HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Binahaan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University Department of Science and Technology

APRIL 2017

 ${
m C}$ University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

E.C. Paringit, F.F. Morales, (2017), LiDAR Surveys and Flood Mapping of Binahaan River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry 245pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgment. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Libraru of the Philippines ISBN: 978-621-430-195-9

TABLE OF CONTENTS

TABLE OF CONTENTS	iii
LIST OF TABLES	V
	vii
LIST OF ACRONYMS AND ABBREVIATIONS	X
CHAPTER I: OVERVIEW OF THE PROGRAM AND BINAHAAN RIVER	1
1.1 Background of the Phil-LiDAR 1 Program.	1
1.2 Overview of the Binahaan River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BINAHAAN FLOODPLAIN	Z
2.1 Flight Plans	2
2.2 Ground Base Stations	5
2.3 Flight Missions	11
2.4 Survey Coverage	12
CHAPTER 3: LIDAR DATA PROCESSING OF THE BINAHAAN FLOODPLAIN	14
3.1 Overview of the LIDAR Data Pre-Processing	14
3.2 Transmittal of Acquired LIDAR Data	15
3.3 Trajectory Computation	15
3.4 LIDAR Point Cloud Computation	1/
3.5 LIDAR Data Quality Checking	1/
3.6 LIDAR Point Cloud Classification and Rasterization	22
3. / LIDAR Image Processing and Orthophotograph Rectification	23
3.8 DEM Editing and Hydro-Correction	25
3.9 Mosaicking of Blocks	26
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	28
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	31
3.12 Feature Extraction	33
3.12.1 Quality Checking of Digitized Features' Boundary	33
3.12.2 Height Extraction	33
3.12.3 Feature Attribution	33
3.12.4 Final Quality Checking of Extracted Features	35
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BINAHAAN FLOODPLAIN	136
4.1 Summary of Activities	36
4.2 Control Survey	38
4.3 Baseline Processing	45
4.4 Network Adjustment	47
4.5 Cross-section, Bridge As-Built Survey and Water Level Marking	51
4.6. Validation Points Acquisition Survey	55
4.7 Bathymetric Survey	56
CHAPTER 5: RESULTS AND DISCUSSION FMC	60
5.1 Data Used for Hydrologic Modeling	60
5.1.1 Hydrometry and Rating Curves	60
5.1.2 Precipitation	60
5.1.3 Rating Curves and River Outflow	61
5.2 RIDF Station	62
5.3 HMS Model	63
5.4 Cross-section Data	68
5.5 Flo 2D Model	68
5.6 Results of HMS Calibration	69
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	71
5.7.1 Hydrograph using the Rainfall Runoff Mode	71
5.8 River Analysis (RAS) Model Simulation	72
5.9 Flood Hazard and Flow Depth	73
5.10 Inventory of Areas Exposed to Flooding	80
5.11 Flood Validation	145
REFERENCES	149
ANNEXES	150
Annex 1. OPTECH Technical Specification of the Aquarius And Gemini Lidar Sensors and the D	8900
Aerial Camera	150
Annex 2. NAMRIA Certificates of Reference Points Used	153
Annex 3. Baseline Processing Reports of Reference Points Used	157

Annex 4. The Survey Team	161
Annex 5. Data Transfer Sheet for Binahaan Floodplain	162
Annex 6. Flight Logs	165
Annex 7. Flight Status	173
Annex 8. Mission Summary Reports	183
Annex 9. Binahaan Model Basin Parameters	218
Annex 10. Binahaan Model Reach Parameters	220
Annex 11. Binahaan Field Validation Points	221
Annex 12. Educational Institutions Affected in Binahaan Flood Plain	229
Annex 13. Medical Institutions Affected in Binahaan Flood Plain	234

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system	2
Table 2. Flight planning parameters for Gemini LiDAR system	2
Table 3. Details of the recovered NAMRIA horizontal control point LYT-101 used as base station for the	
LiDAR data acquisition	5
Table 4. Details of the recovered and re-established NAMRIA horizontal control point LYT-104 used as	
base station for the LiDAR data acquisition	6
Table 5. Details of the recovered NAMRIA horizontal control point SMR-53 used as base station for the	
LiDAR data acquisition	7
Table 6. Details of the established control point PGC-TC used as temporary base station for the LiDAR	
data acquisition	8
Table 7. Details of the recovered NAMRIA Benchmark LY-110 used as base station for the LiDAR data	
acquisition	9
Table 8. Details of the recovered NAMRIA Benchmark LY-881 used as base station for the LIDAR data	10
acquisition	10
Table 9. Ground control points used during LIDAR data acquisition	11
Table 10. Flight missions for LiDAR data acquisition in Binanaan hoodplain	11. 12
Table 12. List of municipalities and sities surveyed during Pangkershap floodplain LiDAP survey.	.12 12
Table 12. List of financipanties and citles surveyed during bangkeronan hoodplain LiDAK survey	47
Table 13. Self-Calibration Results values for Binahaan flights	.1/
Table 14. List of LiDAR blocks for Binanaan floodplain	18
Table 15. Binanaan classification results in Terrascan	22
Table 16. LIDAR blocks with its corresponding area	25
Table 17. Shift Values of Each LiDAR Block of Binandan Hooupidin	20
Table 10. Validation Statistical Measures	21
Table 19. Valuation Statistical Measures	.51 22
Table 21. Building Features Extracted for Binahaan Floodnlain	,55 3/
Table 22. Total Length of Extracted Roads for Binahaan Floodplain	34
Table 23. Number of Extracted Water Bodies for Binahaan Floodplain	35
Table 24. List of Reference and Control Points occupied for Binahaan River Survey (Source: NAMRIA: UF)_)_
TCAGP)	.40
Table 25. Baseline Processing Summary Report for Binahaan River Survey	.46
Table 26. Control Point Constraints	.47
Table 27. Adjusted Grid Coordinates	.48
Table 28. Adjusted Geodetic Coordinates	.49
Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	.50
Table 30. RIDF values for Tacloban Rain Gauge computed by PAGASA	.62
Table 31. Range of Calibrated Values for Binahaan	.70
Table 32. Summary of the Efficiency Test of Binahaan HMS Model	.71
Table 33. Peak values of the Binahaan HEC-HMS Model outflow using the Tacloban RIDF	.72
Table 34. Affected Areas in Burauen, Leyte during 5-Year Rainfall Return Period	.80
Table 35. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.81
Table 36. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.81
Table 37. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.82
Table 38. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.82
Table 39. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.83
Table 40. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.83
Table 41. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period	.84
Table 42. Affected Areas in Jaro, Leyle during 5-fear Rainfall Return Period	00. 00
Table 11. Affected Areas in Faio, Leyle Uuring 5-Year Painfall Peturn Deriod	20
Table 45. Affected Areas in Faio, Leyle during 5-Year Rainfall Return Deriod	90
Table 46. Affected Areas in Pastrana, Levie during 5-Year Rainfall Return Period	93
Table 47 Affected Areas in Pastrana Levie during 5-Year Rainfall Return Period	93
Table 48. Affected Areas in Tabontabon, Levie during 5-Year Rainfall Return Period	95
Table 49. Affected Areas in Tanauan, Levte during 5-Year Rainfall Return Period	96
Table 50. Affected Areas in Tanauan, Levte during 5-Year Rainfall Return Period	96
Table 51. Affected Areas in Tanauan, Levte during 5-Year Rainfall Return Period	97
	- I

Table 52	2. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period	97
Table 53	B. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period	98
Table 54	I. Affected Areas in Burauen, Leyte during 25-Year Rainfall Return Period	101
Table 55	5. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	102
Table 56	5. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	102
Table 57	7. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	103
Table 58	3. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	103
Table 59	Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	104
Table 60). Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	104
Table 61	. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	105
Table 62	2. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period	109
Table 63	B. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	110
Table 64	I. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	110
Table 65	5. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	111
Table 66	5. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	114
Table 67	7. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	114
Table 68	3. Affected Areas in Tabontabon, Leyte during 25-Year Rainfall Return Period	116
Table 69	Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	117
Table 70). Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	117
Table 71	L. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	118
Table 72	Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	118
Table 73	3. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	119
Table 74	I. Affected Areas in Burauen, Leyte during 100-Year Rainfall Return Period	122
Table 75	5. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	124
Table 76	5. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	124
Table 77	7. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	125
Table 78	3. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	125
Table 79	Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	126
Table 80). Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	126
Table 81	. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	127
Table 82	2. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period	131
Table 83	3. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	132
Table 84	I. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	132
Table 85	5. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	133
Table 86	5. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period	136
Table 87	7. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period	136
Table 88	3. Affected Areas in Tabontabon, Leyte during 100-Year Rainfall Return Period	138
Table 89	9. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	139
Table 90). Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	139
Table 91	L Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	140
Table 92	2. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	140
Table 93	3. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	141
Table 94	I. Area covered by each warning level with respect to the rainfall scenario	145
Table 95	5. RMSE values for each return period of flood depth map	147
Table 96	5. Actual Flood Depth vs Simulated Flood Depth in Binahaan	148
Table 97	7. Summary of Accuracy Assessment in Binahaan	148

LIST OF FIGURES

Figure 1. Map of the Binahaan River Basin	1
Figure 2. Flight plans and base stations used for Binahaan floodplain for year 2014 survey	3
Figure 3. Flight plans and base stations used for Binahaan floodplain for year 2016 survey	4
Figure 4. (a) GPS set-up over LYT-101 situated within the premises of MacArthur's Landing Memorial Park	ς,
Palo, Leyte and (b) NAMRIA reference point LYT-101 as recovered by field team	5
Figure 5. (a) GPS set-up over LYT-104 located and re-established along rice paddy trail, approximately 9	0
meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte and (b) NAMRI	A
reference point LYT-104 as recovered by the field team	6
Figure 6. (a) GPS set-up over SMR-53 located near the school building flag pole of San Isidro Elementary	,
Brgy. San Isidro, Santa Rita and (b) NAMRIA reference point SMR-53 as recovered by the field team	7
Figure 7. (a) GPS set-up over established Ground Control Point by the team on the rooftop of Philippin	e
Coast Guard Tacloban Station, Kuta Kankabato, San Jose, Tacloban City and (b) established reference poin	it
PGC-TC as recovered by the field team	8
Figure 8. (a) GPS set-up over LY-110 on a bridge located about 225 meters of km. post 919, road leading to	о
Ormoc City and (b) NAMRIA reference point LY-110 as recovered by the field team	9
Figure 9. (a) GPS set-up over LY-881 located at the concrete foundation of Governor Center Welcome sig	n
at the junction of the road going to Ormoc, Samar, Tacloban and MacArthur Landing Memorial Park in Brgy	<i>ı</i> .
Pawing, Palo, Leyte and (b) NAMRIA reference point LY-881 as recovered by the field team1	0
Figure 10. Actual LiDAR survey coverage for Binahaan floodplain1	3
Figure 11. Schematic Diagram for Data Pre-Processing Component14	4
Figure 12. Smoothed Performance Metric Parameters of a Binahaan Flight 3773G1	5
Figure 13. Solution Status Parameters of Binahaan Flight 3773G	6
Figure 14. Best Estimated Trajectory for Binahaan floodplain1	7
Figure 15. Boundary of the processed LiDAR data over Binahaan Floodplain	8
Figure 16. Image of data overlap for Binahaan floodplain1	9
Figure 17. Density map of merged LiDAR data for Binahaan floodplain	0
Figure 18. Elevation difference map between flight lines for Binahaan floodplain	1
Figure 19. Quality checking for a Binahaan flight 3773G using the Profile Tool of QT Modeler22	1
Figure 20. Tiles for Binahaan floodplain (a) and classification results (b) in TerraScan	2
Figure 21. Point cloud before (a) and after (b) classification22	2
eq:Figure22.Theproduction of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some the theorem of the test of t	e
portion of Binahaan floodplain2	3
Figure 23. Binahaan floodplain with available orthophotographs24	4
Figure 24. Sample orthophotograph tiles for Binahaan floodplain24	4
Figure 25. Portions in the DTM of Binahaan floodplain – a bridge before (a) and after (b) manual editing;	а
paddy field before (c) and after (d) data retrieval2	5
Figure 26. Map of Processed LiDAR Data for Binahaan Flood Plain2	7
Figure 27. Map of Binahaan Flood Plain with validation survey points in green	9
Figure 28. Correlation plot between calibration survey points and LiDAR data	C
Figure 29. Correlation plot between validation survey points and LiDAR data	1
Figure 30. Map of Binahaan Flood Plain with bathymetric survey points shown in blue	2
Figure 31. QC blocks for Binahaan building features	3
Figure 32. Extracted features for Binahaan floodplain	2
Figure 33. Binahaan River Basin Survey Extent	/
Figure 34. Binahaan River Basin Survey Extent	9
Figure 35. GNSS receiver setup, Trimble® SPS 855, at LYT-101, located in front of Gen. Douglas MacArthur Shrine	<i>,</i>
Brgy. Candanug, Mun. of Palo, Leyte	5
Figure 36. GINSS base set up, Trimble® SPS 855, at LY1-708, located in front of Dulag Elementary School	1, 1
III DIBY. DUIILAY, WUII. UI DUIAB, LEVIE	Ч
Figure 57. Gives receiver setup, minister SPS 985 at LY-106, located at the approach of Bernard Ree	u 1
Eigure 38 GNSS receiver setup Trimble® SDS 885 at CAM_VSU located in front of Comire Elementer	, ,
School in Bray Balud Municipality of Tanayan Levte	у 2
Figure 39 GNSSreceiversetun Trimble®SPS855 atLIM-VSLL located on aring a along National Roadin Brow Old	ے ا
- Barcos, Gross ecciver secup, minute of 5655, attime voo, located of an prapaloring valional total duffibility.	5

Municipality of Tolosa, Leyte	42
Figure 40. GNSS receiver setup, Trimble® SPS 855, at MAG-VSU, located on top of a Mass Grave monume	nt
in Brgy. Solano, Municipality of Tanauan, Leyte	43
Figure 41. GNSS receiver setup, Trimble [®] SPS 855, at NHS-VSU, located inside Tanauan National High Scho	ol,
in Brgy. Sto. Niño Poblacion, Municipality of Tanauan, Leyte	43
Figure 42. GNSS receiver setup, Trimble [®] SPS 855, at PAL-VSU, located on top of revetment along Bang	on
River in Brgy. Arado, Municipality of Palo, Leyte	44
Figure 43. GNSS receiver setup, Trimble [®] SPS 855, at SJQ-VSU, located near the approach of San Joaqu	uin
Bridge, in Brgy. San Joaquin, Municipality of Palo, Leyte	44
Figure 44. GNSS receiver setup, Trimble® SPS 855, at BM-1, located at the approach of Sta. Elena Bridge, in Bri	gy.
Binongtoan, Municipality of Tanauan, Leyte	45
Figure 45. Sta. Elena Bridge facing downstream	51
Figure 46. As-Built Survey of Sta. Elena Bridge	51
Figure 47. Sta. Elena Bridge cross-section diagram	52
Figure 48 Sta. Elena Bridge. Binahaan River Basin Planimetric map	53
Figure 49. Bridge as-built form of Sta. Elena Bridge	54
Figure 50. Water-level markings on Sta. Elena Bridge	55
Figure 51. Validation points acquisition survey set up along Binahaan River Basin	55
Figure 52. Validation point acquisition survey of Binahaan River basin	56
Figure 53. Bathymetric survey using a Trimble® SPS 855 in GNSS RTK survey technique in Binahaan River	57
Figure 54. Bathymetric survey of Binahaan River.	58
Figure 55. Binahaan Riverbed Profile	59
Figure 56. The location map of Binahaan HEC-HMS model used for calibration	60
Figure 57 Cross-Section Plot of Stal Flena Bridge	61
Figure 58. Rating Curve at Sta. Elena Bridge, Binahaan, Samar	61
Figure 59. Rainfall and outflow data at Binahaan used for modeling	62
Figure 60. Location of Tacloban RIDE Station relative to Binahaan River Basin	63
Figure 61. Synthetic storm generated for a 24-hr period rainfall for various return periods	63
Figure 62. Soil Man of Binahaan River Basin	64
Figure 63 Land Cover Man of Binahaan River Basin	65
Figure 64 Slone Man of Rinahaan River Basin	66
Figure 65. Stream Delineation Man of Binahaan River Basin	67
Figure 66. The Binabaan river basin model generated using HEC-HMS	67
Figure 67 River cross-section of Rinahaan River generated through Arcman HEC GenRAS tool	68
Figure 68. Screenshot of subcatchment with the computational area to be modeled in ELO-2D GDS Pro	69
Figure 69. Outflow Hydrograph of Binabaan produced by the HEC-HMS model compared with observ	ed
nutflow	70
Figure 70 Outflow hydrograph at Binahaan Station generated using Taclohan RIDE simulated in HE	:0
HMS	72
Figure 71 Sample output of Binabaan BAS Model	72
Figure 72, 100-year Rain Return Flood Hazard Man for Rinabaan-Guinarona Floodnlain	74
Figure 73, 100-year Rain Return Flood Denth Man for Binahaan-Guinarona Floodplain	75
Figure 74, 25-year Pain Peturn Flood Hazard Man for Binahaan-Guinarona Floodplain	76
Figure 75, 25-year Rain Return Flood Depth Map for Binahaan-Guinarona Floodplain	70
Figure 76. 5-year Rain Return Flood Hazard Map for Binahaan-Guinarona Floodplain	70
Figure 77. 5 year Pain Peturn Flood Donth Man for Pinahaan-Guinarona Floodplain	70
Figure 77. S-year Kain Return Flood Depth Map for Binanaan-Guinarona Floodpian	00
Figure 70. Affected Areas in Binahaan, Eastern Samar during 5-fear Kalifian Return Period	00
Figure 79. Affected Areas in Binahaan, Eastern Samar during 5-fedr Kalifian Return Period	04 05
Figure QU. Affected Areas in Binahaan, Eastern Samar during 5-Year Bainfall Beturn Period	00 00
ngure of Aneticu Areas in Dinahaan, Eastern Samar during 5-tedl Kalillall Kelulii Pellou	02 02
ngure 02. Anecleu Areas in Dinahaan, Eastern Samar during 5-tedi Kalilidii Keluini Peliou	00 0 <i>C</i>
ngure 05. Anecteu Areas III binanaan, Eastern Samar during 5-Tedi Kalilidii Keturni Period	00
Figure 04. Anecteu Areas in Dinahaan, Eastern Samar during 5-Year Rainfall Return Period	0/ 07
Figure 05. Affected Areas in Dindildan, Edstern Samar during 5-fear Rainfall Return Period	0/C
Figure ou. Affected Areas in Jaru, Leyle Saffar Uuring 5-Year Kaliffall Kelurn Period	00
rigure o7. Anected Areas in Paio, Leyte Samar during 5-year Kainfall Keturn Period	эт

Figure 88. Affected Areas in Palo, Leyte Samar during 5-Year Rainfall Return Period	91
Figure 89. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	94
Figure 90. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	94
Figure 91. Affected Areas in Tabontabon, Leyte during 5-Year Rainfall Return Period	95
Figure 92. Affected Areas in Tanauan during 5-Year Rainfall Return Period	99
Figure 93. Affected Areas in Tanauan during 5-Year Rainfall Return Period	99
Figure 94. Affected Areas in Tanauan during 5-Year Rainfall Return Period	100
Figure 95. Affected Areas in Tanauan during 5-Year Rainfall Return Period	100
Figure 96. Affected Areas in Burauen during 25-Year Rainfall Return Period	101
Figure 97. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	105
Figure 98. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	106
Figure 99. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	106
Figure 100. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	107
Figure 101. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	107
Figure 102. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	108
Figure 103. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period	108
Figure 104. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period	109
Figure 105. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	112
Figure 106. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	112
Figure 107. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period	113
Figure 108. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	115
Figure 109. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period	115
Figure 110. Affected Areas in Tabontabon, Leyte during 25-Year Rainfall Return	116
Figure 111. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	120
Figure 112. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	120
Figure 113. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	121
Figure 114. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	121
Figure 115. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period	122
Figure 116. Affected Areas in Burauen, Leyte during 100-Year Rainfall Return Period	123
Figure 117. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	127
Figure 118. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	128
Figure 119. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	128
Figure 120. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	129
Figure 121. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	129
Figure 122. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	130
Figure 123. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	130
Figure 124. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period	131
Figure 125. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	134
Figure 126. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	134
Figure 127. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period	135
Figure 128. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period	137
Figure 129. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period	137
Figure 130. Affected Areas in Tabontabon, Leyte during 100-Year Rainfall Return Period	138
Figure 131. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	142
Figure 132. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	142
Figure 133. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	143
Figure 134. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	143
Figure 135. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period	144
Figure 135. Validation points for 5-year Flood Depth Map of Binahaan Floodplain	146
Figure 137. Validation points for 100-year Flood Depth Iviap of Binanaan Floodplain	146
Figure 136. Flood map depth vs actual flood depth for 5-year return period	147
rigule 159. Flood map depth vs actual hood depth for 100-year return period	147

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM	Digital Terrain Model				
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologi Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
НС	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			
VSU	Visayas State University			
	, , ,			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BINAHAAN RIVER

Enrico C. Paringit, Dr. Eng. and Engr. Florentino Morales, Jr.

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 22 river basins in the Eastern Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Binahaan River Basin

Figure 1. Map of the Binahaan River Basin

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BINAHAAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, and Jeriel Paul A. Alamban, Geol.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Binahaan floodplain in Leyte province. These missions were planned for 20 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the Aquarius and Gemini LiDAR systems used are found in Tables 1 and 2, respectively. Figures 2 and 3 show the flight plans for Binahaan floodplain. Annex 1 shows the technical specification of the Aquarius and Gemini LiDAR systems and the aerial camera.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34A	690	30	50	70	40	120	5
BLK34B	600	30	50	70	40	120	5
BLK34K	690/650	30	36	50	50	120	5

Table 1. Flight planning parameters for Aquarius LiDAR system

Table 2. Flight planning parameters for Gemini LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK34A	1200	30	34	100	50	120	5
BLK34B	950	30	40	100	50	120	5
BLK34C	950/700	30	40/50	100	50/40	120	5
BLK34D	650	30	50	100	40	120	5
BLK34E	700	30	50	100	40	120	5
BLK34G	1200/700	30	34/50	100	50/40	120	5

Figure 2. Flight plans and base stations used for Binahaan floodplain for year 2014 survey

Figure 3. Flight plans and base stations used for Binahaan floodplain for year 2016 survey

2.2 Ground Base Stations

Two (2) NAMRIA second order accuracy ground control points (GCP): LYT-101 and SMR-53 were recovered for use as base station during the survey. LYT-104 is a 3rd order NAMRIA GCP and was re-processed as 2nd order GCP to satisfy the project's accuracy requirement. Also, LY-110 and LY-881 which are high-accuracy benchmarks were used and also re-processed as 2nd order horizontal control point for the project's accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports are found in Annex 3. These were used as base stations or reference points during flight operations for the entire duration of the survey (January 26-27 & April 20, 2014 and January 22-24, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, SPS 882, and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Binahaan floodplain are shown in Figure 2 above.

Figure 4 to Figure 8 show the recovered NAMRIA reference points within the area, while Table 3 to Table 7 show the corresponding details about the following NAMRIA control stations and established points. In addition, Table 8 shows the list of all ground control points occupied in line with their respective mission names and flight numbers, together with the dates of acquisition.

(a)

Figure 4. (a) GPS set-up over LYT-101 situated within the premises of MacArthur's Landing Memorial Park, Palo, Leyte and (b) NAMRIA reference point LYT-101 as recovered by field team.

Table 3. Details of the recovered NAMRIA horizontal control point LYT-101 used as base station for the LiDAR data acquisition.

Station Name	LYT-101			
Order of Accuracy	2nd Order			
Relative Error (Horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 10' 23.89707" North 125° 0' 38.62071" East 6.58600 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	501,171.719 meters 1,235,497.253 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 10' 19.64869" North 125° 0' 43.78230" East 69.02100 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	719,575.03 meters 1,235,811.61 meters		

Figure 5. (a) GPS set-up over LYT-104 located and re-established along rice paddy trail, approximately 90 meters from the centerline, east side of Pastrana-Santa Fe Road, District IV, Pastrana, Leyte and (b) NAMRIA reference point LYT-104 as recovered by the field team.

Table 4. Details of the recovered and re-established NAMRIA horizontal control point LYT-104 used as base station for the LiDAR data acquisition.

Station Name	LYT-	-104
Order of Accuracy	2nd (Order
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 08' 38.92234" North 124o 53' 13.52786" East 33.659 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing Ellipsoidal Height	11° 08' 34.67033" North 124o 53' 18.69323" East 95.861 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Latitude Longitude	706,089.510 meters 1,232,496.838 meters

Figure 6. (a) GPS set-up over SMR-53 located near the school building flag pole of San Isidro Elementary, Brgy. San Isidro, Santa Rita and (b) NAMRIA reference point SMR-53 as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point SMR-53 used as base station for the LiDAR data acquisition.

Station Name	SMI	R-53
Order of Accuracy	2nd Order	
Relative Error (Horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 30' 17.85657" North 125° 1' 29.837339" East 26.13400 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	502,722.403 meters 1,272,180.079 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 30' 13.52495" North 125° 1' 34.96980" East 87.78700 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	720,874.14 meters 1,272,513.40 meters

(a)

Figure 7. (a) GPS set-up over established Ground Control Point by the team on the rooftop of Philippine Coast Guard Tacloban Station, Kuta Kankabato, San Jose, Tacloban City and (b) established reference point PGC-TC as recovered by the field team.

Table 6. Details of the established control point PGC-TC used as temporary base station for the LiDAR data acquisition.

Station Name	PCC	Б-ТС
Order of Accuracy	Order of Accuracy 2nd Order	
Relative Error (Horizontal positioning)	1 in 5	0,000
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 10' 19.64869" North 124° 59' 53.38556" East 70.882 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	718,144.536 meters 1,244,004.859 meters

(b)

(a)

Figure 8. (a) GPS set-up over LY-110 on a bridge located about 225 meters of km. post 919, road leading to Ormoc City and (b) NAMRIA reference point LY-110 as recovered by the field team

Table 7. Details of the recovered NAMRIA Benchmark LY-110 used as base station for the LiDAR data acquisition.

Station Name	LY-	110	
Order of Accuracy	1st Order		
Relative Error (Horizontal positioning)	1 in 100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 10' 19.48389" North 124° 57' 32.98736" East 14.336 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 10' 15.23095" North 124° 57' 38.14961" East 76.647 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	713,942.863 meters 1,234,538.117 meters	

Figure 9. (a) GPS set-up over LY-881 located at the concrete foundation of Governor Center Welcome sign at the junction of the road going to Ormoc, Samar, Tacloban and MacArthur Landing Memorial Park in Brgy. Pawing, Palo, Leyte and (b) NAMRIA reference point LY-881 as recovered by the field team.

Table 8. Details of the recovered NAMRIA Benchmark LY-881 used as base station for the LiDAR data acquisition.

Station Name	LY-	881
Order of Accuracy	1st Order	
Relative Error (Horizontal positioning)	1 in 100, 000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 10′ 50.05″ North 125° 00′ 05.58″ East 5.96 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 10' 45.19178" North 125° 00' 09.85226" East 68.330 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	718,694.89 meters 1,236,537.244 meters

Date Surveyed	Flight Number	Mission Name	Ground Control Points
26-Jan-14	1026A	3BLK33AS34A026A	LYT-101 & PCG-TC
27-Jan-14	1028A	3BLK3433S027A	LYT-101 & PCG-TC
20-Apr-14	1358A	3BLK34F110A	LYT-101 & LY-881
20-Apr-14	1360A	3BLK34KS110B	SMR-53 & LY-881
22-Jan-16	3765G	2BLK34AD022A	LYT-104 & LY-110
23-Jan-16	3769G	2BLK34ADEG023A	LYT-104 & LY-110
23-Jan-16	3771G	2BLK34BCG023B	LYT-104 & LY-110
24-Jan-16	3773G	2BLK34CG024A	LYT-104 & LY-110

Table 9. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Eight (8) missions were conducted to complete LiDAR data acquisition in Binahaan Floodplain, for a total of thirty hours and forty-nine minutes (30+49) of flying time for RP-C9122 and RP-C9322. All missions were acquired using Aquarius and Gemini LiDAR systems. The team line-up is shown in Annex 4. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 presents the actual parameters used during the LiDAR data acquisition. The data transfer sheet, flight logs and flight status reports of each mission are shown in Annex 5, 6, and 7 respectively.

Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	Area Surveyed within the	Area Surveyed Outside the	No. of Images (Frames)	Flyi Ho	ing urs
				Floodplain (km²)	Floodplain (km²)		Hr	Min
26-Jan-14	1026A	136.116	102.515	8.714	93.801	857	2	47
27-Jan-14	1028A	140.342	205.354	52.962	152.392	1546	4	25
20-Apr- 14	1358A	137.389	121.293	45.742	75.551	1194	4	11
20-Apr- 14	1360A	137.389	71.461	31.446	40.015	670	3	23
22-Jan-16	3765G	248.104	180.764	35.949	144.815	0	4	11
23-Jan-16	3769G	318.850	171.755	57.517	114.238	0	4	12
23-Jan-16	3771G	132.586	150.854	50.805	100.049	0	3	29
24-Jan-16	3773G	117.396	101.527	23.393	78.134	0	4	11
TO	TAL	1368.172	1105.523	306.527	798.996	4267	30	49

Table 10. Flight missions for LiDAR data acquisition in Binahaan floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (kHz)	Scan Frequency (Hz)	Average Speed (Kts)	Average Turn Time (Minutes)
1026A	690	30	50	70	40	120	5
1028A	690	30	50	70	40	120	5
1358A	690	30	36	50	50	120	5
1360A	650	30	36	50	50	120	5
3765G	1200/650	30	34/50	100	50/40	120	5
3769G	1200/700	30	34/50	100	50/40	120	5
3771G	950	30	40	100	50	120	5
3773G	700	30	50	100	40	120	5

Table 11. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

Binahaan floodplain is located in the province of Leyte situated in the municipalities of Tabontabon, Tanauan, Dagami, Pastrana and Palo. LiDAR swath coverage for these flights also covers most parts of the municipalities of Tabontabon, Julita, Tanauan, and Tolosa. The list of municipalities and/or cities surveyed with at least one (1) square kilometer coverage is shown in Table 12. The actual coverage of the LiDAR acquisition for Binahaan Floodplain is presented in Figure 10.

Table 12. List of municipalities and cities surveyed during Bangkerohan floodplain LiDAR survey

Province	Municipality/ City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Tabontabon	20.457	20.457	100%
	Julita	57.1662	57.1661	100%
	Tanauan	62.7768	62.5662	100%
	Tolosa	28.1734	28.069	100%
	Dulag	63.6486	61.6075	97%
	Palo	65.3368	63.1581	97%
	Santa Fe	57.1452	54.3985	95%
	Pastrana	79.1701	68.0694	86%
Louto	Dagami	134.082	77.8419	58%
Leyte	Alangalang	145.445	79.1059	54%
	San Miguel	103.86	49.5369	48%
	Burauen	205.306	69.1689	34%
	Jaro	190.654	58.3608	31%
	Barugo	81.2502	19.901	24%
	Tacloban City	118.458	14.7709	12%
	La Paz	136.017	14.7397	11%
	Babatngon	136.571	7.92537	6%
	Mayorga	39.4544	2.02753	5%
Total		1724.97	808.871	46.89%

Figure 10. Actual LiDAR survey coverage for Binahaan floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BINAHAAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

Figure 11. Schematic Diagram for Data Pre-Processing Component

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Binahaan floodplain can be found in Annex A-5. Missions flown during the first survey conducted on April 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system while missions acquired during the second survey on January 2016 were flown using the Gemini system over Leyte Province. The Data Acquisition Component (DAC) transferred a total of 108.46 Gigabytes of Range data, 1.39 Gigabytes of POS data, 51.30 Megabytes of GPS base station data, and 115.10 Gigabytes of raw image data to the data server on May 28, 2014 for the first survey and February 12, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Binahaan was fully transferred on February 12, 2016, as indicated on the Data Transfer Sheets for Binahaan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3773G, one of the Binahaan flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on January 24, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of a Binahaan Flight 3773G.

The time of flight was from 500 seconds to 14500 seconds, which corresponds to morning of January 24, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 0.85 centimeters, the East position RMSE peaks at 1.00 centimeters, and the Down position RMSE peaks at 3.00 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Binahaan Flight 3773G.

The Solution Status parameters of flight 3773G, one of the Binahaan flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Most of the time, the number of satellites tracked was between 7 and 10. The PDOP value also did not go above the value of 4, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey with some peaks up to 3 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Binahaan flights is shown in Figure 14.

Figure 14. Best estimated trajectory for Binahaan floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 81 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Binahaan floodplain are given in Table 13.

	0
Parameter	Value
Boresight Correction stdev(<0.001degrees)	0.000620
IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)	0.000999
GPS Position Z-correction stdev(<0.01meters)	0.0071

Table 13. Self-Calibration Results values for Binahaan flig

The optimum accuracy is obtained for all Binahaan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data on top of a SAR Elevation Data over Binahaan Floodplain

The total area covered by the Binahaan missions is 679.88 sq.km that is comprised of six (6) flight acquisitions grouped and merged into seven (7) blocks as shown in Table 14.

		1
LiDAR Blocks	Flight Numbers	Area (sq. km)
Samar Loute DIV245	1358A	07.51
Saffar_Leyte Bik34F	1360A	97.51
	3771G	145.00
Leyte_Bik34C	3773G	145.96
Leyte_Blk34F_supplement	3769G	30.86
Leyte_Blk34I	3769G	49.29
Leyte_Blk34J	3765G	62.04
Leute DH24C supplement	3771G	54.50
Leyte_Bik34G_supplement	3773G	54.50
Tacloban_1026A	1026A	226 72
	1028A	230.72
TOTAL		679.88 sq.km

Table 14. List of LiDAR blocks for Binahaan floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Binahaan floodplain.

The overlap statistics per block for the Binahaan floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.64% and 53.44% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Binahaan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.46 points per square meter.

Figure 17. Density map of merged LiDAR data for Binahaan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas not be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Binahaan floodplain.

A screen capture of the processed LAS data from a Binahaan flight 3773G loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for a Binahaan flight 3773G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 15. Binahaan classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	585,872,460
Low Vegetation	682,978,145
Medium Vegetation	1,214,227,319
High Vegetation	609,560,694
Building	13,035,152

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Binahaan floodplain is shown in Figure 20. A total of 1,362 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 415.68 meters and 10.90 meters respectively.

Figure 20. Tiles for Binahaan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Binahaan floodplain.

3.7LiDAR Image Processing and Orthophotograph Rectification

The 686 1km by 1km tiles area covered by Binahaan floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Binahaan floodplain has a total of 483.49 sq.km orthophotogaph coverage comprised of 5,019 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure B-14.

Figure 23. Binahaan floodplain with available orthophotographs.

Figure 24. Sample orthophotograph tiles for Binahaan floodplain.
3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for Binahaan flood plain. These blocks are composed of SamarLeyte and Leyte blocks with a total area of 679.88 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Samar_Leyte_Blk34D	97.51
Leyte_Blk34C	145.96
Leyte_Blk34F_supplement	30.86
Leyte_Blk34I	49.29
Leyte_Blk34J	62.04
Leyte_Blk34G_ supplement	54.50
Tacloban_1026A	239.72
TOTAL	679.88 sq.km

Table 16. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 25. Areas with no data along water bodies has to be interpolated for hydrologic correction. The bridge (Figure 25a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b). The road (Figure 25c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 25d) to allow the correct flow of water.

Figure 25. Portions in the DTM of Binahaan floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM overlapping with the blocks to be mosaicked. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Binahaan flood plain is shown in Figure 26. The entire Binahaan floodplain is 98.65% covered by LiDAR data while portions with no Lidar data were patched with the available IFSAR data.

Mission Diseles	Shift Values			
	х	у	Z	
Samar_Leyte_Blk34F	0.00	1.00	-1.01	
Leyte_Blk34F_supplement	0.00	1.00	-0.83	
Leyte_Blk34I	0.00	0.00	-0.79	
Leyte_Blk34J	0.00	-1.00	-1.04	
Leyte_Blk34C	0.00	-1.00	-1.13	
Leyte_Blk34G_supplement	0.00	0.00	-20.90	
Tacloban_1026A	0.00	0.00	0.00	

Table 17. Shift Values of each LiDAR Block of Binahaan floodplain.

Figure 26. Map of Processed LiDAR Data for Binahaan Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Binahaan to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 3,602 survey points were gathered for the Binahaan and Guinarona flood plains. However, the point dataset was not used for the calibration of the LiDAR data for Binahaan because during the mosaicking process, each LiDAR block was referred to the calibrated Tacloban DEM. Therefore, the mosaicked DEM of Binahaan can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.14 meters with a standard deviation of 0.13 meters. Calibration of Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, to Tacloban mosaicked LiDAR data. Table B-6 shows the statistical values of the compared elevation values between Tacloban LiDAR data and calibration data. These values were also applicable to the Binahaan DEM.

Figure 27. Map of Binahaan Flood Plain with validation survey points in green.

Figure 28. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.14
Standard Deviation	0.13
Average	-0.05
Minimum	-0.65
Maximum	0.50

All survey points lie near the Binahaan flood plain and were used for the validation of the calibrated Binahaan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.10 meters, as shown in Table 19.

Figure 29. Correlation plot between validation survey points and LiDAR data.

Table 19.	Validation	Statistical	Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.10
Average	0.18
Minimum	-0.20
Maximum	0.34

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Binahaan with 13,104 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation with barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.52 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Binahaan integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Binahaan Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Binahaan floodplain, including its 200 m buffer, has a total area of 421.61 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4731 building features, are considered for QC. Figure 31 shows the QC blocks for Binahaan floodplain.

y checking of binanaan building leatures resulted in the ratings shown in rable 20

Table 20. Quality Checking Ratings for Binahaan Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Binahaan	94.61	94.61	80.89	PASSED

3.12.2 Height Extraction

Height extraction was done for 22,740 building features in Binahaan flood plain. Of these building features, 570 was filtered out after height extraction, resulting to 22,170 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.59 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2

meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Facility Type	No. of Features		
Residential	20,844		
School	588		
Market	19		
Agricultural/Agro-Industrial Facilities	52		
Medical Institutions	45		
Barangay Hall	112		
Military Institution	0		
Sports Center/Gymnasium/Covered Court	12		
Telecommunication Facilities	2		
Transport Terminal	1		
Warehouse	25		
Power Plant/Substation	1		
NGO/CSO Offices	0		
Police Station	3		
Water Supply/Sewerage	1		
Religious Institutions	126		
Bank	0		
Factory	19		
Gas Station	9		
Fire Station	3		
Other Government Offices	79		
Other Commercial Establishments	217		
Abandoned Buildings	12		
Total	22,170		

Table 21. Building Features Extracted for Binahaan Floodplain.

Table 22. Total Length of Extracted Roads for Binahaan Floodplain.

Floodplain	Road Network Length (km)					
	Barangay Road	ay Road City/ Municipal Road		National Road	Others	
Binahaan	233.15	108.41	0	26.54	0.00	368.10

	Table 23. Numbe	er of Extracted W	ater Bodies for F	3inahaan Floo	dplain.					
Floodplain	Water Body Type									
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen					
Binahaan	66	66 0 0 25 2 93								

A total of 80 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the flood plain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Binahaan flood plain overlaid with its ground features.

Figure 32. Extracted features for Binahaan floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BINAHAAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Justine Y. Francisco, Jovy Anne S. Narisma, Engr. Vincent Louise DL. Azucena, Nereo Joshua G. Pecson, and Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

Binahaan River Basin covers the municipalities of Palo, Pastrana, Dagami, Tanauan and Ormoc City in the province of Leyte. The DENR River Basin Control Office identified the basin to have a drainage area of 120 km2 and an estimated 228 million cubic meter (MCM) annual run-off (River Basin Control Office, 2017).

Its main stem, Binahaan River, is part of the 28 river systems in Eastern Visayas Region. According to the 2015 national census of NSO, a total of 7,835 persons are residing within the immediate vicinity of the river which is distributed among eight (8) barangays, from the municipality of Tanauan and Palo (Philippine Statistics Authority, 2016). The town of Tanauan is considered as an agricultural, industrial and ecotourism destination in Eastern Visayas, with most of the resident's income derived from fishing and agriculture. (Carine J. Yi, 2015). On instances of water level rise of Binahaan River, it threatens potable water supply of Tacloban City and other towns near the vicinity affecting 39,000 residents from 130 barangays and submerging 6,300 hectares of farmland (Llanto, 2013). Last December 30, 2014, during the surge of Tropical Storm Seniang, internationally known as Jangmi, five (5) people died as a result of a landslide in the municipality of Tanauan, while thousands of residents were forced to leave their homes for safety reasons.

In line with this, DVBC in partnership with the VSU, conducted a field survey in Binahaan River on April 20-22, August 26-28 and October 17-26, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Sta. Elena Bridge in Brgy. Binongto-An in the Municipality of Tanauan, Leyte; validation points acquisition of about 22.159 km covering the municipalities of Alangalang, Santa Fe and Palo in the province of Leyte; and bathymetric survey from its upstream in Brgy. Binongto-An to the mouth of the river located in Brgy. San Joaquin, in the Municipality of Palo, with an approximate length of 10.756 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 855 GNSS PPK survey technique.

Figure 33. Binahaan River Basin Survey Extent

4.2 Control Survey

A GNSS baseline was established on September 18-21, 2014 occupying the control points LYT-101, a 2nd order GCP in Brgy. Candahug; and LY-1016, a 1st order Benchmark in Brgy. San Miguel, both in Municipality of Palo, Leyte.

The GNSS network used for Binahaan River Basin is composed of nine loops established on April 20-22, 2016 occupying the reference points: LYT-101 from the field survey on September 2014 for Palo River; and LYT-708, a 2nd order GCP in Brgy. Buntay, Municipality of Dulag; all in Leyte.

Six control points were established namely: CAM-VSU, located in front of Camire Elementary School in Brgy. Balud, Municipality of Tanauan; LIM-VSU, located on a riprap along National Road in Brgy. Olot, Municipality of Tolosa; MAG-VSU, located on top of a Mass Grave monument in Brgy. Solano, Municipality of Tanauan; NHS-VSU, located inside Tanauan National High School in Brgy. Sto Niño Poblacion, Municipality of Tanauan; PAL-VSU, located on the top of revetment along Bangon River in Brgy. Arado, Municipality of Palo; and SJQ-VSU, located near the approach of San Joaquin Bridge in Brgy. San Joaquin also in Municipality of Palo; all in Leyte. A JICA established control point namely BM-1, located at the approach of Sta. Elena Bridge in Brgy. Binongtoan, Municipality of Tanauan, was also occupied and used as marker for the survey.

The summary of reference and control points and its location is summarized in Table 24 while the GNSS network established is illustrated in Figure 34.

Figure 34. Binahaan River Basin Survey Extent

Table 24. List of Reference and Control Points occupied for Binahaan River Survey (Source: NAMRIA; UP-TCAGP)

			Geographic Coordinates (WGS 84)				
Control Order o Point Accurac		Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date established	
		Control Surve	ey on September 18-	-21, 2014			
LYT-101	2nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.218	5.135		
LY-106	1st Order, BM	11°09'38.36968"	124°59'35.93678"	67.850	4.028		
		Control Su	irvey on April 20-22,	, 2016			
LYT-101	2nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.218	5.135		
LYT-708	2nd Order, GCP	10°57'24.54497"	125°01'52.57808"	67.197	2.594		
CAM-VSU	VSU established	-	-	-	-		
LIM-VSU	VSU established	-	-	-	-		
MAG-VSU	VSU established	-	-	-	-		
NHS-VSU	VSU established	-	-	-	-		
PAL-VSU	VSU established	-	-	-	-		
SJQ-VSU	VSU established	-	-	-	-		

The GNSS set-ups on recovered reference points and established control points in Binahaan River are shown in Figure 35 to Figure 44.

Figure 35. GNSS receiver setup, Trimble® SPS 855, at LYT-101, located in front of Gen. Douglas MacArthur Shrine, Brgy. Candahug, Mun. of Palo, Leyte

gure 37. GNSS receiver setup, Trimble® SPS 985 at LY-106, located at the approach of Bernard Reed Bridge in Brgy. San Miguel, Municipality of Palo, Leyte

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 38. GNSS receiver setup, Trimble® SPS 885, at CAM-VSU, located in front of Camire Elementary School in Brgy. Balud, Municipality of Tanauan, Leyte

Figure 39. GNSS receiver setup, Trimble® SPS 855, at LIM-VSU, located on ariprap along National Road in Brgy. Olot, Municipality of Tolosa, Leyte

Figure 40. GNSS receiver setup, Trimble® SPS 855, at MAG-VSU, located on top of a Mass Grave monument in Brgy. Solano, Municipality of Tanauan, Leyte

Figure 41. GNSS receiver setup, Trimble® SPS 855, at NHS-VSU, located inside Tanauan National High School, in Brgy. Sto. Niño Poblacion, Municipality of Tanauan, Leyte

Figure 42. GNSS receiver setup, Trimble® SPS 855, at PAL-VSU, located on top of revetment along Bangon River in Brgy. Arado, Municipality of Palo, Leyte

Figure 43. GNSS receiver setup, Trimble® SPS 855, at SJQ-VSU, located near the approach of San Joaquin Bridge, in Brgy. San Joaquin, Municipality of Palo, Leyte

Figure 44. GNSS receiver setup, Trimble® SPS 855, at BM-1, located at the approach of Sta. Elena Bridge, in Brgy. Binongtoan, Municipality of Tanauan, Leyte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Binahaan River Basin is summarized in Table 25 generated by TBC software.

Table 25. Baseline Processing Summary Report for Binahaan River Survey

			0.		0		
Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
CAMVSU PALVSU (B29)	4-22-2016	Fixed	0.003	0.014	350°27'52"	5150.635	1.128
CAMVSU PALVSU (B12)	4-22-2016	Fixed	0.004	0.011	350°27'52"	5150.638	1.123
BM-1 CAMVSU (B25)	4-22-2016	Fixed	0.004	0.015	29°25'22"	2760.725	-5.501
LYT-708 CAMVSU	4-22-2016	Fixed	0.004	0.011	346°22'27"	18299.173	1.253
MAGVSU CAMVSU (B18)	4-21-2016	Fixed	0.003	0.018	264°18'10"	2682.599	1.154
CAMVSU LIMVSU (B13)	4-21-2016	Fixed	0.003	0.012	137°02'08"	5986.252	-2.439
NHSVSU CAMVSU (B21)	4-21-2016	Fixed	0.003	0.013	298°54'18"	2849.594	3.340
LYT101 CAMVSU (B4)	4-22-2016	Fixed	0.004	0.019	200°13'55"	6428.995	-0.749
CAMVSU LYT101 (B6)	4-22-2016	Fixed	0.005	0.015	200°13'55"	6429.002	-0.758
CAMVSU NHSVSU (B24)	4-22-2016	Fixed	0.002	0.009	298°54'18"	2849.598	3.328
MAGVSU CAMVSU (B9)	4-21-2016	Fixed	0.004	0.013	264°18'10"	2682.599	1.137
CAMVSU SJQVSU (B1)	4-20-2016	Fixed	0.003	0.011	19°29'20"	3389.643	-2.011
SJQVSU CAMVSU (B2)	4-20-2016	Fixed	0.004	0.013	19°29'21"	3389.649	-2.029
BM-1 LYT- 708 (B27)	4-22-2016	Fixed	0.003	0.012	339°46'15"	16390.757	6.743
BM-1 PALVSU (B30)	4-22-2016	Fixed	0.003	0.014	3°50'35"	7500.944	-4.365
NHSVSU MAGVSU (B19)	4-21-2016	Fixed	0.002	0.003	6°04'07"	1652.953	2.183
LIMVSU LYT-708 (B15)	4-21-2016	Fixed	0.004	0.015	359°00'36"	13404.986	-1.188
LIMVSU NHSVSU (B23)	4-21-2016	Fixed	0.003	0.010	152°10'46"	3396.078	0.902
NHSVSU LIMVSU (B20)	4-21-2016	Fixed	0.002	0.009	152°10'46"	3396.073	0.911
LYT101 PALVSU (B10)	4-22-2016	Fixed	0.004	0.017	252°47'25"	3220.346	0.362
MAGVSU LIMVSU (B17)	4-21-2016	Fixed	0.003	0.014	163°07'11"	4856.479	-1.289
MAGVSU SJQVSU (B8)	4-20-2016	Fixed	0.005	0.017	332°17'36"	3308.374	-0.908

MAGVSU LYT101 (B7)	4-21-2016	Fixed	0.005	0.021	175°34'35"	5783.217	-1.904
SJQVSU PALVSU (B11)	4-20-2016	Fixed	0.003	0.012	313°31'12"	2736.111	3.135
LYT101 SJQVSU (B3)	4-20-2016	Fixed	0.003	0.014	201°03'21"	3039.944	-2.771
SJQVSU LYT101 (B5)	4-20-2016	Fixed	0.006	0.018	201°03'21"	3039.946	-2.793
LYT-708 PALVSU (B28)	4-22-2016	Fixed	0.003	0.014	347°16'26"	23439.529	2.400
CAMVSU LYT-708 (B26)	4-22-2016	Fixed	0.003	0.014	346°22'27"	18299.172	1.253
LIMVSU CAMVSU (B14)	4-21-2016	Fixed	0.004	0.016	137°02'08"	5986.264	-2.449
LYT-708 NHSVSU (B22)	4-21-2016	Fixed	0.004	0.013	353°40'57"	16506.862	-2.068
1							

As shown Table 25 a total of thirty (30) baselines were processed coordinate and elevation values of reference point LYT-101; and coordinate values of LYT-708 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 \ cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 26 to Table 29 for complete details.

The nine (9) control points, LYT-101, LYT-708, CAM-VSU, LIM-VSU, MAG-VSU, NHS-VSU, PAL-VSU, SJQ-VSU and BM-1 were occupied and observed simultaneously to form a GNSS loop. Coordinates of LYT-101 and LYT-708 and elevation values LYT-101 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
LYT-101	Grid				Fixed
LYT-101	Global	Fixed	Fixed		
LYT-708	Global	Fixed	Fixed		
Fixed = 0.000001 (N	/leter)				

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. All fixed control points have no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LYT101	719729.823	?	1235759.250	?	5.135	?	LLe
LYT-708	721979.595	?	1211952.918	?	2.594	0.042	LL
CAM- VSU	717547.159	0.005	1229710.821	0.004	4.347	0.034	
LIM-VSU	721657.091	0.006	1225356.793	0.005	1.646	0.043	
MAG- VSU	720215.141	0.006	1229995.294	0.005	3.080	0.040	
NHS-VSU	720051.512	0.006	1228350.131	0.005	0.872	0.040	
PAL-VSU	716659.636	0.007	1234785.356	0.006	5.614	0.039	
SJQ-VSU	718656.753	0.006	1232914.373	0.005	2.335	0.036	
BM-1	716206.765	0.007	1227296.771	0.006	9.860	0.050	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm$ for horizontal and $|z_e < 10 cm|$ for the vertical; the computation for the accuracy are as follows:

a. LYT-101

	horizontal accuracy vertical accuracy	= =	Fixed Fixed
b. LYT-7	/08		
	horizontal accuracy	=	Fixed
	vertical accuracy	=	4.2 < 10 cm
c. CAM	-VSU		
	horizontal accuracy	=	$V((0.8)^2 + (0.6)^2)$
		=	√ (0.64 + 0.36)
		=	1.00 < 20 cm
	vertical accuracy	=	Fixed
d. LIM-	VSU		
	horizontal accuracy	=	$\sqrt{((0.9)^2 + (0.6)^2)}$
		=	√ (0.81 + 0.36)
		=	1.08 < 20 cm
	vertical accuracy	=	Fixed
e. MAG	-VSU		
	horizontal accuracy	=	$\sqrt{((1.1)^2 + (0.8)^2)}$
		=	√ (1.21 + 0.64)
		=	1.36 cm < 20 cm
	vertical accuracy	=	Fixed
f. NHS-	VSU		
	horizontal accuracy	=	$\sqrt{((0.9)^2 + (0.6)^2)}$
		=	√ (0.81 + 0.36)
		=	1.08 cm < 20 cm
	vertical accuracy	=	6.7 cm < 10 cm

g. PAL-VSU		
horizontal accuracy	=	$V((0.9)^2 + (0.6)^2)$
	=	V (0.81 + 0.36)
	=	1.08 cm < 20 cm
vertical accuracy	=	6.7 cm < 10 cm
h. SJQ-VSU		
horizontal accuracy	=	$\sqrt{(0.9)^2 + (0.6)^2}$
	=	√ (0.81 + 0.36)
	=	1.08 cm < 20 cm
vertical accuracy	=	6.7 cm < 10 cm
i. BM-1		
horizontal accuracy	=	$\sqrt{((0.9)^2 + (0.6)^2)}$
	=	√ (0.81 + 0.36)
	=	1.08 cm < 20 cm
vertical accuracy	=	6.7 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
LYT-101	N11°10'19.64869"	E125°00'43.78230"	69.218	?	LLe
LYT-708	N10°57'24.54497"	E125°01'52.57808"	67.197	0.042	LL
CAM-VSU	N11°07'03.32408"	E124°59'30.51751"	68.460	0.034	
LIM-VSU	N11°04'40.74891"	E125°01'44.94709"	66.026	0.043	
MAG-VSU	N11°07'11.99451"	E125°00'58.48218"	67.314	0.040	
NHS-VSU	N11°06'18.50045"	E125°00'52.72365"	65.127	0.040	
PAL-VSU	N11°09'48.63503"	E124°59'02.39537"	69.581	0.039	
SJQ-VSU	N11°08'47.31897"	E125°00'07.78743"	66.437	0.036	
BM-1	N11°05'45.06575"	E124°58'45.82598"	73.947	0.050	

Table 20. Hajustea Ocoactie Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 29.

Table 29. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

		Geographic (Coordinates (WGS 84)		UT	M ZONE 51 N	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
		Control S	urvey on September	18-21, 201			
LYT-101	2nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.218	1235759.250	719729.823	5.135
LY-106	1st Order, BM	12°23'08.14503"	124°37'40.19430"	70.990	1369731.985	676970.194	13.480
		Contr	ol Survey on April 20	-22,2016			
LYT-101	2nd Order, GCP	11°10'19.64869"	125°00'43.78230"	69.218	1235759.250	719729.823	5.135
LYT-708	2nd Order, GCP	10°57'24.54497"	125°01'52.57808"	67.197	1211952.918	721979.595	2.594
CAM- VSU	VSU established	11°07'03.32408"	124°59'30.51751"	68.460	1229710.821	717547.159	4.347
LIM- VSU	VSU established	11°04'40.74891"	125°01'44.94709"	66.026	1225356.793	721657.091	1.646
MAG- VSU	VSU established	11°07'11.99451"	125°00'58.48218"	67.314	1229995.294	720215.141	3.080
NHS- VSU	VSU established	11°06'18.50045"	125°00'52.72365"	65.127	1228350.131	720051.512	0.872
PAL- VSU	VSU established	11°09'48.63503"	124°59'02.39537"	69.581	1234785.356	716659.636	5.614
sjq- Vsu	VSU established	11°08'47.31897"	125°00'07.78743"	66.437	1232914.373	718656.753	2.335
BM-1	Used as Marker	11°05'45.06575"	124°58'45.82598"	73.947	1227296.771	716206.765	9.860

4.5 Cross-section, Bridge As-Built Survey and Water Level Marking

Cross-section and as-built survey were conducted on October 22 and 24, 2016 at the downstream side of Sta. Elena bridge in Brgy. Binongto-An, Municipality of Tanauan, Leyte as shown in Figure 45. A survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique was utilized for this survey as shown in Figure 46.

Figure 45. Sta. Elena Bridge facing downstream

Figure 46. As-Built Survey of Sta. Elena Bridge

The cross-sectional line of Sta. Elena Bridge is about 91 m with thirty-five (35) cross-sectional points using the control point BM-1 as the GNSS base station. The cross-section diagram, planimetric map and the bridge data form are shown in Figure 47 to Figure 49, respectively.

Figure 48 Sta. Elena Bridge, Binahaan River Basin Planimetric map

NOTE: Use the center of the pier as reference to its station

Figure 49. Bridge as-built form of Sta. Elena Bridge

Water surface elevation of Binahaan River was determined by a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on October 22, 2016 at 9:21 AM with a value of -2.903 m in MSL as shown in Figure 47. This was translated into marking on the bridge's deck using the same technique as shown in Figure 50. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Pambujan River, the Visayas State University.

Figure 50. Water-level markings on Sta. Elena Bridge

4.6. Validation Points Acquisition Survey

Validation points acquisition survey was conducted on September 9 and October 23, 2016 using a surveygrade GNSS Rover receiver, Trimble[®] SPS 882, mounted at the side of a vehicle as shown in Figure 51. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.055 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with BM-1 occupied as the GNSS base station in the conduct of the survey.

Figure 51. Validation points acquisition survey set up along Binahaan River Basin

The survey started in Brgy. Guindapunan, Municipality of Palo going west covering nine (9) barangays in Palo, seven (7) barangays in Municipality of Sta. Fe, and another seven (7) barangays in Municipality of Alangalang, and ended in Brgy. Mudboron, Alangalang. The survey gathered a total of 13,816 points with approximate length of 17 km using BM-1 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 52.

Figure 52. Validation point acquisition survey of Binahaan River basin

4.7 Bathymetric Survey

Bathymetric survey was executed on August 26-28, 2016 using Trimble[®] SPS 855 in GNSS RTK survey technique and October 22, 2016 using a Trimble[®] SPS 855 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 53. The survey started in Brgy. Binongto-An, Municipality of Tanaoan with coordinates 11°05′45.06575″N, 124°58′45.82598″E, and ended at the mouth of the river in Brgy. San Joaquin, Municipality of Palo, with coordinates 11°08′51.31966″N, 125°00′53.38193″E. The control points BM-1, CAM-VSU, LIM-VSU and SJQ-VSU were used as GNSS base stations all throughout the entire survey.

Figure 53. Bathymetric survey using a Trimble® SPS 855 in GNSS RTK survey technique in Binahaan River

The bathymetric survey for Binahaan River gathered a total of 14,212 points covering 10.756 km of the river traversing Barangays Cabarasan Guit and San Joaquin in Municipality of Palo; and barangays Balud, Binongto-An, Cabalagnan, Guindag-An, Kiling, and Sta. Elena, in Municipality of Tanauan. A CAD drawing was also produced to illustrate the riverbed profile of Binahaan River. As shown in Figure 55, the highest and lowest elevation has an 8-m difference. The highest elevation observed was 2.455 m above MSL located in Brgy. Binongto-An, Municipality of Palo; while the lowest was -6.120 m below MSL located in Brgy. San Joaquin, Municipality of Tanauan.

Figure 54. Bathymetric survey of Binahaan River

CHAPTER 5: RESULTS AND DISCUSSION FMC

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

5.1.2 Precipitation

Precipitation data was taken from the four automatic rain gauges (ARGs) deployed by the VSU Flood Modeling Component (FMC) team. The ARGs were installed in Abaca, Cabingtan, Lourdes and Paraiso, Tanauan Leyte (Figure 60). The precipitation data collection started from December 16, 2016 at 18:00 to December 19, 2016 at 20:00 with 10 minutes recording interval.

The total precipitation in Abaca ARG was 81.1 mm. It has a peak rainfall of 12.4 mm on 18 December 2015 1:15 PM. The lag time between the peak rainfall and discharge is 22 hours and 5 minutes, as seen in Figure 61. For Cabingtan ARG, total rain for this event is 238.3 mm. Peak rainfall of 15 mm was recorded on 17 December 2015 1:00 AM. The lag time between the peak rainfall and discharge is 46 hours and 20 minutes. For Lourdes ARG, total rainfall for this event is 101.8 mm. Peak rainfall of 20.6 mm was recorded on 18 December 2015 1:15 PM. The lag time between the peak rainfall and discharge is 22 hours and 5 minutes. For Lourdes ARG, total rainfall for this event is 101.8 mm. Peak rainfall of 20.6 mm was recorded on 18 December 2015 1:15 PM. The lag time between the peak rainfall and discharge is 22 hours and 5 minutes. For Paraiso ARG, total rainfall for this event is 71 mm. Peak rainfall of 7.5 mm was recorded on 18 December 2015 4:15 AM. The lag time between the peak rainfall and discharge is 19 hours and 5 minutes.

Figure 56. The location map of Binahaan HEC-HMS model used for calibration
5.1.3 Rating Curves and River Outflow

A rating curve was developed at Sta. Elena Bridge, Tanauan, Leyte (11°5′45.42″N, 124°58′44.68″E). It gives the relationship between the observed water levels at Sta. Elena Bridge and outflow of the watershed at this location.

For Sta. Elena Bridge, the rating curve is expressed as Q = 8.5835H2 – 4.9298H – 37.983 as shown in Figure 58.

Figure 57. Cross-Section Plot of Sta. Elena Bridge

This rating curve equation was used to compute the river outflow at Sta. Elena Bridge for the calibration of the HEC-HMS model.

Figure 59. Rainfall and outflow data at Binahaan used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Binahaan watershed. The extreme values for this watershed were computed based on a 59-year record.

T (yrs)	10 min	20 min	30 min	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	17.8	26.9	33.6	42.8	59.7	70.5	87.2	104	120.6
5	24.3	36.7	45.7	57.4	80.7	95.2	117.9	140.6	161.4
10	28.5	43.2	53.7	67.1	94.6	111.5	138.2	164.9	188.4
15	30.9	46.8	58.3	72.5	102.5	120.7	149.6	178.6	203.7
20	32.6	49.4	61.4	76.3	108	127.1	157.7	188.1	214.3
25	33.9	51.4	63.9	79.3	112.2	132.1	163.8	195.5	222.6
50	37.9	57.5	71.4	88.3	125.2	147.4	182.9	218.2	247.9
100	41.8	63.5	78.9	97.3	138.2	162.5	201.8	240.8	273

Table 30. RIDF values for Tacloban Rain Gauge computed by PAGASA

Figure 61. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management. The land cover shape file is from the National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Binahaan River Basin are shown in Figures 62 and 63, respectively.

Figure 62. Soil Map of Binahaan River Basin

The land cover data was generated in 2003 from the National Mapping and Resource information Authority (NAMRIA), DENR. Figure 63 shows the Land Cover inside Binahaan River Basin. The land cover map of Binahaan River Basin was used as another factor for the estimation of the CN and watershed lag parameters of the rainfall-runoff model.

Figure 63. Land Cover Map of Binahaan River Basin

For Binahaan, the soil class identified were sand, clay loam, clay, undifferentiated land, sandy loam, and silt loam. The land cover types identified were shrubland, grassland, forest plantation, open forest, closed forest, and cultivated.

Figure 64. Slope Map of Binahaan River Basin

Figure 65. Stream Delineation Map of Binahaan River Basin

Using the SAR-based DEM, the Binahaan basin was delineated and further subdivided into subbasins. The model consists of 39 sub basins, 19 reaches, and 19 junctions. The main outlet is Sta. Elena Bridge. This basin model is illustrated in Figure 66.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 67. River cross-section of Binahaan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

he simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 54.51257 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 77 535 744.00 m².

There is a total of 37 293 755.25 m³ of water entering the model. Of this amount, 20 278 785.44 m³ is due to rainfall while 17 014 969.81 m³ is inflow from other areas outside the model. 11 670 205.00 m³ of this water is lost to infiltration and interception, while 24 880 022.57 m³ is stored by the flood plain. The rest, amounting up to 743 534.13 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Binahaan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 69 shows the comparison between the two discharge data.

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Basin/Reach Characteristic	Method	Parameter	Range of Calibrated Values	
Less	SCS Curve number	ParameterCalmberInitial Abstraction (mm)mberCurve NumbertTime of Concentration (hr)tStorage Coefficient (hr)nRecession ConstantnRatio to PeakCungeSlopeManning's n	17 - 82	
LUSS	SCS Curve number		38-74	
Transform	Clark Unit	Time of Concentration (hr)	0.7-11	
	Hydrograph	Storage Coefficient (hr)	1 -18	
Deceflow	Respection	Recession Constant	0.4	
Basenow	Recession	Ratio to Peak	0.65	
Douting	Muckingum Cungo	Slope	0.0001-0.2	
Kouting	iviuskingum-Cunge	Manning's n	0.04	

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 17mm to 82mm means that there is average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 38 to 74 for curve number is lower than the advisable curve number for Philippine watersheds depending on the soil and land cover of the area.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.7 hours to 18 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the

ratio of the baseflow discharge to the peak discharge. Recession constant of 0.4 indicates that the basin is likely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.65 indicates a milder receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness Binahaan watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

RMSE	4.9
r2	0.99
NSE	0.87
PBIAS	2.48
RSR	0.37

Table 32. Summary of the Efficiency Test of Binahaan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 4.9 (m³/s).

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.99.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.87.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 2.48.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.37.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Mode

The summary graph (Figure 12) shows the Binahaan outflow using the Tacloban Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 70. Outflow hydrograph at Binahaan Station generated using Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Binahaan discharge using the Tacloban Rainfall Intensity-duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Table 33. Peak values of the Binahaan HEC-HMS Model outflow using the Tacloban RIDF

RIDF Period	Total Precipitation (mm)	Peak Rainfall (mm)	Peak Outflow (m ³ /s)	Time to Peak
5-Year	161.4	24.3	217.6	22 hours,30 minutes
10-Year	188.4	28.5	301.4	22 hours, 10 minutes
25-Year	222.6	33.9	418.0	21 hours, 40 minutes
50-Year	247.9	37.9	509.4	20 hours, 20 minutes
100-Year	273.0	41.8	606.1	20 hours, 10 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown, since only the DVC base flow was calibrated. The sample

generated map of Binahaan River using the calibrated HMS base flow is shown in Figure 71.

Figure 71. Sample output of Binahaan RAS Model

5.9 Flood Hazard and Flow Depth

The resulting hazard and flow depth maps have a 10m resolution. Figure 72 to Figure 77 shows the 5-, 25-, and 100-year rain return scenarios of the Binahaan floodplain.

[insert Municipalities affected in Binahaan floodplain]

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Binahaan river basin, grouped by municipality, are listed below. For the said basin, 7 municipality consisting of 54 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 0.09% of the municipality of Burauen with an area of 205.31 sq. km. will experience flood levels of less than 0.20 meters and 0.006% of the area will experience flood levels of 0.51 to 1 meter. Listed in Table 34 are the affected areas in square kilometres by flood depth per barangay.

Affecte	d Area (sg. km.)	Affected Ba	rangays in Buraue	n (in sq. km.)
by floo	od depth (in m.)	Buri	Cadahunan	Tambis
	0.03-0.20	0.054	0.11	0.029
rea)	0.21-0.50	0	0	0
km.	0.51-1.00	0.013	0	0
ecte sq.	1.01-2.00	0	0	0
))	2.01-5.00	0	0	0
	> 5.00	0	0	0

Table 34. Affected Areas in Burauen, Leyte during 5-Year Rainfall Return Period

Figure 78. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

For the municipality of Dagami, with an area of 134.08 sq. km., 31.62% will experience flood levels of less 0.20 meters. 7.39% of the area will experience flood levels of 0.21 to 0.50 meters while 6.59%, 5.34%, 1.26%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

		Caanislagan	0.49	0.047	0.0074	0.032	0.024	0
		Buntay	0.74	0.31	0.4	0.96	0.076	0.00026
		Buenavista	0.28	0.016	0.018	0.019	0.012	0
Return Perioc		Bolirao	0.79	0.24	0.032	0	0	0
5-Year Rainfall	sq. km.)	Bayabas	1.12	0.23	0.033	0	0	0
gami, Leyte during	in Dagami (in	Banayon	2.77	0.7	0.2	0.023	0	0
Areas in Dagar	ed Barangays	Balugo	0.1	0.049	0.31	0.69	0.015	0
ıble 35. Affected	Affecte	Balilit	0.2	0.21	0.32	0.19	0.0094	0
T		Abre	0.047	0.067	0.2	0.36	0.14	0
		Abaca	1.07	0.8	0.61	0.038	0.014	0
	d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
	Affecte	by floo) LGg	A b: M	ecte.))	

Table 36. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period

	Canlingga	0.0047	0.00061	0.021	0.093	0.3	0.0013
	Candagara	0.0017	0	0	0	0	0
	Camono-An	0.98	0.019	0.048	0.027	0.0021	0
	Calutan	0.92	0.16	0.086	0	0	0
iq. km.)	Caluctogan	0.41	0.58	0.44	0.23	0.0066	0
in Dagami (in s	Calsadahay	6.0	0.21	0.054	0.001	0	0
ed Barangays i	Calipayan	1.09	0.086	0.08	0.18	0.046	0
Affecte	Cabunga-An	1.67	0.26	0.23	0.12	0.0076	0
	Cabuloran	0.85	0.2	0.054	0.0077	0	0
	Cabariwan	0.31	0.072	0.0097	0	0	0
l Area (sq.	Area (sq		0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affected	k by flood r) LGg	A b: .my	ette. sd.))	

Affecte	ed Area (sq.			Affecte	d Barangays in	Dagami (in sq.	km.)				
by floc	km.) od depth (in m.)	Cansamada East	Cansamada West	Capulhan	Digahongan	Guinarona	Hiabangan	Hilabago	Hinabuyan	Hinologan	Hitumnog
	0.03-0.20	1.4	0.49	0.34	0.52	0.54	0.73	0.76	1.13	0.79	0.52
) LG9	0.21-0.50	0.23	0.15	0.061	0.093	0.16	0.12	0.14	0.9	0.26	0.13
A b .my	0.51-1.00	0.093	0.18	0.074	0.023	0.052	0.27	0.17	0.56	0.11	0.22
.ps	1.01-2.00	0.056	0.12	0.063	0.017	0.0061	0.35	0.14	0.18	0.0079	0.044
э Л А)	2.01-5.00	0.12	0.021	0.046	0.042	0.0079	0.051	0.062	0.0032	0.0082	0
	> 5.00	0	0	0	0	0	0	0	0	0	0

Table 37. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period

Table 38. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period

	Palacio	1.72	0.39	0.51	0.43	0.14	0
	Ormocay	0.24	0.04	0	0	0	0
	Maragondong	0.67	0.15	0.18	0.19	0.12	0.0022
	Maliwaliw	2.34	0.35	0.13	0.024	0	0
ר sq. km.)	Macaalang	0.74	0.036	0.032	0.022	0	0
's in Dagami (i	Lusad Poblacion	0.044	0.0075	0	0.019	0	0
cted Barangay	Los Martires	0.44	0.11	0.095	0.049	0.031	0.04
Affe	Lobe-Lobe East	0.51	0.087	0.017	0	0	0
	Lapu-lapu Poblacion	0.046	0.026	0.015	0	0.011	0
	Katipunan	3.16	0.099	0.13	0.11	0.022	0
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo) גפש	km. الاس	ecte sq.	о₩А)	

		npao San /est Antonio lacion Poblacion	071 0.058	012 0.019	016 0	025 0	00024 0.0065	0 0
		Sampao East N Poblacion Pob	0.08 0.	0.04 0.	0.0099 0.	0 0	0 0.00	0
Return Period		Sampaguita	0.78	0.11	0.016	0.0079	0	0
5-Year Rainfall I	n sq. km.)	Salvacion	1.6	0.086	0.043	0.036	0.047	0
ii, Leyte during '	s in Dagami (i	Rizal	1.2	0.016	0.025	0.04	0.017	0
l Areas in Dagam	ected Barangay	Poponton	0.063	0.17	0.64	0.29	0.0079	0
ble 39. Affected	Affe	Patoc	0.42	0.12	0.082	0.073	0.047	0.034
Та		Paraiso	2.06	0.096	0.045	0.034	0	0
		Panda	0.17	0.14	0.22	0.21	0.023	0
	d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
	Affecte	by floo) LGg	A b: M	ecte sq.))	

Table 40. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period

	Tin-Ao	0.31	0.26	0.37	0.28	0.0079	0
	Talinhugon	0.22	0.066	0.05	0.072	0.013	0.0032
	Tagkip	0.8	0.14	0.28	0.45	0.11	0.011
	Sta. Mesa Poblacion	0.092	0.021	0.014	0	0	0
n sq. km.)	Sirab	0.26	0.086	0.12	0.071	0.023	0.036
ed Barangays in Dagami (ir	Sawahon	0.58	0.078	0.21	0.22	0.0079	0
	Santo Domingo	0.83	0.1	0.03	0.043	0.0032	0
Affe	San Roque Poblacion	0.044	0.0013	0.0042	0	0.015	0
	San Jose Poblacion	0.028	0.025	0.0026	0.005	0	0.014
	San Benito	0.34	0.2	0.26	0.099	0.0046	0
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo) LG9	A b: .my	ecte. sd.))	

Table 41. Affected Areas in Dagami, Leyte during 5-Year Rainfall Return Period

Affecte	ed Area (sq. km.)	Affected Baran (in sq	gays in Dagami . km.)
by floo	od depth (in m.)	Tunga Poblacion	Тиуа
	0.03-0.20	0.017	0.45
rea)	0.21-0.50	0.0018	0.15
km.	0.51-1.00	0.00015	0.047
ecte sq.	1.01-2.00	0.0075	0.000013
))	2.01-5.00	0	0
	> 5.00	0.000045	0

Figure 79. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

Figure 80. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

Figure 81. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

Figure 82. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

Figure 83. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

Figure 85. Affected Areas in Binahaan, Eastern Samar during 5-Year Rainfall Return Period

For the municipality of Jaro, with an area of 190.65 sq. km., 0.09% will experience flood levels of less 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.004%, 0.004%, 0%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometres by flood depth per barangay.

Affecte	ed Area (sq. km.)	Affected Barangays in Dagami (in sq. km.)
by floo	od depth (in m.)	Parasan
	0.03-0.20	0.18
rea)	0.21-0.50	0.038
ed A km.	0.51-1.00	0.0079
ecte sq.	1.01-2.00	0.0079
Aff()	2.01-5.00	0
	> 5.00	0.0079

Table 42. Affected Areas in Jaro, Leyte during 5-Year Rainfall Return Period

Figure 86. Affected Areas in Jaro, Leyte Samar during 5-Year Rainfall Return Period

For the municipality of Palo, with an area of 65.34 sq. km., 53.26% will experience flood levels of less 0.20 meters. 11.10% of the area will experience flood levels of 0.21 to 0.50 meters while 2.25%, 0.27%, and 0.097% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

m.)	Canhidoc	1.46	0.31	0.036	0	0	0
/s in Palo (in sq. k	Cangumbang	3.66	1.35	0.41	0.017	0	0
Affected Barangay	Cabarasan Guti	1.04	0.19	0.075	0.023	0.056	0
	Cabarasan Daku	2.6	0.58	0.063	0	0	0
	Arado	0.57	0.071	0.013	0	0	0
	Anahaway	1.2	0.11	0	0	0	0
	h (in	3-0.20	21-0.50	51-1.00	01-2.00	01-5.00	> 5.00
d Area (sq.	km.) d dept m.)	0.0	0.2	0	1.	2.	

Table 43. Affected Areas in Palo, Leyte during 5-Year Rainfall Return Period

Table 44. Affected Areas in Palo, Leyte during 5-Year Rainfall Return Period

Affecte	nd Area (cn			Affected Ra	rangave in Da	lo (in so km)		
by floo	d depth (in m.)	Cavite East	Cavite West	Cogon	Gacao	Libertad	Naga-Naga	Salvacion
	0.03-0.20	0.09	0.14	0.6	2.71	0.0086	0.057	0.12
) LGg	0.21-0.50	0	0.0079	0.12	0.61	0.0022	0	0.008
A b: .my	0.51-1.00	0	0	0.018	0.13	0	0.0046	0.002
ecte. sd.	1.01-2.00	0	0	0.00016	0.024	0	0	0
) ЭНА)	2.01-5.00	0	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0	0

Period
Return
Rainfa
-Year
Ń
during
Leyte (
<u></u>
Palc
Ľ.
Areas
7
ffected
A
45.
le
B
ũ

Affecte	d Area (sq.			Affected Ba	irangays in Palo (in	ı sq. km.)		
by floo	km.) d depth (in m.)	San Agustin	San Antonio	San Isidro	San Joaquin	Santa Cruz	Tacuranga	Teraza
	0.03-0.20	2.38	1.14	2.46	6.46	0.089	0.7	2.29
) LG9	0.21-0.50	0.43	0.35	0.47	1.32	0.0079	0.22	0.27
A b: .my	0.51-1.00	0.032	0.15	0.054	0.33	0.029	0.055	0.028
ecte.	1.01-2.00	0	0.027	0	0.071	0	0.016	0
) ЭНА)	2.01-5.00	0	0	0	0.0079	0	0	0
	> 5.00	0	0	0	0	0	0	0

Figure 87. Affected Areas in Palo, Leyte Samar during 5-Year Rainfall Return Period

Figure 88. Affected Areas in Palo, Leyte Samar during 5-Year Rainfall Return Period

For the municipality of Pastrana, with an area of 79.17 sq. km., 32.53% will experience flood levels of less 0.20 meters. 6.90% of the area will experience flood levels of 0.21 to 0.50 meters while 3.84%, 3.17%, 1.13%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometres by flood depth per barangay.

A ffortor				Affecte	d Barangays in Pa	istrana (in sq. km	(
by floo	d depth (in m.)	Aringit	Bahay	Cabaohan	Cancaraja	Caninoan	Capilla	Colawen	Dumarag
	0.03-0.20	1.24	2.64	0.51	0.0073	1.21	0.87	2.34	1.44
) LG9	0.21-0.50	0.65	0.75	0.061	0.0000	0.19	0.2	0.35	0.14
A b M	0.51-1.00	0.65	0.53	0.03	0	0.016	0.077	0.0024	0.025
.ps	1.01-2.00	0.55	0.57	0	0	0	0.016	0	0
))	2.01-5.00	0.076	0.24	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0	0	0

Table 47. Affected Areas in Pastrana, Leyte during 5-Year Rainfall Return Period

by flood depth (in m.) Lanawan Lourdes Macalpiay Manaybanay Maricum Sapsap Tingib Yapad by flood depth (in m.) Lanawan Lourdes Macalpiay Manaybanay Maricum Sapsap Tingib Yapad 0.03-0.20 3.26 2.56 1.58 0.095 1.78 0.78 1.79 2.8 0.03-0.20 0.39 0.41 0.45 0.12 0.24 0.31 0.81 0.21-0.50 0.016 0.266 0.33 0.017 0 0.31 0.81 0.51-1.00 0.016 0.266 0.333 0.017 0 0.36 0.67 1.01-2.00 0 0.25 0.14 0 0 0.26 0.67 2.01-5.00 0 0.19 0.14 0 0 0.26 0.67 2.01-5.00 0 0 0 0 0 0 0.76 0.78	Affortor	(ma lea fea)			Affecte	d Barangays in Pa	strana (in sq. km	(.		
0.03-0.20 3.26 1.58 0.95 1.78 0.78 1.79 2.8 0.03-0.20 3.26 0.41 0.45 0.95 1.78 0.78 1.79 2.8 0.21-0.50 0.39 0.41 0.45 0.12 0.24 0.38 0.81 0.51-1.00 0.016 0.26 0.33 0.017 0 0.15 0.67 0.51-1.00 0.016 0.26 0.33 0.017 0 0 0.67 0.51-1.00 0.016 0.25 0.14 0 0 0 0 0 1.01-2.00 0 0.25 0.14 0	by floo	d depth (in m.)	Lanawan	Lourdes	Macalpiay	Manaybanay	Maricum	Sapsap	Tingib	Yapad
0.21-0.50 0.39 0.41 0.45 0.12 0.31 0.38 0.81 0.21-0.50 0.016 0.24 0.31 0.12 0.31 0.81 0.51-1.00 0.016 0.26 0.33 0.017 0 0 0 0 0.51-1.00 0.016 0.26 0.33 0.017 0 <th></th> <td>0.03-0.20</td> <td>3.26</td> <td>2.56</td> <td>1.58</td> <td>0.95</td> <td>1.78</td> <td>0.78</td> <td>1.79</td> <td>2.8</td>		0.03-0.20	3.26	2.56	1.58	0.95	1.78	0.78	1.79	2.8
Notice 0.016 0.033 0.017 0.15 0.26 0.67 0.51-1.00 0.016 0.25 0.14 0 </th <th>) LGg</th> <td>0.21-0.50</td> <td>0.39</td> <td>0.41</td> <td>0.45</td> <td>0.12</td> <td>0.24</td> <td>0.31</td> <td>0.38</td> <td>0.81</td>) LGg	0.21-0.50	0.39	0.41	0.45	0.12	0.24	0.31	0.38	0.81
Hitted: 0.14 0 0.25 0.14 0 0.21 0.21 0.21 0.28 0.28 0.28 0.28 0.21 0.21 0.28 0.	A b؛ دm،	0.51-1.00	0.016	0.26	0.33	0.017	0	0.15	0.26	0.67
Image: Constrained by the second system 0.19 0.11 0 0.26 0.021 > 5.00 0 0.0079 0 <th>ecte. sd.</th> <td>1.01-2.00</td> <td>0</td> <td>0.25</td> <td>0.14</td> <td>0</td> <td>0</td> <td>0</td> <td>0.21</td> <td>0.78</td>	ecte. sd.	1.01-2.00	0	0.25	0.14	0	0	0	0.21	0.78
>5.00 0 0.0079 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) ЭНА)	2.01-5.00	0	0.19	0.11	0	0	0	0.26	0.021
		> 5.00	0	0.0079	0	0	0	0	0.016	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 89. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period

Figure 90. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period

For the municipality of Tabontabon, with an area of 20.46 sq. km., 32.47% will experience flood levels of less 0.20 meters. 6.93% of the area will experience flood levels of 0.21 to 0.50 meters while 1.73%, 0.116%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 48 are the affected areas in square kilometres by flood depth per barangay.

Affecte	ed Area (sq.		Affe	cted Baranga	ys in Tabonta	bon (in sq	. km.)	
by floo	km.) od depth (in m.)	Belisong	Cambucao	Capahuan	Guingawan	Jabong	Mercadohay	Mering
	0.03-0.20	1.44	0.76	0.71	1.29	1.1	1.11	0.23
rea (0.21-0.50	0.3	0.16	0.12	0.24	0.27	0.28	0.048
k a.	0.51-1.00	0.055	0.0079	0.056	0.092	0.11	0.013	0.017
ecte sq.	1.01-2.00	0	0.0079	0	0.016	0	0	0
) (2.01-5.00	0	0	0	0.017	0	0	0
	> 5.00	0	0	0	0	0	0	0

Table 48. Affected Areas in Tabontabon, Leyte during 5-Year Rainfall Return Period

Figure 91. Affected Areas in Tabontabon, Leyte during 5-Year Rainfall Return Period

For the municipality of Tanauan, with an area of 62.78 sq. km., 41.50% will experience flood levels of less 0.20 meters. 9.69% of the area will experience flood levels of 0.21 to 0.50 meters while 4.53%, 1.97%, 0.29%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas in square kilometres by flood depth per barangay.

	Affected	y flood n) LGg	A b: .my	.ps .ps))	
	Area (sq.	n.) depth (in 1.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
		Amanluran	0.32	0.032	0	0	0	0
Table		Atipolo	0.39	0.12	0.0079	0	0	0
49. Affected Area		Balud	0.95	0.22	0.043	3.7E-07	0.015	0
s in Tanauan, Leyte	Affected Bar	Bangon	1.09	0.16	0.031	0	0	0
e during 5-Year Rair	angays in Tanaua	Bantagan	0.42	0.044	0.018	0.0052	0	0
ıfall Return Period	n (in sq. km.)	Baras	0.89	0.12	0.03	0	0	0
		Binolo	0.38	0.13	0	0	0	0
		Binongto-An	1.5	0.3	0.5	0.32	0.05	0
		Buntay	0.13	0.069	0	0	0	0

Table 50. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period

	Catigbian	0.46	0.12	0.04	0.022	0	0	
	Canramos	0.21	0.011	0	0	0	0	
	Camire	0.49	0.2	0.016	0	0	0	
sq. km.)	Calsadahay	0.11	0.017	0	0	0	0	
: in Tanauan (in	Calogcog	0.56	0.086	0	0	0	0	
Affected Barangays	Cahumayhumayan	0.51	0.14	0.087	0.0068	0.0019	0	
	Cabuynan	1.22	0.26	0.095	0.0079	0	0	
	Cabarasan Guti	0.83	0.36	0.48	0.43	0	0	
	Cabalagnan	1.51	0.36	0.078	0	0	0.016	
ed Area (sq.	km.) od depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
Affecte	by floo) LGg	A b؛ ۲۳۰	.ps sd.) ЭНА ЭНА		

٦
J
0
Ξ.
j.
Д
·
H
R
E.
e,
\simeq
Ľ,
÷Ξ
9
R
5
ц С
ω,
\geq
. `
S
60
d'
·
Ħ
F7
U
e la
t.
5
Γ.
d
ਫ਼
Ξ
ਕ
Ē
Б.
\vdash
`
E.
6
8
ίũ.
9
\triangleleft

2
Ľ
Ú
e la
Ħ
\triangleleft
U)
e,
ਸ਼ਿ
~~~

Affecte by floo	d Area (sq. km.) d depth (in	Guindag-An	Guingawan	Afi	fected Barangays Kiling	in Tanauan (in sq Lapay	. km.) Licod	Magay	Maghulod
	m.)	)	)	;	)	•			)
	0.03-0.20	1.15	0.44	0.65	1.26	0.84	0.057	0.21	0.49
) LGg	0.21-0.50	0.35	0.067	0.06	0.39	0.12	0.012	0.04	0.052
A b: .my	0.51-1.00	0.57	0.0076	0	0.16	0.059	0.0076	0	0.0079
ste. sq.	1.01-2.00	0.11	0.018	0	0.021	0	0	0	0
) ЭНА )	2.01-5.00	0.00076	0.041	0	0.029	0	0	0	0
	> 5.00	0.0079	0	0	0.0031	0	0	0	0

Table 52. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period

Affecte	ed Area (sq.			Af	fected Barangays	in Tanauan (in so	I. km.)		
by floo	km.) od depth (in m.)	Malaguicay	Maribi	Mohon	Pago	Pasil	Sacme	Salvador	San Isidro
	0.03-0.20	0.39	0.63	0.37	0.93	0.3	0.022	1.21	0.71
) LG9	0.21-0.50	0.051	0.15	0.092	0.19	0.089	0	0.22	0.4
A b .my	0.51-1.00	0.0079	0.024	0	0.041	0.045	0	0.041	0.35
.ps	1.01-2.00	0	0	0	0	0	0	0.011	0.2
) )	2.01-5.00	0	0	0	0	0	0	0	0.006
	> 5.00	0	0	0	0	0	0	0	0

	Tugop	0.87	0.3	0.033	0	0	0
	Talolora	1.19	0.21	0.0057	0	0	0
. km.)	Solano	0.23	0.07	0	0	0	0
in Tanauan (in sq	Santo Niño Poblacion	1.32	0.21	0.055	0	0	0
ected Barangays	Santa Elena	0.28	0.063	0.039	60.0	0.04	0.013
Afi	Santa Cruz	0.86	0.21	0	0	0	0
	San Roque	0.46	0.08	0.00031	0	0	0
	San Miguel	0.55	0.11	0.016	0	0	0
ed Area (sq.	km.) od depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floc		) LGg	A b: .my	ecte.	) )	

Table 53. Affected Areas in Tanauan, Leyte during 5-Year Rainfall Return Period





Figure 93. Affected Areas in Tanauan during 5-Year Rainfall Return Period





Figure 94. Affected Areas in Tanauan during 5-Year Rainfall Return Period



Figure 95. Affected Areas in Tanauan during 5-Year Rainfall Return Period

For the 25-year return period, 0.08% of the municipality of Burauen with an area of 205.31 sq. km. will experience flood levels of less 0.20 meters. 0.003% of the area will experience flood levels of 0.21 to 0.50 meters while 0.011% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 54 are the affected areas in square kilometres by flood depth per barangay.

Affecte	d Area (sg. km.)	Affected Ba	rangays in Buraue	en (in sq. km.)
by floo	od depth (in m.)	Buri	Cadahunan	Tambis
	0.03-0.20	0.045	0.11	0.019
rea )	0.21-0.50	0.0044	0.0018	0
km.	0.51-1.00	0.02	0.002	0
ecte sq.	1.01-2.00	0.000041	0.0008	0
Affo )	2.01-5.00	0	0	0
	> 5.00	0	0	0

Table 54. Affected Areas in Burauen, Leyte during 25-Year Rainfall Return Period



Figure 96. Affected Areas in Burauen during 25-Year Rainfall Return Period

For the municipality of Dagami, with an area of 134.08 sq. km., 25.38% will experience flood levels of less 0.20 meters. 7.13% of the area will experience flood levels of 0.21 to 0.50 meters while 8.25%, 8.18%, 3.17%, and 0.20% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55 are the affected areas in square kilometres by flood depth per barangay.

Minimulation         Maca         Bality         Balugo         Banayon         Bayabas         Bolirao         Buntay         Ca           Noddepth (in m.)         Abaca         Abre         Balugo         Banayon         Bayabas         Bolirao         Buntay         Ca           0:03-0.20         0.03-0.20         0.036         0.079         0.0664         1.96         0.97         0.027         0.36         0.36           0:03-0.20         0.115         0.039         0.022         0.78         0.34         0.027         0.36         0.34         0.36         0.36           0:21-0.50         0.72         0.033         0.022         0.78         0.34         0.027         0.34         0.36         0.27         0.34         0.36         0.27         0.34         0.36         0.27         0.34         0.36         0.41         0         0.41         0         0.41         0.41         0.41         0.41         0.74         0.74         0.74         0.74         0.72         0.74         0.72         0.74         0.72         0.74         0.72         0.41         0.74         0.74         0.72         0.74         0.72         0.74         0.72         0.74         0.72<	Affecte	d Area (sq.			Aff	ected Baranga	ys in Dagami (i	n sq. km.)				
0.03-0.20         0.48         0.036         0.079         0.064         1.96         0.97         0.66         0.27         0.36           0.11         0.21-0.50         0.72         0.093         0.022         0.78         0.34         0.028         0.27           0.21-0.50         0.115         0.093         0.022         0.78         0.78         0.29         0.27           0.51-1.00         1.15         0.085         0.3         0.068         0.54         0.052         0.012         0.41           1.01-2.00         0.17         0.39         0.43         0.57         0.37         0.0012         0.013         0.74           1.01-2.00         0.17         0.39         0.43         0.57         0.37         0.0012         0.013         0.74           1.01-5.00         0.113         0.28         0.041         0         0         0.74         0           1.55.00         0.013         0.28         0.041         0.071         0.013         0.74         0           1.55.00         0.013         0.025         0.041         0         0         0.74         0           1.55.00         0.013         0.012         0.041	by floo	km.) d depth (in m.)	Abaca	Abre	Balilit	Balugo	Banayon	Bayabas	Bolirao	Buenavista	Buntay	Caanislagan
Ref         0.21-0.50         0.72         0.093         0.022         0.78         0.35         0.34         0.028         0.27           Ref         0.51-1.00         1.15         0.085         0.3         0.068         0.54         0.052         0.012         0.41           Image:         0.51-1.00         1.15         0.085         0.3         0.068         0.54         0.052         0.012         0.41           Image:         1.01-2.00         0.17         0.39         0.57         0.37         0.0012         0.013         0.74           Image:         1.01-2.00         0.17         0.39         0.45         0.37         0.0012         0.013         0.74           Image:         1.01-5.00         0.013         0.28         0.041         0         0         0.74         1           Image:         1.01-5.00         0.013         0.28         0.041         0         0         0.74         1           Image:         1.01-5.00         0.013         0.025         0.041         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0.03-0.20	0.48	0.036	0.079	0.064	1.96	0.97	0.66	0.27	0.36	0.42
Att         0.51-1.00         1.15         0.085         0.3         0.068         0.54         0.052         0.012         0.41           Att         1.01-2.00         0.17         0.39         0.43         0.57         0.37         0.0012         0.013         0.74           Att         2.01-5.00         0.17         0.39         0.45         0.041         0         0         0.74         0.74           > 5.00         0         0         0         0.0005         0.0004         0         0         0.013         0.72	) LG9	0.21-0.50	0.72	0.027	0.093	0.022	0.78	0.35	0.34	0.028	0.27	0.064
State         1.01-2.00         0.17         0.39         0.43         0.57         0.37         0.0012         0.013         0.74           2.01-5.00         0.013         0.28         0.02         0.45         0.041         0         0         0.13         0.72           > 5.00         0         0         0         0.00055         0.0004         0         0         0         0         0         0         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< th=""><th>A b: .my</th><td>0.51-1.00</td><td>1.15</td><td>0.085</td><td>0.3</td><td>0.068</td><td>0.54</td><td>0.052</td><td>0.068</td><td>0.012</td><td>0.41</td><td>0.034</td></td<>	A b: .my	0.51-1.00	1.15	0.085	0.3	0.068	0.54	0.052	0.068	0.012	0.41	0.034
X     2.01-5.00     0.013     0.28     0.02     0.45     0.041     0     0     0.013     0.72       > 5.00     0     0     0.00055     0.0004     0     0     0     0     0	ecte.	1.01-2.00	0.17	0.39	0.43	0.57	0.37	0.0012	0.0001	0.013	0.74	0.043
> 5.00 0 0 0.00055 0.0004 0 0 0 0 0.0002 0	) )	2.01-5.00	0.013	0.28	0.02	0.45	0.041	0	0	0.013	0.72	0.041
		> 5.00	0	0	0.00055	0.0004	0	0	0	0.0002	0	0.00055

Table 55. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

Period
Return
Rainfall
J-Year ]
during 25
, Leyte
Dagami
Areas in ]
Affected
Table 56.

	dagara Canlingga	0.0016 0.0016	0 0.00041	0 0.0027	0 0.031	0 0.39	0 0.00018	
	Camono-An Can	1 0.0	0.029	0.02	0.016	0.017	0.0038	
	Calutan	0.67	0.24	0.21	0.054	0	0	
n sq. km.)	Caluctogan	0.14	0.32	0.82	0.37	0.031	0	
's in Dagami (ii	Calsadahay	0.62	0.24	0.17	0.13	0.011	0	
cted Barangay	Calipayan	1.08	0.05	0.059	0.15	0.13	0.0019	
Affe	Cabunga-An	1.69	0.23	0.18	0.16	0.025	0	
	Cabuloran	0.71	0.2	0.12	0.083	7.3E-06	0	
	Cabariwan	0.22	0.086	0.076	0.016	0.00033	0	
ed Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
Affecte	by floo		) LG9	A b: .my	ecte sd.	) )		

		Hino
		Hinahum
teturn Period		Hilahado
-Year Rainfall R	sq. km.)	Hishangan
Leyte during 25	in Dagami (in	Guinarona
Areas in Dagami,	ted Barangays	Digahongan
57. Affected /	Affec	Canulhan
Table		Cansamada
		Cansamada
	(sq.	h (in

	Hitumnog	0.47	0.082	0.18	0.2	0.00071	0
	Hinologan	0.61	0.32	0.2	0.031	0.007	0
	Hinabuyan	0.41	0.74	1.02	0.57	0.02	0
	Hilabago	0.66	0.09	0.16	0.23	0.13	0.0013
sq. km.)	Hiabangan	0.73	0.051	0.14	0.44	0.15	0.0006
in Dagami (in	Guinarona	0.45	0.23	0.061	0.02	0.0035	0
Affected Barangays	Digahongan	0.27	0.1	0.12	0.15	0.04	0.02
	Capulhan	0.26	0.057	0.054	0.1	0.096	0.013
	Cansamada West	0.29	0.15	0.23	0.22	0.036	0.029
	Cansamada East	1.19	0.29	0.19	0.089	0.14	0.018
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo		) LGg	A b: .my	ecte sq.	) )	

Table 58. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

ffecte	d Area (sq.			Affec	ted Barangay	rs in Dagami (i	n sq. km.)				
y flood	km.) d depth (in m.)	Katipunan	Lapu-lapu Poblacion	Lobe-Lobe East	Los Martires	Lusad Poblacion	Macaalang	Maliwaliw	Maragondong	Ormocay	Palacio
	0.03-0.20	3.11	0.034	0.44	0.26	0.0084	0.75	1.99	0.57	0.21	1.48
) LGG	0.21-0.50	0.15	0.018	0.11	0.14	0.024	0.028	0.54	0.099	0.04	0.35
A b: .my	0.51-1.00	0.094	0.021	0.057	0.16	0.011	0.018	0.25	0.26	0.026	0.49
ps ps	1.01-2.00	0.092	0.014	0.0052	0.12	0.0051	0.021	0.065	0.23	0.00053	0.54
) )	2.01-5.00	0.085	0.0093	0	0.053	0.022	0.016	0.00079	0.14	0	0.33
	> 5.00	0.0025	0	0	0.025	0	0.0004	0	0.022	0	0

	San Antonio Poblacion	0.048	0.018	0.013	0.0025	0.0014	0.00067
	Sampao West Poblacion	0.02	0.033	0.028	0.023	0.019	0
	Sampao East Poblacion	0.014	0.022	0.069	0.025	0	0
	Sampaguita	0.67	0.2	0.03	0.015	0	0
n sq. km.)	Salvacion	1.55	0.081	0.068	0.052	0.061	0.0089
in Dagami (i	Rizal	1.16	0.029	0.029	0.038	0.048	0.0017
ted Barangays	Poponton	0.029	0.074	0.39	0.66	0.019	0
Affec	Patoc	0.29	0.1	0.13	0.12	0.1	0.034
	Paraiso	1.95	0.12	0.076	0.07	0.011	0
	Panda	0.12	0.059	0.17	0.36	0.062	0.00077
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by flood		) LG9	A b: .my	ecte. sd.	) )	

Table 59. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

Table 60. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

104

		Affected Ba	rangays in Buraue	en (in sq. km.)
by floo	od depth (in m.)	Tunga Poblacion	Тиуа	Victoria
	0.03-0.20	0.012	0.26	0.011
rea )	0.21-0.50	0.0039	0.2	0.031
km.	0.51-1.00	0.0012	0.18	0.25
ecte sq.	1.01-2.00	0.0058	0.0084	0.59
) )	2.01-5.00	0.003	0	0.041
	> 5.00	0	0	0

Table 61. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period



Figure 97. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 98. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period



Figure 99. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period



Figure 101. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 102. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period



Figure 103. Affected Areas in Dagami, Leyte during 25-Year Rainfall Return Period

For the municipality of Jaro, with an area of 190.65 sq. km., 0.086% will experience flood levels of less 0.20 meters. 0.023% of the area will experience flood levels of 0.21 to 0.50 meters while 0.009%, 0.003%, 0.002%, and 0.0003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 62 are the affected areas in square kilometres by flood depth per barangay.

Affecte	ed Area (sq. km.)	Affected Barangays in Dagami (in sq. km.)
by floo	od depth (in m.)	Parasan
	0.03-0.20	0.16
rea (	0.21-0.50	0.044
km.	0.51-1.00	0.018
ecte sq.	1.01-2.00	0.006
) Affe	2.01-5.00	0.0043
	> 5.00	0.0007

Table 62. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period



Figure 104. Affected Areas in Jaro, Leyte during 25-Year Rainfall Return Period

For the municipality of Palo, with an area of 65.34 sq. km., 40.17% will experience flood levels of less 0.20 meters. 17.43% of the area will experience flood levels of 0.21 to 0.50 meters while 6.64%, 2.56%, 0.52%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 63 are the affected areas in square kilometres by flood depth per barangay.

	idoc Capirawan	1.92	66.0 95	.6 0.06	003 0.0001	0	0
sq. km.)	ang Canhi	1.0	0.5	0.1	0.00	0	0
ays in Palo (in s	i Cangumb	1.84	1.68	1.16	0.7	0.065	0
Affected Baranga	Cabarasan Guti	0.4	0.22	0.34	0.3	0.046	0.069
	Cabarasan Daku	1.99	1.06	0.19	0.0025	0	0
	Arado	0.53	0.14	0.018	0.00014	0	0
	Anahaway	1.14	0.19	0.02	0	0	0
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo		) LGg	A b: .my	sd.	) )	

Table 63. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period

Table 64. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period

Affecte	d Area (sq.			Affected Ba	rangays in Pa	lo (in sq. km.)		
by floo	km.) d depth (in m.)	Cavite East	Cavite West	Cogon	Gacao	Libertad	Naga-Naga	Salvacion
	0.03-0.20	0.083	0.12	0.46	2.22	0.011	0.047	0.12
) LGg	0.21-0.50	0.016	0.041	0.22	0.94	0.0064	0.011	0.024
۸ b؛ ۲۳۰	0.51-1.00	0.0017	0.0019	0.087	0.28	0.0006	0.016	0.0022
ecte. sd.	1.01-2.00	0	0	0.0008	0.032	0	0.0025	0.00048
) ЭНА )	2.01-5.00	0	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0	0

٦

 Table 65. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period

	d Area (sq. m.)			Affected Ba	arangays in Palo (in	sq. km.)		
de m.)	pth (in	San Agustin	San Antonio	San Isidro	San Joaquin	Santa Cruz	Tacuranga	Teraza
o.	03-0.20	1.86	0.43	2.14	4.92	0.075	0.57	1.96
o.	21-0.50	0.79	0.48	0.74	1.9	0.025	0.21	0.6
Ö	51-1.00	0.19	0.51	0.11	0.84	0.026	0.17	0.032
Ч,	.01-2.00	0.012	0.25	0.0048	0.31	0.0054	0.044	0
2	.01-5.00	0.0001	0	0	0.23	0	0.0001	0
	> 5.00	0	0	0	0.008	0	0	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 105. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period



Figure 106. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period



Figure 107. Affected Areas in Palo, Leyte during 25-Year Rainfall Return Period

For the municipality of Pastrana, with an area of 79.17 sq. km., 23.40% will experience flood levels of less 0.20 meters. 9.37% of the area will experience flood levels of 0.21 to 0.50 meters while 6.90%, 5.90%, 2.18%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 and 5 meters, and more than 5 meters, respectively. Listed in Table 66 are the affected areas in square kilometres by flood depth per barangay.

nfall Return Period	ana (in sq. km.)	Caninoan Capilla Colawen Dum	0.89 0.44 1.67 0.	0.31 0.25 0.85 0.	0.19 0.29 0.16 0.	0.028 0.2 0.015 0.0	0.0002 0.0051 0.0031 0.	0 0 0	
yte during 25-Year Rai	d Barangays in Pastr	Cancaraja	0.0071	0.00042	0.0001	0	0	0	
Areas in Pastrana, Ley	Affectec	Cabaohan	0.42	0.11	0.037	0.0069	0	0	
Table 66. Affected		Bahay	1.77	0.7	0.92	0.94	0.47	0.0011	
		Aringit	0.89	0.43	0.75	0.87	0.28	0.0001	
	Area (so km )	depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
	Affactad	by flood		) LG9	A b: .my	ecte. sq.	) )		

Ō
<u> </u>
. [
e a
Ц
님
5
~
. e
F
·Ξ
e l
Ř
ъ.
g
e
$\sim$
ìÒ
2
` <b>b</b> 0
gu
Ľ.
1
2
Ъ
(۱)
~
Ĕ
syti
Leyt
, Leyt
a, Leyt
na, Leyt
ana, Leyt
trana, Leyt
strana, Leyt
astrana, Leyt
Pastrana, Leyt
n Pastrana, Leyt
in Pastrana, Leyt
is in Pastrana, Leyt
eas in Pastrana, Leyt
reas in Pastrana, Leyt
Areas in Pastrana, Leyt
l Areas in Pastrana, Leyt
d Areas in Pastrana, Leyt
ted Areas in Pastrana, Leyt
cted Areas in Pastrana, Leyt
ected Areas in Pastrana, Leyt
ffected Areas in Pastrana, Leyt
Affected Areas in Pastrana, Leyt
. Affected Areas in Pastrana, Leyt
7. Affected Areas in Pastrana, Leyt
67. Affected Areas in Pastrana, Leyt
e 67. Affected Areas in Pastrana, Leyt
ole 67. Affected Areas in Pastrana, Leyt
able 67. Affected Areas in Pastrana, Leyt
Lable 67. Affected Areas in Pastrana, Leyt

Affected Barangays in Pastrana (in sq. km.)           Affected Barangays in Pastrana (in sq. km.)           by flood depth (in m.)         Lanawan         Lourdes         Macalpiay         Manaybanay         Maricum         Sapsap         Tingib         Yap:           0.03-0.20         2.61         2.02         1.16         0.81         1.48         0.44         1.47         1.5           0.03-0.20         0.88         0.39         0.41         0.23         0.21         0.36         1.47         1.2           0.21-0.50         0.88         0.39         0.41         0.23         0.53         0.36         1.0           0.51-1.00         0.17         0.49         0.44         0.054         0.01         0.36         1.0           0.51-1.00         0.018         0.496         0.44         0.001         0.36         0.36         1.0           1.01-2.00         0.0018         0.466         0.44         0.01         0.36         0.34         1.0           2.01-5.00         0         0         0.01         0.054         0.01         0.34         0.1 $         2.01-5.00         0         0.16         0.16         0.0         0.34 $										
by flood depth (in m.)         Lanawan         Lourdes         Macalpiay         Manaybanay         Maricum         Sapsap         Tingib         Yapa           by flood depth (in m.)         Lanawan         Lourdes         Macalpiay         Maricum         Sapsap         Tingib         Yapa           0.03-0.20         2.61         2.02         1.16         0.81         1.48         0.44         1.47         1.2           0.03-0.20         0.88         0.39         0.41         0.23         0.21         0.37         1.2           0.21-0.50         0.88         0.39         0.44         0.23         0.21         0.37         1.2           0.51-1.00         0.17         0.49         0.44         0.054         0.01         0.36         1.0           0.51-1.00         0.17         0.49         0.44         0.054         0.01         0.36         1.0           0.51-1.00         0.17         0.49         0.44         0.054         0.01         0.36         1.0           1.01-2.00         0.018         0.44         0.021         0.28         0.34         1.0           2.01-5.00         0         0         0.014         0.01         0.01         0.	Affected	Area (so km )			Affecte	ed Barangays in Pa	strana (in sq. km	(.		
Rotation         0.03-0.20         2.61         2.02         1.16         0.81         1.48         0.44         1.47         1.5           Rotation         0.03-0.20         0.88         0.39         0.41         0.23         0.21         0.37         1.2           Rotation         0.21-0.50         0.88         0.39         0.41         0.23         0.21         0.37         1.2           Rotation         0.17         0.49         0.44         0.054         0.01         0.36         1.0           Rotation         0.11         0.49         0.44         0.054         0.01         0.36         1.0           Rotation         0.11-2.00         0.018         0.46         0.42         0.004         0         0.36         1.0           Rotation         0.015         0.32         0.16         0.016         0.34         0.1           Rotation         0.016         0.016         0.015         0.039         0.34         0.1           Rotation         0.015         0.015         0.015         0.01         0.039         0.1         0.0	by floo	d depth (in m.)	Lanawan	Lourdes	Macalpiay	Manaybanay	Maricum	Sapsap	Tingib	Yapad
Ref edge (0.21-0.50)         0.23         0.63         0.37         1.2           0.21-0.50         0.88         0.39         0.41         0.23         0.37         1.0           1.01         0.01         0.17         0.49         0.44         0.054         0.36         0.36         1.0           1.01-2.00         0.018         0.46         0.42         0.004         0         0         1.0           2.01-5.00         0.0018         0.42         0.0004         0         0         0.34         1.0           2.01-5.00         0.014         0.16         0.16         0.16         0.34         0.1           >5.00         0         0.014         0.015         0.15         0.14         0.14         0.14		0.03-0.20	2.61	2.02	1.16	0.81	1.48	0.44	1.47	1.55
Action         0.51-1.00         0.17         0.49         0.44         0.054         0.36         0.36         1.0           Image: Control of the state         0.12.00         0.018         0.42         0.004         0.36         0.34         1.0           Image: Control of the state         0.016         0.42         0.0004         0         0.28         0.34         1.0           Image: Control of the state         0.32         0.16         0         0         0         0.34         1.0           Image: Control of the state         0.16         0.16         0         0         0         0.34         1.0           Image: Control of the state         0.16         0         0         0         0         0         0         0           Image: Control of the state         0.014         0.015         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	) LGg	0.21-0.50	0.88	0.39	0.41	0.23	0.53	0.21	0.37	1.23
State         1.01-2.00         0.0018         0.46         0.42         0.0004         0         0.28         0.34         1.0           State         2.01-5.00         0         0.32         0.16         0         0         0         0.34         1.0           State         0         0.32         0.16         0         0         0         0.34         0.1           State         0         0.32         0.16         0         0         0         0.34         0.1           State         0.32         0.16         0         0         0         0         0.34         0.1	A b؛ ۲۳۰	0.51-1.00	0.17	0.49	0.44	0.054	0.01	0.36	0.36	1.09
▼         2.01-5.00         0         0.32         0.16         0         0         0.34         0.1           >5.00         0         0.014         0.015         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	.ps	1.01-2.00	0.0018	0.46	0.42	0.0004	0	0.28	0.34	1.06
>5.00         0         0.014         0.015         0         0         0         0.039         0	) ЭНА )	2.01-5.00	0	0.32	0.16	0	0	0.0057	0.34	0.15
		> 5.00	0	0.014	0.015	0	0	0	0:039	0



Figure 108. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period



Figure 109. Affected Areas in Pastrana, Leyte during 25-Year Rainfall Return Period

For the municipality of Tabontabon, with an area of 20.46 sq. km., 26.87% will experience flood levels of less 0.20 meters. 9.40% of the area will experience flood levels of 0.21 to 0.50 meters while 3.92%, 3.92%, 1.00%, and 0.035% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 68 are the affected areas in square kilometres by flood depth per barangay.

Affecte	d Area (sq.		Affeo	ted Baranga	ys in Tabonta	bon (in sq	. km.)	
by floo	km.) d depth (in m.)	Belisong	Cambucao	Capahuan	Guingawan	Jabong	Mercadohay	Mering
	0.03-0.20	1.21	0.65	0.67	1	0.83	0.96	0.19
rea (	0.21-0.50	0.5	0.22	0.11	0.26	0.39	0.37	0.063
km.	0.51-1.00	0.074	0.041	0.088	0.22	0.26	0.077	0.035
ecte sq.	1.01-2.00	0.00034	0.014	0.02	0.16	0.005	0	0.0003
) )	2.01-5.00	0	0	0	0.0071	0	0	0
	> 5.00	0	0	0	0	0	0	0

Table 68. Affected Areas in Tabontabon, Leyte during 25-Year Rainfall Return Period



Figure 110. Affected Areas in Tabontabon, Leyte during 25-Year Rainfall Return

For the municipality of Tanauan, with an area of 62.78 sq. km., 32.93% will experience flood levels of less 0.20 meters. 12.80% of the area will experience flood levels of 0.21 to 0.50 meters while 8.37%, 5.91%, 0.59%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 69 are the affected areas in square kilometres by flood depth per barangay.

		Buntay	0.13	0.067	0.0059	0	0	0
		Binongto-An	1.15	0.26	0.44	0.68	0.13	0.0031
		Binolo	0.31	0.17	0.029	0.0002	0	0
ıfall Return Period	n (in sq. km.)	Baras	0.66	0.21	0.16	0.012	0	0
during 25-Year Rair	angays in Tanauar	Bantagan	0.39	0.072	0.021	0.0027	0	0
in Tanauan, Leyte	Affected Bar	Bangon	0.92	0.34	0.04	0.00028	0	0
59. Affected Areas		Balud	0.7	0.26	0.2	0.042	0.0052	0.025
Table (		Atipolo	0.31	0.16	0.045	0.0013	0	0
		Amanluran	0.29	0.054	0.0014	0	0	0
	ed Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
	Affecte	by floo		) LGg	A b: .my	ecte. sd.	) ЭНА )	

_

Table 70. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

km.)         km.) </th <th>Affecte</th> <th>ed Area (sq.</th> <th></th> <th></th> <th></th> <th>Affected Barangay:</th> <th>s in Tanauan (in</th> <th>sq. km.)</th> <th></th> <th></th> <th></th>	Affecte	ed Area (sq.				Affected Barangay:	s in Tanauan (in	sq. km.)			
0.03-0.20         0.38         1.12         0.39         0.46         0.041         0.18         0.4           0.03-0.20         0.45         0.34         0.25         0.037         0.18         0.4           0.21-0.50         0.45         0.4         0.25         0.087         0.17         0.044         0.37         0.15           0.21-1.00         0.65         0.45         0.15         0.16         0.074         0.27         0.037         0.15           0.21-1.00         0.65         0.45         0.15         0.16         0.16         0.15         0.15           101-2.00         0.65         0.45         0.16         0.16         0.0078         0.0078         0.083           101-2.00         0.32         0.87         0.087         0.0055         0         0         0         0           2.01-5.00         0.025         0.0078         0.0078         0.0078         0         0         0         0           >5.00         0.01         0.01         0         0         0         0         0         0         0	by floo	km.) od depth (in m.)	Cabalagnan	Cabarasan Guti	Cabuynan	Cahumayhumayan	Calogcog	Calsadahay	Camire	Canramos	Catigbian
Relative in the integration         0.13         0.044         0.02         0.037         0.15           0.21-0.50         0.45         0.45         0.25         0.0078         0.037         0.15           0.51-1.00         0.65         0.45         0.15         0.16         0.025         0.0078         0.0038         0.083           1.01-2.00         0.32         0.87         0.087         0.0055         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0.03-0.20	0.52	0.38	1.12	0.39	0.46	0.074	0.41	0.18	0.4
Aff         0.51-1.00         0.45         0.15         0.16         0.025         0.0078         0.003         0.083         0.033           1.01-2.00         0.32         0.87         0.068         0.087         0.0075         0.0078         0.033           2.01-5.00         0.0025         0.0075         0.0075         0         0         0         0           >5.00         0.01         0         0         0         0         0         0         0         0           >5.00         0.01         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	) LGg	0.21-0.50	0.45	0.4	0.25	0.087	0.17	0.044	0.22	0.037	0.15
Affect         0.012         0.087         0.0085         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	A b .my	0.51-1.00	0.65	0.45	0.15	0.16	0.025	0.0078	0.07	0.00078	0.083
Image: Constrained by the second system of the se	ecte.	1.01-2.00	0.32	0.87	0.068	0.087	0.00055	0	0	0	0.009
>5.00     0.01     0     0     0     0     0	) ЭНА )	2.01-5.00	0.0022	0.0025	0	0.021	0	0	0	0	0.0041
	_	> 5.00	0.01	0	0	0	0	0	0	0	0

	Maghulod	0.41	0.13	0.01	0.0003	0	0
	Magay	0.18	0.068	0.0025	0.0002	0	0
I. km.)	Licod	0.052	0.02	0.0044	0	0	0
in Tanauan (in so	Lapay	0.71	0.13	0.12	0.053	0	0
ected Barangays	Kiling	0.83	0.44	0.45	0.11	0.029	0.019
Aff	Hilagpad	0.49	0.21	600.0	0	0	0
	Guingawan	0.4	0.064	0.023	0.025	0.055	0
	Guindag-An	0.71	0.27	0.47	0.72	0.016	0.0079
ed Area (sq.	km.) od depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo		) LGg	A b: .my	ecte.	) ЭНА )	

Table 71. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

Table 72. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

118

Affecte	ed Area (sq.			Afi	ected Barangays	in Tanauan (in sq	. km.)		
by floo	km.) od depth (in m.)	Malaguicay	Maribi	Mohon	Pago	Pasil	Sacme	Salvador	San Isidro
	0.03-0.20	0.25	0.35	0.34	0.63	0.21	0.017	1.03	0.41
) LGg	0.21-0.50	0.11	0.23	0.11	0.36	0.13	0.0022	0.32	0.33
A b: km.	0.51-1.00	0.077	0.18	0.015	0.15	0.095	0.0005	0.095	0.43
ecte. sq.	1.01-2.00	0.006	0.049	0.0006	0.023	0.00035	0	0.033	0.48
о <del>П</del> А )	2.01-5.00	0	0	0	0.0002	0	0	0.0002	0.019
	> 5.00	0	0	0	0	0	0	0	0

Table 73. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

Affected Barangays in Tanauan (in sq. km.)	Santa Cruz Santa Elena Santo Niño Solano Talolora Tugop	0.78 0.23 1.08 0.19 1.04 0.75	0.25 0.038 0.37 0.1 0.34 0.33	0.071 0.068 0.14 0.011 0.042 0.12	0.00095 0.086 0.015 0 0 0.054	0 0.089 0 0 0 0 0 0	
Ā	San Roque Santa Cruz	0.41 0.78	0.12 0.25	0.025 0.071	0.002 0.00095	0 0	0 0
	San Miguel Sa	0.39	0.17	0.098	0.011	0.0001	0
ted Area (sq.	km.) od depth (in s m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo		) LG9	A b: .my	ecte.	) ЭНА )	



Figure 111. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period



Figure 112. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period



Figure 113. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period



Figure 114. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 115. Affected Areas in Tanauan, Leyte during 25-Year Rainfall Return Period

For the 100-year return period, 0.003% of the municipality of Burauen with an area of 205.31 sq. km. will experience flood levels of 0.21 to 0.50 meters while 0.011%, 0.0012% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters. Listed in Table 74 are the affected areas in square kilometres by flood depth per barangay.

Table 74. Affected Areas in Burauen, Leyte during 100-Year Rainfall Return Period

Affecte	d Area (sg. km.)	Affected Ba	rangays in Buraue	n (in sq. km.)
by floo	od depth (in m.)	Buri	Cadahunan	Tambis
	0.03-0.20	0.044	0.11	0.019
rea )	0.21-0.50	0.0038	0.0019	0
km.	0.51-1.00	0.021	0.0019	0
ecte sq.	1.01-2.00	0.00093	0.0016	0
Aff( )	2.01-5.00	0	0	0
	> 5.00	0	0	0



Figure 116. Affected Areas in Burauen, Leyte during 100-Year Rainfall Return Period

For the municipality of Dagami, with an area of 134.08 sq. km., 21.99% will experience flood levels of less 0.20 meters. 6.50% of the area will experience flood levels of 0.21 to 0.50 meters while 8.61%, 9.86%, 5.07%, and 0.28% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 75 are the affected areas in square kilometres by flood depth per barangay.

1.29 0. 0.39 0	017 048 .34	0.04 0.055 0.2 0.56	0.041 0.017 0.034 0.27	Banayon 1.53 0.78 0.63 0.57	Bayabas 0.86 0.42 0.094 0.0044	<b>Bolirao</b> 0.55 0.4 0.12 0.0005	Buenavista 0.27 0.028 0.015 0.013	Buntay 0.2 0.19 0.45 0.59	Caanislagan 0.4 0.075 0.029 0.049
0.017 0	.39	0.064	0.8	0.18	0	0	0.017	1.07	0.052
0	0	0.0019	0.0008	0	0	0	0.001	0	0.0024
0.017 0		0.56	0.27	0.57		0 0 0		0.0044         0.0005         0.013           0         0         0         0.017           0         0         0         0.017           0         0         0         0.0017	0.0044         0.0005         0.013         0.59           0         0         0         0         0.59           0         0         0         0         1.07           0         0         0         0         0

Table 75. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period

Period
Return
Rainfall
0-Year
during l(
i, Leyte (
Dagami
Areas in
Affected .
Table 76. 1

	a Canlingga	0.001	0.00058	0.001	0.019	0.4	0.00018	
	Candagar	0.00002	0	0	0	0	0	
	Camono-An	66.0	0.033	0.021	0.019	0.018	0.0063	
	Calutan	0.56	0.25	0.22	0.13	0.0001	0	
n sq. km.)	Caluctogan	0.074	0.17	0.83	0.56	0.046	0	
ys in Dagami (i	Calsadahay	0.35	0.2	0.26	0.28	0.075	0	
cted Baranga	Calipayan	1.06	0.051	0.05	0.1	0.2	0.0052	
Affec	Cabunga-An	1.63	0.23	0.19	0.2	0.039	0.00015	
	Cabuloran	0.64	0.19	0.13	0.14	0.0071	0	
	Cabariwan	0.17	0.084	0.083	0.059	0.0026	0	
d Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
Affecte	by floo		) LGg	A b: .my	sd.	) )		

		Hinologan Hi	0.52	0.32	0.27	0.053	0.008	0
		Hinabuyan	0.17	0.39	1.24	0.93	0.042	0.0002
turn Period		Hilabago	0.63	0.073	0.13	0.25	0.18	0.0024
∕ear Rainfall Ret	ł. km.)	Hiabangan	0.7	0.053	0.079	0.41	0.28	0.0011
yte during 100-3	n Dagami (in so	Guinarona	0.39	0.25	0.096	0.025	0.0057	0
77. Affected Areas in Dagami, L	ed Barangays ir	Digahongan	0.19	0.1	0.11	0.19	0.079	0.024
	Affect	Capulhan	0.22	0.06	0.061	0.099	0.13	0.016
Table		Cansamada West	0.21	0.14	0.24	0.29	0.049	0.036
		mada st	.67	0.29	0.36	0.37	0.15	0.061
		Cansal Ea	0					
	d Area (sq.	km.) d depth (in Cansa m.) Ea	0.03-0.20 0	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 78. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period

	Palacio	1.38	0.27	0.52	0.59	0.44	0.0005
	Ormocay	0.19	0.048	0.029	0.0016	0	0
	Maragondong	0.53	0.08	0.22	0.29	0.17	0.025
	Maliwaliw	1.77	0.65	0.32	0.11	0.0018	0
n sq. km.)	Macaalang	0.73	0.033	0.021	0.021	0.022	0.00075
s in Dagami (ir	Lusad Poblacion	0.001	0.013	0.027	0.0058	0.023	0
ted Barangay	Los Martires	0.16	0.13	0.19	0.17	0.077	0.028
Affec	Lobe-Lobe East	0.41	0.13	0.071	0.0078	0	0
	Lapu-lapu Poblacion	0.026	0.014	0.024	0.023	0.01	0
	Katipunan	3.06	0.16	0.096	0.099	0.11	0.0057
d Area (sq.	cm.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by flood		) LGg	A b: .my	ecte. sd.	) )	

	9         0.033         0.09         0.25         0.01	0.027 0.076 0.039 0.043	0.037 0.051 0.02 0.072	0.06 0.079 0 0.000	0.0037 0.013 0 0
TO:0   TC:T   +T'T   +TO	9         0.033         0.09         0.25	0.027 0.076 0.039	0.037 0.051 0.02	0.06 0.079 0	0.0037 0.013 0
TC'T +T'T +T'T	9 0.033 0.09	0.027 0.076	0.037 0.051	0.06 0.079	0.0037 0.013
014 I 1.14	9 0.033	0.027	0.037	0.06	0.0037
014	6				
5	0.035	0.24	0.73	0.15	0
cz.U	0.1	0.1	0.18	0.12	0.04
т.лт	0.13	0.082	0.078	0.024	0
т.0	0.03	0.12	0.4	0.12	0.0018
NZ.U-CU.U	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
		0.03 0.20         0.1         1.31         0.23           0.21-0.50         0.03         0.13         0.1	$ \underbrace{\underbrace{\xi}}{\underline{\xi}} 0.51-1.00 0.12 0.12 0.13 0.11 0.12 0.13 0.11 $	0.03         0.04         0.14         0.13         0.01           0.21-0.50         0.03         0.13         0.1           0.5         0.51-1.00         0.12         0.082         0.1           0.1         0.12         0.078         0.18	E         0.21-0.50         0.1         1.21         0.23           0.21-0.50         0.03         0.13         0.1           0.51-1.00         0.12         0.082         0.1           i         1.01-2.00         0.4         0.078         0.18           2.01-5.00         0.12         0.024         0.12

Table 79. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period

ğ
ц.
5L
Ā
Ц
E I
3
ē
$\simeq$
П
fa
q
ai
Ľ
Ч
g
Ye
2
S
Ц
60
.9
Ξ.
1
.0
Ę
∑,
Ľ
D.
ar
60
Ja
$\square$
Ц
2.
g
re
Ā
ĕ
Ct .
ĕ
Æ
A
Ö.
ŏ
e
5
9
Г

	Tin-Ao	0.056	0.071	0.29	0.69	0.14	0.0001	
	Talinhugon	0.081	0.05	0.087	0.14	0.057	0.0016	
	Tagkip	0.33	0.2	0.35	0.58	0.28	0.041	
	Sta. Mesa Poblacion	0.0015	0.0051	0.024	0.094	0.0031	0	
n sq. km.)	Sirab	0.066	0.058	0.16	0.21	0.063	0.048	
's in Dagami (i	Sawahon	0.48	0.031	0.1	0.37	0.11	0	
cted Barangay	Santo Domingo	0.71	0.15	0.059	0.037	0.054	0	
Affe	San Roque Poblacion	0.032	0.0066	0.0084	0.0049	0.0092	0.0033	
	San Jose Poblacion	0.0075	0.0082	0.024	0.015	0.012	0.0085	
	San Benito	0.053	0.09	0.27	0.41	0.075	0.0001	
od Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
Affecte	by floo		) LGg	A b: .my	ecte sq.	) )		

126

A ffe ete		Affected Ba	irangays in Buraue	n (in sq. km.)
by floo	od depth (in m.)	Tunga Poblacion	Тиуа	Victoria
	0.03-0.20	0.0074	0.17	0.0056
rea )	0.21-0.50	0.0059	0.15	0.01
km.	0.51-1.00	0.0041	0.29	0.15
ecte sq.	1.01-2.00	0.0035	0.038	0.54
) )	2.01-5.00	0.0053	0.0001	0.22
	> 5.00	0	0	0.0001

Table 81. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 117. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 118. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 119. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 120. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 121. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 122. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period



Figure 123. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period

For the municipality of Jaro, with an area of 190.65 sq. km., 0.075% will experience flood levels of less 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters while 0.013%, 0.004%, 0.0026%, and 0.0004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 82 are the affected areas in square kilometres by flood depth per barangay.

Affecte	ed Area (sq. km.)	Affected Barangays in Dagami (in sq. km.)
by floo	od depth (in m.)	Parasan
	0.03-0.20	0.14
rrea )	0.21-0.50	0.056
km.	0.51-1.00	0.024
ecte sq.	1.01-2.00	0.0074
) )	2.01-5.00	0.0049
	> 5.00	0.0008

Table 82. Affected Areas in Jaro, Leyte during 100-Year Rainfall Return Period



Figure 124. Affected Areas in Dagami, Leyte during 100-Year Rainfall Return Period

For the municipality of Palo, with an area of 65.34 sq. km., 29.83% will experience flood levels of less 0.20 meters. 18.11% of the area will experience flood levels of 0.21 to 0.50 meters while 11.38%, 6.78%, 1.17%, and 0.156% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 83 are the affected areas in square kilometres by flood depth per barangay.

	irawan Castil	36 2.08	35 0.73	0.17	0067 0.005	0 0.000	0 0
	anhidoc Capi	0.66 1	0.46 1	0.52 0	0.17 0.0	0	0
in Palo (in sq. km.)	Cangumbang	0.77	1.38	1.4	1.56	0.33	0
Affected Barangays	Cabarasan Guti	0.19	0.12	0.31	0.58	0.1	0.078
	Cabarasan Daku	1.51	1.15	0.51	0.067	0	0
	Arado	0.49	0.18	0.026	6000.0	0	0
	Anahaway	1.06	0.26	0.031	0.0002	0	0
ed Area (sq.	km.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by floo		) LG9	A b։ Մահ	ecte. sd.	) ЭНА )	

Table 83. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period

Table 84. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period

Affecte	ed Area (sq.			Affec	cted Barangay	s in Palo (in so	q. km.)		
by floo	km.) •d depth (in m.)	Cavite East	Cavite West	Cogon	Gacao	Libertad	Naga-Naga	Salvacion	San Agustin
	0.03-0.20	0.076	0.1	0.35	1.86	0.0091	0.042	0.1	1.43
) גפש	0.21-0.50	0.022	0.06	0.2	1.11	0.0069	0.011	0.032	0.95
A b: MM	0.51-1.00	0.0034	0.0034	0.19	0.46	0.0018	0.017	0.0052	0.43
ecte sd.	1.01-2.00	4.4E-07	0	0.028	0.044	0	0.0067	0.0011	0.037
) )	2.01-5.00	0	0	0	0.0003	0	0	0	0.00017
	> 5.00	0	0	0	0	0	0	0	0
Table 85. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period

Affecte	d Area (sq.			Affected Ba	arangays in Palo (in	sq. km.)		
by floo	km.) d depth (in m.)	San Agustin	San Antonio	San Isidro	San Joaquin	Santa Cruz	Tacuranga	Teraza
	0.03-0.20	1.43	0.094	1.87	3.21	0.061	0.49	1.68
) LGg	0.21-0.50	0.95	0.26	0.93	1.54	0.025	0.21	0.85
A b: .my	0.51-1.00	0.43	0.76	0.19	1.83	0.03	0.23	0.065
ecte.	1.01-2.00	0.037	0.56	0.0086	1.27	0.015	0.067	0
) ЭНА Э	2.01-5.00	0.00017	0.00044	0	0.33	0	0.0029	0
	> 5.00	0	0	0	0.025	0	0	0



Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)





Figure 126. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period



Figure 127. Affected Areas in Palo, Leyte during 100-Year Rainfall Return Period

For the municipality of Pastrana, with an area of 79.17 sq. km., 19.08% will experience flood levels of less 0.20 meters. 9.93% of the area will experience flood levels of 0.21 to 0.50 meters while 8.27%, 7.53%, 2.88%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to meters, and more than 5 meters, respectively. Listed in Table 86 are the affected areas in square kilometres by flood depth per barangay.

Affortor	(mq colory )			Affecte	d Barangays in Pa	astrana (in sq. km	(.		
by floo	d depth (in m.)	Aringit	Bahay	Cabaohan	Cancaraja	Caninoan	Capilla	Colawen	Dumarag
	0.03-0.20	0.69	1.45	0.37	0.007	0.68	0.3	1.29	0.61
) LGg	0.21-0.50	0.38	0.62	0.14	0.00052	0.33	0.19	0.98	0.67
A b: .my	0.51-1.00	0.73	0.95	0.049	0.0001	0.32	0.37	0.39	0.22
ecte. sd.	1.01-2.00	1.02	1.18	0.015	0	0.089	0.31	0.034	0.096
) )	2.01-5.00	0.4	0.6	0.001	0	0.0017	0.014	0.0039	0.00023
	> 5.00	0.0001	0.0017	0	0	0	0	0	0

Table 86. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period

Table 87. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period

Riced Aced (sy. Kii), flood depth (in m.)         Lanawan           0.03-0.20         2.23           0.21-0.50         1.05           0.51-1.00         0.37           sig         1.01-2.00         0.013           2.01-5.00         0         0	Lourdes 1.85 0.37 0.48 0.48 0.58 0.38	Affecte Macalpiay 1.02 0.4 0.44 0.53 0.53	ad Barangays in Pe Manaybanay 0.63 0.34 0.12 0.0056 0	astrana (in sq. km Maricum 1.24 0.73 0.045 0 0	<ul> <li>Apsap</li> <li>Sapsap</li> <li>0.34</li> <li>0.34</li> <li>0.19</li> <li>0.27</li> <li>0.27</li> <li>0.48</li> <li>0.013</li> </ul>	<b>Tingib</b> 1.31 0.37 0.38 0.41 0.38	Yapad 1.08 1.09 1.43 1.21 0.28
0 0	0.028	0.022	D	D	D	000	D



Figure 128. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period



Figure 129. Affected Areas in Pastrana, Leyte during 100-Year Rainfall Return Period

For the municipality of Tabontabon, with an area of 20.46 sq. km., 21.53% will experience flood levels of less 0.20 meters. 10.25% of the area will experience flood levels of 0.21 to 0.50 meters while 5.44%, 3.09%, 0.91% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 88 are the affected areas in square kilometres by flood depth per barangay.

Affecte	d Area (sq.		Affe	ted Baranga	ys in Tabonta	bon (in sq.	. km.)	
by floo	km.) d depth (in m.)	Belisong	Cambucao	Capahuan	Guingawan	Jabong	Mercadohay	Mering
	0.03-0.20	0.99	0.57	0.6	0.57	0.68	0.83	0.16
rea (	0.21-0.50	0.6	0.26	0.13	0.2	0.41	0.44	0.061
km.	0.51-1.00	0.19	0.076	0.1	0.2	0.37	0.13	0.05
ecte sq.	1.01-2.00	0.011	0.017	0.055	0.5	0.024	0.0002	0.026
) Aff	2.01-5.00	0	0	0.0001	0.19	0	0	0
	> 5.00	0	0	0	0	0	0	0

Table 88. Affected Areas in Tabontabon, Leyte during 100-Year Rainfall Return Period



Figure 130. Affected Areas in Tabontabon, Leyte during 100-Year Rainfall Return Period

For the municipality of Tanauan, with an area of 62.78 sq. km., 25.07% will experience flood levels of less 0.20 meters. 12.76% of the area will experience flood levels of 0.21 to 0.50 meters while 11.38%, 10.10%, 1.21%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 89 are the affected areas in square kilometres by flood depth per barangay.

Area (sq.       Table 89. I         Area (sq.       Amanluran       Atipolo         .)       Amanluran       0.12         .)       0.03-0.20       0.26       0.12         .0.10       0.073       0.085       1         0.51-1.00       0.0095       0.18       1         0.11-2.00       0       0       0       1         2.01-5.00       0       0       0       1       1         2.5.00       0       0       0       0       1	Table 89. J       Amanluran     Atipolo       0.26     0.12       0.26     0.12       0.073     0.085       0.0095     0.14       0     0       0     0       0     0	able 89. /	Affected Area Balud 0.4 0.21 0.33 0.33 0.25 0.0061	s in Tanauar Affec Bang 0.8 0.07 0.00 0 0	n, Leyte on on 2 3 3 3 17	<ul> <li>n. Leyte during 100-Year Rai</li> <li>ted Barangays in Tanaua</li> <li>on Bantagan</li> <li>0.36</li> <li>0.092</li> <li>30.032</li> <li>1700.071</li> <li>0</li> </ul>	h. Leyte during 100-Year Rainfall Return Period         ted Barangays in Tanauan (in sq. km.)         on       Bantagan         Bantagan       Baras         on       Bantagan       Baras         c       0.36       0.5         2       0.092       0.17         3       0.032       0.26         17       0.0071       0.11         0       0       0	h. Leyte during 100-Year Rainfall Return Period         ted Barangays in Tanauan (in sq. km.)         on       Bantagan       Baras       Binolo         o       0.36       0.5       0.24         2       0.092       0.17       0.19         3       0.032       0.26       0.075         17       0.0071       0.11       0.0004         17       0       0       0         0       0       0       0       0	Affected Areas in Tanauar	Affec	Balud Bang	0.4 0.8	0.21 0.4	0.33 0.07	0.25 0.00	0.0061 0	0.025 0
Area (sq.       h.)       depth (in       depth (in       J)       0.03-0.20       0.026       0.073       0.21-0.50       0.073       0.51-1.00       0.0095       1.01-2.00       0       2.01-5.00       0	Amanluran 0.26 0.073 0.0095 0 0 0	Atipol 0.12 0.085 0.085 0.14	able 89. Affe	scted Area 3alud 0.4 0.21 0.33 0.33 0.25 0.061	scted Areas in Tanauan, Leyte Affected Bar alud Bangon 0.4 0.8 0.21 0.42 0.33 0.073 0.25 0.0017 0.051 0	:cted Areas in Tanauan, Leyte during 100-Year Rai         Affected Barangays in Tanaua         Bangon       Bantagan         0.4       0.8       0.36         0.4       0.8       0.36         0.21       0.42       0.092         0.33       0.073       0.032         0.25       0.0017       0.0071         .0061       0       0         .025       0       0	cted Areas in Tanauan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)         Bangon       Bantagan       Baras         0.4       0.8       0.36       0.5         0.4       0.8       0.36       0.5         0.21       0.42       0.092       0.17         0.33       0.073       0.032       0.17         0.33       0.0017       0.017       0.11         0.061       0       0       0       0         0.025       0       0       0       0	cted Areas in Tanauan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)         Binolo         Binolo         Bangon       Bantagan       Baras       Binolo         0.4       0.8       0.36       0.5       0.24         0.4       0.8       0.36       0.17       0.19         0.21       0.42       0.092       0.17       0.19         0.33       0.073       0.032       0.26       0.075         0.25       0.0017       0.011       0.11       0.0004         0.061       0       0       0       0       0	Table 89. Affe		Atipolo	0.12	0.085	0.18	0.14	0 0	0 0
Area (sq. h.) depth (in .) 0.03-0.20 0.21-0.50 0.51-1.00 0.51-1.00 0.51-5.00 2.01-5.00		Amanluran         0.26           0.073         0.073           0         0	Atipo 0.12 0.08' 0.18 0.14 0	Table 89. Affected Area       Atipolo     Balud       0.12     0.4       0.12     0.4       0.085     0.21       0.18     0.33       0.14     0.33       0.14     0.25       0     0.025	Table 89. Affected Areas in Tanauan, Leyte       Affected Bau       Atipolo     Balud     Bangon       0.12     0.4     0.8       0.12     0.4     0.8       0.12     0.21     0.42       0.18     0.21     0.42       0.14     0.33     0.073       0.14     0.25     0.0017       0     0.0061     0	Table 89. Affected Areas in Tanauan, Leyte during 100-Year Rat         Affected Barangays in Tanaua         Atipolo       Balud       Bangon       Bantagan         0.12       0.4       0.8       0.36         0.12       0.4       0.8       0.36         0.12       0.4       0.42       0.092         0.18       0.33       0.073       0.092         0.14       0.25       0.0017       0.0071         0       0.0061       0       0       0	Table 89. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Atipolo       Balud       Bangon       Bantagan       Baras         0.12       0.4       0.8       0.36       0.5         0.12       0.4       0.8       0.36       0.5         0.12       0.4       0.8       0.36       0.5         0.12       0.42       0.36       0.5       0.17         0.18       0.21       0.42       0.092       0.17         0.14       0.25       0.0017       0.026       0.17         0       0.061       0       0       0       0       0	Table 89. Affected Areas in Tanuan, Leyte during 100-Year Rainfall Return Period         Affected Areas in Tanuan (in sq. km.)         Atipolo       Balud       Bangon       Bantagan       Baras       Binolo         0.12       0.4       0.8       0.36       0.5       0.24         0.12       0.4       0.8       0.36       0.17       0.19         0.12       0.21       0.42       0.092       0.17       0.19         0.18       0.33       0.073       0.032       0.17       0.19         0.14       0.25       0.0017       0.0071       0.11       0.004         0       0.0061       0       0       0       0       0       0			Amanluran	0.26	0.073	0.0095	0	0	0
	rea (sq. ) bpth (in 03-0.20 21-0.50 51-1.00 01-2.00 01-5.00		Amanluran     Atipo       0.26     0.12       0.073     0.08!       0.073     0.08!       0.0095     0.18       0     0       0     0	Table 89. Affected Area       Amanluran     Atipolo     Balud       0.26     0.12     0.4       0.26     0.12     0.4       0.073     0.085     0.21       0.0095     0.18     0.33       0     0.14     0.25       0     0     0       0     0     0	Table 89. Affected Areas in Tanauan, Leyte         Affected Areas in Tanauan, Leyte         Amanluran       Atipolo       Balud       Bangon         0.26       0.12       0.4       0.8         0.26       0.12       0.4       0.8         0.073       0.085       0.21       0.42         0.073       0.085       0.21       0.42         0.0095       0.14       0.33       0.073         0       0.14       0.25       0.0017         0       0       0.0061       0       0         0       0       0.025       0       0	Table 89. Affected Areas in Tanuan, Leyte during 100-Year Rat         Affected Areas in Tanuan, Leyte during 100-Year Rat         Amanluran       Atipolo       Balud       Bangon       Bantagan         0.26       0.12       0.4       0.8       0.36         0.26       0.12       0.4       0.8       0.36         0.073       0.085       0.21       0.42       0.092         0.0095       0.18       0.33       0.073       0.092         0       0.14       0.25       0.017       0.032         0       0       0.0061       0       0       0         0       0       0.025       0       0       0	Table 89. Affected Areas in Tanuan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Amanluran       Atipolo       Balud       Bangon       Bantagan       Baras         0.26       0.12       0.4       0.8       0.36       0.5         0.073       0.085       0.4       0.36       0.17       0.5         0.073       0.085       0.21       0.42       0.092       0.17         0.0055       0.18       0.23       0.073       0.026       0.17         0       0.14       0.25       0.017       0.032       0.26         0       0       0       0.0017       0.017       0.11         0       0       0       0       0       0       0	Table 89. Affected Areas in Tanuan, Leyte during 100-Year Rainfall Return Period         Affected Areas in Tanuan, Leyte during 100-Year Rainfall Return Period         Amanluran       Atipolo       Balud       Bangon       Bantagan       Baras       Binolo         0.26       0.12       0.4       0.8       0.36       0.5       0.24         0.26       0.12       0.4       0.8       0.36       0.5       0.24         0.073       0.085       0.21       0.42       0.092       0.17       0.19         0.0095       0.18       0.23       0.017       0.032       0.17       0.19         0       0.14       0.25       0.0017       0.032       0.266       0.075         0       0       0       0.0017       0.0017       0.017       0.017       0.016		ected Area (sq.	km.) flood depth (in m.)	0.03-0.20	0.21-0.50	ξ 0.51-1.00	<b>ຜ່</b> 1.01-2.00	2.01-5.00	> 5.00
		.) .) epth (in ) .03-0.20 .03-0.20 .21-0.50 .21-1.00 .21-2.00 .01-5.00	Area (sq.     Amanluran     Atipo       .)     Amanluran     Atipo       .03-0.20     0.26     0.12       .03-0.20     0.073     0.08!       .21-0.50     0.073     0.08!       .51-1.00     0.0095     0.14       .01-5.00     0     0       .5.00     0     0     0	Table 89. Affected Area       trea (sq.     Table 89. Affected Area       order     Amanluran     Atipolo     Balud       03-0.20     0.26     0.12     0.4       21-0.50     0.073     0.085     0.21       51-1.00     0     0.14     0.33       01-5.00     0     0.14     0.25       >5.00     0     0     0	Table 89. Affected Areas in Tanuan, Leyte         rea (sq.       Affected Areas in Tanuan, Leyte         n       Amanluran       Atipolo       Balud       Bangon         03-0.20       0.26       0.12       0.4       0.8         .03-0.20       0.073       0.085       0.21       0.42         .21-0.50       0.073       0.085       0.21       0.42         .51-1.00       0.0095       0.14       0.33       0.073         .01-2.00       0       0.14       0.25       0.0017         .01-5.00       0       0       0       0       0	Table 89. Affected Areas in Tanauan, Leyte during 100-Year Rate         Vea (sq.         Area (sq.       Affected Barangays in Tanauan, Leyte during 100-Year Rate         Area (sq.       Affected Barangays in Tanauan, Leyte during 100-Year Rate         Area (sq.       Ananluran       Atipolo       Balud       Bangon       Bantagan         Ananluran       Atipolo       Balud       Bangon       Bantagan       Bantagan         Ananluran       Atipolo       Balud       Bangon       Bantagan         Ananluran       Atipolo       Balud       Bangon       Bantagan         Ananluran       Atipolo       Balud       Bangon       Bantagan         O3-0.20       0.025       0.42       0.36       0.025         Anantagan       O.142       O.42       0.092       0.0025         Anantagan       O.21       O.21       0.017       0.0071         Anantagan       O.0051       O.0051       0.0017       0.0071	Table 89. Affected Areas in Tanauan, Leyte during 100- Year Rainfall Return Period           Affected Areas in Tanauan, Leyte during 100- Year Rainfall Return Period           Analuran         Atipolo         Balud         Bangon         Bantagan         Baras           0         03-0.20         0.12         0.4         0.8         0.36         0.5           03-0.20         0.26         0.12         0.4         0.8         0.36         0.5           0.30-0.20         0.073         0.085         0.4         0.8         0.36         0.5           0.11-0.00         0.0095         0.18         0.21         0.42         0.032         0.17           0.1-2.00         0         0.14         0.25         0.0017         0.032         0.17           0.1-5.00         0         0         0         0         0         0         0	Table 89. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Periodvea (sq.Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return PeriodPere (sq.Affected Barangays in Tanauan (in sq. km.)Affected Barangays in Tanauan (in sq. km.)Affected Barangays in Tanauan (in sq. km.)AmanuranAtipoloBaludBangonBantaganBarasBinolo0.3-0.200.260.120.40.80.360.50.240.10-500.0730.0210.420.0920.170.0195.1-1.000.0950.180.250.00170.00710.1070.0040.1-2.000000.0061000000		fected A	flood d m.	0	0 (	о •шү	• <b>bs</b>	<b>)</b>	
Table 89. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return PeriodAffected Areas in Tanauan, Leyte during 100-Year Rainfall Return PeriodArea (sq.Affected Barangays in Tanauan (in sq. km.)Area (sq.Affected Barangays in Tanauan (in sq. km.)Area (sq.Affected Barangays in Tanauan (in sq. km.)Area (sp.Affected Barangays in Tanauan (in sq. km.)Area (sp.O.32O.33-0.200.03BandonBandonBandonBandonAnanuranAffected Barangays in Tanauan (in sq. km.)AnanuranAffected Barangays in TanauanAnanuranAffected Barangays in Tanauan (in sq. km.)AnanuranAffected Barangays in TanauanAnanuranAffected Barangays in TanauanAnanuranAffected Barangays in TanauanAnanuranAffected Barangays in TanauanAnanuranAffected Barangays in Tanauan <td>Table S9. Affected Areas in Tanuan, Leyte during 100- Year Rainfall Return Period         Affected Areas in Tanuan, Leyte during 100- Year Rainfall Return Period         Amanuran       Atipolo       Balud       Bangon       Bantagan       Baras       Binolo       Binolo         0.26       0.12       0.4       0.8       0.36       0.5       0.24       0.97         0.26       0.12       0.4       0.8       0.36       0.17       0.19       0.28         0.073       0.085       0.21       0.42       0.092       0.17       0.19       0.28         0.0055       0.18       0.23       0.032       0.017       0.017       0.017       0.19       0.28         0.0055       0.14       0.25       0.0017       0.0021       0.11       0.005       0.34         0       0       0       0       0       0       0.01       0.01       0.031</td> <td>able 89. Affected Areas in Tanauan, Leyte during 100 Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)         alot       Bandon       Bangon       Baras       Binolo       Binono         0       0.4       0.8       0.36       0.5       0.24       0.97         0       0.42       0.092       0.17       0.19       0.97         0       0.21       0.42       0.032       0.17       0.19       0.28         0       0.33       0.073       0.017       0.017       0.11       0.055       0.34         0       0.25       0.0017       0.0071       0.11       0.004       0.9         0       0.0051       0       0       0       0       0.17       0.17</td> <td>sin Tanauan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)       Binolo       Binongto-An         Bangon       Bantagan       Baras       Binolo       Binongto-An         0.8       0.36       0.5       0.24       0.97         0.42       0.092       0.17       0.19       0.28         0.42       0.032       0.17       0.19       0.34         0.073       0.032       0.26       0.075       0.34         0       0       0.011       0.001       0.09       0.01         0       0       0       0       0.017       0.011</td> <td>Auring 100-Year Rainfall Return Period         angays in Tanauan (in sq. km.)         Bantagan       Baras       Binolo       Binongto-An         0.36       0.5       0.24       0.97         0.32       0.17       0.19       0.28         0.032       0.17       0.19       0.34         0.032       0.26       0.075       0.34         0.0071       0.11       0.0004       0.9         0       0       0       0.17         0       0       0       0.031</td> <td>nfall Return Period         n (in sq. km.)         Baras       Binolo       Binongto-An         0.5       0.24       0.97         0.17       0.19       0.28         0.17       0.19       0.34         0.11       0.0004       0.9         0       0       0.17</td> <td>Binolo         Binongto-An           0.24         0.97           0.19         0.28           0.19         0.28           0.075         0.34           0.0004         0.34           0         0.97           0         0.031           0         0.0031</td> <td>Binongto-An 0.97 0.28 0.34 0.34 0.9 0.17 0.0031</td> <td></td> <td></td> <th></th> <td>Buntay</td> <td>0.11</td> <td>0.077</td> <td>0.017</td> <td>0</td> <td>0</td> <td>0</td>	Table S9. Affected Areas in Tanuan, Leyte during 100- Year Rainfall Return Period         Affected Areas in Tanuan, Leyte during 100- Year Rainfall Return Period         Amanuran       Atipolo       Balud       Bangon       Bantagan       Baras       Binolo       Binolo         0.26       0.12       0.4       0.8       0.36       0.5       0.24       0.97         0.26       0.12       0.4       0.8       0.36       0.17       0.19       0.28         0.073       0.085       0.21       0.42       0.092       0.17       0.19       0.28         0.0055       0.18       0.23       0.032       0.017       0.017       0.017       0.19       0.28         0.0055       0.14       0.25       0.0017       0.0021       0.11       0.005       0.34         0       0       0       0       0       0       0.01       0.01       0.031	able 89. Affected Areas in Tanauan, Leyte during 100 Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)         alot       Bandon       Bangon       Baras       Binolo       Binono         0       0.4       0.8       0.36       0.5       0.24       0.97         0       0.42       0.092       0.17       0.19       0.97         0       0.21       0.42       0.032       0.17       0.19       0.28         0       0.33       0.073       0.017       0.017       0.11       0.055       0.34         0       0.25       0.0017       0.0071       0.11       0.004       0.9         0       0.0051       0       0       0       0       0.17       0.17	sin Tanauan, Leyte during 100-Year Rainfall Return Period         Affected Barangays in Tanauan (in sq. km.)         Affected Barangays in Tanauan (in sq. km.)       Binolo       Binongto-An         Bangon       Bantagan       Baras       Binolo       Binongto-An         0.8       0.36       0.5       0.24       0.97         0.42       0.092       0.17       0.19       0.28         0.42       0.032       0.17       0.19       0.34         0.073       0.032       0.26       0.075       0.34         0       0       0.011       0.001       0.09       0.01         0       0       0       0       0.017       0.011	Auring 100-Year Rainfall Return Period         angays in Tanauan (in sq. km.)         Bantagan       Baras       Binolo       Binongto-An         0.36       0.5       0.24       0.97         0.32       0.17       0.19       0.28         0.032       0.17       0.19       0.34         0.032       0.26       0.075       0.34         0.0071       0.11       0.0004       0.9         0       0       0       0.17         0       0       0       0.031	nfall Return Period         n (in sq. km.)         Baras       Binolo       Binongto-An         0.5       0.24       0.97         0.17       0.19       0.28         0.17       0.19       0.34         0.11       0.0004       0.9         0       0       0.17	Binolo         Binongto-An           0.24         0.97           0.19         0.28           0.19         0.28           0.075         0.34           0.0004         0.34           0         0.97           0         0.031           0         0.0031	Binongto-An 0.97 0.28 0.34 0.34 0.9 0.17 0.0031				Buntay	0.11	0.077	0.017	0	0	0

T

٦

Table 90. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period

vrea (sq. .) epth (in Ca 
------------------------------------

	poludg	0.32	0.16	0.041	0.024	0	0
	Ma				)		
	Magay	0.12	0.11	0.018	0.0015	0	0
q. km.)	Licod	0.028	0.018	0.018	0.012	0	0
in Tanauan (in so	Гарау	0.54	0.15	0.14	0.18	0.008	0
fected Barangays	Kiling	0.65	0.44	0.5	0.23	0.034	0.019
Af	Hilagpad	0.4	0.27	0.031	0	0	0
	Guingawan	0.29	0.087	0.072	0.04	0.042	0.038
	Guindag-An	0.6	0.22	0.34	0.86	0.17	0.008
d Area (sq.	cm.) d depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
Affecte	by flood		) LGg	A b: .my	ecte sq.	) ЭНА )	

Table 91. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period

Table 92. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period

Affecte	d Area (sq.			Afi	fected Barangays	in Tanauan (in sq	. km.)		
by flood	km.) d depth (in m.)	Malaguicay	Maribi	Mohon	Pago	Pasil	Sacme	Salvador	San Isidro
	0.03-0.20	0.15	0.24	0.27	0.36	0.14	0.014	0.84	0.24
) LGg	0.21-0.50	0.14	0.22	0.15	0.31	0.12	0.0039	0.38	0.25
A b: .my	0.51-1.00	0.13	0.25	0.04	0.4	0.17	0.0012	0.2	0.42
.ps sq.	1.01-2.00	0.023	0.089	0.0016	0.1	0.0034	0	0.056	0.68
) )	2.01-5.00	0	0.0001	0	0.00062	1.4E-09	0	0.0008	0.058
	> 5.00	0	0	0	0	0	0	0	0.0054

Table 93. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period





Figure 131. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period



Figure 132. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period



Figure 133. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period



Figure 134. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period



Figure 135. Affected Areas in Tanauan, Leyte during 100-Year Rainfall Return Period

Among the barangays in the municipality of Burauen, Cadahunan is projected to have the highest percentage of area that will experience flood levels at 0.08%. Meanwhile, Buri posted the second highest percentage of area that may be affected by flood depths at 0.05%.

Among the barangays in the municipality of Dagami, Banayon is projected to have the highest percentage of area that will experience flood levels at 2.75%. Meanwhile, Katipunana posted the second highest percentage of area that may be affected by flood depths at 2.63%.

Among the barangays in the municipality of Jaro, Parasan is projected to have the highest percentage of area that will experience flood levels at 0.18%.

Among the barangays in the municipality of Palo, San Joaquin is projected to have the highest percentage of area that will experience flood levels at 6.12%. Meanwhile, Cangumbang posted the second highest percentage of area that may be affected by flood depths at 4.05%.

Among the barangays in the municipality of Pastrana, Yapad is projected to have the highest percentage of area that will experience flood levels 3.80%. Meanwhile, Bahay posted the second highest percentage of area that may be affected by flood depths at 3.58%.

Among the barangays in the municipality of Tabontabon, Belisong is projected to have the highest percentage of area that will experience flood levels at 1.33%. Meanwhile, Guingawan posted the second highest percentage of area that may be affected by flood depths at 1.23%.

Among the barangays in the municipality of Tanauan, Binongto-An is projected to have the highest percentage of area that will experience flood levels at 1.99%. Meanwhile, Guindag-An posted the second highest percentage of area that may be affected by flood depths at 1.63%.

Moreover, the generated flood hazard maps for the Binahaan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units

of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Are	ea Covered in sq.	km
Warning Level	5 year	25 year	100 year
Low	57.09	71.53	73.35
Medium	34.32	61.63	81.75
High	8.64	17.74	27.79

Table 94. Area covered by each warning level with respect to the rainfall scenario

Of the 144 identified Educational Institutions in Binahaan Flood plain, 26 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 11 schools were assessed to be exposed to Medium level flooding. In the 25 year scenario, 32 schools were assessed to be exposed to the Low level flooding while 25 schools were assessed to be exposed to Medium level flooding and 2 schools were assessed to be exposed to the Low level flooding while 25 schools were assessed to be exposed to Medium level flooding and 2 schools were assessed to be exposed to High level flooding in the same scenario. For the 100 year scenario, 33 schools were assessed for Low level flooding and 29 schools for Medium level flooding. In the same scenario, 7 schools were assessed to be exposed to High level flooding. See Annex 12 for a detailed enumeration of schools inside Binahaan floodplain.

Of the 37 identified Medical Institutions in Binahaan Flood plain, 8 were assessed to be exposed to the Low level flooding during a 5 year scenario while 1 were assessed to be exposed to Medium level flooding in the same scenario. In the 25 year scenario, 9 were assessed to be exposed to the Low level flooding while 8 were assessed to be exposed to Medium level flooding. For the 100 year scenario, 9 schools were assessed for Low level flooding and 10 for Medium level flooding. In the same scenario, 2 schools were assessed to be exposed to High level flooding, which is a health center in Brgy. Los Martines and Cangumbang. See Annex 13 for a detailed enumeration of medical insitutions inside Binahaan floodplain.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consists of 195 points randomly selected all over the Binahaan flood plain. The points were grouped depending on the RIDF return period of the event.



Figure 136. Validation points for 5-year Flood Depth Map of Binahaan Floodplain



#### The RMSE value for each flood depth map is listed in the table below:

Table 95. RMSE values for each return period of flood depth map

Return Period	RMSE
5-year	0.77
100-year	2.63



Figure 138. Flood map depth vs actual flood depth for 5-year return period



Figure 139 Flood map depth vs actual flood depth for 100-year return period

				Modeled I	Flood Depth	(m)		
	IRAI RASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	>5.00	Total
	0-0.20	48	7	2	0	1	1	59
<u> </u>	0.21-0.50	24	10	5	1	1	0	41
epth (n	0.51-1.00	25	7	5	2	0	0	39
D bool	1.01-2.00	7	1	1	0	0	0	9
ctual Fl	2.01-5.00	30	11	5	0	0	0	46
Ă	>5.00	0	0	0	0	0	1	1
	Total	134	36	18	3	2	2	195

Table 96. Actual Flood Depth vs Simulated Flood Depth in Binahaan

The overall accuracy generated by the flood model is estimated at 32.82%, with 64 points correctly matching the actual flood depths. In addition, there were 46 points estimated one level above and below the correct flood depths while there were 34 points and 51 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 20 points were overestimated while a total of 111 points were underestimated in the modelled flood depths of Binahaan.

Table 97. Summary of Accuracy Assessment in Binahaan

	No. of Points	%
Correct	64	32.82
Overestimated	20	10.26
Underestimated	111	56.92
Total	195	100

# REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# ANNEXES

# Annex 1. OPTECH Technical Specification of the Aquarius And Gemini Lidar Sensors and the D8900 Aerial Camera

AQUARIUS

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

#### D-8900 AERIAL CAMERA

Parameter	Specification				
Camer	ra Head				
Sensor type	60 Mpix full frame CCD, RGB				
Sensor format (H x V)	8, 984 x 6, 732 pixels				
Pixel size	6µm x 6 µm				
Frame rate	1 frame/2 sec.				
FMC	Electro-mechanical, driven by piezo technology (patented)				
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16				
Lenses	50 mm/70 mm/120 mm/210 mm				
Filter	Color and near-infrared removable filters				
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)				
Weight	~4.5 kg (70 mm lens)				
Contro	ller Unit				
Computer	Mini-ITX RoHS-compliant small-form-factor embedded computers with AMD TurionTM 64 X2 CPU 4 GB RAM, 4 GB flash disk local storage IEEE 1394 Fire wire interface				
Removable storage unit	~500 GB solid state drives, 8,000 images				
Power consumption	~8 A, 168 W				
Dimensions	2U full rack; 88 x 448 x 493 mm				
Weight	~15 kg				
Image Pre-Proc	essing Software				
Capture One	Radiometric control and format conversion, TIFF or JPEG				
Image output	8,984 x 6,732 pixels 8 or 16 bits per channel (180 MB or 360 MB per image)				

## Annex 2. NAMRIA Certificates of Reference Points Used

#### 1. LYT-101

100 × 1987 × 1	NATIONAL MAR	PING AND RESOURCE	INFORMATION	AUTHORITY		
						January 20, 2014
		CERTIFICA	ATION			
To whom it may This is to ce	concern: rtifv that according to t	he records on file in thi	is office the real	uested survey	inform	ation is as follows -
		Province: LE	/TE			
		Station Name: LY	YT-101			
Island: VISA	YAS	Order: 2nd		Barangay	<i>I</i> :	
Municipality:	PALO	PRS92 Coor	rdinates			
Latitude: 11	° 10' 23.89707"	Longitude: 125° 0	)' 38.62071''	Ellipsoida	al Hgt:	6.58600 m.
		WGS84 Cool	rdinates			
Latitude: 11	° 10' 19.64869"	Longitude: 125° 0	)' 43.78230''	Ellipsoida	al Hgt:	69.02100 m.
		PTM Coord	linates			
Northing: 12	35497.253 m.	Easting: 50117	1.719 m.	Zone:	5	
Northing: 1,	235,811.61	UTM Coord Easting: 719,57	<i>linates</i> 5.03	Zone:	51	
		Location Des	cription			
LYT-101 Station is located point is located in lower step. Statio	d in the province of Le nfront of Gen. Douglas on mark is a concrete	/te, municipality of Palc McArthur Shrine and i nail on center of a 20 x	<ol> <li>From Tacloba is approximately 20 cm. cement</li> </ol>	n City travel S 10 m away au putty on the c	E to Mo nd adja oncrete	Arthur Park. The cent to center of ground.
Requesting Party Pupose: OR Number: T.N.:	y: UP-DREAM Reference 8795097 A 2014-94			/AM	K	
			R Director	Mapping And	EN, M	NSA esy Branch

Republic of the Philip Department of Envir NATIONAL MAR	opines onment and Natural Resou PPING AND RESOUI	urces RCE INFORMATION A			
1417 · 1007 · 118					April 23, 20
	CERTIF	ICATION			
To whom it may concern:					
This is to certify that according to	the records on file in	n this office, the requ	ested survey	informa	tion is as follow
Dr	OVIDEO: SAMAD (M	ESTERN SAMAR)			
PI	Station Nam	e: SMR-53			
	Order: 2n	d			
Island: VISAYAS			Baranga	y: SAN	ISIDRO
Municipality: SANTA RITA	PRS92 (	Coordinates			
Latitude: 11º 30' 17.85657"	Longitude: 12	25° 1' 29.83739"	Ellipsoid	al Hgt:	26.13400 m.
	WGS84	Coordinates			
Latitude: 11º 30' 13 52495"	Longitude: 12	25° 1' 34.96980"	Ellipsoid	al Hgt:	87.78700 m.
		00rainales	Zone	5	
Northing: 1272180.079 m.	Easting: 50	)2722.403 m.	Zone.	3	
	UTMC	oordinates	Zana	54	
Northing: 1,272,513.40	Easting: 72	0,874.14	Zone.	51	
	Location	Description			

OR Number: T.N.:

8796021 A 2014-920

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch G





NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Republic of the Philip Department of Environ NATIONAL MAR	pines onment and Natural Resources PING AND RESOURCE INFORMATION	AUTHORITY
		January 27, 2016
	CERTIFICATION	
To whom it may concern:	CERTIFICATION	
To whom it may concern: This is to certify that according to th	CERTIFICATION e records on file in this office, the req	uested survey information is as follows -
To whom it may concern: This is to certify that according to th	CERTIFICATION e records on file in this office, the req Province: LEYTE Station Name: LY-110	uested survey information is as follows -
To whom it may concern: This is to certify that according to th	CERTIFICATION e records on file in this office, the req Province: LEYTE Station Name: LY-110 Municipality: PALO	uested survey information is as follows - Barangay: LIBERTAD
To whom it may concern: This is to certify that according to the Island: Visayas Elevation: 12.9339 +/- 0.03 m.	CERTIFICATION e records on file in this office, the req Province: LEYTE Station Name: LY-110 Municipality: PALO Order: 1st Order	uested survey information is as follows - Barangay: LIBERTAD Datum: Mean Sea Level

Is in the Province of Leyte, Municipality of Palo, Brgy. Libertad. it is about 225m West of km post 919, 4.15 North of Centerline of the road leading to Ormoc, at the Northwest end of a 42.0m long bridge. A 24 minutes drive from Tacloban City going to South to Ormoc on a bridge located about 225 meters of km post 919. Mark is a 4" copper nail, drilled on hole on top of concrete footwalk at the top of culvert headwall and cemented flush with inscription "LY-110 2007 NAMRIA".

Requesting Party: UP DREAM Purpose: OR Number: T.N.:

Reference 8089687 I 2016-0240

RUEL DM BELEN, MNSA Director, Mapping And Geodesy Branch 8





NAMRIA OFFICES Main: Luwion Avenue, Fort Banifacki, 1834 Taguig City, Philippines Tell. No. (632) 815-4831 to 41 Branch : 421 Barrace St. San Nicolas, 1016 Manila, Philippines, Tel. No. (632) 241-3454 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT



## Annex 3. Baseline Processing Reports of Reference Points Used

### 1. LY-104

Processing Summary									
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
SMR-53 LYT-104 (B1)	SMR-53	LYT-104	Fixed	0.008	0.017	200°40'31"	42653.401	7.525	
SMR-53 LYT-104 (B2)	SMR-53	LYT-104	Fixed	0.004	0.016	200°40'31"	42653.384	7.601	

### Acceptance Summary

Processed	Passed	Flag	Þ	Fail	<b>P</b>
2	2	0		0	

#### Vector Components (Mark to Mark)

From:	SMR-53	SMR-53						
	Grid	Lo	Local		Global		lobal	
Easting	720874.133 m	Latitude N11°30'1		85656"	Latitude		N11°30'13.52495"	
Northing	1272513.396 m	Longitude E125°01'2		83738"	Longitude		E125°01'34.96980"	
Elevation	24.750 m	Height 26.13		.134 m	Height		87.787 m	
To:	LYT-104							
	Grid	Lo	Local			G	lobal	
Easting	706089.510 m	Latitude	N11°08'38.	92234"	Latitude		N11°08'34.67033"	
Northing	1232496.838 m	Longitude	E124°53'13.	52786" Longitude		E124°53'18.69323"		
Elevation	32.311 m	Height	33	.659 m	n Height		95.861 m	
Vector								
ΔEasting	-14784.62	3 m NS Fwd Azimuth			200°40'31"	ΔX	7839.600 m	
ΔNorthing	-40016.55	i8 m Ellipsoid Dist.			42653.401 m	ΔY	15051.644 m	
∆Elevation	7.56	61 m ∆Height			7.525 m	ΔZ	-39131.928 m	

Vector errors:							
σ ΔEasting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.006 m		
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m		
σ ΔElevation	0.009 m	σ ΔHeight	0.009 m	σΔZ	0.002 m		

### 2. LY-110

Processing Summary									
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
LYT 104 LY 110 (B1)	LYT 104	LY 110	Fixed	0.004	0.013	68°33'52"	8457.064	-19.323	
LY 110 LYT 104 (B2)	LYT 104	LY 110	Fixed	0.004	0.015	68°33'52"	8457.047	-19.343	

#### Acceptance Summary

Processed	Passed	Flag	▶	Fail	1
2	2	0		0	

#### Vector Components (Mark to Mark)

From:	LYT 104						
(	Grid	L	ocal			Gk	obal
Easting	706089.510 m	Latitude	N11°08'38.9	92234"	Latitude		bbal N11°08'34.67033" E124°53'18.69323" 95.861 m bbal N11°10'15.23095" E124°57'38.14961"
Northing	1232496.838 m	Longitude	E124°53'13.5	52786"	Longitude		E124°53'18.69323"
Elevation	32.311 m	Height	33.	.659 m	Height		95.861 m
То:	LY 110						
	Grid	L	ocal			Gle	obal
Easting	713942.863 m	Latitude	N11°10'19.4	48389"	Latitude		N11°10'15.23095"
Northing	1235638.117 m	Longitude	E124°57'32.9	98736"	Longitude		E124°57'38.14961"
Elevation	12.819 m	Height	14.	.336 m	Height		76.647 m
Vector							
∆Easting	7853.35	i3 m NS Fwd Azimuth	ı		68°33'52"	ΔX	-6101.546 m
∆Northing	3141.27	'9 m Ellipsoid Dist.			8457.064 m	ΔY	-5012.598 m
∆Elevation	-19.49	2 m <mark>ΔHeigh</mark> t			-19.323 m	ΔZ	3027.816 m

Vector errors:					
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.005 m
σ ΔElevation	0.007 m	σ ΔHeight	0.007 m	σΔΖ	0.002 m

### 3. LY-881

#### LY-881 - LYT-101 (1:48:33 PM-5:01:31 PM) (S1)

Baseline observation:	LY-881 LYT-101 (B1)
Processed:	6/10/2014 4:31:22 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.002 m
Vertical precision:	0.003 m
RMS:	0.000 m
Maximum PDOP:	6.041
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	5/6/2014 1:48:59 PM (Local: UTC+8hr)
Processing stop time:	5/6/2014 5:01:31 PM (Local: UTC+8hr)
Processing duration:	03:12:32
Processing interval:	1 second

#### Vector Components (Mark to Mark)

From:	LYT-101						
	Grid		Local		G	ilobal	
Easting	719575.001 m	Latitude	N11°10'23.89752"	Latitude		N11°10'19.64869"	
Northing	1235811.576 m	Longitude	E125°00'38.62063"	Longitude		E125°00'43.78230"	
Elevation	4.934 m	Height	6.587 m	Height		69.021 m	
To:	LY-881						
	Grid		Local		G	ilobal	
Easting	718540.093 m	Latitude	N11°10'49.44332"	Latitude		N11°10'45.19188"	
Northing	1236589.610 m	Longitude	E125°00'04.69148"	Longitude		E125°00'09.85261"	
Elevation	4.367 m	Height	5.992 m	Height		68.386 m	
Vector							
∆Easting	-1034.90	9 m NS Fwd Azi	muth	307°19'31"	ΔX	930.803 m	
∆Northing	778.03	4 m Ellipsoid Dis	st.	1294.498 m	ΔY	465.453 m	
∆Elevation	-0.56	7 m AHeight		-0.594 m	ΔZ	769.860 m	

Vector errors:										
ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.001 m					
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m					
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔΖ	0.001 m					

#### LY-881 - LYT-101 (5:43:03 AM-10:33:20 AM) (S2)

Baseline observation:	LY-881 LYT-101 (B2)
Processed:	6/10/2014 5:01:18 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.002 m
Vertical precision:	0.002 m
RMS:	0.000 m
Maximum PDOP:	2.796
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	4/20/2014 5:44:20 AM (Local: UTC+8hr)
Processing stop time:	4/20/2014 10:33:20 AM (Local: UTC+8hr)
Processing duration:	04:49:00
Processing interval:	1 second

#### Vector Components (Mark to Mark)

From:	LYT-101					
	Grid		Local		G	ilobal
Easting	719575.001 m	Latitude	N11°10'23.89752"	Latitude		N11°10'19.64869"
Northing	1235 <mark>811.576 m</mark>	Longitude	E125°00'38.62063"	Longitude		E125°00'43.78230"
Elevation	4.934 m	Height	6.587 m	Height		69.021 m
To:	LY-881					
	Grid		Local		G	ilobal
Easting	718540.071 m	Latitude	N11°10'49.44311"	Latitude		N11°10'45.19167"
Northing	1236589.604 m	Longitude	E125°00'04.69077"	Longitude		E125°00'09.85190"
Elevation	4.254 m	Height	5.879 m	Height		68.273 m
Vector						
∆Easting	-1034.93	0 m NS Fwd Azir	nuth	307°19'29"	ΔX	930.883 m
∆Northing	778.02	8 m Ellipsoid Dis	t.	1294.511 m	ΔY	465.376 m
∆Elevation	-0.68	0 m AHeight		-0.707 m	ΔZ	769.831 m

Vector errors:				1.00.0	
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.001 m
σ <u>ΔNorthing</u>	0.000 m	σ <mark>Ellipsoid</mark> Dist.	0.001 m	σΔΥ	0.001 m
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m

	,		
Date Acquisition Component Sub-team	Designation	Name	Agency/Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D. ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader –I	ENGR. CZAR JAKIRI S. SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP
		FIELD TEAM	
	Supervising SRS	LOVELY GRACIA ACUÑA	UP-TCAGP
	Senior Science	JULIE PEARL MARS	UP-TCAGP
	Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
		PAULINE JOANNE ARCEO	UP-TCAGP
	ENGR. DAN ALDOVINO	ENGR. DAN CHRISTOFFER ALDOVINO	UP-TCAGP
LiDAR Operation		FAITH JOY SABLE	UP-TCAGP
	Research	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	Associate (RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
		ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
		GRACE SINADJAN	UP-TCAGP
		JONATHAN ALMALVEZ	UP-TCAGP
Ground Survey, Data download and transfer	RA	JERIEL PAUL ALAMBAN, GEOL	UP-TCAGP
	Airborne Security	SSG. RAYMUND DOMINE	PHILIPPINE AIR FORCE (PAF)
	,	SSG. RANDY SISON	PAF
LiDAR Operation		CAPT. JACKSON JAVIER	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. NEIL ACHILLES AGAWIN	AAC
		CAPT. ALBERT PAUL LIM	AAC
		CAPT. RANDY LAGCO	AAC

## Annex 4. The Survey Team



SERVER	LOCATION	:Nirbome_Raw/1 58A	Mirbome_Raw1	Mirbome_Raw1	2.Vairborne_Raw/1 142A	ZVAirborne_Raw1 144A	2.Vairborne_Raw1 150A	Z.Vairborne_Raw1 152A	2.Vairborne_Raw1 \$54A	2.Vairbome_Raw1 156P	2:Vairbome_Raw/1 160A	Z'Wirborne_Raw\1 462A	Z'Mirborne_Raw1 464A		
LAN	KIML	773/12KB	649/12KB	889/10KB	2652KB	2813/700 2 KB	1019KB	512KB	1522KB	641KB	476/807KB	842KB	786KB		
FLIGHT P	Actual	B	g	g	1	SKB	8	10KB	2KB	B	SKB	4KB	(B		
RATOR LOGS	(oPLOG)	1KB 6K	1KB 6K	1KB 5k	1KB N/	1KB 5/	1KB 5P	1KB 6/	1KB 5/	1KB 5F	1KB 5/	1KB 5/	1KB 4		
(s) OPEI	e Info (.txt)						-								
BASE STATION	BASE ATION(S) Bas	AB 1KE	AB 1KE	AB 1KE	AB 1KE	AB 1KE	AB 1KE	AB 1KE	MB 1KE	MB 1KE	MB 1KE	MB 1KE	MB 1KE	128/2014	
	ST	12.1h	11.3N	8.53M	14.3h	3B 14.3h	3B 10.5M	3B 11.2h	SB 8.411	GB 7.921	3B 11.41	11.61	11.41	E	
- DIG		1GB NA	6GB NA	9GB NA	6GB NA	2GB 229C	7GB 87.00	7GB 86.80	6GB 2060	6GB 58.6	7GB 2350	2GB NA	DGB NA	L'KI	
e sion log	ICASI LOGS	0/87KB 14.	KB 8.2	11/263KB 14.	397/KB 16.	515/1/139K	KB 6.0	15KB 9.5	102/517KB 14	IZ26KB 11	KB 14	SKB 15	KB 14	Adion	
RAW	AGES/CASI FILE	3/10.7GB 3/5	1GB 206	5GB 418	3GB 59/	3GB 8	1GB 257	1GB 1/4	7/71.5GB 23/	6GB 278	8GB 622	2GB 68(	.9GB 63	cerived by Name Position Signature	
	eo l	43MB 63.	74MB 41.	57MB 95.	75MB 108	54MB 79.	32MB 34	33MB 47	68MB 15	212MB 66	273MB 74	275MB 91	251MB 76	ž	
	CO02	17MB 2	75MB 1	.37MB 2	.86MB	.82MB	06KB	33MB	.88MB	BMB 1	24MB	29MB	ZOMB		
VIAS	Kill (swath)	NA 1	NA 7	NA	NA	NA	S.	N I	N	NA	ž	NA	12		
RAV	Output	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	SENSOR	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	AQUARIUS	Dan Autorino Research Ass	
	MISSION NAME	3BLK34F110A	3BLK34FS110B	3BLK34E112A	3BLK33GS131A	3BLK33GSH131B	3BLK33HS133A	3BLK33HSES133B	3BLK34D134A	3BLK34C134B	3BLK35CD135B	3BLK35DSE136A	3PI K36FC136R	teetived from Nation Signature	
EI IGHT	NO.	1358A	1360A	1366A	1442A	1444A	1450A	1452A	1454A	1456A	1460A	1462A	1 46.4 0	les 1 C L	
	DATE	4/20/2014	4/20/2014	4/22/2014	5/11/2014	5/11/2014	5/13/2014	5/13/2014	5/14/2014	5/14/2014	5/15/2014	5/16/2014	5/16/2014		

1 Г		- T-	> 1	>	>	>			
	SERVER	LOCATION	Z:UACIRAV DATA	Z:UACIRAV DATA	Z:UACIRAV DATA	Z:UDACIRAV DATA	Z:UDACIRAV DATA		
NV IG I	L PLAN	KML	na	na	na	na	na		
	LIG	Actual	23/57/22/58 21/55/21/21	57/11	na	57/22	27/26/59		
	OPERATOR	(OPLOG)	1KB	1KB	1KB	1KB	1KB		
LIDAIS	Base Info	(txt)	KB	KB	KB	KB	KB		
DACE CTA	BASE 31A	TATION(S)	4.38	3.4	9.58	9.2	4.74		
	IGITIZER	s	na	na	na	na	na	- T F	
	RANGE		25.2	19,1	23.8	20.3	16.8		
	SION LOG	SBO	na	na	na	na	na	t to the	
SHEET 16	RAW MIS	SES/CASI	na	na	na	na	na	er Ac 1 ien Ac 1 aturo AC	
A TRANSFER Leyte 2/11/1	os F	IMAG	255	204	260	212	248	Rece Positi	
DATA	S(MB)	Ì	90 2	90	2 02	56 25	32 2		
	1065	ath)	39	45	67	25	56		
	AWLAS	S KML (sw	93	75	82	11	63		
	×	Output LA	NA	MA	M	AN	NA		
	SENSOR		gemini	gemini	gemini	gemini	gemini		
	VISSION NAME		2BLK34AD022A	2BLK34AG022B	2BLK34ADEG023A	2BLK34BCG023B	2BLK34CG024A	Received from Anme C. Jon Position Position Signature	
	IGHT NO.		3765G	3767G	3769G	3771G	3773G		
	DATE		22-Jan	22-Jan-16	23-Jan-16	23-Jan-16	24-Jan-16		

## Annex 6. Flight Logs 1. Flight Log for 1026A Mission Flight Log No.: 1026 6 Aircraft Identification: KP-C9/N signature over Printed Name 18 Total Flight Time: Lidar Operator 5 Aircraft Type: CesnnaT206H 12 Airport of Arrival (Airport, City/Province): In clesen 1866 5. Jan wer 17 Landing: Signature over Printed Name Pilot-in-Command Keplinn 1 LIDAR OPERATOR: D. Aldovirty 2 ALTM MODEL: Myurig 3 Mission Name: 304 7445044 4 Type: VFR 16 Take off: red commonication ( dualitier have are the ent 12 Airport of Departure (Airport, Gty/Province): 12 Airport of Departure (Airport, Gty/Province): 14 Engine Officern Signature over Printed Name (PAF Representative) Acquisition Flight Certified b 8 Raymond due to tenzin 14 Engine Off Cut Acquisition Flight Approved by over Printed Name Na epresentative) 7 Pilot: 10 Date: JM 26, 2014 21 Problems and Solutions: 1. N **DREAM Data Acquisition Flight Log** Pija 13 Engine On: (End User Re Signature o 20 Remarks: 19 Weather



Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Binahaan River

Figure A-6.3. Flight Log for Mission 3781G

## 4. Flight Log for 1360A Mission

Repetited for 1	Acabon RFC \$25		ale a			(					
	6 All rora ft lide not		18 Total Flight Ti		o connect						
	e: CesnnaT206H	ovince):			2   A						
	S Aircraft Typ	al (Airport, City/Ph	17 Landing:		wision.						
	IDE 4 Type: VFR	12 Airport of Amiw	16 Take off:		Elle pirst						
	n Name SBUCKIK	ty/Province):	Engine Time: 3+23		K Left from						
	AULAULUS 3 Mission	arture (Airport, G	15 Total I		plu tud 6 liw						
	2 ALTM Model: #	12 Airport of Dep	ine Off: 16 45	hans	č						
Aight Log	N. BCO-PI	20, 3014	L.2. 14 Eng	3	Solutions: Solutions: Approved b						
Data Acquisition	LIDAR Operator: 1	0 Date: ADNIL	3 Engine On: 13	9 Weather	21 Problems and Acquisition Signature (End Use						
50	A	1							nician	L a	
----------------------	------------------------	----------------	-------------------------	------------	----------------	-------------------------------------------------------------------	---------------	--------------------------------------------------------------------------	------------------------------	-----------------------------	--
Flight Log No.: 2.7(	ft Identification: 902		l Flight Time: { 0 }			-			Aircraft Mechanic/ UDAR Tech	Signature over Printed Nami	
	4 6 Aircra		18 Tota 4							tame	
	CesnnaT206	nce):			-	iqut.			perator	e over Printed	
	rcraft Type:	rt, City/Provi	anding: 12.08		-	A I			LIDAR O	Signatur	
	FR 5 Ai	rrival (Aimo	171		emarks A.M.	Jucest	*				
	4 Type: VF	Airport of A	Take off: 07:57		21 R	es ce			phemm	MMM Angel Na	
	K 34/ADCIZA	): 12	e: 16			n Maintenan ntenance dmin Activiti			Pilot-in-Co	Arlbud	
	n Name: 28	TACLU TACLU	Engine Tim		ers	LiDAR Syster Aircraft Mali Phil-LiDAR A					
	1 a Micelo	9 Route:	15 Total 4	the second	20.c Oth	000			t Certified by	inted Name	
	MMA	ty Lague	Theological	chim		Test Flight min Flight			quisition Flight	Paul paul	
	30	2 ALIM MC	gine Off:	Perthy	o Non Billable	o Aircraft o AAC Ad o Others:		1	Ac	S.S.	
	sition Hight L	MWAIVEZ	14 En		20.1	म मूम	SE	ĒFE	roved by	MrC&U 1 Name Itative)	
	Data Acquis	Mbert Li	01: 22 · 1(p	r HIV	ssification	quisition Flig rry Flight stem Test Flig libration Fligh	s and Solutio	eather Proble stem Probler rcraft Problee lot Problem thers:	ion Flight Appl	ULI ICA	
	L-LiDAR 1	iDAR Op	Date: /- Engine	Weathe	) Flight Cla	O Fel	Problems	O O O O O O O	Acquisiti	f W Signatur (End I	



	6 Aircraft Identification: RPC 90	18 Total Flight Time:	5+19				Aircraft Mechanic/ UDAR Technica KAA Signature over Printed Name
	5 Aircraft Type: Cesnna T206H	Airport, Clty/Province): 17 Landing:	.1.6.1		esspu) Alght.		LIDAR Operator
	: 2 RLE 34 ADEC02344 TYPE: VFR	Ince): 12 Airport of Arrival ( APCL6DAR Time: 16 Take off: Minon		21 Remarks	tem Maintenance (C laintenance 1 Admin Activities	•	Plict-in-Command Mb 22 Minn Signature over Printed Narge
	del: CEMINI 3 Mission Name dV LAGID 9 Route: 750	of Departure (Airport, City/Prov PpcLOBAN) 15 Total Engine	de la la	20.c Others	est Flight o LIDAR Sy: ain Flight o Aircraft A o Phil-LIDA		ation Flight Cartified by
 Accutistition Flight Los	- L'STRACION 2 ALTM MO	/ / 14 Engine Off:		ion 20.b Non Billable	n Flight o Aircraft 1 ti o AAC Adm st Flight o Others. 1 Flight	Altrians beliem oblem elem	Approved by Acqui
PHIL-LIDAR 1 Data	1 LIDAR Operator 7 Pilot: Ath:	10 Date: 13 Engine Qn:	19 Weather	20 Flight Classificat 20.a Billable	Acquisitio O Ferry Fligt O System Te	22 Problems and SC O Weather F O System Pr O Pilot Profit O Others:	Acquisition Filipht



## Annex 7. Flight Status

FLIGHT STATUS REPORT Tacloban / Leyte January 26-27& April 20, 2014; January 22-24, 2016

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
					Completed 8 flight lines over BLK34A.
1026A	BLK34A	3BLK34AS026A	DC ALDOVINO	26 JAN 14	Loss POS comm(digitizer hanged)
					Lines cut due to terrain on the east side
1028A	BLK34A	3BLK 34ABS027A	DC ALDOVINO	27 JAN 14	Completed remaining flight lines over BLK34A.
1358A	BLK34F	3BLK34F110A	PJ ARCEO	20 APR 14	Completed 18/ 24 lines over BLK34F.
1360A	BLK34F	3BLK34FS110B	FJ SABLE	20 APR 14	Completed mission 8 lines left from the morning flight.
3765G	BLK34A BLK34D	2BLK34AD022A	J.Almalvez	Jan. 22, 2016	Surveyed 7 lines at BLK34D and 10 lines at BLK34A.
3769G	BLK34A BLK34D BLK34E BLK34G	2BLK34ADEG023A	J.Almalvez	Jan. 23, 2016	Completed BLK34A, BLK34D and BLK 34E. Surveyed 6 lines at BLK34G.
3771G	BLK34B BLK34C BLK34G	2BLK34BCG023B	G. Sinadjan	Jan. 23, 2016	Completed BLK34B. Surveyed 10 lines at BLK34C and 4 lines at BLK34G.
3773G	BLK34C BLK34G	2BLK34CG024A	J. Almalvez	Jan. 24, 2016	Completed BLK34C and BLK34G.

## SWATH PER FLIGHT MISSION

Flight No. : Area: Mission Name: Parameters: 1026A BLK34A AND BLK 34B 3BLK34AS026B Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 40



















Flight Area	Samar-Leyte
Mission Name	Blk34F
Inclusive Flights	1358A, 1360A
Range data size	22.36 GB
Base data size	417 MB
POS data size	115.1 GB
Image	May 28, 2014
Transfer date	March 04, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	2.9
RMSE for East Position (<4.0 cm)	3.5
RMSE for Down Position (<8.0 cm)	5.5
Boresight correction stdev (<0.001deg)	0.000685
IMU attitude correction stdev (<0.001deg)	0.002555
GPS position stdev (<0.01m)	0.0083
Minimum % overlap (>25)	43.14%
Ave point cloud density per sq.m. (>2.0)	3.13
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	221
Maximum Height	268.28 m
Minimum Height	66.43 m
Classification (# of points)	
Ground	127,167,999
Low vegetation	167,959,671
Medium vegetation	145,772,139
High vegetation	22,065,261
Building	1,152,046
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Chelou Prado, Jovy Narisma

## Annex 8. Mission Summary Reports



Figure 1.1.2. Smoothed Performance Metrics Parameters





Figure 1.1.4. Coverage of LiDAR data



Figure 1.1.5. Image of data overlap



Figure 1.1.6. Density map of merged LiDAR data



Figure 1.1.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	34C
Inclusive Flights	3773G, 3771G
Range data size	37.1
Base data size	460
POS	13.94
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.8
RMSE for East Position (<4.0 cm)	1.0
RMSE for Down Position (<8.0 cm)	2.8
Boresight correction stdev (<0.001deg)	0.000620
IMU attitude correction stdev (<0.001deg)	0.004668
GPS position stdev (<0.01m)	0.0133
Minimum % overlap (>25)	35.68
Ave point cloud density per sq.m. (>2.0)	4.41
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	190
Maximum Height	293.50 m
Minimum Height	85.36 m
Classification (# of points)	
Ground	73,091,228
Low vegetation	68,546,439
Medium vegetation	272,398,780
High vegetation	231,908,658
Building	3,024,175
Orthophoto	No
Processed by	Engr. Analyn Naldo, Aljon Araneta, Maria Tamsyn Malabanan



Figure 1.2.2. Smoothed Performance Metric Parameters



Figure 1.2.4. Coverage of LiDAR Data



Figure 1.2.5. Image of data overlap



Figure 1.2.6. Density map of merged LiDAR data



Figure 1.2.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	34F_Supplement
Inclusive Flights	3769G
Range data size	23.8
Base data size	260
POS	9.58
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	3.3
Boresight correction stdev (<0.001deg)	0.001727
IMU attitude correction stdev (<0.001deg)	0.003293
GPS position stdev (<0.01m)	0.0093
Minimum % overlap (>25)	34.59
Ave point cloud density per sq.m. (>2.0)	4.21
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	42
Maximum Height	113.49 m
Minimum Height	23.29 m
Classification (# of points)	
Ground	18,006,877
Low vegetation	36,840,877
Medium vegetation	52,391,046
High vegetation	16,595,035
Building	484,590
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Edgardo Gubatanga Jr., Engr. Krisha Marie Bautista



Figure 1.3.2. Smoothed Performance Metric Parameters



Figure 1.3.4. Coverage of LiDAR Data



Figure 1.3.6. Density map of merged LiDAR data



Figure 1.3.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34I
Inclusive Flights	3769G
Range data size	23.8
Base data size	260
POS	9.58
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	3.3
Boresight correction stdev (<0.001deg)	0.003871
IMU attitude correction stdev (<0.001deg)	0.003796
GPS position stdev (<0.01m)	0.0138
Minimum % overlap (>25)	27.82
Ave point cloud density per sq.m. (>2.0)	3.21
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	86
Maximum Height	266.62 m
Minimum Height	75.43 m
Classification (# of points)	
Ground	20,398,103
Low vegetation	20,790,546
Medium vegetation	70,517,058
High vegetation	26,392,425
Building	302,229
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Kathryn Claudyn Zarate



Figure 1.4.2. Smoothed Performance Metric Parameters





Figure 1.4.6. Density map of merged LiDAR data



Figure 1.4.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34J
Inclusive Flights	3765G
Range data size	25.2
Base data size	255
POS	4.38
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	6.0
Boresight correction stdev (<0.001deg)	0.003377
IMU attitude correction stdev (<0.001deg)	0.001525
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	27.64
Ave point cloud density per sq.m. (>2.0)	3.52
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	108
Maximum Height	246.28 m
Minimum Height	78.27 m
Classification (# of points)	
Ground	23,439,051
Low vegetation	27,359,793
Medium vegetation	97,600,486
High vegetation	50,609,486
Building	826,294
Orthophoto	No
Processed by	Engr. Sheila Maye Santillan, Engr. Ma. Joanne Balaga, Marie Denise Bueno



Figure 1.5.2. Smoothed Performance Metric Parameters


Figure 1.5.4. Coverage of LiDAR Data



Figure 1.5.5. Image of data overlap



Figure 1.5.6. Density map of merged LiDAR data



Figure 1.5.7. Elevation difference between flight lines

Flight Area	Leyte
Mission Name	Blk34G_Supplement
Inclusive Flights	3773G
Range data size	16.8
Base data size	248
POS	4.74
Image	n/a
Transfer date	February 12, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000314
IMU attitude correction stdev (<0.001deg)	0.000292
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	38.70
Ave point cloud density per sq.m. (>2.0)	4.35
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	77
Maximum Height	331.30 m
Minimum Height	84.63 m
Classification (# of points)	
Ground	30,109,919
Low vegetation	49,355,383
Medium vegetation	102,195,429
High vegetation	45,790,210
Building	1,350,028
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Jovelle Anjeanette Canlas, Engr. Monalyne Rabino



Figure 1.6.2. Smoothed Performance Metric Parameters



Figure 1.6.4. Coverage of LiDAR Data



Figure 1.6.5. Image of data overlap



Figure 1.6.6. Density map of merged LiDAR data



Figure 1.6.7. Elevation difference between flight lines

Flight Area	Tacloban
Mission Name	1026A
Inclusive Flights	1026A
Range data size	11.6 GB
Base data size	137 MB
POS	55.2 GB
Image	February 3, 2014
Transfer date	
Solution Status	
Number of Satellites (>6)	YES
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.6
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000559
IMU attitude correction stdev (<0.001deg)	0.007980
GPS position stdev (<0.01m)	0.0379
Minimum % overlap (>25)	42.17%
Ave point cloud density per sq.m. (>2.0)	2.33
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	314
Maximum Height	386.42 m
Minimum Height	42.55 m
Classification (# of points)	
Ground	83,757,366
Low vegetation	78,700,823
Medium vegetation	165,907,507
High vegetation	4,928,508
Building	1,722,190
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Ryan Nicholai Dizon



Figure 1.7.2. Smoothed Performance Metrics Parameters



Figure 1.7.4. Coverage of LiDAR data



Figure 1.7.6. Density map of merged LiDAR data



Figure 1.7.7. Elevation difference between flight lines

Annex 9. Binahaan Model Basin Parameters

Table A-9.1. Bangkerohan Model Basin Parameters

	Ratio to Peak	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	ט פנ
	Threshold Type	Ratio to Peak																				
	Recession Constant	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
seflow	Initial Dis- charge (M3/S)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Recession Ba:	Initial Type	Discharge																				
rograph	Storage Coef- ficient (HR)	4.8789	5.149	6.2152	4.0689	1.563	4.5972	7.5893	18.269	7.4705	4.4052	3.0985	3.8024	1.1236	6.1407	8.108	10.02	5.759	9.9356	16.703	6.4644	3.5594
Clark Unit Hyd Transform	Time of Con- centration (HR)	2.9895	3.155	3.8084	2.4932	0.95771	2.8169	4.6503	11.194	4.5775	2.6992	1.8986	2.3299	0.68845	3.7627	4.9681	6.1397	3.5288	6.088	10.235	3.961	2.181
	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mber Loss	Curve Number	46.89	47.02	52.15	65.48	45.19	70.23	61.17	46.39	56.43	50.71	48.56	48.07	47.13	69.11	38.11	46.67	54.22	54.63	46.95	46.22	52.66
SCS Curve Nur	Initial Abstraction (mm)	57.53	57.23	46.61	26.79	61.60	21.54	32.24	58.71	39.23	49.39	53.82	54.87	56.98	22.71	82.49	58.06	42.90	42.18	57.39	59.10	45.66
Basin Number		W780	W770	W760	W750	W740	W730	W720	W710	W700	W690	W680	W670	W660	W650	W640	W630	W620	W610	W600	W590	W580

	Ratio to Peak	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	
	Threshold Type	Ratio to Peak																		
	Recession Constant	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
seflow	Initial Dis- charge (M3/S)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Recession Ba	Initial Type	Discharge																		
rograph	Storage Coef- ficient (HR)	5.7937	4.3806	7.3151	3.741	4.5742	2.9556	4.0906	2.223	7.4465	8.8793	6.3475	2.442	7.0129	3.732	14.9225986	5.3816	6.2329	12.846	
Clark Unit Hyd Transform	Time of Con- centration (HR)	3.5501	2.6842	4.4823	2.2923	2.8028	1.8111	2.5065	1.3617	4.5628	5.4408	3.8894	1.4964	4.2971	2.2868	9.1437	3.2976	3.8192	7.8716	
	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
imber Loss	Curve Number	47.91	57.48	48.94	51.08	47.38	68.79	57.37	58.85	69.04	74.29	51.98	71.19	73.46	57.08	60.77	55.96	56.33	51.51	
SCS Curve Nu	Initial Abstraction (mm)	55.23	37.58	53.01	48.65	56.42	23.05	37.76	35.52	22.78	17.58	46.93	20.56	18.35	38.20	32.80	39.99	39.39	47.83	
Basin Number		W570	W560	W550	W540	W530	W520	W510	W500	W490	W480	W470	W460	W450	W440	W430	W420	W410	W400	

 -

Annex 10. Binahaan Model Reach Parameters

Table A-10.1. Bangkerohan Model Reach Parameters

Reach		Σ	uskingum Cunge	Channel Routir	8		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R60	Automatic Fixed Interval	2389.4	0.0100759	0.04	Trapezoid	3.92	1
R70	Automatic Fixed Interval	1134.5	0.004525	0.04	Trapezoid	5.09	1
R80	Automatic Fixed Interval	994.97	0.0041201	0.04	Trapezoid	11.874	1
R90	Automatic Fixed Interval	2889.1	0.000985811	0.04	Trapezoid	12.824	1
R100	Automatic Fixed Interval	1173.7	0.0082618	0.04	Trapezoid	21.658	1
R110	Automatic Fixed Interval	2869.8	0.0076027	0.04	Trapezoid	6.05	1
R120	Automatic Fixed Interval	13567	0.0100412	0.04	Trapezoid	13.14	1
R140	Automatic Fixed Interval	1219.1	0.0096697	0.04	Trapezoid	65.99	1
R180	Automatic Fixed Interval	1665.8	0.000162183	0.04	Trapezoid	49.62	1
R190	Automatic Fixed Interval	6208.7	0.0018722	0.04	Trapezoid	55.698	1
R200	Automatic Fixed Interval	8315.7	0.0256506	0.04	Trapezoid	20.834	1
R210	Automatic Fixed Interval	98.995	0.246	0.04	Trapezoid	17.648	1
R240	Automatic Fixed Interval	2183.4	0.0013572	0.04	Trapezoid	28.59	1
R250	Automatic Fixed Interval	42.426	0.10865	0.04	Trapezoid	22.186	1
R260	Automatic Fixed Interval	1767.8	0.0015823	0.04	Trapezoid	28.698	1
R290	Automatic Fixed Interval	1624.7	0.0288398	0.04	Trapezoid	16.432	1
R300	Automatic Fixed Interval	2845.4	0.0026938	0.04	Trapezoid	27.408	1
R310	Automatic Fixed Interval	1143.4	0.000348011	0.04	Trapezoid	26.302	1
R340	Automatic Fixed Interval	1229.4	0.0445488	0.04	Trapezoid	13.82	1

Point	Validation (	Coordinates	Model Var	Validation	L L L	Evont 1	Dato of Occurronco	Rain Return
Number	Lat	Long	(m)	Points (m)	5	Event		/Scenario
279	11.11397998	125.0172459	0.029999999	Ł	-0.97	Ruby	2014	5Yr
279	11.11397998	125.0172459	0.029999999	1.5	-1.47	Senyang	2015	5Yr
323	11.11125075	125.0162571	0.029999999	0.2	-0.17	Ruby	2014	5Yr
333	11.11125075	125.0162571	0.029999999	0.2	-0.17	Ruby	2014	5Yr
343	11.11325428	125.0148665	0.219999999	0.2	0.02	Ruby	2014	5Yr
353	11.11175166	125.0142932	0.090000004	0.2	-0.11	Ruby	2014	5Yr
363	11.11096535	125.0149336	0.10000001	0.2	-0.1	Senyang	2015	5Yr
363	11.11096535	125.0149336	0.10000001	0.2	-0.1	Ruby	2014	5Yr
373	11.1102549	125.0158984	0.029999999	0.1	-0.07	Senyang	2015	5Yr
373	11.1102549	125.0158984	0.029999999	0.2	-0.17	Ruby	2014	5Yr
383	11.1094131	125.0168057	0.090000004	0.2	-0.11	Senyang	2015	5Yr
383	11.1094131	125.0168057	0.090000004	0.2	-0.11	Ruby	2014	5Yr
393	11.10932065	125.0155588	0.170000002	0.2	-0.03	Senyang	2015	5Yr
393	11.10932065	125.0155588	0.170000002	0.2	-0.03	Ruby	2014	5Yr
403	11.10990311	125.014658	0.029999999	0.4	-0.37	Senyang	2015	5Yr
416	11.10906593	125.0143104	0.029999999	0.4	-0.37	Senyang	2015	5Yr
423	11.10818733	125.0151437	0.039999999	0.2	-0.16	Senyang	2015	5Yr
433	11.10843334	125.0158722	0.029999999	0.3	-0.27	Senyang	2015	5Yr
433	11.10843334	125.0158722	0.029999999	0.2	-0.17	Ruby	2014	5Yr
443	11.10741167	125.0157733	0.029999999	0.4	-0.37	Senyang	2015	5Yr
453	11.10718427	125.0147769	0.039999999	0.5	-0.46	Senyang	2015	5Yr
463	11.10792087	125.0139871	0.029999999	0.5	-0.47	Senyang	2015	5Yr
473	11.10639713	125.0135057	0.029999999	0.7	-0.67	Senyang	2015	5Yr
483	11.10658723	125.0152808	0.079999998	0.7	-0.62	Senyang	2015	5Yr
633	11.10177551	125.0193146	0.090000004	0	0.09	Heavy Rain		5Yr

Annex 11. Binahaan Field Validation Points

Rain Return	/Scenario	5Yr																										
Date of Occurrence				2015	2014	2015	2014	2015	2015	2015									2014	2015	2014	2014	2015	2015	2015	2014	2015	2015
Event		Heavy Rain	Heavy Rain	Senyang	Ruby	Senyang	Ruby	Senyang	Senyang	Senyang	Heavy Rain	Ruby	Senyang	Ruby	Ruby	Senyang	Senyang	Senyang	Ruby	Senyang	Senyang							
Error	5	0.03	0.41	-0.48	-0.08	-0.59	-0.19	-1.27	-0.97	-0.92	0.31	0.24	0.05	0.03	0.03	0.03	0.03	0.03	-0.65	-0.15	-0.37	-0.52	-0.37	-0.28	-0.11	-0.21	-0.46	-0.27
Validation	Points (m)	0	0	0.9	0.5	0.9	0.5	1.3	1	-	0	0	0	0	0	0	0	0	1	0.5	0.4	0.55	0.4	0.4	0.4	0.5	0.5	0.7
Model Var	(m)	0.029999999	0.409999996	0.419999987	0.419999987	0.310000002	0.310000002	0.029999999	0.029999999	0.079999998	0.310000002	0.239999995	0.05000001	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.349999994	0.349999994	0.029999999	0.029999999	0.029999999	0.119999997	0.289999992	0.289999992	0.039999999	0.430000007
oordinates	Long	125.0194403	125.0191131	125.0122471	125.0122471	125.0103673	125.0103673	125.0092351	125.0078159	125.0064154	125.0131878	125.0116627	125.0104046	125.0089616	125.0081046	125.0063204	125.0046225	125.003353	125.0020128	125.0020128	125.0027908	124.995776	124.9939592	124.9922758	124.9909108	124.9909108	124.9896329	124.9882384
Validation C	Lat	11.10012755	11.09875292	11.1054887	11.1054887	11.10405707	11.10405707	11.10279459	11.10132909	11.10013627	11.11087985	11.10982608	11.10948946	11.10879293	11.10794661	11.10749482	11.1066081	11.10565776	11.10526389	11.10526389	11.10375792	11.10109968	11.10011523	11.09916237	11.09781741	11.09781741	11.09707503	11.09566586
Point	Number	643	653	683	683	693	693	703	715	723	733	743	753	763	773	815	823	833	843	843	853	903	923	933	943	943	953	963

Rain Return	/Scenario	5Yr																										
Date of Occurrence			2013	2013	2013	2013	2013	2013	2013		2015	2013					2013		2015	2014	2015	2015	2014					
Event		Heavy Rain	Senyang	Heavy Rain	Senyang	Ruby	Senyang	Senyang	Ruby	Heavy Rain																		
Frror	5	0.03	0.97	-0.11	-0.06	-0.47	-0.47	5.19	-0.16	0.03	-0.77	-0.47	0.04	0.04	0.03	0.34	-0.27	0.1	-0.3	0.1	-0.27	-0.75	-0.45	0.04	0.03	0.03	0.09	0.06
Validation	Points (m)	0	0.5	0.5	0.5	0.5	0.5	0.2	0.2	0	0.8	0.5	0	0	0	0	0.3	0	0.7	0.3	0.3	0.8	0.5	0	0	0	0	0
Model Var	(m)	0.029999999	1.470000029	0.389999986	0.439999998	0.029999999	0.029999999	5.389999866	0.039999999	0.029999999	0.029999999	0.029999999	0.039999999	0.039999999	0.029999999	0.340000004	0.029999999	0.10000001	0.40000006	0.40000006	0.029999999	0.05000001	0.05000001	0.039999999	0.029999999	0.029999999	0.090000004	0.059999999
oordinates	Long	124.989936	124.9854417	124.9847289	124.9847838	124.9845098	124.9862549	124.987036	124.9892547	124.9923462	125.0136541	124.9918328	124.9979818	124.9979818	125.0016927	125.0053814	125.0082362	125.0090425	124.9856753	124.9856753	124.9876189	124.9862979	124.9862979	124.9841679	124.9812698	124.9798997	124.9797039	124.9771053
Validation C	Lat	11.09421437	11.10179521	11.10417852	11.10661187	11.10848079	11.10957395	11.11085739	11.11239689	11.11682229	11.11495983	11.1183742	11.12255492	11.12255492	11.12396317	11.12548113	11.12700487	11.12812721	11.0949415	11.0949415	11.09458032	11.09322706	11.09322706	11.09139813	11.08960155	11.08648575	11.08427569	11.08239789
Point	Number	973	1004	1015	1024	1034	1043	1053	1083	1106	1193	1203	1233	1233	1243	1253	1263	1614	1623	1623	1633	1643	1643	1653	1663	1673	1683	1693

Rain Return	/Scenario	5Yr	5Yr	5Yr	5Yr	5Yr	5Yr															
Date of Occurrence			2013											2015	2014	2015	2014	2015	2015	2015	2015	2015
Event		Heavy Rain	Senyang	Ruby	Senyang	Ruby	Senyang	Senyang	Senyang	Senyang	Senyang											
Error		0.03	-0.27	0.03	0.03	0.03	0.03	2.85	0.03	0.05	0.03	0.03	0.12	-0.77	-0.97	-1.47	-0.84	-1.34	-0.57	-0.56	-0.77	-0.77
Validation	Points (m)	0	0.3	0	0	0	0	0	0	0	0	0	0	0.8	~	1.5	<del>.</del>	1.5	0.6	0.6	0.8	0.8
Model Var	(m)	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	2.849999905	0.029999999	0.050000001	0.029999999	0.029999999	0.119999997	0.029999999	0.029999999	0.029999999	0.159999996	0.159999996	0.029999999	0.039999999	0.029999999	0.029999999
oordinates	Long	124.9744707	125.0109596	124.9669365	124.9649711	124.963114	124.9604841	124.9576005	124.9554026	124.9523218	124.9505879	125.0141253	125.0158581	125.0160491	125.0182016	125.0182016	125.0196056	125.0196056	125.0040599	125.0011535	125.0155706	125.0150776
Validation C	Lat	11.08103592	11.12643256	11.07910917	11.07888931	11.07850886	11.07748643	11.07688964	11.07587703	11.07519834	11.07431925	11.12397473	11.12149612	11.11974866	11.11594479	11.11594479	11.11714767	11.11714767	11.09236029	11.08863914	11.11596817	11.11466303
Point	Number	1703	1714	1715	1723	1733	1743	1753	1763	1773	1783	1814	2014	2114	2314	2314	2414	2414	2493	2503	2513	2612

Rain Return	/Scenario	100Yr																										
		Nov.2013	2013	2013	2013	2013	2013	2013	2013	2013	2013	Nov.2013	2013	2013	2013	2013	2013	2013	2013	2013	Nov.2013	Nov.2013						
Ē Ţ		Yolanda																										
L L L L	5	-2.4	-2.5	-2.2	-2.6	-2.4	-2.1	-2.4	-5	-5	-4.8	-4.8	γ	-4.9	Ļ	-4.7	-2.9	-2.5	ę.	ę.	-4.7	ς.	-2.9	-2.8	ς.	-2.9	-2.6	ကု
Validation	Points (m)	2.5	2.5	2.5	ო	ო	2.5	2.6	S	ۍ	Ð	S	ى ا	ى ا	ى ا	5	ო	2.5	ო	ო	Q	r	ო	ო	ო	ო	2.6	3
Model Var	(m)	0.08	0.03	0.31	0.45	0.63	0.44	0.16	0.03	0.03	0.25	0.25	0.03	0.13	0.04	0.26	0.11	0.03	0.03	0.03	0.3	0.03	0.1	0.16	0.03	0.1	0.03	0.03
oordinates	Long	125.000758	125.017246	125.016791	125.018298	125.019601	124.999769	125.017983	125.016257	125.015445	125.014866	125.014293	125.014934	125.015898	125.016806	125.015559	125.014658	125.001722	125.01431	125.015144	125.015872	125.015773	125.014777	125.013987	125.013506	125.015281	125.02006	125.004068
Validation C	Lat	11.1496174	11.11398	11.1128301	11.1121422	11.1126991	11.14755	11.110934	11.1112508	11.1123155	11.1132543	11.1117517	11.1109654	11.1102549	11.1094131	11.1093207	11.1099031	11.1467303	11.1090659	11.1081873	11.1084333	11.1074117	11.1071843	11.1079209	11.1063971	11.1065872	11.1107831	11.1430692
Point	Number	278	279	283	293	303	315	316	323	333	343	353	363	373	383	393	403	415	416	423	433	443	453	463	473	483	493	564

Rain Return	/Scenario	100Yr																										
Date of Occurrence		Nov.2013	2013	2013	2013	Nov.2013	2013	2013	2013	2013	2013	2013	2013	2013	2013	Nov.2013	2013	Nov.2013	2013									
Event		Yolanda																										
Trror		ကု	0.19	0.46	-0.46	-2.3	-0.57	-0.47	0.03	-0.27	-0.27	0.16	0.66	0.65	0.08	-2.5	0.09	-1.1	ې. ا	-0.22	-0.23	-0.97	-0.8	3.3	0.28	-0.46	-0.92	-0.37
Validation	Points (m)	З	0.5	0.5	0.6	3	0.6	0.5	0.5	0.55	0.3	0.2	0.2	0.1	0.15	3	0.5	1.5	3	~	Ļ	Ļ	~	0.5	0.5	0.5	~	0.4
Model Var	(m)	0.03	0.69	0.96	0.14	0.75	0.03	0.03	0.53	0.28	0.03	0.36	0.86	0.75	0.23	0.5	0.59	0.43	0.03	0.78	0.77	0.03	0.2	3.8	0.78	0.04	0.08	0.03
oordinates	Long	125.004522	125.012247	125.010367	125.009235	125.005009	125.007816	125.006415	125.002013	125.002791	125.000754	124.999555	124.998478	124.997052	124.995776	125.006882	124.996188	124.985442	125.005744	124.984729	124.984784	124.98451	124.986255	124.987036	124.984932	124.987334	124.989255	124.990637
Validation C	Lat	11.1414449	11.1054887	11.1040571	11.1027946	11.1404095	11.1013291	11.1001363	11.1052639	11.1037579	11.1043712	11.1034599	11.10244	11.10203	11.1010997	11.1400315	11.0998394	11.1017952	11.1391732	11.1041785	11.1066119	11.1084808	11.109574	11.1108574	11.1118497	11.1129657	11.1123969	11.1144059
Point	Number	614	683	693	703	714	715	723	843	853	863	873	883	893	903	914	915	1004	1014	1015	1024	1034	1043	1053	1063	1073	1083	1093

Rain Return	/Scenario	100Yr																										
	Date of Occurrence	Nov.2013	Nov.2013	Nov.2013	Nov.2013	Nov.2013	2013	Nov.2013	Nov.2013	2013	Nov.2013	2013	2013	2013	2013	2013	2013	2013	Nov.2013	2013	2013	2013	Nov.2013	Nov.2013	2013	2013	Nov.2013	Nov.2013
Ľ	Event	Yolanda																										
L	Error	5	-0.47	-2.8	-0.11	ကု	-0.36	-1.7	-2.5	-0.97	-2.7	-0.97	-0.64	-0.91	-0.84	-0.04	-0.96	-0.37	ကု	-0.14	0.53	0.39	ကု	-2.9	0.14	-1.1	-2	-2.5
Validation	Points (m)	2	0.5	n	0.5	ę	0.5	2.5	3.5	-	ო	-	-	-	-	-	-	~	n	-	-	-	ო	3.5	0.3	1.2	2	2.5
Model Var	(m)	0	0.03	0.22	0.39	0.03	0.14	0.84	0.99	0.03	0.26	0.03	0.36	0.09	0.16	0.96	0.04	0.63	0.03	0.86	1.53	1.39	0.03	0.58	0.44	0.07	0.03	0.03
oordinates	Long	124.998686	124.992346	125.006461	124.991833	125.007174	124.995015	125.008236	125.002478	124.993708	125.005763	124.996359	124.993801	124.992934	124.990141	124.989474	124.986633	124.984153	125.007764	124.981296	124.979116	124.983649	125.008485	125.009042	124.985675	124.986298	125.01096	125.018202
Validation C	Lat	11.1524295	11.1168223	11.1371408	11.1183742	11.134976	11.1188058	11.1270049	11.1329699	11.1248579	11.1341319	11.1516294	11.1517692	11.1531083	11.1537482	11.1556228	11.1548047	11.1538402	11.1318916	11.1314344	11.1317209	11.1312819	11.1297115	11.1281272	11.0949415	11.0932271	11.1264326	11.1159448
Point	Number	1105	1106	1114	1203	1214	1215	1263	1273	1303	1314	1315	1323	1343	1353	1363	1373	1383	1414	1453	1463	1473	1514	1614	1623	1643	1714	2314

Rain Return	/Scenario	100Yr							
Date of Occurrence		Nov.2013	2013	Nov.2013	Nov.2013	Nov.2013	Nov.2013	Nov.2013	Nov.2013
Event		Yolanda							
Frror	5	-1.4	-0.38	-5	-4.7	-4.9	-4.9	-5	-4.8
Validation	Points (m)	2	0.5	5	5	5	5	2	5
Model Var	(E)	0.57	0.12	0.03	0.26	0.06	0.05	0.04	0.16
cordinates	Long	125.019606	125.001154	125.020988	125.021679	125.020284	125.019228	125.020605	125.02169
Validation C	Lat	11.1171477	11.0886391	11.1106034	11.109963	11.1092791	11.1086732	11.1081602	11.1084964
Point	Number	2414	2503	5012	5112	5212	5312	5412	5512

			. <u></u>		
	DAGAWI	Ra	ainfall Scenar	io	
Building Name	Barangay	5-vear	25-vear	100-vear	
Abaca Elementary School	Abaca	Medium	Medium	Medium	
Balilit Elementary School	Balilit	Medium	Medium	High	
Day Care Center	Balilit	Medium	Medium	High	
Canlingga Elementary School	Balugo	Low	Low	Medium	
Banayon Elementary School	Banayon	Low	Low	Low	
Day Care Center	Banayon				
Bolirao Elementary School	Bolirao				
Patoc Elementary School	Caanislagan				
Dagami South Central School	Cabariwan		Low	Medium	
Sta. Mesa National High School	Cabariwan				
Day Care Center	Cabuloran				
Palacio Elementary School	Cabunga-An	Medium	Medium	Medium	
Calutan Primary School	Calutan				
Day Care Center	Calutan				
Day Care Center	Cansamada East	Low	Low	Medium	
Cansamada West Elementary School	Digahongan		Low	Medium	
Hinulogan Elementary School	Guinarona	Low	Low	Low	
Day Care Center	Hiabangan				
Hiabangan Elementary School	Hiabangan				
Day Care Center	Hilabago	Low	Medium	Medium	
Day Care Center	Hitumnog				
Guinarona Elementary School	Lobe-Lobe East	Low	Low	Low	
Guinarona National High School	Lobe-Lobe East				
Day Care Center	Los Martires	Low	High	High	
Dagami North Central School	Lusad Poblacion		Medium	Medium	
Cabuloran Elementary School	Maliwaliw				
Day Care Center	Maliwaliw				
Maliwaliw Elementary School	Maliwaliw	Low	Low	Low	
Maragongdong Elementary School	Maragondong	Medium	Medium	Medium	
Canlingga Elementary School	Palacio	Medium	Medium	Medium	
Hitomnog Elementary School	Palacio		Low	Low	

## Annex 12. Educational Institutions Affected in Binahaan Flood Plain

Day Care Center	Patoc			Low
Caloctogan Elementary School	Poponton	Medium	Medium	Medium
Day Care Center	Poponton	Medium	High	High
Dagami South Central School	Sampao East Poblacion	Low	Medium	Medium
St. Joseph High School - Dagami	San Jose Poblacion			
Day Care Center (New)	Santo Domingo	Low	Low	Low
Day Care Center (Old)	Santo Domingo		Low	Low
Patoc National High School	Santo Domingo	Low	Low	Low
Day Care Center	Sawahon			
Maragongdong Elementary School	Sawahon	Medium	Medium	Medium
St. Joseph High School - Dagami	Tunga Poblacion		Low	Medium

LEYTE					
PALO					
Puilding Name	Parangau	R	Rainfall Scenario		
building Name	Dardiigay	5-year	25-year	100-year	
Anahaway Elementary School	Anahaway				
Anahaway National High School	Anahaway				
Cabarasan Daku Elementary School	Cabarasan Daku				
Day Care Center	Cabarasan Daku				
Cabarasan Guti Primary School	Cabarasan Guti				
Cangumbang Elementary School	Cangumbang		Medium	High	
Day Care Center	Cangumbang	Low	Medium	High	
Canhidoc Elementary School	Canhidoc				
Brgy. Castilla, Day Care Center	Castilla				
Castilla Elementary School	Castilla				
Palo National High School	Cavite West			Low	
Capirawan Elementary School	Gacao		Low	Low	
Day Care Center	Gacao				
Gacao Elementary School	Gacao	Low	Low	Medium	
Day Care Center	Naga-Naga				
St. Mary Academy	Naga-Naga				
Naga-Naga Elementary School	Salvacion				
Day Care Center	San Agustin				
San Agustin Elementary School	San Agustin			Low	
San Antonio Elementary School	San Antonio		Low	Low	

Gacao Elementary School	San Isidro		Low	Low
Brgy. Tacuranga, Day Care Center	San Joaquin			Low
Day Care Center	San Joaquin		Medium	Medium
San Joaquin Central School	San Joaquin			
Tacuranga Elementary School	San Joaquin	Low	Low	Medium
St. Mary Academy	Santa Cruz			

LEYTE					
	PASTRANA				
Duilding Nome	Perenceu	Ra	ainfall Scenar	infall Scenario	
building Name	Darangay	5-year	25-year	100-year	
Bahay Elementary School	Bahay				
Calipayan Elementary School	Bahay				
Day Care Center	Bahay				
Macalpiay Elementary School	Bahay	Low	Medium	Medium	
Macalpiay National High School	Bahay		Medium	Medium	
Sto. Domingo Primary School	Bahay	Low	Low	Low	
Cabaohan Primary School	Cabaohan				
Day Care Center	Cabaohan				
Day Care Center	Caninoan	Low	Low	Low	
Manaybanay National High School	Caninoan		Low	Low	
Capilla Primary School	Capilla	Medium	Medium	Medium	
Colawen Elementary School	Colawen				
Day Care Center	Colawen				
Lanawan Elementary School	Lanawan				
Lourdes Primary School	Macalpiay		Medium	Medium	
Manaybanay National High School	Manaybanay			Low	
Aringit Elementary School	Sapsap				
Day Care Center	Sapsap				
Sapsap Elementary School	Sapsap			Low	
Day Care Center	Tingib		Low	Low	
Tingib Elementary School	Tingib	Medium	Medium	High	
Day Care Center	Yapad				
Yapad Elementary School	Yapad	Low	Medium	Medium	

LEYTE							
	TABONTABON						
Duilding Nome	Berengey	Rainfall Scenario		io			
building Name	Darangay	5-year	25-year	100-year			
Maghulod Elementary School	Belisong						
Capahuan Elementary School	Capahuan						
Guingawan Elementary School	Guingawan		Low	Medium			
Belisong Primary School	Mercadohay	Low	Medium	Medium			
Day Care Center	Mercadohay						
Jabong Elementary School	Mercadohay						
Piggery	Mercadohay	Low	Low	Low			
Brgy. Maghulod Day Care Center	Mering	Low	Low	Low			
Day Care Center	Mering						
Maghulod Elementary School	Mering						

LEYTE					
	TANAUAN				
Ruilding Name	Barangay	R	Rainfall Scenario		
building Name	Darangay	5-year	25-year	100-year	
Brgy. Camire Day Care Center	Balud		Low	Medium	
Camire Elementary School	Balud				
Brgy. Bantagan Day Care Center	Bantagan				
Binongto-an Day Care Center	Binongto-An				
Binongto-an Primary School	Binongto-An				
Brgy. Sta. Elena Day Care Center	Binongto-An				
Sta. Elena Elementary School	Binongto-An		Low	Low	
Assumption Academy	Buntay				
Brgy. Baras Day Care Center	Cabalagnan	Low	Low	Low	
Brgy. Cabalagnan Day Care Center	Cabalagnan	Low	Low	Low	
Cabalagnan Primary School	Cabalagnan		Low	Low	
Brgy. Bangon Day Care Center	Calsadahay	Low	Low	Medium	
Brgy. Muhon Day Care Center	Camire			Medium	
Muhon Elementary School	Camire			Low	
Eastern Visayas State University - Tanauan	Canramos				
Tanauan Central School	Canramos				
Tanauan School of Craftsmanship & Home Industries	Canramos				

Cahumayhumayan Elementary School	Catigbian			
Brgy. Guindagan Day Care Center	Guindag-An	Low	Medium	Medium
Guindagan Elementary School	Guindag-An	Low	Medium	Medium
Brgy. Catigbi-an Day Care Center	Maghulod			
Malaguicay Elementary School	Malaguicay		Medium	Medium
Brgy. Maribi Day Care Center	Maribi		Low	Low
Maribi Elementary School	Maribi		Medium	Medium
Eastern Visayas State University - Tanauan	Pago			Low
Brgy. Kiling Day Care Center	Salvador			
Brgy. Salvador Day Care Center	Salvador			
Kiling Elementary School	Salvador			
Kiling National High Schoo	Salvador			Low
Kiling National High School	Salvador			
Salvador Elementary School	Salvador			Low
Brgy. Sn. Isidro Day Care Center	San Isidro		Low	Medium
San Isidro Elementary School	San Isidro		Low	Low
San Roque Elementary School	San Roque			
Eastern Visayas State University - Tanauan	Santo Niño Poblacion			Low
International Christian Academy School	Santo Niño Poblacion			
Sto. Niño Elementary School	Santo Niño Poblacion		Low	Low
Sto.Niño de Tanauan School for Basic Education IN	Santo Niño Poblacion	Low	Low	Low
Tanauan II Central School	Santo Niño Poblacion			
Tanauan National High School	Santo Niño Poblacion	Low	Low	Low
Tanauan School of Craftsmanship & Home Industries	Santo Niño Poblacion	Low	Low	Low

## Annex 13. Medical Institutions Affected in Binahaan Flood Plain

LEYTE					
	DAGAMI				
Duilding Norma	Deveneer	Ra	Rainfall Scenario		
Building Name	barangay	5-year	25-year	100-year	
Health Center	Balugo				
Brgy. Health Center	Caanislagan				
Guinarona Health Center	Lobe-Lobe East	Medium	Medium	Medium	
Health Center	Los Martires		Medium	High	
Dagami Rural Health Unit	Lusad Poblacion		Low	Medium	
Brgy. Health Center	Maliwaliw				
Dagami RHU & TB DOTS Facility	Sampao East Poblacion	Low	Medium	Medium	
Brgy. Health Center	Santo Domingo		Low	Low	
Bud-Oy's Birthing Clinic	Sta. Mesa Poblacion	Low	Medium	Medium	
Dagami RHU & TB DOTS Facility	Sta. Mesa Poblacion		Medium	Medium	
St. Bernadeth Medical Clinic	Sta. Mesa Poblacion	Low	Medium	Medium	
Dagami Rural Health Unit	Tunga Poblacion			Low	

LEYTE					
PALO					
Duilding Nome	Deveneer	R	ainfall Scenar	io	
Building Name	вагапдау	5-year	25-year	100-year	
Brgy. Health Center	Anahaway		Low	Low	
Brgy. Health Station	Anahaway				
Brgy. Health Center	Cabarasan Daku				
Cangumbang Health Center	Cangumbang	Low	Medium	High	
Brgy. Health Center	Gacao				
Brgy. Health Center	San Agustin				
7th Angel Family Health Care & Maternity Clini	San Joaquin	Low	Low	Medium	
Brgy. Health Center	San Joaquin			Low	
Brgy. Tacuranga, Health Center	San Joaquin				
Canhidoc Health Center	San Joaquin				
Feeding Center	San Joaquin			Low	
Brgy. Health Center	Tacuranga				

LEYTE						
PASTRANA						
Duilding Name	Deveneer	Rainfall Scenario				
Building Name	вагапдау	5-year 25-year		100-year		
Brgy. Castilla, Health Center	Cabaohan					
Lanawan, Health Center	Caninoan					
Health Center	Tingib		Low	Medium		

LEYTE						
TABONTABON						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Health Center	Guingawan			Medium		
Brgy. Maghulod Health Center	Mering	Low	Low	Low		

LEYTE						
TANAUAN						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Brgy. Camire Health Center	Balud					
Brgy. Cabalagnan Health Center	Cabalagnan		Low	Low		
Rural Health Unit	Canramos	Low	Low	Low		
Verzosa Medical Clinic/ Optical Clinic	Canramos					
Brgy. Guindagan Health Center	Guindag-An	Low	Medium	Medium		
Brgy. Salvador Birthing Clinic	Salvador		Low	Low		
Rural Health Unit	San Roque					
Cumpio Midwife Clinic	Santo Niño Poblacion					