HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Pagbanganan River

University of the Philippines Training Center for Applied Ceodesy and Photogrammetry Visayas State University Department of Science and Lechnology

APRIL 2017

 ${\mathbb C}$ University of the Philippines, Visayas State University, and the Department of Science and Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grant-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Pajo River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. 177 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-209-3

TABLE OF CONTENTS

TABLE OF CONTENTS.III	
LIST OF TABLES.V	
LIST OF FIGURES.VII	
LIST OF ACRONYMS AND ABBREVIATIONS.IX	
CHAPTER 1: OVERVIEW OF THE PROGRAM AND .1	
PAGBANGANA RIVER.1	
1.1 Background of the Phil-LIDAR 1 Program.1	
1.2 Overview of the Pajo River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE PAGBANGANAN FLOODPLAIN.3	
2.1 Flight Plans.3	
2.2 Ground Base Stations.5	
2.3 Flight Missions.9	
2.4 Survey Coverage 10	
CHAPTER 3: LIDAR DATA PROCESSING OF THE PAGBANGANAN FLOODPLAIN.12	
3.1 LiDAR Data Processing for Silaga Floodplain.	
3.1 Overview of the LiDAR Data Pre-Processing 12	
3.2 Transmittal of Acquired LiDAR Data 13	
3 3 Trajectory Computation 13	
3.4 LiDAR Point Cloud Computation 15	
2 E LiDAR Point Cloud Computation.15	
2.6 LiDAR Data Quality Clecking .10	
3.0 LIDAR POINT CIOUD Classification and Rasterization.20	
3.7 LIDAR Image Processing and Orthophotograph Rectification.22	
3.8 DEM Editing and Hydro-Correction.23	
3.9 Mosaicking of Blocks .25	
3.10 Calibration and Validation of Mosaicked LiDAR DEM.27	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model.30	
3.12 Feature Extraction.32	
3.12.1 Quality Checking of Digitized Features' Boundary	32
Pagbanganan Floodplain, including its 200 m buffer, has a total area of 48.28 sq km. F	[:] or this
area, a total of 5.0 sq km, corresponding to a total of 1,542 building features, are cons	sidered
for QC. Figure 23 shows the QC blocks for Pagbanganan Floodplain	32
3.12.2 Height Extraction	33
3.12.3 Feature Attribution	33
3.12.4 Final Quality Checking of Extracted Features	35
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TANAO RIVER BASIN	1.36
4.1 Summary of Activities.36	
4.2 Control Survey.38	
4.3 Baseline Processing.44	
4.4 Network Adjustment 45	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking.48	
4.6 Validation Points Acquisition Survey 53	
4 7 River Bathymetric Survey 55	
CHAPTER 5: FLOOD MODELING AND MAPPING.58	
5 1 Data Used for Hydrologic Modeling 58	
5.1.1 Hydrometry and Rating Curves	58
5.1.2 Precipitation	58
5.1.2 Treepitation	50
5.2 DIDE Station 61	55
5.2 MMS Model 62	
5.5 millis Model.05	
5.4 Closs-section Data.oo	orocc
niverbed cross-sections of the Watershed are necessary in the HEC-KAS model set-up. The	ing the
Are CoopAS tool and was post processed in AreCIS	ing the
AIC GEORAS LOOI AIG WAS POST-PROCESSED IN ARCGIS68	
5.5 FIO ZD IVIODEI.69	
5.6 Results of HIVIS Calibration. /U	
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.	./2
5.7.1 Hydrograph using the Raintall Runoff Model	72
5.8 River Analysis (RAS) Model Simulation.74	
5.9 Flow Depth and Flood Hazard .75	

5.10 Inventory of Areas Exposed to Flooding.82

5.11 Flood Validation.101

REFERENCES.107 ANNEXES.108

ANNEX 1......Technical Specifications of the LiDAR Sensors Used in the Pagbanganan Floodplain Survey.108

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey.109

ANNEX 3......Baseline Processing Reports of Control Points used in the LIDAR Survey.111 ANNEX 4......The LIDAR Survey Team Composition.114

Annex 5. Data Transfer Sheet for Pagbanganan Floodplain.115

ANNEX 8. Mission Summary Reports.132

Annex 9. Pagbanganan Model Basin Parameters.167

- ANNEX 10. Pajo Model Reach Parameters.168
- ANNEX 11. Pajo Field Validation Points.169

Annex 12. Educational Institutions Affected in Pagbanganan Flood Plain.176

Annex 13. Medical Institutions Affected in Pagbanganan Flood Plain.177

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system		3	
Table 2. Flight planning parameters for Gemini LiDAR system		3	
Table 3. Details of the recovered NAMRIA horizontal control point LYT-7 acquisition 6	31 used as ba	ase station fo	or the LiDAR
Table 4. Details of the established NAMRIA horizontal control point LYT- acquisition 7	741 used as h	base station f	or the LiDAR
Table 5. Details of LYT-90 used as base station for the LiDAR acquisition		7	
Table 6. Details of the recovered NAMRIA vertical control point LY-313 u coordinates	ised as base	station with	established
Table 7. Details of the recovered NAMRIA vertical control point LY-297 v coordinates 8	ised as base	station with	established
Table 7. Flight Missions for LiDAR data acquisition in Pajo Floodplain		9	
Table 6. Ground Control points using LiDAR data acquisition		9	
Table 10. Actual parameters used during LiDAR data acquisition		10	
Table 11. List of municipalities and cities surveyed during Pagbanganan Flood	lplain LiDAl	R survey	10
Table 12. Self-calibration results values for Pagbanganan flights		15	
Table 13. List of LiDAR blocks for Pagbanganan Floodplain		16	
Table 14. Pagbanganan classification results in TerraScan	-	20	
Table 15. LiDAR blocks with its corresponding area.	23		
Table 14. Shift Values of each LiDAR Block of Pajo Floodplain	-	25	
Table 17. Calibration statistical measures	29		
Table 18. Validation statistical measures	30		
Table 19. Quality checking ratings for Pagbanganan building features		32	
Table 18. Building Features Extracted for Pajo Floodplain	1	34	
Table 19. Total Length of Extracted Roads for Pajo Floodplain	1	34	
Table 22. Number of extracted water bodies for Pagbanganan Floodplain		35	
Table 23. List of reference and control points occupied for Pagbanganan F TCAGP) 40	River Survey	(Source: NA	MRIA; UP-
Table 24. Baseline processing summary report for Pagbanganan River survey		44	
Table 25. Control point constraints	45		
Table 24. Adjusted Grid Coordinates	45		
Table 27. Adjusted geodetic coordinates	47		
Table 28. Reference and control points used and its location (Source: NAMR	IA, UP-TCA	GP)	47
Table 29. RIDF values for Maasin Rain Gauge computed by PAGASA		61	
Table 30. Range of calibrated values for Pagbanganan	70		
Table 31. Summary of the efficiency test of Pagbanganan HMS Model		71	
Table 32. Peak values of the Pagbanganan HEC-HMS Model outflow using th	ne Maasin R	IDF	73
Table 33. Municipalities affected in Pagbanganan Floodplain	-	75	
Table 34. Affected areas in Baybay City, Leyte during a 5-year rainfall return j	period		83

Table 35. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	83	
Table 36. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	84	
Table 37. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return perio	d	89
Table 38. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return perio	d	89
Table 36. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	90	
Table 40. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return peri	od	95
Table 41. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return perio	od	95
Table 42. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return peri	od	96
Table 43. Area covered by each warning level with respect to the rainfall scenario	100	
Table 44. RMSE values for each return period of flood depth map	103	
Table 45. Actual flood depth vs. simulated flood depth for 5-year RP in Pagbanganan	104	
Table 46. Summary of accuracy assessment in Pagbanganan for 5-year RP	104	
Table 47. Actual flood depth vs. simulated flood depth for 25-year RP in Pagbanganan	105	
Table 48. Summary of accuracy assessment in Pagbanganan for 25-year RP	105	
Table 49. Actual flood depth vs. simulated flood depth for 100-year RP in Pagbanganan	106	
Table 50. Summary of accuracy assessment in Pagbanganan for 100-year RP	106	

LIST OF FIGURES

Figure 1. Map of the Pagbanganan River Basin (in brown)	2
Figure 2. Flight plan and base stations used for Pagbanganan Floodplain	4
Figure 3. GPS set-up over LYT-731 in Brgy. Kansungka, Baybay City, Leyte (a) and NAMRIA reference	e point
LYT-731(b) as recovered by the field team	6
Figure 4. Actual LiDAR survey coverage for Pagbanganan Floodplain	11
Figure 5. Schematic diagram for Data Pre-Processing Component	12
Figure 6. Smoothed Performance Metric parameters of Pagbanganan Flight 8407AC	13
Figure 7. Solution Status parameters of Pagbanganan Flight 8407AC	14
Figure 8. Best estimated trajectory of the LiDAR missions conducted over the Pagbanganan Floods	lain
15	
Figure 9. Boundary of the processed LiDAR data over Pagbanganan Floodplain	16
The total area covered by the Pagbanganan missions is 260.24 sq km that is comprised of six (5) flight
acquisitions grouped and merged into seven (7) blocks as shown in Table 13.	16
Figure 10. Image of data overlap for Pagbanganan Floodplain	17
Figure 11. Pulse density map of merged LiDAR data for Pagbanganan Floodplain	18
Figure 12. Map of elevation difference between flight lines for Pagbanganan Floodplain	19
. Figure 13. Quality checking for a Pagbanganan flight 8407AC using the Profile Tool of QT Modeler	20
Figure 14. Tiles for Pagbanganan Floodplain (a) and classification results (b) in TerraScan	21
Figure 15. Point cloud before (a) and after (b) classification	21
Figure 16. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary [DTM (d)
in some portion of Pagbanganan Floodplain	22
Figure 17. Portions in the DTM of Pagbanganan flood plain—a bridge before (a) and after (b)	manual
editing; and a fishpond before (c) and after (d) data retrieval and interpolation	24
Figure 20. Correlation plot between calibration survey points and LiDAR data	29
Figure 21. Correlation plot between validation survey points and LiDAR data	30
Figure 22. Map of Pagbanganan Floodplain with bathymetric survey points shown in blue	31
Figure 23. Blocks (in blue) of Pagbanganan building features subjected to QC	32
Figure 24. Extracted features for Pagbanganan Floodplain	35
Figure 25. Extent of the bathymetric survey (in blue) in Pagbanganan River and the LiDAR data va	lidation
survey (in red)	37
Figure 26. GNSS network covering Pagbanganan River	39
Figure 27. GNSS base set-up, Trimble [®] SPS 852, at LYT-737, located at the back of Cabulisan Eler	nentary
School in Brgy. Cabulisan, Municipality of Inopacan, Leyte	41
Figure 28. GNSS base set-up, Trimble [®] SPS 855, at LYT-742, located near a chapel and basketball	court in
Brgy. Tambis, Municipality of Hilongos, Leyte	41
Figure 29. GNSS receiver set-up, Trimble® SPS 855, at LY-338, located at the approach of Salug Birdg	e along
Sta. Indang-Hilongos Road in Brgy. San Juan, Municipality of Hilongos, Leyte	42
Figure 30. GNSS receiver set-up, Trimble® SPS 882, at UP-CAM, located at the approach of Car	nbanog
Bridge in Brgy. Naga, Municipality of Bato, Leyte	42
Figure 31. GNSS receiver set-up, Trimble® SPS 855, at UP-PAG, located at Pagbanganan Bridge appr	oach in
Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte	43
Figure 32. Bridge as-built and cross-section survey of Pagbanganan Bridge	48
Figure 33. Pagbanganan Bridge cross-section location map	49
Figure 34. Pagbanganan Bridge cross-section diagram	50
Figure 35. Bridge as-built form of Pagbanganan Bridge	51

Figure 36. Water level marking at Pagbanganan Bridge	52
Figure 37. Validation points acquisition survey set up along Pagbanganan River Basin	53
Figure 38. Validation point acquisition survey of Pagbanganan River Basin	54
Figure 39. Bathymetric survey set-up in Pagbanganan River	55
Figure 40. Bathymetric survey of Pagbanganan River	56
Figure 41. Pagbanganan riverbed profile	57
Figure 41. Pagbanganan riverbed profile	
Figure 42. The location map of Pagbanganan HEC-HMS model used for calibration	59
Cross-section plot of Dungcaan Bridge	60
Figure 44. Rating curve at Dungcaan Bridge	60
Figure 45. Rainfall and outflow data at Pagbanganan used for modeling	61
Figure 46. Location of Tacloban RIDF station relative to Pagbanganan River Basin	62
Figure 47. Synthetic storm generated for a 24-hr period rainfall for various return periods	62
Figure 48. Soil map of Pagbanganan River Basin	63
Figure 49. Land cover map of Pagbanganan River Basin (Source: NAMRIA)	64
Figure 50. Slope map of the Pagbanganan River Basin	65
Figure 51. Stream delineation map of the Pagbanganan River Basin	66
Figure 52. The Pagbanganan River Basin model generated using HEC-HMS	67
Figure 53. River cross-section of Pagbanganan River generated through Arcmap HEC GeoRAS tool	68
Figure 54. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GD	S Pro
69	
Figure 55. Outflow hydrograph of Pagbanganan produced by the HEC-HMS model compared with o	bserved
outflow	70
Figure 56. Outflow hydrograph at Pagbanganan Station generated using Tacloban RIDF simulated	in HEC
HMS	72
Figure 57. Sample output of Pagbanganan RAS Model	74
Figure 58. 100-year flood hazard map for Pagbanganan Floodplain overlaid on Google Earth image	ery76
Figure 59. 100-year flood depth map for Pagbanganan Floodplain overlaid on Google Earth image	ry 77
Figure 60. 25-year flood hazard map for Pagbanganan Floodplain overlaid on Google Earth imager	y 78
Figure 61. 25-year flood depth map for Pagbanganan Floodplain overlaid on Google Earth imagery	/79
Figure 62. 5-year flood hazard map for Pagbanganan Floodplain overlaid on Google Earth imagery	80
Figure 63. 5 -year flood depth map for Pagbanganan Floodplain overlaid on Google Earth imagery	81
Figure 64. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	85
Figure 64. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	86
Figure 66. Affected areas in Baybay City, Leyte during a 5-year rainfall return period	87
Figure 67. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return period	91
Figure 68. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return period	92
Figure 69. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return period	93
Figure 70. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period	97
Figure 71. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period	98
Figure 72. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period	99
Figure 73. Validation points for 5-year flood depth map of Pagbanganan Floodplainv	.101
Figure 74. Validation points for 25-year flood depth map of Pagbanganan Floodplain	.102
Figure 75. Validation points for 100-year flood depth map of Pagbanganan Floodplain	.102
Figure 76. Flood map depth vs. actual flood depth for 5-year RP validation	.103
Figure 77. Flood map depth vs. actual flood depth for 25-year RP validation	. 105
Figure 78. Flood map depth vs. actual flood depth for 100-year RP validation	.106

	LIST OF ACRONYMS A	ND AB	BREVIATIONS
AAC	Asian Aerospace Corporation	IDW	Inverse Distance Weighted
Ab	abutment		[interpolation method]
ALTM	Airborne LiDAR Terrain Mapper	IMU	Inertial Measurement Unit
ARG	automatic rain gauge	kts	knots
ATQ	Antique	LAS	LiDAR Data Exchange File format
AWLS	Automated Water Level Sensor	LC	Low Chord
BA	Bridge Approach	LGU	local government unit
BM	benchmark	Lidar	Light Detection and Ranging
CAD	Computer-Aided Design	LMS	LiDAR Mapping Suite
CN	Curve Number	m AGL	meters Above Ground Level
CSRS	Chief Science Research Specialist	MMS	Mobile Mapping Suite
		MSL	mean sea level
DAC	Data Acquisition Component		
DEM	Digital Elevation Model	NAMRIA	National Mapping and Resource
	Dopartment of Environment and		Information Authority
DEINK	Natural Resources	NSTC	Northern Subtronical Convergence
DOST	Department of Science and Technology		Northern Subtropical convergence
	Data Pro-Processing Component	PAF	Philippine Air Force
DFFC		PAGASA	Philippine Atmospheric Geophysica
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		Administration
DRRM	Disaster Risk Reduction and Management	PDOP	Positional Dilution of Precision
DSM	Digital Surface Model	РРК	Post-Processed Kinematic [technique]
DTM	Digital Terrain Model	PRF	Pulse Repetition Frequency
DVBC	Data Validation and Bathymetry Component	PTM	Philippine Transverse Mercator
FMC	Flood Modeling Component	QC	Quality Check
FOV	Field of View	QT	Quick Terrain [Modeler]
C:A		RA	Research Associate
	Grants-In-Ald	RIDF	Rainfall-Intensity-Duration-
GUP			Frequency Reat Mean Square Error
GNSS	Global Navigation Satellite System		Surethatia Apartura Dadar
GPS	Global Positioning System	SAR	Synthetic Aperture Radar
	lude la sia En sia a suia a Cantan	SCS	Soll Conservation Service
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System	SRTM	Shuttle Radar Topography Mission
HEC-RAS	Hydrologic Engineering Center - River Analysis System	SRS	Science Research Specialist
НС	High Chord		
		1	

CHAPTER 1: OVERVIEW OF THE PROGRAM AND PAGBANGANA RIVER

Engr. Florentino Morales and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Pajo River Basin

The Pagbanganan River Basin is located in the Province of Leyte and covers mainly the City of Baybay stretching in the Municipality of Inopacan. The river in the city is situated on the western coast of Leyte, immediately fronting the Camotes Sea of Cebu. It has an estimated drainage area of 165.43 square kilometers and travels 19.77 kilometers from its source to the mouth of the river near the city center. The general pattern of the water flow is from the eastern high elevation areas of the western coastal areas eventually draining towards the Camotes Sea. The water movement from higher to lower elevations is exhibited by the topographic maps of NAMRIA where high elevation areas can be found in the eastern and southern half of the locality while the low elevation and flat areas are mostly concentrated in the western coastal portions of the city.

The Pagbanganan River is part of the 28 river systems in Eastern Visayas Region. There is a total of 10,723 people residing within the immediate vicinity of the river which is distributed among the ten (10) barangays in Baybay City (NSO, 2010). Livelihood in the area is focused on agricultural and marine resources found in their province. Producsts include rice, corn, abaca, root crops, fruits and vegeTable C-s. There are also cottage industries and furniture manufacturing in the area (Baybay City, Leyte, 2015). The most significant flooding in the area was caused by the super typhoon Haiyan "Yolanda" on November 2013.

The City of Baybay is experiencing a Type IV climate according to the Modified Corona's climate classification by the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA). It is characterized as having no pronounced dry season where rainfall is generally evenly distributed throughout the year. Having this type of climate, the Pagbanganan River Basin, more popularly known as Dungcaan River Basin, in Baybay was identified as a major flood risk in the city. The technical study conducted by the Japan International Cooperation Agency (JICA) and the Department of Public Works and Highways (DPWH) on the National Flood Risk Assessment and Flood Mitigation Plan for Selected Areas in the Republic of the Philippines showed that the major cause of flooding in the basin is discharge flow exceeding the river flow capacity.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE PAGBANGANAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Pagbanganan Floodplain in Eastern Samar. These missions were planned for 21 lines that run for at most four and a half (4.5) hours including take-off, landing, and turning time. The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 2 shows the flight plan for Pagbanganan Floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK35C	500	30	40	50	45	120	5
BLK335D	500	30	40	50	45	120	5
BLK35E	500	30	40	50	45	120	5
BLK35F	500	30	36	50	45	120	5
BLK48AS	500	30	36	50	45	120	5
BLK48B	500	30	36	50	45	120	5
BLK48E	500	30	36	50	45	120	5
BLK48G	500	30	36	50	45	120	5

Table 1. Flight planning parameters for Aquarius LiDAR system

Table 2. Flight planning parameters for Gemini LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34A	1000	30	36	100	50	120	5
BLK34B	1000	30	36	100	50	120	5
BLK49D	1000	30	36	100	50	120	5
BLK49E	1000	30	36	100	50	120	5

Figure 2. Flight plan and base stations used for Pagbanganan Floodplain

2.2 Ground Base Stations

The project team was able to recover three NAMRIA horizontal ground control points, LYT-90, LYT-731, and LYT-741 which are of second-order accuracy. Two NAMRIA benchmarks were recovered, LY-297 and LY-313. These benchmarks were used as vertical reference points and were also established as ground control points. These were used as base stations during flight operations for the entire duration of the survey (June 9, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. The certification for the NAMRIA reference point is found in ANNEX 2 while the baseline processing report for the established control point is found in ANNEX 3. Flight plans and location of base stations used during the aerial LiDAR acquisition in Pagbanganan Floodplain are shown in Figure 2. The members of the team are listed in ANNEX 4.

Figure 3 shows the recovered NAMRIA reference points within the area. Table 3 to Table 7 present the details about the following NAMRIA control stations and established points, while Table 8 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 3. GPS set-up over LYT-731 in Brgy. Kansungka, Baybay City, Leyte (a) and NAMRIA reference point LYT-731(b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point LYT-731 used as base station for the LiDAR
acquisition

Station Name	LYT-731	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°42'47.59466'' North 124°48'34.34382'' East 15.60931 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	479165.977 meters 1184617.338 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°42'43.44572'' North 124°48'39.54791'' East 78.65700 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	697902.97 meters 1184777.35 meters

Table 4. Details of the established NAMRIA horizontal control point LYT-741 used as base station for the LiDAR acquisition

Station Name	LYT-741		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10o 27' 11.95722" North 124o 43' 45.08400" East 4.48300 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	470351.659 meters 1155878.867 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10o 27' 7.86786" North 124o 43' 50.311177" East 67.94500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	689272.22 meters 1155979.90 meters	

Table 5. Details of LYT-90 used as base station for the LiDAR acquisition

Station Name	LYT-90	
Order of Accuracy		
Relative Error (Horizontal positioning)		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 00' 17.772685" North 124° 36' 28.2417" East 12.255 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 00' 13.44827" North 124° 36' 33.43578" East 66.238 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	675,667.9045 meters 1,216,919.8335 meters

coord	coordinates				
Station Name	LY-313				
Order of Accuracy	2nd				
Relative Error (Horizontal positioning)	1:50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10o 36' 46.67221" North 124o 46' 01.67926" East 6.279 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10o 36' 42.54525" North 124o 46' 06.89257" East 69.460 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	693326.992 meters 1173661.006 meterss			

Table 6. Details of the recovered NAMRIA vertical control point LY-313 used as base station with established coordinates

Table 7. Details of the recovered NAMRIA vertical control point LY-297 used as base station with established coordinates

Station Name	LY-297		
Order of Accuracy	2nd Order		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10o 43' 21.53694" North 124o 47' 38.67725" East 6.908 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10o 43' 17.38426" North 124o 47' 43.88062" East 69.895 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	696205.243 meters 1185810.360 meters	

Table 6. Ground Control points using LiDAR data acquisition					
Date Surveyed	Flight Number	Mission Name	Ground Control Points		
January 27, 2015	7764AC	3BLK35CD027A	LYT-731 AND LY-297		
February 10, 2015	7792AC	3BLK35FV041A	LYT-731 AND LY-297		
February 11, 2015	7794AC	3BLK35EV042A	LYT-731 AND LY-297		
March 18, 2016	8407AC	3BLK48FG078A	LYT-90		
April 10, 2016	3921G	2BLK34a101A	LYT-313 and LYT-741		
April 11, 2016	3925G	2BLK49DE102A	LYT-313 and LYT-741		

2.3 Flight Missions

Six missions were conducted to complete LiDAR data acquisition in Pagbanganan Floodplain, for a total of twenty-four hours and fifty-five minutes (24+55) of flying time for RP-9322. The missions were acquired using Aquarius LiDAR systems. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

Table 7. Flight Missions for LiDAR data acquisition in Pajo Floodplain

D	ate Surveyed	Flight Number	Flight Plan Area	Surveyed Area	Area Surveyed	Area Surveyed	No. of Images	Flying Hours	
			(km2)	(km2)	within the Floodplain (km2)	Outside the Floodplain (km2)	(Frames)	Hr	Min
Ja	nuary 27, 2015	7764AC	92.66	93.69	7.62	33.66	NA	З	53
Fe	bruary 10, 2015	7792AC	32	73.67	35.81	5.48	NA	3	59
Fe	bruary 11, 2015	7794AC	65.89	73.67	0.88	40.41	NA	4	11
N	larch 18, 2016	8407AC	72.69	60.72	NA	41.29	NA	4	5
A	oril 10, 2016	3921G	142.50	157.04	15.78	25.51	NA	4	27
A	oril 11, 2016	3925G	191.17	74.34	NA	41.29	NA	4	20
T	DTAL		596.91	533.14	60.09	187.63	NA	24	55

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)	
7764AC	500	30	40	50	45	120	5	
7792AC	500	30	36	50	45	120	5	
7794AC	500	30	40	50	45	120	5	
8407AC	500	30	36	33	45	120	5	
3921G	1000	30	36	100	50	120	5	
3925G	1000	30	36	100	50	120	5	

Table 10. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

Pagbanganan Floodplain is located in the province of Leyte with majority of the floodplain situated within the city of Baybay. The list of municipalities and cities surveyed, with at least one square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Pagbanganan Floodplain is presented in Figure 4. Flight status reports can be found in ANNEX 7.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Leyte	Hilongos	156.8	79.9	50.96%
	Bato	57.55	20.35	35.36%
	Baybay City	404.37	127.59	31.55%
	Hindang	106.77	32.04	30.01%
	Albuera	167.61	34.79	20.76%
	Inopacan	196.05	25.07	12.79%
	Bontoc	89.13	7.3	8.19%
	Matalom	110.13	2.42	2.20%
Cebu	Pilar	34.74	12.53	36.05%
	Poro	62.85	2.18	3.47%
	Tudela	36.92	1.24	3.36%
	San Francisco	92.68	2.55	2.75%
TOTAL		1515.6	347.96	22.96%

Table 11. List of municipalities and cities surveyed during Pagbanganan Floodplain LiDAR survey

Figure 4. Actual LiDAR survey coverage for Pagbanganan Floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE PAGBANGANAN FLOODPLAIN

Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Jovy Anne S. Narisma

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component (DAC) were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Pagbanganan Floodplain can be found in ANNEX 5. Missions flown during the surveys conducted on January 2015 and April 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system while missions acquired during the surveys on February 2015 and March 2016 were flown using the Aquarius system over Baybay, Leyte. The Data Acquisition Component transferred a total of 125.24 Gigabytes of Range data, 3.022 Gigabytes of POS data, 1487.38 Megabytes of GPS base station data, and 337.2 Gigabytes of raw image data to the data server on February 13 and 25, 2015 for the first two surveys and April 27 and June 2, 2016 for the third and fourth survey, respectively. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Pagbanganan was fully transferred on June 6, 2016, as indicated on the data transfer sheets for Pagbanganan Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 8407AC, one of the Pagbanganan flights, which is the North, East, and Down position RMSE values, are shown in Figure 6. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 18, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 6. Smoothed Performance Metric parameters of Pagbanganan Flight 8407AC

The time of flight was from 438600 seconds to 442600 seconds, which corresponds to morning of March 18, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 6 shows that the North position RMSE peaks at 1.13 centimeters, the East position RMSE peaks at 1. 39 centimeters, and the Down position RMSE peaks at 2.7 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 7. Solution Status parameters of Pagbanganan Flight 8407AC

The Solution Status parameters of flight 8407AC, one of the Pagbanganan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 7. The graphs indicate that the number of satellites during the acquisition did not go down to 7. Majority of the time, the number of satellites tracked was between 7 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Pagbanganan flights is shown in Figure 8.

Figure 8. Best estimated trajectory of the LiDAR missions conducted over the Pagbanganan Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 320 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Pagbanganan Floodplain are given in Table 12.

Parameter	Acceptable Value	Value
Boresight Correction stdev (<0.001degrees)	0.000462	0.000751
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000318	0.000959
GPS Position Z-correction stdev (<0.01meters)	0.0017	0.0025

Table 12. Self-calibration	results values	for Pagbangana	n flights.
----------------------------	----------------	----------------	------------

The optimum accuracy was obtained for all Pajo flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Pagbanganan Floodplain is shown in Figure 9. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 9. Boundary of the processed LiDAR data over Pagbanganan Floodplain

The total area covered by the Pagbanganan missions is 260.24 sq km that is comprised of six (6) flight acquisitions grouped and merged into seven (7) blocks as shown in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Ormoc_Blk35CD	7764AC	70.18
Ormoc_Blk35F	7792AC	67.08
Ormoc_Blk35E_voids	7794AC	47.91
Ormoc_Camotes_Blk48E	8407AC	16.36
Ormoc_Camotes_Blk48G	8407AC	10.95
Ormoc_South_Blk35E	3925G	10.32
Ormoc_South_Blk34aA	3921G	37.44
TOTAL		260.24 sq km

Table 13 List	of LiDAR	blocks	for P	aghanganan	Flood	nlain
TADIC ID. LISU	OI LID/III	DIOCKS	101 1	agpanganan	11000	piani

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is shown in Figure 10. Since the Gemini and Aquarius systems both employ one channel, an average value of 1 (blue) is expected for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 10. Image of data overlap for Pagbanganan Floodplain

The overlap statistics per block for the Pagbanganan Floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.68% and 59.21%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 11. It was determined that all LiDAR data for Pagbanganan Floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.62 points per square meter.

Figure 11. Pulse density map of merged LiDAR data for Pagbanganan Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 12. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 12. Map of elevation difference between flight lines for Pagbanganan Floodplain

A screen capture of the processed LAS data from a Pagbanganan flight 8407AC loaded in QT Modeler is shown in Figure 13. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 13. Quality checking for a Pagbanganan flight 8407AC using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	143,432,540
Low Vegetation	120,670,916
Medium Vegetation	170,795,462
High Vegetation	319,340,910
Building	8,929,971

Table 14. Pagbanganan classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Pagbanganan Floodplain is shown in Figure 14. A total of 512 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 581.00 meters and 43.00 meters, respectively.

Figure 14. Tiles for Pagbanganan Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 15. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.

Figure 15. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 16. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 16. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Pagbanganan Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Pagbanganan Floodplain.

3.8 DEM Editing and Hydro-Correction

Seven mission blocks were processed for Pagbanganan flood plain. These blocks are composed of SamarLeyte and Leyte blocks with a total area of 260.24 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Ormoc_Blk35CD	70.18
Ormoc_Blk35F	67.08
Ormoc_Blk35E_voids	47.91
Ormoc_Camotes_Blk48E	16.36
Ormoc_Camotes_Blk48G	10.95
Ormoc_South_Blk35E	10.32
Ormoc_South_Blk34aA	37.44
TOTAL	260.24 sq km

Table 15. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 17. The bridge (Figure 17a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 17b) in order to hydrologically correct the river. The fishpond embankment (Figure 17c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 17d) to allow the correct flow of water surfaces with no data also has to be interpolated by manual editing.

Figure 17. Portions in the DTM of Pagbanganan flood plain—a bridge before (a) and after (b) manual editing; and a fishpond before (c) and after (d) data retrieval and interpolation

3.9 Mosaicking of Blocks

SamarLeyte_Blk35I was used as the reference block at the start of mosaicking because this block was made available for editing and mosaicking before the other blocks. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Pagbanganan Floodplain is shown in Figure 18. It can be seen that the entire Pagbanganan flood plain is 99.73% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	x	У	Z
Ormoc_Blk35CD	0.00	0.00	-0.58
Ormoc_Blk35F	0.00	0.00	-0.14
Ormoc_Blk35E_voids	0.00	0.00	0.00
Ormoc_South_Blk34aA	0.00	0.00	0.17
Ormoc_South_Blk35E	0.00	-1.00	-0.50
Ormoc_Camotes_Blk48E	0.00	0.00	0.00
Ormoc_Camotes_Blk48G	0.00	0.00	0.00

Table 14. Shift Values of each LiDAR Block of Pajo Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Pagbanganan to collect points with which the LiDAR dataset is validated is shown in Figure 19. Survey points of Pagsangahan and Pagbanganan validation points were merged resulting in a total of 25,710 points and were used for calibration and validation of Pagsangahan LiDAR data. Random selection of 80% of the survey points, resulting in 20,568 points, was used for calibration. The good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 20. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.26 meters with a standard deviation of 0.20 meters. Calibration of Pagbanganan LiDAR data was done by adding the height difference value, 0.26 meters, to Pagbanganan mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 19. Map of Pagbanganan Floodplain with validation survey points in green

Figure 20. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	0.26
Standard Deviation	0.20
Average	0.17
Minimum	-0.30
Maximum	0.60

Table 17. Calibration statistical measure	Tab	ole 17.	Calibration	statistical	measure
---	-----	---------	-------------	-------------	---------

The remaining 20% of the total survey points, resulting in 5,142 points, were used for the validation of calibrated Pagbanganan DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 21. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.18 meters, as shown in Table 18.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.18
Average	-0.10
Minimum	-0.47
Maximum	0.28

Table 18. Validation statistical measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline, cross-section, and zigzag data were available for Pagbanganan with 7,209 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.39 meters. The extent of the bathymetric survey done by the DVBC in Pagbanganan integrated with the processed LiDAR DEM is shown in Figure 22.

Figure 22. Map of Pagbanganan Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Pagbanganan Floodplain, including its 200 m buffer, has a total area of 48.28 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1,542 building features, are considered for QC. Figure 23 shows the QC blocks for Pagbanganan Floodplain.

Figure 23. Blocks (in blue) of Pagbanganan building features subjected to QC.

Quality checking of Pagbanganan building features resulted in the ratings shown in Table 19.

Table 19. Quality checking ratings for Pagbanganan building features

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Pagbanganan	100	100	95.91	PASSED

3.12.2 Height Extraction

Height extraction was done for 12,246 building features in Pagbanganan Floodplain. Of these building features, 620 was filtered out after height extraction, resulting in 11,626 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 15.41 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 20 summarizes the number of building features per type. On the other hand, Table 21 shows the total length of each road type, while Table 22 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	10,842
School	211
Market	3
Agricultural/Agro-Industrial Facilities	18
Medical Institutions	25
Barangay Hall	22
Military Institution	6
Sports Center/Gymnasium/Covered Court	32
Telecommunication Facilities	6
Transport Terminal	4
Warehouse	24
Power Plant/Substation	1
NGO/CSO Offices	1
Police Station	2
Water Supply/Sewerage	1
Religious Institutions	76
Bank	6
Factory	0
Gas Station	11
Fire Station	1
Other Government Offices	60
Other Commercial Establishments	274
Total	11,626

Table 18. Building Features Extracted for Pajo Floodplain

Table 19. Total Length of Extracted Roads for Pajo Floodplain

Floodplain	Road Network	(Length (km)				Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
	45.34	15.84	12.98	0.00	0.00	74.16

Table 22. Number of extracted water bodies for Pagbanganan Floodplain

Floodplain	Water Body Type					Total
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Pagbanganan	36	15	0	0	0	51

A total of 34 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 24 shows the Digital Surface Model (DSM) of Pagbanganan flood plain overlaid with its ground features.

Figure 24. Extracted features for Pagbanganan Floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TANAO RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo For. Maridel P. Miras, Mr. Randell B. Pabroquez, Engr. Janina A. Jupiter

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

DVBC conducted a field survey in Pagbanganan River on March 9-23, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built surveys in Pagbanganan Bridge, Brgy. Poblacion, Baybay City, Leyte; validation points data acquisition of about 75 km for the areas traversing the Pagbanganan River Basin; and bathymetric survey from Brgy. Bubon down to Brgy. Sto. Rosario, both in Baybay City, with an estimated length of 5.533 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (see Figure 25).

4.2 Control Survey

The GNSS network used for Pagbanganan River Basin is composed of three loops established on March 10 and 11, 2016 occupying the following reference points: LYT-737, a second-order GCP, in Brgy. Cabulisan, Municipality of Inopacan; LYT-742, a second-order GCP, in Brgy. Tambis, Municipality of Hilongos; and LY-338, a first-order BM, in Brgy. San Juan, Municipality of Hilongos.

Two control points were established along the approach of a bridge namely: UP-CAM at Cambanog Bridge in Brgy. Naga, Municipality of Bato; and UP-PAG at Pagbanganan Bridge in Brgy. Poblacion Zone 12, Baybay City.

The summary of reference and control points and its location is summarized in Table 23, while the GNSS network established is illustrated in Figure 26.

	1 MDIA 20. TION		THE ACCULATION TOT T ASPATTS	and the ver dat ver vou		(1011
Control Point	Order of Accuracy	Geographic Coordinate	s (WGS 84)			
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
LYT-737	2nd order, GCP	10°30'42.1282"N	124°48'38.7024"E	600.703	1	2007
LYT-742	2nd order, GCP	10°24'41.5778"N	124°47'25.4388"E	110.425	1	03-14-2016
LY-338	1st order, BM		ſ	73.006	8.483	2007
UP-CAM	UP Established	1	I	I	ı	03-10-2016
UP-PAG	UP Established	-	1	1	1	03-11-2016

Table 23. List of reference and control points occupied for Pagbanganan River Survey (Source: NAMRIA: UP-TCAGP)

The GNSS set-ups on recovered reference points and established control points in Pagbanganan River are shown in Figure 27 to Figure 31.

Figure 27. GNSS base set-up, Trimble® SPS 852, at LYT-737, located at the back of Cabulisan Elementary School in Brgy. Cabulisan, Municipality of Inopacan, Leyte

Figure 28. GNSS base set-up, Trimble® SPS 855, at LYT-742, located near a chapel and basketball court in Brgy. Tambis, Municipality of Hilongos, Leyte

Figure 29. GNSS receiver set-up, Trimble® SPS 855, at LY-338, located at the approach of Salug Birdge along Sta. Indang-Hilongos Road in Brgy. San Juan, Municipality of Hilongos, Leyte

Figure 30. GNSS receiver set-up, Trimble® SPS 882, at UP-CAM, located at the approach of Cambanog Bridge in Brgy. Naga, Municipality of Bato, Leyte

Figure 31. GNSS receiver set-up, Trimble® SPS 855, at UP-PAG, located at Pagbanganan Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Pagbanganan River Basin is summarized in Table 24 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
LYT-742 LYT-737	03-11-2016	Fixed	0.003	0.014	11°22'12"	11299.872	
LYT-737 UPCAM	03-11-2016	Fixed	0.004	0.024	172°18'02"	18901.310	
lyt-742 Uppag	03-11-2016	Fixed	0.003	0.012	4°53'18"	29783.6899	
LY-338 UP-CAM	03-10-2016	Fixed	0.005	0.028	115°25'44"	10691.421	
LYT-737 UP-PAG	03-11-2016	Fixed	0.003	0.012	0°57'35"	18599.831	
UP-CAM LYT-742	03-10-2016	Fixed	0.003	0.022	148°06'41"	9012.871	
LYT-737 LYT-742	03-11-2016	Fixed	0.003	0.013	11°22'12"	11299.875	
LY-338 LYT-742	03-10-2016	Fixed	0.004	0.023	237°58'44"	5771.913	
UP-MAR CNS-3028	04-09-16	Fixed	0.004	0.023	78°00'02"	12411.353	
UP-MAR CA-130	04-09-16	Fixed	0.003	0.011	34°37'02"	16907.625	
UP-MAR CNS-21	04-09-16	Fixed	0.002	0.009	77°20'46"	2349.293	

Table 24. Baseline processing summary report for Pagbanganan River survey

As shown in Table 24, a total of eight baselines were processed with reference points LYT-737 and LYT-742, and LY-338 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates (Table 26) of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)} < 20 cm \text{ and } z_e < 10 cm$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 25 to Table 27 for complete details.

The five control points, LY-338, LYT-737, LYT- 742, UP-CAM, and UP-PAG, were occupied and observed simultaneously to form a GNSS loop. Elevation value of LY-338 and coordinates of points LYT-737 and LYT-742 were held fixed during the processing of the control points as presented in Table 25. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
LYT-737	Local	Fixed	Fixed			
LYT-742	Local	Fixed	Fixed			
LY-338	Grid				Fixed	
Fixed = 0.000001(Meter)						

Table 25. Control point constraints

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 26. The fixed control points, LYT-737 and LYT-742, have no values for grid errors; and LY-338, for elevation error.

Table 24. Adjusted Grid Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LYT-737	698162.79	?	1162560.388	?	536.080	0.089	LL
LYT-742	695997.844	?	1151468.957	?	45.879	0.084	LL
LY-338	691121.157	0.012	1148380.761	0.009	8.483	?	е
UP-CAM	700802.490	0.010	1143842.626	0.010	21.206	0.089	
UP-PAG	698366.197	0.015	1181160.649	0.011	6.881	0.092	

The network is fixed at reference point CNS-21with known coordinates, and CA-130 with known elevation. As shown in Table 24, the standard errors (xe and ye) of CA-130 are 1.40 cm and 1.2 cm; CA-15 are 2.0 cm and 1.7 cm; CNS-3018 are 1.7cm and 1.40 cm; CNS-3028 are 1.80 cm and 1.40 cm; and UP-MAR are 1.20 cm and 1 cm. With the mentioned equation, <20cm for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

LYT-737			
	horizontal accuracy	=	Fixed
	vertical accuracy	=	8.90 < 10 cm
LYT-742			
	horizontal accuracy	=	Fixed
	vertical accuracy	=	8.40 < 10 cm
LY-338	h		-11/14 2012 - 10 0012
	norizontal accuracy	=	$V((1.20)^2 + (0.90)^2)$
		=	V (1.44 + 0.81)
		=	1.50 cm < 20 cm
	vertical accuracy	=	Fixed
	1		
	horizontal accuracy	=	$\sqrt{((1 \ 0)^2 + (1 \ 0)^2)^2}$
	nonzontal accuracy	=	$\sqrt{(1.0)}$ (1.0) $\sqrt{(1.0+1.0)}$
		_	1 41 cm < 20 cm
	vertical accuracy	_	2.41 cm < 20 cm
	vertical accuracy	-	0.50 cm < 10 cm
UP-PAG			
0//0	horizontal accuracy	=	$\sqrt{((1.50)^2 + (1.10)^2)}$
			. ((=

= = vertical accuracy =

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

√ (2.25 + 1.21)

1.86 cm < 20 cm

9.20 cm < 10 cm

		, ,			
Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
LYT-737	10°30'42.12820"N	124°48'38.70244"E	600.703	0.089	LL
LYT-742	10°24'41.57783"N	124°47'25.43883"E	110.425	0.084	LL
LY-338	10°23'01.95953"N	124°44'44.56153"E	73.006	?	е
UP-CAM	10°20'32.50055"N	124°50'01.93960"E	85.886	0.089	
UP-PAG	10°40'47.39583"N	124°48'48.95238"E	71.261	0.092	

Table 27. Adjusted geodetic coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 28.

Table 28. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographic Coordir	nates (WGS 84)	UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LYT-737	2nd order, GCP	10°30'42.1282"N	124°48'38.7024"E	600.703	1162560.388	698162.797	536.080
LYT-742	2nd order, GCP	10°24'41.5778"N	124°47'25.4388"E	110.425	1151468.957	695997.844	45.879
LY-338	1st order, BM	10°23'01.9595"N	124°44'44.5615"E	73.006	1148380.761	691121.157	8.483
UP-CAM	UP Established	10°20'32.5005"N	124°50'01.9396"E	85.886	1143842.626	700802.490	21.206
UP-PAG	UP Established	10°40'47.3958"N	124°48'48.9523"E	71.261	1181160.649	698366.197	6.881

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey was conducted on March 13, 2016 at the downstream portion of Pagbanganan River in Pagbanganan Bridge, Brgy. Poblacion, Baybay City using a survey grade GNSS receiver Trimble® SPS 882 in PPK survey technique as shown in Figure 32.

Figure 32. Bridge as-built and cross-section survey of Pagbanganan Bridge

The cross-sectional line for the Pagbanganan Bridge is about 850 m with twenty-seven (27) cross-sectional points acquired using UP-PAG as the GNSS base station. The location map, cross-section diagram, and the bridge data form are shown in Figure 33 to Figure 35, respectively.

49

				Bridge D	ata For	m				
Br	Bridge Name: Pagbangan Bridge				Date: March 13, 2016					
Ri	River Name: Pagbangan River				Time: <u>3:00 PM</u>					
Lo	Location (Brgy, City,Region): Zone 1, Baybay City									
Su	irvey Te	am: <u>M</u>	ark Rojas, Anthony Aboga	do, Marla N	<u>Aorris</u>					
Fl	ow cond	lition:	normal			Weathe	r Condi	tion: fa	ir	
La	titude:	10*40'5	50.50320" N			Longit	ude: <u>12</u>	4 *48'48.74	<u>48" E</u>	
< BA	BA2		D	\bigcirc	BA3	BA4.	Legend:		Nex 10 allow	
			•				Ab = Abut	ment D	= Deck HC = High	Chord
		Ab1		~	Ab2					_
			P		н	c				_
			Dash ist						1	
Elev	ation: 7	.231 m	Deck (Please start your m	Width: 9.384	m the left <mark>4 m</mark>	side of the bank f Spa	acing upst an (BA3-	ream) BA2): <u>150.31</u>	<u>6 m</u>	LC
			Station		High	h Chord Elevat	ion	Low Ch	ord Elevation	
1			315.003			7.232		5.132		\neg
2			345.085			7.231			5.131	
3			375.189		7.181				5.081	
_			Bridge Approach (Please	start your measure	ment from th	e left side of the bank	tecing upstr	com)		_
	Station(Distance from BA1) Elevation				Station(Distance from BA1) Elevation					
	BA1		0	5.381 m	BA3	435.252 m 7.162 m			7.162 m	
	BA2		284.936 m	7.231 m	BA4	850.277 m 4.329 m				
Ab	utment:	lsti	he abutment sloping?	Yes; If yes	s, fill in ti	he following in	formatio	on:		
			Station (D	istance fror	n BA1)	Elevation				
	A	b1		290.877		2.520 m				
	A	b2		430.185				3.140 r	n	
			Pier (Please start your me	asurement from	m the left :	side of the bank f	acing upst	ream)		
	Shape: <u>Round</u> Number of Piers: <u>4</u> Height of column footing: <u>1</u>									
	Station (Distance from BA1)					Elevation Pier Width				
	Pier 1 315.003m			7.232m			1.8m			
	Pier 2 345.085m			7.231m		1.8m				
	Pier 3 375.189m			7.181m		1.8m		_		
	Pier 4		405.195m	the center of the	pier as refe	7.164m		1	.8m	
			Figure 35. Bridg	ge as-built f	orm of I	Pagbanganan	Bridge			

Water surface elevation in MSL of Pagbanganan River was determined using Trimble[®] SPS 882 in PPK mode technique on March 13, 2016 at 3:53 PM with a value of -0.342 m in MSL. This was translated onto marking on the bridge's pier using digital level to be used by Visayas State University PHIL-LiDAR 1. The marked pier will serve as their reference for flow data gathering and depth gauge deployment for Pagbanganan River. Figure 36 shows the water level marking on one of the piers of Pagbanganan Bridge.

Figure 36. Water level marking at Pagbanganan Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on March 10 and 11, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached to the side of vehicle as shown in Figure 37. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 1.929 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with LYT-742, UP-PAG, UP-CAM, and LYT-737 occupied as the GNSS base stations all throughout the conduct of the survey.

Figure 37. Validation points acquisition survey set up along Pagbanganan River Basin

The validation points acquisition survey for the Pagbanganan River Basin traversed Baybay City and the following municipalities of Leyte: Inopacan, Hindang, and Bato; as well as Municipality of Bontoc in Southern Leyte. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 18,832 points with an approximate length of 75 km was acquired for the validation point acquisition survey as shown in the map in Figure 38.

4.7 River Bathymetric Survey

Bathymetric survey was executed on March 13, 2016 using a Trimble[®] SPS 882 in GNSS PPK survey technique utilizing the continuous topo mode and Ohmex[™] single beam echo sounder, as illustrated in Figure 39. The survey started from middle upstream part of the river in Brgy. Cogon, Baybay City with coordinates 10°40'51.04283"N, 124°49'06.43258"E, and ended at the mouth of the river in Brgy. Santo Rosario, also in Baybay City with coordinates 10°41'06.45131"N, 124°47'37.21202"E.

Manual bathymetry was also employed on March 17, 2016 using a Trimble® SPS 882 in GNSS PPK survey technique in continuous topo mode. The survey started from the upstream of the river in Brgy. Bubon, Baybay City with coordinates 10°40'20.71534"N, 124°50'02.17711"E, traversed by foot down to the middle portion of the river where the bathymetric survey by boat started. The control point UP-PAG was used as the GNSS base station all throughout the survey.

Figure 39. Bathymetric survey set-up in Pagbanganan River

The bathymetric survey for Pagbanganan River gathered a total of 7,337 points covering 5.533 km of the river traversing ten barangays in Baybay City. A CAD drawing was also produced to illustrate the riverbed profile of Pagbanganan River. As shown in Figure 41, the highest and lowest elevation has a 9-meter difference. The highest elevation observed was 3.967 m above MSL located in Brgy. Cogon, Baybay City while the lowest was -5.374 m below MSL located in Brgy. Santo Rosario, also in Baybay City. The remaining 2.2 km delineated bathymetric line in Brgy. Bubon also within Baybay City, was not surveyed because the area is not flood prone according to the locals.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the river basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from Dungcaan Bridge automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The location of the rain gauge is seen in Figure 42.

Figure 42. The location map of Pagbanganan HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Dungcaan Bridge, Baybay City, Leyte (10°40'55.33"N, 124°48'18.96"E). It illustrates the relationship between the observed water levels from the Dungcaan Bridge Automated Water Level Sensor (AWLS) and the combined discharge from baseflow and bankfull.

For Dungcaan Bridge, the rating curve is expressed as Q = 26.999e0.0002h as shown in Figure 44.

Figure 44. Rating curve at Dungcaan Bridge

This rating curve equation was used to compute the river outflow at Dungcaan Bridge for the calibration of the HEC-HMS model. Total rain from Dungcaan Bridge rain gauge is 129 mm. It peaked to 8.2 mm on 24 November 2016 at 21:40. Peak discharge is 144 cubic meters per second at 12:00 AM, November 25, 2016.

Figure 45. Rainfall and outflow data at Pagbanganan used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Maasin Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value would be attained at a certain time. This station chosen based on its proximity to Pagbanganan watershed. The extreme values for this watershed were computed based on a 16-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.5	28.1	35.6	48.1	68	82.1	104.6	124.9	145
5	25.9	38.3	63.8	63.8	90.4	108.8	137.5	165.2	190.8
10	30.8	45	74.2	74.2	105.3	126.5	159.3	191.9	221.2
15	33.5	48.8	80.1	80.1	113.7	136.5	171.5	206.9	238.4
20	35.5	51.5	84.2	84.2	119.6	143.5	180.1	217.5	250.4
25	37	53.6	87.3	87.3	124.1	148.9	186.7	225.6	259.6
50	41.5	59.9	97.1	97.1	138.1	165.5	207.1	250.6	288.1
100	46.1	66.2	106.8	106.8	151.9	181.9	227.4	275.4	316.3

Table 29. RIDF values for Maasin Rain (Gauge computed by PAGASA
---	--------------------------

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils under the Department Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Pagbanganan River Basin are shown in Figures 48 and Figure 49, respectively.

Figure 48. Soil map of Pagbanganan River Basin

Figure 49. Land cover map of Pagbanganan River Basin (Source: NAMRIA)

For Pagbanganan, the soil classes identified were clay, silt loam, rough mountainous land, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, and closed forest.

Figure 50. Slope map of the Pagbanganan River Basin

5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 53. River cross-section of Pagbanganan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the east of the model to the west, following the main channel. As such, boundary elements northwest of the model are assigned as outflow elements.

Figure 54. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation was then run through FLO-2D GDS Pro. This particular model had a computer run time of 8.22 hours. After the simulation, FLO-2D Mapper Pro was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High created the following food hazard map. Most of the default values given by FLO-2D Mapper Pro were used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Pagbanganan are in Figure 58, Figure 60, and Figure 62.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 13,729,000.00 m2. The generated flood depth maps for Pagbanganan are in Figure 59, Figure 61, and Figure 63.

There is a total of 38,608,775.78 m3 of water entering the model, of which 3,925,136.11 m3 is due to rainfall and 34,683,639.67 m3 is inflow from basins upstream. A volume of 2,636,327.00 m3 of this water is lost to infiltration and interception, while 3,532,099.26 m3 is stored by the floodplain. The rest, amounting up to 32,440,349.36m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Pagbanganan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 55 shows the comparison between the two discharge data. ANNEX 9 shows the Pagbanganan model basin parameters.

Figure 55. Outflow hydrograph of Pagbanganan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 30 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Method	Parameter	Range of Calibrated Values
Loss	SCS Curve number	Initial Abstraction (mm)	26 - 147
		Curve Number	35 - 99
Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.5 - 2
		Storage Coefficient (hr)	0.22 - 1.37
Baseflow	Recession	Recession Constant	0.9
		Ratio to Peak	0.08
Routing	Muskingum-Cunge	Slope	0.001 - 0.004
		Manning's n	0.04

Table 30. Range	of calibrated v	values for Pag	gbanganan
		c	<u>,</u> 0

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of 26 mm to 147 mm means that there is a considerably high amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 99 for curve number means that the watershed is very diverse depending on the soil and land cover of the area.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.5 to 2 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.9 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.01 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Pagbanganan watershed, which is determined to be cultivated with mature field crops.

Accuracy measure	Value
r2	8.20
NSE	0.9746
PBIAS	0.92
RSR	4.83
RSR	0.29

Table 31. Summary of the efficiency test of Pagbanganan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 8.2 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9746.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.92.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 4.83.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.29.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 55) shows the Pagbanganan outflow using the Maasin RIDF in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 56. Outflow hydrograph at Pagbanganan Station generated using Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Pagbanganan discharge using the Maasin RIDF curves in five different return periods is shown in Table 32.

Table 32. Peak values of the Pagbanganan HEC-HMS Model outflow using the Maasin RIDF

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	190.8	25.9	259.9	3 hours
10-Year	221.2	30.8	361.4	2 hours, 50 minutes
25-Year	259.6	37	526	2 hours, 50 minutes
50-Year	288.1	41.5	675.8	2 hours, 40 minutes
100-Year	316.3	46.1	840.8	2 hours, 40 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every step for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model is an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is shown since only the VSU-FMC base flow was calibrated. The sample generated map of Pagbanganan River using the calibrated HMS base flow is shown in Figure 57.

Figure 57. Sample output of Pagbanganan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10 m resolution. Figure 58 to Figure 63 show the 100-, 25-, and 5-year rain return scenarios of the Pagbanganan Floodplain.

The floodplain, with an area of 13.73 sq km., covers Baybay City. Table shows the percentage of area affected by flooding.

Table 33. Munici	palities affect	ed in Pagbanga	nan Floodplain
10010 331 101001101	Section of the sectio	neer mit t engleseningen	inter a recomptonin

Municipality	Total Area	Area Flooded	% Flooded
Baybay City	404.37	13.51	3%

76

77

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Pagbanganan River Basin are listed below. For the said basin, the city of Baybay consisting of 23 barangays is expected to experience flooding when subjected to 5-year, 25-year, and 100-year rainfall return period.

For the 5-year return period, 8.48% of the city of Baybay with an area of 404.37sq km. will experience flood levels of less 0.20 meters; 0.35% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.22%, 0.23%, 0.40%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 34 to Table 36 are the affected areas in square kilometers by flood depth per barangay.

Table 34. Affected areas in Baybay City, Leyte during a 5-year rainfall return period

		Affected Bara	ngays in Bayba	ay City					
PAGBANGAN	AN BASIN	Candadam	Cogon	Ga-As	Gakat	Hibunawan	Kan-Ipa	Maganhan	Poblacion Zone 1
	0.03-0.20	0.654811078	0.823630861	0.209216015	1.408277278	0.760062756	0.340425363	1.717330867	0.000413572
	0.21-0.50	0.161781078	0.316614707	0.017319826	0.130223419	0.241601732	0.092480174	0.123419301	0.004748005
Affected Area	0.51-1.00	0.210002869	0.124435046	0.034129857	0.020913978	0.111302149	0.036046275	0.093853018	0.008315298
	1.01-2.00	0.166851857	0.044023467	0.051000986	0.003966492	0.137349437	0.12570995	0.131928144	0.003554833
	2.01-5.00	0.015500187	0.371991971	0.023272766	0	0.329713776	0.179712188	0.131006339	0.149638813
	> 5.00	0	0.058498469	0	0	0	0.080441907	0.0004	0.038176251

Table 35. Affected areas in Baybay City, Leyte during a 5-year rainfall return period

		Affected Barar	ıgays in Bayba	ıy City					
PAGBANGANA	AN BASIN	Poblacion Zone 11	Poblacion Zone 12	Poblacion Zone	Poblacion Zone 2	Poblacion Zone 23	Poblacion Zone 3	Poblacion Zone 4	Poblacion Zone 5
	0.03-0.20	0.016842549	0.243793747	0.004474251	0.044437305	0.129454635	0.028565875	0.078154568	0.037732458
	0.21-0.50	0.011578591	0.037190942	0.000242398	0.004439503	0.009046763	0.000277896	0.013023379	0.004436486
Affected Area	0.51-1.00	0.0003	0.005062685	0.0001	0.001946285	0.003416947	0.0004	0.012818496	0.003858851
	1.01-2.00	0.0002	0.04774859	0	0.001871933	0.0002	0.000785931	0.009648872	0.006029726
	2.01-5.00	0	0.293740263	0	0.062604525	0	0.017590938	0.018143998	0.014060912
	> 5.00	0	0.009966953	0	0.022828612	0	0	0.013575706	0.005012102

		Affected Barar	ıgays in Bayba	y City					
PAGBANGANA	AN BASIN	Poblacion Zone 6	Poblacion Zone 7	Poblacion Zone	Poblacion Zone 9	San Isidro	Santo Rosario	Villa Mag-Aso	Poblacion Zone 1
	0.03-0.20	0.032061073	0.047740789	0.076412761	0.005982229	0.594152561	0.644639189	0.51452708	0.000413572
	0.21-0.50	0.018314014	0.01286336	0.022828718	0.00219257	0.059710102	0.117596479	0.009034377	0.004748005
Affected Area	0.51-1.00	0.018815927	0.001018035	0.012456113	0.0001666	0.056823205	0.141645058	0.005552542	0.008315298
	1.01-2.00	0.007399511	6.99694E-05	0.023001686	0	0.020673973	0.129956565	0.0026	0.003554833
	2.01-5.00	0.003606084	0	0.008501119	0	0.001599813	0.013772123	0.0006	0.149638813
	> 5.00	0	0	0	0	0	0	0	0.038176251

Table 36. Affected areas in Baybay City, Leyte during a 5-year rainfall return period

Figure 64. Affected areas in Baybay City, Leyte during a 5-year rainfall return period

For the 25-year return period, 1.5% of the city of Baybay with an area of 404.37 sq km. will experience flood levels of less 0.20 meters; 0.27% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.40%, 0.44%, 0.65%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 to Table 39 are the affected areas in square kilometers by flood depth per barangay.

-	ರ
•	110
	д
	ĽŊ
	Ë
_	5 L
Ę	all
	Ш
	Гa
	är
	Ř
1	Ś
(, д
	ы
•	E
-	5
	ar
	E
C	ñ
	CLL
	ŝ
ŀ	Ц
	Ř
i	5
	Þ
-	ñ
	Say
	д
•	S1
	ŝ
_	ਫ਼
	<u>5</u>
	S
J	Ŭ
	4
1	5
-	<u>e</u>
-	<mark>0</mark>
ŀ	-

		Affected Barar	ıgays in Bayba	ıy City					
PAGBANGANA	AN BASIN	Candadam	Cogon	Ga-As	Gakat	Hibunawan	Kan-Ipa	Maganhan	Poblacion Zone 1
	0.03-0.20	0.233633864	0.257134769	0.180663372	1.293969937	0.581131535	0.0013	1.549487597	0
	0.21-0.50	0.127964306	0.132105566	0.0029	0.191060473	0.173076762	0.0254	0.094150603	0
Affected Area	0.51-1.00	0.221283521	0.412141377	0.004478006	0.0702012	0.227443181	0.1921	0.132840678	0.000913572
	1.01-2.00	0.419936095	0.436471688	0.031536785	0.008149557	0.103467884	0.217895697	0.149908005	0.013985437
	2.01-5.00	0.206129283	0.422129381	0.115261289	0	0.481883309	0.31544149	0.270950786	0.145307283
	> 5.00	0	0.07921174	0.0001	0	0.01302718	0.102678669	0.0006	0.04464048

Table 38. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return period

		Affected Barar	ıgays in Bayba	y City					
PAGBANGANA	NI BASIN	Poblacion Zone 11	Poblacion Zone 12	Poblacion Zone	Poblacion Zone 2	Poblacion Zone 23	Poblacion Zone 3	Poblacion Zone 4	Poblacion Zone 5
	0.03-0.20	0.01185032	0.223541672	0.004374251	0.041253947	0.127017056	0.026561015	0.059858707	0.026367188
	0.21-0.50	0.01637755	0.049928319	0.000335656	0.001119411	0.008277045	0.001882757	0.021713486	0.010842435
Affected Area	0.51-1.00	0.00049325	0.007197751	0.000106742	0.002432235	0.006624244	0.0004	0.015791839	0.006054276
	1.01-2.00	0.0002	0.007633464	0	0.0066903	0.0002	0.000551134	0.012393841	0.005804095
	2.01-5.00	0	0.337033333	0	0.060344473	0	0.018225735	0.017757113	0.011694851
	> 5.00	0	0.012168641	0	0.026287797	0	0	0.017850033	0.010367691

		Affected Barar	ngays in Bayba	y City					
	NI BASIN	Poblacion Zone 6	Poblacion Zone 7	Poblacion Zone	Poblacion Zone 9	San Isidro	Santo Rosario	Villa Mag-Aso	Poblacion Zone 1
	0.03-0.20	0.017580148	0.037121493	0.034284227	0.000842319	0.467152298	0.398364889	0.510557541	0.000413572
	0.21-0.50	0.013344979	0.021660006	0.033296026	0.004264366	0.061607285	0.100716521	0.010100261	0.004748005
Affected Area	0.51-1.00	0.027111432	0.002522649	0.03464674	0.003234714	0.092133501	0.133821253	0.006856196	0.008315298
	1.01-2.00	0.017197301	0.000388004	0.026258142	0	0.102814726	0.222343453	0.0039	0.003554833
	2.01-5.00	0.00496275	0	0.014715262	C	0.009251844	0.192363298	0.000	0.149638813
	> 5.00	0	0	0	0	0	0	0	0.038176251

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Table 36. Affected areas in Baybay City, Leyte during a 5-year rainfall return period

Figure 68. Affected areas in Baybay City, Eastern Samar during a 25-year rainfall return period

For the 100-year return period, 1.33% of the city of Baybay with an area of 404.37 sq km. will experience flood levels of less 0.20 meters; 0.22% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.27%, 0.57%, 0.82%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 Table 42 are the affected areas in square kilometers by flood depth per barangay.

- 5	5
	×
	2
	Ξ.
	57
	×
	\sim
	_
	д
	Ľ.
	5
	5
	5
	2
	_
- 5	
	7
e	10
	2
	H.
•	
	σ
	h
	_2
	7
	22
	Υ.
	-
	-
(\sim
	Ō.
	\leq
	-
	ರ
	ы
	-Cî
	-
	Ξ.
	2
	$\overline{\mathbf{O}}$
	Ы.
	ED .
	Ξ.
	~
	_
	,
	E
	E
	ern
	tern 2
	stern 2
	astern 5
	Lastern L
ŀ	Eastern
ŀ	', Eastern S
Ļ	y, Eastern S
ŀ	ty, Eastern S
Ļ	lty, Eastern S
ļ	Lity, Eastern S
Ļ	City, Eastern S
ļ	y City, Eastern S
ļ	ay Uity, Eastern S
ļ	oay City, Eastern S
ļ,	bay City, Eastern S
ļ į	ybay Uity, Eastern S
ļ (aybay City, Eastern S
	saybay City, Eastern S
L ()	Baybay City, Eastern S
L ()	i Baybay City, Eastern S
н (n Baybay City, Eastern S
н (in Baybay City, Eastern S
- -	s in Baybay City, Eastern S
L ()	as in Baybay City, Eastern S
н (eas in Baybay City, Eastern S
- - -	ceas in Baybay City, Eastern S
- -	areas in Baybay City, Eastern S
	areas in Baybay City, Eastern S
- F	1 areas in Baybay City, Eastern S
- - -	td areas in Baybay City, Eastern S
- t ()	ed areas in Baybay City, Eastern S
- - -	ted areas in Baybay City, Eastern S
- - -	cted areas in Baybay City, Eastern S
- - -	ected areas in Baybay City, Eastern S
	tected areas in Baybay City, Eastern S
	ffected areas in Baybay City, Eastern S
	Affected areas in Baybay City, Eastern S
	Affected areas in Baybay City, Eastern S
). Affected areas in Baybay City, Eastern S
	0. Affected areas in Baybay City, Eastern S
	40. Attected areas in Baybay City, Eastern S
	40. Attected areas in Baybay City, Eastern S
	e 40. Attected areas in Baybay City, Eastern S
	de 40. Affected areas in Baybay City, Eastern S
	ble 40. Attected areas in Baybay City, Eastern S
	able 40. Attected areas in Baybay City, Eastern S
	able 40. Attected areas in Baybay City, Eastern S

		Affected Bara	ngays in Bayba	ay City					
PAGBANGANA ANDONDANA	NI BASIN	Candadam	Cogon	Ga-As	Gakat	Hibunawan	Kan-Ipa	Maganhan	Poblacion Zone 1
	0.03-0.20	0.136881291	0.189600907	0.173862819	1.160459094	0.510366742	0	1.488487597	0
	0.21-0.50	0.09418058	0.033114357	0.002400552	0.202311119	0.115476248	0	0.0811	0
Affected Area	0.51-1.00	0.189950505	0.119144606	0.0041	0.136794169	0.187996322	0.006	0.07184686	0
	1.01-2.00	0.42344196	0.68357053	0.008178006	0.063416786	0.232520101	0.2252	0.176055501	0.013176874
	2.01-5.00	0.364492733	0.602009228	0.142098074	0.0004	0.449600296	0.482332267	0.36552069	0.131263313
	> 5.00	0	0.111754894	0.0043	0	0.084070142	0.141283589	0.014927021	0.060406584

Table 41. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period

		Affected Barar	ıgays in Bayba	y City					
PAGBANGANA	AN BASIN	Poblacion Zone 11	Poblacion Zone 12	Poblacion Zone 13	Poblacion Zone	Poblacion Zone 23	Poblacion Zone 3	Poblacion Zone 4	Poblacion Zone 5
	0.03-0.20	0.00914738	0.211505404	0.004174251	0.039940389	0.125593826	0.023114714	0.044296779	0.013808175
	0.21-0.50	0.01908049	0.055367458	0.000535656	0.000613558	0.006132566	0.00336942	0.017545159	0.010313035
Affected Area	0.51-1.00	0.00049325	0.011472885	0.000106742	0.001718015	0.009791952	0.001959638	0.026316087	0.014467905
	1.01-2.00	0.0002	0.004421994	0	0.008351131	0.0006	0.0008	0.016238418	0.008179185
	2.01-5.00	0	0.325211141	0	0.056517288	0	0.018175702	0.021027255	0.013250934
	> 5.00	0	0.029524297	0	0.030987782	G	0.000201166	0.019941321	0.011111302

		Affected Baran	igays in Baybay	y City					
24GBANGAN.	AN BASIN	Poblacion Zone 6	Poblacion Zone	Poblacion Zone	Poblacion Zone 9	San Isidro	Santo Rosario	Villa Mag-Aso	Poblacion Zone 1
	0.03-0.20	0.003750272	0.008478987	0.008805542	0	0.423029745	0.315792756	0.506336223	0.000413572
	0.21-0.50	0.00851949	0.036698001	0.019565025	0.000641703	0.06326839	0.093034988	0.011669919	0.004748005
Affected Area	¹ 0.51-1.00	0.022454793	0.015504511 (0.046942533	0.006668053	0.080211197	0.143088047	0.008356795	0.008315298
	1.01-2.00	0.036492659	0.001010653 (0.039988322	0.001031642	0.146079147	0.204533993	0.004651062	0.003554833
	2.01-5.00	0.008979395	0	0.027898975	0	0.020371173	0.290484536	0.0013	0.149638813
	> 5.00	0	0	<u> </u>	0	0	0.000675094	0	0.038176251

Figure 70. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period

Figure 71. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period

Figure 72. Affected areas in Baybay City, Eastern Samar during a 100-year rainfall return period

Among the barangays in the municipality of Baybay City, Calico-an is projected to have the highest percentage of area that will experience flood levels at 2.27%. Meanwhile, Bato posted the second highest percentage of area that may be affected by flood depths at 1.34%.

The generated flood hazard maps for the Pagbanganan Floodplain were also used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps—"Low", "Medium", and "High"—the affected institutions were given their individual assessment for each flood hazard scenario (5-year, 25-year, and 100-year).

Warning Level	Area Covered in sq. km.				
	5-year	25-year	100-year		
Low	1.13	1.13	0.90		
Medium	2.68	2.68	2.39		
High	3.84	3.84	5.05		

Table 43. Area covered by each warning level with respect to the rainfall scenario

Of the 21 identified educational institutions in Pagbanganan Floodplain, 5 schools were assessed to be exposed to low-level flooding during 5- and 25-year scenarios while 1 school was assessed to be exposed to medium-level flooding. For the 100-year scenario, 6 schools were assessed for low-level flooding and 3 schools for medium-level flooding. See ANNEX 12 for a detailed enumeration of schools inside Pagbanganan Floodplain.

Of the 3 identified medical institutions in Pagbanganan Floodplain, all were assessed to be exposed to low-level flooding during 5- and 25-year scenarios. For the 100-year scenario, 1 school was assessed for low-level flooding and 2 for medium-level flooding. See ANNEX 13 for a detailed enumeration of medical institutions inside Pagbanganan Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the flood depth maps produced and to improve on what is needed.

The flood validation consists of 263 points randomly selected all over the Pagbanganan Floodplain. The points were grouped depending on the RIDF return period of the event.

Figure 73. Validation points for 5-year flood depth map of Pagbanganan Floodplainv

The RMSE value for each flood depth map is listed in the table below:

Table 44. RMSE values for each return period of flood depth map

Return Period	RMSE
5-year	1.31
25-year	2.21
100-year	0.86

Figure 76. Flood map depth vs. actual flood depth for 5-year RP validation

HIMOGAANTANAO BASIN		Modeled Flood Depth (m)						
		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
Actual	0-0.20	32	11	27	24	5	0	99
Flood	0.21-0.50	12	18	14	22	18	0	84
Deptil (ill)	0.51-1.00	8	5	1	7	6	0	27
	1.01-2.00	1	0	0	5	4	0	10
	2.01-5.00	0	1	0	1	1	0	3
	> 5.00	0	0	0	0	0	0	0
Total		53	35	42	59	34	0	223

Table 45. Actual flood depth vs. simulated flood depth for 5-year RP in Pagbanganan

The overall accuracy generated by the 5-year flood model is estimated at 25.56%, with 57 points correctly matching the actual flood depths. In addition, there were 54 points estimated one level above and below the correct flood depths while there were 63 points and 49 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 138 points were overestimated while a total of 28 points were underestimated in the modeled flood depths of Pagbanganan.

Table 46. Summary of accuracy assessment in Pagbanganan for 5-year RP

	No. of Points	%
Correct	57	25.56
Overestimated	138	61.88
Underestimated	28	12.56
Total	223	100

Figure 77. Flood map depth vs. actual flood depth for 25-year RP validation

Table 47 Actual flood de	nth vs_simulated	flood depth for 25-	vear RP in Paghanganan
Table 77. Actual 11000 00	pui vs. sinualeu	1000 acptil 101 2.5~	year Kr ill ragDallgallall

HIMOGAAN	TANAO	Modeled Flood Depth (m)						
BASIN	BASIN		0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
Actual	0-0.20	0	0	0	0	0	0	0
Flood	0.21-0.50	4	2	2	3	2	0	13
	0.51-1.00	0	1	2	0	0	0	3
	1.01-2.00	2	0	2	0	0	0	4
	2.01-5.00	6	1	2	2	0	0	11
	> 5.00	0	0	0	0	0	0	0
Total		12	4	8	5	2	0	31

The overall accuracy generated by the 25-year flood model is estimated at 12.90%, with 4 points correctly matching the actual flood depths. In addition, there were 11 points estimated one level above and below the correct flood depths while there were 5 points and 11 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 7 points were overestimated while a total of 20 points were underestimated in the modeled flood depths of Pagbanganan.

Table 48. Summary of accuracy assessment in Pagbanganan for 25-year RP

	No. of Points	%
Correct	4	12.90
Overestimated	7	22.58
Underestimated	20	64.52
Total	31	100

Figure 78. Flood map depth vs. actual flood depth for 100-year RP validation

Table 49. A	ctual flood de	pth vs. simulated	l flood dept	h for 100-y	ear RP in l	Pagbanganan
100010 10111		pen ior on meneee	r moor erepe	11101100 /		- ngo nightini

HIMOGAAN	IMOGAANTANAO		Modeled Flood Depth (m)						
BASIN		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
Actual	0-0.20	1	1	0	0	0	0	2	
Flood	0.21-0.50	1	0	1	1	0	0	3	
Deptil (III)	0.51-1.00	2	0	1	0	0	0	3	
	1.01-2.00	1	0	0	0	0	0	1	
	2.01-5.00	0	0	0	0	0	0	0	
	> 5.00	0	0	0	0	0	0	0	
Total		5	1	2	1	0	0	9	

The overall accuracy generated by the 100-year flood model is estimated at 22.22%, with 2 points correctly matching the actual flood depths. In addition, there were 3 points estimated one level above and below the correct flood depths while there were 3 points and 1 point estimated two levels above and below, and three or more levels above and below the correct flood. A total of 3 points were overestimated while a total of 4 points were underestimated in the modeled flood depths of Pagbanganan.

Table 50. Summary of accuracy assessment in Pagbanganan for 100-year RP

	No. of Points	%
Correct	2	22.22
Overestimated	3	33.33
Underestimated	4	44.44
Total	9	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Baybay City, Leyte. 2015. Available from http://philippinescities.com/baybay-city-leyte/

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Local Government of Baybay City Leyte. 2013. Available from https://lgubaybay.wordpress.com/

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Technical Specifications of the LiDAR Sensors Used in the Pagbanganan Floodplain Survey

Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Control rack: 591 x 485 x 578 mm; 53 kg	
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

LYT-731

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 05, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		the second se					_
		Provin	ce: LEYTE				
		Station N	ame: LYT-731				
		Order	: 2nd				
Island: VISAYAS Municipality: BAYBAY		Barangay: MSL Eleva	Barangay: KANSUNGKA MSL Elevation:				
		PRSS	92 Coordinates				
Latitude:	10º 42' 47.59464"	Longitude:	124° 48' 34.34385"	Ellipsoid	al Hgt:	15.61000 m.	
		WGS	84 Coordinates				
Latitude:	10° 42' 43.44572"	Longitude:	124º 48' 39.54791"	Ellipsoid	al Hgt:	78.65700 m.	
		PTM/PI	RS92 Coordinates				
Northing:	1184617.338 m.	Easting:	479165.977 m.	Zone:	5		
		UTM/P	RS92 Coordinates				
Northing:	1,184,777.35	Easting:	697,902.97	Zone:	51		

LYT-731

Location Description

From Babay City going to municipality of Albuera, from a bridge near babay city, Brgy. Kansungka is located on the 3rd junction on the right side of the highway, then passing thru Brgy. Candadau straight to a steel bridge near brgy. San Isidro then left to Brgy. Kasungka the control point is located near the house of ex-brgy. captain aring. The mark is a 3 inches cocnrete nail, embedded on a 40x40x100 cm. cocnrete monument having 40 cm height above the ground and is marked with LYT-731, 2007, LAMP.

Requesting Party:PHIL-LIDAR IPurpose:ReferenceOR Number:8077605 IT.N.:2015-0216

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NM&RA OFFICES: Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Bearcas 25: San Nicolas, 1010 Manila, Philippines, Tel. No.: (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

NAMER OFFICES: Man: Levelor Avenue, Fort Bendeux, 1634 Tagaig City, Philippines Tat. No.: (632) 815-4821 to 81 Branch. 423 Benack 25: San Wester, 1915 Islanik, Philippines, Tat. No. (632) 241-3434 to 38 www.n.smris.gov.ph

ISO 90011 2008 CERTIFIED FOR MAPPING AND GEDSPATIAL INFORMATION MANAGEMENT

ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

LY-297

Vector Components (Mark to Mark)

From:	LYT-731	LYT-731						
	Grid		Local			Global		
Easting	697902.966 m	Latitude	N10*42'47.59464*	Letitude		N10"42'43.44572"		
Northing	1184777.350 m	Longitude	E124*48'34.34385*	Longitude		E124*48'39.54791*		
Elevation .	14.266 m	Height	15.609 m	Height		78.657 m		
Τα:	LY-297							
	Grid	Local		Global		liobal		
Easting	696205.243 m	Latitude	N10*43*21.53694*	Letitude		N10*43*17.38426*		
Northing	1185810.360 m	Longitude	E124*47*38.67725*	Longilude		E124*47*43.88062*		
Bevali on	5.568 m	Height	6.908 m	Height		69.895 m		
Vector								
AEaeting	-1697.72	3 m NS Fwd Aa	dmuth	301"39"21"	۸X	1504.544 m		
ΔNorthing	1033.00	9 m Ellipsoid D	let.	1987.143 m	AY	799.170 m		
AElevetion	-8.69	8 m AHeight		-8.702 m	AZ	1022.982 m		

Standard Errors

Vector errors:	1212 100000000			1011110	
or ∆Easting	0.001 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.001 m
or ANorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σAZ	0.001 m

Apoeteriori Covariance Maintx (Meter*)

X		Y	Z
x	0.0000012108		
Y	-0.0000006864	0.0000020301	
z	-0.0000001551	0.0000003202	0.0000004901

LY-313

Project information		Coordinate System	Coordinate System			
Name:	F:\Doc\DAC\2016\Fieldwork\2016-4-6_20	Name:	UTM			
	Ormoc\ly-313 vs lyt-741.vce	Datum:	PRS 92			
Size:	339 KB	Zone:	51 North (123E)			
Modified:	4/15/2016 6:26:41 PM (UTC:8)	2010.	01110101(1202)			
		Geoid:	egmPH			
Time zone:	Taipei Standard Time	Vectoral data and				
Reference number:		verocal datum.				
Description:						

Baseline Processing Report

Processing Summary									
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
LY-313 LYT-741 (B3)	LYT-741	LY-313	Fixed	0.003	0.014	13"13'57"	18139.132	1.796	
LY-313 LYT-741 (B2)	LYT-741	LY-313	Fixed	0.005	0.014	13"13'57"	18139.104	1.786	
LY-313 LYT-741 (B4)	LYT-741	LY-313	Fixed	0.005	0.014	13"13'57"	18139.125	1.802	

Acceptance Summary									
Processed	Processed Passed Flag 🏲 Fail 🏲								
3 3 0 0									

Vector Components (Mark to Mark)

From:	LYT-741	YT-741					
G	id	Lo	cal		Glo	obal	
Easting	689272.210 m	Latitude	N10°27'11.95721	Latitude		N10°27'07.86786"	
Northing	1155979.897 m	Longitude	E124*43'45.08400	Longitude		E124*43'50.31177*	
Elevation	3.600 m	Height	4.482 r	n Height		67.945 m	
To:	LY-313						
G	id	Local		Global		obal	
Easting	693326.992 m	Latitude	N10"36'46.67221	Latitude		N10"36'42.54525"	
Northing	1173661.007 m	Longitude	E124°46'01.67926	124°46'01.67926" Longitude		E124°46'06.89257*	
Elevation	5.229 m	Height	6.279 r	n Height		69.460 m	
Vector							
∆Easting	4054.78	2 m NS Fwd Azimuth		13"13'57"	ΔX	-1573.287 m	
ΔNorthing	17681.11	0 m Ellipsoid Dist.		18139.132 m	ΔY	-5017.663 m	
ΔElevation	1.62	9 m ΔHeight		1.796 m	ΔZ	17360.172 m	

Standard Errors

Vector errors:							
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0"00"00"	σΔΧ	0.004 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m		
σ ΔElevation	0.007 m	σΔHeight	0.007 m	σΔΖ	0.002 m		

LYT-90

From:	W-22					
	Grid		Local		G	lobal
Easting	675563.750 m	Latitude	N11"00'18.93705"	Latitude		N11"00'14.69624"
Northing	1216955.050 m	Longitude	E124"36'24.81698"	Longitude		E124"36"29.99714"
Elevation	6.321 m	Height	7.666 m	Height		69.516 m
To:	LYT-90					
	Grid		Local		G	lobal
Easting	675667.934 m	Latitude	N11*00'17.78809"	Latitude		N11*00*13.54745*
Northing	1216920.307 m	Longitude	E124°36'28.24274"	Longitude		E124°36'33.42292"
Elevation	7.632 m	Height	8.978 m	Height		70.831 m
Vector						
∆Easting	104.18	3 m NS Fwd Azir	muth	108*44'57*	ΔX	-90.156 m
∆Northing	-34.74	3 m Ellipsoid Dis	t.	109.825 m	ΔY	-52.460 m
∆Elevation	1.31	11 m AHeight		1.312 m	ΔZ	-34.398 m

Standard Errors

Vector errors:								
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0"00'01"	σΔΧ	0.001 m			
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m			
σ ΔElevation	0.001 m	σΔHeight	0.001 m	σΔΖ	0.001 m			

Vector Components (Mark to Mark)

From:	CBU-340	CBU-340						
	Grid		L	.ocal		Global		
Easting	660577.527 m	Latit	ude	N10°38'14.87646"	Latitude		N10°38'10.71737*	
Northing	1176200.458 m	Long	gitude	E124°28'04.68006"	Longitude		E124°28'09.89389"	
Elevation	14.571 m	Heig	ht	15.533 m	Height		77.920 m	
To:	LYT-90							
	Grid		L	.ocal		G	lobal	
Easting	675667.875 m	Latit	ude	N11°00'17.75728"	Latitude		N11°00'13.51665"	
Northing	1216919.360 m	Long	gitude	E124*36'28.24066*	Longitude		E124*36'33.42083*	
Elevation	14.187 m	Heig	ht	15.532 m	Height		77.386 m	
Vector								
∆Easting	15090.34	18 m	NS Fwd Azimut	h	20"36"38"	ΔX	-8272.921 m	
∆Northing	40718.90)2 m	Ellipsoid Dist.		43427.367 m	ΔY	-14957.504 m	
∆Elevation	-0.38	34 m	∆Height	pht		ΔZ	39921.998 m	

	7	1		
Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP	
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP	
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP	
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
		LOVELY GRACIA ACUÑA	UP-TCAGP	
	Supervising Science Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP	

ANNEX 4. The LIDAR Survey Team Composition

FIELD TEAM LiDAR Operation Senior Science Research JULIE PEARL MARS **UP-TCAGP** Specialist Senior Science Research JASMINE ALVIAR **UP-TCAGP** Specialist ENGR. LARAH KRISELLE Research Associate (RA) **UP-TCAGP** PARAGAS RA ENGR. GRACE **UP-TCAGP** SINADJAN RA JONALYN GONZALES **UP-TCAGP** RA MARY CATHERINE **UP-TCAGP** ELIZABETH BALIGUAS RA SANDRA POBLETE **UP-TCAGP** RA JONATHAN ALMALVEZ **UP-TCAGP** RA KRISTINE JOY ANDAYA **UP-TCAGP** RA Ground Survey / Data JERIEL PAUL ALAMBAN, **UP-TCAGP** Download and Transfer GEOL. LiDAR Operation Airborne Security SSG. RANDY SISON JR. PHILIPPINE AIR FORCE (PAF) Pilot CAPT. NEIL ACHILLES ASIAN AEROSPACE AGAWIN CORPORATION (AAC) CAPT. FERDINAND DE AAC OCAMPO

1/2016		
4/3	emer locate Chawdara Chawdara Chawdhara Chawdhara Chawdhara	
	8 22/0A04 22/0A04 22/0A04 22/0A04	
	Ruert FLAN Mail 8.3.5 NA 11.7 NA NA NA	
	eentree 1000 4000 4000 4000 116 116 116 116 116 116 116 116 116	
	9449 9449 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1	
	auder m.m. Marken 144 11 144 11 144 11 1218	
	600mttrin 148 87.1 96.0 96.0 38.9 38.9	
	AMMAR 925 926 926 539 559 559 69 258 438 69 101 A	
FER SHEET	MIREGNICON MIREGNICON 88/208 88/208 98/209 97/209 97/209 97/209 27/133 27/13 27/132 27/13 27/13 27/13 27/13 27/13 27/13 27/13 27/13 27/	
CATA TRANS	Autor	
	Pos 282 251 255 255 255 235 87.4	
	0 1008(mm) 811 777 648 648 648 648 648 535 645 251	
	ANY LAS 905 1.58 347 346 346 ATE	
	R ONDART	
	SENSO ACLUARI ACLUARI ACLUARI ACLUARI ACLUARI ACLUARI ACLUARI	
	ILLABEODY MARKE ILLABEOD76A LLABEOD7	
	Prosert no. 2003AAC 31 2003AAC 31 2005AAC 31 2005A	
	016 8 8 900 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

DATA TRANSFER SHEET 02/13/2015(0RMOC)

				RAV	VLAS				MISSION LOG			BASE 51	ATION(5)	COURATOR	FUGHT	I PLAN	
DATE	FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	POS	RAIN	FILECASI	RAVOE	DIGITIZER	BASE STATION(S)	Base Info (Jul)	(00140)	Actual	KML	LOCATION
21-Jan-15	7753AC	3BLK35B21A	AQUARIUS	NA	270	527	167	N	VN	11.1	MA	29.1	1KB	140		ž	Z IDACIRAW DATA
22-Jan-15	7754AC	3BLK49B022A	AQUARIUS	NA	280	9995	258	NA	MA	12	MA	66.1	1KB	1KB	4	ž	Z-IDACRAW DATA
23-Jan-15	7756AC	3BLK49A023A	AQUARUS	NA	279	548	231	NA	MA	11.9	WY	34	1KB	1KB	3	M	Z-IDACIRAW DATA
25-Jan-15	7760AC	3BLK35A025A	AQUARIUS	NA	289	671	243	NA	MA	12.3	223	26.4	1KB	1KB	4	W	Z'IDACIRAW DATA
27-Jan-15	7764AC	38LK35CD027A	GEMINI	NA	169/107	611	228	NA	MA	11.7	207	1.78	1KB	1KB	0	NA	Z-UDACIRAW DATA
28-Jan-15	7766AC	3BLK49CD028A	AQUARIUS	NA	136	306	216	MA	W	6.71	185MB	1.12	1KB	1KB	6	NA	Z VDACIRAW DATA
28-Jan-15	7767AC	3BLK35X028B	AQUARIUS	NA	123	310	148	NA.	NA	6.4	59.6	18.5	1KB	1KB	8	MA	Z VDACIRAW DATA
29-Jan-15	7768AC	3BLK50A029A	AQUARIUS	NA	152	360	234	MA	NN.	7.39	111	40.2	19(3)	1KB	8	NA	Z UDACIRAW DATA

C. Johnin 280

116

r 2/15/15

15-08

DATA TRANSFER SHEET ORMOC(SOUTH LEYTE) \$222016

				RAW	LAS				MISSION LOG	Γ		BASE STA	(TON(S)	OPERATOR	FLIGHT	PLAN	
DATE	FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS	POS	IMAGESICASI	FILEICASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.tot)	(oproc)	Actual	KML	SERVER
April 10,2016	39216	2BLK34a101A	GEMIN	W	270	673	275	NA	W	20.5	NA	19.1	160	1KB	23	¥	Z-IDACRAW DATA
April 10,2016	3923G	2BLK49AB101B	GEMIN	NA	375	377	168	NA	W	8.5	¥N.	19.1	1 KB	168	23	W	Z'IDACIRAW
April 11,2016	39256	2BLK49DE102A	GEMINI	NA NA	136	570	252	NA	NA	956	W	6.82	1 KB	1K8	23	NN.	Z'IDACIPAW
April 13,2016	39336	2BLK50ABC104A	GEMIN	MA	581	474	262	¥2	NA	16.2	Ň	17.4	168	1KB	W	W	Z'IDACIRAW DATA
April 14,2016	39376	28LK50D5105A	GEMINI	MA	763	557	292	MA	NA	14.7	NN.	10.5	1KB	168	28	NA	Z'DACIPAW
April 16,2016	39456	2BLK35AB107A	GEMIN	NA	216	940	267	MA	NA	17.1	NA	19.5	1KB	188	9	¥	21DACIRAW
April 16,2016	39476	2BUG5CS107B	GEMINI	W	492	1.03	278	ž	NA	21	Ň	19.5	1KB	1KB	10	ž	CIDACRAW

Received from

Received by

LiDAR Surveys and Flood Mapping of Silaga River

	Uder Operator <u> UK 10 r John</u> Genture over Prineld Rame
ide with Algi tran	
6 CASI and VO	Paper Comma
Campleted B.	Acquicition Flight Carried by Acquicition Flight Carried by Carr (19404) 9000 Signature Core Printed Name (MK Representative)
: 100	4 Approved by Approved by Mission Stanse centerine)
	Campleted BL35E and Voids with Agi tizer No CASI

Flight log for 2BLK34a101A Mission

ANNEX 7. Flight status reports

-		2			
FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7764AC	BLK35C&D	3BLK35CD027A	LK PARAGAS	JANUARY 27, 2015	Completed Blk35C and Blk35D, skipped some lines of 35D due to high terrain. With digitizer, No CASI
7792AC	BLK35F	3BLK35FV041A	G SINADJAN	FEBRUARY 10, 2015	Completed lines of Blk25FV. No digitizer. No CASI
7794AC	BLK35E	3BLK35EV042A	LK PARAGAS	FEBRUARY 11, 2015	Completed Blk35E and some voids with digitizer. No CASI
8407AC	BLK 48ABEG	3BLK48FG078A	J GONZALES	MARCH 18, 2016	SURVEYED BLK 48ABEG 46.94 SQ KM
3921G	BLK34a	2BLK34a101A	J.ALMALVEZ	APRIL 10, 2016	SURVEYED BLK34a, 49A and 49B
3925G	49DE	2BLK49DE102A	K. ANDAYA	APRIL 11, 2016	SURVEYED VOIDS OVER BLK 49D AND 49E

LAS BOUNDARIES PER FLIGHT

Flight No. : 7764AC Mission Name: 3BLK35CD027A Area: BLK35C, BLK35D ALT: 500m SCAN FREQ: 45 SURVEYED AREA: 93.69 SQ KM.

SCAN ANGLE: 20Deg PRF:50 Hz

Flight No. : 7764AC Mission Name: 3BLK35CD027A Area: BLK35C, BLK35D ALT: 500m SCAN Fl SURVEYED AREA: 93.69 S

SCAN FREQ: 45 93.69 SQ KM. SCAN ANGLE: 20Deg PRF:50 Hz

Flight No. : 7792AC Mission Name: 3BLK35FV041A Area: BLK35F, BLK35V ALT: 500m SCAN FREQ: 45 SURVEYED AREA: 73.67 SQ KM.

SCAN ANGLE: 18Deg PRF:50Hz

Baybay-City

Flight No. : 7794AC Mission Name: 3BLK35EV042A Area: BLK35E, BLK35V ALT: 500m SCAN FREQ: 45 SURVEYED AREA: 75.56 SQ KM.

SCAN ANGLE: 20Deg PRF:50Hz

Flight No. : 8407AC Mission Name: 3BLK48FG078A Area: BLK 48ABEG ALT: 500m SCAN F SURVEYED AREA: 60.72 S

SCAN FREQ: 45 60.72 SQ KM.

SCAN ANGLE: 18

FLIGHT NO.: AREA: MISSION NAME: ALT: 1000m SURVEYED AREA: 3921 Ormoc 2BLK34a101A SCAN FREQ: 50 157.04 SQ KM.

SCAN ANGLE: 18

START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan	File	
02:05:33.1	02:07:34.609	1	1111	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	southern	leyte	additonal01000.pln
02:10:01.723	02:11:43.463	6	1087	100	50.00	18.00	OFF	NAR	ON	OFF	315.00	Southern	leyte	additonal@1000.pln
02:14:50.586	02:16:56.781	2	1123	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	Southern	leyte	_additional@1000.pln
02:19:42.155	02:21:29.779	7	1095	100	50,00	18.00	OFF	NAR	ON	OFF	135.00	Southern	_leyte	_additional@1000.pln
02:23:41.438	02:25:49.017	3	1122	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	Southern	_leyte	_additonal@1000.pln
02:28:22.016	02:30:16.016	8	1132	100	50.00	18.00	OFF	NAR	ON	OFF	315.00	Southern	leyte	_additonal@1000.pln
02:32:42.64	02:34:57.529	4	1155	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	Southern	leyte	_additonal01000.pln
02:37:57.298	02:39:44.017	9	1138	100	50.00	18.00	OFF	NAR	ON	OFF	315.00	Southern	_leyte	additional@1000.pln
02:42:49.011	02:44:56.505	5	1149	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	Southern	leyte	_additonal@1000.pln
02:47:10.729	02:48:53.899	10	1137	100	50.00	18.00	OFF	NAR	ON	OFF	\$15.00	Southern	loyte	_additional@1000.pln
02:51:47.018	02:53:54.412	11	1111	100	50,00	18,00	OFF	NAR	ON	OFF	315.00	Southern	leyte	_additonal@1000.pln
02:56:21.616	02:58:02.305	12	1119	100	50.00	18.00	OFF	NAR	ON	OFF	315.00	Southern	leyte	_additonal@1000.pln
03:00:35.014	03:01:04.074	6	1176	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	southern	leyte	additonal@1000.pln
03:00:35.014	03:01:04.074	6	1176	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	southern	levte	additonal@1000.pln
03:01:54.559	03:02:13.244	3	1098	100	50,00	18,00	OFF	NAR	ON	OFF	315.00	Southern	leyte	additional@1000.pln
03:01:54.559	03:02:13.244	3	1095	100	50,00	18.00	OFF	NAR	ON	OFF	315.00	Southern	layte	additonal@1000.pln
03:06:04.217	03:06:50.957	3	1144	100	50,00	18.00	OFF	NAR	ON	OFF	135.00	Southern	levte	additonal@1000.pln
03:06:04.217	03:06:50.957	3	1146	100	50,00	18.00	OFF	NAR	ON	OFF	135.00	Southern	levte	additonal@1000.pln
03:06:04.217	03:06:50.957	3	1147	100	50.00	18.00	OFF	NAR	ON	OFF	135.00	Southern	levte	additonal@1000.pln
03:10:02.621	03:11:36.505	3	1093	100	50.00	18.00	DEE	NAR	ON	DEE	135.00	Southern	levre	additional@1000.pln
03:18:13,908	03:22:06.016	79	1127	100	50,00	18,00	DEE	NAR	ON	DEE	144.00	Southern	levie	additional@1000.nln
03:23:36.821	01:27:27.709	71	1115	100	50.00	18.00	OFF	NAR	ON	OFF	\$24.00	Southern	lowto	additonal@1000.pln
03:29:17.512	02:22:20, 202	78	1106	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Southern	levte	additonal@1000.pln
03:36:07 101	03:39:47 599	77	1122	100	50.00	18.00	OFF	NAR	ON	OFF	324 00	Southern	levie	additonal@1000.pln
03:43:09.538	03:47:32.242	76	1140	100	50.00	18.00	OFF	NAP	ON	OFF	144.00	Southern	levie	additonal@1000.nln
03-51-14 34	03-55-00 630	75	1005	100	50.00	18.00	DEE	NAP	CIN.	DEE	324.00	southern	10.70	additional@1000.pln
03:58:47.067	04:03:15.441	7.6	1124	100	50.00	15.00	DEE	NAP	ON	DEE	144.00	Southern	laura	additonal@1000.pln
04:06:40 000	04:07:54 154	7.4	1104	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Southern	loute	additonal@1000.pln
04-11-40 772	04:15:00 861	80	1126	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Couthern	loute	additonal@1000.pln
04-18-10 835	04-21-10 444	87	1155	100	50,00	18.00	OFF	NAD	ON	OFF	224.00	Southern.	loyte	additonal@10000.pln
04-24-20 102	04:22:127.444	61	1107	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Southern	leyce	additional@10000.pm
04:20:33.103	04:27:34.002	01	1000	100	50.00	10.00	OFF	PERFC.	ON	OFF	224.00	Southern	leyce	additional@1000.pin
04:29:34.091	04:32:33.03	00	1030	100	50.00	10.00	OFF	RAK	ON	OFF	324.00	Southern	leyte	additional diodo. pin
04:34:39.099	04:30:10.003	62	11.32	100	50.00	18.00	UFF	NAK	ON	OFF	144.00	Southern	leyte	_additional@1000.pin
04:59:50.802	04:42:33.130	89	1115	100	50.00	18.00	UPP	NAK	ON	OFF	524.00	Southern	leyte	_accitional@1000.pin
04:44:52.04	04:48:02.5/9	85	1080	100	50.00	18.00	DEE	NAR	ON	DEE	144.00	southern	leyte	_additional@1000.pin
04:50:02.949	04:53:1/./52	90	1130	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Southern	leyte	_additional@1000.pln
04:55:22.692	04:58:34.186	84	1093	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	southern	leyte	additional@1000.pin
05:00:20.07	05:03:06.489	91	1074	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	southern	leyte	additional@1000.pln
05:05:46.578	05:09:05.297	85	1082	100	50.00	18.00	0FF	NAR	ON	06.6	144.00	Southern	leyte	_accitonal@1000.pln
05:12:04.956	05:15:06.41	92	1077	100	20.00	18.00	OFF	NAR	ON	OE.E	\$24.00	Southern	leyte	_additional@1000.pln
05:18:17.014	05:21:44.073	80	1113	100	50,00	18.00	OFF	NAR	ON	OFF	144.00	Southern	leyte	_additional@1000.pln
05:24:47.357	05:26:42.751	86	1098	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Southern	_leyte	_additona161000.pln

FLIGHT NO.: AREA: MISSION NAME: ALT: 1000m SURVEYED AREA:

3925 Ormoc 2BLK49DE102A SCAN FREQ: 50 74.34 SQ KM.

SCAN ANGLE: 18

	START	STOP	LINE#	ALT	PRF	FREQ	ANGLE	MP	DIV	RC	MPM	HDG	Plan File
(01:34:50.152	01:37:57.256	27	1124	100	50.00	18.00	OFF	NAR	ON	OFF	75.00	Default.pln
	01:40:24.36	01:42:36.014	29	1122	100	50.00	18.00	OFF	NAR	ON	OFF	255.00	Default.pln
0	01:46:06.222	01:48:36.221	30	1122	100	50.00	18.00	OFF	NAR	ON	OFF	75.00	Default.pln
	01:51:58.05	01:54:09.819	31	1112	100	50.00	18.00	OFF	NAR	ON	OFF	255.00	Default.pln
0	01:57:49.433	02:00:15.467	32	1142	100	50.00	18.00	OFF	NAR	ON	OFF	75.00	Default.pln
0	02:03:42.471	02:05:46.215	33	1150	100	50.00	18.00	OFF	NAR	ON	OFF	255.00	Default.pln
0	02:09:34.644	02:13:19.982	28	1130	100	50.00	18.00	OFF	NAR	ON	OFF	75.00	Default.pln
0	02:17:19.401	02:18:22.785	27	1113	100	50.00	18.00	OFF	NAR	ON	OFF	75.00	Default.pln
0	02:22:27.159	02:25:07.613	73	1120	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Default.pln
0	02:28:44.542	02:31:05.546	74	1097	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Default.pln
	02:34:44.79	02:38:42.018	75	1115	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Default.pln
(02:42:04.582	02:42:25.127	75	1122	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Default.pln
(02:45:53.406	02:49:11.755	76	1141	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Default.pln
(02:54:44.373	02:56:20.512	80	1126	100	50.00	18.00	OFF	NAR	ON	OFF	144.00	Default.pln
0	02:59:45.236	03:01:54.27	87	1142	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Default.pln
0	03:05:45.409	03:07:15.303	87	1135	100	50.00	18.00	OFF	NAR	ON	OFF	324.00	Default.pln
(03:15:36.235	03:20:12.764	95	1036	100	50.00	18.00	OFF	NAR	ON	OFF	17.00	Default.pln
0	08:23:25.993	03:25:43.962	95	956	100	50.00	18.00	OFF	NAR	ON	OFF	197.00	Default.pln
0	03:28:33.341	03:29:05.346	95	1092	100	50,00	18,00	OFF	NAR	ON	OFF	197.00	Default.pln

ANNEX 8. Mission Summary Reports

Flight Area	Ormoc
Mission Name	Blk35CD
Inclusive Flights	7764AC
Range data size	11.7 GB
POS	228 MB
Base data size	37.1 MB
Image	n/a
Transfer date	February 25, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.00
RMSE for East Position (<4.0 cm)	1.25
RMSE for Down Position (<8.0 cm)	2.30
Boresight correction stdev (<0.001deg)	0.000411
IMU attitude correction stdev (<0.001deg)	0.0080
GPS position stdev (<0.01m)	0.001860
Minimum % overlap (>25)	37.62
Ave point cloud density per sq.m. (>2.0)	2.91
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	133
Maximum Height	381.80 m
Minimum Height	54.25 m
Classification (# of points)	
Ground	37,242,918
Low vegetation	39,172,896
Medium vegetation	58,295,535
High vegetation	46,287,415
Building	3,419,184
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Velina Angela Bemida, Alex John Escobido

Best Estimated Trajectory

Coverage of LiDAR data

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Ormoc		
Mission Name	Blk35F		
Inclusive Flights	7792AC		
Range data size	10.3 GB		
POS data size	238 MB		
Base data size	9.46 MB		
Image	n/a		
Transfer date	February 25, 2015		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	0.801		
RMSE for East Position (<4.0 cm)	1.046		
RMSE for Down Position (<8.0 cm)	3.189		
Boresight correction stdev (<0.001deg)	0.000252		
IMU attitude correction stdev (<0.001deg)	0.001131		
GPS position stdev (<0.01m)	0.0071		
Minimum % overlap (>25)	40.09		
Ave point cloud density per sq.m. (>2.0)	2.97		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	51		
Maximum Height	372.19		
Minimum Height	58.93		
Classification (# of points)			
Ground	36,595,482		
Low vegetation	35,969,971		
Medium vegetation	29,099,660		
High vegetation	53,162,081		
Building	2,740,133		
Orthophoto	None		
Processed by	Engr. Abigail Joy Ching, Engr. Melanie Hingpit, Engr. Sueden Lyle Magtalas		

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Image of Data Overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Ormoc			
Mission Name	Blk35E_voids			
Inclusive Flights	7794AC			
Range data size	11.9 GB			
POS data size	252 MB			
Base data size	37.5 MB			
Image	n/a			
Transfer date	February 25, 2015			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	Yes			
Baseline Length (<30km)	No			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	2.226			
RMSE for East Position (<4.0 cm)	3.445			
RMSE for Down Position (<8.0 cm)	5.152			
Boresight correction stdev (<0.001deg)	0.000273			
IMU attitude correction stdev (<0.001deg)	0.001690			
GPS position stdev (<0.01m)	0.0029			
Minimum % overlap (>25)	31.67			
Ave point cloud density per sq.m. (>2.0)	3.63			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	103			
Maximum Height	539.5			
Minimum Height	57.92			
Classification (# of points)				
Ground	25,588,162			
Low vegetation	20,307,830			
Medium vegetation	29,516,371			
High vegetation	49,004,056			
Building	1,463,518			
Orthophoto	None			
Processed by	Engr. Regis Guhiting, Engr. Justine Francisco, Engr. Krisha Marie Bautista			
Processed by	Engr. Sheila Maye Santillan, Engr. Elainne Lopez, Engr. Merven Matthew Natino			

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Elevation difference between flight lines

Flight Area	Ormoc_Camotes			
Mission Name	Blk48E			
Inclusive Flights	8407AC			
Range data size	6.9 GB			
POS	235 MB			
Image	37.8 GB			
Base Station	209 MB			
Transfer date	April 22, 2016			
Solution Status				
Number of Satellites (>6)	Yes			
PDOP (<3)	No			
Baseline Length (<30km)	Yes			
Processing Mode (<=1)	Yes			
Smoothed Performance Metrics (in cm)				
RMSE for North Position (<4.0 cm)	1.18			
RMSE for East Position (<4.0 cm)	1.15			
RMSE for Down Position (<8.0 cm)	2.52			
Boresight correction stdev (<0.001deg)	0.000751			
IMU attitude correction stdev (<0.001deg)	0.002941			
GPS position stdev (<0.01m)	0.0025			
Minimum % overlap (>25)	25.68			
Ave point cloud density per sq.m. (>2.0)	2.65			
Elevation difference between strips (<0.20 m)	Yes			
Number of 1km x 1km blocks	34			
Maximum Height	233.92			
Minimum Height	43.13			
Classification (# of points)				
Ground	13,061,856			
Low vegetation	8,537,709			
Medium vegetation	8,453,919			
High vegetation	11,753,897			
Building	348,998			
Orthophoto	None			
Processed by	Engr. Abigail Joy Ching, Aljon Rie Araneta, Jovy Narisma			

Elevation difference between flight lines

Flight Area	Ormoc_Camotes				
Mission Name	Blk48G				
Inclusive Flights	8407AC				
Range data size	6.9 GB				
POS	235 MB				
Image	37.8 GB				
Base Station	209 MB				
Transfer date	April 22, 2016				
Solution Status					
Number of Satellites (>6)	Yes				
PDOP (<3)	No				
Baseline Length (<30km)	No				
Processing Mode (<=1)	No				
Smoothed Performance Metrics (in cm)					
RMSE for North Position (<4.0 cm)	1.31				
RMSE for East Position (<4.0 cm)	1.39				
RMSE for Down Position (<8.0 cm)	2.7				
Boresight correction stdev (<0.001deg)	0.000675				
IMU attitude correction stdev (<0.001deg)	0.002173				
GPS position stdev (<0.01m)	0.0025				
Minimum % overlap (>25)	29.59				
Ave point cloud density per sq.m. (>2.0)	2.63				
Elevation difference between strips (<0.20 m)	Yes				
Number of 1km x 1km blocks	42				
Maximum Height	184.89				
Minimum Height	45.16				
Classification (# of points)					
Ground	8,932,930				
Low vegetation	5,735,327				
Medium vegetation	4,253,659				
High vegetation	7,204,177				
Building	458,259				
Orthophoto	None				
Processed by	Engr. Abigail Joy Ching ,Engr. Velina Angela Bemida, Jovy Narisma				
Processed by	Engr. Sheila Maye Santillan, Engr. Elainne Lopez, Engr. Merven Matthew Natino				

Elevation difference between flight lines

Flight Area	Ormoc South		
Mission Name	BIk35E		
Inclusive Flights	3925G		
Range data size	9.56 GB		
POS data size	252 MB		
Base data size	6.82 MB		
Image	NA		
Transfer date	May 6, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.11		
RMSE for East Position (<4.0 cm)	1.28		
RMSE for Down Position (<8.0 cm)	2.98		
Boresight correction stdev (<0.001deg)	0.001264		
IMU attitude correction stdev (<0.001deg)	0.001457		
GPS position stdev (<0.01m)	0.0202		
Minimum % overlap (>25)	31.99		
Ave point cloud density per sq.m. (>2.0)	5.00		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	34		
Maximum Height	1068.88 m		
Minimum Height	63.13 m		
Classification (# of points)			
Ground	5,803,071		
Low vegetation	3,515,263		
Medium vegetation	11,459,353		
High vegetation	26,114,465		
Building	45,380		
Orthophoto	No		
Processed by	Engr. Jennifer Saguran,		
Engr. Wilbert Ian San Juan	Engr. Sheila Maye Santillan, Engr. Elainne Lopez, Engr. Merven Matthew Natino		

Best Estimated Trajectory

Elevation difference between flight lines

Flight Area	Ormoc South		
Mission Name	BIk35E		
Inclusive Flights	3925G		
Range data size	9.56 GB		
POS data size	252 MB		
Base data size	6.82 MB		
Image	NA		
Transfer date	May 6, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	No		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.11		
RMSE for East Position (<4.0 cm)	1.28		
RMSE for Down Position (<8.0 cm)	2.98		
Boresight correction stdev (<0.001deg)	0.001264		
IMU attitude correction stdev (<0.001deg)	0.001457		
GPS position stdev (<0.01m)	0.0202		
Minimum % overlap (>25)	31.99		
Ave point cloud density per sq.m. (>2.0)	5.00		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	34		
Maximum Height	1068.88 m		
Minimum Height	63.13 m		
Classification (# of points)			
Ground	5,803,071		
Low vegetation	3,515,263		
Medium vegetation	11,459,353		
High vegetation	26,114,465		
Building	45,380		
Orthophoto	No		
Processed by	Engr. Jennifer Saguran,		
Engr. Wilbert Ian San Juan	Engr. Sheila Maye Santillan, Engr. Elainne Lopez, Engr. Merven Matthew Natino		

Best Estimated Trajectory

Density map of merged LiDAR data

Elevation difference between flight lines

Annex 9. Pagbanganan Model Basin Parameters

Basin Number	SCS Curve Nur	nber Loss		Clark Unit Hydr Transform	ograph	Recession B	laseflow			
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W180	70.1822	36.4105	0	1.88916	1.37258	Discharge	7.5092	0.9	Ratio to Peak	0.075
W170	147.079	53.35729	0	1.52347	0.70125	Discharge	5.6594	0.9	Ratio to Peak	0.075
W160	50.7604	35.6732	0	1.46653	0.707894	Discharge	9.8906	0.9	Ratio to Peak	0.075
W150	51.0739	66	0	0.550602	0.253528	Discharge	0.89135	0.9	Ratio to Peak	0.075
W140	51.9384	60.92623	0	0.878176	0.363814	Discharge	2.3723	0.9	Ratio to Peak	0.075
W130	55.41825	52.46445	0	0.712387	0.223905	Discharge	1.4318	0.9	Ratio to Peak	0.075
W120	57.31065	46.36607	0	0.537446	0.24651	Discharge	1.5652	0.9	Ratio to Peak	0.075
W110	26.77195	89.11533	0	0.749268	0.343915	Discharge	0.89941	0.9	Ratio to Peak	0.075
W100	69.24075	67.82857	0	0.455858	0.30877	Discharge	2.127	0.9	Ratio to Peak	0.075
										L

Reach	Muskingum Cunge Channel	Routing					
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R20	Automatic Fixed Interval	3486.7	0.001588	0.04	Trapezoid	57.37	1
R30	Automatic Fixed Interval	5252.1	0.002028	0.04	Trapezoid	56.69	1
R50	Automatic Fixed Interval	7840.7	0.001588	0.04	Trapezoid	45.65	1
R60	Automatic Fixed Interval	3190.3	0.003569	0.04	Trapezoid	44.49	1

ANNEX 10. Pajo Model Reach Parameters

Point Number	Validation Coo (in WGS84)	rdinates	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
1	10.692681	124.799179	0.16	0.2	-0.04	Ruby/Dec 3-10, 2014	2-Year
2	10.680384	124.803686	0.99	0.2	0.79	Caloy/March 18-24, 2014	2-Year
3	10.680381	124.804132	0.90	0	0.90		
4	10.68069	124.804607	0.65	0	0.65		
5	10.681097	124.806127	2.23	0.5	1.73	Ruby/Dec 3-10, 2014	2-Year
6	10.681097	124.806127	2.23	0.5	1.73	Senyang/Dec 28-31, 2014	2-Year
7	10.681158	124.804685	0.03	0	0.03		
8	10.680583	124.80448	0.60	0.3	0.30	Ruby/Dec 3-10, 2014	2-Year
9	10.68067	124.804548	0.65	0.4	0.25	Ruby/Dec 3-10, 2014	2-Year
10	10.680092	124.804565	0.43	0	0.43		
11	10.679525	124.803745	0.33	0.1	0.23	Ruby/Dec 3-10, 2014	2-Year
12	10.679525	124.803745	0.33	0.1	0.23	Senyang/Dec 28-31, 2014	2-Year
13	10.67905	124.803876	0.34	0	0.34		
14	10.679633	124.804956	0.40	0.5	-0.10	Ruby/Dec 3-10, 2014	2-Year
15	10.679633	124.804956	0.40	0.5	-0.10	Senyang/Dec 28-31, 2014	2-Year
16	10.679633	124.804956	0.40	5	-4.60	Yolanda/November 7-9, 2013	2-Year
17	10.680073	124.805624	0.65	0.3	0.35	Ruby/Dec 3-10, 2014	2-Year
18	10.680073	124.805624	0.65	0	0.65	Senyang/Dec 28-31, 2014	2-Year
19	10.680073	124.805624	0.65	0	0.65	Ruby/Dec 3-10, 2014	2-Year
20	10.680681	124.806683	0.95	0.4	0.55	Ruby/Dec 3-10, 2014	2-Year
21	10.680681	124.806683	0.95	0.4	0.55	Senyang/Dec 28-31, 2014	2-Year
22	10.680156	124.8068	0.46	0.3	0.16	Ruby/Dec 3-10, 2014	2-Year
23	10.680156	124.8068	0.46	0.3	0.16	Butchoy/July 2-3, 2016	2-Year
24	10.679485	124.807274	0.03	0	0.03		
25	10.678885	124.807735	0.03	0	0.03		
26	10.699455	124.799072	1.16	0.3	0.86	Ruby/Dec 3-10, 2014	2-Year
27	10.699455	124.799072	1.16	0.3	0.86	Senyang/Dec 28-31, 2014	2-Year
28	10.699455	124.799072	1.16	0.2	0.96	Heavy Rain/Jan-Feb 2016	2-Year
29	10.696936	124.799237	1.12	0	1.12	Ruby/Dec 3-10, 2014	2-Year
30	10.696468	124.798978	1.28	0.1	1.18	Butchoy/July 2-3, 2016	2-Year
31	10.696468	124.798978	1.28	0.1	1.18	Ruby/Dec 3-10, 2014	2-Year
32	10.695448	124.798708	0.87	0	0.87	Ruby/Dec 3-10, 2014	2-Year
33	10.695448	124.798708	0.87	0	0.87	Senyang/Dec 28-31, 2014	2-Year
34	10.694264	124.798919	2.06	0	2.06	Ruby/Dec 3-10, 2014	2-Year
35	10.694376	124.798041	0.73	0	0.73	Ruby/Dec 3-10, 2014	2-Year
36	10.693872	124.798466	1.21	0.2	1.01	Ruby/Dec 3-10, 2014	2-Year
37	10.693872	124.798664	1.66	1.2	0.46	Ruby/Dec 3-10, 2014	2-Year
38	10.693032	124.798839	0.13	0	0.13	Ruby/Dec 3-10, 2014	2-Year
39	10.692734	124.798027	0.30	0.2	0.10	Ruby/Dec 3-10, 2014	2-Year
40	10.688888	124.798367	0.03	0	0.03	Ruby/Dec 3-10, 2014	2-Year

ANNEX 11. Pajo Field Validation Points
Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long	1				
41	10.688701	124.796053	0.84	0.1	0.74	Ruby/Dec 3-10, 2014	2-Year
42	10.681142	124.801586	0.90	0	0.90		
43	10.681585	124.801707	0.50	0.3	0.20	Ruby/Dec 3-10, 2014	2-Year
44	10.681921	124.801225	0.39	0	0.39		
45	10.682127	124.801547	0.16	0	0.16		
46	10.682659	124.801278	1.60	0.4	1.20	Ruby/Dec 3-10, 2014	2-Year
47	10.682799	124.80142	1.69	0.6	1.09	Ruby/Dec 3-10, 2014	2-Year
48	10.682799	124.80142	1.69	0.2	1.49	Heavy Rain/Jan-Feb 2016	2-Year
49	10.682799	124.80142	1.69	0.6	1.09	Senyang/Dec 28-31, 2014	2-Year
50	10.683051	124.80064	2.44	0.6	1.84	Ruby/Dec 3-10, 2014	2-Year
51	10.683051	124.80064	2.44	0.2	2.24	Senyang/Dec 28-31, 2014	2-Year
52	10.682407	124.80098	0.56	0.2	0.36	Heavy Rain/Jan-Feb 2016	2-Year
53	10.680672	124.802043	0.62	0	0.62		
54	10.681175	124.804097	0.41	0.2	0.21	Heavy Rain/Jan-Feb 2016	2-Year
55	10.681175	124.804097	0.41	0.4	0.01	Ruby/Dec 3-10, 2014	2-Year
56	10.681609	124.804408	1.08	0.7	0.38	Ruby/Dec 3-10, 2014	2-Year
57	10.681609	124.804408	1.08	0.7	0.38	Heavy Rain/Jan-Feb 2016	2-Year
58	10.683333	124.806068	0.03	0	0.03		
59	10.683109	124.80634	1.92	0.3	1.62	Heavy Rain/Jan-Feb 2016	2-Year
60	10.683109	124.806522	1.91	0.6	1.31	Heavy Rain/Jan-Feb 2016	2-Year
61	10.682728	124.806885	1.82	0.4	1.42	Ruby/Dec 3-10, 2014	2-Year
62	10.682728	124.806885	1.82	0	1.82	Heavy Rain/Jan-Feb 2016	2-Year
63	10.682535	124.806817	1.79	0.4	1.39	Ruby/Dec 3-10, 2014	2-Year
64	10.682535	124.806817	1.79	0	1.79	Heavy Rain/Jan-Feb 2016	2-Year
65	10.683416	124.806831	0.03	0	0.03		
66	10.684573	124.80777	0.98	0.1	0.88	Ruby/Dec 3-10, 2014	2-Year
67	10.684976	124.80827	1.56	0.5	1.06	Heavy Rain/Jan-Feb 2016	2-Year
68	10.684976	124.80827	1.56	3	-1.44	Ruby/Dec 3-10, 2014	2-Year
69	10.685066	124.809565	1.82	0.7	1.12	Ruby/Dec 3-10, 2014	2-Year
70	10.685066	124.809565	1.82	0.5	1.32	Heavy Rain/Jan-Feb 2016	2-Year
71	10.684999	124.810905	1.37	0.2	1.17	Ruby/Dec 3-10, 2014	2-Year
72	10.684999	124.810905	1.37	0.2	1.17	Yolanda/November 7-9, 2013	2-Year
73	10.685222	124.811223	1.27	0	1.27	Heavy Rain/Jan-Feb 2016	2-Year
74	10.685536	124.811548	1.26	0	1.26		
75	10.676096	124.813218	2.31	3	-0.69	Ruby/Dec 3-10, 2014	2-Year
76	10.678281	124.808464	4.37	2	2.37	Ruby/Dec 3-10, 2014	2-Year
77	10.678281	124.808464	4.37	0.5	3.87	Senyang/Dec 28-31, 2014	2-Year
78	10.678617	124.810037	3.66	0.5	3.16	Senyang/Dec 28-31, 2014	2-Year
79	10.678617	124.810037	3.66	2	1.66	Ruby/Dec 3-10, 2014	2-Year
80	10.678415	124.808977	3.42	0.5	2.92	Senyang/Dec 28-31, 2014	2-Year
81	10.678415	124.808977	3.42	2	1.42	Ruby/Dec 3-10, 2014	2-Year
82	10.699825	124.79879	0.69	0.3	0.39	Ruby/Dec 3-10, 2014	2-Year

Point Number	Validation Coordinates (in WGS84)		Model Validation Error Var Points (m) (m)		Error	r Event/Date	
	Lat	Long	1				
83	10.68836	124.794981	0.74	0.2	0.54	Ruby/Dec 3-10, 2014	2-Year
84	10.68836	124.794981	0.74	0.2	0.54	Yolanda/November 7-9, 2013	2-Year
85	10.693204	124.798094	0.60	0.2	0.40	Ruby/Dec 3-10, 2014	2-Year
86	10.688052	124.794556	0.29	0.4	-0.11	Ruby/Dec 3-10, 2014	2-Year
87	10.688052	124.794556	0.29	0.4	-0.11	Senyang/Dec 28-31, 2014	2-Year
88	10.688052	124.794556	0.29	0.4	-0.11	Yolanda/November 7-9, 2013	2-Year
89	10.688052	124.794556	0.29	0.4	-0.11	Heavy Rain/Jan-Feb 2016	2-Year
90	10.68822	124.794854	0.20	0.3	-0.10	Ruby/Dec 3-10, 2014	2-Year
91	10.687926	124.794995	0.41	0.6	-0.19	Ruby/Dec 3-10, 2014	2-Year
92	10.694981	124.799939	1.52	0.2	1.32	Ruby/Dec 3-10, 2014	2-Year
93	10.694981	124.799939	1.52	0.4	1.12	Heavy Rain/Jan-Feb 2016	2-Year
94	10.695167	124.799796	0.94	0.3	0.64	Heavy Rain/Jan-Feb 2016	2-Year
95	10.695167	124.799796	0.94	0.5	0.44	Ruby/Dec 3-10, 2014	2-Year
96	10.694618	124.800791	1.33	0.5	0.83	Ruby/Dec 3-10, 2014	2-Year
97	10.694618	124.800791	1.33	0.4	0.93	Butchoy/	2-Year
98	10.694394	124.801291	0.80	0	0.80	Ruby/Dec 3-10, 2014	2-Year
99	10.694354	124.801217	1.24	0.3	0.94	Ruby/Dec 3-10, 2014	2-Year
100	10.694354	124.801217	1.24	0.3	0.94	Heavy Rain/Jan-Feb 2016	2-Year
101	10.694303	124.801666	0.80	0.7	0.10	Ruby/Dec 3-10, 2014	2-Year
102	10.692986	124.799346	0.14	0.2	-0.06	Ruby/Dec 3-10, 2014	2-Year
103	10.692986	124.799346	0.14	0.2	-0.06	Heavy Rain/Jan-Feb 2016	2-Year
104	10.692486	124.801087	0.60	0.2	0.40	Senyang/Dec 28-31, 2014	2-Year
105	10.692486	124.801087	0.60	0.2	0.40	Ruby/Dec 3-10, 2014	2-Year
106	10.690994	124.801112	0.70	0	0.70		
107	10.690514	124.801204	0.13	0	0.13		
108	10.690222	124.801043	0.20	0	0.20		
109	10.689828	124.800874	0.23	0.5	-0.27	Ruby/Dec 3-10, 2014	2-Year
110	10.689828	124.800874	0.23	0.5	-0.27	Senyang/Dec 28-31, 2014	2-Year
111	10.689407	124.802223	1.48	0.5	0.98	Ruby/Dec 3-10, 2014	2-Year
112	10.689407	124.802223	1.48	0.5	0.98	Senyang/Dec 28-31, 2014	2-Year
113	10.688677	124.80235	1.37	0.4	0.97	Carina/July 26-30, 2016	2-Year
114	10.688677	124.80235	1.37	0.1	1.27	Ruby/Dec 3-10, 2014	2-Year
115	10.687404	124.801634	0.45	0	0.45		
116	10.688108	124.802155	0.54	0	0.54		
117	10.688219	124.802542	0.64	0	0.64		
118	10.686878	124.803177	0.07	0	0.07		
119	10.683536	124.804411	3.75	0.5	3.25	Ruby/Dec 3-10, 2014	2-Year
120	10.683023	124.805133	2.64	1	1.64	Ruby/Dec 3-10, 2014	2-Year
121	10.683023	124.805133	2.64	1	1.64	Senyang/Dec 28-31, 2014	2-Year
122	10.685031	124.804121	0.06	0.3	-0.24	Yolanda/November 7-9, 2013	2-Year
123	10.685031	124.804121	0.06	0.3	-0.24	Ruby/Dec 3-10, 2014	2-Year
124	10.68338	124.805704	0.03	0.6	-0.57	Ruby/Dec 3-10, 2014	2-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return /
							Scenario
	Lat	Long					
125	10.68338	124.805704	0.03	0.6	-0.57	Senyang/Dec 28-31, 2014	2-Year
126	10.685539	124.815359	0.64	0	0.64		
127	10.684774	124.817686	0.03	0	0.03		
128	10.685218	124.819225	0.52	0.3	0.22	Ruby/Dec 3-10, 2014	2-Year
129	10.685445	124.819758	0.06	0	0.06		
130	10.6864	124.820137	0.04	0	0.04		
131	10.688085	124.821572	1.13	0	1.13		
132	10.700407	124.798946	1.67	1	0.67	Ruby/Dec 3-10, 2014	2-Year
133	10.69348	124.7986	1.73	0.2	1.53	Ruby/Dec 3-10, 2014	2-Year
134	10.698303	124.798899	1.49	0.5	0.99	Ruby/Dec 3-10, 2014	2-Year
135	10.697995	124.799157	2.95	0.5	2.45	Senyang/Dec 28-31, 2014	2-Year
136	10.697995	124.799157	2.95	0.4	2.55	Heavy Rain/Jan-Feb 2016	2-Year
137	10.699678	124.798308	3.38	0.3	3.08	Ruby/Dec 3-10, 2014	2-Year
138	10.687794	124.821595	2.75	2	0.75	Ruby/Dec 3-10, 2014	2-Year
139	10.687942	124.822058	1.29	0.3	0.99	Ruby/Dec 3-10, 2014	2-Year
140	10.68818	124.822143	1.08	0	1.08		
141	10.689207	124.821385	0.80	0	0.80		
142	10.690115	124.821316	0.67	0	0.67		
143	10.690073	124.819852	0.28	0	0.28		
144	10.68972	124.824366	0.03	0	0.03		
145	10.694654	124.833745	0.03	0	0.03		
146	10.696897	124.833004	0.03	0	0.03		
147	10.698187	124.833004	0.03	0	0.03		
148	10.690337	124.828216	0.03	0	0.03		
149	10.69028	124.831807	0.05	0	0.05		
150	10.698609	124.821759	0.11	2	-1.89	Ruby/Dec 3-10, 2014	2-Year
151	10.699049	124.821676	0.43	0.3	0.13	Yolanda/November 7-9, 2013	2-Year
152	10.699049	124.821676	0.43	0.3	0.13	Ruby/Dec 3-10, 2014	2-Year
153	10.699049	124.821676	0.43	0.3	0.13	Senyang/Dec 28-31, 2014	2-Year
154	10.699021	124.820953	0.31	0.3	0.01	Ruby/Dec 3-10, 2014	2-Year
155	10.699021	124.820953	0.31	0.3	0.01	Senyang/Dec 28-31, 2014	2-Year
156	10.673071	124.808838	0.03	0	0.03		
157	10.675874	124.817988	3.30	0	3.30		
158	10.677655	124.819364	3.21	0.4	2.81	Ruby/Dec 3-10, 2014	2-Year
159	10.677655	124.819364	3.21	0.4	2.81	Senyang/Dec 28-31, 2014	2-Year
160	10.677655	124.819364	3.21	0.4	2.81	Ruby/Dec 3-10, 2014	2-Year
161	10.677655	124.819364	3.21	0.4	2.81	Senyang/Dec 28-31, 2014	2-Year
162	10.679171	124.821209	3.46	0.4	3.06	Ruby/Dec 3-10, 2014	2-Year
163	10.679171	124.821209	3.46	0.3	3.16	Yolanda/November 7-9,	2-Year
						2013	
164	10.675568	124.827604	1.33	0.5	0.83	Ruby/Dec 3-10, 2014	2-Year
165	10.67414	124.818672	0.03	1	-0.97	Ruby/Dec 3-10, 2014	2-Year
166	10.67414	124.818672	0.03	1	-0.97	Senyang/Dec 28-31, 2014	2-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
167	10.67414	124.818672	0.03	1	-0.97	Heavy Rain/Jan-Feb 2016	2-Year
168	10.686076	124.813315	1.30	2	-0.70	Ruby/Dec 3-10, 2014	2-Year
169	10.686076	124.813315	1.30	0.5	0.80	Senyang/Dec 28-31, 2014	2-Year
170	10.686076	124.813315	1.30	0.5	0.80	Carina/July 26-30, 2016	2-Year
171	10.680302	124.832539	0.03	0.4	-0.37	Ruby/Dec 3-10, 2014	2-Year
172	10.680082	124.832423	0.45	0.4	0.05	Ruby/Dec 3-10, 2014	2-Year
173	10.681	124.83168	0.73	0.1	0.63	Carina/July 26-30, 2016	2-Year
174	10.678675	124.830068	4.49	0.5	3.99	Carina/July 26-30, 2016	2-Year
175	10.678675	124.830068	4.49	0.5	3.99	Ruby/Dec 3-10, 2014	2-Year
176	10.68188	124.830942	3.84	0.5	3.34	Caloy/March 18-24, 2016	2-year
177	10.681922	124.831239	1.19	0	1.19		
178	10.685435	124.833251	0.03	0	0.03		
179	10.683431	124.830055	1.03	0	1.03		
180	10.683755	124.830043	1.44	0	1.44		
181	10.683606	124.829695	1.14	0	1.14		
182	10.683804	124.829011	3.84	0	3.84		
183	10.686587	124.82578	2.65	0	2.65		
184	10.687191	124.823907	4.51	0.6	3.91	Ruby/Dec 3-10, 2014	2-Year
185	10.687191	124.823907	4.51	0.6	3.91	Heavy Rain/Jan-Feb 2016	2-Year
186	10.705391	124.815264	0.03	0.5	-0.47	Ruby/Dec 3-10, 2014	2-Year
187	10.705391	124.815264	0.03	0.5	-0.47	Carina/July 26-30, 2016	2-Year
188	10.705391	124.815264	0.03	0.5	-0.47	Heavy Rain/Jan-Feb 2016	2-Year
189	10.705799	124.813783	0.03	0.6	-0.57	Ruby/Dec 3-10, 2014	2-Year
190	10.705799	124.813783	0.03	0.6	-0.57	Yolanda/November 7-9, 2013	2-Year
191	10.705799	124.813783	0.03	0.6	-0.57	Heavy Rain/Jan-Feb 2016	2-Year
192	10.704941	124.815338	0.14	0.5	-0.36	Ruby/Dec 3-10, 2014	2-Year
193	10.704941	124.815338	0.14	0.5	-0.36	Carina/July 26-30, 2016	2-Year
194	10.704941	124.815338	0.14	0.5	-0.36	Heavy Rain/Jan-Feb 2016	2-Year
195	10.704274	124.813998	0.03	0	0.03		
196	10.703714	124.814635	0.03	0	0.03		
197	10.703838	124.812689	0.03	0	0.03		
198	10.700789	124.81095	0.20	0	0.20		
199	10.700397	124.81092	0.08	0.2	-0.12	Yolanda/November 7-9, 2013	2-Year
200	10.703597	124.807831	0.05	0.2	-0.15	Yolanda/November 7-9, 2013	2-Year
201	10.703597	124.808399	0.04	0.2	-0.16	Yolanda/November 7-9, 2013	2-Year
202	10.699324	124.810421	0.21	0	0.21		
203	10.695407	124.811089	0.42	0	0.42		
204	10.694032	124.811272	0.64	0.3	0.34	Yolanda/November 7-9, 2013	2-Year
205	10.694032	124.811272	0.64	0.4	0.24	Ruby/Dec 3-10, 2014	2-Year
206	10.692582	124.81171	1.52	0.4	1.12	Ruby/Dec 3-10, 2014	2-Year
207	10.691972	124.811843	2.29	0.6	1.69	Carina/July 26-30, 2016	2-Year
208	10.698856	124.809325	0.10	0.3	-0.20	Ruby/Dec 3-10, 2014	2-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
209	10.697277	124.807128	0.03	0.3	-0.27	Ruby/Dec 3-10, 2014	2-Year
210	10.695919	124.805824	0.69	0.3	0.39	Ruby/Dec 3-10, 2014	2-Year
211	10.695919	124.805824	0.69	0.3	0.39	Heavy Rain/Jan-Feb 2016	2-Year
212	10.695919	124.805824	0.69	0.3	0.39	Butchoy/July 2-3, 2016	2-Year
213	10.695598	124.805499	0.81	0	0.81		
214	10.69334	124.803882	1.91	0.2	1.71	Ruby/Dec 3-10, 2014	2-Year
215	10.69334	124.803882	1.91	0.2	1.71	Heavy Rain/Jan-Feb 2016	2-Year
216	10.692528	124.803415	1.47	2	-0.53	Ruby/Dec 3-10, 2014	2-Year
217	10.692528	124.803415	1.47	2	-0.53	Butchoy/July 2-3, 2016	2-Year
218	10.692528	124.803415	1.47	2	-0.53	Heavy Rain/Jan-Feb 2016	2-Year
219	10.69236	124.802948	1.02	0.2	0.82	Ruby/Dec 3-10, 2014	2-Year
220	10.691562	124.802877	0.48	0.7	-0.22	Heavy Rain/September 2016	2-Year
221	10.691562	124.802877	0.48	0.7	-0.22	Heavy Rain/Jan-Feb 2016	2-Year
222	10.691562	124.802877	0.48	0.7	-0.22	Ruby/Dec 3-10, 2014	2-Year
223	10.691562	124.802877	0.48	0.7	-0.22	Butchoy/July 2-3, 2016	2-Year
224	10.692681	124.799179	0.03	0.5	-0.47	Amy/December 5-19, 1951	15-Year
225	10.692681	124.799179	0.03	0.5	-0.47	Asiang/January 4-11, 1972	25-Year
226	10.68105	124.805484	0.14	2	-1.86	Asiang/January 4-11, 1972	25-Year
227	10.695448	124.798708	0.57	1.1	-0.53	Asiang/January 4-11, 1972	25-Year
228	10.693872	124.798466	0.91	0.5	0.41	Amy/December 5-19, 1951	15-Year
229	10.693872	124.798466	0.91	0.5	0.41	Asiang/January 4-11, 1972	25-Year
230	10.692734	124.798027	0.11	0.5	-0.39	Amy/December 5-19, 1951	15-Year
231	10.692734	124.798027	0.11	0.5	-0.39	Asiang/January 4-11, 1972	25-Year
232	10.688888	124.798367	0.03	2	-1.97	Asiang/January 4-11, 1972	25-Year
233	10.688701	124.796053	0.71	5	-4.29	Asiang/January 4-11, 1972	25-Year
234	10.681585	124.801707	0.10	5	-4.90	Asiang/January 4-11, 1972	25-Year
235	10.684573	124.80777	0.43	3	-2.57	Asiang/January 4-11, 1972	25-Year
236	10.685066	124.809565	1.26	5	-3.74	Asiang/January 4-11, 1972	25-Year
237	10.685222	124.811223	0.80	3	-2.20	Asiang/January 4-11, 1972	25-Year
238	10.676096	124.813218	1.70	3	-1.30	Asiang/January 4-11, 1972	25-Year
239	10.693204	124.798094	0.38	0.5	-0.12	Amy/December 5-19, 1951	15-Year
240	10.693204	124.798094	0.38	0.5	-0.12	Asiang/January 4-11, 1972	25-Year
241	10.69348	124.7986	1.44	0.5	0.94	Amy/December 5-19, 1951	15-Year
242	10.69348	124.7986	1.44	0.5	0.94	Asiang/January 4-11, 1972	25-Year
243	10.697669	124.823303	0.03	5	-4.97	Asiang/January 4-11, 1972	25-Year
244	10.677655	124.819364	2.38	0.4	1.98	Asiang/January 4-11, 1972	25-Year
245	10.677655	124.819364	2.38	0.4	1.98	Asiang/January 4-11, 1972	25-Year
246	10.67874	124.824641	0.51	1	-0.49	Asiang/January 4-11, 1972	25-Year
247	10.678163	124.825333	0.36	1	-0.64	Asiang/January 4-11, 1972	25-Year
248	10.675568	124.827604	0.89	1.5	-0.61	Asiang/January 4-11, 1972	25-Year
249	10.681	124.83168	0.03	3	-2.97	Asiang/January 4-11, 1972	25-Year

Point Number	Validation Coordinates (in WGS84)		Model Validation E Var (m) Points (m)		Error	Event/Date	Rain Return / Scenario
	Lat	Long					
250	10.685322	124.826987	1.78	0.3	1.48	Asiang/January 4-11, 1972	25-Year
251	10.702381	124.802887	0.03	3	-2.97	Asiang/January 4-11, 1972	25-Year
252	10.701919	124.803227	0.08	3	-2.92	Asiang/January 4-11, 1972	25-Year
253	10.697277	124.807128	0.03	3	-2.97	Asiang/January 4-11, 1972	25-Year
254	10.692822	124.803372	0.82	0.7	0.12	Asiang/January 4-11, 1972	25-Year
255	10.681097	124.806127	1.82	0.4	1.42	Ondoy/Sept 24-27, 2009	100-Year
256	10.680681	124.806683	0.52	0.4	0.12	Ondoy/Sept 24-27, 2009	100-Year
257	10.703362	124.812193	0.30	0.2	0.10	Ruping/November 10-14, 1990	100-Year
258	10.702411	124.811967	0.03	0.6	-0.57	Ruping/November 10-14, 1990	100-Year
259	10.702254	124.811834	0.03	0.2	-0.17	Ruping/November 10-14, 1990	100-Year
260	10.703408	124.804458	0.03	0.3	-0.27	Ruping/November 10-14, 1990	100-Year
261	10.692582	124.81171	0.90	0.6	0.30	Ruping/November 10-14, 1990	100-Year
262	10.698856	124.809325	0.09	2	-1.91	Ruping/November 10-14, 1990	100-Year
263	10.697277	124.807128	0.03	0.7	-0.67	Ruping/November 10-14, 1990	100-Year

Annex 12. Educational Institutions Affected in Pagbanganan Flood Plain

LEYTE									
BAYBAY CITY									
Building Name	Barangay	Rainfall Scenario							
		5-year	25-year	100-year					
San Isidro Elementary School	Candadam			Low					
Hibunawan Elementary School	Cogon								
Brgy. Gacat Daycare Center	Gakat								
Gacat Elementary School	Gakat								
Hibunawan Elementary School	Hibunawan								
Kan-Ipa Elementary School	Kan-Ipa	Medium	Medium	Medium					
Maganhan Elementary School	Maganhan								
Franciscan College of the Immaculate Conception (FCIC)	Poblacion Zone 11								
FCIC Learning Resource Center	Poblacion Zone 12								
Franciscan College of the Immaculate Conception (FCIC)	Poblacion Zone 12	Low	Low	Low					
FCIC Learning Resource Center	Poblacion Zone 13								
Franciscan College of the Immaculate Conception (FCIC)	Poblacion Zone 13								
Acedilla Technological Institute	Poblacion Zone 3			Low					
Baybay Adventist Elementary School	Poblacion Zone 4	Low	Low	Low					
Baybay Adventist Elementary School	Poblacion Zone 5	Low	Low	Medium					
Baybay Adventist Elementary School	Poblacion Zone 6			Low					
Baybay I Central School	Poblacion Zone 7	Low	Low	Medium					
Franciscan College of the Immaculate Conception (FCIC)	Poblacion Zone 7								
Brgy. San Isidro Daycare Center	San Isidro								
Baybay Technical-Vocational Training Center	Santo Rosario	Low	Low	Low					
Candadam Elementary School	Santo Rosario								

Annex 13. Medical Institutions Affected in Pagbanganan Flood Plain

LEYTE				
BAYBAY CITY				
Building Name	Barangay	Rainfall Sce	enario	
		5-year	25-year	100-year
Brgy. Gacat Health Center	Gakat	Low	Low	Medium
Baybay Family Care and Maternity Clinic	Poblacion Zone 4	Low	Low	Low
Baybay Family Care and Maternity Clinic	Poblacion Zone 7	Low	Low	Medium