LiDAR Surveys and Flood Mapping of Ocoy River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Ocoy River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-188pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-186-7

TABLE OF CONTENTS

	•••••
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	Х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND OCOY RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Ocoy River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE OCOY FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	14
2.4 Survey Coverage	15
CHAPTER 3: LIDAR DATA PROCESSING OF THE OCOY FLOODPLAIN	17
3.1 Overview of the LiDAR Data Pre-Processing	17
3.2 Transmittal of Acquired LiDAR Data	18
3.2 Trajectory Computation	18
2.4 LiDAP Doint Cloud Computation	20
3.4 LIDAR POINT CIOUD COMPUTATION	20
3.5 LIDAR Data Quality Checking	
3.6 LIDAR Point Cloud Classification and Rasterization	25
3.7 LIDAR Image Processing and Orthophotograph Rectification	27
3.8 DEM Editing and Hydro-Correction	28
3.9 Mosaicking of Blocks	29
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	31
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	35
3.12 Feature Extraction	36
3.12.1 Quality Checking of Digitized Features' Boundary	36
3.12.2 Height Extraction	37
3.12.3 Feature Attribution	37
3 12 4 Final Quality Checking of Extracted Features	38
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE OCOY RIVER BASIN	
4.1 Summary of Activities	39
4 2 Control Survey	<u>لات</u>
1.2 Control Survey.	16
4.5 Dasemier Tocessing	40 17
4.4 Network Aujustinent	47 FO
4.5 Cross-section and Bridge As-Built Survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	54
/ / River Bathymetric Survey	
4.7 Niver bautymetric solvey.	56
CHAPTER 5: FLOOD MODELING AND MAPPING.	56 59
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling.	56 59 59
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves.	56 59 59 59
CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation	56 59 59 59 59
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow.	56 59 59 59 59 60
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station.	56 59 59 59 59 60 61
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model.	56 59 59 59 60 61 63
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data.	56 59 59 60 61 63 68
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model.	56 59 59 60 61 63 68 68
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 	56 59 59 60 61 63 68 68 69 70
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 	56 59 59 60 61 63 63 68 69 70 72
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7 1 Hydrograph using the Bainfall Bunoff Model 	56 59 59 60 61 63 68 68 69 70 72
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 Piver Analysis (PAS) Model Simulation. 	56 59 59 60 61 63 68 69 70 72 72 72
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 	56 59 59 60 61 63 68 69 70 72 72 73
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 	56 59 59 60 61 63 63 68 69 70 72 72 72 73
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 	56 59 59 60 61 63 63 63 63 70 72 72 72 73 73
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 	56 59 59 60 61 63 63 63 70 72 72 72 73 73 80 94
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 	56 59 59 60 61 63 63 68 69 70 72 72 73 73 80 94 94
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling	56 59 59 60 61 63 63 68 69 70 72 73 73 73 80 94 96
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors.	56 59 59 60 61 63 68 68 69 70 72 73 73 73 94 96 97
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey.	56 59 59 60 61 63 68 68 69 70 72 72 73 73 94 97 97 97
CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey.	56 59 59 59 60 61 63 68 69 70 72 72 73 73 73 80 94 96 97 97 97 97 97
 CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors. Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 4. The LIDAR Survey Team Composition.	56 59 59 59 60 61 63 63 68 69 70 72 72 73 73 73 80 94 94 97 97 97 97 97 97

Annex 6. Flight Logs for the Flight Missions	112
Annex 7. Flight Status Reports	116
Annex 8. Mission Summary Reports	121
Annex 9. Ocoy Model Basin Parameters	146
Annex 10. Ocoy Model Reach Parameters	148
Annex 11. Ocoy Field Validation Points	149
Annex 12. Educational Institutions affected by flooding in Ocoy Floodplain	152
Annex 13. Health Institutions affected by flooding in Ocoy Floodplain	155

LIST OF TABLES

Table 1. Flight planning parameters for the Aquarius LiDAR system	3
Table 2. Flight planning parameters for the Gemini LiDAR system	3
Table 3. Details of the recovered NAMRIA horizontal control point NGE-89 used as base station for the LiDAR acquisition	6
Table 4. Details of the recovered NAMRIA horizontal control point NGE-101 used as base station for the LiDAR acquisition	7
Table 5. Details of the recovered NAMRIA horizontal control point NGE-111 used as base station for the LiDAR acquisition	8
Table 6. Details of the recovered NAMRIA horizontal control point NGW-126 used as base station for the LiDAR acquisition	9
Table 7. Details of the recovered NAMRIA vertical control point TBM-4 used as base station with established coordinates	10
Table 8. Details of the recovered NAMRIA vertical control point NE-135 used as base station with established coordinates	11
Table 9. Details of the recovered NAMRIA vertical control point NE-90 used as base station with established coordinates	12
Table 10. Details of the recovered NAMRIA vertical control point NE-90A used as base station with established coordinates	13
Table 11. Ground control points used during the LiDAR data acquisition	13
Table 12. Flight missions for the LiDAR data acquisition of the Ocoy Floodplain	14
Table 13. Actual parameters used during the LiDAR data acquisition of the Ocoy Floodplain	14
Table 14. List of municipalities and cities surveyed of the Ocoy Floodplain LiDAR acquisition	15
Table 15. Self-calibration Results values for Ocoy flights	20
Table 16. List of LiDAR blocks for Ocoy Floodplain	21
Table 17. Ocoy classification results in TerraScan	25
Table 18. LiDAR blocks with its corresponding areas	28
Table 19. Shift values of each LiDAR block of Ocoy Floodplain	29
Table 20. Calibration Statistical Measures	33
Table 21. Validation Statistical Measures	34
Table 22. Quality Checking Ratings for Ocoy Building Features	36
Table 23. Building Features Extracted for Ocoy Floodplain	37
Table 24. Total Length of Extracted Roads for Ocoy Floodplain	37
Table 25. Number of Extracted Water Bodies for Ocoy Floodplain	38
Table 26. List of Reference and Control Points occupied for Ocoy River Survey	43
Table 27. Baseline Processing Summary Report for Ocoy River Survey	46
Table 28. Constraints applied to the adjustment of the control points	47
Table 29. Adjusted grid coordinates for the control points used in the Ocoy River Floodplain survey	47
Table 30. Adjusted geodetic coordinates for control points used in the Ocoy River Floodplain validatio	48
Table 31. Reference and control points utilized in the Ocoy River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)	49
Table 32. RIDF values for Dumaguete Point Rain Gauge computed by PAGASA	61
Table 33. Range of calibrated values for the Ocoy River Basin	70

Table 34. Summary of the Efficiency Test of the Ocoy HMS Model
Table 35. Peak values of the Ocoy HEC-HMS Model outflow using the Dumaguete RIDF 24-hour values72
Table 36. Municipalities affected in Ocoy Floodplain
Table 37. Affected areas in Dumaguete City, Negros Oriental during a 5-Year Rainfall Return Period81
Table 38. Affected areas in Dumaguete City, Negros Oriental during a 5-Year Rainfall Return Period81
Table 39. Affected areas in Sibulan, Negros Oriental during a 5-Year Rainfall Return Period
Table 40. Affected areas in Sibulan, Negros Oriental during a 5-Year Rainfall Return Period
Table 41. Affected areas in Dumaguete City, Negros Oriental during a 25-Year Rainfall Return Period85
Table 42. Affected areas in Dumaguete City, Negros Oriental during a 5-Year Rainfall Return Period85
Table 43. Affected areas in Sibulan, Negros Oriental during a 25-Year Rainfall Return Period
Table 44. Affected areas in Sibulan, Negros Oriental during a 25-Year Rainfall Return Period
Table 45. Affected areas in Dumaguete City, Negros Oriental during a 100-Year Rainfall Return Period89
Table 46. Affected areas in Dumaguete City, Negros Oriental during a 100-Year Rainfall Return Period89
Table 47. Affected areas in Sibulan, Negros Oriental during a 100-Year Rainfall Return Period91
Table 48. Affected areas in Sibulan, Negros Oriental during a 100-Year Rainfall Return Period91
Table 49. Areas covered by each warning level with respect to the rainfall scenarios
Table 50. Actual flood vs simulated flood depth at different levels in the Ocoy River Basin
Table 51. Summary of the Accuracy Assessment in the Ocoy River Basin Survey

LIST OF FIGURES

Figure 1. Map of Ocoy River Basin (in brown)	2
Figure 2. Flight Plan and base station used for the Ocoy Floodplain survey.	4
Figure 3. GPS set-up over NGE-89 as recovered on the SE corner of Bio-os Bridge in Brgy. Bio-os	
under the municipality of Amlan. (a) and NAMRIA reference point NGE-89 (b)	
as recovered by the field team	6
Figure 4. GPS set-up over NGE-101 as recovered on the third step from the top flooring	
of the pier NE corner in Brgy. Poblacion under the municipality of Sibulan (a) and NAMRIA	1
reference point NGE-101 (b) as recovered by the field team.	7
Figure 5. GPS set-up over NGE-111 as recovered on the concrete sidewalk on the NE approach	
of the 36 meter long Jagoba Bridge in barangay Jagoba under the municipality	
of Dauin (a) and NAMRIA reference point NGE-111 (b) as recovered by the field team	8
Figure 6. GPS set-up over NGW-126 as recovered on the SE corner of Maricalum Bridge	
which is at km 177+175 in Brgy. Maricalum under the municipality of Sipalay (a)	
and NAMRIA reference point NGW-126 (b) as recovered by the field team	9
Figure 7. GPS set-up over TBM-4 as recovered on top of concrete pathway about five (5) meters	
from the seawall of Dumaguete City's boulevard	. 10
Figure 8. GPS set-up over NE-135 as recovered in Busuang Bridge on top of concrete sidewalk	
in Barangay Bio-os under the municipality of Amlan. (a) and NAMRIA reference point	
NE-135 (b) as recovered by the field team	.11
Figure 9. GPS set-up over NE-90 as recovered on the concrete sidewalk of Guinsan Bridge four (4)	
meters from the road centerline in Brgy. Poblacion under the municipality	
of Zamboangita (a) and NAMRIA reference point NE-90 (b) as recovered by the field team.	. 12
Figure 10. Actual LiDAR survey coverage of the Ocoy Floodplain.	16
Figure 11. Schematic diagram for Data Pre-Processing Component.	. 17
Figure 12. Smoothed Performance Metric Parameters of Ocoy Flight 7514G.	.18
Figure 13. Solution Status Parameters of Ocoy Flight 7514G.	. 19
Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Ocoy Floodplain	20
Figure 15. Boundary of the processed LiDAR data over Ocoy Floodplain	21
Figure 16. Image of data overlap for Ocoy Floodplain.	. 22
Figure 17. Pulse density map of merged LiDAR data for Ocoy Floodplain	23
Figure 18. Elevation Difference Map between flight lines for Ocoy Floodplain Survey.	24
Figure 19. Quality checking for Ocoy Flight 7514G using the Profile Tool of QT Modeler.	25
Figure 20. Tiles for Ocoy Floodplain (a) and classification results (b) in TerraScan.	26
Figure 21. Point cloud before (a) and after (b) classification	.26
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Ocoy Floodplain	. 27
Figure 23. Portions in the DTM of Ocoy floodplain – (a) before and (b) after building removal;	
(c) before and (d) after bridge removal	. 28
Figure 24. Map of Processed LiDAR Data for Ocoy Floodplain	.30
Figure 25. Map of Ocoy Floodplain with validation survey points in green.	. 32
Figure 26. Correlation plot between calibration survey points and LiDAR data	.33
Figure 27. Correlation plot between validation survey points and LiDAR data.	.34
Figure 28. Map of Ocoy Floodplain with bathymetric survey points shown in blue.	.35
Figure 29. Blocks (in blue) of Ocoy building features that were subjected to QC	.36
Figure 30. Extracted features for Ocoy Floodplain.	.38
Figure 31. Extent of the bathymetric survey (in blue line) in Ocoy River	.40
and the LiDAR data validation survey (in red).	.40

 Figure 33. GNSS receiver set-up, Trimble* SPS 852, at NGE-93 in Brgy. Jliocon, Municipality of San Jose, Negros Oriental	Figure 32. The GNSS Network established in the Ocoy River Survey	42
of San Jose, Negros Oriental	Figure 33. GNSS receiver set-up, Trimble® SPS 852, at NGE-93 in Brgy. Jilocon, Municipality	
 Figure 34. GNSS receiver setup, Trimble® SPS 882, at NE-119 at the approach of Ocoy Bridge in Brgy. Campaclan, Municipality of Sibulan, Negros Oriental 44 Figure 35. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at UP-TAN in Brgy. San Jose, Tanjay City, Negros Oriental 44 Figure 36. GNSS receiver set-up, Trimble® SPS 882 at control point UP-OCO near the abutment of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental. 45 Figure 38. Cross-section survey conducted in Ocoy river in Brgy. Calabnugan, Municipality of Sibulan	of San Jose, Negros Oriental	43
in Brgy. Campaclan, Municipality of Sibulan, Negros Oriental	Figure 34. GNSS receiver setup, Trimble [®] SPS 882, at NE-119 at the approach of Ocoy Bridge	
 Figure 35. GNSS receiver set-up, Trimble[®] Zephyr [™] Model 2, at NE-309 in Brgy. San Jose, Tanjay City, Negros Oriental 44 Figure 36. GNSS receiver set-up, Trimble[®] Zephyr [™] Model 2, at UP-TAN in Brgy. Novallas, Tanjay City, Negros Oriental 45 Figure 37. GNSS receiver set-up, Trimble[®] SPS 882 at control point UP-OCO near the abutment of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental 45 Figure 38. Cross-section survey conducted in Ocoy river in Brgy. Calabnugan, Municipality of Sibulan 50 Figure 39. Location map of Ocoy River cross-section survey. 51 Figure 40. Ocoy River data form 52 Figure 41. Ocoy Bridge data form 53 Figure 42. (A) Setup of GNSS base station at CU-552 and (B) Trimble[®] SPS 882 attached to a vehicle. 54 Figure 43. Validation point acquisition survey of Ocoy River basin 55 Figure 44. Bathymetric survey in Ocoy River. 56 Figure 44. Data form of the Ocoy River Bathymetry Survey. 57 Figure 44. Cocoy riverbed profile. 58 Figure 47. Location map of the Ocoy HICC-HMS model used for calibration 59 Figure 48. Cross-section plot of Ocoy Bridge in Ocoy River. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed Iag parameters of the rainfall-runoff model. (Source: NAMRIA). 64 Figure 55. Slope Map of Ocoy River Basin. 65 Figure 56. Load Cover Map of Ocoy River generated through Arcmap HEC GeoRAS tool. 68 Figure 57. Ocoy River Basin model generated in HEC-HMS. 61 Figure 58. Slope Map of Ocoy Rive	in Brgy. Campaclan, Municipality of Sibulan, Negros Oriental	44
Tanjay City, Negros Oriental 44 Figure 36. GNSS receiver set-up, Trimble® SPS 882 at control point UP-OCO near the abutment of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental. 45 Figure 37. GNSS receiver set-up, Trimble® SPS 882 at control point UP-OCO near the abutment of Sibulan	Figure 35. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at NE-309 in Brgy. San Jose,	
 Figure 36. GNSS receiver set-up, Trimble* Zephyr ¹⁴ Model 2, at UP-TAN in Brgy. Novallas, Tanjay City, Negros Oriental	Tanjay City, Negros Oriental	44
Tanjay City, Negros Oriental	Figure 36. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at UP-TAN in Brgy. Novallas,	
 Figure 37. GNSS receiver set-up, Trimble* SPS 882 at control point UP-OCO near the abutment of Sibulan Bridge Brgy, Calabnugan, Municipality of Sibulan, Negros Oriental. Figure 38. Cross-section survey conducted in Ocoy river in Brgy. Calabnugan, Municipality of Sibulan Figure 39. Location map of Ocoy River cross-section survey. S1 Figure 41. Ocoy Riverbed cross-section diagram. S2 Figure 41. Ocoy Riverbed cross-section diagram. S2 Figure 41. Ocoy River bod cross-section diagram. S3 Figure 42. (A) Setup of GNSS base station at CU-S52 and (B) Trimble* SPS 882 attached to a vehicle. 54 Figure 43. Validation point acquisition survey of Ocoy River basin. S5 Figure 44. Bathymetric survey in Ocoy River. S6 Figure 44. Bathymetric survey in Ocoy River. S6 Figure 44. Bathymetric survey in Ocoy River. S6 Figure 44. Cocoy riverbed profile. S8 Figure 44. Cocoy riverbed profile. S8 Figure 47. Location map of the Ocoy Bridge. G0 Figure 50. Rainfall and outflow data at Ocoy Bridge used for calibration. G0 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin. G2 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. G2 Figure 53. Soil Map of Ocoy River Basin. G5 Figure 54. Land Cover Map of Ocoy River Basin. G5 Figure 55. Slope Map of Ocoy River Basin. G5 Figure 55. Slope Map of Ocoy River Basin. G6 Figure 55. Slope Map of Ocoy River Basin. G5 Figure 55. Slope Map of Ocoy River Basin. G6 Figure 55. Slope Map of Ocoy River Basin. G6 Figure 55. Slope Map of Ocoy River Basin. G6 Figure 55. Slope Map of Ocoy River Basin. G6 Figure	Tanjay City, Negros Oriental	45
of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental	Figure 37. GNSS receiver set-up, Trimble® SPS 882 at control point UP-OCO near the abutment	
Figure 38. Cross-section survey conducted in Ocoy river in Brgy. Calabnugan, Municipality of of Sibulan	of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental	45
of Sibulan	Figure 38. Cross-section survey conducted in Ocoy river in Brgy. Calabnugan, Municipality	
Figure 39. Location map of Ocoy River cross-section survey. 51 Figure 40. Ocoy Riverbed cross-section diagram. 52 Figure 41. Ocoy Bridge data form. 53 Figure 42. (A) Setup of GNSS base station at CU-552 and (B) Trimble* SPS 882 attached to a vehicle. 54 Figure 43. Validation point acquisition survey of Ocoy River basin. 55 Figure 44. Bathymetric survey in Ocoy River. 56 Figure 45. Extent of the Ocoy River Bathymetry Survey. 57 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge. 60 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 61 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin. 65 Figure 55. Slope Map of Ocoy River Basin. 66 Figure 58. River cross-section of Ocoy River Basin. 66 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro). 69 Figure 61. Outflow hydrograph at Ocoy River Reasin used for Coy Sinu as Cananjac-Calabnugan Bridge), Sibulan gener	of Sibulan	50
Figure 40. Ocoy Riverbed cross-section diagram	Figure 39. Location map of Ocoy River cross-section survey	51
Figure 41. Ocoy Bridge data form	Figure 40. Ocoy Riverbed cross-section diagram	52
Figure 42. (A) Setup of GNSS base station at CU-552 and (B) Trimble® SPS 882 attached to a vehicle.54 Figure 43. Validation point acquisition survey of Ocoy River basin 55 Figure 43. Bathymetric survey in Ocoy River 56 Figure 44. Bathymetric survey in Ocoy River 57 Figure 45. Extent of the Ocoy River Bathymetry Survey. 57 Figure 46. Ocoy riverbed profile. 58 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River Basin 65 Figure 57. Ocoy River Basin model generated in HEC-HMS 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61.	Figure 41. Ocoy Bridge data form	53
Figure 43. Validation point acquisition survey of Ocoy River basin 55 Figure 44. Bathymetric survey in Ocoy River 56 Figure 45. Extent of the Ocoy River Bathymetry Survey. 57 Figure 45. Cory riverbed profile 58 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 55. Slope Map of Ocoy River Basin 66 Figure 56. Stream Delineation Map of Ocoy River generated through Arcmap HEC GeoRAS tool. 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph at Ocoy Rivge (also known as Camanjac-Calabnugan Bridge), Sibulan generated Map for Ocoy Floodplain overlaid on Google Earth imagery. 74 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery. 75 F	Figure 42. (A) Setup of GNSS base station at CU-552 and (B) Trimble® SPS 882 attached to a vehicle	.54
Figure 44. Bathymetric survey in Ocoy River 56 Figure 45. Extent of the Ocoy River Bathymetry Survey. 57 Figure 46. Ocoy riverbed profile. 58 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA). 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River Basin 66 Figure 57. Ocoy River Basin model generated in HEC-HMS. 67 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph at Ocoy Rivde RibF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy Rivde RibF simulated in Google Earth imagery. 74 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery. 74	Figure 43. Validation point acquisition survey of Ocoy River basin	55
Figure 45. Extent of the Ocoy River Bathymetry Survey. 57 Figure 46. Ocoy riverbed profile. 58 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA). 63 Figure 55. Slope Map of Ocoy River Basin 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River Basin 66 Figure 57. Ocoy River Basin model generated in HEC-HMS 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool. 68 Figure 60. Outflow hydrograph of Ocoy Produced by the HEC-HMS model compared with observed outflow 70 Figure 61. Outflow hydrograph of Ocoy River Bismulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy River Basin compared with observed outflow 72 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer	Figure 44. Bathymetric survey in Ocoy River	56
Figure 46. Ocoy riverbed profile. 58 Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge. 60 Figure 49. Rating curve at Ocoy Bridge in Ocoy River. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA). 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River generated through Arcmap HEC GeoRAS tool. 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph at Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy Floodplain overlaid on Google Earth imagery 74 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain o	Figure 45. Extent of the Ocoy River Bathymetry Survey	57
Figure 47. Location map of the Ocoy HEC-HMS model used for calibration. 59 Figure 48. Cross-section plot of Ocoy Bridge 60 Figure 49. Rating curve at Ocoy Bridge in Ocoy River. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA). 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 57. Ocoy River Basin model generated in HEC-HMS. 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool. 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph of Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy RAS Model 73 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overla	Figure 46. Ocoy riverbed profile	58
Figure 48. Cross-section plot of Ocoy Bridge 60 Figure 49. Rating curve at Ocoy Bridge in Ocoy River. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA) 63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA) 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 55. Slope Map of Ocoy River Basin 66 Figure 55. Slope Map of Ocoy River Basin 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph at Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy RAS Model 73 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery 74	Figure 47. Location map of the Ocoy HEC-HMS model used for calibration.	59
Figure 49. Rating curve at Ocoy Bridge in Ocoy River. 60 Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling 61 Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin 64 Figure 55. Slope Map of Ocoy River Basin 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River Basin 65 Figure 57. Ocoy River Basin model generated in HEC-HMS. 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph of Ocoy Rivdge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy RAS Model 73 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery 74 Figure 64. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth ima	Figure 48. Cross-section plot of Ocoy Bridge	60
Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling	Figure 49. Rating curve at Ocoy Bridge in Ocoy River	60
Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin 62 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA) 64 Figure 55. Slope Map of Ocoy River Basin 65 Figure 56. Stream Delineation Map of Ocoy River Basin 66 Figure 57. Ocoy River Basin model generated in HEC-HMS 67 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool 68 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro) 69 Figure 61. Outflow hydrograph of Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS 72 Figure 62. Sample output map of Ocoy RAS Model 73 Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery 75 Figure 64. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery 76 Figure 66. 25-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery 76 <td>Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling</td> <td>61</td>	Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling	61
 Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods. 62 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA) 63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin	62
 Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)63 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.	62
 Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	Figure 53. Soil Map of Ocov River Basin used for the estimation of the CN parameter. (Source: DA)	63
and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	Figure 54. Land Cover Map of Ocov River Basin used for the estimation of the Curve Number (CN)	
 Figure 55. Slope Map of Ocoy River Basin	and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	64
 Figure 56. Stream Delineation Map of Ocoy River Basin	Figure 55. Slope Map of Ocov River Basin	65
 Figure 57. Ocoy River Basin model generated in HEC-HMS	Figure 56. Stream Delineation Map of Ocov River Basin	66
 Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool	Figure 57. Ocov River Basin model generated in HEC-HMS	67
 Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	Figure 58. River cross-section of Ocov River generated through Arcmap HEC GeoRAS tool	68
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled	
 Figure 60. Outflow hydrograph of Ocoy produced by the HEC-HMS model compared with observed outflow	in ELO-2D Grid Developer System Pro (ELO-2D GDS Pro)	69
with observed outflow	Figure 60. Outflow hydrograph of Ocov produced by the HEC-HMS model compared	
 Figure 61. Outflow hydrograph at Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS	with observed outflow	70
Sibulan generated using Dumaguete RIDF simulated in HEC-HMS72Figure 62. Sample output map of Ocoy RAS Model73Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery74Figure 64. 100-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery75Figure 65. 25-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery76Figure 66. 25-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery77	Figure 61, Outflow hydrograph at Ocov Bridge (also known as Camaniac-Calabnugan Bridge)	
Figure 62. Sample output map of Ocoy RAS Model	Sibulan generated using Dumaguete RIDE simulated in HEC-HMS	
Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery	Figure 62 Sample output man of Ocov RAS Model	73
Figure 64. 100-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery	Figure 63, 100-year Flood Hazard Map for Ocov Floodplain overlaid on Google Farth imagery	74
Figure 65. 25-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery	Figure 64, 100-year Flow Denth Man for Ocov Floodplain overlaid on Google Farth imagery	75
Figure 66. 25-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery	Figure 65, 25-year Flood Hazard Man for Ocov Floodplain overlaid on Google Earth imagery	76
righte oo. 25 year now Depth Map for Ocoy noouplain overlaid on Google Larth Intagery	Figure 66, 25-year Flow Depth Map for Ocov Floodplain overlaid on Google Earth imagery	
Figure 67, 5-year Flood Hazard Man for Ocov Floodnlain overlaid on Google Farth imagery 78	Figure 67. 5-year Flood Hazard Man for Ocov Floodplain overlaid on Google Earth imagery	,
Figure 68 5-year Flood Depth Map for Ocov Floodplain overlaid on Google Earth imagery 79	Figure 68 5-year Flood Denth Map for Ocov Floodplain overlaid on Google Earth imagery	
Figure 69 Affected Areas in Dumaguete City Negros Oriental during 5-Vear Rainfall Return Deriod 22	Figure 69 Affected Areas in Dumaguete City Negros Oriental during 5-Vear Rainfall Return Deriod	, j , j
Figure 70. Affected Areas in Dumaguete City, Negros Oriental during 5 Year Rainfall Return Period 82	Figure 70. Affected Areas in Dumaguete City, Negros Oriental during 5-Year Rainfall Return Period	82

Figure 71. Affected Areas in Sibulan, Negros Oriental during 5-Year Rainfall Return Period	84
Figure 72. Affected Areas in Sibulan, Negros Oriental during 5-Year Rainfall Return Period	84
Figure 73. Affected Areas in Dumaguete City, Negros Oriental during 25-Year Rainfall Return Period	d.86
Figure 74. Affected Areas in Dumaguete City, Negros Oriental during 25-Year Rainfall Return Perio	od 86
Figure 75. Affected Areas in Sibulan, Negros Oriental during 25-Year Rainfall Return Period	88
Figure 76. Affected Areas in Sibulan, Negros Oriental during 25-Year Rainfall Return Period	88
Figure 77. Affected Areas in Dumaguete City, Negros Oriental during 100-Year Rainfall Return	
Period	90
Figure 78. Affected Areas in Dumaguete City, Negros Oriental during 100-Year Rainfall Return	
Period	90
Figure 79. Affected Areas in Sibulan, Negros Oriental during 100-Year Rainfall Return Period	92
Figure 80. Affected Areas in Sibulan, Negros Oriental during 100-Year Rainfall Return Period	92
Figure 04. Open Flood Melidation Deinte	
Figure 81. Ocoy Flood validation Points	94

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation					
Ab	abutment					
ALTM	Airborne LiDAR Terrain Mapper					
ARG	automatic rain gauge					
AWLS	Automated Water Level Sensor					
BA	Bridge Approach					
BM	benchmark					
CAD	Computer-Aided Design					
CN	Curve Number					
CSRS	Chief Science Research Specialist					
DA-BSWM	Department of Agriculture - Bureau of Soil and Water Management					
DAC	Data Acquisition Component					
DEM	Digital Elevation Model					
DENR	Department of Environment and Natural Resources					
DOST	Department of Science and Technology					
DPPC	Data Pre-Processing Component					
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]					
DRRM	Disaster Risk Reduction and Management					
DSM	Digital Surface Model					
DTM	Digital Terrain Model					
DVBC	Data Validation and Bathymetry Component					
FMC	Flood Modeling Component					
FOV	Field of View					
GiA	Grants-in-Aid					
GCP	Ground Control Point					
GNSS	Global Navigation Satellite System					
GPS	Global Positioning System					
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System					
HEC-RAS	Hydrologic Engineering Center - River Analysis System					
НС	High Chord					
IDW	Inverse Distance Weighted [interpolation method]					

IMU	Inertial Measurement Unit					
kts	knots					
LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
Lidar	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					
m AGL	meters Above Ground Level					
MMS	Mobile Mapping Suite					
MSL	mean sea level					
NSTC	Northern Subtropical Convergence					
PAF	Philippine Air Force					
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration					
PDOP	Positional Dilution of Precision					
РРК	Post-Processed Kinematic [technique]					
PRF	Pulse Repetition Frequency					
PTM	Philippine Transverse Mercator					
QC	Quality Check					
QT	Quick Terrain [Modeler]					
RA	Research Associate					
RIDF	Rainfall-Intensity-Duration-Frequency					
RMSE	Root Mean Square Error					
SAR	Synthetic Aperture Radar					
SCS	Soil Conservation Service					
SRTM	Shuttle Radar Topography Mission					
SRS	Science Research Specialist					
SSG	Special Service Group					
ТВС	Thermal Barrier Coatings					
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry					
UTM	Universal Transverse Mercator					
USC	University of San Carlos					
WGS	World Geodetic System					

CHAPTER 1: OVERVIEW OF THE PROGRAM AND OCOY RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Ocoy River Basin

Ocoy River Basin covers the municipalities of Santa Catalina and Sibulan and the city of Dumaguete in Negros Oriental. The DENR River Basin Control Office identified the basin to have a drainage area of 116 km2 and an estimated 70 million cubic meter annual run-off (RBCO, 2015).

Its main stem, Ocoy River, is part of the river systems in Central Visayas. The delineated basin and river name is "Candugay River" according to the RBCO, but the local Municipal government has indicated that the river is referred to as Ocoy River. There is a total of 12,120 people residing within the immediate vicinity of the river which is distributed among five (5) barangays, namely: Balili, Municipality of Valencia; Camanjac, Dumaguete City; Tubigon, Calabnugan, and Looc in the Municipality of Sibulan (NSO, 2015). Most of the livelihood of the population in Negros Oriental are involved in agriculture, where sugarcane, corn, and coconut are their principal produce. Whereas the population living in the coast cultivate extensive marine resources (Islands Web, 2015). Last October 2013, incessant rains, caused by the Southwestern Monsoon, brought about immense flooding to three (3) cities and four (4) municipalities in the southern area of Negros Oriental. Cities of Bayawan and Dumaguete were the most affected during the event (Philippine Daily Inquirer, 2013).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE OCOY FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Mr. Jonathan M. Almalvez

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Ocoy floodplain in Samar. These missions were planned for 14 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1 and Table 2. Figure 2 shows the flight plan for Ocoy floodplain.

Table 1.	Flight	planning	parameters	for the Ad	ouarius	LiDAR	svstem.
	0 1		1		L		1

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK56V	600	30	36	50	45	120	5

Table 2. Flight planning parameters for the Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK56B	1000	30	40	100	50	120	5
BLK56E	1000	30	40	100	50	120	5
BLK56F	1000	30	40	100	50	120	5

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2. Flight Plan and base station used for the Ocoy Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover five (5) NAMRIA ground control points: NGE-89 and NGE-100, NGE-101, NGE-111, and NGW-126 which are of second (2nd) order accuracy. Four (4) NAMRIA benchmarks were recovered: NE-90, NE-90a, NE-135 and T-BM4 which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (September 24-October 28, 2014 and January 30, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Ocoy floodplain are shown in Figure 2.

Figure 3 to Figure 9 show the recovered NAMRIA reference points within the area. Table 3 to Table 10 show the details about the following NAMRIA control stations and established points, while Table 11 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 3. GPS set-up over NGE-89 as recovered on the SE corner of Bio-os Bridge in Brgy. Bio-os under the municipality of Amlan. (a) and NAMRIA reference point NGE-89 (b) as recovered by the field team.

Table 3. D	Details of the recovered NAMRIA	horizontal control p	oint NGE-89	used as base sta	ation for the Li	DAR
		acquisition.				

Station Name	NGE-89			
Order of Accuracy	21	nd		
Relative Error (Horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 28' 17.93638" North 123o 11' 53.99321" East 5.92700 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	302131.943 m 1047809.850 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 28' 13.96567" North 123o 11' 59.32102" East 67.20400 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	521,895.196 m 1,046,874.129 m		

(a)

Figure 4. GPS set-up over NGE-101 as recovered on the third step from the top flooring of the pier NE corner in Brgy. Poblacion under the municipality of Sibulan (a) and NAMRIA reference point NGE-101 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point NGE-101 used as base station for the LiDAR acquisition.

Station Name	NGE-101			
Order of Accuracy	2nd			
Relative Error (Horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 21' 46.05028" North 123o 17' 3.45508" East 2.89700 m		
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	311516.397 m 1035718.276 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 21' 42.11526" North 123o 17' 8.79199" East 65.25500 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	531,340.539 m 1,034,845.884 m		

(a)

Figure 5. GPS set-up over NGE-111 as recovered on the concrete sidewalk on the NE approach of the 36 meter long Jagoba Bridge in barangay Jagoba under the municipality of Dauin (a) and NAMRIA reference point NGE-111 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point NGE-111 used as base station for the LiDAR acquisition.

Station Name	NGE-111			
Order of Accuracy	2nd			
Relative Error (Horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 10' 30.25228" North 123o 14' 54.26711" East 13.11600 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	307470.632 m 1014968.138 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 10' 26.36267" North 123o 14' 59.62110" East 75.79100 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	527,414.069 m 1,014,090.031 m		

(a)

Figure 6. GPS set-up over NGW-126 as recovered on the SE corner of Maricalum Bridge which is at km 177+175 in Brgy. Maricalum under the municipality of Sipalay (a) and NAMRIA reference point NGW-126 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point NGW-126 used as base station for the LiDAR

 Station Name
 NGW-126

 Order of Accuracy
 2nd

Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 41' 56.09927" North 122o 26' 33.87232" East 20.29100 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	219291.805 m 1073487.816 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 41' 52.00368" North 122o 26' 39.18513" East 79.82600 m	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	438,996.109 m 1,072,045.486 m	

Figure 7. GPS set-up over TBM-4 as recovered on top of concrete pathway about five (5) meters from the seawall of Dumaguete City's boulevard.

Table 7. Details of the recovered NAMRIA	vertical control point	TBM-4 used as base	station with establis	shed
	coordinates.			

Station Name	TBM-4			
Order of Accuracy	1st			
Relative Error (Horizontal positioning)	1:100,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 18' 39.58660" North 123o 18' 28.47112" East 3.712 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	313960.450 m 1030039.396 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 18' 35.66706" North 123o 18' 33.81248" East 66.241 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	533,814.622 m 1,029,185.290 m		

(a)

Figure 8. GPS set-up over NE-135 as recovered in Busuang Bridge on top of concrete sidewalk in Barangay Bio-os under the municipality of Amlan. (a) and NAMRIA reference point NE-135 (b) as recovered by the field team.

Station Name	NE-135			
Order of Accuracy	1	st		
Relative Error (Horizontal positioning)	1:100,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 28' 39.60020" North 123o 11' 03.44049" East 5.556 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	300468.479 m 1048547.710 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 28' 35.62671" North 123o 11' 08.76787" East 67.415 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	520,228.944 m 1,047,601.845 m		

Table 8. Details of the recovered NAMRIA vertical control point NE-135 used as base station with established coordinates.

Figure 9. GPS set-up over NE-90 as recovered on the concrete sidewalk of Guinsan Bridge four (4) meters from the road centerline in Brgy. Poblacion under the municipality of Zamboangita. (a) and NAMRIA reference point NE-90 (b) as recovered by the field team.

Table 9. Details of the recovered NAMRIA vertical control point NE-90 used as base station with established coordinates.

Station Name	NE-90			
Order of Accuracy	1st			
Relative Error (Horizontal positioning)	1:100,000			
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 6' 42.32060" North 123o 12' 4.93445" East 7.358 m		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	302140.874 m 1008052.054 m		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 6' 38.44322" North 123o 12' 10.29457" East 70.052 m		
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	522,126.927 m 1,007,150.356 m		

Table 10. Details of the recovered NAMRIA vertical control point NE-90A used as base station with established coordinates.

Station Name	NE-90A		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50	,000	
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9o 6' 44.56134" North 123o 12' 5.05054" East 6.617 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	522,130.430 meters 1,007,219.168 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9o 6' 40.68380" North 123o 12' 10.41051" East 69.311 meters	

Table 11. Ground control points used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
September 24, 2014	7514G	2BLK56F267A	NGE 101 & TBM-4
October 2,2014	7530G	2BLK56B275A	NE-135 & NGE 101
October 28, 2014	7582G	2BLK56BS+53ES301A	NGE-111, NGE-89, NE-135 & NE-90
January 30, 2016	10077AC	3BLK56V030B	NGE-100, NGW-126, NE-90 & NE-90A

2.3 Flight Missions

Four (4) missions were conducted to complete LiDAR data acquisition in Ocoy Floodplain, for a total of twelve hours and fifty-five minutes (12+55) of flying time for RP-C9322 and RP-C9522. All missions were acquired using Aquarius and Gemini LiDAR systems. Table 12 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 13 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	Area Surveyed	Area Surveyed Outside the	No. of Images	Fl He	ying ours
		(km2)	(km2)	within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
September 24, 2014	7514G	181.16	106.5	31.10	6.38	NA	3	47
October 2,2014	7530G	171	71.2	10.31	27.17	NA	2	23
October 28, 2014	7582G	151.95	117.6	4.61	32.87	NA	3	23
January 30, 2016	10077AC	25	24.53	2.61	34.87	NA	3	22
TOTAL		529	319.83	48.63	101.29	NA	12	55

Table 12. Flight missions for the LiDAR data acquisition of the Ocoy Floodplain.

Table 13. Actual parameters used during the LiDAR data acquisition of the Ocoy Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7514G	1000	30	40	100	50	120	5
7530G	1000	30	40	100	50	120	5
7582G	1000	30	40	100	50	120	5
10077AC	1000	30	40	100	50	120	5

2.4 Survey Coverage

Ocoy floodplain is located in the province of Negros Oriental with majority of the floodplain situated within Sibulan and Dumaguete City. Dumaguete City is completely covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 14. The actual coverage of the LiDAR acquisition for Ocoy Floodplain is presented in Figure 10.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Dumaguete City	30.42	30.42	100%
	Bacong	26.07	20.17	77.38%
	San Jose	47.09	19.96	42.38%
	Dauin	80.91	23.68	29.26%
Negros Oriental	Sibulan	165.36	45.84	27.72%
Negros orientar	Valencia	144.43	33.09	22.91%
	Zamboanguita	152.83	25.09	16.42%
	Amlan	65.67	7.43	11.31%
	Siaton	312.75	25.28	8.08%
	Tanjay City	261.01	19.78	7.58%
Tota	1	1501.64	264.43	17.61%

Table 14. List of municipalities and cities surveyed of the Ocoy Floodplain LiDAR acquisition.

Figure 10. Actual LiDAR survey coverage of the Ocoy Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE OCOY FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Merven Mattew D. Natino , Engr. Ma. Joanne I. Balaga, and Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Ocoy floodplain can be found in Annex 5. Missions flown during the first survey conducted on September 2014 and the second survey on October 2014 both used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system while missions acquired during the third survey on January 2016 were flown using the Aquarius system over Sibulan, Negros Occidental.

The Data Acquisition Component (DAC) transferred a total of 50.9 Gigabytes of Range data, 723 Megabytes of POS data, 42.57 Megabytes of GPS base station data, and 34.62 Gigabytes of raw image data to the data server on October 20, 2014 for the first survey, November 6, 2014 for the second survey and February 9, 2016 for the third survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Ocoy was fully transferred on February 9, 2016, as indicated on the Data Transfer Sheets for Ocoy floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 7514G, one of the Ocoy flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on September 24, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of Ocoy Flight 7514G.

The time of flight was from 261250 seconds to 273250 seconds, which corresponds to morning of September 24, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 7 shows that the North position RMSE peaks at 0.87 centimeters, the East position RMSE peaks at 1.25 centimeters, and the Down position RMSE peaks at 2.32 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Ocoy Flight 7514G.

The Solution Status parameters of flight 7514G, one of the Ocoy flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Ocoy flights is shown in Figure 14.

Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Ocoy Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 50 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Ocoy floodplain are given in Table 15.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000229
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000712
GPS Position Z-correction stdev	<0.01meters	0.0020

The optimum accuracy is obtained for all Ocoy flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Ocoy Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Ocoy Floodplain

The total area covered by the Ocoy missions is 225.30 sq.km that is comprised of five (5) flight acquisitions grouped and merged into five (5) blocks as shown in Table 16.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Dumaguete_Blk56E_supplement	7582G	64.677
Dumaguete_Blk56EF	7514G	97.82
	7530G	
Dumaguete_Blk57C	7589GC	47.93
Dumaguete_reflights_Blk56D	10077AC	3.28
Dumaguete_reflights_Blk56E	10077AC	11.59
TOTAL		225.30 sq.km

TRUTE TO THOSE OF THE DECENCE OF CALCE TO THE TO CONDENTE

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Ocoy Floodplain.

The overlap statistics per block for the Ocoy floodplain can be found in Annex 8: Mission Summary Reports. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 28.79% and 45.21% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Ocoy floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.34 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Ocoy Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation Difference Map between flight lines for Ocoy Floodplain Survey.
A screen capture of the processed LAS data from an Ocoy flight 7514G loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Ocoy Flight 7514G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	92,707,751
Low Vegetation	117,264,788
Medium Vegetation	225,343,979
High Vegetation	434,597,151
Building	29,163,767

Fable 17.	Ocoy cl	lassification	results in	TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Ocoy floodplain is shown in Figure 20. A total of 364 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 17. The point cloud has a maximum and minimum height of 543.76 meters and 2.76 meters respectively.

Figure 20. Tiles for Ocoy Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Ocoy Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Ocoy floodplain.

3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for Ocoy flood plain. These blocks are composed of Dumaguete and Dumaguete_reflight blocks with a total area of 225.30 square kilometers. Table 18 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Dumaguete_Blk56EF	97.82
Dumaguete_Blk56E_supplement	64.677
Dumaguete_Blk57C	47.93
Dumaguete_reflights_Blk56E	11.59
Dumaguete_reflights_Blk56D	3.28
TOTAL	225.30 sq.km

Table 18. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 23. Portions of the DTM of Ocoy with existing building features (Figure 23a) were edited (Figure 23b). Another is the bridge (Figure 23c) is also considered to be an impedance to the flow of water and has to be removed (Figure 23d) in order to hydrologically correct the river.

Figure 23. Portions in the DTM of Ocoy floodplain – (a) before and (b) after building removal; (c) before and (d) after bridge removal

3.9 Mosaicking of Blocks

Dumaguete_Blk54B_supplement was used as the reference block in mosaicking due to the presence of more built up areas Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Ocoy floodplain is shown in Figure 24. It can be seen that the entire Ocoy floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)					
	х	У	Z			
Dumaguete_Blk56EF	0.00	0.00	-0.07			
Dumaguete_Blk56Esupplement	0.00	0.00	-0.76			
Dumaguete_Blk57C	0.00	0.00	0.00			
Dumaguete_reflights_Blk56E	0.00	0.00	-0.04			
Dumaguete_reflights_Blk56D	0.00	0.00	0.00			

Table 19. Shift values of each LiDAR block of Ocoy Floodplain.

Figure 24. Map of Processed LiDAR Data for Ocoy Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Ocoy to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 14,047 survey points were gathered for all the flood plains within the provinces of Negros Oriental and Negros Occidental wherein the Ocoy floodplain is located. Random selection of 80% of the survey points, resulting to 11,237 points, was used for calibration.

Figure 25. Map of Ocoy Floodplain with validation survey points in green.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.35 meters with a standard deviation of 0.18 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 0.35 meters, to the mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between the LiDAR data.

Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.35
Standard Deviation	0.18
Average	-2.30
Minimum	-0.57
Maximum	0.30

Table 20. Calibration Statistical Measures

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 389 points, were used for the validation of calibrated Ocoy DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.18 meters with a standard deviation of 0.13 meters, as shown in Table 21.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Table 21. Validation Statistical Measures

Validation Statistical Measures	Value (meters)
RMSE	0.13
Standard Deviation	0.09
Average	-0.09
Minimum	-0.33
Maximum	0.10

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Ocoy with 3,383 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.0776 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Ocoy integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Ocoy Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Ocoy floodplain, including its 200 m buffer, has a total area of 42.88 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4,617 building features, are considered for QC. Figure 29 shows the QC blocks for Ocoy floodplain.

Figure 29. Blocks (in blue) of Ocoy building features that were subjected to QC

Quality checking of Ocoy building features resulted in the ratings shown in Table 22.

Fable 22. (Quality	Checking	Ratings fo	or Ocoy	Building	Features
-------------	---------	----------	------------	---------	----------	----------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Осоу	99.91	99.95	98.91	PASSED

3.12.2 Height Extraction

Height extraction was done for 31,203 building features in Ocoy floodplain. Of these building features, 480 were filtered out after height extraction, resulting to 30,723 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 20.71 m.

3.12.3 Feature Attribution

In attribution, combination of participatory mapping and actual field validation was done. Representatives from LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 23 summarizes the number of building features per type. On the other hand, Table 24 shows the total length of each road type, while Table 25 shows the number of water features extracted per type.

Facility Type	No. of Features	
Residential	28,972	
School	509	
Market	30	
Agricultural/Agro-Industrial Facilities	82	
Medical Institutions	40	
Barangay Hall	11	
Military Institution	1	
Sports Center/Gymnasium/Covered Court	13	
Telecommunication Facilities	2	
Transport Terminal	19	
Warehouse	24	
Power Plant/Substation	0	
NGO/CSO Offices	24	
Police Station	0	
Water Supply/Sewerage	3	
Religious Institutions	60	
Bank	11	
Factory	0	
Gas Station	25	
Fire Station	0	
Other Government Offices	108	
Other Commercial Establishments	789	
Total	30,723	

Table 23. Building Features Extracted for Ocoy Floodplain.

Table 24. Total Length of Extracted Roads for Ocoy Floodplain.

Floodplain	Road Network Length (km)				Total	
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Осоу	107.98	63.09	18.55	2.93	0.00	192.55

Table 25. Number of Extracted Water Bodies for Ocoy Floodplain.

Floodplain	Water Body Type					Total
	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	
Осоу	7	0	0	0	0	7

A total of 6 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Ocoy floodplain overlaid with its ground features.

Figure 30. Extracted features for Ocoy Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE OCOY RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, Engr. Kristine Ailene B. Borromeo For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, and Engr. Lorenz R. Taguse

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Ocoy River on January 26 – February 10, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey in Ocoy Bridge in Brgy. Calabnugan, Municipality of Sibulan; validation points data acquisition of about 83.024 km for the areas traversing the Cities of Bais, Tanjay, and Dumaguete, and Municipalities of Asturias, Pamplona, Amlan, San Jose, Sibulan, Valencia, Bacong, and Dauin; and bathymetric survey from Brgy. Balili, Municipality of Valencia down to Brgy. Looc, Municipality of Sibulan, with an estimated length of 6.64 km using OHMEX[™] Sonarmite echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique as shown in Figure 31.

4.2 Control Survey

The GNSS network for this survey is composed of seven (7) loops established on February 1, 2016 occupying the following reference points: NGE-93, a second order GCP located in Brgy. Jilocon, Municipality of San Jose; and, NE-119, a first order BM in Brgy. Calabnugan, Municipality of Sibulan.

Two (2) control points were established namely UP-OCO at Ocoy Bridge in Brgy. Calabnugan, Municipality of Sibulan, and UP-TAN in Brgy. Novallas, Tanjay City. The control point NE-309, in Brgy. San Jose, Tanjay City, established by NAMRIA, was also occupied to use as marker for the network.

The summary of reference and control points and its location is summarized in Table 26 while the GNSS network established is illustrated in Figure 32.

Figure 32. The GNSS Network established in the Ocoy River Survey.

Table 26. List of Reference and Control Points occupied for Ocoy River Survey (Source: NAMRIA; UP-TCAGP)

Control Point	Order of Accuracy		Geographic Coordin	nates (WGS 8	34)	
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
NGE-93	2nd order	9°25'38.283"N	123°14'05.681"E	66.238	-	2007
NE-119	1st order	-	-	71.085	7.414	2008
NE-309	Used as marker	-	-	-	-	2008
UP-OCO	UP Established	-	-	-	-	February 2016
UP-TAN	UP Established	-	-	-	-	February 2016

The GNSS set-ups on recovered reference points and established control points in Ocoy River are shown in Figure 33 to Figure 37.

Figure 33. GNSS receiver set-up, Trimble® SPS 852, at NGE-93 in Brgy. Jilocon, Municipality of San Jose, Negros Oriental

Figure 34. GNSS receiver setup, Trimble® SPS 882, at NE-119 at the approach of Ocoy Bridge in Brgy. Campaclan, Municipality of Sibulan, Negros Oriental

Figure 35. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at NE-309 in Brgy. San Jose, Tanjay City, Negros Oriental

Figure 36. GNSS receiver set-up, Trimble® Zephyr ™ Model 2, at UP-TAN in Brgy. Novallas, Tanjay City, Negros Oriental

Figure 37. GNSS receiver set-up, Trimble® SPS 882 at control point UP-OCO near the abutment of Sibulan Bridge Brgy. Calabnugan, Municipality of Sibulan, Negros Oriental

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Ocoy River Basin is summarized in Table 27 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
NGE-93 NE-119 (B18)	02-01-2016	Fixed	0.006	0.016	149°32'32"	8342.974	4.857
NGE-93 UP-TAN (B20)	02-01-2016	Fixed	0.004	0.012	304°44'59"	14612.993	8.626
NGE-93 NE-309 (B19)	02-01-2016	Fixed	0.005	0.015	312°46'57"	14070.135	3.586
NGE-93 UP-OCO (B17)	02-01-2016	Fixed	0.004	0.014	165°50'22"	11697.257	50.653
NE-119 UP-OCO (B14)	02-01-2016	Fixed	0.008	0.022	198°14'36"	4369.643	45.844
UP-TAN NE-309 (B7)	02-01-2016	Fixed	0.004	0.015	53°50'00"	2080.683	-5.061
UP-TAN UPOCO (B16)	02-01-2016	Fixed	0.005	0.018	142°53'54"	24658.100	42.034

Table 27. Baseline Processing Summary Report for Ocoy River Survey

As shown in Table 27, a total of seven (7) baselines were processed and all of them passed the required accuracy set by the project.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 28 to Table 30 for the complete details.

The five (5) control points, NGE-93, NE-119, NE-309, UP-OCO and UP-TAN were occupied and observed simultaneously to form a GNSS loop. Coordinates of point NGE-93 and elevation value of NE-119 were held fixed during the processing of the control points as presented in Table 28. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
NGE-93	Local	Fixed	Fixed	Fixed	
NE-119	Grid				Fixed
Fixed = 0.00000	1(Meter)				

Table 28. Constraints applied to the adjustment of the control points.

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 29. The fixed control points NGE-93 and NE-119 have no values for grid errors and elevation error, respectively.

Table 29.	Adjusted	grid coo	rdinates f	or the contro	points use	d in the Oc	oy River Flood	lplain survey	7.
	,	()					/		

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Cons- traint
NGE-93	525789.116	?	1042102.575	?	2.470	0.063	LLh
NE-119	530021.363	0.018	1034916.542	0.009	7.414	?	е
NE-309	515460.124	0.014	1051648.501	0.007	6.010	0.082	
UP-TAN	513781.484	0.011	1050420.498	0.006	11.014	0.075	
UP-OCO	528657.161	0.012	1030767.083	0.008	53.120	0.070	

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in The network is fixed at reference point NGE-93 with known coordinates, and NE-119 with known elevation. As shown in Table 29, the standard errors (xe and ye) of NE-119 are 1.8 cm and 0.9 cm, NE-309 are 1.4 cm and 0.7, UP-TAN are 1.1 and 0.6, and UP-OCO are 1.2 and 0.8, respectively. With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

а.	NGE-93 horizontal accuracy vertical accuracy	= =	Fixed 6.3 < 10 cm
b.	NE-119 horizontal accuracy vertical accuracy	= = =	√((1.8) ² + (0.9) ² √(.3.24 + 0.81) 2.0 cm < 20 cm Fixed
с.	NE-309 horizontal accuracy vertical accuracy	= = =	√((1.4) ² + (0.7) ² √(1.96 +0.49) 1.6 cm < 20 cm 0.08 < 10 cm
d.	UP-TAN horizontal accuracy vertical accuracy	= = =	V((1.1) ² + (0.6) ² V(.1.21 + 0.36) 1.3 cm < 20 cm 0.08 < 10 cm
e.	UP-OCO horizontal accuracy	= = =	V((1.2) ² + (0.8) ² V(1.44 + 0.64) 1.4 cm < 20 cm 0.07 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
NGE-93	N9°21'44.19651"	E123°16'24.28146"	70.612	0.063	LLh
NE-119	N9°30'49.29193"	E123°08'27.09880"	69.337	?	е
NE-309	N9°25'38.28279"	E123°14'05.68141"	65.765	0.082	
UP-TAN	N9°19'29.11814"	E123°15'39.45443"	116.436	0.075	
UP-OCO	N9°30'09.32754"	E123°07'32.02417"	74.388	0.070	

Table 30. Adjusted geodetic coordinates for control points used in the Ocoy River Floodplain validation.

The corresponding geodetic coordinates of NAMRIA established reference points, NGE-93, NE-119, and NE-309 are within the required accuracy as shown in Table 30. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 31.

Table 31. The reference and control points utilized in the Ocoy River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

ontrol	Order of	Geograp	hic Coordinates (WG	S 84)	Ū	TM ZONE 51 N		
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	EGM Ortho (m)	BM Ortho (m)
IGE-93	2nd order GCP	9°25'38.2828"N	123°14'05.6814"E	66.238	1042102.575	525789.116	2.943	2.470
NE-119	1st Order BM	9°21'44.1965"N	123°16'24.2814"E	71.085	1034916.543	530021.363	7.887	7.414
JE-309	Used as Marker	9°30'49.2919"N	123°08'27.0988"E	69.810	1051648.501	515460.125	6.483	6.010
JP-TAN	Used as Marker	9°30'09.3275"N	123°07'32.0242"E	74.861	1050420.498	513781.485	11.487	11.014
P-0C0	Used as Marker	9°19'29.1182"N		116.909	1030767.084	528657.161	53.593	53.120

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Bridge as-built and cross-section survey was conducted on February 5, 2016 at the downstream side of Ocoy Bridge in Brgy. Calabnugan, Municipality of Sibulan using GNSS receiver Trimble[®] SPS 882 in PPK survey technique as shown in Figure 38.

Figure 38. Cross-section survey conducted on Ocoy river in Brgy. Calabnugan, Municipality of Sibulan

The cross-sectional line length of Ocoy Bridge is about 160 m with 41 cross-sectional points acquired using UP-OCO as the GNSS base station. The cross-section diagram, location map, and the bridge data form are shown in Figure 39 to Figure 41, respectively.

Figure 39. Location map of Ocoy River cross-section survey

NOTE: Use the center of the pier as reference to its station

Figure 41. Ocoy Bridge data form

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on February 4 and 5, 2016 using a survey-grade GNSS rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached to the side of the vehicle as shown in Figure 42. It was secured with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was 2.09 m measured from the ground up to the bottom of notch of the GNSS rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-OCO occupied as the GNSS base station all throughout the conduct of the survey.

Figure 42. (A) Setup of GNSS base station at CU-552 and (B) Trimble® SPS 882 attached to a vehicle

The validation points acquisition survey for the Ocoy River Basin traversed the Cities of Bais, Tanjay, and Dumaguete, and the Municipalities of Pamplona, Amlan, San Jose, Sibulan, Valencia, Bacong, and Dauin. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 11,353 points with an approximate length of 83.024 km was acquired for the validation point acquisition survey as shown in the map in Figure 43.

Figure 43. Validation point acquisition survey of Ocoy River basin

4.7 River Bathymetric Survey

Manual bathymetric survey using a Trimble[®] SPS 882 GNSS PPK technique was executed on February 3, 2016 as shown in Figure 44. The survey began by starting upstream in Brgy. Balili, Municipality of Valencia, with coordinates 9°19′02.83237″N 123°15′20.27855″E, until the deep portion of the river in of Brgy. Calabnugan, Municipality of Sibulan. Meanwhile, on the second day of Bathymetric Survey, February 5, 2016, the survey team utilized the OHMEX[™] Sonarmite echo sounder and Trimble[®] SPS 882 GNSS PPK technique which was attached to a pole on a fishing boat for the remaining deep portions of the river. The survey started from Brgy. Calabnugan, Municipality of Sibulan with coordinates 9°20′31.94615″N 123°16′09.97772″E, going to the mouth of the river to Brgy. Looc. The survey was conducted with the assistance of personnel from the University of San Carlos. The control point UP-OCO was used as base station for the whole conduct of the survey.

Figure 44. Bathymetric survey in Ocoy River

The bathymetric survey for Ocoy River gathered a total of 3,607 points with an estimated length of 6.641 km as illustrated in Figure 45. A CAD drawing was also produced to illustrate the Ocoy riverbed centerline profile as shown in Figure 46. There is about a 72.864-m change in elevation observed within the entire scope of the bathymetric data from its upstream in Brgy. Balili, Municipality of Valencia down to the mouth of the river in Brgy. Looc, Municipality of Sibulan. The highest elevation observed was 70.864 m above MSL while the lowest was -2.721 m MSL near the mouth of the river.

Figure 45. Extent of the Ocoy River Bathymetry Survey

CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil R. Tingin, and Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Ocoy River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from automatic rain gauges (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The locations of the ARG is Sitio Pancil, Sibulan. The location of the rain gauge is as shown in Figure 47. The total rain from the Sitio Pancil, Sibulan rain gauge is 78.5 mm. It peaked to 16 mm on January 16, 2017, 10:00. The lag time between the peak rainfall and discharge is 3 hours and 20 minutes, as shown in Figure 50.

Figure 47. Location map of the Ocoy HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Camanjac-Calabnugan Bridge (9°19'30.58"N and 123°15'39.60"E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

For Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), the rating curve is expressed as shown in Figure 49

Ocoy Bridge Cross-Section

Figure 48. Cross-section plot of Ocoy Bridge

This rating curve equation was used to compute the river outflow at Camanjac-Calabnugan Bridge for the calibration of the HEC-HMS model shown in Figure 50. Peak discharge is 235.2 m3/s at 14:00, January 16, 2017.

Figure 50. Rainfall and outflow data at Ocoy Bridge used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Dumaguete Point Gauge. This station chosen based on its proximity to the Ocoy watershed. The extreme values for this watershed were computed based on a 35-year record.

		COMPUT	TED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	16.2	24.8	30.6	39.7	50	55.3	63.4	69.1	76
5	21.8	33.6	42.3	57.1	76.5	87.3	100	109.5	116.5
10	25.6	39.4	50	68.6	94	108.5	124.3	136.3	143.3
15	27.7	42.7	54.3	75.1	103.9	120.5	138	151.4	158.4
20	29.1	45	57.4	79.7	110.8	128.9	147.5	162	169
25	30.3	46.8	59.7	83.2	116.1	135.3	154.9	170.2	177.2
50	33.8	52.3	66.9	94	132.5	155.2	177.6	195.3	202.4
100	37.2	57.7	74.1	104.8	148.8	174.9	200.2	220.2	227.3

Table 32. RIDF values for Dumaguete Point Rain Gauge computed by PAGASA

Figure 51. Location of Dumaguete RIDF Station relative to Ocoy River Basin

Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Ocoy River Basin are shown in Figure 53 and Figure 54, respectively.

Figure 53. Soil Map of Ocoy River Basin used for the estimation of the CN parameter. (Source: DA)

Figure 54. Land Cover Map of Ocoy River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)

For the Ocoy river basin, three (3) soil classes were identified. The Ocoy river basin is mostly rough mountainous land, with portions of La Castellana clay loam (steep phase) and San Manuel-Taal complex. Moreover, five (5) land cover classes were identified. Most of the Ocoy river basin is brushland, closed canopy, and open canopy forest, while a small portion is inland water and cultivated area.

Figure 55. Slope Map of Ocoy River Basin

Figure 56. Stream Delineation Map of Ocoy River Basin

The Ocoy basin model comprises 45 sub basins, 22 reaches, and 22 junctions. The main outlet is outlet 1. This basin model is illustrated in Figure 57. The basins were identified based on soil and land cover characteristic of the area. Precipitation was taken from an installed Rain Gauge near and inside the river basin. Finally, it was calibrated using the data from actual discharge flow gathered in the Ocoy Bridge.

Figure 57. Ocoy River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 58. River cross-section of Ocoy River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

This image is not available for this river basin.

Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

5.6 Results of HMS Calibration

After calibrating the Ocoy HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.

Figure 60. Outflow hydrograph of Ocoy produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 33 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.08-6.29
			Curve Number	50.64-99
			Impervious (%)	25-100
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.15-9.86
			Storage Coefficient (hr)	0.04-1.06
	Baseflow	Recession	Recession Constant	0.03-0.07
			Ratio to Peak	0.31-1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.02-0.20

Table 33. Range of calibrated values for the Ocoy River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values 0.08 to 6.29 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Ocoy, the curve number is 50.64-99.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values 0.15 to 9.86 minutes determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.03 to 0.07 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.31 to 1 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.02 to 0.20 corresponds to the common roughness in Ocoy, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	32.8999
r2	0.8775
NSE	0.6456
PBIAS	2.0105
RSR	0.5953

Table 34. Summary of the Efficiency Test of the Ocoy HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 32.8999.

The Pearson correlation coefficient (assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.8775.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.6456.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 2.0105.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.5953.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph shows the Ocoy outflow using the Dumaguete Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-, 10-, 25-, 50-, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a uniform duration of 24 hours and varying return periods.

Figure 61. Outflow hydrograph at Ocoy Bridge (also known as Camanjac-Calabnugan Bridge), Sibulan generated using Dumaguete RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Ocoy River discharge using the Dumaguete Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 35.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	116.5	21.8	342.979	3 hours, 10 minutes
10-Year	143.3	25.6	426.773	3 hours, 20 minutes
25-Year	177.2	30.3	533.217	3 hours, 20 minutes
50-Year	202.4	33.8	612.636	3 hours, 10 minutes
100-Year	227.3	37.2	691.701	3 hours, 10 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Ocoy River using the calibrated event flow is shown in Figure 62.

This image is not available for this river basin.

Figure 62. Sample output map of Ocoy RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 62 to Figure 67 shows the 5-, 25-, and 100-year rain return scenarios of the Ocoy floodplain.

The generated flood hazard maps for the Ocoy Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr). Figure 63 to Figure 68 shows the 5-, 25-, and 100-year rain return scenarios of the Ocoy floodplain. The floodplain, with an area of ______ sq. km., covers two municipalites namely Dumaguete and Sibulan. Table 36 shows the percentage of area affected by flooding per municipality or city.

Municipality/ City	Total Area	Area Flooded	% Flooded
Dumaguete City	34.3		
Sibulan	159.6		

Table 36. Municipalities affected in Ocoy Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

This image is not available for this river basin.

Figure 63. 100-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery

This image is not available for this river basin.

Figure 64. 100-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

This image is not available for this river basin.

Figure 65. 25-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery

This image is not available for this river basin.

Figure 66. 25-year Flow Depth Map for Ocoy Floodplain overlaid on Google Earth imagery

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

This image is not available for this river basin.

Figure 67. 5-year Flood Hazard Map for Ocoy Floodplain overlaid on Google Earth imagery

This image is not available for this river basin.

Figure 68. 5-year Flood Depth Map for Ocoy Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Ocoy river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 36 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 36.41% of Dumaguete City with an area of 34.3 sq. km. will experience flood levels of less 0.20 meters. 4.13% of the area will experience flood levels of 0.21 to 0.50 meters while 1.4%, 0.84%, 0.44%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and Table 38, and shown in Figure 69 and Figure 70 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by				Area of a	ffected bara	angays in Duma	guete City	(in sq. km.)				
flood depth (in m.)	Bagacay	Balugo	Bantayan	Batinguel	Bunao	Cadawinonan	Camanjac	Candau-Ay	Daro	Looc	Motong	Piapi
0.03-0.20	0.1	0.39	0.73	1.47	0.21	0.27	3.89	1.14	0.62	0.16	0.4	0.26
0.21-0.50	600.0	0.0019	0.059	0.16	0.06	0.048	0.29	0.24	0.068	0.079	0.028	0.02
0.51-1.00	0.0024	0.0002	0.00084	0.076	0.017	0.0021	0.039	0.18	0.021	0.0093	0.00018	0
1.01-2.00	0.0048	0	0	0.084	0.002	0.0033	0.02	0.08	0.0015	0	0	0
2.01-5.00	0.00071	0	0	0.045	0	0.0049	0.01	0.045	0	0	0	0
> 5.00	0	0	0	0.001	0	0.0003	0	0	0	0	0	0

Table 37. Affected areas in Dumaguete City, Negros Oriental during a 5-Year Rainfall Return Period

Table 38. Affected areas in Dumaguete City, Negros Oriental during a 5-Year Rainfall Return Period

Affected area (sɑ. km.) bv				Area of affec	ted barange	ays in Dumag	uete City (iı	ר sq. km.)			
flood depth (in m.)	Poblacion No. 1	Poblacion No. 2	Poblacion No. 3	Poblacion No. 4	Poblacion No. 5	Poblacion No. 6	Poblacion No. 7	Poblacion No. 8	Pulantubig	Tabuctubig	Taclobo
0.03-0.20	0.026	0.014	0.12	0.1	0.13	0.061	0.063	0.033	1.16	0.026	1.11
0.21-0.50	0.016	0.0015	0.0071	0.022	0.011	0.0011	0.003	0.002	0.15	0.00056	0.14
0.51-1.00	0.033	0.0016	0.0025	0.011	0	0	0	0.0044	0.03	0.00052	0.049
1.01-2.00	0.013	0.0015	0.01	0.0004	0	0	0	0.013	0.0006	0.00029	0.052
2.01-5.00	0.0014	0.00014	0.0074	0.0001	0	0	0	0.0051	0	0	0.032
> 5.00	0	0	0	0	0	0	0	0	0	0	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 69. Affected Areas in Dumaguete City, Negros Oriental during 5-Year Rainfall Return Period

Figure 70. Affected Areas in Dumaguete City, Negros Oriental during 5-Year Rainfall Return Period

For the municipality of Sibulan, with an area of 159.6 sq. km., 11.62% will experience flood levels of less 0.20 meters. 1.5% of the area will experience flood levels of 0.21 to 0.50 meters while 0.52%, 0.22%, 0.16%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 and Table 40, and shown in Figure 71 and Figure 72 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by		Area o	f affected b	parangays in S	Sibulan (in sq.	km.)	
flood depth (in m.)	Agan-An	Ajong	Balugo	Bolocboloc	Calabnugan	Cangmating	Looc
0.03-0.20	1.37	0.026	1.32	1.39	5.77	1.66	1.24
0.21-0.50	0.25	0.000022	0.039	0.16	0.67	0.31	0.15
0.51-1.00	0.036	0	0.015	0.027	0.28	0.09	0.11
1.01-2.00	0.0016	0	0.0054	0.0093	0.25	0.0061	0.018
2.01-5.00	0	0	0.0027	0.0013	0.24	0	0.0046
> 5.00	0	0	0	0	0.051	0	0

Table 39. Affected areas in Sibulan, Negros Oriental during a 5-Year Rainfall Return Period

Table 40. Affected areas in Sibulan, Negros Oriental during a 5-Year Rainfall Return Period

Affected area (sq. km.) by		Area of a	affected bara	ngays in Sibulan ((in sq. km.)	
flood depth (in m.)	Magatas	Maslog	Poblacion	San Antonio	Tubigon	Tubtubon
0.03-0.20	1.7	0.64	0.32	0.77	0.75	1.58
0.21-0.50	0.3	0.12	0.032	0.026	0.061	0.26
0.51-1.00	0.087	0.11	0.015	0.01	0.017	0.041
1.01-2.00	0.035	0.0013	0.0041	0.0019	0.0036	0.012
2.01-5.00	0.003	0	0	0	0.0043	0.0001
> 5.00	0	0	0	0	0	0

Figure 71. Affected Areas in Sibulan, Negros Oriental during 5-Year Rainfall Return Period

Figure 72. Affected Areas in Sibulan, Negros Oriental during 5-Year Rainfall Return Period

For the 25-year return period, 31.4% of Dumaguete City with an area of 34.3 sq. km. will experience flood levels of less 0.20 meters. 7.45% of the area will experience flood levels of 0.21 to 0.50 meters while 2.25%, 1.3%, 0.82%, and 0.013% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 and Table 42, and shown in Figure 73 and Figure 74 are the affected areas in square kilometres by flood depth per barangay.

				0	-0		0					
Affected area				Area of a	ffected bara	angays in Duma	guete City	(in sq. km.)				
flood depth (in m.)	Bagacay	Balugo	Bantayan	Batinguel	Bunao	Cadawinonan	Camanjac	Candau-Ay	Daro	Looc	Motong	Piapi
0.03-0.20	0.095	0.38	0.64	1.2	0.17	0.23	3.56	0.82	0.56	0.12	0.37	0.24
0.21-0.50	0.015	0.0045	0.15	0.34	0.082	0.084	0.57	0.33	0.11	0.098	0.049	0.04
0.51-1.00	0.0034	0.0003	0.0043	0.1	0.032	0.0044	0.071	0.29	0.04	0.029	0.0022	0.00011
1.01-2.00	0.0041	0	0	0.12	0.0027	0.0028	0.02	0.18	0.0049	0	0	0
2.01-5.00	0.0044	0	0	0.076	0	0.0065	0.023	0.073	0	0	0	0
> 5.00	0	0	0	0.0021	0	0.00075	0	0.0007	0	0	0	0

Table 41. Affected areas in Dumaguete City, Negros Oriental during a 25-Year Rainfall Return Period

Table 42. Affected areas in Dumaguete City, Negros Oriental during a 25-Year Rainfall Return Period

Affected area				Area of affec	ted barang	ays in Dumag	uete City (ir	ı sq. km.)			
(sq. km.) by flood depth (in m.)	Poblacion No. 1	Poblacion No. 2	Poblacion No. 3	Poblacion No. 4	Poblacion No. 5	Poblacion No. 6	Poblacion No. 7	Poblacion No. 8	Pulantubig	Tabuctubig	Taclobo
0.03-0.20	0.021	0.012	0.12	0.094	0.11	0.059	0.059	0.029	1.0	0.021	0.86
0.21-0.50	0.014	0.0014	0.013	0.027	0.027	0.0034	0.0063	0.0023	0.27	0.0042	0.31
0.51-1.00	0.035	0.0027	0.0032	0.016	0.00086	0	0.00037	0.0018	0.065	0.00073	0.073
1.01-2.00	0.017	0.0025	0.0053	0.00044	0	0	0	0.0076	0.0031	0.0011	0.076
2.01-5.00	0.0024	0.00043	0.014	0.0001	0	0	0	0.016	0	0	0.063
> 5.00	0	0	0	0	0	0	0	0.00036	0	0	0.00064

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 73. Affected Areas in Dumaguete City, Negros Oriental during 25-Year Rainfall Return Period

Figure 74. Affected Areas in Dumaguete City, Negros Oriental during 25-Year Rainfall Return Period

For the municipality of Sibulan, with an area of 159.6 sq. km., 10.16% will experience flood levels of less 0.20 meters. 2.15% of the area will experience flood levels of 0.21 to 0.50 meters while 0.94%, 0.47%, 0.27%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 and Table 44, and shown in Figure 75 and Figure 76 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by		Area o	f affected b	parangays in S	Sibulan (in sq.	km.)	
flood depth (in m.)	Agan-An	Ajong	Balugo	Bolocboloc	Calabnugan	Cangmating	Looc
0.03-0.20	1.37	0.026	1.32	1.39	5.77	1.66	1.24
0.21-0.50	0.25	0.000022	0.039	0.16	0.67	0.31	0.15
0.51-1.00	0.036	0	0.015	0.027	0.28	0.09	0.11
1.01-2.00	0.0016	0	0.0054	0.0093	0.25	0.0061	0.018
2.01-5.00	0	0	0.0027	0.0013	0.24	0	0.0046
> 5.00	0	0	0	0	0.051	0	0

Table 43. Affected areas in Sibulan, Negros Oriental during a 25-Year Rainfall Return Period

Table 44. Affected areas in Sibulan, Negros Oriental during a 25-Year Rainfall Return Period

Affected area (sq. km.) by		Area of affected barangays in Sibulan (in sq. km.)						
flood depth (in m.)	Magatas	Maslog	Poblacion	San Antonio	Tubigon	Tubtubon		
0.03-0.20	1.7	0.64	0.32	0.77	0.75	1.58		
0.21-0.50	0.3	0.12	0.032	0.026	0.061	0.26		
0.51-1.00	0.087	0.11	0.015	0.01	0.017	0.041		
1.01-2.00	0.035	0.0013	0.0041	0.0019	0.0036	0.012		
2.01-5.00	0.003	0	0	0	0.0043	0.0001		
> 5.00	0	0	0	0	0	0		

Figure 75. Affected Areas in Sibulan, Negros Oriental during 25-Year Rainfall Return Period

Figure 76. Affected Areas in Sibulan, Negros Oriental during 25-Year Rainfall Return Period

experience flood levels of 0.21 to 0.50 meters while 3.27%, 1.68%, 1.03%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 and Table 46, and shown in Figure 77 and Figure 78 are the affected areas in square For the 100-year return period, 26.55% of Dumaguete City with an area of 34.3 sq. km. will experience flood levels of less 0.20 meters. 10.67% of the area will kilometres by flood depth per barangay.

				0	-9							
Affected area				Area of a	ffected bara	angays in Duma	guete City ((in sq. km.)				
flood depth (in m.)	Bagacay	Balugo	Bantayan	Batinguel	Bunao	Cadawinonan	Camanjac	Candau-Ay	Daro	Looc	Motong	Piapi
0.03-0.20	60.0	0.38	0.53	0.88	0.14	0.19	3.13	0.66	0.51	0.097	0.35	0.22
0.21-0.50	0.018	0.0088	0.25	0.54	0.093	0.12	0.92	0.33	0.14	0.098	0.064	0.058
0.51-1.00	0.003	0.0005	0.013	0.18	0.049	0.0093	0.14	0.33	0.05	0.05	0.011	0.0012
1.01-2.00	0.0046	0	0	0.12	0.0055	0.0023	0.028	0.27	0.0088	0	0	0
2.01-5.00	0.0055	0	0	0.1	0	0.0077	0.027	0.09	0	0	0	0
> 5.00	0	0	0	0.0037	0	0.00095	0.0015	0.0018	0	0	0	0

Table 45. Affected areas in Dumaguete City, Negros Oriental during a 100-Year Rainfall Return Period

Table 46. Affected areas in Dumaguete City, Negros Oriental during a 100-Year Rainfall Return Period

Affected area				Area of affec	ted barange	ays in Dumag	uete City (ir	sq. km.)			
(sq. km.) by flood depth (in m.)	Poblacion No. 1	Poblacion No. 2	Poblacion No. 3	Poblacion No. 4	Poblacion No. 5	Poblacion No. 6	Poblacion No. 7	Poblacion No. 8	Pulantubig	Tabuctubig	Taclobo
0.03-0.20	0.019	0.012	0.085	0.078	0.088	0.055	0.047	0.02	0.82	0.018	0.69
0.21-0.50	0.013	0.00096	0.04	0.035	0.05	0.0073	0.016	0.008	0.39	0.0067	0.44
0.51-1.00	0.035	0.0031	0.0058	0.023	0.0037	0.0001	0.0024	0.0036	0.12	0.0013	0.084
1.01-2.00	0.019	0.0025	0.005	0.00072	0	0	0	0.0049	0.0088	0.0012	0.089
2.01-5.00	0.0033	0.00089	0.016	0.0002	0	0	0	0.02	0.0001	0.00025	0.08
> 5.00	0	0	0	0	0	0	0	0.00076	0	0	0.0016

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 77. Affected Areas in Dumaguete City, Negros Oriental during 100-Year Rainfall Return Period

Figure 78. Affected Areas in Dumaguete City, Negros Oriental during 100-Year Rainfall Return Period

For the municipality of Sibulan, with an area of 159.6 sq. km., 9.12% will experience flood levels of less 0.20 meters. 2.61% of the area will experience flood levels of 0.21 to 0.50 meters while 1.29%, 0.62%, 0.33%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 and Table 48, and shown in Figure 79 and Figure 80 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by		Area o	f affected b	parangays in S	Sibulan (in sq.	km.)	
flood depth (in m.)	Agan-An	Ajong	Balugo	Bolocboloc	Calabnugan	Cangmating	Looc
0.03-0.20	1.04	0.026	1.3	1.19	4.59	1.24	1.09
0.21-0.50	0.45	0.000022	0.047	0.29	1.06	0.53	0.15
0.51-1.00	0.16	0	0.022	0.094	0.55	0.27	0.17
1.01-2.00	0.013	0	0.0093	0.016	0.46	0.034	0.11
2.01-5.00	0	0	0.0045	0.0027	0.49	0	0.0077
> 5.00	0	0	0	0	0.13	0	0.0014

Table 47. Affected areas in Sibulan, Negros Oriental during a 100-Year Rainfall Return Period

Table 48. Affected areas in Sibulan, Negros Oriental during a 100-Year Rainfall Return Period

Affected area (sq. km.) by		Area of	affected bara	ngays in Sibulan	(in sq. km.)	
flood depth (in m.)	Magatas	Maslog	Poblacion	San Antonio	Tubigon	Tubtubon
0.03-0.20	0.82	0.4	0.24	0.75	0.7	1.18
0.21-0.50	0.67	0.25	0.069	0.03	0.084	0.54
0.51-1.00	0.45	0.11	0.038	0.016	0.039	0.15
1.01-2.00	0.17	0.12	0.029	0.005	0.0033	0.024
2.01-5.00	0.012	0	0.0008	0	0.0089	0.0013
> 5.00	0	0	0	0	0.00033	0

Figure 79. Affected Areas in Sibulan, Negros Oriental during 100-Year Rainfall Return Period

Figure 80. Affected Areas in Sibulan, Negros Oriental during 100-Year Rainfall Return Period

Among the barangays in the city of Dumaguete, Camanjac is projected to have the highest percentage of area that will experience flood levels at 12.4%. Meanwhile, Batinguel posted the second highest percentage of area that may be affected by flood depths at 5.36%.

Among the barangays in the municipality of Sibulan, Calabnugan is projected to have the highest percentage of area that will experience flood levels at 4.56%. Meanwhile, Cangmating posted the second highest percentage of area that may be affected by flood depths at 1.3%.

Moreover, the generated flood hazard maps for the Ocoy Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area	Covered	in sq. km.
Level	5 year	25 year	100 year
Low	3.81	5.99	7.83
Medium	1.64	3.08	4.24
High	0.78	1.21	1.54
TOTAL	6.23	10.28	13.61

Table 49. Areas covered by each warning level with respect to the rainfall scenarios

Of the 65 identified Education Institutions in the Ocoy Flood plain, 11 schools were assessed to be exposed to Low level flooding during a 5 year scenario. In the 25 year scenario, 19 schools were assessed to be exposed to low level flooding, while 3 schools were assessed to be exposed to medium level flooding in the same scenario. In the 100 year scenario, 21 schools were assessed to be exposed to low level flooding, while 8 schools were assessed to be exposed to medium level flooding. The educational institutions exposed to flooding are shown in Annex 12.

Of the 7 identified Medical Institutions in the Ocoy Flood plain, no medical institutions were assessed to be exposed to any of the flooding levels during a 5 year scenario. In the 25 year scenario, 2 medical institutions were assessed to be exposed to low level flooding. In the 100 year scenario, 2 medical institutions were assessed to be exposed to low level flooding. The medical institutions exposed to flooding are shown in Annex 13.

5.11 Flood Validation

Survey was done along the floodplain of Ocoy River to validate the generated flood maps. The team gathered secondary data regarding flood occurrence in the area. Ground validation points were acquired as well as the other necessary details like date of occurrence, name of typhoon and actual flood depth. The flood validation points were obtained on November 16 to 17, 2016.

During validation, the team was assisted by the local Disaster Risk Reduction and Management representative from the Municipality of Sibulan and Dumaguete. Residents along the floodplain were interviewed of the historical flood events they experiences.

Actual flood depth acquired from the ground validation were then computed and compared to the flood depth simulated by the model. An RMSE value of 0.80 was obtained.

Figure 81. Ocoy Flood Validation Points

Figure 82. Flood map depth vs. actual flood depth

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	2	7	4	2	0	0	15
0.21-0.50	2	2	2	6	0	0	18
0.51-1.00	4	4	11	9	0	0	28
1.01-2.00	2	2	9	13	3	0	29
2.01-5.00	0	0	0	7	2	0	9
> 5.00	0	0	0	0	0	0	0
Total	10	15	32	37	5	0	99

Table 50. Actual flood vs simulated flood depth at different levels in the Ocoy River Basin.

The overall accuracy generated by the flood model is estimated at 30.30% with 30 points correctly matching the actual flood depths. In addition, there were 45 points estimated one level above and below the correct flood depths while there were 16 points and 4 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 30 points were underestimated in the modelled flood depths of Ocoy. The summary of the accuracy assessment is presented in Table 51.

Table 51. Summary of the Accuracy Assessment in the Ocoy River Basin Survey

	No. of Points	%
Correct	30	30.30
Overestimated	39	39.39
Underestimated	30	30.30
Total	99	100.00

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry
ANNEXES

Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Table A-1.1. Parameters and Specification of Aquarius Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Table A-1.2. Parameters and Specification of Gemini Sensor

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. NGE-89

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NE	GROS ORIENTAL			
	Station N	lame: NGE-89			
	Order	2nd			
Island: VISAYAS	Barangay:	BIO-OS			
MUNICIPALITY: AMLAN (AYUQUITAN)	MSL Eleva	tion:			
	PRS	92 Coordinates			
Latitude: 9º 28' 17.93638"	Longitude:	123° 11' 53.99321"	Ellipsoida	al Hgt	5.29700 m.
	WGS	84 Coordinates			
Latitude: 9º 28' 13.96567"	Longitude:	123° 11' 59.32102"	Ellipsoida	al Hgt	67.20400 m.
	PTM / P	RS92 Coordinates			
Northing: 1047303.984 m.	Easting:	521778.353 m.	Zone:	4	
	UTM / P	RS92 Coordinates			
Northing: 1,046,937.41	Easting:	521,770.73	Zone:	51	

NGE-89

Location Description

The station is on the SE corner of Bio-os Bridge, at km. 23+56. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on the concrete pavement of the bridge's sidewalk with inscriptions "NGE-89; 2007; NAMRIA".

The station is located along the Dumaguete-San Carlos national road, between the municipalities of Tanjay and Amlan.

Requesting Party:	Phil-LIDAR I
Purpose:	Reference
OR Number:	8075810 I
T.N.:	2014-2467

RUEL DM. BELEN, MNSA Director Mapping And Geodesy Branch G

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. NGE-89

2. NGE-101

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL		
	TIONING. RECITOR OTHERTAL		
	Station Name: NGE-101		
	Order: 2nd		
Island: VISAYAS Municipality: SIBULAN	Barangay: POBLACION MSL Elevation:		
	PRS92 Coordinates		
Latitude: 9º 21' 46.05028"	Longitude: 123º 17' 3.45508"	Ellipsoidal Hgt:	2.89700 m.
	WGS84 Coordinates		
Latitude: 9º 21' 42.11526"	Longitude: 123º 17' 8.79199"	Ellipsoidal Hgt:	65.25500 m.
	PTM / PRS92 Coordinates		
Northing: 1035271.672 m.	Easting: 531227.453 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 1,034,909.31	Easting: 531,216.52	Zone: 51	

Location Description

NGE-101 The station was established in coordination with the PPA Port manager. The station is on the 3rd step from the top flooring of the pier NE corner. It is on the east side of the Sibulan Town proper, along the shoreline of Tañon Strait, inside the Sibulan Ferry Terminal compound. Mark is the head of a 4" copper nail at the center of a 30 x 30 cm. cement putty embedded on the concrete stairs with inscriptions "NGE-101; 2007; NAMRIA".

Phil-LIDAR I
Reference
8075810 I
2014-2466

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. NGE-101

3. NGE-111

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 15, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: NE	GROS ORIENTAL				
		Station Na	ame: NGE-111				
		Order	2nd				
Island: VIS/ Municipality	AYAS 7: DAUIN	Barangay: MSL Eleva PRS	JAGOBA tion: 92 Coordinates				
Latitude:	9° 10' 30.25228"	Longitude:	123º 14' 54.26711"	Ellipsoid	al Hgt:	13.11600 m.	
		WGS	84 Coordinates				
Latitude:	9° 10' 26.36267"	Longitude:	123º 14' 59.62110"	Ellipsoida	al Hgt:	75.79100 m.	
		PTM / P	RS92 Coordinates				
Northing: 1	1014508.213 m.	Easting:	527300.168 m.	Zone:	4		
	UTM / PRS92 Coordinates						
Northing:	1,014,153.12	Easting:	527,290.61	Zone:	51		

NGE-111

Location Description

The station is located on the NE approach of the 36 m. long Jagoba bridge at Km.17+930. The station is about 40 m. SW of km.post # 18. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on the concrete sidewalk with inscriptions "NGE-111; 2007; NAMRIA".

Requesting Party:Phil-LIDAR IPurpose:ReferenceOR Number:8075810 IT.N.:2014-2465

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMIRA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 58 www.namria.gov.ph ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. NGE-111

4. NGW-126

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: NEG	ROS OCCIDENTAL			
		Station Na	me: NGW-126			
		Order	2nd			
Island: V Municipa	ISAYAS ality: SIPALAY	Barangay: MSL Elevat	MARICALUM tion:			
		PRSS	2 Coordinates			
Latitude:	9° 41' 56.09927"	Longitude:	122° 26' 33.87232"	Ellipsoida	al Hgt:	20.29100 m.
		WGS	84 Coordinates			
Latitude:	9° 41' 52.00368"	Longitude:	122° 26' 39.18513"	Ellipsoida	al Hgt:	79.82600 m.
		PTM / PI	RS92 Coordinates			
Northing	1072482.031 m.	Easting:	438848.628 m.	Zone:	4	
Northing	1,072,106.64	UTM / PI Easting:	RS92 Coordinates 438,870.03	Zone:	51	

NGW-126

The station is located on the SE corner of Maricalum bridge which is at the km 177+175. Mark is the head of a 4" copper nail flushed at the center of a 30 x 30 cm. cement putty embedded on the bridge sidewalk with inscriptions "NGW-126; 2007; NAMRIA".

Location Description

Requesting Party:	PHIL-LIDAR I
Purpose:	Reference
OR Number:	8075910 I
T.N.:	2014-2590
T.N.:	2014-2590

11 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES: Main : Lawlon Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. NGW-126

3. NGE-100

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

January 27, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: NEGROS ORIENTAL		
	Station Name: NGE-100		
	Order: 2nd		
Island: VISAYAS Municipality: STA CATALINA	Barangay: CAWITAN MSL Elevation: PRS92 Coordinates		
atitude: 9º 18' 11.02881"	Longitude: 122° 52' 26.45331"	Ellipsoidal Hgt:	8.14800 m.
	WGS84 Coordinates		
atitude: 9º 18' 7.07298"	Longitude: 122° 52' 31.79856"	Ellipsoidal Hgt:	69.61900 m.
	PTM / PRS92 Coordinates		
Northing: 1028656.115 m.	Easting: 486159.164 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 1,028,296.07	Easting: 486,164.01	Zone: 51	

Location Description

NGE-100 The station is located on the SW corner of Cawitan Bridge, along the Dumaguete- Bayawan national highway. Mark is the head of a 4" copper nail drilled and grouted at the center of 30 x 30 cm. cement putty embedded on the concrete sidewalk with inscriptions "NGE-100; 2007; NAMRIA". The station is about 7 km. from Sta Catalina heading to Siaton.

Requesting Party:	UP DREAM
Purpose:	Reference
OR Number:	80896871
T.N.:	2016-0242

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

(·-,

NAME A OFFICES Man: Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tal. No.: (632) 515-4831 is 41 Branch: 421 Berraia SI, San Nicolas, 1013 Manila, Philippines, Tal. No. (632) 241-3454 is 58 www.namria.gov.ph

ISO 5001: 2006 CERTIFIED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.5. NGE-100

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. TBM-4

Table A-3.1. TBM-4

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
T-BM4 NGE-101 (B1)	NGE-101	T-BM4	Fixed	0.005	0.017	155°37'59"	6288.490	0.815
T-BM4 NGE-101 (B2)	NGE-101	T-BM4	Fixed	0.004	0.009	155°37'59"	6288.479	0.804

Processing Summary

|--|

Processed	Passed	Flag	P	Fall	7
2	2	0		0	

Vector Components (Mark to Mark)

From:	NGE-101	NGE-101						
	Grid	Local			Global			
Easting	531216.523 m	Latitud	N9°21'46.05028	" Latitude		N9°21'42.11526"		
Northing	1034909.308 m	Longita	E123°17'03.45508	" Longitude		E123°17'08.79199"		
Elevation	2.110 m	Height	Height 2.897 m H			65.255 m		
To:	T-BM4							
Grid		Local			Global			
Easting	533814.622 m	Latitud	N9°18'39.58660	" Latitude		N9°18'35.66706"		
Northing	1029185.290 m	Longita	E123°18'28.47112	" Longitude		E123°18'33.81248"		
Elevation	3.094 m	Height	t 3.712 r	n Height		66.241 m		
Vector								
ΔEasting	2598.09	9 m N	S Fwd Azimuth	155°37'59"	ΔX	-2679.198 m		
∆Northing	-5724.01	8 m E	Ilipsoid Dist.	6288.490 m	ΔY	-646.804 m		
∆Elevation	0.98	85 m 🛆	Height	0.815 m	ΔZ	-5652.309 m		

Standard Errors

Vector errors:					1997
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.005 m
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.007 m
σ ΔElevation	0.008 m	σΔHeight	0.008 m	σΔΖ	0.002 m

2. NE-90

r roossing our mary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
NE-90 NGE-111 (B1)	NGE-111	NE-90	Fixed	0.003	0.011	216°26'37"	8704.123	-5.758
NGE-111 NE-90 (B2)	NGE-111	NE-90	Fixed	0.005	0.025	216°26'38"	8704.148	-5.719

Table A-3.2. NE-90

Processing Summary

Acceptance Summary

Processed	Passed	Flag	P	Fail	Þ
2	2	0		0	

Vector Components (Mark to Mark)

From:	NGE-111	NGE-111						
	Grid	Local			Global			
Easting	527290.613 m	Latit	ude	N9°10'30.25228"	Latitude		N9°10'26.36267"	
Northing	1014153.117 m	Long	gitude	E123°14'54.26711"	Longitude		E123°14'59.62110"	
Elevation	12.583 m	Heig	pht	13.116 m	Height		75.791 m	
To:	NE-90							
	Grid		L. L.	.ocal		G	ilobal	
Easting	522126.927 m	Latit	ude	N9°06'42.32060"	Latitude		N9°06'38.44322"	
Northing	1007150.356 m	Long	gitude	E123°12'04.93455"	" Longitude		E123°12'10.29457"	
Elevation	7.044 m	Helg	pht	7.358 m	n Height		70.052 m	
Vector								
ΔEasting	-5163.68	85 m	NS Fwd Azimut	h	216°26'37"	ΔX	3718.151 m	
∆Northing	-7002.76	62 m	Ellipsoid Dist.		8704.123 m	ΔY	3758.805 m	
∆Elevation	-5.53	88 m	∆Height		-5.758 m	ΔZ	-6914.376 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.003 m
σΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m
σ ΔElevation	0.006 m	σΔHeight	0.006 m	σΔΖ	0.001 m

105

3. NE-135

Table A-3.3. NE-135

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
NE-135 NGE-89 (B1)	NGE-89	NE-135	Fixed	0.006	0.006	293°20'47"	1679.526	0.259
NGE-89 NE-135 (B3)	NGE-89	NE-135	Fixed	0.004	0.006	293°20'47"	1679.528	0.236

Acceptance Summary

Processed	Passed	Flag	P	Fall	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	NGE-89	IGE-89						
	Grid	Local		Global		lobal		
Easting	521770.730 m	Latit	ude	N9°28'17.93638"	Latitude		N9°28'13.96567"	
Northing	1046937.409 m	Long	gitude	E123°11'53.99321"	Longitude		E123°11'59.32102"	
Elevation	3.905 m	Heig	ht	5.297 m	Height		67.204 m	
To:	NE-135							
Grid		Local		Global		iobal		
Easting	520228.944 m	Latit	ude	N9°28'39.60020"	Latitude		N9°28'35.62671"	
Northing	1047601.845 m	Long	gitude	E123°11'03.44049"	Longitude		E123°11'08.76787"	
Elevation	4.101 m	Heig	ht	5.556 m	n Height		67.415 m	
Vector								
ΔEasting	-1541.78	86 m	NS Fwd Azimuth		293°20'47"	ΔX	1350.288 m	
ΔNorthing	664.43	87 m	Ellipsoid Dist.		1679.526 m	ΔY	752.714 m	
∆Elevation	0.19	6 m	ΔHeight		0.259 m	ΔZ	656.467 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.003 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.003 m
σ ΔElevation	0.003 m	σ ΔHeight	0.003 m	σΔΖ	0.001 m

4. NE-90A

NE 90 - NE 90A1 (4	:33:53 PM-6:08:49 PM) (S1)
Baseline observation:	NE 90 NE 90A1 (B1)
Processed:	2/23/2016 5:58:20 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.007 m
RMS:	0.001 m
Maximum PDOP:	2.945
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	1/30/2016 4:33:54 PM (Local: UTC+8hr)
Processing stop time:	1/30/2016 6:08:49 PM (Local: UTC+8hr)
Processing duration:	01:34:55
Processing Interval:	1 second

Table A-3.4. NE-90A

Vector Components (Mark to Mark)

From:	NE 90						
G	rid	Lo	cal			Glo	bal
Easting	522126.927 m	Latitude	N9°06'42	.32060"	Latitude		N9°06'38.44322"
Northing	1007150.356 m	Longitude	E123°12'04	.93454"	Longitude		E123°12'10.29457"
Elevation	7.044 m	Height		7.358 m	Height		70.052 m
To:	NE 90A1						
G	rid	Lo	cal			Glo	bal
Easting	522130.430 m	Latitude	N9°06'44	.56131"	Latitude		N9°06'40.68377"
Northing	1007219.167 m	Longitude	E123°12'05	.05055"	Longitude		E123°12'10.41052"
Elevation	6.278 m	Height		6.597 m	Height		69.290 m
Vector							
∆Easting	3.50	2 m NS Fwd Azimuth			2°56'44"	ΔX	3.419 m
∆Northing	68.81	2 m Ellipsoid Dist.			68.928 m	ΔY	-11.689 m
∆Elevation	-0.76	6 m ∆Height			-0.761 m	ΔZ	67.848 m

Standard Errors

Vector errors:					
σ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'05"	σΔX	0.003 m
σ ∆Northing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.002 m
$\sigma \Delta Elevation$	0.003 m	σ∆Height	0.003 m	σΔΖ	0.001 m

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, DR.ENG	UP-TCAGP
Data Acquisition	Data Component	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Component Leader	Project Leader - I	ENGR. LOUIE BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

Table A-4.1. The LiDAR Survey Team Composition

FIELD TEAM

	Senior Science Research Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP
LiDAR Operation	Senior Science Research Specialist (SSRS) 2016	AUBREY MATIRA PAGADOR	UP-TCAGP
		FOR. MA. VERLINA TONGA	UP-TCAGP
	Research Associate (RA)	MA. REMEDIOS VILLANUEVA	UP-TCAGP
		JONALYN GONZALES	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	JONATHAN ALMALVEZ	UP-TCAGP
		ENGR. GEF SORIANO	UP-TCAGP
	Airborne Security	SSG ERWIN DELOS SANTOS	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation		SSG RAYMUND DOMINE	PAF
	Pilot	CAPT. RAUL CZ SAMAR II	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. BRYAN DONGUINES	AAC
		CAPT. MARK TANGONAN	AAC
		CAPT. NIEL AGAWIN	AAC
		CAPT. JEROME MOONEY	AAC

Annex 5. Data Transfer Sheet for Ocoy Floodplain

DATA TRANSFER SHEET 10/20/2014(Dumaguete ready)

				DAW	1.45				DO LINOSOM			DASE 51	A TION (S)	OPERATOR	FUGHT	PLAN	SERVICE
DATE	FUCHT NO.	MISSION NAME	SENBOR	Output LAS	KML (swath)	LOGS MB1	POS	NUN INAGENCASI	FLECAS	NANDE	риалисск	BASE STATION(S)	Date hts (Jed)	(DPLOG)	Actual	KML	LOCATION
11 000 10	761A	ATACCOLONIAT	INIME:	KI	961	65	123	Ŷ	MA	8	NA	12	11/3	148	17	7/8	Z-IDACIRANI DATA
11-dac-67	tic)	TRI VEACUERR	OEMN	16	110	192	162	NA	MA	127	W	12	1/8	100	NA	=	ZYDACIRAW
+T-dac-h7	CTC	Verture Courses	COMMIN	18.7	266	929	952	NN	W	25.5	¥	7.92	1KB	1403	6	-	Z-DACRAW DATA
25-5ep-14	1010	Vegzonecy197	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO		101	5	125	en en	¥	13.5	NA	0,54	1KB	1KB	n	*	ZADACRAW
26-5cp-14	7518	W6079053787			-	-	3	gN	MA	27	NA	6.07	148	1K0	*	8	ZIDAGRAW
29-Sep-14	7524	2BUK54C272A	CELIN	100	16	8	Ĩ	ž	ž	8.1	ž	3.6	tkB	tion of	38	5	ZIDACIPAN
et-das-ns	070/	ANTEGODOUDA IOF	INPES	191	115	219	12	NA	2	9.25	M	3.91	1KB	89	No.	ş	ZXDACRAW DATA
6T-100-T	070/	2BL/C48556E275	NING	709	115	802	122	an A	ž	8.74	ž	3.7	#KB	ŝ	314	127	ZYDACRAW
51-110-7	neci	A															

Received from

いいちもうい Position Name

Received by

+102/02/0] E. PRIETO AGIO Postine Name Signatu

Figure A-5.1. Transfer Sheet for Ocoy Floodplain - A

				RAI	NLAS				Sector 100		Γ	TO BOAR ST	VECHASI	CONSIGNATION CONSIGNATION	LIQUI	I FLAN	000000
DATE	PLONT NO.	MISSION NAME	SENSOR	Output LAS	KOB. (seen1)	(maison)	5	PARA CAR	PLANCAMI LOGG	NAME:	CONTROL	BAGE 6TATHORIES	Gase bits (Art)	(B07404)	Achal	NN	LOCATION
25-Mil	TOORAC	XEL/CAACOSA	Aquintes	ĸ	114	342	ŝ	27.6	211	123	2	3,97	969	168	0.05	10431	Z.SCHCWAW DATA
25-MM	100240	26L/539328A	Aquatics	ĸ	231	200	222	53	44.5	32.5	140	0.00	162	100	1911	619	ZUDHCRUNN DATA
25-366	017-005	ADDADDAD	Paperta .	KK	42	SUE	202	8	190	324		8	162	NA.	120	Dest.	Z-DACRANY DATA
20-Jan	045004	360,5091268	Aquarks	K.K.	24	322	215	8	40.5196	54	a.	8	143	N.N.	12/3	2002	Z-DMCNEMM DATA
30-Jan	CAROCK	26U/201/200	Aquation	KX	8	322	8	63.1	1504230168	608	61	91.4	(63)	N.M.	18/8	2943	Z-DNOWMN DATA
30-Jan	10073AC	58U/38V/308	Aquarka -	NA	22	165	8	12	145056.70232	5,40	2	12.4	1923	NA	24/8	84/6	ZYDACIRANI DATA
		Resolved frees						Received by									
		name Constan S. C	Senadet					Name of	Bangat								
		Pasilan 7atant. A	(colors)					Position	CIRIO .								

Figure A-5.2. Transfer Sheet for Ocoy Floodplain - B

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

DATA TRUMSPER SHEET Dawagada 24/16

2

Square

110

				SERVER LOCATION			DPTFFFFF Shutcheam up 5. FRuch/RAINONTA	Vagaines en dream up di edu oh/ 8 di monta	Vidou interlandream und adu oble Manurus	Have been and shown and ad- which are and	ATACHARTON AND ARTICLE AND A CONTRACTOR AND	VACUTAB LENGINERIN UPL OUL ON VANNUATA	Vacuines landreamuned edu el/Paulonya	Variation for desire and adv. ablintance.	ALLOCATION AND AND AND AND AND AND AND AND AND AN	NACKWARTER AND A SHARE OF SHARE AND	Viacanas Ian dreamusid edu pMRAMOATA	Viacehanten droom useleeu eMPAWOATA	Vacuation the shares und als able to start at	University of the second	Viabultura lan drawn und ada akteurun ar	VINIER WILLIAM AND
		PLAN		172	1	1	MUM I	6.76 KB	N/A	7.6.68	11/12	ę	20.5 KOB	7.84 0%	11/10	1000	\$30 KB	26.4 KB	7.80 CB	K/A	11.B KB	
		FUGHT		ACTUAL		440		116 835	356 08	236	171 04	04 9/4	198.88	352 103	269 108	AN1 1.4 .	601 167	672 803	141 13	193 83	N/A	
		CONSULTON		IDPI OGI	finan ini	1.85		148	110	1,45	1 1/2		1/02	1 103	1 103	1 100	24	100	2	1.63	10	
			ICIN (S)	DASE INFO	(,181)	1 40		1 40	1 105	2 103	1 13		2 133	1 133	1.63	1 8.0		740	1 88	1 KB	1KB	
		Aver cove	TATC SCAL	BASE	STATION/S	3.61	101	K.F	Nes.	6.40	6.05		0.01	6.57	S.78	192		212	5.16	3.47	3.47	
_			NACITIENO	1251		ALCA.	11/10	C E	R(A	N/W	W/A	11/11	VIN.	N/A	M/A	MIA	10	5	W/W	N/N	N/A	
11/06/2014			NAMOR	(63)		5.50	• **		961	24.1	2	040		21.5	20.2	17.5	101	104	202	26.7	986	
UNMUGUETE O		MORSHW	10039187	CASI 1085		M/A	11/8	-	VII.	R/A	113 820	104 100	dia non	106 KB	M(A	NU/A	NIA	1	< N	63.2 88	N/A	
0		RAW	PAAGES /	CASI		M/A	N/A	100	C E	N/A	20.5 GB	23.60		22	N/A	NA	MA	alfa .		7,52 GB	N/N	
		-	2	CMBD		109	208	-11	110	242	220	292	1	ŧ	122	228	250	224		4	345	
	L		1005			135,03	日の	N/N		88 170	82755	234 KB	A16 UR	80.075	433 KB	354 833	411 12	240 82		Ti ton	RULER	
		NUS	-	issued of		64.5 K.E	157 108	BCR C.5-C	and Child	DA NOC	124 052	266 KB	342 14	0.000	480.58	82.822	426.53	122 808	07 140	CV 317	11 T T T T	
	L	RAV	O deve	No.	1	K)H	NIX	N/A	N/18	44 - 24	DO THE	7.4 GB	18.08	40.00	dD Y'ce	24.6 GB	6.74.68	2.30 68	N.Y. 4. 1.	11/4	-W	
			SENSOR		COLUMN TAN	SUMMI-COM	GUT/UNI-CASI	GBMNI-CASI	GCMINI-CAG	COMPANY OF A PARTY	INTERNAN CONTRACT	9 ENTINE CASI	GEMINI-CAS	COMMENT PACE	NATION OF STREET, STRE	GUM NI-CACI	GEMINI-CASI	GENINI-CUSI	GENINE-CAG	GEUME CAS	Taur names	
		And the second second	THE PARTY NOTICE		28LKGRESTOL	Contract of the second second	http://www.comman	29005542334	ZBUGSIGSTA	Jie systerioon	THE PROPERTY AND A DEC	Vox17CH06V/av	280G3H2950	2410531223A	The order of the order	A LOUDER DAY	(BUCKSHSCHSCHSCH)	2010566581 K531530004	280K560065301A	2810564858010		
1		FUGHT	NO.		Paras.	100		75.60	7562	39.66	0000	nac/	7570	76.74	74.92	100	15/0	7580	7582	76.85	1	
		1	DATE		20114	6-C41.74	2-001-14	17-Oct-24	18-0ve-14	ALAN AL	AUTOR AT	21-Oct-14	22-04-14	11.1.1.1.1	1111111	22-Uct-14	26-0ct-14	27-0ct-14	24-0re-14	10 110 12		

DATA TRANSFER SHEET

RECEIVED FROM:

SIGNATURE POSITION NAME

RECEIVED BY

MUE NOW 06 2014 POSITION NUME SIGNAT

Figure A-5.3. Transfer Sheet for Ocoy Floodplain - C

1. Flight Log for Mission 7514G

et: A Anguines: Bearin: Baarin: Danagueret. att: q:-3;-N 22 support of Arrival Jarport, Gryfrowincol: 22 Mont of Arrival Jarport, Gryfrowincol: 12 Mont of Arrival Jarport, Gryfrowincol: atte: q:-3;-N 22 support of Arrival Jarport, Gryfrowincol: 12 Mont of Arrival Jarport, Gryfrowincol: 12 Mont of Arrival Jarport, Gryfrowincol: 13 Table of Arrival Jarport, Gryfrowincol: atte: q:-3;-N 22 Is Total Brigger Time: 15 Table of Arrival Jarport, Gryfrowincol: 13 Table of Arrival Jarport, Gryfrowincol: 13 Table of Arrival Jarport, Gryfrowincol: attent (Go-dy)	DAR Operator: MUE Tonoge 2 A	UTM Model: CONF CAS	3 Mission Name: 28145	LDG2L&A 4 Type: VFR	5 Aircraft Type: Cesnna T20	H 6 Aircraft I dentification: 9922
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ot: A. M. Marinet Sco-Pilot	N. ARANIN	9 Route:	Dumaguet		
with Orr. 7: 77 At majne Offi, $n: 52$ IS TONIS Engine Times: Is Take Offi. I' Lending: Is Take Offi. I' Lending: Is Take Offi. I' Lending: Is the China of the Courd of the China of the C	ste: Q - 25 - 14 12	Airport of Departure	(Airport, City/Province):	12 Mirport of Arrival	(Airport, City/Province):	
either clo-dy- marks: Mission completely althout quer chonest due to due duild p marks: Mission completely althout quer chonest due to due duild p marks: Mission ter and obuilds marks: Mission completely althout quer chonest due to due duild p to due to the comment marks: Mission completely althout quer chonest due to due due duild p to due to due due due to due to due to due to due to due to due to due due to due to due to due to the comment to due to due to due to due to due to the comment to due to due to due to due to the comment to due to due to due to due to the comment to due to due to the comment to due to due to due to the comment to due to the comment to the comment to due to the comment to the comment to due to the comment t	gine On: 7:47 14 Engine	0ff: //: 52	15 Total Engine Time:	16 Take off:	17 Lending:	18 Total Flight Time:
matrix: Mission and letted; alt that and changed and the the abuild of the found the	eather Cloudy					
robients and Solutions: Notation flyst Approved by Manual Manual Solutions: Notation flyst Approved by Manual Manual Solutions: Manual	merks: Mission Cou	rpleted;	althur a	son change in	t due to	bud duild yo
Acquisition fight Approped by Acquisition fight Approped by Acquisition fight Appropriated by Acquisition fight Approximated by Acquisition fight Approximated by Signature over Printed Name Ind User Representative] Signature over Printed Name Signature over Printed Name	roblems and solutions:					
Acquisitions flight Appropried by Acquisitions flight Certified by Riles in Command Udar Operator Hand A						
	Acquisition flight Approved by <u>Hay A</u> - <u>Marked</u> Latter over Printed Name [End User Representative]	¥ ि0 द€	quisition flight Certified by Quantum Certified by Quantum Certified by Manuel Name	Rite in Co	mand AUM/INTES	Udar Operator

PHIL-LIDAR 1 Data Acquisition Flight Log

Flight Log No.: 75/4

_	_					1		
6 Aircraft I dentification: 9522			18 Total Flight Time:		d duild op			
5 Aircraft Type: Cesnna T206H		(Airport, City/Province):	17 Lending:		t due to alu			
UKSLDG228 A Type: VFR	Dumaquet	12 Mirport of Arrival	e: 16 Take off:		share change			
1 (4) 3 Mission Name: 24	9 Route:	ture (Airport, City/Province	15 Total Engine Tim		; althur			
and 2 ALTM Model: CON	SCo-Pilot: N. A. A. Manin	12 Aimort of Depart	14 Engine Off: #: 5 2		Comp leted			•
1 11 DAB Onerator MVE Tou	7 Pilot: 4. D. accuired	10Date: 9 - 25 - 14	13 Engine On: 7 : 4 7	19 Weather Cloudy	20 Remarks: Mi SSi 09		21 Problems and Solutions	

113

Udar Operator

S. DOULININES

Roummertonm

Signature over Printed Name (PAF Representative)

Signature over Printed Name

End User Representative)

Pilot-in-Comma

Acquisition Flight Certified by

Acquisition Flight Approved by

- Ant

Figure A-6.2. Flight Log for Mission 7530G

DAR OPERATOR: MVE TENCER 2 ALTM MODEL: CENTCH	FH 3 Mission Name: 280665	ECTOLA 4 Type: VFR	S Aircraft Type: Cesnna T206H	6 Aircraft I dentification:	9322
ot: R. Sumar Blo-Pilot: N. Agawin	9 Route: Ourogue te				
ate: $bct + 2\delta_j \gamma_0 M$ 12 Airport of Departure	e (Airport, City/Prownce): Dumaquete	12 Airport of Arrival	(Airport, Gty/Province):		
ngine Dri: 14 Engine Offi- 0604 0424	15 Total Engine Time: 3 1 23	16 Take off:	17 Landing:	18 Total Flight Time:	
Veather CIPMOY					
emarks: Missian completed (without groundling connection)	4. CAST due to	inter mittent			
Problems and Solutions:					
Acquisition Fight Approved by Act	quisition Flight Certified by	Pllot-In-Con	International States St	Litiar Operator Litiar Operator Signaturye over geinted Name	

Figure A-6.3. Flight Log for Mission 7582G

-

114

Flight Log for 10077A Mission

4.

PHIL-LIDAR 1 Data Acquisition Flight Log

					Flight Log No.: 100 74
1 UDAR Operator: MV 7	DN64 2 ALTM Model: 2 QUA + CAS	3 Mission Name: 381456V050	8 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: Oras
7 Pilot: N. Juncontry	8 Co-Pilot: J. MODNEY	9 Route: NEETHOS ORIENTAL			לאלל
10 Date: 30 JAN 1	12 Airport of Departure (Airport, City/Province): 1	2 Airport of Arrival	(Airport, City/Province):	
13 Engine On: 423	14 Engine Off: 1745	15 Total Engine Time: 1	6 Take off:	17 Landing:	18 Total Filght Time:
19 Weather	Fire				
20 Flight Classification			21 Remarks		
20.a Billable Acquisition Flight O Ferry Flight O System Test Flight O Calibration Flight	20.b Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:	20.c Others O LiDAR System Maintenar O Aircraft Maintenance O Phil-LIDAR Admin Activiti	Coverced	voids over BLKS6A	
22 Problems and Solutions	-				
O Weather Problem O System Problem					
O Priot Problem			÷.		
Acquisition Flight Approved dur why LOVEY Mutury Signature over Printed Name (End User Representative)	Acquisition Flight Certific Routine Mark Domine	od by Pilot-In-Com	Manual Name	LIDAR Operator	Aircraft Mechanic/ UDAR Technician Signature over Printed Name
				1	

Figure A-6.3. Flight Log for Mission 10077A

Annex 7. Flight Status Reports

Negros Mission

September 24 - October 28, 2014 and January 30, 2016

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7514GC	BLK56F	2BLK56F267A	MVE TONGA	Sep 24, 2014	Surveyed 18 lines; altitude changed to 750m AGL
7530GC	BLK56E	2BLK54BS56E275A	MVE TONGA	Oct 2, 2014	Surveyed 5 lines of BLK54B and 3 lines of BLK56E
7582GC	BLK56E	2BLK56BSES301A	MVE TONGA	Oct 28, 2014	Mission completed (without CASI due to intermittent grounding connection)
10077A	BLK56V	3BLK56V030B	MVE TONGA	January 30, 2016	COVERD VOIDS OVER BLK 56A

LAS BOUNDARIED PER FLIGHT

Flight No. : 7514G Area: BLK56F Mission Name: 2BLK56F267A Total Area Surveyed: 106.5 sq km

Figure A-7.1. Swath for Flight No. 7514G

Flight No. : 7530G Area: BLK 54B & 56E Mission Name: 2BLK54BS56E275A Total Area Surveyed: 71.2 sq km

Figure A-7.2. Swath for Flight No. 7530G

Flight No. : 7582G Area: BLK 56B & BLK 56E Mission Name: 2BLK56BSES301A Total Area Surveyed: 117.6 sq km

Figure A-7.3. Swath for Flight No. 7582G

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No.: 10077A Area: BLK 56 VOIDS Mission Name: 3BLK56V030B Alt: 500 m Scan Freq: 45 Surveyed Area: 24.53 sq.km.

Scan Angle: 18

Figure A-7.4. Swath for Flight No. 10077A

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk56EF

Flight Area	Dumaguete		
Mission Name	Blk56EF		
Inclusive Flights	7514G,7530G		
Range data size	44.24 GB		
POS data size	360 MB		
Base data size	15.7 MB		
Image	NA		
Transfer date	October 20, 2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.0		
RMSE for East Position (<4.0 cm)	1.5		
RMSE for Down Position (<8.0 cm)	2.75		
Boresight correction stdev (<0.001deg)	0.000229		
IMU attitude correction stdev (<0.001deg)	0.000712		
GPS position stdev (<0.01m)	0.0014		
Minimum % overlap (>25)	44.05%		
Ave point cloud density per sq.m. (>2.0)	4.75		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	136		
Maximum Height	298.38 m		
Minimum Height	60.22 m		
Classification (# of points)			
Ground	35397365		
Low vegetation	56878245		
Medium vegetation	123048930		
High vegetation	173165124		
Building	17709317		
Orthophoto	No		
Processed by	Engr. Angelo Carlo Bongat, Engr. Edgardo Gubatanga, Jr., Engr. John Dill Macapagal		

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of Data Overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Dumaguete		
Mission Name	Blk56E_supplement		
Inclusive Flights	7582G		
Range data size	16.7 GB		
POS data size	165 MB		
Base data size	8.47 MB		
Image	NA		
Transfer date	November 6, 2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	1.08		
RMSE for East Position (<4.0 cm)	1.75		
RMSE for Down Position (<8.0 cm)	2.95		
Boresight correction stdev (<0.001deg)	0.000217		
IMU attitude correction stdev (<0.001deg)	0.000342		
GPS position stdev (<0.01m)	0.0016		
Minimum % overlap (>25)	45.21%		
Ave point cloud density per sq.m. (>2.0)	4.37		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	100		
Maximum Height	543.76 m		
Minimum Height	62.32 m		
Classification (# of points)			
Ground	30655315		
Low vegetation	30034017		
Medium vegetation	54707994		
High vegetation	136901911		
Building	4//45/0		
Orthesphata	No.		
Drinophoto Processed by	INU Engr Angelo Carlo Bongat Engr Molania Hingait		
Processed by	Engr. Jeffrey Delica		

Table A-8.2. Mission Summary Report for Mission Blk56E_supplement

Figure A-8.8. Solution Status Parameters

Figure A-8.9. Smoothed Performance Metrics Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of Data Overlap

Figure A-8.13. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.14. Elevation difference between flight lines

Flight Area	Dumaguete		
Mission Name	Blk57C		
Inclusive Flights	7589G		
Range data size	6.34 GB		
Base data size	6.53 MB		
POS	87.6 MB		
Image	na		
Transfer date	December 9, 2014		
Solution Status			
Number of Satellites (>6)	Yes		
PDOP (<3)	Yes		
Baseline Length (<30km)	Yes		
Processing Mode (<=1)	Yes		
Smoothed Performance Metrics (in cm)			
RMSE for North Position (<4.0 cm)	2.1		
RMSE for East Position (<4.0 cm)	1.65		
RMSE for Down Position (<8.0 cm)	4.6		
Boresight correction stdev (<0.001deg)	0.000208		
IMU attitude correction stdev (<0.001deg)	0.000496		
GPS position stdev (<0.01m)	0.0015		
Minimum % overlap (>25)	35.18%		
Ave point cloud density per sq.m. (>2.0)	3.23		
Elevation difference between strips (<0.20 m)	Yes		
Number of 1km x 1km blocks	80		
Maximum Height	441.7 m		
Minimum Height	-0.44 m		
Classification (# of points)			
Ground	16008746		
Low vegetation	17343883		
Medium vegetation	38375487		
High vegetation	99950892		
Building	3617019		
Orthophoto	No		
Processed by	Engr. Irish Cortez, Engr. Harmond Santos, Engr. Gladys Mae Apat		

Table A-8.3. Mission Summary Report for Mission Blk57C

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of Data Overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Dumaguete Reflights
Mission Name	Blk56D
Inclusive Flights	10077AC
Range data size	5.46 GB
POS data size	198 MB
Base data size	18.4 MB
Image	27 MB
Transfer date	February 15, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.04
RMSE for East Position (<4.0 cm)	1.23
RMSE for Down Position (<8.0 cm)	2.32
Boresight correction stdev (<0.001deg)	0.002341
IMU attitude correction stdev (<0.001deg)	0.003698
GPS position stdev (<0.01m)	0.0245
Minimum % overlap (>25)	12.20%
Ave point cloud density per sq.m. (>2.0)	5.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	18
Maximum Height	293.38 m
Minimum Height	137.98 m
Classification (# of points)	
Ground	2,361,786
Low vegetation	3,190,255
Medium vegetation	3,044,366
High vegetation	7,507,156
Building	137,935
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Ma. Joanne Balaga, Alex John Escobido

Table A-8.4. Mission Summary Report for Mission Blk56D

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of Data Overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Flight Area	Dumaguete Reflights
Mission Name	Blk56E
Inclusive Flights	10077AC
Range data size	5.46 GB
POS data size	198 MB
Base data size	18.4 MB
Image	27 MB
Transfer date	February 15, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.04
RMSE for East Position (<4.0 cm)	1.23
RMSE for Down Position (<8.0 cm)	2.32
Boresight correction stdev (<0.001deg)	0.000267
IMU attitude correction stdev (<0.001deg)	0.000335
GPS position stdev (<0.01m)	0.0126
Minimum % overlap (>25)	28.79%
Ave point cloud density per sq.m. (>2.0)	4.03
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	30
Maximum Height	170.09 m
Minimum Height	65.73 m
Classification (# of points)	
Ground	8,284,539
Low vegetation	9,818,388
Medium vegetation	6,167,202
High vegetation	17,072,068
Building	2,924,926
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Chelou Prado, Maria Tamsyn Malabanan

Table A-8.5. Mission Summary Report for Mission Blk56E

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.33. Image of Data Overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Annex 9. Ocoy Model Basin Parameters

0.78786 Ratio to 0.31498 0.30733 0.32156 0.45699 0.31515 0.70165 0.47495 0.79555 0.47487 0.70906 0.32299 0.46323 0.56011 0.45177 0.69811 0.45177 0.45177 0.45177 0.6983 Peak Ratio to Peak Threschold Type **Recession Baseflow Recession Constant** 0.0610466 0.0678296 0.0678293 0.0678186 0.0678236 0.0678297 0.0674827 0.0664736 0.0678295 0.0678298 0.0678311 0.0610461 0.0678293 0.045225 0.06615 0.045 0.045 0.045 0.045 0.045 0.045 0.03 0.0565618 0.0738786 0.0021646 0.0886813 0.0183102 0.0469713 0.0522816 0.0711192 Discharge 0.0710947 0.0526557 0.049326 0.0901162 0.0499821 0.16276 0.12176 0.12156 0.17208 0.17598 0.50723 0.10591 (M3/S) 0.10952 0.14941 Initial Discharge nitial Type **Clark Unit Hydrograph Transform** Storage Coefficient 0.0707245 0.0620576 0.0981738 0.0778775 0.0724034 0.0415163 0.078561 0.59616 0.56312 0.47179 0.6482 0.26594 0.85767 0.89103 0.38294 1.06040.8528 0.11271 0.12882 1.0205 1.0477 1.0527 (HR) Concentration 0.61455980.7997744 0.7229364 0.9993884 0.1767995 0.9961542 0.5827225 7.135119 6.690983 8.330125 8.156673 6.692425 1.037107 6.701592 0.754784 3.810279 9.858954 8.186337 6.512381 3.574821 2.37724 Time of 1.09695 (HR) Impervious 100 100 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 (%) 50 50 50 SCS Curve Number Loss Curve Number 89.835 85.873 50.638 89.573 76.453 80.187 86.274 81.399 52.38 51.955 66 66 66 66 66 66 66 66 66 66 66 66 Abstraction 0.082592 0.36153 0.48966 0.98314 0.44188 0.55243 1.8272 1.2943 1.15481.0525 2.2388 0.95624 2.3894 1.2069 1.1259 2.3363 0.16251 0.72341 1.5965 0.88741 Initial 1.56311.243(mm) Numbei W510 W610 W620 W630 W640 W670 Basin W460 W470 W480 W500 W520 W530 W540 W550 W560 W570 W580 W590 W600 W650 W660 W490

Basin	SCS CL	irve Number	. Loss	Clark Unit Hydrogr	aph Transform		Rec	ession Baseflo	M	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threschold Type	Ratio to Peak
W680	1.0088	86.791	50	3.370366	0.35107	Discharge	0.0695923	0.0678269	Ratio to Peak	0.71231
W690	4.098	75.473	50	3.749097	0.5873	Discharge	0.0562981	0.0678242	Ratio to Peak	1
W700	4.195	76.141	50	5.470433	0.57624	Discharge	0.0505218	0.0447743	Ratio to Peak	0.48203
W710	3.8483	52.142	50	5.503599	0.39165	Discharge	0.053551	0.045	Ratio to Peak	0.71255
W720	0.72389	66	50	0.396447	0.0626997	Discharge	0.0243073	0.06783	Ratio to Peak	0.67766
W730	1.0686	76.264	50	0.4265539	0.84516	Discharge	0.0500864	0.06783	Ratio to Peak	0.47612
W740	0.86552	66	50	6.483026	0.30378	Discharge	0.13244	0.06615	Ratio to Peak	0.6699
W750	2.1157	85.931	50	4.344437	0.34775	Discharge	0.062099	0.0678285	Ratio to Peak	0.71587
W760	3.2186	84.715	50	6.683258	0.47999	Discharge	0.22797	0.045	Ratio to Peak	0.7312
W770	0.56645	87.173	50	2.813651	0.30156	Discharge	0.0773371	0.0678291	Ratio to Peak	0.72
W780	1.323	58.626	50	3.638681	0.44009	Discharge	0.0544033	0.0678272	Ratio to Peak	1
W790	1.7014	87.062	50	3.602734	0.32652	Discharge	0.0595297	0.0678226	Ratio to Peak	0.72992
W800	2.2189	81.035	50	1.848335	0.29001	Discharge	0.0290167	0.0678297	Ratio to Peak	0.48476
W810	2.0738	86.183	50	2.668421	0.9268	Discharge	0.0559547	0.0678276	Ratio to Peak	0.72898
W820	2.1062	89.599	50	4.516962	0.4839	Discharge	0.0684641	0.045	Ratio to Peak	1
W830	5.6888	69.898	50	3.833969	0.2673	Discharge	0.10849	0.0678285	Ratio to Peak	0.79556
W840	5.388	77.893	25	3.176417	0.28895	Discharge	0.0598608	0.0678273	Ratio to Peak	0.7338
W850	6.2926	72.056	25	0.1522134	0.0548895	Discharge	0.0003495	0.0664743	Ratio to Peak	0.45177
W860	4.0632	84.194	25	2.58839	0.27179	Discharge	0.0519812	0.0678282	Ratio to Peak	0.71555
W870	3.6783	81.404	25	3.53187	0.24695	Discharge	0.0132022	0.0678295	Ratio to Peak	0.66985
W880	2.0822	98.547	25	5.910552	0.42316	Discharge	0.13371	0.045	Ratio to Peak	1
W890	1.4727	85.438	25	2.293089	0.24028	Discharge	0.0937771	0.0678285	Ratio to Peak	0.71093
006M	1.8386	93.773	25	4.073753	0.42699	Discharge	0.10372	0.045	Ratio to Peak	0.71568

Annex 10. Ocoy Model Reach Parameters

	Side Slope	Ч	Ч	1	1	Ч	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Width	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	Shape	Trapezoid																					
nel Routing	Manning's n	0.038845	0.026133	0.13054	0.059371	0.038288	0.085286	0.090413	0.13578	0.13578	0.13576	0.20272	0.090662	0.025525	0.13573	0.090774	0.20263	0.13472	0.037522	0.091011	0.09103	0.017364	0.025525
Muskingum Cunge Chan	Slope	0.0185	0.03597	0.0404	0.05392	0.01729	0.13162	0.03742	0.06367	0.11874	0.08409	0.07814	0.0836	0.11693	0.05156	0.15125	0.09208	0.11515	0.14538	0.10934	0.11214	0.07718	0.03192
	Length (m)	922.55	2045.8	547.99	1007.1	6959.5	1554.4	949.83	555.98	760.83	685.27	1296.4	864.56	1656.1	976.4	591.84	604.56	1536.4	663.85	146.57	415.56	1124	236.57
	Time Step Method	Automatic Fixed Interval																					
Reach	Number	R100	R110	R140	R160	R170	R180	R190	R200	R260	R270	R280	R290	R30	R320	R330	R350	R390	R40	R410	R420	R70	R80

		Table A-	<u>11.1. Occ</u>	oy Field Valio	ation Points		
Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Valid- ation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(111)			
1	123.27194	9.347203	0.0	0.927	0.859329	Sendong	100-Year
2	123.26744	9.332396	0.3	0.682	0.145924	Sendong	100-Year
3	123.26743	9.332418	0.4	0.682	0.079524	Sendong	100-Year
4	123.26848	9.33254	1.6	0.244	1.838736	Pablo	100-Year
5	123.26846	9.332558	1.6	0.244	1.838736	Sendong	100-Year
6	123.27173	9.335193	1.2	0.219	0.962361	Ruping	100-Year
7	123.27361	9.337609	0.0	0.699	0.488601	Sendong	100-Year
8	123.2734	9.33774	0.0	0.071	0.005041	Sendong	100-Year
9	123.27312	9.337712	0.4	0.208	0.036864	Sendong	100-Year
10	123.27536	9.338317	0.7	0.37	0.1089	Sendong	100-Year
11	123.27532	9.338361	0.7	0.436	0.069696	Ruping	100-Year
12	123.27534	9.338751	0.8	0.278	0.272484	Sendong	100-Year
13	123.27536	9.338734	0.8	0.211	0.346921	Ruping	100-Year
14	123.273	9.339782	1.1	0.03	1.1449	Sendong	100-Year
15	123.27299	9.339748	1.5	0.03	2.1609	Ruping	100-Year
16	123.28065	9.3319	1.1	0.418	0.465124	Sendong	100-Year
17	123.2806	9.331697	1.1	0.905	0.038025	Sendong	100-Year
18	123.27988	9.331778	1.0	0.29	0.5041	Sendong	100-Year
19	123.2771	9.331119	1.1	0.268	0.692224	Sendong	100-Year
20	123.27707	9.331059	0.3	0.268	0.001024	ITCZ	100-Year
21	123.27671	9.330955	1.0	0.06	0.8836	Sendong	100-Year
22	123.27552	9.329614	1.8	0.674	1.267876	Sendong	100-Year
23	123.28115	9.332149	2.2	1.315	0.783225	Sendong	100-Year
24	123.28332	9.335366	1.8	1.402	0.158404	Sendong	100-Year
25	123.2833	9.335509	1.9	0.632	1.607824	Sendong	100-Year
26	123.28332	9.335433	0	0.928	0.861184	Ruping	100-Year
27	123.28371	9.335104	0.7	0.205	0.245025	Sendong	100-Year
28	123.28419	9.335699	1.4	0.353	1.096209	Sendong	100-Year
29	123.2845	9.33578	0.65	0.296	0.125316	Sendong	100-Year
30	123.28438	9.336183	1.5	0.616	0.781456	Sendong	100-Year
31	123.28463	9.336303	1.3	0.55	0.5625	Sendong	100-Year
32	123.28354	9.334993	0.8	0.092	0.501264	Sendong	100-Year
33	123.28291	9.335876	0.5	0.044	0.207936	Sendong	100-Year
34	123.28349	9.335994	0.9	0.076	0.678976	Sendong	100-Year
35	123.28313	9.33616	0.4	0.03	0.1369	Sendong	100-Year
36	123.28311	9.336183	0.2	0.03	0.0289	Ruping	100-Year
37	123.28401	9.336956	0.3	0.03	0.0729	Sendong	100-Year
38	123.2838	9.336812	0.4	0.06	0.1156	Sendong	100-Year
39	123.28365	9.33686	0.4	0.13	0.0729	Sendong	100-Year

Annex 11. Ocoy Field Validation Points

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
40	123.26593	9.337568	0.3	0.166	0.017956	Sendong	100-Year
41	123.26669	9.342374	0.5	0.051	0.201601	Sendong	100-Year
42	123.26071	9.324433	0.0	1.995	3.980025	Sendong	100-Year
43	123.27418	9.358758	1.1	2.53	2.0449	Sendong	100-Year
44	123.27436	9.358977	1.1	1.412	0.097344	Sendong	100-Year
45	123.27478	9.358978	1.1	1.457	0.127449	Sendong	100-Year
46	123.2752	9.358842	1.1	1.213	0.012769	Sendong	100-Year
47	123.27561	9.358838	1.1	1.226	0.015876	Sendong	100-Year
48	123.27657	9.359095	1.2	1.078	0.014884	Sendong	100-Year
49	123.27729	9.358801	1.1	0.953	0.021609	Sendong	100-Year
50	123.27717	9.359659	0.1	0.682	0.399424	Sendong	100-Year
51	123.27643	9.359789	1.0	1.13	0.0169	Sendong	100-Year
52	123.27577	9.359873	0.86	1.281	0.177241	Sendong	100-Year
53	123.27527	9.359399	1.0	1.542	0.293764	Sendong	100-Year
54	123.275	9.359376	1.65	1.646	0.000016	ITCZ	100-Year
55	123.275	9.359365	0.25	1.602	1.827904	ITCZ	100-Year
56	123.27501	9.359358	0.3	1.602	1.695204	Sendong	100-Year
57	123.27444	9.359274	0.95	1.315	0.133225	Sendong	100-Year
58	123.27431	9.35993	1.64	1.436	0.041616	Sendong	100-Year
59	123.27459	9.360584	1.02	1.145	0.015625	Sendong	100-Year
60	123.27444	9.361067	1.12	1.161	0.001681	Sendong	100-Year
61	123.27394	9.360795	2.4	1.672	0.529984	Sendong	100-Year
62	123.2741	9.361342	3.45	1.685	3.115225	Sendong	100-Year
63	123.27396	9.362246	0.6	0.031	0.323761	Sendong	100-Year
64	123.27416	9.362679	0.53	0.38	0.0225	Sendong	100-Year
65	123.27428	9.362819	0.55	0.587	0.001369	Sendong	100-Year
66	123.27428	9.36346	0.9	0.914	0.000196	Sendong	100-Year
67	123.27432	9.363672	0.9	0.856	0.001936	Sendong	100-Year
68	123.27449	9.364107	1.25	0.977	0.074529	Sendong	100-Year
69	123.27449	9.364096	0.95	0.977	0.000729	Pablo	100-Year
70	123.27697	9.363633	1.3	1.187	0.012769	Sendong	100-Year
71	123.27701	9.363628	0.15	1.157	1.014049	Ondoy	100-Year
72	123.27193	9.36389	0.03	0.369	0.114921	Sendong	100-Year
73	123.27249	9.361329	1.05	0.514	0.287296	Sendong	100-Year
74	123.27353	9.356057	2.6	3.593	0.986049	Sendong	100-Year
75	123.27368	9.355928	2.1	3.609	2.277081	Sendong	100-Year
76	123.2736	9.355765	1.65	3.404	3.076516	Sendong	100-Year
77	123.2734	9.355507	1.64	2.949	1.713481	Sendong	100-Year
78	123.27342	9.355313	1.37	3.156	3.189796	Sendong	100-Year
79	123.27322	9.354991	1.68	3.623	3.775249	Sendong	100-Year
80	123.27302	9.35485	1.6	3.268	2.782224	Sendong	100-Year

Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
81	123.27283	9.354818	1.36	3.609	5.058001	Sendong	100-Year
82	123.27087	9.354657	0.1	0.298	0.039204	Sendong	100-Year
83	123.27257	9.364164	0.7	0.97	0.0729	Sendong	100-Year
84	123.2723	9.364041	0.7	1.024	0.104976	Sendong	100-Year
85	123.27222	9.364149	0.7	0.832	0.017424	Sendong	100-Year
86	123.27219	9.364535	0.9	1.065	0.027225	Sendong	100-Year
87	123.2722	9.364523	0.9	1.138	0.056644	Pablo	100-Year
88	123.27245	9.364635	0.5	0.644	0.020736	Sendong	100-Year
89	123.27238	9.364872	1.1	0.577	0.273529	Sendong	100-Year
90	123.27262	9.3648	0.3	0.685	0.148225	Sendong	100-Year
91	123.27302	9.36488	1.0	0.848	0.023104	Sendong	100-Year
92	123.27312	9.364846	1.5	1.209	0.084681	Sendong	100-Year
93	123.27311	9.364848	0.7	1.209	0.259081	ITCZ	100-Year
94	123.27302	9.364915	0.84	0.842	4E-06	Sendong	100-Year
95	123.27294	9.365068	0.62	0.643	0.000529	Sendong	100-Year
96	123.27298	9.365191	0.84	0.702	0.019044	Sendong	100-Year
97	123.27306	9.365325	0.74	0.698	0.001764	Sendong	100-Year
98	123.27302	9.365479	0.9	1.007	0.011449	Sendong	100-Year
99	123.27309	9.365668	2.0	1.141	0.737881	Sendong	100-Year

Annex 12. Educational Institutions affected by flooding in Ocoy Floodplain

Table A-12.1. Educational Institutions in Dumaguete City, Negros Oriental affected by flooding in Ocoy Floodplain

N	egros Oriental			
Di	umaguete City			
Building Name	Barangay	F	Rainfall Scena	rio
		5-year	25-year	100-year
ABC Learning Center	Bantayan		Low	Low
North City Elementary School	Bantayan		Low	Low
St. Paul University	Bantayan			
Batinguel Elementary School	Batinguel		Low	Medium
Global Tech Manpower Institute, Inc	Batinguel			
Taclobo National High School	Batinguel	Low	Low	Low
St. Paul University	Bunao	Low	Medium	Medium
Camanjac Elementary School	Camanjac		Low	Low
Camanjac High School	Camanjac		Low	Low
Candau-ay Elementary School	Camanjac			
Batinguel Elementary School	Candau-Ay			
Alpha Omega Academy	Daro	Low	Low	Low
Living Word Christian School	Daro	Low	Low	Medium
Negros Oriental High School	Daro		Low	Low
Negros Oriental State University	Daro		Low	Low
Silliman Early Childhood Department	Daro			Low
Silliman University Campus	Daro			
Silliman University Elementary School	Daro			
Silliman University High School	Daro			
Amador Dagudag Elementary School	Looc	Low	Medium	Medium
Silliman University Campus	Looc			
Silliman University Elementary School	Looc			
Silliman University High School	Looc			
World Maritime Academy	Looc	Low	Low	Medium
Negros Oriental High School	Motong			
Southdale Integrated School	Motong			
Collegio de Santa Catalina de Alejandria	Poblacion No. 3			
City Central Elementary School	Poblacion No. 4		Low	Low

N	egros Oriental		·	
Du	umaguete City			
Building Name	Barangay	R	ainfall Scena	rio
		5-year	25-year	100-year
Dumaguete Chunghua School	Poblacion No. 5			
Silliman University Campus	Poblacion No. 5			
Collegio de Santa Catalina de Alejandria	Poblacion No. 6			
Learning Ladder	Pulantubig			
Metro Dumaguete College	Pulantubig			
North City Elementary School	Pulantubig		Low	Low
Ramon Magsaysay Elementary School	Pulantubig		Low	Low
Ramon Teves Pastor Memerial - Dumaguete Science High School	Pulantubig		Low	Low
Asian College of Science and Technology	Taclobo			
Chapel House	Taclobo	Low	Low	Low
Dumaguete Mission School	Taclobo	Low	Medium	Medium
Foundation University Main Campus	Taclobo			
Foundation University North Campus	Taclobo			Low
Negros Oriental High School	Taclobo			
Negros Oriental State University	Taclobo			
West City Elementary School	Taclobo			Low

Table A-12.2. Educational Institutions Sibulan, Negros Oriental affected by flooding in Ocoy Floodplain

N	egros Oriental			
	Sibulan			
Building Name	Barangay	R	ainfall Scena	rio
		5-year	25-year	100-year
Silliman Univeristy Marine Mammal Museum	Agan-An			
Silliman University College of Agriculture	Agan-An			
Silliman University Marine Laboratory	Agan-An	Low	Low	Medium
St. Joseph Seminary College	Agan-An			
Boloc-Boloc Elementary School	Bolocboloc			
Boloc-Boloc High School	Bolocboloc			
Negros Maritime College Foundation	Bolocboloc	Low	Low	Medium
St. Paul University	Bolocboloc			Low

N	egros Oriental			
	Sibulan			
Building Name	Barangay	F	ainfall Scena	rio
		5-year	25-year	100-year
Calabnugan Elementary School	Calabnugan			
Magatas Elementary School	Calabnugan			Low
Cangmating Elementary School	Cangmating			
Maslog High School	Cangmating			
Looc Elementary School	Looc			
Sibulan Science High School	Magatas			Low
Maschil Elementary School, Incorporated	Poblacion			
Sibulan Central Elementary School	Poblacion	Low	Low	Low
Sibulan High School	Poblacion			
Tubtubon Elementary School	Poblacion			Low
Maslog Elementary School	Tubtubon			

Table A-12.3. Educational Institutions in Valencia, Negros Oriental affected by flooding in Ocoy Floodplain

N	egros Oriental			
	Valencia			
Building Name	Barangay	F	ainfall Scena	rio
		5-year	25-year	100-year
Palinpinon Elementary School	Balili			
Palinpinon Elementary School	Palinpinon			

Annex 13. Health Institutions affected by flooding in Ocoy Floodplain

Table A-13.1. Health Institutions in Dumaguete City, Negros Oriental affected by flooding in Ocoy
Floodplain

Negros Oriental							
Dumaguete City							
Building Name	Barangay	Rainfall Scenario					
		5-year	25-year	100-year			
Silliman University Medical Center	Daro		Low	Low			
Holy Child Hospital	Poblacion No. 3						
City Medical Center	Poblacion No. 4						
Holy Child Hospital	Poblacion No. 6						
Negros Oriental Provincial Hospital	Pulantubig		Low	Low			

Table A-13.2. Health Institutions in Sibulan, Negros Oriental affected by flooding in Ocoy Floodplain

Negros Oriental						
Sibulan						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Cangmating Barangay Health Station	Cangmating					

Table A-13.3. Health Institutions in Valencia, Negros Oriental affected by flooding in Ocoy Floodplain

Negros Oriental						
Valencia						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Brgy. Palinpinon Health Center	Balili					