Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Mananga River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Mananga River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-156pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-185-0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND MANANGA RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Mananga River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE MANANGA FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	8
2.4 Survey Coverage	10
CHAPTER 3: LIDAR DATA PROCESSING OF THE MANANGA FLOODPLAIN	12
3.1 Overview of the LiDAR Data Pre-Processing	12
3.2 Transmittal of Acquired LiDAR Data	13
3.3 Trajectory Computation	13
3.4 LiDAR Point Cloud Computation	15
3.5 LiDAR Data Quality Checking	16
3.6 LiDAR Point Cloud Classification and Rasterization	20
3.7 LiDAR Image Processing and Orthophotograph Rectification	23
3.8 DEM Editing and Hydro-Correction	25
3.9 Mosaicking of Blocks	
3 10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	28
3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	32
3 12 Feature Extraction	33
3 12 1 Quality Checking of Digitized Features' Boundary	33
3 12 2 Height Extraction	34
3 12 3 Feature Attribution	34
3 12 / Final Quality Checking of Extracted Features	34
3.12.4 That Quality checking of Excludeed Federes	55
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MANANGA RIVER BAS	IN.36
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4 6 Validation Points Acquisition Survey	49
4 7 River Bathymetric Survey	51
CHAPTER 5: FLOOD MODELING AND MAPPING	54
5.1 Data Used for Hydrologic Modeling	54
5.1.1 Hydrometry and Rating Curves	54
5 1 2 Precipitation	54
5 1 3 Rating Curves and River Outflow	55
5 2 RIDE Station	56
5.2 MBI Station	58
5.4 Cross-section Data	62
5.5 Elo 2D Model	02
5.6 Results of HMS Calibration	64
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	 66
5.7 Calculated outnow hydrographs and discharge values for different rainfail return periods	66
5.7.1 Hydrograph using the Kalifiali Kulton Would hydrologic method	00
5.7.2. Discharge data using Di. Hornitis Stetchindended Hydrologic Method	07 60
5.0 Nivel Allalysis (NAS) IVIOUELSIIIUIdUUI	9
5.5 Fluw Deput and Fluor Aroas Exposed to Flooding	/U
5.10 Inventory of Areas Exposed to Flooding	//
	0/
REFERENCES	

ANNEXES	90
Annex 1. Technical Specifications of the LIDAR Sensors used in the Mananga Floodplain Su	rvey90
Annex 2. NAMRIA certification of reference points used in the LiDAR survey	91
Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	93
Annex 4. The LiDAR Survey Team Composition	94
Annex 5. Data Transfer Sheet for Mananga Floodplain	95
Annex 6. Flight logs for the flight missions	97
Annex 7. Flight status reports	105
Annex 8. Mission Summary Reports	114
Annex 9. Mananga Model Basin Parameters	135
Annex 10. Mananga Model Reach Parameters	137
Annex 11. Mananga Field Validation Points	138
Annex 12. Educational Institutions affected by flooding Mananga Floodplain	145
Annex 13. Medical Institutions affected by flooding in Mananga Floodplain	151

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	3
Table 2. Details of the reprocessed NAMRIA horizontal control point CBU-11 used as base station for the LiDAR acquisition	6
Table 3. Details of the recovered NAMRIA horizontal control point CU-1007 used as base station for the LiDAR acquisition	7
Table 4. Ground control points that were used during the LiDAR data acquisition	8
Table 5. Flight missions for LiDAR data acquisition in Mananga Floodplain	8
Table 6. Actual parameters used during LiDAR data acquisition	9
Table 7. List of municipalities and cities surveyed during Mananga floodplain LiDAR survey	10
Table 8. Self-calibration Results values for Mananga flights	15
Table 9. List of LiDAR blocks for Mananga Floodplain	16
Table 10. Mananga classification results in TerraScan	20
Table 11. LiDAR blocks with its corresponding areas	25
Table 12. Shift values of each LiDAR block of Mananga Floodplain	26
Table 13. Calibration Statistical Measures	30
Table 14. Validation Statistical Measures	31
Table 15. Details of the quality checking ratings for the building features extracted for the Mananga River Basin	33
Table 16. Building Features Extracted for Mananga Floodplain	34
Table 17. Total Length of Extracted Roads for Mananga Floodplain	35
Table 18. Number of Extracted Water Bodies for Mananga Floodplain	35
Table 19. List of Reference and Control Points occupied for Mananga River Survey	39
Table 20. The Baseline processing report for the Pambujan River GNSS static observation survey	43
Table 21. Constraints applied to the adjustment of the control points	44
Table 22. Adjusted grid coordinates for control points used in the Mananga River Floodplain survey.	44
Table 23. Adjusted geodetic coordinates for control points used in the Mananga River Floodplain validation	45
Table 24. The reference and control points utilized in the Silaga River Static Survey, with their corresponding locations	46
Table 25. RIDF values for the Laoag Rain Gauge, as computed by PAGASA	56
Table 26. Range of calibrated values for the Mananga River Basin	64
Table 27. Summary of the Efficiency Test of the Mananga HMS Model	65
Table 28. The peak values of the Mananga HEC-HMS Model outflow using the Maasin RIDF	66
Table 29. Summary of Mananga river (1) discharge generated in HEC-HMS	68
Table 30. Summary of Mananga river (2) discharge generated in HEC-HMS	68
Table 31. Validation of river discharge estimates.	68
Table 32. Municipalities affected in Mananga Floodplain	70
Table 33. Affected Areas in Minglanilla, Cebu during 5-Year Rainfall Return Period	77

Table 34. Affected Areas in Talisay City, Cebu during 5-Year Rainfall Return Period	78
Table 35. Affected Areas in Talisay City, Cebu during 5-Year Rainfall Return Period	78
Table 36. Affected Areas in Minglanilla, Cebu during 25-Year Rainfall Return Period	80
Table 37. Affected Areas in Talisay City, Cebu during 25-Year Rainfall Return Period	81
Table 38. Affected Areas in Talisay City, Cebu during 25-Year Rainfall Return Period	81
Table 39. Affected Areas in Minglanilla, Cebu during 100-Year Rainfall Return Period	83
Table 40. Affected Areas in Talisay City, Cebu during 100-Year Rainfall Return Period	84
Table 41. Affected Areas in Talisay City, Cebu during 100-Year Rainfall Return Period	84
Table 42. Areas covered by each warning level with respect to the rainfall scenarios	86
Table 43. Actual Flood Depth versus Simulated Flood Depth at different levels in the Mananga River Basin	88
Table 44. Summary of the Accuracy Assessment in the Mananga River Basin Survey	88

LIST OF FIGURES

Figure 1. Map of the Mananga River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Mananga Floodplain using the Pegasus sensor	4
Figure 3. GPS set-up over CBU-11 on the roof top of the 75 feet concrete tower of Metro Cebu	
Fire Station, Cebu City Proper (a) and NAMRIA reference point CBU-11 (b) as recovered	
by the field team	6
Figure 4. GPS set-up over CU-1007 along F. Cabang National Road and Juan Luna Avenue,	
in the base of the stop light NW of PLDT panel, Barangay Mabolo, Cebu City (a)	
and NAMRIA reference point CU-1007 (b) as recovered by the field team.	7
Figure 5. Actual LiDAR survey coverage for Mananga floodplain.	11
Figure 6. Schematic diagram for Data Pre-Processing Component.	12
Figure 7. Smoothed Performance Metrics of Mananga Flight 1831P.	13
Figure 8. Solution Status Parameters of Mananga Flight 1831P.	14
Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Mananga Floodplain.	15
Figure 10. Boundary of the processed LiDAR data over Mananga Floodplain	16
Figure 11. Image of data overlap for Mananga Floodplain	. 17
Figure 12. Pulse density map of merged LiDAR data for Mananga Floodplain	18
Figure 13. Elevation Difference Map between flight lines for Mananga Floodplain Survey.	19
Figure 14. Quality checking for a Mananga flight 2842P using the Profile Tool of QT Modeler	20
Figure 15. Tiles for Mananga Floodplain (a) and classification results (b) in TerraScan.	21
Figure 16. Point cloud before (a) and after (b) classification	21
Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Mananga Floodplain.	22
Figure 18. Mananga Floodplain with available orthophotographs	23
Figure 19. Sample orthophotograph tiles for Mananga Floodplain	24
Figure 20. Portions in the DTM of the Mananga Floodplain – (a) before and (b) after filling	
data gaps; a bridge before (c) and after (d) manual editing	. 25
Figure 21. Map of processed LiDAR data for Mananga Floodplain	.27
Figure 22. Map of Mananga Floodplain with validation survey points in green	29
Figure 23. Correlation plot between calibration survey points and LiDAR data	30
Figure 24. Correlation plot between validation survey points and LiDAR data	31
Figure 25. Map of Mananga Floodplain with bathymetric survey points in blue	32
Figure 26. Blocks (in blue) of Mananga building features that was subjected to QC	.33
Figure 27. Extracted features for Mananga Floodplain.	.35
Figure 28 . Extent of the bathymetric survey (in blue line) in Mananga River	37
and the LiDAR data validation survey (in red)	.37
Figure 29. Mananga River Basin Control Survey Extent	. 38
Figure 30. GNSS base receiver, Trimble® SPS 852, at CBU-11, located in Brgy. Sambag II, Cebu City	40
Figure 31. GNSS receiver setup, Trimble [®] SPS 882, at CU-714A, at the approach of Cotcot Bridge	
in Brgy. Cotcot, Municpality of Liloan, Cebu	.40
Figure 32. GNSS receiver setup, Trimble [®] SPS 882, at CG-373, located at the approach of Bangan	
Bridge in Brgy. Bangan, Municipality of Sanchez Mira, Cagayan	.41
Figure 33. GNSS receiver setup, Trimble [®] SPS 852, at UP-CLA, located at the approach	
of Cabicungan Bridge in Brgy. Dibalio, Municipality of Claveria, Cagayan	.41
Figure 34. GNSS base receiver, Trimble [®] SPS 852, at UP-COT, at the approach of Cotcot Bridge	
in Brgy. Cotcot, Municipality of Liloan, Cebu	.42
Figure 35. GNSS base receiver, Trimble [®] SPS 852, at UP-MAN, at the approach of Mananga Bridge	

	in Brgy. Lawaan II, Talisay City, Cebu	.42
Figure 36.	Mananga Bridge facing upstream	.46
Figure 37.	Location map of the San Juan Bridge Cross Section.	.47
Figure 38.	The Mananga Bridge cross-section survey drawn to scale.	.47
Figure 39.	The Mananga Bridge as-built survey data.	.48
Figure 40.	GNSS Receiver Trimble [®] SPS 882 installed on a vehicle for Ground Validation Survey	.49
Figure 41.	The extent of the LiDAR ground validation survey (in red) for Mananga River Basin	.50
Figure 42.	Set up of the bathymetric survey at Mananga River using Ohmex™ single beam	
	echo sounder	51
Figure 43.	Set-up for the manual bathymetric survey.	.51
Figure 44.	The extent of the Mananga River Bathymetry Survey.	.52
Figure 45.	The Mananga Riverbed Profile from first Cabcaborao upstream.	.53
Figure 46.	Location Map of the Mananga HEC-HMS model used for calibration.	.54
Figure 47.	Cross-section plot of Mananga Bridge	. 55
Figure 48.	The rating curve at Camp 4 Bridge. Talisav City.	. 55
Figure 49.	Rainfall and outflow data at Camp 4 Bridge, which was used for modeling	.56
Figure 50.	Location of Mactan RIDF Station relative to Mananga River Basin	.57
Figure 51.	Synthetic storm generated for a 24-hr period rainfall for various return periods.	.57
Figure 52.	Soil Map of Mananga River Basin	.58
Figure 53	Land Cover Man of Mananga River Basin	59
Figure 54	Slope Man of Mananga River Basin	59
Figure 55	Stream Delineation Man of Mananga River Basin	60
Figure 56	Mananga river basin model generated in HEC-HMS	61
Figure 57	River cross-section of the Mananga River through the ArcMan HEC GeoRas tool	62
Figure 58	FIO-2D Manner Pro General Procedure	63
Figure 50	Outflow Hydrograph of Mananga produced by the HEC-HMS model compared	.05
inguic 55.	with observed outflow	64
Figure 60	The Outflow hydrograph at the Mananga Station, generated using the Mactan RIDE	. 04
inguic oo.	cimulated in HEC-HMS	66
Figure 61	Mananga river (1) generated discharge using 5-25- and 100-year Mactan	. 00
i igule or.	rainfall intensity duration-frequency (PIDE) in HEC-HMS	67
Eiguro 62	Mananga river (2) generated discharge using E 2E and 100 year Mastan	.07
rigule 02.	rainfall intensity duration fraguency (RIDE) in HEC HMS	67
Figuro 62	Sample output man of Mananga RAS Model	.07
Figure 64	A 100 year Flood Hazard Man for Mananga Floodplain overlaid on Coogle Farth imageny	.09
Figure 64.	A 100-year Flow Depth Map for Mananga Floodplain overlaid on Google Earth imagery.	. / 1
Figure 65.	A 100-year Flood Hazard Map for Mananga Floodplain overlaid on Google Earth imagery.	./Z
Figure 67	A 25-year Flow Death Map for Mananga Floodplain overlaid on Google Earth imagery.	.75
Figure 67.	A 25-year Flow Depth Map for Mananga Floodplain overlaid on Google Earth imagery.	.74 75
Figure 68.	A 5-year Flood Hazard Map for Mananga Floodplain overlaid on Google Earth Imagery	.75
Figure 69.	A 5-year Flood Depth Map for Mananga Floodplain overlaid on Google Earth Imagery	.70
Figure 70.	Affected Areas in Minglanilla, Cebu during 5-Year Rainfall Return Period	. / /
Figure 71.	Affected Areas in Tallsay City, Cebu during 5-Year Rainfall Return Period	. 79
Figure 72.	Affected Areas in Minglanilla, Cebu during 25-Year Rainfall Return Period	.80
Figure 73.	Aπected Areas in Talisay City, Cebu during 25-Year Rainfall Return Period	.82
Figure 74.	Aπected Areas in Minglanilla, Cebu during -Year Rainfall Return Period	.83
Figure 75.	Affected Areas in Talisay City, Cebu during 100-Year Rainfall Return Period	.85
Figure 76.	Validation Points for a 5-year Flood Depth Map of the Mananga Floodplain.	.87
Figure 77.	Flood depth map vs actual flood depth	. 88

LiDAR Surveys and Flood Mapping of Mananga River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment fo Mitigation [Program]		
DRRM	Disaster Risk Reduction and Managemen		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
USC	University of San Carlos			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND MANANGA RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland Emerito S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Mananga River Basin

Mananga River has its head waters in Cebu City and drains to Talisay City. It is one of the three protected watersheds of Cebu. The catchment is located in the central part of the Province of Cebu and is classified under Type III weather in the Corona climate classification. It experiences dry season from November to April and wet season for the other months of the year.

Mananga River Basin covers the Cities of Cebu and Talisay, Province of Cebu. The DENR River Basin Control Office identified the basin to have a drainage area of 102 km2 and an estimated annual runoff of 61 million cubic meter (MCM) (RBCO, 2015).

Cebu City is the oldest city in the country. It is a 1st income class highly urbanized city and is a chartered city, independent of Cebu Province. It is where the oldest street – Colon Street and the oldest school – University of San Carlos is located. It has a population of 922,611. Industries in the city are widely varied and include shipbuilding, business processing outsourcing and real estate developments. Talisay City is located south of Cebu City. It is a 3rd income class component city with a population of 227,645. Fishing industry in the city is prominent as it is located near the coast.

123°40'0"E

123°50'0"E Figure 1. Map of the Mananga River Basin (in brown)

Its main stem, Mananga River, is part of the seventeen (17) river systems in Central Visayas Region. According to the 2015 national census of NSO, a total of 79,281 persons are residing within the immediate vicinity of the river which is distributed among eight barangays in Talisay City namely: Camp IV, Jaclupan, Maghaway, Lawaan III, Lawaan I, Lawaan II, Pooc, Dumlog, and Biasong. Talisay City is mostly commercialized, since it's part of Metro Cebu.

The busiest place of commerce is in Tabunok area where public markets and commercial establishments are found. Fishing is also a major source of economy in Talisay City since it has its own fish port. Aside from the previous economic activities, farming is another common livelihood for citizens who have land. Coconuts, Bananas, other crops, and livestock are usually the produce of local farmers (Source: http://www.cebubluewaters.com/talisay-city.html). In the upstream areas of Mananga River, quarrying activities are being implemented (Source: University of San Carlos, 2015). Last December 2014, Typhoon Ruby, internationally known as Hagupit, devastated Southern Luzon and Visayas region. In Talisay City, six (6) coastal barangays were evacuated; however, affected residents had a difficult time in finding shelter as most evacuation centers were full. Furthermore, all classes in Talisay City during the typhoon were suspended (Sources: http://www.gmanetwork.com/news/story/391307/news/regions/509-000-preemptively-evacuate-due-to-typhoon-ruby-ndrrmc; http://8list.ph/typhoon-ruby-ph-updates/).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE MANANGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, Jeriel Paul A. Alamban, Geol.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Mananga floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Mananga Floodplain in Cebu. These flight missions were planned for 16 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time using one sensor – the Pegasus (see Annex 1 for sensor specifications). The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2, on the other hand, shows the flight plan for Mananga floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK47A	1200, 1000	30	50	200	30	130	5
Mactan Island	1200, 1000	30	50	200	30	130	5
Olango Island	1200	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2. Flight plans and base stations used for Mananga Floodplain using the Pegasus sensor.

2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA ground control point: CBU-11 which is of second (2nd) order accuracy. One (1) NAMRIA benchmark was also recovered: CU-1007 which is of second (2nd) order accuracy.

The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey from July 29-30, August 3, 9, and 12, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, and TRIMBLE SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Mananga floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Mananga Floodplain LiDAR Survey. Figure 3

Figure 3. GPS set-up over CBU-11 on the roof top of the 75 feet concrete tower of Metro Cebu Fire Station, Cebu City Proper (a) and NAMRIA reference point CBU-11 (b) as recovered by the field team.

Table 2. Details of the reprocessed NAMRIA horizontal control point CBU-11 used as base station for the LiDAR acquisition.

Station Name	CBU-11		
Order of Accuracy	2nd order		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 17' 56.00367" 123° 53' 26.63633" 44.27700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	597,568.76 meters 1,138,921.917 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 17' 51.88109" North 125° 53' 31.88503" East 106.03300 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	597,534.61 meters 1,138,523.27 meters	

(b)

Figure 4. GPS set-up over CU-1007 along F. Cabang National Road and Juan Luna Avenue, in the base of the stop light NW of PLDT panel, Barangay Mabolo, Cebu City (a) and NAMRIA reference point CU-1007 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point CU-1007 used as base station for the LiDAR acquisition.

Station Name	CU-1007		
Order of Accuracy	2nd order		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 19' 18.03224" 123° 54' 34.11152" 23.4975 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	599,647.206 meters 1,141,459.818 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 19' 13.90544" North 123° 54' 39.35806" East 85.2465 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	599,579.97 meters 1,141,048.504 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 29, 2014	1769P	1BLK47A210A	CBU-11 and CU-1007
July 30, 2014	1773P	1BLK47A211A	CBU-11 and CU-1007
July 30, 2014	1775P	1BLK47A211B	CBU-11 and CU-1007
August 3, 2014	1789P	1MCTN215A	CBU-11 and CU-1007
August 3, 2014	1791P	1MCTN215B	CBU-11 and CU-1007
August 9, 2014	1813P	1MCTN221A	CBU-11 and CU-1007
August 12, 2014	1829P	1BLK36H47A225A	CBU-11
August 12, 2014	1831P	10LNG225B	CBU-11

Table 4. Ground control points that were used during the LiDAR data acquisition.

2.3 Flight Missions

A total of eight (8) missions were conducted to complete the LiDAR data acquisition in Mananga floodplain, for a total of twenty-four hours and thirty nine minutes (24+39) minutes of flying time for RP-C9022 (See Annex 6). All missions were acquired using the Pegasus LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 5, while the actual parameters used during the LiDAR data acquisition are presented in Table 6.

Table 5 Flight missions for	r LiDAR data acquisition i	n Mananga floodplain
Table 9. I fight fillostofio f	1 LIDIN Gata acquisition	n Mananga nooupiani.

Date Elight		Flight Plan	Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Surveyed	Number	Area (km2)	Area (km2)	within the Floodplain (km2)	Floodplain (km2)	Images (Frames)	Hr	Min
July 29, 2014	1769P	267.94	88.00	6.38	81.62	NA	2	18
July 30, 2014	1773P	267.94	261.63	12.81	248.82	NA	4	0
July 30, 2014	1775P	267.94	124.58	10.90	113.68	NA	1	54
August 3, 2014	1789P	105.49	84.53	NA	84.53	NA	4	5
August 3, 2014	1791P	373.43	79.89	NA	79.89	NA	2	42
August 9, 2014	1813P	373.43	129.04	10.09	118.95	NA	3	20
August 12, 2014	1829P	267.94	59.79	0.03	59.76	NA	2	57
August 12, 2014	1831P	373.43	93.13	NA	93.13	NA	3	23
тотя	AL .	2297.54	920.59	40.21	880.38	NA	24	39

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1769P	1200	30	50	200	30	130	5
1773P	1000	30	50	200	30	130	5
1775P	1000	30	50	200	30	130	5
1789P	1200	30	50	200	30	130	5
1791P	1200	30	50	200	30	130	5
1813P	1000	30	50	200	30	130	5
1829P	1200	30	50	200	30	130	5
1831P	1200	30	50	200	30	130	5

Table 6. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Mananga floodplain (See Annex 7). It is situated within the city of Talisay and municipality of Minglanilla. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage is shown in Table 7. Figure 5, on the other hand, shows the actual coverage of the LiDAR acquisition for the Mananga floodplain.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Alegria	100.37	9.02	8.99%
	Badian	105.71	25.01	23.66%
	Cebu City	290.59	162.78	56.02%
	Compostela	51.55	18.72	36.31%
	Consolacion	32.98	15.2	46.09%
Cebu	Cordoba	9.83	9.72	98.88%
	Danao City	137.12	21.6	15.75%
	Lapu-Lapu City	63.42	63.15	99.57%
	Liloan	54.98	16.43	29.88%
	Mandaue City	31	8.53	27.52%
	Minglanilla	51.76	15.36	29.68%
	Naga City	98.77	28.64	29.00%
	San Fernando	76.46	2.31	3.02%
	Talisay City	48.61	30.54	62.83%
Tota	I	3,557.40	1,687.19	47.43%

Table 7. List of municipalities and cities surveyed during Mananga floodplain LiDAR survey.

Figure 5. Actual LiDAR survey coverage for Mananga floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE MANANGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Melanie C. Hingpit , Engr. Ma. Joanne I. Balaga, Engr. Erica Erin E. Elazegu

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 6.

Figure 6. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Mananga floodplain can be found in Annex 5. Missions flown during the first survey conducted on August 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Talisay, Cebu.

The Data Acquisition Component (DAC) transferred a total of 91.62 Gigabytes of Range data, 1.37 Gigabytes of POS data, 63.26 Megabytes of GPS base station data, and 128.87 Gigabytes of raw image data to the data server on August 20, 2014 for the first survey and September 16, 2014 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Mananga was fully transferred on September 16, 2014, as indicated on the Data Transfer Sheets for Mananga floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1831P, one of the Mananga flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on August 13, 2014 00:00 AM. The y-axis is the RMSE value for that particular position.

Figure 7. Smoothed Performance Metrics of Mananga Flight 1831P.

The time of flight was from 281400 seconds to 288600 seconds, which corresponds to afternoon of August 13, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 7 shows that the North position RMSE peaks at 1.60 centimeters, the East position RMSE peaks at 1.40 centimeters, and the Down position RMSE peaks at 5.00 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 8. Solution Status Parameters of Mananga Flight 1831P.

The Solution Status parameters of flight 1831P one of the Mananga flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 8. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 10 and 12. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Mananga flights is shown in Figure 9.

Figure 9. Best Estimated Trajectory of the LiDAR missions conducted over the Mananga Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 73 flight lines, with each flight line containing two channels, since the Pegasus system contain two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over the Mananga floodplain are given in Table 8.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000153
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000411
GPS Position Z-correction stdev	<0.01meters	0.0068

|--|

The optimum accuracy were obtained for all Mananga flights based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are available in the Mission Summary Reports in Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Mananga Floodplain is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 10. Boundary of the processed LiDAR data over Mananga Floodplain

The total area covered by the Mananga missions is 657.20 square kilometers (sq. kms.) that is comprised of eight (8) flight acquisitions grouped and merged into four (4) blocks as shown in Table 9.

LiDAR Blocks	Flight Numbers	Area (sq. km)
	1769P	278.66
	1773P	169.74
Сери_вк47А	1775P	143.44
	1791P	202.76
Cebu_Blk47A_additional	1831P	16.57
	1789P	281.79
Mastanland	1791P	169.39
Mactanisiand	1813P	84.74
	1829P	
Olango_Island	1831P	80.18
TOTAL	657.20 sq.km	

Table 9. List of LiDAR blocks for Mananga Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 11. Since the Pegasus system employs one channel, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 11. Image of data overlap for Mananga Floodplain.

The overlap statistics per block for the Mananga floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 30.90% and 57.03% which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 12. It was determined that all LiDAR data for the Mananga floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.94 points per square meter.

Figure 12. Pulse density map of merged LiDAR data for Mananga Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 13. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 13. Elevation Difference Map between flight lines for Mananga Floodplain Survey.

A screen capture of the processed LAS data from a Mananga flight 1831P loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 14. Quality checking for a Mananga flight 2842P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	231,645,241
Low Vegetation	197,658,802
Medium Vegetation	542,123,812
High Vegetation	610,620,811
Building	48,798,021

Table 10.	Mananga	classification	results in	TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Mananga floodplain is shown in Figure 15. A total of 943 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 906.41 meters and 67.02 meters, respectively.

Figure 15. Tiles for Mananga Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 16. Point cloud before (a) and after (b) classification

The production of the last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show in Figure 17

Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Mananga Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 834 1km by 1km tiles area covered by Mananga floodplain is shown in Figure 18. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Mananga floodplain has a total of 629.41 sq.km orthophotogaph coverage comprised of 1,959 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 19.

Figure 18. Mananga Floodplain with available orthophotographs.

Figure 19. Sample orthophotograph tiles for Mananga Floodplain.
3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Mananga flood plain. These blocks are composed of Cebu, Mactan, and Olango blocks with a total area of 657.20 square kilometers. Table 11 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Cebu_Blk47A	278.66
Cebu_Blk47A_additional	16.57
MactanIsland	281.79
Olango_Island	80.18
TOTAL	657.20 sq.km

Table 11. LiDAR blocks with its corresponding areas.

Figure 20 shows portions of a DTM before and after manual editing. As evident in the figure, the interpolated area (Figure 20a) has been misclassified during classification process and has to be retrieved to complete the surface (Figure 20b). Another is the bridge (Figure 20c) is also considered to be an impedance to the flow of water and has to be removed (Figure 20d) in order to hydrologically correct the river.

Figure 20. Portions in the DTM of the Mananga Floodplain – (a) before and (b) after filling data gaps; a bridge before (c) and after (d) manual editing.

3.9 Mosaicking of Blocks

Cebu_Blk47A was used as the reference block at the start of mosaicking because this block was referred to a base with an acceptable order of accuracy. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Mananga floodplain is shown in Figure 21. It can be seen that the entire Mananga floodplain is 100% covered by LiDAR data.

Table 12. Shift values of each Elb/Act block of Mahanga Floodplain.					
Mission Blocks	Shift Values (meters)				
	х	У	z		
Cebu_Blk47A	0.00	0.00	-3.22		
Cebu_Blk47A_additional	0.00	0.00	-3.65		
MactanIsland	0.00	0.00	-3.18		
Olango_Island	0.00	0.00	-3.22		

Table 12. Shift values of each LiDAR block of Mananga Floodplain.

Figure 21 . Map of Processed LiDAR Data for Mananga Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Mananga to collect points with which the LiDAR dataset is validated is shown in Figure 22. A total of 22,471 survey points were gathered for all the flood plains within the province of Cebu wherein the Mananga floodplain is located. Random selection of 80% of the survey points, resulting to 17,977 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 0.55 meters with a standard deviation of 0.20 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 0.55 meters, to the mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

Figure 22. Map of Mananga Floodplain with validation survey points in green.

Figure 23. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)	
Height Difference	0.55	
Standard Deviation	0.20	
Average	-0.51	
Minimum	-1.01	
Maximum	-0.00005	

Table 13. Calibration Statistical Measures

The remaining 20% of the total survey points that are near Mananga flood plain, resulting to 681 points, were used for the validation of calibrated Mananga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.18 meters, as shown in Table 14.

Validation Statistical Measures	Value (meters)		
RMSE	0.20		
Standard Deviation	0.18		
Average	0.08		
Minimum	-0.46		
Maximum	0.52		

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Mananga with 1,570 bathymetric survey points. The resulting raster surface produced was done by Local Polynomial interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.09 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Mananga integrated with the processed LiDAR DEM is shown in Figure 25.

Figure 25. Map of Mananga Floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Mananga floodplain, including its 200 m buffer, has a total area of 22.55 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4,863 building features, are considered for QC. Figure 26 shows the QC blocks for Mananga floodplain.

Figure 26. Blocks (in blue) of Mananga building features that was subjected to QC.

Quality checking of Mananga building features resulted in the ratings shown in Table 15.

Table 15. Details of the quality	v checking ratings fo	or the building features	extracted for the Mananga River Basin
			0

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Mananga	99.79	100.00	97.99	PASSED

3.12.2 Height Extraction

Height extraction was done for 32,691 building features in Mananga floodplain. Of these building features, 2,778 were filtered out after height extraction, resulting to 29,913 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 10.88 meters.

3.12.3 Feature Attribution

In attribution, combination of participatory mapping and actual field validation was done. Representatives from LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 16 summarizes the number of building features per type. On the other hand, Table 17 shows the total length of each road type, while Table 18 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	28,860
School	176
Market	29
Agricultural/Agro-Industrial Facilities	46
Medical Institutions	6
Barangay Hall	12
Military Institution	0
Sports Center/Gymnasium/Covered Court	4
Telecommunication Facilities	
Transport Terminal	21
Warehouse	288
Power Plant/Substation	0
NGO/CSO Offices	2
Police Station	1
Water Supply/Sewerage	0
Religious Institutions	47
Bank	3
Factory	15
Gas Station	8
Fire Station	0
Other Government Offices	3
Other Commercial Establishments	392
Total	29,913

Table 16. Building Features Extracted for Mananga Floodplain.

	Road Network Length (km)					
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Mananga	117	24	7.9	5.3	0	154.18

Table 17. Total Length of Extracted Roads for Mananga Floodplain.

Table 18. Number of Extracted Water Bodies for Mananga Floodplain.

Floodplain	Water Body Type					Total	
	Rivers/Streams	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen					
Mananga	32	2	0	0	20	2	

A total of 8 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 27 shows the completed Digital Surface Model (DSM) of the Mananga floodplain overlaid with its ground features.

Figure 27. Extracted features for Mananga Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MANANGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Mananga River on January 29 to February 7, 2015. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point; (iii) ground validation data acquisition of about 48.46 km covering the national highway from Municipality of Compostela up to the City of Talisay; and (iv) bathymetric survey from its upstream in Brgy. Camp IV, Talisay City, Cebu down to the mouth of the river in Brgy. Biasong, Talisay City, Cebu with an approximate length of 11.026 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique. Figure 28 illustrates the extent of the entire survey in Mananga River.

Figure 28 . Extent of the bathymetric survey (in blue line) in Mananga River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network utilized for the Mananga River Basin is composed of one (1) loop and a baseline that was established on February 3, 2016, which occupied the following reference points: CBU-11, a second-order GCP in Town Proper, Cebu City; CU-714A, a first order BM in Brgy. Cotcot, Municipality of Liloan, Cebu.

UP Established control points were established along the approach of bridges, namely: UP-COT, located at Cotcot Bridge, Brgy. Cotcot, Municipality of Liloan.; and, UP-MAN, located at Mananga Bridge, Brgy. Lawaan II, Talisay City, all in Cebu.

Table 19 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 29 shows the GNSS network established in the Mananga River Survey.

Figure 29. Mananga River Basin Control Survey Extent.

Table 19. List of Reference and Control Points occupied for Mananga River Survey

(Source: NAMRIA; UP-TCAGP)

Control	Order of	Geographic Coordinates (WGS 84)					
Point	Point Accuracy Latitude		Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established	
CU- 714A	1st order, BM	-	-	69.2	39.851	2014	
CBU-11	2nd order, GCP	10°17'51.88109"	123°53'31.88503"	102.916	-	1989	
UP-COT	UP Established	-	-	69.232	-	2015	
UP- MAN	UP Established	-	-	77.561	-	2015	

Figure 30 to Figure 35 depict the setup of the GNSS on recovered reference points and established control points in the Mananga River.

Figure 30. GNSS base receiver, Trimble® SPS 852, at CBU-11, located in Brgy. Sambag II, Cebu City

Figure 31. GNSS receiver setup, Trimble® SPS 882, at CU-714A, at the approach of Cotcot Bridge in Brgy. Cotcot, Municpality of Liloan, Cebu

Figure 32. GNSS receiver setup, Trimble® SPS 882, at CG-373, located at the approach of Bangan Bridge in Brgy. Bangan, Municipality of Sanchez Mira, Cagayan

Figure 33. GNSS receiver setup, Trimble® SPS 852, at UP-CLA, located at the approach of Cabicungan Bridge in Brgy. Dibalio, Municipality of Claveria, Cagayan

Figure 34. GNSS base receiver, Trimble® SPS 852, at UP-COT, at the approach of Cotcot Bridge in Brgy. Cotcot, Municipality of Liloan, Cebu

Figure 35. GNSS base receiver, Trimble® SPS 852, at UP-MAN, at the approach of Mananga Bridge in Brgy. Lawaan II, Talisay City, Cebu

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 20 presents the baseline processing results of control points in the Mananga River Basin, as generated by the TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CBU-11 CU-714A	02-10-15	Fixed	0.004	0.024	39°41'13"	19038.24	-33.728
CBU-11 UP-COT	02-10-15	Fixed	0.004	0.02	39°41'14"	19036.53	-33.675
UP-COT CU-714A	02-10-15	Fixed	0.002	0.003	38°47'52"	1.709	-0.032
CBU-11 UP-MAN	02-10-15	Fixed	0.005	0.031	232°59'22"	8091.038	-25.356

Table 20. The Baseline processing report for the Pambujan River GNSS static observation survey.

As shown in Table 20, a total of four (4) baselines were processed with the coordinates of CBU-11 held fixed for coordinate value; and CU-714A fixed for elevation values; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}\sqrt{((x_e)^2 + (y_e)^2)} < 20 cm \text{ and } z_e < 10 cm z_e < 10 cm$$

Where:

x_e is the Easting Error,

 y_{e} is the Northing Error, and

z, is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 21 to Table 24

The three (3) control points, CBU-11, CU-714A and UP-COT were occupied and observed simultaneously to form a GNSS loop. Coordinates of CBU-11 and elevation values of CU-714A held fixed during the processing of the control points as presented in Table 21. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
CBU-11	Local	Fixed	Fixed				
CU-714A	Grid				Fixed		
Fixed = 0.000001(Meter)							

Table 21. Constraints applied to the adjustment of the control points.

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 22

Table 22. Adjusted grid	l coordinates for the c	control points used in	n the Mananga River l	Floodplain survey.
		1	0	1 /

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
CBU-11	597693.442	?	1138468.476	?	39.851	0.018	LL
CU-714A	609806.801	0.003	1153149.343	0.002	6.284	?	е
UP-COT	609805.735	0.003	1153148.008	0.002	6.316	0.003	

The results of the computation for accuracy are as follows:

a.CBU-11		
Horizontal accuracy	=	Fixed
Vertical accuracy	=	1.8 cm < 10 cm
b.CU-714A		
Horizontal accuracy	=	√ ((0.3) ² + (0.2) ²
	=	√(0.90 + 0.40)
	=	1.1 cm < 20 cm
Vertical accuracy	=	Fixed
c.UP-COT		
Horizontal accuracy	=	√ ((0.3) ² + (0.2) ²
	=	√(0.90 + 0.40)
	=	1.1 cm < 20 cm
Vertical accuracy	=	0.3 cm < 10 cm
d.UP-COT		
Horizontal accuracy	=	√ ((0.3) ² + (0.2) ²
	=	√(0.90 + 0.40)
	=	1.1 cm < 20 cm
Vertical accuracy	=	0.3 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three (3) occupied control points are within the required precision.

Table 23. Adjusted	geodetic coordinates	for control points	used in the Mananga	River Flood Plain validation.
5	0	1	0	

Point ID	Latitude Longitude Ellipsoid		Ellipsoid	Height	Constraint
CBU-11	N10°17'51.88109"	E123°53'31.88503"	102.916	0.018	LL
CU-714A	N10°25'48.64678"	E124°00'11.61859"	69.200	?	е
UP-COT	N10°25'48.60343"	E124°00'11.58340"	69.232	0.003	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Mananga River GNSS Static Survey are seen in Table 24.

Table 24. The reference and control points utilized in the Silaga River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point		Geographi	ic Coordinates (WGS	UTM ZONE 51 N			
	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
CU-714A	1st order, BM	10°17'51.88109"	123°53'31.88503"	102.916	1138468.476	597693.442	39.851
CBU-11	2nd order, GCP	10°25'48.64678"	124°00'11.61859"	69.2	1153149.343	609806.801	6.284
UP-COT	UP Established	10°25'48.60343"	124°00'11.58340"	69.232	1153148.008	609805.735	6.316
UP-MAN	UP Established	10°15'13.34202"	123°49'59.57490"	77.561	1133581.459	591247.957	14.47

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built survey were conducted on December 16, 2015 at the upstream side Mananga bridge (Figure 36) in Brgy. Camp IV, Talisay City, Province of Cebu using GNSS receiver Trimble[®] SPS 882 in PPK survey technique.

Figure 36. Mananga Bridge facing upstream.

The length of the cross-sectional line surveyed at Mananga Bridge is about 73.89 m with sixty-nine (69) cross-sectional points using the control point. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 37 and Figure 39.

Figure 37. Location map of the San Juan Bridge Cross Section.

Mananga Bridge

Latitude: 10°19'09.49236" N Longitude: 123°49'14.92600" E

Figure 38. The Mananga Bridge cross-section survey drawn to scale.

Figure 39. The Mananga Bridge as-built survey data.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on February 1, 2015 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted at the side of a vehicle as shown in Figure 40. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-MAN and UP-COT occupied as the GNSS base stations in the conduct of the survey.

Figure 40. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The survey started from Brgy. Estaca, Municipality of Compostela, going west traversing the Municipalities Liloan, Consolacion, Manadue City, Talisay City, and Minglanilla; and ended in Brgy. Hippodromo, Cebu City. The survey gathered a total of 6,730 points with approximate length of 48.46 km using UP-MAN and UP-COT as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 41.

Figure 41. The extent of the LiDAR ground validation survey (in red) for Mananga River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on February 4, 2015 using a Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode and Ohmex[™] single beam echo sounder, as illustrated in Figure 42. The extent of the survey started in Brgy. Dumlog, Talisay City, Cebu with coordinates 10°14′35.41063″N, 123°50′13.03585″E, and ended at the mouth of the river in Brgy. Biasong, also in Talisay City, with coordinates 10°14′05.67101″N, 123°50′05.77997″E, as shown in the map in Figure 44.

Figure 42. Set up of the bathymetric survey at Mananga River using Ohmex[™] single beam echo sounder.

Manual bathymetric survey was done in two tributaries on February 2, 2015 using a Trimble[®] SPS 882 GNSS PPK survey technique in continuous topo mode as shown in Figure 43. The survey started in Brgy. Camp IV, Talisay City with coordinates 10°19′07.63097″N, 123°49′08.14545″E, traversing down the river and ended at the starting point of bathymetric survey using boat in Brgy. Dumlog, Talisay City. The control point UP-MAN was occupied as the GNSS base station all throughout the surveys.

Figure 43. Set-up for the manual bathymetric survey.

Overall, the bathymetric survey for Mananga River gathered a total of 1,519 points covering 11.026 km of the river traversing Barangays Camp IV, Jaclupan, Maghaway, Lawaan III, Lawaan II, Lawaan I, Pooc, Dumlog, and Biasong, in Talisay City. A CAD drawing was also produced to illustrate the riverbed profile of Mananga River. As shown in Figure 45 and, the highest and lowest elevation has a 50.674-m difference. The highest elevation observed was 53.378 m above MSL located in Brgy. Camp IV, Talisay City; while the lowest was -2.704 m below MSL located in Brgy. Biasong, also in Talisay City

Figure 44. The extent of the Mananga River Bathymetry Survey.

Figure 45. The Mananga Riverbed Profile from first Cabcaborao upstream.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Ibod River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Ibod River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an installed rain gauge by the University of San Carlos Phil LiDAR 1 team. The station was installed in Brgy. Manipis. The location of this station in the watershed is presented in Figure 46.

The total precipitation for this event in San Juan ARG was 16.5 mm. It has a peak rainfall of 5.5 mm. on March 15, 2017 at 07:15 PM.

Figure 46. Location Map of the Mananga HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Camp 4 Bridge (123°49'15.6"N and 10°19'9.48"E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

Figure 47. Cross-section plot of Mananga Bridge

For Mananga Bridge, the rating curve is expressed as Q = 4E-23e4.4666h as shown in Figure 48.

Figure 48. The rating curve at Camp 4 Bridge, Talisay City.

This rating curve equation was used to compute the river outflow at Mananga Bridge for the calibration of the HEC-HMS model shown in Figure 49. The total rainfall for this event is 34.29 mm and the peak discharge is 17.71 m3/s at 7:415 PM of March 15, 2017.

Figure 49. Rainfall and outflow data at Camp 4 Bridge, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Mactan Rain Gauge (Table 25). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 48). This station was selected based on its proximity to the Mananga watershed. The extreme values for this watershed were computed based on a 37-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	15.9	24.7	31.4	41.4	53.7	60.5	73.1	83.4	92.8
5	21.9	34	43.2	58.4	74.9	84	105.2	122.6	139.1
10	25.8	40.2	51.1	69.7	88.9	99.6	126.3	148.6	169.7
15	28.1	43.6	55.5	76	96.8	108.4	138.3	163.3	187
20	29.6	46.1	58.6	80.5	102.3	114.5	146.7	173.5	199.1
25	30.9	48	61	83.9	106.6	119.3	153.1	181.4	208.5
50	34.6	53.8	68.3	94.4	119.7	133.9	173	205.8	237.2
100	38.3	59.5	75.6	104.9	132.7	148.4	192.7	230	265.7

Table 25. RIDF values for the Laoag Rain Gauge, as computed by PAGASA.

Figure 50. Location of Mactan RIDF Station relative to Mananga River Basin.

Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soils under the Department of Environment and Natural Resources Management. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Mananga River Basin are shown in Figure 52 and Figure 53, respectively.

Figure 52. Soil Map of Mananga River Basin

Figure 53. Land Cover Map of Mananga River Basin

Figure 54. Slope Map of Mananga River Basin

Figure 55. Stream Delineation Map of Mananga River Basin

Using the SAR-based DEM, the Mananga basin was delineated and further subdivided into subbasins. The model consists of 39 sub basins, 19 reaches, and 19 junctions as shown in Figure 56 (See Annex 10).

Figure 56. Mananga river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 57).

Figure 57. River cross-section of the Mananga River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

After running the flood map simulation in FLO-2D GDS Pro, FLO-2D Mapper Pro was used to read the resulting hazard and flow depth maps. The standard input values for reading the simulation results are shown on Figure 58.

Re Vee Turk Help	RiO-2D Mapper Pro - CI,Denise/Report/Mananga/JP7,180yr	
	Grid Element Ground Surface Elevation	
	Staat Cela P De carer des	
	Partie Practice from the above Image: State of the	266.2 266.5 267.6 269.5 299.6 718.7 130.6 86.8 41.8 41.8 44.8
	Un po de de la participante	3,700

Figure 58. FLO-2D Mapper Pro General Procedure

In order to produce the hazard maps, set input for low maximum depth as 0.2 m, and vh, product of maximum velocity and maximum depth (m^2/s), as greater than or equal to zero. The program will then compute for the flood inundation and will generate shapefiles for the hazard and flow depth scenario.

The final procedure in creating the maps is to prepare them with the aid of ArcMap. The generated shapefiles from FLO-2D Mapper Pro were processed and in ArcMap.

5.6 Results of HMS Calibration

After calibrating the Mananga HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values.

Figure 59. Outflow Hydrograph of Mananga produced by the HEC-HMS model compared with observed outflow.

Table 26 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve	Initial Abstraction (mm)	0.3 - 7
	LOSS	number	Curve Number	35 - 99
Basin	Transform	Clark Unit	Time of Concentration (hr)	0.03 - 1
		Hydrograph	Storage Coefficient (hr)	0.4 - 19
	Deceflow	Decession	Recession Constant	0.7 - 1
	Basenow	Recession	Ratio to Peak	0.1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.0002 - 0.017

Table 26. Range of calibrated values for the Mananga River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.3mm to 7mm means that there is minimal to average amount of infiltration of rainfall intercepted by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Mananga, the basin consists mainly of brushlands and the soil consists of mostly undifferentiated land and clay.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.03 hours to 1 hour determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.7 - 1 indicate that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.1 indicates a much steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Mananga river basin reaches' Manning's coefficients that range from 0.0002 to 0.017 showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy measure	Value
RMSE	1.8083
r2	0.9368
NSE	0.8509
PBIAS	9.8716
RSR	0.3862

Table 27. Summary of the Efficiency Test of the Mananga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 1.8083.

The Pearson correlation coefficient (assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9368.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.8509.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 9.8716.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.3862..

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Mananga outflow using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 60. The Outflow hydrograph at the Mananga Station, generated using the Mactan RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Mananga discharge using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 28.

Table 28. The peak val	ues of the Mananga HEC-HMS Mo	odel outflow using the Maasin RIDF.
· 1	0	0

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	139.1	21.900	528.197	30 minutes
10-Year	169.7	25.800	705.740	30 minutes
25-Year	208.5	30.900	929.521	30 minutes
50-Year	237.2	34.600	1,051.181	30 minutes
100-Year	265.7	38.300	1,227.257	30 minutes

5.7.2. Discharge data using Dr. Horritts's recommended hydrologic method

The river discharges for the three rivers entering the floodplain are shown in Figures 61 to 62, and the peak values are summarized in Tables 32 to 36.

Figure 61. Mananga river (1) generated discharge using 5-, 25-, and 100-year Mactan rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

Figure 62. Mananga river (2) generated discharge using 5-, 25-, and 100-year Mactan rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	541.6	15 hours, 40 minutes
25-Year	380.3	15 hours, 40 minutes
5-Year	195.2	15 hours, 50 minutes

Table 29. Summary of Mananga river (1) discharge generated in HEC-HMS.

Table 30. Summary of Mananga river (2) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	157.7	13 hours, 10 minutes
25-Year	115.6	13 hours, 10 minutes
5-Year	65.1	13 hours, 20 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 31.

Discharge		ODANIKELII		VALIDA	ΓΙΟΝ
Point	cms	Cms	Cms	Bankful Discharge	Specific Discharge
Mananga (1)	171.776	321.240	212.517	Pass	Pass
Mananga (2)	57.288	85.860	48.802	Pass	Pass

Table 31. Validation of river discharge estimates.

The two values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. However, these values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. Figure 63 shows a generated sample map of the Mananga River using the calibrated HMS base flow.

Figure 63. Sample output map of Mananga RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 64 to Figure 69 show the 5-, 25-, and 100-year rain return scenarios of the Mananga floodplain. The floodplain covers two (2) municipalities from one (1) province. Table 32 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area (sq.km.)	Area Flooded (sq. km.)	% Flooded
Cebu	Minglanilla	51.1		
Cebu	Talisay	42.09		

Table 32. Municipalities affected in Mananga Floodplain.

73

75

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Mananga river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 20 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 0.36% of the municipality of Minglanilla with an area of 51.1 sq. km. will experience flood levels of less 0.20 meters. 0.136% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, and 0.022% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 33 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affecte	ed barangays in Min	glanilla (in sq. km.)
depth (in m.)	Linao	Pakigne	Tungkil
0.03-0.20	0.25	0.0094	0.24
0.21-0.50	0.035	0.00058	0.16
0.51-1.00	0.018	0.0001	0.19
1.01-2.00	0.0046	0	0.026
2.01-5.00	0	0	0
> 5.00	0	0	0

Table 33. Affected Areas in Minglanilla, Cebu during 5-Year Rainfall Return Period

Figure 70. Affected Areas in Minglanilla, Cebu during 5-Year Rainfall Return Period

0.50 meters while 1.59%, 0.58%, 0.91%, and 0.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 For the city of Talisay, with an area of 42.09 sq. km., 28.93% will experience flood levels of less 0.20 meters. 3.45% of the area will experience flood levels of 0.21 to meters, respectively. Listed in Table 34 and Table 35 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.)			Area of affec	sted barangays	s in Talisay Ci	ty (in sq. km.)			
by flood depth (in m.)	Biasong	Bulacao	Cadulawan	Cansojong	Dumlog	Jaclupan	Lagtang	Lawaan I	Lawaan II
0.03-0.20	0.59	0.0078	0.079	0.12	0.54	0.052	1.21	66.0	0.35
0.21-0.50	0.12	0.00031	0.00034	0.0086	0.064	0.0013	0.094	0.082	0.035
0.51-1.00	0.041	0	0	0.0005	0.015	0.0001	0.058	0.024	0.008
1.01-2.00	0.036	0	0	0	0.02	0.0001	0.0055	0.019	0.022
2.01-5.00	0.077	0	0	0	0.061	0	0.0028	0.027	0.064
> 5.00	0.0073	0	0	0	0.00014	0	0	0.012	0.015

Table 34. Affected Areas in Talisay City, Cebu during 5-Year Rainfall Return Period

Table 35. Affected Areas in Talisay City, Cebu during 5-Year Rainfall Return Period

Affected area (sq. km.)		Ar	ea of affected barangays	in Talisay C	ity (in sq. kn	(''		
by flood depth (in m.)	Lawaan III	Linao	Maghaway	Mohon	Poblacion	Ροος	San Isidro	Tabunoc
0.03-0.20	0.35	0.69	1.34	2.02	1.57	0.44	1.05	0.9
0.21-0.50	0.035	0.08	0.16	0.049	0.24	0.091	0.23	0.15
0.51-1.00	0.008	0.03	0.085	0.032	0.25	0.024	0.066	0.024
1.01-2.00	0.022	0.026	0.026	0.017	0.035	0.00036	0.038	0.00064
2.01-5.00	0.064	0.061	0.0021	0.041	0.026	0	0.019	0
> 5.00	0.015	0.02	0	0.03	0.006	0	0.0039	0

For the 25-year return period, 0.36% of the municipality of Asturias with an area of 51.1 sq. km. will experience flood levels of less 0.20 meters. 0.136% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, and 0.022% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affecte	ed barangays in Ming	glanilla (in sq. km.)
depth (in m.)	Linao	Pakigne	Tungkil
0.03-0.20	0.21	0.009	0.19
0.21-0.50	0.06	0.00084	0.12
0.51-1.00	0.026	0.0002	0.22
1.01-2.00	0.011	0	0.087
2.01-5.00	0	0	0
> 5.00	0	0	0

Table 36. Affected Areas in Minglanilla, Cebu during 25-Year Rainfall Return Period

Figure 72. Affected Areas in Minglanilla, Cebu during 25-Year Rainfall Return Period

For the city of Talisay, with an area of 42.09 sq. km., 25.81% will experience flood levels of less 0.20 meters. 4.6% of the area will experience flood levels of 0.21 to 0.50 meters while 2.65%, 0.97%, 1.07%, and 0.59% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and Table 38 are the affected areas in square kilometres by flood depth per barangay.

			~)					
Affected area (sq. km.)			Area of affec	ted barangays	in Talisay Ci	ty (in sq. km.)			
by flood depth (in m.)	Biasong	Bulacao	Cadulawan	Cansojong	Dumlog	Jaclupan	Lagtang	Lawaan I	Lawaan II
0.03-0.20	0.35	0.0077	0.079	0.11	0.41	0.052	1.17	6.0	0.31
0.21-0.50	0.19	0.00039	0.00063	0.017	0.13	0.0014	0.098	0.12	0.054
0.51-1.00	0.16	0	0	0.0016	0.068	0.0002	0.09	0.041	0.0098
1.01-2.00	0.065	0	0	0	0.017	0.0002	0.0079	0.022	0.0083
2.01-5.00	0.094	0	0	0	0.057	0	0.0039	0.045	0.073
> 5.00	0.023	0	0	0	0.019	0	0	0.026	0.036

Table 37. Affected Areas in Talisay City, Cebu during 25-Year Rainfall Return Period

Table 38. Affected Areas in Talisay City, Cebu during 25-Year Rainfall Return Period

Affected area (sq. km.)		Are	ea of affected barangay	s in Talisay C	ity (in sq. km	(1		
by flood depth (in m.)	Lawaan III	Linao	Maghaway	Mohon	Poblacion	Pooc	San Isidro	Tabunoc
0.03-0.20	0.31	0.61	1.27	1.98	1.43	0.38	0.79	0.79
0.21-0.50	0.054	0.11	0.17	0.057	0.22	0.13	0.35	0.23
0.51-1.00	0.0098	0.039	0.12	0.034	0.28	0.047	0.16	0.052
1.01-2.00	0.0083	0.02	0.048	0.023	0.13	0.0015	0.062	0.0017
2.01-5.00	0.073	0.068	0.0031	0.025	0.046	0	0.037	0
> 5.00	0.015	0.02	0	0.03	0.006	0	0.0039	0

For the 100-year return period, 0.36% of the municipality of Asturias with an area of 51.1 sq. km. will experience flood levels of less 0.20 meters. 0.136% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, and 0.022% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 39 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affecte	ed barangays in Ming	glanilla (in sq. km.)
depth (in m.)	Linao	Pakigne	Tungkil
0.03-0.20	0.18	0.0089	0.15
0.21-0.50	0.079	0.00098	0.11
0.51-1.00	0.037	0.0002	0.2
1.01-2.00	0.016	0	0.16
2.01-5.00	0.0003	0	0
> 5.00	0	0	0

Table 39. Affected Areas in Minglanilla, Cebu during 100-Year Rainfall Return Period

Figure 74. Affected Areas in Minglanilla, Cebu during -Year Rainfall Return Period

For the city of Talisay, with an area of 42.09 sq. km., 23.64% will experience flood levels of less 0.20 meters. 5.08% of the area will experience flood levels of 0.21 to 0.50 meters while 3.5%, 1.61%, 1.07%, and 0.8% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 and Table 41 are the affected areas in square kilometres by flood depth per barangay.

by flood depth (in m.) Biasong Bulacao Cadulawan Cansojong Dumlog Jaclupan 0.03-0.20 0.21 0.0076 0.079 0.11 0.33 0.051 0.03-0.20 0.16 0.00046 0.00063 0.12 0.15 0.0017 0.21-0.50 0.16 0.00046 0.00063 0.022 0.15 0.0017 0.51-1.00 0.27 0.00047 0 0 0.022 0.12 0.00044 1.01-2.00 0.11 0 0 0 0 0 0 0 0 2.01-5.00 0.1 0 0 0 0 0 0 0 0	Affected area (sq. km.)			Area of affec	ted barangay:	s in Talisay Ci	ty (in sq. km.)			
0.03-0.20 0.21 0.0076 0.079 0.11 0.33 0.051 0.21-0.50 0.16 0.00046 0.00063 0.15 0.0017 0.21-0.50 0.16 0.00046 0.00063 0.022 0.15 0.0017 0.21-1.00 0.27 0.00047 0 0 0.022 0.12 0.0017 1.01-2.00 0.11 0 0 0 0 0 0 0 0 2.01-5.00 0.1 0	by flood depth (in m.)	Biasong	Bulacao	Cadulawan	Cansojong	Dumlog	Jaclupan	Lagtang	Lawaan I	Lawaan II
0.21-0.50 0.16 0.00046 0.00063 0.022 0.15 0.0017 0.51-1.00 0.27 0.00047 0 0 0.0022 0.12 0.00044 1.01-2.00 0.11 0 0 0 0 0.025 0.0002 2.01-5.00 0.1 0 0 0 0 0 0	0.03-0.20	0.21	0.0076	0.079	0.11	0.33	0.051	1.14	0.83	0.29
0.51-1.00 0.27 0.000047 0 0.022 0.12 0.00044 1.01-2.00 0.11 0 0 0 0 0 0 2.01-5.00 0.1 0 0 0 0 0 0	0.21-0.50	0.16	0.00046	0.00063	0.022	0.15	0.0017	0.1	0.14	0.068
1.01-2.00 0.11 0 0 0.025 0.0002 2.01-5.00 0.1 0 0 0 0 0	0.51-1.00	0.27	0.000047	0	0.0022	0.12	0.00044	0.11	0.059	0.014
2.01-5.00 0.1 0 0.059 0	1.01-2.00	0.11	0	0	0	0.025	0.0002	0.013	0.038	0.0094
	2.01-5.00	0.1	0	0	0	0.059	0	0.0047	0.049	0.055
> 5.00 0.026 0 0 0 0 0.021 0 0	> 5.00	0.026	0	0	0	0.021	0	0	0.034	0.06

Table 40. Affected Areas in Talisay City, Cebu during 100-Year Rainfall Return Period

Table 41. Affected Areas in Talisay City, Cebu during 100-Year Rainfall Return Period

Affected area (sq. km.)		Ar	ea of affected barangays	in Talisay C	ity (in sq. kn	(''		
by flood depth (in m.)	Lawaan III	Linao	Maghaway	Mohon	Poblacion	Ροος	San Isidro	Tabunoc
0.03-0.20	0.29	0.55	1.23	1.95	1.34	0.34	0.57	0.72
0.21-0.50	0.068	0.12	0.17	0.061	0.25	0.15	0.39	0.28
0.51-1.00	0.014	0.054	0.13	0.037	0.22	0.068	0.3	0.075
1.01-2.00	0.0094	0.023	0.074	0.029	0.25	0.005	0.1	0.0025
2.01-5.00	0.055	0.065	0.0041	0.023	0.046	0	0.041	0
> 5.00	0.06	0.09	0	0.086	0.012	0	0.0083	0

85

Among the barangays in the municipality of Minglanilla, Tungkil is projected to have the highest percentage of area that will experience flood levels at 1.21%. Meanwhile, Linao posted the second highest percentage of area that may be affected by flood depths at 0.61%.

Among the barangays in the city of Talisay, Maghaway is projected to have the highest percentage of area that will experience flood levels at 5.2%. Meanwhile, Mohon posted the second highest percentage of area that may be affected by flood depths at 5.05%.

Moreover, the generated flood hazard maps for the Mananga Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area	Covered	in sq. km.
Level	5 year	25 year	100 year
Low	1.72	2.21	2.44
Medium	1.09	1.82	2.56
High	0.63	0.86	1.01
TOTAL	3.44	4.89	6.01

Table 42. Areas covered by each warning level with respect to the rainfall scenarios

Of the 23 identified Education Institutions in the Mananga Floodplain, 4 schools were assessed to be exposed to Low level flooding during a 5 year scenario. In the 25 year scenario, 6 schools were assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to medium level flooding in the same scenario. In the 100 year scenario, 8 schools were assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to low level flooding, while 1 school was assessed to be exposed to medium level flooding in the same scenario. See Annex 12 for a detailed enumeration of schools in the Mananga floodplain.

Of the 5 identified Medical Institutions in the Mananga Floodplain, 1 medical institution was assessed to be exposed to Low level flooding during a 5 year scenario, while 1 medical institution was assessed to be exposed to medium level flooding in the same scenario. In the 25 year scenario, 2 medical institutions were assessed to be exposed to low level flooding, while 1 medical institution was assessed to be exposed to medium level flooding in the same scenario. In the 100 year scenario, 2 medical institutions were assessed to be exposed to low level flooding, while 1 medical institution was assessed to be exposed to be exposed to low level flooding, while 1 medical institution was assessed to be exposed to be exposed to low level flooding, while 1 medical institution was assessed to be exposed to medium level flooding in the same scenario. See Annex 13 for a detailed enumeration of hospitals and clinics in the Mananga floodplain.

5.11 Flood Validation

Survey was done along the floodplain of Mananga River to validate the generated flood maps. The team gathered secondary data regarding flood occurrence in the area. Ground validation points were acquired as well as the other necessary details like date of occurrence, name of typhoon and actual flood depth.

The validation points were obtained on January 11-12, 2016. During validation, the team was assisted by the local representative from the City of Talisay. Residents along the floodplain were interviewed of the historical flood events they experiences.

Actual flood depth acquired from the ground validation were then computed and compared to the flood depth simulated by the model. An RMSE value of 1.95 was obtained. The validation points are found in Annex 11.

Figure 76. Validation Points for a 5-year Flood Depth Map of the Mananga Floodplain.

Figure 77. Flood depth map vs actual flood depth.

Actual			Model	ed Flood Dept	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	8	11	6	0	0	0	25
0.21-0.50	15	10	19	2	3	1	50
0.51-1.00	8	5	10	5	9	1	38
1.01-2.00	0	0	13	5	15	12	45
2.01-5.00	0	0	1	0	5	5	11
> 5.00	0	0	0	0	0	0	0
Total	31	26	49	12	32	19	169

Table 43. Actual Flood Depth versus Simulated Flood Depth at different levels in the Mananga River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 22.49% with 38 points correctly matching the actual flood depths. In addition, there were 83 points estimated one level above and below the correct flood depths while there were 38 points and 5 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 42 points were underestimated in the modelled flood depths of Mananga.

Table 44. Summary of the Accuracy Assessment in the Mananga River Basin Survey.

	No. of Points	%
Correct	38	22.49
Overestimated	89	52.66
Underestimated	42	24.85
Total	169	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Mananga Floodplain Survey

1. PEGASUS SENSOR

Figure A-1.1. Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
	POS AV™ AP50 (OEM);
Position and orientation system	220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimonsions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
	Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA certification of reference points used in the LiDAR survey

1. CBU-11

NATIONAL M	nvironment and Natural Resources IAPPING AND RESOURCE INFORMATION /	AUTHORITY	
			July 25, 2014
	CERTIFICATION		
To whom it may concern: This is to certify that according	to the records on file in this office, the requ	lested survey inform	otion is as follows
		iested survey inform	ation is as follows -
	Province: CEBU Station Name: CBU-11		
Island: VISAYAS	Order: 2nd	Barangay: TOW	N PROPER
Municipality: CEBU CITY (CAP	ITAL) PRS92 Coordinates	MSL Elevation:	
Latitude: 10º 17' 56.00367"	Longitude: 123° 53' 26.63633"	Ellipsoidal Hgt:	44.27700 m.
	WGS84 Coordinates		
Latitude: 10º 17' 51.88109"	Longitude: 123° 53' 31.88503"	Ellipsoidal Hgt:	106.03300 m.
Northing: 1138921.917 m.	PTM / PRS92 Coordinates Easting: 597568.76 m	Zone 4	
5	UTM / PRS92 Coordinates	20110. 4	
Northing: 1,138,523.27	Easting: 597,534.61	Zone: 51	
	Location Description		
BU-11 "FIRE LOW/ER"			
CBU-11 , "FIRE TOWER"" From the intersection of Jonas Aver	ue and Cebu South Expressway drive 600) meters going West	to Metro Cebu
CBU-11 , "FIRE TOWER"" From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad.) meters going West ete tower of Metro Co	to Metro Cebu ebu Fire
From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruc	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ding above roof top of the 75 feet concrete	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebo	to Metro Cebu ebu Fire d in 0.25 m c u Fire department
From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruc station. Inacribed with station name	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ling above roof top of the 75 feet concrete	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu	to Metro Cebu ebu Fire d in 0.25 m c u Fire department
From the intersection of Jonas Aver From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruc station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ling above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu	to Metro Cebu ebu Fire d in 0.25 m c u Fire department
From the intersection of Jonas Aver From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruu station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ling above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu	to Metro Cebu ebu Fire d in 0.25 m c u Fire department
From the intersection of Jonas Aver From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruu station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A T.N.: 2014-1728	ue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ling above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu	to Metro Cebu ebu Fire d in 0.25 m c u Fire department
From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruu station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A T.N.: 2014-1728	nue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ling above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu UEL DM. BELEN, M Mapping And Geod	to Metro Cebu ebu Fire d in 0.25 m c u Fire department NSA esy Branch
From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruc station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A T.N.: 2014-1728	nue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ding above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu UEL OM. BELEN, M Mapping And Geod	to Metro Cebu ebu Fire d in 0.25 m c u Fire department NSA esy Branch
From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruc station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A T.N.: 2014-1728	nue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ding above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu UEL OM. BELEN, M Mapping And Geod	to Metro Cebu ebu Fire d in 0.25 m c u Fire department NSA esy Branch
From the intersection of Jonas Aver From the intersection of Jonas Aver Fire Department station. The staion Department at the left side of the ro Staion mark is a cross cut on top of 0.25 m cement patty; 0.03 m protruu station. Inacribed with station name recomputed 3/19/2014 Requesting Party: UP-TCAGP / E Pupose: Reference OR Number: 8799582 A T.N.: 2014-1728	nue and Cebu South Expressway drive 600 is located on the roof top of 75 feet concre ad. 0.15 m x 0.01 min diameter brass rod, set ting above roof top of the 75 feet concrete ngr. Christopher Cruz	D meters going West ete tower of Metro Co t in drill hole; centere tower of Metro Cebu UELOM. BELEN, M Mapping And Geod	to Metro Cebu ebu Fire d in 0.25 m c u Fire department

Figure A-2.1. CBU-11

2. CU-1007

Figure A-2.2. CU-1007

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. CU-1007

Table A-3.1. CU-1007

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
CBU-11 CU-1007 (B1)	CBU-11	CU-1007	Fixed	0.011	0.024	39°09'57"	3250.555	-20.791
CBU-11 CU-1007 (B2)	CBU-11	CU-1007	Fixed	0.007	0.020	39°09'57"	3250.580	-20.768

Processing Summary

Acceptance Summary						
Processed	Passed	Flag	▶	Fail	•	
2	2	0		0		

Vector Components (Mark to Mark)

From:	CBU-11								
Grid		Local			Global				
Easting	597534.610 m	Latitu	ude	N10°17'5	6.00367"	Latitude		N10°17'51.88109"	
Northing	1138523.275 m	Long	gitude	E123°53'20	6.63633"	Longitude		E123°53'31.88503"	
Elevation	42.967 m	Height 44		4.277 m	Height		106.032 m		
To: CU-1007									
Grid		Local			Global				
Easting	599579.964 m	Latitude		N10°19'18.03187"		Latitude		N10°19'13.90507"	
Northing	1141048.492 m	Longitude		E123°54'34.11133"		Longitude		E123°54'39.35787"	
Elevation	22.185 m	Height		23.486 m		Height		85.235 m	
Vector									
∆Easting 2045.35		55 m I	5 m NS Fwd Azimuth			39°09'57"	ΔX	-1440.983 m	
ΔNorthing	2525.21	7 m Ellipsoid Dist.				3250.555 m	ΔY	-1536.406 m	
∆Elevation	-20.78	33 m /	∆Height			-20.791 m	ΔZ	2475.814 m	

Standard Errors

Vector errors:						
σ ΔEasting	0.004 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.008 m	
$\sigma \Delta Northing$	0.002 m	σ Ellipsoid Dist.	0.003 m	σΔΥ	0.010 m	
$\sigma \Delta Elevation$	0.012 m	σ ΔHeight	0.012 m	σΔZ	0.003 m	

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation	
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP	
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP	
	Chief Science Re- search Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP	
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP	
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP	
	FI	ELD TEAM		
	Senior Science Re- search Specialist (SSRS)	ENGR. GEROME HIPOLITO	UP-TCAGP	
LiDAR Operation	Research Associate (RA)	GRACE SINADJAN	UP-TCAGP	
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP	
Ground Survey, Data Download and	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP	
Transfer	RA	KENNETH QUISADO	UP-TCAGP	
LiDAR Operation	Airborne Security	SSG RANDY SISON	PHILIPPINE AIR FORCE (PAF)	
	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION (AAC)	
		CAPT. FERDINAND DE OCAMPO	AAC	

Table A-4.1. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheet for Mananga Floodplain

Figure A-5.1. Transfer Sheet for Mananga Floodplain - A

Figure A-5.2. Transfer Sheet for Mananga Floodplain - B
Annex 6. Flight logs for the flight missions

1. Flight Log for 1769P Mission

Figure A-6.1. Flight Log for Mission 1769P

2. Flight Log for 1773P Mission

Figure A-6.2. Flight Log for Mission 1773P

3. Flight Log for 1775P Mission

Figure A-6.3. Flight Log for Mission 1775P

4. Flight Log for 1789P Mission

Figure A-6.4. Flight Log for Mission 1789P

5. Flight Log for 1791P Mission

Figure A-6.5. Flight Log for Mission 1791P

6. Flight Log for 1813P Mission

Figure A-6.6. Flight Log for Mission 1813P

7. Flight Log for 1829P Mission

Figure A-6.7. Flight Log for Mission 1829P

8. Flight Log for 1831P Mission

Figure A-6.8. Flight Log for Mission 1831P

Annex 7. Flight status reports

Cebu

July 20 & 30, August 3, 9 & 13, 2014

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1769P	BLK47A	1BLK47A210A	G. Sinadjan	July 23	Flight aborted after a few lines due to cloud build up;
1773P	BLK47A	1BLK47A211A	I. Roxas	July 30	Data acquired in BLK 47A at 100m flying height; some lines were cut due to airport restric- tion;
1775P	BLK47A	1BLK47A211B	G. Sinadjan	July 30	Data acquired in BLK 47A; pre- cipitation was experienced;
1789P	MACTAN ISLAND	1MCTN215A	I. Roxas	August 3	Surveyed lines over Mactan Is- land; frequently directed 10-15 miles from area by ATS due to air traffic;
1791P	MACTAN ISLAND; BLK47A	1MCTN215B	G. Sinadjan	August 3	Surveyed lines over Mactan Is- land; frequently directed 10-15 miles from area by ATS due to air traffic;
1813P	MACTAN ISLAND; BLK47A	1MCTN221A	G. Sinadjan	August 9	The flight was conducted to fill- up gaps and voids over Mactan and BLK47A; frequently directed 10-15 miles from area by ATS due to air traffic; Mactan Island area completed;
1829P	BLK47A	1BLK36H47A225A	G. Sinadjan	August 13	Filled in gaps in BLK36H and BLK47A;
1831P	BLK47A; OLANGO ISLAND	10LNG225B	I. Roxas	August 13	Filled in gaps in BLK47A; sur- veyed Olango Island;

SWATH PER FLIGHT MISSION

Flight No. :	1769P				
Area:	BLK47A				
Mission Name:	1BLK47A210A				
Parameters:	Altitude:	1200m;	Scan Frequency	:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.1. Swath for Flight No. 1769P

Flight No. :	1773P				
Area:	BLK47A				
Mission Name:	1BLK47A211A				
Parameters:	Altitude:	1000m;	Scan Frequency	:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.2. Swath for Flight No. 1773P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :	1775P				
Area:	BLK47A				
Mission Name:	1BLK47A211B				
Parameters:	Altitude:	1000m;	Scan Frequency	:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.3. Swath for Flight No. 1775P

Flight No. :	1789P				
Area:	MACTAN ISLAND				
Mission Name:	1MCTN215A				
Parameters:	Altitude:	1200m;	Scan Frequency	:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.4. Swath for Flight No. 1789P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :	1791P				
Area:	MACTAN ISLAN	D, BLK47A			
Mission Name:	1MCTN215B				
Parameters:	Altitude:	1200m;	Scan Frequency	' :	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.5. Swath for Flight No. 1791P

Flight No. :	1813P				
Area:	MACTAN ISLANI	D, BLK47A			
Mission Name:	1MCTN221A				
Parameters:	Altitude:	1000m;	Scan Frequency	:	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.6. Swath for Flight No. 1813P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :	1829P				
Area:	BLK47A				
Mission Name:	1BLK36H47A225A				
Parameters:	Altitude:	1200m;	Scan Frequency	<i>'</i> :	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.7. Swath for Flight No. 1829P

Flight No. :	1831P				
Area:	BLK47A, OLANG	GO ISLAND			
Mission Name:	10LNG225B				
Parameters:	Altitude:	1200m;	Scan Frequency	<i>'</i> :	30Hz;
	Scan Angle:	25deg;	Overlap:	30%	

Figure A-7.8. Swath for Flight No. 1831P

Annex 8. Mission Summary Reports

Flight Area	Cebu
Mission Name	Blk47A
Inclusive Flights	1769P, 1773P, 1775P, 1791P
Mission Name	1BLK47A211A
Range data size	53.7 GB
Base data size	31.63 MB
POS	641.7 MB
Image	79.11 GB
Transfer date	August 20, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
(maathad Darfarmanca Matrice (in am)	
Smoothed Performance Metrics (in cm)	1.0
RIVISE for Fost Desition (<4.0 cm)	1.0
RMSE for East Position (<4.0 cm)	1.4
RIVISE for Down Position (<8.0 cm)	2.5
Boresight correction stdev (<0.001deg)	0.000183
IMU attitude correction stdev (<0.001deg)	0.001034
GPS position stdev (<0.01m)	0.0057
Minimum % overlap (>25)	57.03%
Ave point cloud density per sq.m. (>2.0)	9.90
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	352
Maximum Height	906.41 m
Minimum Height	66.55 m
Classification (# of points)	
Ground	
Low vegetation	132,668,433
Medium vegetation	422,894,636
High vegetation	470,694,437
Building	31,684,469
Orther bet	No.
Urthophoto	Yes
Processed by	Engr. Carlyn Ann Ibañez, Engr. Christy Lubiano, Marie Joyce Ilagan

Table A-8.1. Mission Summary Report for Mission Blk47A

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Cebu
Mission Name	Blk47A_additional
Inclusive Flights	1831P
Mission Name	10LNG225B
Range data size	9.04 GB
Base data size	8.78 MB
POS	143 MB
Image	13.7 GB
Transfer date	September 16, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	2.55
RMSE for Down Position (<8.0 cm)	5.0
Boresight correction stdev (<0.001deg)	0.001177
IMU attitude correction stdev (<0.001deg)	0.001467
GPS position stdev (<0.01m)	0.0248
Minimum % overlap (>25)	4.24%
Ave point cloud density per sq.m. (>2.0)	6.01
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	42
Maximum Height	811.03 m
Minimum Height	125.77 m
Classification (# of points)	
Ground	6.398.994
Low vegetation	3.584.009
Medium vegetation	17.116.374
High vegetation	35.360.993
Building	891.045
Orthophoto	Yes
Drocossed by	Engr. Analyn Naldo, Engr. Christy Lu-
Processed by	biano, Engr. Ma. Ailyn Olanda

Table A-8.2.	Mission Summary	Report for	Mission Blk47A	additiona

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Cebu	
Mission Name	Mactan Island	
Inclusive Flights	1789P, 1791P, 1813P, 1829P	
Mission Name	1MCTN221A	
Range data size	35.4 GB	
Base data size	31.69 MB	
POS	752 MB	
Image	43.67 GB	
Transfer date	September 16, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.8	
RMSE for East Position (<4.0 cm)	2.8	
RMSE for Down Position (<8.0 cm)	4.5	
Boresight correction stdev (<0.001deg)	0.001177	
IMU attitude correction stdev (<0.001deg)	0.001467	
GPS position stdev (<0.01m)	0.0248	
Minimum % overlap (>25)	30.90%	
Ave point cloud density per sq.m. (>2.0)	5.22	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	429	
Maximum Height	810.97 m	
Minimum Height	67.02 m	
Classification (# of points)		
Ground	36870851	
Low vegetation	19024257	
Medium vegetation	72670579	
High vegetation	97693379	
Building	14902433	
Orthophoto	Yes	
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Jovy Narisma	

Table A-8.3. Mission Summary Report for Mission Mactan Island

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metrics Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Cebu	
Mission Name	Olango Island	
Inclusive Flights	1831P	
Mission Name	10LNG225B	
Range data size	9.04 GB	
Base data size	8.78 MB	
POS	143 MB	
Image	13.7 GB	
Transfer date	September 16, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.5	
RMSE for East Position (<4.0 cm)	2.55	
RMSE for Down Position (<8.0 cm)	5.0	
Boresight correction stdev (<0.001deg)	0.001177	
IMU attitude correction stdev (<0.001deg)	0.001467	
GPS position stdev (<0.01m)	0.0248	
Minimum % overlap (>25)	12.45%	
Ave point cloud density per sq.m. (>2.0)	2.38	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	120	
Maximum Height	120.79 m	
Minimum Height	67.31 m	
Classification (# of points)		
Ground	48501321	
Low vegetation	42382103	
Medium vegetation	29442223	
High vegetation	6872002	
Building	1320074	
Orthophoto	Yes	
Processed by	Engr. Analyn Naldo, Engr. Harmond Santos, Engr. Elainne Lopez	

Table A-8.4. Mission Summary Report for Mission Olango Island

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metrics Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Annex 9. Mananga Model Basin Parameters

Ratio to Peak 0.13296 0.13618 0.18016 0.05993 0.09041 0.09004 0.09034 0.09045 0.13457 0.0927 0.09045 0.20675 0.09041 0.1343 0.0908 0.09 0.09 0.09 0.09 0.09 0.09 Threshold Type Ratio to Peak Recession Constant Baseflow Model 0.0009018 0.0020198 0.0013399 0.0023113 0.0012058 0.0017725 0.0020098 0.0011879 0.0018088 0.0017024 0.0007812 0.0013141 0.0017283 0.0019303 Recession 0.0008051 0.0015797 0.002646 0.0019697 0.001242 Constant 0.000781 0.0012 0.0725076 0.0190008 0.0160558 0.0156645 0.0135002 0.0343206 0.0218556 0.0360036 0.0311814 0.0170722 0.0651996 0.0351162 0.0209124 0.0365634 0.0248724 0.0271044 0.0240624 0.0151807 Discharge 0.041922 0.031689 0.015054 Initial Initial Type Discharge 0.2312016 0.2121602 0.1862196 0.1599948 Coefficient 0.2372482 0.1041642 0.1731562 Storage 0.129948 0.128919 0.274449 0.385532 0.395724 0.265825 0.258524 0.162974 0.27606 2.0106 0.74709 0.19662 2.8733 1.0856 Clark Transform Model Time of Concentration 0.22415 0.15943 0.31178 0.43227 0.33729 0.25336 0.31314 2.2288 0.2725 0.24489 0.26302 0.41595 3.0006 0.27938 0.2152 0.16552 0.20492 0.17572 0.3811 0.51437 0.4264 Impervious SCS Curve Number Loss Model 0 83.8461 71.9336 86.5778 73.4118 52.2187 78.328 78.3359 54.372 81.7827 54.6358 53.5728 79.9264 54.372 80.8282 80.9337 Curve Number 82.8877 54.372 86.4547 86.6951 78.7091 81.558 2.2612496 2.8280455 2.5194775 2.6786076 3.8750009 2.2897328 4.0428342 2.4806098 2.2639199 2.5606199 2.3026887 2.6565529 2.6656517 2.7182665 2.7297389 2.4087095 2.2926009 2.5327301 2.6138281 2.5297631 2.6525969 straction Initial Ab-Number W570 W590 W400 W410 W420 W430 W440 W450 W460 W470 W480 W490 W500 W510 W520 W530 W540 W550 W560 W580 W600 Basin

0.09071	0.13095	0.05371	0.06151	0.09039	0.09	0.08993	0.06	0.09	0.06	0.13294	0.06	0.0402	0.09103	0.09	0.09	0.0588	0.06
Ratio to Peak																	
0.001353	0.0017902	0.0017811	0.0005227	0.0012806	0.0005836	0.0005836	0.0005955	0.0001176	0.0005955	0.0005252	0.0001176	0.0008754	0.0005926	0.0005955	0.0008753	0.0005955	0.0005956
0.0153982	0.0040233	0.0008865	0.0055268	0.0202662	0.0969102	0.0540108	0.018396	0.0856134	0.0140019	0.0220428	0.0006494	0.0013102	0.0300816	0.0339678	0.0714132	0.0097919	0.0067964
Discharge																	
0.20444	0.1429624	0.1137976	0.23941	0.25277	0.70337	0.32497	0.2599	1.7689	0.28004	0.38649	0.19195	0.17729	0.38387	0.6117	2.9678	0.22823	0.25017
0.19961	0.2091	0.11793	0.16391	0.24559	0.67846	0.57127	0.26709	0.93693	0.28765	0.40714	0.29523	0.2727	0.40789	0.42369	0.92286	0.23527	0.25775
0	0	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
86.954	90.2865	95.0211	86.8553	82.2556	76.6613	80.1374	79.0442	75.2251	78.7306	82.1413	83.7572	96.723	83.5442	51.1733	77.5337	75.2251	75.2251
2.5629935	2.3979294	2.3032821	1.6645859	2.4591485	2.902715	2.9263521	2.5587408	2.7694967	2.7604968	2.7560463	7.0605699	9.1346018	2.3470948	2.7606946	2.702937	9.2140185	9.2138207
W610	W620	W630	W640	W650	W660	W670	W680	W690	W700	W710	W720	W730	W740	W750	W760	W770	W780

Annex 10. Mananga Model Reach Parameters

	Side Slope	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	Width	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Shape	Trapezoid	Tranezoid																	
outing Model	Manning's n	0.010757	0.023258	0.010331	0.008174	0.007218	0.016282	0.062534	0.022345	0.014818	0.012622	0.016437	0.034749	0.055899	0.04764	0.083753	0.026125	0.007391	0.023616	0.00979
ingum Cunge R	Slope	0.04793	0.03168	0.00937	0.05773	0.01359	0.02858	0.0001	0.07776	0.00486	0.01539	0.00444	0.0001	0.0001	0.01076	0.0001	0.0001	0.06455	0.04857	0.04031
Muski	Length (m)	1240.2	1635.4	1214.7	1313	1356.8	441.13	98.995	3490.1	616.27	3366.9	1142.3	54.142	299.71	2136.8	212.13	953.41	612.84	1071.5	3497.5
	Time Step Method	Automatic Fixed Interval																		
	Number	R110	R130	R140	R190	R210	R220	R230	R240	R250	R280	R300	R320	R330	R350	R360	R390	R70	R80	R90

Table A-10.1. Mananga Model Reach Parameters

Annex 11. Mananga Field Validation Points

Return Period of	Event	100-Year																				
Event / Date		Seniang	Ruping	Ruby	Ruby	Ruby	Seniang	Basyang	Ruping	Seniang	Seniang	Ruby	Ruping	Ruby	Seniang							
Error (m)		0.0081	0.2401	0.0121	0.01	0.04	0.2116	0.1225	2.1025	0.7921	0.2304	0.2116	0	0.3025	0.81	0.0784	0.2809	0.1444	0.0324	0.9216	0.1681	0.2209
Validation	Points (m)	0.3	1.2	0.5	0.4	0.7	1.2	1	2.1	1.4	1.2	0.5	0.7	0.2	0	0.5	0.3	0.3	0.9	1.5	0.2	0.2
Model	Var (m)	0.21	0.71	0.61	0.5	0.5	0.74	0.65	0.65	0.51	0.72	0.96	0.7	0.75	0.9	0.78	0.83	0.68	0.72	0.54	0.61	0.67
ordinates	Latitude	123.8315539	123.8315539	123.8314407	123.830787	123.8307833	123.8340724	123.8332613	123.8333076	123.8335549	123.8290362	123.8290362	123.8288879	123.8288029	123.8288029	123.8287138	123.8287138	123.8245655	123.8245655	123.8247481	123.8247481	123.8247481
	Longitude	10.23583619	10.23583619	10.23597929	10.23632834	10.23637261	10.23640536	10.23646265	10.23663368	10.2367502	10.23708132	10.23708132	10.23716066	10.23792322	10.23792322	10.23801388	10.23801388	10.23826964	10.23826964	10.23829526	10.23829526	10.23829526
Point	Number	-	2	ε	4	ъ	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Table A-11.1. Mananga Field Validation Points

| 100-Year |
|-------------|
| Seniang | Ruby | Seniang | Ruby | Ruby | Seniang | Seniang | Seniang | Seniang |
| 0.1936 | 0 | 0.3844 | 0.0576 | 0.01 | 0.1936 | 0.4489 | 0.2209 | 0.2025 | 0.0289 | 0.1936 | 0.36 | 0.2209 | 0.2116 | 0.2209 | 0.0484 | 0 | 0.0009 | 0.7396 | 0.0625 | 0.0169 | 0.0256 | 0.1849 | 0.4225 | 0.0324 | 0 | 0.0009 | 0.3481 |
| 0.5 | 0.2 | 0.7 | 0.3 | 0.3 | 0.6 | 0.7 | 0.5 | 0.5 | 0.2 | 0.5 | 0.7 | 0.6 | 0.6 | 0.6 | 0.5 | 0.2 | 0.2 | 2.7 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 | 0.9 | 1.1 | 0.9 | 1.5 |
| 0.06 | 0.2 | 0.08 | 0.06 | 0.2 | 0.16 | 0.03 | 0.03 | 0.05 | 0.03 | 0.06 | 0.1 | 0.13 | 0.14 | 0.13 | 0.28 | 0.2 | 0.23 | 3.56 | 0.45 | 0.33 | 0.36 | 0.93 | 1.15 | 1.08 | 1.1 | 0.87 | 2.09 |
| 123.8219848 | 123.8219848 | 123.8221486 | 123.8223156 | 123.8209117 | 123.8209465 | 123.8219779 | 123.8218167 | 123.8218167 | 123.8205168 | 123.8384611 | 123.8384611 | 123.8384611 | 123.8384611 | 123.8373252 | 123.8373252 | 123.8375035 | 123.8375035 | 123.83399 | 123.8332848 | 123.8335332 | 123.8335332 | 123.8334902 | 123.8334902 | 123.8342248 | 123.8342248 | 123.8346868 | 123.834633 |
| 10.24291447 | 10.24291447 | 10.24293821 | 10.2429533 | 10.24307377 | 10.24308125 | 10.24321751 | 10.24327664 | 10.24327664 | 10.24458477 | 10.24495243 | 10.24495243 | 10.24495243 | 10.24495243 | 10.24522666 | 10.24522666 | 10.24540708 | 10.24540708 | 10.24570459 | 10.24591996 | 10.24594076 | 10.24594076 | 10.24641218 | 10.24641218 | 10.24722421 | 10.24722421 | 10.24726895 | 10.24753708 |
| 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |

| 100-Year |
|-------------|
| Seniang | Queenie | Seniang | Seniang | Seniang | Seniang | Seniang | Seniang | Ruping | Ruby | Ruping | Seniang | Ruping | Ruping | Seniang | Quennie | Seniang | Ruping | Ruping | Queenie | Ruby |
| 2.3104 | 5.0625 | 6.6049 | 0.0225 | 0.1764 | 0.0324 | 0.0729 | 0.0729 | 0.9216 | 0.1764 | 0.6889 | 5.6644 | 6.25 | 9.3636 | 8.7616 | 0.4489 | 10.3041 | 9.0601 | 0.8836 | 10.7584 | 0.1764 | 12.3904 | 0.1369 | 0.0484 | 0.2601 | 0.5625 | 0.0016 | 0.0121 |
| 1.6 | 1.1 | 1.1 | 0.2 | 0.5 | 0.3 | 0.3 | 0.3 | 1 | 2 | 0.5 | 0.7 | 0.9 | 6.0 | 6.0 | 1.2 | 1 | 2.2 | 1 | 1.9 | 1.1 | 1.3 | 1 | 1.5 | 1.9 | 2.1 | 0.7 | 1.1 |
| 3.12 | 3.35 | 3.67 | 0.05 | 0.08 | 0.12 | 0.03 | 0.03 | 1.96 | 2.42 | 1.33 | 3.08 | 3.4 | 3.96 | 3.86 | 1.87 | 4.21 | 5.21 | 1.94 | 5.18 | 0.68 | 4.82 | 1.37 | 1.72 | 2.41 | 2.85 | 0.74 | 0.99 |
| 123.834633 | 123.8344518 | 123.8344518 | 123.8347306 | 123.8347306 | 123.8347306 | 123.8349122 | 123.8350718 | 123.8353785 | 123.8365251 | 123.8365109 | 123.8363981 | 123.8361576 | 123.8361576 | 123.836041 | 123.8361264 | 123.8359719 | 123.8357991 | 123.8360855 | 123.8357742 | 123.8361745 | 123.8357167 | 123.8360831 | 123.8360619 | 123.8340155 | 123.8340155 | 123.8336511 | 123.8336511 |
| 10.24753708 | 10.24806396 | 10.24806396 | 10.24993597 | 10.24993597 | 10.24993597 | 10.24996551 | 10.24996883 | 10.25023039 | 10.25049696 | 10.25068229 | 10.25131504 | 10.25156014 | 10.25156014 | 10.25208069 | 10.25221446 | 10.2522541 | 10.25230432 | 10.25238585 | 10.25241828 | 10.25248424 | 10.25258879 | 10.25263187 | 10.25267787 | 10.2557966 | 10.2557966 | 10.25613521 | 10.25613521 |
| 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 06 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 66 | 100 | 101 | 102 | 103 | 104 | 105 |

| 100-Year |
|-------------|
| Ruping | Queenie | Queenie | Seniang | Queenie | Queenie | Queenie | Queenie | Seniang | Ruby | Ruby | Seniang | Seniang | Seniang | Queenie | Queenie | Seniang | Queenie | Queenie | Seniang | Seniang | Seniang | Ruping | Ruping | Seniang | Ruby | Yolanda | Ruby |
| 0.0361 | 0.2116 | 0.0676 | 0.0676 | 0.16 | 0.0484 | 0.09 | 0.0025 | 0.1444 | 0.3025 | 0.0144 | 0.3025 | 0.0009 | 0.0361 | 0.0001 | 0.0064 | 0.0289 | 0.01 | 0.0169 | 0.0064 | 0.2401 | 0.0289 | 21.9961 | 29.2681 | 15.9201 | 6.4516 | 10.24 | 7.29 |
| 2.1 | 0.5 | 0.5 | 0.5 | 0.7 | 0.1 | 0.1 | 0.5 | 0.3 | 1.3 | 0.9 | 1.1 | 0 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | 0.2 | 0.9 | 0.5 | 1.1 | 2.7 | 2.4 | 2.2 | 1.4 | 0.9 | 1.5 |
| 2.29 | 0.04 | 0.24 | 0.24 | 0.3 | 0.32 | 0.4 | 0.55 | 0.68 | 0.75 | 0.78 | 0.55 | 0.03 | 0.31 | 0.51 | 0.58 | 0.03 | 0.3 | 0.33 | 0.82 | 0.99 | 1.27 | 7.39 | 7.81 | 6.19 | 3.94 | 4.1 | 4.2 |
| 123.834216 | 123.8337709 | 123.8337709 | 123.8340647 | 123.8340647 | 123.8330739 | 123.8330739 | 123.8342942 | 123.8342942 | 123.8342942 | 123.8342942 | 123.8345264 | 123.8342971 | 123.8342971 | 123.8345389 | 123.8346265 | 123.836315 | 123.8344181 | 123.8344181 | 123.8346009 | 123.8348467 | 123.8348467 | 123.8348544 | 123.8348837 | 123.8348033 | 123.8332153 | 123.8332153 | 123.8332153 |
| 10.25701927 | 10.257535 | 10.257535 | 10.25753425 | 10.25753425 | 10.25762723 | 10.25762723 | 10.25762409 | 10.25762409 | 10.25762409 | 10.25762409 | 10.25850621 | 10.25874263 | 10.25874263 | 10.25894108 | 10.25894392 | 10.25896223 | 10.25907074 | 10.25907074 | 10.25919513 | 10.25939192 | 10.25939192 | 10.26072247 | 10.26079091 | 10.26085052 | 10.26404777 | 10.26404777 | 10.26404777 |
| 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 |

| 100-Year |
|-------------|
| Seniang | Ruping | Yolanda | Yolanda | Yolanda | Ruping | Ruping | Ruby | Seniang | Seniang | Seniang | Seniang | Seniang | Ruby | Ruby | Ruby | Seniang | Ruby | Yolanda | Seniang | Seniang | Seniang | Seniang | Ruping | Seniang | Seniang | Seniang | Ruby |
| 5.8564 | 1.96 | 8.1225 | 0.0841 | 2.1904 | 1.5376 | 0.2601 | 0.01 | 0.0001 | 0.0064 | 0.0016 | 7.6729 | 0.2209 | 0.2116 | 34.4569 | 0.000 | 17.5561 | 20.4304 | 21.3444 | 23.9121 | 1.0816 | 3.2761 | 55.6516 | 43.0336 | 14.2129 | 20.7025 | 22.3729 | 29.16 |
| 2 | 1.9 | 0.5 | 1.2 | 1.3 | 1.9 | 2.1 | 0.5 | 0.5 | 0.5 | 0.7 | 2 | 0.5 | 0.5 | 1.1 | 0 | 1.2 | 1 | 1.6 | 1.9 | 0.7 | 0.5 | 0.5 | 2.2 | 0.5 | 1.3 | 1.7 | 1.2 |
| 4.42 | 3.3 | 3.35 | 1.49 | 2.78 | 3.14 | 2.61 | 0.4 | 0.51 | 0.58 | 0.74 | 4.77 | 0.03 | 0.04 | 6.97 | 0.03 | 5.39 | 5.52 | 6.22 | 6.79 | 1.74 | 2.31 | 7.96 | 8.76 | 4.27 | 5.85 | 6.43 | 6.6 |
| 123.8332153 | 123.8327589 | 123.8327589 | 123.8325767 | 123.8325767 | 123.8327288 | 123.8326401 | 123.8298018 | 123.8294105 | 123.8298896 | 123.8298896 | 123.8315412 | 123.8294989 | 123.8294989 | 123.8316873 | 123.829328 | 123.8309387 | 123.8309387 | 123.8309387 | 123.8309387 | 123.8304822 | 123.8304822 | 123.8309393 | 123.8309393 | 123.8306655 | 123.8306655 | 123.8306655 | 123.8306655 |
| 10.26404777 | 10.2640986 | 10.2640986 | 10.26426369 | 10.26426369 | 10.26447003 | 10.26457171 | 10.26528437 | 10.26529016 | 10.26559369 | 10.26559369 | 10.26585797 | 10.26586599 | 10.26586599 | 10.26589104 | 10.26609195 | 10.26640492 | 10.26640492 | 10.26640492 | 10.26640492 | 10.26643595 | 10.26643595 | 10.26665013 | 10.26665013 | 10.26667693 | 10.26667693 | 10.26667693 | 10.26667693 |
| 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 |

| 100-Year |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Ruping | Yolanda | Yolanda | Yolanda | Yolanda | Ruby | Ruping | Ruping |
| 0.0121 | 2.5281 | 1.5625 | 2.6244 | 12.4609 | 22.6576 | 24.4036 | 25.1001 |
| 2.1 | 0.7 | 1.2 | 0.9 | 1 | 1.5 | 1.7 | 2 |
| 2.21 | 2.29 | 2.45 | 2.52 | 4.53 | 6.26 | 6.64 | 7.01 |
| 123.8302092 | 123.8302092 | 123.8302092 | 123.8302092 | 123.8304833 | 123.8304833 | 123.8304833 | 123.8304833 |
| 10.26676853 | 10.26676853 | 10.26676853 | 10.26676853 | 10.26685826 | 10.26685826 | 10.26685826 | 10.26685826 |
| 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |

Table A-12.1. Educational Institutions in Cebu affected by flooding in Mananga Flood Plain

Annex 12. Educational Institutions affected by flooding Mananga Floodplain

Cebu				
Talisay City				
Building Name	Ranand	R	ainfall Scena	rio
		5-year	25-year	100-year
TCG Center	Cansojong			
First Chinese Royal Academy	Dumlog		Low	Low
Cebu Sacred Heart College	Lawaan I			
San Isidro Elementary School	Lawaan II	Low	Low	Low
Lawaan III National Highschool	Lawaan III			
St. Scholastica's Academy	Lawaan III			Low
Cebu Sacred Heart College	Linao			
Lawaan Elementary School	Linao			
St. Thomas Aquinas Montessori	Linao			
Lagtang SDA Multigrade School	Maghaway			
Divino Amore Academy	Mohon	Low	Medium	Medium
Mohon Elementary School	Mohon			
Visayas Wesleyan Christian School Inc	Mohon			
Maghaway Elementary School	Poblacion	Low	Low	Low
Sisters of Mary Girls Town School	Poblacion			
Talisay City College	Poblacion			Low
Talisay City Elementary School	Poblacion			
Talisay Malayan Academy	Poblacion	Low	Low	Low
Pooc National High School	Pooc		Low	Low
Cebu Globalization ESL Center Inc	San Isidro			
Monterey School	San Isidro			
TCG Center	San Isidro			
Tabunok Elementary School	Tabunoc		Low	Low

Annex 13. Medical Institutions affected by flooding in Mananga Floodplain

		100-year	100-year		Medium			Low		W Low
		25-year	25-year		Medium			Low		Low Lo
		Rainfall Scenario	5-year		Medium					
Cebu	Minglanilla	Barangay		Linao	Tungkil		Talisay City	Lawaan II	Lawaan III	San Isidro
		Building Name		Baking Medical Center	Tungkil Health Center			Talisay District Hospital	Lagtang Health Center	Talisay District Hospital

Table A-13.1. Medical Institutions in Cebu affected by flooding in Mananga Flood Plain