HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Balangiga River

University of the Philippines Training Center for Applied Ceodesy and Photogrammetry Visayas State University Department of Science and Lechnology

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and Visayas State University

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and F.F. Morales, (Eds). (2017), LiDAR Surveys and Flood Mapping Balangiga River, Quezon City: Flood Hazard Mapping of the Philippines using LIDAR, University of the Philippines Training Center for Applied Geodesy and Photogrammetry-202pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Florentino Morales, Jr.

Project Leader, PHIL-LiDAR 1 Program Visayas State University Baybay, Leyte, Philippines 6521 E-mail: ffmorales_jr@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippins ISBN: 978-621-430-192-8

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

TABLE OF CONTENTS	iii
LIST OF TABLES	V
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALANGIGA RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Balangiga River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BALANGIGA FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	6
2.3 Flight Missions	13
2.4 Survey Coverage	16
CHAPTER 3: LIDAR DATA PROCESSING OF THE BALANGIGA FLOODPLAIN	18
3.1 Overview of the LiDAR Data Pre-Processing	18
3.2 Transmittal of Acquired LiDAR Data	19
3.3 Trajectory Computation	19
3.4 LiDAR Point Cloud Computation	21
3.5 LiDAR Data Quality Checking	22
3.6 LiDAR Point Cloud Classification and Rasterization	27
3.71 iDARImageProcessingandOrthophotographRectification	
3 8DFMFditing and Hydro-Correction	31
3 9Mosaicking of Blocks	33
3 10 Calibration and Validation of Mosaicked LiDAR DEM	35
3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	38
3 12 Feature Extraction	40
3 12 1 Quality Checking of Digitized Features' Boundary	40
3 12 2 Height Extraction	4 0
3 12 3 Feature Attribution	<u></u>
3.12.5 Federal Audity Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALANGIGA RIVER BAS	N.43
4.1 Summary of Activities	43
4.2 Control Survey	
4.3 Baseline Processing	
4 4 Network Adjustment	51
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	54
4.6 Validation Points Acquisition Survey	58
4 7 River Bathymetric Survey	61
CHAPTER 5: FLOOD MODELING AND MAPPING.	65
5.1 Data Used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves.	65
5.1.2 Precipitation	65
5.1.3 Rating Curves and River Outflow	66
5 2 RIDE Station	68
5.2 MBT Station	70
5.4 Cross-section Data	75
5 5 Elo 2D Model	76
5.6 Results of HMS Calibration	70
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	, 79
5.7 1 Hydrograph using the Rainfall Runoff Model	79
5.8 River Analysis (RAS) Model Simulation	80
5 9 Flow Denth and Flood Hazard	81
5 10 Inventory of Areas Exposed to Flooding	20
5 11 Flood Validation	00 97
REFERENCES.	101
ANNEXES	107
Annex 1 Technical Specifications of the LiDAR Sensors used in the Balangiga Floodplain Survey	/ 102
Annex 2 NAMRIA Certification of Reference Points Lised in the LIDAR Survey	102
Annex 3 Baseline Processing Reports of Control Points used in the LIDAR Survey	108
Annex 4.The LIDAR Survey Team Composition	

Annex 5.Data Transfer Sheet for Balangiga Floodplain	111
Annex 6.Flight logs for the flight missions	114
Annex 7.Flight status reports	124
Annex 8. Mission Summary Reports	134
Annex9.BalangigaModelBasinParameters	179
Annex10.BalangigaModelReachParameters	180
Annex 11. Balangiga Field Validation Points	182
Annex 12. Educational Institutions Affected by Flooding in Balangiga Floodplain	191
Annex 13.Health Institutions affected by flooding in Balangiga Floodplain	
Annex 7.Flight status reports Annex 8. Mission Summary Reports Annex9.BalangigaModelBasinParameters Annex10.BalangigaModelReachParameters. Annex 11. Balangiga Field Validation Points Annex 12. Educational Institutions Affected by Flooding in Balangiga Floodplain Annex 13.Health Institutions affected by flooding in Balangiga Floodplain	

LIST OF TABLES

Table 1. F	Flight planning parameters for the Aquarius LiDAR system	3
Table 2.	Flight planning parameters for the Balangiga LiDAR system	3
Table 3. I ເ	Details of the recovered NAMRIA horizontal control point SMR-58, used as base station for the LiDAR acquisition	7
Table 4. ເ ເ	Details of the reprocessed NAMRIA horizontal control point SME-3074, used as base station for the LiDAR acquisition	8
Table 5. I u	Details of the recovered NAMRIA horizontal control point SME-3050, used as base station for the LiDAR acquisition	9
Table 6. ເ ເ	Details of the recovered NAMRIA horizontal control point SME-3067, used as base station for the LiDAR acquisition	10
Table 7. ເ ເ	Details of the recovered NAMRIA vertical control point SM-309, used as base station for the LiDAR acquisition with established coordinates	11
Table 8. ເ ເ	Details of the recovered NAMRIA horizontal control point SE-37, used as base station for the LiDAR acquisition	12
Table 9. (Ground control points used during the LiDAR data acquisition	13
Table 10.	. Flight missions for the LiDAR data acquisition in Balangiga Floodplain	14
Table 11.	. Actual parameters used during the LiDAR data acquisition	15
Table 12.	. List of municipalities and cities surveyed during the Balangiga Floodplain LiDAR survey	16
Table 13.	. Self-calibration results values for the Balangiga flight	21
Table 14.	. List of LiDAR blocks for the Balangiga Floodplain	23
Table 15.	. Summary of point cloud classification results in TerraScan for Balangiga River Floodplain	27
Table 16.	. LiDAR blocks with its corresponding areas	31
Table 17.	. Shift values of each LiDAR block of the Balangiga Floodplain	33
Table 18.	. Calibration Statistical Measures	37
Table 19.	. Validation Statistical Measures	38
Table 20.	. Quality checking ratings for the Balangiga building features	40
Table 21.	. Building features extracted for the Balangiga Floodplain	41
Table 22.	. Total length of extracted roads for the Balangiga Floodplain	42
Table 23.	. Number of extracted water bodies for the Balangiga Floodplain	42
Table 24.	. List of references and control points used in the Balangiga River survey	45
Table 25.	. Baseline Processing Report for the Balangiga River control point survey	50
Table 26.	. Constraints applied to the adjustment of the control points	52
Table 27.	. Adjusted grid coordinates for the control points used in the Balangiga Floodplain survey	52
Table 28.	. Adjusted geodetic coordinates for control points used in Balangiga River Floodplain validation	54
Table 29.	. Reference and control points used in the Balangiga River Static Survey, with their corresponding locations	54
Table 30.	. RIDF values for the Tacloban Rain Gauge computed by PAGASA	69
Table 31.	. Range of calibrated values for the Balangiga River Basin	78
Table 32.	. Summary of the efficiency test of Balangiga HMS Model	79

Table 33. Peak values of the Balangiga HEC-HMS Model outflow using Tacloban RIDF 24-hour values	.80
Table 34. Municipalities affected in the Balangiga Floodplain	.82
Table 35. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period	.89
Table 36. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period	.89
Table 37. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period	.91
Table 38. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period	.91
Table 39. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period	.93
Table 40. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period	.93
Table 41. Area covered by each warning level with respect to the rainfall scenario	.95
Table 42. Actual flood depth vs. simulated flood depth in Balangiga	.98
Table 43. Summary of Accuracy Assessment in Balangiga River Basin survey	.99

LIST OF FIGURES

Figure 1. Location map of the Balangiga River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Balangiga Floodplain survey using Aquarius	
sensor	4
Figure 3. Flight plans and base stations used to cover the Balangiga Floodplain using the Gemini	
LiDAR system	5
Figure 4. (a) GPS set-up over SMR-58 located inside Serum Elementary School, Barangay Serum,	
Basey, and (b) NAMRIA reference point SMR-58, as recovered by the field team	7
Figure 5. (a) GPS set-up over SME-3074 near KM Post No. 988 in Quinapondan, Eastern Samar cou	rt,
and (b) NAMRIA reference point SME-3074, as recovered by the field team	8
Figure 6. (a) GPS set-up over SME-3050 inside the premises of Central Elementary School, Baranga	у.
Poblacion, Guiuan, Eastern Samar, and (b) NAMRIA reference point SME-3050,	
as recovered by the field team	9
Figure 7. (a) GPS set-up over SME-3067 inside the premises of Central Elementary School, Baranga	у.
Poblacion, Guiuan, Eastern Samar, and (b) NAMRIA reference point SME-3067,	
as recovered by the field team	10
Figure 8. (a) GPS set-up over SM-309 located at the Dalid Bridge along the national highway	
in Barangay San Pascual, Sta. Rita, Samar, and (b) NAMRIA reference point SM-309,	
as recovered by the field team	11
Figure 9. (a) GPS set-up over SE-37 along the National Highway in Barangay Santo Niño,	
Quinapondan, Eastern Samar, and (b) NAMRIA reference point SE-37, as recovered	
by the field team	12
Figure 10. Actual LiDAR survey coverage of the Balangiga Floodplain	17
Figure 11. Schematic diagram for the Data Pre-Processing Component	18
Figure 12. Smoothed Performance Metrics of Balangiga Flight 1508A	19
Figure 13. Solution Status Parameters of Balangiga Flight 1508A	20
Figure 14. The best estimated trajectory conducted over the Balangiga floodplain	21
Figure 15. Boundaries of the processed LiDAR data on top of a SAR Elevation Data	
over the Balangiga Floodplain	22
Figure 16. Image of data overlap for Balangiga Floodplain	24
Figure 17. Pulse density map of merged LiDAR data for the Balangiga Floodplain	25
Figure 18. Elevation difference map between flight lines for the Balangiga Eloodplain	
Figure 19. Quality checking for Balangiga flight 1508A using the Profile Tool of OT Modeler	
Figure 20. The coverage of the Balangiga Floodnlain Survey (a) the tile system (b) denicts	
the classification results in TerraScan	28
Figure 21 Point cloud (a) before and (b) after classification	20
Figure 22. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary	20
DTM (d) in some portion of the Balangiga Floodplain	29
Figure 23 Balangiga Floodplain with available orthonhotographs	30
Figure 24. Sample orthonhotograph tiles for the Balangiga Floodplain	20
Figure 25. Portions in the DTM of Balangiga Elondolain $-a$ river embankment (a) before	50
and (b) after data retrieval: a bridge (c) before and (d) after manual editing; and data	
gans in a naddy field (a) before and (f) after manual editing	27
Eigure 26. Map of processed LiDAP data for the Palangina Elondalain	∠כ ∧כ
Figure 20. Map of Palangiga Eloodplain, with validation survey points in groop	54 26
Figure 22. Wap of balangiga floouplain, with valuation survey points in green	סכ דכ
Figure 20. Correlation plot between the validation survey points and the LDAR data	57
Figure 29. Correlation plot between the valuation survey points and the LIDAK data	38

Figure 30. Map o	f the Balangiga Floodplain, with bathymetric survey points shown in blue	39
Figure 31. Blocks	(in blue) of Balangiga building features that were subjected to QC	40
Figure 32. Extrac	ted features for the Balangiga Floodplain	42
Figure 33. Extent	of the bathymetric survey (in blue line) in Balangiga River and the LiDAR data	
valida	tion survey (in red)	44
Figure 34. GNSS	network of the Balangiga River field survey	45
Figure 35. GNSS	base receiver set-up, Trimble [®] SPS 852 at SME-18,located inside San Jose	
Eleme	ntary School, Barangay Canciledes, Municipality. of Hernani, Eastern Samar	46
Figure 36. GNSS	receiver, Trimble [®] SPS 882, at SE-85, located at the approach of the Llorente	
Bridge	e in Barangay 11, Municipality of Llorente, Eastern Samar	47
Figure 37. GNSS	receiver occupation, Trimble [®] SPS 882, at SME-12 in Barangay San Miguel,	
Munic	ipality of Balangiga, Eastern Samar	48
Figure 38. GNSS	base occupation, Trimble [®] SPS 852, at SMR-3322, located at the approach	
of the	Golden Bridge in Barangay Binongtu-an, Municipality of Basey, Samar	48
Figure 39. GNSS	base occupation, Trimble® SPS 852, at SE-49, in Barangay Aguinaldo,	
Munic	ipality of General Macarthur, Eastern Samar	49
Figure 40. GNSS	base occupation, Trimble® SPS 882, at SM-335, in Barangay Pinalanga,	
Munic	ipality of Maravut, Samar	49
Figure 41. GNSS	receiver occupation, Trimble [®] SPS 882, at UP-CNG, located at the approach	
of the	Can-Obing Bridge in Barangay Can-Abong, Borongan City, Eastern Samar	50
Figure 42. GNSS	receiver occupation, Trimble [®] SPS 882, at control point UP-BAL, at the approach	
of the	Balangiga Bridge in Barangay Poblacion V, Balangiga, Eastern Samar	50
Figure 43. The Ba	alangiga Bridge facing upstream	55
Figure 44. Balang	giga Bridge location map	56
Figure 45. Balang	giga Bridge cross-section diagram	57
Figure 46. Balang	giga Bridge data form	58
Figure 47. (A) Ac	tual and (B) finished MSL water level markings on the Balangiga Bridge's pier	59
Figure 48. Valida	tion points acquisition survey set-up along the Balangiga River Basin	60
Figure 49. Extent	of the LiDAR ground validation survey along Samar and Eastern Samar Region	61
Figure 50. Actual	execution of manual bathymetric survey in the Balangiga River	62
Figure 51. Manua	al bathymetric survey using a portable depth sounder and stadia deployment	
for de	pth-checking in the Balangiga River	63
Figure 52. Extent	of the bathymetric survey of the Balangiga River	64
Figure 53. Balang	giga riverbed centerline profile	65
Figure 54. Locati	on map of the Balangiga HEC-HMS model used for calibration	67
Figure 55. Cross-	section plot of the Balangiga Bridge	68
Figure 56. Rating	curve at the Balangiga Bridge	68
Figure 57. Rainfa	Il and outflow data at the Balangiga Bridge used for modeling	69
Figure 58. Locati	on of the Tacloban RIDF station relative to the Balangiga River Basin	70
Figure 59. Synthe	etic storm generated for a 24-hr period rainfall for various return periods	70
Figure 60. Soil m	ap of the Balangiga River Basin (Source: DA)	71
Figure 61. Land c	over map of the Balangiga River Basin (Source: NAMRIA)	72
Figure 62. Slope	map of the Balangiga River Basin	73
Figure 63. Stream	n delineation map of the Balangiga River Basin	74
Figure 64. The Ba	alangiga River Basin model generated using HEC-HMS	75
Figure 65. Cross-	section of the Balangiga River generated through the ArcMap HEC GeoRAS tool	76
Figure 66. Screer	shot of a sub-catchment with the computational area to be modeled	
in the	FLO-2D GDS Pro	77

Figure 67. Outflow Hydrograph of the Balangiga Bridge generated in the HEC-HMS model,	
compared with observed outflow	78
Figure 68. Outflow hydrograph at the Balangiga Station, generated using the Tacloban RIDF	
simulated in HEC-HMS	80
Figure 69. Sample output map of the Balangiga RAS Model	81
Figure 70. 100-year flood hazard map for the Balangiga Floodplain	83
Figure 71. 100-year flow depth map for the Balangiga Floodplain	84
Figure 72. 25-year flood hazard map for the Balangiga Floodplain	85
Figure 73. 25-year flow depth map for the Balangiga Floodplain	86
Figure 74. 5-year flood hazard map for the Balangiga Floodplain	87
Figure 75. 5-year flow depth map for the Balangiga Floodplain	88
Figure 76. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period	90
Figure 77. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period	90
Figure 78. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period	92
Figure 79. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period	92
Figure 80. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period	94
Figure 81. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period	94
Figure 82. Validation points for 5-year flood depth map of the Balangiga Floodplain	96
Figure 83. Validation points for a 100-year flood depth map of the Balangiga Floodplain	97
Figure 84. Flood map depth vs. actual flood depth	98

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
IDW	Inverse Distance Weighted [interpolation method]

	IMU	Inertial Measurement Unit
	kts	knots
	LAS	LiDAR Data Exchange File format
1	LC	Low Chord
	LGU	local government unit
	Lidar	Light Detection and Ranging
	LMS	LiDAR Mapping Suite
	m AGL	meters Above Ground Level
	MMS	Mobile Mapping Suite
	MSL	mean sea level
	NSTC	Northern Subtropical Convergence
	PAF	Philippine Air Force
	PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
1	PDOP	Positional Dilution of Precision
	РРК	Post-Processed Kinematic [technique]
	PRF	Pulse Repetition Frequency
	PTM	Philippine Transverse Mercator
	QC	Quality Check
	QT	Quick Terrain [Modeler]
	RA	Research Associate
	RIDF	Rainfall-Intensity-Duration-Frequency
1	RMSE	Root Mean Square Error
	SAR	Synthetic Aperture Radar
1	SCS	Soil Conservation Service
1	SRTM	Shuttle Radar Topography Mission
1	SRS	Science Research Specialist
	SSG	Special Service Group
1	ТВС	Thermal Barrier Coatings
	UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
+	VSU	Visayas State University
	WGS	World Geodetic System

LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BALANGIGA RIVER

Enrico C. Paringit, Dr. Eng., Dr. George Puno, and Eric Bruno

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through the Department of Science and Technology (DOST). The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017), available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the twenty-eight (28) river basins in the Eastern Visayas region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Balangiga River Basin

The Balangiga River Basin is located in Eastern Visayas, at the Southern portion of Samar. It traverses through the Municipalities of Lawaan and Balangiga in the province of Eastern Samar. It covers an area of 129 square kilometers, and travels for approximately 24 kilometers from its source to its mouth in Balangiga. Based on the Department of Environment and Natural Resource (DENR) River Basin Control Office (RBCO), it has a drainage area of 169 km2 and an estimated 321 million cubic meter (MCM) annual run-off.

The river basin's main stem, the Balangiga River, is among the twenty-eight (28) river systems in Eastern Visayas under the PHIL-LiDAR 1 partner university, VSU. The river is named after the Municipality of Balangiga, where it is situated. Its waters are categorized as Class C, based on its beneficial use. This water type is generally used for fishery, recreation or boating, and supply for manufacturing processes after treatment.

The Municipality of Balangiga has a total population of 12,756 persons, according to the 2010 census of the National Statistics Office (NSO). It was one of the areas devastated by Super Typhoon Haiyan (local name, Yolanda) on November 8, 2013.

125°20'0"E Figure 1. Location map of the Balangiga River Basin (in brown)

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BALANGIGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Julie Pearl S. Mars, Jeriel Paul A. Alamban, and Geol.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the Balangiga floodplain in Eastern Samar. These missions were planned for sixteen (16) lines that ran for at most four and a half (4.5) hours, including take-off, landing, and turning time. Two (2) sensors were used for the missions – Aquarius and Gemini (See Annex 1 for the sensor specifications). The flight planning parameters for the LiDAR systems are found in Table 1 and Table 2. Figure 2 and Figure 3 illustrate the flight plans for the Balangiga floodplain using the Aquarius and Gemini LiDAR systems, respectively.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33Q	500, 700	30	50, 36	70/50	40, 50	130	5
BLK33R	500, 600	30	50, 36	70/50	40, 50	130	5
BLK33S	600	30	36	50	50	130	5
BLK33T	700	30	36	50	50	130	5
BLK33U	600, 700	30	36	50	50	130	5
BLK33V	600	30	36	50	50	130	5

Table 1. Flight planning parameters for the Aquarius LiDAR system

Table 2. Flight planning parameters for the Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK33A	850	30	40	125	50	130	5
BLK34K	850	30	40	125	50	130	5
BLK34L	850	30	40	125	50	130	5

Figure 2. Flight Plan and base stations used for the Balangiga Floodplain survey using Aquarius sensor.

Figure 3. Flight plans and base stations used to cover the Balangiga Floodplain using the Gemini LiDAR system

2.2 Ground Base Stations

The field team for this undertaking was able to recover three (3) NAMRIA ground control points: (i.) SMR-58, which is of second (2nd) order accuracy; (ii.) SME-3050, which is of fourth (4th) order accuracy; and (iii.) SME-3067, which is also of fourth (4th) order accuracy. Two (2) NAMRIA benchmarks were also recovered: (i.) SM-309 and (ii.) SE-37; both are of first (1st) order accuracy. These benchmarks were used as vertical reference points, and were also established as ground control points. The certifications for the NAMRIA reference points and benchmarks are found in Annex 2, while the baseline processing reports for the established control points are found in Annex 3. These were used as the base stations during the flight operations for the entire duration of the survey, held on May 27-June 3, 2014, on January 31, 2016, and on February 5, 2016. The base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 852, and SPS 985. The flight plans and the locations of the base stations used during the aerial LiDAR acquisition in the Balangiga floodplain are presented in Figure 2 and Figure 3. The composition of the project team is shown in Annex 4.

Figure 4 to Figure 9 depict the recovered NAMRIA control stations within the area. Table 3 to Table 8 provide the details on the NAMRIA control stations and established points, and Table 9 lists all ground control points occupied during the acquisition together with the dates of utilization.

(b)

(a)

Figure 4. (a) GPS set-up over SMR-58 located inside Serum Elementary School, Barangay Serum, Basey, and (b) NAMRIA reference point SMR-58, as recovered by the field team

Table 3. Details of the recovered NAMRIA horizontal control point SMR-58, used as base station for the LiDAR
acquisition

Station Name	SMR-58	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 17' 55.05617" North 125o 7' 51.16145" East 6.30062 meters
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	514288.239 meters 1249361.531 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 17' 50.78580" North 125o 7' 56.31100" East 68.72300 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	732600.57 meters 1249768.75 meters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 5. (a) GPS set-up over SME-3074 near KM Post No. 988 in Quinapondan, Eastern Samar court, and (b) NAMRIA reference point SME-3074, as recovered by the field team

Table 4. Details of the reprocessed NAMRIA horizontal control point SME-3074, used as base station for the LiDAR acquisition

Station Name	SME-3074	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 7′ 59.28388″ North 125° 30′ 54.00697″ East 5.502 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 7′ 55.08848″ North 125° 30′ 59.16728″ East 69.272 m
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	774,710.018 m 1,231,788.037 m

Figure 6. (a) GPS set-up over SME-3050 inside the premises of Central Elementary School, Barangay Poblacion, Guiuan, Eastern Samar, and (b) NAMRIA reference point SME-3050, as recovered by the field team

Table 5. Details of the recovered NAMRIA horizontal control point SME-3050, used as base station for the LiDAR
acquisition

Station Name	SME-3050	
Order of Accuracy	4th	
Relative Error (horizontal positioning)	1 in 10,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 2′ 6.48019″ 125° 43′ 25.69474″ -8.00900 m
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	579,092.375 m 1,220,310.599 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 2′ 2.32770" North 125° 43′ 30.86158" East 56.51100 m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992	Easting Northing	797,631.78 m 1,221,142.79 m

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 7. (a) GPS set-up over SME-3067 inside the premises of Central Elementary School, Barangay Poblacion, Guiuan, Eastern Samar, and (b) NAMRIA reference point SME-3067, as recovered by the field team

Table 6. Details of the recovered NAMRIA horizontal control point SME-3067, used as base station for the LiDAR
acquisition

Station Name	SME-3067	
Order of Accuracy	4th	
Relative Error (horizontal positioning)	1 in 10,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 11′ 16.35419″ 124° 33′ 36.47427″ 38.29100 m
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	451,959.944 m 1,237,144.619 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 11′ 12.06307″ North 124° 33′ 41.63876″ East 350.938 m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	670,347.64 m 1,237,125.91 m

Figure 8. (a) GPS set-up over SM-309 located at the Dalid Bridge along the national highway in Barangay San Pascual, Sta. Rita, Samar, and (b) NAMRIA reference point SM-309, as recovered by the field team

Table 7. Details of the recovered NAMRIA vertical control point SM-309, used as base station for the LiDAR acquisition with established coordinates

Station Name	SM-309	
Order of Accuracy	2nd	
Relative Error (horizontal positioning)	1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 17' 59.30748" North 125o 06' 56.29744" East 9.743 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 17' 55.03553" North 125o 07' 01.44700" East 72.125 meters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 9. (a) GPS set-up over SI	-37 along the Nationa	al Highway in Baranga	y Santo Niño,	Quinapondan, Eastern
Samar, and (b)	NAMRIA reference r	ooint SE-37, as recover	ed by the field	team

Table 8. Details of the recovered NAMRIA horizontal control point SE-37, used as base station for the LiDAR
acquisition

Station Name	SE-37	
Order of Accuracy	2nd	
Relative Error (Horizontal positioning)	1 in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11° 07' 59.95" 125° 30' 54.91" 5.49 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11° 07' 55.05187" North 125° 30' 59.16996" East 69.239 m
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	774,864.486 m 1,231,736.179 m

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 27, 2014	1506A	3BLK33U147A	SME-3050 and SME- 3067
May 27, 2014	1508A	3BLK33UST147B	SME-3050 and SME- 3067
May 28, 2014	1510A	3BLK33TSV148A	SME-3050 and SME- 3067
May 30, 2014	1520A	3BLK33VSS150A	SME-3050 and SME- 3067
May 31, 2014	1522A	3BLK33SS151A	SME-3074 and SE-37
June 1, 2014	1526A	3BLK33SSR152A	SME-3074 and SE-37
June 2, 2014	1530A	3BLK33RQ153A	SME-3074 and SE-37
June 3, 2014	1534A	3BLK33QS154A	SME-3074 and SE-37
January 31, 2016	3733G	2BLK33ABLK34L031A	SMR-58 and SM-309
February 5, 2016	3753G	2BLK34K33AB036A	SMR-58 and SM-309

Table 9. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

A total of ten (10) flight missions were conducted to complete the LiDAR data acquisition in the Balangiga floodplain, for a total of forty hours and eighty minutes (40+80) of flying time for RP-C9022. All missions were acquired using the Aquarius and Gemini LiDAR systems. Annex 6 presents the flight logs of the missions. Table 10 indicates the total area of actual coverage and the corresponding flying hours for each mission, and Table 11 shows the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Area Surveyed	Area Surveyed Outside the	No. of Images (Frames)	Flying Hours	
				within the Floodplain (km2)	Floodplain (km2)		н	Min
May 27, 2014	1506A	137.14	128.85	NA	128.85	1454	4	35
May 27, 2014	1508A	285.16	97.40	NA	97.40	121	3	59
May 28, 2014	1510A	215.89	107.00	NA	107.00	1768	4	35
May 30, 2014	1520A	207.31	139.46	NA	139.46	1476	4	2
May 31, 2014	1522A	139.44	42.13	NA	42.13	153	2	5
June 1, 2014	1526A	262.30	152.40	11.21	141.19	1633	4	41
June 2, 2014	1530A	226.60	130.16	12.94	117.22	483	4	35
June 3, 2014	1534A	103.74	89.48	15.42	74.06	787	4	17
January 31, 2016	3733G	97.04	248.73	7.98	240.75	NA	2	59
February 5, 2016	3753G	139.76	93.64	27.60	66.04	AN	4	17
TOTAL		1814.38	1229.25	75.15	1154.10	7875	40	80

14

Table 10. Flight missions for the LiDAR data acquisition in Balangiga Floodplain

Average Turn Time (Minutes)	5	5	5	5	5	5	5	5	5	5
Average Speed (kts)	130	130	130	130	130	130	130	130	130	130
Scan Frequency (Hz)	45	50	40	40	45	45	45	50	50	50
PRF (khz)	50	50	70	50	50	50	50	50	100	100
FOV (8)	44	36	50	44	44	44	44	36	40	40
Overlap (%)	25	30	30	30	30	30	35	30	30	30
Flying Height (m AGL)	600	700	500	600	600	600	600	700	850	850
Flight Number	1506A	1508A	1510A	1520A	1522A	1526A	1530A	1534A	3733G	3753G

Table 11. Actual parameters used during the LiDAR data acquisition

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Balangiga floodplain located in the province of Eastern Samar, with majority of the floodplain situated within the municipality of Balangiga (See Annex 7 for the flight status report). The Municipality of Giporlos was fully covered by the survey. The list of cities and municipalities surveyed, with at least one (1) square kilometer coverage, is provided in Table 12. The actual coverage of the LiDAR acquisition for the Balangiga floodplain is presented in Figure 10.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Eastern Samar	Balangiga	206.52	105.87	51.26%
	Giporlos	53.17	53.17	100%
	Guiuan	179.24	67.94	37.90%
	Lawaan	141.75	49.35	34.81%
	Mercedes	22.83	22.48	98.47%
	Quinapondan	136.47	48.86	35.80%
	Salcedo	121.35	120.22	99.07%
Samar	Basey	627.97	206.94	32.95%
	Marabut	148.82	42.16	28.33%
		250.37	31.48	12.57%
Total		1888.49	748.47	39.63%

Table 12. List of municipalities and cities surveyed during the Balangiga Floodplain LiDAR survey

Figure 10. Actual LiDAR survey coverage of the Balangiga Floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE BALANGIGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Gladys Mae Apat, Engr. Velina Angela S. Bemida, Jovy Anne S. Narisma, Engr. Wilbert Ian M. San Juan, Nereo Joshua G. Pecson, and Areanne Katrice K. Umali

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the DAC were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality checking to ensure that the required accuracies of the program, which are the minimum point density, and vertical and horizontal accuracies, were met. The point clouds were then categorized into various classes before generating Digital Elevation Models (DEMs), such as the Digital Terrain Model (DTM) and Digital Surface Model (DSM).

Using the elevation of points gathered from the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR systems were replaced by the actual river geometry, measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was accomplished through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the diagram in Figure 11.

Figure 11. Schematic diagram for the Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for the Balangiga floodplain can be found in Annex 5. Missions flown during the first survey conducted in May 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system, while missions acquired during the second survey in January 2016 were flown using the Gemini system over Balangiga, Eastern Samar. The DAC transferred a total of 136.47 Gigabytes of Range data, 2.358 Gigabytes of POS data, 82.66 Megabytes of GPS base station data, and 524.38 Gigabytes of raw image data to the data server on June 19, 2014 for the first survey, and on February 26, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Balangiga was fully transferred on February 26, 2016, as indicated on the data transfer sheets for the Balangiga floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1508A, one of the Balangiga flights, which are the North, East, and Down position RMSE values, are illustrated in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell on May 27, 2014 at 00:00 hrs. on that week. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Balangiga Flight 1508A

The time of flight was from 197500 seconds to 207500 seconds, which corresponds to afternoon of May 27, 2014. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values corresponds to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaked at 1.22 centimeters, the East position RMSE peaked at 1.60 centimeters, and the Down position RMSE peaked at 3.18 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Balangiga Flight 1508A

The Solution Status parameters of flight 1508A, one of the Balangiga flights, which indicate the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are exhibited in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to eight (8). Most of the time, the number of satellites tracked was between eight (8) and ten (10). The PDOP value also did not go above the value of three (3), which indicates optimal GPS geometry. The processing mode remained at zero (0) for majority of the survey. The value of zero (0) corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters satisfied the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Balangiga flights is depicted in Figure 14.

Figure 14. The best estimated trajectory conducted over the Balangiga floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains one hundred and sixty-three (163) flight lines, with each flight line containing one (1) channel, since the Gemini and Aquarius systems both contain only one (1) channel. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Balangiga floodplain is given in Table 13.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000589
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000983
GPS Position Z-correction stdev)	<0.01meters	0.0098

Table 13. Self-calibration result	ts values fo	or the Balangiga	flights
-----------------------------------	--------------	------------------	---------

Optimum accuracy was obtained for all Balangiga flights, based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for the individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundaries of the processed LiDAR data are represented in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundaries of the processed LiDAR data on top of a SAR Elevation Data over the Balangiga Floodplain.

The total area covered by the Balangiga missions is 782.07 sq. km., comprised of ten (10) flight acquisitions grouped and merged into nine (9) blocks, as indicated in Table 14.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Samar_Leyte_Blk33Q	1530A	127.44	
	1534A		
Samar_Leyte_Blk33R	1526A	114.66	
	1530A		
Samar_Leyte_Blk33S	1520A	82.68	
	1522A		
	1526A		
Samar_Leyte_Blk33S_ supplement	1520A	56.23	
Samar_Leyte_Blk33T	1508A	101.19	
	1510A		
Samar_Leyte_Blk33U	1506A	175.34	
	1508A		
Samar_Leyte_Blk33V	1510A	46.78	
	1520A		
Leyte_Blk33A	3733G	54.57	
	3753G		
Leyte_Blk33A_supplement	3753G	23.18	
TO	980.39		

Table 14. List of LiDAR blocks for the Balangiga Floodplain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is presented in Figure 16. Since the Gemini and Aquarius systems both employ only one (1) channel, it is expected to have an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three (3) or more overlapping flight lines.

Figure 16. Image of data overlap for Balangiga Floodplain

The overlap statistics per block for the Balangiga floodplain can be found in Annex 8. One (1) pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps were 19.23% and 44.05%, respectively.
The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion, is illustrated in Figure 17. It was determined that all LiDAR data for the Balangiga floodplain satisfy the point density requirement, and that the average density for the entire survey area is 3.34 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for the Balangiga Floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red. Bright blue areas represent portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to the elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue were investigated further using the Quick Terrain (QT) Modeler software.

Figure 18. Elevation difference map between flight lines for the Balangiga Floodplain

A screen capture of the processed LAS data from Balangiga flight 1508A loaded in the QT Modeler is exhibited in Figure 19. The upper left image shows the elevations of the points from two (2) overlapping flight strips traversed by the profile, illustrated by a dashed green line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data became satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Balangiga flight 1508A using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Table 15. Summary of point cloud classification results in TerraScan for Balangiga River Floodplain.

Pertinent Class	Total Number of Points
Ground	415,219,505
Low Vegetation	356,235,224
Medium Vegetation	948,141,242
High Vegetation	459,571,915
Building	10,097,405

The tile system that TerraScan employed for the LiDAR data, as well as the final classification image for a block in the Balangiga floodplain, are presented in Figure 20. A total of 1,275 1km by 1km tiles were produced. The number of points classified according to the pertinent categories is illustrated in Table 15. The point cloud had a maximum and minimum height of 462.96 meters and 27.73 meters, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 20. The coverage of the Balangiga Floodplain Survey (a) the tile system (b) depicts the classification results in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It is evident that residential structures adjacent or even below canopy were classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud (a) before and (b) after classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, and the first (S_ASCII) and last (D_ASCII) return DSM of the area are illustrated in Figure 22, in top view display. The figures show that DTMs are a representation of the bare earth, while the DSMs reflect all features that are present, such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of the Balangiga Floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,152 1km by 1km tiles area covered by the Balangiga floodplain is presented in Figure 23. After employing tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Balangiga floodplain survey attained a total of 685.95 sq. km. in orthophotographic coverage, comprised of 9,566 images. Zoomed-in versions of sample orthophotographs, identified by their tile numbers, are provided in Figure 24.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 23. Balangiga Floodplain with available orthophotographs

Figure 24. Sample orthophotograph tiles for the Balangiga Floodplain

3.8 DEM Editing and Hydro-Correction

Nine (9) mission blocks were processed for the Balangiga floodplain. These blocks are composed of SamarLeyte and Leyte blocks, with a total area of 755.88 square kilometers. Table 16 indicates the name and corresponding area of each block, in square kilometers.

LiDAR Blocks	Area (sq.km)
SamarLeyte_Blk33Q	127.44
SamarLeyte_Blk33R	114.66
SamarLeyte_Blk33S	82.68
SamarLeyte_Blk33S_supplement	56.23
SamarLeyte_Blk33T	101.19
Leyte_Blk33A	54.57
Leyte_Blk33A_supplement	23.18
SamarLeyte_Blk33V	149.15
SamarLeyte_Blk33U	46.78
TOTAL	755.88 sq. km

Table 16. LiDAR blocks with its corresponding areas.

Portions of the DTM before and after manual editing are shown in Figure 25. The river embankment (Figure 25a) had been misclassified and removed during the classification process, and had to be retrieved to complete the surface (Figure 25b) to allow for the correct flow of water. The bridge (Figure 25c) was considered to be an impedance to the flow of water along the river, and had to be removed (Figure 25d) in order to hydrologically correct the river. Areas with no data that are on flat terrains, like paddy fields (Figure 25e), had to be filled through manual editing (Figure 25f).

Figure 25. Portions in the DTM of Balangiga Floodplain – a river embankment (a) before and (b) after data retrieval; a bridge (c) before and (d) after manual editing; and data gaps in a paddy field (e) before and (f) after manual editing

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Tacloban DEM, overlapping with the blocks to be mosaicked for this floodplain. Table 17 outlines the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for the Balangiga floodplain is illustrated in Figure 26. It is visible that the entire Balangiga floodplain is 99% covered by LiDAR data.

Mission Blocks	Shift Values (meters)				
	x	У	z		
SamarLeyte_Blk33Q	-2.00	4.00	-4.20		
SamarLeyte_Blk33R	-2.00	5.00	-4.20		
SamarLeyte_Blk33S	-2.00	4.00	-4.20		
SamarLeyte_Blk33S_supplement	17.00	-187.00	6.69		
SamarLeyte_Blk33T	17.00	-187.00	6.66		
Leyte_Blk33A	-2.00	4.00	-4.55		
Leyte_Blk33A_supplement	-2.00	4.00	-4.54		
SamarLeyte_Blk33U	17.00	-188	6.89		
SamarLeyte_Blk33V	16.00	-188	6.83		

Table 17. Shift values of each LiDAR block of the Balangiga Floodplain

Figure 26. Map of processed LiDAR data for the Balangiga Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

To undertake the data validation of the Mosaicked LiDAR DEMs, the DVBC conducted a validation survey along the Balangiga floodplain. The extent of the validation survey done in Samar to collect points with which the LiDAR dataset was validated is illustrated in Figure 27, with the validation survey points highlighted in green. A total of 28,096 survey points were gathered for all the floodplains within Eastern and Western Samar, wherein the Balangiga floodplain is situated. However, the point dataset was not used for the calibration of the LiDAR data for Balangiga because during the mosaicking process, each LiDAR block referred to the already-calibrated Tacloban DEM. Therefore, the mosaicked DEM of Balangiga can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Tacloban LiDAR DTM and the ground survey elevation values is reflected in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points, to assess the quality of the data and to obtain the values for vertical adjustment. The computed height difference between the LiDAR DTM and the calibration points is 0.14 meters, with a standard deviation of 0.13 meters. Calibration of the Tacloban LiDAR data was done by subtracting the height difference value, 0.14 meters, from the Tacloban mosaicked LiDAR data. Table 18 summarizes the statistical values of the compared elevation values between the Tacloban LiDAR data and the calibration data. These values are also applicable to the Balangiga DEM.

Figure 27. Map of Balangiga Floodplain, with validation survey points in green

Figure 28. Correlation plot between the calibration survey points and the LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	0.14
Standard Deviation	0.13
Average	-0.05
Minimum	-0.65
Maximum	0.50

Table 18. Calibration Statistical Measures

A total of 945 survey points lie within the Balangiga floodplain and were used for the validation of the calibrated Balangiga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is demonstrated in Figure 29. The computed RMSE between the calibrated LiDAR DTM and the validation elevation values is 0.12 meters, with a standard deviation of 0.07 meters, as given in Table 19.

Figure 29. Correlation plot between the validation survey points and the LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.12
Standard Deviation	0.07
Average	-0.10
Minimum	-0.29
Maximum	0.10

Table 19. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for the Balangiga floodplain, with 570 bathymetric survey points. The resulting raster surface produced was done by applying the Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.026 meters. The extent of the bathymetric survey done by the DVBC in Balangiga, integrated with the processed LiDAR DEM, is presented in Figure 30.

Figure 30. Map of the Balangiga Floodplain, with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-meter buffer zone. Mosaicked LiDAR DEM with a 1-meter resolution was used to delineate footprints of building features, consisting of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks – comprised of main thoroughfares, such as highways, and municipal and barangay roads – are essential for routing disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

The Balangiga floodplain, including its 200-meter buffer zone, has a total area of 54.45 sq. km. Of this area, a total of 5.0 sq. km, corresponding to a total of 2,961 building features, were considered for quality checking (QC). Figure 31 illustrates the QC blocks for the Balangiga floodplain.

Figure 31. Blocks (in blue) of Balangiga building features that were subjected to QC

Quality checking of the Balangiga building features resulted in the ratings outlined in Table 20.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Balangiga	99.61	100.00	98.56	PASSED

3.12.2 Height Extraction

Height extraction was done for 3,696 building features in the Balangiga floodplain. Of these building features, 116 were filtered out after height extraction, resulting in 3,580 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 5.53 meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; and then all other buildings were coded as residential. An nDSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of the LiDAR acquisition were noted as new buildings in the attribute table.

Table 21 summarizes the number of building features per type. Table 22 lists the total length of each road type, and Table 23 lists the number of water features extracted per type.

Facility Type	No. of Features
Residential	3,360
School	85
Market	2
Agricultural/Agro-Industrial Facilities	7
Medical Institutions	13
Barangay Hall	10
Military Institution	3
Sports Center/Gymnasium/Covered Court	3
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	19
Water Supply/Sewerage	0
Religious Institutions	18
Bank	1
Factory	0
Gas Station	0
Fire Station	1
Other Government Offices	7
Other Commercial Establishments	51
Total	3,580

Table 21. Building features extracted for the Balangiga Floodplain

Floodplain	Road Networl	k Length (km)	-			Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Balangiga	32.39	0.96	0.00	7.52	0.00	40.87

Table 22. Total length of extracted roads for the Balangiga Floodplain

Table 23. Number of extracted water bodies for the Balangiga Floodplain

Floodplain	Water Body Type					Total
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Balangiga	27	0	0	0	0	27

A total of eighteen (18) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 represents the Digital Surface Model (DSM) of the Balangiga floodplain, overlaid with its ground features.

Figure 32. Extracted features for the Balangiga Floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALANGIGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, and Engr. Lorenz R. Taguse

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The DVBC conducted surveys in the Silaga, Basey, Balangiga, and Llorente Rivers on September 10-24, 2014, and on December 4-18, 2014. The scope of work for the first phase of the survey, covering the said rivers in Samar, were: (i.) initial reconnaissance; (ii.) establishment of a control points; and (iii.) cross-section and bridge as-built surveys and water level marking in MSL. The bathymetric survey was performed and completed during the second phase of the survey. The Balangiga River bathymetric survey started at the upstream in Barangay Santa Rosa, down to Barangay Poblacion V, with an estimated length of 6.70 km. Figure 33 illustrates the extent of the Balangiga River bathymetric survey.

4.2 Control Survey

The GNSS network used for the Balangiga River Basin is composed of three (3) loops and a baseline established on September 12, 12, 17, and 19 in 2014, occupying the following reference points: (i.) SME-18, a second-order GCP in Barangay Canciledes, Municipality of Hernani; and (ii.) SE-85, a first-order BM in Barangay 11 Poblacion, Municipality of Llorente. Both reference points are located in the province of Eastern Samar.

Two (2) control points were established along the approach of bridges namely: (i.) UP-CNG, located at the Can-Obing Bridge in Barangay Can-Abong, Borongan City, Eastern Samar; and (ii.) UP-BAL, located at the Balangiga Bridge in Barangay Poblacion V, Municipality of Balangiga, Eastern Samar. NAMRIA-established control points were also used as markers during the survey, namely: (i.) SME-12 in Barangay San Miguel, Municipality of Balangiga, Eastern Samar; (ii.) SE-49 in Barangay Aguinaldo, Municipality of General Macarthur, Eastern Samar; (iii.) SMR-3322 in Barangay Binongtu-an, Municipality of Basey, Samar; and (iv.) SM-335 in Pinalanga, Municipality of Marabut, Samar;.

The summary of reference and control points and their corresponding locations is provided in Table 24, while the GNSS network established is illustrated in Figure 34.

Figure 34. GNSS network of the Balangiga River field survey

			•			×
Control Point	Order of Accuracy	Geographic Coordinate	s (WGS 84)			
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
SME-18	2nd Order GCP	11°21'43.08127"	125°36'37.41862"	78.217	1	Sep 12, 2014
SE-85	1st Order BM	ı	1	67.52	6.31	Sep 12, 2014
SME-12	Used as Marker		1	1	1	Sep 13, 2014
SMR-3322	Used as Marker	ı	ı	I	1	Sep 17, 016
SE-49	Used as Marker	ı	1	ı	1	Sep 13, 2014
SM-33S	Used as Marker	ı	ı	ı		Sep 17, 2014
UP-						
CNG	UP Established	1	1	1	1	Sep 12, 2014

Table 24. List of references and control points used in the Balangiga River survey (Source: NAMRIA, UP-TCAGP)

The GNSS set-ups on the recovered reference points and established control points in the Balangiga River are depicted in Figure 35 to Figure 42.

Figure 35. GNSS base receiver set-up, Trimble® SPS 852 at SME-18,located inside San Jose Elementary School, Barangay Canciledes, Municipality. of Hernani, Eastern Samar

Figure 36. GNSS receiver, Trimble® SPS 882, at SE-85, located at the approach of the Llorente Bridge in Barangay 11, Municipality of Llorente, Eastern Samar

Figure 37. GNSS receiver occupation, Trimble® SPS 882, at SME-12 in Barangay San Miguel, Municipality of Balangiga, Eastern Samar

Figure 38. GNSS base occupation, Trimble® SPS 852, at SMR-3322, located at the approach of the Golden Bridge in Barangay Binongtu-an, Municipality of Basey, Samar

Figure 39. GNSS base occupation, Trimble® SPS 852, at SE-49, in Barangay Aguinaldo, Municipality of General Macarthur, Eastern Samar

Figure 40. GNSS base occupation, Trimble® SPS 882, at SM-335, in Barangay Pinalanga, Municipality of Maravut, Samar

Figure 41. GNSS receiver occupation, Trimble® SPS 882, at UP-CNG, located at the approach of the Can-Obing Bridge in Barangay Can-Abong, Borongan City, Eastern Samar

Figure 42. GNSS receiver occupation, Trimble® SPS 882, at control point UP-BAL, at the approach of the Balangiga Bridge in Barangay Poblacion V, Balangiga, Eastern Samar

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions, with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal of portions of baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a re-survey is initiated. The baseline processing results of control points in the Balangiga River Basin generated by the TBC software is summarized in Table 25.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
SME-12 SM-335	09-17-14	Fixed	0.004	0.017	271°35′44″	16305.472	1.501
SME-18 UP-CNG	09-12-14	Fixed	0.003	0.013	324°17′44″	31862.046	-11.107
SE-49 UP- BAL	9-15-14	Fixed	0.004	0.016	235°25′12″	19579.859	3.935
SE-49 SME-12	09-13-14	Fixed	0.004	0.019	242°52′57″	21244.542	0.227
SE-85 UP- CNG	09-12-14	Fixed	0.007	0.019	331°52′51″	22970.857	-0.437
UP-CNG SE-85	09-12-14	Fixed	0.005	0.041	331°52′51″	22970.859	-0.416
SME-18 SE-49	09-13-14	Fixed	0.003	0.016	207°09'17"	18943.356	-11.212
SME-18 SE-85	09-12-14	Fixed	0.005	0.033	305°49'17″	9586.977	-10.719
SME-18 SE-85	09-12-14	Fixed	0.004	0.015	305°49′17″	9586.978	-10.699
SME-12 SM-335	09-17-14	Fixed	0.019	0.033	271°35′44″	16305.477	1.450
SME-18 SME-12	09-13-14	Fixed	0.004	0.018	226°05′03″	38255.209	-11.019
SME-12 SMR-3322	09-17-14	Fixed	0.003	0.014	306°16′15″	32291.859	3.461
SMR-3322 SM-335	09-17-14	Fixed	0.004	0.014	332°24′22″	21038.056	-1.964
SMR-3322 SM-335	09-17-14	Fixed	0.006	0.038	332°24′22″	21038.062	-1.976

Table 25 Baseline Processing	Report for th	ne Balangiga River	control point survey
Table 25. Dasenne Processing	g Report for ti	le balangiga Kivel	control point survey

As shown in Table 25, a total of fourteen (14) baselines were processed, with coordinates of SME-18 and elevation values of reference point SE-85 held fixed. All of the baselines satisfied the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the adjusted grid coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm, or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \ cm$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report provided in Table 26 to Table 29 for the complete details.

The eight (8) control points – SME-18, SE-85, SME-12, SMR-3322, SE-49, SM-33S, UP-CNG, and UP-CLG – were occupied and observed simultaneously to form a GNSS loop. Coordinates of SME-18 and elevation values of SE-85 were held fixed during the processing of the control points, as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Table 26. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
SE-85	Grid				Fixed	
SME-18	Local	Fixed	Fixed			
Fixed = 0.000001 (Meter)						

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 27. All fixed control points have no values for grid and elevation errors.

Table 27. Adjusted grid coordinates for the control points used in the Balangiga Floodplain survey

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
SE-49	776407.626	0.007	1240340.446	0.005	3.779	0.050	
SE-85	777079.164	0.006	1262825.941	0.004	6.310	?	е
SM-33S	741264.593	0.010	1230815.204	0.007	3.951	0.061	
SME-12	757572.894	0.007	1230490.556	0.005	2.721	0.051	
SME-18	784907.431	?	1257282.043	?	17.660	0.032	LL
SMR-3322	731377.313	0.009	1249392.087	0.007	6.636	0.060	
UP-CNG	766068.484	0.005	1282999.389	0.004	6.035	0.036	

The results of the computation for accuracy are as follows:

а.	SME-18 Horizontal Accuracy Vertical Accuracy	= =	Fixed 3.2 < 10 cm
b.	SE-85 Horizontal Accuracy Vertical Accuracy	= = =	√((0.6) ² + (0.4) ² √ (0.36 + 0.16) 0.72 < 20 cm Fixed
с.	SME-12 Horizontal Accuracy	= = =	$V((0.7)^2 + (0.5)^2)$ V(0.49 + 0.25) 0.86 < 20 cm
	vertical Accuracy	=	5.1 < 10 cm
d.	SMR-3322 Horizontal Accuracy Vertical Accuracy	= = =	√((0.9) ² + (0.7) ² √ (0.81 + 0.49) 1.14 < 20 cm 6.0 < 10 cm
e.	SE-49 Horizontal Accuracy	= = =	$V((0.7)^2 + (0.5)^2)$ V(0.49 + 0.25) 0.86 < 20 cm
	Vertical Accuracy	=	5.0 < 10 cm
f.	SM-33S Horizontal Accuracy = =	= √ (1.0 + 1.22 < 2	√((1.0)² + (0.7)² 0.49) 20 cm
	Vertical Accuracy	=	6.1 < 10 cm
g.	UP-CNG Horizontal Accuracy	= = =	√((0.5)² + (0.4)² √ (0.25 + 0.16) 0.65 < 20 cm
	Vertical Accuracy	=	3.6 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required precision.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
SE-49	N11°12'34.48802"	E125°31'52.42238	66.981	0.050	
SE-85	N11°24'45.65441"	E125°32'20.98934	67.520	?	е
SM-33S	N11°07'33.79721"	E125°12'32.14831	68.705	0.061	
SME-12	N11°07'19.15395"	E125°21'29.28283	67.212	0.051	
SME-18	N11°21'43.08127"	E125°36'37.41862	78.217	0.032	LL
SMR-3322	N11°17'40.55190"	E125°07'10.82309	70.666	0.060	
UP-CNG	N11°35'44.92939"	E125°26'23.62776	67.094	0.036	

Table 28. Adjusted geodetic coordinates for control points used in the Balangiga River Floodplain validation

The corresponding geodetic coordinates of the observed points are within the required accuracies, as shown in Table 28. Based on the results of the computations, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The computed coordinates of the reference and control points used in the Balangiga River GNSS Static Survey are indicated in Table 29.

Table 29. Reference and control points used	in the Balangiga Rive	er Static Survey,	with their corresp	onding locations
(Se	ource: NAMRIA, UP	P-TCAGP)		

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)			UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)	
SME-18	2nd Order, GCP	11d21'43.08127"	125d36'37.41862"	78.217	1257282.043	784907.431	17.66	
SE-85	1st Order, BM	11d24'45.65441"	125d32'20.98934"	67.52	1262825.941	777079.164	6.31	
SME-12	Used as Marker	11d07'19.15395"	125d21'29.28283"	67.212	1230490.556	757572.894	2.721	
SMR- 3322	Used as Marker	11d17'40.55190"	125d07'10.82309"	70.666	1249392.087	731377.313	6.636	
SE-49	Used as Marker	11d12'34.48802"	125d31'52.42238"	66.981	1240340.446	776407.626	3.779	
SM-33S	Used as Marker	11d07'33.79721"	125d12'32.14831"	68.705	1230815.204	741264.593	3.951	
UP-CNG	UP Established	11d35'44.92939"	125d26'23.62776"	67.094	1282999.389	766068.484	6.035	
UP-BAL	UP Established	11d06'32.69356"	125d23'01.19762"	70.922	1229084.693	760374.629	6.453	

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The cross-section and bridge as-built surveys were conducted on September 15, 2014 at the upstream side of the Balangiga Bridge in Barangay Poblacion V, Municipality of Balangiga, Eastern Samar, using Trimble[®] SPS 882 GNSS PPK survey technique (Figure 43).

Figure 43. The Balangiga Bridge facing upstream

The length of the cross-sectional line surveyed in the Balangiga Bridge is 387.66 meters, with a total of fifty-seven (57) points gathered using the control point UP-BAL as the GNSS base station. The location map, cross-section diagram, and the bridge data form are shown in Figure 44, Figure 45, and Figure 46, respectively.

Figure 44. Balangiga Bridge location map

Distance in meters (m)

Figure 45. Balangiga Bridge cross-section diagram

Figure 46. Balangiga Bridge data form

The water surface elevation of the Balangiga River was acquired using PPK survey technique on September 15, 2014 at 13:07 hrs. The resulting water surface elevation data was -0.2218 meters above MSL. This was translated into markings on the bridge's pier using the same technique, as depicted in Figure 47. The markings on the bridge's pier served as a reference for flow data gathering and depth gauge deployment of the VSU PHIL-LiDAR 1 Team.

Figure 47. (A) Actual and (B) finished MSL water level markings on the Balangiga Bridge's pier

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on September 14, 15, 17, 18, 19, and 20 of 2014, using a survey-grade GNSS rover receiver, Trimble[®] SPS 882. The receiver was mounted on a pole attached to the front of a vehicle, as exhibited in Figure 48. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced.`

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 48. Validation points acquisition survey set-up along the Balangiga River Basin

The survey started at Barangay Purok D1 in Borongan City, and headed south through the National Highway, traversing Borongan City; nine (9) Municipalities of Eastern Samar – Maydolong, Balangkayan, Llorente, Hernani, General Macarthur, Quinapondan, Giporlos, Balangiga, and Lawaan; and four (4) Municipalities of Samar – Marabut, Basey, Santa Rita, and Pinabacdao. The survey ended in Barangay Laygayon in the Municipality of Pinabacdao, Samar. A total of 30,114 points were gathered with an approximate length of 296.68 km., using UP-CNG, SE-49, SM-33S, SMR-3322, and SE-85 as the GNSS base stations for the entire extent of the validation points acquisition survey. This is represented by the map in Figure 49.

Figure 49. Extent of the LiDAR ground validation survey along Samar and Eastern Samar Region

4.7 River Bathymetric Survey

Manual bathymetry was performed all throughout the survey due to the malfunctioning echo sounder. Two (2) types of manual bathymetry were executed. The first method was performed by carrying a range pole with an installed Trimble[®] SPS 882 receiver on the upstream and shallow section of the river, as depicted in Figure 50.

Figure 50. Actual execution of manual bathymetric survey in the Balangiga River

The second type of manual bathymetric survey was carried out by using a portable depth sounder to acquire depth data, as shown in Figure 51. A boat was installed with a range pole mounted with a Trimble[®] SPS 882 GPS in its gunwale while a portable depth sounder was being used to measure the depth of the waters in the deeper downstream portion of the river. Bamboo poles and paddles were used to fix the position of the boat while encoding depth readings into the Trimble Controller. The team also deployed a stadia rod every 100 meters to check if the portable depth sounder was accurate and functioning properly.

Figure 51. Manual bathymetric survey using a portable depth sounder and stadia deployment for depth-checking in the Balangiga River

The survey started in Barangay Sta. Rosa in the Municipality of Balangiga, with coordinates 11°09'00.61957"N, 125°22'24.83231"E; and traversed down to the mouth of the river in Barangay Poblacion V, also in Balangiga, with coordinates 11°06'23.61968"N, 125°23'00.84270"E. This is illustrated in Figure 52. The established control point, UP-BAL, was occupied as the base station throughout the bathymetric survey.

The bathymetric survey for the Balangiga River gathered a total of 475 points covering 6.70 km. of the river, traversing five (5) barangays in Municipality of Balangiga. A CAD drawing was also produced to illustrate the riverbed profile of the Balangiga River (Figure 53). The profile reflects that the highest and lowest elevations had a 9-meter difference. The highest elevation observed was 0.394 meters in MSL, located at Barangay Sta. Rosa, Balangiga; while the lowest was -6.797 meters below MSL, located at the downstream portion of the river in Barangay Poblacion V, also in the Municipality of Balangiga.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 52. Extent of the bathymetric survey of the Balangiga River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which are all components and data that affect the hydrologic cycle of the Balangiga River Basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the rain gauge installed by the Flood Modeling Component (FMC) at Barangay Sta. Rosa in the Municipality of Balangiga, Eastern Samar. The location of the rain gauge is seen in Figure 54.

Total rain from the National Irrigation Administration (NIA) Dam rain gauge was 214.5 mm. It peaked at 14 mm on January 16, 2017 at 01:15 hrs. The lag time between the peak rainfall and discharge was one hour and thirty five minutes (1+35).

Figure 54. Location map of the Balangiga HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was computed at the prevailing cross-section (Figure 55) at the Balangiga Bridge, Barangay Poblacion V, Balangiga, Eastern Samar, to establish the relationship between the observed water levels (H) at the bridge and the outflow (Q) of the watershed at this location.

For the Balangiga Bridge, the rating curve is expressed as Q = 18.74e6.9429h, as shown in Figure 56.

Figure 55. Cross-section plot of the Balangiga Bridge

Figure 56. Rating curve at the Balangiga Bridge

The resulting rating curve equation was used to compute for the river outflow at the Balangiga Bridge, for the calibration of the HEC-HMS model presented in Figure 57. Peak discharge was 341.3 m3/s on January 16, 2017 at 14:40 hrs.

Figure 57. Rainfall and outflow data at the Balangiga Bridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for the Rainfall Intensity Duration Frequency (RIDF) values for the Tacloban Rain Gauge (Table 30). This station was selected based on its proximity to the Balangiga watershed (Figure 58). The RIDF rainfall amount for twenty-four (24) hours was converted into a synthetic storm by interpolating and re-arranging the values such that certain peak values were attained at a certain time (Figure 59). The extreme values for this watershed were computed based on a 59-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	17.8	26.9	33.6	42.8	59.7	70.5	87.2	104	120.6
5	24.3	36.7	45.7	57.4	80.7	95.2	117.9	140.6	161.4
10	28.5	43.2	53.7	67.1	94.6	111.5	138.2	164.9	188.4
15	30.9	46.8	58.3	72.5	102.5	120.7	149.6	178.6	203.7
20	32.6	49.4	61.4	76.3	108	127.1	157.7	188.1	214.3
25	33.9	51.4	63.9	79.3	112.2	132.1	163.8	195.5	222.6
50	37.9	57.5	71.4	88.3	125.2	147.4	182.9	218.2	247.9
100	41.8	63.5	78.9	97.3	138.2	162.5	201.8	240.8	273

Table 30. RIDF values for the Tacloban Rain Gauge computed by PAGASA

Figure 58. Location of the Tacloban RIDF station relative to the Balangiga River Basin

Figure 59. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). These soil datasets were generated before 2004. The soil and land cover maps of the Balangiga River Basin are presented in Figures 60 and 61, respectively.

Figure 60. Soil map of the Balangiga River Basin (Source: DA)

Figure 61. Land cover map of the Balangiga River Basin (Source: NAMRIA)

For Balangiga, the soil classes identified were clay, undifferentiated soil, and clay loam. The land cover types identified were shrub lands, forest plantations, open forests, closed forests, and cultivated land.

Figure 62. Slope map of the Balangiga River Basin

Figure 63. Stream delineation map of the Balangiga River Basin

Using the SAR-based DEM, the Balangiga basin was delineated and further subdivided into sub basins. The model consists of twenty-seven (27) sub basins, twenty-one (21) reaches, and thirteen (13) junctions, as exhibited in Figure 64. The main outlet is at the Balangiga Bridge. See Annex 10 for the Balangiga Model Reach Parameters.

Figure 64. The Balangiga River Basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 65).

Figure 65. Cross-section of the Balangiga River generated through the ArcMap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modeling process allowed for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meters by 10 meters in size. Each element was assigned a unique grid element number, which served as its identifier. Each element was then attributed with the parameters required for modeling, such as x-and y-coordinates of centroid, names of adjacent grid elements, Manning's coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements, in eight (8) directions (i.e., north, south, east, west, northeast, northwest, southeast, and southwest).

Based on the elevation and flow direction, it was observed that the water will generally flow from the southeast of the model to the northwest, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements, respectively.

Figure 66. Screenshot of a sub-catchment with the computational area to be modeled in the FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 45.96643 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 34437700.00 m2.

There is a total of 54699408.21 m3 of water entering the model. Of this amount, 14061062.80 m3 is due to rainfall while 40638345.41 m3 is inflow from other areas outside the model. 4131393.75 m3 of this water is lost to infiltration and interception, while 9950596.90 m3 is stored by the flood plain. The rest, amounting up to 40617448.12 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Balangiga HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 67 depicts the comparison between the two (2) discharge data. The Balangiga Model Basin Parameters are found in Annex 9.

Figure 67. Outflow Hydrograph of the Balangiga Bridge generated in the HEC-HMS model, compared with observed outflow

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	3 – 45
			Curve Number	52 - 93
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.1 - 93
			Storage Coefficient (hr)	0.32 – 7
	Baseflow	Recession	Recession Constant	0.5
			Ratio to Peak	0.01
Reach	Reach Routing Muskingum- Cunge		Slope	0.0005 - 0.045
			Manning's Coefficient	0.04

Table 31. Range of calibrated values for the Balangiga River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 3mm to 45mm means that there is a minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as the curve number increases. The range of 70 to 90 for the curve number is advisable for Philippine watersheds, depending on the soil and land cover of the area. For Balangiga, the basin mostly consists of shrub lands, and the soil consists of clay and clay loam. The curve number range of the model is 52 to 93.

The time of concentration and the storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.1 hours to 7 hours determines the reaction time of the model, with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

The recession constant is the rate at which baseflow recedes between storm events; and the ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.5 indicates that the basin is unlikely to quickly return to its original discharge, and will be higher instead. A ratio to peak of 0.1 indicates a steeper receding limb of the outflow hydrograph.

A Manning's roughness coefficient of 0.04 corresponds to the common roughness of Philippine watersheds. The Balangiga River Basin is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	18.60
r2	0.98
NSE	0.97
PBIAS	-10.56
RSR	0.162

 Table 32. Summary of the Efficiency Test of Balangiga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 18.60 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it was measured at 0.98.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. The optimal value is 1. The model attained an efficiency coefficient of 0.97.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate a bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is -10.56.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error units of the values are quantified. The model has an RSR value of 0.162.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 68) demonstrates the Balangiga outflow using the Tacloban RIDF curves in five (5) different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series), based on the PAGASA data. The simulation results reveal a significant increase in outflow magnitude as the rainfall intensity increases, for a range of durations and return periods.

Figure 68. Outflow hydrograph at the Balangiga Station, generated using the Tacloban RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Balangiga discharge using the Tacloban RIDF curves in five (5) different return periods is outlined in Table 33.

	1			
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	161.4	24.3	308.1	2 hours, 10 minutes
10-Year	188.4	28.5	386.9	2 hours, 20 minutes
25-Year	222.6	33.9	503.7	3 hours, 00 minutes
50-Year	247.9	37.9	595.4	3 hours, 00 minutes
100-Year	273.0	41.8	690.4	3 hours, 00 minutes

Table 33. Peak values of the Balangiga HEC-HMS Model outflow using the Tacloban RIDF 24-hour values

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section, for every time step, for every flood simulation created. The resulting model was used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is presented, since only the VSU-FMC base flow was calibrated. The sample generated map of the Balangiga River using the calibrated HMS base flow is provided in Figure 69.

Figure 69. Sample output map of the Balangiga RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Balangiga floodplain are shown in Figures 70 to 75. The floodplain, with an area of 34.44 sq. km., covers one (1) municipality, which is Balangiga. Table 34 indicates the percentage of area affected by flooding in the Municipality of Balangiga.

Table 34. Munici	palities affected	d in the Bal	angiga Fl	loodplain
			()()	

Municipality	Total Area	Area Flooded	% Flooded
Balangiga	206.52	34.35667	16.64%

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Balangiga River Basin are listed below. Only the Municipality of Balangiga, consisting of nine (9) barangays, is expected to experience flooding when subjected to the available rainfall return period scenarios (i.e., 5-year, 25-year, and 100-year).

For the 5-year return period, 4.12% of the Municipality of Balangiga, with an area of 627.97 sq. km., will experience flood levels of less 0.20 meters. 0.36% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.25%, 0.26%, 0.36%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 and Table 36 are the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion I	Barangay Poblacion II	Barangay Poblacion III	Barangay Poblacion IV	Barangay Poblacion V		
0.03-0.20	2.68	0.34	0.57	0.16	0.54		
0.21-0.50	0.12	0.21	0.28	0.067	0.17		
0.51-1.00	0.095	0.083	0.25	0.093	0.072		
1.01-2.00	0.11	0.14	0.044	0.039	0.019		
2.01-5.00	0.2	0.12	0.026	0	0.051		
> 5.00	0.083	0.064	0.0002	0	0.0036		

Table 35. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period

Table 36. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion VI	Cansumangcay	San Miguel	Santa Rosa			
0.03-0.20	0.064	4.42	6.7	10.4			
0.21-0.50	0.0074	0.12	0.95	0.35			
0.51-1.00	0.0002	0.068	0.55	0.36			
1.01-2.00	0.000041	0.049	0.5	0.75			
2.01-5.00	0	0.044	0.48	1.35			
> 5.00	0	0.0013	0.054	0.53			

Figure 76. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period

Figure 77. Affected Areas in Balangiga, Eastern Samar during a 5-Year Rainfall Return Period

For the 25-year return period, 3.84% of the Municipality of Balangiga, with an area of 627.97 sq. km., will experience flood levels of less 0.20 meters. 0.36% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.34%, 0.24%, 0.49%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and Table 38 are the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion I	Barangay Poblacion II	Barangay Poblacion III	Barangay Poblacion IV	Barangay Poblacion V		
0.03-0.20	2.61	0.11	0.46	0.095	0.38		
0.21-0.50	0.13	0.13	0.2	0.051	0.2		
0.51-1.00	0.083	0.26	0.31	0.11	0.15		
1.01-2.00	0.11	0.15	0.16	0.097	0.057		
2.01-5.00	0.27	0.24	0.033	0.0042	0.047		
> 5.00	0.091	0.068	0.0006	0	0.015		

Table 37. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period

Table 38. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion VI	Cansumangcay	San Miguel	Santa Rosa			
0.03-0.20	0.052	4.36	5.91	10.14			
0.21-0.50	0.017	0.14	1.06	0.35			
0.51-1.00	0.0027	0.076	0.86	0.28			
1.01-2.00	0.000041	0.063	0.47	0.42			
2.01-5.00	0	0.057	0.87	1.58			
> 5.00	0	0.0025	0.066	0.97			

Figure 78. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period

Figure 79. Affected Areas in Balangiga, Eastern Samar during a 25-Year Rainfall Return Period

For the 100-year return period, 3.84% of the Municipality of Balangiga, with an area of 627.97 sq. km., will experience flood levels of less 0.20 meters. 0.36% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.34%, 0.24%, 0.49%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 39-40 are the affected areas, in square kilometers, by flood depth per barangay.

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion I	Barangay Poblacion II	Barangay Poblacion III	Barangay Poblacion IV	Barangay Poblacion V		
0.03-0.20	2.57	0.045	0.39	0.047	0.2		
0.21-0.50	0.14	0.049	0.14	0.041	0.18		
0.51-1.00	0.082	0.17	0.29	0.079	0.27		
1.01-2.00	0.091	0.34	0.3	0.17	0.12		
2.01-5.00	0.3	0.28	0.06	0.02	0.063		
> 5.00	0.11	0.072	0.001	0	0.019		

Table 39. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period

Table 40. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period

Affected Area (sq. km.) by	Affected Barangays in Balangiga (in sq. km.)						
flood depth (in m.)	Barangay Poblacion VI	Cansumangcay	San Miguel	Santa Rosa			
0.03-0.20	0.043	4.31	5.53	9.93			
0.21-0.50	0.017	0.16	0.82	0.37			
0.51-1.00	0.012	0.082	1.12	0.27			
1.01-2.00	0.0013	0.069	0.71	0.35			
2.01-5.00	0	0.066	0.95	1.35			
> 5.00	0	0.0043	0.11	1.46			

Figure 80. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period

Figure 81. Affected Areas in Balangiga, Eastern Samar during a 100-Year Rainfall Return Period

Among the barangays in the Municipality of Balangiga, Sta. Rosa is projected to have the highest percentage of area that will experience flood levels, at 2.19%. Meanwhile, San Miguel posted the second highest percentage of area that may be affected by flood depths, at 1.47%.

The generated flood hazard maps for the Balangiga floodplain were also used to assess the vulnerability of the educational and medical institutions within the floodplain. Using the flood depth units of PAGASA for the hazard maps – "Low", "Medium", and "High" – the affected institutions were given an individual assessment for each flood hazard scenario (i.e., 5-year, 25-year, and 100-year).

Warning Level	Area Covered in sq. km.		
	5 year	25 year	100 year
Low	2.29	2.29	1.92
Medium	2.45	3.12	3.77
High	3.87	4.95	5.72

Table 41. Area covered by each warning level with respect to the rainfall scenario

Of the fourteen (14) identified educational institutions in the Balangiga floodplain, six (6) were assessed to be exposed to Low-level flooding during a 5-year scenario; while only one (1) school was assessed to be exposed to Medium-level flooding in the same scenario. In a 25-year scenario, three (3) schools were assessed to be exposed to Low-level flooding, six (6) were assessed to be exposed to Medium-level flooding, and two (2) were assessed to be exposed to Low-level flooding. In a 100-year scenario, five (5) institutions were assessed to be subjected to Low-level flooding and six (6) schools to Medium-level flooding. In the same scenario, one (1) school was assessed to be exposed to High-level flooding. See Annex 12 for a detailed enumeration and assessment of the educational institutions in the Balangiga floodplain.

Only one (1) medical institution was identified in the Balangiga floodplain. In the 25-year scenario, it was assessed to be exposed to Low-level flooding. And in the 100-year scenario, it was assessed to be subjected to Medium-level flooding. See Annex 13 for the assessment of this medical institution in the Balangiga floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in the different river systems, there is a need to perform validation survey work. For this purpose, field personnel gathered secondary data regarding flood occurrences in the respective areas within the major river systems in the Philippines.

From the flood depth maps produced by the Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in the river basin to gather data regarding the actual flood levels in each location. Data gathering was conducted through assistance from a local DRRM office to obtain maps or situation reports about the past flooding events, or through interviews with some residents with knowledge or experience of flooding in a particular area. The flood validation data were obtained on April 27-29, 2016.

After which, the actual data from the field were compared with the simulated data to assess the accuracy of the flood depth maps produced, and to improve on the results of the map. The points in the flood map versus the corresponding validation depths are illustrated in Figure 84.

The flood validation consists of two hundred and thirty-eight (238) points, randomly selected all over the Balangiga floodplain. It has an RMSE value of 1.77 and 1.108, for the 5-year and 100-year return periods, respectively. Table 42 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 82. Validation points for 5-year flood depth map of the Balangiga Floodplain

Figure 83. Validation points for a 100-year flood depth map of the Balangiga Floodplain

Figure 84. Flood map depth vs. actual flood depth

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20 0.21-0.50		0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	36	26	12	20	18	1	113
0.21-0.50	16	9	11	11	6	0	53
0.51-1.00	11	5	6	2	6	3	33
1.01-2.00	14	4	3	3	5	1	30
2.01-5.00	3	2	0	1	0	2	8
> 5.00	0	0	0	0	0	1	1
Total	80	46	32	37	35	8	238

Table 42. Actual flood depth vs. simulated flood depth in Balangiga

The overall accuracy generated by the flood model is estimated at 23.11%, with fifty-five (55) points correctly matching the actual flood depths. There were seventy-one (71) points estimated one (1) level above and below the correct flood depths, and forty-five (45) points and sixty-seven (67) points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood levels, respectively. A total of one hundred and twenty-four (124) points were overestimated, while a total of fifty-nine (59) points were underestimated in the modeled flood depths of the Balangiga River Basin. Table 43 presents the summary of the Accuracy Assessment in the Balangiga River Basin flood depth map.

	No. of Points	%
Correct	55	23.11
Overestimated	124	52.10
Underestimated	59	24.79
Total	238	100

Table 43. Summary of Accuracy Assessment in Balangiga River Basin survey

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Balangiga Floodplain Survey

Figure A-1.1 Aquarius Sensor

Table A-1.1 Parameters and Specifications of the Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Control rack: 591 x 485 x 578 mm; 53 kg	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Control Rack

Laptop

Table A-1.2 Parameters and Specifications of the Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
	220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

Requesting Party: UP DREAM Purpose: Reference OR Number: 8089774 I T.N.: 2016-0327

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

Mani Lawin Awana, Pat Barkela, 1934 Tagaig Cig, Philippines Tel. No. (622) 814-823 to 41 Banch: 421 Baraca St. San Nicolas, 1010 Manla, Philippines, Tel. No. (622) 241-3484 to 38 www.n.amria.gov.ph

ISO 1001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1 SMR-58

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

2. SME-3050

June 06, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: E	ASTERN SAMAR			
	Station Na	ame: SME-3050			
Island: VISAYAS Municipality: GUIUAN	Order	r. 4th	Baranga	y: POB	LACION
	PRS	92 Coordinates			
Latitude: 11° 2' 6.48019"	Longitude:	125° 43' 25.69474"	Ellipsoid	al Hgt	-8.00900 m.
	WGS	84 Coordinates			
Latitude: 11° 2' 2.32770"	Longitude:	125° 43' 30.86158"	Ellipsoid	al Hgt	56.51100 m.
	PTI	M Coordinates			
Northing: 1220310.599 m.	Easting:	579092.375 m.	Zone:	5	
	UTI	M Coordinates			
Northing: 1,221,142.79	Easting:	797,631.78	Zone:	51	

SME-3050

Location Description

Station is located 15 m W of the NE corner of Central Elem. School of Poblacion, Guiuan. Mark is the head of a 4 in. copper nail set flushed on a 0.20 m x 0.20 m x 1.00 m cement putty with inscriptions, "SME-3050, 2008, NAMRIA".

Requesting Party: UP-TCAGP Pupose: Reference OR Number: 8796290 A T.N.: 2014-1295

(de C RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NANRIA OFFICES: Main I: Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Banch : 421 Bancas 35. San Nicolas, 1910 Manila, Philippines, Tel. No.: (632) 241-3464 to 95 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2 SME-3050

3. SME-3067

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 06, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: E	ASTERN SAMAR			
	Station N	ame: SME-3067			
	Orde	r: 4th			
Island: VISAYAS			Baranga	iy: POB	LACION WARD
Municipality. GOIDAN	PRS	92 Coordinates			
Latitude: 11º 2' 8.60288"	Longitude	125° 43' 22.71877"	Ellipsoid	al Hgt:	-7.96600 m.
	WG	S84 Coordinates			
Latitude: 11º 2' 4.45017"	Longitude	125° 43' 27.88556"	Ellipsoid	al Hgt:	56.55000 m.
	PT	M Coordinates			
Northing: 1220375.601 m.	Easting:	579001.882 m.	Zone:	5	
	UT	M Coordinates			
Northing: 1,221,207.23	Easting:	797,540.79	Zone:	51	

SME-3067

Location Description

Station is located about 165 m SW of the NE corner of Central Elem. School of Guiuan and about 150 m SW of SME-3050. Mark is the head of a 4 in. copper nail centered on a 0.20 m x 0.20 m x 1.00 m concrete monument embedded in the ground with inscriptions, "SME-3067, 2008, NAMRIA".

Requesting Party: UP-TCAGP Pupose: OR Number: T.N.:

Reference 8796290 A 2014-1296

1 Pat RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonitacio, 1034 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3 SME-3067

4. SE-37

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

May 02, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: EASTERN SAMAR Station Name: SE-37	
Island: VISAYAS	Municipality: QUINAPONDAN	Barangay: SANTO NIÑO
Elevation: 1.3583 m.	Order: 1st Order	Datum:

Location Description

SE-37 is in the Province of Eastern Samar, town of Quinapondan, Brgy. Sto Nino along right side of the National highway. It is located beside Km 995, positioned approximately 1.00m S and 4.90m from the centerline of the national highway. Station mark is the head of 4" copper nail centered on a 0.30m x 0.30m concrete block and mark with "SE-37, 2007, NAMRIA."

Requesting Party: Pupose: OR Number: T.N.: UP DREAM Reference 8796083 A 2014-1028

RUEL DM. BELEN, MNSA

RUEL/DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonilacio, 1634 Tagaig City, Philippines Tel. No.: (632) 810-4631 to 41 Branch : 421 Burnace St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4 SE-37

ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. SME-3074

Observation	From	Та	Occupation Start Time	Occupatio n Stop Time	Solutio n Type	H. Prec. (Mater)	V. Prec. (Meller)	∆X (Meter)	&Y (Meter)	AZ (Meter)	Geodeti c Az.	Ellipsol d Dist. (Meter)	å Height (Mator)	Satelit e Availab is
5ME3074 5E37 (85)	SAME307 4	SE37	6/2/2014 7:47:39 AM	6/2/2014 12:39:00 PM	Fixed	0.007	0.003	-0.258	0.266	-1.054	178-82 99*	1,112	-0.063	0P5: 15 GLONA SS: 11 Galles: 0 GZ55: 0
5E37 — PTAC (84)	PTAC	SES7	6/3/2014 7:59:44 AM	6/2/2014 11:59:43 AM	Fired	0.008	0.020	47131. 604	30238. 524	12796. 297	103°04' 25'	57441. 188	-16.420	GPS: 12 GLONA SS: 10 Galleo: 0 Q2SS: 0
SME3074 — PTAC (86)	PTAC	SME307 4	6/2/2014 7:50:44 AM	6/2/2014 11:59:43 AM	Fixed	0.008	0.020	47191. 329	- 30238. 778	12794	103'04' 21'	57440. 856	-16.413	GPS: 14 GLONA SS: 10 Gallet: 0 QZSS: 0

Processing Summary

Vector Components (Mark to Mark)

From:	SME3074	ME3074							
	Grid	Le	cal	Gia	al				
Easting	774710.019 m	Latitude	N11'07'59.28294"	Latitude		N11'07'55.08754"			
Northing	1231788.008 m	Longitude	E125'30'54.00701"	Longitude		E125*30'59.16732*			
Elevation	5.500 m	Height	5.541 m	Height		69.310 m			
Te:	SE37								
	Geld	Le	cal		Giobal				
Easting	774710.109 m	Latitude	N11'07'59.24685'	Latitude		N11*07*55.05146*			
Northing	1231786.899 m	Longitude	E125*30*54.00964*	Longitude		E125*30*59.18995*			
Elevation	5.446 m	Height	5.478 m	Height		69.247 m			
Vector									
ΔEasting	0.08	9 m NS Fwd Azimuth		1751521591	ΔX	-0.154 m			
ANorthing	-1.10	9 m Ellipsoid Dist.	1.112 m	ΔY	0.078 m				
&Elevation	-0.06	3 m ∆Height		-0.063 m	ΔZ	-1.100 m			

Standard Errors

Vector errors:									
e ∆Easting	0.003 m	o NS fwd Azimuth	0*08/25*	σΔX	0.003 m				
σ ΔNorthing	0.000 m	or Ellipsoid Dist.	0.000 m	σΔY	0.001 m				
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σΔZ	0.001 m				

Figure A-3.1 Baseline Processing Report - A

2. SE-37

Processing Summary

Observation	From	То	Occupation Start Time	Occupatio n Stop Time	Solutio n Type	H. Prec. (Neter)	V. Prec. (Malar)	∆X (Meter)	ΔY (Meter)	∆Z (Meter)	Geodet c Az.	Ellipsol d Oist, (Meter)	A Height (Meter)	Satellit e Availab ie
5ME3074 5E37 (85)	SME307 4	SE37	6/2/2014 7:47:33 AM	6/2/2014 12:39:00 PM	Fixed	0.007	0.003	-0.288	0.266	-1.054	175*52 59*	1.112	-0.063	GPS: 15 GLONA 55:11 Galleo: 0 QZSS: 0
SE37 — PTAC (84)	PTAC	SE37	6/2/2014 7:50:44 AM	6/2/2014 11:59:43 AM	Fixed	0.008	6.526	47131. 604	30238. 524	12795. 297	103°04 25'	57441. 188	-16.495	GPS: 12 GLONA SS: 10 Galleo: 0 QZSS: 0
SME3074 PTAC (B6)	PTAC	SME307 4	6/2/2014 7:59:44 AM	6/2/2014 11:59:43 AM	Fixed	0.008	0.829	47131. 323	30238. 778	12794. 238	103°04 21°	57440. 856	-16,413	GPS: 14 GLONA SS: 10 Galleo: 0 Q2SS: 0

Vector Components (Mark to Mark)

From:	SME3074								
0	rid	Le		Global					
Easting	774710.019 m	Latitude	atitude N11*07*59.28294* L		Latitude		N11*07*55.08754*		
Northing	1231788.008 m	Longitude	E125'30'54	1.00701*	Longitude		E125*30'59.18732*		
Elevation	5.509 m	Height		6.541 m	Height		69.310 m		
To: 5E37									
G	rid	Local				Glo	bal		
Easting	774710.109 m	Latitude	N11'07'58	.24685*	Latitude		N11*07*55.05146*		
Northing	1231786.899 m	Longitude	E125*30'54	1.00964*	Longitude		E125*30'59.16995*		
Elevation	5.446 m	Height		5.478 m	Height		69.247 m		
Vector									
ΔEasting	0.08	19 m NS Fwd Azimuth		175*52*59*	ΔX	-0.154 m			
ΔNorthing	-1.10	9 m Ellipsoid Dist.		1.112 m	ΔY	0.078 m			
∆Elevation	-0.06	63 m ΔHeight			-0.063 m	ΔZ	-1,100 m		

Standard Errors

Vector errors:					
σ ∆Easting	0.003 m	σ NS fwd Azimuth	0*08/25*	σΔX	0.003 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔY	0.001 m
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σΔZ	0.001 m

Figure A-3.2 Baseline Processing Report - B

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
		LOVELY GRACIA ACUÑA	UP-TCAGP
	Supervising Science Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

Table A-4.1	LIDAR	Survev	Team	Com	osition
				r	

FIELD TEAM

LiDAR Operation	Supervising SRS	LOVELY GRACIA ACUÑA	UP-TCAGP
	Senior Science Research	JULIE PEARL MARS	UP-TCAGP
	Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
		PAULINE JOANNE ARCEO	UP-TCAGP
	Research Associate (RA)	FAITH JOY SABLE	UP-TCAGP
		MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
		ENGR. IRO NIEL ROXAS	UP-TCAGP
		GRACE SINADJAN	UP-TCAGP
		JONATHAN ALMALVEZ	UP-TCAGP
LiDAR Operation	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
LiDAR Operation	Airborne Security	SSG. RANDY SISON	PHILIPPINE AIR FORCE (PAF)
		SSG. RAYMUND DOMINE	PAF
	Pilot	CAPT. JACKSON JAVIER	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. NEIL ACHILLES AGAWIN	AAC
		CAPT. ALBERT PAUL LIM	AAC
			AAC

Data Transfer Sheet for Balangiga Floodplain Annex 5.

458A Z.Wirtome_Raw/1 Z'Mirbome_Rawls S08A Z'Wirterne_Rawt 474A Z'Wirterne_Rawt 498A Z'Mirborne_Raw/1 504A Z'Airborne_Rawt1 Z.Wirborne_Raw/1 510A Wethome Raw/ Withome Raw/ C.Wirborne_Raw/ SERVER \$02A 1000 400H 1964 ž FLIGHT PLAN ź ź ź ź ź ź ź ž ≸ 2 Actual CPERATOR LOGS (OPLOS) 8 2 2 ₽ 2 8 5 뜇 12 Base Info (Art) BASE STATION(S) 2 8 2 8 1KB 벐 ĝ 2 ĝ 2 BASE STATION(S) 14.6 2.85 50 15.7 8.85 7.64 15.7 5 22 4 DIGITIZER 56.202.5 14.8 20.9 ŝ 101 22 ģ 101 ş ≸ RANGE 11.4 18.5 13.3 14.7 3.23 13.9 14.4 115 2 z DATA TRANSFER SHEET 06/10/2014(Samar on-going) PLEICASI PLEICASI 136/563 60M09 ž 38 30 10 ş 181 \$ 8 Received by PAUN MAADESICA SI 8.1/53.6 114 2 593 68.7 61.3 97.2 5 80.2 18 Pos 1.25 202 1.7 202 1.2 278 W22 瓷 22 232 8 112 ñ LOG S(MB) 2 101 129 224 1.61 1.37 KML (swath) 249/1243 815/172 812/5/99 513/850 RAW LAS 1484 1823 2 82 8 Ŗ Output 2 2 2 2 2 2 2 2 2 8 AQUARIUS AQUARUS AQUARIUS AQUARIUS AQUARUS AQUARUS SENSOR AQUARIUS AQUARIUS AQUARUS AQUARUS 5/28/2014 1510A 3BLK33T5V148A 5/27/2014 1508A 38LK33UST1478 MISSION NAME 5/24/2014 1494A 3BLK35GSH144A 5/25/2014 1498A 3BLK35HSI145A 5/26/2014 1504A 3BLK35AIS1468 5/26/2014 1502A 3BLK35IS146A 5/27/2014 1506A 38LK33U147A 38UK358135A 38UK35F137A 38LK35G139A Received from NO. 1466A 5/19/2014 1474A 1458A 5/17/2014 5/15/2014 DATE

C. JOHANI Position Signature

Position Name

Senature

6 10 14 JOUDA F. PRIETO

Figure A-5.1 Data Transfer Sheet for Balangiga Floodplain - A

	RVER	NOI V	ne_Rawt	Ne Rawli	ne_Rawti	ne_Rawl1	ne_Rawl1	ne_Runvii	in_Rawl	ne_Rawli	ne Famili	ne_Rawl1]
	23	5	X WIDO	X Witton 502A	X:Mirbor \$26A	X:VAIrbor \$30A	XVANDOR	X Mirbor 560A	X:Webor	X:Witbox	X:VAtbox 558A	X:Witbor 580A	
	PLAN	KML	M	ž	N	×	NA	¥¥.	12	N	¥2	12	
	FUGHT	Actual				-							
	PERATOR LOGS	-	108	1KB 5	140 6	1KB 3	148	KB 3	3	6	(B	6	
	(should	Base Info (100)	80	KB	IKB	IKB	0.0	1000	10	14B	1	84	
	BASE STA	INVESTIGATE	0.5	165	9001	88			6.4	6.4	6.1	6.1	
THEM	Destroyer		NRK	50.1	204 0	165	114/05.5	140 7	27.2958032.2	216 1	95,6/80.5	123	
- Leyte)	RAVOE		14	4.87	15.5	15.6	14.5	10.8	14.6	16.9	142	12.1	
014 (Samar	NORSHIN		748	104409	603	982.995	1000154	2	50	11	252	151	
61590	RAW		88.5	9.78/21	119	30.9490.2	1.308.30	52.9	8.69	97.2	95.7	72.2	Received by
	POS		500	112	277	20	052	8	192	162	112	223	
	1065		1.48	460KB	1.68	1.40	1.49	1.00	1,78	1.52	1.27	1.67	
	W LAS	KML (swath)	2001429	288	456/784	353/906	\$211	667	533Y1012	562	603	1583	
	R.A.	Output	W	M	N	11	*	M	*	1	W.	W.	
	SENSOR		Aquatius	Aquatura	Aquartus	Aquarius	Aquarius	Aquarius	Aquartus	Aquarius	Aquarius	Aquarius	
	MISSION NAME		3BLK33V55150A	38UX33SS151A	381K3355R152A	381K33K5Q153A	38LK3305154A	381K33P158A	361X33P5M159A	38UC33MS1598	381K33J160A	381K33J	teceived from
	PUGHT NO.		1520A	1522A	1526A	1530A	1534A	1550A	1554A	1556A	1558A	1560A	-
	DATE		30-May-14	31-May-14	1-Jun-14	2-Jun-14	3-Jun-14	7-Jun-14	8-Jun-14	8-9un-14	9-hun-14	9-Jun-14	

Received by

O. 1040-11N New Y

010 8-Position Name Sign

C119/14 PRIETO

Figure A-5.2 Data Transfer Sheet for Balangiga Floodplain - B

Image: black	Image: constraint in the server local server lo								1 BOIODERIA	ALL STREET, SALES									
Image: constant	Icoasynal Pos Muse Factorial Muse Muse Muse Factorial Muse Muse Factorial Muse	RAWLA	RAWLA	RAWLA	RAWLA	12	0				MISSION LOG			BA66 57	(trowork)	OPERATOR	FLICHT	PLAN	Graves
601 243 NA 723 NA 4.2 963 566 NA 2000 PMM 0.017 2.03 NA 20.3 NA 603 963 963 963 NA 2000 PMM 0.017 2.03 NA 20.3 NA 604 963 963 963 963 NA 2000 PMM NA 2.03 NA 2.03 NA 6.03 964 964 <td< th=""><th>001 243 NA 228 NA 4.2 9.63 5.66 NA 200 NA</th><th>PLIGHT NO. MISSION NAME SENSOR Output LAS KOM, (w</th><th>MISSION NAME SENSOR Output LAS KML (w</th><th>SENSOR Output LAS KML (se</th><th>Output LAS KML (se</th><th>KML (su</th><th>(upp)</th><th>(uwispon)</th><th>POS</th><th>MAGESCASI</th><th>FLEICASI LOGS</th><th>RANGE</th><th>DIGITIZER</th><th>BASE STATION(S)</th><th>(not) (Lot)</th><th>(00/100)</th><th>Actual</th><th>KOM.</th><th>LOCATION</th></td<>	001 243 NA 228 NA 4.2 9.63 5.66 NA 200 NA	PLIGHT NO. MISSION NAME SENSOR Output LAS KOM, (w	MISSION NAME SENSOR Output LAS KML (w	SENSOR Output LAS KML (se	Output LAS KML (se	KML (su	(upp)	(uwispon)	POS	MAGESCASI	FLEICASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	(not) (Lot)	(00/100)	Actual	KOM.	LOCATION
0.87 340 NA RA 203 NA 203 203 NA 203	0.87 243 NA 703 NA 606 193 193 703 NA 200 200 NA 200 200 NA 200 NA 200 NA 200 NA 200 NA 200 NA 200	3727G 28UC34U029B GEMINI NA 302	28UC34U0298 GEMINI NA 322	GEMIN NA 322	NA 322	322		109	243	NA	NA	22.8	NN.	42	202	543	206	NA	Z-IDACIRAW DATA
NA 208 NA NA 242 NA 3.15 168 168 168 NA 2.05/09/194 NA 2.05/09/104 712 227 NA 741 743 743 148 289/49/1269 NA 2.05/09/09/04 403 177 NA NA 745 148 148 70 289/49/1269 NA 2.05/09/04/14 403 177 NA NA 745 148 148 70 289/49/1269 NA 200/49/40 403 177 NA 192 NA 4.61 190 190 378 NA	NA 208 NA 242 NA 319 148 148 206004194 NA 200004194 NA 200004194 <t< td=""><td>3729G 28U/34HU030A GEMINI NA 60</td><td>26UG4HUGSOA GERMIN NA 60</td><td>GEMEN NA 50</td><td>NA 50</td><td>8</td><td></td><td>25'0</td><td>243</td><td>NA</td><td>NA</td><td>20.3</td><td>NA</td><td>809</td><td>143</td><td>193</td><td>209</td><td>NA</td><td>ZIDACIRAW DATA</td></t<>	3729G 28U/34HU030A GEMINI NA 60	26UG4HUGSOA GERMIN NA 60	GEMEN NA 50	NA 50	8		25'0	243	NA	NA	20.3	NA	809	143	193	209	NA	ZIDACIRAW DATA
1.03 172 NA NA 11.4 NA 3.34 1KB 1KB 235203200 NA 210.0580W 712 227 NA NA 16.2 NA 4.1 1KB 1KB 2390431280 NA 200431280 483 177 NA NA 16.2 NA 4.51 1KB 1KB 2390431280 NA 200431280 483 177 NA NA 16.2 NA 4.51 1KB 1KB 230431280 NA 200431280 483 177 NA NA 16.3 1KB 1KB 200431280 NA 200431280	1.03 172 NA NA 11.4 NA 3.34 143 143 236250260 NA ZCMORMAN 712 227 NA NA 162 NA 4.1 103 193 193 193 206450408 NA 200450408 NA 200450408<	3731G 28U/34U/0308 GEMIN NA 2	28U/34LM030B GEMINI NA 2	GEMIN NA 2	NA 2	~		W	208	NA	N	242	NA	3.19	1KB	193	206/200/194	No.	ZIDADRAW DATA
712 227 NA NA 16.2 NA 4.1 1KB 2504031269 NA 210A078AW 483 177 NA NA 16.2 NA 4.51 1KB 2504031269 NA 2004034264 483 177 NA NA 50.2 NA 4.51 1KB 2504034269 NA 2004034264	712 227 NA NA 162 NA 4.1 100 1405 200431280 NA 200	3733G 2SU33ABUG4L03LA GEMIN NA 64	26U/33ABU/34L031A GEMM NA 64	GEMIN NA 64	NA 66	3		1,03	172	NN	Ń	11.4	NA	3.84	1KB	1KB	239/282/293	NA	ZIDACIRAIN DATA
463 177 NA NA 192 NA 4.51 193 198 NA 2.00/06AW	403 177 NA NA 922 NA 4.61 100 148 208 NA 220-001040 Received by Name & Boroport Position 5780 4 242.61110	3753G 28L/34/G36A QEMM NA 85	ZBUCHCHARAGOBEA GEMINI NA 852	GEMIN NA BSC	NA 85	885		712	122	N	NA	16.2	NA	4.1	1001	1KB	290401/290	NN	ZIDACIRAW DATA
Received by	Received by Name to Boncynt Provincin Sypty alzeldill	3757G 28UK346037A GEMINI NA 772	25U/C34K037A GEMINE NA 772	GEMINI NA 772	NA 772	772		683	111	W	NA	10.2	NA	4.61	1001	1KB	308	NA	ZIDACIRAW DATA
	Name to Borowst Provision 5584 A disciple	Received from	Received from							Received by									
		Poster A-A-D	Poster CD 40	Deo						Position	55EP	4 2l2	allo						

Figure A-5.3 Data Transfer Sheet for Balangiga Floodplain - C

· ...

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Annex 6. Flight logs for the flight missions

1. Flight Log for 1506A Mission

Date: 21 m	Telle Internet	-Pilot: N . A&A.v. Inl	2 NOWNE	Conception of the local division of the loca			
Engine On:	H H	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, Gty/Province):		
	0846 14E	ingine Off: 1331	15 Total Engine Time: V+35	16 Take off:	17 Landing:	18 Total Flight Time:	
Weather							_
) Remarks:	d Solutions:	Mission complete	d over bik 33 vi and fou	lines our build			
Acquisiti 4-	ion Flight Approved	by Acqui	lation Flight Certified by USDAAA	Pilotin-Comm	And Anne Printed Name	Udar Operator Lidar Operator CATTICE And L + 1AK. Signature over Printed Name	
				Dis	aster Risk and Exposure Assess	REAM	

7 Pilot: 3・3 AvitUne 8 Co-Pilo 10 Date: よう Avien 1년 11 13 Engine On: 19 Oce 14 Engin	ALTM Model: KavuA	3 Mission Name: 30Lk1 345TH	18 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification:	3122
10 Date: 소구 addrey ing 13 Engine On: 19 Weather	DE N. AGAVIN	9 Route:				
13 Engine On: (뉘어/ 14 Engin	2 Airport of Departure	(Airport, Gty/Province):	12 Airport of Arrival	(Airport, City/Province):		
19 Weather	e Off:)Ⓢ	15 Total Engine Time: 3459	16 Take off:	17 Landing:	18 Total Flight Time:	
20 Remarks:						
	Mission 64	annikied over Bilk334 .	and flew have a	over blks31		
Acquisition Flight Approved by 4 and comp	Acquis Signer	ition Flight Certified by	Pilot-in-Comm	and la erter Printed Name	Lidar Operator	
					REAM	
		Eignra A-6 2 Elight Log	Dis tor Miccion 15(aster Risk and Exposure Asses	sment for Mitigation	

3. Flight Log for 1510A Mission

LIDAR Operator: NACE BAUGW	15 2 ALTM Model: ROWA	3 Mission Name: 36443375/jt/ 9 Route:	sh 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122-	
0 Date: 24 MAN 2014	12 Airport of Departure	(Airport, Cty/Province): 11	2 Airport of Arrival	(Airport, Gty/Province):		
3 Engine On: 0837	Engine Off: 1312.	15 Total Engine Time: 10 4135	5 Take off:	17 Landing:	18 Total Flight Time:	
9 Weather				-		
0 Remarks:	Mission complete	d over Bik337 and 4	lives over BU	<33V		
						_
21 Problems and Solutions:						
Acquisition Flight Approved 4-ppd und Lovent Accelur	sby Acquis	ution Flight Carlifled by Carlot And Carlot Carlot Kulundo 10 (Lepted Vanne over Printed Name operacentative)	Platin Comm	and all all all all all all all all all all	Udar Operator CATIL BOUCH	
			- 		REAM	

Figure A-6.3 Flight Log for Mission 1510A

115

Allocation Bounds: Description Circle of Alloport, CirlyPrevines): Dote: 10. out of 1 2010port, CirlyPrevines): 3010port, CirlyPrevines): Defension: 10. out of 1 3010prillip: 1010port, CirlyPrevines): Defension: 10. out of 1 3010prillip: 1010port, CirlyPrevines): Defension: 10. out of 1 1010port, CirlyPrevines): 1010port, CirlyPrevines): Defension: 10. out of 1 1010port, CirlyPrevines): 1010port, CirlyPrevines): Defension: 10. out of 1 1010port, CirlyPrevines): 1010port, CirlyPrevines): Defension: 10. out of 1 1010port, CirlyPrevines): 1010port, CirlyPrevines):	1 UDAR Operator: NICE & AULONS 2 ALTM Model: AQ	VA 3 Mission Name: 30 LK33 VS	SISOA4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 4/22-	
Detert: Junition: Junition: Junition: Junition: Begine Or: Junition: Junition: Junition: Junition: Junition: Betweeter Junition: Junition: Junition: Junition: Junition: Breater Junition: Junition: Junition: Junition: Junition: Breater Junition: Junition: Junition: Junition: Junition: Breater Junition: Junition: Junition: Junition: Junition: Arrenter: Mittion: Junition: Junition: Junition: Junition:	7 Pilot: J. JAVIER 8 Co-Pilot: N. ALAWIN	9 Route:				
Begine Ot: Use off. Diametries 9 Weather Is Total Regine Off. Is Total Regine Off. 9 Weather Invision completed and Reliably Reliably.	10 Date: 30 MAY PI	ture (Airport, Gty/Prownce):	12 Airport of Arrival	(Airport, City/Province):		_
13 Note that She shed She s	13 Engine On: 1229 14 Engine Off: 131.8	15 Total Engine Time: 4153	16 Take off:	17 Landing:	18 Total Flight Time:	
Altristic Anticipant completed are 842331 Out 816232 Out 816233 Anticipant completed Anticipant Anticipant Anticipant	19 Weather					
21 Problems and Solutions: 22 Problems and Solutions: 23 Problems and Solutions: Analysis Ananalysis Analysis	20 Remarks: Nission complekd	ance BLK33V and 8 lives	oier BUK33S			
21 Problems and Solutions: 21 Problems and Solutions: 22 Problems and Solutions: 21 Problems and Solutions: 23 Problems and Solutions: 21 Problems and Solutions: 24 Problems 21 Problems 24 Problems 21 Problems <t< th=""><th></th><th></th><th></th><th></th><th></th><th>1</th></t<>						1
Acquisition flight Approved by Acquisition flight Approved by Modulation flight Cartified by Inder Command Udder Command March - Law - Line Signature over Printed Name (Ind User Representative) March - Law - Line March - Law - Line March - Law - Line Signature over Printed Name (Ind User Representative) March - Law - Line March - Law - Line March - Law - Line Signature over Printed Name (Ind User Representative) March - Law - Line March - Law - Line March - Law - Line Signature over Printed Name (Ind User Representative) March - Law - Line March - Law - Line March - Law - Line	21 Problems and Solutions:					
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Flight Approved by <u>Appl</u> <u>The Approved by</u> <u>Appl</u> <u>Appl</u> <u>Approved by</u> <u>Covert Appl</u> <u>Appl</u>	Acquisition Flight Certified by Control of the Certified by Control of the Certified by Control of the Certified Signature over Printed Name	Plotin Come	and Sec. 184 Printed Name	Uder Operator CATH ROLL VAS Signature over Printed Name	1
			ă	aster Risk and Exposure Asses	REAM	

1 UDAR Operator: P. A ROKO	2 ALTM Model: ARVA	3 Mission Name: 36UK33	SSIBIA 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:
7 Pilot: U-UAUER 8	Co-Pilot: N. ALAWIN	9 Route:			
10 Date: 24 MAY H	12 Airport of Departure	(Airport, Gty/Province):	12 Airport of Arrival	(Airport, City/Province):	
13 Engine On: 1	4 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather					
20 Remarks:	Surveyed 7 lines a	ver Buk335	-		
21 Problems and Solutions:					
Acquisition Flight Approv day Carl	and by Acquis Acquis Acquis and a ALC	ition Flight Cartifield by	Pliotin-Comm	Printed Name	Lider Operator
			Dis	aster Risk and Exposure Asses	R E A M (
			C 1 C		

117

Regine of the	1 LiDAR Operator: PACE 9AU	CUAS 2AL	TM Model: Agua	3 Mission Name: 3644335	RISTA 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 7	75
Begine Ott Is Total Engine Ott Is Total Engine Ott Is Total Engine Ott Is Tanding: 20 Mentaria: 20 Mentaria: 20 Mentaria: 20 Mentaria: 20 Mentaria: 20 Mentaria: Completed mission and Solution: Completed mission and Solution: 20 Mentaria: 20 Mentaria:	10 Date: 01-0 UN 14	8 CO-PI IOE	N . ALAWIN Irport of Departure	9 Koute: (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):		Τ
By Weather 20 Remarks: 20 Remarks: 20 Remarks: 20 Remarks: 21 Problems and Solution: 41 Address Automation: Automation: <th>13 Engine On:</th> <th>14 Engine C</th> <th>Mf:</th> <th>15 Total Engine Time:</th> <th>16 Take off:</th> <th>17 Landing:</th> <th>18 Total Flight Time:</th> <th></th>	13 Engine On:	14 Engine C	Mf:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
20 Remarks: Completed mission and Bilding and Buldings and Stronged 7 lines and Bilding 1 Problems and Solutions: 1 Problems a	19 Weather							Π
11 Problems and Solutions: 11 Problems and Solutions: 12 Problems and Solutions: 12 Problems and Solutions:	20 Remarks:	Com	pleted mission	are Blk335 and sve	urged 7 lines over	r 61433R		
Acquisition Flight Approved by Acquisition Flight Approved by Maturition Flight Approved by Maturition Flight Approved by A A A A A A A A A A A A A A A A A A A	21 Problems and Solutions							
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Flight Appr 4-201	Name Name	Acqui	icition Flags Certified by	Pliotin Comm	and American I	Ider Operator	7
					03	D aster Risk and Exposure Assess	REAM	

118

LIDAR Operator: 7. Apt60	2 ALTM Model: Aa JA	3 Mission Name: 364k33AGG	I\$5A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 112-7
Pilot: 4- JANER	8 Co-Pilot: N- ALANIN	9 Route:			
O Date: of Jow H	12 Airport of Departure	Airport, Gity/Province):	12 Airport of Arriva	(Airport, City/Province):	
3 Engine On: Uso4	14 Engine Off: 12.34	15 Total Engine Time: V133	16 Take off:	17 Landing:	18 Total Flight Time:
9 Weather				-	
) Remarks :	Canyleded mission over	by and sweeped	7 Knos over But	33 Q	
1 Problems and Solutions					
Acquisition Flight Appr	oved by Acquist	tion Flight Cyrtified Jay,	Pilot-in-Come	- Fire	Udar Operator
4-50	ALC Signat.	RAMPHURD D UPAN IN OVER PRINED NAME	A JAS	Jan L-1 61- Jan L-1 61- r Printed Name	D NO(AD Signature over Printed Name
			ō	saster Risk and Exposure Asses	R E A M
			- for Miccine 4		

7.

Flight Log for 1530A Mission

Indificient is accounted in the second of	I LIDAR Operator: NOE BUULVAS	2 ALTM Model: AwvA	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122	
Obtains: Data in the product of Amound (Amound ChyPhroniculas); 22 Amound of Amound (Amound ChyPhroniculas); 23 Amound (Amound ChyPhroniculas); 24 Amound	7 Pilot: J. JAWER 8 CO-Pilo	OT: N. ALAWIN	9 Route:				
Trighter Ott: 3 Tagen Ott: 13 Total Engine Ott: 13 Total Engine Ott: 13 Total Engine Ott: 9 Wether	10 Date: ob JUN HI	12 Airport of Departure	(Airport, Gty/Prownce):	12 Airport of Arrival	(Airport, City/Province):		
We thet Of terms the image of the image of	13 Engine On: Usos 14 Engir	ne Off: 12.05	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
Otenate: Carefold initial and But/300 and carefold oid out 81434 Carefold initial and Solution: Initial and Solution:	19 Weather		-				
12 Problems and Solutions: 12 Problems and Solutions: 12 Problems and Solutions: Image: Solutions: 12 Problems: Image: Solut	0 Remarks:	Cangledical mission e	ur Bukizia and card	al wide are di	k.3.1k		
Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Acoultion Fight Approved by Acoultion Fight Certified Index Commend Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name OR B CA M Manuel Commend Milliogation	21 Problems and Solutions:						
Acquisition flight Asproved by Acquisition Flight Cartified D. Right C							
Disaster Risk and Exposure Assessment for Mitigation	Acquisition Flight Approved by <u>Japod</u> <u>Accordance</u> Leav EVY <u>Accordance</u> Signature over Printed Name (End User Representative)	Acqui FACC Signa	isition Flight Captified D rest Manuaruo P Cent Rure over Printed Name Representative)	Pilotin-Comm	and Jas er e e	Udar Operator One Arust And Signatule over Printed Name	
				ä	Saster Risk and Exposure Asses	D R E A M	

Month Operator: Month Operator: <th< th=""><th>Contraction of the second second second</th><th>en un</th><th></th><th>and a second sec</th><th>The second second</th><th>Fight Log No.1 / 231</th></th<>	Contraction of the second second second	en un		and a second sec	The second	Fight Log No.1 / 231
01 bits 31 bits 1	7 Pilot N Lund	Malue 12 ALTM Model: "DUNIA	4 3 Mission Name: # Puka349	UKJulu 212 Type: VFR	5 Aircra ft Type: Ces nna T206H	6 Arcraft Identification: RR-902
Briefler Correction Browner B	10 Date: A. U.W.	12 Airport of Departure	(Airport, Gty/Province):	12 Airport of Arrival	(Al mort, Chy/Province):	
BV enter Device Device<	13 Engine On:	14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
Offight Classification 20 Remarks 21 Remarks 21 Remarks 21 Remarks An end with the state of the state o	19 Weather	prive day	6113	1	10.44	2+49
Material Zoh Mon tilluke Zoh Mo	0 Flight Classification			21 Remarks		
Image: Second System Maintenance Mountenance Mountenance Mountenance Image: Second System Maintenance Second System Maintenance Image: Second Maintenance Mountenance Image: Second System Maintenance Second Maintenance Image: Second Maintenance Mountenance Image: Second System Maintenance Second Maintenance Image: Second Maintenance Mountenance Image: Second System Maintenance Others: Image: Second Maintenance Mountenance Image: Second Maintenance Others: Image: Second Maintenance Mountenance Image: Second Maintenance Second Maintenance Mountenance Mountenance	0.a Billable	20.b Non Billable	20.c Others	1 Lem	pletal a trav 1144	ver BIK 33H mly.
2 Problems and Solutions 2 Wastern Problem 3 Varature Problem 3 varature Problem 3 varature Problem 3 varature Problem 1 varature Problem 1 varature Problem 1 varature over Printed Name 1 varature Varature Name 1 varature over Printed Name 1 varature Name	Acquisition Flight Acquisition Flight System Test Flight Calibration Flight	 Alrcraft Test Flight AAC Admin Flight Others: 	 LIDAR System Mainte Aircraft Maintenance Phil-UDAR Admin Act 	nance HOOT Mities [Nin	ds. Highly ohi	formed at
• Weature Problem • System Problem • Netraits Problem	2 Problems and Solutions					
O Others: O Others: Acquisition real Approved by Acquisition Flight Certified by A. Mod Acquisition real Approved by Signification real Approved by Acquisition real Approved by A. Mod Acquisition real Approved by A. Mod Acquisition real Approved by A. Mod Acquisition real Approved by Signification real Approved by Acquisition real Approved by A. Mod Acquisition real Approved by Arrendor Approved by Arrendor Approved by </td <td>Weather Problem System Problem Alicraft Problem Alicraft Problem</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Weather Problem System Problem Alicraft Problem Alicraft Problem					
Acquisition Map Approved by Acquisition Flight Certified by Plot-in-Completed P. M.W. Significant way approved by Acquisition Flight Certified by P. M.W. Significant way approved by Acquisition Flight Certified by P. M.W. Significant way approved by Acquisition Flight Certified by P. M.W. Significant way approved by Acquisition Flight Certified by P. M.W. Significant way approved by Acquisition Flight Certified by Significant way Significant way approved by Acquisition Flight Certified by P. M.M. Significant way approved by Significant way approved by Significant way approved by Significant way approved by Significant way approved by	O Pliot Problem					
	Acquisition Regk Approved b P. APPER	Acquisition Flight Certil	aday Pliotin	camples /	LIDAR Operator U. H. M. M. L. Z. Signature der Prined Name	Aircraft Mechanic/ UDAR Technician

б.

IUDAR Operator 1 - Grig	POINT 2 ALTM MODEL: BEWINE B CO-PILOE K- Legge O	3 Mission Name: 2114 2443	MBC3AA 4 TYPE: VFR	5 Aircra ft Type: Cesnna T206H	6 Aircraft Identification: RPC-1622
0 Date: 2-5-14	12 Airport of Departure	(Airport, Gty/Province):	12 Airport of Arrival	(Airport, Chy/Province):	
3 Engine On: 9, 3-8	14 Engine ptt	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
9 Weather	low of tends	to Burthy ch	or ly	4. 20 -	60+11
0 Flight Classification			21 Remarks		
0.a Billable	20.b Non Billable	20.c Others			
Acquisition Flight Acquisition Flight System Test Flight Calibration Flight	 Aircraft Test Flight AAC Admin Flight Others: 	 UDAR System Mainte. Aircraft Maintenance Phil-UDAR Admin Acti 	vities (V C	iesspul flight	
2 Problems and Solutions					
A Weather Problem Spatem Problem Arcraft Problem Plact Problem O Others:					
Accorditions et also according			11		
1 - March Palace Signature over Professontative)	Acquisition Fight Letter	Som i'vi Batture	ommand Line her Printed Name	Libble Operator C. Ourofigy	Alrcraft Mechanic/ UDAR Technician
		Figure A-6.10 Flight	Log for Mission 37	753G	

Annex 7. Flight status reports

EASTERN SAMAR

(May 27-June 3, 2014, and January 31 and February 5, 2016)

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1506A	BLK33U	3BLK33U147A	P.J. Arceo, L.G. Acuna	May 27, 2014	Completed 15 lines over BLK33U.
1508A	BLK33U, BLK33T	3BLK33UST147B	M.C.E. Baliguas	May 27, 2014	Mission completed over BLK33U and few lines over BLK33T.
1510A	BLK33T, BLK33V	3BLK33TSV148A	M.C.E. Baliguas	May 28, 2014	Mission completed over BLK33T and four lines over BLK33V.
1520A	BLK33S, BLK33V	3BLK33VSS150A	M.C.E. Baliguas	May 30, 2014	Mission completed over BLK33V and eight lines over BLK33S.
1522A	BLK33S	3BLK33SS151A	P.J. Arceo	May 31, 2014	Surveyed 7 lines over BLK33S.
1526A	BLK33S, BLK33R	3BLK33SSR152A	M.C.E. Baliguas	June 1, 2014	Completed mission over BLK33S and surveyed 7 lines over BLK33R.
1530A	BLK33R, BLK33Q	3BLK33RSQ153A	P.J. Arceo	June 2, 2014	Completed mission over BLK33R and surveyed 7 lines over BLK33Q.
1534A	BLK33Q BLK33R	3BLK33QS154A	M.C.E. Baliguas	June 3, 2014	Completed mission over BLK33Q and covered voids over BLK33R.
3733G	BLK34L	2BLK33ABLK34L031A	J. Almalvez	January 31, 2016	Completed BLK34L and surveyed 7 lines at BLK33A.
3753G	BLK34K	2BLK34K33AB036A	G. Sinadjan	February 5, 2016	Surveyed BLK34K and completed BLK33A & 33B.

Table A-7.1 Flight Status Reports

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

SWATH PER FLIGHT MISSION

Flight No. :	1506A			
Area:	BLK33U			
Mission Name:	3BLK33U147A			
Parameters:	Altitude: Scan Angle:	500m; 22deg;	Scan Frequency: Overlap:	45Hz; 25%

Figure A-7.1 Swath for Flight No. 1506A

Flight No. :	1508A	
Area:	BLK33U	
Mission Name:	3BLK33UST147	3
Parameters:	Altitude:	600m;
	Scan Angle:	18deg;

Scan Frequency:	
Overlap:	

50Hz; 30%

Figure A-7.2 Swath for Flight No. 1508A

Flight No. :	1510A			
Area:	BLK33T, BLK33V	,		
Mission Name:	3BLK33TSV148A	4		
Parameters:	Altitude: Scan Angle:	600m; 18deg;	Scan Frequency: Overlap:	50Hz; 30%

Figure A-7.3 Swath for Flight No. 1510A

Flight No. : Area: Mission Name: Parameters:

1520A BLK33S, BLK33V 3BLK33VSS150A Altitude: 500m; Scan Angle: 22deg;

Scan Frequency:	
Overlap:	

45Hz; 30%

Figure A-7.4 Swath for Flight No. 1520A

Flight No. :	1522A			
Area:	BLK33S			
Mission Name:	3BLK33SS151A			
Parameters:	Altitude:	1200m;	Scan Frequency:	45Hz;
	Scan Angle:	22deg;	Overlap:	30%

Figure A-7.5 Swath for Flight No. 1522A

45Hz; 30%

Flight No. : Area: Mission Name: Parameters:

1526A BLK33R, BLK33S 3BLK33SSR152A Altitude: 500m; Scan Angle: 22deg;

Scan Frequency:	
Overlap:	

Figure A-7.6 Swath for Flight No. 1526A

Flight No. : Area: Mission Name: Parameters:	1530A BLK33Q, BLK33 3BLK33RSQ153 Altitude: Scan Angle:	R A 500m; 22deg;	Scan Frequency: Overlap:	45Hz; 35%
		BLK33N		
Start 1		BLK330	33P	
Warabut		8.5335		
вина	οα		ELK337 Salcedo	
ELVING	Balangiga			NOUL
			BUX33V	Guluan
			Wandeardissand	Caliboan sland
L	185 km		0.2014 Googe a SIO NOAL US Navy NGA GEBCO Umage Latesat Image C 2014 GigtalGiote	

Figure A-7.7 Swath for Flight No. 1530A

Flight No. : Area: Mission Name: Parameters:

1534A BLK33Q, BLK33R 3BLK33QS154A Altitude: 600m; Scan Angle: 18deg;

Scan Frequency: Overlap:

50Hz; 30%

Figure A-7.8 Swath for Flight No. 1534A

Flight No. :	3733G		
Area:	BLK34L		
Mission Name:	2BLK33ABLK34L031A		
Parameters:	Altitude:	850m;	
	Scan Angle:	20deg;	

Scan Frequency:	50Hz;
Overlap:	35%

Figure A-7.9 Swath for Flight No. 3733G
Flight No. :	
Area:	
Mission Name:	
Parameters:	

3753G BLK34K 2BLK34K33AB036A Altitude: 850m; Scan Angle: 20deg;

Scan Frequency: Overlap: 50Hz; 35%

Figure A-7.10 Swath for Flight No. 3753G

Annex 8. Mission Summary Reports

Table A-8.1 Mission Summary Report for Mission Blk33Q

Flight Area	Samar-Leyte
Mission Name	Blk33Q
Inclusive Flights	1534A, 1530A
Range data size	30.1 GB
POS	504 MB
Base data size	14.48 MB
Image	203.1 GB
Transfer date	June 19, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.6
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	1.1
Boresight correction stdev (<0.001deg)	0.000504
IMU attitude correction stdev (<0.001deg)	0.013905
GPS position stdev (<0.01m)	0.0294
Minimum % overlap (>25)	44.05%
Ave point cloud density per sq.m. (>2.0)	3.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	196
Maximum Height	462.96 m
Minimum Height	52.49 m
Classification (# of points)	
Ground	77,920,392
Low vegetation	63,820,050
Medium vegetation	219,098,054
High vegetation	97,216,382
Building	/33,313
Outh and a to	
Processed by	Engr. Kenneth Solidum, Engr. Velina Angela Bemida, Engr. Gladys Mae Apat

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5 Image of Data Overlap

Figure A-8.6 Density map of merged LiDAR data

Figure A-8.7 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	Blk33S
Inclusive Flights	1522A,1526A
Range data size	20.37 GB
POS	389 MB
Base data size	12.89 MB
Image	149.78 GB
Transfer date	June 19, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	5.1
Boresight correction stdev (<0.001deg)	0.000290
IMU attitude correction stdev (<0.001deg)	0.002644
GPS position stdev (<0.01m)	0.0125
Minimum % overlap (>25)	38.17%
Ave point cloud density per sq.m. (>2.0)	2.99
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	138
Maximum Height	405.46 m
Minimum Height	54.73 m
Classification (# of points)	
Ground	46,953,977
Low vegetation	41,436,786
Medium vegetation	95,425,090
High vegetation	45,588,763
Building	527,403
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Engr. Gladys Mae Apat

Table A-8.2 Mission Summary Report for Mission Blk33S

Figure A-8.8 Solution Status Parameters

Figure A-8.9 Smoothed Performance Metrics Parameters

Figure A-8.10 Best Estimated Trajectory

Figure A-8.11 Coverage of LiDAR data

Figure A-8.12 Image of Data Overlap

Figure A-8.13 Density map of merged LiDAR data

Figure A-8.14 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	Blk 33S_supplement
Inclusive Flights	1520A
Range data size	20.37 GB
POS	289 MB
Base data size	10.5 MB
Image	88.5 GB
Transfer date	June 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000313
IMU attitude correction stdev (<0.001deg)	0.001811
GPS position stdev (<0.01m)	0.0116
Minimum % overlap (>25)	29.45%
Ave point cloud density per sq.m. (>2.0)	2.62
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	104
Maximum Height	317.07 m
Minimum Height	40.58 m
Classification (# of points)	
Ground	32,417,680
Low vegetation	19,545,232
Medium vegetation	53,769,619
High vegetation	24,723,198
Building	275,825
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Engr. Gladys Mae Apat

Table A-8.3 Mission Summary Report for Mission Blk33S_supplement

Figure A-8.15 Solution Status

Figure A-8.16 Smoothed Performance Metric Parameters

Figure A-8.17 Best Estimated Trajectory

Figure A-8.18 Coverage of LiDAR data

Figure A-8.19 Image of Data Overlap

Figure A-8.20 Density map of merged LiDAR data

Figure A-8.21 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	Blk 33T
Inclusive Flights	1508A, 1510A
Range data size	30 GB
POS	501 MB
Base data size	21.85 MB
Image	175.7 GB
Transfer date	June 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000589
IMU attitude correction stdev (<0.001deg)	0.007224
GPS position stdev (<0.01m)	0.0137
Minimum % overlap (>25)	35.21%
Ave point cloud density per sq.m. (>2.0)	3.61
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	176
Maximum Height	269.90 m
Minimum Height	39.35 m
Classification (# of points)	
Ground	47,454,400
Low vegetation	47,186,524
Medium vegetation	180,813,041
High vegetation	51,144,244
Building	814,789
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Velina Angela Bemida, Engr. Gladys Mae Apat

Table A-8.4 Mission Summary Report for Mission Blk33T

Figure A-8.22 Solution Status

Figure A-8.23 Smoothed Performance Metric Parameters

Figure A-8.24 Best Estimated Trajectory

Figure A-8.25 Coverage of LiDAR data

Figure A-8.26 Image of Data Overlap

Figure A-8.27 Density map of merged LiDAR data

Figure A-8.28 Elevation difference between flight lines

Flight Area Samar-Leyte **Mission Name** Blk 33U **Inclusive Flights** 1508A, 1506A 25.9 GB Range data size POS 508 MB 30 MB Base data size Image 158.9 GB Transfer date June 10, 2014 Solution Status Number of Satellites (>6) Yes PDOP (<3) No Baseline Length (<30km) Yes Processing Mode (<=1) Yes Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 1.5 RMSE for East Position (<4.0 cm) 1.3 RMSE for Down Position (<8.0 cm) 4.1 Boresight correction stdev (<0.001deg) 0.001105 IMU attitude correction stdev (<0.001deg) 0.006236 GPS position stdev (<0.01m) 0.0350 Minimum % overlap (>25) 39.26% Ave point cloud density per sq.m. (>2.0) 2.79 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 245 Maximum Height 200.93 m **Minimum Height** 27.73 m Classification (# of points) Ground 81,446,909 Low vegetation 86,186,281 Medium vegetation 170,533,364 High vegetation 42,831,377 Building 4,036,669 Orthophoto Yes Engr. Jennifer Saguran, Engr. Mark Joshua Processed by Salvacion, Engr. Gladys Mae Apat

Table A-8.5 Mission Summary Report for Mission Blk33U

Figure A-8.29 Solution Status

Figure A-8.30 Smoothed Performance Metric Parameters

Figure A-8.31 Best Estimated Trajectory

Figure A-8.32 Coverage of LiDAR data

Figure A-8.33 Image of Data Overlap

Figure A-8.34 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.35 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	Blk 33V
Inclusive Flights	1510A, 1520A
Range data size	32.5 GB
POS	558 MB
Base data size	17.35 MB
Image	202.5 GB
Transfer date	June 10, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000383
IMU attitude correction stdev (<0.001deg)	0.002751
GPS position stdev (<0.01m)	0.0103
Minimum % overlap (>25)	19.23%
Ave point cloud density per sq.m. (>2.0)	2.10
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	118
Maximum Height	203.06 m
Minimum Height	35.33 m
Classification (# of points)	
Ground	30,771,860
Low vegetation	30,935,760
Medium vegetation	34,869,813
High vegetation	3,419,758
Building	669,969
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Mark Joshua Salvacion, Engr. Gladys Mae Apat

Table A-8.6 Mission Summary Report for Mission Blk33V

Figure A-8.36 Solution Status

Figure A-8.37 Smoothed Performance Metric Parameters

Figure A-8.38 Best Estimated Trajectory

Figure A-8.39 Coverage of LiDAR data

Figure A-8.40 Image of Data Overlap

Figure A-8.41 Density map of merged LiDAR data

Figure A-8.42 Elevation difference between flight lines

Flight Area	Samar-Leyte
Mission Name	BIk33R
Inclusive Flights	1526A, 1530A
Range data size	31.1 GB
POS	531 MB
Base data size	16.24 MB
Image	230.1 GB
Transfer date	June 19, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	4.9
Boresight correction stdev (<0.001deg)	0.000361
IMU attitude correction stdev (<0.001deg)	0.333120
GPS position stdev (<0.01m)	0.0306
Minimum % overlap (>25)	32.40%
Ave point cloud density per sq.m. (>2.0)	2.12
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	175
Maximum Height	363.63 m
Minimum Height	52.83 m
Classification (# of points)	
Cround	92 107 472
	62 581 524
Medium vegetation	113 281 399
High vegetation	23 663 109
Building	1 886 248
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Christy Lubiano, Engr. Gladys Mae Apat

Table A-8.7 Mission Summary Report for Mission Blk33R

Figure A-8.43 Solution Status

Figure A-8.44 Smoothed Performance Metric Parameters

Figure A-8.45 Best Estimated Trajectory

Figure A-8.46 Coverage of LiDAR data

Figure A-8.47 Image of Data Overlap

Figure A-8.48 Density map of merged LiDAR data

Figure A-8.49 Elevation difference between flight lines
Flight Area	Leyte
Mission Name	33A
Inclusive Flights	3753G, 3773A
Range data size	33 GB
POS data size	475 MB
Base data size	8.84 MB
Image	n/a
Transfer date	February 26, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.003077
IMU attitude correction stdev (<0.001deg)	1.834194
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	24.13
Ave point cloud density per sq.m. (>2.0)	4.99
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	84
Maximum Height	443.1 m
Minimum Height	30.37 m
Classification (# of points)	
Ground	14,885,861
Low vegetation	4,505,697
Medium vegetation	78,851,683
High vegetation	169,516,292
Building	1,147,636
Orthophoto	None
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr., Alex John Escobido

Table A-8.8 Mission Summary Report for Mission Blk33A

Figure A-8.50 Solution Status

Figure A-8.51 Smoothed Performance Metric Parameters

Figure A-8.52 Best Estimated Trajectory

Figure A-8.53 Coverage of LiDAR data

Figure A-8.54 Image of Data Overlap

Figure A-8.55 Density map of merged LiDAR data

Figure A-8.56 Elevation difference between flight lines

Flight Area	Leyte
Mission Name	33A_Supplement
Inclusive Flights	3753G, 3773A
Range data size	33 GB
POS data size	475 MB
Base data size	8.84 MB
Image	n/a
Transfer date	February 26, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	3.6
Boresight correction stdev (<0.001deg)	0.003077
IMU attitude correction stdev (<0.001deg)	1.834194
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	35.78
Ave point cloud density per sq.m. (>2.0)	5.12
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	39
Maximum Height	840.73
Minimum Height	66.48
Classification (# of points)	
Ground	10,843,737
Low vegetation	7,184,617
Medium vegetation	46,361,070
High vegetation	34,921,274
Building	227,769
Orthophoto	None
Processed by	Engr. Irish Cortez, Erica Erin Elazegui, Wilbert Ian San Juan

Table A-8.9 Mission Summary Report for Mission Blk33A_Supplement

Figure A-8.57 Solution Status

Figure A-8.58 Smoothed Performance Metric Parameters

Figure A-8.59 Best Estimated Trajectory

Figure A-8.60 Coverage of LiDAR data

Figure A-8.61 Image of Data Overlap

Figure A-8.62 Density map of merged LiDAR data

Figure A-8.63 Elevation difference between flight lines

Parameters	
Model Basin	
Balangiga	
Annex 9.	

Parameters
Basin
Model
angiga l
.1 Bal
A-9
Table

Basin Number	scs c	urve Number L	oss	Clark Unit Tran	Hydrograph sform		Rec	cession Base	flow	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	lnitial Discharge (cu.m./S)	Recession Constant	Threshold Type	Ratio to Peak
W280	30.343	62.60	0	2.834	7.400	Discharge	0.1015	0.5	Ratio to Peak	0.01
W290	37.737	57.37	0	1.055	2.755	Discharge	0.0276	0.5	Ratio to Peak	0.01
W300	45.412	52.80	0	0.289	0.755	Discharge	0.0019	0.5	Ratio to Peak	0.01
W310	29.485	63.27	0	1.146	2.994	Discharge	0.0211	0.5	Ratio to Peak	0.01
W320	26.290	65.89	0	1.056	2.759	Discharge	0.0284	0.5	Ratio to Peak	0.01
W330	36.248	58.35	0	1.341	3.504	Discharge	0.0431	0.5	Ratio to Peak	0.01
W340	45.412	52.80	0	1.074	2.805	Discharge	0.0308	0.5	Ratio to Peak	0.01
W350	45.402	52.80	0	1.755	4.584	Discharge	0.0554	0.5	Ratio to Peak	0.01
W360	45.412	52.80	0	1.162	3.035	Discharge	0.0209	0.5	Ratio to Peak	0.01
W370	41.444	55.07	0	2.129	5.559	Discharge	0.0628	0.5	Ratio to Peak	0.01
W380	41.890	54.80	0	1.512	3.949	Discharge	0.0215	0.5	Ratio to Peak	0.01
W390	19.372	72.39	0	2.241	5.853	Discharge	0.0760	0.5	Ratio to Peak	0.01
W400	35.115	59.12	0	1.585	4.140	Discharge	0.0702	0.5	Ratio to Peak	0.01
W410	12.457	80.30	0	0.722	1.887	Discharge	0.0248	0.5	Ratio to Peak	0.01
W420	12.463	80.300	0	0.304	0.794	Discharge	0.0023	0.5	Ratio to Peak	0.01
W430	12.463	80.300	0	1.196	3.123	Discharge	0.0618	0.5	Ratio to Peak	0.01
W440	11.353	81.733	0	0.529	1.382	Discharge	0.0300	0.5	Ratio to Peak	0.01
W450	12.463	80.300	0	0.123	0.322	Discharge	.00056	0.5	Ratio to Peak	0.01
W460	11.515	81.521	0	0.671	1.754	Discharge	0.0417	0.5	Ratio to Peak	0.01
W470	12.462	80.301	0	1.114	2.909	Discharge	0.0496	0.5	Ratio to Peak	0.01
W480	5.6818	89.940	0	0.413	1.080	Discharge	0.0122	0.5	Ratio to Peak	0.01

W490	9.6095	84.092	0	0.926	2.419	Discharge	0.0694	0.5	Ratio to Peak	0.01
W500	12.308	80.496	0	1.037	2.710	Discharge	0.0377	0.5	Ratio to Peak	0.01
W510	3.3595	93.797	0	0.537	1.403	Discharge	0.0177	0.5	Ratio to Peak	0.01
W520	6.8041	88.188	0	0.414	1.082	Discharge	0.0250	0.5	Ratio to Peak	0.01
W530	5.7150	89.887	0	0.889	2.321	Discharge	0.0459	0.5	Ratio to Peak	0.01
W540	7.6240	86.950	0	0.553	1.444	Discharge	0.0188	0.5	Ratio to Peak	0.01

Annex 10. Balangiga Model Reach Parameters

Table A-10.1 Balangiga Model Reach Parameters

Reach			Muskingum Cunge Chanr	iel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	3938.6	0.0031	0.04	Trapezoid	30	1
R140	Automatic Fixed Interval	684.41	0.0037	0.04	Trapezoid	30	1
R150	Automatic Fixed Interval	3940.0	0.0048	0.04	Trapezoid	30	1
R160	Automatic Fixed Interval	165.21	0.0073	0.04	Trapezoid	30	1
R190	Automatic Fixed Interval	3314.4	.00063	0.04	Trapezoid	30	1
R210	Automatic Fixed Interval	1919.9	.00058	0.04	Trapezoid	30	1
R230	Automatic Fixed Interval	986.34	.00047	0.04	Trapezoid	30	1
R250	Automatic Fixed Interval	1741.0	.00047	0.04	Trapezoid	30	1
R270	Automatic Fixed Interval	4768.5	0.0047	0.04	Trapezoid	30	1
R30	Automatic Fixed Interval	316.57	0.0006	0.04	Trapezoid	30	1
R50	Automatic Fixed Interval	2801.1	0.0453	0.04	Trapezoid	30	1
R70	Automatic Fixed Interval	4348.9	0.0034	0.04	Trapezoid	30	1
R80	Automatic Fixed Interval	2379.8	0.0090	0.04	Trapezoid	30	1

Annex 11. Balangiga Field Validation Points

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
2	11.1190	125.3650	0.28	0.5	-0.22	Seniang	December 29, 2014	5Yr
5	11.1164	125.3690	0.03	0.4	-0.37	Ruby	December 06, 2014	5Yr
6	11.1161	125.3700	0.69	0.9	-0.16	Seniang	December 29, 2014	5Yr
9	11.1141	125.3740	0.28	0.2	0.08	Seniang	December 29, 2014	5Yr
11	11.1173	125.3760	0.03	0.4	-0.37	Seniang	December 29, 2014	5Yr
13	11.1112	125.3790	0.03	0.2	-0.17	Ruby	December 06, 2014	5Yr
17	11.1106	125.3810	0.14	0.0	0.14	Seniang	December 29, 2014	5Yr
21	11.1104	125.3840	0.03	0.3	-0.27	Ruby	December 06, 2014	5Yr
22	11.1104	125.3840	0.03	1.4	-1.37	Seniang	December 28, 2014	5Yr
23	11.1111	125.3840	0.03	0.2	-0.17	Ruby	December 06, 2014	5Yr
26	11.1112	125.3820	0.29	0.1	0.19	Ruby	December 06, 2014	5Yr
27	11.1119	125.3820	0.03	0.0	0.03	Ruby/Seniang	December 28, 2014	5Yr
30	11.1112	125.3820	0.24	0.2	0.04	Low Pressure	2007	5Yr
31	11.1105	125.3810	0.09	0.3	-0.21	Ruby	December 06, 2014	5Yr
33	11.1101	125.3820	0.04	0.4	-0.36	Ruby	December 06, 2014	5Yr
37	11.1092	125.3830	0.03	0.0	0.03	Ruby	December 06, 2014	5Yr
55	11.1425	125.3770	4.73	2.0	2.73	Ruby	December 06, 2014	5Yr
57	11.1422	125.3770	4.30	0.5	3.8	Ruby	December 06, 2014	5Yr
58	11.1422	125.3770	4.30	1.4	2.9	Low Pressure	2007	5Yr
61	11.1425	125.3770	3.04	0.0	3.04	Ruby	December 06, 2014	5Yr
78	11.1422	125.3770	4.56	0.6	3.96	Ruby	December 06, 2014	5Yr
88	11.1188	125.3870	1.04	0.1	0.94	Low Pressure	January of 2007	5Yr
90	11.1195	125.3890	0.51	0.4	0.11	Low Pressure	January of 2007	5Yr
99	11.1075	125.3920	0.03	0.2	-0.17	Low Pressure	Jan-16	5Yr

Table A-11.1 Balangiga 5-yr Field Validation Points

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
103	11.1066	125.3870	0.03	0.4	-0.37	Ruby	December 06, 2014	5Yr
106	11.1064	125.3880	0.10	0.9	-0.8	Ruby	December 06, 2014	5Yr
109	11.1062	125.3900	0.03	1.2	-1.17	Undang	November 07, 1984	5Yr
110	11.1062	125.3900	0.03	1.2	-1.17	Amy	December 08, 1951	5Yr
111	11.1060	125.3910	0.03	1.4	-1.37	Yuning	1990	5Yr
113	11.1059	125.3920	0.03	1.0	-0.97	Amy	December 08, 1951	5Yr
115	11.1071	125.3880	0.31	0.4	-0.09	Low Pressure	January of 2016	5Yr
117	11.1069	125.3890	0.37		0.37	Amy	December 08, 1951	5Yr
119	11.1069	125.3890	0.39	0.1	0.29	Low Pressure	January 18, 2016	5Yr
121	11.1074	125.3890	0.12	0.1	0.02	Ruby	December 06, 2014	5Yr
123	11.1092	125.3862	0.10	0.0	0.1	Ruby	December 06, 2014	5Yr
125	11.1068	125.3863	0.03	0.6	-0.57	Ruby	December 06, 2014	5Yr
126	11.1068	125.3863	0.03	0.6	-0.57	Seniang	December 28, 2014	5Yr
132	11.1083	125.3859	0.19	0.0	0.19	Ruby	December 06, 2014	5Yr
138	11.1082	125.3897	0.07	0.3	-0.23	Ruby	December 06, 2014	5Yr
156	11.1114	125.3858	0.30	0.3	0	Ruby	December 06, 2014	5Yr
158	11.1112	125.3870	0.29	0.0	0.29	Ruby	December 06, 2014	5Yr
175	11.1118	125.3873	0.03	0.3	-0.27	Ruby	December 06, 2014	5Yr
176	11.1118	125.3873	0.03	0.3	-0.27	Seniang	December 28, 2014	5Yr
180	11.1101	125.3873	0.03	1.0	-0.97	Ruby	December 06, 2014	5Yr
181	11.1101	125.3873	0.03	1.0	-0.97	Seniang	December 28, 2014	5Yr
187	11.1164	125.3876	2.00	0.2	1.8	Yolanda	November 08, 2013	5Yr
188	11.1164	125.3876	2.00	0.0	2	Ruby	December 06, 2014	5Yr
189	11.1150	125.3865	2.00	0.0	2	Yolanda	November 08, 2013	5Yr

Point Num- ber	Valio Cooro (in W	lation linates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
190	11.1150	125.3865	2.00	0.0	2	Ruby	December 06, 2014	5Yr
191	11.1129	125.3873	2.00	0.0	2	Ruby	December 06, 2014	5Yr
192	11.1152	125.3864	3.00	0.0	3	Yolanda	November 08, 2013	5Yr
193	11.1152	125.3864	3.00	0.0	3	Ruby	December 06, 2014	5Yr
194	11.1158	125.3865	3.00	0.0	3	Ruby	December 06, 2014	5Yr
195	11.1158	125.3865	3.00	0.0	3	Yolanda	November 08, 2013	5Yr
196	11.1162	125.3864	3.00	0.4	2.65	Yolanda	November 08, 2013	5Yr
197	11.1162	125.3864	3.00	0.0	3	Ruby	December 06, 2014	5Yr
198	11.1161	125.3869	2.00	0.0	2	Yolanda	November 08, 2013	5Yr
199	11.1161	125.3869	2.00	0.0	2	Ruby	December 06, 2014	5Yr
200	11.1166	125.3864	3.00	0.4	2.6	Yolanda	November 08, 2013	5Yr
201	11.1166	125.3864	3.00	0.2	2.8	Ruby	December 06, 2014	5Yr
202	11.1178	125.3864	3.00	0.5	2.5	Yolanda	November 08, 2013	5Yr
203	11.1178	125.3864	3.00	0.0	3	Ruby	December 06, 2014	5Yr
204	11.1121	125.3865	1.00	0.0	1	Yolanda	November 08, 2013	5Yr
205	11.1121	125.3865	1.00	0.0	1	Ruby	December 06, 2014	5Yr
206	11.1123	125.3861	2.00	0.4	1.6	Yolanda	November 08, 2013	5Yr
207	11.1123	125.3861	2.00	0.0	2	Ruby	December 06, 2014	5Yr
208	11.1122	125.3859	3.00	1.3	1.7	Yolanda	November 08, 2013	5Yr
209	11.1122	125.3859	3.00		3	Ruby	December 06, 2014	5Yr
210	11.1158	125.3947	2.00	0.0	2	Ruby	December 06, 2014	5Yr
211	11.1098	125.3954	2.00	0.3	1.7	Ruby	December 06, 2014	5Yr
212	11.1098	125.3954	2.00	1.2	0.8	Yolanda	November 08, 2013	5Yr
213	11.1103	125.3957	1.00	0.0	1	Yolanda	November 08, 2013	5Yr

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
214	11.1103	125.3957	1.00	0.0	1	Ruby	December 06, 2014	5Yr
215	11.1108	125.3947	2.00	0.0	2	Ruby	December 06, 2014	5Yr
216	11.1152	125.3864	3.00	0.5	2.5	Ruby	December 06, 2014	5Yr
217	11.1156	125.3865	3.00	0.7	2.28	Ruby	December 06, 2014	5Yr
218	11.1099	125.3943	2.00	0.4	1.6	Yolanda	November 08, 2013	5Yr
219	11.1099	125.3943	2.00	0.4	1.6	Amihan		5Yr
220	11.1118	125.3873	0.00	0.3	-0.3	Ruby	December 06, 2014	5Yr
221	11.1118	125.3873	0.00	0.3	-0.3	Seniang	December 28, 2014	5Yr
222	11.1120	125.3871	2.00	0.3	1.7	Ruby	December 06, 2014	5Yr
223	11.1121	125.3872	2.00	0.0	2	Ruby	December 06, 2014	5Yr
224	11.1124	125.3867	2.00	0.0	2	Ruby	December 06, 2014	5Yr
225	11.1135	125.3870	2.00	0.4	1.65	Ruby	December 06, 2014	5Yr
226	11.1170	125.3882	2.00	0.2	1.8	Ruby	December 06, 2014	5Yr
227	11.1163	125.3878	2.00	0.4	1.6	Ruby	December 06, 2014	5Yr
228	11.1163	125.3881	2.00	0.1	1.95	Yolanda	November 08, 2013	5Yr
229	11.1131	125.3865	3.00	0.1	2.9	Yolanda	November 08, 2013	5Yr
230	11.1135	125.3862	3.00	0.2	2.8	Ruby	December 06, 2014	5Yr
231	11.1150	125.3869	2.00	0.2	1.8	Ruby	December 06, 2014	5Yr
232	11.1150	125.3869	2.00	0.5	1.5	Yolanda	November 08, 2013	5Yr
233	11.1166	125.3862	3.00	0.1	2.9	Ruby	December 06, 2014	5Yr
234	11.1166	125.3862	3.00	0.9	2.1	Yolanda	November 08, 2013	5Yr
235	11.1134	125.3858	3.00	0.1	2.95	Yolanda	November 08, 2013	5Yr

Point Num- ber	Valio Cooro (in W	lation linates (GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
1	11.1206	125.3620	0.05	1.2	-1.15	Yolanda	November 08, 2013	100Yr
3	11.1190	125.3650	0.79	2.0	-1.21	Yolanda	November 08, 2013	100Yr
4	11.1164	125.3690	0.03	2.0	-1.97	Yolanda	November 08, 2013	100Yr
7	11.1161	125.3700	1.37	2.0	-0.63	Yolanda	November 08, 2013	100Yr
8	11.1141	125.3740	0.64	0.9	-0.26	Yolanda	November 08, 2013	100Yr
10	11.1173	125.3760	0.03	2.0	-1.97	Yolanda	November 08, 2013	100Yr
12	11.1112	125.3790	0.03	0.3	-0.27	Yolanda	November 08, 2013	100Yr
14	11.1107	125.3800	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
15	11.1100	125.3810	0.29	0.0	0.29	Yolanda	November 08, 2013	100Yr
16	11.1106	125.3810	0.55	0.4	0.15	Yolanda	November 08, 2013	100Yr
18	11.1112	125.3810	0.69	0.3	0.39	Yolanda	November 08, 2013	100Yr
19	11.1111	125.3810	0.05	0.3	-0.25	Yolanda	November 08, 2013	100Yr
20	11.1104	125.3840	0.03	3.0	-2.97	Yolanda	November 08, 2013	100Yr
24	11.1111	125.3840	0.03	2.0	-1.97	Yolanda	November 08, 2013	100Yr
25	11.1112	125.3820	0.73	0.2	0.53	Yolanda	November 08, 2013	100Yr
28	11.1127	125.3830	1.44	0.0	1.44	Yolanda	November 08, 2013	100Yr
29	11.1122	125.3830	0.77	0.4	0.37	Yolanda	November 08, 2013	100Yr
32	11.1101	125.3820	0.41	2.0	-1.59	Yolanda	November 08, 2013	100Yr
34	11.1109	125.3830	0.62	0.3	0.32	Yolanda	November 08, 2013	100Yr
35	11.1099	125.3830	0.42	0.0	0.42	Yolanda	November 08, 2013	100Yr
36	11.1092	125.3830	0.03	0.3	-0.27	Yolanda	November 08, 2013	100Yr
38	11.1094	125.3830	0.31	0.0	0.31	Yolanda	November 08, 2013	100Yr
51	11.1455	125.3760	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr

Table A-11.2 Balangiga 100-yr Field Validation Points

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
52	11.1435	125.3760	2.23	0.0	2.23	Yolanda	November 08, 2013	100Yr
53	11.1429	125.3770	7.41	0.0	7.41	Yolanda	November 08, 2013	100Yr
54	11.1425	125.3770	6.94	3.0	3.94	Yolanda	November 08, 2013	100Yr
56	11.1422	125.3770	6.50	4.0	2.5	Yolanda	November 08, 2013	100Yr
59	11.1424	125.3770	6.33	0.8	5.53	Yolanda	November 08, 2013	100Yr
60	11.1425	125.3770	5.24	0.6	4.64	Yolanda	November 08, 2013	100Yr
62	11.1419	125.3780	3.23	0.1	3.13	Yolanda	November 08, 2013	100Yr
63	11.1423	125.3790	2.81	0.6	2.21	Yolanda	November 08, 2013	100Yr
64	11.1426	125.3790	2.87	1.0	1.87	Yolanda	November 08, 2013	100Yr
65	11.1416	125.3790	2.58	0.0	2.58	Yolanda	November 08, 2013	100Yr
66	11.1414	125.3790	2.68	0.8	1.88	Yolanda	November 08, 2013	100Yr
67	11.1412	125.3780	2.95	0.5	2.45	Yolanda	November 08, 2013	100Yr
68	11.1398	125.3790	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
69	11.1394	125.3790	0.43	0.0	0.43	Yolanda	November 08, 2013	100Yr
70	11.1395	125.3790	0.04	0.0	0.04	Yolanda	November 08, 2013	100Yr
71	11.1393	125.3790	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
72	11.1397	125.3780	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
73	11.1400	125.3780	0.04	0.0	0.04	Yolanda	November 08, 2013	100Yr
74	11.1400	125.3780	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
75	11.1406	125.3780	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
76	11.1413	125.3770	5.44	1.0	4.44	Yolanda	November 08, 2013	100Yr
77	11.1422	125.3770	6.75	1.6	5.15	Yolanda	November 08, 2013	100Yr
79	11.1385	125.3790	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
80	11.1383	125.3790	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
81	11.1369	125.3800	0.03	0.0	0.03	Yolanda	November 08, 2013	100Yr
82	11.1255	125.3860	2.01	0.1	1.91	Yolanda	November 08, 2013	100Yr
83	11.1225	125.3870	2.01	1.4	0.61	Yolanda	November 08, 2013	100Yr
84	11.1209	125.3860	2.01	1.1	0.91	Yolanda	November 08, 2013	100Yr
85	11.1200	125.3870	0.50	0.0	0.5	Yolanda	November 08, 2013	100Yr
86	11.1186	125.3870	1.18	0.0	1.18	Yolanda	November 08, 2013	100Yr
87	11.1188	125.3870	2.42	0.1	2.32	Yolanda	November 08, 2013	100Yr
89	11.1192	125.3880	1.21	0.4	0.81	Yolanda	November 08, 2013	100Yr
91	11.1188	125.3880	0.08	0.0	0.08	Yolanda	November 08, 2013	100Yr
92	11.1186	125.3880	1.03	0.6	0.43	Yolanda	November 08, 2013	100Yr
93	11.1038	125.3970	0.38	0.1	0.28	Yolanda	November 08, 2013	100Yr
94	11.1040	125.3960	0.37	2.2	-1.83	Yolanda	November 08, 2013	100Yr
95	11.1044	125.3960	0.46	0.5	-0.04	Yolanda	November 08, 2013	100Yr
96	11.1053	125.3940	0.29	0.1	0.19	Yolanda	November 08, 2013	100Yr
97	11.1071	125.3950	0.04	0.0	0.04	Yolanda	November 08, 2013	100Yr
98	11.1075	125.3920	0.25	0.9	-0.65	Yolanda	November 08, 2013	100Yr
100	11.1079	125.3910	0.38	0.2	0.18	Yolanda	November 08, 2013	100Yr
101	11.1077	125.3910	0.57	0.2	0.37	Yolanda	November 08, 2013	100Yr
102	11.1066	125.3870	0.13	3.5	-3.37	Yolanda	November 08, 2013	100Yr
104	11.1065	125.3880	0.25	1.7	-1.45	Yolanda	November 08, 2013	100Yr
105	11.1064	125.3880	0.51	1.4	-0.89	Yolanda	November 08, 2013	100Yr
107	11.1064	125.3890	0.35	1.2	-0.85	Yolanda	November 08, 2013	100Yr
108	11.1062	125.3900	0.31	5.0	-4.69	Yolanda	November 08, 2013	100Yr
112	11.1059	125.3920	0.47	1.5	-1.03	Yolanda	November 08, 2013	100Yr

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
114	11.1071	125.3880	0.68	1.0	-0.32	Yolanda	November 08, 2013	100Yr
116	11.1069	125.3890	0.82	0.8	0.02	Yolanda	November 08, 2013	100Yr
118	11.1069	125.3890	0.87	1.1	-0.23	Yolanda	November 08, 2013	100Yr
120	11.1074	125.3890	0.63	0.7	-0.07	Yolanda	November 08, 2013	100Yr
122	11.1075	125.3890	0.87	0.4	0.47	Yolanda	November 08, 2013	100Yr
124	11.1068	125.3863	0.04	2.0	-1.96	Yolanda	November 08, 2013	100Yr
127	11.1074	125.3863	0.61	0.9	-0.29	Yolanda	November 08, 2013	100Yr
128	11.1077	125.3854	0.41	0.9	-0.49	Yolanda	November 08, 2013	100Yr
129	11.1081	125.3850	0.03	0.9	-0.87	Yolanda	November 08, 2013	100Yr
130	11.1080	125.3853	0.40	0.9	-0.5	Yolanda	November 08, 2013	100Yr
131	11.1080	125.3853	0.40	0.5	-0.1	Yolanda	November 08, 2013	100Yr
133	11.1081	125.3866	0.30	0.3	0	Yolanda	November 08, 2013	100Yr
134	11.1077	125.3871	0.33	0.9	-0.57	Yolanda	November 08, 2013	100Yr
135	11.1081	125.3873	0.51	0.3	0.21	Yolanda	November 08, 2013	100Yr
136	11.1085	125.3879	0.42	0.0	0.42	Yolanda	November 08, 2013	100Yr
137	11.1082	125.3897	0.35	0.9	-0.55	Yolanda	November 08, 2013	100Yr
139	11.1081	125.3902	0.24	0.5	-0.26	Yolanda	November 08, 2013	100Yr
140	11.1081	125.3902	0.32	0.5	-0.18	Yolanda	November 08, 2013	100Yr
141	11.1083	125.3906	0.54	0.5	0.04	Yolanda	November 08, 2013	100Yr
142	11.1087	125.3907	0.16	0	0.16	Yolanda	November 08, 2013	100Yr
143	11.1089	125.3870	0.03	0	0.03	Yolanda	November 09, 2013	100Yr
144	11.1094	125.3870	0.25	0	0.25	Yolanda	November 10, 2013	100Yr
145	11.1097	125.3860	0.37	0	0.37	Yolanda	November 11, 2013	100Yr
146	11.1098	125.3857	1.11	1.5	-0.39	Yolanda	November 08, 2013	100Yr

Point Num- ber	Valio Cooro (in W	lation linates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
147	11.1101	125.3850	0.03	1	-0.97	Yolanda	November 08, 2013	100Yr
148	11.1096	125.3851	0.03	1.5	-1.47	Yolanda	November 08, 2013	100Yr
149	11.1092	125.3850	0.11	2	-1.89	Yolanda	November 08, 2013	100Yr
150	11.1100	125.3854	1.1	1	0.1	Yolanda	November 08, 2013	100Yr
151	11.1107	125.3856	1.1	0.5	0.6	Yolanda	November 08, 2013	100Yr
152	11.1108	125.3857	1.18	0.3	0.88	Yolanda	November 08, 2013	100Yr
153	11.1110	125.3857	1.93	3	-1.07	Yolanda	November 08, 2013	100Yr
154	11.1111	125.3855	1.26	0	1.26	Yolanda	November 08, 2013	100Yr
155	11.1114	125.3858	0.93	0.5	0.43	Yolanda	November 08, 2013	100Yr
157	11.1112	125.3870	0.9	0.5	0.4	Yolanda	November 08, 2013	100Yr
159	11.1108	125.3868	0.68	0	0.68	Yolanda	November 08, 2013	100Yr
160	11.1106	125.3869	0.67	0	0.67	Yolanda	November 08, 2013	100Yr
161	11.1097	125.3865	0.03	0.1	-0.07	Yolanda	November 08, 2013	100Yr
162	11.1099	125.3865	0.25	0.1	0.15	Yolanda	November 08, 2013	100Yr
163	11.1102	125.3867	0.57	0.1	0.47	Yolanda	November 08, 2013	100Yr
164	11.1103	125.3864	0.41	0.1	0.31	Yolanda	November 08, 2013	100Yr
165	11.1112	125.3863	0.49	0.1	0.39	Yolanda	November 08, 2013	100Yr
166	11.1114	125.3863	0.25	0.2	0.05	Yolanda	November 08, 2013	100Yr
167	11.1115	125.3864	0.31	0	0.31	Yolanda	November 08, 2013	100Yr
168	11.1120	125.3865	0.45	0.3	0.15	Yolanda	November 08, 2013	100Yr
169	11.1113	125.3865	0.63	0.1	0.53	Yolanda	November 08, 2013	100Yr
170	11.1105	125.3874	1.82	0.1	1.72	Yolanda	November 08, 2013	100Yr
171	11.1105	125.3877	0.38	0.1	0.28	Yolanda	November 08, 2013	100Yr
172	11.1105	125.3878	0.33	0.1	0.23	Yolanda	November 08, 2013	100Yr

Point Num- ber	Valio Cooro (in W	dation dinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
173	11.1113	125.3879	0.76	0.5	0.26	Yolanda	November 08, 2013	100Yr
174	11.1117	125.3878	0.74	0	0.74	Yolanda	November 08, 2013	100Yr
177	11.1103	125.3871	0.53	0	0.53	Yolanda	November 08, 2013	100Yr
178	11.1100	125.3869	0.35	0	0.35	Yolanda	November 08, 2013	100Yr
179	11.1101	125.3873	0.03	2	-1.97	Yolanda	November 08, 2013	100Yr
182	11.1094	125.3871	0.03	0	0.03	Yolanda	November 08, 2013	100Yr
183	11.1089	125.3870	0.03	0.1	-0.07	Yolanda	November 08, 2013	100Yr
184	11.1087	125.3870	0.33	0.2	0.13	Yolanda	November 08, 2013	100Yr
185	11.1085	125.3869	0.03	0.1	-0.07	Yolanda	November 08, 2013	100Yr
186	11.1082	125.3866	0.03	0.1	-0.07	Yolanda	November 08, 2013	100Yr

Annex 12. Educational Institutions Affected by Flooding in Balangiga Floodplain

Table A-12.1 Educational institutions in Balangiga,	Eastern Samar affected by flooding in Balangiga
Floodplain	

EASTERN SAMAR								
BALANGIGA								
Building Name	1	Rainfall Sce	nario					
		5-year	25-year	100-year				
Balangiga National Agricultural School (TESDA)	Barangay Poblacion II	Low	Medium	Medium				
Brgy. 1, Day Care Center	Barangay Poblacion II		Medium	Medium				
Southern Samar National Comprehensive High School	Barangay Poblacion II	Medium	Medium	Medium				
Balangiga National Agricultural School (TESDA)	Barangay Poblacion III	Low	Low	Medium				
Southern Samar National Comprehensive High School	Barangay Poblacion III	Low	Low	Low				
Brgy. 6, Day Care Center	Barangay Poblacion IV	Low	Medium	Medium				
Balangiga Central elementary School	Barangay Poblacion V			Low				
Balangiga Central Elementary School	Barangay Poblacion V			Low				
Brgy. 2, Day Care Center	Barangay Poblacion V	Low	Medium	High				
Brgy. 5 , Day Care Center	Barangay Poblacion V		Low	Low				
San Miguel Barangay Elementary School	San Miguel	Low	Medium	Medium				
San Miguel Day Care Center	San Miguel			Low				
Brgy. Sta. Rosa DayCare Center	Santa Rosa							
Sta. Rosa Elementary School	Santa Rosa							

Annex 13. Health Institutions affected by flooding in Balangiga Floodplain

EASTERN SAMAR						
BALANGIGA						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Albino M. Duran Memorial Hospital	Barangay Poblacion V		Low	Medium		

Table A-13.1 Health institutions in Balangiga, Eastern Samar affected by flooding in Balangiga Floodplain