Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Libertad River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Libertad River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-138pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-183-6

TABLE OF CONTENTS

LIST OF TABLES	. iv
LIST OF FIGURES	v
LIST OF ACRONYMS AND ABBREVIATIONS	vii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND LIBERTAD RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Libertad River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE LIBERTAD FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	9
2.4 Survey Coverage	. 10
CHAPTER 3: LIDAR DATA PROCESSING OF THE LIBERTAD FLOODPLAIN	12
3.1 Overview of the LIDAR Data Pre-Processing	. 12
3.2 Transmittal of Acquired LiDAR Data	.13
3.3 Trajectory Computation	. 14
3.4 LiDAR Point Cloud Computation	.16
3.5 LiDAR Quality Checking	. 17
3.6 LiDAR Point Cloud Classification and Rasterization	.21
3.7 LiDAR Image Processing and Orthophotograph Rectification	.23
3.8 DEM Editing and Hydro-Correction	25
3.9 Mosaicking of Blocks	.26
3.10 Calibration and Validation of Mosaicked LiDAR DEM	.28
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.31
3.12 Feature Extraction	.33
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	.33
3.12.2 Height Extraction	.34
3.12.3 Feature Attribution	.34
3.12.4 Final Quality Checking of Extracted Features	.35
ALLARTER A LURAR MALIRATION CURVEY AND MEACUREMENTS OF THE URERTAR DUVER RACIN	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN	36
4.1 Summary of Activities	36 36
4.1 Summary of Activities	36 36 38
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing	36 .36 .38 .41
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment	36 38 38 41 42
4.1 Summary of Activities	36 38 41 42 44
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey	36 .38 .41 .42 .44 .44
4.1 Summary of Activities	36 38 41 42 44 46 48
4.1 Summary of Activities	36 38 41 42 44 46 48 52
 4.1 Summary of Activities	36 38 41 42 44 46 48 52 52
 4.1 Summary of Activities	36 .36 .38 .41 .42 .44 .46 .48 52 .52 .52
 4.1 Summary of Activities	36 .38 .41 .42 .44 .44 .44 .46 .48 .52 .52 .52 .52
 4.1 Summary of Activities	36 38 41 42 44 46 48 52 52 52 52 52 53
 4.1 Summary of Activities	36 .36 .38 .41 .42 .44 .46 .48 .52 .52 .52 .52 .52 .53 .54
 4.1 Summary of Activities	36 .36 .38 .41 .42 .44 .46 .48 .52 .52 .52 .52 .52 .52 .52 .52 .53 .54 .56
 4.1 Summary of Activities	36 .38 .41 .42 .44 .44 .46 .48 .52 .52 .52 .52 .53 .54 .56 .59
 4.1 Summary of Activities	36 .36 .38 .41 .42 .44 .46 .48 .52 .52 .52 .52 .53 .54 .56 .59 .60
 4.1 Summary of Activities. 4.2 Control Survey	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .56 .59 .60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .59 .60 .62 .64
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey . 4.3 Baseline Processing . 4.4 Network Adjustment . 4.5 Cross-section and Bridge As-Built survey and Water Level Marking	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .59 .60 .62 .64
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .52 .53 .54 .56 .59 .60 .62 .64 .64
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	36 .36 .38 .41 .42 .44 .46 .48 .52 .54 .56 .60 .62 .64 .65 .67
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities	36 .36 .38 .41 .42 .44 .46 .48 .52 .52 .52 .52 .53 .54 .56 .60 .62 .64 .65 .74
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .52 .53 .54 .59 .60 .62 .64 .65 .74 .86
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	36 .36 .38 .41 .42 .44 .46 .48 .52 .53 .54 .59 .60 .62 .64 .65 .67 .88
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities	36 36 38 41 42 44 46 48 52 52 52 52 52 53 54 56 60 62 64 65 67 74 88 88 88
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods 5.7.1 Hydrograph using the Rainfall Runoff Model 5.8 River Analysis (RAS) Model Simulation 5.9 Flow Depth and Flood Hazard 5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation Annex 1. Technical Specifications of the LIDAR Sensors used in the Libertad Floodplain Survey 	36 36 38 41 42 44 46 48 52 52 52 53 54 60 62 64 65 67 74 88 89 89
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIBERTAD RIVER BASIN 4.1 Summary of Activities	36 .36 .38 .42 .44 .46 .42 .44 .46 .52 .52 .53 .54 .52 .54 .56 .60 .62 .64 .65 .74 .88 .89 .91

Annex 4. The LiDAR Survey Team Composition	95
Annex 5. Data Transfer Sheet for Libertad Floodplain	96
Annex 6. Flight logs for the flight missions	
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	
Annex 9. Libertad Model Basin Parameters	
Annex 10. Libertad Model Reach Parameters	
Annex 11. Libertad Field Validation Points	
Annex 12. Educational Institutions affected by flooding in Libertad Floodplain	
Annex 13. Medical Institutions affected by flooding in Libertad Floodplain	
, 0 1	

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system Table 2. Flight planning parameters for the Aquarius LiDAR system Table 3. Details of the recovered NAMRIA horizontal control point NGW-87 used as base station	3 3
for the LiDAR acquisition Table 4. Details of the recovered NAMRIA horizontal control point NGW-71 used as base station	6
for the LiDAR acquisition Table 5. Details of the recovered NAMRIA benchmark BM-107 used as a base station for the	7
LiDAR Acquisition Table 6. Ground control points used during the LiDAR data acquisition	8
Table 7. Flight missions for LiDAR data acquisition in Libertad floodplain.	9
Table 8. Actual parameters used during LiDAR data acquisition.	10
Table 9. List of municipalities and cities surveyed during Libertad floodplain LiDAR survey	.10
Table 10. Self-calibration Results values for Libertad flights	16
Table 11. List of LiDAR blocks for the Libertad floodplain	17
Table 12. Libertad classification results in TerraScan	21
Table 13. LiDAR blocks with its corresponding areas	25
Table 14. Shift values of each LiDAR block of Libertad Floodplain.	26
Table 15. Calibration Statistical Measures.	30
Table 16. Validation Statistical Measures	31
Table 17. Details of the quality checking ratings for the building features extracted	
for the Libertad River Basin	33
Table 18. Building features extracted for Libertad Floodplain	34
Table 19. Total length of extracted roads for Libertad Floodplain.	35
Table 20. Number of extracted water bodies for Libertad Floodplain	35
Table 21. List of reference and control points used during the survey in Libertad River	38
Table 22. The Baseline processing report for the Libertad River GNSS static observation survey	42
Table 23. Constraints applied to the adjustment of the control points	42
Table 24. Adjusted grid coordinates for the control points used in the Libertad River	
floodplain survey.	43
Table 25. Adjusted geodetic coordinates for control points used in the Libertad River	
Floodplain validation.	43
Table 26. The reference and control points utilized in the Libertad River Static Survey,	
with their corresponding locations (Source: NAMRIA, UP-TCAGP)	44
Table 27. RIDF values for the Libertad River Basin based on average RIDF data of Dumaguete	
station, as computed by PAGASA.	54
Table 28. Range of calibrated values for the Libertad River Basin.	62
Table 29. Summary of the Efficiency Test of the Libertad HIVIS Model	63
Table 30. The peak values of the Libertad HEC-HMS Model outflow using the Dumaguete Point	CF
	65
Table 31. Municipalities aπected in Libertad floodplain	67
Table 32. Affected Areas in Guinuingan City, Negros Oriental during 5-year Rainfall Return	74
Period	/1 72
Table 33. Affected Areas in Jimalalud, Negros Oriental during 5-Year Rainfall Return Period	72
Table 34. Affected Areas in La Libertad, Negros Oriental during 5-Year Rainfall Return Period	/3
Table 35. Affected Areas in Guinuingan City, Negros Oriental Guing 25-Year Rainfall Return	71
Table 26 Affected Areas in limitable of Negros Oriental during 25 Year Dainfall Dature Daried	74
Table 30. Affected Areas in Jillalaluu, Neglos Offenda uuring 25-fear Kainlah Keturn Period	73
Table 37. Affected Areas in Cuibulagan City Negros Oriental during 25-real Namian Neturn Feriou	//
Period	79
Table 39 Affected Areas in Jimalalud Negros Oriental during 100-Vear Rainfall Return Period	70
Table 40 Affected Areas in La Libertad Negros Oriental during 100-Teal Namian Return Period	21 R
Table 41 Area covered by each warning level with respect to the rainfall scenarios	87
Table 42. Actual Flood Depth versus Simulated Flood Depth at different levels in the Libertad	52
River Basin	84
Table 43. Summary of the Accuracy Assessment in the Libertad River Basin Survey	.84
· · · · · · · · · · · · · · · · · · ·	

LIST OF FIGURES

Figure 1. N	/ap of Libertad River Basin (in brown)	2
Figure 2. F	light plans and base stations used for Libertad floodplain.	4
Figure 3. G	GPS set-up over NGW-87 as recovered at the SE side of Moises Padilla-Canlaon Road	
a	and NE of wooden electric post. Station is situated on top of headwall. (a) and NAMRIA	
r	eference point NGW-87 (b) as recovered by the field team.	6
Figure 4. G	SPS set-up over NGW-71 as recovered in San Carlos, Negros Occidental. The station	
is	located at Higalaman Bridge, at km 148+364.5 along the national road. (a) and	
N	AMRIA reference point NGW-71 (b) as recovered by the field team	7
Figure 5. G	GPS set-up over BM-107 as located at the right side of the national road	
g	oing to Dumaguete located at Guihulngan, Negros Oriental. (a) and NAMRIA	
re	eference point BM-107 (b) as recovered by the field team	8
Figure 6. A	Actual LiDAR survey coverage for Libertad floodplain	11
Figure 7. S	chematic diagram for the data pre-processing	13
Figure 8. S	moothed Performance Metric Parameters of Libertad Flight 1453P.	14
Figure 9. S	olution Status Parameters of Libertad Flight 1453P.	15
Figure 10.	Best Estimated Trajectory of the LiDAR missions conducted over the Libertad	16
Figure 11	Boundaries of the processed LiDAR data over the Libertad Floodplain	17
Figure 12	Image of data overlap for Libertad floodplain	18
Figure 13	Pulse density map of the merged LiDAR data for Libertad floodplain	19
Figure 14	Elevation difference Man between flight lines for the Libertad Eloodplain Survey	20
Figure 15.	Quality checking for Libertad flight 1453P using the Profile Tool of OT Modeler	21
Figure 16.	Tiles for Libertad floodplain (a) and classification results (b) in TerraScan	22
Figure 17.	Point cloud before (a) and after (b) classification.	22
Figure 18.	The production of last return DSM (a) and DTM (b), first return DSM (c)	
	and secondary DTM (d) in some portion of Libertad floodplain.	23
Figure 19.	Available orthophotographs near Libertad floodplain	24
Figure 20.	Sample orthophotograph tiles for Libertad floodplain.	24
Figure 21.	Portions in the DTM of the Libertad Floodplain – before (a) and after (b) filling	
0.	of data gaps; a bridge before (c) and after (d) manual editing.	25
Figure 22.	Map of processed LiDAR data for the Libertad Floodplain.	27
Figure 23.	Map of Libertad Floodplain with validation survey points in green.	29
Figure 24.	Correlation plot between calibration survey points and LiDAR data	30
Figure 25.	Correlation plot between the validation survey points and the LiDAR data	31
Figure 26.	Map of Libertad floodplain with bathymetric survey points in blue.	32
Figure 27.	Block (in blue) of Libertad building features that was subjected to QC	33
Figure 28.	Extracted features of the Libertad Floodplain.	35
Figure 29.	Libertad River Survey Extent	37
Figure 30.	Libertad River Basin Control Survey Extent.	39
Figure 31.	Trimble [®] SPS 852 base set-up at NGE-67 located along national road	
-	in Brgy. Mckinley, Municipality of Libertad	40
Figure 32.	Trimble [®] SPS 882 receiver set-up at UP-CAN located at the right side of Cangabo	
	Spillway in Brgy. Pangca, Municipality of Libertad	40
Figure 33.	Trimble [®] SPS 882 receiver set-up at UP-CAN located at the right side of Cangabo	
	Spillway in Brgy. Pangca, Municipality of La Libertad.	41
Figure 34.	Cross-section survey at the Cangabo Spillway deployment site	44
Figure 35.	Location map of the Baguhan Bridge Cross Section.	45
Figure 36.	Deployment site, Cangabo Spillway, cross-section diagram	45
Figure 37.	Water-level markings on the post of Cangabo Spillway	46
Figure 38.	GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey	46
Figure 39.	The extent of the LiDAR ground validation survey (in red) for Libertad River Basin	47
Figure 40.	Set up of the bathymetric survey at Libertad River using Trimble® SPS 882 in GNSS	
	PPK survey technique.	48
Figure 41.	Manual bathymetric survey set-up for Libertad River	49
Figure 42.	The extent of the Libertad River Bathymetry Survey.	50
Figure 43.	The Libertad Riverbed Profile.	51
Figure 44.	Location Map of the Libertad HEC-HMS model used for calibration.	52
Figure 45.	Cross-Section Plot of Cancabo Spillway in Libertad River.	53

Figure 46.	The rating curve at Libertad Bridge, Bohol.	53
Figure 47.	Rainfall and outflow data at Cancabo Spillway used for modeling	54
Figure 48.	Dumaguete Point RIDF location relative to Libertad River	55
Figure 49.	The synthetic storm generated for a 24-hour period rainfall for various return	
-	periods	55
Figure 50.	Soil Map of Libertad River Basin	56
Figure 51.	Land Cover Map of Libertad River Basin	57
Figure 52.	Slope Map of Libertad River Basin	57
Figure 53.	Stream Delineation Map of Libertad River Basin	58
Figure 54.	Libertad river basin model generated in HEC-HMS.	59
Figure 55.	River cross-section of the Libertad River through the ArcMap HEC GeoRas tool	60
Figure 56.	A screenshot of the river sub-catchment with the computational area	
-	to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	61
Figure 57.	Outflow Hydrograph of Libertad produced by the HEC-HMS model	
C	compared with observed outflow.	62
Figure 58.	The Outflow hydrograph at the Cancabo Spillway, Libertad generated	
-	using the Dumagutete Point RIDF simulated in HEC-HMS	64
Figure 59.	Sample output map of the Libertad RAS Model.	66
Figure 60.	A 100-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth	
-	imagery	68
Figure 61.	A 100-year Flow Depth Map for Libertad Floodplain overlaid on Google Earth	
	imagery	69
Figure 62.	A 25-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth	
	imagery	70
Figure 63.	A 25-year Flow Depth Map for Libertad Floodplain overlaid on Google Earth	
	imagery	71
Figure 64.	A 5-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth	
	imagery	72
Figure 65.	A 5-year Flood Depth Map for Libertad Floodplain overlaid on Google Earth	
	imagery	73
Figure 66.	Affected Areas in Guihulngan City, Negros Oriental during 5-Year Rainfall Return	
	Period	74
Figure 67.	Affected Areas in Jimalalud, Negros Oriental during 5-Year Rainfall Return Period	75
Figure 68.	Affected Areas in La Libertad, Negros Oriental during 5-Year Rainfall Return Period	77
Figure 69.	Affected Areas in Guihulngan City, Negros Oriental during 25-Year Rainfall Return	
	Period	78
Figure 70.	Affected Areas in Jimalalud, Negros Oriental during 25-Year Rainfall Return Period	79
Figure 71.	Affected Areas in La Libertad, Negros Oriental during 25-Year Rainfall Return Period	81
Figure 72.	Affected Areas in Guihulngan City, Negros Oriental during 100-Year Rainfall Return	
	Period	82
Figure 73.	Affected Areas in Jimalalud, Negros Oriental during 100-Year Rainfall Return Period	83
Figure 74.	Affected Areas in La Libertad, Negros Oriental during 100-Year Rainfall Return Period.	85
Figure 75.	Validation points for a 5-year Flood Depth Map of the Libertad Floodplain	86
Figure 76.	Flood Map depth versus Actual Flood Depth.	87

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UPC	University of the Philippines Cebu			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND LIBERTAD RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland Emerito S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Libertad River Basin

The Libertad River Basin is located in the northwestern area of Bohol. It has a catchment area of approximately 213 square kilometres based from the Flood Modelling Component database. The Libertad River Basin covers almost the entire Municipality of La Libertad. Portions of the catchment also covers Guihulngan City and Jimalalud. The catchment is located near the upper boundary of Negros Oriental.

La Libertad is a 3rd income class municipality with a population of 38,904 based on the 2010 census. It was previously known as Barrio Hinobaan, a part of Jimalalud and was later established as the Municipality of La Libertad. Industry in the area includes farming and fishing. Guihulngan City is a 5th class component city with a population of 95,969 based on the 2015 census. The main industry in the city is agriculture. Jimalalud is a 4th income class municipality with a population of 29,044 based on the 2010 census. The municipality is rich in coal, copper and iron deposits. The municipality also has vast sugar cane fields.

The weather in the river basin area is classified under Type III weather in the Corona climate classification. It experiences dry season from November to April and wet season for the other months of the year.

Figure 1. Map of Libertad River Basin (in brown).

The basin's main stem, Libertad River, is part of the river systems in Negros Island Region under the Phil-LiDAR 1 partner Higher Education Institution (HEI), University of San Carlos (USC). The river stream network passes along ten (10) barangays in Municipality of Libertad. According to the 2010 national census of NSO, a total of 13,306 locals are residing in the immediate vicinity of the river which are distributed among ten (10) barangays in Libertad. The river serves as a good source of irrigation since the municipality is actively engaged in the production of agricultural and food crops. On December 2011, many families, living along the river, were affected by Typhoon Sendong, internationally known as Washi, killing at least 38 people in the province.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE LIBERTAD FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, and Mr. Jonathan M. Almalvez

The methods applied in this chapter were based on the DREAM methods manual (Sarmiento, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Libertad floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Libertad Floodplain in Negros. These flight missions were planned for 14 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1 and Table 2. Figure 2 shows the flight plan for Libertad floodplain survey.

Table 1. Flight planning parameters for the Pegasus LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK46A	1200	30	50	200	30	130	5

Table 2. Flight planning parameters for the Aquarius LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK46B	600	30	36	70	50	120	5
BLK44K	700	30	36	70	50	120	5

Figure 2. Flight plans and base stations used to cover the Saub floodplain.

2.2 Ground Base Stations

The project team was able to recover two (12 NAMRIA horizontal ground control points: NGW-87 and NGW-71 which are all of second (2nd) order accuracy. Two (2) NAMRIA benchmarks were recovere: BM-105, and BM-107 which are all of first (1st) order accuracy. These benchmarks were used as vertical reference points and were also established ground control points.

The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey on May 11, 2014 and April 26-May 2, 2016. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Libertad floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Libertad Floodplain LiDAR Survey. Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area of the floodplain, while Table 3 to Table 5 show the details about the following NAMRIA control stations and established points. Table 6, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over NGW-87 as recovered at the SE side of Moises Padilla-Canlaon Road and NE of wooden electric post. Station is situated on top of headwall. (a) and NAMRIA reference point NGW-87 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point NGW-87 used as base station
for the LiDAR acquisition.

Station Name	NGW-87			
Order of Accuracy	2 nd Order			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 20' 32.34942" North 123° 8' 53.05808" East 333.326 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	516216.608 meters 1143593.27 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 20' 28.15138" 123° 8' 58.30851" 393.148 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	516210.93 meters 1143192.99 meters		

Figure 4. GPS set-up over NGW-71 as recovered in San Carlos, Negros Occidental. The station is located at Higalaman Bridge, at km 148+364.5 along the national road. (a) and NAMRIA reference point NGW-71 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point NGW-71 used as base station
for the LiDAR acquisition.

Station Name	NGW-71				
Order of Accuracy	2 nd Orc	ler			
Relative Error (horizontal positioning)	1 in 50,000				
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 28' 07.24861" North 123° 23' 09.29223" East 6.952 meters			
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 28' 03.03883" North 123° 23' 14.52992" East 67.068 meters			
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	542233.295 meters 1157185.484 meters			

(a)

Figure 5. GPS set-up over BM-107 as located at the right side of the national road going to Dumaguete located at Guihulngan, Negros Oriental. (a) and NAMRIA reference point BM-107 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA benchmark BM-107 used as a base station for the LiDAR Acquisition.

Station Name	BM-1	07	
Order of Accuracy	1 st ord	ler	
Relative Error (horizontal positioning)	1 in 100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10° 11' 03.67402" North 123° 17' 00.26971" East 5.026 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 10′ 59.52782″ North 123° 17′ 05.53339″ East 65.546 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	531043.098 meters 1125738.372 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 11, 2014	1451P	1BLK46A131A	NGW-87
May 11, 2014	1453P	1BLK46AS131B	NGW-87
April 26, 2016	8462AC	3BLK46AS117B	NGW-71 and BM-105
April 27, 2016	8464AC	3BLK46AS118B	NGW-71 and BM-105
May 2, 2016	8473AC	3BLK46AS123A	BM-105 and BM-107

Table 6. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

A total of five (5) missions were conducted to complete the LiDAR data acquisition in Libertad floodplain, for a total of eighteen hours (18+00) of flying time for RP-C9122 and RP-CP0922 (See Annex 6). All missions were acquired using Aquarius and Pegasus LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 7, while the actual parameters used during the LiDAR data acquisition are presented in Table 8.

Table 7. Flight missions for LiDAR data acquisition in Libertad floodplain.

Date Flight		Flight	Surveyed	Area Surveyed	Area Surveyed Outside	No. of	Flying Hours	
Surveyed	Number	Plan Area (km2)	Area (km2)	Floodplain (km2)	the Floodplain (km2)	Images (Frames)	Hr	Min
May 11, 2014	1451P	244.7	186.25	0.17	186.08	N.A.	4	11
May 11, 2014	1453P	244.7	183.49	0	183.49	339	2	59
April 26, 2016	8462AC	45.20	53	11.69	41.31	N.A.	4	11
April 27, 2016	8464AC	18.9	19	3.39	15.61	N.A.	2	58
May 2, 2016	8473AC	8.12	22	8.40	13.6	N.A.	3	41
TOTA	L.	561.62	463.74	23.65	440.09	339	18	00

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1451P	900	30	50	200	30	130	5
1453P	800/700	30	50	200	30	130	5
8462AC	500	30	36	50	45	120	5
8464AC	500	30	36	50	45	120	5
8473AC	500	30	36	50	45	120	5

Table 8. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Libertad floodplain (See Annex 7). It is located in the province of Negros Occidental and Negros Oriental with majority of the floodplain situated within the municipalities Libertad, Guihulngan, San Carlos, and Vallehermoso. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 9. Figure 6, on the other hand, shows the actual coverage of the LiDAR acquisition for the Libertad floodplain.

Table 9. List of municipalities and cities surveyed during Libertad floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	San Carlos	408.97	112.96	27%
	Murcia	364.19	19.73	5%
Negros Occidental	Bago	350.9	8.99	2%
	Calatrava	344.53	1.67	<1%
	Silay	196.52	0.008	<1%
	Vallehermoso	114.02	75.09	66%
Negros	Guihulngan	346.2	131.22	38%
Oriental	Libertad	130.62	36.81	28%
	Jimalalud	126.33	2.01	2%
[]	Fotal	2382.28	388.488	16.31%

Figure 6. Actual LiDAR survey coverage for Libertad floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE LIBERTAD FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Aljon Rie V. Araneta, Engr. Ma. Joanne I. Balaga, and Engr. Erica Erin E. Elazegui

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

Figure 7. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Libertad Floodplain can be found in Annex 5. The missions flown during the first survey in December 2013 and second survey on September 2015 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Libertad, Bohol.

The Data Acquisition Component (DAC) transferred a total of 69.98 Gigabytes of Range data, 991 Megabytes of POS data, 352.4 Megabytes of GPS base station data, and 74.13 Gigabytes of raw image data to the data server on May 11, 2014 for the first survey and April 27, 2016 on the second survey which was verified for accuracy and completeness by the DPPC. The whole dataset for the Libertad Floodplain was fully transferred on May 20, 2016, as indicated on the Data Transfer Sheets for the Libertad floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1453P, one of the Libertad flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 11, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 8. Smoothed Performance Metrics of Libertad Flight 1453P.

The time of flight was from 29,600 seconds to 36,100 seconds, which corresponds to afternoon of May 11, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 0.93 centimeters, the East position RMSE peaks at 1.30 centimeters, and the Down position RMSE peaks at 2.10 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 9. Solution Status Parameters of Libertad Flight 1453P.

The Solution Status parameters of flight 1453P, one of the Libertad flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 12. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Libertad flights is shown in Figure 10.

Figure 10. Best Estimated Trajectory of the LiDAR missions conducted over the Libertad.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 56 flight lines, with each flight line contains one channel for Aquarius system while Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Libertad floodplain are given in Table 10.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000266
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000962
GPS Position Z-correction stdev)	<0.01meters	0.0092

Table 10	. Self-calib	ration Res	ults values	for Liberta	d flights.
----------	--------------	------------	-------------	-------------	------------

The optimum accuracy values for all Libertad flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex 8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Libertad Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 11. Boundaries of the processed LiDAR data over the Libertad Floodplain.

A total area of 369.20 square kilometers (sq. kms.) were covered by the Libertad flight missions as a result of five (5) flight acquisitions, which were grouped and merged into two (2) blocks accordingly, as portrayed

LiDAR Blocks	Flight Numbers	Area (sq.km)
Negroe Bl/46A	1451P	217.24
Negros_Bik46A	1453P	317.24
	8462AC	
Bacolod_Blk46A	8464AC	51.96
	8473AC	
TOTAL		369.20 sq.km

Table 11. List of LiDAR blocks for the Libertad floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Aquarius system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines while an average value of 2 (blue) for areas where there is limited overlap, and a value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines for the Pegasus system.

Figure 12. Image of data overlap for Libertad floodplain.

The overlap statistics per block for the Libertad floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlaps are 35.19% and 57.62% which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 13. As seen in the figure below, it was determined that all LiDAR data for the Libertad Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 4.05 points per square meter.

Figure 13. Pulse density map of the merged LiDAR data for Libertad floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

Figure 14. Elevation difference Map between flight lines for the Libertad Floodplain Survey.

A screen-capture of the processed LAS data from Libertad flight 1453P loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

Figure 15. Quality checking for Libertad flight 1453P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	411,983,486
Low Vegetation	330,253,159
Medium Vegetation	545,206,394
High Vegetation	339,928,970
Building	9,921,426

Table 12. Libertad classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Libertad floodplain is shown in Figure 16. A total of 518 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 12 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 16. Tiles for Libertad floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 17. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show in Figure 18. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Libertad floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 165 1km by 1km tiles of the block covering the Libertad floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The block covering the Libertad floodplain has a total of 124.44 sq.km orthophotogaph coverage comprised of 283 images. However, the block does not have a complete set of orthophotographs and no orthophotographs cover the area of the Libertad floodplain. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.

Figure 19. Available orthophotographs near Libertad floodplain.

Figure 20. Sample orthophotograph tiles for Libertad floodplain.

3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for the Libertad Floodplain Survey. The block is from the Negros and Bacolod blocks with a total area of 369.20 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)
Negros_Blk46A	317.24
Bacolod_Blk46A	51.956
TOTAL	369.20 sq.km

Table 13. LiDAR blocks with its corresponding areas.

Figure 21 shows portions of a DTM before and after manual editing. As evident in the figure, data gaps (Figure 21a) has affected the flow of water along the river. To correct the river hydrologically, the gaps were filled through data retrieval (Figure 21b). The bridge (Figure 21c) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 21d).

Figure 21. Portions in the DTM of the Libertad Floodplain – before (a) and after (b) filling of data gaps; a bridge before (c) and after (d) manual editing.

3.9 Mosaicking of Blocks

Only the Bacolod Blk46A was transferred to the Phil-LiDAR 1 team of the University of San Carlos for the Libertad floodplain hence, no mosaicking was performed. The Negros Blk46A provided to the University of the Philippines Cebu Phil-LiDAR 1 team, which will cover a portion of the Libertad floodplain, was mosaicked to the entire blocks of Negros. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Libertad Floodplain is shown in Figure 22. It can be seen that the entire Libertad floodplain is 90% covered by LiDAR data.

Mission Dissla	Shift Values (meters)			
	х	у	z	
Negros_Blk46A	0.00	0.00	0.52	
Bacolod_Blk46A	0.00	0.00	0.00	

Table 14. Shift values of each LiDAR block of Libertad Floodplain.

Figure 22. Map of processed LiDAR data for the Libertad Floodplain.
3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in the Negros Island to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 39,705 points were gathered for all the floodplains within the Negros Island wherein the Libertad is located. Random selection of 80% of the survey points, resulting to 31,385 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.94 meters with a standard deviation of 0.15 meters. Calibration of Libertad LiDAR data was done by subtracting the height difference value, 0.94 meters, to the mosaicked LiDAR data for Libertad. Table 15 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 23. Map of Libertad Floodplain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.94
Standard Deviation	0.15
Average	-0.93
Minimum	-1.21
Maximum	0.89

Table 15. Calibration Statistical Measures.

A total of 115 survey points that are near the Libertad flood plain were used for the validation of the calibrated Libertad DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.05 meters, as shown in Table 16.

Figure 25. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.05
Average	-0.14
Minimum	-0.19
Maximum	0.06

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Libertad with a total of 3,383 bathymetric survey points. The resulting raster surface produced was done by Kriging interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.51 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Libertad integrated with the processed LiDAR DEM is shown in Figure 26.

Figure 26. Map of Libertad floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Libertad floodplain, including its 200-m buffer, has a total area of 24.72 sq km. For this area, a total of 5.0 sq. km., corresponding to a total of 696 building features, were considered for QC. Figure 27 shows the QC block for the Libertad floodplain.

Figure 27. Block (in blue) of Libertad building features that was subjected to QC.

Quality checking of Libertad building features resulted in the ratings shown in Table 17.

Table 17. Details of the quality checking ratings for the building features extracted for the Libertad River Basin.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Libertad	100.0	100.0	99.20	PASSED

3.12.2 Height Extraction

Height extraction was done for 2,585 building features in Libertad floodplain. Of these building features, 15 were filtered out after height extraction, resulting to 2,570 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 8.59 meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. A DSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 18 summarizes the number of building features per type, while Table 19 shows the total length of each road type. Table 20, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	2,523
School	0
Market	2
Agricultural/Agro-Industrial Facilities	0
Medical Institutions	3
Barangay Hall	9
Military Institution	0
Sports Center/Gymnasium/Covered Court	0
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	2
Water Supply/Sewerage	0
Religious Institutions	7
Bank	0
Factory	0
Gas Station	0
Fire Station	1
Other Government Offices	3
Other Commercial Establishments	20
Total	2,570

Table 18. Building features extracted for Libertad Floodplain.

Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Libertad	35.67	0.79	0.00	5.86	0.00	42.32

Table 19. Total length of extracted roads for Libertad Floodplain.

Table 20. Number of extracted water bodies for Libertad Floodplain.

Water Body Type						
Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Libertad	2	0	0	0	0	2

A total (5) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 28 shows the completed Digital Surface Model (DSM) of the Libertad floodplain overlaid with its ground features.

Figure 28. Extracted features of the Libertad Floodplain.

CHAPTER 4 LIDAR VALIDATION SURVEY AND MEASUREMENT OF THE LIBERTAD RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Balicanta, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Libertad River on January 16, 2016 to February 10, 2016 with the following scope: reconnaissance; control survey; cross-section and as-built survey at Barangay Cangabo, Libertad, Negros Oriental; validation points acquisition of about 24.175 km; and bathymetric survey from Brgy. Cangabo down to Brgy. Poblacion, both in the Municipality of Libertad with approximate length of 8.023 km. The entire survey extent is illustrated in Figure 29.

Figure 29. Libertad River Survey Extent.

4.2 Control Survey

The GNSS network used for Libertad River survey is composed of a single loop established on January 28, 2016, occupying the following reference points: NGE-67, a second order GCP located in Brgy. Mckinley, Municipality of Libertad; and, NE-202, a first order BM in Brgy. Polopanto also in Libertad.

A control point established at the right side of Cangabo Spillway namely UP-CAN located in Brgy. Pangca, also in the Municipality of Libertad was also occupied to use as marker for the network.

Table 21 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 30 shows the GNSS network established in the Libertad River Survey.

Table 21. List of reference and control points used during the survey in Libertad River (Source: NAMRIA, UP-TCAGP).

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment		
Control Survey on December 10, 2016								
NGE-67	2nd order, GCP	10°05'32.0593"N	123°15'52.4410"E	69.290	-	2008		
NE-202	1st order, BM	-	-	66.499	4.105	2008		
UP-CAN	Used as Marker	-	-	-	-	January 2016		

Figure 30. Libertad River Basin Control Survey Extent.

Figure 31 to Figure 33 depict the setup of the GNSS on recovered reference points and established control points in the Libertad River.

Figure 31. Trimble® SPS 852 base set-up at NGE-67 located along national road in Brgy. Mckinley, Municipality of Libertad.

Figure 32. Trimble® SPS 882 receiver set-up at UP-CAN located at the right side of Cangabo Spillway in Brgy. Pangca, Municipality of Libertad.

Figure 33. Trimble[®] SPS 882 receiver set-up at UP-CAN located at the right side of Cangabo Spillway in Brgy. Pangca, Municipality of La Libertad.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 22 presents the baseline processing results of control points in the Libertad River Basin, as generated by the TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
NGE-67 UP- CAN (B7)	01-28, 2016	Fixed	0.006	0.027	244°43'34"	6458.846	19.529
NGE-67 NE- 202 (B8)	01-28, 2016	Fixed	0.006	0.027	208°51'24"	12614.093	-2.801
NE-202 UP- CAN (B9)	01-28, 2016	Fixed	0.011	0.051	1°41'54"	8293.919	22.279

Table 22. The Baseline processing report for the Libertad River GNSS static observation survey.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

where:

$$\sqrt{((x_e)^2+(y_e)^2\,)}$$
 <20 cm and z_e $<\!10$ cm

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 23 to Table 26.

The three (3) control points, NGE-67, NE-202 and UP-CAN were occupied and observed simultaneously to form a GNSS loop. All baselines acquired fixed solutions and passed the required ±20cm and ±10cm for horizontal and vertical precisions, respectively as presented in Table 22. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 23. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
NE-202	Grid				Fixed		
NGE-67	Global	Fixed	Fixed				
Fixed = 0.000001(Meter)							

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24.

Table 24. Adjusted grid coordinates for the control points used in the Libertad River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
NGE-67	528987.231	?	1115622.481	?	7.275	0.040	LL
NE-202	522910.723	0.007	1104574.094	0.005	4.105	?	е

With the mentioned equation, $\sqrt{((x_e)^2+(y_e)^2)}<20$ cm for horizontal and $z^e<10$ cm for the vertical; the computation for the accuracy are as follows:

a.	NGE-67		
	Horizontal accuracy	=	Fixed
	Vertical accuracy	=	4.0 cm < 10 cm
b.	NE-202		
	Horizontal accuracy	=	√((0.70) ² + (0.50) ²
		=	√(0.49 + 0.25)
		=	0.86 cm < 20 cm
	Vertical accuracy	=	Fixed
c.	UP-CAN		
	Horizontal accuracy	=	√((0.70) ² + (0.50) ²
		=	√(0.49+ 0.25)
		=	0.86 cm < 20 cm
	Vertical accuracy	=	5.0 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the occupied control points are within the required precision.

Table 25. Adjusted geodetic coordinates for control points used in the Libertad River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
NGE-67	N10°05'32.0593"	E123°15'52.4410"	69.290	0.040	LL
NE-202	N9°59'32.4653"	E123°12'32.5537"	66.499	?	е

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Libertad River GNSS Static Survey are seen in Table 26.

Table 26. The reference and control points utilized in the Libertad River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

		Geograph	nic Coordinates (WGS 84)	UTM ZONE 51 N		
Control Order of Point Accuracy Latitude		Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)	
NGE-67	2nd order, GCP	10°05'32.0593"N	123°15'52.4410"E	69.290	1115622.481	528987.231	7.275
NE-202	1st order, BM	9°59'32.4653"N	123°12'32.5537"E	66.499	1104574.094	522910.723	4.105
UP-CAN	Used as marker	10°04'02.2919"N	123°12'40.6262"E	88.813	1112861.259	523151.163	26.54

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on January 29, 2016 at Cangabo Spillway in Brgy. Pangca, Municipality of La Libertad using GNSS receiver Trimble® SPS 882 in PPK survey technique as shown in Figure 36.

Figure 34. Cross-section survey at the Cangabo Spillway deployment site.

The length of the cross-sectional line surveyed at Cangabo Spillway is about 80.079 meters with 28 crosssectional points acquired using the control point NGE-67 as the GNSS base station. The location map, cross-section diagram and the accomplished bridge data form for Cangabo Spillway are shown in Figure 35 and Figure 36.

Figure 35. Location map of the Baguhan Bridge Cross Section.

Figure 36. Deployment site, Cangabo Spillway, cross-section diagram

The water surface elevation of Libertad River was determined by a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on January 29, 2016 at 2:46 PM with a value of 28.153 m in MSL. This was translated into marking on the bridge's pier as shown in Figure 37. It now serves as the reference for flow data gathering and depth gauge deployment of the University of San Carlos, the partner HEI responsible for the monitoring of the Libertad River.

Figure 37. Water-level markings on the post of Cangabo Spillway.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on January 28, 2016 using a survey GNSS rover receiver Trimble[®] SPS 882 mounted on a range pole, which was attached in front of the vehicle as shown in Figure 38. It was secured with a cable-tie to ensure that it was horizontally and vertically balanced. The antenna height was 2.24 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver.

Figure 38. GNSS Receiver Trimble[®] SPS 882 installed on a vehicle for Ground Validation Survey.

The survey for the Libertad River Basin traversed the Municipalities of Tayasan, Jimalalud, La Libertad, and Guihulngan City. The route of the survey aims to traverse LiDAR flight strips perpendicularly for the basin. A total of 3,209 points with an approximate length of 24.175 km was acquired for the validation point acquisition survey as illustrated in the map in Figure 39.

Figure 39. The extent of the LiDAR ground validation survey (in red) for Libertad River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on January 28 and January 30, 2016 starting from the mouth of the river in Brgy. Poblacion with coordinates 10°1′42.8580″N 123°14′9.3890″E and ended in Brgy. Cantupa with coordinates 10°1′45.7541″N 123°13′38.5444″E using Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as shown in Figure 40.

Figure 40. Set up of the bathymetric survey at Libertad River using Trimble® SPS 882 in GNSS PPK survey technique.

Manual bathymetric survey using a GNSS PPK technique was executed on January 29, 2016 starting from the upstream in Brgy. Cangabo with coordinates 10°4′45.1183″N 123°12′24.2921″E traversed the river by foot ending in Brgy. Cantupa with coordinates 10°1′45.7541″N 123°13′38.5444″E as shown in Figure 41. The control point UP-MAN was used as GNSS base station for the whole conduct of the survey.

Figure 41. Manual bathymetric survey set-up for Libertad River.

Overall, the bathymetric survey for Libertad River gathered a total of 3,477 points, covering 8.023 km of the river. The extent of the bathymetric survey for the Libertad River is shown in Figure 42. To further illustrate this, a CAD drawing of the riverbed profile of the Libertad River was produced. As seen in Figure 43, the highest and lowest elevation has a 40-m difference. The highest elevation observed was 37.575 m in MSL located at Brgy. Cangabo, Libertad; while the lowest was -3.217 m below MSL located in Brgy. Poblacion also in Libertad.

Figure 42. The extent of the Libertad River Bathymetry Survey.

Figure 43. The Libertad Riverbed Profile.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this chapter were based on the DREAM methods manual (Lagmay, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Libertad River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an installed Automatic Rain Gauges (ARG) by the Department of Science and Technology - Advanced Science and Technology Institute (DOST-ASTI). They gauge station is located within the Libertad floodplain, municipality of Libertad. The total precipitation used in the calibration of the HMS model is 50.2 mm. It peaked to 6.2 mm on 23:00 on November 16, 2016. The location of this station in the watershed is illustrated in Figure 44.

Figure 44. Location Map of the Libertad HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Cancabo Spillway (10.0674°N and 123.212°E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

Figure 45. Cross-Section Plot of Cancabo Spillway in Libertad River.

For Libertad Bridge, the rating curve is expressed y=2E-63e^5.8381x as shown in Figure 46.

Figure 46. The rating curve at Libertad Bridge, Bohol.

This rating curve equation was used to compute the river outflow at Cancabo Spillway for the calibration of the HEC-HMS model for Libertad shown in Figure 47. The peak discharge is 37.4 m3/s at 3:25 PM, November 17, 2016.

Figure 47. Rainfall and outflow data at Cancabo Spillway used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Dumaguete Point Gauge (Table 27). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 48). This station was selected based on its proximity to the Libertad watershed. The extreme values for this watershed were computed based on a 37-year record.

Table 27. RIDF values for the Libertad River Basin based on average RIDF data of Dumaguete	
station, as computed by PAGASA.	
	6

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	16.2	24.8	30.6	39.7	50	55.3	63.4	69.1	76
5	21.8	33.6	42.3	57.1	76.5	87.3	100	109.5	116.5
10	25.6	39.4	50	68.6	94	108.5	124.3	136.3	143.3
15	27.7	42.7	54.3	75.1	103.9	120.5	138	151.4	158.4
20	29.1	45	57.4	79.7	110.8	128.9	147.5	162	169
25	30.3	46.8	59.7	83.2	116.1	135.3	154.9	170.2	177.2
50	33.8	52.3	66.9	94	132.5	155.2	177.6	195.3	202.4
100	37.2	57.7	74.1	104.8	148.8	174.9	200.2	220.2	227.3

Figure 48. Dumaguete Point RIDF location relative to Libertad River.

Figure 49. The synthetic storm generated for a 24-hour period rainfall for various return periods.

5.3 HMS Model

The soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Libertad River Basin are shown in Figure 50 and Figure 51, respectively.

Figure 50. Soil Map of Libertad River Basin.

Figure 52. Slope Map of Libertad River Basin.

Figure 53. Stream Delineation Map of Libertad River Basin.

Using the SAR-based DEM, the Libertad basin was delineated and further subdivided into subbasins. The model consists of 49 sub basins, 19 reaches, and 19 junctions as shown in Figure 53. The main outlet is Outlet 1. The basins were identified based on soil and land cover characteristic of the area. Precipitation was taken from an installed Rain Gauge near and inside the river basin. Finally, it was calibrated using the data from actual discharge flow gathered in the Cancabo Spillway.

Figure 54. Libertad river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 55).

Figure 55. River cross-section of the Libertad River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northwest of the model to the southwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 56. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 13.04736 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated flood hazard maps for Libertad are in Figure 60, 62, and 64.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 39 385 900.00 m2. The generated flood depth maps for Libertad are in Figure 61, 63, and 65.

There is a total of 94 394 460.79 m3 of water entering the model. Of this amount, 50 197 971.50 m3 is due to rainfall while 44 196 489.29 m3 is inflow from other areas outside the model. 11 976 921.00 m3 of this water is lost to infiltration and interception, while 9 867 221.47 m3 is stored by the flood plain. The rest, amounting up to 72 550 001.73 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Libertad HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 57 shows the comparison between the two discharge data.

Table 28 shows the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve Number	Initial Abstraction (mm)	2.90-25.29
LOSS		SCS Curve Number	Curve Number	35.18-99
Basin Transform Baseflow	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0-52.46
		Storage Coefficient (hr)	0.03-5.67	
	Baseflow	Decession	Recession Constant	0.15-0.76
		Recession	Ratio to Peak	0.001
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.06-0.31

Table 28. Range of calibrated values for the Libertad River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 2.90-25.29 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area. For Libertad, since the soil consists of clay and mountainous land, the basin curve number ranges from 35.18-99.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0-52.46 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.15-0.76 indicates that the basin will to go back to its original. Ratio to peak of 0.001 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.06-0.31 corresponds to the common roughness of Philippine watersheds. Libertad river basin is covered mostly with grassland and cultivated areas.

Accuracy measure	Value		
RMSE	3.541		
r2	0.7982		
NSE	0.718		
PBIAS	21.67		
RSR	0.531		

Table 29. Summary of the Efficiency Test of the Libertad HMS Model.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 3.541.

The Pearson correlation coefficient (r²) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.7092.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.718.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 21.67.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.531.
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 58) shows the Libertad outflow using the Tagbilaran Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal increasing outflow magnitude as the rainfall intensity increases for a range of duration of 24 hours and varying return periods.

Figure 58. The Outflow hydrograph at the Cancabo Spillway, Libertad generated using the Dumagutete Point RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Libertad discharge using the Dumaguete Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

Table 30. The peak values of the Libertad HEC-HMS Model outflow using the Dumaguete Point RIDF.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	116.5	21.800	135.840	4 hours, 10 minutes
10-Year	143.3	25.600	198.056	3 hours, 50 minutes
25-Year	177.2	30.300	282.668	3 hours, 40 minutes
50-Year	202.4	33.800	349.211	3 hours, 30 minutes
100-Year	227.3	37.200	416.940	3 hours, 30 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 59 shows a generated sample map of the Libertad River using the calibrated event flow.

Figure 59. Sample output map of the Libertad RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 60 to Figure 65 shows the 5-, 25-, and 100-year rain return scenarios of the Libertad floodplain. The floodplain, with an area of 54.62 sq. km., covers three municipalites namely Guihulngan, Jimalalud, and La Libertad. Table 31 shows the percentage of area affected by flooding per municipality.

Table 31. Municipalities affected in Libertad floodplain.

Province	Municipality	Total Area	Area Flooded	% Flooded
Negros Oriental	Guihulngan			
Negros Oriental	Jimalalud			
Negros Oriental	La Libertad			

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 60. A 100-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth imagery.

Figure 61. A 100-year Flow Depth Map for Libertad Floodplain overlaid on Google Earth imagery.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 62. A 25-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth imagery.

Figure 63. A 25-year Flow Depth Map for Libertad Floodplain overlaid on Google Earth imagery.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 64. A 5-year Flood Hazard Map for Libertad Floodplain overlaid on Google Earth imagery.

Figure 65. A 5-year Flow Depth Map for Libertad Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Libertad River Basin, grouped accordingly by municipality. For the said basin, three municipalities consisting of 22 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 1.69% of the city of Guihulngan with an area of 374.66 sq. km. will experience flood levels of less 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters while 0.05%, 0.03%, 0.02, and 0.005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 32 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affe	cted barangays	in Guihulnga	n City (in sq. km.)
flood depth (in m.)	Bakid	Kagawasan	Mckinley	Padre Zamora
0.03-0.20	2.47	0.44	1.17	2.27
0.21-0.50	0.11	0.018	0.085	0.14
0.51-1.00	0.043	0.0036	0.043	0.096
1.01-2.00	0.028	0.00074	0.019	0.081
2.01-5.00	0.032	0.0005	0.012	0.046
> 5.00	0.0016	0	0.0085	0.01

Table 32. Affected Areas in Guihulngan City, Negros Oriental during 5-Year Rainfall Return Period.

Figure 66. Affected Areas in Guihulngan City, Negros Oriental during 5-Year Rainfall Return Period.

For the municipality of Jimalalud, with an area of 154.7 sq. km., 1.65% will experience flood levels of less 0.20 meters. 0.07% of the area will experience flood levels of 0.21 to 0.50 meters while 0.034%, 0.027%, 0.026%, and 0.006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 are the affected areas in square kilometers by flood depth per barangay.

Figure 67. Affected Areas in Jimalalud, Negros Oriental during 5-Year Rainfall Return Period.

For the municipality of La Libertad, with an area of 151.4 sq. km., 17.61% will experience flood levels of less 0.20 meters. 1.8% of the area will experience flood levels of 0.21 to 0.50 meters while 1.27%, 1.23%, 1.78%, and 0.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 34 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.)	Area of affected ba	arangays in Jimala	lud (in sq. km.)		
(in m.)	Bala-As	Bangcal	Mambaid		
0.03-0.20	1.13	0.27	1.15		
0.21-0.50	0.048 0.015 0.051				
0.51-1.00	0.019	0.0048	0.029		
1.01-2.00	0.011	0.0026	0.028		
2.01-5.00	0.011	0.0026	0.027		
> 5.00	0.0049	0.0004	0.0033		

Table 33. Affected Areas in Jimalalud, Negros Oriental during 5-Year Rainfall Return Period.

Affected Area (sq. km.) by		Area of a	ffected bara	ngays in La Libei	rtad (in sq. km.)	
flood depth (in m.)	Biga-A	Cangabo	Cantupa	Mandapaton	Manghulyawon	Mapalasan
0.03-0.20	2.64	1.67	2.17	0.89	1.8	2.44
0.21-0.50	0.21	0.093	0.13	0.068	0.1	0.1
0.51-1.00	0.19	0.046	0.072	0.084	0.064	0.064
1.01-2.00	0.17	0.028	0.092	0.081	0.041	0.047
2.01-5.00	0.11	0.035	0.31	0.034	0.031	0.041
> 5.00	0.0005	0.068	0.065	0.0099	0	0.0046
Affected Area (sq. km.) by		Area of a	ffected bara	ngays in La Liber	rtad (in sq. km.)	
Affected Area (sq. km.) by flood depth (in m.)	Maragondon	Area of a	ffected barar Pangca	ngays in La Liber Pisong	tad (in sq. km.) Poblacion North	Poblacion South
Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20	Maragondon 1.74	Area of a Martilo	ffected baran Pangca 1.07	Pisong 3.76	rtad (in sq. km.) Poblacion North 0	Poblacion South 0.12
Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20 0.21-0.50	Maragondon 1.74 0.24	Area of a Martilo 2.62 0.18	Fected baran Pangca 1.07 0.04	Pisong 3.76 0.29	Poblacion North 0	Poblacion South 0.12 0.015
Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20 0.21-0.50 0.51-1.00	Maragondon 1.74 0.24 0.11	Area of a Martilo 2.62 0.18 0.13	ffected baran Pangca 1.07 0.04 0.025	Pisong 3.76 0.29 0.25	Tad (in sq. km.)Poblacion North0000000	Poblacion South 0.12 0.015 0.0043
Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20 0.21-0.50 0.51-1.00 1.01-2.00	Maragondon 1.74 0.24 0.11 0.15	Area of a g Martilo 2.62 0.18 0.13 0.12	Pangca 1.07 0.04 0.025 0.14	Pisong 3.76 0.29 0.25 0.17	Poblacion North 0 0 0.00003 0.0019	Poblacion South 0.12 0.015 0.0043 0.0062
Affected Area (sq. km.) by flood depth (in m.) 0.03-0.20 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00	Maragondon 1.74 0.24 0.11 0.15 0.55	Area of a g Martilo 2.62 0.18 0.13 0.12 0.12 0.12	Here Here	Pisong 3.76 0.29 0.25 0.17 0.19	Poblacion Poblacion North 0 0 0 0.00003 0.0019 0.28	Poblacion South 0.12 0.015 0.0043 0.0062 0.014

Table 34. Affected Areas in La Libertad, Negros Oriental during 5-Year Rainfall Return Period.

Affected Area (sq. km.) by	Area of affe Libert	cted barang ad (in sq. kn	ays in La n.)
flood depth (in m.)	San Jose	Solongon	Talayong
0.03-0.20	2.04	1.97	1.72
0.21-0.50	0.35	0.49	0.41
0.51-1.00	0.28	0.28	0.31
1.01-2.00	0.36	0.18	0.29
2.01-5.00	0.25	0.24	0.35
> 5.00	0.055	0.014	0.02

Figure 68. Affected Areas in La Libertad, Negros Oriental during 5-Year Rainfall Return Period.

For the 25-year return period, 1.66% of the city of Guihulngan with an area of 374.66 sq. km. will experience flood levels of less 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.058%, 0.035%, 0.038, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 35 are the affected areas in square kilometers by flood depth per barangay.

Table 35. Affecte	ed Areas in Guihulngan	City, Negros	Oriental during	g 25-Year Rai	nfall Return
		Period.			

Affected Area (sq. km.)	Area of a	ffected barangays in	Guihulngan Cit	y (in sq. km.)
by flood depth (in m.)	Bakid	Kagawasan	Mckinley	Padre Zamora
0.03-0.20	2.44	0.43	1.14	2.21
0.21-0.50	0.12	0.023	0.09	0.14
0.51-1.00	0.049	0.0057	0.053	0.11
1.01-2.00	0.029	0.0011	0.024	0.077
2.01-5.00	0.039	0.00094	0.017	0.084
> 5.00	0.0056	0	0.012	0.019

Figure 69. Affected Areas in Guihulngan City, Negros Oriental during 25-Year Rainfall Return Period.

For the municipality of Jimalalud, with an area of 154.7 sq. km., 1.6% will experience flood levels of less 0.20 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.036%, 0.032%, 0.042%, and 0.013% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometers by flood depth per barangay.

Table 36. Affected Areas in Jimalalud, Negros Oriental during 25-Year Rainfall Return Period.

Affected Area (sq. km.)	Area of affec	ted barangays in Jirr	nalalud (in sq. km.)
by flood depth (in m.)	Bala-As	Bangcal	Mambaid
0.03-0.20	1.1	0.27	1.1
0.21-0.50	0.06	0.016	0.074
0.51-1.00	0.023	0.0076	0.026
1.01-2.00	0.014	0.0029	0.033
2.01-5.00	0.013	0.0037	0.048
> 5.00	0.0077	0.0012	0.011

Figure 70. Affected Areas in Jimalalud, Negros Oriental during 25-Year Rainfall Return Period.

For the municipality of La Libertad, with an area of 151.4 sq. km., 17.61% will experience flood levels of less 0.20 meters. 1.8% of the area will experience flood levels of 0.21 to 0.50 meters while 1.27%, 1.23%, 1.78%, and 0.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

d.	
rio	
ı Pe	
nrr	
Ret	
all	
inf	
Ra	
ear	
5-Y	
g 2	
urin	
l dı	
nta	
rie	
o s	
grc	
Ne	
ad,	
ert	
Lib	
La	
s in	
rea	
ЧY	
cte	
offe	
7. A	
le 3	
abl	
Г	

		rtilo	51	17	14	14	19	159	
		Mai	2.1	0.	0.	0.	0.	0.0	
Period.		Maragondong	1.55	0.18	0.085	0.18	0.57	0.29	
ainfall Keturn	d (in sq. km.)	Mapalasan	2.4	0.11	0.067	0.054	0.055	0.0065	
A rear <2 Aurus	gays in La Liberta	Manghulyawon	1.76	0.11	0.058	0.056	0.042	0.0087	
egros Uriental (affected baran	Mandapaton	0.86	0.057	0.04	0.1	0.087	0.012	
La Libertad, No	Area of	Cantupa	2.09	0.13	0.067	0.087	0.2	0.27	
ifected Areas in .		Cangabo	1.64	0.099	0.051	0.039	0.04	0.079	
I able 37. Ai		Biga-A	2.56	0.19	0.15	0.26	0.16	0.0026	
	fected Area (sq. km.)	y flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	
	Ā	D							

Affected Area (sq. km.)		A	Area of affected	barangays in La	l Libertad (in sq. k	cm.)	
by flood depth (in m.)	Pangca	Pisong	Poblacion North	Poblacion South	San Jose	Solongon	Talayong
0.03-0.20	1.05	3.62	0	0.11	1.85	1.79	1.53
0.21-0.50	0.041	0.27	0	0.0067	0.32	0.3	0.35
0.51-1.00	0.019	0.25	0	0.006	0.28	0.41	0.35
1.01-2.00	0.039	0.2	0	0.01	0.36	0.29	0.31
2.01-5.00	0.25	0.24	0.018	0.017	0.39	0.34	0.49
> 5,00	0.08	0 074	0.37	0.079	0 12	0.06	20.0

Figure 71. Affected Areas in La Libertad, Negros Oriental during 25-Year Rainfall Return Period.

For the 100-year return period, 1.63% of the city of Guihulngan with an area of 374.66 sq. km. will experience flood levels of less 0.20 meters. 0.11% of the area will experience flood levels of 0.21 to 0.50 meters while 0.06%, 0.04%, 0.044, and 0.014% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

Table 38.	Affected	Areas in	Guihulngan	City, Ne	egros (Oriental	during	100-Year	Rainfall	Return
			_	Peri	od.		_			

Affected Area (sq. km.)	Area of a	ffected barangays in	Guihulngan Cit	:y (in sq. km.)
by flood depth (in m.)	Bakid	Kagawasan	Mckinley	Padre Zamora
0.03-0.20	2.41	0.42	1.12	2.16
0.21-0.50	0.14	0.028	0.091	0.15
0.51-1.00	0.055	0.0074	0.06	0.11
1.01-2.00	0.03	0.0014	0.031	0.086
2.01-5.00	0.042	0.00094	0.022	0.1
> 5.00	0.0095	0.0001	0.015	0.028

Figure 72. Affected Areas in Guihulngan City, Negros Oriental during 100-Year Rainfall Return Period.

For the municipality of Jimalalud, with an area of 154.7 sq. km., 1.55% will experience flood levels of less 0.20 meters. 0.12% of the area will experience flood levels of 0.21 to 0.50 meters while 0.041%, 0.034%, 0.052%, and 0.019% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Table 39. Affected Areas in Jimalalud, Negros Oriental during 100-Year Rainfall Return Period.

Affected Area (sq. km.)	Area of affect	ted barangays in Jim	alalud (in sq. km.)
by flood depth (in m.)	Bala-As	Bangcal	Mambaid
0.03-0.20	1.09	0.26	1.05
0.21-0.50	0.067	0.017	0.098
0.51-1.00	0.026	0.0094	0.028
1.01-2.00	0.016	0.0034	0.033
2.01-5.00	0.014	0.0042	0.062
> 5.00	0.0099	0.0016	0.018

Figure 73. Affected Areas in Jimalalud, Negros Oriental during 100-Year Rainfall Return Period.

For the municipality of La Libertad, with an area of 151.4 sq. km., 16.3% will experience flood levels of less 0.20 meters. 1.47% of the area will experience flood levels of 0.21 to 0.50 meters while 1.15%, 1.48%, 2.26%, and 1.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

Period.
l Return
Rainfal
-Year
100
during
Oriental
Negros
Libertad,
La
Areas in
Affected ,
40.
Table

Affected	Area (sq. km.)				Area (of affected k	oarangays in l	La Libertad	(in sq. km.				
by flood	d depth (in m.)	Biga-A	Canga	bo	Cantupa	Mandap	aton Mangh	ulyawon	Mapalasa	n Marag	guopuo	Marti	o
0	.03-0.20	2.52	1.61	1	2.04	0.85	1	.74	2.37	1.	.48	2.46	
0	.21-0.50	0.18	0.11	1	0.13	0.062	0	.12	0.12	0.	.14	0.16	
0	.51-1.00	0.12	0.04	8	0.065	0.034	t 0.	058	0.071	0.	.08	0.12	
1	.01-2.00	0.28	0.04	4	0.073	0.075	8	.05	0.057	0	.1	0.17	
2	.01-5.00	0.22	0.05		0.18	0.13	0.	062	0.067	0.	.51	0.21	
	> 5.00	0.0053	0.08	1	0.36	0.015	.0	011	0.0091	0	.54	0.08	2
	Affected Area (so	q. km.)			Area	of affected k	oarangays in l	La Libertad	(in sq. km.	(
	by flood depth ((in m.)	Pangca	Pison	PC	oblacion North	Poblacion South	San Jo	ose	Solongon	Talayo	ng	
	0.03-0.20		1.04	3.54		0	0.1	1.7	5	1.73	1.43	~	
	0.21-0.50		0.044	0.28		0	0.0057	0.3		0.23	0.34	1	
	0.51-1.00		0.018	0.23		0	0.0056	0.2	7	0.32	0.3		
L	1.01-2.00		0.028	0.23		0	0.0065	0.3	4	0.45	0.34	t	

0.58 0.11

0.36 0.09

0.48

0.023 0.034

0.0021 0.33

0.28 0.11

2.01-5.00 > 5.00

0.087 0.26

0.18

Figure 74. Affected Areas in La Libertad, Negros Oriental during 100-Year Rainfall Return Period.

Among the barangays in the city of Guihulngan, Bakid is projected to have the highest percentage of area that will experience flood levels at 0.72%. Meanwhile, Padre Zamora posted the second highest percentage of area that may be affected by flood depths at 0.70%.

Among the barangays in the municipality of Jimalalud, Mambaid is projected to have the highest percentage of area that will experience flood levels at 0.84%. Meanwhile, Bala-As posted the second highest percentage of area that may be affected by flood depths at 0.79%.

Among the barangays in the municipality of La Libertad, San Jose is projected to have the highest percentage of area that will experience flood levels at 2.2%. Meanwhile, Biga-A posted the second highest percentage of area that may be affected by flood depths at 2.19%.

Moreover, the generated flood hazard maps for the Libertad Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Maming Loval	Area Covered in sq. km.				
warning Level	5 year	25 year	100 year		
Low	3.23	2.90	2.84		
Medium	3.23	3.50	3.35		
High	4.45	6.04	7.07		
Total	10.91	12.44	13.26		

Table 41 Area	covered by each	n warning leve	l with respect 1	to the rainfall	scenarios
Table TI. Alca	covered by each	i waining ieve	i with respect	to the failian	scenarios.

No Educational institutions were identified to be exposed to any of the flooding scenarios in the Libertad Flood Plain.

Of the 3 identified Medical Institutions in the Libertad Flood Plain, 1 medical institution was assessed to be exposed to medium level flooding during a 5 year scenario, while 2 medical institutions were assessed to be exposed to high level flooding in the same scenario. In the 25 and 100 year scenarios, 3 medical institutions were assessed to be exposed to high level. See Annex 12 for a detailed enumeration of hospitals and clinics in the Libertad floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel the went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 75.

Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 4.62 m. Table 42 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

The flood validation data were obtained on November 15-16, 2016.

Figure 75. Validation points for a 5-year Flood Depth Map of the Libertad Flood Plain.

Figure 76. Flood Map depth versus Actual Flood Depth.

Table 42. Actual Flood Depth versus Simulated Flood Depth at different levels in the Libertad River Basin.

Actual Flood Depth	Modeled Flood Depth (m)						
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	0	0	1	0	4	7	12
0.21-0.50	0	0	3	7	2	6	18
0.51-1.00	0	0	1	2	7	9	19
1.01-2.00	0	0	3	4	11	7	25
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	0	0	8	13	24	29	74

On the whole, the overall accuracy generated by the flood model is estimated at 6.76% with 5 points correctly matching the actual flood depths. In addition, there were 19 points estimated one level above and below the correct flood depths while there were 22 points and 28 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 14 points were underestimated in the modelled flood depths of Libertad. Table 43 depicts the summary of the Accuracy Assessment in the Libertad River Basin Flood Depth Map.

Table 43. Summary of the Accuracy Assessment in the Libertad River Basin Survey.

	No. of Points	%
Correct	5	6.76
Overestimated	66	89.19
Underestimated	3	4.05
Total	74	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Libertad Floodplain Survey

1. PEGASUS SENSOR

Figure A-1.2 Aquarius Sensor Table A-1.1 Parameters and Specifications of Pegasus Sensor

14510111	if i winnecció une opecanicación of i equipor
Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with inLibertading jacket)
Relative humidity	0-95% no-condensing

2. AQUARIUS SENSOR

Figure A-1.2 Aquarius Sensor

Table A-1.2 Parameters and Specifications of Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitiz- er (optional)
	Sensor:250 x 430 x 320 mm; 30 kg;
Dimensions and weight	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. NGW-87

May 09, 20 CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follow Province: NEGROS OCCIDENTAL Station Name: NGW-87 Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS&4 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road, Mark is the head of a 4" cooper nail drilled and grouped at the center of a 30 30 con: comemet puty metheded on top of the headwall with inscriptions "NGW-87." The station is at the SE side of Moises Padilla-Canlaon road, Nark is the head of a 4" cooper	NATIONAL MAS	PPING AND RESOURCE INFORMATION	(AUTHORITY
CERTIFICATION To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follow Province: NEGROS OCCIDENTAL Station Name: NGW-87 Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 393.14800 m MGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 56.30851" Ellipsoidal Hgt: 393.14800 m MGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 56.30851" Ellipsoidal Hgt: 393.14800 m MGS84 Coordinates Northing: 1,143,192.39 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Caniaon road. Mark is the h			May 09, 20
To whom it may concern: This is to certify that according to the records on file in this office, the requested survey information is as follow Province: NEGROS OCCIDENTAL Station Name: NGW-87 Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516216.608 m. Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007, NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071		CERTIFICATION	
This is to certify that according to the records on file in this office, the requested survey information is as follow Province: NEGROS OCCIDENTAL Station Name: NGW-87 Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 87796117 A T.N.: 2014-1071	To whom it may concern:		evented evenue information is as follow
Province: NEGROS OCCIDENTAL Station Name: NGW-87 Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: \$795117 A T.N.: 2014-1071	This is to certify that according to	the records on hie in this office, the re	quested survey information is as follow
Island: VISAYAS Order: 2nd Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Ellipsoidal Hgt: 333.32600 m Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates WGS84 Coordinates Ellipsoidal Hgt: 393.14800 m Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement puty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 T.N.: 2014-1071 The SELEN, MNSA Director, Mapping And Geodesy Branch G		Province: NEGROS OCCIDENTAL	
Island: VISAYAS Barangay: BALUCANAG Municipality: LA CASTELLANA PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071		Order: 2nd	0
PRS92 Coordinates Latitude: 10° 20' 32.34942" Longitude: 123° 8' 53.05808" Ellipsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071	Island: VISAYAS Municipality: LA CASTELLANA		Barangay: BALUCANAG
Latitude: 10° 20° 32.34942" Longitude: 123° 8° 53.05808" Empsoidal Hgt: 333.32600 m WGS84 Coordinates Latitude: 10° 20° 28.15138" Longitude: 123° 8° 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 The station is on Geodesy Branch		PRS92 Coordinates	Ellipsoidal Mater and appead -
WGS84 Coordinates Latitude: 10° 20' 28.15138" Longitude: 123° 8' 58.30851" Ellipsoidal Hgt: 393.14800 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement puty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 PMC RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch	Latitude: 10° 20' 32.34942"	Longitude: 123° 8' 53.05808"	Ellipsoidal rigt: 333.32600 ff
Latitude: 10" 20" 28.15138" Longitude: 123" 6 56.30651 Empsodular rigt: 353.14600 m PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 For RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch	1	WGS84 Coordinates	Ellineoidal Hot 303 14900 m
PTM Coordinates Northing: 1143593.27 m. Easting: 516216.608 m. Zone: 4 UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071	Latitude: 10° 20' 28.15138"	Longitude: 123* 8 56.30651	Elipsoidal rigi. 535.14000 il
UTM Coordinates Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071	Northing: 1143593 27 m	Fasting: 516216.608 m.	Zone: 4
Northing: 1,143,192.99 Easting: 516,210.93 Zone: 51 Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 Proc. RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch	Northing. Theorem.	UTM Coordinates	
Location Description NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 TRUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch	Northing: 1,143,192.99	Easting: 516,210.93	Zone: 51
NGW-87 The station is at the SE side of Moises Padilla-Canlaon road. Mark is the head of a 4" copper nail drilled and grouted at the center of a 30 x 30 cm. cement putty embedded on top of the headwall with inscriptions "NGW-87; 2007; NAMRIA". The station is on the SE side of the road, NE of the wooden electric post. Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch		Location Description	
5	NGW-87 The station is at the SE side of Moise grouted at the center of a 30 x 30 cm 2007; NAMRIA". The station is on the Requesting Party: UP DREAM Pupose: Reference OR Number: 8796117 A T.N.: 2014-1071	s Padilla-Canlaon road. Mark is the h cement putty embedded on top of th SE side of the road, NE of the woodd SE side of the road, NE of the woodd	ead of a 4" copper nail drilled and e headwall with inscriptions "NGW-87; an electric post. RUEL DM. BELEN, MNSA ctor, Mapping And Geodesy Branch

Figure A-2.1. NGW-87

2. NGW-71

					May 02, 201
		CE	RTIFICATION		
To whom it may concer	m:				
This is to certify that	at according to th	e records on	file in this office, the requ	ested survey inform	ation is as follows
	P	rovince: NEO	GROS OCCIDENTAL		
		Station I	Name: NGW-71		
Island: VICAVAC		Orde	r: 2nd		
Municipality: SAN C/	ARLOS CITY	MSL Elev	ation: S92 Coordinates		
Latitude: 10° 28' 7	.24860"	Longitude	123° 23' 9.39223"	Ellipsoidal Hgt:	6.95200 m.
		WG	S84 Coordinates		
Latitude: 10° 28' 3	.03883"	Longitude	123° 23' 14.62992"	Ellipsoidal Hgt:	67.06800 m.
		PTM/	PRS92 Coordinates		
Northing: 1157590.	664 m.	Easting:	542251.123 m.	Zone: 4	
		UTM/I	PRS92 Coordinates		
Northing: 1,157,18	5.49	Easting:	542,236.34	Zone: 51	
		Loca	tion Description		
NGW-71 Station is located on the Highway) and is about 2 and grouted at the cent nscriptions "NGW-71, 2	e SW end of Hig 2.1 km NE of Gu er of a 30cm x 3 2007, NAMRIA*.	alaman Bridg adalupe Eler 0cm cement	e at KM 148+364.5 of C. nentary School. Mark is the putty embedded on top of	L. Ledesma Sr. Ave he head of a 4 inch of f the concrete sidew	nue (National copper nail drilled alk with
Requesting Party: Me	rlin Fernando				
OR Number: 394	43035 I			0	r
r.n.: 201	16-1023		Director,	JEL DM. BELEN, M Mapping And Geod	INSA lesy Brandby
					44

Figure A-2.2 NGW-71

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. BM-105

Table A-3.1. BM-105

			Processing S	Summary				
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
NGW-71 BM-105 (B2)	NGW-71	BM-105	Fixed	0.005	0.021	199*27'15*	35093.173	1.217
NGW-71 BM-105 (B1)	NGW-71	BM-105	Fixed	0.007	0.018	199*27'15*	35093.176	1.255

	Acceptance	e Summary			
Processed	Passed	Flag	P	Fall	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	NGW-71					
	Grid		Local		G	lobal
Easting	542236.335 m	Latitude	N10°28'07.24860"	Latitude		N10°28'03.03883"
Northing	1157185.487 m	Longitude	E123*23'09.39223*	Longitude		E123*23'14.62992"
Elevation	5.212 m	Height	6.952 m	Height		67.068 m
To:	BM-105					
	Grid		Local		G	liobal
Easting	530592.956 m	Latitude	N10*10'10.15714"	Latitude		N10°10'06.01438"
Northing	1124094.428 m	Longitude	E123°16'45.42883"	Longitude		E123°16'50.69386"
Elevation	6.800 m	Height	8.169 m	Height		68.712 m
Vector						
ΔEasting	-11643.37	9 m NS Fwd Azin	nuth	199*27*15*	ΔX	6501.694 m
ΔNorthing	-33091.05	9 m Ellipsold Dist	L _N 13	35093.173 m	ΔY	11372.505 m
ΔElevation	1.58	8 m AHeight		1.217 m	ΔZ	-32556.444 m

Standard Errors

Vector errors:					
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0*00'00*	σΔΧ	0.006 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.009 m
σ ΔElevation	0.011 m	σΔHeight	0.011 m	σΔΖ	0.002 m

2. BM-107

Table A-3.2. BM-107

			i roooonig	ourning				
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
BM-107 BM-105 (B2)	BM-105	BM-107	Fixed	0.004	0.010	15°21'48"	1705.117	-3.174
BM-105 BM-107 (B1)	BM-105	BM-107	Fixed	0.005	0.010	15°21'46"	1705.127	-3.150

Processing Summary

Acceptance Summary

Processed	Passed	Flag	P	Fall	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	BM-105				/			
	Grid		Loc	al	Global			
Easting	530592.944 m	Latit	ude	N10°10'10.15725"	Latitude		N10°10'06.01449"	
Northing	1124094.431 m	Long	gitude	E123*16'45.42846"	Longitude		E123°16'50.69348"	
Elevation	6.821		ht	8.190 m	Height		68.734 m	
To:	BM-107							
	Grid		Loc	al	Global			
Easting	531043.102 m	Latit	ude	N10°11'03.67387"	Latitude		N10°10'59.52767"	
Northing	1125738.367 m	Long	gitude	E123*17'00.26984"	Longitude		E123°17'05.53352"	
Elevation	3.639 m	Helg	ht	5.017 m	Height		65.536 m	
Vector								
ΔEasting	450.15	57 m	NS Fwd Azimuth		15°21'48"	ΔX	-216.491 m	
ΔNorthing	1643.93	86 m	Ellipsoid Dist.		1705.117 m	ΔY	-493.353 m	
ΔElevation	-3.18	32 m .	∆Height		-3.174 m	ΔZ	1617.767 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0"00'00"	σΔΧ	0.003 m
σΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.004 m
σ ΔElevation	0.005 m	σΔHeight	0.005 m	σΔΖ	0.002 m

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation		
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP		
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI S. SARMIENTO	UP-TCAGP		
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ			
Survey Supervisor	Supervising Science Re-	LOVELY GRACIA ACUÑA	UP-TCAGP		
<i>,</i> ,	search Specialist (Super- vising SRS)	LOVELYN ASUNCION			
	Senior Science Research Specialist (SSRS)	ENGR. CHRISTOPHER JOAQUIN	UP-TCAGP		
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP		
LiDAR Operation		GRACE SINADJAN	UP-TCAGP		
	Research Associate (RA)	FOR. VERLINA TONGA			
		JONALYN GONZALES			
Cround Survey	DA	LANCE KERWIN CINCO	UP-TCAGP		
Ground Survey	KA	ENGR. KENNETH QUISADO			
LiDAD Operation	Airborne Coqurity	SSG. LEE JAY PUNZALAN	PILIPPINE AIR		
LIDAR Operation	Airborne Security	SSG. RAYMUND DOMINIE	FORCE (PAF)		
		CAPT. JEFFREY JEREMY ALAJAR	ASIAN		
LiDAR Operation	Pilot	CAPT. JERICO JECIEL	AEROSPACE CORPORATION		
		CAPT. BRYAN DONGUINES			
		CAPT. RANDY LAGCO	(AAC)		

Table A-4.1. The LiDAR Survey Team Composition

plain
Flood
ibertad
t for]
Sheet
Transfer
Data
Annex 5.

AN	BERVER	KON.	UA Z'Natiome_Rawl	UA Z'Neborne_Rawl	4A Z'MBorne Rawl	VA Z'Netome Reef	UA Z'Natione_Pawt	UA Z'MITOTHE Rawl	VA Z'Metome_Rawl	VA ZVAtome_Rew/	NA Z'Autome_Rawt	NA Z'MTOOME_Raw	NA Z'Mittome_Raw	NA Z'Weborne_Plant	NA Z'Mitome_Rant	
PLUGHT PL		Actual	90/15/52/56	000000	27/36465 A	20.9	144130710	144/1327/10	114 0	9	1	60.3	8148003/23	8	119	•
	OPURATION LOOD		143	140	140	143	103	143	140	100	100	103	193	1938	143	
-		Base hate (.tel)	100	103	100	103	140	110	143	110	1900	00	000	160	143	410
ATA BAAR		BASE BTATIONER	7.54MB	0.74MB	7.32MB	6.12	14.4	14.4	7.14	6.21	11.4	11.4	0.0	2,18	0.42	5/26/20
	CAUTURE .		NV.	NA	12	YN.	NV.	NA.	W	NA	NN.	N.	12	NA	NA	KICTO X
	BANNE		1.42	597	8.26	25.7	292	27.8	19.6	30.5	27.2	16.6	26.3	111	8.0	- Ale
MANON	100	1008	10	2	8	5	8	8	5	5	3	1.0	5	5	×	IdioC
	MADERICA		545	31.5	6.09	1	513	8	12	12	2	21.5	2	2	N	Received b Name Presiden Signature
	NON		8	ā	8	510	-	1.5	R	N.	243	25	8	287	148	
	LOOKUMIN		13.3	10.0	14.1	10.6	12	12.8	*	14.4	11.5	7.34	13.2	14.6	6.69	
	M LAG	FORL (Sweth)	207843	8943	212193	661H3	161293	1662	712	1362	800	105	000	115	249	1
1	2	Output	2,6908	1	32708	2.7308	3.11	3.04		3.45	242	19	3.05	3.23	202403	Hay
	SCHOOL		PEGASUS	PEONGUS	PEONGUS	PEONSUS	PEOASUS	PEOAGUS	PEONSUS	PEONSUIS	PEGASUS	PEONGUG	PEONBUS	PEONSUS	PEONSUS	7.50
	MINTEON NAME		16UX44DE119A	18LK44D121A	18LK44H122A	1BUX45E125A	18UK44GHS126A	1BUX44FG51268	1BUX44D5127A	18UK45FG130A	18UK455132A	18UK45DFG5133A	1H45234A	11415336A	1HLX137A	tectred from Nena Notice Equators
F	PLONE	ŝ	4004	4119	4150	4279	4104	14330	14309	144770	1451P	1453P	1404P	14500	14030	
	DATE		\$/29/2014	S/1/2014	\$/2/2014	S/5/2014	\$/6/2014	\$/6/2014	S/7/2014	5/10/2014	5/11/2014	5/11/2014	\$/12/2014	\$/13/2014	5/14/2014	

Figure A-5.1. Transfer Sheet for Libertad Floodplain - A

			RAW	LAS				MISSION LOG			BASE ST.	ATION(S)	OPERATOR	FLIGHT	IPLAN	
THT NO.	MISSION NAME	SENSOR	Output LAS	KOML (swath)	LOGS	POS	INAGESICASI	FILECASI LOOS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (Jul)	100100	Actual	KML	LOCATION
453AC	3BLK44AS113A	NOUNCASI	NA	343	769	246	W	MA	13.9	101	99.1	1KB	1KB		2	Z-IDACIRAW DATA
MSSAC	3BLK44AS114A	AQUACASI	¥2	247	690	233	38.5	43	10.2	86.3	16	193	1108	20	8	Z-IDACIRAW DATA
8457AC	3BLK44ED5115A	ADUACASI	NA.	197	544	222	39.6	221	8.64	66.9	94	1KB	1KB	07	22	Z-IDACRAW DATA
8459AC	3BLK44US116A	AQUACASI	Ň	240	603	262	43.4	248	10.3	66.5	100	1KB	1KB	18	38	Z-IDACIRAW DATA
8462AC	3BLK46AS117B	AQUAICASI	ž	194	502	523	37.4	187	8.59	67.4	202	1KB	1KB	8	20	Z-IDACIRAW DATA
8464AC	3BLK46AS118B	AQUACASI	ž	81	209	143	9.78	3.23	4	23.9	158	1KB	1KB	8	8	Z-IDACIRAW DATA
8471AC	3BLK44FGHS122A	AQUACASI	ž	181	195	241	45.3	203	8.33	139	90.5	1KB	1KB	20	22	Z-IDACIRAW DATA
8473AC	38LK46AS123A	AQUAICASI	ž	8	320	206	5.45	3.7	4.50	6.85	64.6	1KB	YN	16	22	Z-IDACIRAW DATA
			Receive	of from					Receiv	red by						
			Namo	R. PWW	e				Name AC	Bongol						

DATA TRANSFER SHEET BACOLOD \$118/2016

5 Position Signature

Protein SSRS Square 108-00 5120/16

Figure A-5.2. Transfer Sheet for Libertad Floodplain - B

Annex 6. Flight logs for the flight missions

1. Flight Log for 1451P Mission

	G				
LUDAR Operator: J. Au	VI MK 2 ALTM Model: PECEMENT	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: Re- 09132
Pilot: J. ALANK	S Co-Pilot: B. Powen MR	9 Route:	TERMS OCC.		
10 Date: MANY 11 , 161	12 Airport of Departure (Airport, Gty/Province):	12 Airport of Arrival	(Airport, City/Province): B Acolos	
13 Engine On: 10+19	14 Engine Off: 14 4 4 45	15 Total Engine Time: 4 + 11	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	purtly chand	6			
21 Problems and Solution	Mettine 1	1			
Acquisition Filefy T as burnes Sepanture over Pri-	Approved by Acquired by Acquir	isition Flight Certified by Dury of Durandon Dury of Durandon	PlatinCo	mand All All And All	Udar Operator Jauming Offician Signature over Printed Name

Figure A-6.1. Flight Log for Mission 1451P

2. Flight Log for 1453P Mission

Int Log No.: 141	RP - 04021]
116	6 Aircraft Identification:			18 Total Flight Time:			Udar Operator Dev. A. Consign
	S Aircraft Type: Cesnna T206H		Airport, City/Province): 214-cete d	17 Landing:			and a A rtt ar Pound Nume
	4 Type: VFR	Pot 040.	12 Airport of Arrival ()	16 Take off:			Pilot-in-Com
	3 Mission Name:	9 Route: 4 wa	Urport, City/Province):	15 Total Engine Time:		L	ation Flight Certified by No. C. Mandanan No. C. Mandanan Representative)
	ALTM Model: PWENNUC	C. B. DUNDAN ANK	2 Airport of Departure ()	e Off: 18+39	wely claudy	Algdion Smeeter	Aroun Bigas
Flight Log	. ALBUNNO 2	8 Co-Pilo	Tord	a 14 Engin	-	a	Might Approved by
and an a second state of the second	UDAR Operator: D	Pliot: J. Auntant	0 Date: www.u	3 Engine On: US 4-4	9 Weather	0 Remarks: 21 Problems and Sol	Acquisition Jection

Figure A-6.2. Flight Log for Mission 1453P

ngine Off: Buulbd- Li	Route: rport, Gty/Province): Sotal Engine Time:	12 Altport of Arrival (A 12 Altport of Arrival (A 16 Take off: 26 Take off:	5 Alircraft Type: Cesnna T206H (port, City/Province): 11 Lahding: x 2	6 Aircraft Identification: 9520- 18 Total Filight Time:
				8448
ion Billuble 21 O Aircraft Test Flight O Ahrcadmin Filght O Others:	D.C Others O. LIDAR System Mainten O. Alicraft Maintenance O. Phil-LIDAR Admin Activ	21 Remarks ance Libreed	BUE UPP KCOM FULTS	of BirthAs
Acquisition Flight Certified	Plessie	6		
LEE JAY P ANN SURGUR OVER PARKED NAME PARK REPRESENTATIVE)	Belgen Entrop	A Marine	Udar Operator Carter St. C. S. Manuel Stemature over Printed Name	Averaft Machanic/ Technicium

Figure A-6.4. Flight Log for Mission 8464AC

101

Figure A-6.5. Flight Log for Mission 8473AC

Annex 7. Flight status reports

Table A-7.1. Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1451P	BLK 46A	1BLK46A131A	J. Alviar	May 11	Surveyed half of BLK 46A
1453P	BLK 46A	1BLK46AS131B	D. Aldovino	May 11	Surveyed remaining half of BLK 46A
8462AC	BLK46AS	3BLK46As117B	V. Tonga	APR 26	Surveyed parts of Blk46As
8464AC	BLK46AS	3BLK46AS118B	J. Gonzales	APR 27	Surveyed parts of Blk46As
8473AC	BLK46AS	3BLK46AS123A	J. Gonzales	MAY 02	Surveyed Blk46As

Negros Occidental May 11, 2014 and April 26 to May 2, 2016

SWATH PER FLIGHT MISSION

Flight No. :	1451P
Area:	BLK 46A
Mission Name:	1BLK46A131A
Area Surveyed:	186.25 sq.km.

Figure A-7.1. Swath for Flight No. 1415P

Flight No. :	1453P
Area:	BLK 46A
Mission Name:	1BLK46AS131B
Area Surveyed:	183.49 sq.km.

Figure A-7.2. Swath for Flight No. 1453P

Flight No. :	8462AC
Area:	BLK46AS,BLK46KS
Mission Name:	3BLK46As117B
Altitude:	500m
Scan Frequency:	45
Scan Angle:	18
Overlap:	55 %
PRF:	50kHz
Area Surveyed:	53 sq km

Figure A-7.3. Swath for Flight No. 8462AC

Flight No. :	8464AC
Area:	BLK46AS,BLK44KS
Mission Name:	3BLK46AS118B
Altitude:	500m
Scan Frequency:	50
Scan Angle:	20
Overlap:	25-40%
PRF:	50kHz
Area Surveyed:	19 sq km

Figure A-7.4. Swath for Flight No. 8464AC

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :	8473AC
Area:	BLK46AS
Mission Name:	3BLK46AS123A
Altitude:	500m
Scan Frequency:	45
Scan Angle:	18
Overlap:	30%
PRF:	50kHz
Area Surveyed:	22 sg km

Figure A-7.5. Swath for Flight No. 8473AC

ANNEX 8. Mission Summary Reports

Flight Area	Negros
Mission Name	BIk46A
Inclusive Flights	1451P, 1453P
Range data size	43.8 GB
POS	413 MB
Image	21.5 GB
Transfer date	May 26, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.93
RMSE for East Position (<4.0 cm)	1.15
RMSE for Down Position (<8.0 cm)	2.28
Boresight correction stdev (<0.001deg)	0.000266
IMU attitude correction stdev (<0.001deg)	0.001576
GPS position stdev (<0.01m)	0.0092
Minimum % overlap (>25)	57.62%
Ave point cloud density per sq.m. (>2.0)	6.28
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	436
Maximum Height	61.30
Minimum Height	750.91
Classification (# of points)	
Ground	346,965,657
Low vegetation	284,586,296
Medium vegetation	504,136,177
High vegetation	250,658,066
Building	7,285,413
Orthophoto	Yes
Processed by:	Engr. Jennifer Saguran, Engr. Mark Joshua Salvacion, Engr. Gladys Mae Apat

Table A-8.1. Mission Summary Report for Mission Blk64A

Figure A-8.1 Solution Status

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Bacolod
Mission Name	Block 46A
Inclusive Flights	8462AC, 8464AC, 8473AC
Range data size	8.59 GB
POS data size	229 MB
Base data size	158
Image	37.4
Transfer date	May 20, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.702
RMSE for East Position (<4.0 cm)	4.120
RMSE for Down Position (<8.0 cm)	9.98
Boresight correction stdev (<0.001deg)	0.000219
IMU attitude correction stdev (<0.001deg)	0.003368
GPS position stdev (<0.01m)	0.0019
Minimum % overlap (>25)	35.19
Ave point cloud density per sq.m. (>2.0)	4.96
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	82
Maximum Height	515.79
Minimum Height	52.78
Classification (# of points)	
Ground	65,017,829
Low vegetation	45,666,863
Medium vegetation	41,070,217
High vegetation	89,270,904
Building	2,636,013
Orthophoto	None
Processed by:	Engr. Sheila-Maye Santillan, Engr. Ma. Joanne Balaga, Maria Tamsyn Malabanan

Table A-8.2. Mission Summary Report for Mission Blk46A

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Parameters
Basin
Model
ibertad
nnex 9. I
V

Table A-9.1. Libertad Model Basin Parameters

	SCS Curve	Number L	oss Model	Clark Transfo	irm Model		Recessi	on Constant E	3aseflow Model	
Basin Number	Initial Abstraction	Curve Number	Impervious	Time of Concentration	Storage Coefficient	Initial Type	Initial Discharge	Recession Constant	Threshold Type	Ratio to Peak
W400	11.24	59.502	0	14.012	3.2491	Discharge	0.3994	0.2	Ratio to Peak	0.001
W410	13.995	54.595	0	8.0705	0.29297	Discharge	0.25522	0.2	Ratio to Peak	0.001
W420	3.968	41.024	0	0.72185	0.6113	Discharge	0.49134	0.22604	Ratio to Peak	0.001
W430	10.103	61.786	0	7.9363	3.3235	Discharge	0.1701	0.15	Ratio to Peak	0.001
W440	11.085	95.368	0	42.889	2.5765	Discharge	0.0296559	0.15	Ratio to Peak	0.001
W450	9.3342	37.135	0	22.618	0.69034	Discharge	0.22493	0.15	Ratio to Peak	0.001
W460	8.9846	35.18	0	44.669	2.4347	Discharge	0.1054	0.15	Ratio to Peak	0.001
W470	9.3346	54.589	0	20.829	2.6761	Discharge	0.27572	0.2	Ratio to Peak	0.001
W480	9.3324	54.589	0	4.6449	0.13522	Discharge	0.68126	0.33208	Ratio to Peak	0.001
W490	8.6739	55.097	0	13.498	3.3755	Discharge	0.0116928	0.2	Ratio to Peak	0.0010165
W500	8.2749	89.289	0	49.476	4.208	Discharge	0.0190173	0.15	Ratio to Peak	0.0010151
W510	9.0522	55.292	0	37.163	5.6748	Discharge	0.28626	0.2	Ratio to Peak	0.001
W520	18.87	50.411	0	19.551	0.58623	Discharge	0.0031627	0.2	Ratio to Peak	0.001
W530	2.9667	71.321	0	4.8512	0.36282	Discharge	0.23374	0.2	Ratio to Peak	0.001
W540	8.2605	57.791	0	4.5794	0.2604	Discharge	0.33848	0.2	Ratio to Peak	0.001
W550	9.3346	56.196	0	24.885	1.6171	Discharge	0.0222474	0.2	Ratio to Peak	0.001
W560	8.8094	37.135	0	20.915	1.7189	Discharge	0.019109	0.2	Ratio to Peak	0.001
W570	10.424	76.109	0	33.962	2.1061	Discharge	0.42116	0.2205	Ratio to Peak	0.001
W580	3.9142	69.305	0	9.9283	0.0412646	Discharge	0.23123	0.2	Ratio to Peak	0.001
W590	3.9353	66	0	0.0639556	0.0321541	Discharge	0.0089144	0.2	Ratio to Peak	0.001
W600	13.348	74.716	0	3.1371	0.33366	Discharge	0.86416	0.2	Ratio to Peak	0.001
W610	2.8994	46.236	0	33.392	0.0303017	Discharge	1.284	0.15044	Ratio to Peak	0.001

0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Ratio to Peak															
0.2	0.15	0.2	0.2	0.76233	0.15	0.2	0.15	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.15
0.38005	0.34259	0.62555	0.72612	1.3064	0.1346	1.4699	0.66254	0.31162	0.33964	0.25508	0.59535	0.74524	0.25414	0.18001	0.1959
Discharge															
0.53649	0.13781	0.0414817	0.39856	3.3529	0.38057	0.70356	4.1333	1.7124	0.7404	0.0384996	0.0401893	0.27936	0.54887	2.6485	0.58137
0.37453	5.3003	6.124	1.1487	40.075	43.859	4.8169	4.2847	52.456	22.382	4.1419	1.1152	0.10381	3.4387	16.274	51.831
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
97.02	55.41	77.018	73.513	64.595	43.852	45.087	72.612	66	61.203	74.881	74.136	78.946	60.169	59.938	53.426
8.7819	3.0974	4.1823	5.8918	9.1949	3.592	3.8184	7.0576	9.7823	5.8158	4.0979	3.603	10.534	9.7735	6.3499	25.288
W620	W630	W640	W650	W660	W670	W680	W690	W700	W710	W720	W730	W740	W750	W760	W770

	Side Slope	1	Ţ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Width	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	Shape	Trapezoid																		
Routing Model	Manning's n	0.058474	0.30526	0.061484	0.136	0.061364	0.091308	0.090317	0.13633	0.13664	0.090108	0.20442	0.090887	0.13684	0.13676	0.13696	0.060536	0.086498	0.060554	0.13652
Muskingum Cunge	Slope	0.0001	0.056111	0.091224	0.019018	0.040481	0.002864	0.0001	0.0001	0.0001	0.0001	0.056182	0.00189	0.009075	0.0001	0.012458	0.022956	0.008573	0.018006	0.020662
	Length (m)	492.6	5321	317.3	443.1	5220	2543	42.43	84.85	208	1418	4125	1133	1417	523.1	5759	10915	2930	1624	3066
	Time Step Method	Automatic Fixed Interval																		
-	Keacn Number	R110	R150	R160	R200	R210	R220	R240	R250	R270	R280	R290	R30	R320	R330	R340	R370	R50	R70	R90

Parameters
Reach
Model
Libertad]
10.
Annex

Annex 11. Libertad Field Validation Points

Point	Validation	Coordinates	Model Var	Validation	F amor (m)	Event (Dete	Return Period of Event	
Number	Longitude	Latitude	(m)	Points (m)	Error (m)	Event / Date		
1	123.21227	10.045751	0.78	1.2	0.1764	Pepang	100-Year	
2	123.21227	10.045751	0.78	1.2	0.1764	Nitang	100-Year	
3	123.2123	10.04577	0.94	0	0.8836	Seniang	100-Year	
4	123.21313	10.046482	1.7	0.5	1.44	Quennie	100-Year	
5	123.21313	10.046482	1.7	0.5	1.44	Ruping	100-Year	
6	123.21327	10.046509	2.09	0	4.3681	Ondoy	100-Year	
7	123.21291	10.046497	1.74	1.2	0.2916	Seniang	100-Year	
8	123.21291	10.046497	1.74	1.2	0.2916	Quennie	100-Year	
9	123.21292	10.04649	1.74	1.8	0.0036	Ruping	100-Year	
10	123.2131	10.046407	1.7	0.5	1.44	Pablo	100-Year	
11	123.21326	10.045727	2.2	1.8	0.16	Ruping	100-Year	
12	123.21326	10.045727	2.2	1.8	0.16	Quennie	100-Year	
13	123.21351	10.045213	2.1	1.2	0.81	Quennie	100-Year	
14	123.21351	10.045213	2.1	1.2	0.81	Seniang	100-Year	
15	123.21351	10.045213	2.1	1.2	0.81	Ruping	100-Year	
16	123.21351	10.045213	2.1	1.2	0.81	Ondoy	100-Year	
17	123.2128	10.04418	1.07	1.8	0.5329	Nitang	100-Year	
18	123.21295	10.044135	1.17	0.5	0.4489	Quennie	100-Year	
19	123.21301	10.044134	2.34	0	5.4756	Ondoy	100-Year	
20	123.21276	10.041113	1.02	0.8	0.0484	Seniang	100-Year	
21	123.21267	10.041177	1	0.5	0.25	Pepang	100-Year	
22	123.21267	10.041177	1	0.5	0.25	Ondoy	100-Year	
23	123.21287	10.041197	0.93	1.2	0.0729	Seniang	100-Year	
24	123.21576	10.038912	0.56	0.5	0.0036	1949 Typhoon	100-Year	
25	123.21587	10.038993	0.51	0.9	0.1521	Nitang	100-Year	
26	123.23217	10.028292	7.05	0.1	48.3025	Seniang	100-Year	
27	123.23256	10.028303	10.63	0	112.9969	Seniang	100-Year	
28	123.23256	10.028367	10.63	0	112.9969	Nitang	100-Year	
29	123.23256	10.028367	10.63	0	112.9969	Ruping	100-Year	
30	123.23251	10.028374	10.58	0	111.9364	Ondoy	100-Year	
31	123.23251	10.028374	10.58	0	111.9364	Yolanda	100-Year	
32	123.21202	10.067391	4.66	1.9	7.6176	Ruping	100-Year	
33	123.21207	10.067443	4.66	1	13.3956	Yolanda	100-Year	
34	123.21208	10.067463	4.66	1.8	8.1796	Ruping	100-Year	
35	123.20884	10.053492	3.76	0.6	9.9856	Ruping	100-Year	
36	123.20898	10.053116	3.82	0.9	8.5264	Ruping	100-Year	
37	123.20896	10.053098	3.82	0.5	11.0224	Seniang	100-Year	
38	123.20887	10.05292	3.97	0.85	9.7344	Ruping	100-Year	
39	123.20856	10.052886	5.21	0.55	21.7156	Yolanda	100-Year	
40	123.20915	10.052668	3.4	0.1	10.89	Seniang	100-Year	
41	123.20915	10.05263	3.44	0.8	6.9696	Ruping	100-Year	

					1		
42	123.21052	10.050949	2.9	0.8	4.41	Seniang	100-Year
43	123.21043	10.050989	3.05	1.5	2.4025	Ruping	100-Year
44	123.21053	10.051427	2.88	2	0.7744	Ruping	100-Year
45	123.21058	10.051423	2.72	0.9	3.3124	Yolanda	100-Year
46	123.21052	10.051277	2.62	0.2	5.8564	Seniang	100-Year
47	123.21755	10.044382	1.36	0.4	0.9216	Amang	100-Year
48	123.21738	10.044177	1.6	0.95	0.4225	Nitang	100-Year
49	123.21697	10.044217	4.22	1.6	6.8644	Ruping	100-Year
50	123.21659	10.044977	1.54	0.5	1.0816	Amang	100-Year
51	123.21689	10.044369	3.86	0.5	11.2896	Amang	100-Year
52	123.21702	10.044214	1.93	0.4	2.3409	Karen	100-Year
53	123.22831	10.030704	6.25	0.6	31.9225	ITCZ	100-Year
54	123.22831	10.030736	6.25	1.9	18.9225	Nitang	100-Year
55	123.2276	10.031335	5.46	1.25	17.7241	Ruping	100-Year
56	123.2276	10.031355	5.46	0.4	25.6036	Yolanda	100-Year
57	123.22762	10.03126	5.5	1.25	18.0625	Nitang	100-Year
58	123.22777	10.031164	5.98	1.3	21.9024	Pepang	100-Year
59	123.22777	10.031164	5.98	1.3	21.9024	Ruping	100-Year
60	123.228	10.031049	5.99	0.5	30.1401	Yolanda	100-Year
61	123.23069	10.030536	6.97	0.38	43.4281	Seniang	100-Year
62	123.23069	10.030522	6.97	0.45	42.5104	Nitang	100-Year
63	123.23149	10.030513	6.84	0.95	34.6921	Yolanda	100-Year
64	123.23152	10.030533	6.9	0.95	35.4025	Nitang	100-Year
65	123.23152	10.030511	6.9	0.85	36.6025	Seniang	100-Year
66	123.23263	10.029301	7.55	0.3	52.5625	Yolanda	100-Year
67	123.2326	10.029304	7.62	1	43.8244	Ruping	100-Year
68	123.2326	10.0293	7.62	1	43.8244	Nitang	100-Year
69	123.23244	10.029326	7.78	2	33.4084	Ruping	100-Year
70	123.23241	10.029341	7.67	2	32.1489	Nitang	100-Year
71	123.23243	10.029329	7.78	0.2	57.4564	Seniang	100-Year
72	123.2321	10.029344	7.65	0.3	54.0225	Seniang	100-Year
73	123.23413	10.029214	7.69	0.6	50.2681	Nitang	100-Year
74	123.23411	10.029243	7.69	0.6	50.2681	Ruping	100-Year

Annex 12. Educational Institutions affected by flooding in Libertad Floodplain

There are no educational institutions affected by flooding in this river basin.

Annex 13. Medical Institutions affected by flooding in Libertad Floodplain

BOHOL									
LIBERTAD									
Duilding Nome	Demonstrativ	Rainfall Scenario							
	вагапдау	5-year	25-year	100-year					
Health Center	Cantupa	High	High	High					
Lying In Paanakan	Cantupa	High	High	High					

Table A-13.1. Medical Institutions in Libertad, Bohol affected by flooding in Libertad Floodplain