HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Cadac-An River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University

APRIL 2017

 ${
m C}$ University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as Grants-in-Aic Program (GIA) and is to be cited as:

E.C. Paringit, and F.F. Morales. (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Cadac-an River Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry- 174pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-196-6

TABLE OF CONTENTS

TABLE OF CONTENTSii
LIST OF TABLESiv
LIST OF FIGURESv
LIST OF ACRONYMS AND ABBREVIATIONS vii
Chapter 1: Overview of the Program and Cadac-an River1
1.1 Background of the Phil-LiDAR 1 Program1
1.2. Overview of the Cadac-an River Basin1
Chapter 2: LiDAR Data Acquisition of the Cadac-an Floodplain3
2.1 Flight Plans
2.2 Ground Base Station
2.3 Flight Missions
2.4 Survey Coverage
Chapter 3: LiDAR Data Processing of the Cadac-an Floodplain15
3.1 Overview of the LiDAR Data Pre-Processing
3.2 Transmittal of the Acquired LiDAR Data16
3.3 Trajectory Computation
3.4 LiDAR Point Cloud Computation
3.5 LiDAR Data Quality Checking
3.6 LiDAR Point Cloud Classification and Rasterization
3.7 LiDAR Image Processing and Orthophotograph Rectification
3.8 DEM Editing and Hydro-Correction
3.9 Mosaicking of Blocks
3.10 Calibration and Validation of Mosaicked LiDAR DEM
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model
3.12 Feature Extraction
3.12.1 Quality Checking of Digitized Features' Boundary
3.12.2 Height Extraction
3.12.3 Feature Attribution
3.12.4 Final Quality Checking of Extracted Features
Chapter 4: LiDAR Validation Survey and Measurement of the Cadac-an River Basin
4.1 Summary of Activities
4.2 Control Survey
4.3 Baseline Processing
4.4 Network Adjustment
4.5 Cross-section, Bridge As-Built and Water Level Marking
4.6 Validation Points Acquisition Survey
4.7 River Bathymetric Survey
Chapter 5: Flood Modeling and Mapping
5.1 Data Used for Hydrologic Modeling
5.1.1 Hydrometry and Rating Curves
5.1.2 Precipitation
5.1.3 Rating Curves and River Outflow
5.2 RIDF Station
5.3 HMS Model
5.4 Cross-section Data
5.5 Flo 2D Model
5.6 Results of HMS Calibration
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 66
5.7.1 Hydrograph using the Rainfall Runoff Model
5.8 River Analysis (RAS) Model Simulation
5.9 Flow Depth and Flood Hazard
5.10 Inventory of Areas Exposed to Flooding
5.11 Flood Validation

REFERENCES	
ANNEX	
ANNEX 1. Technical Specifications of the LiDAR Sensors Used In The Cadac-an Floodp	lain Survey.90
ANNEX 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey	92
ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	97
ANNEX 4. The LiDAR Survey Team Composition	
ANNEX 5. Data Transfer Sheet for Cadac-an Floodplain	
ANNEX 6. Flight logs for the Cadac-an Flight Missions	
ANNEX 7. Flight status reports	112
ANNEX 8. Mission Summary Reports	
ANNEX 9. Cadac-an Model Basin Parameters	
ANNEX 10. Cadac-an Model Reach Parameters	
ANNEX 11. Cadac-an Field Validation Points	155
ANNEX 12. Educational Institutions Affected by Flooding in Cadac-an Floodplain	
ANNEX 13. Health Institutions Affected by Flooding in Cadac-an Floodplain	

LIST OF TABLES

Table 1. Parameters used in Aquarius LiDAR System during Flight Acquisition	
Table 2. Parameters used in Gemini LiDAR System during Flight Acquisition	3
Table 3. Details of the recovered NAMRIA horizontal control point LYT-93 used as base station for the	_
Table 4. Details of the recovered NAMRIA horizontal control point LYT-104 used as base station for the	
LiDAR Acquisition.	6
Table 5. Details of the recovered NAMRIA horizontal control point LY-199 used as base station for the	_
LiDAR Acquisition.	
Table 6. Details of the recovered NAMRIA horizontal control point LYT-757 used as base station for the	
LiDAR Acquisition	
Table 7. Details of the recovered NAMRIA horizontal control point LY-1024 used as base station for the	
LiDAR Acquisition	9
Table 8. Details of the recovered NAMRIA horizontal control point LY-110 used as base station for the	10
LiDAR Acquisition.	
Table 9. Ground Control Points used during LiDAR data acquisition Table 40. Flinks used for LiDAR data acquisition	
Table 10. Flight missions for LiDAR data acquisition in Cadac-an Floodplain Table 11. Actual acquisition in Cadac-an Floodplain	
Table 11. Actual parameters used during LiDAR acquisition	
Table 12. List of Municipalities and cities surveyed during Cadac-an Floodplain LiDAR survey.	
Table 13. Self-Calibration Results values for Cadac-an flights. Table 14. List of LiDAD blocks for Cadac-an flights.	
Table 14. List of LiDAR blocks for Cadac-an Floodplain	
Table 15. Cadac-an classification results in TerraScan	
Table 16. LiDAR blocks with its corresponding area	
Table 17. Shift Values of each LiDAR Block of Cadac-an Floodplain	
Table 18. Calibration Statistical Measures	
Table 19. Validation Statistical Measures	
Table 20. Quality Checking Ratings for Cadac-an Building Features	
Table 21. Building Features Extracted for Cadac-an Floodplain Table 22. Trial data with the second	
Table 22. Total Length of Extracted Roads for Cadac-an Floodplain	
Table 23. Number of Extracted Water Bodies for Cadac-an Floodplain	
Table 24. List of references and control points used in Cadacan River survey in Leyte (Source: NAMRIA	
and UP TCAGP)	
Table 25. Baseline Processing Report for Cadacan River Basin Static Survey Table 26. Control Drint Constraints	
Table 27. Adjusted Grid Coordinates	42
Table 28. Adjusted Geodetic Coordinates Table 20. Defense and control weights used and its leasting (Sources MANAPIA, UP, TCACP)	
Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	
Table 30. RIDF values for Maasin Rain Gauge computed by PAGASA Table 31. Range of Calibrate d Values for Carls are	
Table 31. Range of Calibrated Values for Cadacan Table 32. Summary of the Efficiency Test of Cadacan UNAC Medal	
Table 32. Summary of the Efficiency Test of Cadacan HMS Model	
Table 33. Peak values of the Cadacan HEC-HMS Model outflow using the Maasin RIDF	
Table 34. Municipalities affected in Cadacan Floodplain	
Table 35. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Table 36. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Table 37. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Table 38. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period	
Table 39. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period Table 40. Affected Areas in Abuyog, Leyte during 25. Year Rainfall Return Period	
Table 40. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period Table 41. Affected Areas in Abuyog, Leyte during 100 Year Painfall Peturn Period.	
Table 41. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Table 42. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Table 43. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Table 44. Area covered by each warning level with respect to the rainfall scenario	
Table 45. Actual Flood Depth vs Simulated Flood Depth in Cadac-an Table 46. Summary of Accuracy Accessment in Cadac an	
Table 46. Summary of Accuracy Assessment in Cadac-an	88

LIST OF FIGURES

Figure 1. Map of the Cadac-an River Basin (in brown) Figure 2. Flight plans and base stations for Cadac-an Floodplain Figure 3. GPS set-up over LYT-93 as recovered within the premises of Abuyog Municipal Hall, Brgy. Sto Abuyog, Leyte (a) and NAMRIA reference point LYT-93 (b) as recovered by the field team Figure 4. GPS set-up over LYT-104 as recovered and re-established along rice paddy trail, approximatel 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte (a) and NAMRIA reference point LYT-104 (b) as recovered by the field team Figure 5. GPS set-up LY-199 as recovered at Bunga Bridge, Brgy. Bungas, Abuyog, Leyte. (a) and NAMRI reference point LY-199 (b) as recovered by the field team Figure 6. GPS set-up over LYT-757 as recovered on the opposite side of the kilometer post 997 in Barangay Mahayahay, Leyte. (a) and NAMRIA reference point LYT-757 (b) as recovered by the field tea Figure 7. GPS set-up over LY-1024 located at the SE end of the sidewalk of Agas-agas Bridge at KM pos 1006 + 972.6 and 4 meters from the road centerline.(a) and NAMRIA reference point LY-1024 (b) as recovered by the field team	4 5 ly I IA 7 im8 st
Figure 8. GPS set-up over LY-110 located on a bridge about 225 meters of km post 919, Libertad, Leyte	2.
(a) and NAMRIA reference point LY-110 (b) as recovered by the field team	
Figure 9. Actual LiDAR survey coverage for Cadac-an Floodplain	
Figure 10. Schematic Diagram for Data Pre-Processing Component	
Figure 11. Smoothed Performance Metric Parameters of Cadac-an Flight 1436A	
Figure 12. Solution Status Parameters of Cadac-an Flight 1436A	
Figure 13. Best Estimated Trajectory for Cadac-an Floodplain	
Figure 14. Boundary of the processed LiDAR data over Cadac-an Floodplain	
Figure 15. Image of data overlap for Cadac-an Floodplain	
Figure 16. Pulse density map of merged LiDAR data for Cadac-an Floodplain	. 20
Figure 17. Elevation difference map between flight lines for Cadac-an Floodplain	
Figure 18. Quality checking for Cadac-an flight 1436A using the Profile Tool of QT Modeler	. 21
Figure 19. Tiles for Cadac-an floodplain (a) and classification results (b) in TerraScan	. 22
Figure 20. Point cloud before (a) and after (b) classification	. 23
Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTN	1 (d)
in some portion of Cadac-an Floodplain	. 23
Figure 22. Cadac-an Floodplain with available orthophotographs	. 24
Figure 23. Sample orthophotograph tiles for Cadac-an Floodplain	
Figure 24. Portions in the DTM of Cadac-an Floodplain – a fishpond embankment before (a) and after	(b)
data retrieval and a bridge before (c) and after (d) manual editing	
Figure 25. Map of Processed LiDAR Data for Cadac-an Floodplain	
Figure 26. Map of Cadac-an Floodplain with validation survey points in green	
Figure 27. Correlation plot between calibration survey points and LiDAR data	
Figure 28. Correlation plot between validation survey points and LiDAR data	
Figure 29. Map of Cadac-an Floodplain with bathymetric survey points shown in blue	
Figure 30. QC blocks for Cadac-an building features	
Figure 31. Extracted features for Cadac-an Floodplain	
Figure 32. GNSS network for Cadacan River Survey	
Figure 33. GNSS base set up, Trimble [®] SPS 852, at LYT-101, located at the General McArthur Shrine in	
Brgy. Candahog, Municipality of Palo, Leyte	
Figure 34. GNSS base set up, Trimble® SPS 985, at LY-106, located at the approach of Bernard Reed Bri	-
along Maharlika Highway , Brgy. Luntad, Municipality of Palo, Leyte	
Figure 35. Trimble [®] SPS 985 GNSS set up at UP-ABG in Cadacan Bridge, Abuyog, Leyte	
Figure 36. GNSS receiver set up, Trimble [®] SPS 985, at UP DAG, an established control point, located at	
bridge approach of the Daguitan Bridge along Maharlika Highway in Brgy. Fatima, Municipality of Dula Bravinae of Loute	-
Province of Leyte	
Figure 37. GNSS receiver set up, Trimble [®] SPS 985, at UP-O, an established control point, located at th bridge approach of the Ormoc Merida Bridge along Ormoc-Merida-Isabel-Palompon Road in Brgy. Lilo	
City of Ormoc, Province of Leyte	
	0

Figure 38. GNSS base set up, Trimble [®] SPS 852, at UP-STN, an established control point, located at	
Calaycalay Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte	41
Figure 39. (A) Base set-up at UP-ABG and (B) Acquiring AWLS elevation at Cadacan Bridge,	
Abuyog, Leyte	44
Figure 40. Cadacan Bridge cross-section diagram	45
Figure 41. Cadacan bridge cross-section location map	45
Figure 42. AS-Built form of Cadacan Bridge	
Figure 43. Validation points acquisition survey using Trimble® SPS 882 in Leyte	47
Figure 44. Validation points acquisition survey coverage for Cadac-an River Basin	
Figure 45. Bathymetric Survey for LiDAR Aquarius validation	
Figure 46. Gathered points for LiDAR Aquarius validation	50
Figure 47. Bathymetric survey along Cadacan River	51
Figure 48. Bathymetric points gathered in Cadacan River	
Figure 49. Riverbed profile of Cadacan River	
Figure 50. Location map of Cadacan HEC-HMS model used for calibration	54
Figure 51. Cross-Section Plot of Cadacan Bridge	
Figure 52. Rating Curve at Cadacan Bridge Sta. Rita, Samar	
Figure 53. Rainfall and outflow data at Cadacan used for modeling	
Figure 54. Location of Maasin RIDF Station relative to Cadacan River Basin	
Figure 55. Synthetic storm generated for a 24-hr period rainfall for various return periods	
Figure 56. Soil Map of Cadacan River Basin	
Figure 57. Land Cover Map of Cadacan River Basin	
Figure 58. Slope Map of the Cadacan River Basin	
Figure 59. Stream Delineation Map of the Cadacan River Basin	
Figure 60. The Cadacan River Basin model generated using HEC-HMS	
Figure 61. River cross-section of Cadacan River generated through Arcmap HEC GeoRAS tool	
Figure 62. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro	
Figure 63. Outflow Hydrograph of Cadacan produced by the HEC-HMS model compared	
with observed outflow	64
Figure 64. Outflow hydrograph at Cadacan Station generated using Maasin RIDF simulated	
in HEC-HMS	66
Figure 65. Sample output of Cadacan RAS Model	67
Figure 66. 100-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth	
imagery	68
Figure 67. 100-year Flow Depth Map for Cadacan (Higasaan) Floodplain overlaid in	
Google Earth imagery	69
Figure 68. 25-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in	
Google Earth imagery	70
Figure 69. 25-year Flow Depth Map for Cadacan (Higasaan) Floodplain overlaid in	
Google Earth imagery	71
Figure 70. 5-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in	
Google Earth imagery	72
Figure 71. 5-year Flood Depth Map for Cadacan (Higasaan) Floodplain overlaid in	
Google Earth imagery	73
Figure 72. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Figure 73. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Figure 74. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period	
Figure 75. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period	
Figure 76. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period	
Figure 77. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period	
Figure 78. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Figure 79. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Figure 80. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period	
Figure 81. Validation points for 5-year Flood Depth Map of Cadacan Floodplain	
Figure 82. Flood map depth vs actual flood depth	
С	

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
IDW	Inverse Distance Weighted [interpolation method]

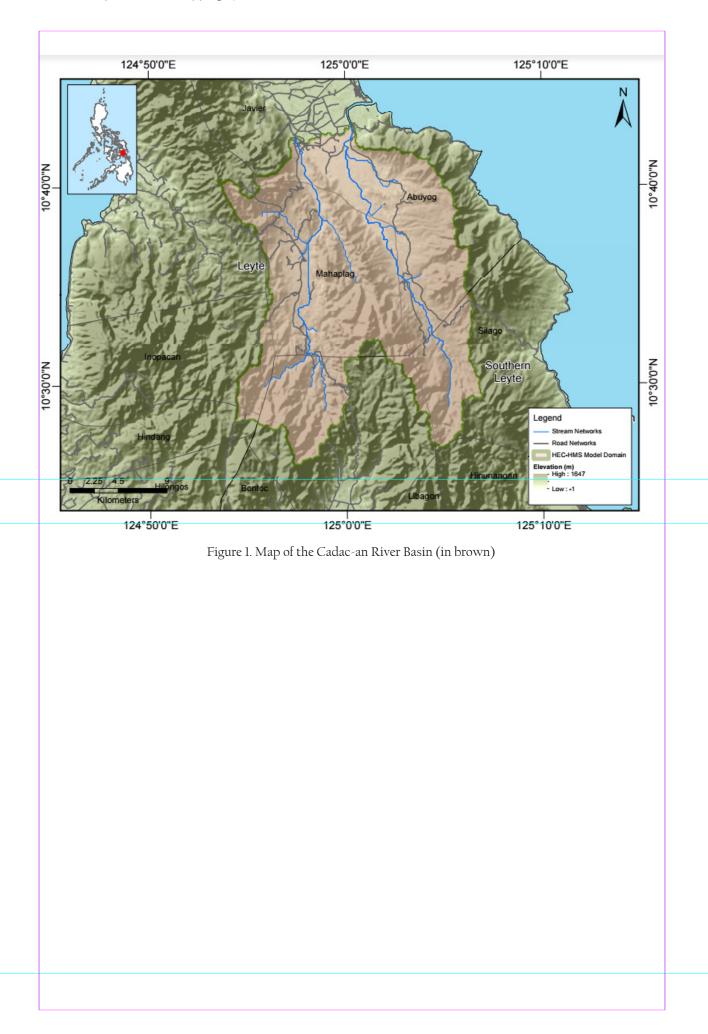
IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System
VSU	Visayas State University

CHAPTER 1: OVERVIEW OF THE PROGRAM AND CADAC-AN RIVER

[]

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1,supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.


Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The method described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 27 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2. Overview of the Cadac-an River Basin

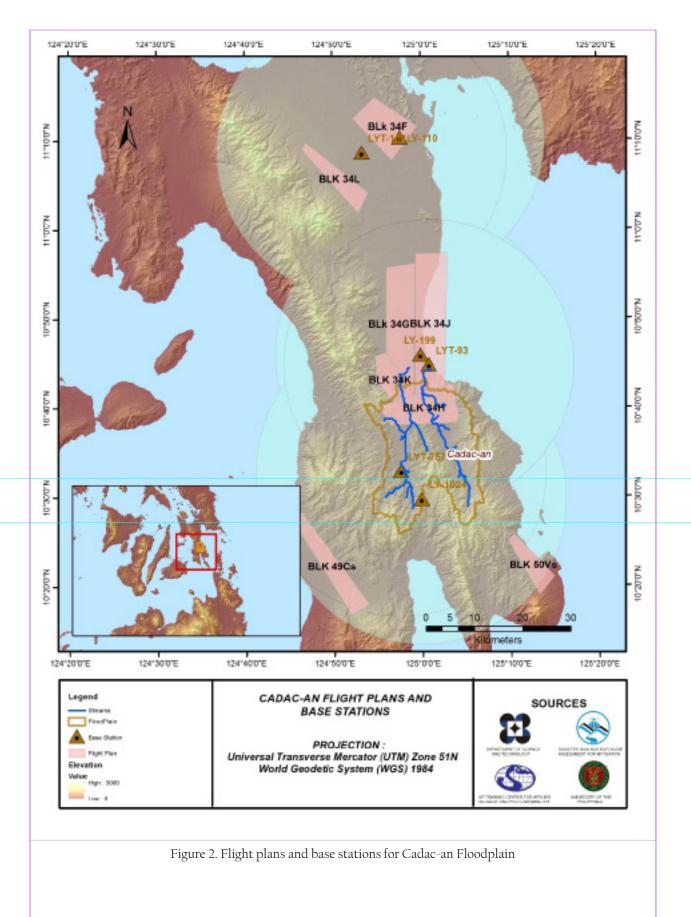
Cadacan River Basin covers a major portion of the Municipalities of Abuyog, and Mahaplag and minor portions of the Municipalities of Silago and Sogod in the Province of Leyte. It has a drainage area of 458 km 2 and an estimated 870 million cubic meter annual run-off according to the DENR-RCBO.

Its main stem, Cadacan River is part of the river systems in Visayas Region under the Phil-LiDAR 1 partner HEI, Visayas State University. The 2010 census of National Sstatistics Office stated that it has a total population of 62,956 distributed among 63 barangays. According to the data gathered from local government units in Leyte, the Municipality of Abuyog has experienced four (4) significant flooding events in the past 70 years with Cadacan River as the major artery. The earliest was caused by Typhoon Amy in 1951. The event affected the whole Municipality of Abuyog which is comprised of 63 barangays. The extent of flooding covered 77,987,800 m 2 with floods reaching as high as ten (10) feet that lasted for two (2) days. The latest flooding event was caused by heavy rainfalls on December 31, 2011. This time, the extent of the flooding covered 27,642,800 m 2 but still affected all 63 barangays in Abuyog. The flood height reached six (6) feet and lasted for three (3) days.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE CADAC-AN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Mr. Jonathan M. Almalvez

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento et al., 2014) further enhanced and updated in Paringit, et al. (2017).


2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Cadac-an Floodplain in the Province of Leyte. Each flight mission has an average of sixteen(16) lines which run for at most four and a half (4.5) hours including take-off, landing and turning time. The parameters used in the LiDAR System for acquisition are found in Tables 1 and 2. Figure 2 shows the flight plan and base stations for Cadac-an Floodplain.

Table 1. Parameters used in Aquarius LiDAR System during Flight Acquisition							
Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK49C	600	30	36	70	50	120	5
BLK50V	600	30	36	70	50	120	5

Table 2. Parameters used in Gemini LiDAR System during Flight Acquisition

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34G	850	30	40	125	50	130	5
BLK34H	650	30	40	125	50	130	5
BLK34K	850	30	40	125	50	130	5
BLK34J	850	30	40	125	50	130	5
BLK34F	900	30	40	125	50	130	5
BLK34L	900	30	40	125	50	130	5

2.2 Ground Base Station

The Project Team was able to recover two (2) NAMRIA horizontal ground control points: LYT-93 and LYT-757 which are all of second (2nd) order accuracy. The Project Team also re-established ground control point LYT-104, a NAMRIA reference point of third 3rd order accuracy. Three (3) NAMRIA benchmarks were recovered: LY-199, LY-1024, and LY-110 which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certification for the NAMRIA reference points and benchmarks are found in ANNEX 2 while the baseline processing reports for the established control points are found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey (May 8 -9, 2014 and January 24 -February 12, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Cadac-an Floodplain are shown in Figure 2.

Figures 3 to 8 show the recovered NAMRIA reference points within the area. Tables 3 to 8 show the details about the following NAMRIA control stations and established points, while Table 9 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 3. GPS set-up over LYT-93 as recovered within the premises of Abuyog Municipal Hall, Brgy. Sto. Abuyog, Leyte (a) and NAMRIA reference point LYT-93 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point LYT-93 used as base station for the LiDAR Acquisition

Station Name	LYT-93			
Order of Accuracy	1 st			
Relative Error (horizontal positioning)	1 in 100,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 44' 52.03339" North 125° 0' 43.59630" East 2.66000 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	501324.552 meters 1188433.982 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 44' 47.89310" North 125° 0' 48.79542" East 66.12300 meters		
Grid Coordinates, Universal Transverse	Easting	720040 44 motors		
Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	720040.44 meters 1188738.73 meters		

Figure 4. GPS set-up over LYT-104 as recovered and re-established along rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte (a) and NAMRIA reference point LYT-104 (b) as recovered by the field team

Table 4. Details of the recovered NAMRIA horizontal control point LYT-104 used as base station for the LiDAR Acquisition.

Station Name	LYT-104		
Order of Accuracy	2 nd order		
Relative Error (horizontal positioning)	1:50000		
Geographic Coordinates,	Latitude	11° 08' 38.92234" North	
Philippine Reference of 1992 Datum	Longitude	124° 53' 13.52786"East	
(PRS 92)	Ellipsoidal Height	33.659 m	
Geographic Coordinates,	Latitude	11° 08' 34.67033" North	
World Geodetic System 1984 Datum	Longitude	124° 53' 18.69323" East	
(WGS 84)	Ellipsoidal Height	95.861 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	706089.510 m 1232496.838 m	

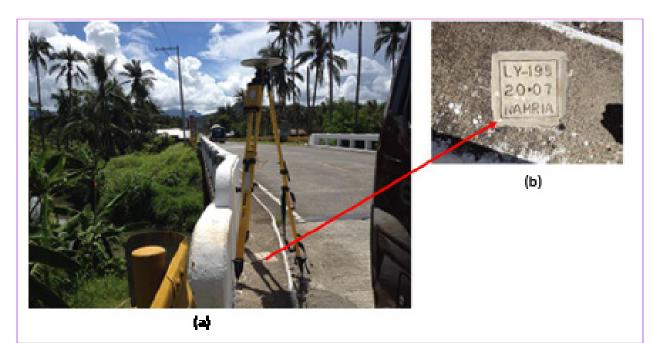


Figure 5. GPS set-up LY-199 as recovered at Bunga Bridge, Brgy. Bungas, Abuyog, Leyte. (a) and NAMRIA reference point LY-199 (b) as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point LY-199 used as base station for the LiDAR Acquisition.

Station Name	LY-199			
Order of Accuracy	1 st order			
Relative Error (horizontal positioning)	1:100,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 45' 58.35" North 124° 59' 47.90" East 5.43 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	499632.514 m 1190471.498 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 45' 53.60669" North 124° 59' 52.1269" East 68.789 m		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	718461.36 m 1190695.094 m		
Elevation		4.0649 m		

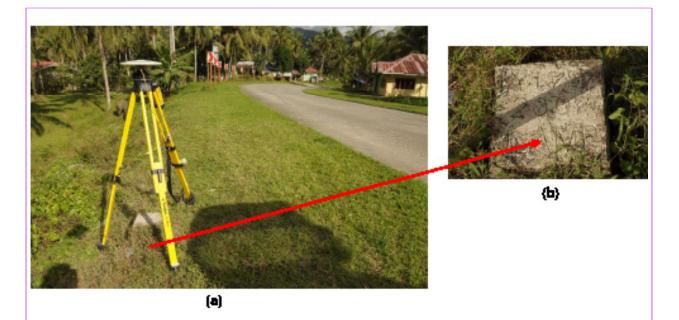


Figure 6. GPS set-up over LYT-757 as recovered on the opposite side of the kilometer post 997 in Barangay Mahayahay, Leyte. (a) and NAMRIA reference point LYT-757 (b) as recovered by the field team

Table 6. Details of the recovered NAMRIA horizontal control point LYT-757 used as base station for the LiDAR Acquisition

Station Name Order of Accuracy		۲۲-757 d order	
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 32' 54.87" North 124° 57' 31.14" East 99.55 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	495474.491 m 1166401.318 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 32′ 50.77355″ North 124° 57′ 36.36037″ East 163.36300 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	714331.34 m 1166663.62 m	
Elevation		163.36300 m	

(8)

Figure 7. GPS set-up over LY-1024 located at the SE end of the sidewalk of Agas-agas Bridge at KM post 1006 + 972.6 and 4 meters from the road centerline.(a) and NAMRIA reference point LY-1024 (b) as recovered by the field team

Table 7. Details of the recovered NAMRIA horizontal control point LY-1024 used as base station for the LiDAR Acquisition

Station Name	Ľ	/-1024	
Order of Accuracy	1 st order		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 29' 46.27" North 124° 59' 49.85" East 366.202 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 29' 42.20218" North 124° 59' 55.07713" East 430.223 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	718586.237 m 1160895.197 m	
Elevation		364.735 m	



Figure 8. GPS set-up over LY-110 located on a bridge about 225 meters of km post 919, Libertad, Leyte. (a) and NAMRIA reference point LY-110 (b) as recovered by the field team

Table 8. Details of the recovered NAMRIA horizontal control point LY-110 used as base station for the LiDAR Acquisition.

Station Name	LY-110		
Order of Accuracy	1 st order		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates,	Latitude	11o 10' 19.48" North	
Philippine Reference of 1992 Datum	Longitude	124o 57' 32.98" East	
(PRS 92)	Ellipsoidal Height	14.336 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing		
Geographic Coordinates,	Latitude	11o 10' 15.23095" North	
World Geodetic System 1984 Datum	Longitude	124o 57' 38.14961" East	
(WGS 84)	Ellipsoidal Height	76.647 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	713942.863 m 1235638.117 m	
Elevation		12.819 m	

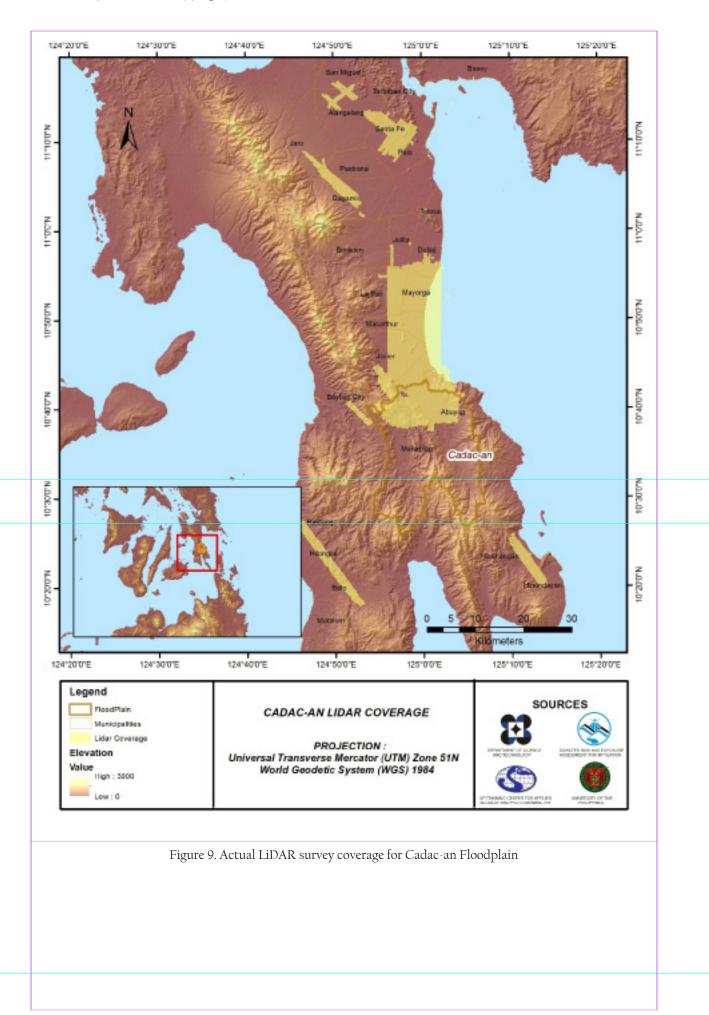
Table 9. Ground Control Points used during LiDAR data acquisition				
Date Surveyed	Flight Number	Mission Name	Ground Control Points	
May 9, 2014	1434A	3BLK34LSM129A	LYT-93 and LY-199	
May 9, 2014	1436A	3BLK34MS129B	LYT-93 and LY-199	
May 8, 2014	1430A	3BLK34L128A	LYT-93 and LY-199	
Feb. 7, 2016	3761G	2BLK038A	LYT-757 and LY-1024	
Feb. 10, 2016	23773G	2BLK34A041A	LYT-757 and LY-1024	
Feb. 12, 2016	3781G	2BLK34A043A	LYT-757 and LY-1024	
Feb. 9, 2016	23771G	2BLK34A040A	LYT-757 and LY-1024	
Jan. 24, 2016	3773G	2BLK34CG024A	LYT-104 and LY-110	

2.3 Flight Missions

Eight (8) missions were conducted to complete LiDAR data acquisition in Cadac-an Floodplain, for a total of forty-seven hours and six minutes (47+6) of flying time for RP-C9122 and RP-C9022. All missions were acquired using Aquarius and Gemini LiDAR systems. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 presents the actual parameters used during the LiDAR data acquisition.

Flight		Flight	Area Surveyed	Area Surveyed	No. of	Flying Hours		
Date Surveyed	Flight Number	Plan Area (km²)	Surveyed Area (km ²)	within the Floodplain (km ²)	outside the Floodplain (km²)	Images (Frames)	Hr	Min
May 9, 2014	1434A	180.35	125.909	21.21	104.699	1670	4	47
May 9, 2014	1436A	80.27	71.953	9.03	62.923	844	3	41
May 8, 2014	1430A	156.77	120.49	6.79	113.7	1463	4	5
Feb. 7, 2016	3761G	210.11	202	34.91	167.09	N.A.	4	5
Feb. 10, 2016	23773G	263.51	230.90	49.50	181.4	N.A.	3	23
Feb. 12, 2016	3781G	99.91	90.3	86.11	4.19	N.A.	3	23
Feb. 9, 2016	23771G	235.21	195.06	32.14	162.92	N.A.	3	11
Jan. 24, 2016	3773G	112.2	90.6	0	90.6	N.A.	4	11
TOTAL		1338.33	1127.212	239.69	887.522	3977	56	6

Table 10. Flight missions for LiDAR data acquisition in Cadac-an Floodplain


Date Surveyed	Flight Number	Flying Height (AGL) (m)	Overlap (%)	Field of View	PRF (kHz)	Scan Frequency (Hz)	Speed of Plane (Kts)
1430A	600	30	36	70	50	120	5
1434A	600	30	36	70	50	120	5
1436A	600	30	36	70	50	120	5
3773G	600	30	36	70	50	120	5
3761G	800	30	40	125	50	130	5
23771G	850	30	40	125	50	130	5
23773G	850	30	40	125	50	130	5
3781G	850	30	40	125	50	130	5

2.4 Survey Coverage

The Cadac-an Floodplain is located in the Province of Leyte with majority of the floodplain situated within the Municipality of Mahaplag. The Municipalities of Abuyog and Mahaplag are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 12. The actual coverage of the LiDAR acquisition for Cadac-an Floodplain is presented in Figure 9.

Province	Municipality/City	Area of Municipality/ City (km ²)	Total Area Surveyed (km ²)	Percentage of Ar Surveyed
	Mayorga	39.45	39.45	100.00
	Macarthur	57.86	32.52	56.21
	Santa Fe	57.15	30.31	53.05
	Javier	153.11	78.58	51.32
	Abuyog	256.64	124.37	48.46
	Palo	65.34	18.94	28.99
	Dulag	63.65	18.01	28.29
	La Paz	136.02	35.11	25.81
	Mahaplag	180.30	30.07	16.68
	Bato	57.55	8.24	14.32
	Dagami	134.08	18.81	14.03
Leyte	Alangalang	145.45	19.30	13.27
	Julita	57.17	4.93	8.63
	Hilongos	156.80	12.82	8.17
	Pastrana	79.17	5.49	6.94
	Hindang	106.77	5.90	5.52
	San Miguel	103.86	4.01	3.86
	Jaro	190.65	5.77	3.03
	Baybay City	404.37	6.01	1.49
	Tolosa	28.17	0.33	1.19
	Matalom	110.13	1.27	1.15
	Tacloban City	118.46	0.33	0.28
	Burauen	205.31	0.04	0.02
Samar	Basey	627.97	0.013	0.002
	Hinunangan	136.38	18.75	13.75
Southern Leyte	Hinundayan	53.28	6.95	13.04

Table 12. List of Municipalities and cities surveyed during Cadac-an Floodplain LiDAR survey.

CHAPTER 3: LIDAR DATA PROCESSING OF THE CADAC-AN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Erica Erin E. Elazegui, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Ang et al., 2014) further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality check in order to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR System were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

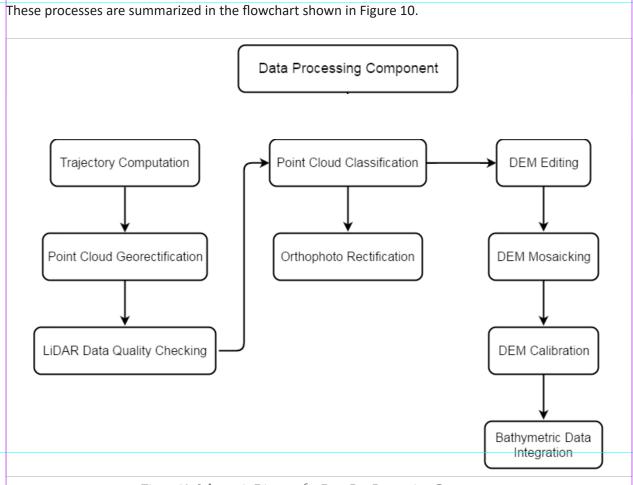


Figure 10. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of the Acquired LiDAR Data

The Data Transfer Sheets for all the LiDAR missions for Cadac-an Floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on May 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius System while missions acquired during the last survey on February 2016 were flown using the Gemini System over Tacloban. The Data Acquisition Component (DAC) transferred a total of 98.43 Gigabytes of Range data, 1.79 Gigabytes of POS data, 73 Megabytes of GPS base station data, and 306.90 Gigabytes of raw image data to the data server on May 8, 2014 for the first survey and February 12, 2016 for the last survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Cadac-an was fully transferred on March 4, 2016, as indicated on the Data Transfer Sheets for Cadac-an Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 1436A, one of the Cadac-an flights, which is the North, East, and Down position RMSE values are shown in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 9, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

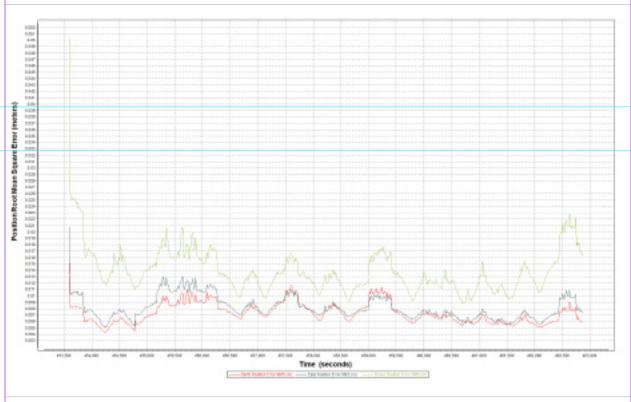


Figure 11. Smoothed Performance Metric Parameters of Cadac-an Flight 1436A

The time of flight was from 453500 seconds to 463000 seconds, which corresponds to afternoon of May 9, 2014. The initial spike seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and when the POS System started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 1.20 centimeters, the East position RMSE peaks at 1.30 centimeters, and the Down position RMSE peaks at 2.30 centimeters, which are within the prescribed accuracies described in the methodology.

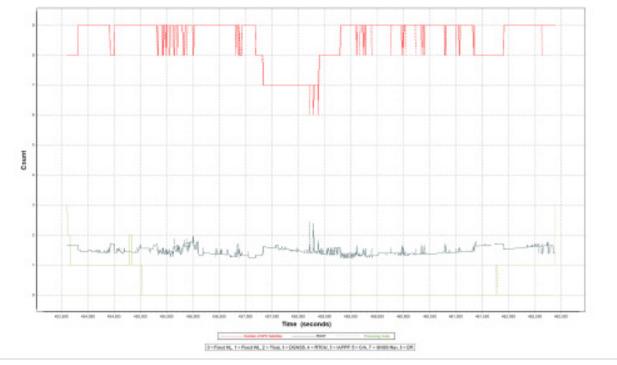


Figure 12. Solution Status Parameters of Cadac-an Flight 1436A

The Solution Status parameters of flight 1436A, one of the Cadac-an flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 12. The graphs indicate that the number of satellites during the acquisition did not go below 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 or 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Cadac-an flights is shown in Figure 13.

Figure 13. Best Estimated Trajectory for Cadac-an Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 94 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Cadac-an Floodplain are given in Table 13.

Table 13. Self-Calibration Results values for Cadac-an flights.				
Parameter	Acceptable Value			
Boresight Correction stdev (<0.001degrees)	0.000471			
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000993			
GPS Position Z-correction stdev (<0.01meters)	0.0080			

The optimum accuracy is obtained for all Cadac-an flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Cadac-an Floodplain is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

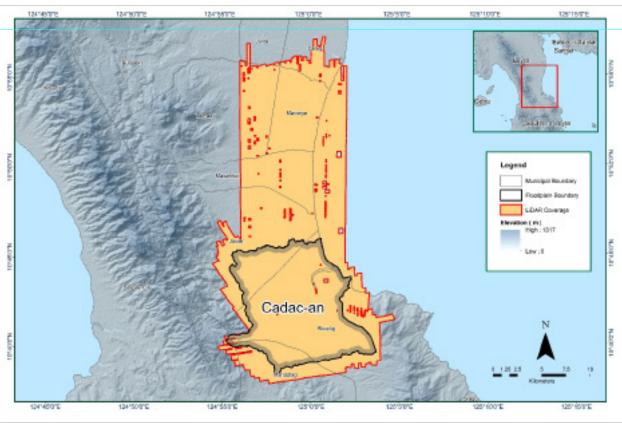
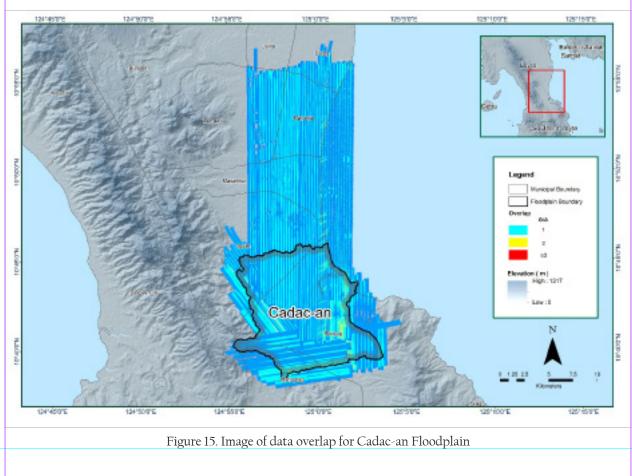



Figure 14. Boundary of the processed LiDAR data over Cadac-an Floodplain

The total area covered by the Cadac-an missions is 409.53 sq.km that is comprised of eight (8) flight acquisitions grouped and merged into six (6) blocks as shown in Table 14.

Table 14. List of LiDAR blocks for Cadac-an Floodplain				
LiDAR Blocks	Flight Numbers	Area (sq. km)		
Compr. Louto DH2411	1434A	119.88		
Samar_Leyte_Blk34H	1436A	119.88		
Samar Loute PH/24C	1430A	140.20		
Samar_Leyte_Blk34G	1434A	140.20		
Louto PH24C	3761G	30.86		
Leyte Blk34G	23773G	50.60		
Louto DIV24K	3781G	63.69		
Leyte Blk34K	23773G	05.09		
Louto DIk24H	3761G	47.00		
Leyte Blk34H	23771G	47.00		
Louto Blk24C, additional	3773G	7.00		
Leyte Blk34G_additional	3781G	7.90		
то	TAL	409.53 sq.km		

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Gemini and Aquarius Systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

The overlap statistics per block for the Cadac-an floodplain can be found in ANNEX 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 30.11% and 42.02% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 16. It was determined that all LiDAR data for Cadac-an Floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.76 points per square meter.

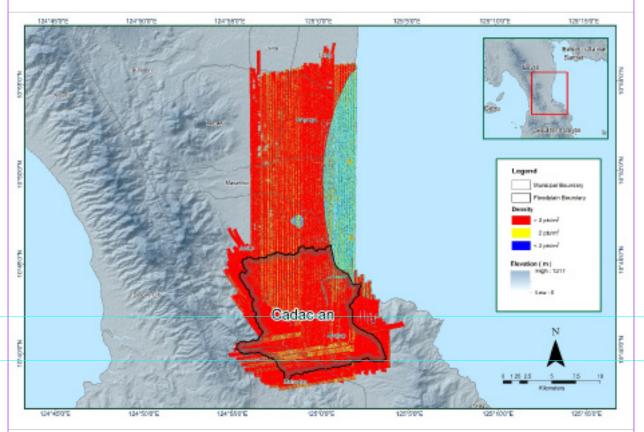


Figure 16. Pulse density map of merged LiDAR data for Cadac-an Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

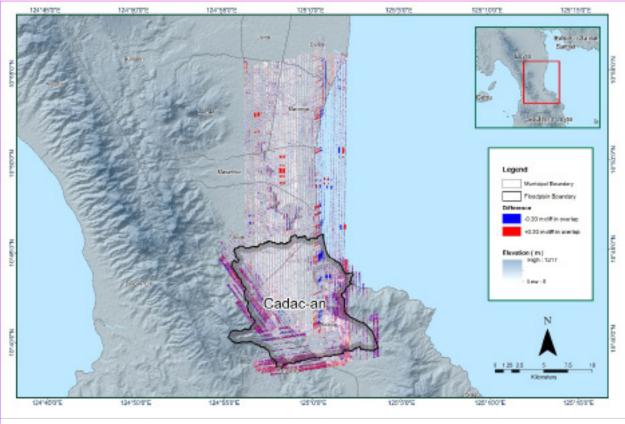
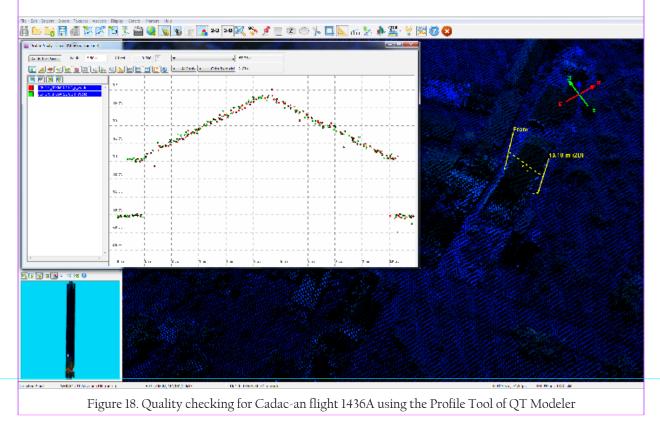



Figure 17. Elevation difference map between flight lines for Cadac-an Floodplain

A screen capture of the processed LAS data from Cadac-an flight 1436A loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 15. Cadac-an classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	298,635,717
Low Vegetation	369,467,812
Medium Vegetation	561,255,836
High Vegetation	695,459,215
Building	15,272,905

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Cadac-an Floodplain is shown in Figure 19. A total of 669 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 729.81 meters and 51.73 meters respectively.

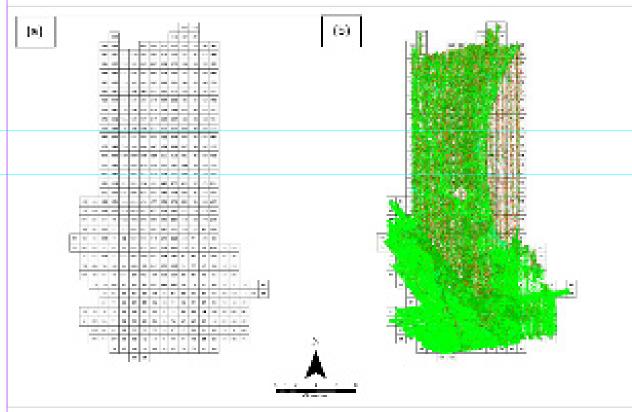


Figure 19. Tiles for Cadac-an floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

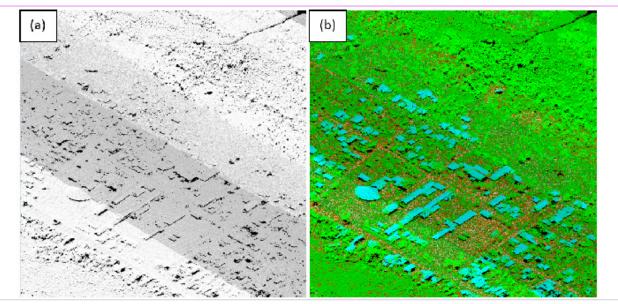


Figure 20. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 21. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

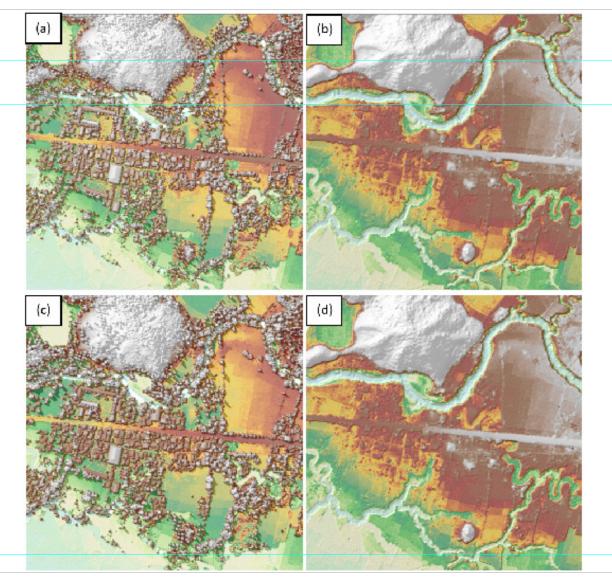


Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Cadac-an Floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 586 1km by 1km tiles area covered by Cadac-an Floodplain is shown in Figure 22. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Cadac-an Floodplain has a total of 380.37 sq.km orthophotogaph coverage comprised of 4,547 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 23.

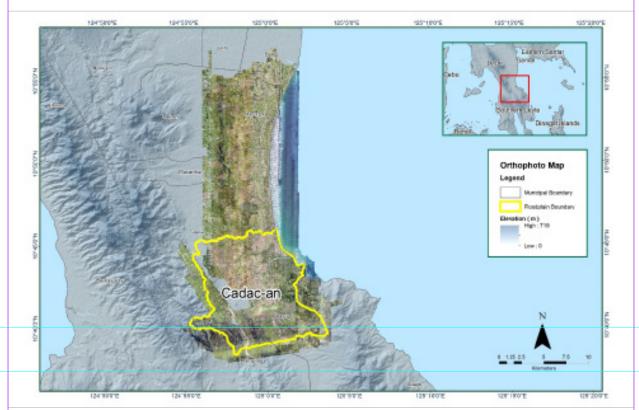


Figure 22. Cadac-an Floodplain with available orthophotographs

Figure 23. Sample orthophotograph tiles for Cadac-an Floodplain

3.8 DEM Editing and Hydro-Correction

Six (6) mission blocks were processed for Cadac-an Floodplain. These blocks are comprised of SamarLeyte and Leyte blocks with a total area of 409.53 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

Table 16. LiDAR blocks with its corresponding area		
LiDAR Blocks	Area (sq.km)	
SamarLeyte_Blk34H	119.88	
SamarLeyte_Blk34G	140.20	
Leyte_Blk34G	30.86	
Leyte_Blk34H	47.00	
Leyte_Blk34K	63.69	
Leyte_Blk34G_additional	7.90	
TOTAL	409.53 sq.km	

Portions of the DTM before and after manual editing are shown in Figure 24. The fishpond embankment (Figure 24a) was misclassified and removed during classification process. It was retrieved to complete the surface (Figure 24b) which would allow the correct flow of water. The bridge (Figure 24c) was also considered to be an impedance to the flow of water along the river and was thus removed (Figure 24d) in order to hydrologically correct the river.

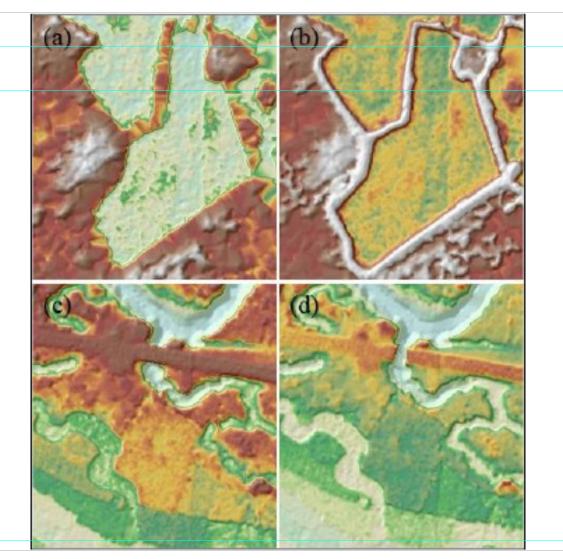
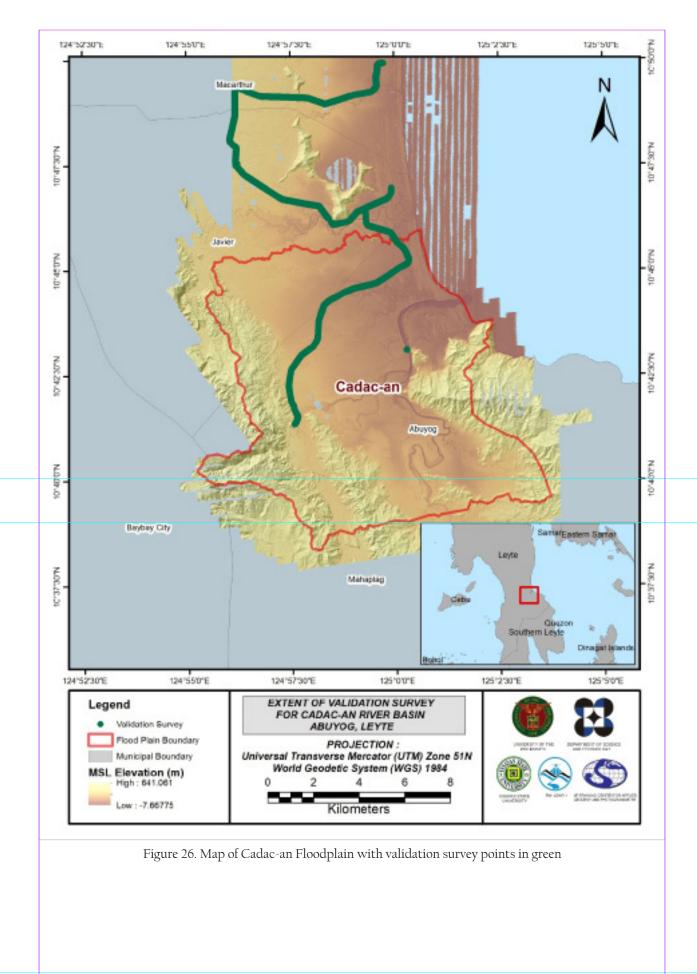


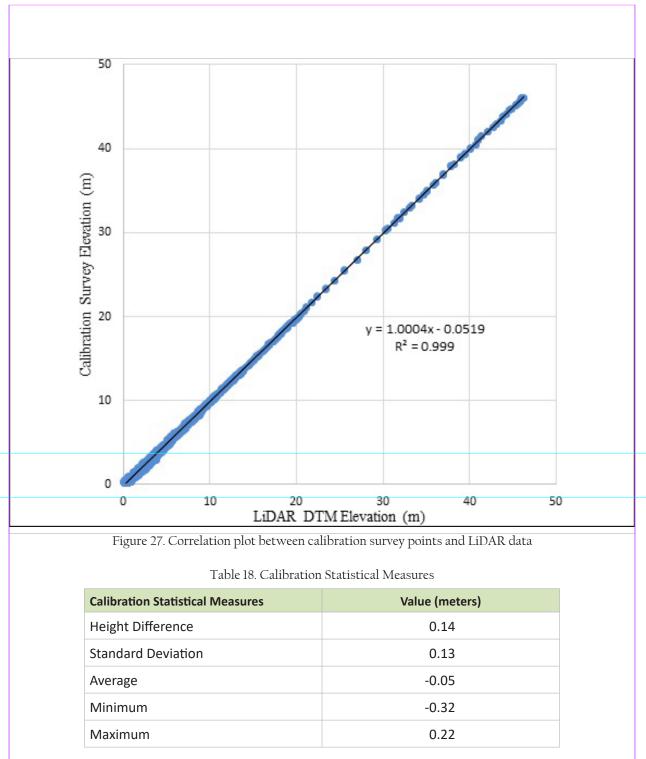

Figure 24. Portions in the DTM of Cadac-an Floodplain – a fishpond embankment before (a) and after (b) data retrieval and a bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

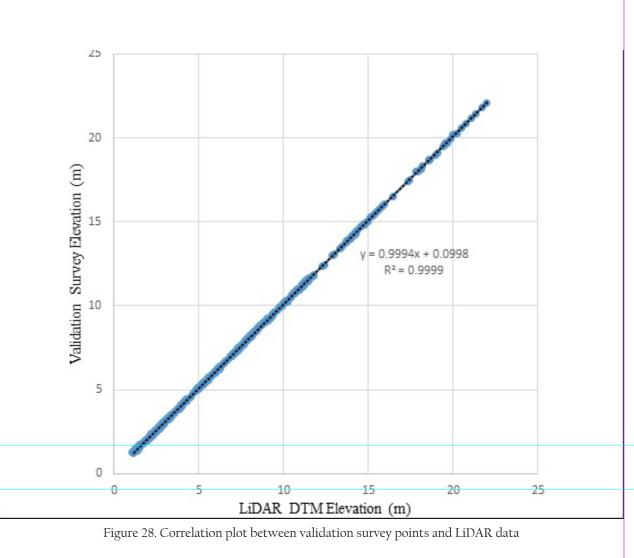
No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM which overlaps with the blocks to be mosaicked. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Cadac-an Floodplain is shown in Figure 25. The entire Cadac-an Floodplain is 99.63% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.


Table 17. Shift Values of each LiDAR Block of Cadac-an Floodplain			
Mission Blocks	Shift Values (meters)		
	х	У	Z
SamarLeyte_Blk34H	0.00	0.00	-0.52
SamarLeyte_Blk34G	0.00	0.00	-0.54
Leyte_Blk34H	0.00	0.00	-1.21
Leyte_Blk34K	0.00	0.00	-1.16
Leyte_Blk34G	0.00	0.00	-1.30
Leyte_Blk34G_additional	0.00	0.00	-1.22



3.10 Calibration and Validation of Mosaicked LiDAR DEM


The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Cadac-an to collect points with which the LiDAR dataset was validated is shown in Figure 26. A total of 3,735 survey points were gathered for the Cadac-an Floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Cadac-an because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Cadac-an can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values were also applicable to the Cadacan DEM.

A total of 1,074 survey points that lie within Cadac-an Floodplain and were used for the validation of the calibrated Cadac-an DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.10 meters with a standard deviation of 0.04 meters, as shown in Table 19.

Table 19. Validation Statistical Measures

Validation Statistical Measures	Value (meters)
RMSE	0.10
Standard Deviation	0.04
Average	-0.10
Minimum	-0.18
Maximum	-0.02

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Cadac-an with 4,078 bathymetric survey points. The resulting raster surface produced was done by Spline with Barriers interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.38 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Cadac-an integrated with the processed LiDAR DEM is shown in Figure 29.

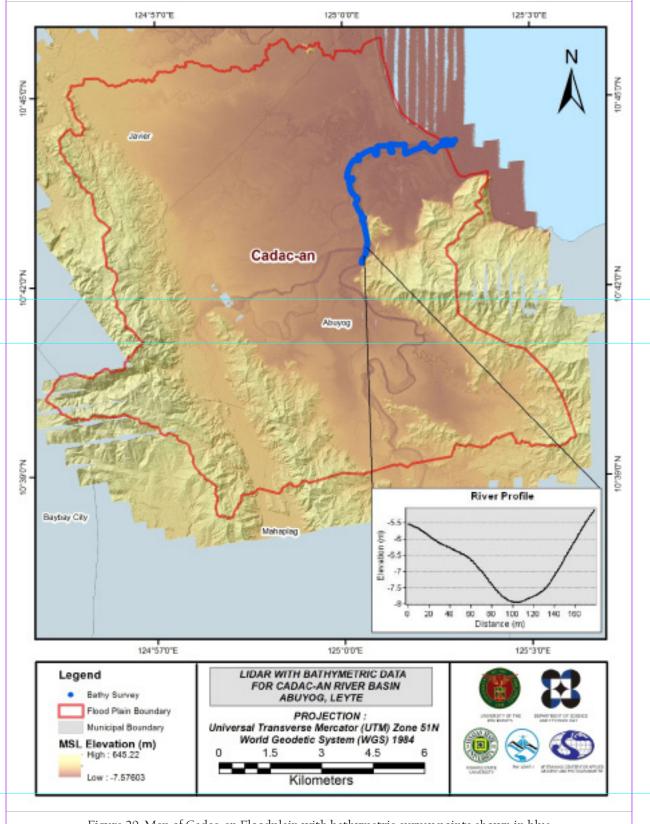


Figure 29. Map of Cadac-an Floodplain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks, comprised of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

The Cadac-an Floodplain, including its 200 m buffer, has a total area of 143.06 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1308 building features, are considered for QC. Figure 30 shows the QC blocks for Cadac-an Floodplain.

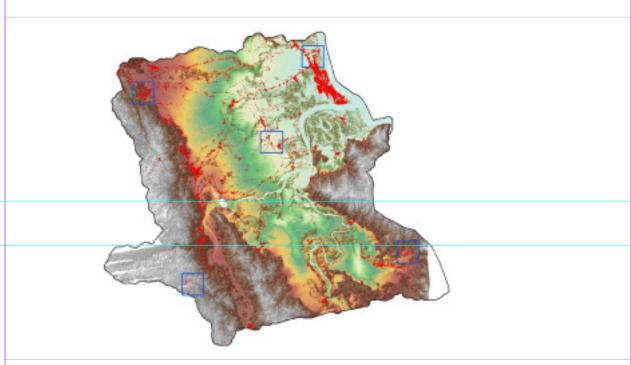


Figure 30. QC blocks for Cadac-an building features

Quality checking of Cadac-an building features resulted in the ratings shown in Table 20.

Table 20. Quality Checking Ratings for Cadac-an Building Features

Floodplain	Completeness	Correctness	Quality	Remarks
Cadac-an	96.79	94.42	82.19	PASSED

3.12.2 Height Extraction

Height extraction was done for 13,273 building features in Cadac-an Floodplain. Of these building features, 258 were filtered out after height extraction, resulting to 13,015 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 12.10 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified. All other buildings were then coded as residential. An

nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	11,813
School	319
Market	14
Agricultural/Agro-Industrial Facilities	177
Medical Institutions	47
Barangay Hall	39
Military Institution	0
Sports Center/Gymnasium/Covered Court	23
Telecommunication Facilities	1
Transport Terminal	2
Warehouse	107
Power Plant/Substation	0
NGO/CSO Offices	6
Police Station	1
Water Supply/Sewerage	12
Religious Institutions	143
Bank	3
Factory	0
Gas Station	7
Fire Station	1
Other Government Offices	107
Other Commercial Establishments	193
Total	13,015

Table 21. Building Features Extracted for Cadac-an Floodplain

Table 22. Total Length of Extracted Roads for Cadac-an Floodplain

Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Cadac-an	75.73	18.39	19.60	37.37	0.00	151.10
	Table 23. I	Number of Extra	cted Water Bodi	es for Cadac-an F	loodplain	
		١	Water Body Type	e		
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Cadac-an	69	43	0	0	0	112

A total of 62 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprised the flood hazard exposure database for the floodplain. This completed the feature extraction phase of the project.

Figure 31 shows the Digital Surface Model (DSM) of Cadac-an Floodplain overlaid with its ground features.

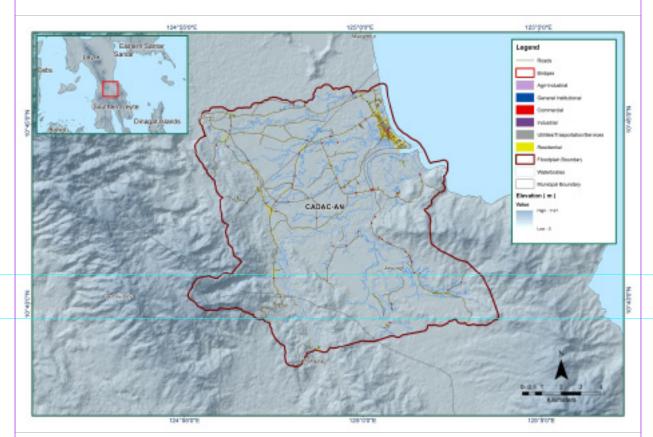


Figure 31. Extracted features for Cadac-an Floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENT OF THE CADAC-AN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta et al., 2014) further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

In line with this, DVBC conducted a field survey in Cadacan River on September 10-24, 2014 and January 6 to 20, 2015 with the following scope of work: reconnaissance, control survey, bridge as-built and crosssection survey, bathymetric and aquarius validation survey, and ground validation survey. The bathymetric survey started in Brgy. Tadoc and finished in Brgy. Buenavista, Municipality of Abuyog. An Ohmex™ Single

Beam Echo Sounder and a GNSS receiver was used utilizing GNSS PPK survey technique for both the LiDAR Aquarius validation (10.70 km) and the bathymetric survey(8.74 km).

4.2 Control Survey

The GNSS network used for Palo River Basin is composed of three (3) loops established on September 18 to 20, 2014 occupying the following reference points: LYT-101, a second-order GCP, in Brgy. Candahog, Municipality of Palo; and LY-106, a second-order GCP, in Brgy. Luntad, Municipality of Palo.

Five (5) control points were established at the approach of bridges namely: UP-ABG at Cadacan Bridge, in Brgy. Pagsang-An, Municipality of Abuyog; UP-B at Pagbangaran Bridge in Brgy. Poblacion, Baybay City, Leyte UP-DAG at Daguitan Bridge, in Brgy. Fatima, Municipality of Dulag; UP-O at Ormoc Merida Bridge, in Brgy. Liloan, Ormoc City; and UP-STN at Calay-calay Bridge, in Brgy. Caraycaray, Municipality of San Miguel. Two (2) arbitrary points were also observed to complete the network. AP1 and AP2 are located at the corner of Maharlika Highway and an unnamed street going to Campetic Road, in Brgy. Campetik, Municipality of Palo and inside Burauen Church Plaza, Julita Burauen Road corner Burauen – Dagami Road, Brgy. Poblacion VII, Municipality of Burauen, Province of Leyte, respectively.

The summary of reference and control points and its location is summarized in Table 24.

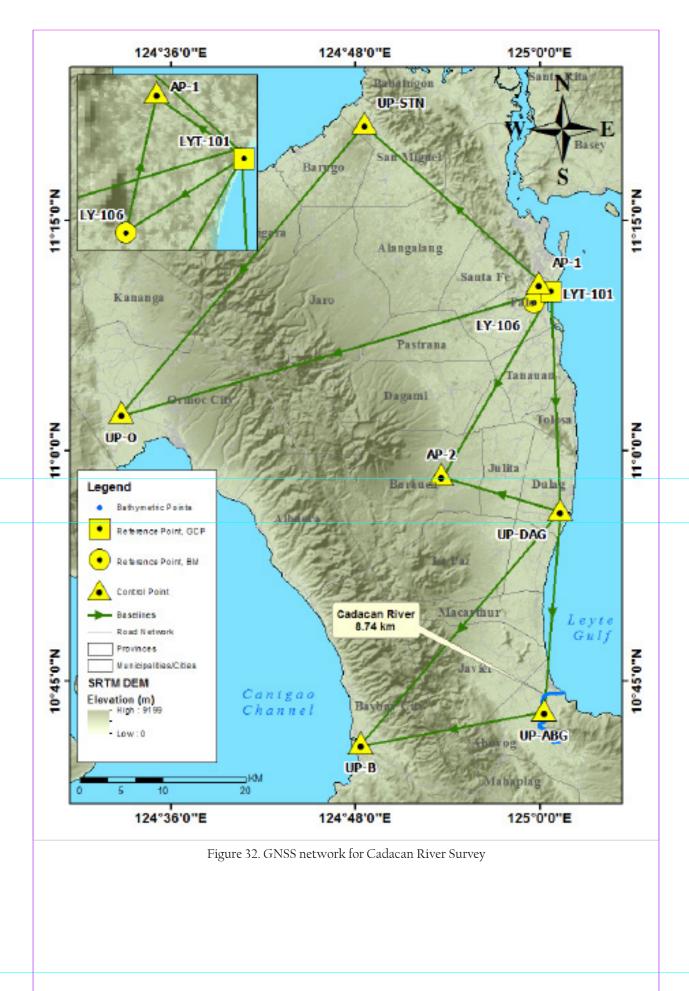


Table 24. List of references and control points used in Cadacan River survey in Leyte (Source: NAMRIA and UP TCAGP)

			TCAGP)					
		Geo	Geographic Coordinates (WGS UTM Zone 52N)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establish- ment		
LYT-101	2 nd order, GCP	11°10'19.64869" N	125°00'43.78230" E	69.228	-	09-20-2014		
LY-106	1 st order, BM	-	-	68.051	4.028	2007		
UP-ABG	UP Established	-	-	-	-	09-20-2014		
UP-B	UP Established	-	-	-	-	09-20-2014		
UP-DAG	UP Established	-	-	-	-	09-20-2014		
UP-O	UP Established	-	-	-	-	09-19-2014		
UP-STN	UP Established	-	-	-	-	09-11-2014		
AP1	Arbitrary	-	-	-	-	09-18-2014		
AP2	Arbitrary	-	-	-	_	09-20-2014		

The GNSS set up made in the location of the reference and control points are exhibited are shown in Figures 33 to 38.

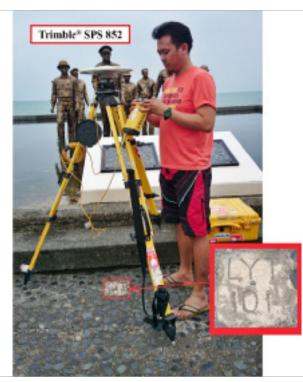


Figure 33. GNSS base set up, Trimble® SPS 852, at LYT-101, located at the General McArthur Shrine in Brgy. Candahog, Municipality of Palo, Leyte

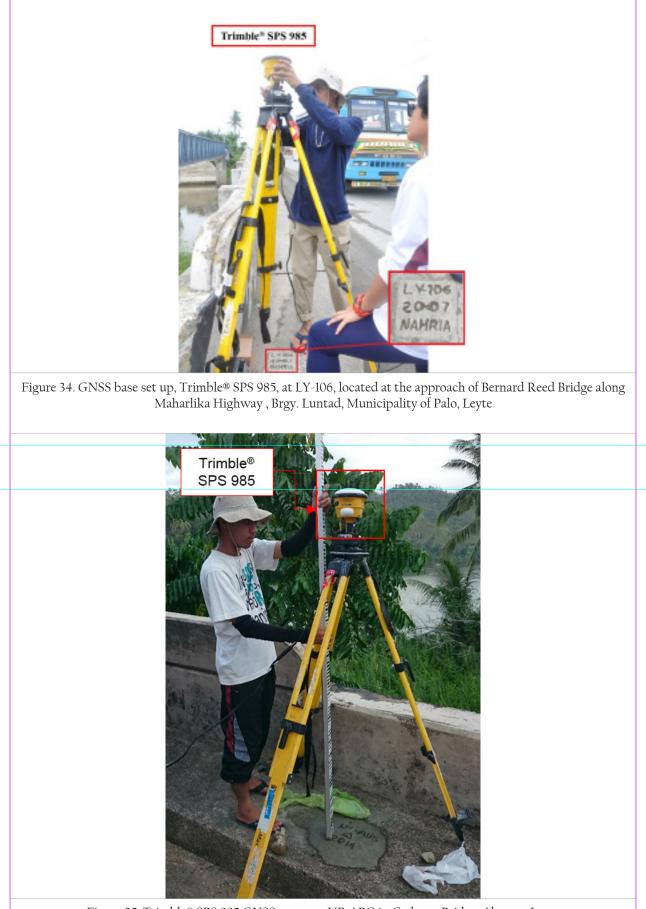


Figure 35. Trimble® SPS 985 GNSS set up at UP-ABG in Cadacan Bridge, Abuyog, Leyte

Figure 38. GNSS base set up, Trimble® SPS 852, at UP-STN, an established control point, located at Calaycalay Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Cadacan River Basin is summarized in Table 25 generated by TBC software.

		0	T			,	
Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆ Height (m)
LY106 ARB18	09-19-2014	Fixed	0.003	0.012	12°44'49"	2489.516	0.757
LYT101LY106	09-18-2014	Fixed	0.002	0.010	238°21'43"	2417.860	-1.175
LYT101ARB18	09-18-2014	Fixed	0.002	0.003	307°32'43"	1903.266	-0.401
LYT101ARB20	09-19-2014	Fixed	0.003	0.012	210°46'11"	25458.032	51.162
UP-ABGUPB	09-18-2014	Fixed	0.005	0.015	79°44'17"	22116.420	0.508
UPDAG UPB	09-18-2014	Fixed	0.004	0.015	220°10'40"	36642.838	2.200
UP-DAGUPABG	09-18-2014	Fixed	0.004	0.014	184°27'15"	24145.040	2.687
LYT101UPDAG	09-20-2014	Fixed	0.004	0.011	177°43'46"	26154.013	1.377
UPDAGARB20	09-20-2014	Fixed	0.004	0.014	286°51'16"	14691.113	49.771
LYT101UPO	09-20-2014	Fixed	0.005	0.013	254°12'03"	52970.388	2.405
UPSTN UPO	09-20-2014	Fixed	0.003	0.013	219°39'13″	45132.753	-0.174
LYT101 UPSTN	09-20-2014	Fixed	0.003	0.011	312°31'18"	30045.648	2.573

Table 25. Baseline Processing Report for Cadacan River Basin Static Survey

As shown in Table 25, a total of twelve (12) baselines were processed with reference points LYT-101 and LY-106 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates Table 26 of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$V((x_e)^2 + (y_e)^2) < 20 \ cm$$
 and $z_e < 10 \ cm$

Where:

 x_{e} is the Easting Error, y_{e} is the Northing Error, and z_{e} is the Elevation Error

for each control point. See the Network Adjustment Report shown in Tables to 28 for the complete details.

The nine (9) control points, LYT-101, LY-106, UP-ABG, UP-B, UP-DAG, UP-O, UP-STN, and two (2) arbitrary points were occupied and observed simultaneously to form a GNSS loop. The coordinates of point LYT-101 and elevation value of LY-106 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

		Table 26. Control	Point Constraints		
Point ID	Туре	North (Meter)	East (Meter)	Height (Meter)	Elevation (Meter)
LYT-101	Global	Fixed	Fixed		
LY-106	Grid				Fixed
		Fixed = 0.00	0001(Meter)		

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. The fixed control points LYT-101 has no values for grid errors; and LY-106, for elevation error.

Table 27. Adjusted Grid Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ARB18	718212.616	0.003	1236908.993	0.003	4.830	0.016	
ARB20	706851.618	0.005	1213793.946	0.004	56.309	0.026	
LY106	717679.600	0.003	1234476.728	0.003	4.028	?	е
LYT101	719729.823	?	1235759.250	?	5.133	0.015	LL
UPABG	719226.477	0.007	1185539.275	0.005	8.419	0.035	
UPB	697484.285	0.008	1181471.356	0.005	8.449	0.035	
UPDAG	720942.270	0.005	1209628.100	0.003	5.984	0.025	
UPO	668855.826	0.005	1220991.405	0.004	8.715	0.026	
UPSTN	697443.635	0.004	1255916.571	0.003	8.836	0.024	
	037 443.033	0.004	1233310.371	0.005	0.000	0.027	

The network is fixed at reference points LYT-101 with known coordinates and LY-106 with known elevation. With the mentioned equation, $V((x_e)^2 + (y_e)^2) < 20 \text{ cm}$ for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

a. LYT-101		e. UP-STN	
horizontal accuracy vertical accuracy	= Fixed = 1.5 cm < 10 cm	horizontal accuracy	$= \sqrt{((0.5)^2 + (0.3)^2)^2}$ = $\sqrt{(0.25 + 0.9)^2}$ = 1.07 cm < 20 cm
b. LY-106		vertical accuracy	= 2.4 cm < 10 cm
horizontal accuracy	$= \sqrt{((0.3)^2 + (0.3)^2)}$ = $\sqrt{(0.9 + 0.9)}$	f. AP1	
vertical accuracy	= 1.34 cm < 20 cm = Fixed	horizontal accuracy	$= \sqrt{((0.3)^2 + (0.3)^2)^2}$ = $\sqrt{(0.9 + 0.9)^2}$ = 1.24 cm < 20 cm
c. UP-DAG		vertical accuracy	= 1.34 cm < 20 cm = 1.6 cm < 10 cm
horizontal accuracy	$= \sqrt{((0.5)^2 + (0.3)^2)}$ = $\sqrt{(0.25 + 0.9)}$	g. AP2	
vertical accuracy	= 1.07 cm < 20 cm = 2.5 cm < 10 cm	horizontal accuracy	$= \sqrt{((0.5)^2 + (0.4)^2)}$ = $\sqrt{(0.25 + 0.16)}$ = 0.64 cm < 20 cm
d. UP-O		vertical accuracy	= 2.6 cm < 10 cm
horizontal accuracy	= √((0.5) ² + (0.4) ²) = √ (0.25 + 0.16) = 0.64 cm < 20 cm		
vertical accuracy	= 2.6 cm < 10 cm		

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

	Table 28. Adjusted Geodetic Coordinates									
Point ID			Height (Meter)	Height Error (Meter)	Constraint					
ARB18	N11°10'57.39406"	E124°59'54.04240"	68.818	0.016						
ARB20	N10°58'27.65859"	E124°53'34.80074"	120.377	0.026						
LY106	N11°09'38.36969"	E124°59'35.93682"	68.051	?	е					
LYT101	N11°10'19.64869"	E125°00'43.78230"	69.220	0.015	LL					
UPABG	N10°43'05.67945"	E125°00'16.19836"	73.294	0.035						
UPB	N10°40'57.67514"	E124°48'19.99520"	72.795	0.035						
UPDAG	N10°56'09.12671"	E125°01'17.90763"	70.601	0.025						
UPO	N11°02'28.97655"	E124°32'44.58945"	71.623	0.026						

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 29.

Control Order of Point Accuracy		Geographi	c Coordinates (WGS 84	4)	UTM ZONE 51 N			
		Latitude	Latitude Longitude Height (m)		Northing (m)	Easting (m)	BM Ortho (m)	
LYT-101	2 nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.22	1235759.25	719729.823	5.133	
LY-106	1 st order, BM	11°09'38.36969"	124°59'35.93682"	68.051	1234476.728	717679.6	4.028	
UP-ABG	UP Established	10°43'05.67945"	125°00'16.19836"	73.294	1185539.275	719226.477	8.419	
UP-B	UP Established	10°40'57.67514"	124°48'19.99520"	72.795	1181471.356	697484.285	8.449	
UP-DAG	UP Established	10°56'09.12671"	125°01'17.90763"	70.601	1209628.1	720942.27	5.984	
UP-O	UP Established	11°02'28.97655"	124°32'44.58945"	71.623	1220991.405	668855.826	8.715	
UP-STN	UP Established	11°21'20.28517"	124°48'33.44682"	71.794	1255916.571	697443.635	8.836	
AP1	Arbitrary Point	11°10'57.39406"	124°59'54.04240"	68.818	1236908.993	718212.616	4.83	
AP2	Arbitrary Point	10°58'27.65859"	124°53'34.80074"	120.377	1213793.946	706851.618	56.309	

Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section, Bridge As-Built and Water Level Marking

Cross-section and as-built survey were conducted on September 16, 2014 along the downstream side of Cadacan Bridge in Brgy. Pagsang-An, Abuyog, Leyte using a GNSS receiver, Trimble® SPS 882 utilizing PPK survey technique as shown in Figure 39.

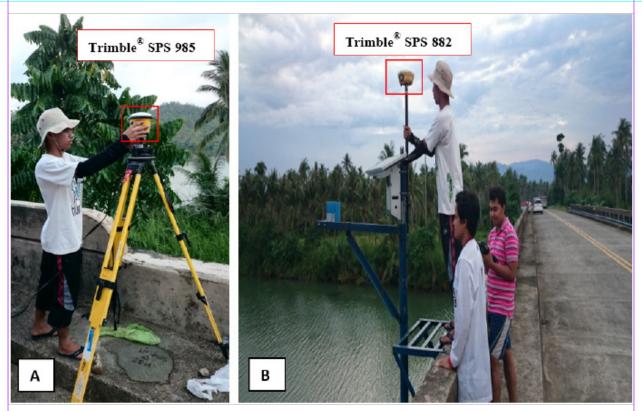
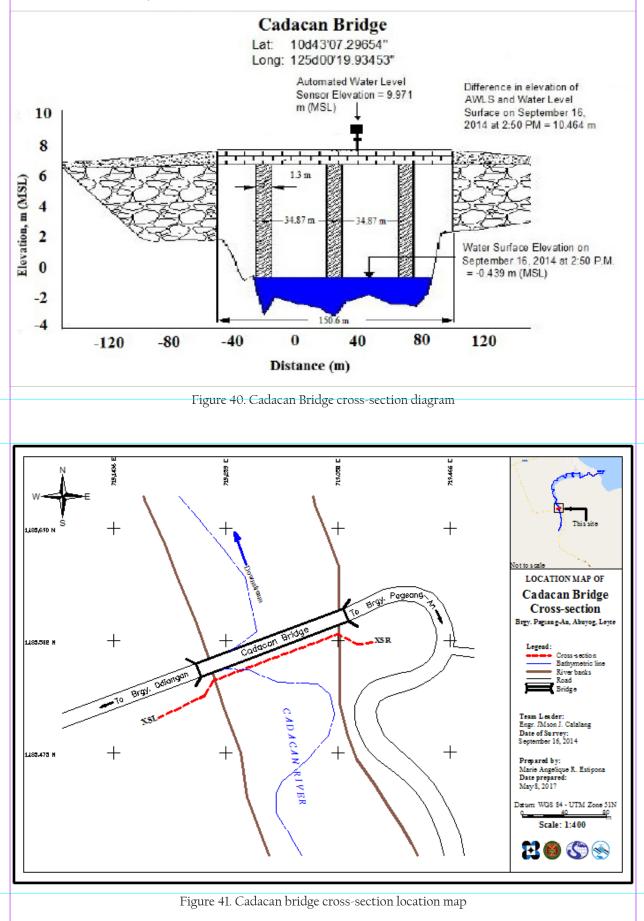
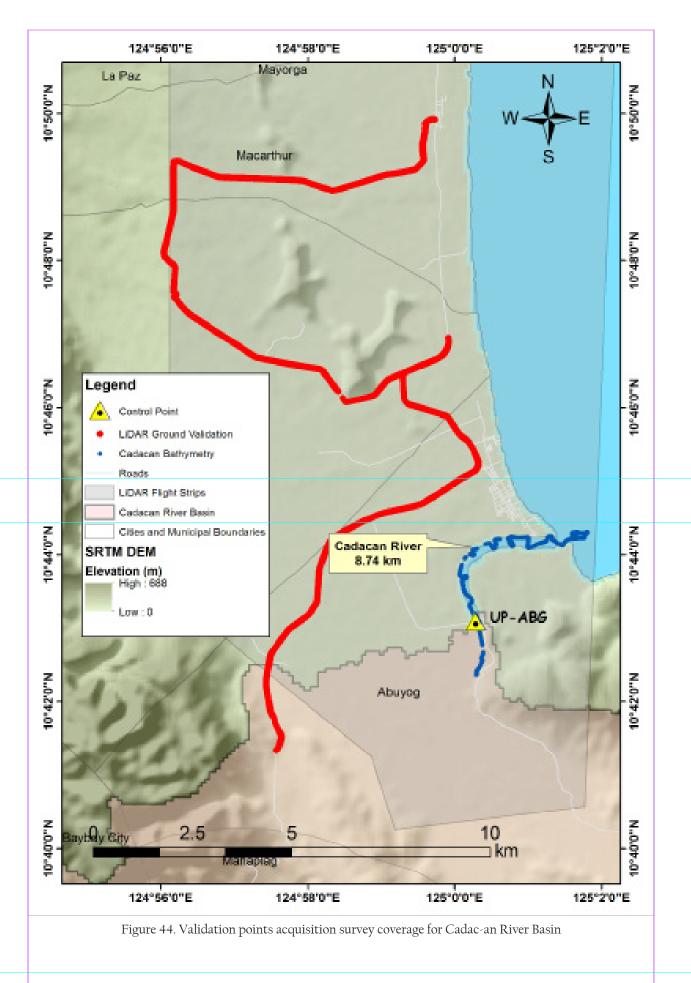



Figure 39. (A) Base set-up at UP-ABG and (B) Acquiring AWLS elevation at Cadacan Bridge, Abuyog, Leyte

The cross-sectional line for Cadacan Bridge is about 265.47 m with a total of 32 cross-section points gathered using UP-ABG as GNSS base station. Figures 40 to 42 show the summary of gathered cross-section, its location map, and as-built data.

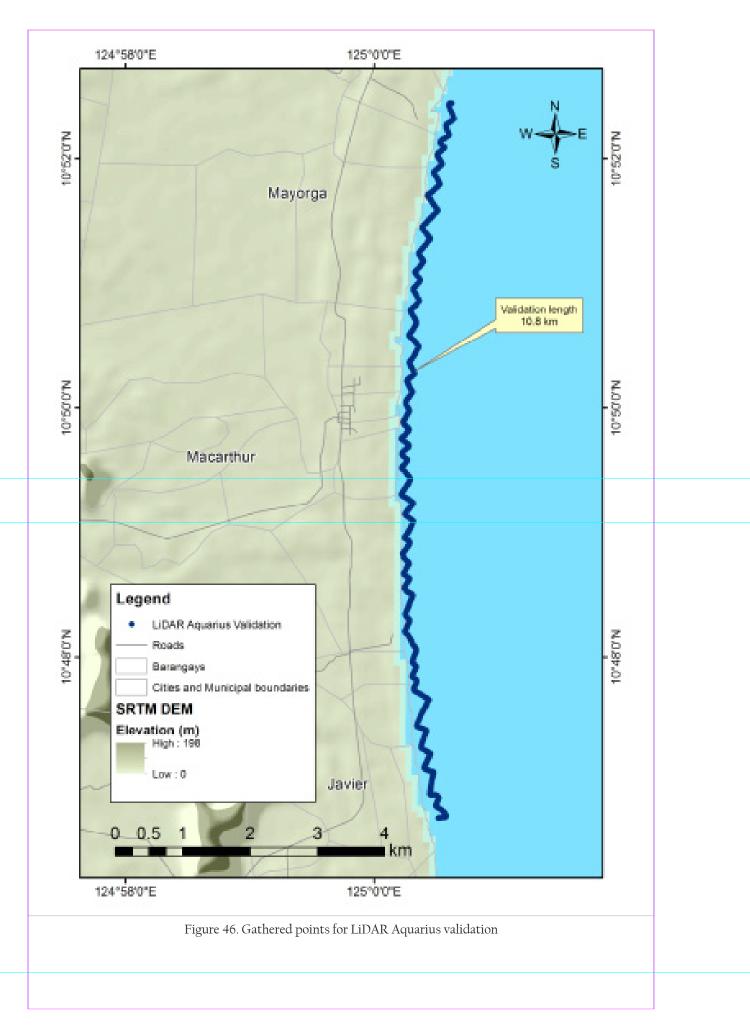
Det	les Me	Co. de	an Daidea	Bridge D	ata For		0125124	
	-		on Bridge				: 9/16/14	
	er Name					Time:	1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	
Loc	ation (B	rgy, City,	Region): Abuyog, Leyte					
Sur	vey Tea	m:						0.00.00
Flo	w condi	tion:	low normal	high		Weather Co	ndition: fai	r rainy
Lati	tude: 1	0d43*07.2	9654*			Longitude: 125	d00 19.93453	
BA	BA2	3	D	\bigcirc	BAS	BA4, Lege		
-	-							Pier LC = Low Cho Deck HC = High Ch
		Ab1		~	Ab2			
		ner	Y		H			
								~
Flore	ation:		Deck (Please start your mea Width: m		the left ai		ownstream) 3-BA2): 158.838 m	Lo
			on (Distance from BA1)		Hiel	h Chord Elevation		ord Elevation
1	45.34361			ang.	8.264	LUN CI	A Party of the Par	
2	83 53421			8.406			5.364	
3	128,4314			8 958			5.506	
4				2	8.400			5.458
5	173.745 204.1818			8,339			5.5	
				tart war i the	art your measurement from the left side of the besk leding downstree		downstreeml	5.439
		Station	(Distance from BA1)	Elevation		Station(Distar		Elevation
	BA1		0	7.89	BA3	204.		8.34
	BA2		45.34361	8.26	BA4	226.	7754	8.43
		1000	U.S. Constant					
Abu	itment:	is the	abutment sloping?	Yes No;	Ifyes	, fill in the following	information:	
			Station (Di	stance from	m BA1)		Elevatio	HT I
	A	b1		53.40081			0.10	
	A	b2		196.984			1.16	
			Pier (Picesc start your most	surcencent from	the left sid	de of the bank facing o	downstream)	10
			Shape: R	ectangular	Num	ber of Piers: 3		
			Station (Distance from	BA1)		levation	Pier	Width
	Pier 1		83.53421			-2.4441		.3
			128.4314			-3.2711		.3
	Pier 2							
	Pier 2 Pier 3		173.745			-3.1361	1	.3


4.6 Validation Points Acquisition Survey

The Validation Points Acquisition survey was conducted On September 21, 2014 using a survey-grade GPS Rover, Trimble[®] SPS 882, mounted on a pole which was attached in front of a vehicle as shown in Figure 43. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was measured from the ground up to the bottom of the notch of the GPS Rover which is 2.404 m.

The ground validation survey traversed the municipalities of Macarthur, Javier, and Abuyog with a total length of approximately 32.85 km with 3,734 points acquired using the control point UP-ABG as the GNSS base station throughout the conduct of survey. Figure 44 shows the gathered data for this survey.

Figure 43. Validation points acquisition survey using Trimble® SPS 882 in Leyte



In addition to ground validation survey, the validation points acquisition survey for Aquarius LiDAR was executed on January 18, 2014. The setup of instruments is similar to that of the bathymetric survey, with an OHMEX[™] Single Beam Echo Sounder and a mounted Trimble[®] SPS 982 in PPK technique to acquire seabed elevation as shown in Figure 45.

The survey was conducted along the shores of the municipalities of Mayorga, Macarthur, and Dulag. An approximate length of 10.75 km was covered with a total of 6,270 points. Figure 46 shows the result coverage of the validation points acquisition for Aquarius LiDAR Aquarius data.

Figure 45. Bathymetric Survey for LiDAR Aquarius validation

4.7 River Bathymetric Survey

The Bathymetric survey was conducted on January 13, 2015 using a GPS receiver, Trimble[®] SPS 882 in GNS PPK survey technique and an OHMEX[™] Single Beam Echo Sounder mounted on the side of a boat as shown in Figure 47. The survey started in the upstream part of the river in Brgy. Tadoc, Municipality of Abuyog with coordinates 10°42′22.07230″ 125°00′17.80640″, down to the mouth of the river in Brgy. Buenavista and Sto. Niño with coordinates 10°44′16.35183″ 125°01′36.64810″.

The bathymetry line length is about 5.70 km with a total of 3,995 bathymetric points acquired using UP-ABG as the GNSS base station. The processed data were generated into a map using GIS software as shown in Figure 48.

Figure 47. Bathymetric survey along Cadacan River

A CAD drawing was also produced to illustrate the riverbed profile of Cadacan River. As presented in Figure 49, the Riverbed profile of Cadacan shows no abrupt change in elevation as the survey area because of its proximity to the mouth of the river. The highest elevation observed was -1.073 m in MSL while the lowest was -6.314 m below MSL both of which are located in Brgy. Tadoc. The gaps in bathymetric line were due to dense canopy resulting to poor satellite signal.

LIDAR Surveys and Flood Mapping of Cadac-An River

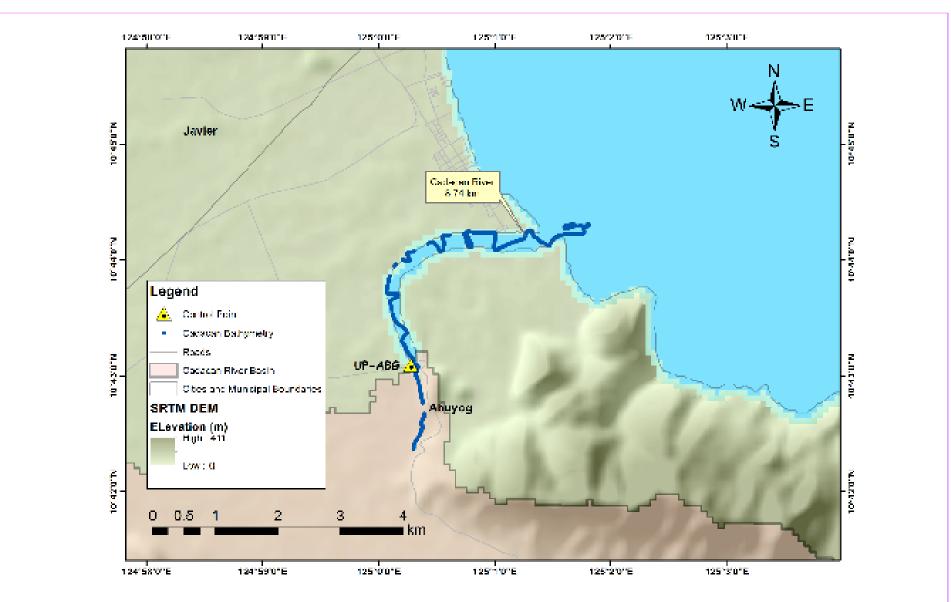


Figure 48. Bathymetric points gathered in Cadacan River

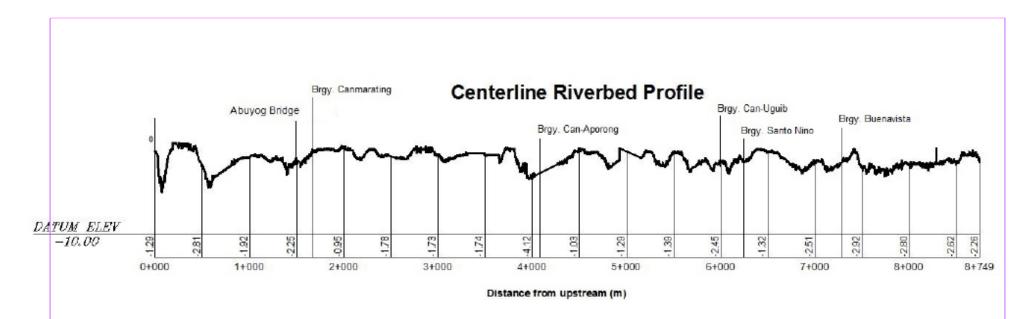


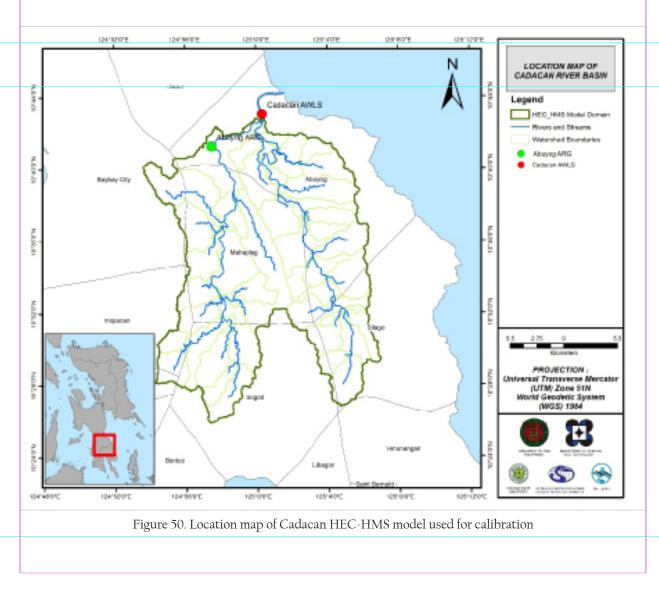
Figure 49. Riverbed profile of Cadacan River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

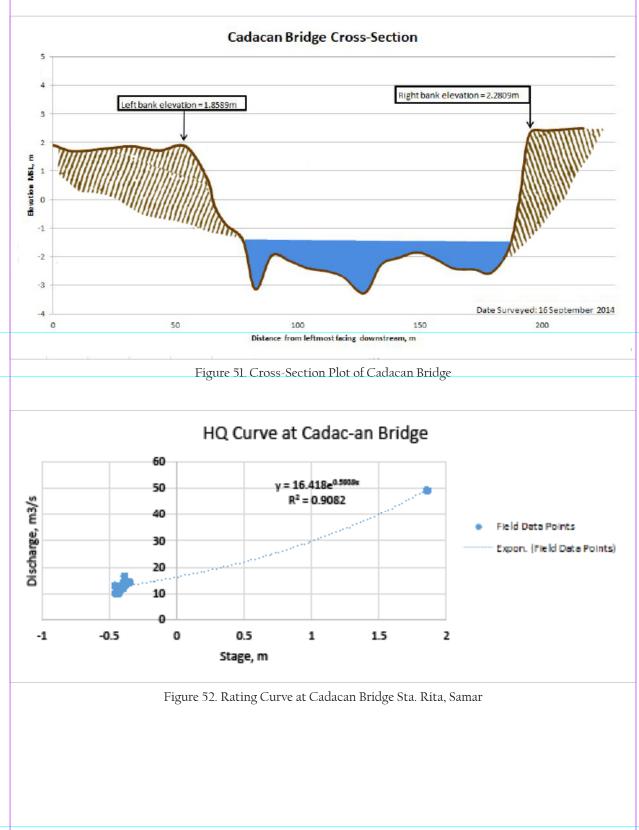
The methods applied in this Chapter were based on the DREAM methods manual (Lagmay et al., 2014) further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

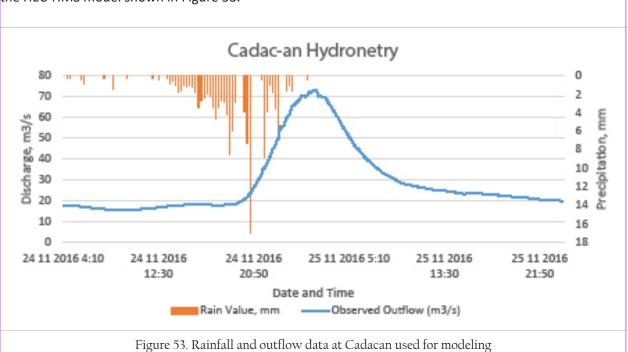

5.1.1 Hydrometry and Rating Curves

The components and data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. These include the rainfall, water level, and the flow in a certain period of time.

5.1.2 Precipitation


The precipitation data were taken from Abuyog Automatic Rain Gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The location of the rain gauge is seen in Figure 50.

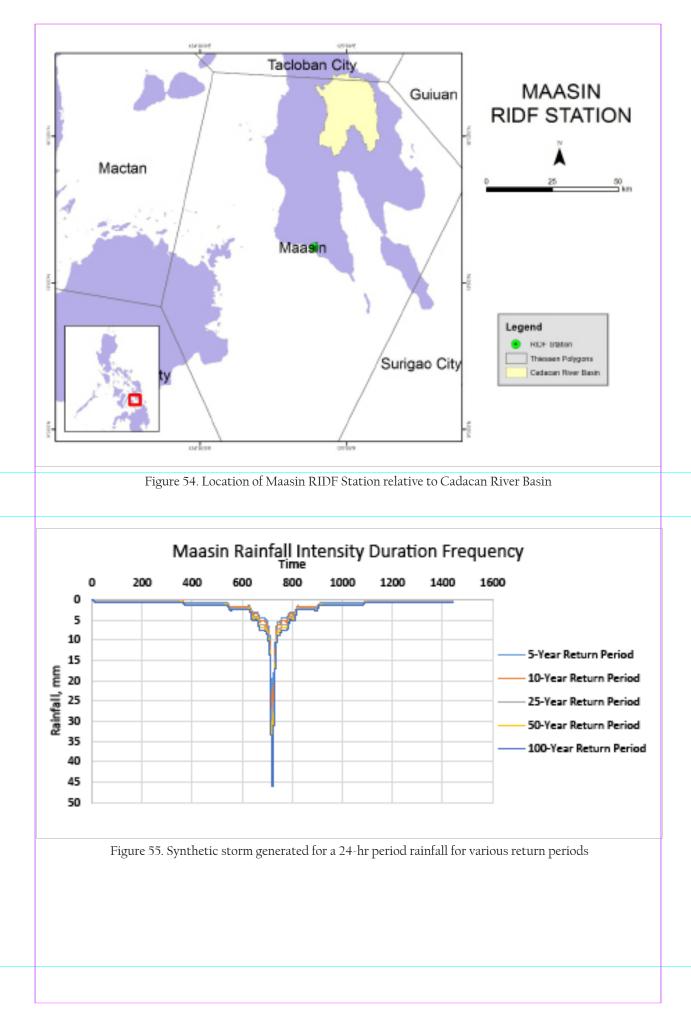
Total rain from Abuyog rain gauge is 126 mm. It peaked to 17 mm on 24 November 2016 at 20:30. The lag time between the peak rainfall and discharge is 5 hours and 40 minutes.



5.1.3 Rating Curves and River Outflow

A rating curve was developed at Cadacan Bridge, Baybay City, Leyte (10°40'55.33"N, 124°48'18.96"E). It gives the relationship between the observed water levels at Cadacan Bridge and outflow of the watershed at this location.

For Cadacan Bridge, the rating curve is expressed as $Q = 16.418e^{0.5939h}$ as shown in Figure 52.


This rating curve equation was used to compute the river outflow at Cadacan Bridge for the calibration of the HEC-HMS model shown in Figure 53.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Maasin Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to Subangdaku watershed. The extreme values for this watershed were computed based on a 16-year record.

Table 30. RIDF values for Maasin Rain Gauge computed by PAGASA										
COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	18.5	28.1	35.6	48.1	68	82.1	104.6	124.9	145	
5	25.9	38.3	63.8	63.8	90.4	108.8	137.5	165.2	190.8	
10	30.8	45	74.2	74.2	105.3	126.5	159.3	191.9	221.2	
15	33.5	48.8	80.1	80.1	113.7	136.5	171.5	206.9	238.4	
20	35.5	51.5	84.2	84.2	119.6	143.5	180.1	217.5	250.4	
25	37	53.6	87.3	87.3	124.1	148.9	186.7	225.6	259.6	
50	41.5	59.9	97.1	97.1	138.1	165.5	207.1	250.6	288.1	
100	46.1	66.2	106.8	106.8	151.9	181.9	227.4	275.4	316.3	

11 DACACA

5.3 HMS Model

The soil dataset, taken in 2004, was sourced out from the Bureau of Soils under the Department of Agriculture. The land cover data, on the other hand, was taken from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Cadacan River Basin are shown in Figures 56 and 57, respectively.

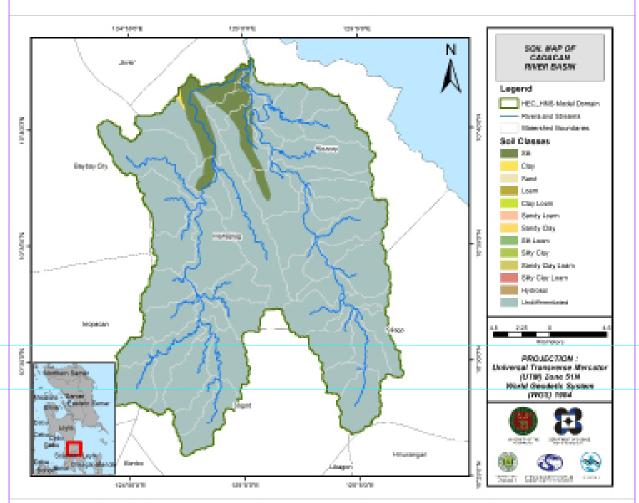


Figure 56. Soil Map of Cadacan River Basin

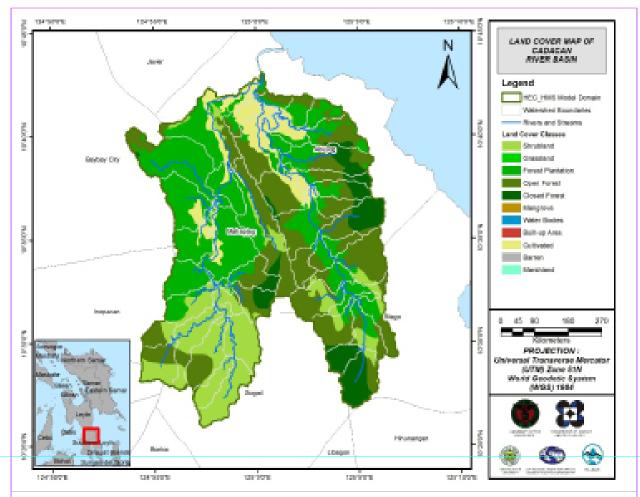
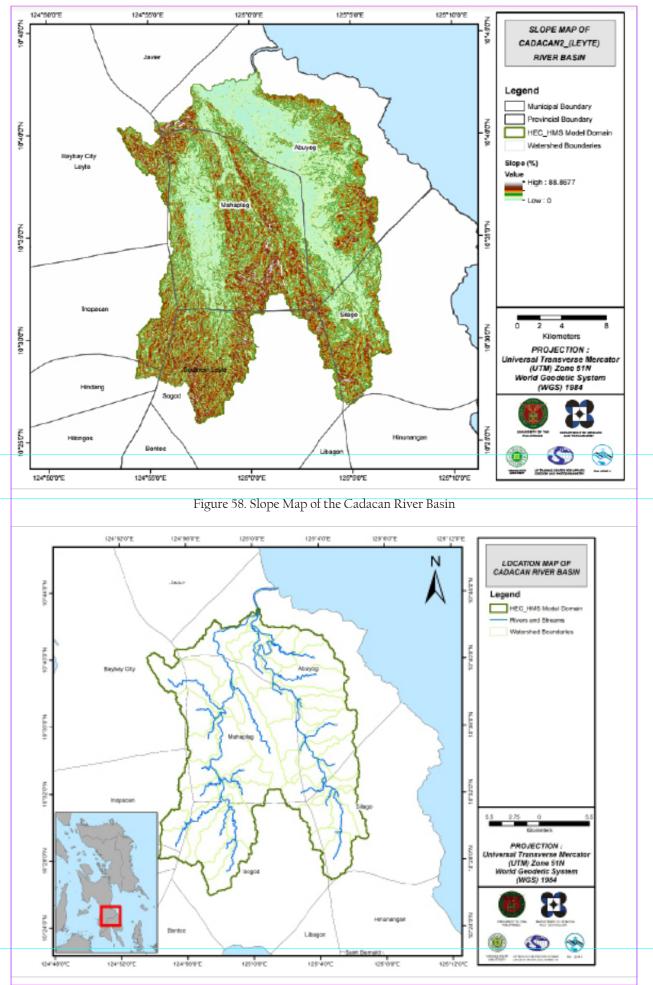
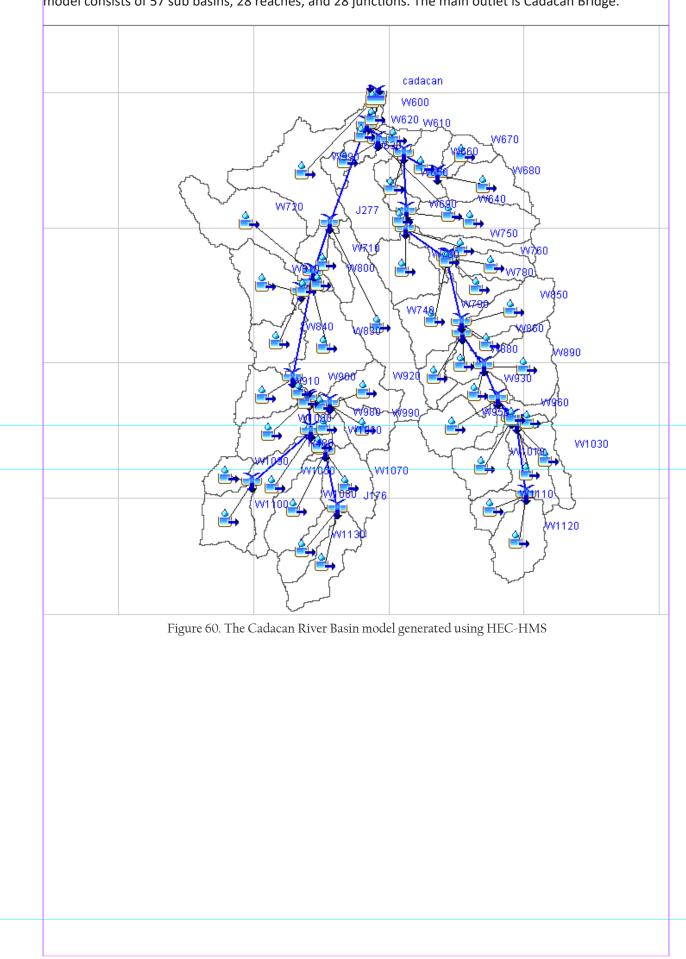
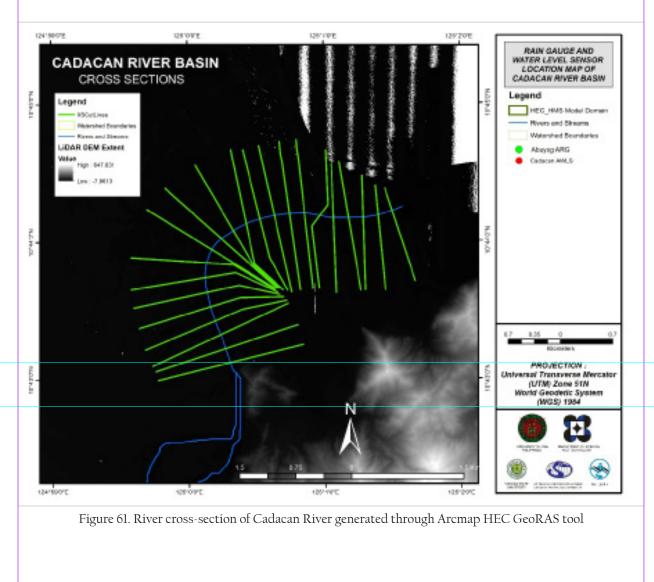


Figure 57. Land Cover Map of Cadacan River Basin

For Cadacan, the soil classes identified were clay, loam, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, and closed forest, and cultivated.


Figure 59. Stream Delineation Map of the Cadacan River Basin

Using the SAR-based DEM, the Cadacan Basin was delineated and further subdivided into subbasins. The model consists of 57 sub basins, 28 reaches, and 28 junctions. The main outlet is Cadacan Bridge.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

5.5 Flo 2D Model

[insert 2D report]

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south t of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

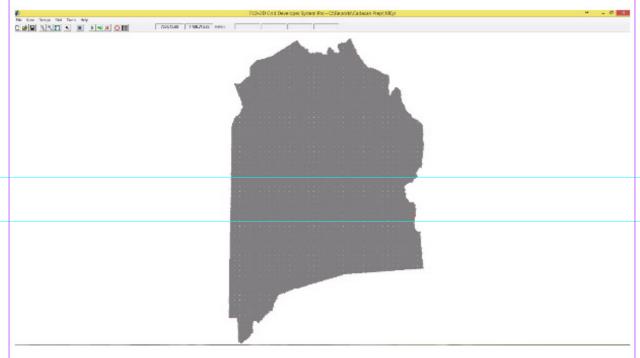
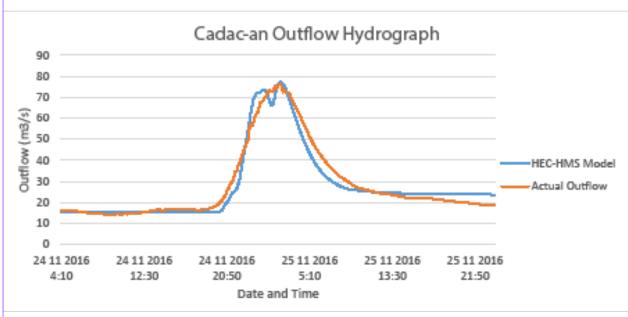
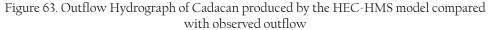


Figure 62. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro


The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 51.83252 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m 2 /s.


The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 35130600.00 m 2.

There is a total of 153902524.79 m 3 of water entering the model. Of this amount, 11100739.33 m 3 is due to rainfall while 142801785.47 m 3 is inflow from other areas outside the model. 11017657.00 m 3 of this water is lost to infiltration and interception, while 57560319.71 m 3 is stored by the flood plain. The rest, amounting up to 85324543.70 m 3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Cadacan HEC-HMS River Basin Model, its accuracy was measured against the observed values. Figure 63 shows the comparison between the two discharge data.

Table 31. Range of Calibrated Values for Cadacan									
Hydrologic Element	Method	Parameter	Range of Calibrated Values						
Loss	SCS Curve number	Initial Abstraction (mm)	55 - 196						
Loss	SCS Curve number	Curve Number	47 - 81						
Transform		Time of Concentration (hr)	0.1 - 1.82						
Iransiorm	Clark Unit Hydrograph	Storage Coefficient (hr)	0.09 - 1.57						
Deseflerin	Decession	Recession Constant	1						
Baseflow	Recession	Ratio to Peak	0.11						
Douting	Muchingum Cunco	Slope	0.00006 - 0.02						
Routing	Muskingum-Cunge	Manning's n	0.03						

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 55mm to 196mm means that there is a considerably high amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 47 to 81 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.1 hour to 1.82 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased. Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.03 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.03 leads more to the common roughness of Philippine watersheds. Cadacan River Basin is determined to have cultivated areas with no or minimal crops.

Accuracy measure	Value
RMSE	3.7
r²	0.9082
NSE	0.95477
PBIAS	1.40165
RSR	0.21268

Table 32. Summary of the Efficiency Test of Cadacan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 3.7 (m³/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9082.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.95477.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 1.40165.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.21268.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 64) shows the Cadacan outflow using the Maasin Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

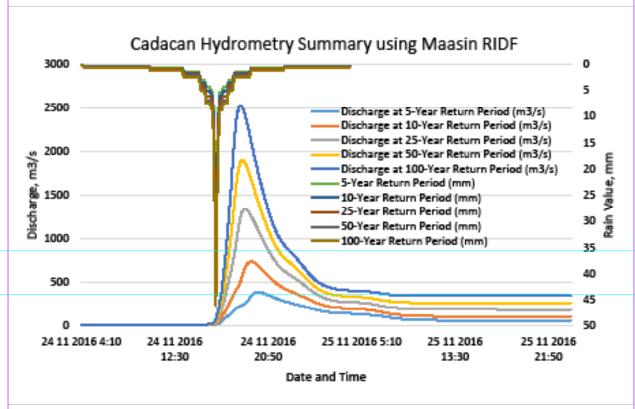


Figure 64. Outflow hydrograph at Cadacan Station generated using Maasin RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Cadacan discharge using the Maasin Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Lat	ole 33. Peak values of the	e Cadacan HEC-HMS I	Model outflow using the	Maasın RIDF
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m³/s)	Time to Peak
5-Year	190.8	25.9	390	3 hours, 50 minutes
10-Year	221.2	30.8	740.6	3 hours, 10 minutes
25-Year	259.6	37	1344	2 hours, 50 minutes
50-Year	288.1	41.5	1904.6	2 hours, 20 minutes
100-Year	316.3	46.1	2530.3	2 hours, 10 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the VSU-FMC base flow was calibrated. The sample generated map of Cadacan River using the calibrated HMS base flow is shown in Figure 65.

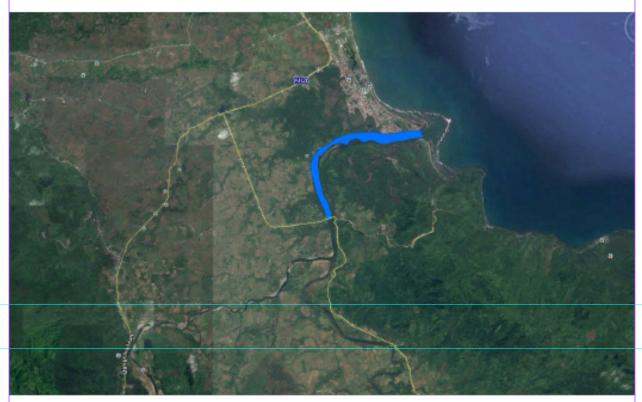


Figure 65. Sample output of Cadacan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figures 66 to 71 shows the 5-, 25-, and 100-year rain return scenarios of the Cadacan Floodplain.

The floodplain, with an area of 35.13 sq. km., covers one municipality which is Abuyog. Table shows the percentage of area affected by flooding.

Table 34. 1	Municipalities	affected in	Cadacan	Floodplain

City / Municipality	Total Area	Area Flooded	% Flooded
Cadacan	256.64	34.21	13%

LIDAR Surveys and Flood Mapping of Cadac-An River

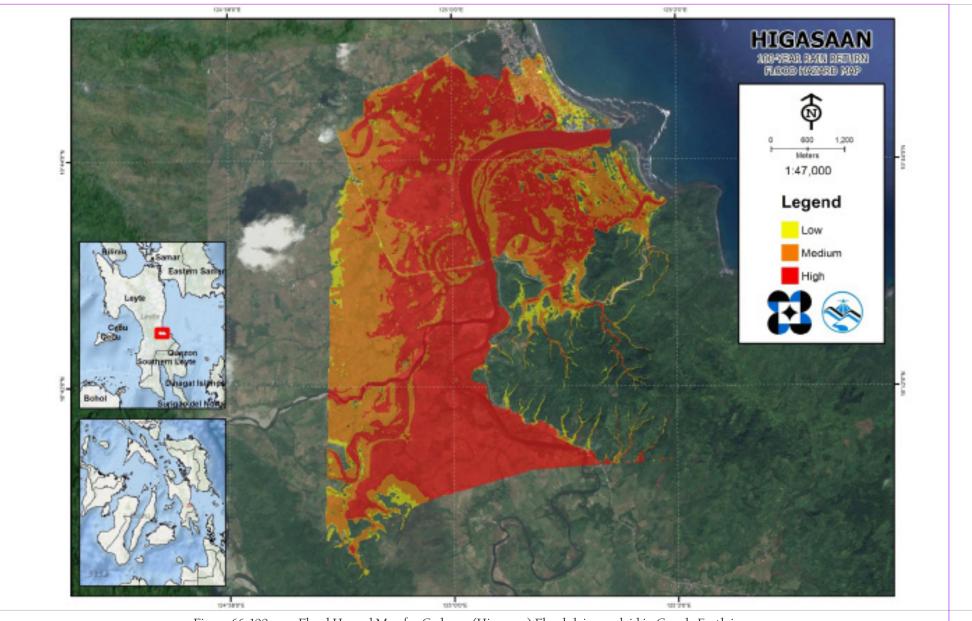


Figure 66. 100-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

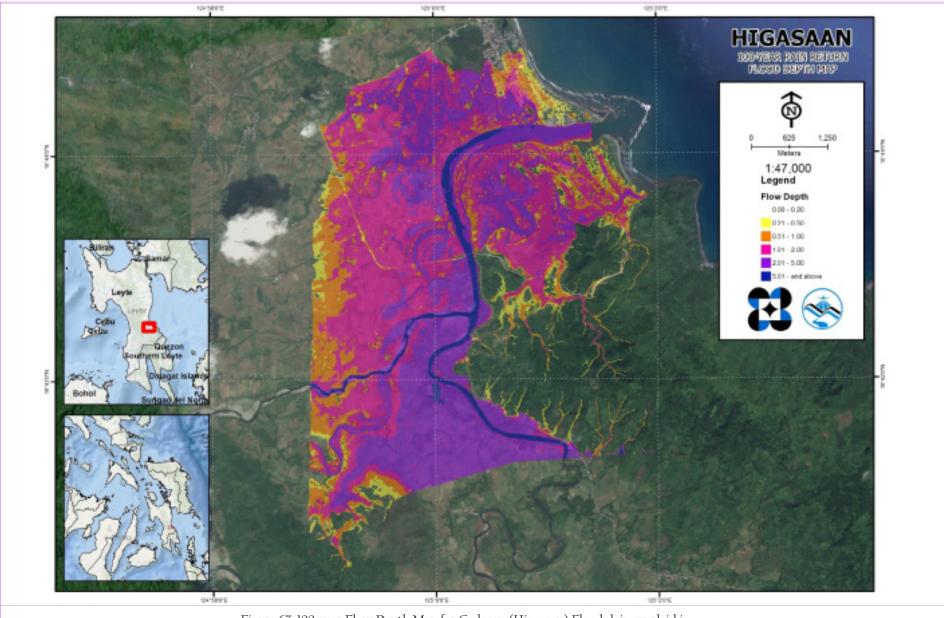


Figure 67. 100-year Flow Depth Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

LIDAR Surveys and Flood Mapping of Cadac-An River

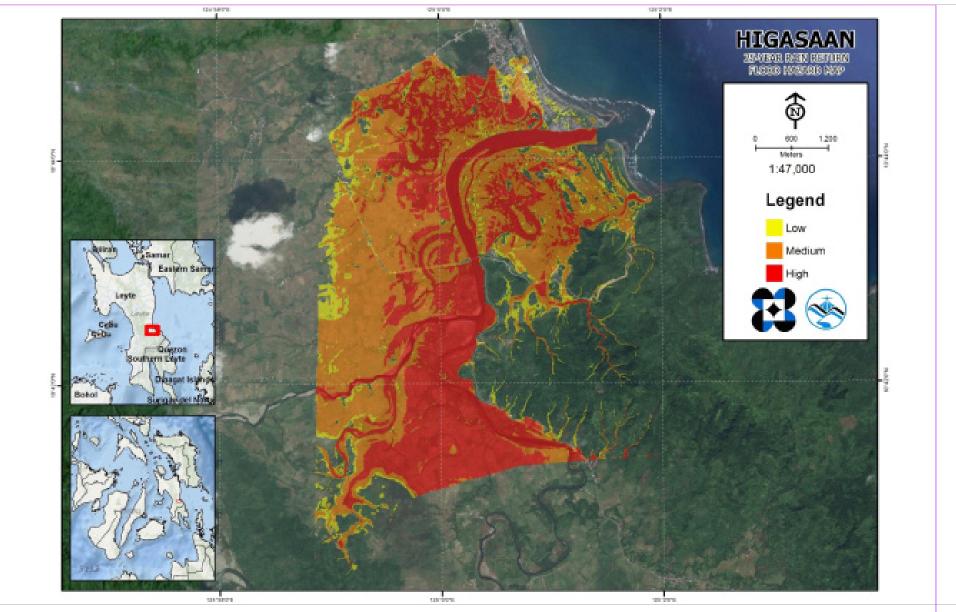


Figure 68. 25-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

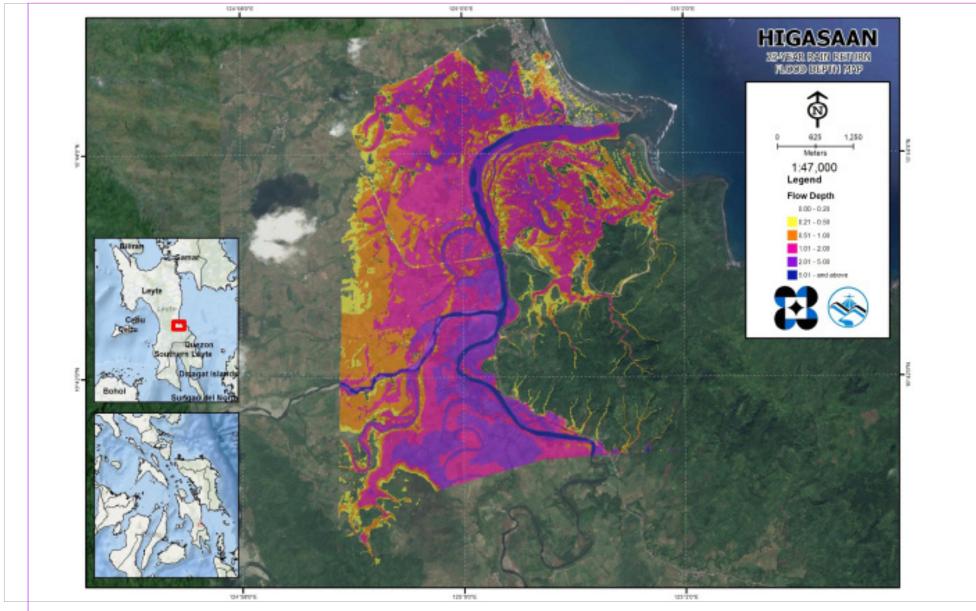


Figure 69. 25-year Flow Depth Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

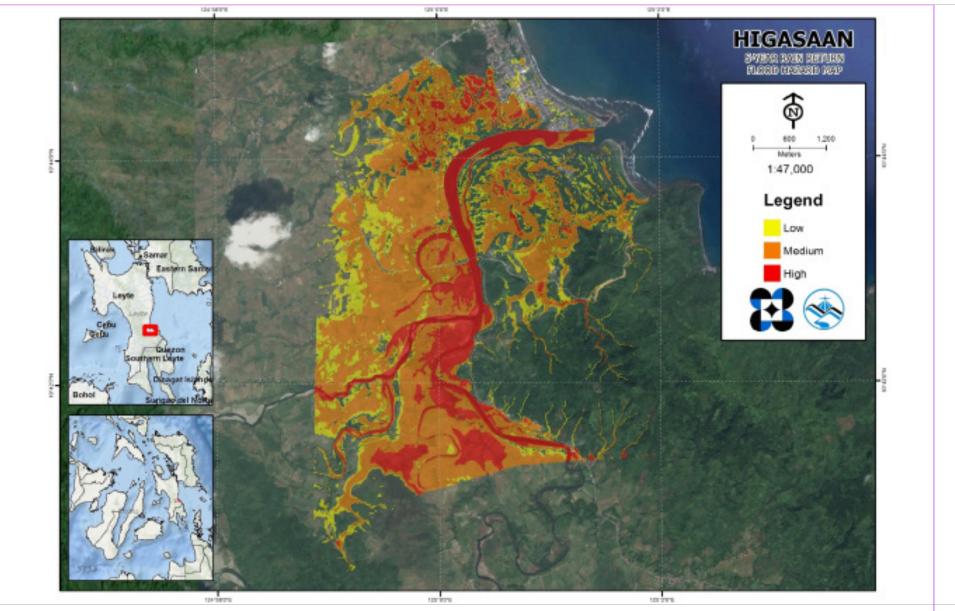


Figure 70. 5-year Flood Hazard Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

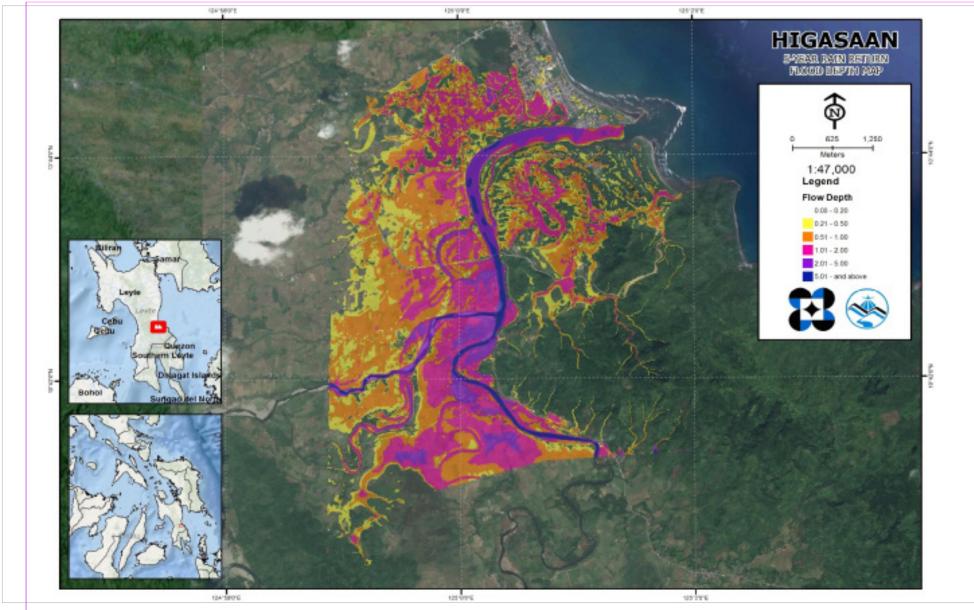
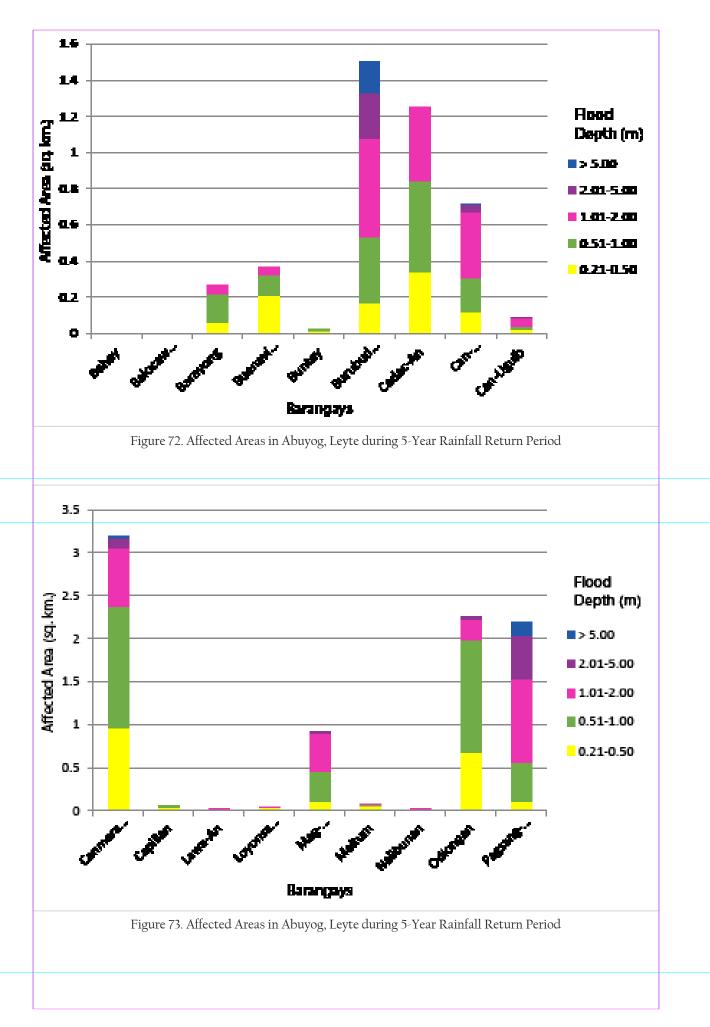


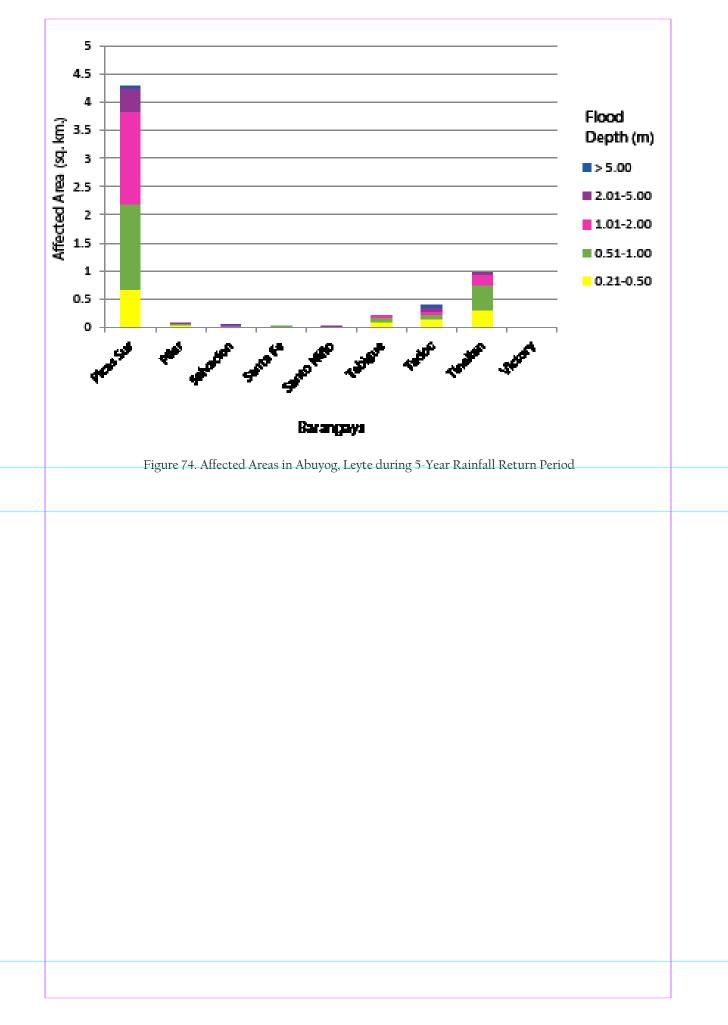
Figure 71. 5-year Flood Depth Map for Cadacan (Higasaan) Floodplain overlaid in Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Cadac-an river basin, grouped by Municipality, are listed below. For the said basin, the municipality of Abuyog consisting of 27 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 5.93% of the municipality of Abuyog with an area of 256.64 sq. km. will experience flood levels of less 0.20 meters. 1.68% of the area will experience flood levels of 0.21 to 0.50 meters while 2.77%, 2.22% 0.58%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

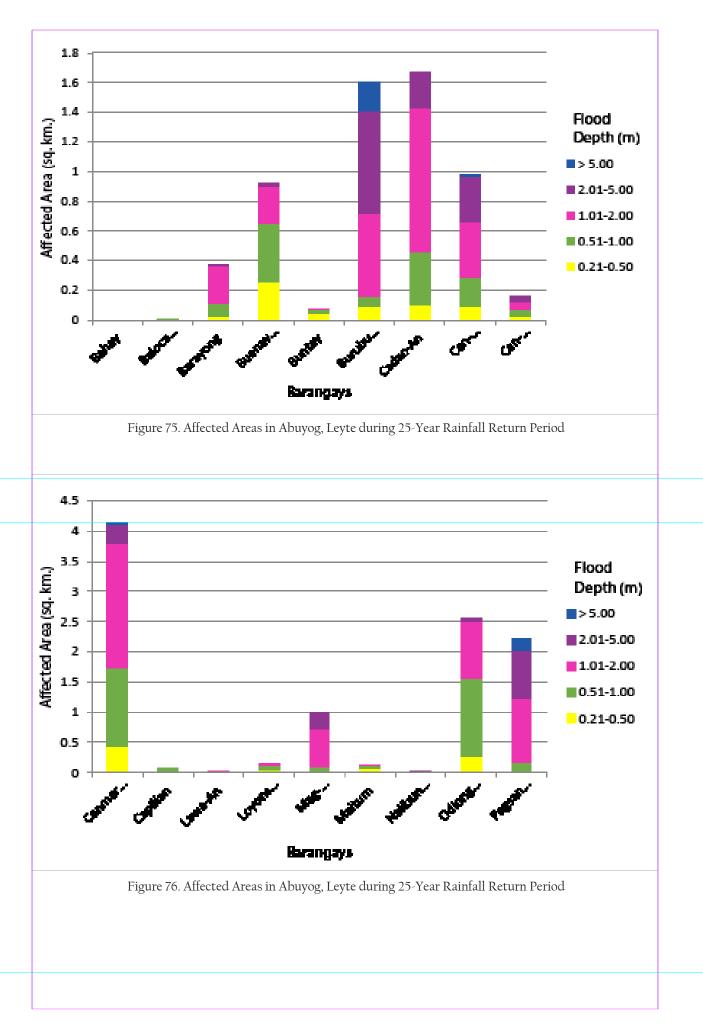

				7 8,	/ 0							
Affected Area (sq. km.) by	Affected Barangays in Abuyog											
flood depth (in m.)	Bahay	Balocawehay	Barayong	Buenavista	Buntay	Burubud-An	Cadac-An	Can-Aporong	Can-Uguib			
0.03-0.20	0.0055750	0.01248580	0.12274363	1.02196379	0.11300601	1.61345505	0.52469845	0.32261787	0.12120659			
0.21-0.50	0	0.0015	0.06262275	0.21267224	0.01794589	0.17207780	0.33879686	0.12113824	0.02175894			
0.51-1.00	0	0	0.15706593	0.11144544	0.004	0.36688475	0.50647630	0.19003219	0.02180740			
1.01-2.00	0	0	0.05066793	0.03937748	0	0.54135997	0.40504825	0.36432524	0.04739264			
2.01-5.00	0	0	0	0	0	0.24953443	0	0.04230696	0.00169892			
> 5.00	0	0	0	0	0	0.16835928	0	0.00076234	0			


Table 35. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period

		T	able 36. Affected A	Areas in Abuyog, Le	yte during 5-Year	Rainfall Return Pe	eriod			
Affected Area	Affected Barangays in Abuyog									
(sq. km.) by flood depth (in m.)	Canmarating	Capilian	Lawa-An	Loyonsawang	Mag-Atubang	Maitum	Nalibunan	Odiongan	Pagsang-An	
0.03-0.20	1.26477842	0.03400376	0.28259077	0.17150627	0.09148602	0.31980767	0.13196969	0.42630083	0.21707485	
0.21-0.50	0.96787434	0.03672015	0.00929091	0.034936721	0.11310458	0.06441540	0.01800740	0.68094311	0.10290532	
0.51-1.00	1.41041360	0.02591605	0.00595495	0.006457627	0.33900116	0.00899975	0.0006	1.31061913	0.46072167	
1.01-2.00	0.67972661	0	0.00043165	0.002294473	0.44467968	0.0003	6.2347E-06	0.22400211	0.97080660	
2.01-5.00	0.11647088	0	0	0	0.01654585	0	0	0.04429273	0.50206348	
> 5.00	0.01104659	0	0	0	0	0	0	0	0.14469702	

Table 37. Affected Areas in Abuyog, Leyte during 5-Year Rainfall Return Period

Affected Area				Affect	ted Barangays in A	buyog			
(sq. km.) by flood depth (in m.)	Picas Sur	Pilar	Salvacion	Santa Fe	Santo Niño	Tabigue	Tadoc	Tinalian	Pagsang-An
0.03-0.20	1.7646718	2.20146004	0.38399004	0.07493692	0.04068160	0.41135566	0.96422580	2.54589461	0.21707485
0.21-0.50	0.6737403	0.05025762	0.01552562	0.00989651	0.00153472	0.10885165	0.16734428	0.31174586	0.10290532
0.51-1.00	1.5274314	0.02064489	0.01845761	0.0032	0.00736742	0.07313923	0.06779044	0.45318321	0.46072167
1.01-2.00	1.6311166	0.00680944	0.0067	0	0.00313952	0.02897843	0.05332269	0.18572184	0.97080660
2.01-5.00	0.4227397	0.0001	0.00893090	0	3.86542E-06	0	0.08370096	0.0003	0.50206348
> 5.00	0.0457	0	0.00259999	0	0	0	0.01857505	0	0.14469702


For the 25-year return period, 4.25% of the municipality of Abuyog with an area of 256.64 sq. km. will experience flood levels of less 0.20 meters. 1.01% of the area will experience flood levels of 0.21 to 0.50 meters while 2.29%, 3.79%, 1.79% and 0.020% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometres by flood depth per barangay.

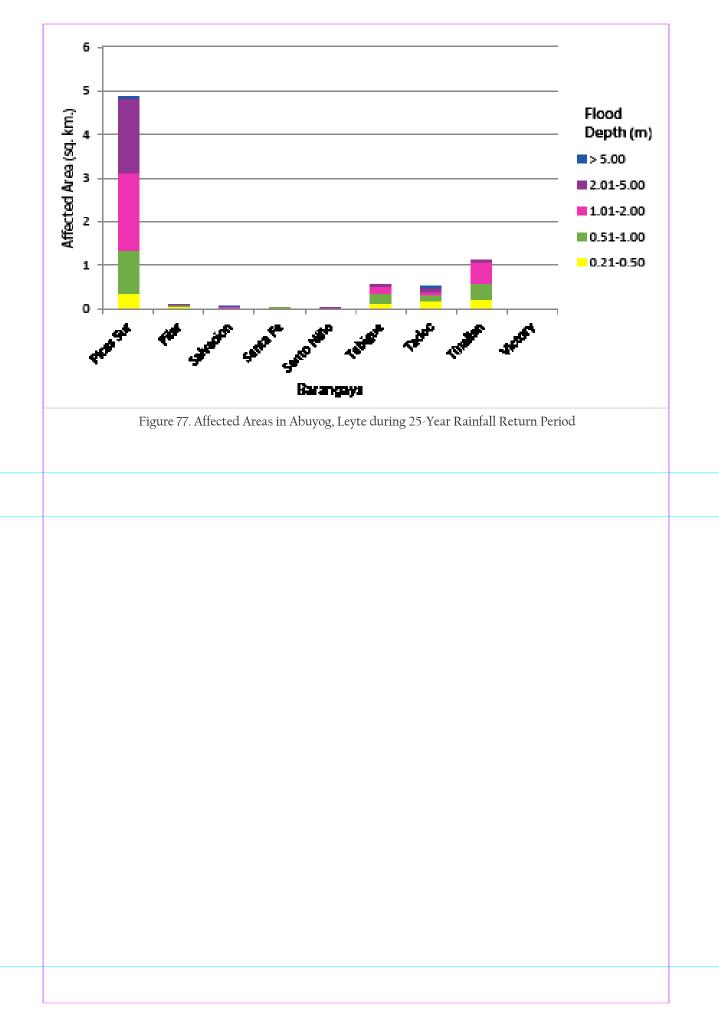
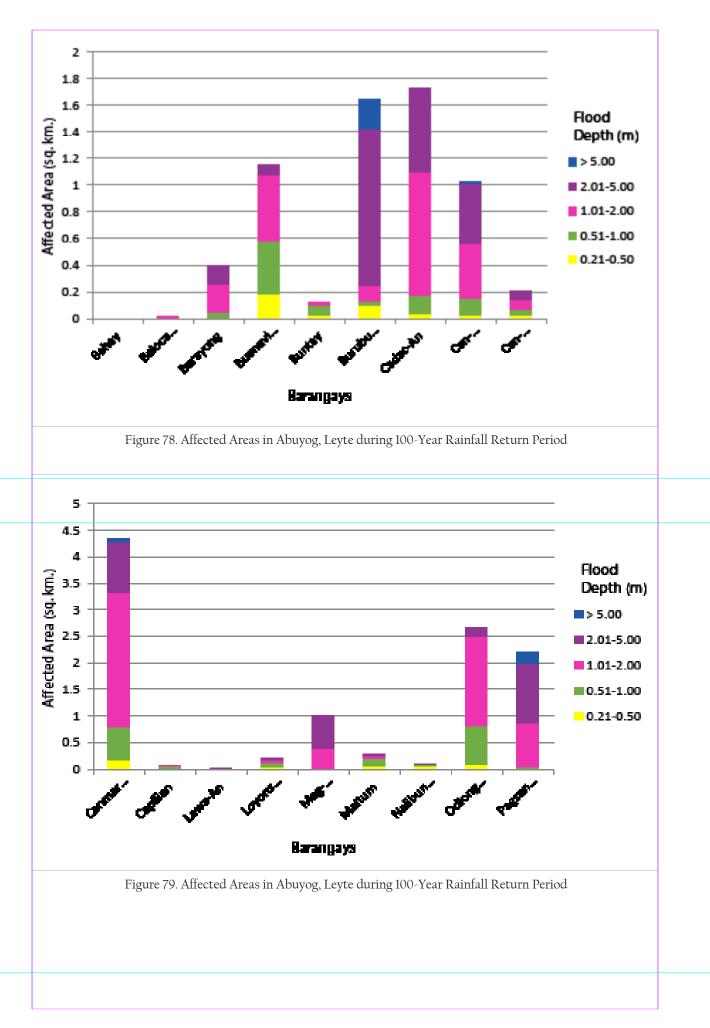

Affected Area	Affected Barangays in Abuyog										
(sq. km.) by flood depth (in m.)	Bahay	Balocawehay	Barayong	Buenavista	Buntay	Burubud-An	Cadac-An	Can-Aporong	Can-Uguib		
0.03-0.20	0.0055750	0.005942544	0.01713648	0.46762182	0.05632175	1.50555058	0.10406397	0.06142527	0.0505606		
0.21-0.50	0	0.006533616	0.02788179	0.25345419	0.04765317	0.09227547	0.10057336	0.09313271	0.0284247		
0.51-1.00	0	0.001509645	0.08319844	0.40153118	0.02867698	0.06676784	0.36125075	0.19331246	0.0438220		
1.01-2.00	0	0	0.24755457	0.25004618	0.0023	0.55968228	0.96978616	0.37641037	0.0537888		
2.01-5.00	0	0	0.01732895	0.01280557	0	0.68888068	0.23934562	0.30828739	0.0372681		
> 5.00	0	0	0	0	0	0.19851444	0	0.00861464	0		

Table 39. Affected Areas in Abuyog, Leyte during 25-Year Rainfall Return Period

Affected Area (sq. km.) by				Affect	ted Barangays in A	buyog			
flood depth (in m.)	Canmarating	Capilian	Lawa-An	Loyonsawang	Mag-Atubang	Maitum	Nalibunan	Odiongan	Pagsang-Ar
0.03-0.20	0.3184419	0.0214345	0.27765983	0.077774304	0.006526643	0.26900110	0.12238347	0.12151981	0.1911181
0.21-0.50	0.4445326	0.0208530	0.01020185	0.061779576	0.016773959	0.08119428	0.02703794	0.27995854	0.01665943
0.51-1.00	1.2929673	0.0543523	0.00745303	0.06567199	0.080443164	0.04107901	0.00112520	1.28304538	0.14918119
1.01-2.00	2.0724625	0	0.00295357	0.009969225	0.618736782	0.00224843	3.0485E-05	0.92860719	1.07415339
2.01-5.00	0.2942308	0	0	0	0.282336764	0	6.23472E-06	0.07302698	0.7816304
> 5.00	0.0276749	0	0	0	0	0	0	0	0.1855264

		Tal	ole 40. Affected A	reas in Abuyog, Ley	yte during 25-Year	Rainfall Return Pe	eriod					
Affected Area		Affected Barangays in Abuyog										
(sq. km.) by flood depth (in m.)	Picas Sur	Pilar	Salvacion	Santa Fe	Santo Niño	Tabigue	Tadoc	Tinalian	Victory			
0.03-0.20	1.196192407	2.180593116	0.376816687	0.07018775	0.035816829	0.078465853	0.849101231	2.391277212	0.042341233			
0.21-0.50	0.357163345	0.060686775	0.013459978	0.013913498	0.002549888	0.118118983	0.186418482	0.23522762	0.005851875			
0.51-1.00	0.975658325	0.027082354	0.020096333	0.003932184	0.003187992	0.218162492	0.132399107	0.330499861	0			
1.01-2.00	1.775908415	0.010309763	0.009300281	0	0.00901363	0.184751313	0.063434249	0.520757149	0			
2.01-5.00	1.704279198	0.0006	0.012230909	0	0.00215881	0.022826338	0.098652251	0.019083695	0			
> 5.00	0.056198406	0	0.004299999	0	0	0	0.024953921	0	0			


For the 100-year return period, 3.24% of the municipality of Abuyog with an area of 256.64 sq. km. will experience flood levels of less 0.20 meters. 0.47% of the area will experience flood levels of 0.21 to 0.50 meters while 0.80%, 1.86%, 2.26%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in square kilometres by flood depth per barangay.

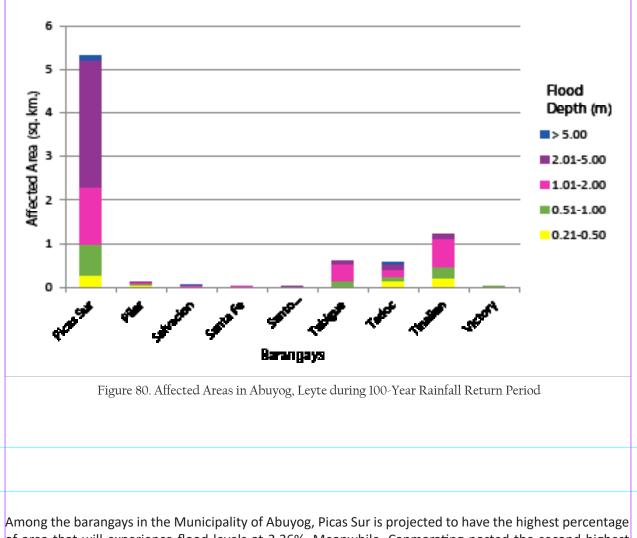

Affected Area				Affect	ed Barangays in A	buyog			
(sq. km.) by flood depth (in m.)	Bahay	Balocawehay	Barayong	Buenavista	Buntay	Burubud-An	Cadac-An	Can-Aporong	Can-Uguib
0.03-0.20	0.005575096	0.002031097	0.000689544	0.236949183	0.01392945	1.46207164	0.040341039	0.012395905	0.0131157
0.21-0.50	0	0.002546237	0.006606651	0.188240129	0.030593436	0.096141396	0.039330122	0.022931424	0.0245368
0.51-1.00	0	0.002499634	0.037634108	0.391606291	0.071250309	0.037213015	0.136320102	0.126589297	0.0456910
1.01-2.00	0	0.006908837	0.213746983	0.499167583	0.019178715	0.113408584	0.919401148	0.410166609	0.0676600
2.01-5.00	0	0	0.13442297	0.069495775	0	1.178131121	0.639627473	0.455233629	0.0628608
> 5.00	0	0	0	0	0	0.224705551	0	0.013866003	0

Table 42. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period

Affected Area	Affected Barangays in Abuyog										
(sq. km.) by flood depth (in m.)	Canmarating	Capilian	Lawa-An	Loyonsawang	Mag-Atubang	Maitum	Nalibunan	Odiongan	Pagsang-An		
0.03-0.20	0.109170261	0.016904952	0.271114685	0.023085149	0	0.121408463	0.058518125	0.027833996	0.18349804		
0.21-0.50	0.162696367	0.010595336	0.009726785	0.042606313	0.001323543	0.062094509	0.062820552	0.100522286	0.006495379		
0.51-1.00	0.623959996	0.06467907	0.010789128	0.086688799	0.021763556	0.142025949	0.028882735	0.715374364	0.037360161		
1.01-2.00	2.538930153	0.004460609	0.006486133	0.059216313	0.366549036	0.066326091	0.000355691	1.695015918	0.838786442		
2.01-5.00	0.96947391	0	0.000151565	0.003598522	0.615181175	0.001667822	6.23472E-06	0.147411358	1.111281699		
> 5.00	0.046079775	0	0	0	0	0	0	4.6278E-10	0.220847235		

	Table 43. Affected Areas in Abuyog, Leyte during 100-Year Rainfall Return Period											
Affected Area (sq. km.) by		Affected Barangays in Abuyog										
flood depth (in m.)	Picas Sur	Pilar	Salvacion	Santa Fe	Santo Niño	Tabigue	Tadoc	Tinalian	Victory			
0.03-0.20	0.767492363	2.167179099	0.368648483	0.054164571	0.032829082	0.008140021	0.802809336	2.29120133	0.027911887			
0.21-0.50	0.266795959	0.067594456	0.015038216	0.028836677	0.003603849	0.021589949	0.153124856	0.219266199	0.019781221			
0.51-1.00	0.700800683	0.029244115	0.017828967	0.004332184	0.002001602	0.114882595	0.098395018	0.247697291	0.0005			
1.01-2.00	1.315436715	0.013454337	0.014357612	0.0007	0.007206679	0.388670315	0.160373723	0.634063172	0			
2.01-5.00	2.919891628	0.0018	0.013730909	0	0.007085938	0.089042101	0.111412109	0.104617546	0			
> 5.00	0.094982749	0	0.006599999	0	0	0	0.028844198	0	0			

of area that will experience flood levels at 2.36%. Meanwhile, Canmarating posted the second highest percentage of area that may be affected by flood depths at 1.73%.

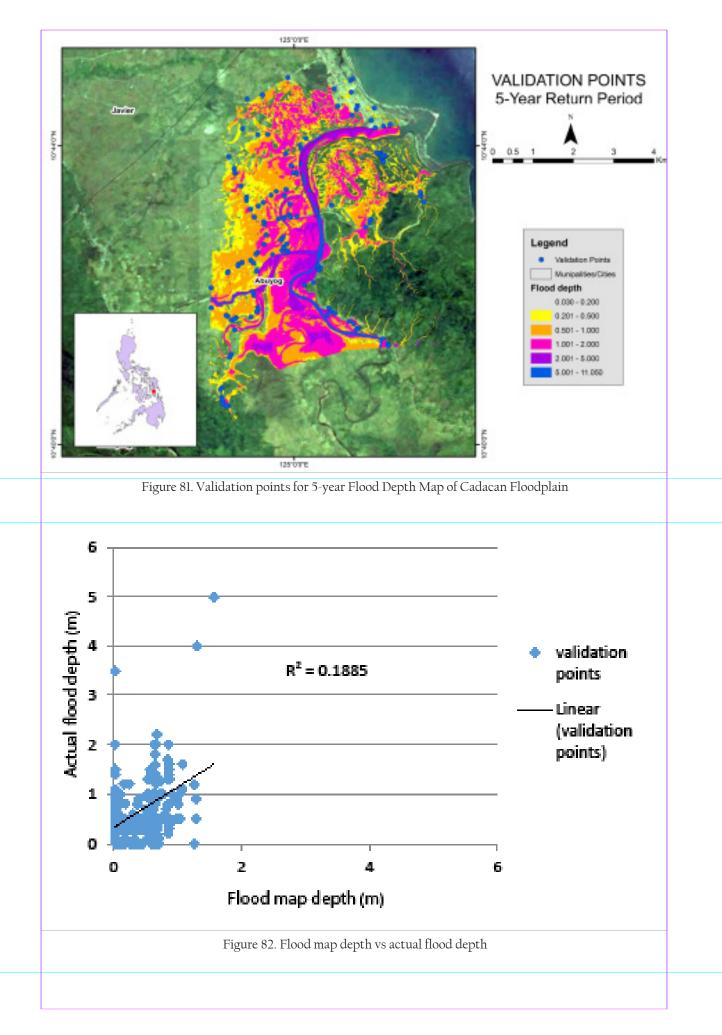
Moreover, the generated flood hazard maps for the Cadacan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Table 44. Area covered by each warning level with respect to the rainfall scenario								
Morning Lough	Area Covered in sq. km							
Warning Level	5 year	25 year	100 year					
Low	4.32	2.58	1.66					
Medium	11.22	11.32	9.16					
High	4.36	10.32	15.18					

Of the 37 identified Education Institutions in Cadacan Flood plain, 9 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 6 schools were assessed to be exposed to Medium level flooding and 1 schools were assessed to be exposed to High level flooding in the same scenario. In the 25 year scenario, 8 schools were assessed to be exposed to the Low level flooding while 15 schools were assessed to be exposed to Medium level flooding and 2 schools were assessed to be exposed to High level flooding in the same scenario. For the 100 year scenario, 6 schools were assessed for Low level flooding and 18 schools for Medium level flooding. In the same scenario, 5 schools were assessed to be exposed to High level flooding. See ANNEX 12 for a detailed enumeration of schools inside Cadacan Floodplain.

Of the 17 identified Medical Institutions in Cadacan Flood plain, 7 were assessed to be exposed to the Low level flooding during a 5 year scenario while 1 was assessed to be exposed to Medium level flooding in the same scenario. In the 25 year scenario, 3 were assessed to be exposed to the Low level flooding while 11 were assessed to be exposed to Medium level flooding. For the 100 year scenario, 14 schools were assessed for Medium level flooding and 1 for High level flooding. See ANNEX 13 for a detailed enumeration of medical insitutions inside Cadacan Floodplain.

5.11 Flood Validation


In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios wee identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to whom maps or situation reports about the past flooding events or interviews of some residents with knowledge of or have had experienced flooding in a particular area were obtained.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve what was needed.

The flood validation consists of 300 points randomly selected all over the Cadacan Floodplain. It has an RMSE value of 0.64.

	Table 45. Actual Flood Depth vs Simulated Flood Depth in Cadac-an										
CADAC-AN MODELED FLOOD DEPTH (m)											
	BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total			
	0-0.20	55	11	13	1	0	0	80			
(m) h	0.21-0.50	44	21	27	2	0	0	94			
Depth	0.51-1.00	25	9	39	5	0	0	78			
Flood E	1.01-2.00	13	2	24	4	0	0	43			
al Flo	2.01-5.00	1	0	1	3	0	0	5			
Actual	> 5.00	0	0	0	0	0	0	0			
	Total	138	43	104	15	0	0	300			

The overall accuracy generated by the flood model is estimated at 39.67%, with 119 points correctly matching the actual flood depths. In addition, there were 123 points estimated one level above and below the correct flood depths while there were 43 points and 15 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 59 points were overestimated while a total of 122 points were underestimated in the modelled flood depths of Cadac-an.

Table 46. Summary of Accuracy Assessment in Cadac-an

	No. of Points	%
Correct	119	39.67
Overestimated	59	19.67
Underestimated	122	40.67
Total	300	100

REFERENCES

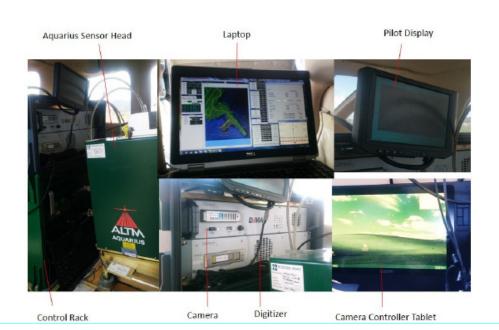
Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

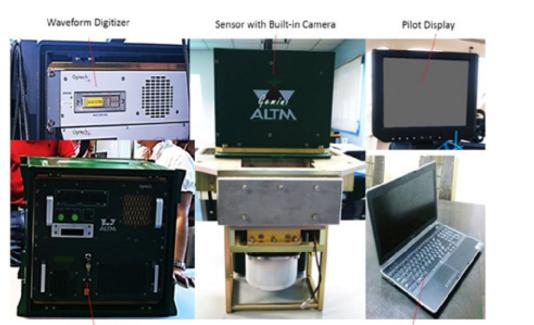
Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.


Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEX


ANNEX 1. Technical Specifications of the LiDAR Sensors Used In The Cadac-an Floodplain Survey

1. Aquarius

Parameter **Specification Operational altitude** 300-600 m AGL 33, 50. 70 kHz Laser pulse repetition rate 0-70 Hz Scan rate 0 to ± 25° Scan half-angle Laser footprint on water surface 30-60 cm 0 to > 10 m (for k < 0.1/m)Depth range Topographic mode **Operational altitude** 300-2500 **Range Capture** Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns Intensity capture 12-bit dynamic measurement range POS AVTM 510 (OEM) includes embedded 72-channel GNSS Position and orientation system receiver (GPS and GLONASS) Ruggedized removable SSD hard disk (SATA III) Data Storage Power 28 V, 900 W, 35 A 5 MP interline camera (standard); 60 MP full frame (optional) Image capture Full waveform capture 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional) Sensor:250 x 430 x 320 mm; 30 kg; Dimensions and weight Control rack: 591 x 485 x 578 mm; 53 kg Operating temperature 0-35°C **Relative humidity** 0-95% no-condensing

2. Gemini

Control Rack

Laptop

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/ Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1^{st} , 2^{nd} , 3^{rd} , and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey

1. LYT-93

2. LYT-757

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

January 27, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LEYTE		
	Station Name: LYT-757		
	Order: 2nd		
Island: VISAYAS Municipality: MAHAPLAG	Barangay: MAHAYAHAY MSL Elevation: PRS92 Coordinates		
Latitude: 10* 32* 54.86740*	Longitude: 124* 57 31.14319*	Ellipsoidal Higt:	99.55943 m.
	W0S84 Coordinates		
Latitude: 10° 32' 50.77365"	Longitude: 124º 57 36.36037*	Ellipsoidal Hgt:	163,36300 m
	PTM / PRS92 Coordinates		
Northing 1166401.318 m.	Easting 495474.491 m.	Zone: 5	
	UTM / PR592 Coordinates		
Northing 1,166,663.62	Easting 714,331.34	Zone: 51	

Location Description

LYT-757 About 7.0 km. from poblacion mahaplag taking the national road to southern leyts, there is a restaurant named "Dragonfly restaurant" located at the right side of the highway and on the left isde is the junction going to the proper of brgy, mahapahay. The LYT-757 is located on the left side, 30 meters before you reach the junction, LYT-757 is almost on the opposite side of the kilometer post # 997. 30x30x100 cm. connete monument having 40 cm height above the ground with 5 inches concrete nail as center and is marked with "LYT-757, 2007, LAMP".

Requesting Party: UP DREAM Purpose: **OR Number:** T.N.:

Reference 30896871 2016-0239

RUEL OM/BEEEN, MNSA Director Mapping And Geodesy Branch

MARK OFFICER March 2017 America For Bordaco, 1631 Tapag-Ob, Proparties, Tel Mc, 923(19748)71 to c1 March 421 America 55 San Kentas, 1211 March Fridgenes, Fol Mc, 932(1) 2014 to 18 www.eensia.gov.ph

SO 9011 3006 CERTIFICS FOR IMPTING AND GCOSINGAL BITCHMATCH MANAGENESE

ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. LYT-104

				Processing	Summary						
Observation	From	1	Го	Solution Type	H. Prec. (Meter)		Prec. leter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
SMR-53 LYT-104 (B1)	SMR-53	LYT-10	04	Fixed	0.0	008	0.017	200°40'31"	42653.401	7.525	
SMR-53 LYT-104 (B2)	SMR-53	LYT-10	04	Fixed	0.0	004	0.016	200°40'31"	42653.384	7.601	
				Acceptance	Summary	,					
Processed	4		Passed	-	Flag		>		Fail	•	
2			2			0			0		
From: SMR-53 Grid				Loc	al				Global		
Easting				0'17.85656" Latitude			N11°30'13.5249				
Northing		13.396 m		e	E125°01'29.83738" Longitude				1'34.96980"		
Elevation		24.750 m	-		26.134 m Height			87.787 m			
To:	LYT-104										
	Brid			Loc	al				Global		
Easting	7060	89.510 m	Latitude		N11*08'3	8.92234"	Latitude		N11°0	8'34.67033''	
Northing	12324	96.838 m	Longitud	e	E124°53'1	3.52786"	Longitud	le	E124°5	E124°53'18.69323"	
Elevation		32.311 m	-			33.659 m	-			95.861 m	
Vector											
ΔEasting		-14784.62	23 m NS I	Fwd Azimuth			200°4(0'31" ∆X		7839.600 m	
ΔNorthing		-40016.55	58 m Ellip	soid Dist.			42653.4	01 m ΔY	1	5051.644 m	
∆Elevation		7.56	61 m ΔHe	ight			7.5	25 m ΔΖ	-3	9131.928 m	
Standard Errors											
Standard Errors Vector errors:											
		0.003 m	σNSfwo	d Azimuth			0°00'00'	σΔX		0.006 m	
Vector errors:			σ NS fwo σ Ellipso				0°00'00" 0.002 m 0.009 m	σΔΥ		0.006 m 0.007 m	

2. LY-1024

Baseline Processing Report

Processing Summary									
Observation	From	To	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)	
LYT-757 LY- 1024 (B2)	LYT-757	LY-1024	Fixed	0.004	0.018	143"56'41"	7166.614	266.642	
LYT-757 LY- 1024 (B1)	LYT-757	LY-1024	Fixed	0.005	0.015	143°56'41"	7166.626	266.671	
LYT-757 LY- 1024 (B3)	LYT-757	LY-1024	Fixed	0.004	0.015	143°56'41"	7166.633	266.676	

Acceptance Summary								
Processed	Passed	Flag	P	Fail	•			
3	3		0		0			

Vector Components (Mark to Mark)

From:	LYT-757	LYT-757								
	Grid		Global							
Easting	714331.338 m	Latitude	N10"32'54.86738"	Latitude		N10"32'50.77355				
Northing	1166663.617 m	Longitude	E124*57'31.14322*	Longitude		E124*57'36.36037				
Elevation	98.243 m	Halght 99.559 m H		Height		163.363 m				
To:	LY-1024									
Grid			Global							
Easting	718586.237 m	Latitude	N10°29'46.27905"	Latitude		N10°29'42.20218				
Northing	1160895.197 m	Longitude	E124°59'49.85591*	Longitude		E124°59'55.07713				
Elevation	364.735 m	Height	366.202 m	Height		430.223 m				
Vector										
ΔEasting	4254.89	9 m NS Fwd Azin	nuth	143"56'41"	ΔX	-4212.979 m				
ΔNorthing	-5768.41	9 m Ellipsoid Dist	L	7166.614 m	ΔY	-1336.202 m				
ΔElevation	266.49	2 m AHeight		266.642 m	ΔZ	-5648.050 m				

3. LY-110

	Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
LYT 104 LY 110 (B1)	LYT 104	LY 110	Fixed	0.004	0.013	68°33'52"	8457.064	-1 <mark>9.32</mark> 3	
LY 110 LYT 104 (B2)	LYT 104	LY 110	Fixed	0.004	0.015	68°33'52"	8457.047	-19.343	

Acceptance Summary

Processed	Passed	Flag	P	Fall	F
2	2	0	0 0		

Vector	Components (Mark to Mar	k)
--------	-------------------------	----

From:	LYT 104					
Grid		Local		Globel		
Easting	706089.510 m	Latitude	N11*08'38.92234"	Latitude		N11°08'34.67033"
Northing	1232496.838 m	Longitude	E124*53'13.52786"	Longitude		E124*53'18.69323*
Elevation	32.311 m	Height	33.659 m	Height		95.861 m
To:	LY 110					
Grid		Local		Giobei		
Easting	713942.863 m	Latitude	N11*10'19.48389"	Latitude		N11°10'15.23095"
Northing	1235638.117 m	Longitude	E124*57'32.98736"	Longitude		E124°57'38.14961"
Elevation	12.819 m	Height	14.336 m Height		76.647 m	
Vector						
ΔEasting	7853.35	3 m NS Fwd Azin	nuth	68°33'52"	ΔX	-6101.546 m
ΔNorthing	3141.27	9 m Ellipsoid Dist	L	8457.064 m	ΔY	-5012.598 m
ΔElevation	-19.49	2 m AHeight		-19.323 m	ΔZ	3027.816 m

Standard Errors

Vector errors:					
σΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.005 m
σ ΔElevation	0.007 m	σΔHeight	0.007 m	σΔZ	0.002 m

ANNEX 4. The LiDAR Survey Team Composition

	•	-		
Data Acquisition Component Sub-Team	Designation	Name	Agency / Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO PARINGIT, D.ENG	UP-TCAGP	
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP	
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP	
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
	Supervising Science Research Specialist (Supervising SRS)	LOVELY GRACIA ACUÑA	UP-TCAGP	
		LOVELYN ASUNCION	UP-TCAGP	
		FIELD TEAM		
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS		
	Senior Science Research Specialist	JASMINE ALVIAR & PAULINE JOANNE		
	(SSRS) 2016/ RA (2014)	ARCEO	_	
LiDAR Operation	Research Associate (RA)	KRISTIN JOY ANDAYA	UP-TCAGP	
		JONATHAN ALMALVEZ		
		ENGR. KENNETH QUISADO		
		ENGR. IRO NIEL ROXAS		
Ground Survey	Research Associate (RA)	ENGR. FRANK NICOLAS ILEJAY	UP-TCAGP	
LiDAR Operation	Airborne Security	SSG RANDY SISON	Philippine Air Force (PAF)	
		SSG RAYMUND DOMINE		
	Pilot	CAPT. ALBERT PAUL LIM	Asian Aerospace Corporation (AAC)	
		CAPT. RANDY LAGCO	AAC	
		CAPT. JACKSON JAVIER	AAC	
		CAPT. NIEL AGAWIN	AAC	

ANNEX 5. Data Transfer Sheet for Cadac-an Floodplain

				_		-	_	RESERVED.	An ordered a			_			_		
	maner		APRIL 1	10	64,100	1.000	100	-		none!	048200	BAR IT	chorean	OPERATOR LOSS	PURKT	PLAN	NEWER
BA'RE	100	MISSIOH KANE	Samouri	Dutyori LAS	Stat. (pweek)	1008		Magescola:	MUDOWN DAME			CALL ED/CONS.	Quantizia (163)	jopundi	Attest	88.	LOGATION
4/19/2014	Children	mucomation.	AQUARIUS	64.	ал.	1.1768	2656.0	61.1/11.708	an menes	24.108	6A	12.108	100	100	90	7781090	27.Addamen_Area 2004
4/10/1014	10004	140.04431.00	AGLARIUS	hA .	44	TIME	17986	41.708	2090	1.1104	siA.	11.0418	180	195	80	646/080	C'Arbanna, Nites 1990A
4(22)/2014	11050	3846946112A	.40.493.5	hA.	8.4	1.5790	25768	96.505	4001203003	14,800	104	A.17818	WE .	148	SPER	001/10/3	2"Altering free
5/11/2014	14329	IN BOOM ALTERN	43,468,5	hA.	8.4	5.5018	275548	Kaca.	BARNES .	16.658	1474	14.0808	10	180	101	041340	2 Ministers Name 4403
511/2014	1-tanjh	300,0350,500,500	43,458,5	PA.	84	1.02910	12-04	19:000		15,254	12964	14.548	140	168	and a	201232700	C'Athenne, Athe 1985
5/11/2014	0.000	304030462836	10,000,0	NA.	5.4	10540	1004	54.105	1990	6073.8	er 202	10.568	10	160	993	1718-2	2 Veltorna, Res HIGA
1/11/2014	10525	301.03010201308	40,444,6	10	10	0.005/8	22.048	47.100	sector.	s 5768	6.558	11,258	90	1885	6/10/18	FOR B	Presidentes, Prov. Alian
5/34/2004	10044	MERINGUM	ACLIMIN	10	101	1.0040	205/8	15,771,600	25163-0168	14.858	SINCE.	0.0550	103	100	1242	1029-8	Printerna_Fran 1985
5/30/2014	14584	38.83461548	ADJANUS	59.	100	0.00540	21200	44.850	275239-8	11.008	91.908	73056	-9-3	195	9.8	64.0438	1002
5/15/2014	14554	350/35031388	ACUMERS	-04	198.	1.0440	(1949)	74,800	62918	14.258	88638	0.008	108	90	1493	1000000	Excitations, Pres
5/35/2028	1485A	301-050501354	ADUARUES	10.	- 20.	1.205/0	17949	81,208	009/8	1000	100	11.556	10	90	Set 3	64243	Zitterer Far 4525
\$/15/2014	10045	SHARE THE	AQUARIES		-	1,0045	(August	78,000	405-2	14.028	-	11.648	158	100	4.3	199-2	2 minutes / had

Received Frank North Position COLLARD? Repairer

Redenat by

(RICTO Pario Pariori Significa JAIDA 3/23/2014

Date Post Problem Date Date Post Prob Prob <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>11</th> <th>4 ji oyto Slav</th> <th></th> <th></th> <th>BASE ST</th> <th>ALIGAGE</th> <th>OPERATOR LOGS</th> <th>FLIGHT</th> <th>PLAN</th> <th>REAVER</th>									11	4 ji oyto Slav			BASE ST	ALIGAGE	OPERATOR LOGS	FLIGHT	PLAN	REAVER
Image: Solution of the	DATE		MISSION NAME	SENSOR	1000	W LAB	LOGS	POS	ILAN IMAGES		RAPPOR						1 1000	LOCATION
1000/ 1000//////////////////////////////////		_				KML (smalls)						-			11/18			xvarborne_Raw
mark MAX	r 30, 2014	14004	AQUATACTILISS	AQUARUS	RA.	N4.	31868	16/1549	NA.	NA	3.63638	NA	14.0MB					XMirtome_Rev
and a contractivities Accurate view Accurate view	ey 2, 2014	5406A	AGUATACTVIDIA	AGUARIUS	MA	MA	453938	THME	504.	NA.	4.5803	21.1GB	7.10688	160				dolla. Charbome_Revi
1414 AQUATACTIZIDA	my 3, 2014.	14554	ADUATACTUDIA	AQUARIUS	NA.	144.	1.57148	20160	5108	1029/188	15.399	154	7.01M8	160		182 108		AndA X Wattome_Rew/
Initial Accustor Service Add Take Add Take Take <thtake< th=""> <thtake< th=""> Take</thtake<></thtake<>	ay 4, 2214	14144	AQUATACTFEDAA	AGUARIUS	544	1564.	\$75KB	177948	41,909	188	2.75030	41.908	8.04M8	150				
Lag 2. 31-14 LAG 2.A MAX ADJUARUS NA 19749 100.49 2.600.00 1974940 2.600.00 1974940 2.600.00 197200 100.00 <	May 5, 2014	14188	ACLATACTIZER	AQUARUS	NA	15480	46430	11040	NA	564	3,2808	1.8038	50A,	NA				
Here 1430A SBUSHLISSA ACUARUS NA NA 1.33MB 24266 92.808 738/8 1.4602 7.50MB 91/8 1.401 21/8/9 601/11/6 402A May 9, 2014 1404A JBUSHLISSA AQUARUS NA NA 3.13MB 246/8 11/8/8 850/8 13/8/8 13/8/8 10/8/8	fay 6. 2014	14024	ACKIACALBI268	AQUARIUS	NR.	NA.	10793	10048	6.06GB	STREET	2,8508	28.208	5.39509	WD	IKB	20/25/12/0	66943	422.8
Aag 9, 2014 143AA BELCHALSSIA AQUARSUS NA SA 3.13M8 28649 1195B 8508 15805 28108 1408 1408 1408 1408 1408 140 140 434 1408 434 1408 434 1408 1408 1408 1408 1408 1408 1408 140	6ey 8, 2014	1430A	58,0341138A	AGUARUS	NA.	NA.	1.53440	24256	92.808	73888	13.658	22408	7.9040	1968	1100	272%B	881/1169	
Ag 6, 2014 1436A BELISHINGELISE AG LARELS AG AG 1.54ME 21980 51.560 04483 53.560 044283 53.560 140 140 140 140 140 140 140 140 140 14	Any 9, 2014	14344	TRADACIMENA	AQUAPIUS	NA	MA	3.13MB	206540	918GB	050418	15.855	25708	10.048	1908	1938	NA	107948	XSArborne_Rawl/ 434A
Aleg 10, 2014 1460A SEUSACOMENDA ACULARIUS NA NA NA 13600 21160 10405 10405 10406 10.0000 10.0000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 1	Auj 9, 2014	1436A	36003-46-51296	AQUARIUS	NA	NA	1.54MB	219469	51.3520	UNDERS	9.3238	68.138	17.148	1103	WB	172568	620HB	X.Matterne_Rav/1 436A
Ray 10, 2016 1960A IBLICHCOPLING ACLARIUS NA. NA. A.Sala 19643 00.000 IBLICHCO 1960 1960 1960 1960 1960 1960 1960 1960	May 10, 2014	14004	380/8340/238A	AQUARIUS	10.	NA.	1.864/61	279449	12950	03683	17 208	17 2/1050B	57.040	1109	968	47943	10010.0	X. Mathomse _ Roset II 4364
Received Forth Received By	15ay 10, 2016	16624	TRUCK COP 1908	AGUARUS	44.	PLA.	47260	18448	65.858	14634748	11.438	54408	17.549	168	1908	01043	1700408	Kiverborre, Rasvi 4454
And Jonathold Almalues Jeight Philete 5/28/2014			Posne J Poston	onafhda Kr	Admin	lue-2			Name Roution		on E.S	vien 2	_5/28/2919	•				

DATA TRAASPER SHEET Leyte 27176

DATE	FLIGHT ING.	MISSION NAME	SENSOR	8,83	W LAS				MILLON LOO		1	10450 B	Th/TROA(III)	CONTRACTOR	-	PLAN	-
	-		PERSON	Output LAS	NRL (man)	LOSSIMB	POS	MAGERICAR		RANGE	CHOPTLEER	BADE STUTION(S)	Base lors	LOGS (DPLOG)	Arthuad	MAR.	LOCATI
22-Jan	3765G	28LK34AD022A	corners.	NA.	83	890	255	14	- 14	26.2	-	4.50		150		-	Z CACA
22-ian-16	3767G	28LK34AG0228	penin	NA	75	490	204	-		15.5	-	34	1426	909	31/25/21/01	-	CATS 210ACHS
28-108-16	0789G	28LK34ADE0023A	genera	1994	82	570	280	14	78	25.6	-	9.58	193	102	14		21040182
23-Jan-14	37716	28LK348CG0228	-	144	77	128	212	10	74	20.3		12	THE	168	57.02		DATA DIGADAS
	6 37730	2BLK34CB024A	gunus	MA.	63	552	348	14	-	16.8	74	-		142	27295/09		CATA Z CACINA DASA

Received Inset

C . Jacques Int Martin Protion Signature

the Borgert 2/12/15

DATA TRANSPER EVENT TACLOBAN DOORNE

				8,458	1.40	1.1.1.1.1.1.1.1		1.000	and a state			AND IN	a/simile	Internation (- 0.30M	1.440	-
CATE	PL/047 40.	MISION AARE	SENSION	Output LAS	Hill, (meath)	1008	POS	MAN CEREMON	HILDONE LOS	Austal	CHORICELIN .	BARNE (Transferred)	Rose (HPL/HT	(045.00)	Animal	1000	and an open
87-Feb-16	37656	2904340364		tak.	210	162	240	150	164.	16.3	-	1/19	-	-	ar .	-	a nariana parte
1054-Feda-127	207736	291.0340404	-	194	142	16.5	-	16.7	-	4.0	-	1.00	-	MA.	3855380	196	A Contained
120-040-08	297736	2918340414	CENSE	150.	185	-	-	123	165	1.0	168.	4.7	wa	142	303/9	1946	250xChao
(8.2)-Felb-15	3/18215	281.434F045A	COMM	194	-		199			112	158	4.67	-		Inclusive	-	Santa Santa

Recorded From.

trained parts. Transferration of

we the somet 5534 2 2 24 S. Com Sugaration.

0' una se

Beaution/Dig-

ANNEX 6. Flight logs for the Cadac-an Flight Missions

1. Flight Log for 1434A Mission

1 UDAR Operator:	NO BANK	AS 2	ALTM Model: Abarrent	3 Mission Name: 2848.94	AND HAR A TIME WER	S Alexant Tene: Caunna	a T206H 6 Aircraft Identification: FPE
7 Pilot: J.JAV	1000, B	8 Co-Pilo	ot: H-NGANIN-J	9 Route:	sould be the street	protection indice costinue	
10 Date: No. Per	9, 2+14	1	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, Gtg/Prevince):	
13 Engine On: 724	1	14 Engla	ne Off: 1216	15 Total Engine Time: 4147	16 Take off:	17 Landing:	18 Total Flight Time:
				orter Briksdan.	.k34L 8 sema Go	4	
21 Problems and	Solutions;	*			.k34L 8 some G	<i>u</i>	

Date: Build q, polia 12 Airport of Departure (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province):	S Aircraft Identification: APCS 3-2.
Date: Nuk-f 9, 20 ld 12 Arport of Departure (Airport, Oty/Province) 12 Airport of Annual (Airport, Oty/Province) Ingine On: 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Kanding:	IB Total Flight Time:
Ingine Chi 13 5% 14 Engine Ciff: 15 Total Engine Time: 16 Take off: 37 Landing: Weather Remarks: Low Pleful fairing over Bilk Left.	38 Total Finght Time:
Is to be intered time: Is take off 37 Landing: Weather	38 Total Flight Time:
Remarks: completed tojarin over Bick Sofm.	
completed this over back soon.	
Acquisition Right Approved ins Assumblies Right Certified by Plast in Commands	

3. Flight Log for 1430A Mission

M Data Acquisition Flight Lo UDAR Operator: 10 MGA	the second s	3 Mission Name: 384k.84	andan a management	In an	Hight Log No.: 1/80
Pilot J.John Hole	8 Co-Pilot: St. Anne/bil	P Brunner	program a rypse: vera	5 Aircraft Type: Gesnina T206H	6 Aircraft Identification: 4004(53-
Date:	12 Airport of Departure ((Airport, OtoProvince)	12 Airport of Arrival	(Airport, City/Prevince):	
MAY 8, 191	14 Engine Off:	15 Total Engine Time:	16 Take off		
1403	601	44 05	an rate dit	17 Landing:	18 Total Flight Time:
Weather					
21 Problems and Solution					
					CONTRACTOR OF THE SECTION OF THE SEC
		- Constanting of the local division of the l	COLUMN TO MAN	The second se	
Accessibles Hotels	and the second second	the Right Constant in			
Acquation Highs Ann	Anthe Access	ton Hight Certified by	Non Conny	*	idar Operator
Acquisition Highs App	Plant by Acquires	ion Flight Certified by	Printin-Constant		

4. Flight Log for 2BLK34038A Mission

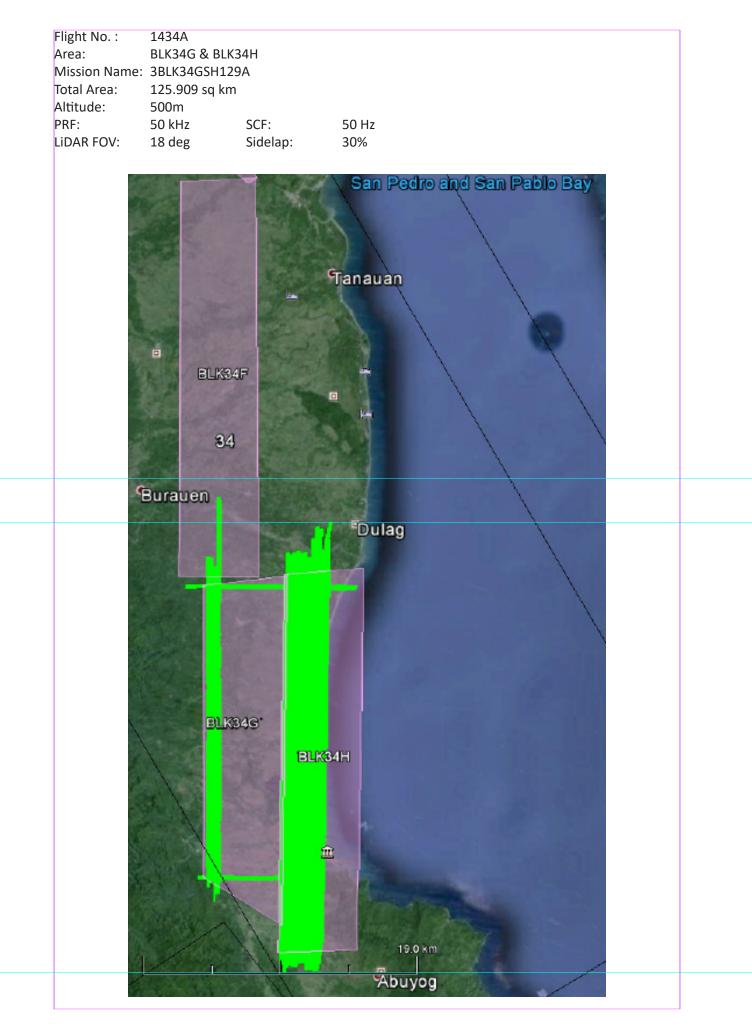
UDAR Operator: J. A. Pilot: A. Lisso 0 Date;	& Co-Pilot: R. Lorgo	3 Mission Name: 3 R.L. 740 9 Route: Treels Jose	Techtin	S Alrcreft Type: Ceanne T 206H	Hight Log No.1 376/ 6 Aircraft Identification: BP-0993
Frb 7, 1-16	12 Aisport of Beparture (Adahan	12 Airport of Arrival	(Airport, City/Province):	
07414	1196 11	15 Total Engine Time: 4 4 0 5	16 Take off: 0796 H	17 Landing: NAVA	18 Total Flight Time:
Weather	- cloudig				3 7 5 5
Flight Classification			21 Remarks		
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	20.b Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:	20.c Others O LIDAR System Mainta O Aircraft Maintenance O Phil-UDAR Admin Act		Sunged it c	00 0-
Problems and Solutions					
 Weather Problem System Problem 		e.			
O Aircraft Problem O Pilot Problem O Others:					
heaviention studie how and by	Acquisition Might Cartille winty Facility of the State	Data Service	armani /	цанпорезарт	Altorafi Meeduank;/ UDAR Taszlakilan
Sgnature over Printed Rame (End User Expresentative)	Nonature over Plinted Ma (PAP Representative)	sa Signatury	Gret Printed Name	Slattere over Printed Mense	Signature over Printed Neme

5. Flight Log for 2BLK34040A Mission

Plot: A - Law Date:	BCO-FILOT: K. Leges	PRoute: Todoban -	Tadaba	5 Aivcraft Type; Cesnine T206	Flight Log Ro.: 577/ SH & Alecraft Identification: G&z'z/	
Fob 9 2016 Stagine On:	12 Airport of Departure 14 Engine Off:	15 Total Engine Time:	12 Airport of Arrival Tack	Airport, Gby/Province):	18 Total Flight Time:	
9 Weather	inter H	341	14121	1713/#	3 101	
0 Flight Classification 2.4 Billable 2.4 Acquisition Flight 3.5 Ferry Flight 3.5 System Test Flight 3. Calibration Flight	20 b Non Billabla O Aiscraft Test Flight O AAC Admis Flight O Others:	20.4 Othen O LIDAR System Maintena O Aircraft Maintenance O Phil-LIDAR Admis Activi		Sourceyed Rise 24	44	
Problems and Solutions O Weather Problem O System Problem O Alternit Problem O Pilot Problem O Others						
Acquisition Fight Approved in J. Horizon Sternature conference (time (End theor appresentative)	Acquidation Flight Corpt SI Paulike un Korpt Agenticae color Ainteed N 1948 Representative	Domisia but a	er Printed Hange	UBAR Operator <u>H. Buffin de</u> Heroure over Printed Nerre	Aircraft Mechanic/ UDAB Tachnician 	

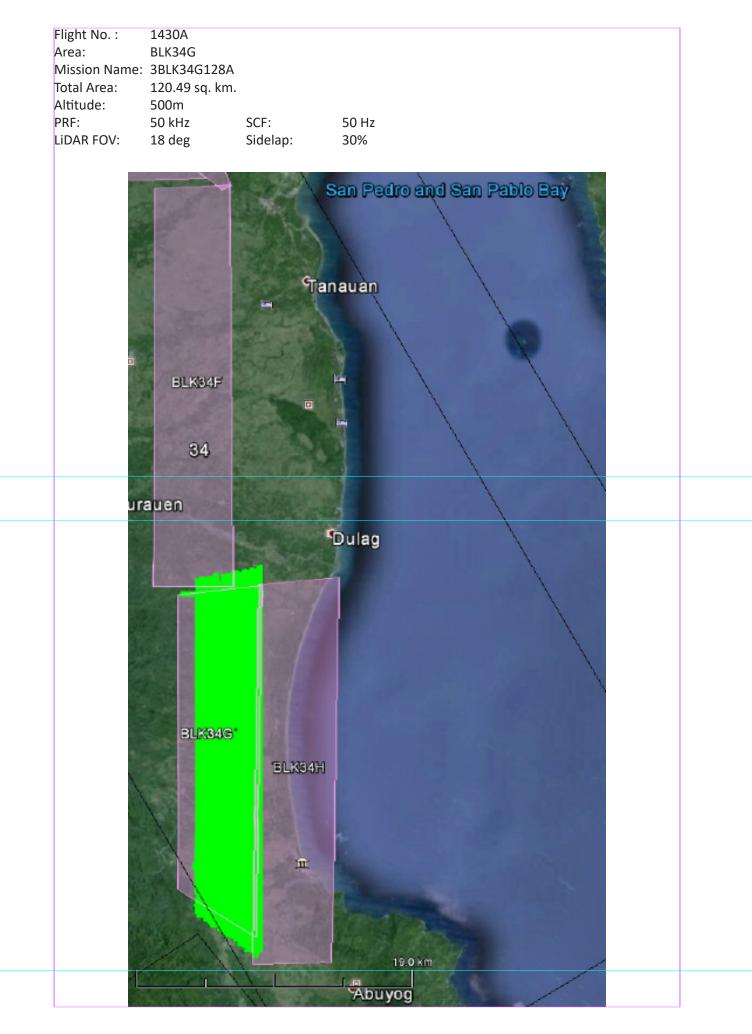
6. Flight Log for 2BLK34F043A Mission

PHIL-LIDAR 1 Data Acquisition Hight Log 1 UDAR Operator: R1 And and Flight Log Ho.: 3775 2 ALTM Model: Granm 3 Mission Name: 1Rus 1-4 Jun & 4 Type: VFR Pilot: A Cuss 5 Alvora & Type: Cesn ni T206H 6 Aircraft Identification: 9023 8 Co-Milot: 7 Lan 9 Boute: Tedates Tadaba 10 Date: 12 Airport of Departure (Airport, City/Province): 12 Airport of Arrival (Airport, City/Prosince): Feb 10, 2611 Jacloten tadober 13 Engine On: 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 1937 17 Rey H 18 Total Flight Time: 1109 4 3113 14204 19 Weather 3412 Clar dig. 20 Hight Classification 21 Remarks 30.a Billable 20.b Non Ullable 20.¢ Others Surrayed BLK 34A 8 Sec. 560 Q Acquisition Flight O Alicraft Test Flight O LIDAR System Maintenance O Ferry Right O AAC Admin Flight Aircraft Maintanance O System Test Flight o Othera; O Phil-LIDAR Admin Activities O Calibration Flight 22 Problems and Solutions Weather Problem O System Problem C Alterait Problem O Pilot Problem O Others Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Coveral LIDAR Operator Aircraft Mechanic/ HOAR Techniciant Alina Signature over Printed Name phatche over Printed Name Signations plan Printed Name Signifure de (End litter Representative) Printed Name Signature ever Printed Name (RIF Representative)

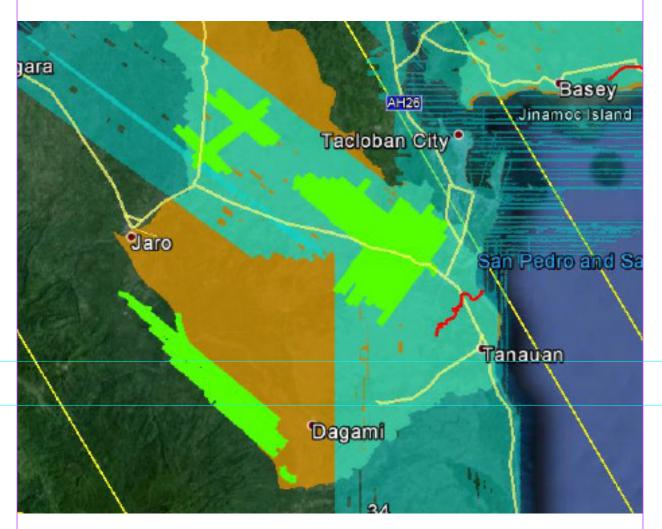

7. Flight Log for 2BLK34CG024A Mission

Date: 1 and 10		ny 3 Mission Name: 2440 thcso 9 Route: 1PC-004-0	LOCAL	5 Alircra It Type: Cesnira T206H	6 Alteraft Identification: ICFC -9022
1-24.16	THELEDAN	e (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Engine Oni7: TT	14 Engine Off: /2:00	15 Total Engine Time:	16 Take off: 8: 60	17 Landing: /2:0/	18 Total Flight Time: 9+01
Weather	cludy	1			4707
Flight Classification	0		21 Remark	,	
a Biliable	20.b Non Billable	20.c Others	1. Petitora	0	
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Alxandit Test Flight AAC Admin Flight Others:	 UDAR System Mainta O Aircraft Maintenance Phil-UDAR Adtain Act 		vicesp) the	24
Problems and Solutions					
Weather Problem System Problem Aircraft Problem Pilot Problem Others:					
			11		
			//	10	
Acquialition Flight Approved b	ry Acquisition Flight Co	rtifiel by Pilot-in-C	Destrand /	LIDAR Operator //	Aircraft Mechanic/ LIBAR Techniciam

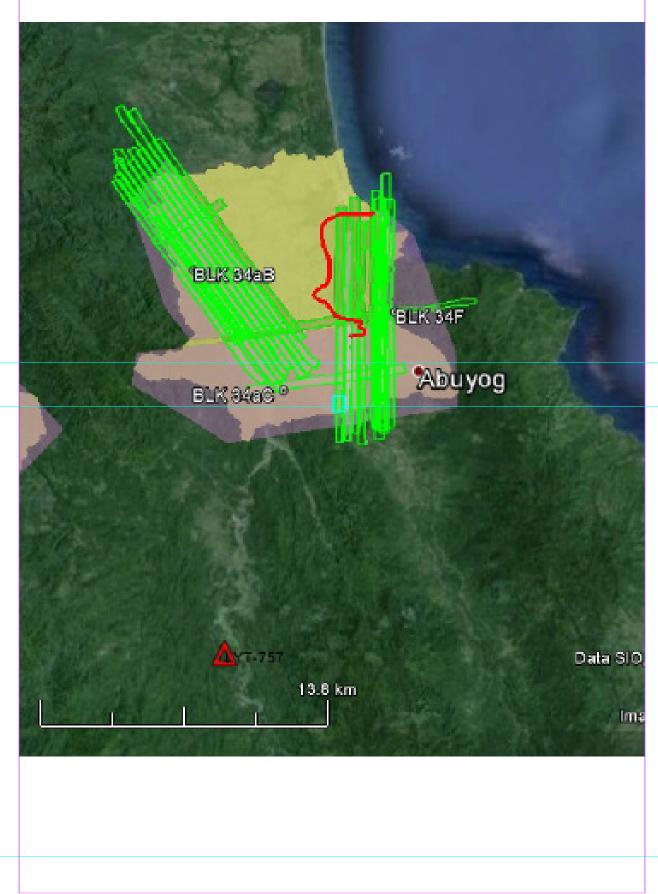
ANNEX 7. Flight status reports

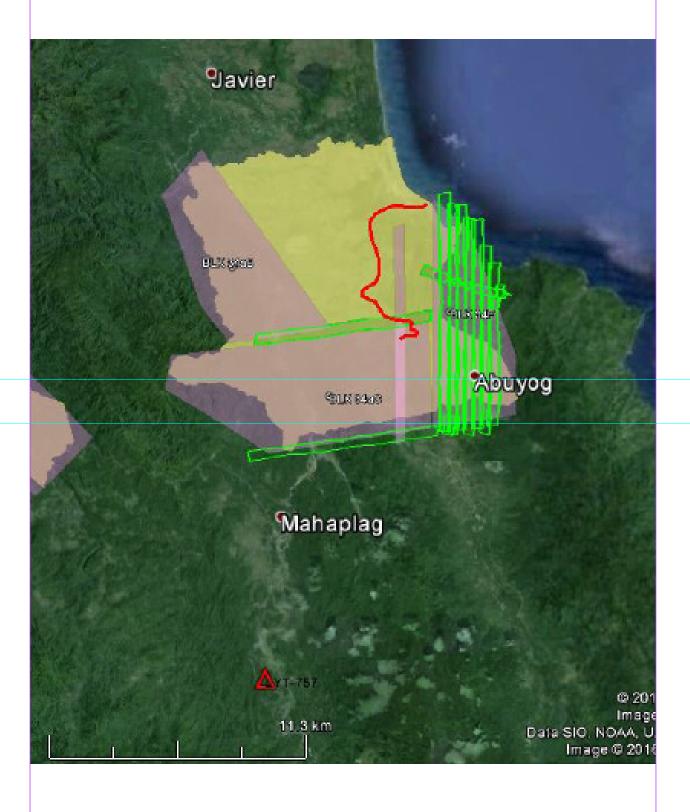

FLIGHT STATUS REPORT TACLOBAN May 8 -9, 2014 and January 24 -February 12, 2016

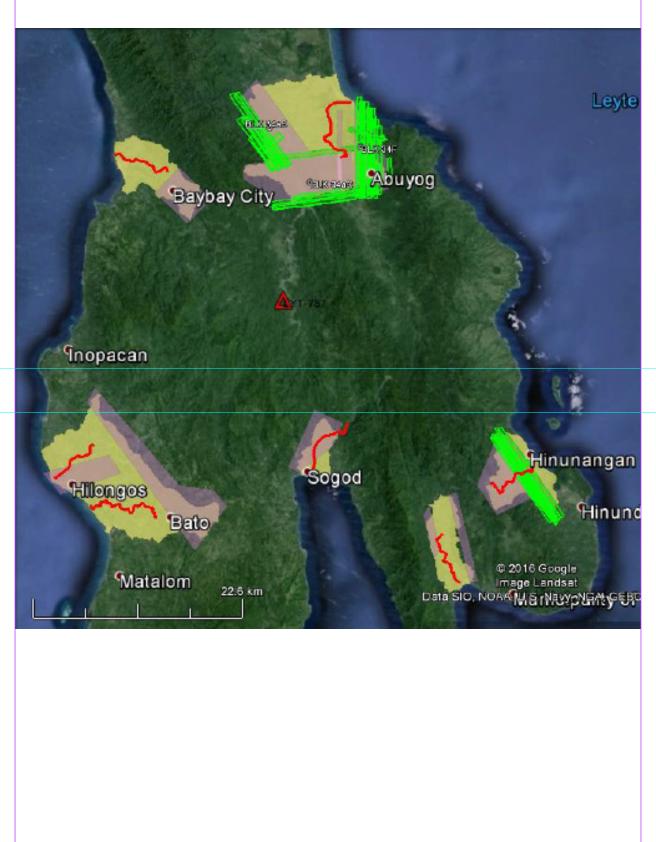
Flight No	Area	Mission	Operator	Date Flown	Remarks
1430A	BLK34G	3BLK34G128A	PJ ARCEO	May 8, 2014	Completed 18/22 lines over BLK34G.
1434A	BLK33G BLK33H	3BLK34GSH129A	IN ROXAS	May 9, 2014	Completed mission over BLK33G and few lines in BLK33H.
1436A	BLK34H	3BLK34HS129B	PJ ARCEO	May 9, 2014	Completed mission over BLK34H.
3773G	BLK34C BLK34G	2BLK34CG024A	J. ALMALVEZ	January 24, 2016	Completed BLK34C and BLK34G.
3761G	BLK 34aC, 34aB, 34F	2BLK34038A	J ALVIAR	February 7, 2016	SURVEYED CADACAN FP REMAINING AREAS
23771G	BLK 34F	2BLK34040A	k quisado	February 9, 2016	SURVEYED CADACAN FP
23773G	BLK 34aC, BLK 50A	2BLK34041A	kj andaya	February 10, 2016	SURVEYED CADACAN AND BISAY FPs
					SURVEYED CADACAN
3781G	BLK 34F BLK 49A	2BLK34F043A	k quisado	February 12, 2016	AND BONGQUIROGAN

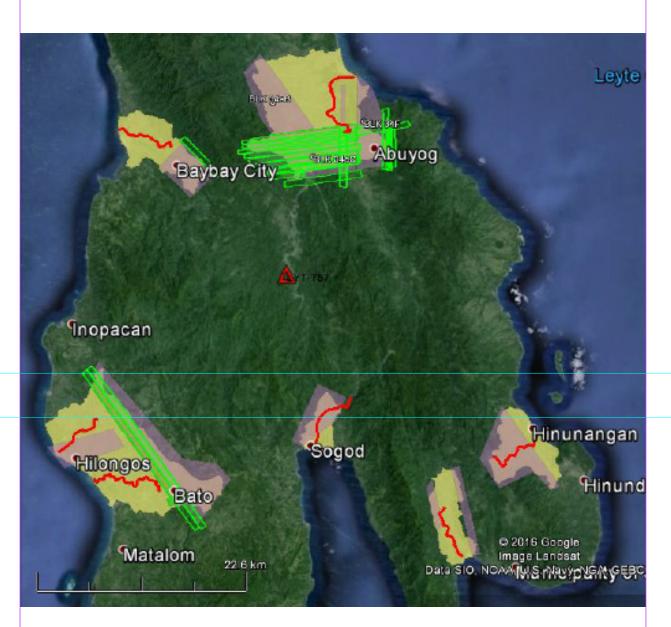


LIDAR Surveys and Flood Mapping of Cadac-An River

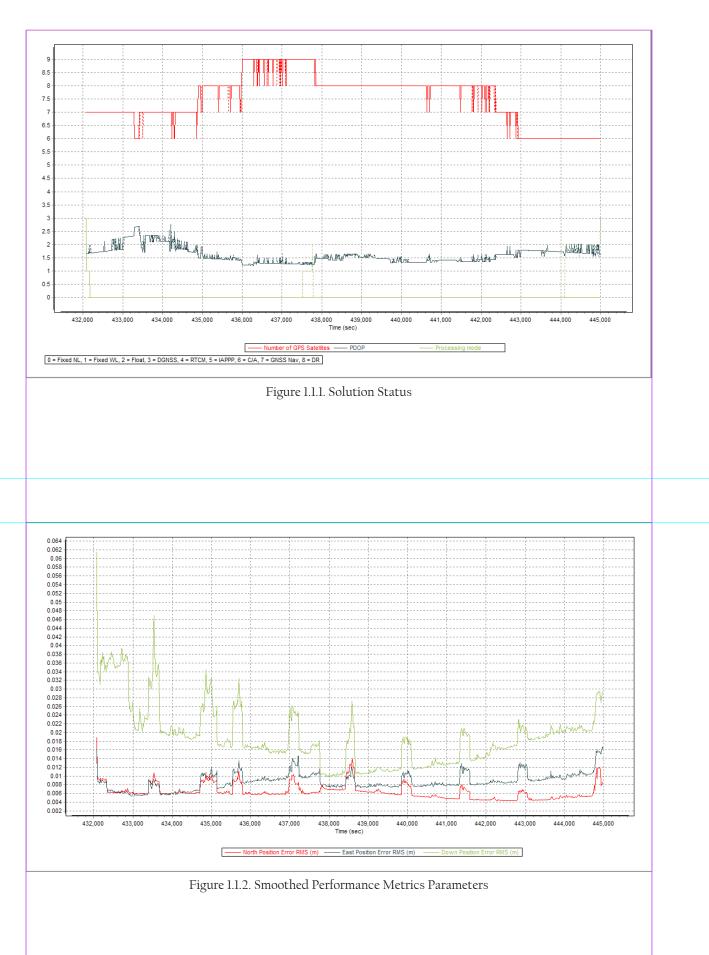

Mission Name: Altitude: PRF:	1436A BLK34H 71.953 sq km 3BLK34HS129E 500m 50 kHz 18 deg	SCF: Sidelap:	50 Hz 30%				
Bu	ELK34F 34		San P Tanauar		San Pablo E	Bay	
	BLK34@*	ELK94H	Bulag	19.0 km			

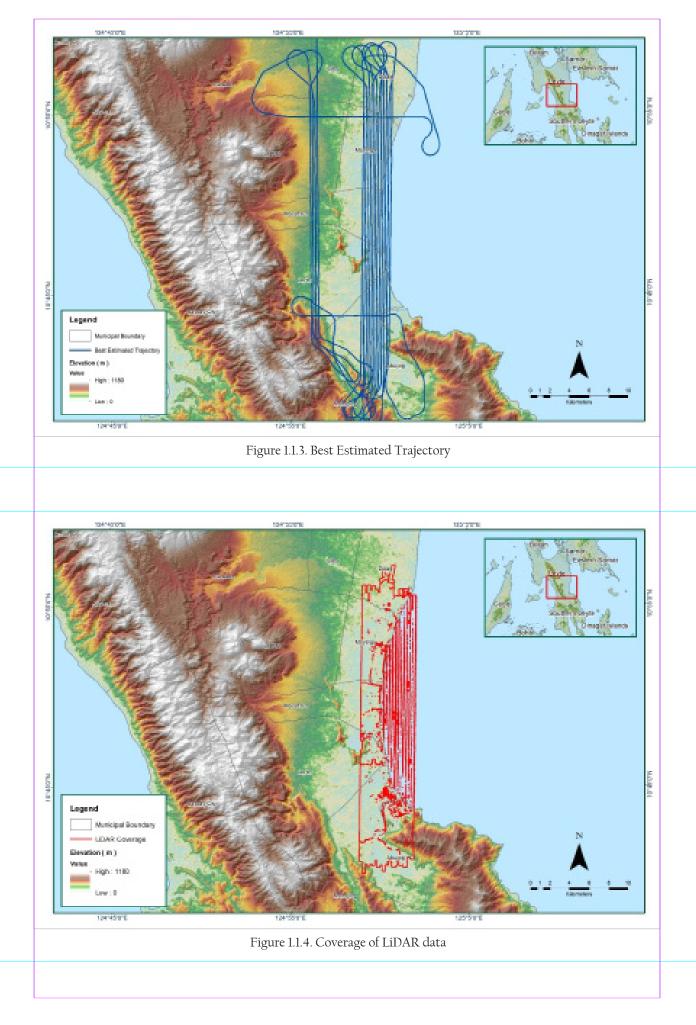

FLIGHT NO.: 3773 AREA: Leyte MISSION NAME: 2BLK34CG024A ALT: 600 m SCAN FREQ: 40 SCAN ANGLE: 25 SURVEYED AREA: 90.6 km²

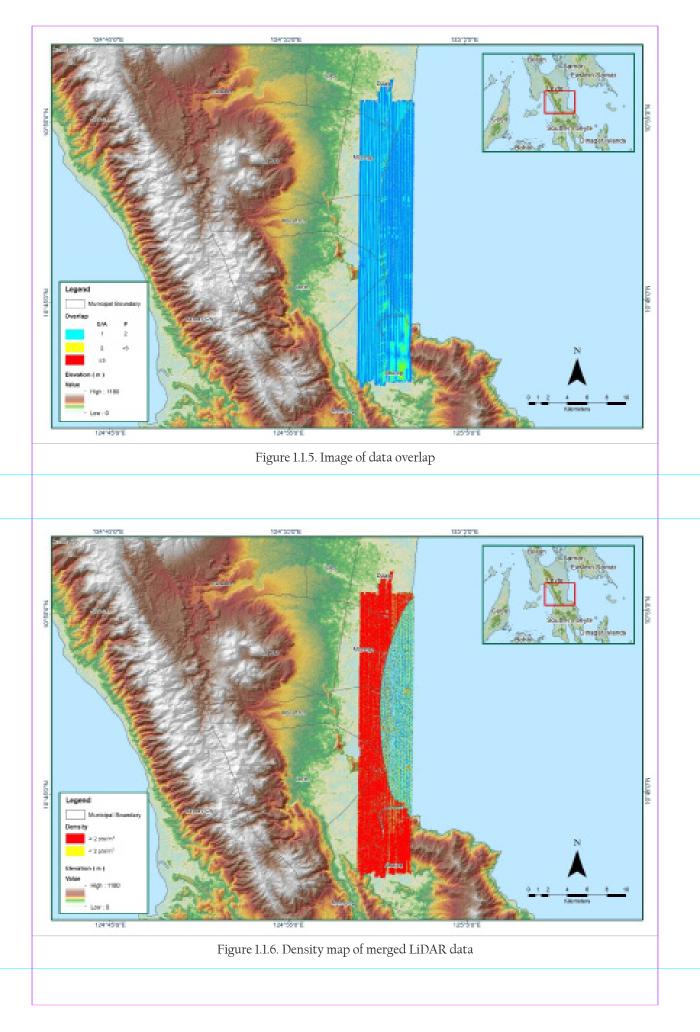

Flight No. :	3761G						
Area:	BLK 34aC, 34	BLK 34aC, 34aB, 34F – Cadacan 2 FP					
Mission Name:	2BLK34038A	1					
Parameters:	PRF 100	SF	50	SCA	18		

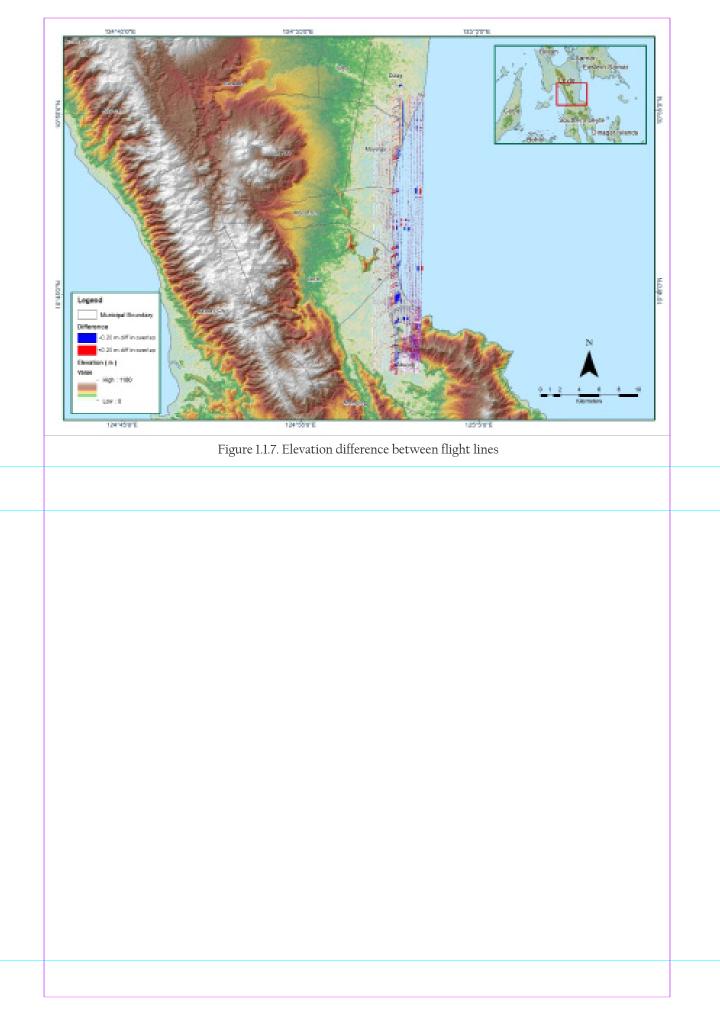

Flight No. :	23771G				
Area:	BLK 34aC, 34aB	, 34F – (Cadacan	2 FP	
Mission Name:	2BLK34040A				
Parameters:	PRF 100	SF	50	SCA	18

Flight No. :	23773G				
Area:	BLK 34F – Ca	adacan 2	AND BIS	AY FPs	
Mission Name:	2BLK34041A	A			
Parameters:	PRF 100	SF	50	SCA	18

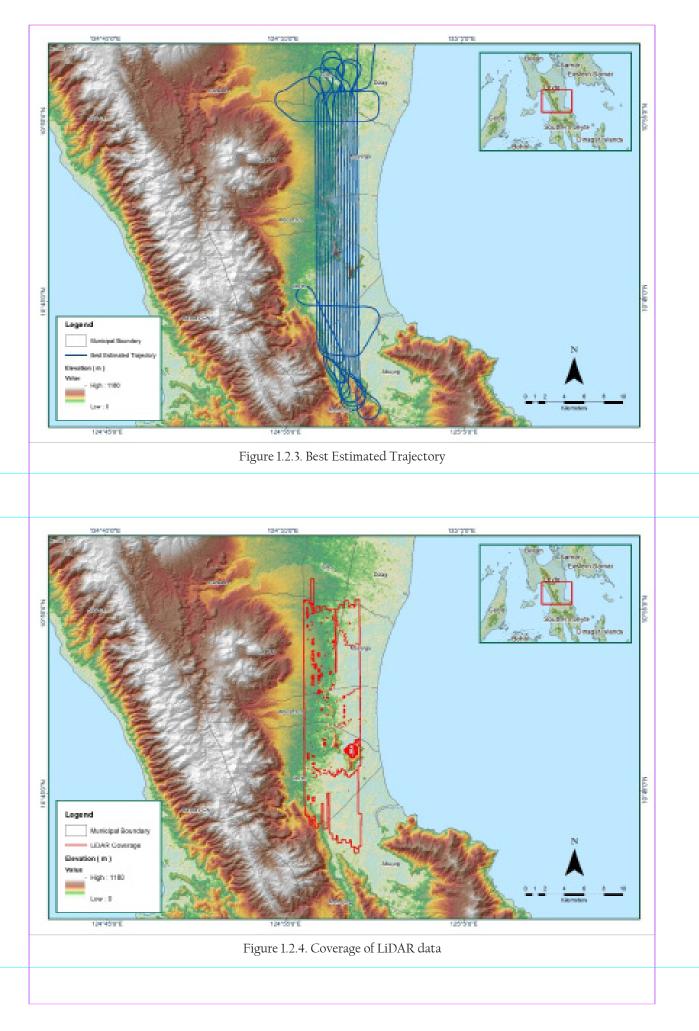


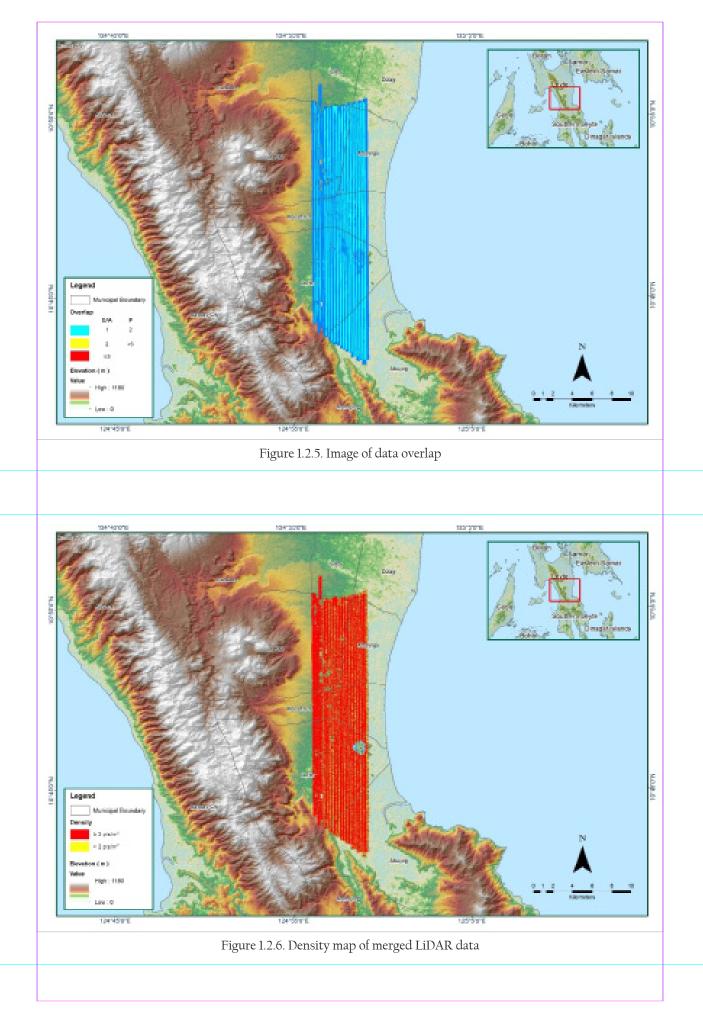

Flight No. :	23781G				
Area:	BLK 34aC, 34aE	3, 49A –	Cadacan	2 AND E	3ONGQUIROGAN FPs
Mission Name:	2BLK34043A				
Parameters:	PRF 100	SF	50	SCA	18

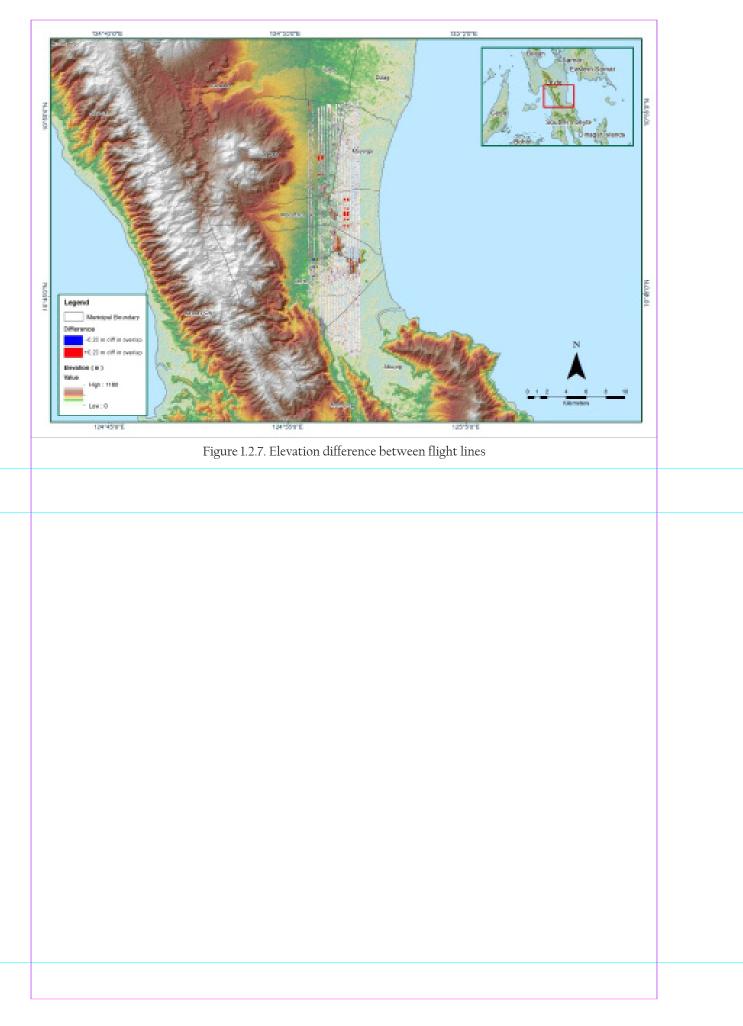



Flight Area Samar-Leyte **Mission Name** Blk34H **Inclusive Flights** 1434A, 1436A Range data size 25.12 GB **POSdata size** 505 MB Base data size MB Image 169.3 GB **Transfer date** May 28, 2014 Solution Status Number of Satellites (>6) Yes **PDOP (<3)** Yes Baseline Length (<30km) Yes Processing Mode (<=1) Yes Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 1.4 RMSE for East Position (<4.0 cm) 1.7 RMSE for Down Position (<8.0 cm) 4.7 Boresight correction stdev (<0.001deg) 0.000471 IMU attitude correction stdev (<0.001deg) 0.002510 GPS position stdev (<0.01m) 0.0080 Minimum % overlap (>25) 32.26% Ave point cloud density per sq.m. (>2.0) 2.83 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 215 Maximum Height 425.31 m **Minimum Height** 51.73 m Classification (# of points) Ground 95,490,667 Low vegetation 112,453,327 **Medium vegetation** 107,624,730 **High vegetation** 55,639,375 Building 2,285,212 Orthophoto Yes Engr. Kenneth Solidum, Engr. Harmond Santos, Processed by Engr. Gladys Mae Apat

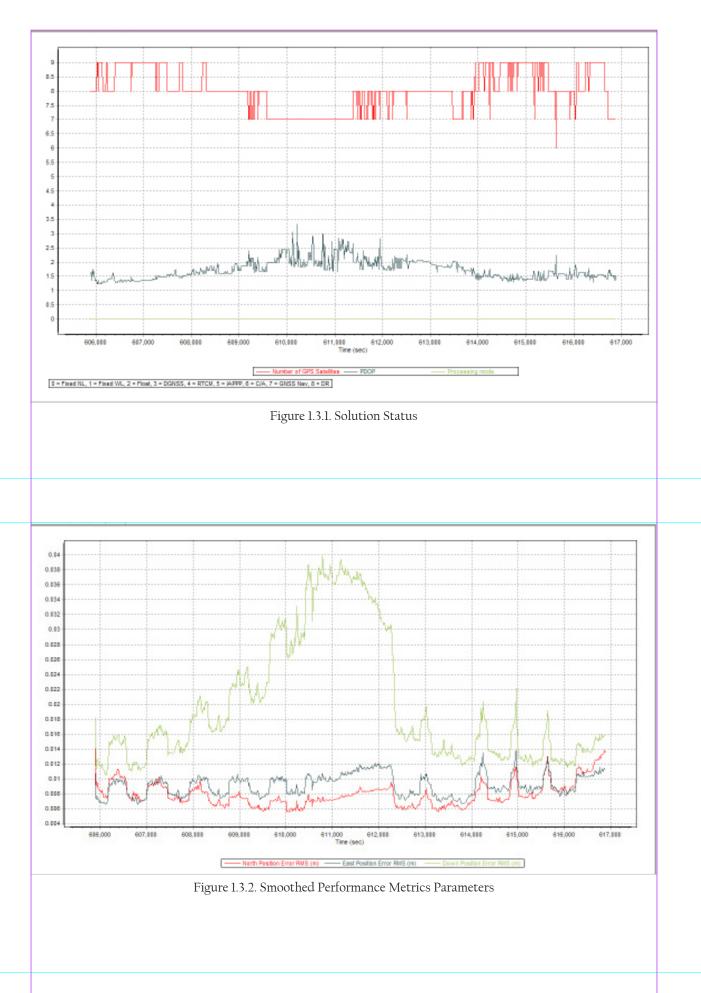
ANNEX 8. Mission Summary Reports

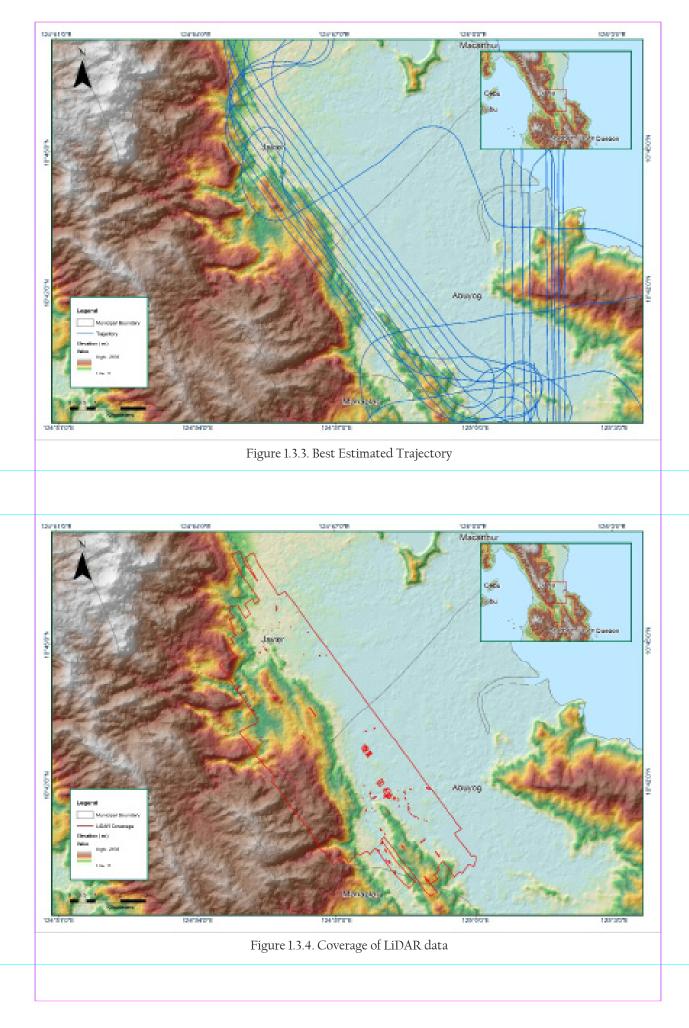


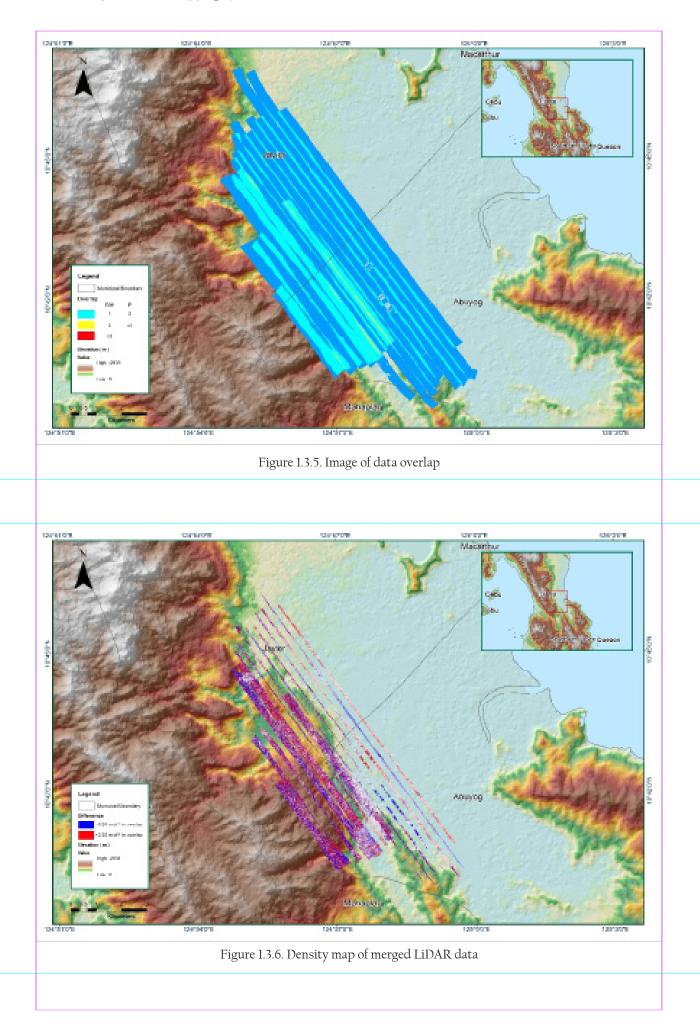


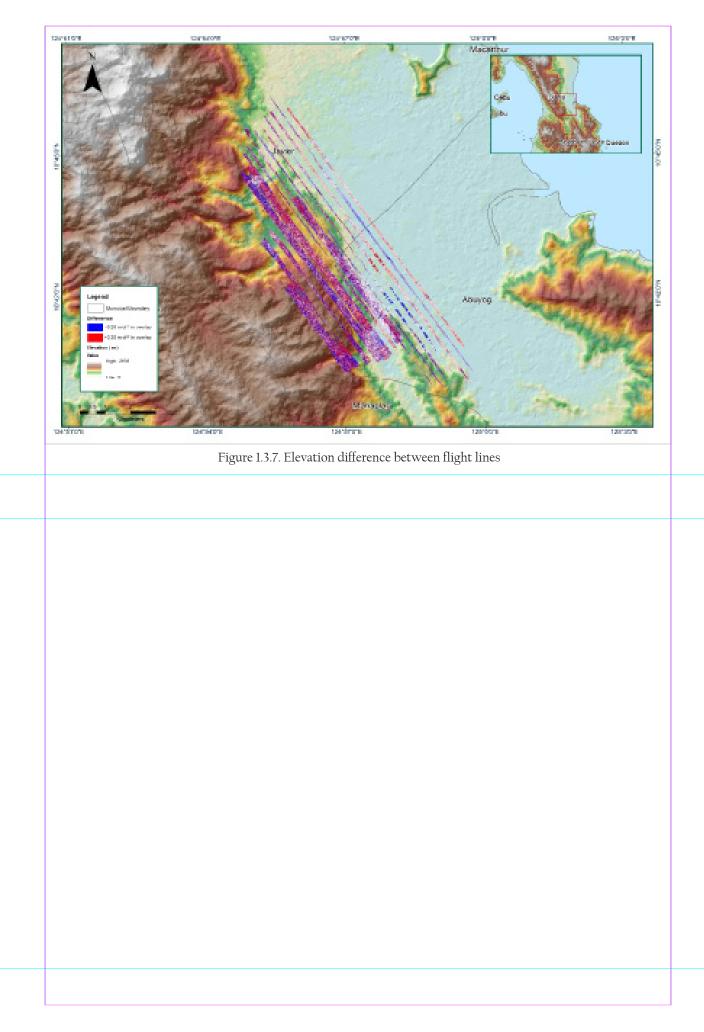


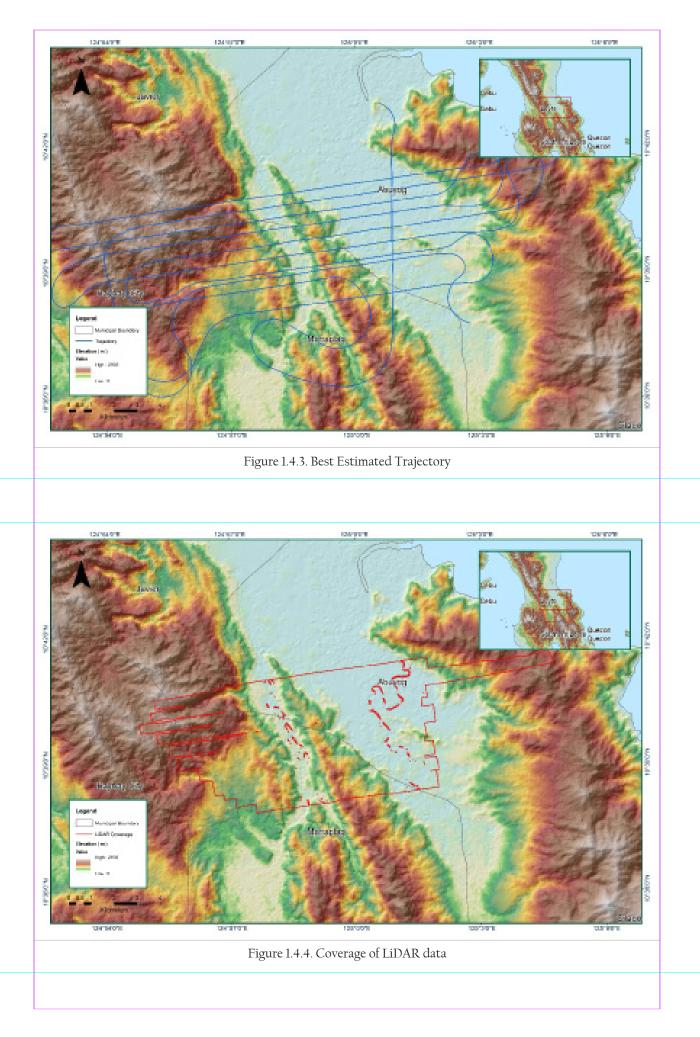
Flight Area	Samar-Leyte				
Mission Name	Blk34G				
Inclusive Flights	1430A, 1434A				
Range data size	29.4 GB				
POSdata size	528 MB				
Base data size	MB				
Image	210.8 GB				
Transfer date	May 28, 2014				
Solution Status					
Number of Satellites (>6)	Yes				
PDOP (<3)	Yes				
Baseline Length (<30km)	Yes				
Processing Mode (<=1)	Yes				
Smoothed Performance Metrics (in cm)					
RMSE for North Position (<4.0 cm)	1.2				
RMSE for East Position (<4.0 cm)	1.4				
RMSE for Down Position (<8.0 cm)	3.1				
Boresight correction stdev (<0.001deg)	0.000492				
MU attitude correction stdev (<0.001deg)	0.001939				
GPS position stdev (<0.01m)	0.0085				
Minimum % overlap (>25)	42.02%				
Ave point cloud density per sq.m. (>2.0)	3.20				
Elevation difference between strips (<0.20 m)	Yes				
Number of 1km x 1km blocks	186				
Maximum Height	292.03 m				
Minimum Height	63.56 m				
Classification (# of points)					
Ground	113,885,129				
Low vegetation	135,911,604				
Medium vegetation	106,013,368				
High vegetation	43,429,000				
Building	1,436,140				
Orthophoto	Yes				
Processed by	Engr. Kenneth Solidum, Engr. Antonio Chua, Jr., Engr. Gladys Mae Apat				

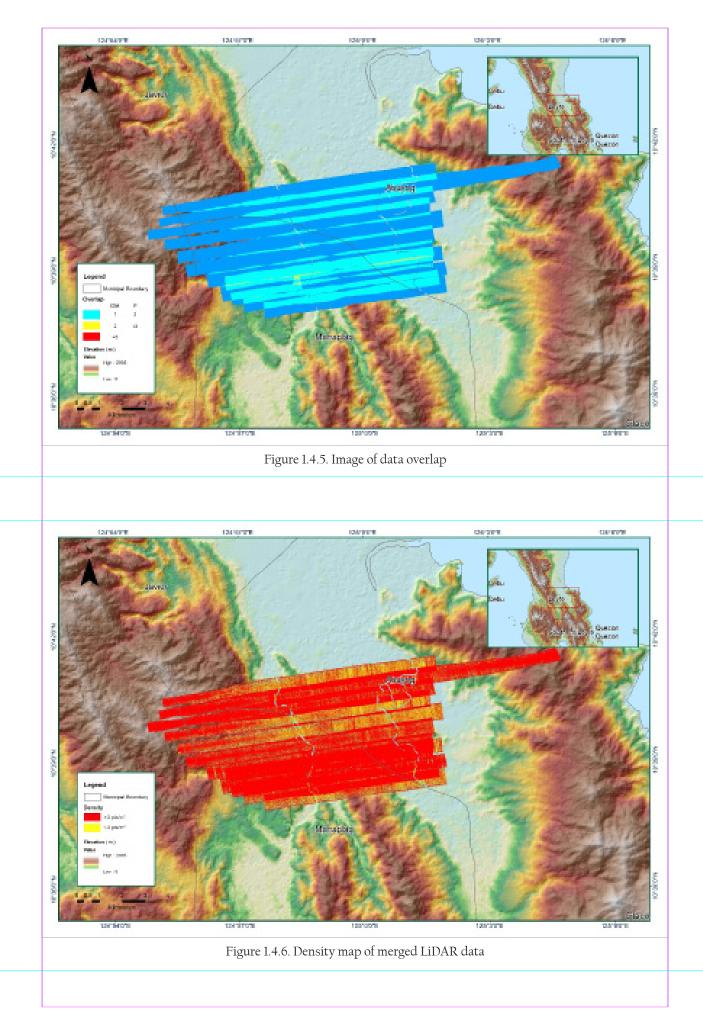


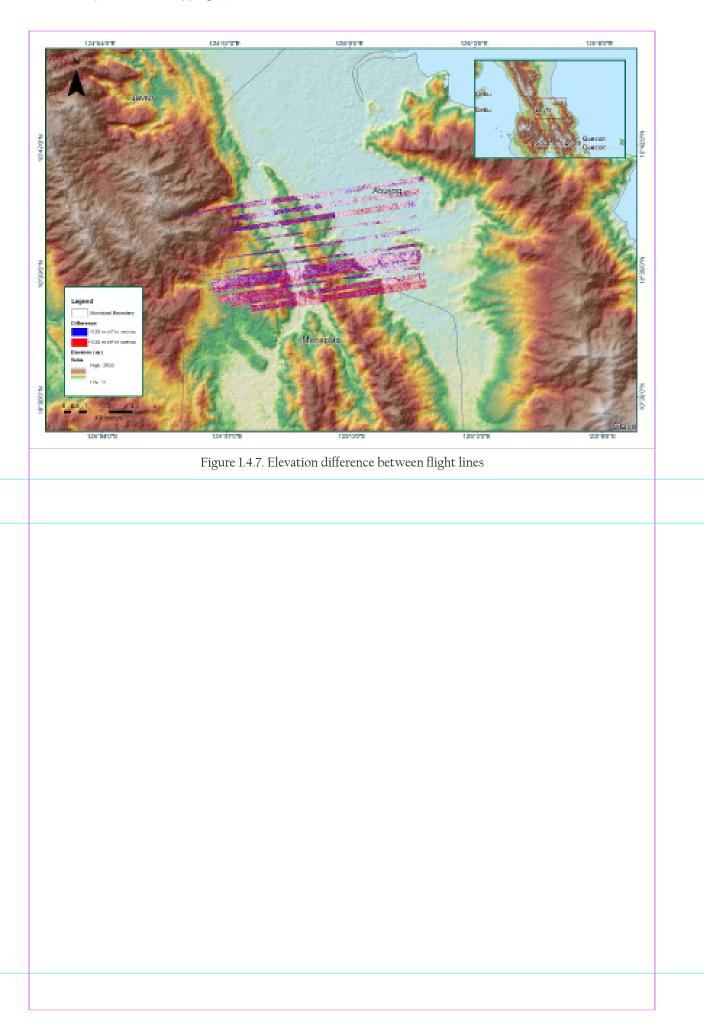




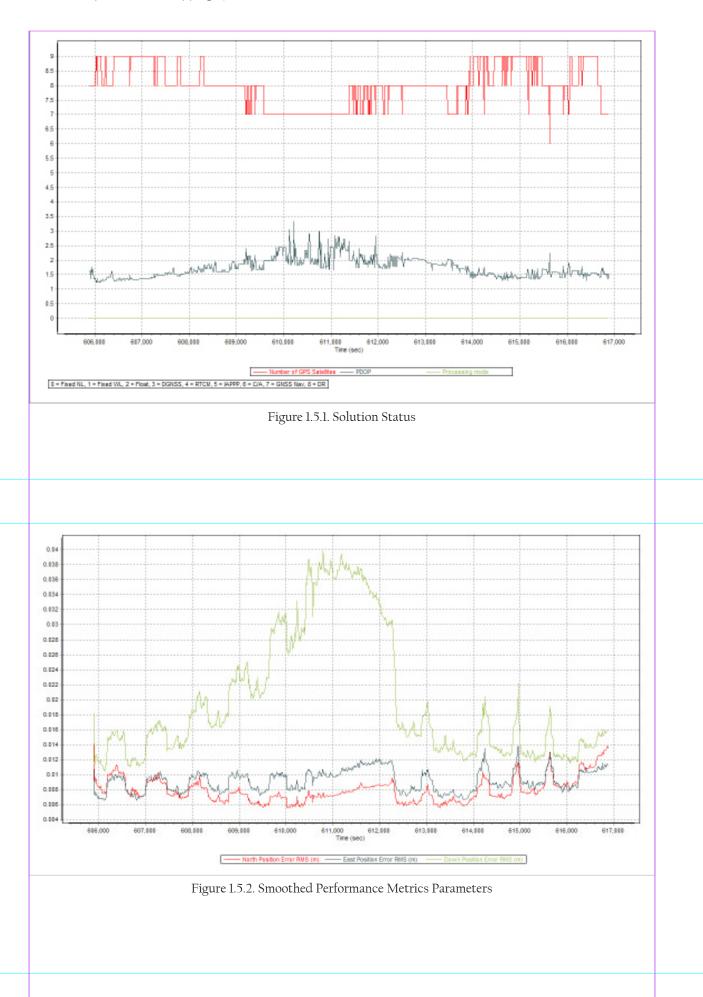

Flight Area	Leyte				
Mission Name	Blk34G				
Inclusive Flights	3761G, 23773G				
Range data size	25.36 GB				
POS data size	440 MB				
Base data size	12.43 MB				
Image	n/a				
Transfer date	March 04, 2016				
Solution Status					
Number of Satellites (>6)	Yes				
PDOP (<3)	No				
Baseline Length (<30km)	No				
Processing Mode (<=1)	Yes				
Smoothed Performance Metrics (in cm)					
RMSE for North Position (<4.0 cm)	1.3				
RMSE for East Position (<4.0 cm)	1.4				
RMSE for Down Position (<8.0 cm)	4.0				
Boresight correction stdev (<0.001deg)	0.000724				
IMU attitude correction stdev (<0.001deg)	7.381745				
GPS position stdev (<0.01m)	0.0029				
Minimum % overlap (>25)	31.86				
Ave point cloud density per sq.m. (>2.0)	6.57				
Elevation difference between strips (<0.20 m)	Yes				
Number of 1km x 1km blocks	81				
Maximum Height	590.69 m				
Minimum Height	65.96 m				
Classification (# of points)					
Ground	25,426,447				
Low vegetation	43,936,942				
Medium vegetation	97,744,358				
High vegetation	169,210,036				
Building	4,615,452				
Orthophoto	None				
Processed by	Engr. Irish Cortez, Engr. Jovelle Anjeanette Canlas, Marie Denise Bueno				

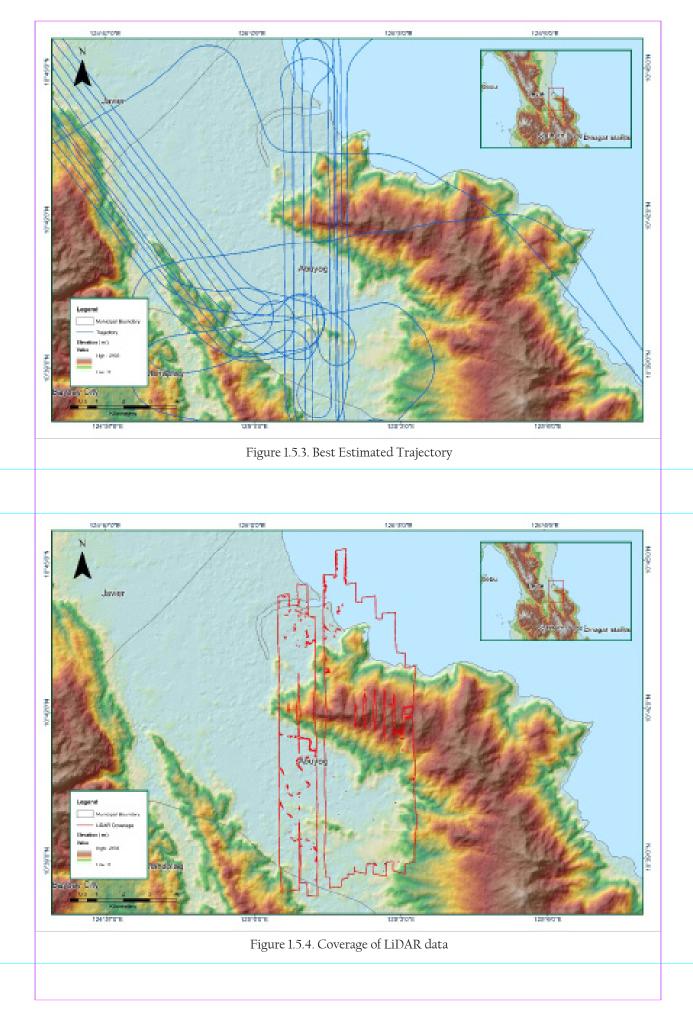

LIDAR Surveys and Flood Mapping of Cadac-An River

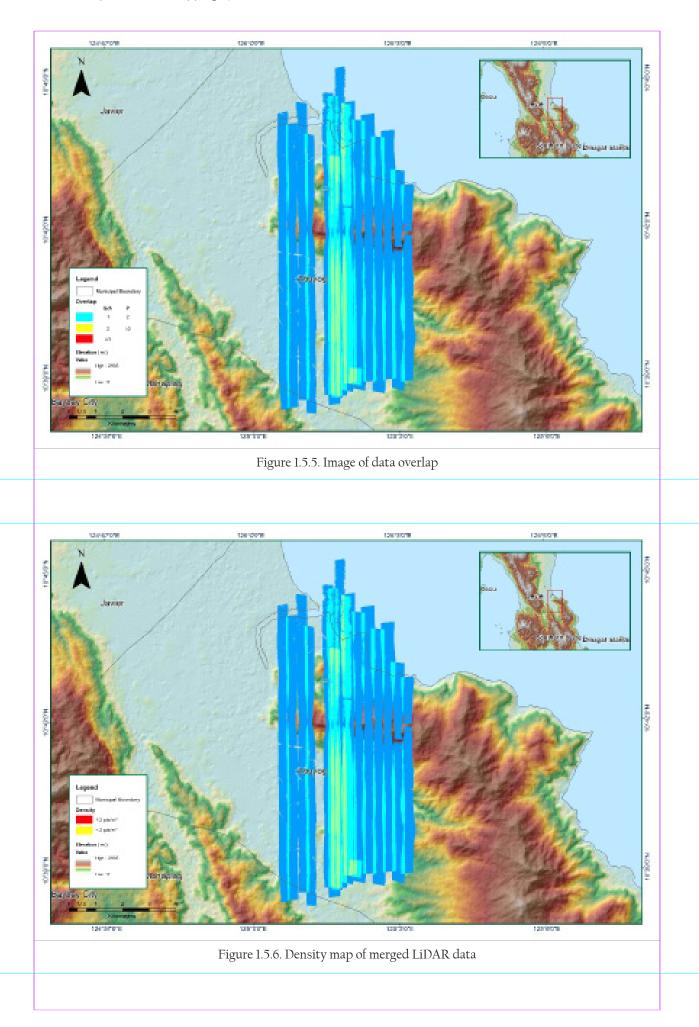


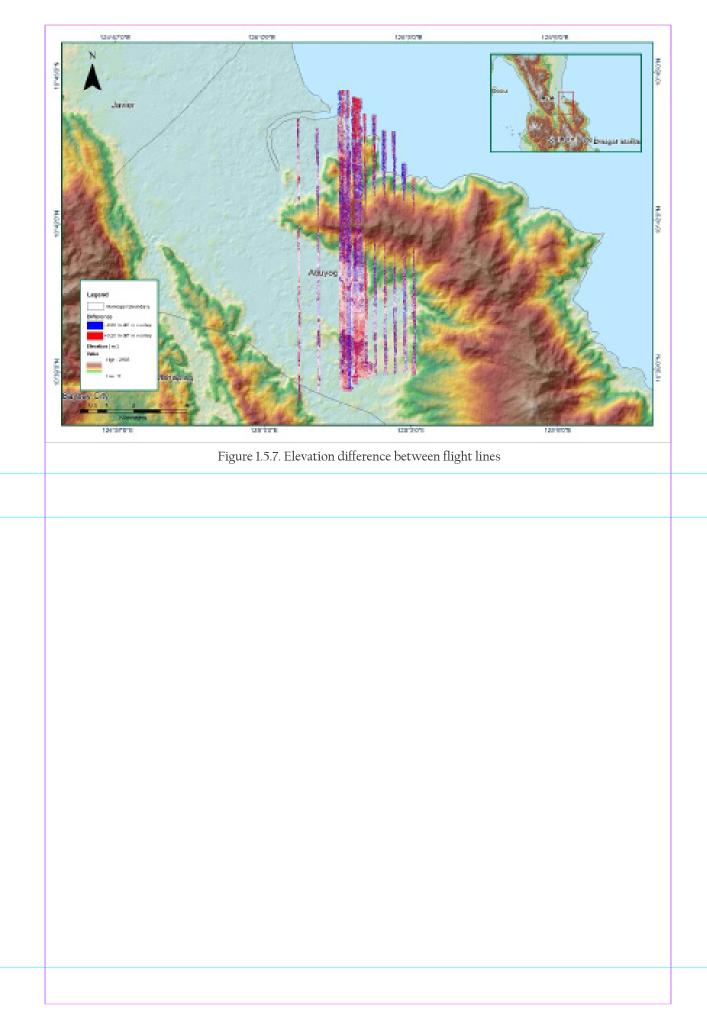


Flight Area	Leyte					
Mission Name	Blk34K					
Inclusive Flights	3781G, 23773G					
Range data size	20.36 GB					
POS data size	386 MB					
Base data size	13.57 MB					
Image	n/a					
Transfer date	March 04, 2016					
Solution Status						
Number of Satellites (>6)	Yes					
PDOP (<3)	Yes					
Baseline Length (<30km)	Yes					
Processing Mode (<=1)	Yes					
Smoothed Performance Metrics (in cm)						
RMSE for North Position (<4.0 cm)	1.0					
RMSE for East Position (<4.0 cm)	1.4					
RMSE for Down Position (<8.0 cm)	3.1					
Boresight correction stdev (<0.001deg)	0.001088					
IMU attitude correction stdev (<0.001deg)	0.001628					
GPS position stdev (<0.01m)	0.0114					
Minimum % overlap (>25)	32.29					
Ave point cloud density per sq.m. (>2.0)	4.31					
Elevation difference between strips (<0.20 m)	Yes					
Number of 1km x 1km blocks	94					
Maximum Height	729.81 m					
Minimum Height	65.05 m					
Classification (# of points)						
Ground	35,103,713					
Low vegetation	37,639,230					
Medium vegetation	130,351,793					
High vegetation	298,555,747					
Building	4,921,085					
Orthophoto	Yes					
Processed by	Engr. Analyn Naldo, Engr. Melanie Hingpit, Jovy Narisma					

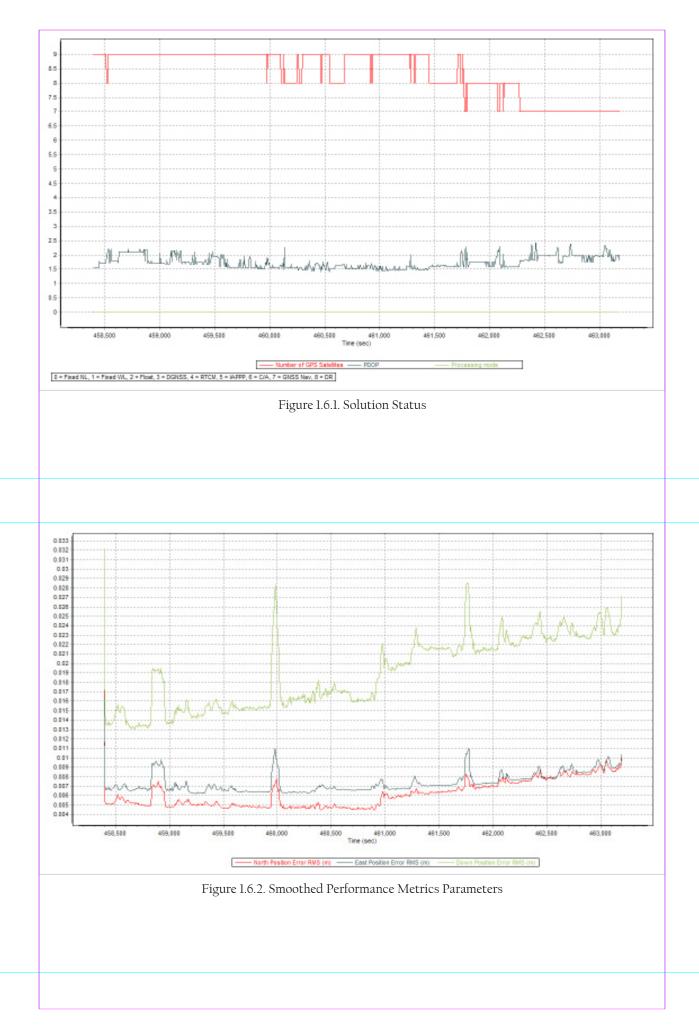


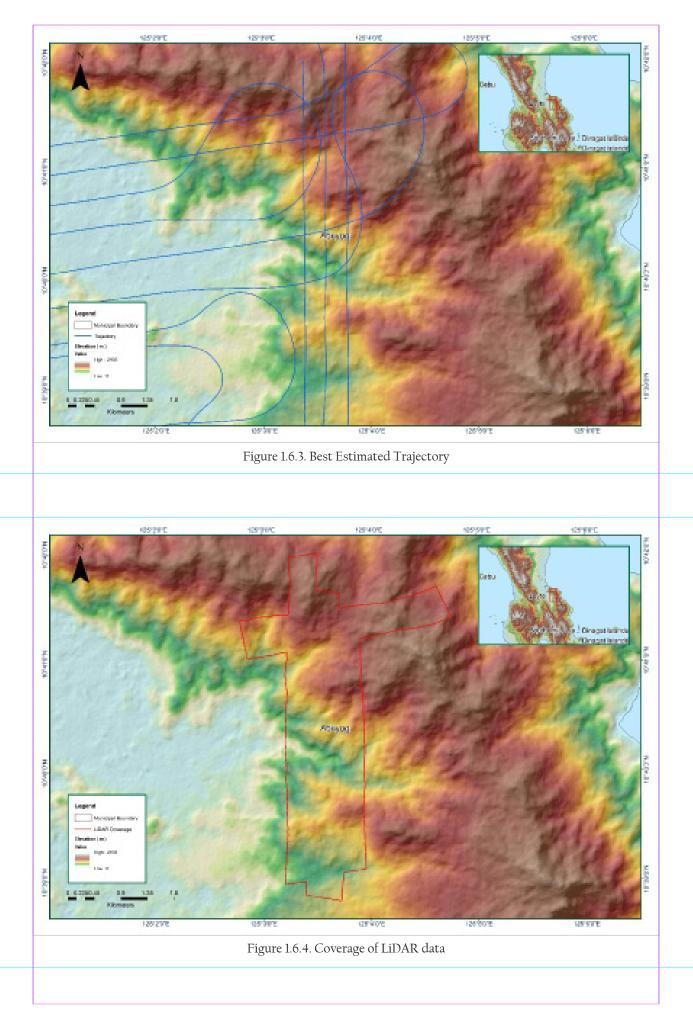


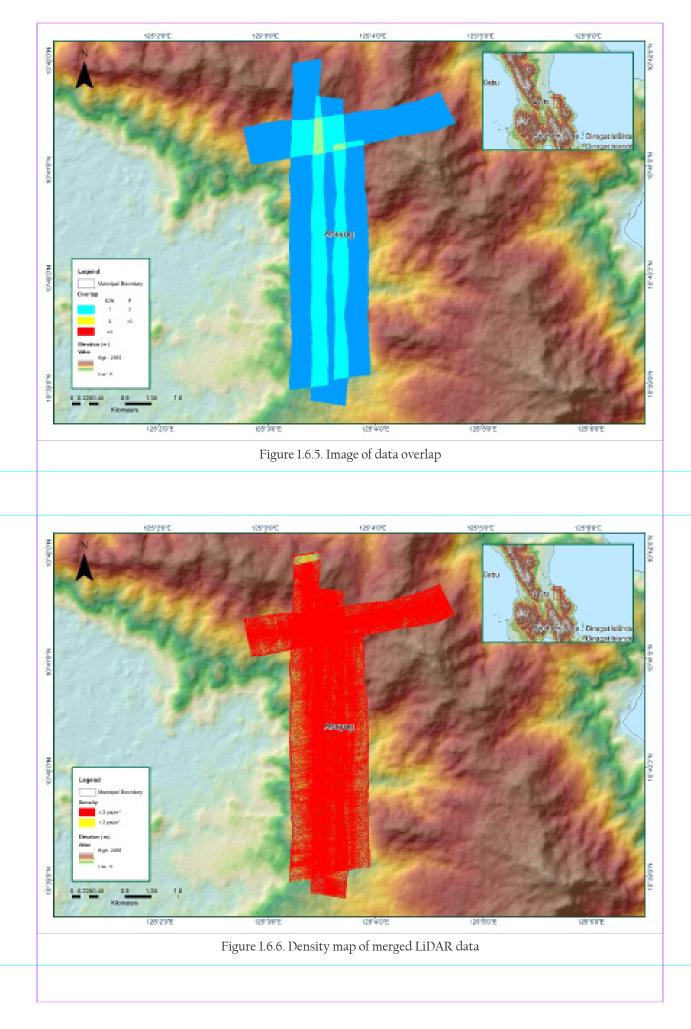




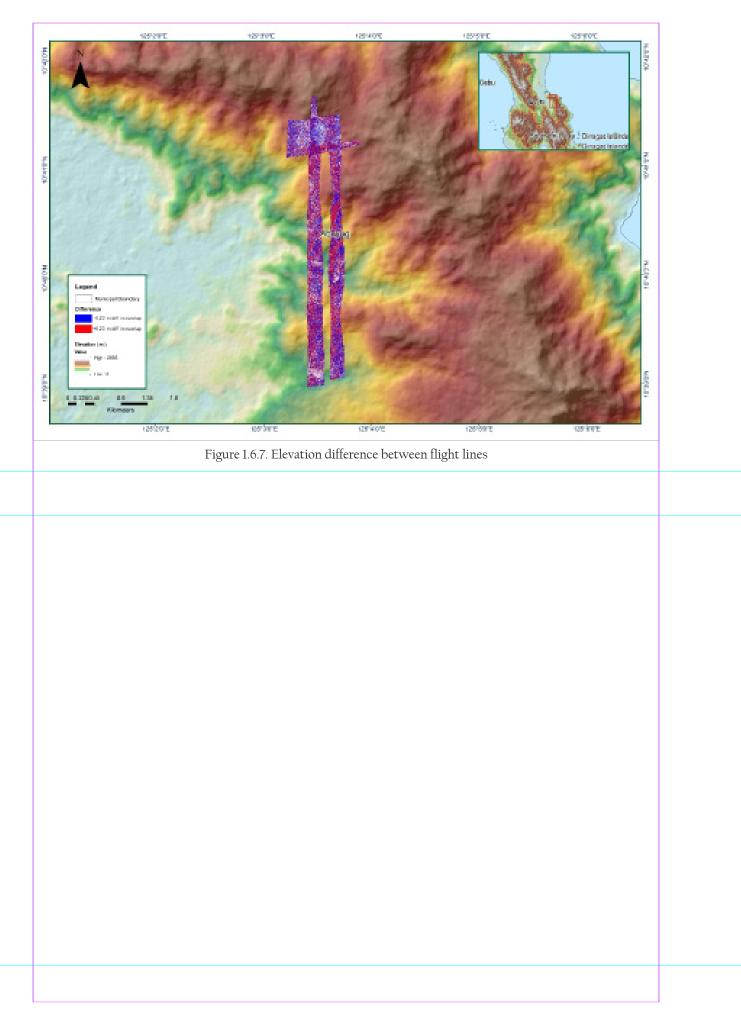
Flight Area	Leyte
Mission Name	Blk34H
Inclusive Flights	3761G, 23771G
Range data size	22.55 GB
POS data size	406 MB
Base data size	12.79 MB
Image	n/a
Transfer date	March 04, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	4.0
Boresight correction stdev (<0.001deg)	0.000823
IMU attitude correction stdev (<0.001deg)	0.037743
GPS position stdev (<0.01m)	0.0030
Minimum % overlap (>25)	30.65
Ave point cloud density per sq.m. (>2.0)	6.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	74
Maximum Height	722.37 m
Minimum Height	63.00 m
- 0 -	
Classification (# of points)	
Ground	26,491,392
Low vegetation	38,912,589
Medium vegetation	110,137,282
High vegetation	102,202,220
Building	1,927,173
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Ma. Joanne Balaga, Maria Tamsyn Malabanan







Flight Area	Leyte
Mission Name	Blk34G_Additional
Inclusive Flights	3781G
Range data size	11.3 GB
POS data size	191 MB
Base data size	8.87 MB
Image	n/a
Transfer date	March 04, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A
Minimum % overlap (>25)	30.11
Ave point cloud density per sq.m. (>2.0)	4.99
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	19
Maximum Height	519.61 m
Minimum Height	84.54 m
-	
Classification (# of points)	
Ground	2,238,369
Low vegetation	614,120
Medium vegetation	9,384,305
High vegetation	26,422,837
Building	87,843
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Engr. Irish Cortez, Engr. Velina Angela Bemida, Karl Adrian Vergara



LIDAR Surveys and Flood Mapping of Cadac-An River

LIDAR Surveys and Flood Mapping of Cadac-An River

ANNEX 9. Cadac-an Model Basin Parameters

	SCS Cu	irve Numbe	r Loss	Clark Unit Hydrograph Transform		Recession Baseflow					
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Pe	
W1120	147.47	53	0	0.76215	0.6596	Discharge	0.42829	1	Ratio to Peak	0.105	
W1110	145	54	0	0.47	0.4072	Discharge	0.17461	1	Ratio to Peak	0.105	
W1040	125.44	57	0	0.813	0.7036	Discharge	0.29406	1	Ratio to Peak	0.105	
W1030	165	60	0	0.768	0.6643	Discharge	0.23138	1	Ratio to Peak	0.105	
W1010	123.53	58	0	0.66455	0.5751	Discharge	0.32182	1	Ratio to Peak	0.105	
W1020	153.9	62	0	0.2811	0.2433	Discharge	0.0346122	1	Ratio to Peak	0.105	
W950	136.41	55	0	0.91627	0.7929	Discharge	0.36631	1	Ratio to Peak	0.105	
W960	112.69	57	0	0.9088	0.7865	Discharge	0.18266	1	Ratio to Peak	0.105	
W890	110.45	58	0	1.01773	0.8807	Discharge	0.47489	1	Ratio to Peak	0.105	
W930	105.69	61	0	0.46826	0.4052	Discharge	0.19493	1	Ratio to Peak	0.105	
W870	119.17	58	0	0.66847	0.5785	Discharge	0.17778	1	Ratio to Peak	0.105	
W880	103.67	62	0	0.56414	0.4882	Discharge	0.13802	1	Ratio to Peak	0.105	
W850	134.7	56	0	0.8729	0.7554	Discharge	0.42012	1	Ratio to Peak	0.105	
W860	106	61	0	0.57	0.495	Discharge	0.12606	1	Ratio to Peak	0.105	
W790	154.32	61	0	0.955	0.8261	Discharge	0.47799	1	Ratio to Peak	0.105	
W760	98.74	59	0	0.631	0.5461	Discharge	0.24001	1	Ratio to Peak	0.105	
W780	137.62	62	0	0.698	0.604	Discharge	0.1809	1	Ratio to Peak	0.105	
W770	176.51	64	0	0.13763	0.1191	Discharge	0.000493973	1	Ratio to Peak	0.105	
W730	98.17	61	0	0.9007	0.7795	Discharge	0.40025	1	Ratio to Peak	0.105	
W750	118.87	63	0	0.9992	0.8647	Discharge	0.26688	1	Ratio to Peak	0.105	

	SCS Cu	irve Numbe	r Loss	Clark Hydrograph		Recession Baseflow					
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak	
W700	63.37	59	0	1.39771	1.2096	Discharge	0.55495	1	Ratio to Peak	0.105	
W690	106.42	69	0	0.4701	0.4068	Discharge	0.0125406	1	Ratio to Peak	0.105	
W680	99.142	61	0	0.92406	0.7997	Discharge	0.36008	1	Ratio to Peak	0.105	
W670	111.69	63	0	0.48361	0.4185	Discharge	0.17412	1	Ratio to Peak	0.105	
W660	85.322	69	0	1.05227	0.9106	Discharge	0.33887	1	Ratio to Peak	0.105	
W650	98.92	71	0	1.723	1.491	Discharge	0.16609	1	Ratio to Peak	0.105	
W640	83.443	66	0	1.066949	0.9233	Discharge	0.47362	1	Ratio to Peak	0.105	
W630	71.109	70	0	0.62412	0.5401	Discharge	0.17447	1	Ratio to Peak	0.105	
W610	99.865	62	0	0.566487	0.4902	Discharge	0.10858	1	Ratio to Peak	0.105	
W620	79.154	75	0	0.77131	0.6675	Discharge	0.0217938	1	Ratio to Peak	0.105	
W1140	195.92	47	0	1.112	0.9627	Discharge	0.38308	1	Ratio to Peak	0.105	
W1130	180.22	49	0	0.838	0.7252	Discharge	0.21388	1	Ratio to Peak	0.105	
W1080	161.11	51	0	1.10694	0.9579	Discharge	0.43744	1	Ratio to Peak	0.105	
W1070	195.92	47	0	1.286	1.1133	Discharge	0.3969	1	Ratio to Peak	0.105	
W1100	154.6	52	0	1.245	1.0777	Discharge	0.34324	1	Ratio to Peak	0.105	
W1090	135.31	55	0	0.55864	0.4834	Discharge	0.17377	1	Ratio to Peak	0.105	
W1050	184.08	48	0	1.643	1.422	Discharge	0.41038	1	Ratio to Peak	0.105	
W1060	195.92	47	0	0.674	0.5834	Discharge	0.0584509	1	Ratio to Peak	0.105	
W920	111.85	60	0	0.57429	0.497	Discharge	0.2814	1	Ratio to Peak	0.105	
W990	132.44	56	0	0.688	0.5952	Discharge	0.26505	1	Ratio to Peak	0.105	
W980	189.2	47	0	0.86	0.7449	Discharge	0.12149	1	Ratio to Peak	0.105	

	SCS Curve Number Loss			Clark Hydrograph		Recession Baseflow					
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak	
W970	122.56	58	0	0.409	0.3542	Discharge	0.0405823	1	Ratio to Peak	0.105	
W1000	180	58	0	1.2	1.0129	Discharge	0.33662	1	Ratio to Peak	0.105	
W940	139.75	64	0	0.10208	0.08834	Discharge	0.000454056	1	Ratio to Peak	0.105	
W910	93.563	64	0	0.859556	0.7438	Discharge	0.3089	1	Ratio to Peak	0.105	
W900	93.485	64	0	0.757973	0.6559	Discharge	0.0122969	1	Ratio to Peak	0.105	
W810	135	65	0	0.968	0.838	Discharge	0.46896	1	Ratio to Peak	0.105	
W840	85.89	66	0	1.05754	0.9152	Discharge	0.33352	1	Ratio to Peak	0.105	
W830	139.5	66	0	1.1909	1.0306	Discharge	0.66592	1	Ratio to Peak	0.105	
W820	132	64	0	0.5	0.4454	Discharge	0.0067468	1	Ratio to Peak	0.105	
W720	89.2	63	0	1.59	1.3726	Discharge	0.81737	1	Ratio to Peak	0.105	
W800	105.16	65	0	0.211	0.1829	Discharge	0.0386496	1	Ratio to Peak	0.105	
W740	105.44	59	0	1.799	1.557	Discharge	0.87636	1	Ratio to Peak	0.105	
W710	116.57	65	0	0.75044	0.6494	Discharge	0.27628	1	Ratio to Peak	0.105	
W590	89.618	65	0	1.81819	1.573	Discharge	0.87261	1	Ratio to Peak	0.105	
W600	65.137	71	0	0.395181	0.342	Discharge	0.0408775	1	Ratio to Peak	0.105	
W580	55.546	81	0	0.18522	0.1603	Discharge	0.0015776	1	Ratio to Peak	0.105	

ANNEX 10. Cadac-an Model Reach Parameters

Reach			Muskingum Cu	unge Channel Routing	g		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R500	Automatic Fixed Interval	4409.52	0.0220453	0.03	Trapezoid	19.38	1
R400	Automatic Fixed Interval	449.1380634	0.016532	0.03	Trapezoid	30.55	1
R390	Automatic Fixed Interval	1477.1	0.0124621	0.03	Trapezoid	29.03	1
R340	Automatic Fixed Interval	2184.29	0.010114	0.03	Trapezoid	30.18	1
R300	Automatic Fixed Interval	2356.25	0.008539	0.03	Trapezoid	30.18	1
R270	Automatic Fixed Interval	690.8871109	0.006993	0.03	Trapezoid	30.35	1
R240	Automatic Fixed Interval	4045.25	0.0044284	0.03	Trapezoid	35.17	1
R170	Automatic Fixed Interval	183.44	0.0050125	0.03	Trapezoid	35.17	1
R160	Automatic Fixed Interval	3143.41	0.0015523	0.03	Trapezoid	65.67	1
R130	Automatic Fixed Interval	1101.37	0.0012393	0.03	Trapezoid	60.35	1
R90	Automatic Fixed Interval	3507.6	0.00054135	0.03	Trapezoid	60.35	1
R70	Automatic Fixed Interval	2422.65	0.000805794	0.03	Trapezoid	70.04	1
R50	Automatic Fixed Interval	2903.5	5.67E-05	0.03	Trapezoid	70.04	1

ANNEX 11. Cadac-an Field Validation Points

Point	Validation	Coordinates	Model	Validation			Rain
Point Number	Lat	Long	Viddel Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
1	10.709551	124.991889	0.73	1	-0.27	Yolanda / November 08,2013	5-Year
2	10.709152	124.991535	0.56	0.6	-0.04	Yolanda / November 08, 2013	5-Year
3	10.709152	124.991535	0.56	0.6	-0.04	Yolanda / November 08, 2013	5-Year
4	10.709152	124.991535	0.56	0.6	-0.04	Yolanda / November 08, 2013	5-Year
5	10.707763	124.990362	0.54	0.5	0.04	Yolanda / November 08, 2013	5-Year
6	10.707763	124.990362	0.54	0.5	0.04	Yolanda / November 08, 2013	5-Year
7	10.707763	124.990362	0.54	0.5	0.04	Yolanda / November 08, 2013	5-Year
8	10.707173	124.990992	0.06	0.3	-0.24	Yolanda / November 08, 2013	5-Year
9	10.707173	124.990992	0.06	0.3	-0.24	Yolanda / November 08, 2013	5-Year
10	10.707173	124.990992	0.06	0.3	-0.24	Yolanda / November 08, 2013	5-Year
11	10.70729	124.988418	0.78	1	-0.22	Ruby / December 06, 2014	5-Year
12	10.70729	124.988418	0.78	1	-0.22	Ruby / December 06, 2014	5-Year
13	10.706915	124.9876	0.6	1.4	-0.8	Caloy / March 2014	5-Year
14	10.706915	124.9876	0.6	1.4	-0.8	Caloy / March 2014	5-Year
15	10.70653	124.987472	0.52	1	-0.48	Caloy / March 2014	5-Year
16	10.70653	124.987472	0.52	1	-0.48	Caloy / March 2014	5-Year
17	10.70653	124.987472	0.52	1	-0.48	Caloy / March 2014	5-Year
18	10.705246	124.985254	0.43	0.5	-0.07	Seniang / December 28, 2014	5-Year
19	10.705246	124.985254	0.43	0.5	-0.07	Seniang / December 28, 2014	5-Year
20	10.705246	124.985254	0.43	0.5	-0.07	Seniang / December 28, 2014	5-Year
21	10.705026	124.985143	0.23	0.3	-0.07	Ruby / December 06, 2014	5-Year
22	10.705026	124.985143	0.23	0.3	-0.07	Ruby / December 06, 2014	5-Year
23	10.705026	124.985143	0.23	0.3	-0.07	Ruby / December 06, 2014	5-Year
24	10.701603	124.981467	0.51	0.5	0.01	Caloy / March 2014	5-Year
25	10.701603	124.981467	0.51	0.5	0.01	Caloy / March 2014	5-Year
26	10.701603	124.981467	0.51	0.5	0.01	Caloy / March 2014	5-Year
27	10.705451	124.99166	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
28	10.705451	124.99166	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
29	10.700584	124.990895	0.5	0.7	-0.2	Yolanda / November 08, 2013	5-Year
30	10.700584	124.990895	0.5	0.7	-0.2	Yolanda / November 08, 2013	5-Year
31	10.699904	124.991054	0.37	0.5	-0.13	Seniang / December 28, 2014	5-Year
32	10.697311	124.991894	0.4	0.9	-0.5	Seniang / December 28, 2014	5-Year
33	10.69681	124.992037	0.16	1.2	-1.04	Seniang / December 28, 2014	5-Year
34	10.69681	124.992037	0.16	1.2	-1.04	Seniang / December 28, 2014	5-Year
35	10.69681	124.992037	0.16	1.2	-1.04	Seniang / December 28, 2014	5-Year
36	10.696239	124.991687	0.31	0.6	-0.29	Yolanda / November 08, 2013	5-Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
37	10.696239	124.991687	0.31	0.6	-0.29	Yolanda / November 08, 2013	5-Year
38	10.695116	124.990426	0.11	1	-0.89	Yolanda / November 08, 2013	5-Year
39	10.695116	124.990426	0.11	1	-0.89	Yolanda / November 08, 2013	5-Year
40	10.69492	124.987077	0.18	0	0.18	Yolanda / November 08, 2013	5-Year
41	10.69492	124.987077	0.18	0	0.18	Yolanda / November 08, 2013	5-Year
42	10.694755	124.986718	0.2	0.3	-0.1	Yolanda / November 08, 2013	5-Year
43	10.694755	124.986718	0.2	0.3	-0.1	Yolanda / November 08, 2013	5-Year
44	10.694377	124.986018	0.4	0.3	0.1	Seniang / December 28, 2014	5-Year
45	10.695241	124.985169	0.91	1	-0.09	Seniang / December 28, 2014	5-Year
46	10.694755	124.986718	0.2	0.3	-0.1	Yolanda / November 08, 2013	5-Year
47	10.694755	124.986718	0.2	0.3	-0.1	Yolanda / November 08, 2013	5-Year
48	10.695475	124.984893	0.87	0.5	0.37	Yolanda / November 08, 2013	5-Year
49	10.695475	124.984893	0.87	0.5	0.37	Yolanda / November 08, 2013	5-Year
50	10.697176	124.981496	0.58	0.6	-0.02	Ruby / December 06, 2014	5-Year
51	10.697176	124.981496	0.58	0.6	-0.02	Ruby / December 06, 2014	5-Year
52	10.697176	124.981496	0.58	0.6	-0.02	Ruby / December 06, 2014	5-Year
53	10.692229	124.986802	0.03	0.3	-0.27	Ruby / December 06, 2014	5-Year
54	10.692229	124.986802	0.03	0.3	-0.27	Ruby / December 06, 2014	5-Year
55	10.686743	124.985933	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
56	10.686743	124.985933	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
57	10.686141	124.985629	0.03	1.5	-1.47	Ruby / December 06, 2014	5-Year
58	10.686141	124.985629	0.03	1.5	-1.47	Ruby / December 06, 2014	5-Year
59	10.686141	124.985629	0.03	1.5	-1.47	Ruby / December 06, 2014	5-Year
60	10.679406	124.983978	0.33	0.25	0.08	Ruby / December 06, 2014	5-Year
61	10.678962	124.983604	0.1	0.5	-0.4	Yolanda / November 08, 2013	5-Year
62	10.677196	124.983891	0.28	0	0.28	Yolanda / November 08, 2013	5-Year
63	10.677196	124.983891	0.28	0	0.28	Yolanda / November 08, 2013	5-Year
64	10.676523	124.984022	0.03	0	0.03	Yolanda / November 08, 2013	5-Year
65	10.675743	124.984176	0.06	0	0.06	Yolanda / November 08, 2013	5-Year
66	10.675258	124.984887	0.03	0.4	-0.37	Yolanda / November 08, 2013	5-Year
67	10.675258	124.984887	0.03	0.4	-0.37	Yolanda / November 08, 2013	5-Year
68	10.675296	124.985418	0.32	0.5	-0.18	Yolanda / November 08, 2013	5-Year
69	10.675258	124.984887	0.03	0.4	-0.37	Yolanda / November 08, 2013	5-Year
70	10.720018	125.008458	0.03	0.2	-0.17	Ruby / December 06, 2014	5-Year
71	10.715184	125.016017	0.64	0.15	0.49	Ruby / December 06, 2014	5-Year
72	10.720781	125.029026	0.47	0	0.47	Ruby / December 06, 2014	5-Year
73	10.722052	125.028473	0.51	0.25	0.26	Ruby / December 06, 2014	5-Year
				1			

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
75	10.722115	125.028231	0.18	0	0.18	Ruby / December 06, 2014	5-Year
76	10.722115	125.028231	0.18	0.1	0.08	Seniang / December 28, 2014	5-Year
77	10.72282	125.028364	1.02	0.8	0.22	Seniang / December 28, 2014	5-Year
78	10.723063	125.028251	1.04	1	0.04	Seniang / December 28, 2014	5-Year
79	10.723063	125.028251	1.04	0.5	0.54	Ruby / December 06, 2014	5-Year
80	10.716149	125.016998	0.06	0	0.06	Ruby / December 06, 2014	5-Year
81	10.716964	125.01717	0.33	0.1	0.23	Ruby / December 06, 2014	5-Year
82	10.716792	125.016925	0.43	0	0.43	Ruby / December 06, 2014	5-Year
83	10.706037	125.005919	0.14	0	0.14	Ruby / December 06, 2014	5-Year
84	10.705672	125.00547	0.69	0.3	0.39	Caloy / March 2014	5-Year
85	10.706391	125.005366	0.03	1.4	-1.37	Ruby / December 06, 2014	5-Year
86	10.706391	125.005366	0.03	3.5	-3.47	Seniang / December 28, 2014	5-Year
87	10.706765	125.005289	0.03	0.6	-0.57	Ruby / December 06, 2014	5-Year
88	10.702907	125.004423	0.31	0	0.31	Ruby / December 06, 2014	5-Year
89	10.702207	125.002354	1.08	1.1	-0.02	Ruby / December 06, 2014	5-Year
90	10.702207	125.002354	1.08	1.6	-0.52	Seniang / December 28, 2014	5-Year
91	10.696978	125.007845	0.1	0.4	-0.3	Seniang / December 28, 2014	5-Year
92	10.697222	125.007784	0.18	0	0.18	Ruby / December 06, 2014	5-Year
93	10.695547	125.007463	0.83	0.7	0.13	Ruby / December 06, 2014	5-Year
94	10.696223	125.008428	0.61	0.8	-0.19	Ruby / December 06, 2014	5-Year
95	10.695904	125.009145	0.6	0.3	0.3	Ruby / December 06, 2014	5-Year
96	10.693589	125.013369	0.64	0.1	0.54	Ruby / December 06, 2014	5-Year
97	10.692763	125.014677	0.03	0.95	-0.92	Ruby / December 06, 2014	5-Year
98	10.692763	125.014677	0.03	0.3	-0.27	Seniang / December 28, 2014	5-Year
99	10.690257	125.019971	0.03	0	0.03	Ruby / December 06, 2014	5-Year
100	10.689062	125.02102	0.7	0	0.7	Ruby / December 06, 2014	5-Year
101	10.688728	125.021156	0.66	0.5	0.16	Ruby / December 06, 2014	5-Year
102	10.692579	125.014236	0.77	0.5	0.27	Ruby / December 06, 2014	5-Year
103	10.692291	125.013884	0.26	0	0.26	Ruby / December 06, 2014	5-Year
104	10.694138	125.012363	0.1	0	0.1	Ruby / December 06, 2014	5-Year
105	10.709966	124.998406	0.84	1.7	-0.86	Ruby / December 06, 2014	5-Year
106	10.709966	124.998406	0.84	0.5	0.34	Seniang / December 28, 2014	5-Year
107	10.709943	124.997311	0.18	0.2	-0.02	Ruby / December 06, 2014	5-Year
108	10.709943	124.997311	0.18	0.2	-0.02	Seniang / December 28, 2014	5-Year
109	10.709016	124.995207	0.54	0.6	-0.06	Ruby / December 06, 2014	5-Year
110	10.711363	124.993258	0.81	0.6	0.21	Ruby / December 06, 2014	5-Year
111	10.713477	124.993771	0.73	1.25	-0.52	Ruby / December 06, 2014	5-Year
112	10.715781	124.993365	0.98	0.9	0.08	Ruby / December 06, 2014	5-Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
113	10.715781	124.993365	0.98	0.5	0.48	Seniang / December 28, 2014	5-Year
114	10.731735	125.019521	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
115	10.731735	125.019521	0.03	0.5	-0.47	Seniang / December 28, 2014	5-Year
116	10.731528	125.019214	0.03	0.6	-0.57	Ruby / December 06, 2014	5-Year
117	10.731528	125.019214	0.03	0	0.03	Seniang / December 28, 2014	5-Year
118	10.731457	125.019195	0.03	0.4	-0.37	Ruby / December 06, 2014	5-Year
119	10.731233	125.019336	0.11	0	0.11	Ruby / December 06, 2014	5-Year
120	10.730721	125.019559	0.12	0	0.12	Ruby / December 06, 2014	5-Year
121	10.730721	125.019559	0.12	0	0.12	Seniang / December 28, 2014	5-Year
122	10.730231	125.019816	0.07	0	0.07	Ruby / December 06, 2014	5-Year
123	10.730231	125.019816	0.07	0.3	-0.23	Seniang / December 28, 2014	5-Year
124	10.729886	125.019924	0.07	0.6	-0.53	Ruby / December 06, 2014	5-Year
125	10.729709	125.020027	0.05	0	0.05	Ruby / December 06, 2014	5-Year
126	10.729709	125.020027	0.05	0	0.05	Seniang / December 28, 2014	5-Year
127	10.730964	125.020222	0.08	0	0.08	Ruby / December 06, 2014	5-Year
128	10.730964	125.020222	0.08	0	0.08	Seniang / December 28, 2014	5-Year
129	10.731138	125.020421	0.06	0.5	-0.44	Seniang / December 28, 2014	5-Year
130	10.731275	125.020277	0.03	0.3	-0.27	Ruby / December 06, 2014	5-Year
131	10.731201	125.019894	0.04	0.5	-0.46	Seniang / December 28, 2014	5-Year
132	10.731607	125.018993	0.07	0.5	-0.43	Ruby / December 06, 2014	5-Year
133	10.731771	125.018769	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
134	10.731771	125.018769	0.03	1.5	-1.47	Seniang / December 28, 2014	5-Year
135	10.731834	125.018426	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
136	10.738105	125.021478	0.03	0.4	-0.37	Ruby / December 06, 2014	5-Year
137	10.738105	125.021478	0.03	0.4	-0.37	Seniang / December 28, 2014	5-Year
138	10.738105	125.021478	0.03	0.8	-0.77	Yolanda / November 08, 2013	5-Year
139	10.737767	125.020004	0.03	0.3	-0.27	Ruby / December 06, 2014	5-Year
140	10.737767	125.020004	0.03	0.3	-0.27	Seniang / December 28, 2014	5-Year
141	10.737393	125.018134	0.03	0	0.03	Ruby / December 06, 2014	5-Year
142	10.737393	125.018134	0.03	0	0.03	Seniang / December 28, 2014	5-Year
143	10.737393	125.018134	0.03	0	0.03	Yolanda / November 08, 2013	5-Year
144	10.739043	125.017241	0.3	0.3	1.19E-08	Ruby / December 06, 2014	5-Year
145	10.739043	125.017241	0.3	0.3	1.19E-08	Seniang / December 28, 2014	5-Year
146	10.739043	125.017241	0.3	0.3	1.19E-08	Amihan / Jan-Feb 2016	5-Year
147	10.741729	125.017943	0.06	0	0.06	Ruby / December 06, 2014	5-Year
148	10.741729	125.017943	0.06	0	0.06	Seniang / December 28, 2014	5-Year
149	10.742265	125.014193	0.03	0.6	-0.57	Ruby / December 06, 2014	5-Year
150	10.742265	125.014193	0.03	2	-1.97	Yolanda / November 08, 2013	5-Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
151	10.742235	125.014199	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
152	10.742212	125.01422	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
153	10.741495	125.013941	0.03	0.2	-0.17	Ruby / December 06, 2014	5-Year
154	10.741495	125.013941	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
155	10.741495	125.013941	0.03	0.3	-0.27	Habagat	5-Year
156	10.741485	125.013924	0.03	0.3	-0.27	Amihan / Jan-Feb 2016	5-Year
157	10.745312	125.012743	0.11	0.3	-0.19	Ruby / December 06, 2014	5-Year
158	10.745312	125.012743	0.11	0.3	-0.19	Seniang / December 28, 2014	5-Year
159	10.745312	125.012743	0.11	0.3	-0.19	Amihan / Jan-Feb 2016	5-Year
160	10.748232	125.013109	0.03	0.7	-0.67	Ruby / December 06, 2014	5-Year
161	10.748232	125.013109	0.03	0	0.03	Seniang / December 28, 2014	5-Year
162	10.748232	125.013109	0.03	0	0.03	Yolanda / November 08, 2013	5-Year
163	10.748232	125.013109	0.03	0	0.03	Amihan / Jan-Feb 2016	5-Year
164	10.747872	125.012569	0.43	0.3	0.13	Amihan / Jan-Feb 2016	5-Year
165	10.747872	125.012569	0.43	0.5	-0.07	Ruby / December 06, 2014	5-Year
166	10.747872	125.012569	0.43	0.5	-0.07	Seniang / December 28, 2014	5-Year
167	10.747872	125.012569	0.43	0	0.43	Yolanda / November 08, 2013	5-Year
168	10.746063	125.009009	0.03	1	-0.97	Amihan / Jan-Feb 2016	5-Year
169	10.746063	125.009009	0.03	0	0.03	Ruby / December 06, 2014	5-Year
170	10.746063	125.009009	0.03	0	0.03	Yolanda / November 08, 2013	5-Year
171	10.746063	125.009009	0.03	0.8	-0.77	After Yolanda / November 08, 2013	5-Year
172	10.742153	125.009747	0.04	0.4	-0.36	Ruby / December 06, 2014	5-Year
173	10.742153	125.009747	0.04	0.4	-0.36	Seniang / December 28, 2014	5-Year
174	10.742153	125.009747	0.04	0.6	-0.56	Amihan / Jan-Feb 2016	5-Year
175	10.740157	125.012946	0.65	0.8	-0.15	Ruby / December 06, 2014	5-Year
176	10.740157	125.012946	0.65	1.6	-0.95	Basyang	5-Year
177	10.740157	125.012946	0.65	1.4	-0.75	Yolanda / November 08, 2013	5-Year
178	10.740157	125.012946	0.65	0.5	0.15	Amihan / Jan-Feb 2016	5-Year
179	10.748568	124.998608	0.03	0.8	-0.77	Ruby / December 06, 2014	5-Year
180	10.748568	124.998608	0.03	0.8	-0.77	Seniang / December 28, 2014	5-Year
181	10.748568	124.998608	0.03	2	-1.97	Yolanda / November 08, 2013	5-Year
182	10.748568	124.998608	0.03	0	0.03	Amihan / Jan-Feb 2016	5-Year
183	10.74473	124.992969	0.03	0.2	-0.17	Ruby / December 06, 2014	5-Year
184	10.74473	124.992969	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
185	10.74473	124.992969	0.03	0.4	-0.37	December before Yolanda / November 08, 2013 & Sendong / December 2011	5-Year
186	10.74383	124.989535	0.03	0.2	-0.17	Ruby / December 06, 2014	5-Year

Point	Validation	Coordinates	Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
187	10.74383	124.989535	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
188	10.74383	124.989535	0.03	0.2	-0.17	Amihan / Jan-Feb 2016	5-Year
189	10.737198	124.988458	0.03	0.8	-0.77	Amihan / Jan-Feb 2016	5-Year
190	10.737198	124.988458	0.03	0.8	-0.77	Ruby / December 06, 2014	5-Year
191	10.737198	124.988458	0.03	0.2	-0.17	Seniang / December 28, 2014	5-Year
192	10.737198	124.988458	0.03	1.4	-1.37	Sendong / December 2011	5-Year
193	10.737198	124.988458	0.03	1.4	-1.37	Basyang	5-Year
194	10.735811	124.991924	0.37	0.8	-0.43	Ruby / December 06, 2014	5-Year
195	10.735811	124.991924	0.37	0	0.37	Amihan / Jan-Feb 2016	5-Year
196	10.735867	124.994109	0.57	1.3	-0.73	Amihan / Jan-Feb 2016	5-Year
197	10.735867	124.994109	0.57	0.6	-0.03	Ruby / December 06, 2014	5-Year
198	10.735867	124.994109	0.57	1.3	-0.73	Amihan / December - January	5-Year
199	10.735867	124.994109	0.57	1.5	-0.93	December 2012	5-Year
200	10.730957	124.985433	0.03	0	0.03	Ruby / December 06, 2014	5-Year
201	10.730957	124.985433	0.03	0	0.03	Seniang / December 28, 2014	5-Year
202	10.728168	124.986609	0.03	0.4	-0.37	Ruby / December 06, 2014	5-Year
203	10.728168	124.986609	0.03	0.2	-0.17	Amihan / December - January	5-Year
204	10.727208	124.986824	0.19	0.5	-0.31	Amihan / Jan-Feb 2016	5-Year
205	10.727208	124.986824	0.19	0.8	-0.61	Ruby / December 06, 2014	5-Year
206	10.727322	124.986782	0.11	0.8	-0.69	Ruby / December 06, 2014	5-Year
207	10.727322	124.986782	0.11	0	0.11	Seniang / December 28, 2014	5-Year
208	10.724391	124.988143	0.62	0.9	-0.28	Every December	5-Year
209	10.724391	124.988143	0.62	0.5	0.12	Amihan / Jan-Feb 2016	5-Year
210	10.724391	124.988143	0.62	0.9	-0.28	Ruby / December 06, 2014	5-Year
211	10.724391	124.988143	0.62	0.9	-0.28	Seniang / December 28, 2014	5-Year
212	10.724391	124.988143	0.62	0.8	-0.18	Yolanda / November 08, 2013	5-Year
213	10.721119	124.989389	0.03	0	0.03	Ruby / December 06, 2014	5-Year
214	10.721119	124.989389	0.03	0	0.03	Seniang / December 28, 2014	5-Year
215	10.721846	124.989366	0.03	0	0.03	Yolanda / November 08, 2013	5-Year
216	10.721775	124.989331	0.03	0.5	-0.47	Ruby / December 06, 2014	5-Year
217	10.7192	124.990344	0.03	0.3	-0.27	Ruby / December 06, 2014	5-Year
218	10.7192	124.990344	0.03	0.1	-0.07	Amihan / Jan-Feb 2016	5-Year
219	10.719872	124.992021	0.31	0.55	-0.24	Amihan / December 2015	5-Year
220	10.719872	124.992021	0.31	0.55	-0.24	Ruby / December 06, 2014	5-Year
221	10.719872	124.992021	0.31	0.55	-0.24	Every December	5-Year
222	10.720671	124.993097	0.57	0.9	-0.33	Amihan / Jan-Feb 2016	5-Year
223	10.720671	124.993097	0.57	0.9	-0.33	Ruby / December 06, 2014	5-Year
224	10.722302	124.994873	0.59	0.4	0.19	Ruby / December 06, 2014	5-Year

Point	Validation Coordinates		Model	Validation			Rain
Number	Lat	Long	Var (m)	Points (m)	Error (m)	Event/Date	Return/ Scenario
225	10.722302	124.994873	0.59	0	0.59	Amihan / Jan-Feb 2016	5-Year
226	10.722302	124.994873	0.59	0.6	-0.01	Sendong / December 2011	5-Year
227	10.723184	124.996094	0.33	0.3	0.03	Amihan / Jan-Feb 2016	5-Year
228	10.723184	124.996094	0.33	0	0.33	Amihan / December 2015	5-Year
229	10.723184	124.996094	0.33	0.3	0.03	Ruby / December 06, 2014	5-Year
230	10.723631	124.998232	0.6	0.6	2.38E-08	Amihan / December 2015	5-Year
231	10.723631	124.998232	0.6	0.6	2.38E-08	Amihan / Jan-Feb 2016	5-Year
232	10.723631	124.998232	0.6	0.6	2.38E-08	Ruby / December 06, 2014	5-Year
233	10.727304	124.99992	0.68	1.3	-0.62	Amihan / December	5-Year
234	10.727304	124.99992	0.68	0.1	0.58	Ruby / December 06, 2014	5-Year
235	10.727304	124.99992	0.68	0.4	0.28	Sendong / December 2011	5-Year
236	10.72717	125.000641	0.86	1.4	-0.54	Amihan / December	5-Year
237	10.72717	125.000641	0.86	1.6	-0.74	Ruby / December 06, 2014	5-Year
238	10.72717	125.000641	0.86	1.4	-0.54	Amihan / Jan-Feb 2016	5-Year
239	10.72717	125.000641	0.86	1.4	-0.54	Sendong / December 2011	5-Year
240	10.72717	125.000641	0.86	1.5	-0.64	Heavy Rain / June 2012	5-Year
241	10.72717	125.000641	0.86	2	-1.14	Basyang	5-Year
242	10.72717	125.000641	0.86	1.3	-0.44	Amihan / December 2015	5-Year
243	10.728762	124.999476	0.67	0.9	-0.23	every amihan	5-Year
244	10.728762	124.999476	0.67	1.2	-0.53	Ruby / December 06, 2014	5-Year
245	10.728762	124.999476	0.67	2	-1.33	Amihan / November 2015	5-Year
246	10.728762	124.999476	0.67	2.2	-1.53	Sendong / December 2011	5-Year
247	10.731579	124.998167	1.26	1.2	0.06	Amihan / January 29, 2016	5-Year
248	10.731579	124.998167	1.26	0	1.26	Ruby / December 06, 2014	5-Year
249	10.731579	124.998167	1.26	1.2	0.06	Amihan / December 2015	5-Year
250	10.732777	125.001559	0.25	1.2	-0.95	Amihan / Jan -Feb 2016	5-Year
251	10.732777	125.001559	0.25	0.5	-0.25	Ruby / December 06, 2014	5-Year
252	10.732777	125.001559	0.25	0	0.25	Yolanda / November 08, 2013	5-Year
253	10.732777	125.001559	0.25	1.2	-0.95	every amihan / December	5-Year
254	10.733489	125.001319	0.62	0	0.62	Amihan / Jan-Feb 2016	5-Year
255	10.733489	125.001319	0.62	1.3	-0.68	Ruby / December 06, 2014	5-Year
256	10.733489	125.001319	0.62	1.3	-0.68	Seniang / December 28, 2014	5-Year
257	10.733489	125.001319	0.62	1	-0.38	evey amihan / December	5-Year
258	10.734995	125.002707	0.03	0.5	-0.47	evey amihan / December	5-Year
259	10.734995	125.002707	0.03	0.7	-0.67	Ruby / December 06, 2014	5-Year
260	10.734995	125.002707	0.03	0.7	-0.67	Amihan / Jan-Feb 2016	5-Year
261	10.722146	124.997859	1.29	0.9	0.39	Ruby / December 06, 2014	5-Year
262	10.722146	124.997859	1.29	0.9	0.39	Amihan / Jan-Feb 2016	5-Year

Point	Validation Coordinates		Model Var (m)	Validation Points (m)			Rain Return/ Scenario
Number	Lat Long				Error (m)	Event/Date	
263	10.722146	124.997859	1.29	0.9	0.39	Amihan / December 2015	5-Year
264	10.722146	124.997859	1.29	0.5	0.79	Sendong / December 2011	5-Year
265	10.720305	124.999056	0.87	0.8	0.07	every amihan / December	5-Year
266	10.720305	124.999056	0.87	0.5	0.37	Amihan / Jan-Feb 2016	5-Year
267	10.720305	124.999056	0.87	0.3	0.57	Ruby / December 06, 2014	5-Year
268	10.720305	124.999056	0.87	0.4	0.47	Yolanda / November 08, 2013	5-Year
269	10.718021	124.998904	0.67	0.2	0.47	Amihan / Jan-Feb 2016	5-Year
270	10.717397	124.999227	0.65	1	-0.35	Amihan / December 2014	5-Year
271	10.717397	124.999227	0.65	1.8	-1.15	Basyang / 1972	5-Year
272	10.717397	124.999227	0.65	0	0.65	Ruby / December 06, 2014	5-Year
273	10.717638	125.000664	0.7	0.5	0.2	every amihan / December	5-Year
274	10.717638	125.000664	0.7	0.1	0.6	Ruby / December 06, 2014	5-Year
275	10.717338	124.997842	0.85	0.2	0.65	Amihan / Jan-Feb 2016	5-Year
276	10.717338	124.997842	0.85	0.8	0.05	Amihan / December 2015	5-Year
277	10.717221	124.997655	1.31	4	-2.69	Amihan / December 2015	5-Year
278	10.717046	124.996561	0.54	1.3	-0.76	Amihan / December 2014	5-Year
279	10.716424	124.993214	0.03	0.8	-0.77	every amihan / December	5-Year
280	10.716424	124.993214	0.03	1.1	-1.07	Ruby / December 06, 2014	5-Year
281	10.716424	124.993214	0.03	0.6	-0.57	Amihan / Jan-Feb 2016	5-Year
282	10.710809	124.997667	0.54	0.1	0.44	Amihan / December 2015	5-Year
283	10.710809	124.997667	0.54	0.1	0.44	Amihan / Jan-Feb 2016	5-Year
284	10.710809	124.997667	0.54	0.2	0.34	Ruby / December 06, 2014	5-Year
285	10.70983	124.998592	1.57	5	-3.43	Ruby / December 06, 2014	5-Year
286	10.70983	124.998592	1.57	5	-3.43	every amihan / December	5-Year
287	10.711464	124.998402	0.34	0.3	0.04	Amihan / Jan-Feb 2016	5-Year
288	10.711464	124.998402	0.34	0.3	0.04	Amihan / December 2015	5-Year
289	10.712987	124.997543	0.55	0.6	-0.05	Amihan / Jan-Feb 2016	5-Year
290	10.712987	124.997543	0.55	0.6	-0.05	Amihan / December 2015	5-Year
291	10.712987	124.997543	0.55	1	-0.45	Ruby / December 06, 2014	5-Year
292	10.712987	124.997543	0.55	0.4	0.15	Yolanda / November 08, 2013	5-Year
293	10.712356	124.997102	0.63	0.4	0.23	every amihan / December	5-Year
294	10.712356	124.997102	0.63	0.4	0.23	Amihan / Jan-Feb 2016	5-Year
295	10.712356	124.997102	0.63	0.7	-0.07	Ruby / December 06, 2014	5-Year
296	10.712356	124.997102	0.63	2	-1.37	Yolanda / November 08, 2013	5-Year
297	10.71748	124.991152	0.03	0	0.03	Amihan / Jan-Feb 2016	5-Year
298	10.71748	124.991152	0.03	0.9	-0.87	Ruby / December 06, 2014	5-Year
299	10.71748	124.991152	0.03	0.9	-0.87	Seniang / December 28, 2014	5-Year
300	10.71748	124.991152	0.03	0.9	-0.87	Sendong / December 2011	5-Year

ANNEX 12. Educational Institutions Affected by Flooding in Cadac-an Floodplain

	LEYTE			
	ABUYOG			
	_	Rainfall Scenario		
Building Name	Barangay	5-year	25-year	100-yea
Buenavista Elementary School	Buenavista		Medium	Mediur
Day Care Center	Buenavista	Low	Medium	Mediur
Abuyog Fundamental Baptist Church School	Buntay		Low	Mediur
Abuyog South Central School	Buntay		Medium	Mediur
Gabaldon Central School	Buntay		Medium	Mediur
Notre Dame of Abuyog	Buntay			
Burubud-an Primary School	Burubud-An			
Day Care Center	Burubud-An	Low	Low	Low
Abuyog Fundamental Baptist Church School	Can-Aporong		Low	Mediur
Day Care Center	Can-Aporong		Medium	Mediur
UCCP Learning Center	Can-Aporong			Mediur
Can-aporong Day Care Center	Canmarating	Medium	High	High
Can-aporong Elementary School	Canmarating	Low	Medium	High
Day Care Center	Canmarating	Low	Medium	High
Mag-atubang Elelmentary School	Canmarating		Medium	Mediur
Tabigue Elementary School	Canmarating			Low
Abuyog South Central School	Loyonsawang	Low	Medium	Mediur
Learning Center	Loyonsawang		Low	Mediur
Maitum Elementary School	Maitum			
Abuyog National High School	Nalibunan			
Day Care Center	Nalibunan	Low	Low	Low
Sta. Fe- Sto. Niño Elementary School	Nalibunan	Low	Low	Mediur
Canmarating Elementary School	Odiongan	Low	Medium	Mediur
Nursery & Training Center	Odiongan	Medium	Medium	Mediur
Pagsang-an Elementary School	Odiongan	Medium	Medium	Mediur
Cadac-an Primary School	Pagsang-An			
Day Care Center	Pagsang-An			
Capilian Elementary School	Picas Sur	Medium	Medium	Mediur
Day Care Center	Picas Sur	Medium	Medium	Mediur
Salvacion Elementary School	Salvacion	High	High	High
Abuyog National High School	Santa Fe			Low
Day Care Center	Tadoc		Low	Mediur
Tadoc Elementary School	Tadoc			
Day Care Center	Tinalian			
Lawa-an Elementary School	Tinalian	Low	Low	Low
Tinalian Elementary School	Tinalian	Medium	Medium	High
Day Care Center	Victory			Low

ANNEX 13. Health Institutions Affected by Flooding in Cadac-an Floodplain

Aklan Ibajay							
		5-year	25-year	100-year			
Buenavista Health Center	Buenavista		Medium	Medium			
RHU-Morgue	Buntay	Low	Medium	Medium			
Rural Health Unit	Buntay	Low	Medium	Medium			
Health Center	Burubud-An			Medium			
Core Diagnostic Center	Can-Uguib	Low	Medium	Medium			
Can-aporong Health Center	Canmarating	Medium	Medium	High			
Health Center	Canmarating		Medium	Medium			
Eleuteria Laher Clinic	Loyonsawang		Low	Medium			
Gracoz Pharmacy Office	Loyonsawang		Medium	Medium			
Gracz Pharmacy	Loyonsawang		Medium	Medium			
New Botica Balaga	Loyonsawang	Low	Medium	Medium			
Rural Health Unit	Nalibunan						
Health Center	Odiongan	Low	Medium	Medium			
Health Center	Pagsang-An						
Health Center	Picas Sur	Low	Low	Medium			
Health Center	Tadoc		Low	Medium			
Health Center	Tinalian	Low	Medium	Medium			