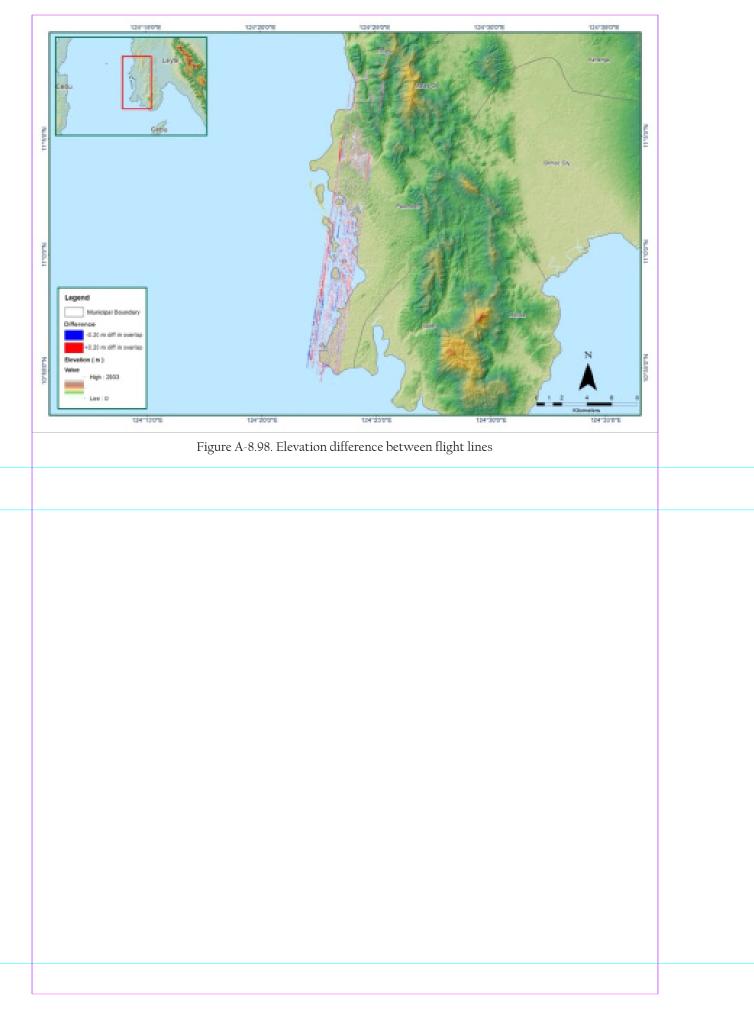


	Summary Report for Mission Blk35B
Flight Area	Ormoc
Mission Name	BIk35B
Inclusive Flights	7753AC
Range data size	11.1 GB
POS	167 MB
Image	0 GB
Transfer date	March 9 2015
Solution Status	
Number of Satellites (>6)	Νο
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.75
RMSE for East Position (<4.0 cm)	1.37
RMSE for Down Position (<8.0 cm)	3.50
Boresight correction stdev (<0.001deg)	0.000324
IMU attitude correction stdev (<0.001deg)	0.001085
GPS position stdev (<0.01m)	0.0103
Minimum % overlap (>25)	57.13
Ave point cloud density per sq.m. (>2.0)	3.49
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	110
Maximum Height	425.68 m
Minimum Height	52.98 m
Classification (# of points)	
Ground	45,306,584
Low vegetation	54,011,189
Medium vegetation	95,593,512
High vegetation	50,856,382
Building	2,030,444
Orthophoto	No
Processed by	Engr. Jommer Medina, Engr. Melanie Hingpit, Engr. Krisha Marie Bautista

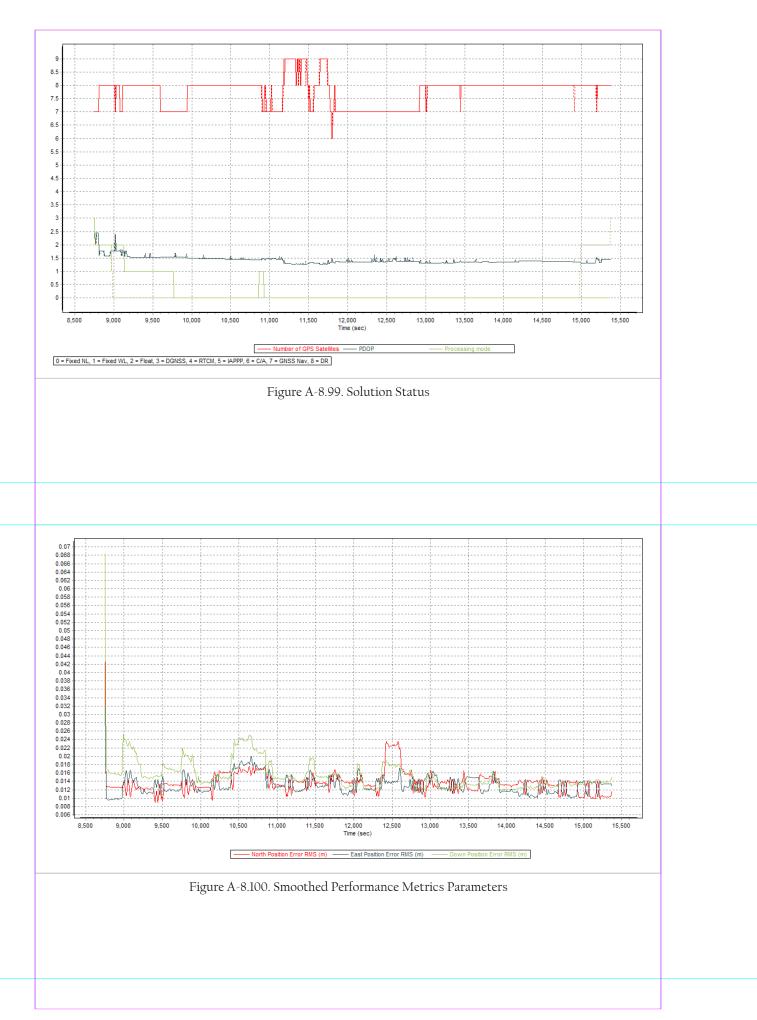


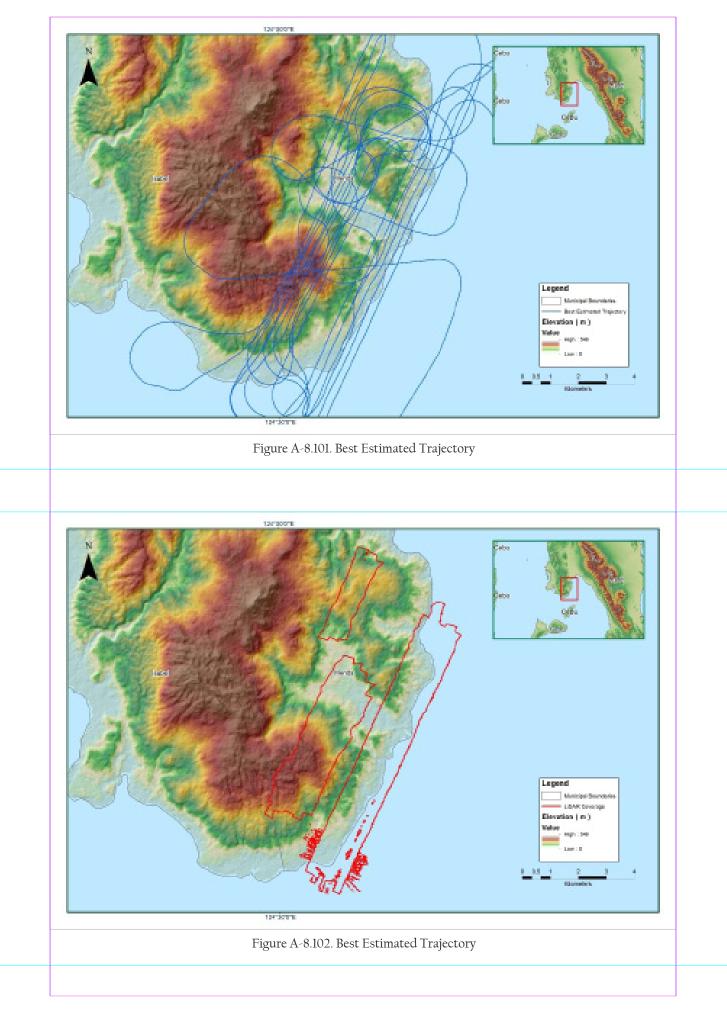


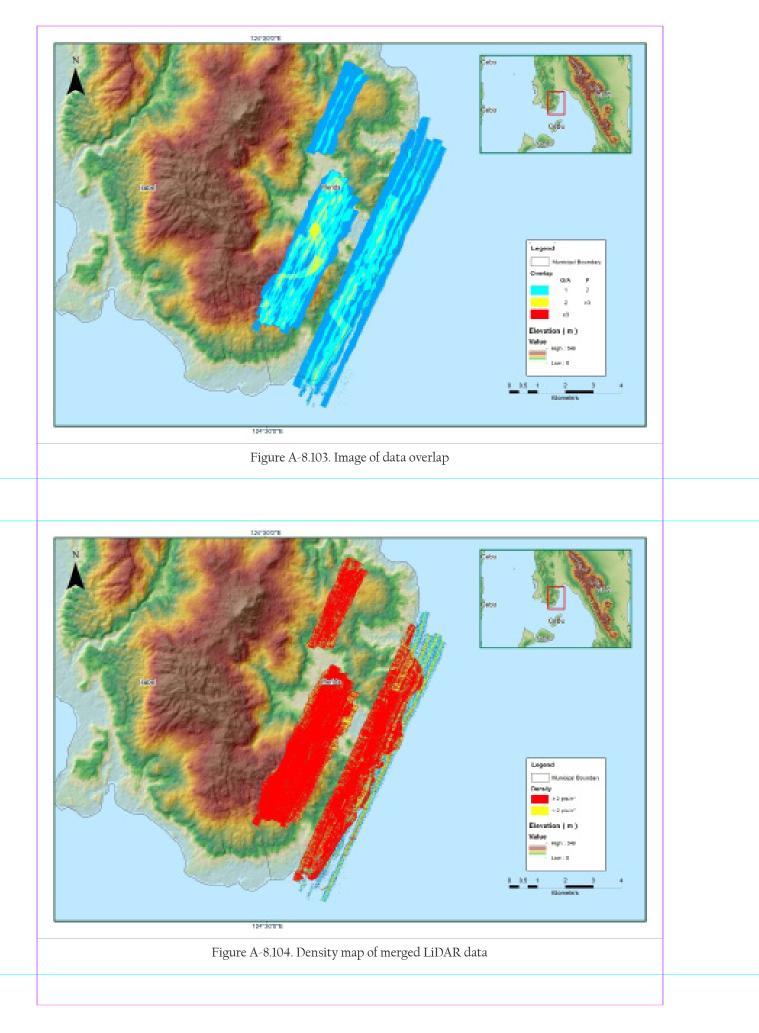


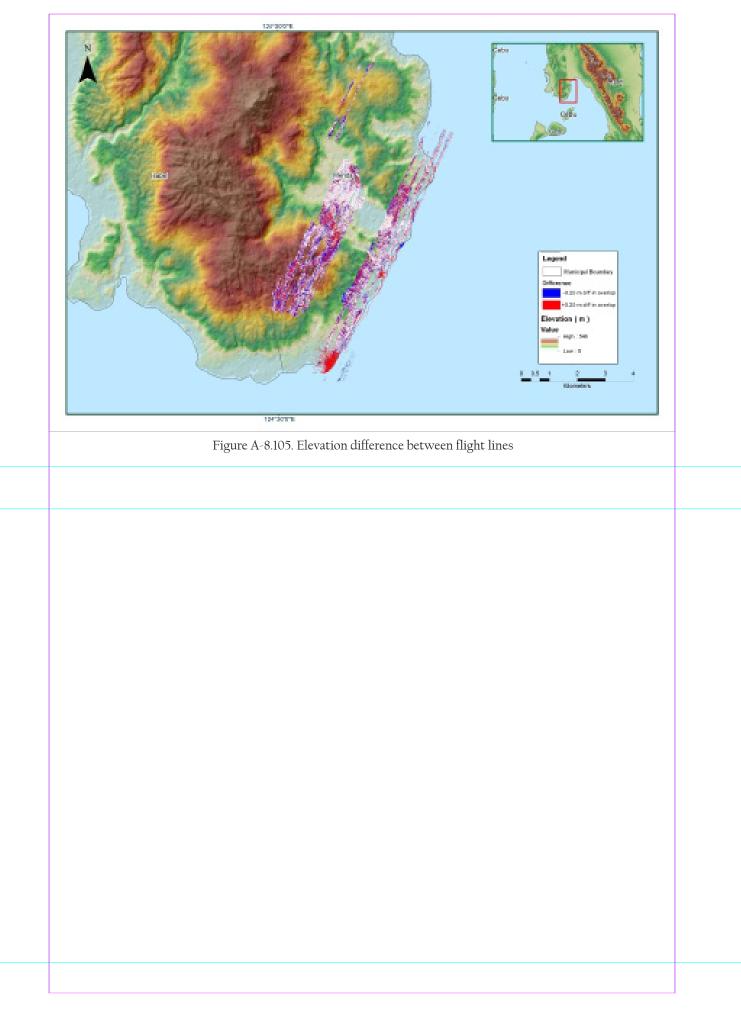


light Area	Ormoc
ssion Name	Blk35A_additional
isive Flights	7760AC
ge data size	12.3 GB
5	243 MB
ge	0 GB
ansfer date	March 9 2015
ution Status	
mber of Satellites (>6)	Yes
)P (<3)	Yes
eline Length (<30km)	Yes
ocessing Mode (<=1)	No
oothed Performance Metrics (in cm)	
SE for North Position (<4.0 cm)	1.17
1SE for East Position (<4.0 cm)	1.48
1SE for Down Position (<8.0 cm)	3.67
esight correction stdev (<0.001deg)	0.000414
J attitude correction stdev (<0.001deg)	0.000958
S position stdev (<0.01m)	0.0030
imum % overlap (>25)	54.20
e point cloud density per sq.m. (>2.0)	3.63
vation difference between strips (<0.20 m)	Yes
mber of 1km x 1km blocks	116
ximum Height	389.88 m
nimum Height	50.29 m
assification (# of points)	
bund	42,406,724
w vegetation	50,448,477
dium vegetation	104,381,565
sh vegetation	58,830,359
ilding	2,371,309
hophoto	No
annead bu	Engr. Irish Cortez, Engr. Chelou Prado,
cessed by	Kathryn Claudyn Zarate

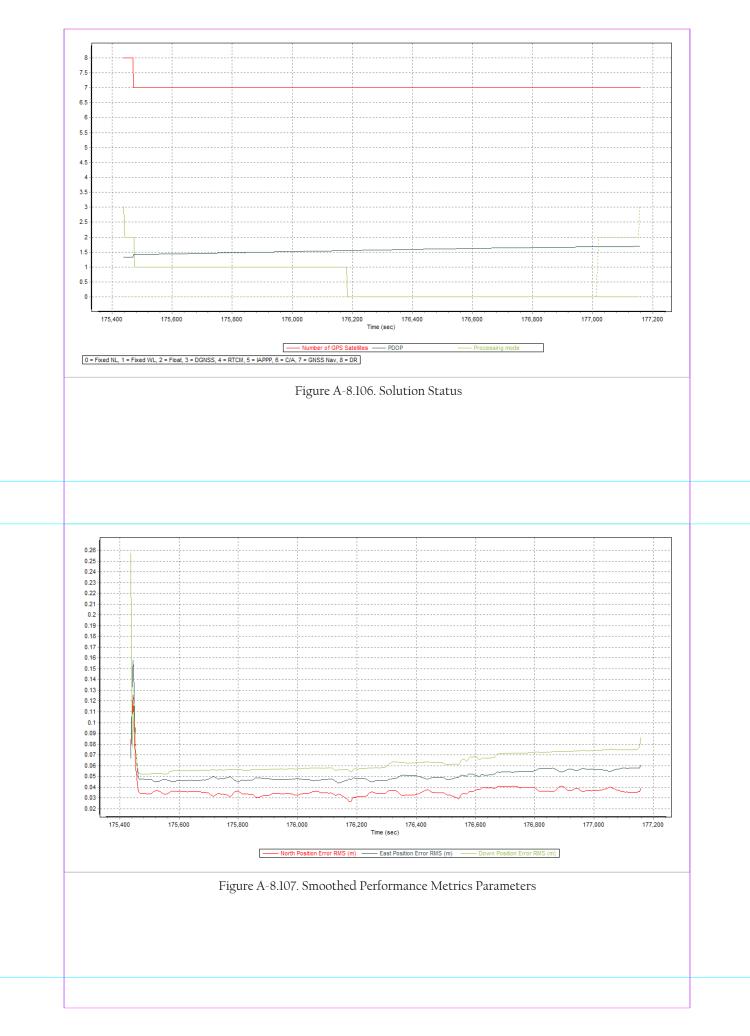


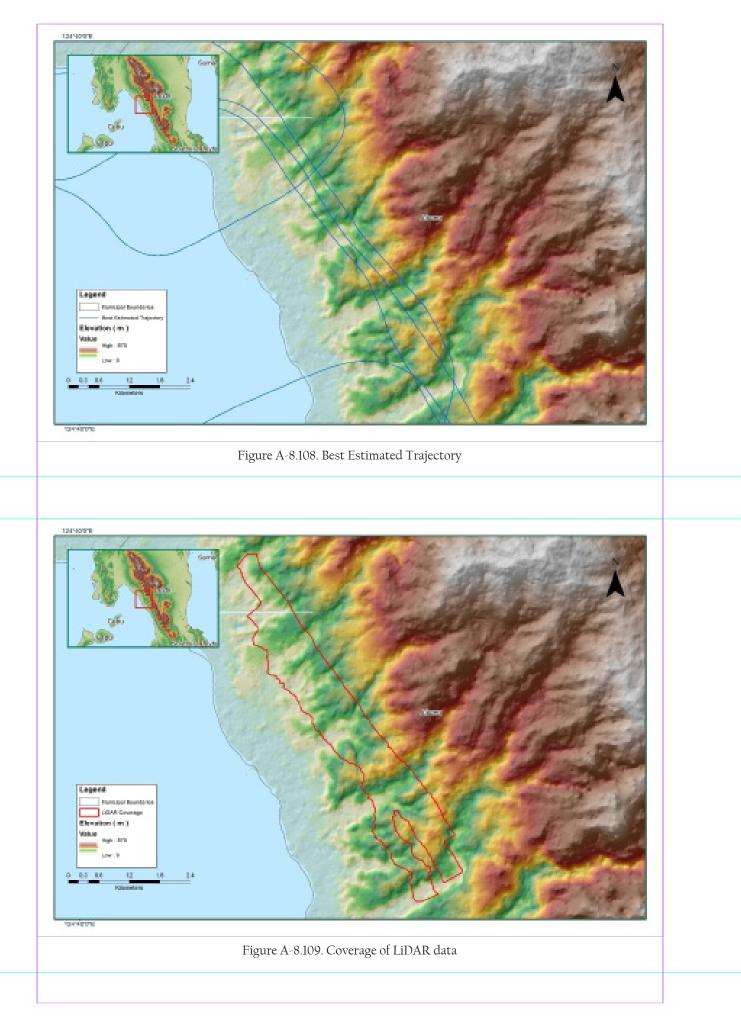


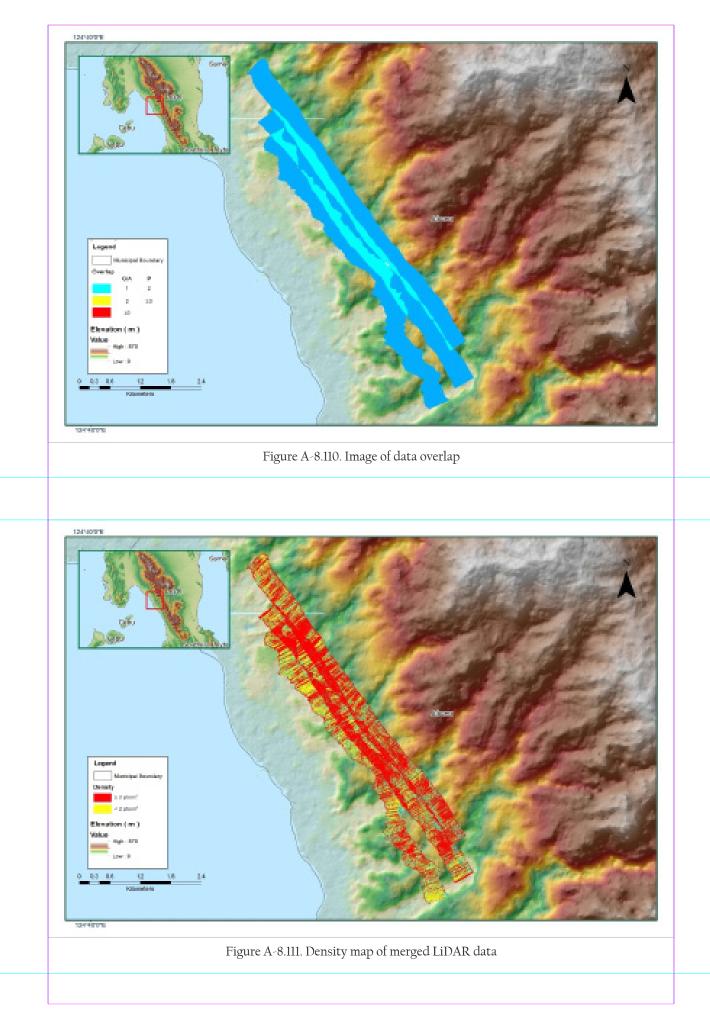


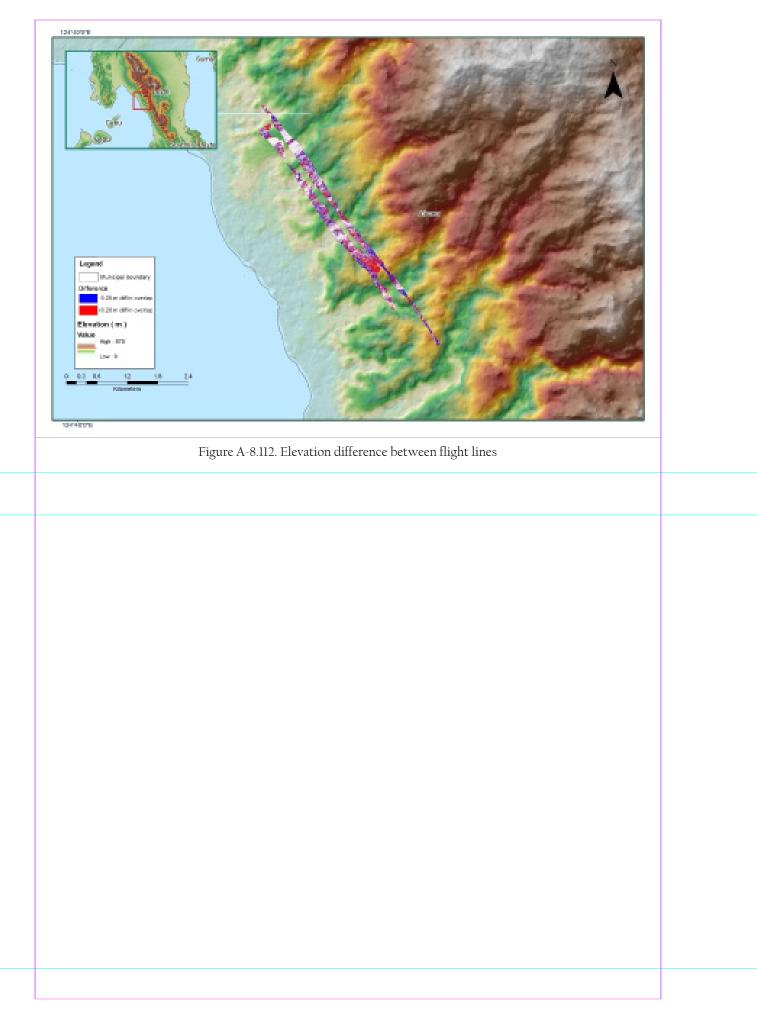


light Area	Ormoc
Vission Name	Blk35B_additional
nclusive Flights	7802AC
Range data size	9.94 GB
POS data size	254 MB
Base data size	35.4 MB
Image	NA
Transfer date	February 25, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.349
RMSE for East Position (<4.0 cm)	1.998
RMSE for Down Position (<8.0 cm)	2.512
	2.312
Porneight correction stday (20,001 dog)	0.000216
Boresight correction stdev (<0.001deg)	
MU attitude correction stdev (<0.001deg)	0
GPS position stdev (<0.01m)	0.0153
	42.07
Minimum % overlap (>25)	43.97
Ave point cloud density per sq.m. (>2.0)	3.71
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	61
Maximum Height	399.07
Minimum Height	55.36
Classification (# of points)	
Ground	14,773,181
Low vegetation	13,469,860
Medium vegetation	34,698,250
High vegetation	19,171,212
Building	948,615
Orthophoto	None
Processed by	Engr. Regis Guhiting, Engr. Erica Erin Elazegui, Alex John Escobido

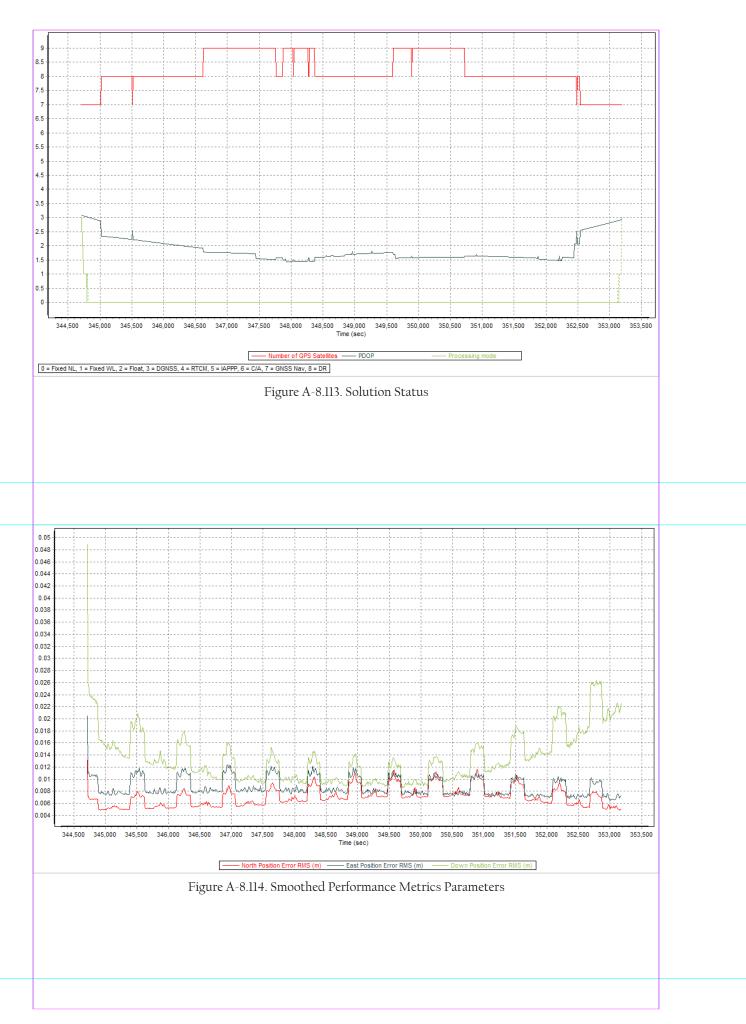


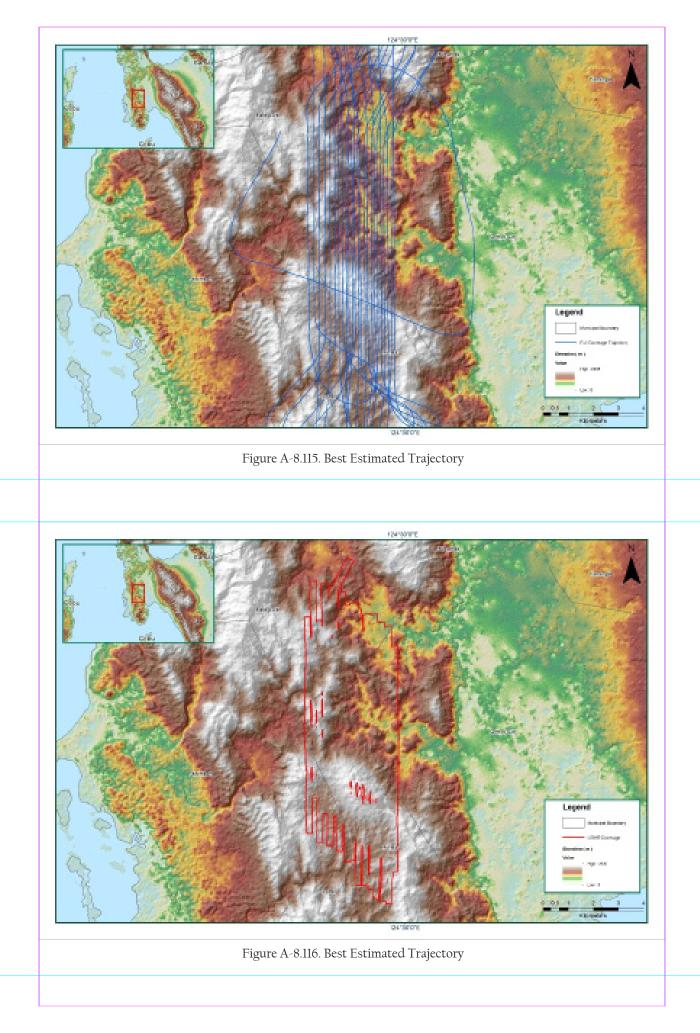


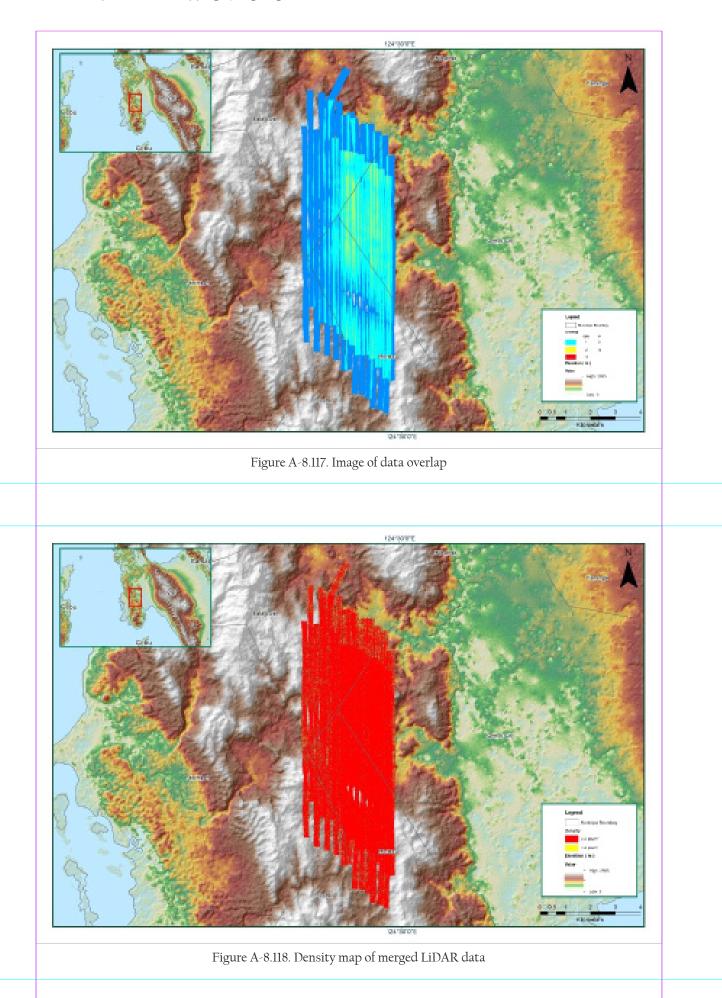


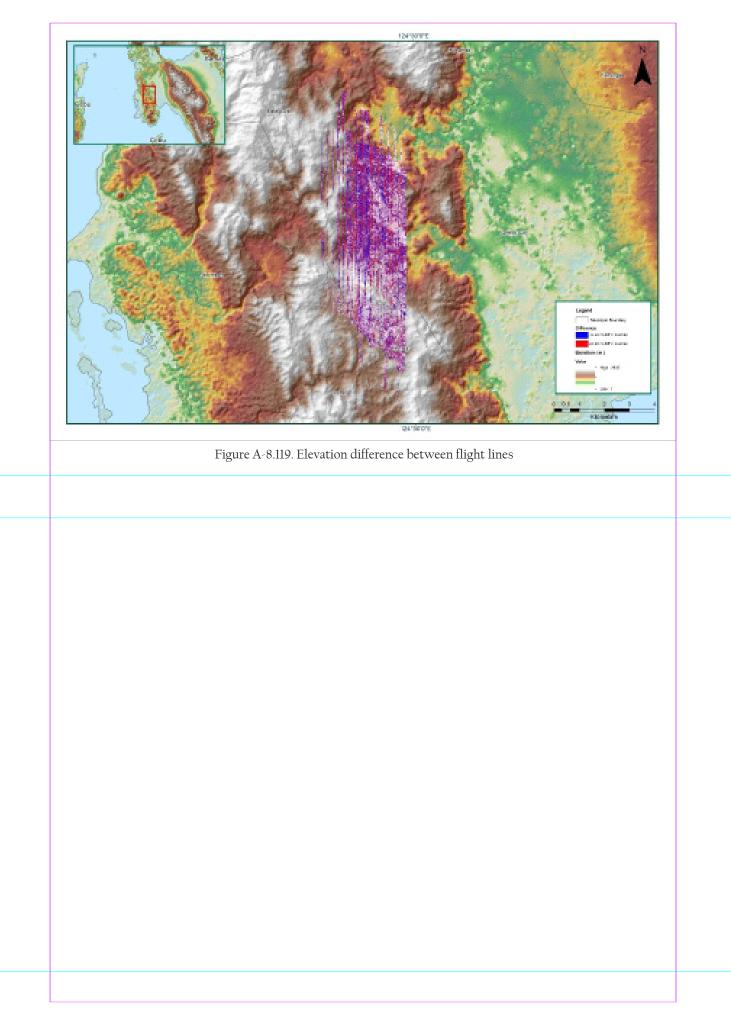


light Area	Ormoc
ssion Name	Blk35CD_additional
usive Flights	7806AC
ge data size	8.2 GB
data size	195 MB
e data size	27 MB
ge	NA
ansfer date	February 25, 2015
tion Status	
nber of Satellites (>6)	Yes
)P (<3)	Yes
eline Length (<30km)	Yes
cessing Mode (<=1)	Yes
othed Performance Metrics (in cm)	
E for North Position (<4.0 cm)	4.103
E for East Position (<4.0 cm)	5.754
E for Down Position (<8.0 cm)	7.546
esight correction stdev (<0.001deg)	0.000271
attitude correction stdev (<0.001deg)	0.000619
position stdev (<0.01m)	0.0071
mum % overlap (>25)	19.58
point cloud density per sq.m. (>2.0)	2.34
vation difference between strips (<0.20 m)	Yes
nber of 1km x 1km blocks	19
ximum Height	294.94
nimum Height	75.43
sification (# of points)	
bund	2,556,122
v vegetation	1,524,276
dium vegetation	4,461,264
h vegetation	3,251,822
lding	31,704
hophoto	None
-	Engr. Abigail Joy Ching, Engr. Melanie Hingpit
essed by	Engr. Melissa Fernandez

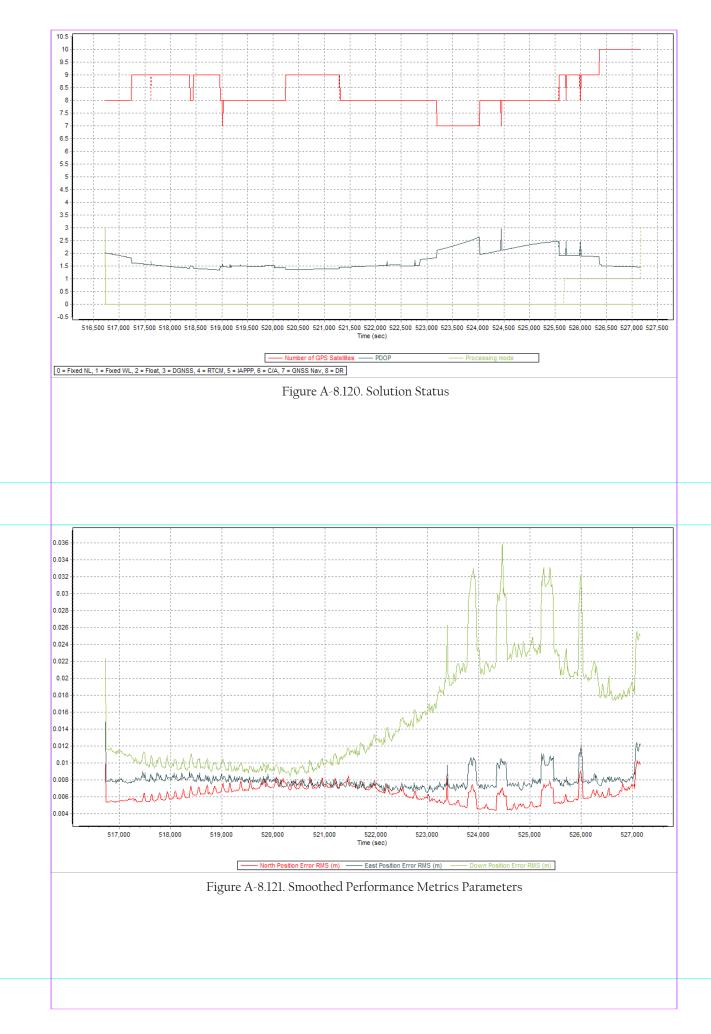


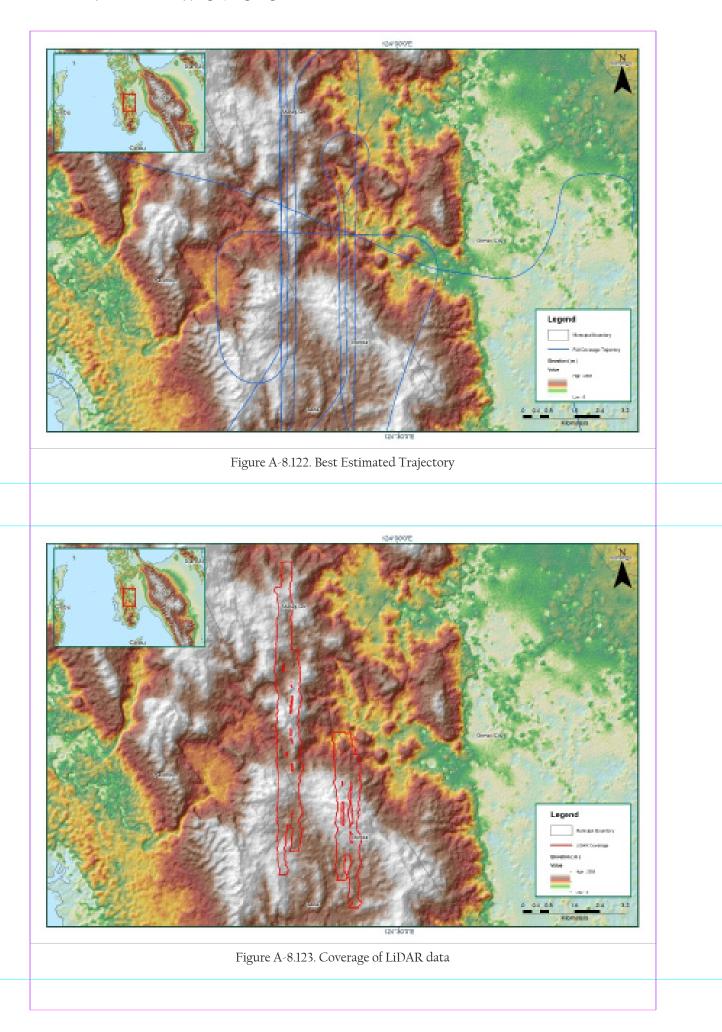






ight Area	Ormoc_Camotes
ission Name	Blk35E
nclusive Flights	8391AC
ange data size	11.2 GB
os	263 MB
nage	35.5 MB
ase Station	265 MB
ransfer date	March 28, 2016
olution Status	
lumber of Satellites (>6)	Yes
DOP (<3)	Yes
aseline Length (<30km)	Yes
rocessing Mode (<=1)	Yes
moothed Performance Metrics (in cm)	
MSE for North Position (<4.0 cm)	1.16
MSE for East Position (<4.0 cm)	1.24
MSE for Down Position (<8.0 cm)	2.64
presight correction stdev (<0.001deg)	0.000304
AU attitude correction stdev (<0.001deg)	0.001996
PS position stdev (<0.01m)	0.0106
	0.0100
linimum % overlap (>25)	48.98
ve point cloud density per sq.m. (>2.0)	4.99
evation difference between strips (<0.20 m)	Yes
evation unterence between strips (<0.20 m)	103
lumber of 1km x 1km blocks	60
Aaximum Height	480.27
1inimum Height	75.57
lessification (# of raints)	
lassification (# of points)	20,820,262
round	30,839,262
ow vegetation	17,960,389
ledium vegetation	48,134,275
igh vegetation	73,775,914
uilding	4,266,466
rthophoto	None
rocessed by	Engr. Kenneth Solidum, Engr. Chelou Prado, Marie Denise Bueno





Flight Area	Ormoc_Camotes	
Mission Name	Blk35E_Additional	
Inclusive Flights	8408AC	
Range data size	5.14 GB	
POS	208 MB	
mage	56.3 MB	
Base Station	263 MB	
Transfer date	April 22, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
-		
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.03	
RMSE for East Position (<4.0 cm)	1.24	
RMSE for Down Position (<8.0 cm)	3.59	
· ·		
Boresight correction stdev (<0.001deg)	N/A	
MU attitude correction stdev (<0.001deg)	N/A	
GPS position stdev (<0.01m)	N/A	
Minimum % overlap (>25)	20.63	
Ave point cloud density per sq.m. (>2.0)	3.20	
Elevation difference between strips (<0.20 m)	Yes	
· · · ·		
Number of 1km x 1km blocks	30	
Maximum Height	480.27	
Minimum Height	75.57	
-		
Classification (# of points)		
Ground	30,839,262	
Low vegetation	17,960,389	
Medium vegetation	48,134,275	
High vegetation	73,775,914	
Building	4,266,466	
Orthophoto	None	
	Engr. Regis Guhiting, Aljon Rie Araneta,	
Processed by	Marie Denise Bueno	

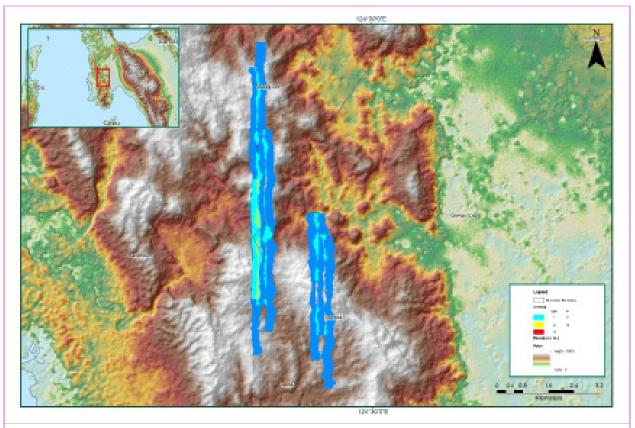
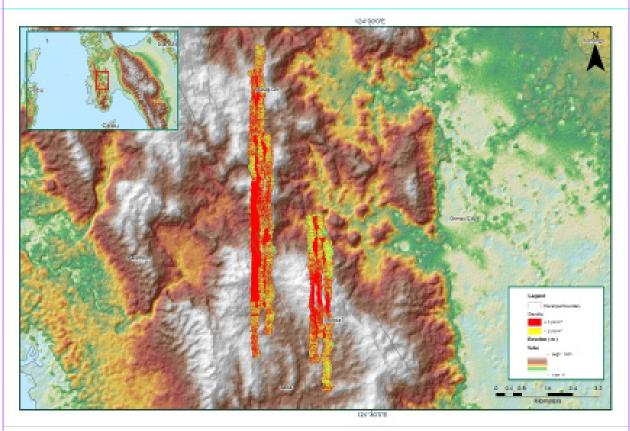
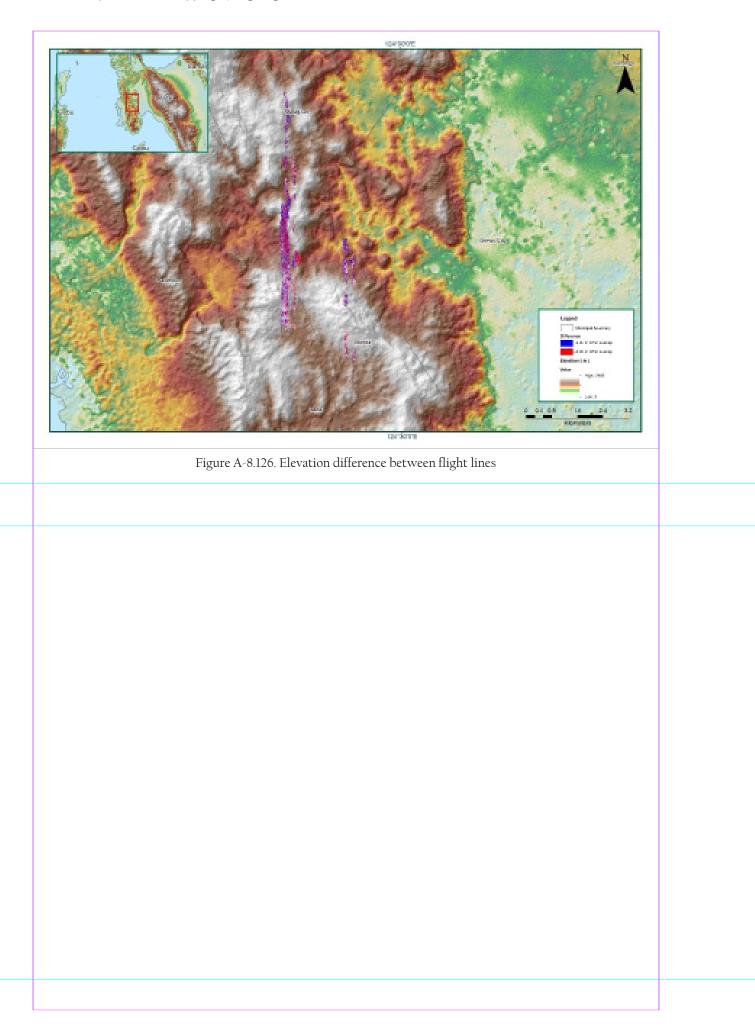
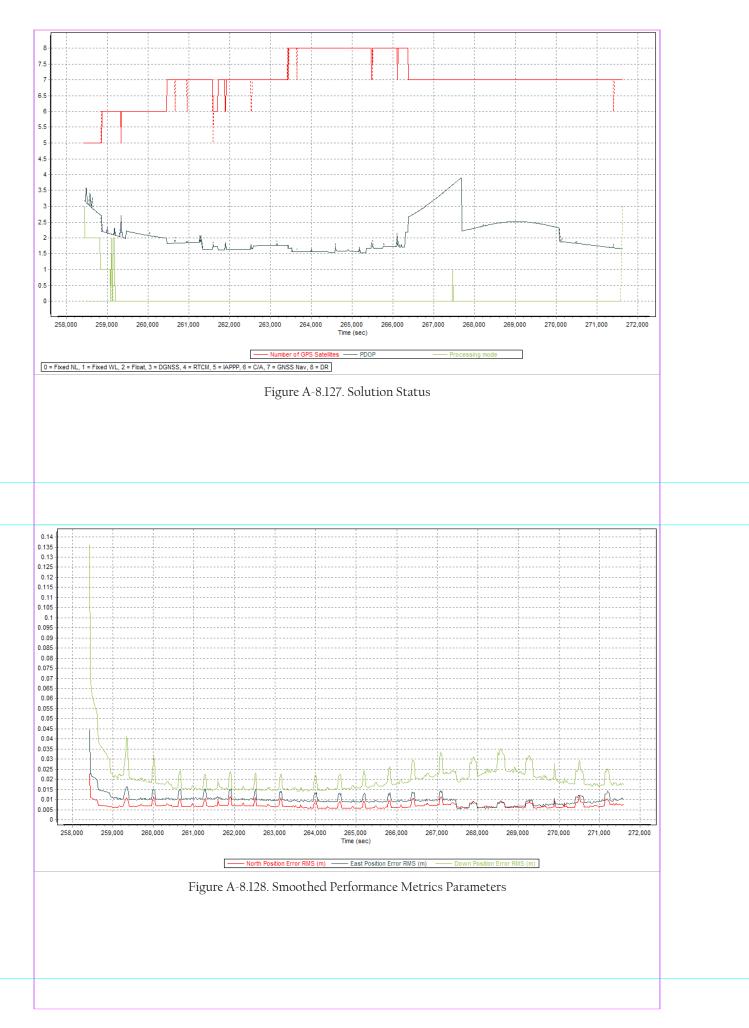
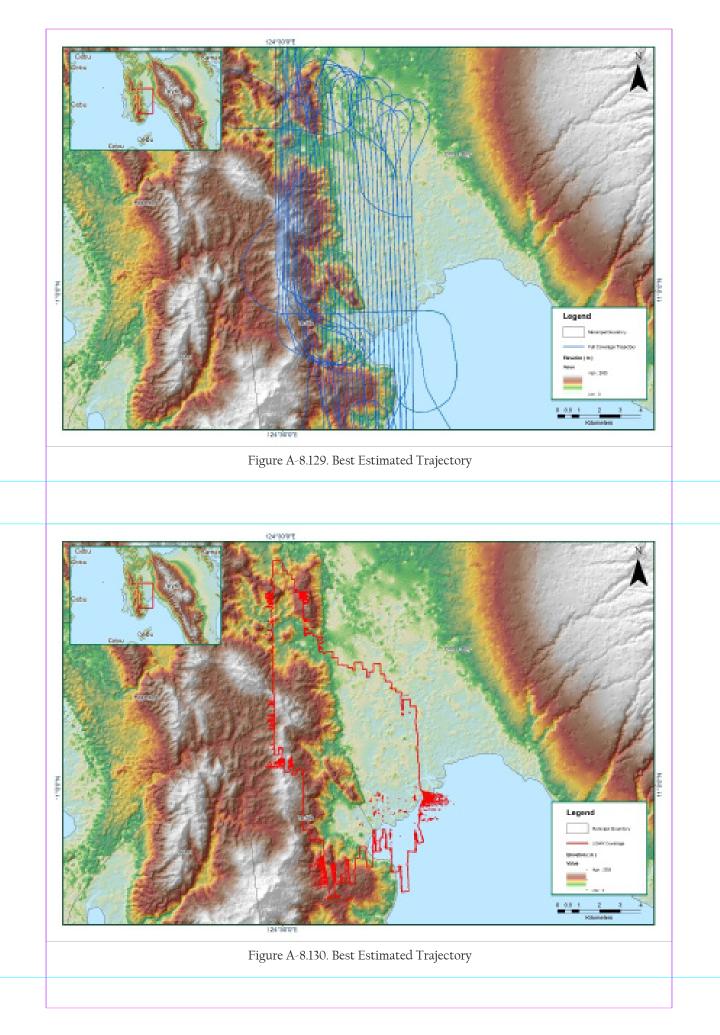
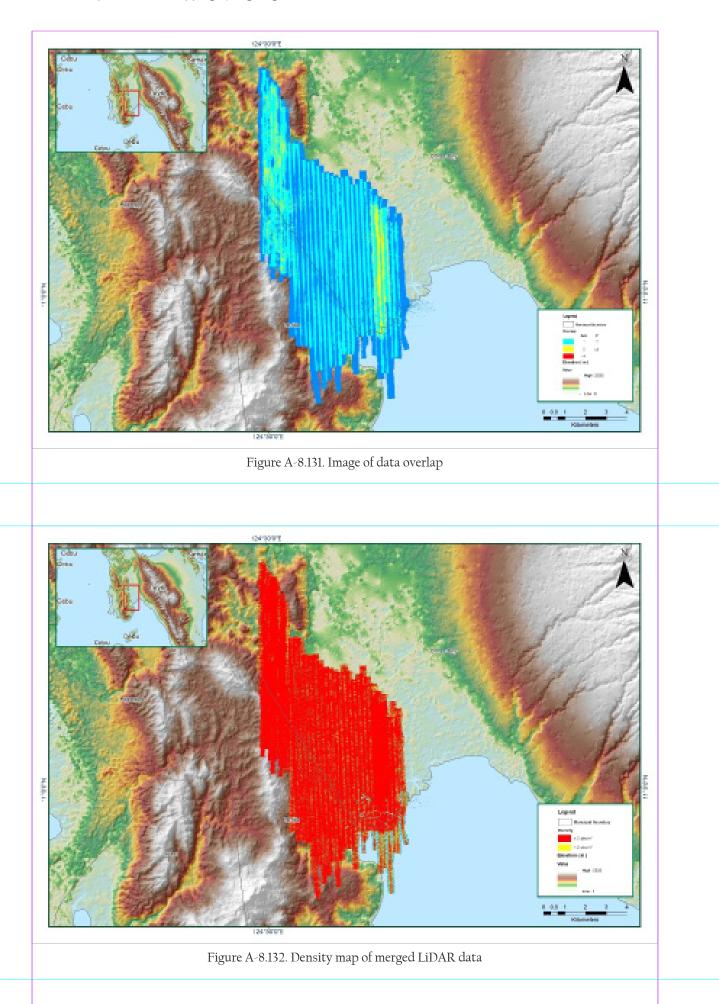
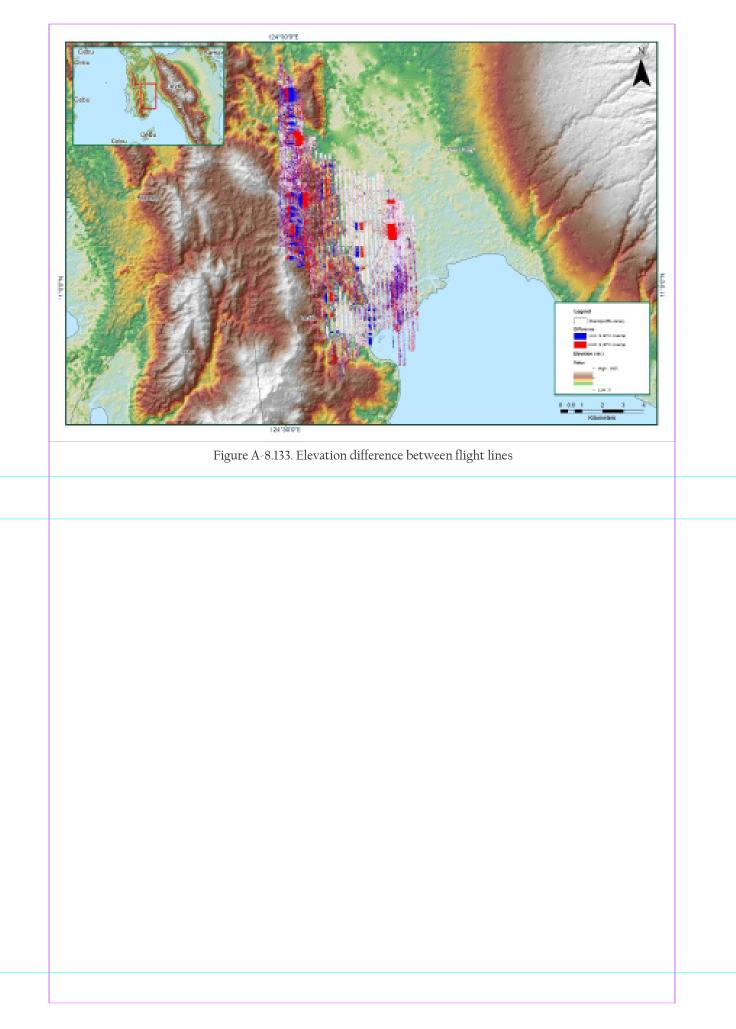


Figure A-8.124. Image of data overlap

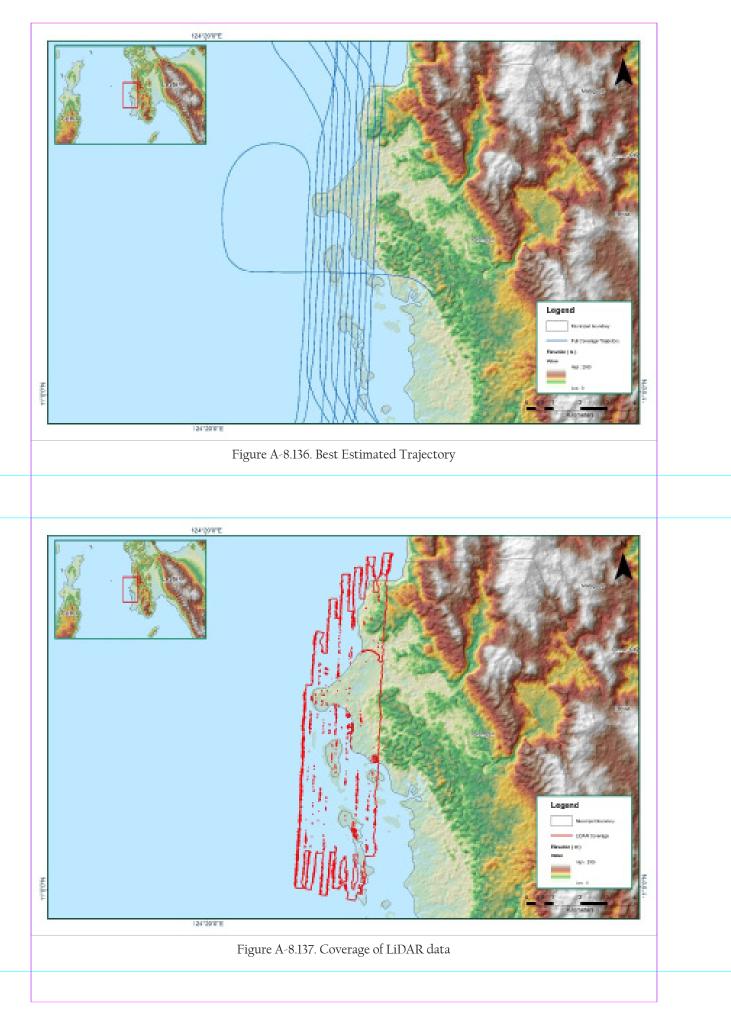





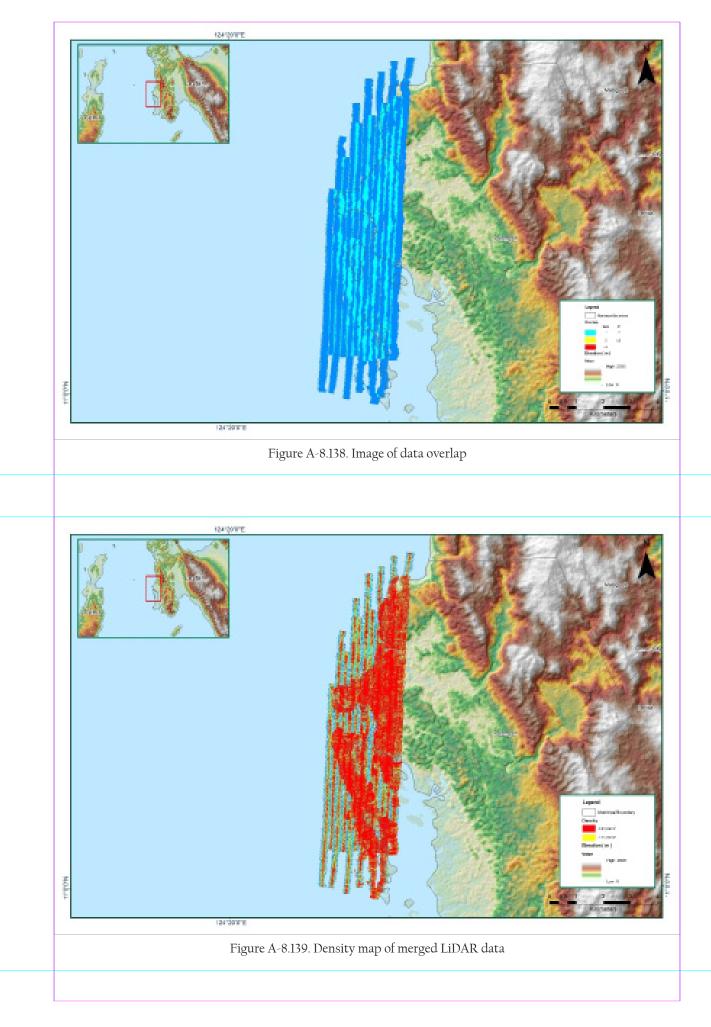

Figure A-8.125. Density map of merged LiDAR data

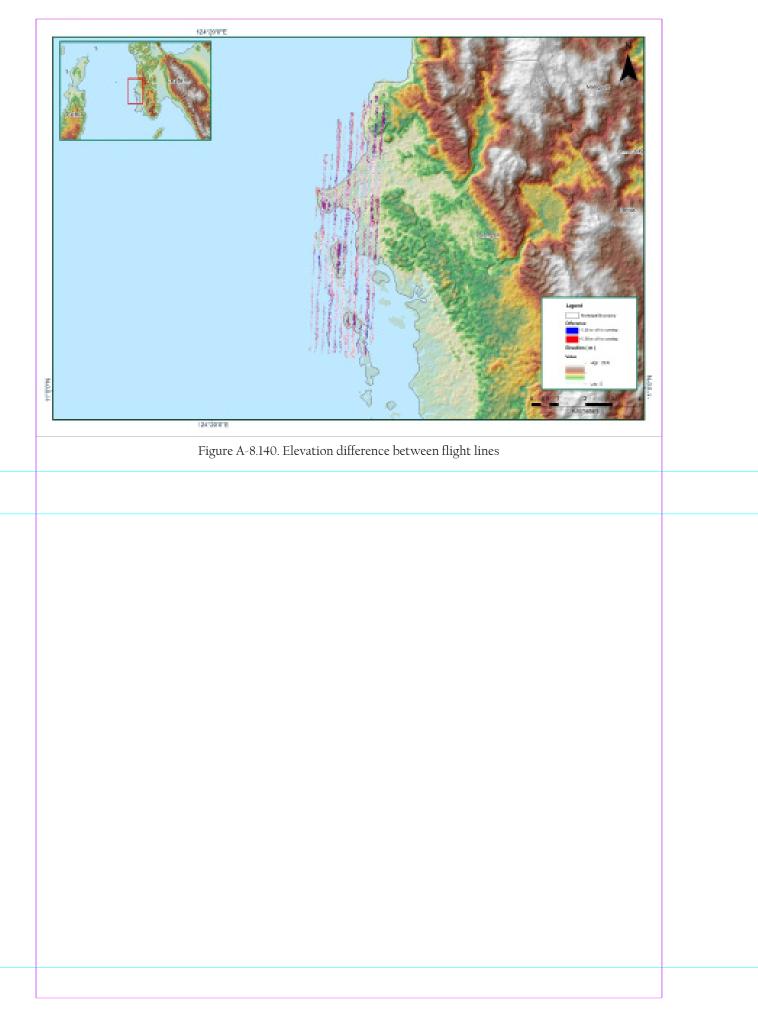


ight Area	Ormoc_Camotes
lission Name	Blk35E_Supplement
clusive Flights	8389AC
ange data size	10.7 GB
DS	259 MB
nage	44.9 MB
ase Station	228 MB
ansfer date	March 28, 2016
lution Status	
mber of Satellites (>6)	No
OP (<3)	No
seline Length (<30km)	Yes
ocessing Mode (<=1)	No
noothed Performance Metrics (in cm)	
ASE for North Position (<4.0 cm)	1.21
MSE for East Position (<4.0 cm)	1.65
MSE for Down Position (<8.0 cm)	4.13
resight correction stdev (<0.001deg)	0.000431
U attitude correction stdev (<0.001deg)	0.006621
S position stdev (<0.01m)	0.0098
nimum % overlap (>25)	51.84
e point cloud density per sq.m. (>2.0)	4.13
evation difference between strips (<0.20 m)	Yes
mber of 1km x 1km blocks	89
aximum Height	377.21
inimum Height	57.60
assification (# of points)	
ound	52,094,139
w vegetation	63,380,558
edium vegetation	67,477,309
gh vegetation	83,244,354
uilding	6,560,538
rthophoto	None
-	Engr. Kenneth Solidum, Aljon Rie Araneta,
ocessed by	Engr. Krisha Marie Bautista

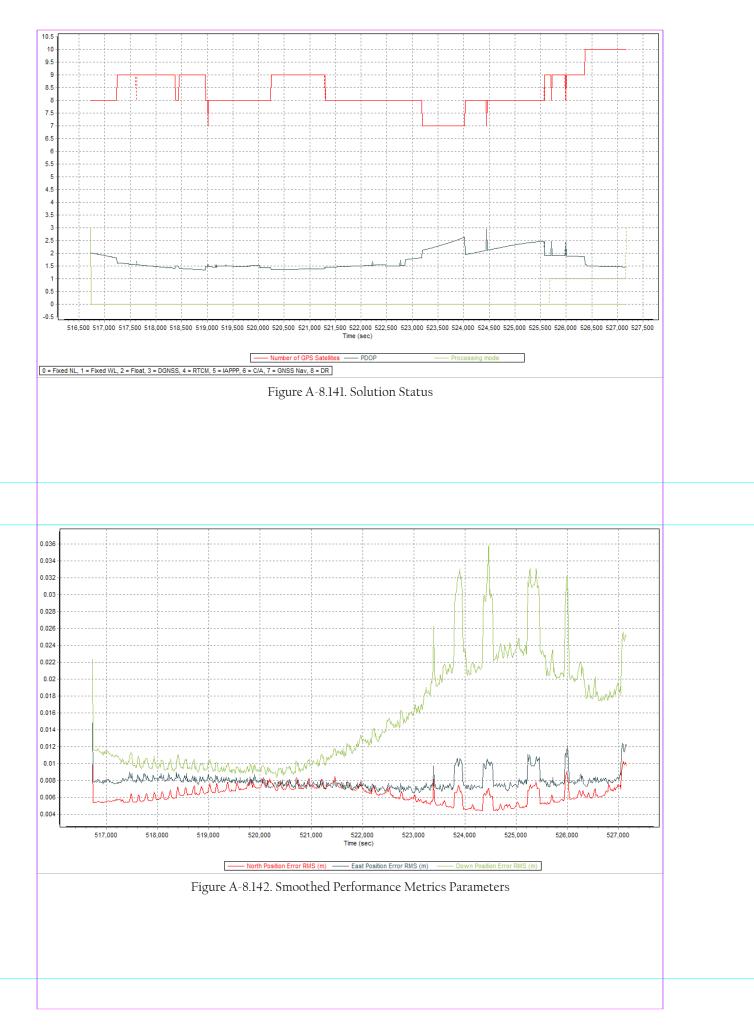


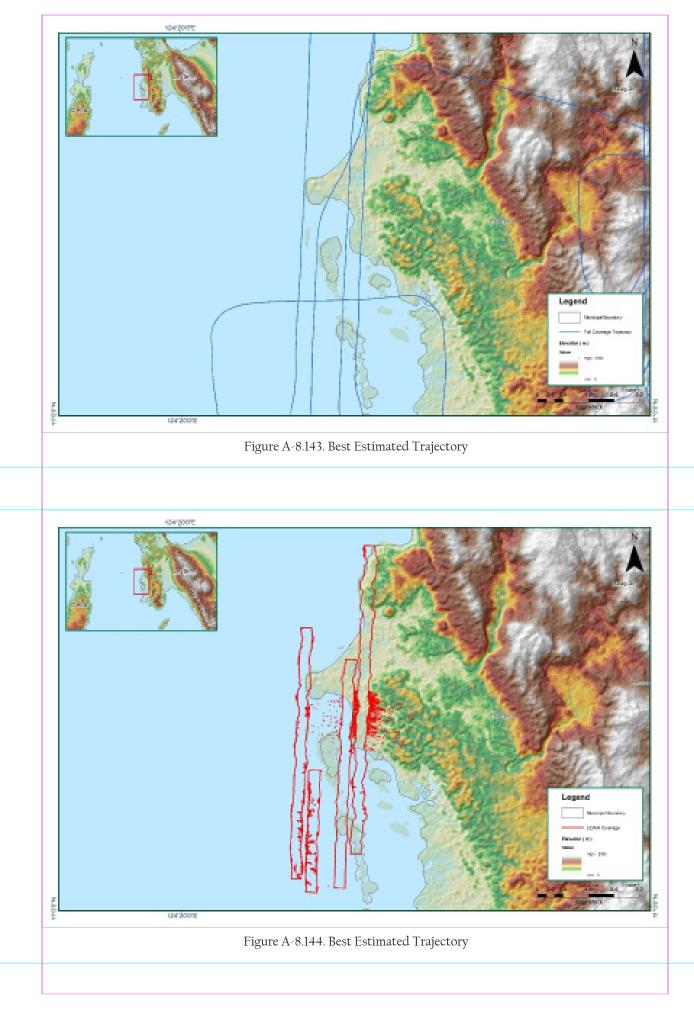


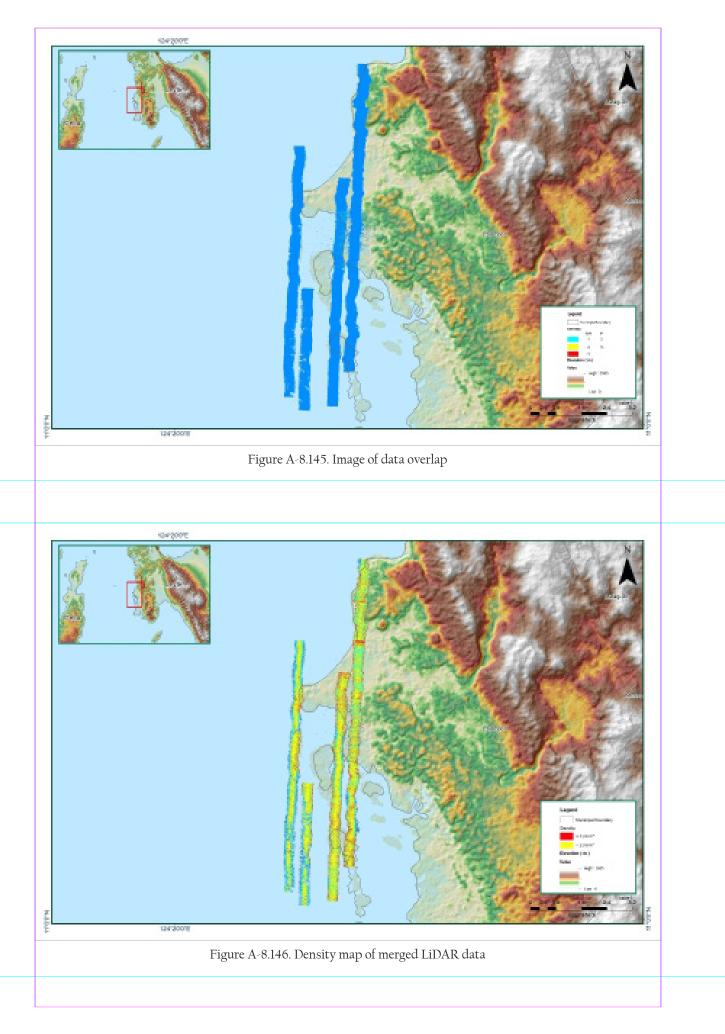


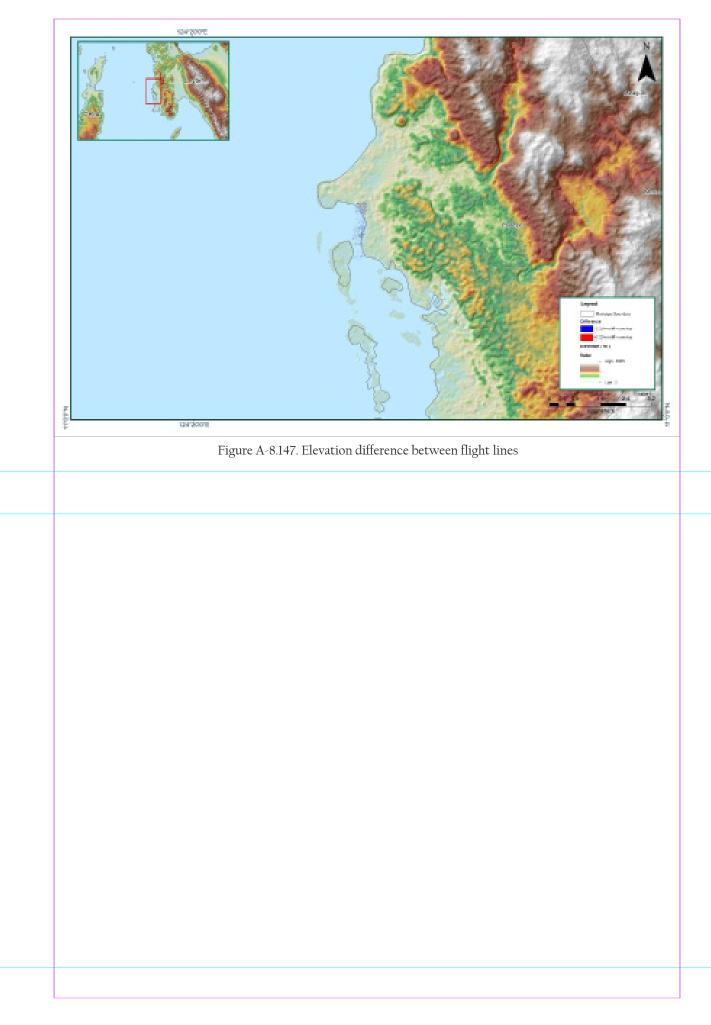


Flight Area	Ormoc_Camotes	
Mission Name	Blk35F	
Inclusive Flights	8391AC	
Range data size	11.2 GB	
POS	263 MB	
Image	35.5 MB	
Base Station	265 MB	
Transfer date	March 28, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	0.93	
MSE for East Position (<4.0 cm)	1.02	
RMSE for Down Position (<8.0 cm)	3.06	
· ·		
oresight correction stdev (<0.001deg)	0.001039	
MU attitude correction stdev (<0.001deg)	0.008915	
GPS position stdev (<0.01m)	0.0151	
/linimum % overlap (>25)	23.34	
we point cloud density per sq.m. (>2.0)	2.41	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	51	
Maximum Height	152.26	
Minimum Height	52.15	
Classification (# of points)		
Ground	13,689,498	
ow vegetation	16,455,690	
Medium vegetation	12,313,010	
ligh vegetation	6,985,085	
Building	2,211,564	
Orthophoto	None	
Processed by	Engr. Analyn Naldo, Aljon Rie Araneta, Alex John Escobido	

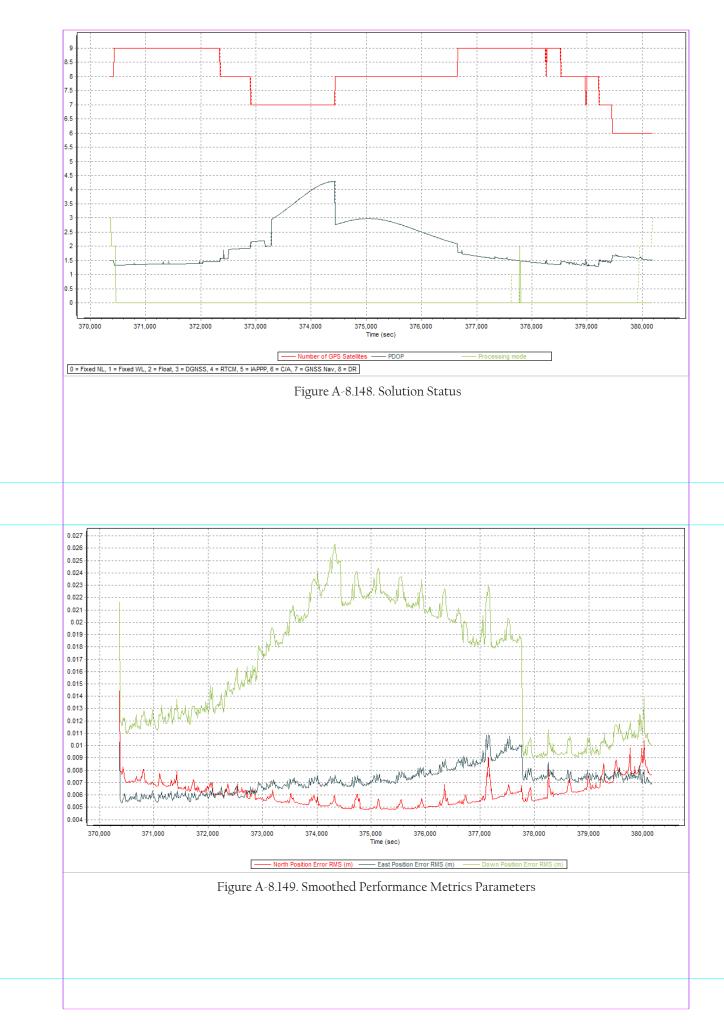


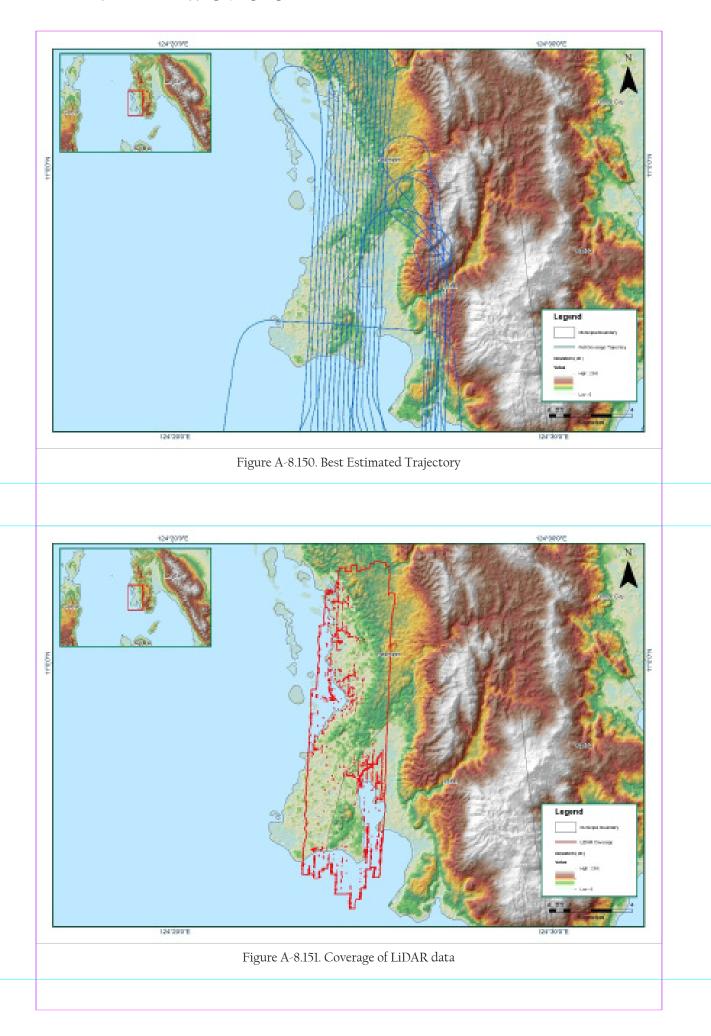


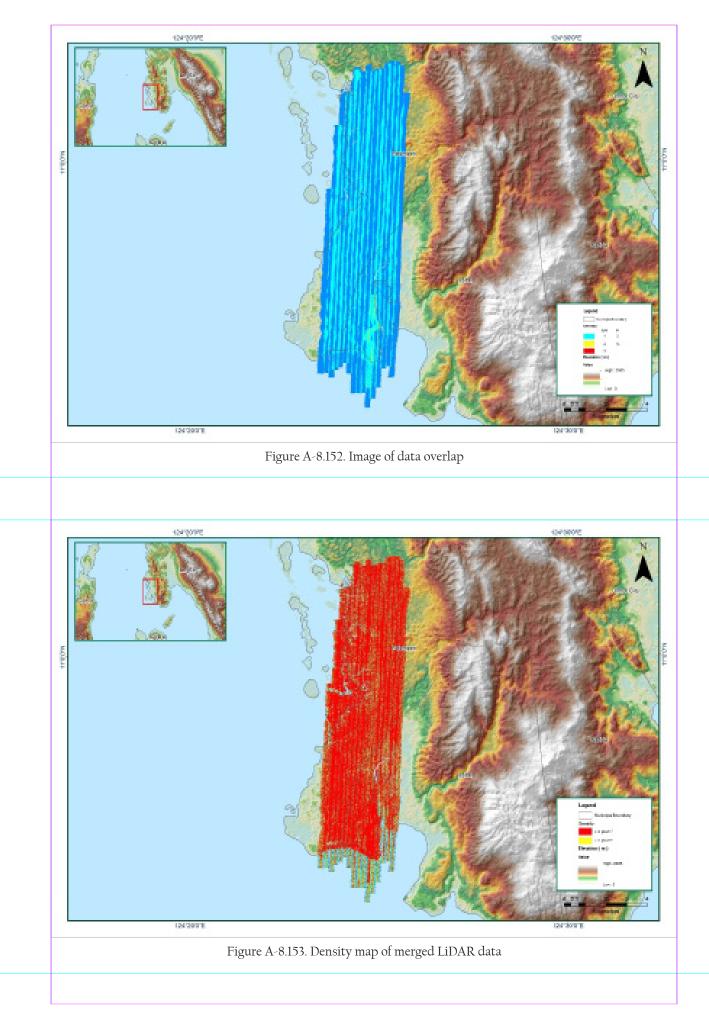


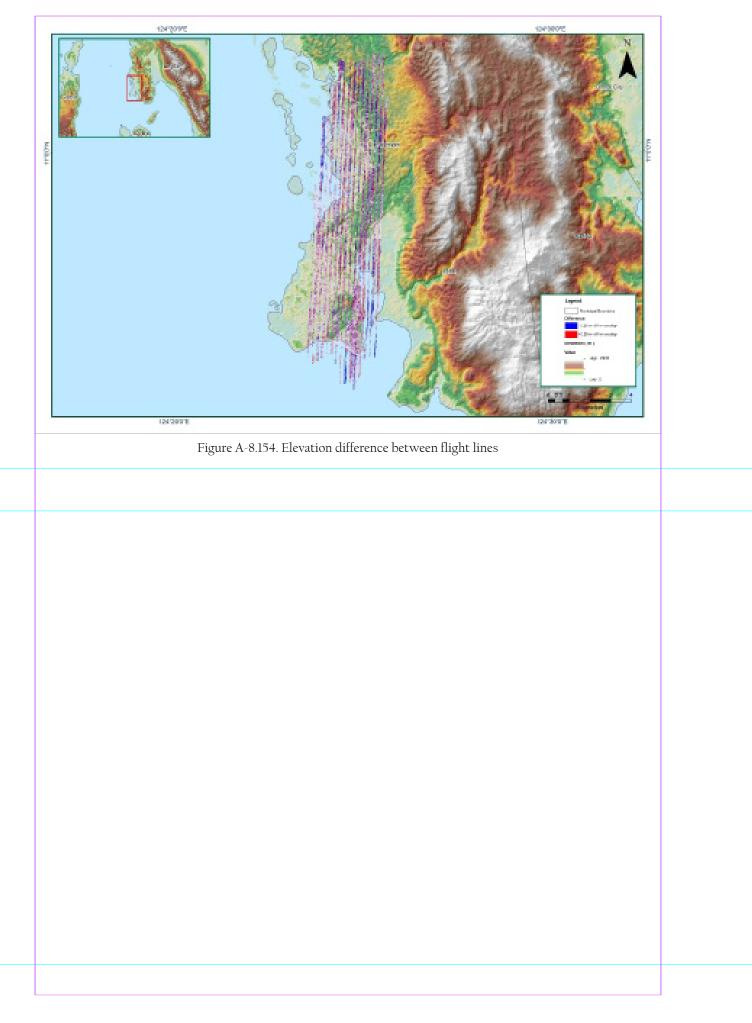


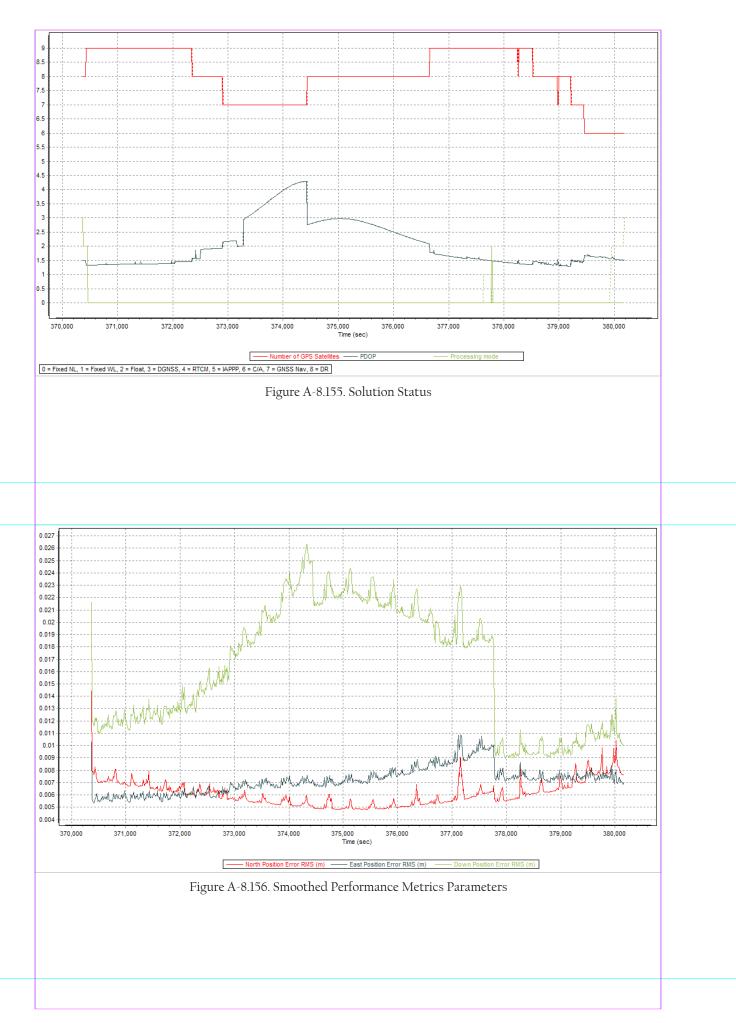
light Area	Ormoc_Camotes
Mission Name	Blk35F_Additional
Inclusive Flights	8408AC
Range data size	5.14 GB
POS	208 MB
Image	56.3 MB
Base Station	263 MB
Transfer date	April 22, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.03
RMSE for East Position (<4.0 cm)	1.24
RMSE for Down Position (<8.0 cm)	3.59
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A
· · · ·	
Minimum % overlap (>25)	0.51
Ave point cloud density per sq.m. (>2.0)	1.53
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	29
Maximum Height	115.99
Minimum Height	47.35
~	
Classification (# of points)	
Ground	5,179,756
Low vegetation	2,398,009
Medium vegetation	1,450,198
High vegetation	1,916,365
Building	532,466
Orthophoto	None
-	Engr. Regis Guhiting, Engr. Jovelle Anjeanette Canlas,
Processed by	Engr. Melissa Fernandez

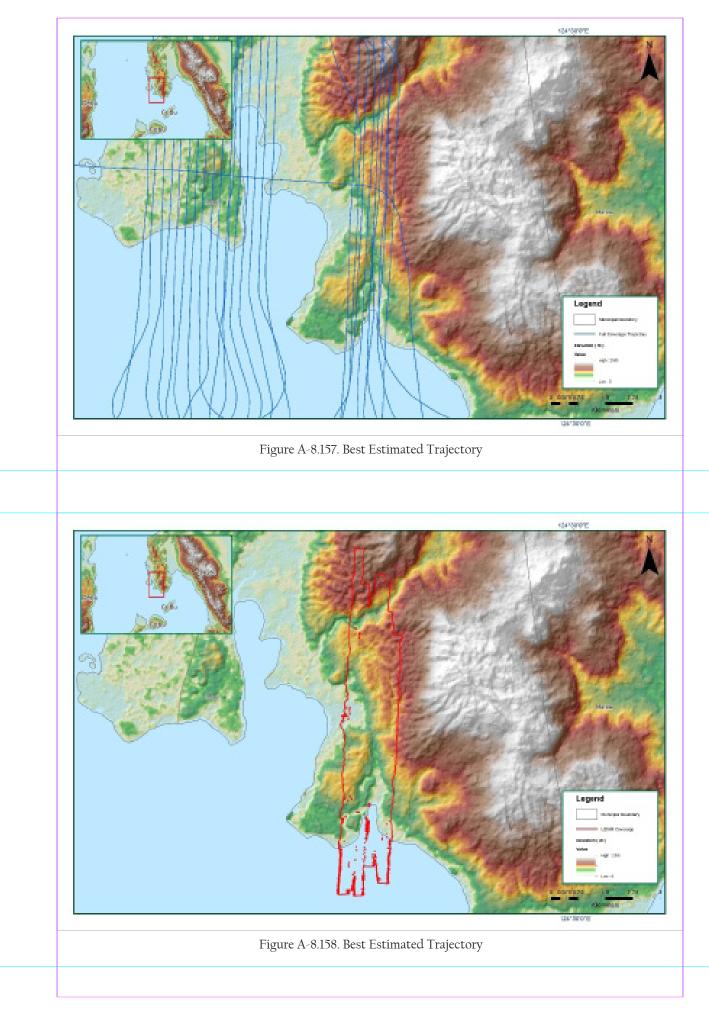


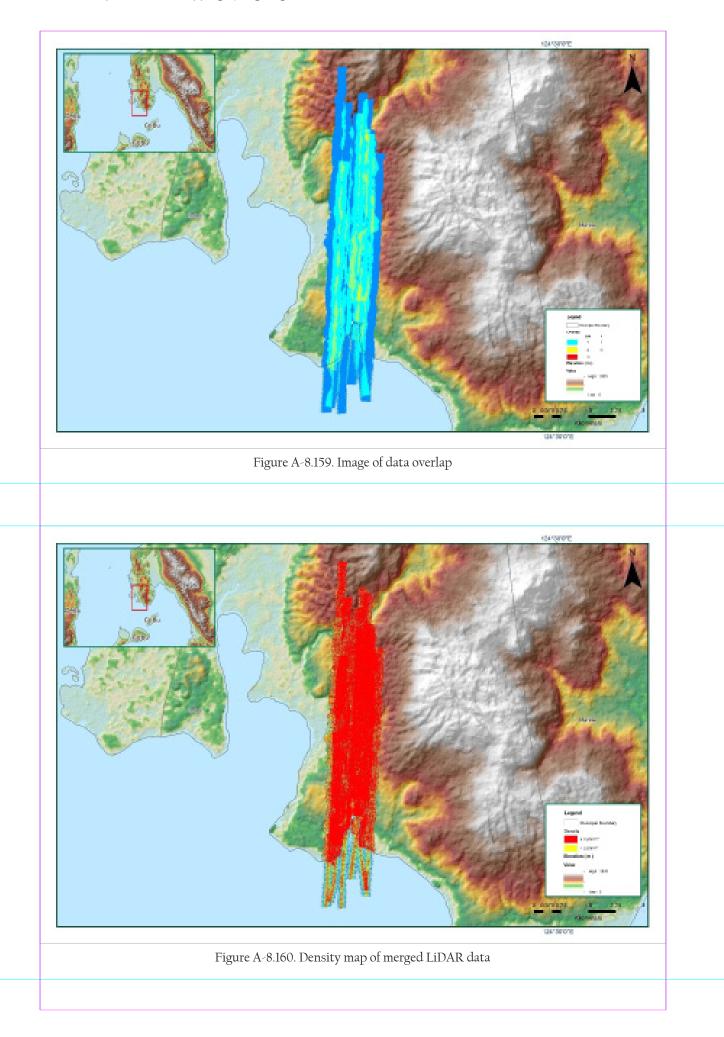


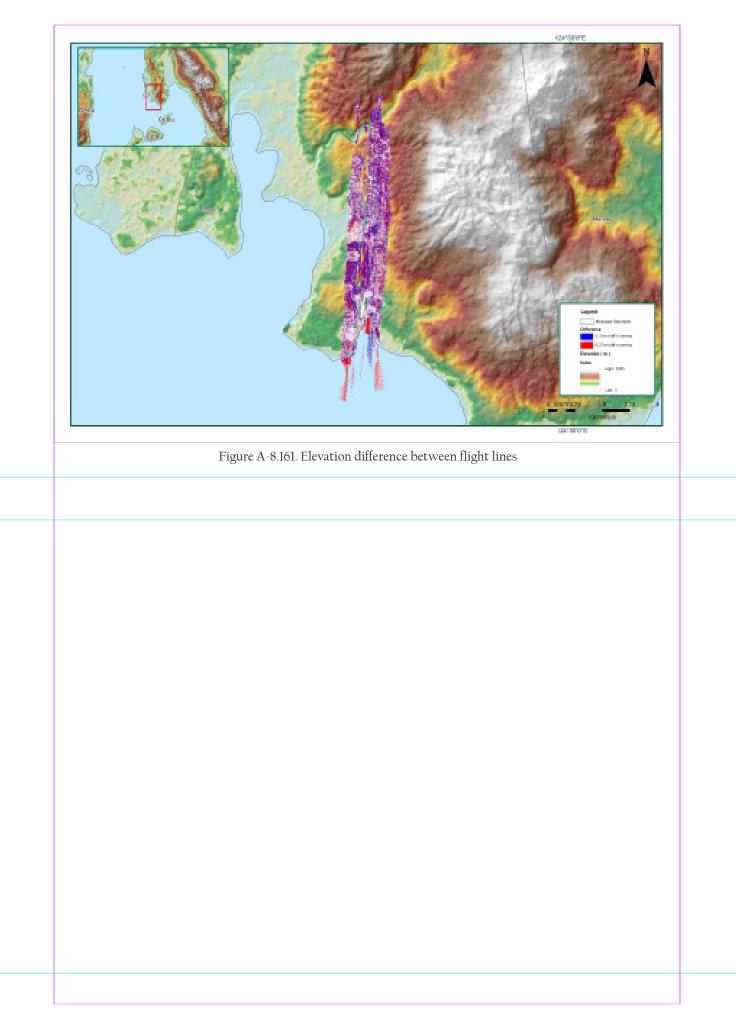



Flight Area	Ormoc_Camotes
Mission Name	Blk35G
Inclusive Flights	8392AC
Range data size	9.68 GB
POS	198 MB
Image	37.6 MB
Base Station	265 MB
Transfer date	March 28, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.04
RMSE for East Position (<4.0 cm)	1.09
RMSE for Down Position (<8.0 cm)	2.63
Boresight correction stdev (<0.001deg)	0.000461
IMU attitude correction stdev (<0.001deg)	0.002204
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	37.05
Ave point cloud density per sq.m. (>2.0)	3.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	76
Maximum Height	167.26
Minimum Height	51.39
- 0 -	
Classification (# of points)	
Ground	23,865,146
Low vegetation	25,929,146
Medium vegetation	44,569,409
High vegetation	34,437,062
Building	780,530
Orthophoto	None
Processed by	Engr. Irish Cortez, Engr. Christy Lubiano, Jovy Narisma

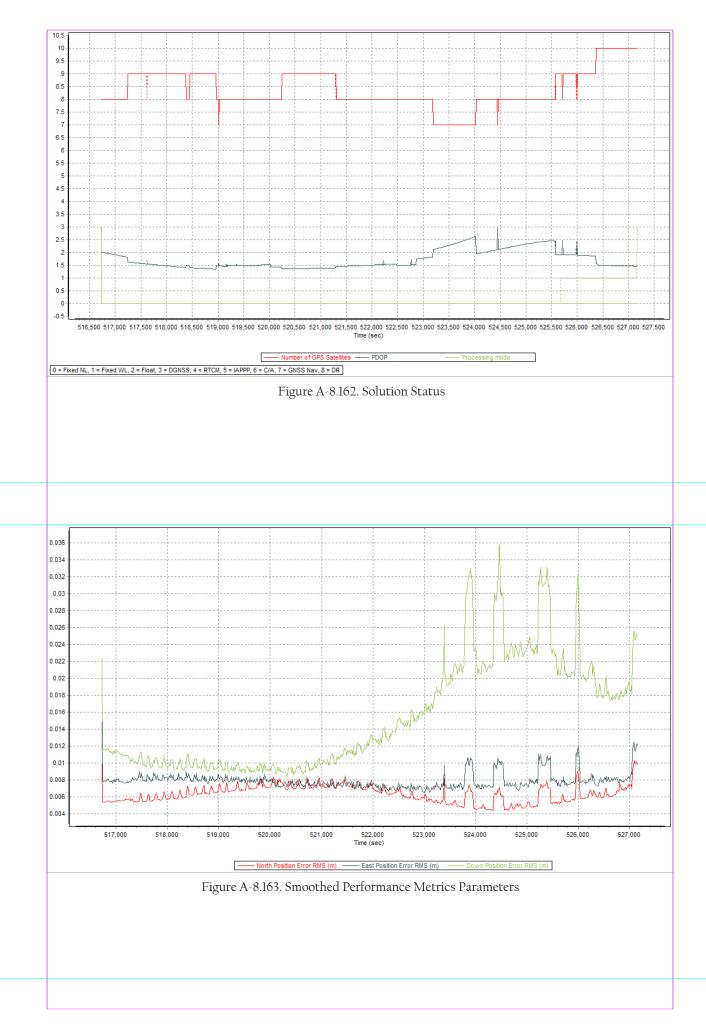


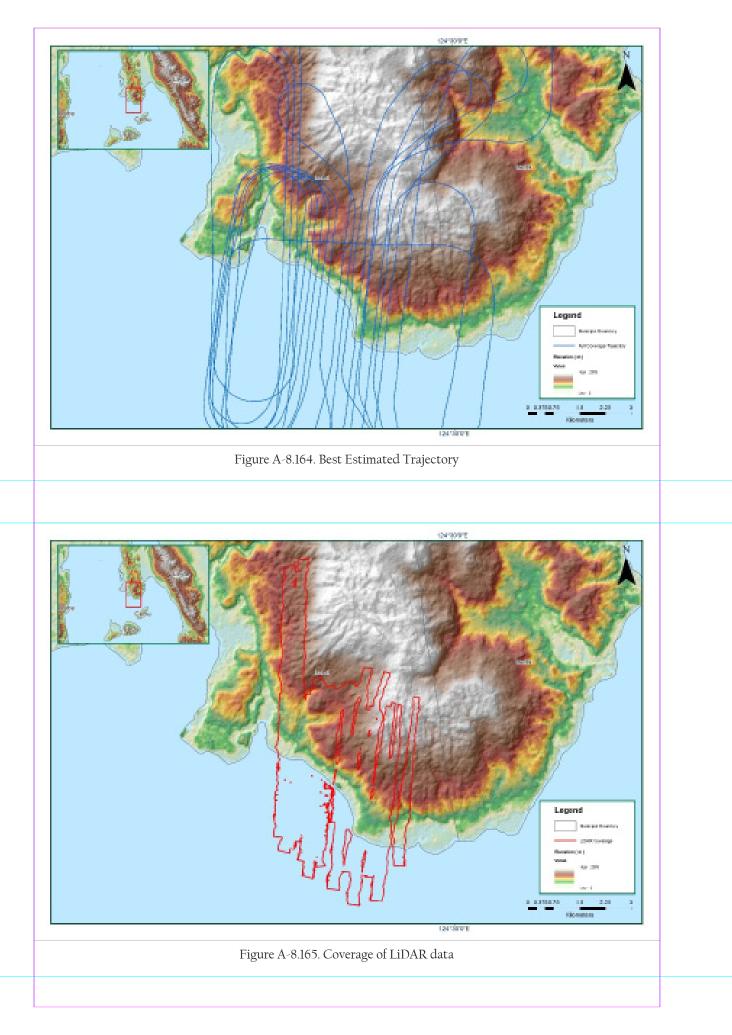


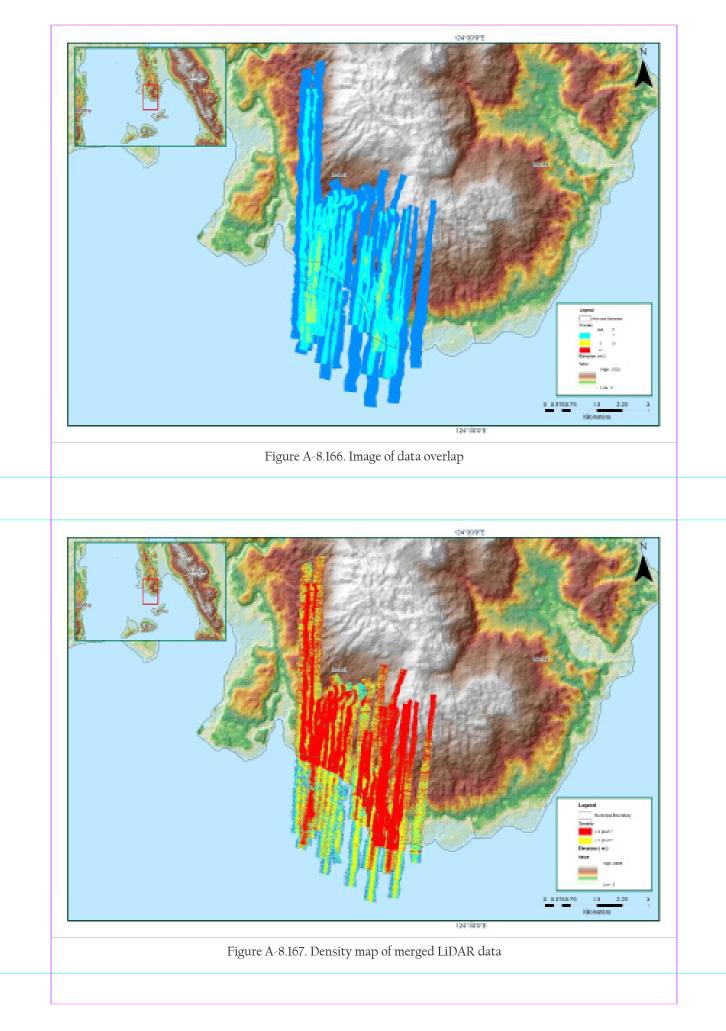

LIDAR Surveys and Flood Mapping of Pagsangahan River

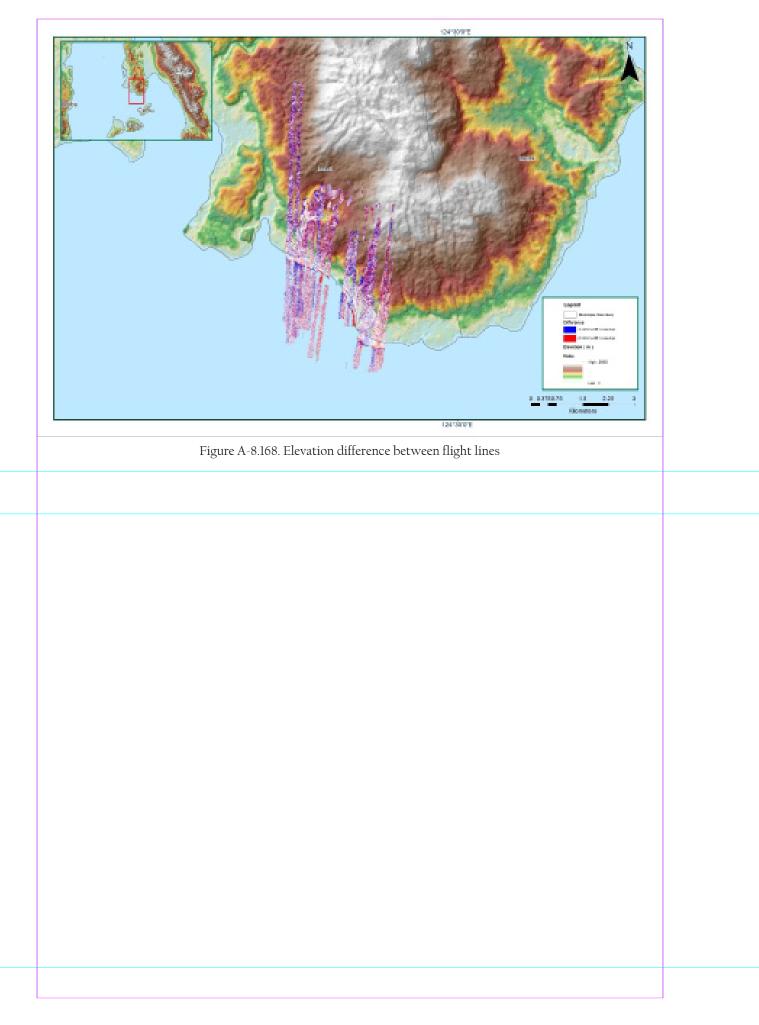


light Area	Ormoc_Camotes
Vission Name	Blk35H
Inclusive Flights	8392A
Range data size	9.68 GB
POS	198 MB
Image	37.6 MB
Base Station	265 MB
Transfer date	March 28, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.04
RMSE for East Position (<4.0 cm)	1.09
RMSE for Down Position (<8.0 cm)	2.63
Boresight correction stdev (<0.001deg)	0.000461
IMU attitude correction stdev (<0.001deg)	0.002204
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	56.10
Ave point cloud density per sq.m. (>2.0)	3.96
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	28
Maximum Height	277.27
Minimum Height	56.77
Classification (# of points)	
Ground	8,304,789
Low vegetation	8,090,694
Medium vegetation	12,141,801
High vegetation	16,625,105
Building	1,890,226
Orthophoto	None
-	Engr. Irish Cortez, Engr. Chelou Prado,
Processed by	Engr. Elainne Lopez

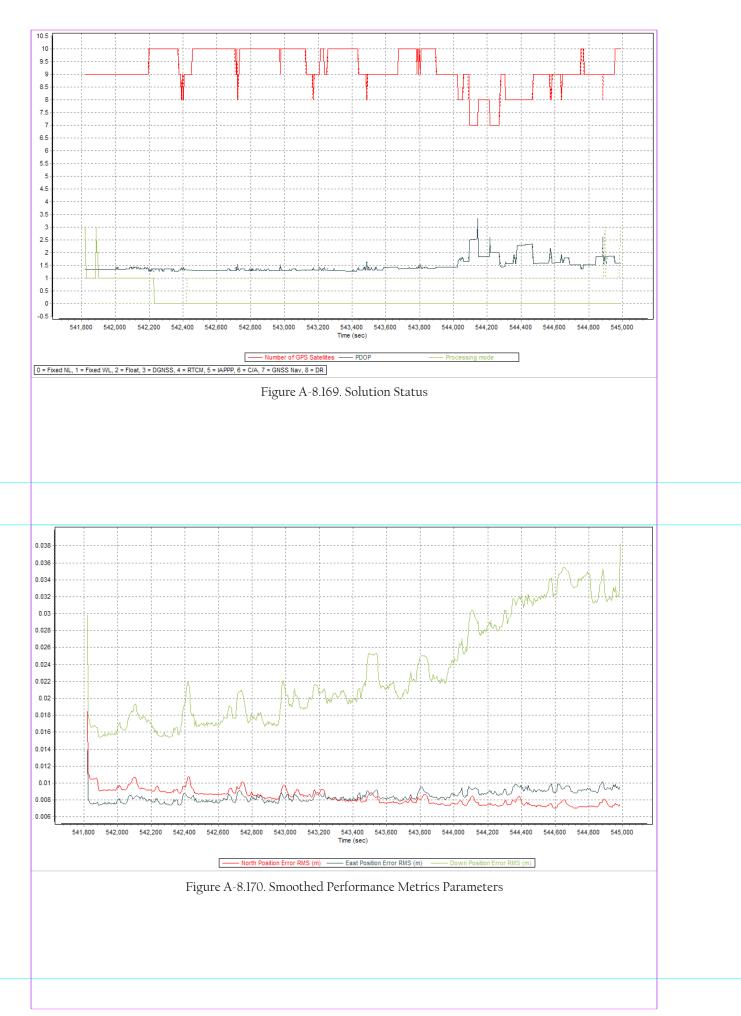


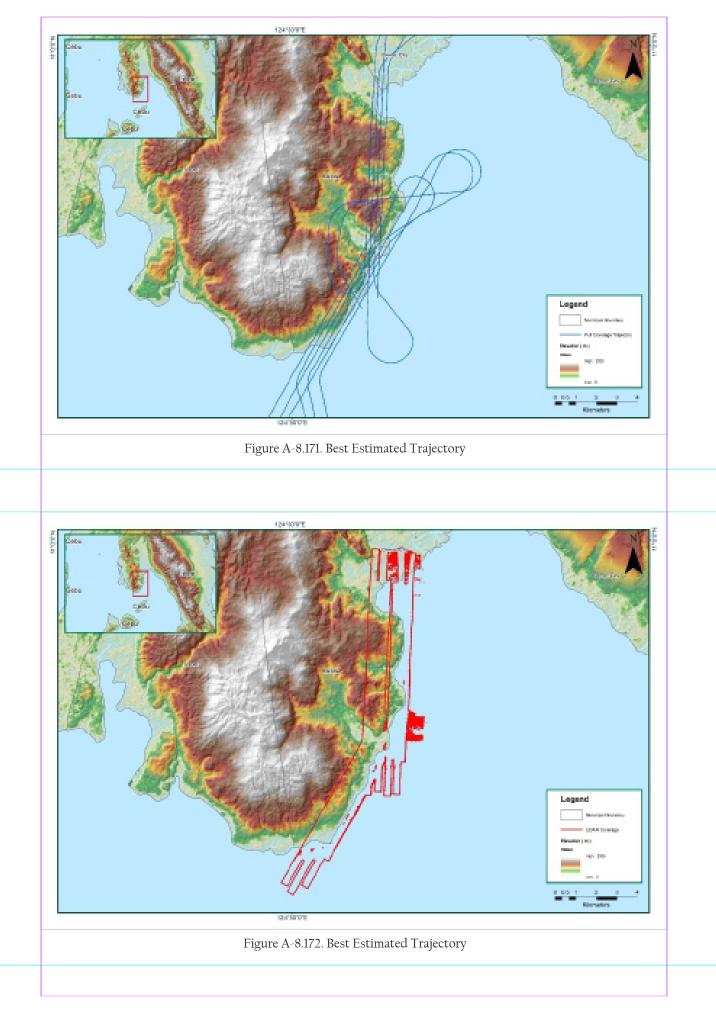


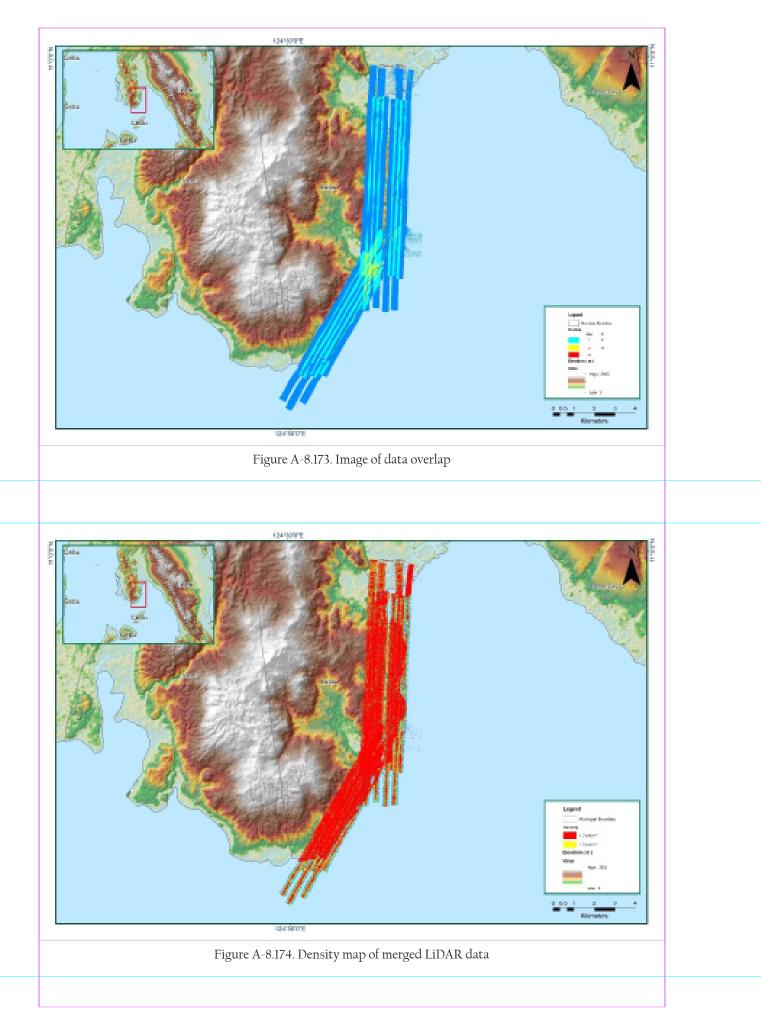


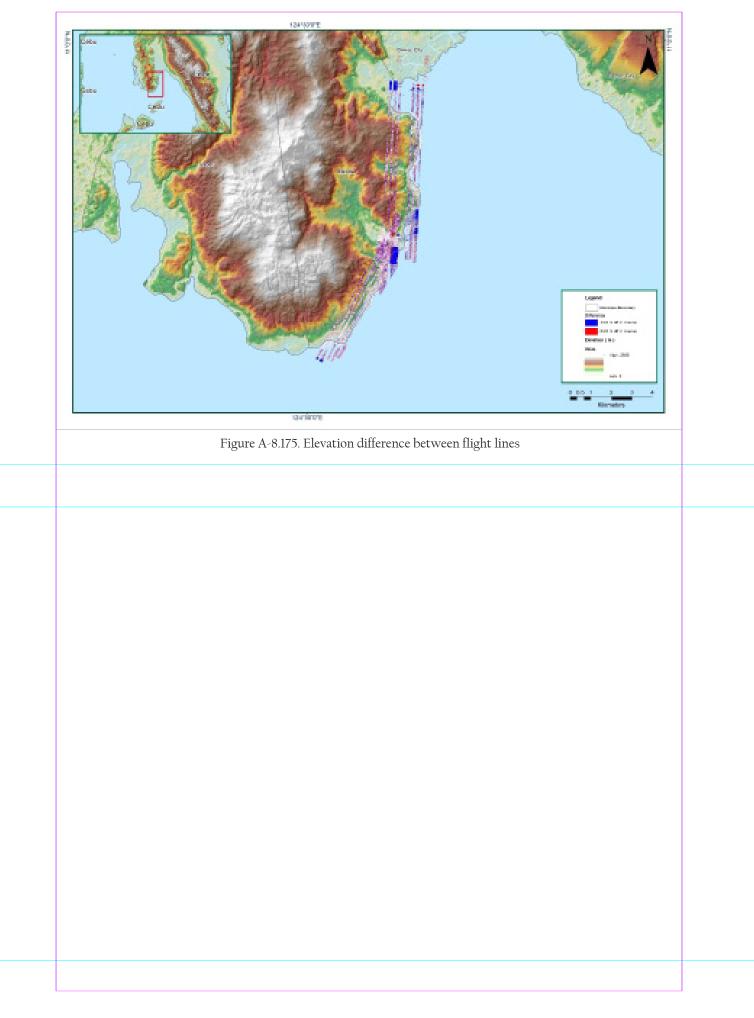


Flight Area	Ormoc_Camotes	
Mission Name	Blk35H_Supplement	
nclusive Flights	8408AC	
Range data size	5.14 GB	
POS	208 MB	
mage	56.3 MB	
Base Station	263 MB	
Fransfer date	April 22, 2016	
olution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.03	
MSE for East Position (<4.0 cm)	1.24	
MSE for Down Position (<8.0 cm)	3.59	
oresight correction stdev (<0.001deg)	N/A	
/IU attitude correction stdev (<0.001deg)	N/A	
PS position stdev (<0.01m)	N/A	
/inimum % overlap (>25)	41.06	
ve point cloud density per sq.m. (>2.0)	2.81	
levation difference between strips (<0.20 m)	Yes	
· · · ·		
lumber of 1km x 1km blocks	42	
Maximum Height	438.66	
Vinimum Height	45.93	
Classification (# of points)		
iround	13,820,590	
ow vegetation	6,300,170	
Aedium vegetation	12,967,315	
ligh vegetation	22,021,720	
Building	859,613	
Drthophoto	None	
-	Engr. Regis Guhiting, Aljon Rie Araneta,	
Processed by	Engr. Czarina Jean Añonuevo	

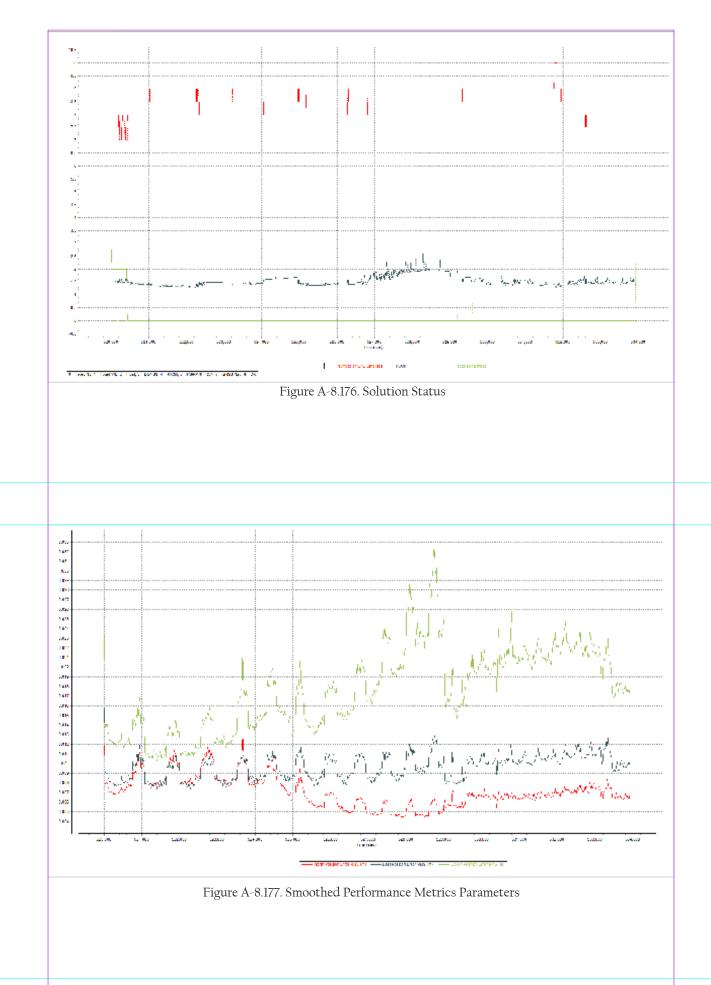


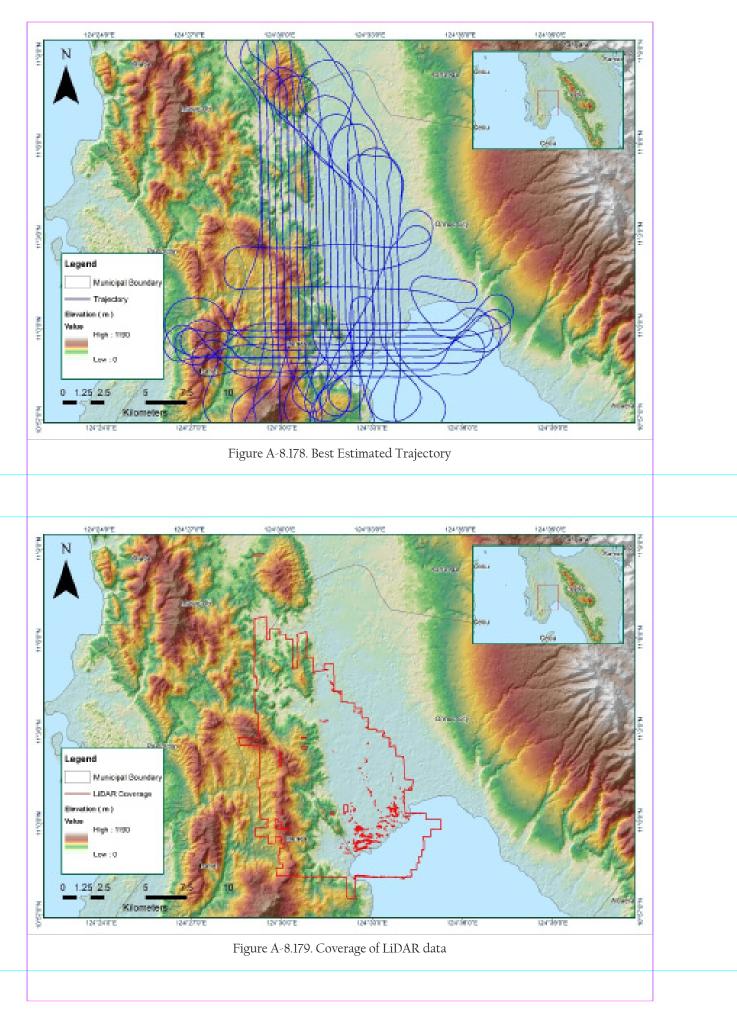


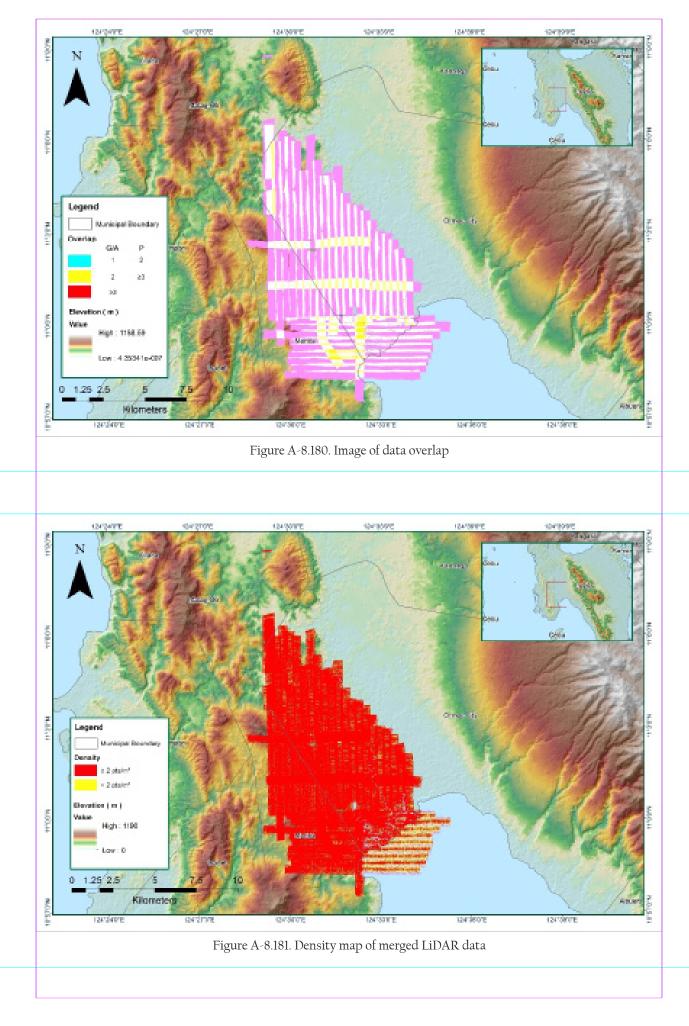


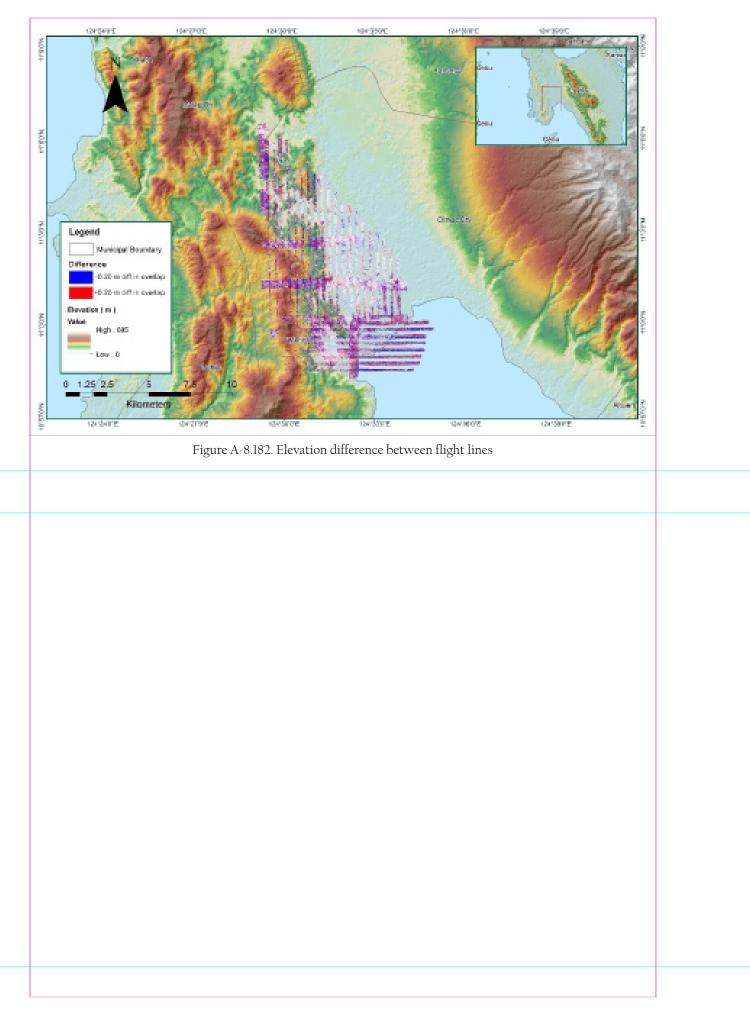


ight Area	Ormoc_Camotes
Mission Name	Blk35J
Inclusive Flights	8409AC_2
Range data size	4.86 GB
POS	87.4 MB
Image	35.4 MB
Base Station	263 MB
Transfer date	April 22, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.07
RMSE for East Position (<4.0 cm)	1.02
RMSE for Down Position (<8.0 cm)	3.55
· · · ·	
Boresight correction stdev (<0.001deg)	0.000307
IMU attitude correction stdev (<0.001deg)	0.002496
GPS position stdev (<0.01m)	0.0196
Minimum % overlap (>25)	29.46
Ave point cloud density per sq.m. (>2.0)	3.37
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	44
Maximum Height	242.26
Minimum Height	60.52
_	
Classification (# of points)	
Ground	11,888,555
Low vegetation	12,280,429
Medium vegetation	16,442,055
High vegetation	23,149,620
Building	1,462,594
Orthophoto	None
	Engr. Analyn Naldo, Engr. Velina Angela Bemida,
Processed by	Alex John Escobido

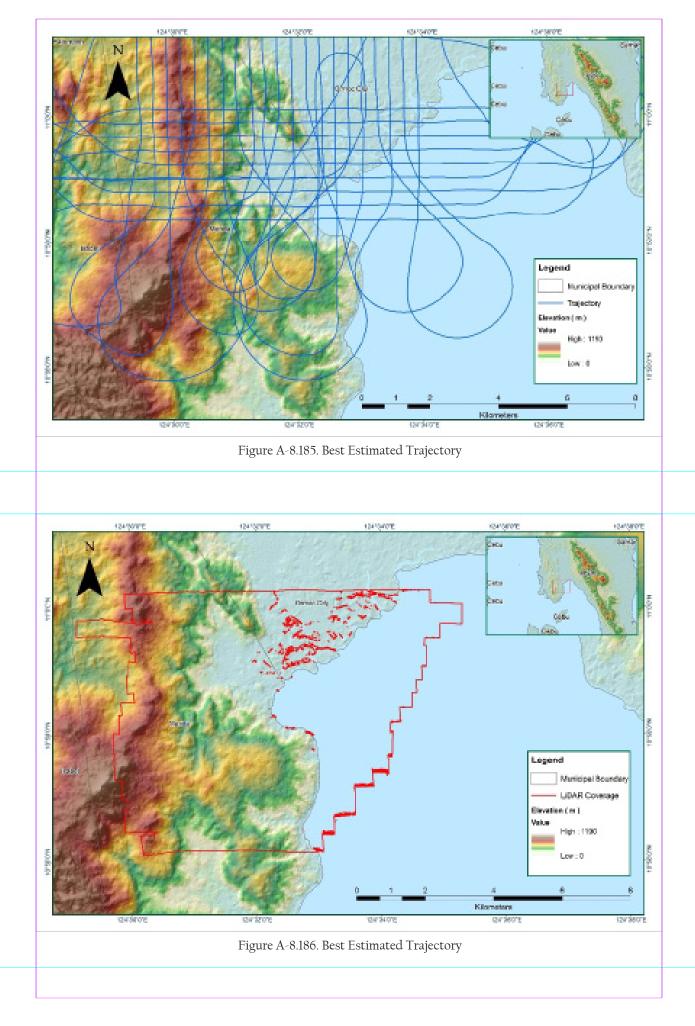


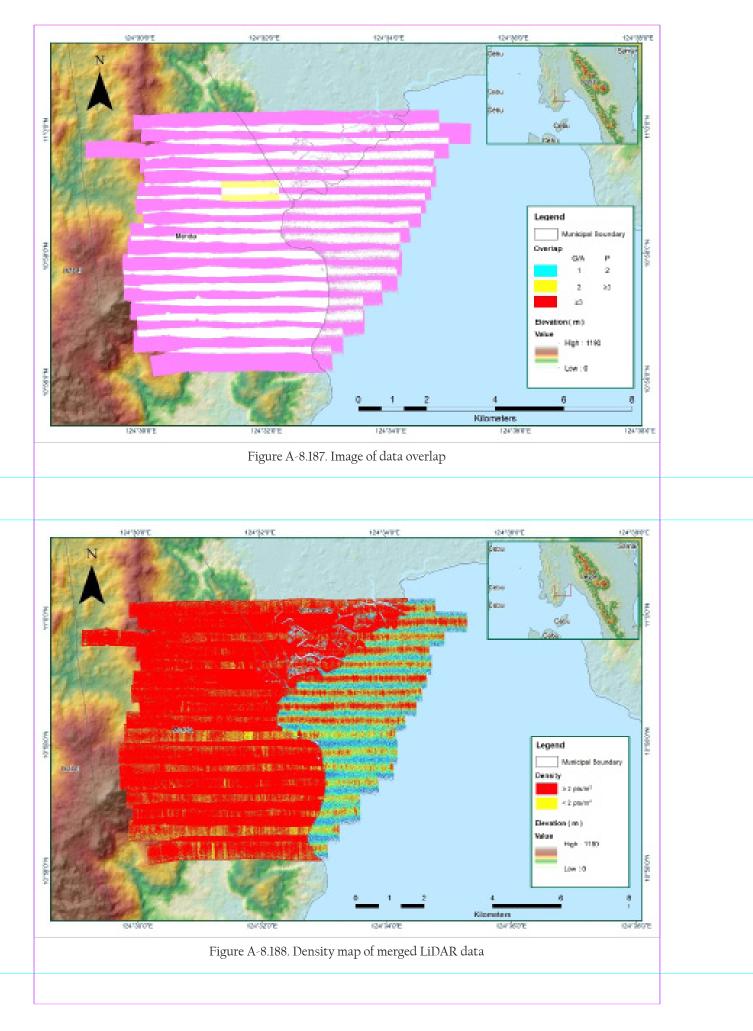


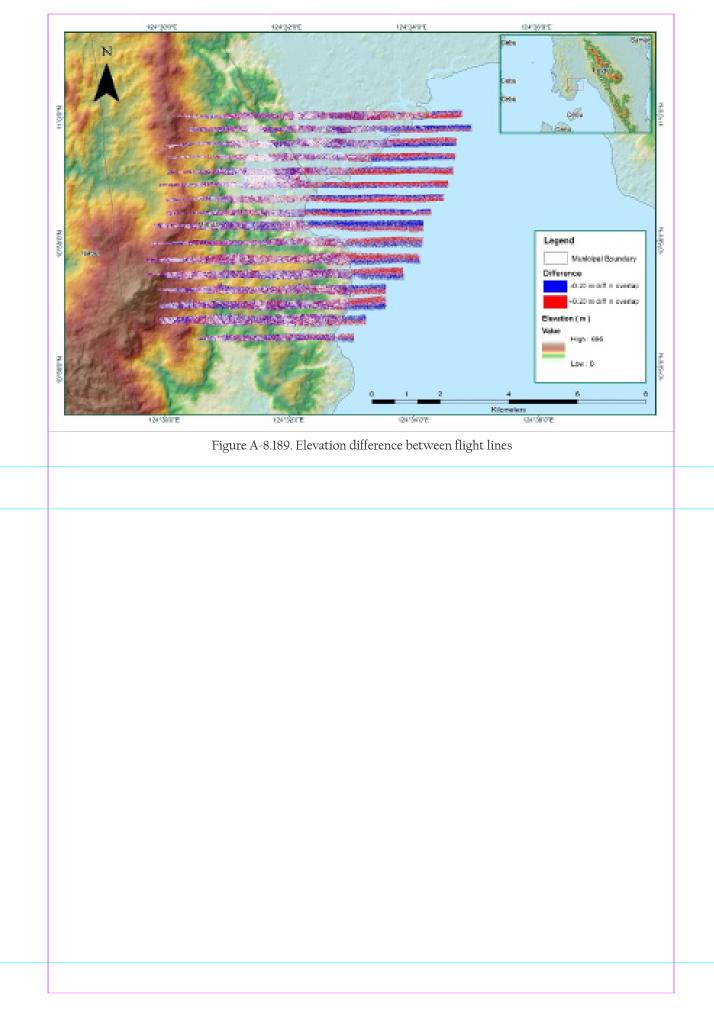


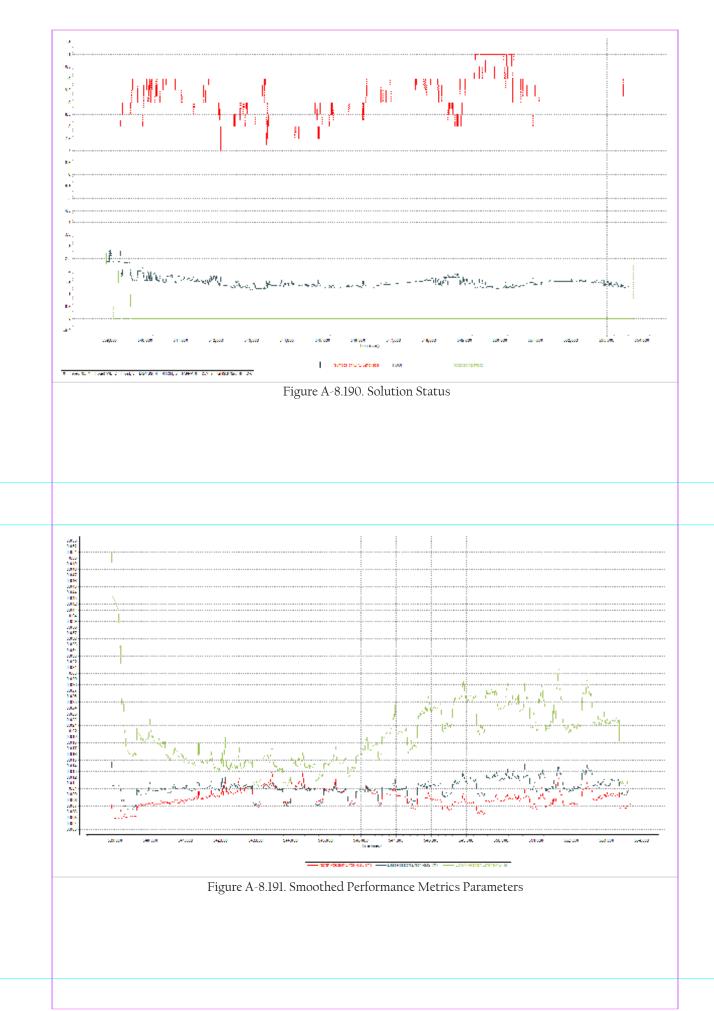

ght Area	Ormoc South
ssion Name	Blk35A
sive Flights	3945G
e data size	17.1 GB
lata size	267 MB
data size	19.5 MB
ge	NA
sfer date	May 6, 2016
tion Status	
nber of Satellites (>6)	Yes
P (<3)	Yes
eline Length (<30km)	Yes
cessing Mode (<=1)	No
othed Performance Metrics (in cm)	
SE for North Position (<4.0 cm)	1.36
E for East Position (<4.0 cm)	1.29
E for Down Position (<8.0 cm)	3.25
· · ·	
ight correction stdev (<0.001deg)	0.000280
attitude correction stdev (<0.001deg)	0.001977
position stdev (<0.01m)	0.0018
mum % overlap (>25)	43.31
point cloud density per sq.m. (>2.0)	4.53
ation difference between strips (<0.20 m)	Yes
ber of 1km x 1km blocks	137
mum Height	431.88 m
mum Height	60.28 m
sification (# of points)	
und	62,206,138
vegetation	88,553,270
ium vegetation	168,431,674
vegetation	144,388,933
ding	1,926,447
ophoto	No
	Engr. Irish Cortez, Aljon Rie Araneta,
cessed by	Engr. Melissa Fernandez

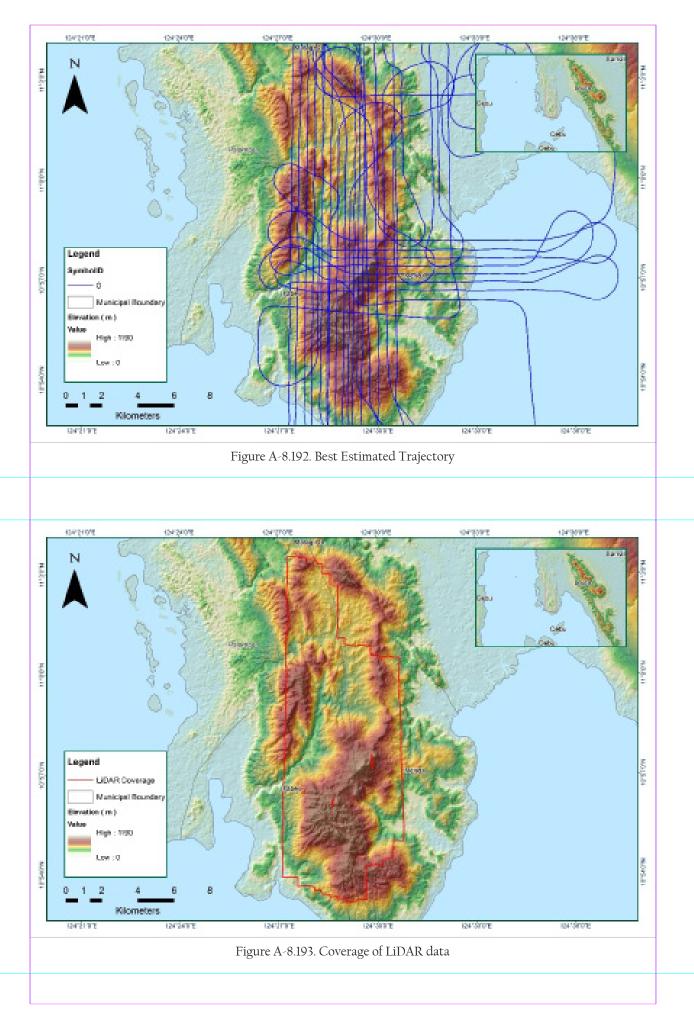
LIDAR Surveys and Flood Mapping of Pagsangahan River

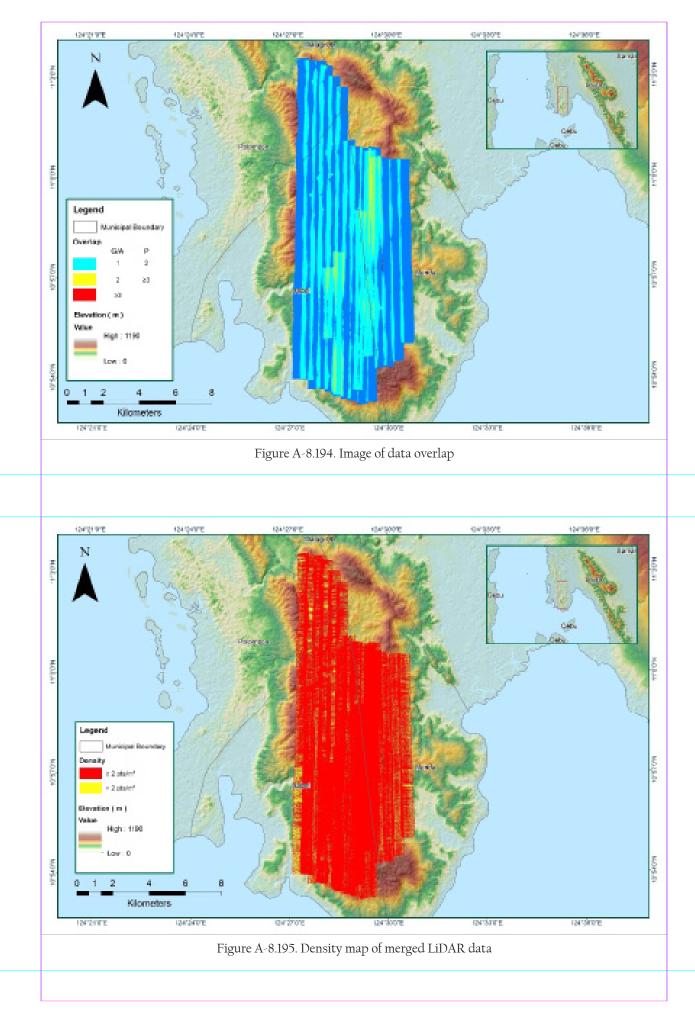


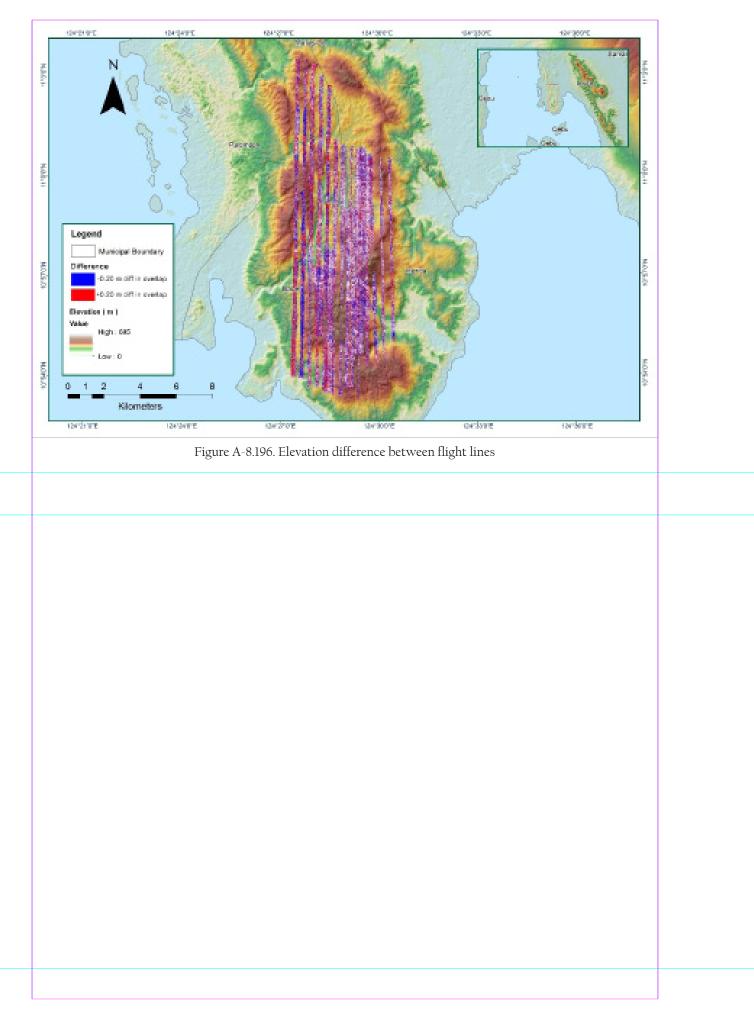



Flight Area	Ormoc South
Mission Name	BIk35B
Inclusive Flights	3945G, 3947G
Range data size	38.1 GB
POS data size	545 MB
Base data size	39 MB
Image	NA
Transfer date	May 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.03
RMSE for East Position (<4.0 cm)	1.32
RMSE for Down Position (<8.0 cm)	3.25
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
Minimum % overlap (>25)	38.65
Ave point cloud density per sq.m. (>2.0)	3.46
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	78
Maximum Height	567.81 m
Minimum Height	60.87 m
Classification (# of points)	
Ground	28,967,711
Low vegetation	27,502,827
Medium vegetation	74,982,705
High vegetation	65,341,688
Building	393,179
Orthophoto	No
-	Engr. Abigail Joy Ching, Aljon Rie Araneta,
Processed by	Engr. Monalyne Rabino

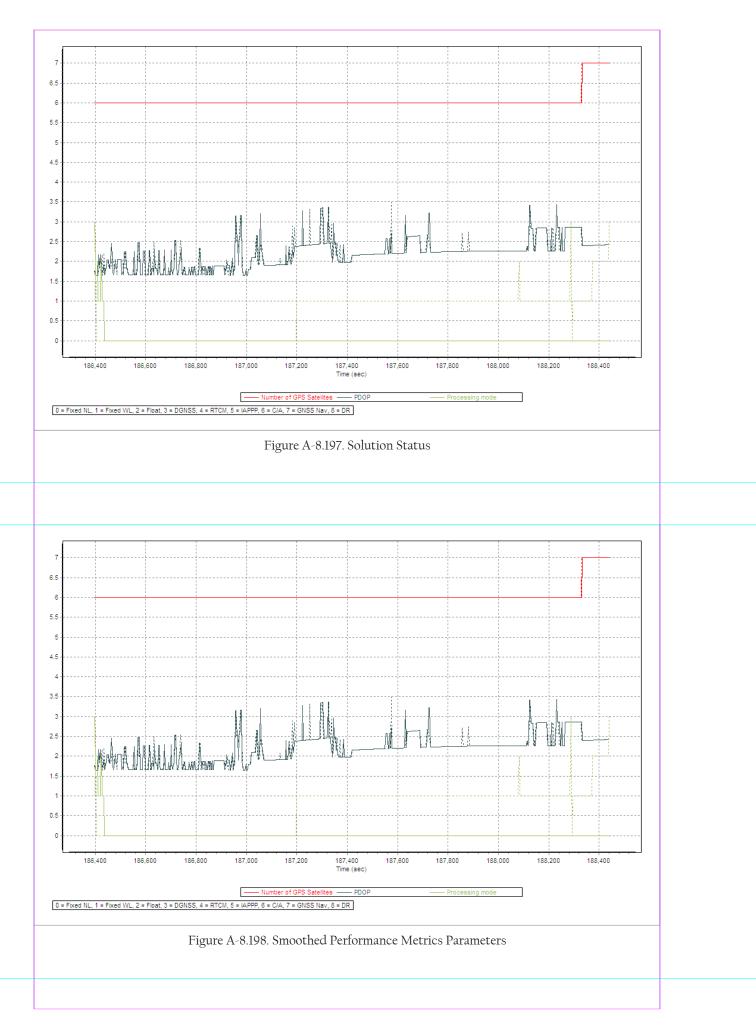


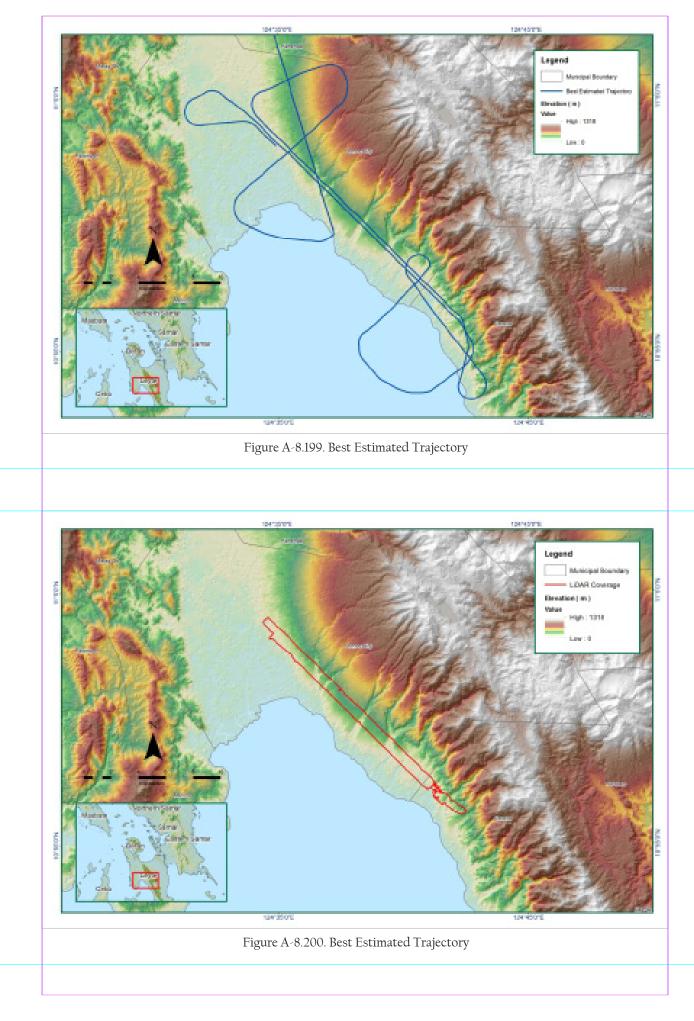

LIDAR Surveys and Flood Mapping of Pagsangahan River

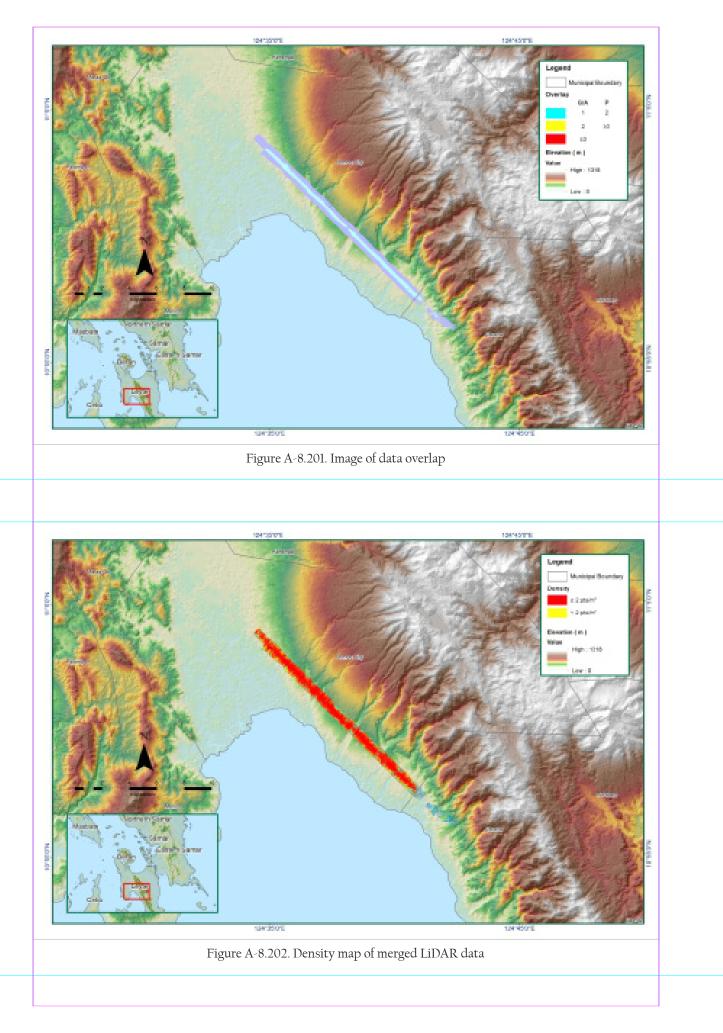




ht Area	Ormoc South
sion Name	Blk35C
isive Flights	3947G
e data size	21 GB
lata size	278 MB
data size	19.5 MB
e	NA
sfer date	May 6, 2016
tion Status	
ber of Satellites (>6)	Yes
(<3)	Yes
ine Length (<30km)	No
essing Mode (<=1)	No
othed Performance Metrics (in cm)	
for North Position (<4.0 cm)	1.29
for East Position (<4.0 cm)	1.43
for Down Position (<8.0 cm)	3.07
ight correction stdev (<0.001deg)	0.001347
ttitude correction stdev (<0.001deg)	0.007265
sition stdev (<0.01m)	0.0023
um % overlap (>25)	46.44
int cloud density per sq.m. (>2.0)	4.67
ion difference between strips (<0.20 m)	Yes
per of 1km x 1km blocks	130
mum Height	664.42 m
ium Height	45.81 m
	43.01 III
ication (# of points)	
d	55,143,313
egetation	41,566,187
um vegetation	160,423,665
egetation	124,246,531
ing	187,280
photo	No
	Engr. Abigail Joy Ching, Engr. Justine Francisco, Engr.
ssed by	Monalyne Rabino







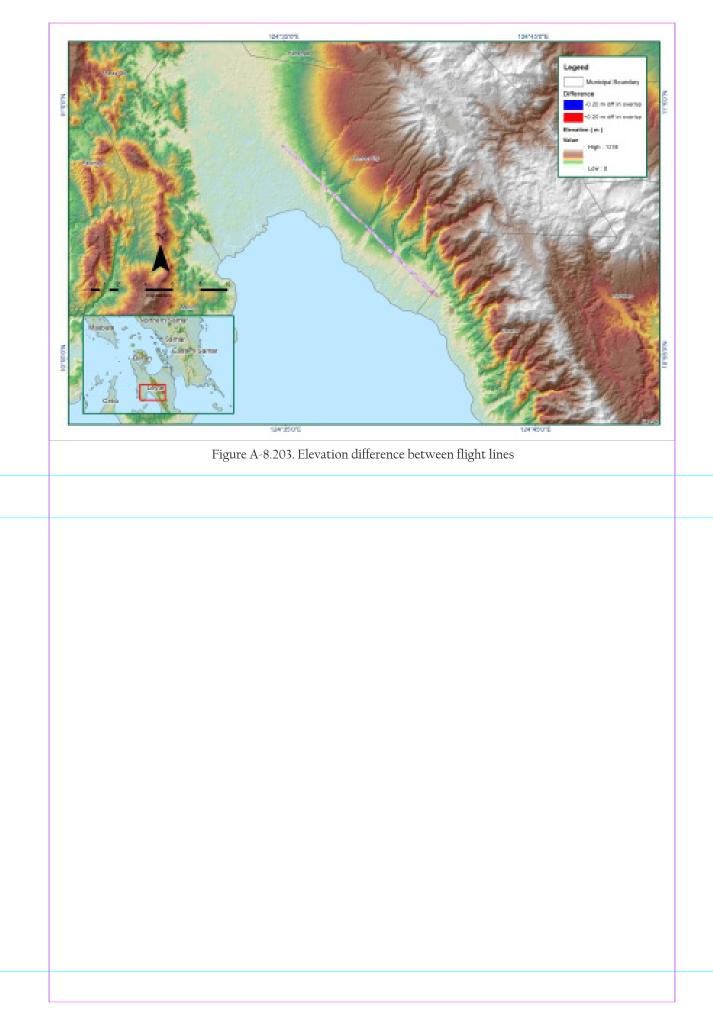
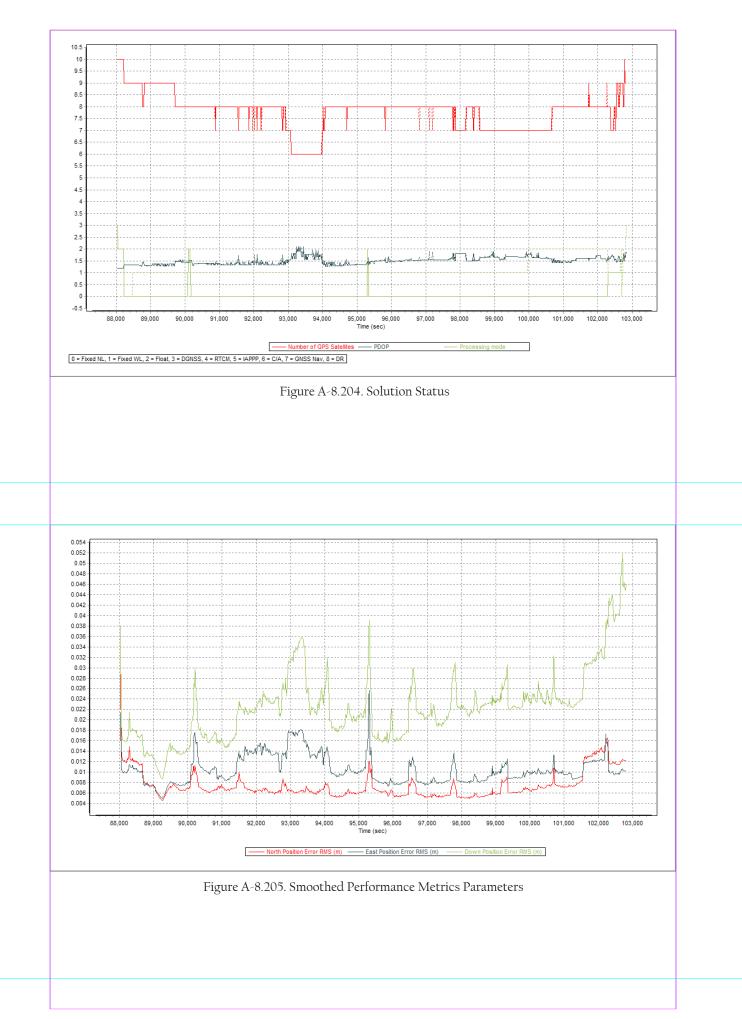
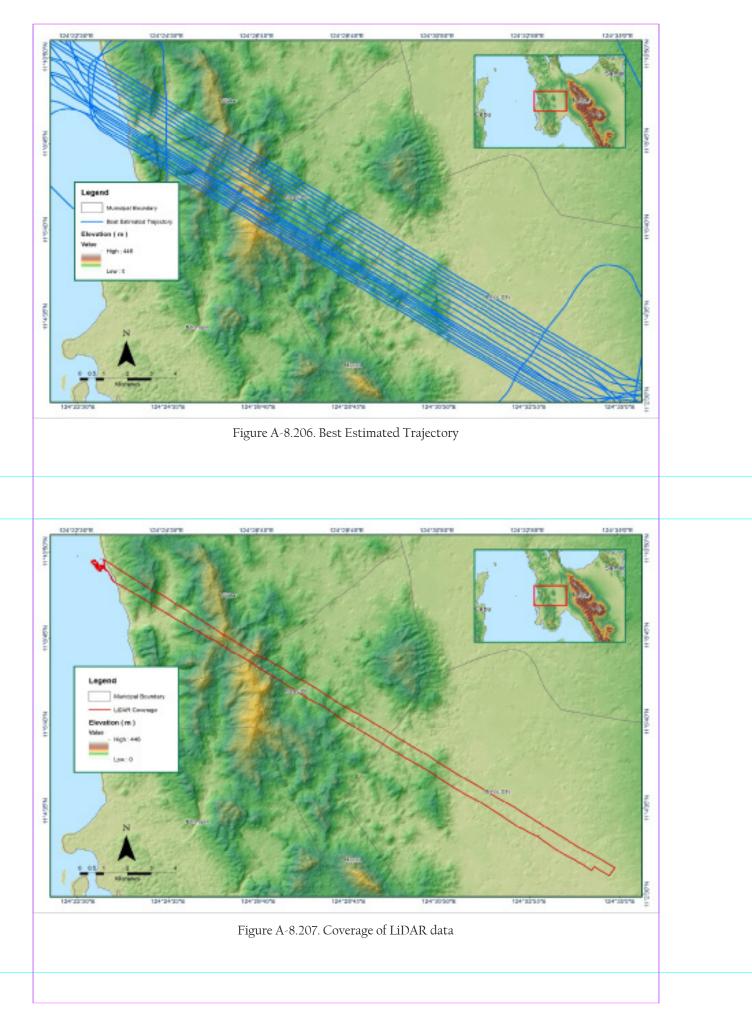
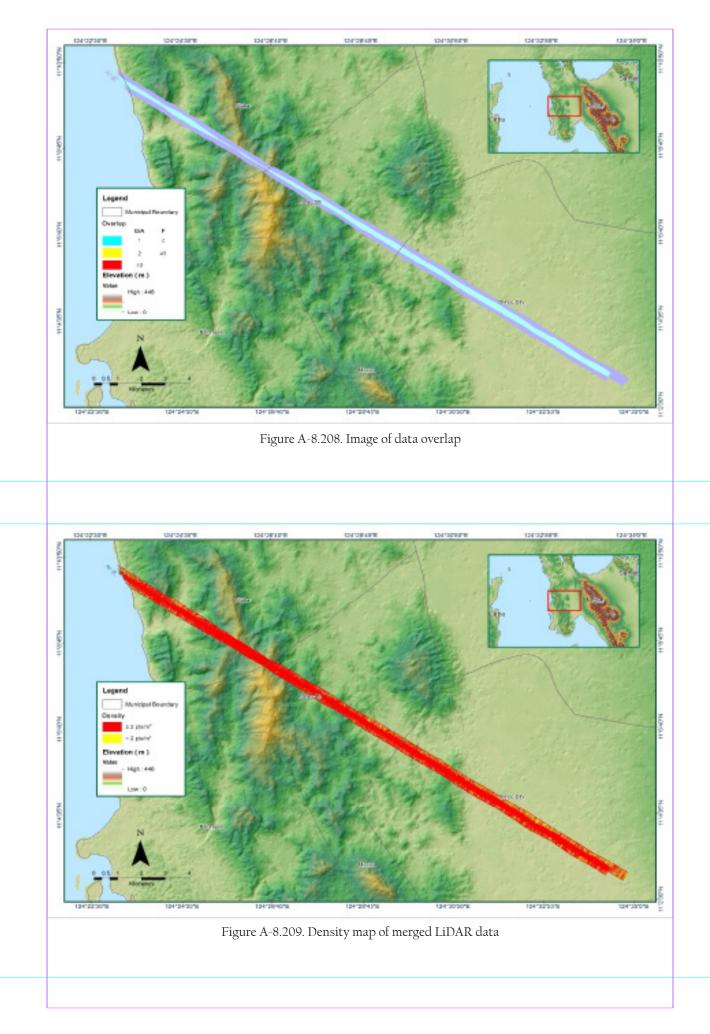
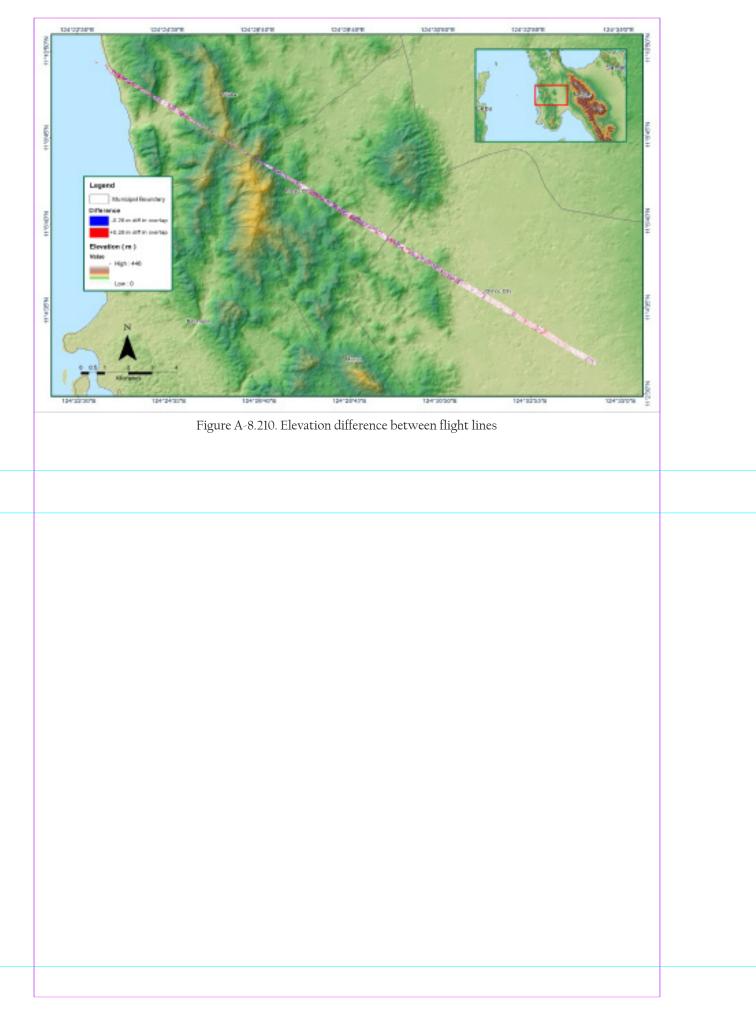

Flight Area	Tacloban
Mission Name	1032A
Inclusive Flights	1032A
Range data size	13.7 GB
POS data size	54.6 MB
Base data size	10.8 MB
Image	24.4 GB
Transfer date	February 3, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.8
Boresight correction stdev (<0.001deg)	0.007721
IMU attitude correction stdev (<0.001deg)	0.005490
GPS position stdev (<0.01m)	0.0036
Minimum % overlap (>25)	26.50%
Ave point cloud density per sq.m. (>2.0)	2.41
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	47
Maximum Height	171.52 m
Minimum Height	68.07 m
Classification (# of points)	
Ground	4,251,370
Low vegetation	3,342,368
Medium vegetation	14,184,838
High vegetation	246,147
Building	93,165
Orthophoto	No
Processed by	Engr. Irish Cortez, Celina Rosete, Ailyn Biñas

Table A-8.29. Mission Summary Report for Mission 1032A








light Area	Samar-Leyte
Aission Name	Blk351_additional
clusive Flights	1502A
ange data size	13.9 GB
DS	278 MB
age	86.7 GB
ansfer date	June 10, 2014
ution Status	
mber of Satellites (>6)	Yes
DOP (<3)	Yes
seline Length (<30km)	No
ocessing Mode (<=1)	No
oothed Performance Metrics (in cm)	
SE for North Position (<4.0 cm)	2.945
ISE for East Position (<4.0 cm)	2.56
ASE for Down Position (<8.0 cm)	5.176
resight correction stdev (<0.001deg)	NA
U attitude correction stdev (<0.001deg)	NA
PS position stdev (<0.01m)	NA
nimum % overlap (>25)	34.24%
e point cloud density per sq.m. (>2.0)	3.36
evation difference between strips (<0.20 m)	Yes
mber of 1km x 1km blocks	51
aximum Height	426.96 m
inimum Height	55.88 m
ssification (# of points)	
ound	13,787,383
w vegetation	8,617,597
edium vegetation	14,734,063
gh vegetation	6,099,763
uilding	85,084
thophoto	No
ocessed by	Engr. Irish Cortez, Engr. Harmond Santos, Engr. Gladys Mae Apat

LIDAR Surveys and Flood Mapping of Pagsangahan River

ANNEX 9. Pagsangahan Model Basin Parameters

				Table A-9.1	l. Pagsangahan Mo	del Basin Param	eters				
Basin	SCS Cu	ırve Numbe	r Loss		k Unit h Transform		Recession Baseflow				
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak	
W1000	12.892	78.850	0	1.3659	16.719	Discharge	0.751	1	Ratio to Peak	0.1	
W1010	11.023	75.897	0	1.1530	14.113	Discharge	0.449	1	Ratio to Peak	0.1	
W1020	10.729	74.100	0	1.9129	23.414	Discharge	0.110	1	Ratio to Peak	0.1	
W520	11.874	68.037	0	2.5941	31.752	Discharge	1.840	1	Ratio to Peak	0.1	
W530	19.004	74.586	0	2.6583	32.538	Discharge	0.849	1	Ratio to Peak	0.1	
W540	26.947	78.015	0	2.1199	25.947	Discharge	0.416	1	Ratio to Peak	0.1	
W550	11.457	73.325	0	1.5118	18.504	Discharge	0.399	1	Ratio to Peak	0.1	
W560	13.233	78.850	0	2.1081	25.803	Discharge	0.643	1	Ratio to Peak	0.1	
W570	10.945	76.536	0	1.9855	24.303	Discharge	0.422	1	Ratio to Peak	0.1	
W580	16.616	78.850	0	1.4128	17.293	Discharge	0.349	1	Ratio to Peak	0.1	
W590	9.3840	79.226	0	2.7966	34.231	Discharge	0.469	1	Ratio to Peak	0.1	
W600	14.986	77.779	0	1.7972	21.998	Discharge	0.447	1	Ratio to Peak	0.1	
W610	7.1679	69.835	0	1.6001	19.586	Discharge	0.552	1	Ratio to Peak	0.1	
W620	7.1010	62.700	0	0.0335	0.4107	Discharge	0.001	1	Ratio to Peak	0.1	
W630	10.534	78.301	0	4.7507	58.148	Discharge	0.812	1	Ratio to Peak	0.1	
W640	9.5862	76.128	0	3.1826	38.954	Discharge	0.780	1	Ratio to Peak	0.1	
W650	9.7383	78.950	0	2.5654	31.401	Discharge	0.812	1	Ratio to Peak	0.1	
W660	7.3841	72.308	0	1.6599	20.317	Discharge	1.074	1	Ratio to Peak	0.1	
W670	14.759	80.997	0	2.3515	28.782	Discharge	1.097	1	Ratio to Peak	0.1	
W680	7.8413	74.100	0	2.6710	32.692	Discharge	0.111	1	Ratio to Peak	0.1	

Basin	SCS Curve Number Loss			Clark Unit Hydrograph Transform		Recession Baseflow				
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peal
W690	37.239	84.094	0	0.99106	12.131	Discharge	0.169	1	Ratio to Peak	0.1
W700	9.0972	84.191	0	1.3828	16.925	Discharge	0.358	1	Ratio to Peak	0.1
W710	7.7202	79.478	0	2.2154	27.117	Discharge	0.906	1	Ratio to Peak	0.1
W720	17.551	80.726	0	4.5477	55.664	Discharge	0.629	1	Ratio to Peak	0.1
W730	10.824	80.523	0	1.7411	21.311	Discharge	0.509	1	Ratio to Peak	0.1
W740	31.376	83.781	0	1.2765	15.624	Discharge	0.430	1	Ratio to Peak	0.1
W750	14.730	74.356	0	2.2954	28.096	Discharge	0.170	1	Ratio to Peak	0.1
W760	9.5024	83.128	0	2.1629	26.474	Discharge	0.485	1	Ratio to Peak	0.1
W770	10.805	55.370	0	1.6764	20.519	Discharge	0.839	1	Ratio to Peak	0.1
W780	7.0467	81.385	0	1.8009	22.043	Discharge	0.979	1	Ratio to Peak	0.1
W790	26.947	83.300	0	1.3442	16.453	Discharge	0.549	1	Ratio to Peak	0.1
W800	30.385	71.320	0	1.2022	14.714	Discharge	0.413	1	Ratio to Peak	0.1
W810	13.762	79.105	0	1.5404	18.854	Discharge	0.436	1	Ratio to Peak	0.1
W820	18.108	59.321	0	2.8130	34.431	Discharge	1.132	1	Ratio to Peak	0.1
W830	10.973	74.389	0	2.5650	31.395	Discharge	0.200	1	Ratio to Peak	0.1
W840	6.8552	80.838	0	2.4979	30.574	Discharge	0.170	1	Ratio to Peak	0.1
W850	14.757	79.130	0	1.2412	15.192	Discharge	0.385	1	Ratio to Peak	0.1
W860	17.475	84.270	0	0.6558	8.0275	Discharge	0.196	1	Ratio to Peak	0.1
W870	14.718	62.700	0	0.5855	7.1675	Discharge	0.098	1	Ratio to Peak	0.1
W880	12.037	60.045	0	2.0935	25.625	Discharge	1.639	1	Ratio to Peak	0.1
W890	14.836	75.505	0	1.7666	21.623	Discharge	0.814	1	Ratio to Peak	0.1
W900	18.088	70.743	0	1.0241	12.535	Discharge	0.200	1	Ratio to Peak	0.1

Basin	SCS Curve Number Loss			Clark Unit Hydrograph Transform		Recession Baseflow				
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W910	17.768	78.913	0	3.6438	44.600	Discharge	0.634	1	Ratio to Peak	0.1
W920	6.2787	84.550	0	0.6346	7.7682	Discharge	0.009	1	Ratio to Peak	0.1
W930	14.101	74.359	0	1.8075	22.123	Discharge	0.474	1	Ratio to Peak	0.1
W940	16.792	71.399	0	2.5141	30.772	Discharge	0.202	1	Ratio to Peak	0.1
W950	14.062	74.403	0	1.2805	15.673	Discharge	0.475	1	Ratio to Peak	0.1
W960	11.409	77.577	0	1.1234	13.750	Discharge	0.35737	1	Ratio to Peak	0.1
W970	14.180	74.269	0	3.8842	47.5423654	Discharge	0.40618	1	Ratio to Peak	0.1
W980	17.399	70.763	0	3.0016	36.740	Discharge	0.61078	1	Ratio to Peak	0.1
W990	17.082	71.094	0	3.323893	40.684	Discharge	0.71920	1	Ratio to Peak	0.1

ANNEX 10. Pagsangahan Model Reach Parameters

	Table A-10	0.1. Pagsangaha	n Model Read	ch Parameters			
Reach		Muskingur	n Cunge Chan	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R130	Automatic Fixed Interval	1806.5	0.0007	0.5175	Trapezoid	30	45
R140	Automatic Fixed Interval	3761.6	0.0015	0.1459	Trapezoid	30	45
R150	Automatic Fixed Interval	3512.3	0.0022	0.3649	Trapezoid	30	45
R160	Automatic Fixed Interval	2685.4	0.0028	0.0129	Trapezoid	30	45
R180	Automatic Fixed Interval	3376.5	0.0014	0.0583	Trapezoid	30	45
R190	Automatic Fixed Interval	5795.5	0.0024	0.0257	Trapezoid	30	45
R210	Automatic Fixed Interval	1955.8	0.0010	0.1611	Trapezoid	30	45
R230	Automatic Fixed Interval	5125.2	0.0006	0.0964	Trapezoid	30	45
R240	Automatic Fixed Interval	9314.2	0.0008	0.0325	Trapezoid	30	45
R260	Automatic Fixed Interval	2428.4	0.0029	0.1623	Trapezoid	30	45
R300	Automatic Fixed Interval	3832.9	0.0008	0.0129	Trapezoid	30	45
R310	Automatic Fixed Interval	3312.8	0.3146	0.1621	Trapezoid	30	45
R330	Automatic Fixed Interval	501.84	0.0318	0.0622	Trapezoid	30	45
R340	Automatic Fixed Interval	2267.4	0.0029	0.4026	Trapezoid	30	45
R350	Automatic Fixed Interval	3259.3	0.0017	1	Trapezoid	30	45
R370	Automatic Fixed Interval	12095	0.0152	0.0331	Trapezoid	30	45
R380	Automatic Fixed Interval	1300.8	0.0008	0.1220	Trapezoid	30	45
R400	Automatic Fixed Interval	694.56	0.0067	0.0899	Trapezoid	30	45
R440	Automatic Fixed Interval	3378.4	0.0046	0.1016	Trapezoid	30	45
R450	Automatic Fixed Interval	2793.7	0.0008	0.0446	Trapezoid	30	45
R490	Automatic Fixed Interval	7343.5	0.0031	0.1011	Trapezoid	30	45
R500	Automatic Fixed Interval	6193.3	0.0010	0.0141	Trapezoid	30	45
R510	Automatic Fixed Interval	1157.5	0.0008	0.1425	Trapezoid	30	45
R60	Automatic Fixed Interval	2858.7	0.0026	0.0712	Trapezoid	30	45
R80	Automatic Fixed Interval	114.85	0.0008	0.2442	Trapezoid	30	45

ANNEX 11. Pagsangahan Field Validation Points

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return, Scenario
2	11.071	124.54	0.061	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Yea
4	11.075	124.53	0.754	0.36	0.39	Typhoon Ruby/ December 07, 2014	5 -Yea
7	11.080	124.53	3.532	0.1	3.43	Typhoon Yolanda/ November 8, 2013	5 -Yea
9	11.070	124.54	0.589	0.48	0.11	Typhoon Yolanda/ November 8, 2013	5 -Yea
10	11.068	124.54	1.021	0.48	0.54	Typhoon Yolanda/ November 8, 2013	5 -Yea
11	11.075	124.56	0.030	0.95	-0.92	Typhoon Yolanda/ November 8, 2013	5 -Yea
12	11.075	124.56	0.030	0.1	-0.07	Typhoon Yolanda/ November 8, 2013	5 -Yea
13	11.077	124.56	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
14	11.079	124.56	0.030	0.1	-0.07	Typhoon Ruby/ December 07, 2014	5 -Yea
17	11.077	124.57	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
18	11.069	124.56	0.340	0	0.34	Typhoon Ruby/ December 07, 2014	5 -Yea
21	11.076	124.54	0.030	0.1	-0.07	Typhoon Ruby/ December 07, 2014	5 -Yea
22	11.082	124.54	0.030	0.95	-0.92	Typhoon Yolanda/ December 07, 2014	5 -Yea
23	11.086	124.54	0.056	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Yea
24	11.094	124.55	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
25	11.098	124.55	0.035	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Yea
26	11.099	124.56	0.035	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Yea
27	11.100	124.56	0.035	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Yea
28	11.095	124.54	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
29	11.095	124.54	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
30	11.092	124.54	0.039	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Yea
31	11.091	124.54	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
32	11.090	124.53	0.424	0	0.42	Typhoon Ruby/ December 07, 2014	5 -Yea
36	11.091	124.54	0.127	0	0.13	Typhoon Ruby/ December 07, 2014	5 -Yea
37	11.058	124.55	0.510	1	-0.49	Typhoon Ruby/ December 07, 2014	5 -Yea
40	11.050	124.55	0.139	0.48	-0.34	Typhoon Ruby/ December 07, 2014	5 -Yea
41	11.048	124.55	0.550	0.48	0.07	Typhoon Ruby/ December 07, 2014	5 -Yea
42	11.046	124.55	0.494	0.48	0.01	Typhoon Ruby/ December 07, 2014	5 -Yea
43	11.041	124.55	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Yea
44	11.042	124.55	0.160	0.66	-0.50	Typhoon Ruby/ December 07, 2014	5 -Yea
45	11.042	124.55	0.404	0.95	-0.55	Typhoon Ruby/ December 07, 2014	5 -Yea
46	11.040	124.55	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
47	11.034	124.57	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Yea
48	11.036	124.56	0.437	0.95	-0.51	Typhoon Ruby/ December 07, 2014	5 -Yea

Table A-11.1. Pagsangahan Field Validation Points for the 5-Year Flood Depth Map

Point	Validation	Coordinates	Model	Validation	_		Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
49	11.036	124.55	0.339	0	0.34	Typhoon Ruby/ December 07, 2014	5 -Year
50	11.036	124.55	0.339	0	0.34	Typhoon Ruby/ December 07, 2014	5 -Year
51	11.033	124.55	0.172	0.66	-0.49	Typhoon Ruby/ December 07, 2014	5 -Year
52	11.030	124.55	0.509	0.66	-0.15	Typhoon Ruby/ December 07, 2014	5 -Year
53	11.026	124.55	0.409	0.36	0.05	Typhoon Ruby/ December 07, 2014	5 -Year
54	11.024	124.55	0.390	0.36	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
55	11.024	124.55	0.030	0.36	-0.33	Typhoon Ruby/ December 07, 2014	5 -Year
56	11.024	124.55	0.030	0.36	-0.33	Typhoon Ruby/ December 07, 2014	5 -Year
57	11.021	124.56	0.092	0.36	-0.27	Typhoon Ruby/ December 07, 2014	5 -Year
58	11.020	124.56	0.756	0.48	0.28	Typhoon Ruby/ December 07, 2014	5 -Year
59	11.018	124.56	0.166	0.48	-0.31	Typhoon Ruby/ December 07, 2014	5 -Year
60	11.018	124.56	0.131	0.95	-0.82	Typhoon Ruby/ December 07, 2014	5 -Year
62	11.019	124.56	0.334	0.48	-0.15	Typhoon Ruby/ December 07, 2014	5 -Year
63	11.020	124.55	0.071	0.48	-0.41	Typhoon Ruby/ December 07, 2014	5 -Year
64	11.023	124.55	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Year
65	11.039	124.55	0.874	0.48	0.39	Typhoon Ruby/ December 07, 2014	5 -Year
67	11.040	124.55	0.230	0.95	-0.72	Typhoon Ruby/ December 07, 2014	5 -Year
68	11.039	124.55	0.658	0.95	-0.29	Typhoon Ruby/ December 07, 2014	5 -Year
70	11.042	124.54	0.866	0.95	-0.08	Typhoon Ruby/ December 07, 2014	5 -Year
71	11.043	124.54	1.074	0.95	0.12	Typhoon Ruby/ December 07, 2014	5 -Year
72	11.045	124.55	0.610	0.48	0.13	Typhoon Ruby/ December 07, 2014	5 -Year
73	11.049	124.54	1.233	0.48	0.75	Typhoon Ruby/ December 07, 2014	5 -Year
74	11.048	124.54	0.964	0.48	0.48	Typhoon Ruby/ December 07, 2014	5 -Year
75	11.046	124.55	1.008	0.48	0.53	Typhoon Ruby/ December 07, 2014	5 -Year
76	11.043	124.54	1.198	0.95	0.25	Typhoon Ruby/ December 07, 2014	5 -Year
77	11.042	124.54	1.562	0.1	1.46	Typhoon Ruby/ December 07, 2014	5 -Year
78	11.042	124.54	1.562	0.95	0.61	Typhoon Ruby/ December 07, 2014	5 -Year
79	11.041	124.54	1.411	0.48	0.93	Typhoon Ruby/ December 07, 2014	5 -Year
80	11.041	124.54	1.285	0.48	0.80	Typhoon Ruby/ December 07, 2014	5 -Year
81	11.040	124.54	1.310	0.48	0.83	Typhoon Ruby/ December 07, 2014	5 -Year
84	11.042	124.54	1.185	1.52	-0.34	Typhoon Ruby/ December 07, 2014	5 -Year
85	11.045	124.54	1.185	0.48	0.70	Typhoon Ruby/ December 07, 2014	5 -Year
86	11.045	124.54	0.839	0.48	0.36	Typhoon Ruby/ December 07, 2014	5 -Year
87	11.051	124.53	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Year
88	11.052	124.53	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Year
89	11.054	124.53	0.030	0.36	-0.33	Typhoon Ruby/ December 07, 2014	5 -Year
90	11.058	124.53	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Yea
91	11.062	124.53	0.268	0	0.27	Typhoon Ruby/ December 07, 2014	5 -Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
92	11.036	124.56	0.038	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Year
93	11.033	124.56	0.030	0.48	-0.45	Typhoon Ruby/ December 07, 2014	5 -Year
94	11.032	124.56	0.030	0.36	-0.33	Typhoon Ruby/ December 07, 2014	5 -Year
95	11.029	124.56	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
96	11.026	124.56	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
97	11.023	124.57	0.030	0.1	-0.07	Typhoon Ruby/ December 07, 2014	5 -Year
98	11.021	124.56	0.644	0.36	0.28	Typhoon Ruby/ December 07, 2014	5 -Year
99	11.026	124.56	0.644	0.36	0.28	Typhoon Yolanda/ November 8, 2013	5 -Year
105	11.074	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
107	11.076	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
108	11.082	124.52	0.034	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
109	11.083	124.52	0.211	0	0.21	Typhoon Ruby/ December 07, 2014	5 -Year
110	11.086	124.52	0.257	0	0.26	Typhoon Ruby/ December 07, 2014	5 -Year
111	11.088	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
112	11.089	124.52	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
113	11.091	124.52	0.032	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
114	11.090	124.52	1.952	0.36	1.59	Typhoon Ruby/ December 07, 2014	5 -Year
115	11.090	124.52	2.088	0.48	1.61	Typhoon Yolanda/ November 8, 2013	5 -Year
118	11.089	124.52	2.306	0.48	1.83	Typhoon Ruby/ December 07, 2014	5 -Year
119	11.090	124.52	2.222	0.48	1.74	Typhoon Ruby/ December 07, 2014	5 -Year
120	11.093	124.52	0.112	0	0.11	Typhoon Ruby/ December 07, 2014	5 -Year
121	11.093	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
122	11.094	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
123	11.095	124.52	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
124	11.074	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
125	11.073	124.52	0.579	0.48	0.10	Typhoon Ruby/ December 07, 2014	5 -Year
127	11.071	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
129	11.070	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
130	11.068	124.52	0.127	0	0.13	Typhoon Ruby/ December 07, 2014	5 -Year
131	11.068	124.52	0.327	0	0.33	Typhoon Ruby/ December 07, 2014	5 -Year
133	11.068	124.52	0.032	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
134	11.067	124.52	0.248	0	0.25	Typhoon Ruby/ December 07, 2014	5 -Year
136	11.065	124.52	0.100	0	0.10	Typhoon Ruby/ December 07, 2014	5 -Year
137	11.062	124.52	0.045	0	0.05	Typhoon Ruby/ December 07, 2014	5 -Year
139	11.064	124.52	0.094	0	0.09	Typhoon Ruby/ December 07, 2014	5 -Year
140	11.063	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
141	11.063	124.52	0.788	0	0.79	Typhoon Ruby/ December 07, 2014	5 -Year
142	11.062	124.52	0.488	0	0.49	Typhoon Ruby/ December 07, 2014	5 -Year

Doint	Validation	Coordinates	Model	Validation			Rain
Point Number	Lat	Long	Var (m)	Validation Points (m)	Error (m)	Event/Date	Return/ Scenario
143	11.061	124.51	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
144	11.057	124.51	0.061	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Year
145	11.055	124.51	0.092	0	0.09	Typhoon Ruby/ December 07, 2014	5 -Year
146	11.055	124.52	0.060	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Year
147	11.052	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
148	11.050	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
149	11.046	124.52	0.217	0	0.22	Typhoon Ruby/ December 07, 2014	5 -Year
150	11.043	124.52	0.199	0	0.20	Typhoon Ruby/ December 07, 2014	5 -Year
151	11.040	124.52	0.032	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
152	11.039	124.52	0.093	0	0.09	Typhoon Ruby/ December 07, 2014	5 -Year
153	11.036	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
154	11.037	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
155	11.038	124.53	0.139	0	0.14	Typhoon Ruby/ December 07, 2014	5 -Year
156	10.999	124.54	0.564	0.95	-0.39	Typhoon Ruby/ December 07, 2014	5 -Year
157	10.999	124.54	1.199	1.7	-0.50	Typhoon Ruby/ December 07, 2014	5 -Year
158	10.999	124.54	0.087	1.95	-1.86	Typhoon Ruby/ December 07, 2014	5 -Year
159	11.001	124.54	1.153	2.74	-1.59	Typhoon Ruby/ December 07, 2014	5 -Year
160	11.002	124.54	1.226	1.52	-0.29	Typhoon Ruby/ December 07, 2014	5 -Year
161	11.003	124.54	1.064	1.12	-0.06	Typhoon Ruby/ December 07, 2014	5 -Year
163	11.005	124.54	1.022	1.52	-0.50	Typhoon Ruby/ December 07, 2014	5 -Year
164	11.005	124.54	1.200	0.95	0.25	Typhoon Ruby/ December 07, 2014	5 -Year
167	11.000	124.54	1.288	0.95	0.34	Typhoon Ruby/ December 07, 2014	5 -Year
168	11.000	124.54	1.077	0.95	0.13	Typhoon Ruby/ December 07, 2014	5 -Year
169	10.999	124.54	1.418	0.95	0.47	Typhoon Ruby/ December 07, 2014	5 -Year
170	10.999	124.54	1.386	0.95	0.44	Typhoon Ruby/ December 07, 2014	5 -Year
171	10.999	124.54	1.171	0.95	0.22	Typhoon Ruby/ December 07, 2014	5 -Year
172	10.999	124.54	1.286	0.95	0.34	Typhoon Ruby/ December 07, 2014	5 -Year
173	11.000	124.54	1.162	1.38	-0.22	Typhoon Ruby/ December 07, 2014	5 -Year
174	11.000	124.53	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
175	11.004	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
176	11.004	124.53	0.041	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Year
177	11.006	124.53	0.061	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Year
178	11.008	124.53	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
179	11.009	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
180	11.012	124.53	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
181	11.016	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
182	11.017	124.53	0.071	0	0.07	Typhoon Ruby/ December 07, 2014	5 -Year
183	11.016	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
184	11.017	124.53	0.060	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Year
185	11.018	124.53	0.246	0	0.25	Typhoon Ruby/ December 07, 2014	5 -Year
186	11.020	124.53	0.353	0	0.35	Typhoon Ruby/ December 07, 2014	5 -Year
187	11.022	124.53	0.100	0	0.10	Typhoon Ruby/ December 07, 2014	5 -Year
188	11.023	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
189	11.026	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
190	11.028	124.53	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
191	11.030	124.52	0.119	0	0.12	Typhoon Ruby/ December 07, 2014	5 -Year
192	11.032	124.52	0.982	0	0.98	Typhoon Ruby/ December 07, 2014	5 -Year
193	11.037	124.53	0.076	0	0.08	Typhoon Ruby/ December 07, 2014	5 -Year
194	11.037	124.53	0.215	0.1	0.12	Typhoon Ruby/ December 07, 2014	5 -Year
195	11.036	124.53	0.493	0.1	0.39	Typhoon Ruby/ December 07, 2014	5 -Year
196	11.033	124.53	0.449	0.48	-0.03	Typhoon Ruby/ December 07, 2014	5 -Year
197	11.028	124.54	0.671	0	0.67	Typhoon Ruby/ December 07, 2014	5 -Year
198	11.029	124.54	0.759	0	0.76	Typhoon Ruby/ December 07, 2014	5 -Year
199	11.031	124.53	0.462	0	0.46	Typhoon Ruby/ December 07, 2014	5 -Year
200	11.032	124.53	0.491	0	0.49	Typhoon Ruby/ December 07, 2014	5 -Year
201	11.032	124.53	0.416	0	0.42	Typhoon Ruby/ December 07, 2014	5 -Year
202	11.012	124.52	0.042	0	0.04	Typhoon Ruby/ December 07, 2014	5 -Year
203	11.020	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
204	11.028	124.52	0.142	0	0.14	Typhoon Ruby/ December 07, 2014	5 -Year
205	11.038	124.51	0.572	0	0.57	Typhoon Ruby/ December 07, 2014	5 -Year
206	11.046	124.49	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
207	11.058	124.47	0.232	0	0.23	Typhoon Ruby/ December 07, 2014	5 -Year
208	11.078	124.49	0.047	0	0.05	Typhoon Ruby/ December 07, 2014	5 -Year
209	11.080	124.49	1.244	0	1.24	Typhoon Ruby/ December 07, 2014	5 -Year
210	11.073	124.49	0.811	0	0.81	Typhoon Ruby/ December 07, 2014	5 -Year
211	11.071	124.49	0.743	0	0.74	Typhoon Ruby/ December 07, 2014	5 -Year
212	11.060	124.50	1.480	0	1.48	Typhoon Ruby/ December 07, 2014	5 -Year
213	11.017	124.52	1.059	0	1.06	Typhoon Ruby/ December 07, 2014	5 -Year
214	11.011	124.52	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
215	11.027	124.50	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
216	11.042	124.49	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
217	11.038	124.50	0.097	0	0.10	Typhoon Ruby/ December 07, 2014	5 -Year
218	11.058	124.47	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
219	11.052	124.49	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
220	11.042	124.50	0.141	0	0.14	Typhoon Ruby/ December 07, 2014	5 -Year
221	11.072	124.49	0.045	0	0.05	Typhoon Ruby/ December 07, 2014	5 -Year

LIDAR Surveys and Flood Mapping of Pagsangahan River

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
222	11.063	124.50	0.056	0	0.06	Typhoon Ruby/ December 07, 2014	5 -Year
223	11.037	124.51	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
224	11.027	124.51	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
225	11.019	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
226	11.017	124.52	0.031	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year
227	11.044	124.50	0.611	0	0.61	Typhoon Ruby/ December 07, 2014	5 -Year
228	11.071	124.49	0.055	0	0.05	Typhoon Ruby/ December 07, 2014	5 -Year
229	11.027	124.51	0.350	0	0.35	Typhoon Ruby/ December 07, 2014	5 -Year
230	11.038	124.51	0.275	0	0.28	Typhoon Ruby/ December 07, 2014	5 -Year
231	11.066	124.51	0.141	0	0.14	Typhoon Ruby/ December 07, 2014	5 -Year
232	11.073	124.49	0.030	0	0.03	Typhoon Ruby/ December 07, 2014	5 -Year

Table A-11.2. Pagsangahan Field Validation Points for the 25-Year Flood Depth Map

Point	Validation Coordinates		Model Var	Validation			Rain	
Number	Lat	Long	(m)	Points (m) Error (m)		Event/Date	Return/ Scenario	
331	11.0698005	124.51904	0.0890	1.38	-1.2910	Typhoon Ondoy/ September 26, 2009	25 -Year	
335	11.0680972	124.518745	0.033	0.48	-0.4470	Typhoon Ondoy/ September 26, 2009	25 -Year	
341	11.0625382	124.520273	0.030999	0.1	-0.0690	Typhoon Ondoy/ September 26, 2009	25 -Year	

Table A-11.3. Pagsangahan Field Validation Points for the 100-Year Flood Depth Map

Point	Validation (Model	Validation	F ()	Event /Data	Rain	
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
194	11.0731586	124.537136	1.652	0.1	1.552	Typhoon Frank/ June 20, 2008	100 -Year
196	11.0739883	124.536171	2.748	1.12	1.628	Typhoon Seniang/ December 30, 2014	100 -Year
200	11.0764902	124.532948	1.690	0.48	1.210	Typhoon Seniang/ December 30, 2014	100 -Year
201	11.077506	124.531884	1.661	0.48	1.181	Typhoon Frank/ June 20, 2008	100 -Year
204	11.0714307	124.539152	1.595	0.48	1.115	Typhoon Frank/ June 20, 2008	100 -Year
211	11.0795594	124.564493	0.052	0.48	-0.428	Typhoon Frank/ June 20, 2008	100 -Year
212	11.0770543	124.565777	0.034	0	0.034	Typhoon Frank/ June 20, 2008	100 -Year
215	11.0683038	124.553576	1.041	0.48	0.561	Typhoon Frank/ June 20, 2008	100 -Year
216	11.0671126	124.55257	1.168	0.36	0.808	Typhoon Frank/ June 20, 2008	100 -Year
229	11.0902126	124.532783	1.549	0.48	1.069	Typhoon Frank/ June 20, 2008	100 -Year
230	11.0898163	124.531231	2.200	0.48	1.720	Typhoon Frank/ June 20, 2008	100 -Year
231	11.0900129	124.531712	2.308	0.48	1.828	Typhoon Frank/ June 20, 2008	100 -Year
234	11.0530604	124.554523	1.396	0.48	0.916	Typhoon Frank/ June 20, 2008	100 -Year
235	11.0530596	124.554524	1.396	0.48	0.916	Typhoon Frank/ June 20, 2008	100 -Year
260	11.0174344	124.56024	1.378	1.52	-0.142	Typhoon Frank/ June 20, 2008	100 -Year
265	11.0402137	124.550544	0.327	1.52	-1.193	Typhoon Frank/ June 20, 2008	100 -Year
269	11.0414193	124.546882	1.032	0.95	0.082	Typhoon Frank/ June 20, 2008	100 -Year
282	11.0406902	124.537444	1.289	0.95	0.339	Typhoon Seniang/ December 30, 2014	100 -Year
283	11.0407649	124.537422	1.903	1.70	0.203	Typhoon Seniang/ December 30, 2014	100 -Year
303	11.0658895	124.532	1.727	0.36	1.367	Typhoon Frank/ June 20, 2008	100 -Year
304	11.0658915	124.532003	1.727	1.12	0.607	Typhoon Frank/ June 20, 2008	100 -Year
305	11.0686817	124.529823	1.960	1.12	0.840	Typhoon Frank/ June 20, 2008	100 -Year

Point	Validation Coordinates		Model	Validation			Rain	
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario	
306	11.0721085	124.52791	1.515	0.1	1.415	Typhoon Frank/ June 20, 2008	100 -Year	
307	11.0757496	124.526081	2.240	1.12	1.120	Typhoon Frank/ June 20, 2008	100 -Year	
309	11.0744592	124.520135	1.856	0.1	1.756	Typhoon Frank/ June 20, 2008	100 -Year	
319	11.0894876	124.52225	4.297	1.70	2.597	Typhoon Frank/ June 20, 2008	100 -Year	
320	11.0891136	124.522071	4.137	2	2.137	Typhoon Frank/ June 20, 2008	100 -Year	
329	11.0714839	124.518913	0.032	0.48	-0.448	Typhoon Seniang/ December 30, 2014	100 -Year	
338	11.0672168	124.51952	1.243	0.95	0.293	Typhoon Frank/ June 20, 2008	100 -Year	
368	11.0048218	124.539583	1.548	1.12	0.428	Typhoon Seniang/ December 30, 2014	100 -Year	
371	11.005468	124.544272	1.329	1.8	-0.471	Typhoon Frank/ June 20, 2008	100 -Year	
372	10.9995359	124.5391	1.288	2.74	-1.452	Typhoon Frank/ June 20, 2008	100 -Year	

ANNEX 12. Educational Institutions Affected by Flooding in Pagsangahan Floodplain

Table A-12.1. Educational Institutions Affected by Flooding in the Pagsangahan Floodplain

	LEYTE								
ORMOC CITY									
Dutility a Name	D	Rainfall Scenario							
Building Name	Barangay	5-year	25-year	100-yeai					
Catmon Elementary School	Airport								
Catmon Garnet Daycare Center	Airport								
Bayog Daycare Center	Bayog			Medium					
Diego Silang Daycare Center	Esperanza	Medium	Medium	Medium					
Esperanza Elementary School	Esperanza								
Green Valley Elementary School	Esperanza								
RM Tan Elementary School	Green Valley	High	High	High					
Labrador Elementary School	Labrador			Low					
Lao Elementary School	Lao	Low	Medium	Mediun					
Curva Elementary School	Licuma								
San Vicente Elementary School	Licuma								
Jica-Lao Elementary School	Liloan		Medium	Mediun					
Lao Elementary School	Liloan	Low	Medium	Mediun					
Liloan Daycare Center	Liloan	Low	Medium	Mediun					
Liloan Elementary School	Liloan	Low	Medium	Mediun					
Liloan National High School	Liloan	Medium	Medium	High					
Licuma Daycare Center	Mabato	Low	Medium	Mediun					
Licuma Elementary School	Mabato		Low	Mediun					
Margen Elementary School	Margen								
Margen National High School	Margen	Medium	Medium	Mediun					
Mas-in Elementary School	Mas-In	Medium	Medium	Mediun					
Catmon Elementary School	Nasunogan								
Inaad Elementary School	Nueva Sociedad								
Rustico Capahi Sr. Memorial National School	Sabang Bao	Medium	Medium	High					
Sabang Bao Elementary School	Sabang Bao	Low	Medium	Mediun					
Bayog Elementary School	San Jose			Mediun					
G. Lurenana National High School	San Jose	Low	Low	Mediun					
San Jose Elementary School	San Jose		Low	Low					
San Juan Elementary School	San Juan	Medium	Medium	Mediun					
Curva Elementary School	San Vicente								

ANNEX 13. Medical Institutions Affected by Flooding in Pagsangahan Floodplain

Table A-13.1. Medical Institutions Affected by Flooding in the Pagsangahan Floodplain

LEYTE ORMOC CITY				
Demonstra				
Barangay	Rainfall Scenario			
Durunguy	5-year	25-year	100-year	
Airport				
Bayog			Low	
Esperanza				
Green Valley	Medium	High	High	
Licuma			Low	
Liloan	Medium	Medium	High	
Mabato	Medium	Medium	High	
Mas-In	Medium	Medium	Medium	
-	Bayog Esperanza Green Valley Licuma Liloan Mabato	Barangay5-yearAirport5-yearBayog-Esperanza-Green ValleyMediumLicuma-LiloanMediumMabatoMedium	Barangay5-year25-yearAirport	