HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Calbiga River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University

JULY 2017

April 2017

© University of the Philippines and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping of Calbiga River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry 131pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-197-3

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vi
LIST OF ACRONYMS AND ABBREVIATIONS	viii
Chanter 1: Overview of the Brogram and the Calhiga Piver Basin	1
1.1 Background of the Phil-LiDAR 1 Program	••• • 1
1.2 Overview of the Calbiga River Basin	1
CHAPTER 2. LIDAR ACOLUSITION IN CALBIGA FLOODPLAIN	2
2.1 Flight plans	3
2.2 Ground Base Station	4
2.3 Flight Missions	8
2.4 Survey Coverage	8
CHAPTER 3: LIDAR DATA PROCESSING FOR CALBIGA FLOODPLAIN	. 10
3.1 Overview of the LiDAR Data Pre-Processing	10
3.2 Transmittal of Acquired LiDAR Data	11
3.3 Trajectory Computation	11
3.4 LiDAR Point Cloud Computation	. 13
3.5 LiDAR Data Quality Checking	13
3.6 LIDAR Point Cloud Classification and Rasterization	1/
3.7 LIDAR Image Processing and Orthopholograph Rectification	10
3.9 Mosaicking of Blocks	20
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	20
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	. 25
3.12 Feature Extraction	27
3.12.1 Quality Checking of Digitized Features' Boundary	. 27
3.12.2 Height Extraction	27
3.12.3 Feature Attribution	. 27
3.12.4 Final Quality Checking of Extracted Features	. 29
CHAPTER 4: SURVEY AND MEASUREMENTS IN THE CALBIGA RIVER BASIN	. 30
4.1 Summary of Activities	30
4.2 Control Survey	31
4.3 Baseline Processing	35
4.4 Network Adjustment	36
4.5 Cross-section, As-Built Survey and Water Level Marking	. 38 /11
4.0 Validation Fornts Acquisition Survey	41
	17
5 1 Data Used for Hydrologic Modeling	. 4/ //7
5.1 1 Hydrometry and Rating Curves	47 47
5.1.2 Precipitation	. 47
5.1.3 Rating Curves and River Outflow	. 48
5.2 RIDF Station	. 49
5.3 HMS Model	50
5.4 Cross-section Data	53
5.5 Flo 2D Model	54
5.6 Results of HMS Calibration	55
5.7 Calculated Outflow Hydrographs and Discharge Values for Different Kainfall Return Periods.	.5/
5.7.1 Tyurograph using the Kalilian Kurion Wodel	5/ 50
5.9 Flood Hazard and Flow Denth Man	50 50
5.10 Inventory of Areas Exposed to Flooding	66
5.11 Flood Validation	. 88
REFERENCES	90

ANNEXES	
ANNEX 1. OPTECH TECHNICAL SPECIFICATION OF THE GEMINI SENSOR	91
ANNEX 2. NAMRIA CERTIFICATES OF REFERENCE POINTS USED	92
ANNEX 3. BASELINE PROCESSING REPORTS OF REFERENCE POINTS USED	94
ANNEX 4. THE SURVEY TEAM	97
ANNEX 5. DATA TRANSFER SHEET FOR CALBIGA FLOODPLAIN	98
ANNEX 6. FLIGHT LOGS	99
ANNEX 7. FLIGHT STATUS	101
ANNEX 8. MISSION SUMMARY REPORTS	103
ANNEX 9. CALBIGA MODEL BASIN PARAMETERS	112
ANNEX 10. CALBIGA MODEL REACH PARAMETERS	113
ANNEX 11. CALBIGA FIELD VALIDATION	114
ANNEX 13. MEDICAL INSTITUTIONS AFFECTED IN CALBIGA FLOOD PLAIN	121

LIST OF FIGURES

Figure 1	Location Man of the Calbiga River Basin (in brown)	2
Figure 1.	Elight plans and base stations used for Calbiga floodplain	ےک لا
Figure 3	GPS set-up over SMR-53 located near the school building flag note of San Isidro Elementar	i v
inguie 5.	Brgy, San Isidro, Santa Rita (a) and NAMRIA reference point SMR-53 (b)	y,
	as recovered by the field team	5
Figure 4.	GPS set-up over LYT-104 located and re-established along rice paddy trail,	_
U	approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road,	
	District IV, Pastrana, Leyte (a) and NAMRIA reference point LYT-104 (b)	
	as recovered by the field team.	6
Figure 5.	GPS set-up over SM-271 located beside kilometer post 864 along right side of the national	
	highway, Bgry. Laygayon, Pinabacdao (a) and NAMRIA reference point SM-271 (b)	
	as recovered by the field team.	7
Figure 6.	Actual LiDAR survey coverage for Calbiga floodplain	9
Figure 7.	Schematic Diagram for Data Pre-Processing Component	10
Figure 8.	Smoothed Performance Metric Parameters of a Calbiga Flight 3729G	11
Figure 9.	Solution Status Parameters of Calbiga Flight 3729G.	12
Figure 10.	Best Estimated Trajectory for Calbiga floodplain	13
Figure 11.	Boundary of the processed LIDAR data over Calbiga Floodplain	14
Figure 12.	Indge of data overlap for Calbiga Hoodplain.	12
Figure 15.	Fuse defisity flap of merged LiDAR data for Cabiga floodplain.	10 16
Figure 14.	Ouality checking for a Calhiga flight 3729G using the Profile Tool of OT Modeler	10 17
Figure 16	Tiles for Calhiga floodolain (a) and classification results (b) in TerraScan	<u>1</u> 7
Figure 17	Point cloud before (a) and after (b) classification	18
Figure 18.	The production of last return DSM (a) and DTM (b), first return DSM (c) and	
	secondary DTM (d) in some portion of Calbiga floodplain	19
Figure 19.	Portions in the DTM of Calbiga flood plain – a bridge before (a) and after (b)	
U	manual editing; a paddy field before (c) and after (d) data retrieval.	20
Figure 20.	Map of Processed LiDAR Data for Calbiga Flood Plain.	. 21
Figure 21.	Map of Calbiga Flood Plain with validation survey points in green	23
Figure 22.	Correlation plot between calibration survey points and LiDAR data	24
Figure 23.	Correlation plot between validation survey points and LiDAR data	25
Figure 24.	Map of Calbiga Flood Plain with bathymetric survey points shown in blue	26
Figure 25.	QC blocks for Calbiga building features.	27
Figure 26.	Extracted features for Calbiga floodplain.	29
Figure 27.	Survey extent for Calbiga River Basin	30
Figure 28.	GNSS Network of Caldiga River field survey	31
Figure 29.	Municipality of Calbiga, Samar	22
Figure 30	GNSS base set up Trimble® SPS 855 at LIP-SLG located at the approach	
inguic 50.	of the left side of Silaga Bridge in Brgy Tominamos Municipality of Santa Rita Samar	33
Figure 31.	GNSS base set up. Trimble [®] SPS 855, at SMR-3024A, located at the approach	
	of the entrance gate of Canticum Elementary School in Brgy. Canticum,	
	Municipality of Calbiga, Samar	34
Figure 32.	GNSS base set up, Trimble [®] SPS 855, at BARVSU, located at one of the corners	
_	of the Barangay Basketball Court in Brgy. Barobaybay, Municipality of Calbiga, Samar	34
Figure 33.	Cross-Section Survey for Calbiga River	38
Figure 34.	Location map of Calbiga cross-section survey	39
Figure 35.	Calbiga River Cross-section Diagram	40
Figure 36.	Validation points acquisition survey set up	41
Figure 37.	Validation point acquisition survey for the Calbiga River Basin	42
Figure 38.	Bathymetric survey of Calbiga River Survey	43
Figure 39.	Dathymetric survey of Calbiga River (1 of 2)	44 ۸۲
Figure 40.	Riverbed profile of Calbiga River (2 of 2)	45 אר
Figure 41.	The location man of Calbiga HEC-HMS model used for calibration	40 17
Figure 42.	Cross-Section Plot of Calbiga Bridge	+7 ⊿Ջ
Figure 44	Rating Curve at Calbiga Bridge	48
Figure 45.	Rainfall and outflow data at Calbiga Bridge used for modeling	49
Figure 46.	Location of Catbalogan RIDF station relative to Calbiga River Basin	50
-		

Figure 47.	Synthetic storm generated for a 24-hr period rainfall for various return periods	.50
Figure 48.	Soil Map of Calbiga River Basin	.51
Figure 49.	Land Cover Map of Calbiga River Basin	.51
Figure 50.	Slope Map of the Calbiga River Basin	.52
Figure 51.	Stream Delineation Map of the Calbiga River Basin	.52
Figure 52.	The Calbiga river basin model generated using HEC-HMS	.53
Figure 53.	River cross-section of Calbiga River generated through ArcMap HEC GeoRAS tool	.54
Figure 54.	Screenshot of subcatchment with the computational area to be	
	modeled in FLO-2D GDS Pro	.55
Figure 55	Screenshot of subcatchment with the computational area to be	
	modeled in FLO-2D GDS Pro	.56
Figure 56.	Outflow hydrograph at Calbiga Station generated using Tacloban RIDF	
	simulated in HEC-HMS	.58
Figure 57.	Sample output Calbiga RAS Model	.59
Figure 58.	100-year Flood Hazard Map for Calbiga Floodplain	.60
Figure 59.	100-year Flow Depth Map for Calbiga Floodplain	.61
Figure 60.	25-year Flood Hazard Map for Calbiga Floodplain	.62
Figure 61.	25-year Flow Depth Map for Calbiga Floodplain	.63
Figure 62.	5-year Flood Hazard Map for Calbiga Floodplain	.64
Figure 63.	5-year Flow Depth Map for Calbiga Floodplain	.65
Figure 64.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	.69
Figure 65.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	.69
Figure 66.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	.70
Figure 67.	Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period	.72
Figure 68.	Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period	.72
Figure 69.	Affected Areas in Villareal, Samar during 5-Year Rainfall Return Period	.73
Figure 70.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	.76
Figure 71.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	.76
Figure 72.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	.77
Figure 73.	ffected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period	.79
Figure 74.	Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period	.79
Figure 75.	Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period	.80
Figure 76.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	.83
Figure 77.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	.83
Figure 78.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	.84
Figure 79.	Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period	.86
Figure 80.	Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period	.86
Figure 81.	Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period	.87
Figure 82.	Validation points for 100-year Flood Depth Map of Calbiga Floodplain	.88
Figure 83.	Flood map depth vs actual flood depth	.89

LIST OF TABLES

Table 1.	Flight Planning Parameters for Pegasus LIDAR system	3
Table 2.	Details of the recovered NAMRIA horizontal control point SMR-53 used as	
	base station for the LiDAR data acquisition	5
Table 3.	Details of the recovered and re-established NAMRIA horizontal control point LYT-104	
	used as base station for the LiDAR data acquisition	6
Table 4.	Details of the recovered NAMRIA vertical control point SM-271 used as	
	base station for the LiDAR data acquisition with established coordinates.	7
Table 5.	Ground control points used during LiDAR data acquisition	7
Table 6.	Flight missions for LiDAR data acquisition in Calbiga floodplain.	8
Table 7.	Actual parameters used during LiDAR data acquisition	8
Table 8.	List of municipalities and/or cities surveyed during Calbiga floodplain LiDAR survey	8
Table 9.	Self-Calibration Results values for Calbiga flights.	13
Table 10.	List of LiDAR blocks for Calbiga floodplain	14
Table 11.	Calbiga classification results in TerraScan	17
Table 12.	LiDAR blocks with its corresponding area.	19
Table 13.	Table 13. Shift Values of each LiDAR Block of Calbiga floodplain.	20
Table 14.	Calibration Statistical Measures.	24
Table 15.	Validation Statistical Measures	25
Table 16.	Quality Checking Ratings for Calbiga Building Features.	27
Table 17.	Building Features Extracted for Calbiga Floodplain.	28
Table 18.	Total Length of Extracted Roads for Calbiga Floodplain.	28
Table 19.	Number of Extracted Water Bodies for Calbiga Floodplain	28
Table 20.	List of reference and control points occupied for Calbiga River Survey	32
Table 21.	Baseline Processing Report for Calbiga River Basin Static Survey	35
Table 22.	Control Point Constraints	36
Table 23.	Adjusted Grid Coordinates	36
Table 24.	Adjusted Geodetic Coordinates	37
Table 25.	Reference and control points used and its location	38
Table 26.	RIDF values for Catbalogan Rain Gauge computed by PAGASA	49
Table 27.	Range of Calibrated Values for Calbiga	56
Table 28.	Summary of the Efficiency Test of Calbiga HMS Model	57
Table 29.	Peak values of the Calbiga HEC-HMS Model outflow using the Tacloban RIDF	58
Table 30.	Municipalities affected in Calbiga floodplain	59
Table 31.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	67
Table 32.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	67
Table 33.	Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period	68
Table 34.	Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period	71
Table 35.	Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period	71
Table 36.	Affected Areas in Villareal, Samar during 5-Year Rainfall Return Period	73
Table 37.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	74
Table 38.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	74
Table 39.	Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period	75
Table 40.	Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period	78
Table 41.	Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period	78
Table 42.	Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period	80
Table 43.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	81
Table 44.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	81
Table 45.	Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period	82
Table 46.	Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period	85
Table 47.	Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period	85
Table 48.	Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period	87
Table 49.	Area covered by each warning level with respect to the rainfall scenario	87
Table 50.	Actual Flood Depth vs Simulated Flood Depth in Calbiga	89
Table 51.	Summary of Accuracy Assessment in Calbiga	89
1		

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation	
Ab	abutment	
ALTM	Airborne LiDAR Terrain Mapper	
ARG	automatic rain gauge	
ATQ	Antique	
AWLS	Automated Water Level Sensor	
BA	Bridge Approach	
BM	benchmark	
CAD	Computer-Aided Design	
CN	Curve Number	
CSRS	Chief Science Research Specialist	
DAC	Data Acquisition Component	
DEM	Digital Elevation Model	
DENR	Department of Environment and Natural Resources	
DOST	Department of Science and Technology	
DPPC	Data Pre-Processing Component	
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]	
DRRM Disaster Risk Reduction and Management		
DSM	Digital Surface Model	
DTM	Digital Terrain Model	
DVBC	Data Validation and Bathymetry Component	
FMC	Flood Modeling Component	
FOV	Field of View	
GiA	Grants-in-Aid	
GCP	Ground Control Point	
GNSS	Global Navigation Satellite System	
GPS	Global Positioning System	
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System	
HEC-RAS	Hydrologic Engineering Center - River Analysis System	
HC	High Chord	
IDW	Inverse Distance Weighted [interpolation method]	
IMU	Inertial Measurement Unit	
kts	knots	
LAS	LiDAR Data Exchange File format	
LC	Low Chord	

LGU	local government unit	
Lidar	Light Detection and Ranging	
LMS	LiDAR Mapping Suite	
m AGL	meters Above Ground Level	
MMS	Mobile Mapping Suite	
MSL	mean sea level	
NAMRIA	National Mapping and Resource Information Authority	
NSTC	Northern Subtropical Convergence	
PAF	Philippine Air Force	
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration	
PDOP	Positional Dilution of Precision	
РРК	Post-Processed Kinematic [technique]	
PRF	Pulse Repetition Frequency	
PTM	Philippine Transverse Mercator	
QC	Quality Check	
QT	Quick Terrain [Modeler]	
RA	Research Associate	
RIDF	Rainfall-Intensity-Duration- Frequency	
RMSE	Root Mean Square Error	
SAR	Synthetic Aperture Radar	
SCS	Soil Conservation Service	
SRTM	Shuttle Radar Topography Mission	
SRS	Science Research Specialist	
SSG	Special Service Group	
ТВС	Thermal Barrier Coatings	
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry	
UTM	Universal Transverse Mercator	
VSU	Visayas State University	
WGS	World Geodetic System	

Chapter 1: Overview of the Program and the Calbiga River Basin

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). Acronym is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Calbiga River Basin

The Calbiga River Basin covers four (4) municipalities in Samar namely, Hinabangan, Calbiga, Basey, and Pinabacdao; and Borongan City in Easter Samar. According to DENR -River Basin Control Office, it has a drainage area of 283 km2 and an estimated annual run-off of 538 million cubic meter (MCM) (RBCO, 2015).

Its main stem, Calbiga River is part of the 19 river systems under the PHIL-LiDAR 1 partner HEI, Visayas State University. According to the 2010 national census of NSO, a total of 8,364 locals are residing in the immediate vicinity of the river which are distributed among the ten (10) barangays in Municipality of Calbiga. Farming and fishing are the two

major sources of income in the area. Many natural attractions are located here such as Langun-Gonbingob Caves, Lulugayan Falls and Rapids, etc. The most recent and significant flooding in the area was on November 2013 cause by typhoon Haiyan "Yolanda". Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

CHAPTER 2: LIDAR ACQUISITION IN CALBIGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight plans

Plans were made to acquire LiDAR data within the delineated priority area for Calbiga floodplain in Samar province. These missions were planned for 20 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the Pegasus LiDAR system used are found in Table 1. Figure 2 shows the flight plan for Calbiga floodplain. Annex 1 shows the technical specification of the Pegasus LiDAR system and aerial camera.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34H	650	30	40	100	50	120	5
BLK34I	600	30	50	100	40	120	5
BLK34J	600	30	50	100	40	120	5
BLK34J (2)	650	30	40	100	50	120	5

Table 1. Flight Planning Parameters for Pegasus LIDAR system

Figure 2. Flight plans and base stations used for Calbiga floodplain

2.2 Ground Base Station

Two (2) NAMRIA second order accuracy ground control points (GCP): SMR-53 was recovered for use as base station during the survey. LYT-104 is a 3rd order NAMRIA GCP and was re-processed as 2nd order GCP to satisfy the project's accuracy requirement. Also, SM-271 which is a high-accuracy benchmark was used and also re-processed as 2nd order horizontal control point for the project's accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports are found in Annex 3. These were used as base stations or reference points during flight operations for the entire duration of the survey (January 29 to 30, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Calbiga floodplain are shown in Figure 2 above.

Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area, while Table 2 to Table 4 show the corresponding details about the following NAMRIA control stations and established points. In addition, Table 5 shows the list of all ground control points occupied in line with their respective mission names and flight numbers, together with the dates of acquisition.

(a)

Figure 3. GPS set-up over SMR-53 located near the school building flag pole of San Isidro Elementary, Brgy. San Isidro, Santa Rita (a) and NAMRIA reference point SMR-53 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point SMR-53 used as base station for th	ıe
LiDAR data acquisition.	

Station Name	SMR-53		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	11º 30' 17.85657" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 1' 29.837339" East	
	Ellipsoidal Height	26.13400 meters	
Grid Coordinates, Philippine Transverse	Easting	502,722.403 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1,272,180.079 meters	
	Latitude	11º 30' 13.52495" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	125° 1' 34.96980" East	
	Ellipsoidal Height	87.78700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	720,874.14 meters	
(UTM 51N PRS 1992)	Northing	1,272,513.40 meters	

Figure 4. GPS set-up over LYT-104 located and re-established along rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte (a) and NAMRIA reference point LYT-104 (b) as recovered by the field team.

Table 3.	Details of the recovered and re-established NAMRIA horizontal control point LYT-104 used as
	base station for the LiDAR data acquisition.

Station Name	LYT-104			
Order of Accuracy	2 nd order			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	11° 08' 38.92234" North		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 53' 13.52786" East		
	Ellipsoidal Height	33.659 meters		
	Easting	11° 08' 34.67033" North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Northing	124° 53' 18.69323" East		
	Ellipsoidal Height	95.861 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Latitude	706,089.510m		
(UTM 51N PRS 1992)	Longitude	1,232,496.838		

Figure 5. GPS set-up over SM-271 located beside kilometer post 864 along right side of the national highway, Bgry. Laygayon, Pinabacdao (a) and NAMRIA reference point SM-271 (b) as recovered by the field team.

Station Name	SM-271			
Order of Accuracy (vertical)	2	2 nd order		
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	11º 31' 31.48945" North		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	125° 01' 36.88429" East		
	Ellipsoidal Height	82.083 meters		
	Latitude			
Geographic Coordinates, World Geodetic	Longitude	125° 01' 34.96980" East		
System 1984 Datum (WGS 84)	Longitude	143.69 meters		
	Ellipsoidal Height			
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	721,071.742 meters		
(UTM 51N PRS 1992)	Northing	1,274,777.721 meters		

Table 4. Details of the recovered NAMRIA vertical control point SM-271 used as base station for theLiDAR data acquisition with established coordinates.

Table 5. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points		
29 JAN 2016	3727G	2BLK34IJ029B	SMR-53 & SM-271		
30 JAN 2016	3729G	2BLK34HJ030A	SMR-53 & LYT-104		

2.3 Flight Missions

Two (2) missions were conducted to complete LiDAR data acquisition in Calbiga Floodplain, for a total of eight hours and sixteen minutes (08+16) of flying time for RP-C9022. All missions were acquired using Gemini LiDAR system. The team line-up is shown in Annex 4. Table 6 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 7 presents the actual parameters used during the LiDAR data acquisition. The data transfer sheet, flight logs and flight status reports of each mission are shown in Annex 5, 6 and 7 respectively.

Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	Area Surveyed within the Floodplain	Area Area rveyed Surveyed thin the Outside the odplain Floodplain (km ²) (km ²)		ng Irs
				(km²)	(km²)	Hr	Min
29-Jan-16	3727G	114.102	149.016	32.325	116.691	4	5
30-Jan-16	2729G	74.081	113.571	44.901	68.67	4	11
TOTA	L	188.183	262.587	77.226	185.361	8	16

Table 6. Flight missions for LiDAR data acquisition in Calbiga floodplain.

Table 7. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
3727G	600	30	50	100	40	120	5
2729G	650	30	40	100	50	120	5

2.4 Survey Coverage

Calbiga floodplain is located in the province of Samar situated in the municipality of Calbiga. LiDAR swath coverage for these flights also covers the municipality of San Sebastian. The list of municipalities and/or cities surveyed with at least one (1) square kilometer coverage is shown in Table 8. The actual coverage of the LiDAR acquisition for Calbiga Floodplain is presented in Figure 6.

Table 8.	List of municipalities an	d/or cities surve	eyed during	Calbiga flo	oodplain I	LiDAR survey.
	L L		, 0	0	T	

Province	City/ Municipality	Area of Municipality/ City (km²)	Total Area Surveyed (km ²)	Percentage of Area Surveyed
Samar	Basey	627.969	30.667	5%
Samar	Calbiga	216.76	71.983	33%
Samar	Hinabangan	378.667	3.733	1%
Samar	Pinabacdao	118.375	55.756	47%
Samar	San Sebastian	15.838	15.175	96%
Samar	Santa Rita	250.369	45.238	18%
Samar	Villareal	130.22	6.311	5%
TO	TAL	1738.20	228.86	13.17%

Figure 6. Actual LiDAR survey coverage for Calbiga floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR CALBIGA FLOODPLAIN

Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan, Engr. Vincent Louise DL. Azucena

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Calbiga floodplain can be found in Annex 5. Missions flown during the first survey conducted on February 2016 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system over Calbiga, Samar. The Data Acquisition Component (DAC) transferred a total of 43.10 Gigabytes of Range data, 0.49 Gigabytes of POS data, 10.28 Megabytes of GPS base station data, and 0 Gigabytes of raw image data to the data server on February 23, 2016 for the first survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Calbiga was fully transferred on February 26, 2016, as indicated on the Data Transfer Sheets for Calbiga floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metric* parameters of the computed trajectory for flight 3729G, one of the Calbiga flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 23, 2106 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metric Parameters of a Calbiga Flight 3729G.

The time of flight was from 521,600 seconds to 532,900 seconds, which corresponds to morning of February 23, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 2.60 centimeters, the East position RMSE peaks at 2.20 centimeters, and the Down position RMSE peaks at 4.00 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Calbiga Flight 3729G.

The Solution Status parameters of flight 3729G, one of the Calbiga flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 8. Majority of the time, the PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Calbiga flights is shown in Figure 10.

alue

Figure 10. Best Estimated Trajectory for Calbiga floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 38 flight lines, with each flight line containing one channel, since the Gemini system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Calbiga floodplain are given in Table 9.

Table 9. Self-Calibration Results values for Calbiga flights.						
Parameter		Computed Va				
Boresight Correction stdev	(<0.001degrees)	0.003745				
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.001				

Table 9. Self-Calibration Results values for Calbiga flights

(<0.01meters)

0.0092

The optimum accuracy is obtained for all Calbiga flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

GPS Position Z-correction stdev

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Calbiga Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage. Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 11. Boundary of the processed LiDAR data over Calbiga Floodplain

The total area covered by the Calbiga missions is 140.24 sq.km that is comprised of two (2) flight acquisitions grouped and merged into two (2) blocks as shown in Table 10.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Leyte Blk33H_supplement	3727G	63.38
Leyte Blk33I	3729G	76.86
TOTAL		140.24 sq.km

Table 10. List of LiDAR blocks for Calbiga floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

LiDAR Surveys and Flood Mapping of Calbiga River

Figure 12. Image of data overlap for Calbiga floodplain.

The overlap statistics per block for the Calbiga floodplain can be found in Annex B-1. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 28.06% and 36.04% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Calbiga floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.85 points per square meter.

Figure 13. Pulse density map of merged LiDAR data for Calbiga floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Areas indicate portions where elevations of a previous flight line. Areas with bright red or bright blue area by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue area by more to be investigated further using Quick Terrain Modeler software.

Figure 14. Elevation difference map between flight lines for Calbiga floodplain.

A screen capture of the processed LAS data from a Calbiga flight 3729G loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for a Calbiga flight 3729G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	104,211,750
Low Vegetation	64,804,379
Medium Vegetation	228,698,863
High Vegetation	133,626,398
Building	1,307,188

Table 11. Calbiga classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Calbiga floodplain is shown in Figure 16. A total of 203 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 11. The point cloud has a maximum and minimum height of 298.19 meters and 40.33 meters respectively.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 16. Tiles for Calbiga floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Calbiga floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Calbiga floodplain.

3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for Calbiga flood plain. These blocks are composed of Leyte blocks with a total area of 140.24 square kilometers. Table 12 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Leyte_Blk33I	76.86
Leyte_Blk33H_supplement	63.38
TOTAL	140.24 sq. km

Table 12 I	iDAR	blocks	with	its	corres	nonding	area
1 addie 12. 1	LIDAK	DIOCKS	WILLI	115	corres	ponung	alca.

Portions of DTM before and after manual editing are shown in Figure 19. The bridge (Figure 19a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 19b) in order to hydrologically correct the river. The paddy field (Figure 19c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 19d) to allow the correct flow of water.

Figure 19. Portions in the DTM of Calbiga flood plain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 13 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Calbiga flood plain is shown in Figure 20. The entire Calbiga floodplain is 98.76% covered by LiDAR data while portions with no Lidar data were patched with the available IFSAR data.

Table 13.	Table 13.	Shift Va	lues of	each	LiDAR	Block	of Calb	iga floc	dplain.
								0	1

Mission Blocks	Shift Values (meters)		
	х	У	Z
Leyte_33H_supp	1.00	0.00	-1.05
Leyte_33I	1.00	0.00	-0.96

Figure 20. Map of Processed LiDAR Data for Calbiga Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Calbiga to collect points with which the LiDAR dataset is validated is shown in Figure 21. A total of 1,057 survey points were gathered for the Calbiga flood plain. However, the point dataset was not used for the calibration of the LiDAR data for Calbiga because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Calbiga can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table 14 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values were also applicable to the Calbiga DEM.

Figure 21. Map of Calbiga Flood Plain with validation survey points in green.

Figure 22. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.14
Standard Deviation	0.13
Average	-0.05
Minimum	-0.32
Maximum	0.22

Table 14. Calibration Statistical Measures.

The remaining 20% of the total survey points, resulting to 1,009 points, were used for the validation of calibrated Calbiga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 23. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.12 meters, as shown in Table 15.

Figure 23. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.05
Average	0.19
Minimum	0.03
Maximum	0.26

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data was available for Calbiga with 20,060 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.47 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Calbiga integrated with the processed LiDAR DEM is shown in Figure 24.

Figure 24. Map of Calbiga Flood Plain with bathymetric survey points shown in blue.
3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Calbiga floodplain, including its 200 m buffer, has a total area of 80.74 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 769 building features, are considered for QC. Figure 25 shows the QC blocks for Calbiga floodplain.

Figure 25. QC blocks for Calbiga building features.

Quality checking of Calbiga building features resulted in the ratings shown in Table 16.

Table 16. Quality Checking Ratings for Calbiga Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Calbiga	95.52	99.87	80.49	PASSED

3.12.2 Height Extraction

Height extraction was done for 6812 building features in Calbiga flood plain. Of these building features, 41 was filtered out after height extraction, resulting to 6,771 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 8.56 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 17 summarizes the number of building features per type. On the other hand, Table 18 shows the total length of each road type, while Table 19 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	6,437
School	161
Market	3
Agricultural/Agro-Industrial Facilities	6
Medical Institutions	8
Barangay Hall	28
Military Institution	0
Sports Center/Gymnasium/Covered Court	6
Telecommunication Facilities	0
Transport Terminal	1
Warehouse	2
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	3
Water Supply/Sewerage	0
Religious Institutions	28
Bank	0
Factory	0
Gas Station	0
Fire Station	2
Other Government Offices	20
Other Commercial Establishments	26
Cemetery	40
Total	6,771

Table 17. Building Features Extracted for Calbiga Floodplain.

Table 18. Total Length of Extracted Roads for Calbiga Floodplain.

	Road Network Length (km)						
Floodplain	Floodplain Barangay Road		Provincial Road	National Road	Others	Total	
Calbiga	49.04	21.82	0	10.171	0.00	81.03	

Table 19. Number of Extracted Water Bodies for Calbiga Floodplain.

	Water Body Type					
Floodplain	Rivers/Streams Lakes/Ponds		Sea	Dam	Fish Pen	Total
Calbiga	164	0	0	0	18	182

A total of 18 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the flood plain. This completes the feature extraction phase of the project.

125°0'0"E 125°5'0"E 124°55'0" nern Sama Legend Roads Bridges Agri eral Institu Commercia Leyte Industrial Utilities/Tr °40'0"N Residential 11°40'0"N Floodplain Bound Zumarrag Waterbodies Municipal Boundar Elevation (m) Value CALBIGA High : 554 Low : 0 0 11°35'0"N 124°55'0"E 125°0'0"E 125°5'0"E

Figure 26 shows the Digital Surface Model (DSM) of Calbiga flood plain overlaid with its ground features.

Figure 26. Extracted features for Calbiga floodplain.

CHAPTER 4: SURVEY AND MEASUREMENTS IN THE CALBIGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

DVBC conducted a field survey in Calbiga River on April 8 to 17, 2016 with the following scope of work: reconnaissance; control survey; cross-section survey at the deployment site in Brgy. Macaalan; validation points acquisition of about 53 km covering the Calbiga River Basin area; and bathymetric survey from its upstream in Brgy. Otoc down to the mouth of the river in Brgy. Barobaybay, both in Municipality of Calbiga, with an approximate length of 17.346 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 27).

Figure 27. Survey extent for Calbiga River Basin

4.2 Control Survey

A GNSS network was established by VSU on September 7 and 10, 2015 occupying the control points SMR-17, UP-SLG, and BARVSU. The control point UP-SLG was used to give MSL value for this network. Its MSL value was derived from the benchmark SE-85 in Brgy. Tabok, Municipality of Llorente- from the network established by DVBC on September 10 to 24, 2014 for Silaga River Basin.

The GNSS network used for Calbiga River Basin is composed of three (3) loops established on April 14, 2016 occupying SMR-17, a second-order GCP, in Brgy. Macaalan, Municipality of Calbiga, as the reference point.

The UP established control point UP-SLG located at the approach of Silagan Bridge; VSU established control points BARVSU in Brgy. Patong and SPARKVSU, in Brgy, Macaalan; and a NAMRIA established control SMR-3024A in Brgy. Canticum, all in Municipality of Calbiga; were also occupied and used as marker for the network.

The summary of reference and control points and its location is summarized in Table 20 while GNSS network established is illustrated in Figure 28.

Figure 28. GNSS Network of Calbiga River field survey

Table 20. List of reference and control points occupied for Calbiga River Survey (Source: NAMRIA, UP-TCAGP, VSU)

			Geographic Coord	linates (WGS	84)	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
VSU Control Survey on September 7 & 10, 2015						
SMR-17	2 ^{sd} Order, GCP	11°37'39.96040 N	125°01'03.14253" E	72.351	10.153	2001
UP-SLG	UP Established	11°27'57.59924"	125°01′08.87419″	73.097	9.977	9-7-2015
BARVSU	VSU Established	11d39'35.28570"	124d59'25.89204"	64.121	1.636	9-7-2015
	Control Survey on April 14, 2016					
SMR-17	2 ^{sd} Order, GCP	11°37′39.96040 N	125°01'03.14253" E	72.351	10.153	2001
UP-SLG	UP Established	-	-	73.097	9.977	9-7-2015
SMR-3024A	Used as Marker	-	-	-	-	2001
BARVSU	VSU Established	-	-		-	9-7-2015
SPARKVSU	VSU Established	-	-	-	-	9-7-2015

The GNSS set up made in the location of the reference and control points are exhibited are shown in Figure 29 to Figure 32.

Figure 29. GNSS base set up, Trimble® SPS 985, at SMR-17, located in Brgy. Macaalan, Municipality of Calbiga, Samar

Figure 30. GNSS base set up, Trimble® SPS 855, at UP-SLG, located at the approach of the left side of Silaga Bridge in Brgy. Tominamos, Municipality of Santa Rita, Samar

Figure 31. GNSS base set up, Trimble® SPS 855, at SMR-3024A, located at the approach of the entrance gate of Canticum Elementary School in Brgy. Canticum, Municipality of Calbiga, Samar

Figure 32. GNSS base set up, Trimble® SPS 855, at BARVSU, located at one of the corners of the Barangay Basketball Court in Brgy. Barobaybay, Municipality of Calbiga, Samar

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Calbiga River Basin is summarized in Table 21 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
SMR-3024A BARVSU	4-14-2016	Fixed	0.004	0.021	291°38′52″	3178.598
SMR-3024A SMR-17	4-14-2016	Fixed	0.004	0.018	0°12'52"	2371.243
BARVSU UP- SLG	4-14-2016	Fixed	0.006	0.035	171°42'58"	21664.016
BARVSU SPARKVSU	4-14-2016	Fixed	0.005	0.018	148°36'53"	5333.606
SMR-17 UP- SLG	4-14-2016	Fixed	0.007	0.037	179°26'38"	17895.306
SPARKVSU SMR-17	4-14-2016	Fixed	0.003	0.005	189°27'45"	1023.597
SMR-17 BARVSU	4-14-2016	Fixed	0.004	0.023	320°16′03″	4608.119
BARVSU SMR- 17	4-14-2016	Fixed	0.006	0.009	320°16′03″	4608.123
SMR-3024A UP-SLG	4-14-2016	Fixed	0.007	0.042	179°32'02"	20266.356

Table 21. Baseline Processing Report for Calbiga River Basin Static Survey

As shown in Table 21, a total of nine (9) baselines were processed with reference points SMR-17 fixed for grid and elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}_{<20cm \text{ and } z_e} < 10 \ cm$

Where:

x is the Easting error,

 y_{p} is the Northing error, and

 z_{ρ} is the Elevation error

for each control point. See the Network Adjustment Report shown in Table 22 to Table 24 for the complete details.

The four (5) control points, SMR-17, UP-SLG, SMR-3024A, BARVSU and SPARKVSU, were occupied and observed simultaneously to form a GNSS loop. Elevation value and coordinates of SMR-17 were held fixed during the processing of the control points as presented in Table 22. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 22. Control Point Constraints

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
SMR-17	Grid	Fixed	Fixed		Fixed
Fixed = 0.000001(Meter)					

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 23. The fixed control point SMR-17 has no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BARVSU	716995.085	0.004	1289697.624	0.003	1.592	0.019	
SMR-17	719966.306	?	1286174.169	?	10.153	?	ENe
SMR- 3024A	719958.330	0.005	1288545.870	0.004	2.942	0.031	
SPARKVSU	719805.163	0.004	1285163.131	0.004	20.456	0.019	
UP-SLG	720266.262	0.007	1268277.803	0.005	9.977	0.048	

Table 23. Adjusted Grid Coordinates

The network is fixed at reference point SMR-17 with known coordinates and with known elevation. As shown in Table 23, the standard errors (x_e and y_e) of BARVSU are 0.40 cm and 0.30 cm; SMR-3024A are 0.50 cm and 0.40 cm; SPARKVSU are 0.40 cm and 0.40cm; and UP-SLG are 0.70 cm and 0.50 cm. With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

a. SMR-17

horizontal accuracy	=	Fixed
vertical accuracy	=	Fixed

b. UP-SLG

horizontal accuracy	=	$\sqrt{((0.70)^2 + (0.50)^2)}$
	=	√ (0.49 + 0.25)
	=	0.86 cm < 20 cm
vertical accuracy	=	4.8 cm < 10 cm

c. SMR-3024A

horizontal accuracy	=	$\sqrt{((0.50)^2 + (0.40)^2)}$
	=	√ (0.25 + 0.16)
	=	0.64cm < 20 cm
vertical accuracy	=	3.1cm < 10 cm

d. BARVSU

=	$\sqrt{((0.40)^2 + (0.30)^2)}$
=	√ (0.16 + 0.09)
=	0.5 cm < 20 cm
=	1.9 < 10 cm
	= = =

e. SPARKVSU

horizontal accuracy	=	$\sqrt{((0.40)^2 + (0.40)^2)}$
	=	√ (0.16 + 0.16)
	=	0.57 cm < 20 cm
vertical accuracy	=	1.9 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
SMR-17	N11°37'39.96040"	E125°01'03.14253"	72.836	?	ENe
UP-SLG	N11°27′57.59924″	E125°01'08.87419"	73.097	0.048	
SMR-3204A	N11°38′57.12960″	E125°01'03.43562"	65.558	0.031	
BARVSU	N11°39'35.28567"	E124°59'25.89214"	64.076	0.019	
SPARKVSU	N11°37'07.10168"	E125°00'57.58733"	83.162	0.019	

Table 24. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 24. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 25.

		Geograph	nic Coordinates (WGS 8	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
SMR-17	2 ^{sd} Order, GCP	11°37′39.9604″N	125°01′03.1425″E	72.836	1286226.990	719812.920	10.153
UP-SLG	UP Established	11°27′57.5992″N	125°01′08.8741″E	73.097	1268277.803	720266.262	9.977
SMR- 3204A	Used as Marker	11°38′57.1296″N	125°01′03.4356″E	65.558	1288545.870	719958.330	2.942
BARVSU	VSU Established	11°39′35.2856″N	124°59'25.8921"E	64.076	1289697.624	716995.085	1.592
SPARKVSU	VSU Established	11°37′07.1016″N	125°00'57.5873"E	83.162	1285163.131	719805.163	20.456

Table 25. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP and VSU)

4.5 Cross-section, As-Built Survey and Water Level Marking

Cross-section survey was conducted at the deployment site in Brgy. Macaalan, Municipality of Calbiga, on April 12, 2016 using a GNSS receiver, Trimble[®] SPS 882, in PPK survey technique. The area identified by Visayas State University for their flow data gathering is a non-bridge location as shown in Figure 33.

Figure 33. Cross-Section Survey for Calbiga River

The cross-sectional line length of the deployment site is about 95.843 m with 60 cross-sectional points acquired using SMR-17 as the GNSS base station. The location map of the Calbiga cross-section survey and cross-section diagram are illustrated in Figure 34 and Figure 35.

Water surface elevation in MSL of Calbiga River was determined using Trimble[®] SPS 882 in PPK mode technique on April 12, 2016 at 12:13 PM with a value of 0.464 m in MSL. This will be translated onto marking by the VSU after the renovation of the dike. The markings will serve as their reference for flow data gathering and depth gauge deployment for Calbiga River.

Figure 34. Location map of Calbiga cross-section survey

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on April 11, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached to the side of vehicle as shown in Figure C-10. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.089 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with SMR-17 occupied as the GNSS base stations in the conduct of the survey.

Figure 36. Validation points acquisition survey set up

The survey started from Brgy. Patag in the Municipality of Paranas, going south towards the municipalities of Hinabangan, Hinundayan, Calbiga and ended in Brgy. Pasigay, Municipality of Calbiga. This route aims to cut flight strips perpendicularly. The survey gathered 6,176 points with approximate length of 53.44 km using SMR-17 as GNSS base for the entire extent validation points acquisition survey, as illustrated in the map in Figure 37.

Figure 37. Validation point acquisition survey for the Calbiga River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on September 8-10, 2015 using a Trimble[®] SPS 882 in GNSS PPK survey technique and Ohmex[™] single beam echo sounder, as illustrated in Figure C-12. The extent of the survey is from the upstream in Brgy Otoc, Municipality of Calbiga with coordinates 11°36′11.89402″N, 125°01′40.33722″E, down to the mouth of the river in Brgy. Barabaybau, also in Calbiga with coordinates 11°39′46.73581″N, 124°58′17.13663″E, as shown in the map in Figure 39.

Figure 38. Bathymetry by boat set up for Calbiga River survey

A CAD drawing was also produced to illustrate the riverbed profile of Calbiga River. As shown in Figure 40 and Figure 41, the highest and lowest elevation has a 26-meter difference. The highest elevation observed was -0.528 m above MSL located at the upstream portion of the river in Brgy. Otoc while the lowest was -11.592 m below MSL located at the mid portion of the river in Brgy. Macaalan, both in Municipality of Calbiga. The bathymetric survey gathered a total of 23,457 points covering 17.346 km of the river traversing ten barangays in Municipality of Calbiga. The survey extended the planned bathymetric lines up to Brgy. Otoc as requested by VSU to include the flood prone areas.

Figure 39. Bathymetric survey of Calbiga River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the river basin was monitored, collected, and analyzed. These include the rainfall, water level, and flow in a certain period of time.

5.1.2 Precipitation

Precipitation data was taken from the installed rain gauge in Calbiga Eco-Lodge, Calbiga. The location of the rain gauge is seen in Figure 42.

Total rain from Calbiga rain gauge is 138 mm. It peaked to 6.6mm on 06 December 2014, 14:30. A summary of the data is seen in Table 26. The lag time between the peak rainfall and discharge is seven hours and thirty minutes.

Figure 42. The location map of Calbiga HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Calbiga Hanging Bridge, Calbiga, Samar (11° 37'41.7"N, 125°01'06"E). It gives the relationship between the observed water levels from the Calbiga Bridge Automatic Water Level Sensor (AWLS) and the combined discharge from baseflow and bankfull.

For Calbiga Bridge, the rating curve is expressed as $Q = 0.0688e^{0.7968h}$ as shown in Figure 44.

This rating curve equation was used to compute the river outflow at Calbiga Bridge for the calibration of the HEC-HMS model shown in Figure 45. Total rain from Calbiga rain gauge is 138 mm. It peaked to 6.6mm on 06 December 2014, 14:30. A summary of the data is seen in Table 26. The lag time between the peak rainfall and discharge is seven hours and thirty minutes.

Figure 45. Rainfall and outflow data at Calbiga Bridge used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Catbalogan Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to Catbalogan watershed. The extreme values for this watershed were computed based on a 55-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.5	28.1	35.6	48.1	68	82.1	104.6	124.9	145
5	25.9	38.3	63.8	63.8	90.4	108.8	137.5	165.2	190.8
10	30.8	45	74.2	74.2	105.3	126.5	159.3	191.9	221.2
15	33.5	48.8	80.1	80.1	113.7	136.5	171.5	206.9	238.4
20	35.5	51.5	84.2	84.2	119.6	143.5	180.1	217.5	250.4
25	37	53.6	87.3	87.3	124.1	148.9	186.7	225.6	259.6
50	41.5	59.9	97.1	97.1	138.1	165.5	207.1	250.6	288.1
100	46.1	66.2	106.8	106.8	151.9	181.9	227.4	275.4	316.3

Table 26. RIDF values for Catbalogan Rain Gauge computed by PAGASA

Figure 47. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was taken before 2004 from the Bureau of Soils under the Department of Agriculture. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Calbiga River Basin are shown in Figure 48 and Figure 49, respectively.

Figure 48. Soil Map of Calbiga River Basin

For Calbiga, the soil classes identified were clay, clay loam, and undifferentiated. The land cover types identified were shrubland, open forest, closed forest, and cultivated area.

Figure 50. Slope Map of the Calbiga River Basin

Using the SAR-based DEM, the Calbiga basin was delineated and further subdivided into sub-basins. The model consists of 35 sub basins, 17 reaches, and 35 junctions as shown in Figure 52. The main outlet is at Calbiga Bridge.

Figure 52. The Calbiga river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 53. River cross-section of Calbiga River generated through ArcMap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements

and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 54. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 46.50610 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Calbiga are in Figure 58, Figure 60, and Figure 62.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 19 078 000.00 m². The generated flood depth map for Calbiga are in Figure 59, Figure 61, and Figure 63.

There is a total of 13 468 174.45 m³ of water entering the model. Of this amount, 7 922 604.19 m³ is due to rainfall while 5 545 570.26 m³ is inflow from other areas outside the model. 2 525 722.50 m³ of this water is lost to infiltration and interception, while 3 187 468.59 m³ is stored by the flood plain. The rest, amounting up to 7 754 988.31 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Calbiga HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 55 shows the comparison between the two discharge data.

Figure 55. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

Enumerated in Table 27 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve number	Initial Abstraction (mm)	32 - 83
LOSS	SCS Curve number	Curve Number	55 - 75	
Basin Transform	Transform	Clark Unit Undragraph	Time of Concentration (hr)	0.4 - 3
	ITALISIOFIII		Storage Coefficient (hr)	0.2 - 2
	Deceflow	Decession	Recession Constant	0.01
	Basellow	Recession	Ratio to Peak	1
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 27. Range of Calibrated Values for Calbiga

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 32mm to 83mm means that there is an average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 55 to 75 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.4 hours to 3 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.01 indicates that the basin is likely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 1 indicates a gentler receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Calbiga watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It computed as 14.8 (m3/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9805.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -2.82.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.25.

RMSE	14.8
r ²	0.9805
NSE	0.94
PBIAS	-2.82
RSR	0.44

Table 28. Summary of the Efficiency Test of Calbiga HMS Model

5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 56) shows the Calbiga outflow using the Catbalogan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 56. Outflow hydrograph at Calbiga Station generated using Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of Calbiga discharge using the Calbiga Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 29.

Table 29. Peak values	of the Calbiga	HEC-HMS N	10del outflow	using the I	Гасloban RIDF
	()			()	

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	225.3	27.2	1317.9	3 hours
10-Year	272.1	31.8	1883.6	2 hours, 50 minutes
25-Year	331.3	37.5	2621.3	2 hours, 40 minutes
50-Year	375.2	41.8	3178.4	2 hours, 30 minutes
100-Year	418.8	46	3733.4	2 hours, 30 minutes

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the VSU-FMC base flow was calibrated. The sample generated map of Calbiga River using the calibrated HMS base flow is shown in Figure 57.

Figure 57. Sample output Calbiga RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. Figure 58 to Figure 63 shows the 5-, 25-, and 100-year rain return scenarios of the Calbiga floodplain.

The floodplain, with an area of 72.23 sq. km., covers three municipalities namely Calbiga, Pinabacdao, and Villareal. Table shows the percentage of area affected by flooding per municipality.

City / Municipality	Total Area	Area Flooded	% Flooded
Calbiga	216.76	51.50	24%
Pinabacdao	118.38	18.11	15%
Villareal	130.218	2.34	2%

Table 30. Municipalities affected in	n Calbiga floodplain
1	0 1

60

61

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Calbiga river basin, grouped by municipality, are listed below. For the said basin, 3 municipalities consisting of 48 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 18.18% of the municipality of Calbiga with an area of 216.76 sq. km. will experience flood levels of less 0.20 meters. 1.79% of the area will experience flood levels of 0.21 to 0.50 meters while 1.61%, 0.85%, 0.92% and 0.423% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 31 to Table 33 are the affected areas in square kilometres by flood depth per barangay.

Table 31. Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period

T

T

Table 32. Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period

٦

		Minata)66739095	127951311	34587434	04904053)43874143	0.0001	
		Malabal	074966473 1.0	230563582 0.0	134664202 0.0	044436827 0.	007820082 0.0	0	
		Macaalan	3.30114305 1.	0.133577433 0	0.142991851 0	0.165873815 0	0.19500007 0	0.095906645	
		Lubang	3.37141174	0.078289092	0.063306945	0.085252478	0.128140131	0.053964446	
)	ıgays in Calbiga	Canticum	2.02802170	0.075873664	0.11358695	0.282925705	0.350089461	0.114405731	
)	Affected Baran	Canbagtic	3.18425609	0.07432386	0.055839309	0.076526006	0.109841749	0.070371992	
		Calingonan	0.21624999	0.037397969	0.000333781	0.000425555	0.002059208	0.00247295	
		Calayaan	0.27802603	0.116918457	0.188599511	0.046945804	0.019849102	0.023205346	
		Bulao	3.27181415	0.118714525	0.085335055	0.089017336	0.103220524	0.091028808	
		Borong	0.9915625	0.02378337	0.02128165	0.01976240	0.00743675	0	
		IGA BASIN	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
		CALB		eə.	iA b (.mx	ecte	₩A)		

67

					Affected	d Barangays in	Calbiga				
CALBI	GA BASIN	Otoc	Panayuran	Pasigay	Patong	Polangi	Rawis	San Ignacio	San Mauricio	Timbangan	Tinago
	0.03-0.20	2.427766991	1.047861123	1.100541526	0.61551685	2.673342168	0.650606194	0.727814872	2.327923242	0.823370259	1.017837665
) LGS	0.21-0.50	0.066389562	0.028770767	0.604206628	0.566701342	0.093232291	0.144539171	0.352127784	0.042739334	0.029982877	0.182437831
A b M	0.51-1.00	0.05572163	0.017264694	0.235904004	1.133201934	0.102029251	0.156442395	0.38494235	0.038967475	0.042643974	0.050285474
ote bs	1.01-2.00	0.074656976	0.021897703	0.064864456	0.095382397	0.169375557	0.128100857	0.07270329	0.043647076	0.082038036	0.0006
) ЭНА)	2.01-5.00	0.108325254	0.011535546	0	0.031849766	0.201815303	0.0675956	0.108446912	0.065389065	0.182063679	0.0001
	> 5.00	0.104067708	0.0001	0	0	0.114430318	0.062597416	0.027734849	0.138345639	0	0

Table 33. Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period

Figure 66. Affected Areas in Calbiga, Samar during 5-Year Rainfall Return Period

For the municipality of Pinabacdao, with an area of 118.38 sq. km., 10.7% will experience flood levels of less 0.20 meters. 1.978% of the area will experience flood levels of 0.21 to 0.50 meters while 1.579%, 0.872%, 0.154% and 0.022% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively.

			Table 34. Affected <i>i</i>	Areas in Pinabacdao, S	amar during 5-Year R	ainfall Return Period		
				Affecte	d Barangays in Pina	bacdao		
CALBI	DA BASIN	Bangon	Barangay I	Barangay II	Botoc	Calampong	Catigawan	Dolores
	0.03-0.20	1.339036334	0.097629476	0.128040147	0.82924921	1.088534398	0.5668208	0.479680593
e	0.21-0.50	0.407548907	0.018317459	0.020462153	0.265260405	0.202143248	0.230477891	0.061167175
d Are (.m.)	0.51-1.00	0.45706673	0.005098941	0.002211983	0.188043568	0.062675967	0.197683467	0.10849586
fectei (sq. k	1.01-2.00	0.265916462	0	0	0.0176	0.0013	0.025385994	0.16331726
ŧΑ	2.01-5.00	0.018770009	0	0	0	0	0.000926272	0.000491876
	> 5.00	0	0	0	0	0	0	0

Table 35. Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period

0.092796289 0.5074624 0.048233669 0.2363813 0.029887868 0.0881115 0.019393235 0.0124798	06 0.080914414 17 0.063864848 52 0.072865958 06 0.081257603	0.067282689 0.067282689 0.136285058 0.099462745 0.010948089	0.144175651 0.144175651 0.06009538 0.159545357 0.171905477 0.036665705	Obayan 0.601472205 0.192938605 0.110499449 0.01119095 0	0.014206451 0.000501673 1.55045E-05 0 0
0.0004 0	0.02624/126	0	D	D	D
0.092796289 0.0 0.048233669 0.0 0.029887868 0.0 0.019393235 0.0 0.0004 0	5074624 2363813 3881115 3124798	+145641/ 3.2/61933 507462406 0.080914414 236381317 0.063864848 388111552 0.072865958 312479806 0.081257603 012479806 0.081257603	114564173.27619330.2006934375074624060.0809144140.0672826892363813170.0638648480.1362850582881115520.0728659580.0994627450124798060.0812576030.0109480890124798060.0262471260	114564173.27619330.2006934370.1441756515074624060.0809144140.0672826890.060095382363813170.0638648480.1362850580.1595453572881115520.0728659580.0994627450.1719054773124798060.0812576030.0109480890.036665705124798060.0812576030.0109480890.036665705	114564173.27619330.2006934370.1441756510.6014722055074624060.0809144140.0672826890.164095380.1929386052363813170.0809144140.0672850580.1595453570.1104994492363813170.0638648480.1362850580.1595453570.1104994490881115520.0728659580.0994627450.1719054770.011190950124798060.0812576030.0109480890.03666570500124798060.0812576030.0109480890.0366657050

Figure 67. Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period

Figure 68. Affected Areas in Pinabacdao, Samar during 5-Year Rainfall Return Period

For the municipality of Villareal, with an area of 130.218 sq. km., 1.15% will experience flood levels of less 0.20 meters. 0.197% of the area will experience flood levels of 0.21 to 0.50 meters while 0.20%, 0.23%, 0.21%, and 0.00015% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

Figure 69. Affected Areas in Villareal, Samar during 5-Year Rainfall Return Period

For the 25-year return period, 16.65% of the municipality of Calbiga with an area of 216.76 sq. km. will experience flood levels of less 0.20 meters. 1.62% of the area will experience flood levels of 0.21 to 0.50 meters while 1.92%, 1.44%, 1.4% and 0.75% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 37 to Table 39 are the affected areas in square kilometres by flood depth per barangay.

-	7
	×.
	Ξ.
	Ξ.
	U.
	д
	Ы.
	₽.
	Ū.
	~
	-
	-
	-
ć	0
	ਜ਼
	2
- 6	-
	_2
	2
	22
Þ	<u> </u>
۲	
	2
	()
- (\sim
	h
	<u>S</u> r
	F
•	5
	=
	ς.
	$\overline{\mathbf{O}}$
	<u>.</u>
	2
	3
	E.
	ਡ.
	5
	ۍ
	20
	or
•	2
- 5	-
	3
r	1
	\sim
	2
	Ч
	E
	s In (
	as in (
	eas in (
	reas in (
	Areas in (
	Areas in (
	d Areas in (
	ed Areas in (
	ted Areas in (
	cted Areas in (
	ected Areas in (
	tected Areas in (
, , , , , , , , , , , , , , , , , , ,	uttected Areas in (
, CC , J ,	Attected Areas in (
· · · · · · · · · · · · · · · · · · ·	. Attected Areas in (
· · · · · · · · · · · · · · · · · · ·	 Attected Areas in (
	57. Attected Areas in (
	: 37. Affected Areas in (
	le 3/. Attected Areas in (
	ole 37. Attected Areas in (
	tble $3/$. Affected Areas in (
	able 3/. Attected Areas in (
	I able 3/. Attected Areas in (

						Affected Baran	gays in Calbiga				
CALBIGA B		Antol	Bacyaran	Brgy. 1	Brgy. 2	Brgy. 3	Brgy. 4	Brgy. 5	Brgy. 6	Brgy. 7	Barobaybay
0.03	3-0.20	2.751371689	1.091656901	0.241681441	0.219099862	0.239385212	0.140789643	0.185536714	0.127757738	0.250209514	1.314214809
روم 0.21	1-0.50	0.063998507	0.076767766	0.030493458	0.030047204	0.015649951	0.027190661	0.005688965	0.04253411	0.029828242	0.73572573
d A.	1-1.00	0.048713407	0.092333596	0.018706071	0.005900919	0.020629361	0.027644111	0.009427563	0.073776006	0.045066258	0.24642488
ecte .ps	1-2.00	0.060129846	0.066795881	0.010183067	0.005302599	0.008697363	0.015637786	0.014769183	0.016530434	0.025433508	0.056731308
Aff6 2.01	1-5.00	0.063304946	0.031767529	0.031895612	0.028718665	0.028943679	0.04186728	0.025598654	0	0.016390068	0.133522756
^	5.00	0.042441777	0	0	0	0.002418698	0.01330021	0.004242241	0	0.001228409	0.022521027

Table 38. Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period

						Affected Baran	gays in Calbiga				
CALBIGA E	NISAS	Borong	Bulao	Calayaan	Calingonan	Canbagtic	Canticum	Lubang	Macaalan	Malabal	Minata
0.0	3-0.20	0.976243415	3.194612073	0.2262326	0.180939485	3.110521352	1.860290259	3.305989764	2.987446998	0.728740795	1.03995341
69 0.2	1-0.50	0.030478412	0.121838481	0.036886563	0.072450898	0.081109628	0.062368205	0.088283708	0.107836782	0.138068689	0.026834758
d ها. ۳.0	1-1.00	0.022051183	0.088586404	0.225545945	0.000557583	0.059320326	0.075943112	0.069052153	0.129208496	0.316562045	0.033996426
ecte sd.	1-2.00	0.022616929	0.085669851	0.09854314	0.000447628	0.078438334	0.152655056	0.087282935	0.25413709	0.235324179	0.052981013
Aff 2.0	1-5.00	0.012436759	0.125751971	0.054893291	0.001770916	0.133126623	0.62075344	0.113518853	0.383435843	0.070485071	0.066098187
^	5.00	0	0.143771619	0.031442718	0.00277295	0.108642752	0.19289314	0.116237429	0.173527653	0.003270386	0.002428718

l Return Period
: Rainfal
25-Year
: during
a, Samai
Calbig:
Areas in
Affected
Table 39.

					A	Affected Baran	gays in Calbig	E			
CALBI	GA BASIN	Otoc	Panayuran	Pasigay	Patong	Polangi	Rawis	San Ignacio	San Mauricio	Timbangan	Tinago
	0.03-0.20	2.359125258	1.029099845	0.771115017	0.230096584	2.455902907	0.530342825	0.56341755	2.271770175	0.760851665	0.94568381
e9.	0.21-0.50	0.071013379	0.035860989	0.578129289	0.22403494	0.091096565	0.043687163	0.363434639	0.045891758	0.029709883	0.213956975
A b: MA b:	0.51-1.00	0.053143565	0.022887891	0.452450118	1.073203049	0.100420876	0.215337926	0.462031178	0.040036466	0.034521167	0.08979156
.ps ecte	1.01-2.00	0.064168327	0.022717031	0.203722191	0.87450683	0.182249763	0.149936669	0.147109309	0.048961392	0.068196819	0.001928626
₩A)	2.01-5.00	0.114883781	0.016964077	0.0001	0.040010888	0.278485637	0.203317007	0.104342532	0.066046517	0.215471617	0.0002
	> 5.00	0.174593811	0.0003	0	0.0008	0.246069141	0.067260044	0.033434849	0.184305523	0.051347674	0

Figure 70. Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period

Figure 71. Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period

Figure 72. Affected Areas in Calbiga, Samar during 25-Year Rainfall Return Period

For the municipality of Pinabacdao, with an area of 118.38 sq. km., 9.7% will experience flood levels of less 0.20 meters. 1.85% of the area will experience flood levels of 0.21 to 0.50 meters while 1.99%, 1.44%, 0.276% and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 40 and Table 41 are the affected areas in square kilometres by flood depth per barangay.

Table 40. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period

				Affected	Barangays in Pin	abacdao		
CALB	IGA BASIN	Bangon	Barangay I	Barangay II	Botoc	Calampong	Catigawan	Dolores
	0.03-0.20	1.11190971	0.091691382	0.112411348	0.721369872	0.969125706	0.479445624	0.453988204
) LG9	0.21-0.50	0.336935741	0.022255553	0.032328484	0.206811306	0.238676289	0.187459038	0.053845022
A b .my	0.51-1.00	0.521962954	0.007098941	0.005974452	0.325728502	0.098472022	0.297227274	0.063743083
otce bs	1.01-2.00	0.469944903	0	0	0.046243503	0.048179597	0.055078572	0.233641538
э л А)	2.01-5.00	0.047585135	0	0	0	0.0001	0.002083915	0.007934918
	> 5.00	0	0	0	0	0	0	0

Table 41. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period

			A	ffected Baranga	iys in Pinabacda	0		
CALBIGA BAS	Lale	Lawaan	Loctob	Madalunot	Mambog	Nabong	Obayan	San Isidro
0.03-0	20 0.471036642	0.896192208	2.194771422	3.200696176	0.169168833	0.116957016	0.477475572	0.013943077
ଞ୍ଚୁ 0.21-0	50 0.148943517	0.087575859	0.502913264	0.083384113	0.030800269	0.030773787	0.222318738	0.000726537
a e 0.51-1	00 0.06802514	0.067727526	0.403830565	0.072334261	0.11209928	0.129617663	0.181443904	5.40148E-05
sd. 1.01-2	00 0.166507749	0.035519154	0.127404193	0.080092953	0.183215046	0.227542021	0.034862994	0
₩ (2.01-5	00 0.015203403	0.029617455	0.030279806	0.106886516	0.019388589	0.067497083	0	0
> 5.0	0 0	0.0014	0	0.05794923	0	0	0	0

Figure 74. Affected Areas in Pinabacdao, Samar during 25-Year Rainfall Return Period

For the municipality of Villareal, with an area of 130.218 sq. km., 1.02% will experience flood levels of less 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.22%, 0.33%, 0.67%, and 0.0003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

CALRI		Affect	ed Barangays in V	illareal
CALDI	GA DASIN	Malonoy	San Fernando	San Rafael
	0.03-0.20	0.352030125	0.497998832	0.480060388
rea)	0.21-0.50	0.05015897	0.046270923	0.111015626
km.	0.51-1.00	0.008937313	0.065361266	0.207734306
ecte sq.	1.01-2.00	0.029887701	0.257028947	0.144348995
Aff.	2.01-5.00	0.014874461	0.071616412	0.0005
	> 5.00	0.0005	0	0

Table 42. Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period

Figure 75. Affected Areas in Villareal, Samar during 25-Year Rainfall Return Period

For the 100-year return period, 13.49% of the municipality of Calbiga with an area of 216.76 sq. km. will experience flood levels of less 0.20 meters. 1.72% of the area will experience flood levels of 0.21 to 0.50 meters while 1.84%, 1.68%, 1.51% and 0.89% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 43 to Table 45 are the affected areas in square kilometres by flood depth per barangay.

Table 43. Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period

						Affected Baran	gays in Calbiga				
CALBI	IGA BASIN	Antol	Bacyaran	Brgy. 1	Brgy. 2	Brgy. 3	Brgy. 4	Brgy. 5	Brgy. 6	Brgy. 7	Barobaybay
	0.03-0.20	2.731531681	1.06856518	0.230223565	0.212376619	0.231102459	0.128925609	0.17286287	0.11662058	0.235805512	1.112722794
е	0.21-0.50	0.069940328	0.072140954	0.029926447	0.031895499	0.012685296	0.022362543	0.006845863	0.037585534	0.029586167	0.879777557
. km.)	0.51-1.00	0.050612604	0.087478317	0.019973987	0.007032659	0.023876895	0.030415584	0.008263086	0.079961867	0.046875401	0.295477571
toəffA ps)	1.01-2.00	0.062518343	0.073201577	0.012450626	0.005096116	0.009699867	0.017710672	0.016081422	0.026330308	0.031356616	0.059673074
	2.01-5.00	0.071564959	0.058235645	0.040186705	0.029043074	0.028388268	0.044521925	0.034772662	0.0001	0.02066283	0.138868486
	> 5.00	0.043792257	0	0.000298319	0.003625282	0.00997148	0.022493359	0.006437416	0	0.003869474	0.022621027

0.006028718 1.017303746 0.05066408 0.083399914 0.031398004 0.033498051 Minata 0.674430442 0.117429634 0.281086928 0.087156026 0.01317386 0.319174352 Malabal 2.926143735 0.106171782 0.123934364 0.247878094 0.433530597 0.198234291 Macaalan 0.129891362 0.125660814 3.266605562 0.096485324 0.072177734 0.089544046 Lubang Affected Barangays in Calbiga 0.611238458 0.0626954 0.079142138 1.808155147 0.141545483 0.262126587 Canticum 0.145970176 3.075717012 0.084820737 0.062689717 0.081629643 0.12033173 Canbagtic 0.084557096 0.000447628 0.001870916 0.00267295 0.001112192 0.168278677 Calingonan 0.030214402 0.19167294 0.137545589 0.069948313 0.212320294 0.031842718 Calayaan 3.15322766 0.130450411 0.091960676 0.09986468 0.127072862 0.15805411 Bulao 0.033716247 0 0.96640558 0.02412405 0.023944061 0.015636759 Borong 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00 0.03-0.20 **CALBIGA BASIN** > 5.00 (.mx .ps) Affected Area

Table 44. Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period

		Tinago	V V V V
		Timbangan	
iod		San Mauricio	
afall Return Per		San Ignacio	
ng 100-Year Raiı	gays in Calbiga	Rawis	111111111111111111111111111111111111111
oiga, Samar duriı	Affected Baran	Polangi	
ed Areas in Call		Patong	
Table 45. Affect		Pasigay	
		nayuran	

						Affected Baran	igays in Calbiga				
CALB		Otoc	Panayuran	Pasigay	Patong	Polangi	Rawis	San Ignacio	San Mauricio	Timbangan	Tinago
	0.03-0.20	2.332838072	1.018073086	0.678585237	0.189043313	2.346038751	0.517917911	0.516963077	2.24984696	0.740365859	0.891447529
) LG9	0.21-0.50	0.07576766	0.039844099	0.615368639	0.186267178	0.097136978	0.042830923	0.377087974	0.048742656	0.026343654	0.239668981
אש. אשי	0.51-1.00	0.058669454	0.025400428	0.445737747	0.90505189	0.104021313	0.178810405	0.463346392	0.042047939	0.035158143	0.114949309
ecte .ps	1.01-2.00	0.065631617	0.024301174	0.265724992	1.117855767	0.175580031	0.184666285	0.177795234	0.052021443	0.066218841	0.004795152
₩A)	2.01-5.00	0.114015591	0.020211046	0.0001	0.043034143	0.340576453	0.218364386	0.104942532	0.07214731	0.178070686	0.0007
	> 5.00	0.190005726	0.0004	0	0.0014	0.290871363	0.067291724	0.033634849	0.192205523	0.113941642	0

Figure 76. Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period

Figure 77. Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period

Figure 78. Affected Areas in Calbiga, Samar during 100-Year Rainfall Return Period

For the municipality of Pinabacdao, with an area of 118.38 sq. km., 9.13% will experience flood levels of less 0.20 meters. 1.73% of the area will experience flood levels of 0.21 to 0.50 meters while 2.13%, 1.8%, 0.43% and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters, respectively. Listed in Table 46 and Table 47 are the affected areas in square kilometres by flood depth per barangay.

Table 46. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period

				Affected	d Barangays in Pina	abacdao		
CALBI		Bangon	Barangay I	Barangay II	Botoc	Calampong	Catigawan	Dolores
	0.03-0.20	0.972027865	0.086405124	0.095164231	0.663288018	0.895260627	0.431806932	0.440461092
lea I	0.21-0.50	0.289284842	0.024741811	0.045496297	0.191429947	0.270999688	0.159710403	0.049917321
A b: .my	0.51-1.00	0.513424342	0.009898941	0.010053756	0.363338463	0.128388378	0.326459416	0.058966873
ecte.	1.01-2.00	0.62873871	0	0	0.082096755	0.058424904	0.100986313	0.235344809
₩A)	2.01-5.00	0.084862684	0	0	0	0.00147994	0.002331359	0.028462669
	> 5.00	0	0	0	0	0	0	0

Table 47. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period

					Affected Barang	ays in Pinabacdac			
CALB	IGA BASIN	Lale	Lawaan	Loctob	Madalunot	Mambog	Nabong	Obayan	San Isidro
	0.03-0.20	0.429349244	0.876170866	2.085266247	3.148443248	0.158687176	0.103984655	0.404966281	0.013901178
) LGg	0.21-0.50	0.117552896	0.076476765	0.46549873	0.087069607	0.020183102	0.024393613	0.22853977	0.000558694
А b: 	0.51-1.00	0.076316425	0.088145673	0.493627199	0.076671008	0.074102166	0.078020076	0.227192576	0.000263756
.ps scte	1.01-2.00	0.187200832	0.041068068	0.167374712	0.083813025	0.22511854	0.265145118	0.055402581	0
)))	2.01-5.00	0.059297054	0.034070828	0.047532363	0.117431579	0.036581033	0.100644108	0	0
	> 5.00	0	0.0025	0	0.088014783	0	0.0002	0	0

Figure 79. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period

Figure 80. Affected Areas in Pinabacdao, Samar during 100-Year Rainfall Return Period

For the municipality of Villareal, with an area of 130.218 sq. km., 0.97% will experience flood levels of less 0.20 meters. 0.13% of the area will experience flood levels of 0.21 to 0.50 meters while 0.22%, 0.35%, 0.12%, and 0.0006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively.

Affected Barangays in Villareal **CALBIGA BASIN** Malonoy San Fernando San Rafael 0.03-0.20 0.345977397 0.486581546 0.427623578 Affected Area 0.21-0.50 0.046324377 0.034545638 0.085039795 (sq. km.) 0.51-1.00 0.015854252 0.061954527 0.211331281 1.01-2.00 0.023580495 0.229951638 0.209359822 2.01-5.00 0.023952049 0.125143031 0.010304839 > 5.00 0.0007 0.0001 0

Table 48. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period

Figure 81. Affected Areas in Villareal, Samar during 100-Year Rainfall Return Period

Among the barangays in the municipality of Calbiga, Macaalan is projected to have the highest percentage of area that will experience flood levels at 1.86%. Meanwhile, Canticum posted the second highest percentage of area that may be affected by flood depths at 1.74%.

Among the barangays in the municipality of Pinabacdao, Madalunot is projected to have the highest percentage of area that will experience flood levels at 3.04%. Meanwhile, Loctob posted the second highest percentage of area that may be affected by flood depths at 2.75%.

Among the barangays in the city of Villareal, San Rafael is projected to have the highest percentage of area that will experience flood levels of at 0.725%. Meanwhile, San Fernando posted the second highest percentage of area that may be affected by flood depths of at 0.720%.

The generated flood hazard maps for the Calbiga Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Area	Covered in	sq. km.
warning Level	5 year	25 year	100 year
Low	6.64	6.05	6.04
Medium	7.80	10.44	11.08
High	4.34	6.96	8.16
Total	18.78	23.45	25.28

Table 49. Area covered by each warning level with respect to the rainfall scenario

Of the 24 identified Education Institutions in Calbiga Flood plain, 3 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 2 were assessed to be exposed to Medium and 1 to High level flooding in the same scenario. In the 25 year scenario, 3 schools were assessed to be exposed to the Low level flooding while 5 schools were assessed to be exposed to Medium and 2 to High level flooding. For the 100 year scenario, 3 schools were assessed for Low level flooding and 3 schools for Medium level flooding. In the same scenario, 4 schools were assessed to be exposed to High level flooding. See Annex 12 for a detailed enumeration of schools inside Calbiga floodplain.

Of the 6 identified Medical Institutions in Calbiga Flood plain, 1 was assessed to be exposed to the Medium level flooding during a 5 year scenario. In the 25 year and 100 year scenario, 1 was assessed to be exposed to the Low level flooding while 5 were assessed to be exposed to Medium level flooding. See Annex 13 for a detailed enumeration of medical institutions inside Calbiga floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 82.

The flood validation consists of 196 points randomly selected all over the Calbiga flood plain. It has an RMSE value of 0.83.

Figure 82. Validation points for 100-year Flood Depth Map of Calbiga Floodplain

Figure 83. Flood map depth vs actual flood depth

CAL				Modeled	Flood Depth	(m)		
CAL		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
m)	0-0.20	64	2	3	3	1	0	73
th (0.21-0.50	29	7	6	5	3	0	50
Dep	0.51-1.00	31	11	4	1	2	0	49
po	1.01-2.00	17	2	0	1	4	0	24
Flo	2.01-5.00	0	0	0	0	0	0	0
tual	> 5.00	0	0	0	0	0	0	0
Ac	Total	141	22	13	10	10	0	196

Table 50. Actual Flood Depth vs Simulated Flood Depth in Calbiga

The overall accuracy generated by the flood model is estimated at 38.78%, with 76 points correctly matching the actual flood depths. In addition, there were 53 points estimated one level above and below the correct flood depths while there were 43 points and 24 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 30 points were overestimated while a total of 90 points were underestimated in the modelled flood depths of Calbiga.

Table 51. Summary of Accuracy Assessment in Calbiga

	No. of Points	%
Correct	76	38.78
Overestimated	30	15.31
Underestimated	90	45.92
Total	196	100

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. OPTECH TECHNICAL SPECIFICATION OF THE GEMINI SENSOR

GEMINI

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
	POS AV™ AP50 (OEM);
Position and orientation system	220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimonsions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA CERTIFICATES OF REFERENCE POINTS USED

SMR-53

ANNEX 3. BASELINE PROCESSING REPORTS OF REFERENCE POINTS USED

			Processing	Summary				
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
SMR-53 LYT-104 (B1)	SMR-53	LYT-104	Fixed	0.008	0.017	200°40'31"	42653.401	7.525
SMR-53 LYT-104 (B2)	SMR-53	LYT-104	Fixed	0.004	0.016	200°40'31"	42653.384	7.601

Acceptance Summary

Processed	Passed	Flag	P	Fail	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	SMR-53						
	Grid		Local			Gl	obal
Easting	720874.133 m	Latitude	N11°30'1	7.85656"	Latitude		N11°30'13.52495"
Northing	1272513.396 m	Longitude	E125°01'29	9.83738"	Longitude		E125°01'34.96980"
Elevation	24.750 m	Height	2	26.134 m	Height		87.787 m
To:	LYT-104						
	Grid		Local			Gl	obal
Easting	706089.510 m	Latitude	N11°08'3	8.92234"	Latitude		N11°08'34.67033"
Northing	1232496.838 m	Longitude	E124°53'13	3.52786"	Longitude		E124°53'18.69323"
Elevation	32.311 m	Height	3	3.659 m	Height		95.861 m
Vector							
∆Easting	-14784.62	23 m NS Fwd Azimu	uth		200°40'31"	ΔX	7839.600 m
∆Northing	-40016.55	58 m Ellipsoid Dist.			42653.401 m	ΔY	15051.644 m
∆Elevation	7.50	61 m ∆Height			7.525 m	ΔZ	-39131.928 m

Standard Errors

Vector errors:					
σ ΔEasting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.006 m
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.002 m

LYT-104

				Processing	Summary						
Observation	From	т	ō	Solution Type	H. Prec. (Meter)	V. I (M	Prec. G eter)	Geodeti Az.	c Ell (M	ipsoid Dist. Aeter)	∆Height (Meter)
SM-271 SMR-53 (B2)	SMR-53	SM-271	1	Fixed	0.0	04	0.018	5°23'3	32" 2	272.463	55.956
SM-271 SMR-53 (B1)	SMR-53	SM-271	1	Fixed	0.0	04	0.014	5°23'3	31" 2	272.470	55.944
				Acceptance	Summary	,					
Processe	d		Pass	ied	Flag	P	>		Fail		►
2			2			0		+		0	
Vector Component	ts (Mark to I	Mark)									
From:	SMR-53										
	Grid			Loc	al				Glob	al	
Easting	720	874.133 m	Latitud	de	N11°30'1	7.85656"	Latitude			N11°	30'13.52495"
Northing	1272	513.396 m	Longit	tude	E125°01'2	9.83738"	Longitud	e		E125°	01'34.96980"
Elevation		24.750 m	Heigh	t	2	26.134 m	Height				87.787 m
To:	SM-271						1				
	Grid			Loc	al				Glob	al	
Easting	721	071.745 m	Latitud	de	N11°31'3	1.48932"	Latitude			N11°	31'27.15275"
Northing	1274	777.717 m	Longit	tude	E125°01'3	6.88440"	Longitud	e		E125°	01'42.01496"
Elevation		80.707 m	Heigh	t	8	32.090 m	Height				143.697 m
Vector											
∆Easting		197.61	2 m N	S Fwd Azimuth			5°23	'32" <u></u> ΔX	C		52.927 m
∆Northing		2264.32	1 m E	llipsoid Dist.			2272.46	3 m ΔΥ	r		-447.483 m
A Elevation	55.957 m AHeir			Height		55.95	6 - 47	,		2228.061 m	

Standard Errors

Vector errors:					
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.008 m
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.002 m

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.0000261223		
Y	-0.0000356331	0.0000567847	
Z	-0.0000091774	0.0000140863	0.0000048698

SM-271

Vector Componer	nts (Mark to Mark)							
From:	SMR-53							
	Grid		Lo	cal			Glo	bal
Easting	720874.133 r	n Lati	tude	N11°30'1	7.85656"	Latitude		N11°30'13.52495"
Northing	1272513.396 r	n Lon	gitude	E125°01'2	9.83738"	Longitude		E125°01'34.96980"
Elevation	24.750 r	n Heig	ght	2	26.134 m	Height		87.787 m
To:	SM-271							
	Grid		Lo	cal			Glo	bal
Easting	721071.738 r	n Lati	tude	N11°31'3	1.48956"	Latitude		N11°31'27.15300"
Northing	1274777.724	n Lon	gitude	E125°01'3	6.88417"	Longitude		E125°01'42.01474"
Elevation	80.695 r	n Heig	ght	8	82.078 m	Height		143.685 m
Vector								
∆Easting	197.6	605 m	NS Fwd Azimuth			5°23'31"	ΔX	52.941 m
∆Northing	2264.3	828 m	Ellipsoid Dist.			2272.470 m	ΔY	-447.490 m
∆Elevation	55.9	945 m	∆Height			55.944 m	ΔZ	2228.066 m

Standard Errors

Vector errors:					
σ∆Easting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m
σ ΔElevation	0.007 m	σ ΔHeight	0.007 m	σΔZ	0.002 m

Aposteriori Covariance Matrix (Meter²)

	х	Y	Z
x	0.0000168455		
Y	-0.0000221649	0.0000355369	
Z	-0.0000052344	0.0000087190	0.0000031341

ANNEX 4. THE SURVEY TEAM

Data Acquisition			Agency/			
Component Sub-Team	Designation	Name	Affiliation			
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP			
Data Acquisition	Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP			
Component Leader	Component Project Leader – I	ENGR. LOUIE BALICANTA	UP-TCAGP			
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP			
Survey Supervisor	Supervising Science LOV	pervising Science LOVELY GRACIA ACUñA				
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP			
	FI	IELD TEAM	<u>.</u>			
	Senior Science Research Specialist (SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP			
Data Download and Transfer	Research Associate (RA)	ENGR. GRACE SINADJAN	UP-TCAGP			
	RA	JONATHAN ALMALVEZ	UP-TCAGP			
	RA	JERIEL PAUL ALAMBAN	UP-TCAGP			
	Airborne Security	SSG RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)			
LiDAR Operation	Pilot	CAPT. ALBERT LIM	ASIAN AEROSPACE CORPORATION (AAC)			
		CAPT. RANDY LAGCO	AAC			

ANNEX 5. DATA TRANSFER SHEET FOR CALBIGA FLOODPLAIN

3727G, 3729G

		LOCATION	Z:\DAC\RAW DATA										
	T PLAN	KML	NA	NA	NA	NA	NA	301	301	301			
	FLIGH	Actual	6	46	13	13	7	œ	ø	80			
	OPERATOR	(OPLOG) LOGS	1KB	NA	1KB	1KB	1KB	1KB	1KB	1KB			
	(S)NO	se Info (.txt)	1KB		4102/4								
	BASE STATI	BASE ATION(S) Ba	118	127	159	175	175	91.8	91.8	89.9		A GI	
	-	GITIZER	NA	NA	NA	239	46.7	221	83.9	187	by	Beng	
	-	ANGE DI	12.5	13.8	12.3	14.5	3.11	12.8	5.04	10.7	Received	en AC	
	ON LOG	ICASI RJ	AN	AN	A	11	AA	67	4.1	03		Nam Posit Signa	
FER SHEET 5/24/2016	MISSI	SICASI FILE	4	6	4	7 1	8	7 2	8 7	8			
TA TRANSI ATARMAN		IMAGE	z	44	Ż	64	15	64	15	43			
DA		POS	237	245	240	268	83.7	246	122	249			
		LOGS	710	707	706	793	222	702	259	629			
	AS	ML (swath)	297	367	302	643	90	301	411	251	from	Part Pursta)
	RAW L	utput LAS K	NA	NA	AN	NA	NA	NA	NA	AN	Received	sition	
		ENSOR	UA/CASI		Sig Po								
		AME	102A AG	103A AC	104A AC	105A AC	105B AC	107A AC	S107B AC	108A AC			
		N NOISSIM	3BLK33D1	3BLK33KSJ	3BLK33IK	3BLK33ISA	3BLK33AS	3BLK33N:	3BLK33MN	3BLK33MS			
		LIGHT NO.	3431AC	8433AC	8435AC	8437AC	8438AC	8441AC	8442AC	8443AC			
		DATE	ril 11, 2016 8	ril 12, 2016	ril 13, 2016	ril 14, 2016	ril 14, 2016	ril 16, 2016	ril 16, 2016	ril 17, 2016			
			Apr	Api									
ANNEX 6. FLIGHT LOGS

Flight Log for 3727G Mission

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
Repertence Mark (Mark 1, AL) Mark 1, AL) Mark 1, AL Mark	DAR 1 Data Acquisition	n Flight Log	x	181		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R Operator: J. M. t: A. U. M.	Mar Well 2 2 ALTM Model: Genium 8 Co-Pilot: 2. Cague	3 Mission Name: 2 BUL 34020/8 9 Route: TRUCERAN	3 4 Type: VFR VOCAL	5 Aircraft Type: Cesnna T206H	Flight Log No.: 3725 6 Aircraft Identification: アパ - 9022
efter A. M.	1 - 29 - 16 gine On: 11	14 Engine Off:	(Alrport, Gty/ Province): 1 15 Total Engine Time: 11 17 C, 1, 5,7	2 Airport of Arrival (, Pcuotan) 6 Take off:	Airport, City/Province): 17 Landing:	18 Total Flight Time:
Mathematical 20.0 Non Bilble 20	ather	Sports-	5 5	61,11	18:13	63:55
Itable 20.0 Non Bliable 20.0 Cuters 30.0 Mittable 20.0 Cuters Acquisition Flight 0 Acquisition Flight 0 Mittable Statem Maintenance Acquisition Flight 0 Actuality 0 Mittable Statem Maintenance Stern Flight 0 Actuality 0 Mittable Statem Maintenance Stern Flight 0 Actuality 0 Mittable Statem Maintenance Stern Flight 0 Others: 0 Mittable Statem Maintenance Vestore Floht 0 Actuality National Flight 0 Flight Stern Floht 0 Others: 0 Mittable Statem Bens and Solutions Mittable 0 Mittable Xaustion Flight Stern Froblem Stern Froblem Mittable Mittable Mittable Stern Froblem Mittable Mittable Mittable Mittable Stern Froblem	ht Classification			21 Remarks		
liens and Solutions Weather Problem System Problem Aircraft Problem Aircraft Problem Aircraft Problem Aircraft Problem Others.	ilitable Acquisition Flight Ferry Flight System Test Flight Calibration Flight	20.b.Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:	20.c Others o LIDAR System Maintenan o LIDAR Maintenance o Phil-LIDAR Admin Activiti	nce Complex	the at the and the	× *
Wasther Problem System Problem System Problem Micrait Problem Pilot Problem Understand Inter Problem Micrait Mechanic/ UDA Technician Utility Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Altract Mechanic Micrait Mechanic/ UDA Technician Altract Mechanic Micrait Mechanic/ UDA Technician Alter Representative) Micrait Mechanic/ UDA Technician Alter Representative) Micrait Mechanic/ UDA Technician	blems and Solutions					
Pilot Problem Others: Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command M March Approved by Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Certified by Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Certified by Acquisition Flight Certified by Pilot-in-Command M Acquisition Flight Approved by Acquisition Flight Certified by Pilot Area P Acquisition Flight Certified by	 Weather Problem System Problem Aircraft Problem 					
usition Flight Approved by Acquisition Flight Certified by Pilot-in-Command I UDAR Operator Acquisition Flight Certified by Pilot-in-Command I UDAR Operator Acquisition Flight Certified by Pilot-in-Command I Accurate Activity II Activ	Pilot Problem Others:					
	uistition Flight Approved by	Acquisition Flight Certifi Device the second	ad by Pilotincom	mghd Arthon F Printed Name	LIDAR Operator	Alraaft Mectanic/ UDAR Technician MAA Signature over Printed Name

99

										×		3	•		
-															
Å	PC-6002												echnician	e e	
	iration. K			me:							2		nic/ UDAR T	r Printed Nar	
i	ft Identif			I Flight TI	1214				-				craft Mecha	gnature ove	
	6 Aircre			18 Tota				ght					Ai	1.12	
	na T206H							4					3	nted Name	
	Type: Cest		/Province					1 mg	15				Operator	ure over Pri	
	5 Aircraft		imort, Ch	17 Landin				60655						Signa	
	VFR		Arrival (A			Remarks	C	S						a.	×
	4 Type:	OCAL	Airport of	Take off: 8:34		21		0 10					Jen	Printed Nam	
	-34030A	LLOOMY L	12	16				1aintenanc nance in Activitie	į.				A-A	mature over	
	ame: 2Buk	¢.	Province):	ine Time:				R Systern N aft Mainte LIDAR Adm				č	- 1	Sig	
	Mission N	Route:	port, City/I	Total Eng			c Others	o LiDA O Aircr O Phil-				,	- mon		
	PEMINI 3	16 31	arture (Air	15			20	t ti				the Cartified	A.	Printed Nam sentative)	
	Model: 1	R. Lag	TRUCEAN	40	hard		ole	aft Test Flig Admin Fligh S:		ť,		in delton Cli	Prusmun	PAF Repre	
So	2 ALTM	Pilot:	12 Airpo	gine Off:	Clan		o Non Billal	o Aircra o AAC / o Other				4	ST		
ion Hight L	Arceo	8 Co-		14 En			20.Ł					d bu		ve)	
tta Acquisit	tor. P.	. Lim	30-16	129		ication		sition Flight Flight 1 Test Flight ttion Flight	d Solutions er Problem	ft Problem roblem		icht Annroued	Geo	r Printed Nai Representativ	
LIDAR 1 Da	AR Opera	ot:	ate:	ngine On	/eather	ight Classif	Billable	 Acquis Acquis Ferry I System Calibra 	o blems an	O Aircrai	O Othen	truicition El	14	(End User I	
PHIL-	1 LIC	7 Pil	10 D	13 Er	19 W	20 FII	20.a		22 Pr		0	00	. Т	S	

ANNEX 7. FLIGHT STATUS

FLIGHT STATUS REPORT

Tacloban / Samar

January 29 to 30, 2016

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
3727G	BLK34I BLK34J	2BLK34IJ029B	J. ALMALVEZ	January 29, 2016	Completed BLK34I and surveyed 15 lines at BLK34J.
3729G	BLK34H BLK34J	2BLK34HJ030A	P. ARCEO	January 30, 2016	Completed BLK34H and BLK34J.

SWATH PER FLIGHT MISSION

FLIGHT NO.:	3727G
AREA:	Samar
MISSION NAME:	2BLK34IJ029B
ALT: 800m	SCAN FREQ: 40Hz
SCAN ANGLE: 25 deg	SURVEYED AREA: 144.55 sq.km.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

FLIGHT NO.:	3729G
AREA:	Samar
MISSION NAME:	2BLK34HJ030A
ALT: 650m	SCAN FREQ: 50Hz
SCAN ANGLE: 20deg	SURVEYED AREA: 105.73 km ²

Flight Area Leyte **Mission Name** Blk33H_Supplement **Inclusive Flights** 3727G Range data size 22.8 POS data size 243 Base data size 4.2 n/a Image Transfer date February 26, 2016 **Solution Status** Number of Satellites (>6) Yes PDOP (<3) Yes Baseline Length (<30km) Yes Processing Mode (<=1) Yes Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 0.8 RMSE for East Position (<4.0 cm) 1.1 RMSE for Down Position (<8.0 cm) 2.3 Boresight correction stdev (<0.001deg) 0.001045 IMU attitude correction stdev (<0.001deg) 0.000441 GPS position stdev (<0.01m) 0.0251 Minimum % overlap (>25) 28.06 Ave point cloud density per sq.m. (>2.0) 4.38 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 95 Maximum Height 282.08 m **Minimum Height** 40.33 m Classification (# of points) Ground 60,241,285 Low vegetation 19,719,082 Medium vegetation 66,617,944 7,923,473 High vegetation 0 Building Orthophoto No Engr. Analyn Naldo, Engr. Harmond Processed by Santos, Engr. Melissa Fernandez

ANNEX 8. MISSION SUMMARY REPORTS

Figure 1.1.2. Smoothed Performance Metric Parameters

Figure 1.1.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk33I
Inclusive Flights	3729G
Range data size	20.3
POS data size	243
Base data size	608
Image	n/a
Transfer date	February 26, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.1
RMSE for East Position (<4.0 cm)	2.0
RMSE for Down Position (<8.0 cm)	4.1
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A

Minimum % overlap (>25)	36.04
Ave point cloud density per sq.m. (>2.0)	5.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	108
Maximum Height	298.19 m
Minimum Height	59.64 m
Classification (# of points)	
Ground	43970465
Low vegetation	45085297
Medium vegetation	162080919
High vegetation	125702925
Building	1307188
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Velina Angela Bemida, Maria Tamsyn Malabanan

Figure 1.2.1. Solution Status

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

ANNEX 9. CALBIGA MODEL BASIN PARAMETERS

	SCS CI	urve Number	Loss	Clark Unit Hydrogr	aph Transform		R	ecession Base	low	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W240	32.09544	75.48354	0	2.026444	0.9153	Discharge	2.1268	0.01	Ratio to Peak	1
W250	35.060064	73.86291	0	0.844536	0.450342	Discharge	1.3532	0.01	Ratio to Peak	1
W260	32.948916	75.01032	0	0.481936	0.286074	Discharge	0.51934	0.01	Ratio to Peak	1
W270	38.10456	72.27	0	0.549332	0.60834	Discharge	0.22103	0.01	Ratio to Peak	1
W280	38.10456	72.27	0	1.776096	2.1312	Discharge	1.4039	0.01	Ratio to Peak	1
W290	38.10456	72.27	0	1.23228	1.5837	Discharge	0.75844	0.01	Ratio to Peak	1
W300	38.10456	72.27	0	0.717836	1.49148	Discharge	0.44477	0.01	Ratio to Peak	1
W310	59.515716	62.75016	0	1.488144	0.236592	Discharge	1.5004	0.01	Ratio to Peak	1
W320	38.10456	72.27	0	0.851872	0.2223	Discharge	0.37031	0.01	Ratio to Peak	1
W330	68.89116	59.32773	0	0.661136	0.356934	Discharge	0.77634	0.01	Ratio to Peak	1
W340	74.632428	57.4101	0	1.0633	0.476376	Discharge	0.50328	0.01	Ratio to Peak	1
W350	79.177176	55.97757	0	0.704816	1.48668	Discharge	0.31626	0.01	Ratio to Peak	1
W360	73.409544	57.80808	0	1.171912	0.95712	Discharge	0.878	0.01	Ratio to Peak	1
W370	81.399864	55.30338	0	1.010492	0.330426	Discharge	0.47857	0.01	Ratio to Peak	1
W380	68.682276	59.4	0	1.520204	0.88404	Discharge	1.0032	0.01	Ratio to Peak	1
W390	38.10456	72.27	0	0.368564	1.4322	Discharge	0.29657	0.01	Ratio to Peak	1
W400	38.10456	72.27	0	1.982148	0.52452	Discharge	1.1215	0.01	Ratio to Peak	1
W410	43.374864	69.66828	0	0.550648	0.75108	Discharge	0.45789	0.01	Ratio to Peak	1
W420	38.10456	72.27	0	1.596084	2.37582	Discharge	1.2949	0.01	Ratio to Peak	1
W430	38.868648	71.87994	0	2.82492	0.5658	Discharge	1.0496	0.01	Ratio to Peak	1
W440	69.988308	58.95153	0	1.774192	0.56784	Discharge	0.48245	0.01	Ratio to Peak	1
W450	69.726696	59.04063	0	2.099076	0.72588	Discharge	2.0696	0.01	Ratio to Peak	1
W460	82.754568	54.90045	0	2.658208	0.461034	Discharge	1.6146	0.01	Ratio to Peak	1

		Muskingum	n Cunge Cha	annel Routing	5		
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R40	Automatic Fixed Interval	3054.9	0.025522	0.04	Trapezoid	19.962	1
R50	Automatic Fixed Interval	7616	0.00654	0.04	Trapezoid	38.914	1
R70	Automatic Fixed Interval	9202.5	0.009089	0.04	Trapezoid	15.41	1
R80	Automatic Fixed Interval	3580.1	0.020666	0.04	Trapezoid	19.848	1
R90	Automatic Fixed Interval	3806.9	2.50E-05	0.04	Trapezoid	15.41	1
R110	Automatic Fixed Interval	8201.1	0.015502	0.04	Trapezoid	24.442	1
R120	Automatic Fixed Interval	4831.7	0.004468	0.04	Trapezoid	47.156	1
R130	Automatic Fixed Interval	4631.7	0.006094	0.04	Trapezoid	39.244	1
R150	Automatic Fixed Interval	1915.7	0.001316	0.04	Trapezoid	19.548	1
R170	Automatic Fixed Interval	3537.6	0.008901	0.04	Trapezoid	15.41	1
R210	Automatic Fixed Interval	4685.7	8.44E-05	0.04	Trapezoid	16.794	1

ANNEX 10. CALBIGA MODEL REACH PARAMETERS

ANNEX 11. CALBIGA FIELD VALIDATION

Point	Validation (Coordinates	Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	Period of Event
1	11.71112931	125.0171814	0	0.029999999	-0.03		
2	11.62072554	124.9999257	0	0.029999999	-0.03		
3	11.62261558	124.9988406	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
4	11.62634435	124.9981132	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
5	11.61652227	125.0133951	0	0.029999999	-0.03		
6	11.61748677	125.0122657	0.5	0.029999999	0.47	Yolanda/November 8, 2013	2-yr
7	11.61748677	125.0122657	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
8	11.61733372	125.0106071	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
9	11.61539641	125.0140871	0	0.029999999	-0.03		
10	11.61424046	125.0134861	0	0.029999999	-0.03		
11	11.61189152	125.0117535	0	0.07	-0.07		
12	11.60988682	125.011257	1.07	0.059999999	1.01	Ruby/December 6, 2014	5-yr
13	11.60735674	125.0109723	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
14	11.60586183	125.0098533	0	0.050000001	-0.05		
15	11.60468149	125.0090117	0.5	0.209999993	0.29	Ruby/December 6, 2014	5-yr
16	11.60299136	125.0077691	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
17	11.60120937	125.0054576	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
18	11.603604	125.0088357	0.5	0.709999979	-0.21	Ruby/December 6, 2014	5-yr
19	11.60284971	125.0091925	0.5	0.25999999	0.24	Ruby/December 6, 2014	5-yr
20	11.60185855	125.0066702	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
21	11.60818948	125.0109252	0	0.029999999	-0.03		
22	11.61819823	125.0138473	0	0.029999999	-0.03		
23	11.61921705	125.0146422	2	0.129999995	1.87	Ruby/December 6, 2014	5-yr
24	11.62019094	125.0153277	1.63	2.970000029	-1.34	Ruby/December 6, 2014	5-yr
25	11.62019094	125.0153277	1.63	2.970000029	-1.34	Yolanda/November 8, 2013	2-yr
26	11.62157957	125.0160888	0.9	0.029999999	0.87	Ruby/December 6, 2014	5-yr
27	11.62069822	125.0155971	1	0.629999995	0.37	Ruby/December 6, 2014	5-yr
28	11.62280057	125.0168352	1.5	0.029999999	1.47	Ruby/December 6, 2014	5-yr
29	11.62492521	125.0188537	0	0.029999999	-0.03		
30	11.62421082	125.0185353	0	0.029999999	-0.03		
31	11.62583331	125.0182388	1.4	0.189999998	1.21	Ruby/December 6, 2014	5-yr
32	11.62661894	125.0185734	1.3	0.029999999	1.27	Ruby/December 6, 2014	5-yr
33	11.62399214	125.017093	0	0.029999999	-0.03		
34	11.62491524	125.0172208	0	0.029999999	-0.03		
35	11.62571152	125.0169999	0.5	0.119999997	0.38	Ruby/December 6, 2014	5-yr
36	11.60578916	125.0261315	0	0.029999999	-0.03		
37	11.116969	125.007715	0.9	0.029999999	0.87	Yolanda/November 8, 2013	2-yr
38	11.116969	125.007715	0.85	0.029999999	0.82	Ruby/December 6, 2014	5-yr
39	11.6012926	125.0297818	0	0.029999999	-0.03		
40	11.71117583	125.0159731	0	0.029999999	-0.03		

Point	Validation (Coordinates	Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	Period of Event
41	11.59967372	125.0326899	0	0.029999999	-0.03		
42	11.59369751	125.0439533	0	0.029999999	-0.03		
43	11.59423814	125.0440991	0	0.029999999	-0.03		
44	11.59316358	125.0443358	0	0.029999999	-0.03		
45	11.5927263	125.044754	0	0.029999999	-0.03		
46	11.59290374	125.0250575	0	0.029999999	-0.03		
47	11.59349819	125.0268462	0	0.029999999	-0.03		
48	11.59345737	125.0279058	0	0.029999999	-0.03		
49	11.59239002	125.0277252	0	0.029999999	-0.03		
50	11.59405106	125.0318709	0	0.029999999	-0.03		
51	11.59382475	125.0324778	0	0.029999999	-0.03		
52	11.59330666	125.0327987	0	0.029999999	-0.03		
53	11.61424046	125.0134861	0	0.029999999	-0.03		
54	11.62586499	125.0127931	0.8	0.029999999	0.77	Ruby/December 6, 2014	5-yr
55	11.6250522	125.0145497	0	0.029999999	-0.03		
56	11.62690611	125.0174603	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
57	11.62712496	125.0171328	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
58	11.62799818	125.0168312	2	1.049999952	0.95	Seniang/December 30, 2014	2-yr
59	11.62747549	125.0160161	2	0.029999999	1.97	Ruby/December 6, 2014	5-yr
60	11.62747549	125.0160161	2	0.029999999	1.97	Seniang/December 30, 2014	2-yr
61	11.6264995	125.0169597	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
62	11.6264995	125.0169597	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
63	11.62790875	125.0178336	2	0.029999999	1.97	Ruby/December 6, 2014	5-yr
64	11.62790875	125.0178336	2	0.029999999	1.97	Seniang/December 30, 2014	2-yr
65	11.6234313	125.00746	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
66	11.6234313	125.00746	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
67	11.62984145	125.0171098	1	0.230000004	0.77	Ruby/December 6, 2014	5-yr
68	11.62984145	125.0171098	1	0.230000004	0.77	Seniang/December 30, 2014	2-yr
69	11.62774555	125.0191774	0	0.029999999	-0.03		
70	11.62734901	125.0201695	0	0.029999999	-0.03		
71	11.62648248	125.0202832	0	0.029999999	-0.03		
72	11.62727826	125.0210567	0	0.029999999	-0.03		
73	11.63024244	125.0205204	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
74			0.5	0.029999999	0.47	Yolanda/November 8, 2013	2-yr
75	11.63114048	125.0212423	1.5	0.029999999	1.47	Ruby/December 6, 2014	5-yr
76			1	0.029999999	0.97	Yolanda/November 8, 2013	2-yr
77	11.63331089	125.0265771	0	0.029999999	-0.03		
78	11.63440146	125.0278245	0	0.029999999	-0.03		

Point	Validation (Coordinates	Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	Period of Event
79	11.63629753	125.0297554	0	0.029999999	-0.03		
80	11.64563832	125.0159867	2	0.029999999	1.97	Ruby/December 6, 2014	5-yr
81	11.64563832	125.0159867	2	0.029999999	1.97	Seniang/December 30, 2014	2-yr
82	11.64479887	125.0172572	2	2.880000114	-0.88	Ruby/December 6, 2014	5-yr
83	11.64479887	125.0172572	2	2.880000114	-0.88	Seniang/December 30, 2014	2-yr
84	11.64630149	125.019012	0	0.370000005	-0.37		
85	11.64744755	125.0186936	0	0.610000014	-0.61		
86	11.64842564	125.0181084	0	2.470000029	-2.47		
87	11.64937086	125.0179556	0	1.129999995	-1.13		
88	11.64355047	125.0198087	0	0.039999999	-0.04		
89	11.64461598	125.0189183	0	0.059999999	-0.06		
90	11.64050289	125.0196728	0	0.029999999	-0.03		
91	11.6407577	125.0200903	0	0.029999999	-0.03		
92	11.65305681	125.0043266	2	0.289999992	1.71	Ruby/December 6, 2014	5-yr
93	11.65305681	125.0043266	0.7	0.289999992	0.41	Seniang/December 30, 2014	2-yr
94	11.65013471	125.004576	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
95	11.65013471	125.004576	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
96	11.64898261	125.0026102	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
97	11.64898261	125.0026102	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
98	11.64932359	125.006731	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
99	11.64932359	125.006731	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
100	11.66314744	125.0246079	0	1.529999971	-1.53		
101	11.66127652	125.0231643	0	0.029999999	-0.03		
102	11.66041595	125.0216672	0	0.029999999	-0.03		
103	11.65965412	125.0216807	0	0.039999999	-0.04		
104	11.65759971	125.0211113	0	0.029999999	-0.03		
105	11.65595007	125.0208854	0	1.769999981	-1.77		
106	11.65441518	125.0202436	0	0.810000002	-0.81		
107	11.64988794	125.0109283	0.5	0.99000001	-0.49	Ruby/December 6, 2014	5-yr
108	11.64988794	125.0109283	0.5	0.99000001	-0.49	Seniang/December 30, 2014	2-yr
109	11.65700435	125.0027292	0.75	0.460000008	0.29	Ruby/December 6, 2014	5-yr
110	11.65700435	125.0027292	0.3	0.460000008	-0.16	Seniang/December 30, 2014	2-yr
111	11.65877184	125.0018484	0.7	0.579999983	0.12	Ruby/December 6, 2014	5-yr
112	11.65877184	125.0018484	0.3	0.579999983	-0.28	Seniang/December 30, 2014	2-yr
113	11.6604224	125.0018579	0.5	0.49000001	0.01	Ruby/December 6, 2014	5-yr
114	11.6604224	125.0018579	0.3	0.49000001	-0.19	Seniang/December 30, 2014	2-yr

Point	Validation Coordinates		Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	Period of Event
115	11.66209434	125.000506	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
116	11.66209434	125.000506	0.3	0.029999999	0.27	Seniang/December 30, 2014	2-yr
117	11.64228757	124.992195	1.3	0.029999999	1.27	Ruby/December 6, 2014	5-yr
118	11.64295091	124.9926823	1.5	0.270000011	1.23	Ruby/December 6, 2014	5-yr
119	11.64382355	124.9919634	1	0.029999999	0.97	Ruby/December 6, 2014	5-yr
120	11.66836878	124.9994977	1	0.550000012	0.45	Ruby/December 6, 2014	5-yr
121	11.66809679	125.0017849	1	0.419999987	0.58	Ruby/December 6, 2014	5-yr
122	11.67108661	125.0004511	1	0.5	0.50	Ruby/December 6, 2014	5-yr
123	11.67108661	125.0004511	1	0.5	0.50	Yolanda/November 8, 2013	2-yr
124	11.63965398	125.0124476	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
125	11.63965398	125.0124476	0.5	0.029999999	0.47	Yolanda/November 8, 2013	2-yr
126	11.64085804	125.0113111	0.5	1.950000048	-1.45	Ruby/December 6, 2014	5-yr
127	11.64085804	125.0113111	0.5	1.950000048	-1.45	Yolanda/November 8, 2013	2-yr
128	11.63446943	125.0096638	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
129	11.63536504	125.0122699	0.5	3.369999886	-2.87	Ruby/December 6, 2014	5-yr
130	11.63428805	125.0138068	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
131	11.63271803	125.015135	0.5	0.10000001	0.40	Ruby/December 6, 2014	5-yr
132	11.61670248	125.0149417	0	0.029999999	-0.03		
133	11.61189152	125.0117535	0	0.029999999	-0.03		
134	11.62590304	125.0156947	0.8	0.029999999	0.77	Ruby/December 6, 2014	5-yr
135	11.62840731	125.0189923	0	0.029999999	-0.03		
136	11.62900569	125.0194986	0	0.029999999	-0.03		
137	11.63041452	125.0216723	0.84	0.319999993	0.52	Low Pressure 1/January 9, 2017	2-yr
138	11.63169988	125.0212768	0	0.140000001	-0.14		
139	11.62904047	125.0243757	1	0.029999999	0.97	Yolanda/November 8, 2013	2-yr
140	11.64687557	125.016536	1	2.089999914	-1.09	Ruby/December 6, 2014	5-yr
141	11.64687557	125.016536	1	2.089999914	-1.09	Yolanda/November 8, 2013	2-yr
142	11.68753216	124.9967658	0	Not Covered on Map			
143	11.64280264	124.9904234	1	0.029999999	0.97	Low Pressure 1/January 9, 2017	2-yr
144	11.64309592	124.9913297	0.45	0.029999999	0.42	Yolanda/November 8, 2013	2-yr
145	11.63867145	125.0107892	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
146	11.70910483	125.0150735	0.7	0.610000014	0.09	Ruby/December 6, 2014	5-yr
147	11.67422983	124.9922681	0.6	0.140000001	0.46	Yolanda/November 8, 2013	2-yr
148	11.67422983	124.9922681	0.5	0.140000001	0.36	Ruby/December 6, 2014	5-yr
149	11.67422983	124.9922681	0.2	0.140000001	0.06	Low Pressure 1/January 9, 2017	2-yr

Point	Validation Coordinates		Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	Period of Event
150	11.67422983	124.9922681	0.7	0.140000001	0.56	Seniang/December 30, 2014	2-yr
151	11.67424425	124.9941514	0.5	0.109999999	0.39	Yolanda/November 8, 2013	2-yr
152	11.67424425	124.9941514	0.5	0.109999999	0.39	Ruby/December 6, 2014	5-yr
153	11.67424425	124.9941514	2	0.109999999	1.89	Low Pressure 1/January 9, 2017	2-yr
154	11.67424425	124.9941514	0.7	0.109999999	0.59	Seniang/December 30, 2014	2-yr
155	11.67524471	124.9949575	0.5	0.029999999	0.47	Yolanda/November 8, 2013	2-yr
156	11.67524471	124.9949575	0.5	0.029999999	0.47	Ruby/December 6, 2014	5-yr
157	11.67524471	124.9949575	2	0.029999999	1.97	Low Pressure 1/January 9, 2017	2-yr
158	11.67524471	124.9949575	0.7	0.029999999	0.67	Seniang/December 30, 2014	2-yr
159	11.6747138	124.9958821	0.5	0.059999999	0.44	Yolanda/November 8, 2013	2-yr
160	11.6747138	124.9958821	0.5	0.059999999	0.44	Ruby/December 6, 2014	5-yr
161	11.6747138	124.9958821	2	0.059999999	1.94	Low Pressure 1/January 9, 2017	2-yr
162	11.6747138	124.9958821	0.7	0.059999999	0.64	Seniang/December 30, 2014	2-yr
163	11.67369967	124.9980885	1.1	0.029999999	1.07	Ruby/December 6, 2014	5-yr
164	11.67369967	124.9980885	0.6	0.029999999	0.57	Yolanda/November 8, 2013	2-yr
165	11.67369967	124.9980885	0.4	0.029999999	0.37	Low Pressure 1/January 9, 2017	2-yr
166	11.67369967	124.9980885	1	0.029999999	0.97	Seniang/December 30, 2014	2-yr
168	11.67108661	125.0004511	0.6	0.5	0.10	Ruby/December 6, 2014	5-yr
169	11.67108661	125.0004511	0.3	0.5	-0.20	Yolanda/November 8, 2013	2-yr
170	11.67108661	125.0004511	0.4	0.5	-0.10	Low Pressure 1/January 9, 2017	2-yr
171	11.66836878	124.9994977	0.5	0.550000012	-0.05	Ruby/December 6, 2014	5-yr
172	11.66836878	124.9994977	0.25	0.550000012	-0.30	Low Pressure 1/January 9, 2017	2-yr
173	11.66809679	125.0017849	0.7	0.419999987	0.28	Yolanda/November 8, 2013	2-yr
174	11.66809679	125.0017849	0.7	0.419999987	0.28	Ruby/December 6, 2014	5-yr
175	11.66809679	125.0017849	0.2	0.419999987	-0.22	Low Pressure 1/January 9, 2017	2-yr
176	11.6663505	125.0129201	0.2	0.699999988	-0.50	Ruby/December 6, 2014	5-yr
177	11.66611749	125.0142074	0.2	0.029999999	0.17	Ruby/December 6, 2014	5-yr
178	11.66571164	125.0150924	0.2	0.029999999	0.17	Ruby/December 6, 2014	5-yr
179	11.66432443	125.0170636	0.2	0.029999999	0.17	Ruby/December 6, 2014	5-yr
180	11.66232593	125.0182364	0.2	0.029999999	0.17	Ruby/December 6, 2014	5-yr

Point	Validation Coordinates		Actual	Flood Depth			Return
No	Latitude	Longitude	Flood Depth	based on Model	Error	Event/Date	of Event
181	11.65373884	125.0191398	0.5	0.029999999	0.47	Seniang/December 30, 2014	2-yr
182	11.65373884	125.0191398	0.6	0.029999999	0.57	Low Pressure 1/January 9, 2017	2-yr
183	11.65138814	125.0185651	0.5	1.559999943	-1.06	Seniang/December 30, 2014	2-yr
184	11.65138814	125.0185651	0.6	1.559999943	-0.96	Low Pressure 1/January 9, 2017	2-yr
185	11.65023898	125.0180543	0.3	2.480000019	-2.18	Seniang/December 30, 2014	2-yr
186	11.65023898	125.0180543	0.3	2.480000019	-2.18	Low Pressure 1/January 9, 2017	2-yr
187	11.64937086	125.0179556	0.3	1.129999995	-0.83	Seniang/December 30, 2014	2-yr
188	11.64937086	125.0179556	0.5	1.129999995	-0.63	Low Pressure 1/January 9, 2017	2-yr
189	11.59312025	125.032153	0	0.029999999	-0.03		
190	11.59229974	125.0336166	0	0.029999999	-0.03		
191	11.60487302	125.0282003	0	0.029999999	-0.03		
192	11.60505708	125.024669	0	0.029999999	-0.03		
193	11.59988645	125.0311425	0	0.029999999	-0.03		
194	11.600728	125.0322046	0	0.029999999	-0.03		
195	11.64932359	125.006731	0	0.029999999	-0.03		
196	11.64898261	125.0026102	0	0.029999999	-0.03		
197	11.64596253	125.0080134	0	0.029999999	-0.03		

ANNEX 12. EDUCATIONAL INSTITUTIONS AFFECTED IN CALBIGA FLOOD PLAIN

SAMAR						
CALBIGA						
Ruilding Namo	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Tinago Elementary School	Bacyaran					
Malabal Elementary School	Barangay 5	Medium	High	High		
Bacyaran Elementary School	Bulao					
Day Care Center	Calingonan	Low	Low	Low		
Bulao Elementary School	Canbagtic					
Canticum Elementary School	Canticum	High	High	High		
Rawis Elementary School	Canticum					
Bacyaran Elementary School	Macaalan					
Calbiga Central Elementary School	Macaalan					
Calbiga National High School	Macaalan		Medium	High		
Day Care Center	Macaalan		Medium	Medium		
Pasigay Day Care Center	Pasigay	Low	Low	Low		
Pasigay Elementary School	Pasigay	Low	Medium	Medium		
Malabal Day Care Center	Polangi					
Malabal Elementary School	Polangi		Medium	High		
Patong Elementary School	Rawis					
Calingonan Elementary School	San Ignacio					
San Mauricio Elementary School	San Mauricio					
Day Care Center	Tinago					

SAMAR							
PINABACDAO							
Rainfall Scenario							
Building Name	Багапдау	5-year	25-year	100-year			
Pinabacdao National High School	Bangon						
Pinabacdao Central Elementary School	Botoc						
Pasigay Elementary School	Calampong		Low	Low			
Obayan Elementary School	Catigawan	Medium	Medium	Medium			
Botoc Elementary School Loctob							

ANNEX 13. MEDICAL INSTITUTIONS AFFECTED IN CALBIGA FLOOD PLAIN

SAMAR							
CALBIGA							
Duilding Nome	ainfall Scenario						
Building Name	Barangay	5-year	25-year	100-year			
Brgy. Health Center	Calayaan	Medium	Medium	Medium			
Birthing Clinic	Macaalan		Medium	Medium			
Clinic	Macaalan		Medium	Medium			
Rural Health Unit	Macaalan		Medium	Medium			
TB-DOTS Center	Macaalan		Medium	Medium			
Brgy. Health Center	San Ignacio		Low	Low			