Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Sapangdaku River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR-1)

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Sapangdaku River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-154pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-187-4

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR-1)

TABLE OF CONTENTS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SAPANGDAKU RIVER	8		
1.1 Background of the Phil-LIDAR 1 Program			
1.2 Overview of the Sapangdaku River Basin	8		
CHAPTER 2: LIDAR DATA ACQUISITION OF THE SAPANGDAKU FLOODPLAIN	. 10		
2.1 Flight Plans	10		
2.2 Ground Base Station	12		
2.3 Flight Missions	20		
2.4. Survey Coverage	21		
CHAPTER 3: LIDAR DATA PROCESSING OF THE SAPANGDAKU FLOODPLAIN	23		
3.1 Overview of the LIDAR Data Pre-Processing	23		
3.2 Transmittal of Acquired LiDAR Data	24		
3.3 Trajectory Computation	24		
3.4 LiDAR Point Cloud Computation	26		
3.5 LiDAR Data Quality Checking	26		
3.6 LiDAR Point Cloud Classification and Rasterization	. 30		
3.7 LiDAR Image Processing and Orthophotograph Rectification	. 32		
3.8 DEM Editing and Hydro-Correction	33		
3.9 Mosaicking of Blocks	35		
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	. 37		
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	40		
3.12 Feature Extraction	41		
3.12.1 Quality Checking of Digitized Features' Boundary	. 42		
3.12.2 Height Extraction	42		
3.12.3 Feature Attribution	43		
3.12.4 Final Quality Checking of Extracted Features	44		
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF SAPANGDAKU RIVER BASIN.	. 45		
4.1 Summary of Activities	45		
4.2 Control Survey	47		
4.3 Baseline Processing	51		
4.4 Network Adjustment	53		
4.5 Cross-section and Bridge As-Built Survey, and Water Level Marking	55		
4.6 Validation Points Acquisition Survey	59		
4.7 Bathymetric Survey	62		
CHAPTER 5: FLOOD MODELING AND MAPPING	66		
5.1 Data used in Hydrologic Modeling	66		
5.1.1 Hydrometry and Bating Curves	66		
5.1.2 Precipitation	66		
5.1.3 Rating Curve and River Outflow	67		
5.2 RIDE Station	68		
5.3 HMS Model	69		
5.4 Cross-section Data	72		
5.5 Elo 2D Model	73		
5.6 Results of HMS Calibration	74		
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall	, .		
Return Periods	77		
5.7.1 Hydrograph using the Rainfall Runoff Model	77		
5.8 River Analysis Model Simulation	78		
5.9 Flood Hazard and Flow Denth Man	78		
5 10 Areas Exposed to Flooding	85		
5 11 Flood Validation	92		
REFERENCES	93		
ANNEXES	94		
Annex 1 Ontech Technical Specification of the Pegasus Sensor	9 <u>/</u>		
Annex 2. NAMRIA Certificates of Reference Points Llsed	95		
Annex 3 Baseline Processing Reports of Control Points used in the LIDAR Survey	101		
Anney 1. The LiDAR Survey Team Composition	10/		
Annex 5. Data Transfer Sheets	115		
Annov 6 FUGHT LOGS	100		
Annov 7 Elight Status Doport	110		
AIIIIEX /. FIIGHI SIGUS REPULL	тто		

Annex 8. Mission Summary Report	. 124
Annex 9. Sapangdaku Model Basin Parameters	. 149
Annex 10. Sapangdaku Model Reach Parameters	. 151
Annex 11. Sapangdaku Flood Validation Data	. 152
Annex 12. Educational Institutions Affected in Sapangdaku Floodplain	. 154
Annex 13. Health Institutions Affected in Sapangdaku Floodplain	. 154

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system	10
Table 2. Details of the recovered NAMRIA horizontal control point CBU-95 used as base	
station for the LIDAR Acquisition.	14
Table 3. Details of the recovered NAIVIRIA norizontal control point CBU-11 used as base	4 -
station for the LIDAR Acquisition.	15
Table 4. Details of the recovered NAIVIRIA nonzontal control point CBU-293 used as base	16
Station for the LIDAR Acquisition.	10
station for the LiDAR Acquisition	17
Table 6. Details of the recovered NAMRIA borizontal control point CLI-340 used as base	1/
station for the LiDAR Acquisition	18
Table 7 Details of the recovered NAMRIA horizontal control point CLI-784 used as base	10
station for the LiDAR Acquisition.	19
Table 8. Details of the recovered NAMRIA horizontal control point CU-1322 used as base	
station for the LiDAR Acquisition.	19
Table 9. Ground control used during LiDAR data acquisition	20
Table 10. Flight missions for LiDAR data acquisition in Sapangdaku Floodplain	20
Table 11. Actual parameters used during LiDAR data acquisition	20
Table 12. List of municipalities and cities surveyed during Sapangdaku Floodplain LiDAR survey.	21
Table 13. Self-Calibration Results values for Sapangdaku flights	26
Table 14. List of LiDAR blocks for Sapangdaku Floodplain	27
Table 15. Sapangdaku classification results in TerraScan	30
Table 16. LiDAR blocks with its corresponding area.	34
Table 17. Shift Values of each LiDAR Block of Sapangdaku Floodplain	35
Table 18. Calibration Statistical Measures.	39
Table 19. Validation Statistical Measures.	40
Table 20. Quality Checking Ratings for Sapangdaku Building Features	42
Table 21. Building Features Extracted for Sapangdaku Floodplain	43
Table 22. Total Length of Extracted Roads for Sapangdaku Floodplain.	43
Table 23. Number of Extracted Water Bodies for Sapangdaku Floodplain	44
Table 24. List of reference and control points used in Sapangdaku River Basin survey	49
Table 25. Baseline Processing Report for Sapanguaku River Static Survey	52
Table 27. Adjusted Grid Coordinates	52
Table 28. Adjusted Geodetic Coordinates	57
Table 29. Reference and control points and its location (Source: NAMRIA LIP-TCAGP)	55
Table 30. RIDE values for Mactan Points and its location (Source: MAMMA, OF TEACH)	68
Table 31. Range of calibrated values for Sanangdaku Watershed	75
Table 32. Summary of the Efficiency Test of Sapangdaku HMS Model	76
Table 33. Peak values of the Sapangdaku HECHMS Model outflow using the Dumaguete RIDF	77
Table 34. Municipalities affected in Sapangdaku Floodplain	78
Table 35. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period	86
Table 36. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period	86
Table 37. Affected Areas in Toledo City, Cebu during 25-Year Rainfall Return Period	88
Table 38. Affected Areas in Toledo City, Cebu during 25-Year Rainfall Return Period	88
Table 39. Affected Areas in Toledo City, Cebu during 100-Year Rainfall Return Period	90
Table 40. Affected Areas in Toledo City, Cebu during 100-Year Rainfall Return Period	90
Table 41. Area covered by each warning level with respect to the rainfall scenario	91
Table 42. Actual flood vs simulated flood depth of Sapangdaku River Basin.	93
Table 43. Summary of the Accuracy Assessment in the Sapangdaku River Basin Survey	93

LIST OF FIGURES

Figure 1. Map of Sapangdaku River Basin (in brown) Figure 2. Flight plans and base stations used for Sapangdaku Floodplain	
Figure 3. GPS set-up over CBU-95 on the center top of convex concrete shell of water	
tank in Barangay Canbanua, Argao, Cebu (a) and NAMRIA reference point CBU-	95 (b)
as recovered by the field team	
Figure 4. GPS set-up over CBU-11 on the roof top of the 75 feet concrete tower of Metro	
Cebu Fire Station, Cebu City Proper (a) and NAMRIA reference point CBU-11 (b) as
recovered by the field team	13
Figure 5. GPS set-up over CBU-293 inside the premises of Cantabaco National High School	bl
in Barangay Cantabaco, Toledo City, Cebu (a) and NAMRIA reference point CBU	-293 (b)
as recovered by the field team	14
Figure 6. GPS set-up over CBU-296 near a basketball court and a concrete fence in Baran	gay
Zaragosa, Aloguinsan, Cebu (a) and NAMRIA reference point CBU-296 (b)	
as recovered by the field team	15
Figure 7. GPS set-up over CU-340 in aconcrete sidewalk at the end of Dalaguete bridge	,
in Barangay Balud, Dalaguete, Cebu (a) and NAMRIA reference point CU-340 (b)
as recovered by the field team	
Figure 8. GPS set-up over CU-784 at the end of Balud bridge in Barangay Balud, Toledo Ci	ty,
Cebu (a) and NAMRIA reference point CU-784 (b) as recovered by the field tear	n 1/
Figure 9. GPS set-up over CU-1322 on a bridge near Gaisano Mail Carcar in Barangay Libu	iron,
Carcar City, Cebu (a) and NAIVIRIA reference point CO-1322 (b) as recovered	10
Dy life field ledifi	10
Figure 10. Actual LIDAR Survey Coverage for Sabaliguaku Fiooupiani	
Figure 12. Schematic Diagram for Data FIE-Frocessing Component	
Figure 12. Solution Status Parameters of Sanangdaku Elight 1785D	
Figure 14. Best Estimated Trajectory for Sapangdaku Floodnlain	
Figure 15, Boundary of the processed LiDAR data over Sanangdaku Floodplain	
Figure 16. Image of data overlan for Sanangdaku Floodnlain	28
Figure 17. Pulse density map of merged LiDAR data for Sapangdaku Floodplain	
Figure 18. Elevation difference man between flight lines for Sapangdaku Eloodplain	29
Figure 19. Quality checking for Sapangdaku Flight 1785P.	
Figure 20. Tiles for Sapangdaku Floodplain (a) and classification results (b) in TerraScan	
Figure 21. Point cloud before (a) and after (b) classification.	
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c)	
and secondary DTM (d) in some portion of Sapangdaku Floodplain	32
Figure 23. Sapangdaku Floodplain with available orthophotographs	33
Figure 24. Sample orthophotograph tiles for Sapangdaku floodplain	33
Figure 25. Portions in the DTM of Sapangdaku floodplain – a bridge before (a)	
and after (b) manual editing; and a paddy field before (c) and after (d) data ret	trieval.34
Figure 26. Map of Processed LiDAR Data for Sapangdaku Floodplain	
Figure 27. Map of Sapangdaku Floodplain with validation survey points in green.	38
Figure 28. Correlation plot between calibration survey points and LiDAR data	39
Figure 29. Correlation plot between validation survey points and LiDAR data.	40
Figure 30. Map of Supangdaku Floodplain with bathymetric survey points shown in blue.	
Figure 31. QC blocks for Sapangdaku building features.	
Figure 32. Extracted features for Sapangdaku Floodplain.	
Figure 33. Sapangdaku River Survey Extent	46
Figure 34. GNSS Network covering Sapangdaku River	48
Figure 35. GNSS receiver set-up, Trimble [®] SPS 852, at CBU-293 in front of Cantabaco	
National High School in Brgy. Cantabaco, Toledo City, Cebu	49
Figure 36. GNSS receiver setup, Trimble [®] Zephyr [™] Model 2, at CU-784 Balud Bridge appr	oach
in Brgy. Balud. Toledo City. Cebu	50
Figure 37, GNSS receiver set-up, Trimble [®] Zephyr ™ Model 2, at CBU-3614, Lapu-lapu Brid	lge
approach in Brgy Pohlacion Municipality of Asturias Cebu	50
Figure 38 GNSS receiver set-up Trimble [®] Zenbyr™ Model 2 at CU-552 along the national	al
highway in Bray Cantuod Balamban Cobu	
Figure 20, CNSS receiver set up. Trimble® Zeabur ™ Medel 2, at control paint UD.	
Figure 55. Gives receiver set-up, minute Zephyr ir iviodel 2, at control point UP-ILI	F 4
In the approach of himan Foot Bridge in Brgy. Illnan, Toledo City, Cebu	
Figure 40. Bridge as-built and cross-section survey at the downstream side of Ilihan	
Foot Bridge in Brgy. Ilihan, Toledo City, Cebu	55
Figure 41. Location map of Sapangdaku Bridge cross-section survey	
Figure 42. Sapangdaku Bridge Cross-section Diagram	

Figure 43.	Sapangdaku Bridge Data Form	. 58
Figure 44.	Water level marking using a Digital Level at Ilihan Foot Bridge, Brgy. Ilihan	
	Toledo City	. 59
Figure 45.	Validation points acquisition survey set-up	60
Figure 46.	LiDAR Validation points acquisition survey for Sapangdaku River Basin	61
Figure 47.	Manual bathymetry along Sapangdaku River	62
Figure 48.	Bathymetric survey using Ohmex [™] Echo Sounder along Sapangdaku River	63
Figure 49.	Bathymetric survey of Sapangdaku River	. 64
Figure 50.	Sapangdaku Riverbed Profile	. 65
Figure 51.	Location map of Sapangdaku HEC-HMS model used for calibration.	66
Figure 52.	Cross-Section Plot of Sapangdaku Bridge	. 67
Figure 53.	Rating curve at Ilihan Bridge in Ocoy River	. 67
Figure 54.	Rainfall and outflow data at Ilihan Bridge used for modeling	68
Figure 55.	Location of Mactan Point RIDF Station relative to Sapangdaku River Basin	69
Figure 56.	Synthetic storm generated for a 24-hr period rainfall for various return periods	69
Figure 57.	Soil map of the Sapangdaku River Basin used for the estimation of the CN	
-	parameter. (Source: DA)	. 70
Figure 58.	Land cover map of Sapangdaku River Basin used for the estimation of the Curve	
-	Number (CN) and the watershed lag parameters of the rainfall-runoff model	70
Figure 59.	Slope map of Sapangdaku River Basin	. 71
Figure 60.	Stream delineation map of Sapangdaku River Basin	. 71
Figure 61.	HEC-HMS generated Sapangdaku River Basin Model.	72
Figure 62.	River cross-section of Sapangdaku River generated through Arcmap HEC GeoRAS	
-	tool	. 73
Figure 63.	Screenshot of subcatchment with the computational area to be modeled	
	in FLO-2D GDS Pro	. 74
Figure 64.	Outflow Hydrograph of Sapangdaku produced by the HEC-HMS model	
	compared with observed outflow.	. 75
Figure 65.	Outflow hydrograph at Ilihan Bridge, Toledo City generated using Mactan Point	
	RIDF simulated in HEC-HMS	. 77
Figure 66.	Sample output of Sapangdaku RAS Model	. 78
Figure 67.	100-year Flood Hazard Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 79
Figure 68.	100-year Flow Depth Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 80
Figure 69.	25-year Flood Hazard Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 81
Figure 70.	25-year Flow Depth Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 82
Figure 71.	5-year Flood Hazard Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 83
Figure 72.	5-year Flood Depth Map for Sapangdaku Floodplain overlaid on Google	
	Earth imagery	. 84
Figure 73.	Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period	87
Figure 74.	Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period	89
Figure 75.	Affected Areas in Toledo City, Cebu during 100-Year Rainfall Return Period	91
Figure 76.	Sapangdaku River Basin Flood Validation Points	92
Figure 77.	Flood map depth vs. actual flood depth	. 93

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SAPANGDAKU RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Sapangdaku River Basin

Sapangdaku River Basin covers two (2) municipalities and three (3) cities in the central part of the Province of Cebu. A huge portion of the catchment of Sapangdaku River drains to the City of Toledo, while small portions cover Balamban, Cebu City, Talisay City, Minglanilla and Naga City. According to the DENR River Basin Control Office Sapangdaku River Basin has a drainage area of 147 km² and an estimated 88 million cubic meter (MCM) annual run-off (RCBO, 2015). The catchment is classified under Type III weather in the Corona climate classification and experiences dry season from November to April and wet season for the other months of the year.

Its main stem, Sapangdaku River, also known as Hinulawan river, is one of the river systems in Visayas Region. Its main river stream network passes along ten (10) barangays in Toledo City. According to the Philippine Statistics Authority Census, an estimated 41,137 people are residing within the immediate vicinity of the river which is distributed among the 10 barangays in 2010.

Meanwhile, Toledo City, which is mostly affected by the flooding of Sapangdaku river, is a 3rd income class component city and was previously known as Pueblo Hinulawan. It has a population of 170,335. Mining industry is prominent in the area and it is where we can find Carmen Copper Corporation. Malubog Lake and Biga Pit are part of the Sapangdaku catchment.

In addition, most of the livelihood of the population in Western Cebu including the areas surrounding the river are the extraction, consumption, and management of coastal and marine resources found in their province. Threats of typhoons and potential flooding are a challenge to the residents' source of income, wherein the most recent flooding event in the area was brought by Typhoon Seniang on December 2014.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SAPANGDAKU FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, Jeriel Paul A. Alamban, Geol.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Sapangdaku floodplain in Cebu. These missions were planned for 16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Sapangdaku floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHZ)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK36E	1000, 1200	30	50	200	30	130	5
BLK36F	1000, 1200	30	50	200	30	130	5
BLK36G	1000, 1200	30	50	200	30	130	5
BLK36H	1000, 1200	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system.

Figure 2. Flight plans and base stations used for Sapangdaku Floodplain

2.2 Ground Base Station

The project team was able to recover four (4) NAMRIA ground control points: CBU-95 which is of first (1st) order accuracy, and CBU-11, CBU-293 and CBU-296 which are of second (2nd) order accuracy. Three (3) NAMRIA benchmark were also recovered: CU-340, CU-784 and CU-1322 which are of first (1st) order accuracy. This benchmark was used as vertical reference point and was also established as ground control point. The certifications for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (July 22 and 30, August 1, 2 and 13, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Sapangdaku floodplain are shown in Figure 2.

Figure 3 to Figure 9 show the recovered NAMRIA control station within the area, in addition Table 2 to Table 8 show the details about the following NAMRIA control stations and established points, Table 9 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

(a)

Figure 3. GPS set-up over CBU-95 on the center top of convex concrete shell of water tank in Barangay Canbanua, Argao, Cebu (a) and NAMRIA reference point CBU-95 (b) as recovered by the field team

	-		
Station Name	CBU-95		
Order of Accuracy	1 st		
Relative Error (horizontal positioning)	1 in 100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 9° 53' 12.1201 Longitude 123° 35' 25.306 Ellipsoidal Height 53.60100 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	564,747.93 m 1,093,256.973 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 53' 8.07702" North 123° 36' 30.59401" East 115.55540 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	564,725.27 m 1,092,874.31 m	

Table 2. Details of the recovered NAMRIA horizontal control point CBU-95 used as base station for the LiDAR Acquisition

(a)

Figure 4. GPS set-up over CBU-11 on the roof top of the 75 feet concrete tower of Metro Cebu Fire Station, Cebu City Proper (a) and NAMRIA reference point CBU-11 (b) as recovered by the field team.

	r		
Station Name	CBU-11		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 17′ 56.00367″ 123° 53′ 26.63633″ 44.27700 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	597,568.76 m 1,138,921.917 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 17' 51.88109" North 125° 53' 31.88503" East 106.03300 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	597,534.61 m 1,138,523.27 m	

Table 3. Details of the recovered NAMRIA horizontal control point CBU-11 used as base station for the LiDAR Acquisition

(a)

Figure 5. GPS set-up over CBU-293 inside the premises of Cantabaco National High School in Barangay Cantabaco, Toledo City, Cebu (a) and NAMRIA reference point CBU-293 (b) as recovered by the field team

	P		
Station Name	CBU-293		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 18' 32.84815" 123° 43' 15.51183" 289.625 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	578,970.41 m 1,140,007.158 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 18' 28.70835" North 123° 43' 20.76082" East 350.938 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	578,942.77 m 1,139,608.14 m	

Table 4. Details of the recovered NAMRIA horizontal control point CBU-293 used as base station for the LiDAR Acquisition

(a)

Figure 6. GPS set-up over CBU-296 near a basketball court and a concrete fence in Barangay Zaragosa, Aloguinsan, Cebu (a) and NAMRIA reference point CBU-296 (b) as recovered by the field team.

Station Name	CBU-296		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 10′ 2.93937″ 123° 35′ 54.77903″ 144.990 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	565,589.364 m 1,124,313.588 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 9′ 58.82504″ North 123° 36′ 0.04167″ East 206.327 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	565,692.642 m 1,123,854.689 m	

Table 5. Details of the recovered NAMRIA horizontal control point CBU-296 used as base station for the LiDAR Acquisition

(a)

Figure 7. GPS set-up over CU-340 in aconcrete sidewalk at the end of Dalaguete bridge in Barangay Balud, Dalaguete, Cebu (a) and NAMRIA reference point CU-340 (b) as recovered by the field team.

Station Name	CU-340				
Order of Accuracy		1 st			
Relative Error (horizontal positioning)	1 in 100,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 45′ 58.58693″ 123° 31′ 54.56064″ 10.395 m			
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	558,384.358 m 1,079,936.601 m			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 45' 54.56965" North 123° 31' 59.85960" East 72.475 m			
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	558,328.0075 m 1,079,549.213 m			

Table 6. Details of the recovered NAMRIA horizontal control point CU-340 used as base station for the LiDAR Acquisition

Figure 8. GPS set-up over CU-784 at the end of Balud bridge in Barangay Balud, Toledo City, Cebu (a) and NAMRIA reference point CU-784 (b) as recovered by the field team.

Station Name	CU-784			
Order of Accuracy	1 st			
Relative Error (horizontal positioning)	1 in 100,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude	10° 20′ 31.55040″		
	Longitude	123° 40′ 25.52663″		
	Ellipsoidal Height	60.2685 m		
Grid Coordinates, Philippine Transverse	Easting 573,882.788 m			
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing 1,143,653.145 r			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude	10° 20' 27.39793" North		
	Longitude	125° 40' 30.77278" East		
	Ellipsoidal Height	121.3885 m		
Crid Coordinates, Universal Transverse	Facting	F72 764 72 m		
Grid Coordinates, Universal Transverse	Easting	5/5,/04./2 11		
Mercator Zone 51 North (UTM 51N PRS 1992)	Northing	1,143,242.558 m		

Table 7. Details of the recovered NAMRIA horizontal control point CU-784 used as base station for the LiDAR Acquisition

(a)

Figure 9. GPS set-up over CU-1322 on a bridge near Gaisano Mall Carcar in Barangay Liburon, Carcar City, Cebu (a) and NAMRIA reference point CU-1322 (b) as recovered by the field team

Station Name	CU-1322		
Order of Accuracy			
Relative Error (horizontal positioning)			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 07′ 23.08378″ 123° 38′ 15.19077″ 49.078 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	569,906.791 m 1,119,420.541 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 07' 18.98416" North 123° 38' 20.45712" East 110.613 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	569,848.6915 m 1,119,018.663 m	

Table 8. Details of the recovered NAMRIA horizontal control point CU-1322 used as base station for the LiDAR Acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 22, 2014	1741P	1BLK36H203A	CBU-95 and CU-340
July 22, 2014	1743P	1BLK36H203B	CBU-95 and CU-340
July 30, 2014	1777P	1BLK36E212A	CBU-293 and CU-784
July 30, 2014	1779P	1BLK36E212B	CBU-293 and CU-784
August 1, 2014	1781P	1BLK36F213A	CBU-296 and CU-1322
August 2, 2014	1785P	1BLK36GF214A	CBU-296 and CU-1322
August 2, 2014	1787P	1BLK36G214B	CBU-296 and CU-1322
August 13, 2014	1829P	1BLK36H47A225A	CBU-11

Table 9. Ground control used during LiDAR data acquisition

2.3 Flight Missions

Eight (8) missions were conducted to complete the LiDAR data acquisition in Sapangdaku floodplain, for a total of twenty-eight hours and fifty-three minutes (28+53) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 11 shows the actual parameters used during the LiDAR data acquisition.

Dete		Flight	Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Date Surveyed	Number	Area (km²)	Area (km²)	within the Floodplain (km ²)	Outside the Floodplain (km ²)	Images (Frames)	Hr	Min
July 22, 2014	1741P	278.12	186.66	NA	186.66	NA	4	12
July 22, 2014	1743P	278.12	182.89	NA	182.89	NA	2	52
July 30, 2014	1777P	240.48	261.24	31.20	230.04	NA	4	12
July 30, 2014	1779P	240.48	229.13	0.06	229.07	NA	3	47
August 1, 2014	1781P	1084.32	232.23	0.06	232.17	NA	3	36
August 2, 2014	1785P	1084.32	363.48	15.69	347.79	NA	4	5
August 2, 2014	1787P	228.59	263.07	NA	263.07	NA	3	54
August 13, 2014	1829P	267.94	59.44	NA	59.44	NA	2	15
тот	AL	3702.37	1778.14	47.01	1731.13	NA	28	53

Table 10. Flight missions for LiDAR data acquisition in Sapangdaku Floodplain

Table 11. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHZ)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1741P	1000	30	50	200	30	130	5
1743P	1200	30	50	200	30	130	5
1777P	1000	30	50	200	30	130	5
1779P	1000	30	50	200	30	130	5
1781P	1000	30	50	200	30	130	5
1785P	1200	30	50	200	30	130	5
1787P	1000	30	50	200	30	130	5
1829P	1200	30	50	200	30	130	5

2.4. Survey Coverage

Sapangdaku floodplain is located in the province of Cebu with majority of the floodplain situated within the city of Toledo. The list of cities and municipalities surveyed, with at least one (1) square kilometer coverage, is shown in Table 12. The actual coverage of the LiDAR acquisition for Sapangdaku floodplain is presented in Figure 10.

Province	Municipality/City	Area of Municipality/ City	Total Area Surveyed	Percentage of Area Surveyed
	Alcantara	31.56	31.54	99.92%
	Alegria	100.37	28.31	28.20%
	Aloguinsan	65.65	30.46	46.40%
	Argao	199.38	147.24	73.85%
	Asturias	252.52	17.77	7.04%
	Badian	105.71	76.89	72.74%
	Balamban	236.29	55.93	23.67%
	Barili	116.51	97.26	83.48%
	Carcar City	85.08	72.54	85.26%
	Cebu City	290.59	17.29	5.95%
	Dalaguete	116.17	7.97	6.86%
Cebu	Dumanjug	81.01	80.99	99.98%
	Mandaue City	31	1.57	5.08%
	Moalboal	81.08	72.72	89.70%
	Naga City	98.77	50.84	51.48%
	Pinamungahan	108.99	47.17	43.28%
	Ronda	42.48	42.42	99.87%
	San Fernando	76.46	75.9	99.27%
	Sibonga	120.92	115.94	95.88%
	Talisay City	48.91	1.1	2.25%
	Toledo City	214.07	164.54	76.86%
	Total	2503.52	1236.39	49.39%

Table 12. List of municipalities and cities surveyed during the Ocoy Floodplain LiDAR survey.

Figure 10. Actual LiDAR survey coverage for Sabangdaku Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE SAPANGDAKU FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Merven Mattew D. Natino , Engr. Ma. Joanne I. Balaga, Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Sapangdaku floodplain can be found in Annex 5. Missions flown during the first survey conducted on July 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system while missions acquired during the second survey on April were flown using the Aquarius system over Cebu and Bacolod.

The Data Acquisition Component (DAC) transferred a total of 213.24 Gigabytes of Range data, 2.17 Gigabytes of POS data, 343.54 Megabytes of GPS base station data, and 374.24 Gigabytes of raw image data to the data server on July 22, 2014 for the first survey and April 26, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Sapangdaku was fully transferred on May 20, 2016, as indicated on the Data Transfer Sheets for Sapangdaku floodplain.

3.3 Trajectory Computation

The *Smoothed Performance Metrics* of the computed trajectory for flight 1785P, one of the Sapangdaku flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 20, 2016 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Sapangdaku Flight 1785P.

The time of flight was from 519500 seconds to 531500 seconds, which corresponds to morning of August 2, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-

around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.15 centimeters, the East position RMSE peaks at 1.40 centimeters, and the Down position RMSE peaks at 2.70 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Sapangdaku Flight 1785P.

The Solution Status parameters of flight 1785P, one of the Sapangdaku flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 7 and 11. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sapangdaku flights is shown in Figure 14.

Figure 14. Best Estimated Trajectory for Sapangdaku Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 130 flight lines, with each flight line containing two channel, since the Pegasus systems contain two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Sapangdaku floodplain are given in Table 13.

	Parameter	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000199
MU Attitude Correction Roll and Pit	ch Corrections stdev (<0.001degrees)	0.001228
GPS Position Z-correction stdev	(<0.01meters)	0.0027

Table 13. Self-Calibration Results values for Sapangdaku flights.

The optimum accuracy is obtained for all Sapangdaku flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Sapangdaku Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Sapangdaku Floodplain

The total area covered by the Sapangdaku missions is 1,685.43sq.km that is comprised of nine (9) flight acquisitions grouped and merged into five (5) blocks as shown in Table 14.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Cabu DH-265	1777P	461.01	
CEDU_BIK30E	1779P	401.81	
	1781P		
Cebu_Blk36F	1785P	568.66	
_	1793P		
Cebu_Blk36H	1741P		
	1743P	355./1	
Cebu_Blk36G	1787P	264.15	
Cebu_Blk36H_supplement	1829P	35.10	
	TOTAL	1,685.43 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Since the Pegasus system employ two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Sapangdaku Floodplain.

The overlap statistics per block for the Sapangdaku floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 37.88% and 51.18% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Sapangdaku floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.49 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Sapangdaku Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas not be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Sapangdaku Floodplain.

A screen capture of the processed LAS data from a Sapangdaku flight 1785P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Sapangdaku Flight 1785P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,690,985,864
Low Vegetation	1,372,990,484
Medium Vegetation	2,997,808,159
High Vegetation	2,100,036,019
Building	89,247,490

Table 15. Sapangdaku classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Sapangdaku floodplain is shown in Figure 20. A total of 2055 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 998.24 meters and 46.63 meters respectively.

Figure 20. Tiles for Sapangdaku Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Sapangdaku Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,985 1km by 1km tiles area covered by Sapangdaku floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Sapangdaku floodplain has a total of 1,544.39 sq.km orthophotogaph coverage comprised of 4881 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

Figure 23. Sapangdaku Floodplain with available orthophotographs

Figure 24. Sample orthophotograph tiles for Sapangdaku floodplain

3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for Sapangdaku flood plain. These blocks are composed of Cebu blocks with a total area of 1,685.43 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Cebu_Blk36E	461.81
Cebu_Blk36F	568.66
Cebu_Blk36H	355.71
Cebu_Blk36G	264.15
Cebu_Blk36H_supplement	35.10
TOTAL	1,685.43 sq.km.

Portions of DTM before and after manual editing are shown in Figure 25. The bridge (Figure 25a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b) in order to hydrologically correct the river. The paddy field (Figure 25c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 25d) to allow the correct flow of water.

Figure 25. Portions in the DTM of Sapangdaku floodplain – a bridge before (a) and after (b) manual editing; and a paddy field before (c) and after (d) data retrieval.
3.9 Mosaicking of Blocks

Cebu_Blk36G was used as the reference block at the start of mosaicking because of the presence of more fixed built-up structures. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Sapangdaku floodplain is shown in Figure 26. It can be seen that the entire Sapangdaku floodplain is 100% covered by LiDAR data.

	. 0 1				
Mission Blocks	Shift Values (meters)				
	х	У	Z		
Cebu_Blk36E	0.00	0.00	-0.24		
Cebu_Blk36F	0.00	0.00	0.00		
Cebu_Blk36G	0.00	0.00	0.00		
Cebu_Blk36H	0.00	0.00	-0.03		
Cebu_Blk36H_supplement	0.00	0.00	-3.70		

Table 17. Shift Values of each LiDAR Block of Sapangdaku Floodplain.

Figure 26. Map of Processed LiDAR Data for Sapangdaku Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Sapangdaku to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 22,471 survey points were gathered for all the flood plains within the province of Cebu wherein the Sapangdaku floodplain is located. Random selection of 80% of the survey points, resulting to 17,977 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.55 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 0.55 meters, to the mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

Figure 27. Map of Sapangdaku Floodplain with validation survey points in green.

Figure 28. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.55
Standard Deviation	0.20
Average	-0.51
Minimum	-1.01
Maximum	-0.00005

Table 18. Calibration Statistical Measure

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 302 points, were used for the validation of calibrated Sapangdaku DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.13 meters with a standard deviation of 0.13 meters, as shown in Table 19.

Figure 29. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.13
Standard Deviation	0.13
Average	-0.01
Minimum	-0.24
Maximum	0.34

able 12. Validation otacistical measure

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, both centerline and zigzag data was available for Sapangdaku with 21,870 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.03 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Sapangdaku integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Supangdaku Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing

of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Sapangdaku floodplain, including its 200 m buffer, has a total area of 42.73 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1,634 building features, are considered for QC. Figure 31 shows the QC blocks for Sapangdaku floodplain.

Figure 31. QC blocks for Sapangdaku building features.

Quality checking of Sapangdaku building features resulted in the ratings shown in Table 20.

Tuble 201 Quality Cheering Tubles for Cupril Sentite Delivering Tenentes									
FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS					
Sapangdaku	100.00	100.00	93.45	PASSED					

Table 20. Quality Checking Ratings for Sapangdaku Building Features.

3.12.2 Height Extraction

Height extraction was done for 16,725 building features in Sapangdaku floodplain. Of these building features, 4,438 were filtered out after height extraction, resulting to 12,287 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 9.57 m.

3.12.3 Feature Attribution

In attribution, combination of participatory mapping and actual field validation was done. Representatives from LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	11,656
School	148
Market	9
Agricultural/Agro-Industrial Facilities	23
Medical Institutions	2
Barangay Hall	6
Military Institution	0
Sports Center/Gymnasium/Covered Court	5
Telecommunication Facilities	0
Transport Terminal	1
Warehouse	2
Power Plant/Substation	148
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	13
Bank	0
Factory	0
Gas Station	3
Fire Station	1
Other Government Offices	9
Other Commercial Establishments	261

Table 21. Building Features Extracted for Sapangdaku Floodplain.

Table 22. Total Length of Extracted Roads for Sapangdaku Floodplain.

Road Network Length (km)						
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Iotal
Sapangdaku	34.70	36.20	0	14.60	0	85.48

Eloodalain	Water Body Type					
Floodplain		Lakes/				Iotai
	Rivers/Streams	Ponds	Sea	Dam	Fish Pen	
Sapangdaku	4	2	0	0	0	6

Table 23. Number of Extracted Water Bodies for Sapangdaku Floodplain.

A total of 15 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Sapangdaku floodplain overlaid with its ground features.

Figure 32. Extracted features for Sapangdaku Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF SAPANGDAKU RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted field survey in Sapangdaku River on December 5-17, 2015 with the following scope of work: reconnaissance; control survey; cross-section survey, bridge as-built survey and water level marking in MSL of Ilihan Foot Bridge in Brgy. Ilihan, Toledo City; validation point acquisition survey of about 27 km covering Sapang-Dako river basin; and bathymetric survey from Brgy. Don Andres Soriano down to the mouth of the river in Brgy. Daang-Lungsod with an approximate length of 10.337 km using Hi-Target[™] echosounder and Trimble[®] SPS 882 GNSS PPK survey technique. The entire survey extent is shown in Figure 33.

Figure 33. Sapangdaku River Survey Extent

4.2 Control Survey

The GNSS network for this survey is composed of five (5) loops established on December 7, 2015 occupying the following reference points: CBU-293, a second order GCP located inside Cantabaco National High School in Brgy. Cantabaco, Toledo City; and, CU-784, a first order BM in Brgy. Balud, Toledo City.

One (1) control point was established along the approach of a bridge namely UP-ILI at Ilihan Bridge in Brgy. Ilihan, Toledo City. The control points CBU-3614, in Brgy. Poblacion, Municipality of Asturias; and, CU-552 in Brgy. Cantuod, Municipality of Balamban both established by NAMRIA, were also occupied to use as markers for the network.

The summary of reference and control points and its location is summarized in Table 24 while the GNSS network established is illustrated in Figure 34.

Figure 34. GNSS Network covering Sapangdaku River

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	BM Ortho (m)	Date Established		
CB11-203	2nd order,				_	2007		
CD0-255	GCP	10°18'28.70835"	123°43'20.76082"	350.838		2007		
CU-784	1st order,	-	-	121.354	58,767	2014		
	BM					2011		
CBU-	Used as	_	_	_	_	2007		
3614	marker	_	_	_	_	2007		
CU-552	used as	_	_	_	_	2003		
0-552	marker					2005		
UP-ILI	UP Established	_	-	-	-	12-7-2015		

Table 24. List of reference and control points used in Sapangdaku River Basin survey (Source: NAMRIA, UP-TCAGP)

The GNSS set-ups on recovered reference points and established control points in Balamban River are shown in Figure 35 to Figure 39.

Figure 35. GNSS receiver set-up, Trimble[®] SPS 852, at CBU-293 in front of Cantabaco National High School in Brgy. Cantabaco, Toledo City, Cebu

Figure 36. GNSS receiver setup, Trimble[®] Zephyr ™ Model 2, at CU-784 Balud Bridge approach in Brgy. Balud, Toledo City, Cebu

Figure 37. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at CBU-3614, Lapu-lapu Bridge approach in Brgy. Poblacion, Municipality of Asturias, Cebu

Figure 38. GNSS receiver set-up, Trimble[®] Zephyr ™ Model 2, at CU-552 along the national highway in Brgy. Cantuod, Balamban, Cebu

Figure 39. GNSS receiver set-up, Trimble[®] Zephyr ™ Model 2, at control point UP-ILI in the approach of Ilihan Foot Bridge in Brgy. Ilihan, Toledo City, Cebu

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly

processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Sapang-Dako River Basin is summarized in Table 25 generated by TBC software.

Observation	Date of	Solution	H. Prec.	V. Prec.	Geodetic	Ellipsoid	ΔHeight
	Observation	Туре	(Meter)	(Meter)	Az.	Dist.	(Meter)
011 704	12 7 2015	Fired	0.000	0.024	240845/16/	(Meter)	45.000
CU-784	12-7-2015	Fixed	0.006	0.034	340 45 16	4741.533	-45.998
UP-ILI (B1)							
CU-552	12-7-2015	Fixed	0.004	0.022	202°05′36″	16152.939	9.102
UP-ILI (B9)							
CBU-293	12-7-2015	Fixed	0.006	0.028	305°11′33″	6328.249	-229.449
CU-784 (B3)							
CU-784	12-7-2015	Fixed	0.006	0.042	10°56′41″	25772.836	-56.329
CBU3614							
(B6)							
CU784 CU-	12-7-2015	Fixed	0.004	0.021	13°03′37″	19960.518	-55.135
552 (B10)							
CBU-3614	12-7-2015	Fixed	0.005	0.026	183°44′41″	5872.324	1.233
CU-552 (B7)							
CBU-293	12-7-2015	Fixed	0.008	0.035	359°27′24″	28951.752	-285.917
CBU-3614							
(B4)							
CBU-293	12-7-2015	Fixed	0.006	0.022	358°22′03″	23100.039	-284.613
CU-552 (B8)							
CBU-293	12-7-2015	Fixed	0.004	0.019	320°20'42"	10551.869	-275.506
UP-ILI (B2)							
CBU-3614	12-7-2015	Fixed	0.004	0.027	197°13′50″	21805.194	10.384
LIP-ILL (B5)							

Table 25. Baseline Processing Report for Ocoy River Static Survey (Source: NAMRIA, UP-TCAGP)

As shown in Table 25, a total of ten (10) baselines were processed with reference point CBU-293 and CU-784 held fixed for coordinate and elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates (Table 27) of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 \ cm \ z_e < 10 \ cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 26 to Table 28 for the complete details.

The five (5) control points, CBU-293, CU-784, CBU-3614, CU-552 and UP-ILI were occupied and observed simultaneously to form a GNSS loop. Coordinates of CBU-293 and elevation value of CU-784 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)	
<u>CBU-293</u>	Global	Fixed	Fixed			
<u>CU-784</u>	Grid				Fixed	
Fixed = 0.000001(Meter)						

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. The fixed control point CBU-293 has no values for standard errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
<u>CBU-293</u>	579101.757	?	1139552.798	?	287.891	0.028	LL
<u>CBU-3614</u>	578761.189	0.004	1168493.192	0.004	3.267	0.033	
<u>CU-552</u>	578391.244	0.004	1162634.434	0.003	4.293	0.026	
<u>CU-784</u>	573923.645	0.004	1143187.034	0.004	58.767	?	е
UP-ILI	572351.798	0.004	1147658.769	0.003	13.024	0.029	

Table 27. Adjusted Grid Coordinates

The network is fixed at reference point CBU-293 with known coordinates, and CU-784 with known elevation. With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm\sqrt{((x_e)^2 + (y_e)^2)} < 20cm}$ for horizontal and $z_e < 10 \ cm z_e < 10 \ cm$ for the vertical; the computation for the accuracy are as follows:

a.	CBU-293	= =	fixed 2.8 < 10 cm	
b.	CU-784 horizontal accuracy vertical accuracy	= = =	√((0.4) ² + (0.3) ² √(0.16 + 0.9) 1.03 cm < 20 cm fixed	
c.	CBU-3614 horizontal accuracy vertical accuracy	= = = =	√((0.4) ² + (0.4) ² √(0.16 + 0.16) 0.57 cm < 20 cm 3.3 < 10 cm	
d.	CU-552 horizontal accuracy vertical accuracy	= = =	√((0.4) ² + (0.3) ² √(0.16 +0.9) 1.03 cm < 20 cm 2.6 < 10 cm	
e.	UP-ILI horizontal accuracy	= = =	$v((0.4)^2 + (0.3)^2)$ v(0.16 + 0.9) 1.03 cm < 20 cm vertical accuracy =	2.9 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Latitude Longitude		Height Error (Meter)	Constraint
C <u>BU-293</u>	N10°18′28.70835″	E123°43'20.76082"	350.838	0.028	LL
<u>CBU-3614</u>	N10°34'10.94597"	E123°43'11.73023"	64.969	0.033	
<u>CU-552</u>	N10°31′00.23116″	E123°42'59.11634"	66.222	0.026	
<u>CU-784</u>	N10°20'27.39811"	E123°40'30.77220"	121.354	?	е
<u>UP-ILI</u>	N10°22′53.09406″	E123°39'39.39389"	75.336	0.029	

Table 28. Adjusted Geodetic Coordina	ites
--------------------------------------	------

The adjusted geodetic coordinates is presented in Table 28. The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 29.

		Geograp	hic Coordinates (WGS		UTM ZON	E 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	EGM Ortho (m)	BM Ortho (m)	
CBU-293	2 nd order GCP	10°18′28.70835″	123°43'20.76082"	350.838	1139553	579101.8	287.992	287.844	
CU-784	1 st order BM	10°20'27.39811"	123°40'30.77220"	121.354	1143187	573923.6	58.915	58.767	
CBU-3614	Used as Marker	10°34′10.94597″	123°43′11.73023″	64.969	1168493	578761.2	3.465	3.317	
CU-552	Used as Marker	10°31′00.23116″	123°42'59.11634"	66.222	1162634	578391.2	4.480	4.332	
UP-ILI	UP Established	10°22′53.09406″	123°39'39.39389"	75.336	1147659	572351.8	13.149	13.001	

Table 29. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built Survey, and Water Level Marking

Bridge as-built and cross-section survey was conducted on December 12, 2015 at the downstream side of Ilihan Foot Bridge in Brgy. Ilihan, Toledo City using GNSS receiver Trimble[®] SPS 882 in PPK survey technique as shown in Figure 40.

Figure 40. Bridge as-built and cross-section survey at the downstream side of Ilihan Foot Bridge in Brgy. Ilihan, Toledo City, Cebu

The cross-sectional line length in Ilihan Foot Bridge is about 50.613 m with 57 cross-sectional points acquired using UP-ILI as the GNSS base station. The location map, cross section diagram, and the bridge data form are shown in Figure 41 to Figure 43, respectively.

Figure 41. Location map of Sapangdaku Bridge cross-section survey

57

Bride	e Name	: Ilihan Foot Bridge	Bridge D	ata Fori	m	Date: December	12.2015	
River	Name	Sanang-Dako River				Time: 04-3	0 PM	
Locat	tion /Pr	sapang-Dako kiver	Tolodo City, C	abu		nine:04.5		
Surve	ey Team	: Team Jeline	Toledo City, C	eou				
Flow	conditi	on: low <mark>normal</mark>	high		Weather C	ondition: <mark>fa</mark>	i <mark>ir</mark> rainy	
Latitu	ude: <u>10</u>	122'53.09412" N			Longitude:	123d39'39.3942	<u>7" E</u>	
BA1	BA2			Ab2	BA4 BA	gend: . = Bridge Approach P = Abutment D	= Pier LC = Low Ch = Deck HC = High Ch	
		ADI		ADZ HI				
Eleva	tion:	Deck (Please start your r 13.165 msl	width: 2.0	n the left si m	ide of the bank facing Span	g downstream) (BA3-BA2): 4	7.7 m	
		Station		High	h Chord Elevation	Low Ch	ord Elevation	
1		-					-	
2								
		Bridge Approach (Please st	art your measureme	nt from the	left side of the bank f	acing downstream)		
Γ		station(Distance from BA1) Elevation		Station(Dista	ince from BA1)	Elevation	
	BA1	-		BA3				
	BA2	-		BA4		-		
Abut	mont	Is the abutment clearing?	Voc No:	If yor	fill in the follow	ing information		
Abut	ment.	is the abutment sloping:	165 100,	ii yes	, minin the follow	ing information.		
		Station (Distance from	om BA1) Elevation			on	
	AD.	<u>.</u>	NA					
	AD.	Pier (Please start your n	NA easurement from	the left si	de of the bank facing	-		
		Number -	of Piers:	3	Height of colu	mn footing:		
	Shape:	Number			-	Pior	Width	
	Shape: _	Station (Distance fro	m Bridge			riei	width	
	Shape: _	Station (Distance fro Approach)	m Bridge	6	Elevation			
F	Shape: _ Pier 1	Station (Distance fro Approach) 14.601	om Bridge	E	Elevation 13.165			
F	Shape: _ Pier 1 Pier 2	Station (Distance fro Approach) 14.601 26.736	om Bridge		13.165 13.139		-	

Figure 43. Sapangdaku Bridge Data Form

Water surface elevation in MSL of Sapangdaku River was determined using Trimble[®] SPS 882 in PPK mode technique on December 12, 2015 at 04:38 PM with a value of 2.20 m in MSL. This was translated onto marking on the bridge's pier using a digital level with the value of 4.0 m MSL which will be used by USC PHIL-LiDAR 1 (Figure 44). The marked pier will serve as their reference for flow data gathering and depth gauge deployment for Sapangdaku River.

Figure 44. Water level marking using a Digital Level at Ilihan Foot Bridge, Brgy. Ilihan Toledo City

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on December 12, 2015 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached to the side of vehicle as shown in Figure 45. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.170 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-ILI occupied as the GNSS base stations in the conduct of the survey.

Figure 45. Validation points acquisition survey set-up

The survey was along the National Highway covering municipalities of Sta. Cruz, Sablayan, Calintaan, Rizal, San Jose and Magsaysay with an approximate length of 27 km with 3,441 validation points gathered. The gaps in the validation line as shown in Figure 46 were due to road constructions and difficulties in receiving satellite signals brought by dense canopy cover of trees along the roads.

Figure 46. LiDAR Validation points acquisition survey for Sapangdaku River Basin

4.7 Bathymetric Survey

Manual bathymetric survey was executed on December 10, 2015 using Trimble[®] SPS 882 GNSS PPK technique as shown in Figure 47. The survey began from the upstream of the river in Brgy. Don Andres, Municipality of Soriano, with coordinates 10°20'47.4847"N 123°41'13.0232"E and traversed by foot down to Brgy. Ilihan in Toledo City with coordinates 10°23'29.8709"N 123°39'7.9822"E.

Figure 47. Manual bathymetry along Sapangdaku River

Bathymetric survey using Hi-Target[™] echo sounder and a Trimble[®] SPS 882 attached to a pole secured on the side of a boat was executed on December 13, 2015 as shown in Figure 48. The survey started from Brgy. Ilihan where manual bathymetry survey ended down to the mouth of the river in Brgy. Daang-Lungsod in Toledo City with coordinates 10°24′4.9041″N 123°38′36.3445″E

Figure 48. Bathymetric survey using Ohmex™ Echo Sounder along Sapangdaku River

The entire bathymetric data coverage for Sapangdaku River is illustrated in the map in Figure 49. The gaps in the bathymetric survey was due to the difficulties in acquiring satellite caused by obstructions such as dense canopy of trees and presence of rapids along the river.

A CAD drawing was also produced to illustrate the Sapangdaku riverbed profile as illustrated in Figure 50. An elevation drop of 29.95 meters in MSL was observed within the distance of approximately 10.34 km from the upstream in Brgy. Don Andres Soriano down to Brgy. Daang-Lungsod with a total of 21,959 bathymetric points.

Figure 49. Bathymetric survey of Sapangdaku River

Sapang-Dako Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data used in Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Sapangdaku River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Sapangdaku River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an installed data logging rain gauge installed by the USC Phil LIDAR 1. The gauge station is located in Brgy. Don Andres Soriano, Toledo City with geographic coordinates of 10°22'52.32"N and 123°39'39.60"E. The location of the installed station in the watershed is presented in Figure 51. The total rainfall data used for calibration is mm and was acquired last May 30, 2016.

Figure 51. Location map of Sapangdaku HEC-HMS model used for calibration.

5.1.3 Rating Curve and River Outflow

A rating curve was developed at Ilihan Bridge (10°22'52.32"N and 123°39'39.60"E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

For Ilihan Bridge, the rating curve is expressed $y = 0.0053e^{2.567x}y = 0.0053e^{2.567x}$ as shown in Figure 52.

This image is not available for this river basin.

Figure 52. Cross-Section Plot of Sapangdaku Bridge

Figure 53. Rating curve at Ilihan Bridge in Ocoy River

This rating curve equation was used to compute the river outflow at Ilihan Bridge for the calibration of the HEC-HMS model shown in Figure 54. Peak discharge is 0.8738 m³/s at 17:51, May 30, 2016.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Mactan Point Gauge. This station chosen based on its proximity to the Sapangdaku watershed. The extreme values for this watershed were computed based on a 37-year record, as shown in Table 30.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs		
2	15.9	24.7	31.4	41.4	53.7	60.5	73.1	83.4	92.8		
5	21.9	34	43.2	58.4	74.9	84	105.2	122.6	139.1		
10	25.8	40.2	51.1	69.7	88.9	99.6	126.3	148.6	169.7		
15	28.1	43.6	55.5	76	96.8	108.4	138.3	163.3	187		
20	29.6	46.1	58.6	80.5	102.3	114.5	146.7	173.5	199.1		
25	30.9	48	61	83.9	106.6	119.3	153.1	181.4	208.5		
50	34.6	53.8	68.3	94.4	119.7	133.9	173	205.8	237.2		
100	38.3	59.5	75.6	104.9	132.7	148.4	192.7	230	265.7		

Table 30. RIDF values for Mactan Point Rain Gauge computed by PAGASA

Figure 55.Location of Mactan Point RIDF Station relative to Sapangdaku River Basin

Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Sapangdaku River Basin are shown in Figure 57 and Figure 58, respectively.

This image is not available for this river basin.

Figure 57. Soil map of the Sapangdaku River Basin used for the estimation of the CN parameter. (Source: DA)

Figure 58. Land cover map of Sapangdaku River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)

For the Sapangdaku river basin, two (2) soil classes were identified, largely Baguio clay loam with a small portion of Faraon clay (steep phase). Moreover, five (5) land cover classes were identified. Most of the Sapangdaku river basin is brushland, with some open areas, open canopy forest, cultivated area, and inland water.

Figure 59. Slope map of Sapangdaku River Basin

Figure 60. Stream delineation map of Sapangdaku River Basin

The Sapangdaku basin model comprises 42 sub basins, 21 reaches, and 21 junctions. The main outlet is outlet 1. This basin model is illustrated in Figure 61. The basins were identified based on soil and land cover characteristic of the area. Precipitation was taken from an installed Rain Gauge near and inside the river basin. Finally, it was calibrated using the data from actual discharge flow gathered in the Ilihan Bridge.

Figure 61. HEC-HMS generated Sapangdaku River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 62. River cross-section of Sapangdaku River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the north of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

 The view
 Design
 Und
 Tools
 Help

 □
 □
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Figure 63. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 23.91504 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 38,515,400.00m².

There is a total of 36,519,889.86m³ of water entering the model. Of this amount, 7,884,112.82 m³ is due to rainfall while 28,635,777.03 m³ is inflow from other areas outside the model. 3,314,226.25 m³ of this water is lost to infiltration and interception, while 1,945,968.08 m³ is stored by the flood plain. The rest, amounting up to 31,259,694.77 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Sapangdaku HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 64 shows the comparison between the two discharge data.

Figure 64. Outflow Hydrograph of Sapangdaku produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 31 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
			Initial Abstraction (mm)	1.24-8.03
	Loss	SCS Curve Number	Curve Number	53.28- 79.20
			Impervious (%)	0
Basin	Transform	Clark Unit	Time of Concentration (hr)	0.02-1.38
		Hydrograph	Storage Coefficient (hr)	0.17-10.36
	Deceflow	Bacaccian	Recession Constant	0.53-1
	Dasellow	necession	Ratio to Peak	0.10
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.40

T-1-1-21 D	-f1:1	1 f	C	XX7-4
Table 31. Kange	of camprated	values for	Sapanguaku	watersneu

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.24 to 8.03 mm signifies that there is minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65

to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Sapangdaku, the basin mostly consists of brushlands and the soil consists of clay, clay loam, and mountain soil, the curve number is 53.28 to 79.20.

The time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 to 1.38 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events, while ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.53 to 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.10 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.4 corresponds to the common roughness in Sapangdaku watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	0.0035
r ²	0.6780
NSE	0.6292
PBIAS	-2.4907
RSR	0.0363

Table 32. Summary of the Efficiency Test of Sapangdaku HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.0035.

The Pearson correlation coefficient $(r^2)r^2$) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.6780.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.6292.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -2.4907.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.0363.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph show the Sapangdaku outflow using the Mactan Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-, 10-, 25-, 50-, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a uniform duration of 24 hours and varying return periods.

Figure 65. Outflow hydrograph at Ilihan Bridge, Toledo City generated using Mactan PointRIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sapangdaku River discharge using the Mactan Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

RIDF Period	Total Precipitation (mm)	Peak Rainfall (mm)	$\frac{\text{Peak Outflow}}{\left(\frac{m^3}{s}\right)}$	Time to Peak
5-vear BIDE	139.1	21 900	193 807	6.30
		21.500	199.007	0.50
10-year RIDF	169.7	25.800	272.642	6:00
25-year RIDF	208.5	30.900	382.849	5:30
50-year RIDF	237.2	34.600	471.331	5:10
100-year RIDF	265.7	38.300	563.924	5:00

Table 33. Peak values of the Sapangdaku HECHMS Model outflow using the Dumaguete RIDF

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Sapangdaku River using the calibrated event flow is shown in Figure 66.

This image is not availabe for this river basin.

Figure 66. Sample output of Sapangdaku RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. Figure 67 to Figure 72 shows the 5-, 25-, and 100-year rain return scenarios of the Sapangdaku floodplain. The floodplain covers one city namely Toledo City. Table 34 shows the percentage of area affected by flooding per per city.

Municipality/ City	Total Area (sq.km.)	Area Flooded (sq. km.)	% Flooded
Toledo City			

Table 34. Municipalities affected in Sapangdaku Floodplain

Figure 72. 5-year Flood Depth Map for Sapangdaku Floodplain overlaid on Google Earth imagery

5.10 Areas Exposed to Flooding

Affected barangays in the Sapangdaku river basin, grouped by municipality, are listed below. For the said basin, one (1) city consisting of 22 barangays is expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 23.85% of Toledo City with an area of 232.21 sq. km. will experience flood levels of less 0.20 meters. 2.02% of the area will experience flood levels of 0.21 to 0.50 meters while 1.37%, 1%, 0.69%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 35 and Table 36, and shown in Figure 73 are the affected areas in square kilometres by flood depth per barangay.

Affected area				Area of affecte	d barangav	s in Toledo) City (in sa. kn	ı.)			
(sq. km.) by flood depth (in m.)	Bundo		Cambang-	o commentine D	Capitan	nomie		Don Andres	Dimlog	Gen. Climaco	acdill
0.03-0.20	0.15	0.23	3.23	2.33	5.55	2.73	1.08	4.91	1.1	9.62	0.22
0.21-0.50	0.0048	0.013	0.21	0.78	0.13	0.36	0.16	0.11	0.47	0.56	0.028
0.51-1.00	0.0043	0.004	0.14	0.47	0.13	0.25	0.036	0.073	0.37	0.29	0.0045
1.01-2.00	0.004	0.00082	0.16	0.13	0.17	0.11	0.062	0.13	0.2	0.21	0.012
2.01-5.00	0.0038	0	0.13	0.44	0.1	0.04	0.0048	0.14	0.037	0.027	0.022
> 5.00	0	0	0.0037	0.011	0.0019	0	0	0.0059	0	0	0

Table 35. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period

Table 36. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period

Affected area				Area of affect	ted baranga	/s in Toledo	City (in sa.	km.)			
(sq. km.) by flood depth (in m.)	Juan Climaco, Sr	l andahan I	Lurav II	Matah-Ang	Media	Pohlacion	Pooe	Sam-	Sanei	Talavera	Tubod
0.03-0.20	3.46	0.24	0.66	3.07	3.86	0.66	2.76	3.91	1.58	3.79	0.22
0.21-0.50	0.37	0.0018	0.031	0.092	0.13	0.079	0.12	0.16	0.25	0.61	0.00076
0.51-1.00	0.31	0.001	0.011	0.088	0.12	0.061	0.087	0.1	0.1	0.51	0.0005
1.01-2.00	0.29	0.0001	0.0066	0.064	0.14	0.029	0.065	0.041	0.081	0.41	0.0002
2.01-5.00	0.29	0.0002	0.0077	0.019	0.087	0.0025	0.08	0.0072	0.071	0.078	0.0001
> 5.00	0.059	0	0	0.0001	0.00044	0	0.0096	0.0006	0	0.0025	0

Figure 73. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period

For the 25-year return period, 22.81% of the municipality of Toledo City with an area of 232.21 sq. km. will experience flood levels of less 0.20 meters. 2.14% of the area will experience flood levels of 0.21 to 0.50 meters while 1.63%, 1.23%, 0.9%, and 0.24% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 37 and Table 38, and shown in Figure 74 are the affected areas in square kilometres by flood depth per barangay.

Affected area				Area of affecte	d haranga	vs in Toledo	o City (in sq. km				
(sq. km.) by flood depth (in m.)			Cambang-		Capitan			Don Andres		Gen. Climaco	1:14-2-2
0.03-0.20	0.14	0.23	3.13	2.02	5.48	2.49	0.96	4.81	0.8	9.44	0.2
0.21-0.50	0.0053	0.014	0.22	0.83	0.14	0.38	0.23	0.13	0.44	0.59	0.037
0.51-1.00	0.0041	0.0085	0.15	0.55	0.11	0.35	0.069	0.064	0.55	0.34	0.0056
1.01-2.00	0.0055	0.0017	0.16	0.2	0.2	0.14	0.037	0.11	0.31	0.25	0.0087
2.01-5.00	0.0056	0	0.17	0.37	0.16	0.1	0.05	0.22	0.08	0.085	0.032
> 5.00	0.0002	0	0.044	0.19	0.0064	0.012	0	0.023	0.0004	0	0.0018

Table 37. Affected Areas in Toledo City, Cebu during 25-Year Rainfall Return Period

Table 38. Affected Areas in Toledo City, Cebu during 25-Year Rainfall Return Period

			Area of affecte	d baranga	vs in Toledo	City (in sa. kn	n.)			
Juan				Media			Sam-			
Sr.	Landahan	Luray II	Matab-Ang	Once	Poblacion	Poog	Ang	Sangi	Talavera	Tubod
3.26	0.24	0.64	3.02	3.78	0.63	2.69	3.85	1.46	3.47	0.22
0.41	0.0027	0.031	0.099	0.14	0.087	0.12	0.18	0.31	0.55	0.0013
0.3	0.0008	0.018	0.083	0.11	0.08	0.099	0.11	0.14	0.65	0.0004
0.35	0.0003	0.012	0.095	0.15	0.038	0.08	0.066	0.06	0.59	0.0004
0.27	0.0003	0.011	0.029	0.16	0.0032	0.1	0.0099	0.12	0.1	0.0001
0.21	0.0002	0.0021	0.0001	0.0088	0	0.023	0.0026	0.0004	0.026	0
	luan Sr. 5.26 1.41 0.3 1.35 1.27 1.27	luan imaco, Sr. Landahan 3.26 0.24 0.3 0.0008 0.3 0.0008 1.35 0.0003 1.27 0.0003 1.21 0.0003	Iuan Luray II Sr. Landahan Luray II Sr. Landahan Luray II 3.26 0.24 0.64 0.41 0.0027 0.031 0.3 0.0008 0.018 0.35 0.0003 0.012 1.27 0.0003 0.011 1.21 0.0002 0.0021	Area of affecte Iuan Area of affecte Sr. Landahan Luray II Matab-Ang \$126 0.24 0.64 3.02 \$141 0.0027 0.031 0.099 0.3 0.0018 0.018 0.083 1.35 0.0003 0.012 0.095 1.27 0.0003 0.011 0.029 1.21 0.0002 0.0011 0.029	Area of affected paranga Iuan Area of affected paranga Sr. Landahan Luray II Matab-Ang Once S.2 0.24 0.64 3.02 3.78 0.41 0.0027 0.031 0.0099 0.14 0.3 0.0008 0.018 0.014 11 0.35 0.0003 0.012 0.095 0.15 1.27 0.0003 0.011 0.029 0.16 1.21 0.0002 0.011 0.0283 0.16	Area or amected parangays in lotedo Nuan Media Media Sr. Landahan Luray II Matab-Ang Once Poblacion 3.26 0.24 0.64 3.02 3.78 0.63 1.41 0.0027 0.031 0.099 0.14 0.087 0.3 0.0008 0.018 0.083 0.11 0.087 1.35 0.0003 0.012 0.095 0.15 0.038 1.27 0.0003 0.011 0.029 0.16 0.033 1.21 0.0002 0.011 0.029 0.16 0.033	Nedia Media Media Pool Out with section Pool Sr. Landahan Luray II Matab-Ang Once Poblacion Poog Sr. Landahan Luray II Matab-Ang Once Poblacion Poog 3.26 0.24 0.64 3.02 3.78 0.63 2.69 0.41 0.0027 0.031 0.099 0.14 0.087 0.12 0.3 0.0008 0.018 0.083 0.11 0.083 0.12 1.35 0.0003 0.012 0.095 0.15 0.08 0.08 1.27 0.0003 0.011 0.029 0.16 0.08 0.03 1.21 0.0002 0.0021 0.0038 0.13 0.13	Name Area or anected parangays in loted outly (in sq. km.) Naco, Sr. Landahan Luray II Media Poog Sam- Ang Sr. Landahan Luray II Matab-Ang Once Poblacion Poog Ang St. 0.24 0.64 3.02 3.78 0.63 2.69 3.85 J.41 0.0027 0.031 0.099 0.14 0.087 0.12 0.18 0.3 0.0008 0.018 0.083 0.11 0.087 0.11 0.18 1.35 0.0003 0.012 0.083 0.11 0.088 0.066 1.27 0.0003 0.011 0.029 0.16 0.066 0.11 1.21 0.0002 0.021 0.0029 0.16 0.023 0.0029 0.0059	Neta OT attracted Datangays in tote of Cuty (in sq. km.) Naco, Sr. Landahan Luray II Media Poog Sam- Ang Sam- Sam- Sam- Ang Sam- Sam- Sam- Sam- Ang Sam- Sam- Sam- Ang Sam- Sam- Sam- Sam- Ang Sam- Sam- Sam- Sam- Sam- Ang Sam- Sam- Sam- Sangi 3.26 0.24 0.64 3.02 3.78 0.63 2.69 3.85 1.46 0.41 0.0027 0.031 0.099 0.14 0.087 0.12 0.31 0.3 0.0008 0.018 0.083 0.11 0.087 0.12 0.14 0.3 0.0003 0.012 0.083 0.11 0.088 0.066 0.06 1.27 0.0003 0.011 0.0029 0.11 0.0026 0.00 1.21 0.0002 0.0011 0.0088 0 0.12 0.0026 0.0004	Naco Area or arrected parangays in lote of cuty (in sq. km.) Naco Nacion Nedia Nedia Nedia Sam- Sam-

Figure 74. Affected Areas in Toledo City, Cebu during 5-Year Rainfall Return Period

For the 100-year return period, 22.2% of the municipality of Toledo City with an area of 232.21 sq. km. will experience flood levels of less 0.20 meters. 2.23% of the area will experience flood levels of 0.21 to 0.50 meters while 1.72%, 1.45%, 0.91%, and 0.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 39 and Table 40, and shown in Figure 75 and Figure 76 are the affected areas in square kilometres by flood depth per barangay.

Period
Return
Rainfall
0-Year l
luring l(
, Cebu c
o City
Toledo
Areas in
Affected .
le 39
Tab

Affected area				Area of affected	d baranga	vs in Toledo	o Citv (in sa. kn	(.,			
(sq. km.) by flood depth (in m.)	Build	Calonecalone	Cambang-	Canlumampao	Capitan Claudio	Carmen	Daanelunesod	Don Andres Soriano	Dimlog	Gen. Climaco	achill
0.03-0.20	0.14	0.22	3.05	1.81	5.43	2.42	0.87	4.76	0.64	9.32	0.19
0.21-0.50	0.0049	0.015	0.23	0.88	0.15	0.39	0.27	0.15	0.43	0.62	0.042
0.51-1.00	0.0046	0.01	0.17	0.54	0.1	0.37	0.11	0.071	0.59	0.38	0.0059
1.01-2.00	0.0059	0.0031	0.18	0.32	0.2	0.17	0.041	0.096	0.41	0.24	0.0056
2.01-5.00	0.0073	0	0.12	0.17	0.2	0.13	0.062	0.27	0.1	0.16	0.036
> 5.00	0.00057	0	0.13	0.43	0.014	0.012	0	0.029	0.0048	0.0004	0.0046

Table 40. Affected Areas in Toledo City, Cebu during 100-Year Rainfall Return Period

Affected area				Area of affected	d baranga	vs in Toledo	, City (in sa. kn	n.)			
(sq. km.) by flood depth (in m.)	Juan Climaco, Sr.	Landahan	Lurav II	Matab-Ang	Media Once	Poblacion	Poog	Sam- Ang	Sangi	Talavera	Tubod
0.03-0.20	3.14	0.24	0.63	2.99	3.73	0.61	2.65	3.81	1.37	3.31	0.22
0.21-0.50	0.4	0.0035	0.032	0.11	0.14	0.086	0.12	0.2	0.34	0.55	0.002
0.51-1.00	0.31	0.0008	0.018	0.087	0.12	0.09	0.11	0.11	0.18	0.61	0.0006
1.01-2.00	0.38	0.0006	0.014	0.1	0.16	0.044	0.089	0.079	0.065	0.77	0.0005
2.01-5.00	0.24	0.0003	0.017	0.04	0.17	0.0046	0.11	0.016	0.13	0.13	0.0001
> 5.00	0.32	0.0002	0.004	0.0001	0.037	0	0.036	0.0033	0.01	0.026	0

Figure 75. Affected Areas in Toledo City, Cebu during 100-Year Rainfall Return Period

Among the barangays in the city of Toledo, Gen. Climac is projected to have the highest percentage of area that will experience flood levels at 4.61%. Meanwhile, Capitan Claudio posted the second highest percentage of area that may be affected by flood depths at 2.62%.

Moreover, the generated flood hazard maps for the Sapangdaku Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Marning Lovel	Area Covered in sq. km.					
vvarning Level	5 year 25 year		100 year			
Low	4.76	5.05	5.24			
Medium	4.69	5.61	6.15			
High	2.73	3.96	4.66			
TOTAL	12.18	14.62	16.05			

Table 41. Area covered by each warning level with respect to the rainfall scenario

Of the 20 identified Education Institutions in the Sapangdaku Flood plain, 7 schools were assessed to be exposed to Low level flooding during a 5 year scenario, while 3 schools were assessed to be exposed to medium level flooding in the same scenario. In the 25 year scenario, 5 schools were assessed to be exposed to low level flooding, while 7 schools were assessed to be exposed to medium level flooding in the same scenario, 4 schools were assessed to be exposed to low level flooding, while 9 schools were assessed to be exposed to medium level flooding, while 9 schools were assessed to be exposed to medium level flooding in the same scenario. The educational institutions exposed to flooding are shown in Annex 12.

1 Medical Institution was identified in the Sapangdaku Flood Plain, and upon assessment, it was not exposed to any of the flooding levels in any scenario. The medical institutions exposed to flooding are shown in Annex 13.

5.11 Flood Validation

Survey was done along the floodplain of Sapangdaku River to validate the generated flood maps. The team gathered secondary data regarding flood occurrence in the area. Ground validation points were acquired as well as the other necessary details like date of occurrence, name of typhoon and actual flood depth.

During validation, the team was assisted by the local Disaster Risk Reduction and Management representative from the City of Toledo. Residents along the floodplain were interviewed of the historical flood events they experiences.

Flood validation points were obtained on January 13-15, 2016. Actual flood depth acquired from the ground validation were then computed and compared to the flood depth simulated by the model. An RMSE value of 1.11 was obtained.

This image is not available for this river basin.

Figure 76. Sapangdaku River Basin Flood Validation Points

Figure 77. Flood map depth vs. actual flood depth

		Modeled Flood Depth (m)						
Actual Flood Depth (m)	0-0.20	0.21- 0.50	0.51- 1.00	1.01- 2.00	2.01- 5.00	> 5.00	Total	
0-0.20	12	3	0	0	0	0	15	
0.21-0.50	13	6	2	0	0	0	21	
0.51-1.00	11	2	4	0	1	1	19	
1.01-2.00	8	0	2	3	1	0	14	
2.01-5.00	1	0	0	0	0	0	1	
> 5.00	0	0	0	0	0	0	0	
Total	45	11	8	3	2	1	70	

Table 42. Actual flood vs simulated flood depth of Sapangdaku River Basin.

The overall accuracy generated by the flood model is estimated at 35.71% with 25 points correctly matching the actual flood depths. In addition, there were 21 points estimated one level above and below the correct flood depths while there were 12 points and 10 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 37 points were underestimated in the modelled flood depths of Sapangdaku. The summary of the accuracy assessment is presented in Table 43.

Table 43. Summary of the Accuracy Assessment in the Sapangdaku River Basin Survey

	No. of Points	%
Correct	25	35.71
Overestimated	8	11.43
Underestimated	37	52.86
Total	70	100.00

ANNEXES

Annex 1. Optech Technical Specification of the Pegasus Sensor

Laptop

Control Rack

Figure A-1.1 Pegasus Sensor

Table A-11	Parameters	and Spec	ifications o	f the Peg	asus Sensor
1 abic 11 1.1	1 arameters	and opec	meations 0.	i the i eg	asus sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation	<0.7 m
distance	
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility 3 Angle of incidence ≤20°

4 Target size \geq laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certificates of Reference Points Used

1. CBU-95

						July 25, 2014
		CER	TIFICATION			
o whom it r This is te	nay concern: certify that according	g to the records on f	ile in this office, the requ	ested survey	informa	ation is as follows -
		Provir	nce: CEBU			
		Station N	ame: CBU-95			
Island [.] V	ISAYAS	Order	: 1st	Baranday	CAN	BANUA
Municipal	ity: ARGAO	PRS	92 Coordinates	MSL Elev	ation:	
Latitude:	9° 53' 12.12011"	Longitude:	123° 35' 25.30633"	Ellipsoida	Hgt:	53.60100 m.
		WGS	84 Coordinates			
Latitude:	9° 53' 8.07702"	Longitude:	123° 35' 30.59401"	Ellipsoida	Hgt:	115.55540 m.
		PTM / PI	RS92 Coordinates			
Northing:	1093256.973 m.	Easting:	564747.93 m.	Zone:	4	
Northing:	1,092,874.31	UTM / Pl Easting:	RS92 Coordinates 564,725.27	Zone:	51	
		Locat	ion Description			
From the ca 5 kilometer Sibonga. Aft hrough Arag	bitol building of Cebu s up to Argao bridge, er crossing Argao brid jao town proper; and te road. From this "T ated on the top and c n diameter brass rod, rence marks are 0.15	Clty travel south on passing through the ige, travel for 850 m then turn right, and " junction, turn left a enter of convex con embedded in a drill is m x 0.01 m in diam	the national highway, all towns of Miglanilla, Nag neters, then turn right an travel 300 meters up to 1 and wlak for 150 meters crete shell of water tank I hole at the top and cent neter brass rods, embed	ong the east of ga, San Ferna d travel west f the "T" road ju NW, uphill to a , on top of the ter of convex s ded in the cor	coast of indo, C for 1.3 I inction, Aragao hill. St shell of icrete in	Cebu island for arcar and kilometers which is the end water tank. The ation mark; 0.15 Argao water n the edge of the
of the concri- station is loc n x 0.01 m i ank. All refe vater tank. Requesting Pupose: DR Number T.N.:	Party: UP-TCAGP / Reference 8799582 A 2014-1730	Engr. Christopher	Cruz R Director	UEL DM. BEL , Mapping And	EN, M	NSA esy Branch

Figure A-2.1 CBU-95

2. CBU-11

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2 CBU-11

3. CBU-293

	055				July 25, 20
To whom it may concern:	GER	TIFICATION			
This is to certify that according to	o the records on	file in this office, the requ	uested survey	inform	ation is as follow
	Provi	nce: CEBU			
	Station Na	ame: CBU-293			
Island: VISAYAS	Order	2nd	Baranga	CAN	TABACO
Inducepanty. TOLEDO CITY	PRSS	2 Coordinates	MSL Elev	ation:	
Latitude: 10º 18' 32.84815"	Longitude:	123° 43' 15.51183"	Ellipsoida	al Hgt:	289.62500 m.
atitude: 10º 10' 20 70025"	WGS	34 Coordinates			
Landde. 10 18 20.70635		123° 43' 20.76082"	Ellipsoida	al Hgt:	350.93800 m.
Northing: 1140007.158 m.	Easting:	578970.41 m.	Zone [.]	4	
	UTM / PI	RS92 Coordinates	20110.	-	
Northing: 1,139,608.14	Easting:	578,942.77	Zone:	51	
CBU-293	Locati	on Description			
From Naga City Hall, travel about 400) m going S alond	Nat'l Highway to reach	the junction r	oad doi	ng to Tolodo
City. From the Toledo-Naga Road tra ou will reach the next junction, turn r	ivel about 17 Km ight following the	to reach the junction ro road going to Brgy. Can	ad at Brgy. L tabaco until y	utopan, ou read	turn right until
150 m E of the maingate.	ed at the 5 cente	r edge of a basketball co	ourt inside the	e schoo	l compus about
		om in dimension, leveled	d on the concr	ete pav	ement of the
The station is concrete putty cement basketball court centered with a 3 in.	with 30 cm x 30 o copper nail with in	nscriptions, "CBU-293, 2	2007, NAMRIA	A	
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng	with 30 cm x 30 copper nail with in gr. Christopher (nscriptions, "CBU-293, 2 C ruz	2007, NAMRIA	4".	/
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng Pupose: Reference DR Number: 8799582 A	with 30 cm x 30 copper nail with i g r. Christopher (nscriptions, "CBU-293, 2 Cruz	2007, NAMRIA	4".	/
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng Pupose: Reference DR Number: 8799582 A N.: 2014-1729	with 30 cm x 30 (copper nail with i gr. Christopher (nscriptions, "CBU-293, 2 Cruz RU			ISA
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng Pupose: Reference DR Number: 8799582 A T.N.: 2014-1729	with 30 cm x 30 (copper nail with i	nscriptions, "CBU-293, 2 Cruz RU Director,	JEL DM. BEL Mapping And	EN, MN Geode	ISA sy Branch
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng Pupose: Reference DR Number: 8799582 A T.N.: 2014-1729	with 30 cm x 30 (copper nail with i g r. Christopher (nscriptions, "CBU-293, 2 Cruz RU Director,	JEL DM. BEL Mapping And	EN, MN Geode	ISA sy Branch
The station is concrete putty cement basketball court centered with a 3 in. Requesting Party: UP-TCAGP / Eng Pupose: Reference DR Number: 8799582 A T.N.: 2014-1729	with 30 cm x 30 (copper nail with i gr. Christopher (nscriptions, "CBU-293, 2 Cruz RU Director,	JEL DM. JBEL Mapping And	EN, MN Geode	ISA sy Branch

Figure A-2.3 CBU-293

4. CBU-296

					August 08, 20
		CER	FIFICATION		
o whom it may This is to ce	concern: ertify that accordin	g to the records on fi	le in this office, the requ	lested survey in	formation is as follow
		Provin	ce: CEBU		
		Station Na	me: CBU-296		
Island: VISA	YAS	Order:	2nd	Barangay:	ZARAGOSA
Municipality:	ALOGUINSAN	0000	2 Coordinates	MSL Eleva	tion:
Latituda: 40	401 2 02027"	PR59	2 Coordinates	Ellipsoidal	Hat: 111 00000 m
Lautude. 1	10 2.93937	Longitude.	123 35 54.77903	Liipsoidai	rigt. 144.55000 II
		WGS8	4 Coordinates		
Latitude: 10)° 9' 58.82504''	Longitude:	123° 36' 0.04167"	Ellipsoidal	Hgt: 206.32700 n
		PTM / PF	RS92 Coordinates		
Northing: 11	24313.588 m.	Easting:	565589.364 m.	Zone:	4
Northing:		UTM / Pł Easting:	RS92 Coordinates	Zone:	
		Locati	on Description		C
To reach the st Before reaching going to Brgy. 2 basketball cour	ation, from Cebu (carcar Town Pro aragoza, travel al t near the concret	City you have to trave oper, take a right turn long this road about 8 e fence.	 I hr. along S along Na at the road right before I Km. to reach station. h 20 cm procuring into t A" 	at'l Highway to r Gaisano Mall f . The station is .he ground, cen	each Mun. of Carcar ollowing a Brgy. Roa located at the tered with a 3 in.
The station is 3 copper nail with Requesting Par Pupose: OR Number:	ty: ENGR. CHR Reference 8799670 A	U-296, 2007, NAMRI		Alt	6
The station is 3 copper nail with Requesting Par Pupose: OR Number: T.N.:	ty: ENGR. CHR Reference 8799670 A 2014-1777	U-296, 2007, NAMRI	R Director	UEL DM. BELT	EN, MNSA Geodesy Branch
The station is 3 copper nail with Requesting Par Pupose: OR Number: T.N.:	ty: ENGR. CHR Reference 8799670 A 2014-1777	U-296, 2007, NAMRI	R Director	UEL DM. BELE	EN, MNSA Geodesy Brand
The station is 3 copper nail with Requesting Par Pupose: DR Number: T.N.:	ty: ENGR. CHR Reference 8799670 A 2014-1777	NAMRIA OFFICES: Main: Lawton Avenue, Fort Bonifacd Branch : 421 Barraca St. San Nicola	R Director	UEL DM. BELT Mapping And	EN, MNSA Geodesy Branch

5. CU-340

RESOURCEIN Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY August 08, 2014 CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follows -Province: CEBU Station Name: CU-340 Island: CEBU Municipality: DALAGUETE Barangay: BALUD Elevation: 9.4185 m. Order: 1st Order Datum: Mean Sea Level Location Description BM CU-340 is located at Barangay Poblacion, Dalaguete, Cebu beside km post 84. Monument is situated at a concrete sidewalk at an end of Dumaguete bridge and at the right side of the road going SW. Mark is the head of a 3" copper nail set on a drilled hole and cemented on a 6" x 6" x 1/2" cement putty flushed on a concrete sidewalk of a bridge with inscription "CU-340; 2007; NAMRIA". Requesting Party: ENGR. CHRISTOPHER CRUZ Pupose: Reference OR Number: 8799670 A T.N.: 2014-1778 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 9 NAMRIA OFFICES: NAMKIA OFFICES: Main : Lawfor Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 AB ACCREDITE GMS Certification Acceeditation N MSA-001 INTER INTER www.namria.gov.ph CIP/4701/12/09/814 ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT Figure A-2.5 CU-340

6. CU-784

	Republic of the Philipp Department of Enviror NATIONAL MAP	pines Inment and Natural Resources PING AND RESOURCE INFORMATION A	UTHORITY
			August 08, 207
		CERTIFICATION	
To whom it may conc This is to certify th	ern: at according to the	e records on file in this office, the reque	sted survey information is as follows
		Province: CEBU Station Name: CU-784	
Island: CEBU		Municipality: TOLEDO CITY	Barangay: BALUD
Elevation: 58.7670) m.	Order: 1st Order	Datum: Mean Sea Level
BM CU-784 is locate Bega's store, 35 m N nail on top of a concr with inscription CU-78	d along the nation IW of Balud bridge rete foundation of 84 2008 NAMRIA.	al highway of Brgy. Balud, Toledo, 10 i e and Sw of km post 47. Mark is set or km post 47 embedded with concrete ca	m SE of a Sari-Sari store, 20 m NW n a drilled hole centered with 3" copp ement putty, 0.20 m x 0.20 m x 0.30
BM CU-784 is locate Bega's store, 35 m N nail on top of a concr with inscription CU-78 Requesting Party: I Pupose: I OR Number: S T.N.:	d along the nation IW of Balud bridge rete foundation of 84 2008 NAMRIA. ENGR. CHRISTO Reference 8799670 A 2014-1779	al highway of Brgy. Balud, Toledo, 10 i e and Sw of km post 47. Mark is set or km post 47 embedded with concrete ce PHER CRUZ RUEL D Director, Mappi	m SE of a Sari-Sari store, 20 m NW n a drilled hole centered with 3" copp ement putty, 0.20 m x 0.20 m x 0.30 M. BELEN, MNSA ng And Geodesy Branch
BM CU-784 is locate Bega's store, 35 m N nail on top of a concr with inscription CU-74 Requesting Party: I Pupose: I OR Number: 3 T.N.: 5	d along the nation IW of Balud bridge rete foundation of 84 2008 NAMRIA. ENGR. CHRISTO Reference 8799670 A 2014-1779	al highway of Brgy. Balud, Toledo, 10 n e and Sw of km post 47. Mark is set or km post 47 embedded with concrete ca PHER CRUZ RUEL D Director, Mappi	m SE of a Sari-Sari store, 20 m NW n a drilled hole centered with 3" copp ement putty, 0.20 m x 0.20 m x 0.30 M. BELEN, MNSA ng And Geodesy Branch
BM CU-784 is locate Bega's store, 35 m N nail on top of a concr with inscription CU-76 Requesting Party: Pupose: OR Number: T.N.:	d along the nation IW of Balud bridge rete foundation of 84 2008 NAMRIA. ENGR. CHRISTO Reference 8799670 A 2014-1779	al highway of Brgy. Balud, Toledo, 10 n e and Sw of km post 47. Mark is set or km post 47 embedded with concrete ca PHER CRUZ RUEL D Director, Mappi	m SE of a Sari-Sari store, 20 m NW n a drilled hole centered with 3" copp ement putty, 0.20 m x 0.20 m x 0.30 M. BELEN, MNSA ng And Geodesy Branch G S S S S S S S S S S S S S

Figure A-2.6 CU-784

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. CU-340

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CBU-95 CU-340 (B1)	CBU-95	CU-340	Fixed	0.004	0.016	205°44'46"	14786.402	-43.202
CBU-95 CU-340 (B2)	CBU-95	CU-340	Fixed	0.007	0.015	205°44'46"	14786.398	-43.210

Acceptance Summary							
Processed	Passed	Flag	Þ	Fail	1		
2	2	0		0			

Vector Components (Mark to Mark)

From:	CBU-95	-95						
G	rid		Local			Global		
Easting	564725.267 m	Latitude	N9°53'1	2.12011"	Latitude		N9°53'08.07702"	
Northing	1092874.314 m	Longitude	E123°35'2	5.30633"	Longitude		E123°35'30.59407"	
Elevation	52.386 m	Height	ŧ	53.601 m	Height		115.555 m	
To:	CU-340							
G	rid	Local		Global		bal		
Easting	558328.012 m	Latitude	N9°45'5	8.58681"	Latitude		N9°45'54.56953"	
Northing	1079549.209 m	Longitude	E123°31'5	4.56077"	Longitude		E123°31'59.85973"	
Elevation	9.223 m	Height		10.399 m	n Height		72.479 m	
Vector								
∆Easting	-6397.25	5 m NS Fwd Azim	uth		205°44'46"	ΔX	4117.818 m	
∆Northing	-13325.10	5 m Ellipsoid Dist.			14786.402 m	ΔY	5408.684 m	
∆Elevation	-43.16	3 m <mark>∆Height</mark>			-43.202 m	ΔZ	-13131.295 m	

Standard Errors

Vector errors:						
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.004 m	
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.007 m	
σ ΔElevation	0.008 m	σ ΔHeight	0.008 m	σΔΖ	0.002 m	

Figure A-3.1 CU-340

2. CU-784

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CBU-293 CU-784 (B1)	CBU-293	CU-784	Fixed	0.008	0.025	305°11'38"	6328.292	-229.377
CBU-293 CU-784 (B2)	CBU-293	CU-784	Fixed	0.016	0.056	305°11'38"	6328.321	-229.336

Acceptance Summary

Processed	Passed	Flag	▲	Fail	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	CBU-293						
G	rid	Lo	ocal		Global		
Easting	578942.769 m	Latitude	N10°18'32.848	315" Latitude		N10°18'28.70836"	
Northing	1139608.136 m	Longitude	E123°43'15.511	83" Longitude		E123°43'20.76082"	
Elevation	287.991 m	Height	289.62	5 m Height		350.938 m	
To: CU-784							
G	rid	Local			Global		
Easting	573764.736 m	Latitude	N10°20'31.550	31" Latitude		N10°20'27.39783"	
Northing	1143242.555 m	Longitude	E123°40'25.526	69" Longitude		E123°40'30.77330"	
Elevation	58.781 m	Height	60.24	8 m Height		121.368 m	
Vector							
∆Easting	-5178.03	3 m NS Fwd Azimuth		305°11'38"	ΔX	4790.876 m	
∆Northing	3634.41	9 m Ellipsoid Dist.		6328.292 m	ΔY	2137.897 m	
∆Elevation	-229.21	1 m <mark>∆Height</mark>		-229.377 m	ΔZ	3546.676 m	

Standard Errors

Vector errors:						
σ ΔEasting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.007 m	
$\sigma \Delta Northing$	0.003 m	σ Ellipsoid Dist.	0.003 m	σΔΥ	0.011 m	
σ ΔElevation	0.013 m	σ ΔHeight	0.013 m	σΔΖ	0.004 m	

Figure A-3.2 CU-784

3. CU-1322

r rocessing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CBU-296 CU- 1322 (B1)	CBU-296	CU-1322	Fixed	0.007	0.017	138°57'44"	6510.812	-95.924
CBU-296 CU- 1322 (B2)	CBU-296	CU-1322	Fixed	0.005	0.014	138°57'44"	6510.823	-95.900

Processing Summary

Acceptance Summary

Processed	Passed	Flag	Þ	Fail	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	CBU-296	CBU-296					
Gi	rid	Lo	ocal		Global		
Easting	565566.407 m	Latitude	N10°10'02.9	93937"	Latitude		N10°09'58.82505"
Northing	1123920.059 m	Longitude	E123°35'54.7	77903"	Longitude		E123°36'00.04167"
Elevation	143.486 m	Height	144.9	990 m	Height		206.327 m
To: CU-1322							
Gi	rid	Local		Global			
Easting	569848.689 m	Latitude	N10°07'23.0	08395"	Latitude		N10°07'18.98433"
Northing	1119018.668 m	Longitude	E123°38'15.1	19068"	Longitude		E123°38'20.45703"
Elevation	47.518 m	Height	49.	9.066 m Height		110.601 m	
Vector							
∆Easting	4282.28	2 m NS Fwd Azimuth			138°57'44"	ΔX	-3986.354 m
ΔNorthing	-4901.39	1 m Ellipsoid Dist.			6510.812 m	ΔY	-1724.916 m
∆Elevation	-95.96	7 m <mark>ΔHeigh</mark> t			-95.924 m	ΔZ	-4851.259 m

Standard Errors

Vector errors:						
σ ΔEasting	0.003 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m	
$\sigma \Delta Northing$	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.007 m	
σ ΔElevation	0.008 m	σ ΔHeight	0.008 m	σΔΖ	0.002 m	

Figure A-3.3 CU-1322

Data Acquisition	Designation	Name	Agency/
	Program Leader	ENRICO C. PARINGIT, D.ENG	
Data Acquisition	Data Component		UF-ICAGP
Component Leader	Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chiéf Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP
	FIELD	TEAM	
LiDAR Operation	Senior Science Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
	Research Associate	GRACE SINADJAN	UP-TCAGP
	(RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
Ground Survey, Data	2.4	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
Download and Transfer	RA	KENNETH QUISADO	UP-TCAGP
	Airborne Security	SSG. RAYMUND DOMINE	PILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. FERDINAND DE OCAMPO	AAC

Annex 4. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheets

Figure A-5.1 Data Transfer Sheet for Sapangdaku Floodplain - A

Figure A-5.2 Data Transfer Sheet for Sapangdaku Floodplain - B

Figure A-5.3 Data Transfer Sheet for Sapangdaku Floodplain - C

Annex 6. Flight Logs

1. Flight Log for 1741P Mission

del: 49 Type: VFR Mission Name: 10.4 3.044-20.3.4 Aircraft Type: CesnnaT206H Aircraft Identification November Route: 6.1.1. Airport of Departure: Aircraft Startivel: .	170 Leby Ceby Ceby	Leit rieud : Hi2 1/2 Scan Angle: Approx. Swath: Evesafe: m Itsision Folder Name	Camera Mission Folder Name	Ground Base Station Ground Surveyor	Status Comments PDOP Comments	Mursian Successful at 1200m Anina Lutght; some	Lines due to using a sublition	out work Will a land	Please refer to electronic options	2.00 M		RECEIVED BY:	POSITION: POSITION: SIGNATURE: DATE TRANSFERRED:
Co-Pilot:	PRF. LH2 CUN	IM I I M	A 8		Rng/Ht m GPS (AGL SVS								
C. AILAN Ch	ly or or dult	Line 2 > Line	Set of Hard Urive ather:		:#: Speed Kts hary POS						olems and Solutions	RECEIVED FROM: NAME:	POSITION: SIGNATURE: DATE TRANSFERRED:

Figure A-6.1 Flight Log for 1741P Mission

2. Flight Log for 1743P Mission

Figure A-6.2 Flight Log for 1743P Mission

Flight L H Aircraft Identification: 2	Airport of Artival:	E		avor			heigh t:	1. 0.	6	· optica.					
Aircraft Type: CesnnaT206	Airport of Departure:	th: Eyesafe:	Camera Mission Folder Name	Ground Sun			OH 100m flying	Roll L Aitzi	of sharing to the	ter to subletron			ED BY:	NI:	
Type: VFR Mission Name: 101,K3(F2)2,	Route: Caby	Hz 1/2 Scan Angle: ° Approx. Swa	Name:	Ground Base Station	- Comments		Mússim successful	Complet.	1. acd	floore po			RECEIV	POSITI SIGNAT DATE TI	
25 ALTM Model: PC	F. Ded campo	PKF: KHZ Scan Freq :	A B Mission Folder		Rng/Ht m GPS Status AGI cvc proce						10.0				
Pilot: 0.00 Pilot: 1.00 Pilot: 0.00	U: A/FONSO	+100 12 hun	Set of Hard Drive	Weather:	LINE #: Speed Kts	Primary POS						 Problems and Solutions	RECEIVED FROM: NAME: POSITION:	SIGNATURE: DATE TRANSFERRED:	

Figure A-6.3 Flight Log for 1777P Mission

3. Flight Log for 1777P Mission

110

1151K 30LF2/2/2/9 Aircraft Type: CesnnaT206H Aircraft I U Airport of Departure: Approx. Swatt:	Camera Mission Folder Name	und base station Ground Surveyor	SUCCESSful at 1200m Hying heigh	apled Bik Set "1 0	1274 to electronic coperation			RECEIVED BY: NAME: POSITION: POSITION: SIGNATURE: DATE TRANSFERRED:
M Model: Ped Type: VFR Mission Name: AUNAD Route: Ceb t Scah Freq : Hz 1/2 Scan Angle:	Mission Folder Name:	GPS Status PDOP Comments	the sside		Please			
Co-Pilot: ALI Co-Pilot: ALI	A	tts Rng/Ht m SvS						
2.417 msp. 2.417 msp. 714 31, 201	Set of Hard Drive	POS Speed k					and Solutions	RECEIVED FROM: NAME: POSITION: SIGNATURE: DATE TRANSFERRED

Figure A-6.4 Flight Log for 1779P Mission

Figure A-6.5 Flight Log for 1781P Mission

5. Flight Log for 1781P Mission

Flight Log for 1785P Mission

6.

Figure A-6.6 Flight Log for 1785P Mission

Figure A-6.7 Flight Log for 1787P Mission

7. Flight Log for 1787P Mission

8. Flight Log for 1829P Mission

Figure A-6.8 Flight Log for 1829P Mission

Annex 7. Flight Status Report

	CEBU							
		(July 22 and 3	80, August 1-2	and 13, 20)14)			
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS			
1741P	BLK36H	1BLK36H203A	I. Roxas	July 22	Mission successful at 1200m flying height; some lines due to wind conditions.			
1743P	BLK36H	1BLK36H203B	G. Sinadjan	July 22	Mission successful at 1200-1500m flying height; completed BLK 36H; few voids due to clouds and terrain.			
1777P	BLK36E	1BLK36E212A	I. Roxas	July 30	Mission successful at 1000m flying height; completed half of BLK 36F.			
1779P	BLK36D, BLK36E	1BLK36E212B	G. Sinadjan	July 30	Mission successful at 1200m flying height; completed BLK 36F			
1781P	BLK36E, BLK36F, BLK36G	1BLK36F213A	I. Roxas	August 1	Data acquired IN BLK 36F; experienced rain in survey area causing shortened mission.			
1785P	BLK36E, BLK36F, BLK36G	1BLK36GF214A	G. Sinadjan	August 2	Mission successful in BLK 36F at 1200m; gaps and voids in some areas; extended survey area to include coastline.			
1787P	BLK36G	1BLK36G214B	I. Roxas	August 2	Mission successful in BLK 36G at 1000m.			
1829P	BLK36H, BLK47A		G. Sinadjan	August 13	Filled in gaps in BLK36H and BLK47A.			

LAS BOUNDARIES PER FLIGHT

Flight No. :	1741P			
Area:	BLK36H			
Mission Name:	1BLK36H203A			
Parameters:	Altitude:	1000m; Sca	in Frequency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.1 Swath for Flight No. 1741P

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR-1)

Flight No. :	1743P			
Area:	BLK36H			
Mission Name:	1BLK36H203B			
Parameters:	Altitude:	1200m; Sca	an Frequency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.2 Swath for Flight No. 1743P

Flight No. :1779PArea:BLK36D, BLK36EMission Name:1BLK36E212BParameters:Altitude:100Scan Angle:250

1000m; Scan	Frequency:
25deg;	Overlap:

30Hz; 30%

Figure A-7.3 Swath for Flight No. 1779P

Flight No. :	1781P			
Area:	BLK36E, BLK36	F, BLK36G		
Mission Name:	1BLK36F213A			
Parameters:	Altitude:	1000m; Sc	an Frequency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.4 Swath for Flight No. 1781P

Flight No. :1785PArea:BLK36E, BLK36F, BLK36GMission Name:1BLK36GF214AParameters:Altitude:1200m; Scan Frequency:30Hz;Scan Angle:25deg;Overlap:30%

Figure A-7.5 Swath for Flight No. 1785P

Flight No. :	1787P			
Area:	BLK36G			
Mission Name:	1BLK36G214B			
Parameters:	Altitude:	1000m; Sc	an Frequency:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%

Figure A-7.6 Swath for Flight No. 1787P

Flight No. : 1829P Area: BLK36H, BLK47A Mission Name: 1BLK36H47A225A Parameters: Altitude: 120 Scan Angle: 25

00m; Sca	n Frequency:	30Hz;
deg;	Overlap:	30%

Figure A-7.7 Swath for Flight No. 1829P

Annex 8. Mission Summary Report

	Cobu
Mission Namo	Bik265
	1777D 1770D
Pango data sizo	58.2 GB
	50.2 GB
POS data size	
	100.0 CB
	100.9 GB
	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
5 (,	
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	2.4
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000297
IMU attitude correction stdev (<0.001deg)	0.002948
GPS position stdev (<0.01m)	0.0021
	54 400/
Minimum % overlap (>25)	51.18%
Ave point cloud density per sq.m. (>2.0)	7.19
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	547
Maximum Height	707.71 m
Minimum Height	53,14 m
	3014111
Classification (# of points)	
Ground	450,661,930
Low vegetation	381,095,661
Medium vegetation	830,378,069
High vegetation	60,5642,860
Building	36,666,032
Orthophoto	Yes
	Engr. Angelo Carlo Bongat, Engr.
Processed by	Harmond Santos, Engr. Melissa
	Fernandez

Table A-8.1 Mission Summary Report for Mission Blk36E

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metrics Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6 Density of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Cebu
Mission Name	Blk36F
Inclusive Flights	1781P, 1785P, 1793P
Range data size	64.9 GB
POS data size	609 MB
Base data size	19.62 MB
Image	98.9 GB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Matrics(in cm)	
PMSE for North Dosition (<1.0 cm)	1 15
PMSE for East Docition (<4.0 cm)	1.15
PMSE for Down Position (<4.0 cm)	2.6
	2.0
Boresight correction stdev (<0.001deg)	0.000199
IMU attitude correction stdev (<0.001deg)	0.001406
GPS position stdev (<0.01m)	0.0027
Minimum % overlap (>25)	44.99%
Ave point cloud density per sq.m. (>2.0)	6.84
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	673
Maximum Height	754.61 m
Minimum Height	63.83 m
Classification (# of points)	
Ground	630,207,533
Low vegetation	490,773,780
Medium vegetation	1,009,481,285
High vegetation	741,855,943
Building	31,121,044
Orthophoto	Yes
	Engr. Angelo Carlo Bongat, Aljon
Processed by	Rie Araneta, Engr. Roa Shalemar
	Redo

Table A-8.2 Mission Summary Report for Mission Blk36F

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Cebu
Mission Name	Blk36H
Inclusive Flights	1741P, 1743P
Range data size	41.8 GB
POS data size	420 MB
Base data size	20.8 MB
Image	70 GB
Transfer date	August 4, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
BMSE for North Position (<4.0 cm)	1.6
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<4.0 cm)	2.2
	5.2
Boresight correction stdev (<0.001deg)	0.000165
IMU attitude correction stdev (<0.001deg)	0.000824
GPS position stdev (<0.01m)	0.0066
Minimum % overlap (>25)	37.88%
Ave point cloud density per sq.m. (>2.0)	6.81
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	142
Maximum Height	442 008.24m
Minimum Height	61 22m
Minimum Height	01.52111
Classification (# of points)	
Ground	336510447
Low vegetation	288340067
Medium vegetation	615334756
High vegetation	354939457
Building	14040070
Orthophoto	Yes
	Engr. Jommer Medina, Engr.
Processed by	Chelou Prado, Engr. Roa Shalemar
	Redo

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metrics Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Cebu
Mission Name	Blk36G
Inclusive Flights	1787P
Range data size	29.5 GB
POS data size	250 MB
Base data size	10.9 MB
Image	48.3 GB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothad Darformanca Matrics(in cm)	
BMSE for North Position (<4.0 cm)	1.6
RMSE for East Position (<4.0 cm)	1.0
PMSE for Down Docition (<4.0 cm)	2.4
	5.4
Boresight correction stdev (<0.001deg)	0.000152
IMU attitude correction stdev (<0.001deg)	0.000469
GPS position stdev (<0.01m)	0.0087
Minimum % overlap (>25)	47.95%
Ave point cloud density per sq.m. (>2.0)	6.92
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	278
Maximum Hoight	807 50 m
Minimum Height	62.10 m
	02.19 11
Classification (# of points)	
Ground	239,514,559
Low vegetation	191,635,235
Medium vegetation	449,076,316
High vegetation	318,903,601
Building	6,322,067
Orthophoto	Yes
	Engr. Jommer Medina, Engr.
Processed by	Harmond Santos, Engr. Jeffrey
	Delica

Table A-8.4 Mission Summary Report for Mission Blk36G

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metrics Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

	son bikson_supplement
Flight Area	Cebu
Mission Name	Blk36H_supplement
Inclusive Flights	1829P
Range data size	6.25 GB
POS data size	131 MB
Base data size	8.78 MB
Image	8.96 GB
Transfer date	August 4, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Matrics (in cm)	
PMSE for North Position (<4.0 cm)	0.95
PMSE for East Position (<4.0 cm)	1.0
PMSE for Down Position (<4.0 cm)	2.2
	5.2
Boresight correction stdev (<0.001deg)	0.00165
IMU attitude correction stdev (<0.001deg)	0.000824
GPS position stdev (<0.01m)	0.0066
Minimum % overlap (>25)	13.87%
Ave point cloud density per sq.m. (>2.0)	7.09
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	65
Maximum Height	909.07 m
Minimum Height	67.88 m
Classification (# of points)	
Cround	24 001 205
Low vegetation	
	70,004,150
	1 009 277
building	1,098,277
Orthophoto	Voc
Orthophoto	Engr. Jennifer Saguran. Alion Rie
Processed by	Araneta, Jovy Narisma

Table A-8.5 Mission Summary Report for Mission Blk36H_supplement

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metrics Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

SCS Curv	e Number L	oss Model	Clark Transfo	irm Model		Recession	Constant Ba	seflow Model	
L	Curve Number	Impervious	Time of Concentration	Storage Coefficient	Initial Type	Initial Discharge	Recession Constant	Threshold Type	Ratio to Peak
101	58.4	0	0.96044	4.8475	Discharge	0.035903	0.78008	Ratio to Peak	0.1
101	58.4	0	0.353784	1.7754	Discharge	0.00803	0.8	Ratio to Peak	0.1
101	58.4	0	0.4022	2.0256	Discharge	0.010638	0.8	Ratio to Peak	0.1
101	58.4	0	0.332936	2.5072	Discharge	0.007222	0.8	Ratio to Peak	0.1
2101	58.4	0	0.110036	0.55554	Discharge	0.000243	0.8	Ratio to Peak	0.1
2101	58.4	0	0.220276	1.6599	Discharge	0.006807	0.8	Ratio to Peak	0.1
2101	58.4	0	0.312312	1.5772	Discharge	0.006701	0.8	Ratio to Peak	0.1
2101	58.4	0	0.316556	1.5957	Discharge	0.009746	0.784	Ratio to Peak	0.1
2101	58.4	0	0.16492	0.82852	Discharge	0.001482	0.79257	Ratio to Peak	0.1
2013	58.4272	0	0.75892	3.8131	Discharge	0.028166	0.53333	Ratio to Peak	0.1
2101	58.4	0	0.341856	1.7172	Discharge	0.009298	0.796	Ratio to Peak	0.1
8142	56.592	0	0.83708	4.2014	Discharge	0.012272	0.53333	Ratio to Peak	0.1
2101	58.4	0	0.386748	2.9006	Discharge	0.006995	0.796	Ratio to Peak	0.1
2101	58.4	0	0.330788	1.662	Discharge	0.008601	0.86	Ratio to Peak	0.1
2101	58.4	0	0.49072	3.6804	Discharge	0.015533	0.784	Ratio to Peak	0.1
0266	53.2816	0	0.9114	4.5753	Discharge	0.021284	0.53333	Ratio to Peak	0.1
0531	65.9192	0	0.321748	1.6164	Discharge	0.004894	0.784	Ratio to Peak	0.1
2101	58.4	0	0.41592	2.0892	Discharge	0.00691	0.72	Ratio to Peak	0.1
8057	59.676	0	0.43608	3.2706	Discharge	0.008638	0.53333	Ratio to Peak	0.1
.2101	58.4	0	0.56684	2.848	Discharge	0.01303	0.53333	Ratio to Peak	0.1
2101	58.4	0	0.23288	1.1701	Discharge	0.00327	0.53333	Ratio to Peak	0.1
4307	57.7264	0	0.48728	2.4479	Discharge	0.007361	0.53333	Ratio to Peak	0.1
2758	61.4352	0	0.322676	1.6176	Discharge	0.011211	~	Ratio to Peak	0.1
3502	57.9704	0	0.56292	10.364	Discharge	0.012011	0.784	Ratio to Peak	0.1
8144	59.648	0	0.261256	2.8276	Discharge	0.005453	0.53333	Ratio to Peak	0.1
7598	67.0936	0	0.166376	1.3124	Discharge	0.001074	0.53333	Ratio to Peak	0.1
.0963	58.7536	0	1.07752	1.2478	Discharge	0.031402	0.7864	Ratio to Peak	0.1
4519	68.3728	0	0.45964	5.2798	Discharge	0.019362	0.53333	Ratio to Peak	0.1

Annex 9. Sapangdaku Model Basin Parameters

	Ratio to	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
seflow Model	Threshold Type	Ratio to Peak													
Constant Ba	Recession	0.788	0.53333	0.53333	0.8	0.53333	0.53333	0.53333	0.53333	0.784	0.53333	0.53333	0.53333	0.53333	0.53333
Recession	Discharge	0.003742	0.020546	0.011404	0.026135	0.061941	0.000379	0.007205	0.007252	0.020744	0.008978	0.007773	0.004708	0.014646	0.00001
	Initial	Discharge													
m Model	Storage	2.3054	1.4664	3.3009	1.389	3.4105	0.83077	2.6513	2.9738	6.2958	3.228	1.7581	1.557	2.9829	0.1682
Clark Transfor	Time of Concentration	0.29188	0.65696	0.276844	0.67896	1.38188	0.165372	0.52776	0.396508	0.83944	0.4304	0.234416	0.31062	0.59384	0.0224272
oss Model	Impervious	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e Number Lo	Curve	64.4328	59.2168	63.732	64.6712	59.2608	58.4	58.5984	60.3848	59.6432	58.5376	69.26	64.2016	58.64	79.2
SCS Curv	Abstraction	4.4395	5.9492	4.628	4.3763	5.9354	6.2101	6.146	5.5885	5.8159	6.1656	3.245	4.5013	6.1327	1.2438
Bacin	Number	W710	W720	W730	W740	W750	W760	W770	W780	W790	W800	W810	W820	W850	W860

		Muskir	ngum Cunge Ro	outing Model			
Reach No.	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R130	Automatic Fixed Interval	4911.7	0.0098739	0.4	Trapezoid	20	1
R150	Automatic Fixed Interval	868.53	0.00001	0.4	Trapezoid	20	1
R170	Automatic Fixed Interval	2335.8	0.0149843	0.4	Trapezoid	20	1
R180	Automatic Fixed Interval	2708.8	0.0012136	0.4	Trapezoid	20	1
R190	Automatic Fixed Interval	1234.3	0.0263232	0.4	Trapezoid	20	1
R200	Automatic Fixed Interval	3561.9	0.0488293	0.4	Trapezoid	20	1
R220	Automatic Fixed Interval	1924.4	0.004826	0.4	Trapezoid	20	1
R230	Automatic Fixed Interval	1658.9	0.0599383	0.4	Trapezoid	20	1
R250	Automatic Fixed Interval	488.7	0.1017	0.4	Trapezoid	20	1
R260	Automatic Fixed Interval	1757.8	0.0053843	0.4	Trapezoid	20	1
R270	Automatic Fixed Interval	3007.5	0.0222059	0.4	Trapezoid	20	1
R280	Automatic Fixed Interval	2754.5	0.0205979	0.4	Trapezoid	20	1
R30	Automatic Fixed Interval	1232	0.11127	0.4	Trapezoid	20	1
R330	Automatic Fixed Interval	3776.9	0.0361161	0.4	Trapezoid	20	1
R340	Automatic Fixed Interval	283.85	0.00001	0.4	Trapezoid	20	1
R360	Automatic Fixed Interval	857.11	0.0146647	0.4	Trapezoid	20	1
R380	Automatic Fixed Interval	2069.2	0.0170225	0.4	Trapezoid	20	1
R60	Automatic Fixed Interval	398.99	0.0459955	0.4	Trapezoid	20	1
R80	Automatic Fixed Interval	1843.1	0.0210815	0.4	Trapezoid	20	1
R870	Automatic Fixed Interval	70.711	0.23494	0.4	Trapezoid	20	1
R90	Automatic Fixed Interval	751.54	0.0191891	0.4	Trapezoid	20	1

Annex 10. Sapangdaku Model Reach Parameters

Annex 11. Sapangdaku Flood Validation Data

	Validation C	oordinates					
Point				Validation		Event /	Return
No.	Longitude	Latitude	Model	Points (m)	Error	Date	Period
			Var (m)		(m)		of Event
1	123.647667	10.399333	0.04	0.7	0.4356	Yolanda	100-Year
2	123.659944	10.37525	2.83	1.9	0.8649	Basyang	100-Year
3	123.001050	10.381583	0.03	0.9	0.7569	Volanda	100-Year
5	123.656028	10.388417	0.03	0.7	0.4469	Yolanda	100-Tear
6	123 651861	10.390444	0.00	1.2	1 0201	Basvang	100-Year
7	123.654472	10.39175	0.54	0.5	0.0016	Basvang	100-Year
8	123.650194	10.393	0.03	0.9	0.7569	Basvang	100-Year
9	123.648694	10.393222	0.03	1.7	2.7889	Yolanda	100-Year
10	123.661194	10.38125	5.88	0.9	24.8004	Wilfreng	100-Year
11	123.659944	10.375611	0.03	0.3	0.0729	Wilfreng	100-Year
12	123.659528	10.375722	0.22	0.3	0.0064	Wilfreng	100-Year
13	123.660055	10.3755	4.41	0.7	13.7641	Yolanda	100-Year
14	123.6585	10.376111	0.06	0	0.0036	Basyang	100-Year
15	123.6625	10.381778	0.06	0	0.0036	Wilfreng	100-Year
16	123.662139	10.381861	1.86	1.5	0.1296	Yolanda	100-Year
1/	123.660055	10.384833	0.03	0.5	0.2209	Basyang	100-Year
10	123.000011	10.382	0.06	0.2	1 2690	Velopdo	100-Year
20	123.000300	10.000111	0.03	1.2	0.1206	Volondo	100-fear
20	123 6/8583	10.393000	0.14	0.3	0.1290	Puby	100-fear
22	123.651806	10.395472	0.03	0.2	0.0289	Rasvana	100-Tear
23	123 647472	10.399583	0.03	0.2	0.0200	Wilfrend	100-Year
24	123 647861	10.397167	0.03	0.5	0.2209	Yolanda	100-Year
25	123 647833	10 397194	0.03	0.3	0.0729	Wilfreng	100-Year
26	123.647833	10.397194	0.03	0.3	0.0729	Ruby	100-Year
27	123.647833	10.397167	0.03	5	24.7009	Wilfreng	100-Year
28	123.648722	10.396417	0.13	0.9	0.5929	Ruby	100-Year
29	123.650889	10.395167	0.03	0.7	0.4489	Lando	100-Year
30	123.650889	10.395167	0.03	0.2	0.0289	Ruby	100-Year
31	123.650333	10.392805	0.08	0.2	0.0144	Ruby	100-Year
32	123.650778	10.393639	0.63	0.7	0.0049	Yolanda	100-Year
33	123.653722	10.392055	0.03	0.5	0.2209	Wilfreng	100-Year
34	123.6841753	10.35156733	0.39	0.2	0.0361	VVIIfreng	100-Year
35	123.6841266	10.35184309	0.59	0.3	0.0841	Vultreng	100-Year
30	123.0840/30	10.35200889	1.45	1.0	0.0225	Ruping	100-Year
32	123.0047100	10.3524592	0.7	0.7	0.0025	Puby	100-Tear
30	123 6847947	10.35370234	0.7	0.7	0	Wilfrena	100-Year
40	123 6839364	10.35374723	0.0	1	0.0081	Wilfreng	100-Year
41	123,6830888	10.35337575	0.47	0.5	0.0009	Ruby	100-Year
42	123.683451	10.35321992	0.54	1.5	0.9216	Yolanda	100-Year
43	123.6762291	10.35300929	0.26	0.2	0.0036	Yolanda	100-Year
44	123.6768784	10.3528701	0.03	0.2	0.0289	Basyang	100-Year
45	123.6666921	10.35070089	0.03	1	0.9409	Wilfreng	100-Year
46	123.6665902	10.35047426	0.03	0.2	0.0289	Ruby	100-Year
47	123.6669893	10.34999965	0.03	1.2	1.3689	Ruby	100-Year
48	123.6671664	10.35005671	0.07	0.5	0.1849	Yolanda	100-Year
49	123.6673429	10.34986971	0.28	0.7	0.1764	Basyang	100-Year
50	123.6672608	10.34951234	0.55	1	0.2025	Yolanda	100-Year
51	123.6653258	10.35188387	0.12	1.2		Basyang	100-Year
52	122 6502047	10.35/35054	0.35	0.5	1.0225		100-Year
53	123.000224/	10.30041275	0.09	1.2	0 1225	Basyang	100-rear
54	123.0004090	10.30071779	0.05	0.7	0.4220	Baeyang	100-Tear
56	123.0000000	10.30070944	0.03	0.7	0.4220	Yolanda	100-1eai
57	123.6567593	10.3665162	0.12	1	0.7744	Basvano	100-Year

Point	Validation C	coordinates	Model	Validation	Error	Event /	Return
No.	Longitude	Latitude	Var (m)	Points (m)	(m)	Date	Period
58	123.6568057	10.36650462	0.12	0.5	0.1444		100-Year
59	123.642965	10.38247693	0.05	1.2	1.3225		100-Year
60	123.643015	10.38238112	0.05	0.3	0.0625		100-Year
61	123.64271	10.38261527	0.03	0.3	0.0729		100-Year
62	123.649421	10.39042159	0.26	0.5	0.0576		100-Year
63	123.6498989	10.39008802	0.03	0.2	0.0289		100-Year
64	123.6499443	10.38986779	0.04	0.7	0.4356		100-Year
65	123.6496489	10.38957885	0.06	1.5	2.0736	Wilfreng	100-Year
66	123.6500642	10.38940572	0.03	0.3	0.0729		100-Year
67	123.6502922	10.39092711	0.22	0.5	0.0784	Basyang	100-Year
68	123.6503261	10.39098686	0.22	0.7	0.2304	Yolanda	100-Year
69	123.6505101	10.39065628	0.03	0.2	0.0289	Basyang	100-Year
70	123.6529161	10.40155396	0.97	1.2	0.0529	Basyang	100-Year

Annex 12. Educational Institution	s Affected in	Sapangdaku	Floodplain
-----------------------------------	---------------	------------	------------

Cebu								
	Tole	do City						
			Rainfall Scena	rio				
Building Name	Вагапдау	5-year	25-year	100-year				
Cambang-og Elementary								
School	Cambang-Ug							
Carmen Elementary School	Carmen							
Dumlog Elementary School	Dumlog			Low				
Toledo City Science High								
School Toledo National Vocational	llihan							
School	Ilihan		Low	Low				
	Juan Climaco,							
Magdugo Elementary School	Sr.	Low	Low	Medium				
	Juan Climaco,							
Toledo City Science High	Sr.	LOW	Medium	Nedium				
School	Luray II							
Media Onse National High								
School	Media Once		Low	Medium				
North City Central School	Poblacion	Medium	Medium	Medium				
South City Central School	Poblacion	Low	Medium	Medium				
University of the Visayas	Poblacion							
Leaton School	Sangi	Low	Low	Low				
North City Central School	Sangi	Medium	Medium	Medium				
Sangi Elementary School	Sangi							
St. Bernard School	Sangi	Low	Low	Low				
TESDA	Sangi	Low	Medium	Medium				
Toledo National Vocational								
School	Sangi							
West Bay Learning Center	Sangi	Medium	Medium	Medium				
Talavera Elementary School	Talavera	Low	Medium	Medium				

Annex 13. Health Institutions Affected in Sapangdaku Floodplain

	Ce	bu		
	Toledo	o City		
Puilding Nomo	Porongov	Ra	infall Sce	nario
Building Name	Багануау	5-year	25-year	100-year
Medical				
Clinic	Poblacion			