HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Bangkerohan River

APRIL 20

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Visayas State University Department of Science and Technology

 ${
m C}$ University of the Philippines Diliman and Visayas State University 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F. Morales, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Bangkerohan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry 201pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr. Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-193-5

TABLE OF CONTENTS

TABL	E OF CONTENTS	iii
LIST (OF TABLES	v
LIST (OF FIGURES	vi
LIST (OF ACRONYMS AND ABBREVIATIONS	ix
СНАР	PTER 1: OVERVIEW OF THE PROGRAM AND BANGKEROHAN RIVER	1
	1.1 Background of the Phil-LIDAR 1 Program.	1
	1.2 Overview of the Bangkerohan River Basin	1
СНАР	PTER 2: LIDAR DATA ACQUISITION OF THE BANGKEROHAN FLOODPLAIN	3
	2.1 Flight Plans	3
	2.2 Ground Base Station	5
	2.3 Flight Missions	10
	2.4 Survey Coverage	11
СНАР	PTER 3: LIDAR DATA PROCESSING FOR BANGKEROHAN FLOODPLAIN	14
	3.1 LiDAR Data Processing for Bangkerohan Floodplain	14
	3.1.1 Overview of the LiDAR Data Pre-Processing	14
	3.2 Transmittal of Acquired LiDAR Data.	15
	3.3 Trajectory Computation.	15
	3.4 LiDAR Point Cloud Computation.	17
	3.5 LiDAR Data Quality Checking.	17
	3.6 LiDAR Point Cloud Classification and Rasterization.	22
	3.7 LiDAR Image Processing and Orthophotograph Rectification	24
	3.8 DEM Editing and Hydro-Correction	25
	3.9 Mosaicking of Blocks	
	3 10 Calibration and Validation of Mosaicked LiDAR DEM	
	3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	31
	3 12 Feature Extraction	22
	3 12 1 Quality Checking of Digitized Features' Boundary	
	2 12 2 Height Extraction	
	2 12 2 Easture Attribution	
	2.12.4 Final Quality Checking of Extracted Features	
CUAR	5.12.4 Final Quality Checking of Extracted Features.	
	PTER 4. LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN BIV	/FR
BASI	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV	/ER .36
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIN N	/ER .36
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey	/ER .36 36
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing	/ER .36 36 38 42
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4 A Network Adjustment	/ER .36 36 38 42 42
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking	/ER .36 36 38 42 42
BASII	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey	/ER 36 38 42 42 42
BASII	 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 	/ER .36 36 42 42 42 44 50
BASII	 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 	/ER 36 38 42 42 42 50 52
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 5 1 Data Used for Hydrologic Modeling. 	/ER 36 38 42 42 42 50 52 54
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 5.1 Data Used for Hydrologic Modeling. 5.1 1 Hydrometry and Pating Curves	/ER 36 38 42 42 42 42 50 54 54
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7 Bathymetric Survey. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 	/ER 36 38 42 42 42 42 50 50 52 54 54
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7 ER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 	/ER 36 38 42 42 42 42 42 50 52 54 54 54
CHAP	 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. TER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 	/ER 36 38 42 42 42 50 52 54 54 54
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.2 RIDF Station. 	/ER .36 38 42 42 50 52 54 54 54 55 56
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 	/ER .36 38 42 42 50 52 54 54 54 55 56 57
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7 TER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 	/ER .36 38 42 44 50 52 54 54 54 55 56 57 61
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data.	/ER .36 38 42 44 50 52 54 54 54 54 55 56 57 61
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. YTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration.	/ER .36 38 42 44 50 52 54 54 55 56 57 61 62
CHAP	 PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 	/ER .36 38 42 42 50 52 54 54 54 55 56 57 61 62 63
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model.	/ER 36 38 42 42 50 52 54 54 55 56 57 61 62 63 65
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7 7 8.1 1.1 9 1.2 9 1.3 1.4 1.5 1.6 1.7 1.8 1.1 1.1 1.2 1.3 1.4 1.4 1.5 1.6 1.7 1.8 1.7 1.8 1.7 1.7 1.7 1.7 1.8 1.9 1.1	/ER .36 38 42 44 50 52 54 54 54 54 55 56 57 61 62 63 65 65
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIN 4.1 9.1 9.2 9.3 9.4 9.4 9.5 9.4 9.5 9.6 9.7 9.8 9.8 9.9 9.4 9.4 9.5 9.6 9.7 9.8 9.8 9.4 9.5 9.6 9.7 9.8 9.8 9.9 9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.1 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.8 9.8 9.9 9.9	/ER .36 38 42 44 50 52 54 54 54 55 57 61 62 63 65 66 65
CHAP	PTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 4.6 A6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. PTER 5: RESULTS AND DISCUSSION FMC. 5.1 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 S.1.3 Rating Curves and River Outflow. 5.4 Cross-section Data. 5.5 5.6 2.7 S.8 S.7 2.4 S.7 2.5 3.6 3.7 3.7 3.8 3.7 3.8 3.9 3.10 3.11 3.12 <t< td=""><td>/ER .36 38 42 50 52 54 55 56 57 61 65 65 65 66 67 74</td></t<>	/ER .36 38 42 50 52 54 55 56 57 61 65 65 65 66 67 74
CHAP	TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 4.1 Summary of Activities 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7 Bathymetric Survey. 7 TER 5: RESULTS AND DISCUSSION FMC. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation.	/ER .36 38 42 42 50 52 54 54 54 55 61 61 61 65 65 65 65
CHAP	TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. 7ER 5: RESULTS AND DISCUSSION FMC 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.9 Flow Validation. 5.9 Flow Validation. 5.11 Flood Validation.	/ER .36 38 42 42 50 52 54 54 55 61 62 63 65 65 65 65 65 65
CHAP	TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. TER 5: RESULTS AND DISCUSSION FMC . 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation.	/ER .36 38 42 42 50 52 54 54 54 55 66 67 61 62 63 65 66 67 74 92 95
CHAP	TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIV 4.1 Summary of Activities. 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. TER 5: RESULTS AND DISCUSSION FMC . 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDE Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.0 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 5.12 Flood Validation.	/ER .36 38 42 42 54 54 54 54 55 61 63 65 65 65 65 65 66 92 95 96

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	106
Annex 4. The LIDAR Survey Team Composition	110
Annex 5. Data Transfer Sheet for Bangkerohan Floodplain	111
Annex 6. Flight Logs for the Flight Missions	114
Annex 7. Flight Status Reports	121
Annex 8. Mission Summary Reports	129
Annex 9. Bangkerohan Model Basin Parameters	164
Annex 10. Bangkerohan Model Reach Parameters	165
Annex 11. Bangkerohan Field Validation Points	166
Annex 12. Educational Institutions Affected by flooding in Bangkerohan Floodplain	175
Annex 13. Health Institutions affected by flooding in Bangkerohan Floodplain	177

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system	3
Table 2. Flight planning parameters for Gemini LiDAR system	
Table 3. Details of the recovered NAMRIA horizontal control point IV-1024 used as hase station for t	he
LiDAP Acquisition	5
Table 4. Datails of the recovered NAMPIA berizontal control point IVT 757 used as base station for t	J
Table 4. Details of the recovered NAMIRIA horizontal control point LY1-757 used as base station for t	.ne
	6
Table 5. Details of the recovered NAMRIA horizontal control point LY1-748 used as base station for t	:he
LiDAR acquisition	7
Table 6. Details of the recovered NAMRIA horizontal control point LY-313 used as base station for the LiD	AR
acquisition	8
Table 7. Details of the recovered NAMRIA horizontal control point LYT-741 used as base station for t	:he
LiDAR acquisition	9
Table 8. Details of the recovered NAMRIA horizontal control point LY-351 used as base station for the LiD.	AR
acquisition	.9
Table 9 Details of the recovered NAMRIA horizontal control point IVS-4 used as base station for the LiD	ΔR
	10
Table 10. Cround control points used during LiDAR data acquisition	10
Table 10. Ground control points used during LiDAR data acquisition	10
Table 11. Flight missions for LIDAR data acquisition in Bangkeronan floodplain	11
Table 12. Actual parameters used during LIDAR acquisition	.11
Table 13. List of municipalities and cities surveyed during Bangkerohan floodplain LiDAR survey	.12
Table 14. Self-Calibration Results values for Bangkerohan flights	.17
Table 15. List of LiDAR blocks for Bangkerohan floodplain	18
Table 16. Bangkerohan classification results in TerraScan	.22
Table 17. LiDAR blocks with its corresponding area	.25
Table 18. Shift Values of each LiDAR Block of Bangkerohan floodplain	.26
Table 19 Calibration Statistical Measures	30
Table 20 Validation Statistical Measures	31
Table 21. Quality Checking Patings for Pangkoroban Building Features	22
Table 22. Quality Checking Ratings for Dangkerohan Floodalain	24
Table 22. Building Fedures Extracted for Bangkeronan Floodplain	34
Table 23. Total Length of Extracted Roads for Bangkeronan Floodplain	.35
Table 24. Number of Extracted Water Bodies for Bangkeronan Floodplain	35
Table 25. List of Reference and Control Points occupied for Bangkerohan River Survey (Source: NAMR	IA;
UP-TCAGP)	39
Table 26. Baseline Processing Report for Bangkerohan River Basin Static Survey	.42
Table 27. Control Point Constraints for control points used in the Bangkerohan River floodplain validation.	.43
Table 28. Adjusted Grid Coordinates for control points used in the Bangkerohan River floodplain validation.	.43
Table 29. Adjusted Geodetic Coordinates for control points used in the Bangkerohan River floodpla	ain
validation	44
Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	.44
Table 31., RIDE values for Maasin Rain Gauge computed by PAGASA	56
Table 32. Range of Calibrated Values for Bangkeroban	64
Table 32. Summary of the Efficiency Tect of Bangkerohan HMS Model	65
Table 33. Summary of the Enclency rest of Bangkeronan rivis Model autilians the Maasin PIDE	66
Table 34. Feak values of the bangkeronali nec-nivis would outhow using the widdsin NDF	67
Table 35. Municipalities affected in Bangkeronan Noodpiain	67
Table 36. Affected Areas in Bato, Leyte during 5-year Rainfall Return Period	.75
Table 37. Affected Areas in Bato, Leyte during 5-Year Rainfall Return Period	.75
Table 38. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period	.78
Table 39. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period	.78
Table 40. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period	.81
Table 41. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period	.81
Table 42. Affected Areas in Hilongos, Levte during 25-Year Rainfall Return Period	.84
Table 43. Affected Areas in Hilongos, Levte during 25-Year Rainfall Return Period	.84
Table 44 Affected Areas in Rato Levite during 100-Year Rainfall Return Period	87
Table 45. Affected Areas in Bato, Leyte during 100-Year Rainfall Return Period	87
Table 46. Affected Areas in Bilongos, Levite during 100 Year Dainfall Deturn Dariad	00
Table 40. Affected Areas in Hildpress, Leyte during 100-Year Raiffidii Keturn Period	.90
Table 47. Affected Areas in Hilongos, Leyte during 100-Year Kainfall Keturn Period	90
Table 48. Area covered by each warning level with respect to the rainfall scenario	92
Table 49. Table 73. Actual Flood Depth vs Simulated Flood Depth in Bangkerohan	.94
Table 50. Summary of Accuracy Assessment in Bangkerohan	94

LIST OF FIGURES

Figure 1 Man of the Bangkerohan Piver Basin (in brown)	1
Figure 2. Elight plans and base stations used for Pangkerohan floodplain survey.	<u>1</u>
Figure 2. Flight plans and base stations used for bangkeronan noouplain survey	4
Figure 3. GPS Set-ip over LY-1024 located at the SE end of the sidewalk of Agas-agas bridge (a) and NAIVII	
reference point LY-1024 (b) as recovered by the field team	5
Figure 4. GPS set-up over LY I-757 as recovered on the opposite side of the kilometer post 997 in barang	gay
Mahayahay, Leyte (a) and NAMRIA reference point LYI-757 (b) as recovered by the field team	6
Figure 5. GPS set-up over LYT-748 as recovered at the back of Hitoog Elementary School, Brgy. Hito	og,
Municipality of Matalom, Leyte (a) and NAMRIA reference point LYT-748 (b) as recovered by the fi	eld
team	7
Figure 6. GPS set-up over LY-313 as recovered in Brgy. Pandan, Baybay, Leyte (a) and NAMRIA referer	nce
point LY-313 (b) as recovered by the field team	8
Figure 7. GPS set-up over LYT-741 as recovered in Brgy. Doos Del Norte, Hindang, Leyte (a) and NAMI	RIA
reference point LYT-741 (b) as recovered by the field team	9
Figure 8. Actual LiDAR survey coverage for Bangkerohan floodplain	.13
Figure 9. Schematic Diagram for Data Pre-Processing Component	.14
Figure 10. Smoothed Performance Metric Parameters of a Bangkerohan Flight 7756AC	.15
Figure 11, Solution Status Parameters of Bangkerohan Flight 7756AC	16
Figure 12. The best estimated trajectory of the LiDAR missions conducted over the Bangkeroh	nan
floodnlain	17
Figure 13 Boundary of the processed LiDAR data over Bangkerohan Floodplain	18
Figure 14. Image of data overlap for Bangkerohan floodplain	10
Figure 14. Image of data overlap for bangkeronan noodplain	20
Figure 15. Density map of mergeu LiDAN data for Bangkeronian noouplain	.20
Figure 15. Elevation unterence map between night lines for Bangkeronan noouplain	.21
Figure 17. Quality checking for a Bangkeronan flight 7756AC using the Profile Tool of QT Modeler	.21
Figure 18. Thes for Bangkeronan floodplain (a) and classification results (b) in Terrascan	.22
Figure 19. Point cloud before (a) and after (b) classification	.23
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM	(d)
in some portion of Bangkerohan floodplain	.23
Figure 21. Bangkerohan floodplain with available orthophotographs	.24
Figure 22. Sample orthophotograph tiles for Bangkerohan floodplain	.24
Figure 23. Portions in the DTM of Bangkerohan floodplain – a bridge before (a) and after (b) manual editi	ng;
a terrain before (c) and after (d) interpolation; and a building before (e) and after (f) manual editing	.25
Figure 24 . Map of Processed LiDAR Data for Bangkerohan Flood Plain	.27
Figure 25. Map of Bangkerohan Flood Plain with validation survey points in green	.29
Figure 26. Correlation plot between calibration survey points and LiDAR data	.30
Figure 27. Correlation plot between validation survey points and LiDAR data	.31
Figure 28. Map of Bangkerohan Flood Plain with bathymetric survey points shown in blue	.32
Figure 29. Blocks (in blue) of Bangkerohan building features that were subjected to QC	.33
Figure 30. Extracted features for Bangkerohan floodplain	.35
Figure 31. Extent of the bathymetric survey (in blue) in Bangkerohan River Basin and the LiDAR validat	ion
survey (in red)	.37
Figure 32. GNSS Network of Bangkerohan River field survey	.38
Figure 33. GNSS base set up. Trimble [®] SPS 852. at LYT-737. located at the back of Cabulisan Element	arv
School in Brgy, Cabulisan, Municipality of Inopacan, Levte	.39
Figure 34 GNSS hase set up. Trimble [®] SPS 852 at IVT-742 located near a chanel and haskethall court	t in
Brgy Tambis Municipality of Hilongos Levte	40
Figure 35 GNSS receiver set un Trimble® SPS 855 at IV-338 a first-order BM located at the approach) of
Salug Birdge along Sta. Indang-Hilongos Road in Brgy. San Juan, Municipality of Hilongos, Levte	101
Eigure 26 CNSS receiver set up Trimble® SDS 822 at UD CAM an established control point located at t	.40 tho
approach of Cambanog Bridge in Brgy Naga, Municipality of Pate, Loyte	11
approach of Calibation binge in bigy. Naga, Municipality of Bato, Leyte	.41
Figure 57. dt UP-PAG, an established control point, located	
raguanganan binuge approach in bigy. Bigy. Popiación 20ne 12, City of Baybay, Leyte	.41
Figure 56. Campanog Bridge facing downstream	.45
Figure 39. Cross-section survey at the downstream side of Cambanog Bridge	.45
Figure 40. Location map of Cambanog Bridge Cross Section	.46
Figure 41. Cambagon Bridge cross-section diagram	.47
Figure 42. Cambanog Bridge Data Form	.48
Figure 43. a) Getting the MSL elevation of the markings written on the pier and b) Water-level markings	tor
Bangkerohan River	.49

Figure 44. Val	lidation points acquisition survey set up	50
Figure 45. Val	lidation point acquisition survey for the Bangkerohan River Basin	51
Figure 46. Bat	thymetry by boat set up for Bangkerohan River survey	52
Figure 47. Bat	thymetric survey of Bangkerohan River	53
Figure 48. Riv	erbed profile of Bangkerohan River	53
Figure 49. The	e location map of Bangkerohan HEC-HMS model used for calibration	54
Figure 50. Cro	oss-Section Plot of Cambanog Bridge	55
Figure 51. Rat	ting Curve at Cambanog Bridge, Barangay Bago, Bato, Leyte	55
Figure 52. Rai	infall and outflow data at Bangkerohan used for modeling	56
Figure 53. Loc	cation of Maasin RIDF Station relative to Bangkerohan River Basin	57
Figure 54. Syr	nthetic storm generated for a 24-hr period rainfall for various return periods	57
Figure 55. Soi	il Map of Bangkerohan River Basin (Source: Bureau of Soils and Water Management)	58
Figure 56. Lar	nd Cover Map of Bangkerohan River Basin (Source: NAMRIA)	58
Figure 57. Slo	pe Map of the Bangkerohan River Basin	59
Figure 58. Str	eam Delineation Map of the Bangkerohan River Basin	60
Figure 59. The	e Bangkerohan river basin model generated using HEC-HMS	61
Figure 60. Riv	ver cross-section of Bangkerohan River generated through Arcmap HEC GeoRAS tool	62
Figure 61. Scr	reenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro.	63
Figure 62. Ou	tflow Hydrograph of Bangkerohan produced by the HEC-HMS model compared with observ	ed
outflow		64
Figure 63. Ou	utflow hydrograph at Bangkerohan Station generated using Maasin RIDF simulated in HE	EC-
HMS		66
Figure 64. Sar	mple output of Bangkerohan RAS Model	67
Figure 65. 10	0-year Flood Hazard Map for Bangkerohan Floodplain overlaid on Google Earth imagery	68
Figure 66. 100	0-year Flow Depth Map for Bangkerohan Floodplain overlaid on Google Earth imagery	69
Figure 67. 25	-year Flood Hazard Map for Bangkerohan Floodplain overlaid on Google Earth imagery	70
Figure 68. 25	-year Flow Depth Map for Bangkerohan Floodplain overlaid on Google Earth imagery	/1
Figure 69. 5-y	ear Flood Hazard Map for Bangkerohan Floodplain overlaid on Google Earth imagery	72
Figure 70. 5-y	/ear Flow Depth Map for Bangkerohan Floodplain overlaid on Google Earth imagery	73
Figure 71. Aff	ected Areas in Bato, Leyte during 5-Year Rainfall Return Period	76 76
Figure 72. Aff	ected Areas in Bato, Leyte during 5-Year Rainfall Return Period	76
Figure 73. Aff	ected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period	79
Figure 74. Aff	ected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period	/9
Figure 75. Aff	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period	82
Figure 76. Aff		~~
Figure 77. Aff	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period	82
	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period	82 85
Figure 78. All	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period	82 85 85
Figure 78. All	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period	82 85 85 88
Figure 78. Aff Figure 79. Aff Figure 80. Aff	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period	82 85 85 88 88
Figure 78. Aff Figure 79. Aff Figure 80. Aff Figure 81. Aff	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period	82 85 85 88 88 91
Figure 78. Aff Figure 79. Aff Figure 80. Aff Figure 81. Aff Figure 82. Aff	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period fected Areas in Bato, Leyte during 100-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period fected Areas in Bato, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period	82 85 88 88 91 91
Figure 78. Aff Figure 79. Aff Figure 80. Aff Figure 81. Aff Figure 82. Aff Figure 83. Val	ected Areas in Bato, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period ected Areas in Bato, Leyte during 100-Year Rainfall Return Period fected Areas in Bato, Leyte during 100-Year Rainfall Return Period fected Areas in Bato, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period fected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period	82 85 88 88 91 91 93

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment fo Mitigation [Program]		
DRRM	Disaster Risk Reduction and Managemer		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NAMRIA	National Mapping and Resource Information Authority
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
TBC	Thermal Barrier Coatings
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System
VSU	Visayas State University

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BANGKEROHAN RIVER

Enrico C. Paringit, Dr. Eng., and Engr. Florentino Morales, Jr.

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 28 river basins in the Eastern Visayas Region. The university is located in Baybay in the province of Leyte.

1.2 Overview of the Mainit-Tubay River Basin

Figure 1. Map of the Bangkerohan River Basin (in brown)

The Bangkerohan River Basin covers the Municipalities of Bato, Hilangos, Bontoc and Matalom in the province of Leyte, and the Municipality of Tomas Oppus, and Maasin City in the province of Souther Leyte. According to DENR - River Basin Control Office, it has a drainage area of 2098 km2 and an estimated 397 million cubic meter (MCM) annual run-off (RCBO, 2015).

Its main stem, Bangkerohan River, is part of the 28 river systems under the PHIL-LiDAR 1 partner HEI, Visayas State University (VSU). According to the 2010 national census of NSO, a total of 10,856 persons are residing in the immediate vicinity of the river which are distributed among four (4) barangays in the Municipality of Bato and five (5) barangays in the Municipality of Hilangos. Bangkerohan River plays a vital role in providing irrigation to vast agricultural land in Hilongos and Bato as these municipalities have the biggest economy in the south-western part of Leyte Island. Their economy is heavily dependent on fishing industries and also agriculture, making them vulnerable whenever the river overflows. Last November 2013, Yolanda hit the area but not as destructive compare to what happened in Tacloban City. Flooding was said to be minimal and not that significant. In fact, refugees from Tacloban City was temporarily relocated in the Municipality of Hilongos where the Tent City was built (http://www.hilongos.com.ph/en/cityinfo.html, 2015).

2CHAPTER 2: LIDAR DATA ACQUISITION OF THE BANGKEROHAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Merven Mattew D. Natino, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Bangkerohan floodplain in Leyte. These missions were planned for 16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Bangkerohan floodplain.

Table 1. Flight planning parameters for Aquarius LiDAR system							
Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK49 A	600	30	36	70	50	120	5
BLK49B	600	30	36	70	50	120	5

Table 2. Flight planning parameters for Gemini LiDAR system

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 34aA	1000	30	36	100	50	125	5
BLK49 A	1000	30	36	100	50	125	5
BLK49 B	1000	30	36	100	50	125	5
BLK50 A	1000	30	36	100	50	125	5
BLK50 B	1000	30	36	100	50	125	5
BLK50 C	1000	30	36	100	50	125	5
BLK50 D	1000	30	36	100	50	125	5

Figure 2. Flight plans and base stations used for Bangkerohan floodplain survey

2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA horizontal ground control points: LYT-93 and LYT-757 which are all of second (2nd) order accuracy. The project team also re-established ground control point LYT-104, a NAMRIA reference point of third 3rd order accuracy. Three (3) NAMRIA benchmarks were recovered: LY-199, LY-1024, and LY-110 which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (May 8 -9, 2014 and January 24 -February 12, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bangkerohan floodplain are shown in Figure 2.

Figure 3 to Figure 7 show the recovered NAMRIA reference points within the area. Table 3 to Table 9 show the details about the following NAMRIA control stations and established points, while Table 10 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

(a)

Figure 3. GPS set-ip over LY-1024 located at the SE end of the sidewalk of Agas-agas Bridge (a) and NAMRIA referencee point LY-1024 (b) as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point LY-1024 used as base station for the LiDAR Acquisition

Station Name	LY-1024		
Order of Accuracy	1st Order		
Relative Error (Horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 29' 46.27" North 124° 59' 49.85" East 366.202 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 29' 42.20218" North 124° 59' 55.07713" East 430.223 m	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	718586.237 m 1160895.197 m	

(a)

Figure 4. GPS set-up over LYT-757 as recovered on the opposite side of the kilometer post 997 in barangay Mahayahay, Leyte (a) and NAMRIA reference point LYT-757 (b) as recovered by the field team

Table 4. Details of the recovered NAMRIA horizontal control point LYT-757 used as base station for the LiDAR acquisition

Station Name	LYT-757		
Order of Accuracy	2nd Order		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 32′ 54.87″ North 124° 57′ 31.14″ East 99.55 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	495474.491 m 1166401.318 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 32' 50.77355" North 124o 57' 36.36037" East 163.36300 m	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	714331.34 m 1166663.62 m	

Figure 5. GPS set-up over LYT-748 as recovered at the back of Hitoog Elementary School, Brgy. Hitoog, Municipality of Matalom, Leyte (a) and NAMRIA reference point LYT-748 (b) as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point LYT-748 used as base station for the LiDAR acquisition

Station Name	LYT-748		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°14′16.77457′′ 124°48′19.08041′′ 77.51500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	478669.714 meters 1132057.716 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°14'12.74720'' North 124°48'24.32650'' East 141.66500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	697740.37 meters 1132208.87 meters	

Figure 6. GPS set-up over LY-313 as recovered in Brgy. Pandan, Baybay, Leyte (a) and NAMRIA reference point LY-313 (b) as recovered by the field team

Table 6. Details of the recovered NAMRIA horizontal control point LY-313 used as base station for the LiDAR acquisition

Station Name	LY-:	313
Order of Accuracy	21	nd
Relative Error (Horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°36'46.67221'' 124°46'01.67926'' 6.279 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	693326.992 meters 1173661.007 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°36'42.54525'' North 124°46'06.89257'' East 64.460 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	4054.782 meters 17681.110 meters

Figure 7. GPS set-up over LYT-741 as recovered in Brgy. Doos Del Norte, Hindang, Leyte (a) and NAMRIA reference point LYT-741 (b) as recovered by the field team

Table 7. Details of the recovered NAMRIA horizontal control point LYT-741 used as base station for the LiDAR acquisition

Station Name	LYT-741		
Order of Accuracy	2r	nd	
Relative Error (Horizontal positioning)	1 in 5	0,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°27'11.95722'' 124°43' 45.08400'' 4.48300 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	470351.659 meters 1155878.867 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°27'7.86786'' North 124°43'50.31177" East 67.94500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	689272.22 meters 1155979.90 meters	

Table 8. Details of the recovered NAMRIA horizontal control point LY-351 used as base station for the LiDAR acquisition

Station Name	LY-351	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates,	Latitude	10°16'52.30167''
Philippine Reference of 1992 Datum	Longitude	124°47'03.77264''
(PRS 92)	Ellipsoidal Height	4.48300 meters
Grid Coordinates, Philippine Transverse Mercator	Easting	695421.839 meters
Zone 5 (PTM Zone 5 PRS 92)	Northing	1136974.636 meters
Geographic Coordinates,	Latitude	10°16′48.26132″ North
World Geodetic System 1984 Datum	Longitude	124°47′09.01515″ East
(WGS 84)	Ellipsoidal Height	70.885 meters

Table 9. Details of the recovered NAMRIA horizontal control point LYS-4 used as base station for the LiDAR
acquisition

Station Name	LYS-4		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 5	0,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°23'20.19669'' 124°58'38.53353'' 15.25600 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	497522.022 meters 1148746.143 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°23′16.14540″ North 124°58′43.76469″ East 79.47900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	716491.34 meters 1149017.84 meters	

Table 10. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
February 12, 2016	3781G	2BLK34A043A	LY-1024 & LYT-757
April 10, 2016	3921G	2BLK34a101A	LY-313 & LYT-741
April 10, 2016	3923G	2BLK49AB101B	LY-313 & LYT-741
April 11, 2016	3925G	2BLK49DE102A	LY-313 & LYT-741
April 14, 2016	3937G	2BLK50DS105A	LYS-4 & LYS-4
January 22, 2015	7754AC	3BLK49B022A	LYT-748 & LY-351
January 23, 2015	7756AC	3BLK49A023A	LYT-748 & LY-351

2.3 Flight Missions

Seven (7) missions were conducted to complete LiDAR data acquisition in Bangkerohan Floodplain, for a total of twenty eight hours and six minutes (28+6) of flying time for RP-C9122 and RP-C9322. All missions were acquired using Aquarius and Gemini LiDAR systems. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Fuble II. Flight missions for Elbrin duca acquisition in bulgacionan noouplain								
Date Flight Surveyed Number		Flight Plan Area (km²)	Surveyed Area (km ²)	Area Surveyed within the	Area Surveyed Outside the	No. of Images (Frames)	Flying Hours	
				Floodplain (km ²)	Floodplain (km²)		Hr	Min
February 12, 2016	3781G	76.83	98.64	11.7	86.94	315	3	23
April 10, 2016	3921G	116.67	65.7	25.05	131.66	NA	4	27
April 10, 2016	3923G	92.9	208.28	25.06	183.22	NA	2	48
April 11, 2016	3925G	152.03	76.02	5.72	70.31	NA	4	20
April 14, 2016	3937G	167.53	95.63	0	95.63	NA	4	40
January 22, 2015	7754AC	86.31	101.85	21.61	80.24	NA	4	35
January 23, 2015	7756AC	76.83	90.31	30.61	59.69	NA	3	53
TO	TAL	769.1	736.43	119.75	707.69	315	24	246

Table 11. Flight missions for LiDAR data acquisition in Bangkerohan floodplain

Table 12. Actual parameters used during LiDAR acquisition

		1					
Flight Number	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (kHz)	Scan Frequency (Hz)	Average Speed (Kts)	Average Turn Time (Minutes)
3781G	1000	30	40	100	50	120	5
3921G	1000	30	40	100	50	120	5
3923G	1200	30	40	100	50	120	5
3925G	1200	30	40	100	50	120	5
3937G	1000	30	40	100	50	120	5
7754AC	600	30	36	70	50	120	5
7756AC	600	30	36	70	50	120	5

2.4 Survey Coverage

Bangkerohan floodplain is located in the province of Leyte with majority of the floodplain situated within the municipality of Bato. Municipalities of Hilongos and Hindang are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Bangkerohan floodplain is presented in Figure 8.

Table 13. List of municipalities and cities surveyed during Bangkerohan floodplain LiDAR survey				
Province	Municipality/ City	Area of Municipality/City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Bato	57.55	57.52	100
	Hilongos	156.8	120.09	77
	Hindang	106.77	51.9	49
Louto	Matalom	110.13	25.48	23
Leyte	Abuyog	256.63	39.62	15
	Mahaplag	180.3	24.78	14
	Inopacan	196.05	25.18	13
	Baybay City	404.37	48.82	12
	Hinundayan	53.28	17.84	33
Southern Leyte	Sogod	217.2	40	18
	Hinunangan	136.38	24.56	18
	Maasin City	206.86	30.21	15
	Bontoc	89.13	8.83	10
Total		2171.45	514.83	23.71%

Figure 8. Actual LiDAR survey coverage for Bangkerohan floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR BANGKEROHAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Merven Mattew D. Natino, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Bangkerohan Floodplain

3.1.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bangkerohan floodplain can be found in Annex 5. Data Transfer Sheets. Missions flown during the first survey conducted on January 2015 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system while missions acquired during the second survey on February 2016 were flown using the Gemini system over Bato, Leyte. The Data Acquisition Component (DAC) transferred a total of 93.46 Gigabytes of Range data, 1.72 Gigabytes of POS data, and 163.35 Megabytes of GPS base station data to the data server on April 16, 2016. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bangkerohan was fully transferred on May 6, 2014, as indicated on the Data Transfer Sheets for Bangkerohan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 7756AC, one of the Bangkerohan flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on January 23, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metrics of a Bangkerohan Flight 7756AC

The time of flight was from 433000 seconds to 442500 seconds, which corresponds to morning of January 21, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 1.10 centimeters, the East position RMSE peaks at 1.10 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Bangkerohan Flight 7756AC

The Solution Status parameters of flight 7756AC, one of the Bangkerohan flights, which inidicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down to 5. Most of the time, the number of satellites tracked was between 5 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode remained at 0 for majority of the survey. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bangkerohan flights is shown in Figure 12.

Figure 12. The best estimated trajectory of the LiDAR missions conducted over the Bangkerohan floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 85 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bangkerohan floodplain are given in Table 14.

Parameter	Value
Boresight Correction stdev(<0.001degrees)	0.000260
IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)	0.000627
GPS Position Z-correction stdev(<0.01meters)	0.0095

Table 14. Self-Calibration Results values f	for Bangkerohan flights
---	-------------------------

The optimum accuracy values were obtained for all Bangkerohan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bangkerohan Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data over Bangkerohan Floodplain

The total area covered by the Bangkerohan missions is 435.31 sq.km that is comprised of nine (9) flight acquisitions grouped and merged into six (6) blocks as shown in Table B-2.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Leyte_Blk49A_additional	3781G	27.17
Ormoc_Blk49A	7756AC	84.37
Ormoc_Blk49B	7754AC	95.46
Ormoc_South_Blk49A	3921G	117 62
	3923G	117.63
Ormoc_South_Blk49A_additional	3925G	28.9
Ormoc_South_Blk49B	3925G	31.64
Ormoc_South_Blk49E	3937G	50.14
TOTAL	578.26 sq.km	

Table 15. List of LiDAR blocks for Bangkerohan floodplain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Bangkerohan floodplain

The overlap statistics per block for the Bangkerohan floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 31.34% and 44.81% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Bangkerohan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.91 points per square meter.

Figure 15. Density map of merged LiDAR data for Bangkerohan floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas not be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation difference map between flight lines for Bangkerohan floodplain

A screen capture of the processed LAS data from a Bangkerohan flight 7756AC loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for a Bangkerohan flight 7756AC using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. Bangkerohan classification results in TerraScan

Pertinent Class	Total Number of Points
Ground	240,000,002
Low Vegetation	257,736,005
Medium Vegetation	506,678,013
High Vegetation	675,281,411
Building	15,297,141

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bangkerohan floodplain is shown in Figure 18. A total of 701 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 593.04 meters and 52.98 meters respectively.

Figure 18. Tiles for Bangkerohan floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bangkerohan floodplain.

3.7LiDAR Image Processing and Orthophotograph Rectification

The 55 1km by 1km tiles area covered by Bangkerohan floodplain is shown in Figure 21. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bangkerohan floodplain survey attained a total of 15.33 km2 in orthophotogaph coverage, comprised of 67 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Bangkerohan floodplain with available orthophotographs

Figure 22. Sample orthophotograph tiles for Bangkerohan floodplain

3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for Bangkerohan flood plain. These blocks are composed of Leyte, Ormoc and Ormoc_South blocks with a total area of 435.31 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Leyte_Blk49A_Additional	27.17
Ormoc_Blk49A	84.37
Ormoc_Blk49B	95.46
Ormoc_South_Blk49A	117.63
Ormoc_South_Blk49B	31.64
Ormoc_South_Blk49A_Additional	28.90
Ormoc_South_Blk49E	50.14
TOTAL	435.31 sq.km

Table 17. LiDAR blocks with its corresponding area

Portions of DTM before and after manual editing are shown in Figure 23. The bridge (Figure 23a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 23b) in order to hydrologically correct the river. The river embankment (Figure 23c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23d) to allow the correct flow of water surfaces with no data also have to be interpolated by manual editing.

Figure 23. Portions in the DTM of Bangkerohan floodplain – a bridge before (a) and after (b) manual editing; a terrain before (c) and after (d) interpolation; and a building before (e) and after (f) manual editing
3.9 Mosaicking of Blocks

Ormoc_Blk49B was used as the reference block at the start of mosaicking because this block was made available for editing and mosaicking before the other blocks. Table 18 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bangkerohan floodplain is shown in Figure 24. It can be seen that the entire Bangkerohan floodplain is 99.38% covered by LiDAR data.

Mission Disele	Shift Values			
	x	у	Z	
Ormoc_Blk49B	-1.00	-1.00	-0.15	
Ormoc_Blk49A	0.00	-1.00	-0.15	
Ormoc_South_Blk49B	-1.00	-0.50	0.00	
Ormoc_South_Blk49A_Additional	0.00	-1.00	-0.29	
Leyte_Blk49A_Additional	0.00	-1.00	-0.11	
Ormoc_South_Blk49A	0.00	-1.00	-0.63	
Ormoc_South_Blk49E	0.00	-1.00	-0.81	

Table 18. Shift Values of each LiDAR Block of Bangkerohan floodplain

Figure 24 . Map of Processed LiDAR Data for Bangkerohan Flood Plain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Ormoc City and Bato Municipality to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 25,710 survey points were gathered for all the flood plains within Ormoc City and Bato Municipality wherein Bangkerohan is located. Random selection of 80% of the survey points, resulting to 20,568 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.26 meters with a standard deviation of 0.19 meters. Calibration of the LiDAR data was done by adding the height difference value, 0.26 meters, to the mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

Figure 25. Map of Bangkerohan Flood Plain with validation survey points in green

Figure 26. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	0.26
Standard Deviation	0.19
Average	0.16
Minimum	-0.30
Maximum	0.60

The remaining 20% of the total survey points, resulting to 5,142 points, were used for the validation of calibrated Salug DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.18 meters, as shown in Table 20.

Figure 27. Correlation plot between validation survey points and LiDAR data

Table 20.	Validation	Statistical	Measures
-----------	------------	-------------	----------

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.18
Average	-0.10
Minimum	-0.47
Maximum	0.29

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline, cross-section and zigzag data was available for Bangkerohan with 7067 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.37 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bangkerohan integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Bangkerohan Flood Plain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Bangkerohan floodplain, including its 200 m buffer, has a total area of 175.88 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1276 building features, are considered for QC. Figure 29 shows the QC blocks for Bangkerohan floodplain.

Figure 29. Blocks (in blue) of Bangkerohan building features that were subjected to QC

Quality checking of Bangkerohan building features resulted in the ratings shown in Table 21.

Table 21. Quality Checking Ratings for Bangkerohan Building Features

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Bangkerohan	98.04	94.02	86.64	PASSED

3.12.2 Height Extraction

Height extraction was done for 8607 building features in Bangkerohan floodplain. Of these building features, 37 was filtered out after height extraction, resulting to 8570 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 11.88 m.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	8083
School	176
Market	29
Agricultural/Agro-Industrial Facilities	22
Medical Institutions	13
Barangay Hall	25
Military Institution	0
Sports Center/Gymnasium/Covered Court	18
Telecommunication Facilities	1
Transport Terminal	5
Warehouse	19
Power Plant/Substation	0
NGO/CSO Offices	7
Police Station	0
Water Supply/Sewerage	1
Religious Institutions	58
Bank	4
Factory	0
Gas Station	5
Fire Station	0
Other Government Offices	20
Other Commercial Establishments	84
Total	8570

Table 22. Building Features Extracted for Bangkerohan Floodplain

Table 23. . Total Length of Extracted Roads for Bangkerohan Floodplain.

Floodplain	Road Network Length (km)						
	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others		
Bangkerohan	49.44	3.1	4.56	17.78	0.00	74.89	

Table 24. Number of Extracted Water Bodies for Bangkerohan Floodplain

Floodplain	Water Body Type					
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Bangkerohan	29	1	0	0	0	30

A total of 29 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Bangkerohan floodplain overlaid with its ground features.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BANGKEROHAN RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Merven Mattew D. Natino, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The project team conducted a field survey in Bangkerohan River on March 9-22, 2016 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section survey of Cambanog Bridge; validation points data acquisition of about 75 km; and bathymetric survey from Brgy. Naga in the Municipality of Bato down to the mouth of the river in Brgy. Bantigue in the Municipality of Hilongos with an approximate length of 11.254 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (see Figure 31).

Figure 31. Extent of the bathymetric survey (in blue) in Bangkerohan River Basin and the LiDAR validation survey (in red)

4.2 Control Survey

The GNSS network used for Bangkerohan River Basin is composed of three (3) loops established on March 10 and 11, 2016 occupying the following reference points: LYT-737, a second-order GCP, in Brgy. Cabulisan, Municipality of Inopacan; LYT-742, a second-order GCP, in Brgy. Tambis, Municipality of Hilongos; and LY-338, a first-order BM, in Brgy. San Juan, Municipality of Hilongos.

Two (2) control points were established along the approach of a bridge namely: UP-CAM at Cambanog Bridge in Brgy. Naga, Municipality of Bato; and UP-PAG at Pagbanganan Bridge in Brgy. Poblacion Zone 12, City of Baybay.

The summary of reference and control points and its location is summarized in Table 25 while GNSS network established is illustrated in Figure 32.

Table 25. List of Reference and Control Points occupied for Bangkerohan River Survey (Source: NAMRIA; UP-TCAGP)

		linates (WGS 84)				
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date established
LYT-737	2nd order, GCP	10°30'42.1282"N	124°48'38.7024"E	600.703	-	2007
LYT-742	2nd order, GCP	10°24'41.5778"N	124°47'25.4388"E	110.425	-	03-14-2016
LY-338	1st order, BM	-	-	73.006	8.483	2007
UP-CAM	Established	-	-	-	-	03-10-2016
UP-PAG	Established	-	-	-	-	03-11-2016

The GNSS set up made in the location of the reference and control points are exhibited in Figure 33 to Figure 37.

Figure 33. GNSS base set up, Trimble® SPS 852, at LYT-737, located at the back of Cabulisan Elementary School in Brgy. Cabulisan, Municipality of Inopacan, Leyte

Figure 34. GNSS base set up, Trimble® SPS 852, at LYT-742, located near a chapel and basketball court in Brgy. Tambis, Municipality of Hilongos, Leyte

Figure 35. GNSS receiver set up, Trimble® SPS 855, at LY-338, a first-order BM, located at the approach of Salug Birdge along Sta. Indang-Hilongos Road in Brgy. San Juan, Municipality of Hilongos, Leyte

Figure 36. GNSS receiver set up, Trimble® SPS 882, at UP-CAM, an established control point, located at the approach of Cambanog Bridge in Brgy. Naga, Municipality of Bato, Leyte

Figure 37. GNSS receiver set up, Trimble® SPS 855, at UP-PAG, an established control point, located at Pagbanganan Bridge approach in Brgy. Brgy. Poblacion Zone 12, City of Baybay, Leyte

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Bangkerohan River Basin is summarized in Table 26 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)
LYT-742 LYT-737	03-11-2016	Fixed	0.003	0.014	11°22'12"	11299.872
LYT-737 UPCAM	03-11-2016	Fixed	0.004	0.024	172°18'02"	18901.31
LYT-742 UPPAG	03-11-2016	Fixed	0.003	0.012	4°53'18"	29783.6899
LY-338 UP-CAM	03-10-2016	Fixed	0.005	0.028	115°25'44"	10691.421
LYT-737 UP-PAG	03-11-2016	Fixed	0.003	0.012	0°57'35"	18599.831
UP-CAM LYT-742	03-10-2016	Fixed	0.003	0.022	148°06'41"	9012.871
LYT-737 LYT-742	03-11-2016	Fixed	0.003	0.013	11°22'12"	11299.875
LY-338 LYT-742	03-10-2016	Fixed	0.004	0.023	237°58'44"	5771.913

Table 26. Baseline Processing Report for Bangkerohan River Basin Static Survey

As shown in Table 26, a total of eight (8) baselines were processed with reference points LYT-737 and LYT-742, and LY-338 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 \ cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 27 to Table 29 for the complete details.

The five (5) control points, LY-338, LYT-737, LYT- 742, UP-CAM and UP-PAG were occupied and observed simultaneously to form a GNSS loop. Elevation value of LY-338 and coordinates of points LYT-737 and LYT-742 were held fixed during the processing of the control points as presented in Table 27. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 27. Control Point Constraints for control points used in the Bangkerohan River floodplain validation

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
LYT-737	Local	Fixed	Fixed			
LYT-742	Local	Fixed	Fixed			
LY-338	Grid				Fixed	
Fixed = 0.000001 (Meter)						

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed control points LYT-737 and LYT-742 have no values for grid errors; and LY-338, for elevation error.

Table 28. Adjusted Grid Coordinates for control points used in the Bangkerohan River floodplain validation

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LYT-737	698162.797	?	1162560.388	?	536.080	0.089	LL
LYT-742	695997.844	?	1151468.957	?	45.879	0.084	LL
LY-338	691121.157	0.012	1148380.761	0.009	8.483	?	е
UP-CAM	700802.490	0.010	1143842.626	0.010	21.206	0.089	
UP-PAG	698366.197	0.015	1181160.649	0.011	6.881	0.092	

The network is fixed at reference points LYT-737 and LYT-742 with known coordinates, and LY-338 with known elevation. As shown in Table 28, the standard errors (xe and ye) of LY-338 are 1.20 cm and 0.90 cm; UP-CAM with 1.0 cm and 1.0 cm; and UP-PAG with 1.50 and 1.10 cm, respectively. With the mentioned equation $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm$ for horizontal and $|z_e < 10 cm|$ for the vertical; the computation for the accuracy are as follows:

a. LYT-737

ontal accuracy = Fixe	d
cal accuracy = 8.90) < 10 cm
contal accuracy = Fixe	d
cal accuracy = 8.40) < 10 cm
contal accuracy = $V((1$	$(.20)^2 + (0.90)^2$
= V (1.	.44 + 0.81)
= 1.5 (cm < 20 cm
cal accuracy = Fixe	d
ontal accuracy = v((1	$(.0)^2 + (1.0)^2$
$= \sqrt{(1)}$.0 + 1.0)
= 1.41	L cm < 20 cm
cal accuracy = 8.90) cm < 10 cm
ontal accuracy = $V((1$	$(.50)^2 + (1.10)^2$
= V (2.	.25 + 1.21)
= 1.86	5 cm < 20 cm
racy = 9.20 cm < 10	0 cm
cal accuracy = $\sqrt{(1)}$ contal accuracy = $\sqrt{(1)}$ = $\sqrt{(1)}$ = 1.5 o cal accuracy = Fixe contal accuracy = $\sqrt{(1)}$ = $\sqrt{(1)}$ = 1.41 cal accuracy = $\sqrt{(1)}$ contal accuracy = $\sqrt{(2)}$ = $\sqrt{(2)}$ = 1.86 cacy = 9.20 cm < 100000000000000000000000000000000000	$(-20)^{2} + (0.90)^{2}$ $(.20)^{2} + (0.90)^{2}$ $(.44 + 0.81)^{2}$ $(.44 + 0.81)^{2}$ $(.0)^{2} + (1.0)^{2}^{2}$ $(.0)^{2} + (1.0)^{2}^{2}$ $(.0)^{2} + (1.0)^{2}^{2}$ $(.50)^{2} + (1.10)^{2}^{2}$ $(.50)^{2} + (1.10)^{2}^{2}$ $(.50)^{2} + (1.21)^{2}^{2}$ $(.50)^{2} + (20 \text{ cm}^{2})^{2}$

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Table 29. Adjusted Geodetic Coordinates for control points used in the Bangkerohan River floodplain validation

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
LYT-737	10°30'42.12820"N	124°48'38.70244"E	600.703	0.089	LL
LYT-742	10°24'41.57783"N	124°47'25.43883"E	110.425	0.084	LL
LY-338	10°23'01.95953"N	124°44'44.56153"E	73.006	?	е
UP-CAM	10°20'32.50055"N	124°50'01.93960"E	85.886	0.089	
UP-PAG	10°40'47.39583"N	124°48'48.95238"E	71.261	0.092	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

			Geograph	ic Coordinates (WGS &	34)	UT	M ZONE 51 N	
Control Point		Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
L	YT-737	2nd order, GCP	10°30'42.1282"N	124°48'38.7024"E	600.703	1162560.388	698162.797	536.080
L	YT-742	2nd order, GCP	10°24'41.5778"N	124°47'25.4388"E	110.425	1151468.957	695997.844	45.879
	LY-338	1st order, BM	10°23'01.9595"N	124°44'44.5615"E	73.006	1148380.761	691121.157	8.483
	UP- CAM	UP Established	10°20'32.5005"N	124°50'01.9396"E	85.886	1143842.626	700802.490	21.206
ι	JP-PAG	UP Established	10°40'47.3958"N	124°48'48.9523"E	71.261	1181160.649	698366.197	6.881

4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

Cross-section and as-built survey was conducted on March 12, 2016 at the downstream side of Cambanog Bridge in Brgy. Naga, Municipality of Bato, Leyte as shown in Figure 38 using a survey grade GNSS receiver Trimble® SPS 882 in PPK survey technique as shown in Figure 39.

Figure 38. Cambanog Bridge facing downstream

Figure 39. Cross-section survey at the downstream side of Cambanog Bridge

The cross-sectional line length in Cambanog Bridge is about 231.70 m with 33 cross-sectional points acquired using UP-CAM as the GNSS base station. The location map, the cross section diagram and the bridge data form are shown in Figure 40, 41, and 42, respectively.

Figure 40. Location map of Cambanog Bridge Cross Section

Bridge Approach (Please start your measurement from the left side of the bank facing downstream)

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	19.820	BA3	147.634	20.897
BA2	60.995	21.203	BA4	213.853	19.870

Abutment: Is the abutment sloping?

loping? <u>Yes</u> No; If yes,

No; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation		
Ab1	65.642	14.836		
Ab2	143.071	14.359		

 Pier (Please start your measurement from the left side of the bank facing downstream)

 Shape:
 Oblong
 Number of Piers: two (2)
 Height of column footing: n/a

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	89.802	18.066	1.42
Pier 2	118.918	17.999	1.42

NOTE: Use the center of the pier as reference to its station

Figure 42. Cambanog Bridge Data Form

Water surface elevation in MSL of Bangkerohan River, as shown in Figure 43, was determined using Trimble® SPS 882 in PPK mode technique on March 12, 2016 at 1:10 PM with a value of 11.024 m in MSL. This was translated onto marking on one of the bridge's pier using digital level which will be used by Visayas State University PHIL-LiDAR 1. The marking will serve as their reference for flow data gathering and depth gauge deployment for Bangkerohan River.

Figure 43. a) Getting the MSL elevation of the markings written on the pier and b) Water-level markings for Bangkerohan River

4.6. Validation Points Acquisition Survey

Validation points acquisition survey was conducted on March 10 and 11, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882 mounted on a pole which was attached to the side of vehicle as shown in Figure 44. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 1.929 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with LYT-742, UP-PAG, UP-CAM, and LYT-737 occupied as the GNSS base stations all throughout the conduct of the survey.

Figure 44. Validation points acquisition survey set up

The validation points acquisition survey for the Bangkerohan River Basin traversed Baybay City and the following municipalities of Leyte: Inopacan, Hindang, and Bato; as well as Municipality of Bontoc in Southern Leyte. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 18,832 points with an approximate length of 75 km was acquired for the validation point acquisition survey as shown in the map in Figure 45.

Figure 45. Validation point acquisition survey for the Bangkerohan River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on March 12 and 14, 2016 using a Trimble[®] SPS 882 in GNSS PPK survey technique utilizing the continuous topo mode and Ohmex[™] single beam echo sounder, as illustrated in Figure 46. The survey started from middle upstream part of the river in Brgy. Talunok, Municipality of Hilongos with coordinates 10°21′11.56069″N, 124°47′12.74276″E, and ended at the mouth of the river in Brgy. Bantigue, also in Hilongos with coordinates 10°21′11.56069″N, 124°47′12.74276″E, and ended at the mouth of the river in Brgy.

Manual bathymetry in the other hand was done on March 12, 2016 using Trimble® SPS 882 in GNSS PPK survey technique also utilizing the continuous topo mode. The survey started from Cambanog Bridge located in the upstream of the river in Brgy. Tagaytay, Municipality of Bato with coordinates 10°20'32.23471"N, 124°50'03.03192"E, traversed by foot down to the middle portion of the river where the bathymetric survey by boat started. The control point UP-CAM was used as the GNSS base station all throughout the survey.

Figure 46. Bathymetry by boat set up for Bangkerohan River survey

A CAD drawing was also produced to illustrate the riverbed profile of Bangkerohan River. As shown in Figure 47, the highest and lowest elevation has a 14-meter difference. The highest elevation observed was 10.592 m above MSL located in Brgy. Naga, Municipality of Bato while the lowest was 3.784 m below MSL located in Brgy. Tabunok, Municipality of Hilongos. The bathymetric survey gathered a total of 7,177 points covering 11.254 km of the river traversing the ff. barangays from the upstream - Brgy. Naga (Municipality of Bato), Brgy. Tabunok, Brgy. Daang Lungsod, Brgy. Tibunok (Municipality of Hilongos), Brgy. Catandog 2 and Brgy. Bantigue. The remaining 400 m delineated bathymetric line, was not surveyed because according to the locals, the upstream area of Cambanog Bridge in Barangays Tagaytay and Bago was not flood prone.

CHAPTER 5: RESULTS AND DISCUSSION FMC

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Gladys Mae Apat , Engr. Merven Mattew D. Natino, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan , Nereo Joshua G. Pecson, Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bangkerohan River Basin were monitored, collected and analyzed.

5.1.2 Precipitation

Precipitation data was taken from one automatic rain gauges (ARGs) temporarily installed by the Visayas State University Phil-Lidar 1 Flood Modeling Component (FMC). This was the Abuyog ARs. The location of the rain gauges is seen in Figure 49.

Figure 49. The location map of Bangkerohan HEC-HMS model used for calibration

Total rain from Abuyog rain gauge is 84.76 mm. It peaked to 4.060 mm on 24 November 2016, 20:00. The lag time between the peak rainfall and discharge is 2 hour and 50 minutes.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Cambanog Bridge, Barangay Bago, Bato, Leyte (10°20'24.8"N, 124°50'36.8"E). It gives the relationship between the observed water levels at Cambanog Bridge and outflow of the watershed at this location.

For Cambanog Bridge, the rating curve is expressed as Q= 0.0856e1.0439H as shown in Figure 51.

Figure 51. Rating Curve at Cambanog Bridge, Barangay Bago, Bato, Leyte

This rating curve equation was used to compute the river outflow at Cambanog Bridge for the calibration of the HEC-HMS model.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 52. Rainfall and outflow data at Bangkerohan used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Maasin Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to Bangkerohan watershed. The extreme values for this watershed were computed based on a 16-year record.

T (yrs)	10 min	20 min	30 min	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.5	28.1	35.6	48.1	68	82.1	104.6	124.9	145
5	25.9	38.3	63.8	63.8	90.4	108.8	137.5	165.2	190.8
10	30.8	45	74.2	74.2	105.3	126.5	159.3	191.9	221.2
15	33.5	48.8	80.1	80.1	113.7	136.5	171.5	206.9	238.4
20	35.5	51.5	84.2	84.2	119.6	143.5	180.1	217.5	250.4
25	37	53.6	87.3	87.3	124.1	148.9	186.7	225.6	259.6
50	41.5	59.9	97.1	97.1	138.1	165.5	207.1	250.6	288.1
100	46.1	66.2	106.8	106.8	151.9	181.9	227.4	275.4	316.3

Table 31.. RIDF values for Maasin Rain Gauge computed by PAGASA

5.3 HMS Model

The soil shapefile (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Bangkerohan River Basin are shown in Figures 55 and 56, respectively.

Figure 55. Soil Map of Bangkerohan River Basin (Source: Bureau of Soils and Water Management)

For Bangkerohan, the soil classes identified were clay, and rough mountainous land. The land cover types identified were shrubland, grassland, forest plantation, open forest, and cultivated.

Figure 57. Slope Map of the Bangkerohan River Basin

Figure 59. The Bangkerohan river basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 60. River cross-section of Bangkerohan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southeast and east of the model to the west and southwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 40.65039 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Bangkerohan are in Figures 65, 67, and 69.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 47 009 900.00 m2. The generated flood depth maps for Bangkerohan are in Figures 66, 68, and 70.

There is a total of 43 448 011.06 m³ of water entering the model. Of this amount, 12 945 606.61 m³ is due to rainfall while 30 502 404.45 m³ is inflow from other areas outside the model. 6 445 176.50 m³ of this water is lost to infiltration and interception, while 9 334 302.55 m³ is stored by the flood plain. The rest, amounting up to 27 668 533.30 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bangkerohan HEC-HMS river basin model, its accuracy was measured against the observed values (see also Annex 9. Bangkerohan Model Basin Parameters). Figure 62 shows the comparison between the two discharge data.

Figure 62. Outflow Hydrograph of Bangkerohan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 32 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Less	SCS Curve number	Initial Abstraction (mm)	5 – 9
	LOSS	SCS Curve number	Curve Number	87 - 99
Basin	Transform	Clark Unit	Time of Concentration (hr)	0.26 - 6.73
		нуогодгарп	Storage Coefficient (hr)	0.03 – 0.69
	Deceflory	Dessesion	Recession Constant	0.00005
	Basenow	Recession	Ratio to Peak	0.8
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 32. Range of Calibrated Values for Bangkerohan

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 5mm to 9mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 87 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.03 to 6.73 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.00005 indicates that the basin is likely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.8 indicates a gentler slope of receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Bangkerohan watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

RMSE	26.5
r2	0.92
NSE	0.86
PBIAS	-22.49
RSR	0.38

Table 33. Summary of the Efficiency Test of Bangkerohan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 26.5 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.92.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.86.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -22.49.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Mode

The summary graph (Figure 63) shows the Bangkerohan outflow using the Maasin Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 63. Outflow hydrograph at Bangkerohan Station generated using Maasin RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Bangkerohan discharge using the Maasin Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

Table 34. Peak values of the Bangkerohan HEC-HMS Model outflow using the M	laasin RIDF

RIDF Period	Total Precipitation (mm)	Peak Rainfall (mm)	Peak Outflow (m ³ /s)	Time to Peak
5-Year	286.50	34.40	1834.10	9 hours, 40 minutes
10-Year	351.20	42.30	2283	9 hours, 30 minutes
25-Year	433	52.20	2852	9 hours, 30 minutes
50-Year	493.70	59.60	3270	9 hours, 30 minutes
100-Year	553.90	66.90	3682.30	9 hours, 20 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, the typhoon "Marce" output map river was shown, since it was calibrated. The sample generated map of Bangkerohan River using the calibrated HMS base flow is shown in Figure 64.

Figure 64. Sample output of Bangkerohan RAS Model

5.9 Flood Hazard and Flow Depth

The resulting hazard and flow depth maps have a 10m resolution. Figure 65 to Figure 70 shows the 5-, 25-, and 100-year rain return scenarios of the Bangkerohan floodplain.

The floodplain, with an area of 45.78 sq. km., covers two municipalities namely Bato and Hilongos. Table 35 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Bato	57.55	22.46	39%
Hilongos	156.80	23.33	15%

Table 35. Municipalities affected in Bangkerohan floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Bangkerohan river basin, grouped by municipality, are listed below. For the said basin, two municipality consisting of 8 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 25.4755% of the municipality of Bato with an area of 57.552 sq. km. will experience flood levels of less 0.20 meters. 4.2989% of the area will experience flood levels of 0.21 to 0.50 meters while 3.5015%, 2.6694%, 2.311%, and 0.7611% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

Table 36. Affected Areas in Bato, Leyte during 5-Year Rainfall Return Period

					Affected Baran	gays in Bato			
BANG	IKEKOHAN BASIN	Alegria	Alejos	Amagos	Bago	Bagong Bayan District	Daan Lungsod	Dolho	Guerrero District
	0.03-0.20	0.465312591	4.303232302	0.674928363	0.805755289	0.31563515	0.310336274	0.619104036	0.156308949
) LGg	0.21-0.50	0.021555114	0.497906208	0.024562077	0.027668717	0.203795246	0.411050108	0.398485801	0.022214588
A b: .my	0.51-1.00	0.01315183	0.554044539	0.016271224	0.017224195	0.105753193	0.285350121	0.355856381	0.028461129
ecte. sd.	1.01-2.00	0.004668391	0.152570687	0.012121091	0.029584967	0.022769692	0.174492587	0.219689287	0.034121716
))	2.01-5.00	0.0012	0.020160874	0.023401515	0.143897725	0	0.130376558	0.015205646	0.002214922
	> 5.00	0	0	0.0023	0.110310498	0	0	0	0

Table 37. Affected Areas in Bato, Leyte during 5-Year Rainfall Return Period

Defection BASINIniguihan DistrictMabiniMarceloNagaSan AgustinTabunokTagaytayTuBASINDistrict District0.0922277620.8752921870.16383781.0816365581.290304470.8145923852.2985254920.3945						Affected Baran	gays in Bato			
	BANG	SASIN BASIN	Iniguihan District	Mabini	Marcelo	Naga	San Agustin	Tabunok	Tagaytay	Tugas
0.21-0.50 0.030464416 0.036302154 0.004035836 0.090418495 0.063065102 0.45099197 0.176355713 0.0153 6 0.21-0.50 0.036231771 0.011293516 0.002035505 0.17811695 0.064100132 0.193777658 0.135790795 0.0177 6 0.51-1.00 0.036231771 0.011293516 0.002035505 0.17811695 0.064100132 0.193777658 0.135790795 0.0177 6 0.51-1.00 0.036231771 0.011293516 0.002035505 0.17811695 0.064100132 0.193777658 0.0355208 0.00177 7 0.01-2.00 0.04157877 0.004905416 0.001715618 0.488099553 0.068521526 0.141991867 0.063053208 0.0033 7 0.0155.00 0.00341409 0.014991857 0.066106045 0.109785514 0.141991867 0.065217884 0 8 5.00 0 0.005977926 0.263277282 0.034402604 0.01761039 0		0.03-0.20	0.092227762	0.875292187	0.1638378	1.081636558	1.29030447	0.814592385	2.298525492	0.394528178
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $) LGg	0.21-0.50	0.030464416	0.036302154	0.004035836	0.090418495	0.063065102	0.450999197	0.176355713	0.015209874
3 1.01-2.00 0.041578727 0.004905416 0.001715618 0.488099553 0.068521526 0.215194866 0.063053208 0.0032 1 2.01-5.00 0.003041409 0.01499185 0.0006 0.66106045 0.109785514 0.141991867 0.062117884 0 1 > 5.00 0 0 0.05977926 0 0.263277282 0.004165527 0.034402604 0.01761039 0	A b: .my	0.51-1.00	0.036231771	0.011293516	0.002035505	0.17811695	0.064100132	0.193777658	0.135790795	0.017738933
★ 2.01-5.00 0.003041409 0.01499185 0.0006 0.66106045 0.109785514 0.141991867 0.062117884 0 > 5.00 0 0 0.005977926 0 0 0.034402604 0.01761039 0	ette. bs	1.01-2.00	0.041578727	0.004905416	0.001715618	0.488099553	0.068521526	0.215194866	0.063053208	0.003250067
>5.00 0 0.005977926 0 0.263277282 0.004165527 0.034402604 0.01761039 0)))	2.01-5.00	0.003041409	0.01499185	0.0006	0.66106045	0.109785514	0.141991867	0.062117884	0
		> 5.00	0	0.005977926	0	0.263277282	0.004165527	0.034402604	0.01761039	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 71. Affected Areas in Bato, Leyte during 5-Year Rainfall Return Period

Figure 72. Affected Areas in Bato, Leyte during 5-Year Rainfall Return Period

For the 5-year return period, 10.13% of the municipality of Hilongos with an area of 156.796 sq. km. will experience flood levels of less 0.20 meters. 2.54% of the area will experience flood levels of 0.21 to 0.50 meters while 1.427%, 0.5635%, 0.197%, and 0.0119% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

Manual Base Bagumbayan Bantigue Bon-Ot Campina Catandog 1 Catandog 2 Concepcion BASIN Base Bagumbayan Bantigue Bon-Ot Campina Catandog 1 0.103178 0.215441 1.503482 0.03-0.20 3.744365732 1.876891 0.212757 0.752237 1.355471 0.103178 0.215441 1.503482 0.03-0.20 3.74436572 1.876891 0.212757 0.210651 0.103178 0.215672 0.220672 0.21-0.50 1.001180944 0.066406 0.099159 0.033222 0.210651 0.1037742 0.220672 0.51-1.00 0.35155789 0.062879 0.096484 0.023767 0.050766 1E-04 0.162776 0.058881 0.51-1.00 0.35155789 0.001833 0.037329 0.023344 0.162776 0.058581 0.51-5.00 0.0018 0.016107 0.037526 0 0 0.018076 0.007373 0.51-5.00 0.0018 0.016107 0.037526 0						Affected Baranga	ys in Hilongos			
Rotation 0.03-0.20 3.744365732 1.876891 0.212757 0.75237 1.355471 0.103178 0.215441 1.503482 Rotation 3.744365732 1.876891 0.021059 0.030222 0.210651 0.0046 0.137742 0.220672 Rotation 0.21-0.50 1.001180944 0.066406 0.099159 0.030222 0.210651 0.0046 0.137742 0.220672 Rotation 0.21-0.50 0.05113864 0.066484 0.033757 0.050766 1E-04 0.162776 0.058581 Rotation 0.051113864 0.062879 0.037329 0.024357 0.002334 0 0.163776 0.007373 Rotation 0.0012 0.00180 0.037329 0.024357 0.002334 0 0.16362 0.007373 Rotation 0.00180 0.0016107 0.037626 0 0 0 0.0018076 0.007373 Rotation 0 0 0 0 0 0 0 0.007373 0.007373 0.016376	BANG	ASIN	Baas	Bagumbayan	Bantigue	Bon-Ot	Campina	Catandog 1	Catandog 2	Concepcion
Rotation 0.21-0.50 1.001180944 0.066406 0.099159 0.030222 0.210651 0.0046 0.137742 0.220672 Rotation 0.351557789 0.062879 0.096484 0.023767 0.050766 1E-04 0.162776 0.058581 Rotation 0.35113864 0.005133 0.037329 0.024357 0.002334 0 0.16362 0.007373 Rotation 0.0012 0.0018 0.037329 0.024357 0.002334 0 0 0.007373 Rotation 0.0012 0.016107 0.024357 0.002334 0 0 0.007373 Rotation 0.0012 0.016107 0.024357 0.002334 0 0 0.007373 Rotation 0.0012 0.016107 0.037626 0 0 0 0.018076 0.007373 Rotation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.03-0.20	3.744365732	1.876891	0.212757	0.752237	1.355471	0.103178	0.215441	1.503482
40.51-1.000.351557890.0628790.0964840.0237670.0507661E-040.1627760.05858141.01-2.000.0511138640.0261330.0373290.0243570.002334000.00737342.01-5.000.00020.00180.0161070.037626000005.0000000000000) LGg	0.21-0.50	1.001180944	0.066406	0.099159	0.030222	0.210651	0.0046	0.137742	0.220672
3 1.01-2.00 0.051113864 0.026133 0.037329 0.024357 0.002334 0 0.116362 0.007373 3 2.01-5.00 0.0002 0.0018 0.016107 0.037626 0	km. الاس	0.51-1.00	0.351557789	0.062879	0.096484	0.023767	0.050766	1E-04	0.162776	0.058581
★ 2.01-5.00 0.0002 0.0018 0.016107 0.037626 0 0 0 0018076 0 >5.00 0 <th>.ps sd.</th> <td>1.01-2.00</td> <td>0.051113864</td> <td>0.026133</td> <td>0.037329</td> <td>0.024357</td> <td>0.002334</td> <td>0</td> <td>0.116362</td> <td>0.007373</td>	.ps sd.	1.01-2.00	0.051113864	0.026133	0.037329	0.024357	0.002334	0	0.116362	0.007373
>5.00 0 <th>))</th> <td>2.01-5.00</td> <td>0.0002</td> <td>0.0018</td> <td>0.016107</td> <td>0.037626</td> <td>0</td> <td>0</td> <td>0.018076</td> <td>0</td>))	2.01-5.00	0.0002	0.0018	0.016107	0.037626	0	0	0.018076	0
		> 5.00	0	0	0	0.015589	0	0	0	0

Table 38. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period

Table 39. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period

	Tuguipa	1.433327	0.084104	0.10163	0.051591	0.00409	0
	Tejero	1.181078	0.213816	0.03075	0.002092	0	0
	Talisay	0.185011	0.112458	0.035191	0.008729	0.009646	0
ys in Hilongos	Tabunok	0.162593	0.643571	0.406124	0.193114	0.21203	0.0031
Affected Baranga	Manaul	0.047635	0.008462	0.002092	0	0	0
	Lunang	1.580587	0.797345	0.54867	0.132077	0.007652	0
	Kangha-As	0.330048	0.327097	0.285186	0.208227	0.0001	0
	Kang-Iras	1.199978329	0.035962589	0.021777598	0.02277792	0.0018	0
KEROHAN	ASIN	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
RANG	B) LG9	A b: .my	ecte. sd.))	

Figure 73. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period

Figure 74. Affected Areas in Hilongos, Leyte during 5-Year Rainfall Return Period

For the 25-year return period, 22.0154% of the municipality of Bato with an area of 57.552 sq. km. will experience flood levels of less 0.20 meters. 3.988% of the area will experience flood levels of 0.21 to 0.50 meters while 4.789%, 3.636%, 3.23%, and 1.357% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

Table 40. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period

					Affected Baran	gays in Bato			
E	ASIN	Alegria	Alejos	Amagos	Bago	Bagong Bayan District	Daan Lungsod	Dolho	Guerrero District
	0.03-0.20	0.456673982	4.059124488	0.657552908	0.749609913	0.130971362	0.113162859	0.125818515	0.08477802
) LGg	0.21-0.50	0.019913603	0.371046219	0.026509522	0.022274203	0.21768448	0.364635524	0.407077976	0.066869763
A b: .my	0.51-1.00	0.018608585	0.680224801	0.020011382	0.015236451	0.224689355	0.381259629	0.528050442	0.032676825
ecte. sd.	1.01-2.00	0.007812717	0.365288018	0.012009309	0.029770254	0.074594099	0.2940577	0.469473181	0.049946306
))	2.01-5.00	0.002879282	0.052244056	0.027801581	0.08870526	1.46329E-05	0.158484418	0.077917552	0.009050219
	> 5.00	0	0	0.009695863	0.228832147	0	0	0	0

Table 41. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period

					Affected Baran	gays in Bato			
BANG	BASIN	Iniguihan District	Mabini	Marcelo	Naga	San Agustin	Tabunok	Tagaytay	Tugas
	0.03-0.20	0.052789227	0.856099058	0.161575042	0.980184717	1.224354871	0.420725813	2.20852556	0.38826422
) LGg	0.21-0.50	0.029320119	0.04579415	0.004556858	0.050096017	0.052685906	0.462034613	0.138809697	0.016072055
A b: .my	0.51-1.00	0.039802804	0.014311897	0.003275467	0.065268776	0.057680039	0.487454037	0.168405133	0.019229881
.ps	1.01-2.00	0.061742779	0.006699922	0.002015578	0.274980645	0.06478488	0.264553588	0.108247496	0.006999336
))	2.01-5.00	0.019888922	0.008605776	0.0008	1.021555055	0.122605402	0.171814925	0.096501297	1E-04
	> 5.00	0	0.017269822	0	0.370518035	0.077824422	0.0443718	0.033014578	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 75. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period

Figure 76. Affected Areas in Bato, Leyte during 25-Year Rainfall Return Period

For the 25-year return period, 8.586% of the municipality of Hilongos with an area of 156.796 sq. km. will experience flood levels of less 0.20 meters. 2.587% of the area will experience flood levels of 0.21 to 0.50 meters while 2.22%, 1.19%, 0.272%, and 0.0216% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

Baas Baas <th< th=""><th>agumbayan 1.845624 0.069049 0.067099 0.040286 0.004056</th><th>Bantigue 0.167454 0.08789 0.130906 0.130906 0.050377 0.025208 0</th><th>Affected Baranga Bon-Ot 0.725306 0.021998 0.011906 0.011906 0.027615 0.066289</th><th>ys in Hilongos Campina 1.198545 0.262845 0.139864 0.139864 0.017969 0</th><th>Catandog 1 0.100178 0.0076 1E-04 0 0</th><th>Catandog 2 0.117105 0.151432 0.189796 0.189796 0.171292 0.020773 0</th><th>Concepcion 1.384811 0.269039 0.123837 0.123837 1E-04 0</th></th<>	agumbayan 1.845624 0.069049 0.067099 0.040286 0.004056	Bantigue 0.167454 0.08789 0.130906 0.130906 0.050377 0.025208 0	Affected Baranga Bon-Ot 0.725306 0.021998 0.011906 0.011906 0.027615 0.066289	ys in Hilongos Campina 1.198545 0.262845 0.139864 0.139864 0.017969 0	Catandog 1 0.100178 0.0076 1E-04 0 0	Catandog 2 0.117105 0.151432 0.189796 0.189796 0.171292 0.020773 0	Concepcion 1.384811 0.269039 0.123837 0.123837 1E-04 0
---	---	--	--	--	---	---	--

Table 42. Affected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period

Table 43. Affected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period

	Tuguipa	1.387567	0.081182	0.088786	0.076756	0.040455	0
	Tejero	0.9118	0.413908	0.098575	0.003453	0	0
	Talisay	0.144889	0.125084	0.061204	0.010112	0.009746	0
ys in Hilongos	Tabunok	0.056782	0.516178	0.580298	0.230302	0.233682	0.0033
Affected Baranga	Manaul	0.02043	0.025116	0.01157	0.001072	0	0
	Lunang	0.727552	0.99418	0.789157	0.540015	0.015432	0
	Kangha-As	0.097081	0.207272	0.397504	0.447201	0.0016	0
	Kang-Iras	1.176107526	0.046031466	0.024341068	0.028010355	0.007805996	0
KEROHAN	ASIN	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
BANG	8) LG9	A b: .my	ecte. sq.))	

Figure 77. Affected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period

Figure 78. Affected Areas in Hilongos, Leyte during 25-Year Rainfall Return Period

For the 25-year return period, 22.0154% of the municipality of Bato with an area of 57.552 sq. km. will experience flood levels of less 0.20 meters. 3.988% of the area will experience flood levels of 0.21 to 0.50 meters while 4.789%, 3.636%, 3.23%, and 1.357% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

Table 44. Affected Areas in Bato, Leyte during 100-Year Rainfall Return Period

					Affected Baran	gavs in Rato			
DIANG	ULEDOU AN					Buys III Duco			
DAINO	BASIN	Alegria	Alejos	Amagos	Bago	Bagong Bayan District	Daan Lungsod	Dolho	Guerrero District
	0.03-0.20	0.449986159	3.939324134	0.649603501	0.710188218	0.058976778	0.052013252	0.029400316	0.030909792
) LGg	0.21-0.50	0.017988459	0.309981704	0.025486573	0.020605948	0.192607775	0.278369298	0.211396555	0.088743369
A b: .my	0.51-1.00	0.022193087	0.605792221	0.021934213	0.0159635	0.290444052	0.413178855	0.64590528	0.054713463
ecte.	1.01-2.00	0.011644948	0.572169605	0.011857873	0.02022413	0.105507751	0.374880158	0.569327942	0.048623617
) ЭНА Э	2.01-5.00	0.004075273	0.100646944	0.028584645	0.072167375	0.000416925	0.193164097	0.152311058	0.020331064
	> 5.00	0	0	0.016117464	0.295292219	0	0	0	0

Table 45. Affected Areas in Bato, Leyte during 100-Year Rainfall Return Period

					Affected Baran	gays in Bato			
BANG	ikerohan Basin	Iniguihan District	Mabini	Marcelo	Naga	San Agustin	Tabunok	Tagaytay	Tugas
	0.03-0.20	0.037315901	0.840246125	0.159576594	0.930550725	1.181288609	0.245540763	2.155817516	0.383490441
) LG9	0.21-0.50	0.028790234	0.053379012	0.005353122	0.046586329	0.048514679	0.412518678	0.111826705	0.016106759
A b .my	0.51-1.00	0.040964159	0.018421801	0.003679425	0.051428789	0.051213815	0.590246182	0.179891576	0.019630016
.ps	1.01-2.00	0.061216768	0.007140601	0.002615618	0.157041852	0.051933127	0.353202649	0.138672165	0.011299838
))	2.01-5.00	0.035257023	0.007397279	0.001	1.116517374	0.105221293	0.193629807	0.120636091	0.0002
	> 5.00	0	0.022178231	0	0.46048422	0.161770747	0.055820499	0.046609429	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 79. Affected Areas in Bato, Leyte during 100-Year Rainfall Return Period

Figure 80. Affected Areas in Bato, Leyte during 100-Year Rainfall Return Period

For the 100-year return period, 8.032% of the municipality of Hilongos with an area of 156.796 sq. km. will experience flood levels of less 0.20 meters. 2.129% of the area will experience flood levels of 0.21 to 0.50 meters while 2.622%, 1.596%, 0.4665%, and 0.031% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and above 5 meters respectively. Listed in the tables below are the affected areas in square kilometres by flood depth per barangay.

fected Area (sq. km.)	KEROHAN ASIN 0.03-0.20 0.21-0.50 0.51-1.00 1.01-2.00	Baas 3.277952454 0.572548758 0.927484575 0.347230219	Bagumbayan 1.822928 0.07528 0.06357	Bantigue 0.144956 0.071458 0.14805 0.066992	Affected Baranga Bon-Ot 0.709103 0.025292 0.012406 0.011609	ys in Hilongos Campina 1.136602 0.239411 0.204297 0.038913	Catandog 1 0.093208 0.01427 0.0004 0	Catandog 2 0.065857 0.140352 0.211264 0.208642	Concepcion 1.322047 0.272256 0.162176 0.033329
łΑ	2.01-5.00	0.023202324	0.007115	0.030379	0.080352	0	0	0.024283	0.0003
	> 5.00	0	0	0	0.045034	0	0	0	0

Table 46. Affected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period

Table 47. Affected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period

90

Figure 81. Affected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period

Figure 82. Affected Areas in Hilongos, Leyte during 100-Year Rainfall Return Period

Among the barangays in the municipality of Bato, Alejos is projected to have the highest percentage of area that will experience flood levels at 9.605%. Meanwhile, Naga posted the second highest percentage of area that may be affected by flood depths at 4.8%.

Among the barangays in the municipality of Hilongos, Baas is projected to have the highest percentage of area that will experience flood levels at 3.28%. Meanwhile, Lunang posted the second highest percentage of area that may be affected by flood depths at 1.955%.

Moreover, the generated flood hazard maps for the Bangkerohan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning Loval	Are	ea Covered in sq.	km
warning Level	5 year	25 year	100 year
Low	6.48	6.34	5.19
Medium	5.89	8.78	10.29
High	2.89	4.54	5.85

Table 48. Area covered by each warning level with respect to the rainfall scenario

Of the 27 identified Education Institutions in Bangkerohan Flood plain, 4 schools were assessed to be exposed to the Low level flooding during a 5 year scenario. In the 25 year scenario, 7 schools were assessed to be exposed to the Low level flooding while 3 schools were assessed to be exposed to the Low level flooding while 3 schools were assessed to be exposed to Medium level flooding. For the 100 year scenario, 4 schools were assessed for Low level flooding and 8 schools for Medium level flooding. See Annex 12 for a detailed enumeration of schools inside Bangkerohan floodplain.

Of the 7 identified Medical Institutions in Bangkerohan Flood plain, none were assessed to be exposed to the any level of flooding during a 5 year scenario. In the 25 year scenario, Naga Health Center was assessed to be exposed to the Medium level flooding. For the 100 year scenario, Naga Health Center and Alejos Health Center were assessed for Medium level flooding. See Annex 13 for a detailed enumeration of health insitutions inside Bangkerohan floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation consisted of 243 points randomly selected all over the Bangkerohan flood plain. It has an RMSE value of 0.95.

Figure 83. Validation points for 5-year Flood Depth Map of Bangkerohan Floodplain

Figure 84.Flood map depth vs actual flood depth

				Modeled I	Flood Depth	(m)		
	IRAA RAZIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	>5.00	Total
	0-0.20	50	15	10	2	1	0	78
<u> </u>	0.21-0.50	29	14	9	3	0	0	55
epth (n	0.51-1.00	40	8	7	5	0	0	60
ood Do	1.01-2.00	29	24	0	13	0	0	66
ctual Fl	2.01-5.00	1	0	0	3	0	0	4
Ă	>5.00	0	0	0	0	0	0	0
	Total	149	61	26	26	1	0	263

Table 49. Actual Flood Depth vs Simulated Flood Depth in Bangkerohan

The overall accuracy generated by the flood model is estimated at 31.94%, with 84 points correctly matching the actual flood depths. In addition, there were 69 points estimated one level above and below the correct flood depths while there were 77 points and 33 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 45 points were overestimated while a total of 134 points were underestimated in the modelled flood depths of Bangkerohan.

Table 50. Summary of Accuracy Assessment in Bangkerohan

	No. of Points	%
Correct	84	31.94
Overestimated	45	17.11
Underestimated	134	50.95
Total	263	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1.Technical Specifications of the LIDAR Sensors used in the Bangkerohan Floodplain Survey

1. AQUARIUS SENSOR

ecifications of Aquarius Sensor
Specification
300-600 m AGL
33, 50. 70 kHz
0-70 Hz
0 to ± 25 °
30-60 cm
0 to > 10 m (for k < 0.1/m)
300-2500
Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
12-bit dynamic measurement range
POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Ruggedized removable SSD hard disk (SATA III)
28 V, 900 W, 35 A
5 MP interline camera (standard); 60 MP full frame (optional)
12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
0-35°C
0-95% no-condensing

2. GEMINI SENSOR

Figure A-1.2. Gemini Sensor
Parameter	Specification		
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)		
Elevation accuracy (2)	<5-35 cm, 1 σ		
Effective laser repetition rate	Programmable, 33-167 kHz		
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver		
Scan width (WOV)	Programmable, 0-50°		
Scan frequency (5)	Programmable, 0-70 Hz (effective)		
Sensor scan product	1000 maximum		
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal		
Roll compensation	Programmable, ±5° (FOV dependent)		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)		
Video Camera	Internal video camera (NTSC or PAL)		
Image capture	Compatible with full Optech camera line (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V; 900 W;35 A(peak)		
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm		
	(h); 53 kg		
Operating temperature	-10°C to +35°C (with insulating jacket)		
Relative humidity	0-95% no-condensing		

Table A-1.2. Parameters and Specifications of Gemini Sensor

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. LY-1024

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 10, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: SOUTHERN LEYTE	
	Station Name: LY-1024	
		D
Island: Visayas	Municipality: SOGOD	Barangay: KAHUPIAN
Elevation: 364.7756 +/- 0.07	Accuracy Class at 95% C.L: 7 CM	Datum: Mean Sea Level
Latitude:	Longitude:	

Location Description

BM-LY-1024 is in the Province of Leyte, Municipality of Sogod, Brgy. Kahupian along the Mahaplag-Sugod National Highway. The station is located at the SE end of the sidewalk of Agas-agas Bridge at KM post 1006 + 972.6 and 4 m from the road centerline.

Mark is the head of a 4 in copper nail set flush on a 15 cm x 15 cm cement putty with inscriptions "LY-1024, 2012, NAMRIA".

Requesting Party:UPPurpose:ReOR Number:80T.N.:20

UP DREAM Reference 8089774 I 2016-0331

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. LY-1024

2. LYT-757

Location Description

LYT-757

About 7.0 km. from poblacion mahaplag taking the national road to southern leyte, there is a restaurant named "Dragonfly restaurant" located at the right side of the highway and on the left isde is the junction going to the proper of brgy. mahayahay. The LYT-757 is located on the left side, 30 meters before you reach the junction. LYT-757 is almost on the opposite side of the kilometer post # 997. 30x30x100 cm. cocnrete monument having 40 cm height above the ground with 5 inches concrete nail as center and is marked with "LYT-757, 2007, LAMP".

Requesting Party:	U
Purpose:	R
OR Number:	80
T.N.:	20

P DREAM eference 0896871 016-0239

RUEL DM BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES Main: Lawton Avenue, Fort Bonitacia, 1634 Tagung City, Philippines Tell. No. (832) 810-4631 to 41 Branch: 421 Barraca St. San Noclas, 1010 Manila, Philippines, Tell No. (832) 241-3404 to 58 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. LYT-757

Brgy. doos del norte is about 2.6 km. from the poblacion pf hindang taking the national road to babay. upon reaching the said barangay, locate the brgy. hall, The LYT-741 is located on the opposite side of the road for about 36 m. far from the gate of the brgy hall.30x30x100 cm. cocnrete monument having 40 cm height above the ground with 5 inches concrete nail as center and is marked with "LYT-741, 2007, LAMP".

Requesting Party: U Purpose: F OR Number: E T.N.: 2

UP DREAM Reference 8084228 I 2016-0916

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main I: Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch: 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. LYT-741

NAMRIA OFFICES: Main L: Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch - 421 Barrach 3: San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.5. LYS-4

6. LYT-748

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 05, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: LEYTE		
Station Name: LVT 749		
Station Name. LT 1-740		
Order: 2nd		
Barangay: HITOOG		
MSL Elevation:		
PRS92 Coordinates		
Longitude: 124º 48' 19.08041"	Ellipsoidal Hgt:	77.51500 m.
WGS84 Coordinates		
Longitude: 124º 48' 24.32650"	Ellipsoidal Hgt:	141.66500 m.
PTM / PRS92 Coordinates		
Easting: 478669.714 m.	Zone: 5	
UTM / PRS92 Coordinates		
Easting: 697,740.37	Zone: 51	
	Province: LEYTE Station Name: LYT-748 Order: 2nd Barangay: HITOOG MSL Elevation: <i>PRS92 Coordinates</i> Longitude: 124° 48' 19.08041" <i>WGS84 Coordinates</i> Longitude: 124° 48' 24.32650" <i>PTM / PRS92 Coordinates</i> Easting: 478669.714 m. <i>UTM / PRS92 Coordinates</i> Easting: 697,740.37	Province: LEYTE Station Name: LYT-748 Order: 2nd Barangay: HITOOG MSL Elevation: PRS92 Coordinates Longitude: 124° 48' 19.08041" Ellipsoidal Hgt: WGS84 Coordinates Longitude: 124° 48' 24.32650" Ellipsoidal Hgt: PTM / PRS92 Coordinates Easting: 478669.714 m. Zone: 5 UTM / PRS92 Coordinates Easting: 697,740.37 Zone: 51

Location Description

LYT-748 From the Matalom proper, go to brgy. caridad del sur 500 meters along the highway taking the road to maasin city. you'll fin a junction to the right is going to matalom hospital and to the left is going to brgy. hitdog. from the highway, brgy. hitdog is about 6 km. far. you will pass through 3 junctions along the way but always take the way to the right, and on the 4th junction, take the left turn. upon reaching the brgy. hail and basketaballcourt of Brgy. Hitdog, you will have to take a walk for about 300 meters to "hitdog elemetary school". LYT-748 is located 50 meters behind the said school. 30x30x100 cm. cocnrete monument having 40 cm height above the ground with 5 inches concrete nail as center and is marked with "LYT-748, 2007, LAMP".

Requesting Party: PHIL-LIDAR I Purpose: Reference OR Number: 8077605 I T.N.: 2015-0215

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

AMRIA OFFICES: Main : Lawion Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.6. LYT-748

Standard Republic of Department	the Philippines	
NATIONA		I AUTHORITY
199		
		February 05, 2015
	CERTIFICATION	
To whom it may concern:		
This is to certify that accordin	g to the records on file in this office, the req	uested survey information is as follows -
	Province: LEYTE Station Name: LY-351	
Island: Visayas	Municipality: MATALOM	Barangay:
Elevation: 6.0371 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude:	Longitude:	
	Location Description	
(RECOMPUTED MARCH 2014)		
Mark is head of a 4" copper na	set and centered on a 10 x 10 cm ceme	nt nutty with inscriptions "IV-351 2007
NAMRIA".		
NAMRIA". It is located in the Municipality of	Leyte, Matalom Brgy. Poblacion.	n poly with insciptions [1-001, 2007,
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma	pout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109.
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma	pout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin.
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 Requesting Party: PHIL-LIDAF Purpose: Reference	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma	pout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin.
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma	pout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin.
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 if Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma R I RUEL	DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RI RUEL Director, Map	Dout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin. DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RI	DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 i Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RI	DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 i Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma R1 RUEL Director, Map	Dout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin. DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 m Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 l T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma R1 RUEL Director, Map	DOUL 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin. DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 i Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma 81 RUEL Director, Map	Dout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin. DM. BELEN, MNSA ping And Geodesy Branch
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 f Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 f T.N.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RI RUEL Director, Mab	DOUL 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. hasin. DM. BELEN, MNSA ping And Geodesy Branch S 2 0 1 5 1 4 5 8 4 6 a: (632) 810-4831 to 41
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 l Requesting Party: PHIL-LIDAF Purpose: Reference OR Number: 8077605 I T.N.: 2015-0221	Levte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RUEL Director, Map 9 9 0 2 0 NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. N Banch: 421 Baraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (63 www.namria.gov.ph	Dout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. aasin. DM. BELEN, MNSA ping And Geodesy Branch S 2 0 1 5 1 4 5 8 4 6 provide the state of the
NAMRIA". It is located in the Municipality of Located at the NW corner of a 1 and 200 m. after Matalom Munic It can be reached approx. by 50 i Requesting Party: PHIL-LIDAF Purpose: Reference DR Number: 8077605 I T.N.: 2015-0221 IN.: 2015-0221	Leyte, Matalom Brgy. Poblacion. 50 m. long bridge called Matalom bridge, al ipal hall. It is about 200 m. before KM post 1 min. drive from Baybay going to South to Ma RUEL Director, Map Markin OFFICES: Main : Lawton Avenue, Fott Bonifacio, 1634 Taguig City, Philippines Tel. No. (63 www.namria.gov.ph ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORM	Dout 50 m. W of Matalom Public Markert 110 and 500 m. after KM post 1109. hasin. DM. BELEN, MNSA ping And Geodesy Branch S C C C C C C C C C C C C C C C C C C

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. LY-1024

Baseline Processing Report

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
LYT-757 LY- 1024 (B2)	LYT-757	LY-1024	Fixed	0.004	0. <mark>0</mark> 18	143°56'41"	7166.614	266.642
LYT-757 LY- 1024 (B1)	LYT-757	LY-1024	Fixed	0.005	0.015	143°56'41"	7166.626	266.671
LYT-757 LY- 1024 (B3)	LYT-757	LY-1024	Fixed	0.004	0.015	143°56'41"	7166.633	266.676

Acceptance Summary						
Processed	Passed	Flag	>	Fail	•	
3	3	0			0	

Vector Components	(Mark to	Mark)
-------------------	----------	-------

From:	LYT-757						
	Grid		Local			G	lobal
Easting	714331.338 m	Latit	ude N10°32'5	54.86738"	Latitude		N10°32'50.77355"
Northing	1166663.617 m	Long	jitude E124°57'3	31.14322"	Longitude		E124°57'36.36037"
Elevation	98.243 m	Heig	ht	99.559 m	Height		163.363 m
To:	LY-1024						
	Grid		Local		Global		iobal
Easting	718586.237 m	Latit	ude N10°29'4	46.27905"	Latitude		N10°29'42.20218"
Northing	1160895.197 m	Long	litude E124°59'4	19.85591"	Longitude		E124°59'55.07713"
Elevation	364.735 m	Heig	ht 3	366.202 m Height			430.223 m
Vector							
∆Easting	4254.89	99 m (NS Fwd Azimuth		143°56'41"	ΔX	-4212.979 m
∆Northing	-5768.41	9 m (Ellipsoid Dist.		7166.614 m	ΔY	-1336.202 m
∆Elevation	266.49)2 m ,	ΔHeight		266.642 m	ΔZ	-5648.050 m

Figure A-3.1. LY-1024

2. LY-351

Vector Components (Mark to Mark)

From:	LYT-748						
	Grid		Local			Gl	obal
Easting	697740.363 m	Latitu	ude N10°1	4'16.77457"	Latitude		N10°14'12.74720"
Northing	1132208.868 m	Long	jitude E124°4	8'19.08040"	Longitude		E124°48'24.32650"
Elevation	77.125 m	Heigh	ht	77.515 m	Height		141.665 m
То:	LY-351						
	Grid	Local		Global		obal	
Easting	695421.839 m	Latitu	ude N10°1	6'52.30167"	Latitude		N10°16'48.26132"
Northing	1136974.636 m	Long	jitude E124°4	7'03.77264"	Longitude		E124°47'09.01515"
Elevation	6.314 m	Heigh	ht	6.886 m	Height		70.885 m
Vector							
∆Easting	-2318.52	24 m 🏌	NS Fwd Azimuth		334°22'44"	ΔX	2407.375 m
ΔNorthing	4765.76	68 m E	Ellipsoid Dist.		5299.406 m	ΔY	551.878 m
∆Elevation	-70.81	10 m /	∆Height		-70.629 m	ΔZ	4689.241 m

Standard Errors

Vector errors:						
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.003 m	
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m	
$\sigma \Delta Elevation$	0.006 m	σ ΔHeight	0.006 m	σΔΖ	0.002 m	

Aposteriori Covariance Matrix (Meter²)

	Х	Y	Z
х	0.0000101466		
Y	-0.0000137204	0.0000248169	
Z	-0.0000039125	0.0000060432	0.0000023641

2

Figure A-3.2. LY-351

3. LY-313

LY-313 - LYT-741 (9:21:42 AM-1:52:00 PM) (S3)

Baseline observation:	LY-313 LYT-741 (B3)
Processed:	4/15/2016 6:17:08 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.003 m
Vertical precision:	0.014 m
RMS:	0.005 m
Maximum PDOP:	2.723
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	4/10/2016 9:21:57 AM (Local: UTC+8hr)
Processing stop time:	4/10/2016 1:52:00 PM (Local: UTC+8hr)
Processing duration:	04:30:03
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	LYT-741						
	Grid		Local	Global			
Easting	689272.210 m	Latitude	N10°27'11.95721"	Latitude		N10°27'07.86786"	
Northing	1155979.897 m	Longitude	E124°43'45.08400"	Longitude		E124°43'50.31177"	
Elevation	3.600 m	Height	4.482 m	Height		67.945 m	
То:	LY-313						
	Grid		Local	Global			
Easting	693326.992 m	Latitude	N10°36'46.67221"	Latitude		N10°36'42.54525"	
Northing	1173661.007 m	Longitude	E124°46'01.67926"	Longitude		E124°46'06.89257"	
Elevation	5.229 m	Height	6.279 m	Height		69.460 m	
Vector							
∆Easting	4054.78	32 m NS Fwd Azir	nuth	13°13'57"	ΔX	-1573.287 m	
∆Northing	17681.11	0 m Ellipsoid Dis	t.	18139.132 m	ΔY	-5017.663 m	
∆Elevation	1.62	29 m ΔHeight		1.796 m Δ Ζ		17360.172 m	

Standard Errors

Vector errors:								
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m			
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m			
$\sigma \Delta Elevation$	0.007 m	σ ΔHeight	0.007 m	σΔΖ	0.002 m			

2

Figure A-3.3. LY-313

4. LYS-4bak

LYS-4bak - LYS-4 (12:29:42 PM-2:25:33 PM) (S1)

Baseline observation:	LYS-4bak LYS-4 (B1)
Processed:	4/15/2016 6:41:08 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.000 m
Maximum PDOP:	1.827
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	4/13/2016 12:29:42 PM (Local: UTC+8hr)
Processing stop time:	4/13/2016 2:25:33 PM (Local: UTC+8hr)
Processing duration:	01:55:51
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	LYS-4	-4							
	Grid		Lo	cal		Global			
Easting	716491.318	n Latitu	ude	N10°23'20).19669"	Latitude		N10°23'16.14540"	
Northing	1149017.838	n Long	gitude	E124°58'38	3.53353"	Longitude		E124°58'43.76469"	
Elevation	14.251 ו	n Heig	ht	1	5.255 m	Height		79.479 m	
То:	LYS-4bak								
	Grid		Lo	cal		Global			
Easting	716490.354	n Latitu	ude	N10°23'20).14352"	Latitude		N10°23'16.09223"	
Northing	1149016.198	n Long	jitude	E124°58'38	3.50151"	Longitude		E124°58'43.73267"	
Elevation	14.202	n Heig	ht	1	5.207 m	Height		79.430 m	
Vector									
∆Easting	-0.1	964 m	NS Fwd Azimuth			210°48'17"	ΔX	0.657 m	
∆Northing	-1.0	640 m I	Ellipsoid Dist.			1.902 m	ΔΥ	0.760 m	
∆Elevation	-0.1	049 m	ΔHeight			-0.049 m	ΔZ	-1.616 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.000 m	σ NS fwd Azimuth	0°00'35"	σΔΧ	0.001 m
$\sigma \Delta Northing$	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m
$\sigma \Delta Elevation$	0.001 m	σ ΔHeight	0.001 m	σΔΖ	0.000 m

2

Figure A-3.4. LYS-4bak

Annex 4. The LIDAR Survey Team Composition

Date Acquisition Component Sub-team	Designation	Name	Agency/Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D. ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader –I	ENGR. CZAR JAKIRI S. SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. LOUIE P. BALICANTA	UP-TCAGP
Survey Supervisor	Supervising Science Research	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP
		FIELD TEAM	
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS JASMINE ALVIAR PAULINE JOANNE ARCEO	UP-TCAGP
		KRISTINE JOY ANDAYA	UP-TCAGP
LiDAR Operation		ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
	Research	GRACE SINADJAN	UP-TCAGP
	Associate (RA)	JONATHAN ALMALVEZ	UP-TCAGP
		ENGR. KENNETH QUISADO	UP-TCAGP
		ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey, Data	RA	ENGR. FRANK NICOLAS ILEJAY	UP-TCAGP
download and transfer		JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
	Airborne Security	SSG RANDY SISON	PHILIPPINE AIR FORCE (PAF)
		SSG RAYMUND DOMINE	PAF
LiDAR Operation		CAPT. ALBERT PAUL LIM	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. RANDY LAGCO	AAC
		CAPT. JACKSON JAVIER	AAC
		CAPT. NIEL ACHILLES AGAWIN	AAC

		L H	NOI	EAW	AW	AW	AW	AW	AW	AW	AW	1		-			
		SERV	LOCAT	Z:\DAC\F DATA	Z VDACIF DATA	Z'IDACIR DATA	ZIDACIR	Z'IDACIR	ZIDACIR	Z'IDACIR	Z:\DAC\R						
		PLAN	KML	NA	NA	NA	NA	NA	NA	NA	NA						
		FLIGHT	Actual	m	4	m	4	m	0	6	5	-					
		OPERATOR LOGS	(optog)	IKB	KB	KB	KB	KB	KB	89	8						
		TION(S) Base Info	(tbt)	BX	KB	KB	KB	KB 4	8	(B	(B						
		BASE STA BASE	STATION(S)	28.1	66.1	34 1	26.4 1	37.1 1	27.1 11	18.5 11	40.2 11						
		DIGITIZER	*12	MA	NA	NA	223	207	185MB	986	111	5					
		RANGE			12	11.9	12.3	11.7	6.71	6.4	7,39	5/12					
		SSION LOG	NA		NA	NA	NA	NA	NA	NA	NA	trooperto					
SFER SHEET	(ORMOC)	RAW MI	NA		NA	NA	NA	NA	NA	NA	NA	e AC B tion AC B					
DATA TRANS	107/51/20	POS	167		897	231	243	228	216	148	234	Rec Nam Posi					
)GS(MB)	527	200	000	548	671	611	366	310	360						
		(swath) LC	270	08U	000	2	88	IOLIE	36	23	70						
		It LAS KML	A	A				201	8	-							
		SOR	N SU	N SN	S N	2 2			2	2 :							
		SENS	AQUAR	AQUARI	ADUARI	ACUIADI	INDUMU INTERNET	AUDITOR I		NUNANI		11					
		IISSION NAME	3BLK35B21A	3BLK49B022A	3BLK49A023A	3BI K35AN75A	3RI KRECDUDTA	3RI KAOCHANOA	ADDUNCTION OF	281 KENADOAN		ceived from me C.JoA stion nature					
	-	JGHT NO. M	7753AC	7754AC	7756AC	7760AC	764AC	766ΔC	TETAC	TGRAC	1	Re Nar Pos Sign					
	-	TE	21-Jan-15	22-Jan-15	23-Jan-15	25-Jan-15	27-Jan-15	28-Jan-15 7	28-lan-15 7	29-Jan-15 7							

Annex 5. Data Transfer Sheet for Bangkerohan Floodplain

Figure A-5.1. Transfer Sheet for Bangkerohan Floodplain - A

111

1	_			-				
	SERVER	LOCATION	Z:IDACIRAW DATA	Z:\DAC\RAW DATA	Z:IDACIRAW DATA	Z:\DAC\RAW DATA	Z:IDACIRAW DATA	
	PLAN	KML	na	na	na	na	na	
	FLIGHT	Actual	8/57/22/58/	57/11	na	57/22	27/26/59	
	PERATOR	OPLOG)	B 23					
	N(S) OF	(.txt) (1K8	1K8	1K8	1K8	1KI	
	BASE STATIO	TION(S)	1.38 1KB	3.4 1KB	9.58 1KB	9.2 1KB	1.74 1KB	
	0	STA'	la 4	g	a	Ia	a a	218
	Digt Digt		2	5	8	13	.8	2/12
	1 LOG	\$2	26	19	23	20	16	treat
	MISSION	CASI LOG	ua	Bu	BU	u	BU	
yte 2/11/16	RAM	IMAGES/	na	ua	na	na	na	Receive Name Position Signatur
Le	sug la		255	204	260	212	248	
	INCOM	(690	490	670	526	582	
	ILAS	KML (swath	93	75	82	11	63	
	RAV	Output LAS	NA	NA	NA	NA	NA	
	SENSOR		emini	emini	emini	emini	emini	7
			122A 9)22B	3023A 9	023B 9	124A 9	den
	SSION NAME		2BLK34AD(2BLK34AG	2BLK34ADE(2BLK34BCG	2BLK34CG	proture
	AHT NO.		3765G	3767G	3769G	3771G	3773G	<i>α z</i> <i>α</i> <i>σ</i>
	ELIG		22-Jan	Jan-16	Jan-16	Jan-16	Jan-16	
	DATE			22-	23-	23-	24-	

Figure A-5.2. Transfer Sheet for Bangkerohan Floodplain - B

SERVER	Z:\DAC\RAW	Z:\DAC\RAW	Z:IDACIRAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA	Z:\DAC\RAW DATA						-	/	>	
PLAN KML	NA	NA	NA	NA	NA	NA	NA									
FLIGHT Actual	23	23	23	NA	28	9	10									
PERATOR LOGS (OPLOG)	1KB	1KB	1KB	1KB	1KB	1KB	1KB		(/						
ION(S) 0	1KB	1 KB	1 KB	1KB	1KB	1KB	1KB									
BASE STAT BASE STATION(S) B	19.1	19.1	6.82	17.4	10.5	19.5	19.5		5/6/1							
DIGITIZER	NA	NA	NA	NA	NA	NA	NA		Program	-						
RANGE	20.5	8.5	9.56	16.2	14.7	17.1	21	eceived by	ame Ac osition S							
IISSION LOG FILE/CASI LOGS	NA	NA	NA	NA	NA	NA	NA	æ	z ⊄ ∞							
MAGES/CASI	NA	NA	NA	NA	NA	NA	NA									
POS	275	168	252	262	292	267	278									
SDOT	673	377	570	474	557	940	1.03									
LAS (ML (swath)	270	375	138	581	763	216	492	1 from	R. PWWT	5	140 av					
Coutput LAS	NA	NA	NA	NA	NA	NA	NA	Received	lame osition iignature	y		-	-			
SENSOR	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI		2 0 0							
MISSION NAME	2BLK34a101A	2BLK49AB101B	2BLK49DE102A	2BLK50ABC104A	2BLK50DS105A	2BLK35AB107A	2BLK35CS107B									
FLIGHT NO.	3921G	3923G	3925G	3933G	3937G	3945G	3947G									
DATE	April 10,2016	Vpril 10,2016	April 11,2016	vpril 13,2016	vpril 14,2016	Vpril 16,2016	Vpril 16,2016									

Figure A-5.3. Transfer Sheet for Bangkerohan Floodplain - C

LiDAR Surveys and Flood Mapping of Tigbao River

Figure A-6.1. Flight Log for Mission 7754A

Figure A-6.2. Flight Log for Mission 7756A

Figure A-6.3. Flight Log for Mission 3781G

Figure A-6.4. Flight Log for Mission 3921G

117

5. Flight Log for Mission 3923G

Figure A-6.5. Flight Log for Mission 3923G

Figure A-6.6. Flight Log for Mission 3925G

Figure A-6.7. Flight Log for Mission 3937G

120

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Annex 7. Flight Status Reports

FLIGHT STATUS REPORT LEYTE Table A-7.1. Flight status report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
3781G	BLK49A	2BLK34F043A	k quisado	February 12, 2016	SURVEYED CADACAN AND BONGQUIROGAN FPs
3921G	BLK 34 a, BLK 49A & B	2BLK34a101A	J.ALMALVEZ	April 10, 2016	SURVEYED BLK34a, 49A and 49B
3923G	BLK49 A & B	2BLK49AB101B	K. ANDAYA	April 10, 2016	SURVEYED VOIDS OVER BLK 49A AND 49B
3925G	BLK50 D & E	2BLK49DE102A	K. ANDAYA	April 11, 2016	SURVEYED VOIDS OVER BLK 49D AND 49E
3937G	BLK50 A,B,C & D	2BLK50DS105A	K.ANDAYA	April 14, 2016	SURVEYED VLOCK 50D AND COVERED VOIDS AT 50A, 50B AND 50C
7754AC	BLK49 B	3BLK49B022A	g sinadjan	January 22, 2015	Completed Blk49B. CASI GPS always red. Experienced unexpected laser off
7756AC	BLK49 A	3BLK49A023A	LK PARAGAS	January 23, 2015	Completed Blk49A. CASI GPS always red

Figure A-7.1. Swath for Flight No. 3781G

FLIGHT NO.:	3921G
AREA:	Ormoc
MISSION NAME:	2BLK34a101A
ALT: 1000m	SCAN FREQ: 50
SURVEYED AREA:	144.9

SCAN ANGLE: 18

Figure A-7.2. Swath for Flight No. 3921G

FLIGHT NO.: AREA: MISSION NAME: ALT: 1000m SURVEYED AREA: 3923G Ormoc 2BLK49AB101B SCAN FREQ: 50 59.94

SCAN ANGLE: 18

Figure A-7.3. Swath for Flight No. 3923G

F١	LIGHT NO.:	3925G
A	REA:	Ormoc
N	1ISSION NAME:	2BLK49DE102A
A	LT: 1000m	SCAN FREQ: 50
SI	URVEYED AREA:	73.96

SCAN ANGLE: 18

Figure A-7.4. Swath for Flight No. 3925G

Figure A-7.5. Swath for Flight No. 3937G

Flight No. : Area: Mission name: Parameters: Area covered:

7754AC

BLK49B 3BLK49B022A Altitude: 600; Scan Frequency: 45; Scan Angle: 18; Overlap: 35% 75.84sq.km.

Figure A-7.6. Swath for Flight No. 7754AC

Flight No. : Area: Mission name: Parameters: Area covered:

7756AC BLK49A 3BLK49A023A Altitude: 600 ; Scan Frequency: 45; Scan Angle: 18; Overlap: 35% 97.327sq.km.

Figure A-7.7. Swath for Flight No. 7756AC

Flight Area	Leyte		
Mission Name	49A_Additional		
Inclusive Flights	3781G		
Range data size	11.3 MB		
Base data size	8.87 MB		
POS data size	191 GB		
Image	n/a		
Transfer date	March 04, 2016		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	No		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics(in cm)			
RMSE for North Position (<4.0 cm)	1.1		
RMSE for East Position (<4.0 cm)	1.1		
RMSE for Down Position (<8.0 cm)	3.0		
Boresight correction stdev (<0.001deg)	0.000966		
IMU attitude correction stdev (<0.001deg)	0.001913		
GPS position stdev (<0.01m)	0.0079		
Minimum % overlap (>25)	0.12		
Ave point cloud density per sq.m. (>2.0)	3.23		
Elevation difference between strips (<0.20m)	Yes		
Number of 1km x 1km blocks	61		
Maximum Height	347.41 m		
Minimum Height	73.84 m		
Classification (# of points)			
Ground	9,887,748		
Low vegetation	5,981,068		
Medium vegetation	21,000,152		
High vegetation	47,560,273		
Building	64,860		
Orthophoto	Yes		
Processed by	Engr. Analyn Naldo, Karl Adrian Vergara, Engr. Merven Matthew Natino		

Annex 8. Mission Summary Reports

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4 Coverage LiDAR Data

Figure A-8.5 Image Data Overlap

Figure A-8.6 Density Map of Merged LiDAR Data

Figure A-8.7 Elevation difference between flightlines
Flight Area	Ormoc
Mission Name	BIk49A
Inclusive Flights	7756AC
Range data size	11.9 GB
Base data size	34 MB
POS	231 MB
Image	0 GB
Transfer date	February 13,2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.98
RMSE for East Position (<4.0 cm)	0.98
RMSE for Down Position (<8.0 cm)	2.10
Boresight correction stdev (<0.001deg)	0.000260
IMU attitude correction stdev (<0.001deg)	0.000627
GPS position stdev (<0.01m)	0.0095
Minimum % overlap (>25)	44.81
Ave point cloud density per sq.m. (>2.0)	3.32
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	125
Maximum Height	294.65 m
Minimum Height	52.68 m
Classification (# of points)	
Ground	53,265,686
Low vegetation	48,235,650
Medium vegetation	77,404,104
High vegetation	122,939,501
Building	2,393,404
Orthophoto	No
Processed by	Engr. Jommer Medina,Engr. Melissa Fernandez, Engr. Antonio Chua, Jr.

Figure A-8.9 Smoothed Performance Metric Parameters

Figure A-8.10 Best Estimated Trajectory

Figure A-8.11 Coverage of LiDAR Data

Figure A-8.12 Image Data Overlap

Figure A-8.13 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.14 Elevation difference between flight lines

Flight Area	Ormoc
Mission Name	Blk49B
Inclusive Flights	7754AC
Range data size	12.0 GB
Base data size	66.1 MB
POS	258 MB
Image	0 GB
Transfer date	February 13, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.42
RMSE for East Position (<4.0 cm)	1.60
RMSE for Down Position (<8.0 cm)	3.80
Boresight correction stdev (<0.001deg)	0.000342
IMU attitude correction stdev (<0.001deg)	0.002225
GPS position stdev (<0.01m)	0.0084
Minimum % overlap (>25)	31.63
Ave point cloud density per sq.m. (>2.0)	2.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	147
Maximum Height	433.58 m
Minimum Height	56.86 m
Classification (# of points)	
Ground	59,726,113
Low vegetation	67,930,344
Medium vegetation	37,488,409
High vegetation	46,296,894
Building	4,163,025
Orthophoto	No
Processed by	Engr. Jenniter Saguran, Engr. Krisha Marie Bautista, Engr. Velina Angela Bemida

Figure A-8.16 Smoothed Performance Metric Parameters

Figure A-8.17 Best Estimated Trajectory

Figure A-8.18 Coverage of LiDAR Data

Figure A-8.19 Image Data Overlap

Figure A-8.20 Density map of merged LiDAR data

Figure A-8.21 Elevation difference between flight lines

Flight Area	Ormoc South
Mission Name	BIk49A
Inclusive Flights	3921G, 3923G
Range data size	29 GB
Base data size	443 MB
POS	38.2 MB
Image	NA
Transfer date	May 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.21
RMSE for East Position (<4.0 cm)	1.75
RMSE for Down Position (<8.0 cm)	2.76
Boresight correction stdev (<0.001deg)	0.000174
IMU attitude correction stdev (<0.001deg)	0.000700
GPS position stdev (<0.01m)	0.0065
Minimum % overlap (>25)	31.34
Ave point cloud density per sq.m. (>2.0)	4.84
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	169
Maximum Height	480.55 m
Minimum Height	65.17 m
Classification (# of points)	
Ground	51,839,234
Low vegetation	37,957,751
Medium vegetation	140,088,597
High vegetation	297,623,794
Building	650,432
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Jennifer Saguran,Engr. Velina Angela Bemida,Engr. Monalyne Rabino

Figure A-8.23 Smoothed Performance Metric Parameters

Figure A-8.24 Best Estimated Trajectory

Figure A-8.25 Coverage of LiDAR Data

Figure A-8.26 Image Data Overlap

Figure A-8.27 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.28 Elevation difference between flight lines

Flight Area	Ormoc South
Mission Name	BIk49B
Inclusive Flights	3925G
Range data size	9.56 GB
Base data size	252 MB
POS	6.82 MB
Image	NA
Transfer date	May 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.11
RMSE for East Position (<4.0 cm)	1.28
RMSE for Down Position (<8.0 cm)	2.98
Boresight correction stdev (<0.001deg)	0.000490
IMU attitude correction stdev (<0.001deg)	0.000662
GPS position stdev (<0.01m)	0.0102
Minimum % overlap (>25)	17.47
Ave point cloud density per sq.m. (>2.0)	3.62
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	53
Maximum Height	291.27 m
Minimum Height	62.43 m
Classification (# of points)	
Ground	17,573,377
Low vegetation	19,151,419
Medium vegetation	35,326,556
High vegetation	37,079,112
Building	956,549
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Velina Angela Bemida, Maria Tamsyn Malabanan

Figure A-8.30 Smoothed Performance Metric Parameters

Figure A-8.31 Best Estimated Trajectory

Figure A-8. 32 Coverage of LiDAR Data

Figure A-8.32 Image Data Overlap

Figure A-8.33/ Density map of merged LiDAR data

Figure A-8.34 Elevation difference between flight lines

Flight Area	Ormoc South
Mission Name	Blk49A_additional
Inclusive Flights	3925G
Range data size	9.56 GB
Base data size	252 MB
POS	6.82 MB
Image	NA
Transfer date	May 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.977
RMSE for East Position (<4.0 cm)	1.22
RMSE for Down Position (<8.0 cm)	1.89
Boresight correction stdev (<0.001deg)	0.000818
IMU attitude correction stdev (<0.001deg)	0.018148
GPS position stdev (<0.01m)	0.0273
Minimum % overlap (>25)	31.34
Ave point cloud density per sq.m. (>2.0)	4.21
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	68
Maximum Height	429.74 m
Minimum Height	80.81 m
Classification (# of points)	
Ground	17,634,616
Low vegetation	8,633,681
Medium vegetation	27,765,599
High vegetation	63,962,261
Building	98,554
Orthophoto	No
Processed by	Engr. Jennifer Saguran,Engr. Velina Angela Bemida,Karl Adrian Vergara

Figure A-8.36 Smoothed Performance Metric Parameters

Figure A-8.37 Best Estimated Trajectory

Figure A-8. 38 Coverage of LiDAR Data

Figure A-8.39 Image Data Overlap

Figure A-8.40 Density map of merged LiDAR data

Figure A-8.41 Elevation difference between flight lines

Flight Area	Ormoc South
Mission Name	Blk49E
Inclusive Flights	3937G
Range data size	14.7 GB
Base data size	292 MB
POS	10.5 MB
Image	NA
Transfer date	May 6, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.18
RMSE for East Position (<4.0 cm)	1.50
RMSE for Down Position (<8.0 cm)	3.10
Boresight correction stdev (<0.001deg)	0.001855
IMU attitude correction stdev (<0.001deg)	0.009091
GPS position stdev (<0.01m)	0.0026
Minimum % overlap (>25)	44.64
Ave point cloud density per sq.m. (>2.0)	5.42
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	80
Maximum Height	593.04 m
Minimum Height	62.69 m
Classification (# of points)	
Ground	25,650,234
Low vegetation	13,781,210
Medium vegetation	71,704,250
High vegetation	156,923,410
Building	615,184
Orthophoto	No
Processed by	Engr. Sheila-Maye Santillan, Engr. Velina Angela Bemida, Engr. Czarina Jean Añonuevo

Figure A-8.43 Smoothed Performance Metric Parameters

Figure A-8.44 Best Estimated Trajectory

Figure A-8. 45 Coverage of LiDAR Data

Figure A-8.46 Image Data Overlap

Figure A-8.47 Density map of merged LiDAR data

Figure A-8.48 Elevation difference between flight lines

Annex 9. Bangkerohan Model Basin Parameters

Table A-9.1. Bangkerohan Model Basin Parameters

Subbasin- tv	SCS Curve Nu	mber Loss		Clark Unit Hyd Transform	rograph	Recession Ba	seflow			
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Con- centration (HR)	Storage Coef- ficient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W260	5.5785	98.3904	0	2.146145	0.221214	Discharge	0.2	0.00005	Ratio to Peak	0.8
W250	7.099	93.7884	0	1.888505	0.194658	Discharge	0.2	0.00005	Ratio to Peak	0.8
W240	9.21	88.068	0	2.011245	0.207306	Discharge	0.2	0.00005	Ratio to Peak	0.8
W230	9.117	88.3044	0	2.923245	0.301308	Discharge	0.2	0.00005	Ratio to Peak	0.8
W220	4.99905	98.3904	0	1.14304	0.117816	Discharge	0.2	0.00005	Ratio to Peak	0.8
W210	5.757	97.8264	0	3.3003	0.340176	Discharge	0.2	0.00005	Ratio to Peak	0.8
W200	8.913	88.83	0	6.733125	0.69402	Discharge	0.2	0.00005	Ratio to Peak	0.8
W190	9.3045	87.828	0	2.379845	0.245304	Discharge	0.2	0.00005	Ratio to Peak	0.8
W180	6.1215	96.696	0	1.08965	0.112314	Discharge	0.2	0.00005	Ratio to Peak	0.8
W170	5.2025	99.6	0	0.260139	0.026813	Discharge	0.2	0.00005	Ratio to Peak	0.8
W160	8.1115	90.954	0	2.357425	0.242982	Discharge	0.2	0.00005	Ratio to Peak	0.8
W150	6.176	96.528	0	1.73413	0.178746	Discharge	0.2	0.00005	Ratio to Peak	0.8
W140	8.03	91.1748	0	3.27826	0.337902	Discharge	0.2	0.00005	Ratio to Peak	0.8

Annex 10. Bangkerohan Model Reach Parameters

Table A-10.1. Bangkerohan Model Reach Parameters

LIDPAC		M	iskingum Cunge	Channel Routin	ß		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R30	Automatic Fixed Interval	282.28	0.022143	0.04	Trapezoid	81.3	1.5
R40	Automatic Fixed Interval	3544.3	0.001537	0.04	Trapezoid	48.432	1.5
R50	Automatic Fixed Interval	2258.2	0.000874	0.04	Trapezoid	55.68	1.5
R60	Automatic Fixed Interval	3165.2	0.013927	0.04	Trapezoid	55.074	1.5
R70	Automatic Fixed Interval	2170.1	0.012345	0.04	Trapezoid	56.022	1.5
R80	Automatic Fixed Interval	2924.2	0.018179	0.04	Trapezoid	44.628	1.5

Annex 11. Bangkerohan Field Validation Points

Table A-11.1. Bangkerohan Field Validation Points

Point	Validation (Coordinates	Model Var	Validation	Error	Event/Date	Rain Return
lumber	Lat	Long	(m)	Points (m)	5		/Scenario
~	10.32097475	124.834753	0.030999999	1.3	1.269000001	Ruping/Nov. 10-14, 1990	5-Year
2	10.32097475	124.834753	0.030999999	~	0.969000001	Bising/March 22-29, 1982	5-Year
e	10.32097475	124.834753	0.030999999	0.5	0.469000001	Ruby/December 07, 2014	5-Year
4	10.32129494	124.8319467	0.030999999	0	-0.030999999		5-Year
5	10.32107952	124.8300261	not covered	0	not covered		5-Year
9	10.31810202	124.8281974	0.029999999	0	-0.029999999		5-Year
7	10.32143902	124.8171036	0.030999999	0	-0.03099999		5-Year
ω	10.32170934	124.8113893	0.030999999	0	-0.030999999		5-Year
6	10.32493419	124.8083291	0.029999999	0	-0.029999999		5-Year
10	10.32731423	124.8050369	0.134000003	0	-0.134000003		5-Year
1	10.32785009	124.8035048	0.029999999	0	-0.029999999		5-Year
12	10.327662	124.8006303	not covered	0.2	not covered	Yolanda/November 08, 2013	5-Year
13	10.34027399	124.8438387	4.828000069	0	-4.828000069		5-Year
14	10.340577	124.8421304	1.037999988	-	-0.037999988	Ruby/December 07, 2014	5-Year
15	10.34079786	124.8363862	1.297000051	0.2	-1.097000051	Ruping/Nov. 10-14, 1990	5-Year
16	10.34079786	124.8363862	1.297000051	0.1	-1.197000051	Bising/March 22-29, 1982	5-Year
17	10.34027684	124.8349375	3.734999895	~	-2.734999895	Basyang/Jan. 30 - Feb. 1, 2014	5-Year
18	10.34027684	124.8349375	3.734999895	0.2	-3.534999895	Ruping/Nov. 10-14, 1990	5-Year
19	10.34046301	124.835288	2.64199996	0	-2.64199996		5-Year
20	10.34075411	124.834762	3.457999945	~	-2.457999945	Basyang/Jan. 30 - Feb. 1, 2014	5-Year
21	10.34075411	124.834762	3.457999945	0.2	-3.257999945	Ruping/Nov. 10-14, 1990	5-Year
22	10.34132961	124.8349472	3.147000074	~	-2.147000074	Ruping/Nov. 10-14, 1990	5-Year
23	10.34132961	124.8349472	3.147000074	0.1	-3.047000074	Seniang/December 28, 2014	5-Year
24	10.34290692	124.8333294	1.383000016	0	-1.383000016		5-Year
25	10.34383496	124.8318895	0.030999999	0	-0.030999999		5-Year

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date			Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014		Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013		Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013		Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990		Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990
Frror	j	-0.030999999	-1.77699995	-0.637000012	-0.737000012	-0.030999999	-0.248000026	-0.248000026	0.069000001	-4.859000206	-2.06200084	-3.16200084	-0.030999999	-0.154000044	-0.654000044	0.566000003	0.966000003	-0.344000012	-0.235999942	-0.235999942	-0.332999992	-0.032999992	-0.277000004	-0.647000027	-0.447000027	-0.137999964	0.062000036	0.628000009	0.828000009
Validation	Points (m)	0	~	0.2	0.1	0	~	~	0.1	0	1.2	0.1	0	2.5	2	0.8	1.2	0	~	~	0.2	0.5	0.1	1.3	1.5	1.3	1.5	1.3	1.5
Model Var	(m)	0.030999999	2.77699995	0.837000012	0.837000012	0.030999999	1.248000026	1.248000026	0.030999999	4.859000206	3.262000084	3.262000084	0.030999999	2.654000044	2.654000044	0.233999997	0.233999997	0.344000012	1.235999942	1.235999942	0.532999992	0.532999992	0.377000004	1.947000027	1.947000027	1.437999964	1.437999964	0.671999991	0.671999991
oordinates	Long	124.8315077	124.8311185	124.8313982	124.8313982	124.8310978	124.8290607	124.8290607	124.825882	124.8258413	124.8212491	124.8212491	124.8180526	124.8173892	124.8173892	124.8169438	124.8169438	124.8162561	124.81945	124.81945	124.8192221	124.8192221	124.8202697	124.8157852	124.8157852	124.8154256	124.8154256	124.8158815	124.8158815
Validation C	Lat	10.34571544	10.34800278	10.34718538	10.34718538	10.34688254	10.34739492	10.34739492	10.34900584	10.34914213	10.35095572	10.35095572	10.34913132	10.35035717	10.35035717	10.35244217	10.35244217	10.35233103	10.35348974	10.35348974	10.35397422	10.35397422	10.35357893	10.34695395	10.34695395	10.34736944	10.34736944	10.34659931	10.34659931
Point	Number	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date		Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Bising/March 22-29, 1982		Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Yolanda/November 08, 2013		Seniang/December 28, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990
Frror		0.13	0.13	1.062000006	1.056999999	0.967999998	0.396000028	-0.403999972	0.396000028	0.97000001	0.170000001	0.97000001	-0.029999999	0.44200002	-0.138000011	0.270000001	0.070000001	0.070000001	0.97000001	0.470000001	0.27000001	0.170000001	-0.030999999	-0.225999999	0.416000021	0.716000021	#VALUE!	#VALUE!	-0.056999999
Validation	Points (m)	0.2	0.2	1.5	1.3	~	~	0.2	~	~	0.2	~	0	1.3	0.5	0.3	0.1	0.1	~	0.5	0.3	0.2	0	0.2	1.2	1.5	0.5	0.1	0.2
Model Var	(m)	0.07	0.07	0.437999994	0.243000001	0.032000002	0.603999972	0.603999972	0.603999972	0.029999999	0.029999999	0.029999999	0.029999999	0.85799998	0.638000011	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.030999999	0.425999999	0.783999979	0.783999979	not covered	not covered	0.256999999
oordinates	Long	124.8123808	124.8123808	124.810793	124.8113168	124.8105869	124.8085637	124.8085637	124.8085637	124.8092509	124.8092509	124.8092509	124.8080046	124.808368	124.8077316	124.8063949	124.8063949	124.8052544	124.8042168	124.8018646	124.8018646	124.8018646	124.8007859	124.8000197	124.800378	124.800378	124.7967258	124.7967258	124.8025942
Validation C	Lat	10.34337882	10.34337882	10.34067205	10.34028648	10.34063257	10.33972062	10.33972062	10.33972062	10.33893406	10.33893406	10.33893406	10.3373058	10.33703858	10.33695426	10.3347722	10.3347722	10.33361776	10.33288116	10.33204674	10.33204674	10.33204674	10.33182898	10.33077504	10.33065425	10.33065425	10.32930057	10.32930057	10.34703869
Point	Number	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	20	71	72	73	74	75	76	77	78	19	80	81

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date		Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990		Ruping/Nov. 10-14, 1990	Amy/December 10, 1951	Bising/March 22-29, 1982		Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990		Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982
Fror	5	0.168000001	0.168000001	0.154	0.154	-0.02999999	0.170000001	1.770000001	0.970000001	-0.02999999	-0.245000017	0.333000004	-0.066999996	0.463	0.463	0.070000001	0.070000001	0.232999998	0.332999998	0.970000001	0.812999994	0.74000001	0.190000001	-0.268000007	0.363000005	0.363000005	0.363000005	0.49600001	0.29600001
Validation	Points (m)	0.3	0.3	0.2	0.2	0	0.2	1.8	-	0	0.3	0.5	0.1	0.5	0.5	0.1	0.1	0.3	0.4	-	-	0.8	0.25	0	0.5	0.5	0.5	0.8	0.6
Model Var	(m)	0.131999999	0.131999999	0.046	0.046	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.545000017	0.166999996	0.166999996	0.037	0.037	0.029999999	0.029999999	0.06700002	0.06700002	0.029999999	0.18700006	0.059999999	0.059999999	0.268000007	0.136999995	0.136999995	0.136999995	0.30399999	0.30399999
oordinates	Long	124.8028335	124.8028335	124.8033768	124.8033768	124.8042173	124.8042946	124.8042946	124.8042946	124.8060976	124.8066943	124.8016415	124.8016415	124.8010223	124.8010223	124.7999812	124.7999812	124.7994352	124.7994352	124.7988198	124.7979005	124.797589	124.797589	124.7987278	124.7988225	124.7988225	124.7988225	124.7983493	124.7983493
Validation C	Lat	10.34598534	10.34598534	10.34543783	10.34543783	10.34494758	10.34440032	10.34440032	10.34440032	10.34457768	10.34528369	10.34751889	10.34751889	10.34629958	10.34629958	10.3446936	10.3446936	10.34414534	10.34414534	10.34481548	10.34505595	10.34506786	10.34506786	10.34304606	10.34291572	10.34291572	10.34291572	10.34235178	10.34235178
Point	Number	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109
Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
--------------	------------	-------------------------	---------------------------	-------------------------	-----------------------	-------------------------	--------------------------------	-------------------------	------------------------	--------------------------------	--------------	-------------------------	-----------------------	-------------------------	--------------------------------	-------------------------	--------------------------------	-------------------------	---------------------------	--------------------------------	--------------------------------	-------------------------	-------------------------	---------------------------	--------------------------------	--------------------------------	---------------------------	--------------------------------	-------------------------
Event/Date		Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruby/December 07, 2014	Basyang/Jan. 30 - Feb. 1, 2014		Ruping/Nov. 10-14, 1990	Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Yolanda/November 08, 2013	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Yolanda/November 08, 2013	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990
Error		0.253999996	-0.246000004	0.671000007	1.071000007	0.470000001	0.086000001	0.686000001	-0.213999999	0.97000001	-0.061000001	1.07000001	1.97000001	0.770000001	0.070000001	1.97000001	1.470000001	1.080999997	0.880999997	1.21700003	-0.082999986	0.617000014	0.460999999	0.343999982	0.343999982	0.281000042	-0.618999958	0.456999999	1.956999999
Validation	Points (m)	0.8	0.3	0.8	1.2	0.5	0.6	1.2	0.3	~	0	1.1	2	0.8	0.1	2	1.5	1.2	~	1.3	0.3	1	0.5	1	1	1.4	0.5	0.5	2
Model Var	(m)	0.546000004	0.546000004	0.128999993	0.128999993	0.029999999	0.513999999	0.513999999	0.513999999	0.029999999	0.06100001	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.119000003	0.119000003	0.082999997	0.382999986	0.382999986	0.039000001	0.656000018	0.656000018	1.118999958	1.118999958	0.043000001	0.043000001
oordinates	Long	124.7979518	124.7979518	124.7960679	124.7960679	124.795479	124.7950592	124.7950592	124.7950592	124.7855232	124.7858755	124.7864469	124.7864469	124.78692	124.78692	124.7875354	124.7875354	124.7875285	124.7875285	124.7835103	124.7824804	124.7824804	124.7829268	124.7821171	124.7821171	124.7879065	124.7879065	124.7865712	124.7865712
Validation C	Lat	10.34138074	10.34138074	10.33893591	10.33893591	10.33721603	10.33546831	10.33546831	10.33546831	10.33416619	10.33436727	10.33308308	10.33308308	10.33220381	10.33220381	10.33136386	10.33136386	10.33221773	10.33221773	10.33550947	10.33717914	10.33717914	10.33657984	10.33611523	10.33611523	10.33621782	10.33621782	10.3358346	10.3358346
Point	Number	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date		Basyang/Jan. 30 - Feb. 1, 2014	Amy/December 10, 1951	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Bising/March 22-29, 1982	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014
Frror	ò	0.770000001	1.170000001	0.170000001	-0.55799998	0.135000014	-0.012	0.110000014	1.113000005	0.513000005	0.513000005	0.821000004	0.221000004	0.321000004	0.125999975	0.125999975	0.266999996	0.701999998	0.801999998	1.201999998	0.316	1.216	0.220999992	-0.07900008	0.120999986	0.690000004	0.690000004	0.890000004	0.969999996
Validation	Points (m)	0.8	1.2	0.2	0.3	0.4	0.4	0.5	1.5	0.9	0.9	1.4	0.8	0.9	0.8	0.8	0.6	1.1	1.2	1.6	0.5	1.4	0.6	0.3	0.4	1.1	1.1	1.3	1.2
Model Var	(m)	0.029999999	0.029999999	0.029999999	0.85799998	0.264999986	0.412	0.389999986	0.386999995	0.386999995	0.386999995	0.578999996	0.578999996	0.578999996	0.674000025	0.674000025	0.333000004	0.398000002	0.398000002	0.398000002	0.184	0.184	0.379000008	0.379000008	0.279000014	0.409999996	0.409999996	0.409999996	0.230000004
oordinates	Long	124.7859674	124.785332	124.7845315	124.7834789	124.7791255	124.7819312	124.7825381	124.7903983	124.7903983	124.7903983	124.7905703	124.7905703	124.7905703	124.7896416	124.7896416	124.787372	124.7855597	124.7855597	124.7855597	124.7847465	124.7847465	124.7847039	124.7847039	124.7842025	124.7834893	124.7834893	124.7834893	124.7852342
Validation C	Lat	10.33722701	10.33818657	10.33924688	10.34107204	10.33957377	10.34086592	10.34221751	10.3497054	10.3497054	10.3497054	10.34861977	10.34861977	10.34861977	10.34778183	10.34778183	10.34660493	10.34450518	10.34450518	10.34450518	10.34553364	10.34553364	10.34727347	10.34727347	10.34695068	10.3480488	10.3480488	10.3480488	10.35006733
Point	Number	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date		Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Bising/March 22-29, 1982	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990					
Fror	5	0.869999996	0.769999996	0.962999997	0.862999997	0.762999997	0.824000013	0.724000013	0.624000013	1.47000001	0.134000006	0.356000006	0.956000006	0.154	0.24000001	0.26700005	1.036999999	0.056000006	0.77000001	0.27000001	0.07000001	0.47000001	1.170000001	1.17000001	-0.029999999	-0.029999999	-0.030999999	-0.030999999	-0.030999999
Validation	Points (m)	1.1	Ţ	1.2	1.1	~	1.2	1.1	Ļ	1.5	0.3	0.5	1.1	0.2	0.5	0.5	1.1	0.2	0.8	0.3	0.1	0.5	1.2	1.2	0	0	0	0	0
Model Var	(m)	0.230000004	0.230000004	0.237000003	0.237000003	0.237000003	0.375999987	0.375999987	0.375999987	0.029999999	0.165999994	0.143999994	0.143999994	0.046	0.25999999	0.232999995	0.063000001	0.143999994	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.030999999	0.030999999	0.030999999
oordinates	Long	124.7852342	124.7852342	124.7855619	124.7855619	124.7855619	124.7847972	124.7847972	124.7847972	124.7836147	124.7819337	124.7791646	124.7791646	124.7736985	124.7751198	124.7769007	124.7784057	124.7782529	124.7779269	124.7733411	124.7733411	124.7769323	124.7780535	124.7780535	124.8085769	124.8104565	124.8119448	124.8069955	124.8060379
Validation C	Lat	10.35006733	10.35006733	10.35036195	10.35036195	10.35036195	10.35043437	10.35043437	10.35043437	10.34462747	10.34386044	10.34613169	10.34613169	10.34609799	10.34629698	10.34678757	10.3469817	10.34872262	10.35115739	10.35020169	10.35020169	10.35092949	10.3528606	10.3528606	10.36177073	10.36309934	10.36427004	10.35957064	10.35812468
Point	Number	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193
																													_

Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date			Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990			Yolanda/November 08, 2013	Ruping/Nov. 10-14, 1990	Amy/December 10, 1951	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Bising/March 22-29, 1982		Ruping/Nov. 10-14, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/Nov. 10-14, 1990	Ruping/Nov. 10-14, 1990	Maming	Bising/March 22-29, 1982		Ruping/November 5-18, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/November 5-18, 1990	Ruping/November 5-18, 1990
Frror	5	-0.118000001	0.170000001	0.470000001	0.768999994	1.268999994	0.07000001	-0.029999999	-0.029999999	0.038999993	1.170000001	0.520000001	1.07000001	0.47000001	0.07000001	-0.029999999	1.24000001	0.150999996	0.450999996	1.228000003	1.570000001	0.470000001	0.07000001	-0.029999999	0.370000001	0.67000001	0.547999999	0.747999999	0.467999998
Validation	Points (m)	0	0.2	0.5	~	1.5	0.1	0	0	0.3	1.2	0.55	1.1	0.5	0.1	0	1.3	0.3	0.6	1.3	1.6	0.5	0.1	0	0.4	0.7	0.6	0.8	0.5
Model Var	(m)	0.118000001	0.029999999	0.029999999	0.231000006	0.231000006	0.029999999	0.029999999	0.029999999	0.261000007	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.059999999	0.149000004	0.149000004	0.071999997	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.052000001	0.052000001	0.032000002
oordinates	Long	124.8025028	124.8023591	124.8023591	124.8009504	124.8009504	124.8007045	124.8021723	124.8010048	124.8004688	124.7989572	124.7989572	124.7975524	124.7961067	124.7961067	124.7956808	124.7937333	124.7913373	124.7913373	124.7877836	124.7870097	124.7870097	124.7870097	124.7859328	124.7848512	124.7848512	124.7832505	124.7832505	124.7806406
Validation C	Lat	10.35633355	10.35516872	10.35516872	10.36124141	10.36124141	10.35830129	10.35503696	10.35485541	10.35451493	10.35390825	10.35390825	10.35320543	10.35334138	10.35334138	10.35443765	10.35466815	10.35432022	10.35432022	10.35653975	10.35733528	10.35733528	10.35733528	10.35836985	10.35902331	10.35902331	10.3599418	10.3599418	10.36115047
Point	Number	194	195	196	197	198	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223

																	_				
Rain Return	/Scenario	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year	5-Year
Event/Date		Basyang/Jan. 30 - Feb. 1, 2014		Basyang/Jan. 30 - Feb. 1, 2014	Ruping/November 5-18, 1990	Ruping/November 5-18, 1990	Ruping/November 5-18, 1990		Ruping/November 5-18, 1990	Yolanda/November 08, 2013	Ruping/November 5-18, 1990	Basyang/Jan. 30 - Feb. 1, 2014	Ruping/November 5-18, 1990		Ruping/November 5-18, 1990	Basyang/Jan. 30 - Feb. 1, 2014				Ruping/November 5-18, 1990	Yolanda/November 08, 2013
Trya	5	0.467999998	not covered	-0.038000005	0.761999995	0.27000001	0.17000001	-0.029999999	0.770000001	0.97000001	0.17000001	0.47000001	0.37000001	-0.029999999	0.469000001	0.469000001	-0.030999999	-0.030999999	-0.029999999	0.469000001	0.569000001
Validation	Points (m)	0.5	0	0.2	-	0.3	0.2	0	0.8	-	0.2	0.5	0.4	0	0.5	0.5	0	0	0	0.5	0.6
Model Var	(m)	0.032000002	not covered	0.238000005	0.238000005	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.029999999	0.030999999	0.030999999	0.030999999	0.030999999	0.029999999	0.030999999	0.030999999
oordinates	Long	124.7806406	124.778039	124.781997	124.781997	124.779881	124.7785087	124.7777884	124.7764771	124.7769149	124.7769149	124.7814144	124.7814144	124.7974925	124.8002896	124.8002896	124.801399	124.8026912	124.8037631	124.8049147	124.8049147
Validation C	Lat	10.36115047	10.36167928	10.35505137	10.35505137	10.38098641	10.381994	10.38568991	10.38759009	10.37258321	10.37258321	10.37147504	10.37147504	10.3665428	10.36821222	10.36821222	10.36878764	10.37151628	10.37352702	10.37463938	10.37463938
Point	Number	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243

Annex 12. Educational Institutions Affected by flooding in Bangkerohan Floodplain

LEYTE			
BATO			
Parangay	R	ainfall Scenar	io
Darangay	5-year	25-year	100-year
Alejos			
Alejos			
Alejos			
Dolho		Low	Medium
Dolho		Low	Medium
Dolho		Low	Medium
Guerrero District			Low
Mabini			
Mabini			
Naga		Medium	Medium
Naga			
San Agustin			
San Agustin			
Tabunok	Low	Low	Medium
Tabunok	Low	Medium	Medium
Tagaytay			
Tagaytay		İ	
Tugas			
	LEYTE BATO Barangay Alejos Alejos Alejos Dolho Dolho Dolho Guerrero District Mabini Mabini Mabini Naga San Agustin San Agustin San Agustin Tabunok Tabunok Tabunok	LEYTEBATOBarangayRaS-yearAlejos-Alejos-Alejos-Alejos-Dolho-Dolho-Dolho-Guerrero District-Mabini-Mabini-Naga-San Agustin-San AgustinLowTabunokLowTagaytay-Tugas-	LEYTEBATOBarangayR=Infall ScenarBarangay5-year25-yearAlejosIIAlejosIIAlejosIIAlejosIIAlejosIIDolhoILowDolhoILowDolhoIIMabiniIIMabiniIINagaIISan AgustinIISan AgustinLowLowTabunokLowMediumTagaytayIITugasII

Figure A-8.48 Elevation difference between flight lines

	LEYTE	-		
	HILONGOS			
Puilding Name	Parangay	Ra	ainfall Scenar	io
building Name	Darangay	5-year	25-year	100-year
Baas Elementary School	Baas			Medium
Tuguipa Elementary School	Baas			
Bantigue Primary School	Bantigue	Low	Medium	Medium
Catandog I Day Care Center	Bantigue			
Catandog I Elementary School	Catandog 1			
Catandog II Elementary School	Catandog 2		Low	Low
Tabunok Elementary School	Lunang		Low	Low
Lunang Elementary School	Tabunok	Low	Low	Low
Kanghas Elementary School	Talisay			

Annex 13. Health Institutions affected by flooding in Bangkerohan Floodplain

	LEYTE			
	BATO			
Duilding Nome	Deveneration	R	ainfall Scenar	io
Building Name	вагапдау	5-year	25-year	100-year
Alejos Health Center	Alejos			Medium
San Agustin Health Center	Alejos			
Bago Health Center	Mabini			
Naga Health Center	Naga		Medium	Medium
Amagos Health Center	San Agustin			
Tagaytay Health Station	Tagaytay			

Table A-13.1. Health Institutions affected by flooding in Bangkerohan Floodplain

	LEYTE			
	HILONGOS			
Duilding Nome	Deveneer	Ra	ainfall Scenar	io
Building Name	вагапдау	5-year	25-year	100-year
Kanghas Health Center	Talisay			