Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Ipil River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Ipil River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-174pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-181-2

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	viii
CHAPTER 1: OVERVIEW OF THE PROGRAM AND IPIL RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	
1.2 Overview of the Ipil River Basin	1
CHAPTER 2: LIDAR DATA ACOUISITION OF THE IPIL FLOODPLAIN	
2.1 LiDAR Acquisition in Ipil Floodplain	
2.1.1 Flight Plans	
2.2 Ground Base Stations	5
2.3 Flight Missions	12
2.4 Survey Coverage	13
CHAPTER 3: LIDAR DATA PROCESSING FOR IPIL FLOODPLAIN	16
3.1 LiDAR Data Processing for Ipil Floodplain	16
3.1.1 Overview of the LiDAR Date Pre-Processing	16
3.2 Transmittal of Acquired LiDAR Data	17
3.3 Trajectory Computation	17
3.4 LiDAR Point Cloud Computation	19
3.5 LiDAR Data Quality Checking	19
3.6 LIDAR Point Cloud Classification and Kasterization	
3.7 LIDAR Image Processing and Orthopholograph Rectification	25
3.9 Mosaicking of Blocks	25
3.0 Calibration and Validation of Mosaicked LiDAR DEM	20
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	30
3.12 Feature Extraction	32
3.12.1 Quality Checking of Digitized Features' Boundary	32
3.12.2 Height Extraction	32
3.12.3 Feature Attribution	33
3.12.4 Final Quality Checking of Extracted Features	34
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE IPIL RIVER BASIN	35
4.1 Summary of Activities	35
4.2 Control Survey	36
4.3 Baseline Processing	38
4.4 Network Adjustment	39
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	41
4.6 Validation Points Acquisition Survey	47
4.7 River Bathymetric Survey	49
CHAPTER 5: Results and Discussion	53
5.1 Data Used for Hydrologic Modeling	53
5.1.1 Hydrometry and Rating Curves	53
5.1.2 Precipitation	53
5.1.5 Kdulig Curves and River Outnow	54
5.2 MMS Model	55
5.4 Cross-section Data	50
5.5 Flo 2D Model	60
5.6 Results of HMS Calibration	60
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	i 61
5.7.1 Hydrograph using the Rainfall Runoff Model	61
5.8 River Analysis (RAS) Model Simulation	62
5.9 Flow Depth and Flood Hazard	63
5.10 Inventory of Areas Exposed to Flooding	70
5.11 Flood Validation	103
REFERENCES	106

ANNEXES	107
Annex 1. Technical Specifications of the LIDAR Sensors used in the Ipil Floodplain Survey	107
Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	110
Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	113
Annex 4. The LIDAR Survey Team Composition	117
Annex 5. Data Transfer Sheet for Ipil Floodplain	118
Annex 6. Flight logs for the flight missions	120
Annex 7. Flight Status Reports	126
Annex 8: Mission Summary Reports	133
Annex 9. Ipil Model Basin Parameters	141
Annex 10. Ipil Model Reach Parameters	142
Annex 11. Ipil Field Validation Points	143
Annex 12. Educational Institutions Affected by flooding in Ipil Floodplain	147
Annex 13. Health Institutions affected by flooding in Ipil Flood Plain	148

LIST OF FIGURES

Figure 1.	Map of the Ipil River Basin in brown	1
Figure 2.	Flight plans and base stations used for the Ipil floodplain survey	4
Figure 3.	GPS set-up over BHL-63 in Hagbuyo Bridge in Brgy. Hagbuyo, San Miguel, Bohol	5
Figure 4.	GPS set-up over BHL-95 in Brgy. Tiguis, Lila, BohoL (a) and NAMRIA	
	reference point BHL-95 (b) as recovered by the field team	6
Figure 5.	GPS set-up over BHL-75 at Barangay Plaza of San Jose, Mabini, Bohol (a) and NAMRIA reference point BHL-75 (b) as recovered by the field team	7
Figure 6.	GPS set-up over established point 63A in Hagbuyo Bridge, Brgy, Hagbuyo,	
	San Miguel, Bohol (a)	8
Figure 7.	GPS set-up over established point 75A at the Basketball court in the Barangay Plaza of San Jose Mahini Bohol (a)	9
Figure 8.	GPS set-up over established point Hotel at Panda Tea Garden Suites Tagbilaran, Bohol (a).	10
Figure 9.	GPS set-up over established point EPHotel at Panda Tea Garden Suites	
0	Tagbilaran, Bohol (a)	11
Figure 10.	Actual LiDAR survey coverage for Ipil floodplain	15
Figure 11.	Schematic Diagram for Data Pre-Processing Component	16
Figure 12.	Smoothed Performance Metric Parameters of an Ipil Flight 765P	17
Figure 13.	Solution Status Parameters of Ipil Flight 765P	18
Figure 14.	The best estimated trajectory of the LiDAR missions conducted over the Ipil floodplain	18
Figure 15.	Boundary of the processed LiDAR data over Ipil Floodplain	19
Figure 16.	Image of data overlap for Ipil floodplain	20
Figure 17.	Density map of merged LiDAR data for Ipil floodplain	21
Figure 18.	Elevation difference map between flight lines for Ipil floodplain	22
Figure 19.	Quality checking for a Ipil flight 765P using the Profile Tool of QT Modeler	22
Figure 20.	Tiles for Ipil floodplain (a) and classification results (b) in TerraScan	23
Figure 21.	Point cloud before (a) and after (b) classification	24
Figure 22.	The production of last return DSIVI (a) and DTIVI (b), first return DSIVI (c)	24
E igura 22	and secondary DTM (d) in some portion of ipil floodplain	24
Figure 23.	Portions in the DTM of Ipil hoodplain – a mountain before (a) and (b) after data retrieval;	26
Figure 24	And a bridge before (c) before and alter (d) manual equiling	20 حد
Figure 24.	Map of Init Eload Diain with validation survey points in groop	/ ۲
Figure 25.	Correlation plot between calibration survey points and LiDAR data	20 20
Figure 20.	Correlation plot between validation survey points and LiDAR data	30
Figure 28	Man of Inil Flood Plain with hathymetric survey points shown in hlue	50 31
Figure 29.	Blocks (in blue) of Ipil building features that were subjected to OC	32
Figure 30.	Extracted features for Ipil floodplain	34
Figure 31.	Extent of the bathymetric survey (in blue) in Ipil River and the LiDAR data validation	
	survey (in red)	35
Figure 32.	GNSS Network covering Ipil River	36
Figure 33.	GNSS base set up, Trimble [®] SPS 882, at BHL-57 located along Ubay-Talibon Road,	
0	Brgy. Tanghaligue, Municipality of Talibon, Bohol	37
Figure 34.	NSS receiver setup, Trimble [®] SPS 882, at BHL-62 located along Ubay-Talibon Road,	
-	Brgy. Humayhumay, Municipality of Ubay, Bohol	37
Figure 35.	GNSS receiver setup, Trimble [®] SPS 852, at BH-393 located at the approach of Hinlayagan	
	Bridge, Brgy. Hinlayagan Ilaya, Municipality of Trinidad, Bohol	38
Figure 36.	Tugas Bridge facing upstream	41
Figure 37.	Bridge As-Built Survey using PPK Technique in Tugas Bridge	41
Figure 38.	Trinidad Bridge facing downstream	42
Figure 39.	Bridge As-Built Survey using PPK Technique in Trinidad Bridge	42
Figure 40.	Tugas Bridge cross-section diagram	43
Figure 41.	Tugas bridge cross-section location map	43
Figure 42.	Trinidad Bridge cross-section diagram	44
Figure 43.	Inniuau prioge cross-section location map	44
Figure 44.	Bridge as built form of Tripidad Bridge	45
Figure 45.	Mater-level markings on Tugas Bridge	40 71
Figure 40.	Water-level markings on Trinidad Bridge	4/ /7
Figure 47.	Validation points acquisition survey set up along Inil River Rasin	/ + גע
Figure 10	Validation point acquisition survey of Inil River Rasin	0+ ۸۷
- 15010 - 7.	vandation point acquisition survey of printiver basin	+0

Figure 50.	Bathymetric survey using OHMEX [™] single beam echo sounder in Ipil River	49
Figure 51.	Bathymetric survey of Ipil River	50
Figure 52.	Ipil Riverbed Profile, from Tugas Bridge in Brgy. Hinlayagan Ilaud upstream	51
Figure 53.	Ipil Riverbed Profile, from Tugas Bridge in Brgy. Hinlayagan Ilaud	52
Figure 54.	The location map of Ipil HEC-HMS model used for calibration	53
Figure 55.	Cross-Section Plot of Tugas Bridge	54
Figure 56.	Rating Curve at Tugas Bridge, Trinidad	54
Figure 57.	Rainfall and outflow data at Ipil used for modeling	55
Figure 58.	Tagbilaran Point RIDF location relative to Ipil River Basin	56
Figure 59.	Synthetic storm generated for a 24-hr period rainfall for various return periods	56
Figure 60.	The soil map of the Ipil River Basin used for the estimation of the CN parameter.	
	(Source of data: Digital soil map of the Philippines published by the Bureau of Soil	
F : C 4	and Water Management – Department of Agriculture)	57
Figure 61.	The land cover map of the Ipil River Basin used for the estimation of the CN and	
	watershed lag parameters of the rainfall-runo π model. (Source: National Mapping	
5:	The close were of the tril Diver Decir	5/
Figure 62.	The slope map of the Ipil River Basin	58
Figure 63.	Stream Delineation Map of Ipil River Basin	58
Figure 64.	The Ipil River Basin Model Domain generated through Argmen UEC CoopAS tool	59
Figure 65.	River cross-section of Ipil River generated through Arcmap HEC GeoRAS tool	59
Figure 66.	Outliow Hydrograph of Ipil produced by the HEC-Hivis model compared with observed	60
Figuro 67	Outflow bydrograph at Inil gonorated using Taghilaran DeintPIDE simulated in HEC HMS	00
Figure 67.	Sample output of Ipil PAS Model	02
Figure 60	100-year Elood Hazard Man for Inil Eloodalain	05 64
Figure 09.	100-year Flow Dopth Map for Ipil Floodplain	04 65
Figure 70.	25-year Flood Hazard Man for Inil Floodplain	05
Figure 71.	25-year Flow Depth Map for Init Floodplain	00
Figure 72.	5-year Flood Hazard Map for Ipil Floodplain	07
Figure 7/	5-year Flow Depth Map for Inil Floodplain	69
Figure 75	Affected Areas in Alicia, Bohol during 5-Year Rainfall Return Period	
Figure 76	Affected Areas in Rien Unido, Bohol during 5-Year Rainfall Return Period	70
Figure 77.	Affected Areas in Dagohov, Bohol during 5-Year Rainfall	72
Figure 78.	Affected Areas in Danao. Bohol during 5-Year Rainfall Return Period	73
Figure 79.	Figure. Affected Areas in Jetafe. Bohol during 5-Year Rainfall Return Period	74
Figure 80.	Affected Areas in Pilar, Bohol during 5-Year Rainfall Return Period	75
Figure 81.	Affected Areas in San Miguel, Bohol during 5-Year Rainfall Return Period	75
Figure 82.	Affected Areas in Talibon, Bohol during 5-Year Rainfall Return Period	77
Figure 83.	Affected Areas in Trinidad, Bohol during 5-Year Rainfall Return Period	78
Figure 84.	Affected Areas in Ubay, Bohol during 5-Year Rainfall Return Period	80
Figure 85.	Affected Areas in Alicia, Bohol during 25-Year Rainfall Return Period	81
Figure 86.	Affected Areas in Bien Unido, Bohol during 25-Year Rainfall Return Period	82
Figure 87.	Affected Areas in Dagohoy, Bohol during 25-Year Rainfall	83
Figure 88.	Affected Areas in Danao, Bohol during 25-Year Rainfall Return Period	84
Figure 89.	Affected Areas in Jetafe, Bohol during 25-Year Rainfall Return Period	85
Figure 90.	Affected Areas in Pilar, Bohol during 25-Year Rainfall Return Period	86
Figure 91.	Affected Areas in San Miguel, Bohol during 25-Year Rainfall Return Period	86
Figure 92.	Affected Areas in Talibon, Bohol during 25-Year Rainfall Return Period	88
Figure 93.	Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period	89
Figure 94.	Affected Areas in Ubay, Bohol during 25-Year Rainfall Return Period	91
Figure 95.	Affected Areas in Alicia, Bohol during 100-Year Rainfall Return Period	92
Figure 96.	Affected Areas in Bien Unido, Bohol during 100-Year Rainfall Return Period	93
Figure 97.	Affected Areas in Dagohoy, Bohol during 100-Year Rainfall	94
Figure 98.	Affected Areas in Danao, Bohol during 100-Year Rainfall Return Period	95
Figure 99.	Affected Areas in Jetafe, Bohol during 100-Year Rainfall Return Period	96
Figure 100	Affected Areas in Pilar, Bonol during 100-Year Rainfall Return Period	97
Figure 101	Affected Areas in San Miguel, Bonol during 100-Year Rainfall Return Period	97
Figure 102	Affected Areas in Tailbon, Bonol during 100-Year Kainfall Return Period	
Figure 103	Affected Areas in Thilliau, Bohol during 100 Year Rainfall Return Period	102
Figure 105	Relation Points of Init River Pasin	107
Figure 100	Flood man denth vs actual flood denth	104 107
I ISULE TOO	א וויטע וועף עבףנו איז מכנעמו וויטטע עבףנוו	104

LIST OF TABLES

Table 1. Table 2.	Flight planning parameters for Pegasus LiDAR system Details of the recovered NAMRIA horizontal control point BHL-63 used as	3
Table 3.	Details of the recovered NAMRIA horizontal control point BHL-95 used as base station for the LiDAR Acquisition	6
Table 4.	Details of the recovered NAMRIA horizontal control point BHL-75 used as base station for the LiDAR acquisition.	
Table 5.	Details of the established control point 63A used as base station for the LiDAR Acquisition	9
Table 6.	Details of the established control point 75A used as base station for the LiDAR Acquisition.	.10
Table 7.	Details of the established control point Hotel used as base station for the LiDAR Acquisition	.11
Table 8.	Details of the established control point 63A used as base station for the LiDAR Acquisition	.12
Table 9.	Ground control points used during LiDAR data acquisition	12
Table 10.	Flight missions under DREAM program which covers Ipil floodplain	.12
Table 11.	Flight missions for LiDAR data acquisition in Ipil floodplain	13
Table 12.	Actual parameters used during LiDAR data acquisition	13
Table 13.	List of municipalities and cities surveyed during Ipil floodplain LiDAR survey	.14
Table 14.	Self-Calibration Results values for Ipil flights	19
Table 15.	List of LiDAR blocks for Ipil floodplain	20
Table 16.	Ipil classification results in TerraScan	23
Table 17.	LiDAR blocks with its corresponding area	25
Table 18.	Shift Values of each LiDAR Block of Ipil floodplain	26
Table 19.	Calibration Statistical Measures	29
Table 20.	Validation Statistical Measures	30
Table 21.	Quality Checking Ratings for Ipil Building Features	32
Table 22.	Building Features Extracted for Ipil Floodplain	33
Table 23.	Total Length of Extracted Roads for Ipil Floodplain	33
Table 24.	Number of Extracted Water Bodies for Ipil Floodplain	34
Table 25.	List of Reference and Control Points occupied for Ipil River Survey	36
Table 26.	Baseline Processing Summary Report for Ipil River Survey	38
Table 27.	Control Point Constraints	39
Table 28.	Adjusted Grid Coordinates	39
Table 29.	Adjusted Geodetic Coordinates	40
Table 30.	Reference and control points used and its location	40
Table 31.	RIDF values for Tagbilaran Point Rain Gauge computed by PAGASA	.55
Table 32.	Range of calibrated values for the Ipil River Basin.	60
Table 33.	Summary of the Efficiency lest of Ipil HMS Model	61
Table 34.	Peak values of the Ipil HECHMS Model outflow using the Tagbilaran RIDF	.62
Table 35.	Affected Areas in Alicia, Bohol during 5-Year Rainfall Return Period	.70
Table 36.	Affected Areas in Bien Unido, Bonol during 5-Year Rainfall Return Period	.71
Table 37.	Affected Areas in Dagonoy, Bonol during 5-Year Rainfall Return Period	./1
Table 38.	Affected Areas in Janao, Bonol during 5-Year Rainfall Return Period	./2
Table 39.	Affected Areas in Dilar, Bohol during 5-Year Rainfall Return Period	.73
Table 40.	Affected Areas in San Miguel, Robel during 5 Year Rainfall Return Period	74
Table 41.	Affected Areas in San Miguel, Bohol during 5-Year Rainfall Return Period	76
Table 42.	Affected Areas in Taliban, Bohol during 5-Year Rainfall Return Period	70
Table 43.	Affected Areas in Trinidad, Bobol during 5-Year Rainfall Return Period	70
Table 44.	Affected Areas in Trinidad, Bohol during 5-Year Rainfall Return Period	79
Table 46	Affected Areas in Libay, Bohol during 5-Year Rainfall Return Period	80
Table 47	Affected Areas in Alicia, Bohol during 25-Year Rainfall Return Period	81
Table 48	Affected Areas in Rien Unido, Bohol during 25-Year Rainfall Return Period	81
Table 49.	Affected Areas in Dagohov, Bohol during 25-Year Rainfall Return Period	.82
Table 50.	Affected Areas in Danao. Bohol during 25-Year Rainfall Return Period	.83
Table 51.	Affected Areas in Jetafe, Bohol during 25-Year Rainfall Return Period.	.84
Table 52	Affected Areas in Pilar. Bohol during 25-Year Rainfall Return Period	85
Table 53.	Affected Areas in San Miguel, Bohol during 25-Year Rainfall Return Period	.87
Table 54.	Affected Areas in San Miguel, Bohol during 25-Year Rainfall Return Period	.87
Table 55.	Affected Areas in Talibon, Bohol during 25-Year Rainfall Return Period	88
Table 56.	Table 56. Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period	90
Table 57.	Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period	.90

Table 58.	Affected Areas in Ubay, Bohol during 25-Year Rainfall Return Period	
Table 59.	Affected Areas in Alicia, Bohol during 100-Year Rainfall Return Period	92
Table 60.	Affected Areas in Bien Unido, Bohol during 100-Year Rainfall Return Period	92
Table 61.	Affected Areas in Dagohoy, Bohol during 100-Year Rainfall Return Period	93
Table 62.	Affected Areas in Danao, Bohol during 100-Year Rainfall Return Period	
Table 63.	Affected Areas in Jetafe, Bohol during 100-Year Rainfall Return Period	95
Table 64.	Affected Areas in Pilar, Bohol during 100-Year Rainfall Return Period	
Table 65.	Affected Areas in San Miguel, Bohol during 100-Year Rainfall Return Period	
Table 66.	Affected Areas in San Miguel, Bohol during 100-Year Rainfall Return Period	
Table 67.	Affected Areas in Talibon, Bohol during 100-Year Rainfall Return Period	99
Table 68.	Affected Areas in Trinidad, Bohol during 100-Year Rainfall Return Period	101
Table 69.	Affected Areas in Trinidad, Bohol during 100-Year Rainfall Return Period	101
Table 70.	Affected Areas in Ubay, Bohol during 100-Year Rainfall Return Period	102
Table 71.	Area covered by each warning level with respect to the rainfall scenario	103
Table 72.	Actual Flood Depth vs Simulated Flood Depth in Ipil	105
Table 73.	Summary of Accuracy Assessment in Ipil	105

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
HC	High Chord
IDW	Inverse Distance Weighted [interpolation method]
IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit

Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
РТМ	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF Rainfall-Intensity-Duration- Frequency				
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UPC	University of the Philippines Cebu			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
USC	University of San Carlos			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

CHAPTER 1: OVERVIEW OF THE PROGRAM AND IPIL RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland Emerito S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 17 river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Ipil River Basin

Figure 1. Map of the Ipil River Basin in brown

Ipil River Basin covers majority of the municipalities of Trinidad and San Miguel and minor portions of Bien Unido, Talibon, Danao, Pilar, Alicia and Ubay in the province of Bohol. The DENR River Basin Control Office identified the basin to have a drainage area of 252 km² and an estimated 151 million cubic meter annual run-off (MCM) (RBCO, 2015).

Its main stem, Ipil River, is part of the 17 river systems in Central Visayas Region. According to the 2015 national census of NSO, a total of 17,672 persons are residing within the immediate vicinity of the river which is distributed among seven (7) barangays in the Municipalities of Trinidad, Talibon and Bien Unido (NSO, 2015). The major industries in the municipalities near Ipil River are farming and fishing. Aside from these, the river also plays a vital part for the commercial activity of the municipality where traders transport their products. (http://www.bohol-philippines.com/trinidad.html, 2016). During the surge of typhoon Yolanda, internationally known as *Haiyan*, last November 2013 a total of 18,772 families or 90,201 individuals were affected by the typhoon from the municipalities of Trinidad and Talibon (http://ndrrmc. gov.ph/attachments/article/1329/FINAL_REPORT_re_Effects_of_Typhoon_YOLANDA_(HAIYAN)_06-09NOV2013.pdf).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE IPIL FLOODPLAIN

"Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, Ms. Kristine Joy P. Andaya

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 LiDAR Acquisition in Ipil Floodplain

2.1.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Ipil floodplain in Davao del Sur. These missions were planned for 12 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Ipil floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK51A	800/1000	30	50	200	30	130	5
BLK51B	800/1000	30	50	200	30	130	5
BLK51C	800/1000	30	50	200	30	130	5
BLK51F	800/1000	30	50	200	30	130	5
BLK51S	1000	30	50	200	30	130	5
BLK51LKS	1000	30	50	200	30	130	5
LOBOC	1000	30	50	200	30	130	5

Table 1. Flight planning parameters for Pegasus LiDAR system

Figure 2. Flight plans and base stations used for the Ipil floodplain survey

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: BHL-63, BHL-95 and BHL-75 which are of second (2nd), order accuracy, respectively. The project team also established one (4) ground control points, 63A, 75A, Hotel, and EPHotel. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the established control point are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (September 12 -23, 2015). Base stations were observed using dual frequency GPS receivers: TRIMBLE SPS 852, TRIMBLE SPS 882 and TRIMBLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Ipil floodplain are also shown in Figure 2.

Figure 3 to Figure 9 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 8 show the details about the following NAMRIA control stations and established points, while Table 9 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over BHL-63 in Hagbuyo Bridge in Brgy. Hagbuyo, San Miguel, Bohol

Station Name	BHL-63		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	10° 0′ 13.31407″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 20' 43.46219"	
	Ellipsoidal Height	20.48700 meters	
Grid Coordinates, Philippine Transverse	Easting	428232.81 meters	
Mercator Zone 3 (PTM Zone 5 PRS 92)	Northing	1106210.364 meters	
	Latitude	10° 0' 9.30688" North	
Geographic Coordinates, World Geodetic	Longitude	124° 20' 48.73327" East	
System 1984 Datum (WGS 84)	Ellipsoidal Height	84.04100 meters	
Grid Coordinates, Universal Transverse	Easting	647,463.40 meters	
1992)	Northing	1,106,052.78 meters	

Table 2. Details of the recovered NAMRIA horizontal control point BHL-63 used as base station for the LiDAR Acquisition

Figure 4. GPS set-up over BHL-95 in Brgy. Tiguis, Lila, BohoL (a) and NAMRIA reference point BHL-95 (b) as recovered by the field team

Station Name	BHL-95		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1	L in 50,000	
	Latitude	9° 35′ 30.9568″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 04′ 30.0216″	
	Ellipsoidal Height	19.00 meters	
Grid Coordinates, Philippine Transverse	Easting	398459.94396 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1060736.81055 meters	
	Latitude	9° 35′ 27.03243″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 04' 35.33150" East	
	Ellipsoidal Height	82.798 meters	
Grid Coordinates, Universal Transverse	Easting	618128.686 meters	
1992)	Northing	1060360.033 meters	

Table 3. Details of the recovered NAMRIA horizontal control point BHL-95 used as base station for the LiDAR Acquisition

(a)

Figure 5. GPS set-up over BHL-75 at Barangay Plaza of San Jose, Mabini, Bohol (a) and NAMRIA reference point BHL-75 (b) as recovered by the field team

Table 4. Details of the recovered NAMRIA horizonta	l control point BHL-75 used as
base station for the LiDAR acq	uisition

Station Name	BHL-75		
Order of Accuracy	2 th		
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	9° 57′ 16.74294″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 32′ 0.35318″	
	Ellipsoidal Height	12.84500 meters	
Grid Coordinates, Philippine Transverse	Easting	448840.052 meters	
Mercator Zone 3 (PTM Zone 5 PRS 92)	Northing	1100750.724 meters	
	Latitude	9° 57′ 16.76483″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 32' 5.62696" East	
	Ellipsoidal Height	76.97400 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North	Easting	668,101.47 meters	
(UTM 51N PRS 1992)	Northing	1,100,718.38 meters	

Station Name	63A		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1	L in 50,000	
	Latitude	10° 00' 13.84084" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 20' 43.58209" East	
	Ellipsoidal Height	20.464 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	647466.981 meters	
1992)	Northing	1106068.972 meters	
	Latitude	10 00' 09.83363" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 20' 48.85315" East	
	Ellipsoidal Height	84.018 meters	

Table 5. Details of the established control point 63A used as base station for the LiDAR Acquisition

(a)

Figure 7. GPS set-up over established point 75A at the Basketball court in the Barangay Plaza of San Jose, Mabini, Bohol (a).

Station Name	75A		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1	L in 50,000	
	Latitude	9° 57′ 17.24192″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 32' 00.58209" East	
	Ellipsoidal Height	12.668 meters	
Grid Coordinates, Universal Transverse	Easting	668103.303 meters	
1992)	Northing	1100733.718 meters	
	Latitude	9° 57′ 13.26378″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 32' 05.68974" East	
	Ellipsoidal Height	76.796 meters	

Table 6. Details of the established control point 75A used as base station for the LiDAR Acquisition

Figure 8. GPS set-up over established point Hotel at Panda Tea Garden Suites Tagbilaran, Bohol (a).

Station Name	Hotel		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1	L in 50,000	
	Latitude	9° 39' 32.15822" North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	123° 51' 54.83035" East	
	Ellipsoidal Height	49.4981 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	594927.168 meters	
1992)	Northing	1067756.448 meters	
	Latitude	9° 39' 28.19791" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 52' 00.13618" East	
	Ellipsoidal Height	113.124 meters	

Table 7. Details of the established control point Hotel used as base station for the LiDAR Acquisition

(a)

Figure 9. GPS set-up over established point EPHotel at Panda Tea Garden Suites Tagbilaran, Bohol (a)

Station Name		EPHotel	
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1	L in 50,000	
	Latitude	9° 39′ 32.38755″ North	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	123° 51' 54.91053" East	
	Ellipsoidal Height	49.956 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	594929.497 meters	
1992)	Northing	1067763.497 meters	
	Latitude	9° 39' 28.42722" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 52' 00.21636" East	
	Ellipsoidal Height	113.100 meters	

Table 8. Details of the established control point 63A used as base station for the LiDAR Acquisition

Table 9. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points	
September 12, 2015	3409P	1BLK51B255A	BHL-63 and 63A	
September 12, 2015	3411P	1BLK51C255B	BHL-63 and 63A	
September 15, 2015	4321P	1BLK51C258A	BHL-75 and 75A	
September 17, 2015	3429P	1BLK51260A	BHL-75 and 75A	
September 22, 2015	3449P	1BLK51G265A	BHL-75 and 75A	
September 23, 2015	3453P	1BLK51S266A	Hotel and EPHotel	

2.3 Flight Missions

Six (6) missions under DREAM program covered around 239.8 (Table 10) within Ipil floodplain. Six (6) missions under Phil-LiDAR program were conducted to complete the LiDAR data acquisition in Ipil floodplain, for a total of Twenty hours and Twenty-four minutes (20+24) of flying time for RP-C9122. The missions were acquired using the Gemini LiDAR system. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Table 10. Flight missions under DREAM program which covers Ipil floodplain

Flight Number	Mission Name	Area Surveyed within the Floodplain (km²)
765P	1BHL1C321A	54.47
769P	1BHL1BC322A	63.32
773P	1BHL1BS323A	16.17
777P	1BHL1D324A	39.30
793P	1BHL1BDS328A	8.13
833P	1BHL1E338A	58.41
TO	239.8	

Dete Flickt		Flight	Surveyed	Area Surveyed	Area Surveyed	No. of	Flying Hours	
Date Surveyed	Number	Plan Area (km²)	Area (km²)	within the Floodplain (km²)	Outside the Floodplain (km ²)	Images (Frames)	Hr	Min
September 12, 2015	3409P	111.44	196.08	0	196.08	NA	4	23
September 12, 2015	3411P	295.43	109.96	0	109.96	NA	2	47
September 15, 2015	4321P	107.84	54.28	0	54.28	NA	2	35
September 17, 2015	3429P	107.84	234.68	0	234.68	NA	4	17
September 22, 2015	3449P	486.5	123.69	0	123.68	NA	3	47
September 23, 2015	3453P	147.15	124.39	0	124.39	NA	2	35
ТОТА	\L	1256.2	843.08	0	843.07	NA	20	24

Table 11. Flight missions for LiDAR data acquisition in Ipil floodplain

Table 12. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
3409P	1000	30	50	200	30	130	5
3411P	800/1000	30	50	200	30	130	5
4321P	800/1000	30	50	200	30	130	5
3429P	800/1000	30	50	200	30	130	5
3449P	800/1000	30	50	200	30	130	5
3409P	1000	30	50	200	30	130	5

2.4 Survey Coverage

Ipil floodplain is located along the province of Bohol with majority of the floodplain situated within the municipalities of Alicia, Bien Unido, Pilar, San Miguel, Talibon, Trinidad and Ubay. The list of municipaliti es and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Ipil floodplain is presented in Figure 10.

Province	Municipality/ City	Area of Municipality/City (km ²)	Total Area Surveyed (km ²)	Percentage of Area Surveyed
	Albuquerque	26.84	9.46	35%
	Alicia	118.35	84.53	71%
	Balilihan	123.46	1.60	1%
	Batuan	90.27	2.93	3%
	Buenavista	107.95	7.50	7%
	Candijay	94.72	78.68	83%
	Carmen	221.41	3.05	1%
	Catigbian	84.38	4.34	5%
	Duero	74.75	11.07	15%
	Guindulman	100.84	35.31	35%
	Inabanga	103.67	19.33	19%
	Jetafe	99.31	18.08	18%
	Loay	29.63	11.57	39%
	Loboc	57.40	41.84	73%
	Mabini	87.74	87.52	100%
	Pilar	121.42	24.10	20%
	Pres. Carlos P. Garcia	48.06	45.09	94%
	Sevilla	68.37	2.17	3%
	Sierra Bullones	85.93	4.00	5%
	Sikatuna	21.88	2.55	12%
	Ubay	232.66	109.18	47%
Total		1999.04	603.9	30.21%

Table 13. List of municipalities and cities surveyed during Ipil floodplain LiDAR survey

Figure 10. Actual LiDAR survey coverage for Ipil floodplain

CHAPTER 3: LIDAR DATA PROCESSING FOR IPIL FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Ailyn G. Biñas , Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Erica Erin E. Elazegui , Engr. Ma. Joanne I. Balaga, Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 LiDAR Data Processing for Ipil Floodplain

3.1.1 Overview of the LiDAR Date Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Ipil floodplain can be found in **Annex 5**. Missions flown during the first survey conducted on November 2013 and second survey on September 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Bohol. The Data Acquisition Component (DAC) transferred a total of 253.49 Gigabytes of Range data, 2.46 Gigabytes of POS data and 117.86 Megabytes of GPS base station data to the data server on December 11, 2013 for the first survey and September 23, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Ipil was fully transferred on October 28, 2015, as indicated on **Annex 5: Data Transfer Sheets for Ipil floodplain**.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 765P, one of the Ipil flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on November 17, 2013 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metrics of an Ipil Flight 765P

The time of flight was from 26200 seconds to 34200 seconds, which corresponds to morning of November 17, 2013. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.50 centimeters, the East position RMSE peaks at 1.50 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Ipil Flight 765P

The Solution Status parameters of flight 765P, one of the Ipil flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Ipil flights is shown in Figure 14.

Figure 14. The best estimated trajectory of the LiDAR missions conducted over the Ipil floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 117 flight lines, with each flight line containing two channel, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Ipil floodplain are given in Table 14.

Parameter	Computed Value	
Boresight Correction stdev	(<0.001degrees)	0.000181
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000962
GPS Position Z-correction stdev	(<0.01meters)	0.0028

Table 14. Self-Calibration Results values for Ipil flights

The optimum accuracy is obtained for all Ipil flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the **Annex B-1. Mission Summary Reports**.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Ipil Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Ipil Floodplain

The total area covered by the Ipil missions is 1,994.07 sq.km that is comprised of thirteen (13) flight acquisitions grouped and merged into twelve (12) blocks as shown in Table 15.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Bohol_Blk1B	769P	184.09
Bohol_Blk1B_supplement1	773P	91.00
Bohol_Blk1B_supplement2	793P	149.54
Bohol_Blk1C	765P	155.48
	777P	107 10
ROUOI_RIKID	793P	107.10
Bohol_Blk1D_supplement	805P	248.32
Bohol_Blk1E	833P	317.41
Bohol_Blk51B	3409P	205.05
Bohol_Blk51C	3411P	107.09
Bohol_Blk51C_additional	3429P	203.43
	3421P	04.64
ROUOI_RIK2TE	3453P	94.64
Bohol_Blk51A	3449P	130.92
TOTAL		1,994.07 sq.km

Table 15. List of LiDAR blocks for Ipil floodplain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Ipil floodplain

The overlap statistics per block for the Ipil floodplain can be found in **Annex B-1**. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.19% and 65.08% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Ipil floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.28 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Ipil floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation difference map between flight lines for Ipil floodplain

A screen capture of the processed LAS data from an Ipil flight 765P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for a Ipil flight 765P using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,692,438,923
Low Vegetation	1,390,686,753
Medium Vegetation	2,073,165,732
High Vegetation	1,056,021,851
Building	32,131,151

Table 16. Ipil classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Ipil floodplain is shown in Figure 20. A total of 2,892 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 701.49 meters and 1.91 meters respectively.

Figure 20. Tiles for Ipil floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Ipil floodplain
3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Ipil floodplain.

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for Ipil flood plain. These blocks are composed of Bohol blocks with a total area of 1,994.07 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Bohol_Blk1B	184.09
Bohol_Blk1B_supplement1	91.00
Bohol_Blk1B_supplement2	149.54
Bohol_Blk1C	155.48
Bohol_Blk1D	107.10
Bohol_Blk1D_supplement	248.32
Bohol_Blk1E	317.41
Bohol_Blk51B	205.05
Bohol_Blk51C	107.09
Bohol_Blk51C_additional	203.43
Bohol_Blk51F	94.64
Bohol_Blk51A	130.92
TOTAL	1,994.07 sq.km

Table 17. LiDAR blocks with its corresponding area

Portions of DTM before and after manual editing are shown in Figure 23. The mountain (Figure 23a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23b). Another, the bridge (Figure 23c) is also considered to be impedance to the flow of water along the river and has to be removed (Figure 23d) in order to hydrologically correct the river. These are shown in the figure below.

Figure 23. Portions in the DTM of Ipil floodplain – a mountain before (a) and (b) after data retrieval; and a bridge before (c) before and after (d) manual editing

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Bohol DEM overlapping with the blocks to be mosaicked. Table 18 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Ipil floodplain is shown in Figure 24. It can be seen that the entire Ipil floodplain is 100% covered by LiDAR data.

Mission Diseks	Shift Values (meters)				
	х	у	z		
Bohol_Blk1B	0.00	0.00	-0.40		
Bohol_Blk1B_supplement1	0.00	0.00	+0.07		
Bohol_Blk1B_supplement2	0.00	0.00	-5.62		
Bohol_Blk1C	0.00	0.00	-0.40		
Bohol_Blk1D	0.00	0.00	0.00		
Bohol_Blk1D_supplement	0.00	0.00	-0.36		
Bohol_Blk1E	0.00	0.00	-0.51		
Bohol_Blk51B	0.00	0.00	-0.35		
Bohol_Blk51C	0.00	0.00	-3.61		
Bohol_Blk51C_additional	0.00	0.00	-3.48		
Bohol_Blk51F	1.00	-3.00	-4.03		
Bohol_Blk51A_	0.00	0.00	-3.77		

Table 18. Shift Values of each LiDAR Block of Ipil floodplain

Figure 24. Map of Processed LiDAR Data for Ipil Flood Plain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Ipil to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 1448 survey points were gathered for calibration and validation of Ipil LiDAR data. However, the point dataset was not used for the calibration of the LiDAR data for Ipil because during the mosaicking process, each LiDAR block was referred to the calibrated Bohol DEM. Therefore, the mosaicked DEM of Ipil can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Bohol LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.29 meters with a standard deviation of 0.19 meters. Calibration of Bohol LiDAR data was done by subtracting the height difference value, 1.29 meters, to Bohol mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between Bohol LiDAR data and calibration data. These values were also applicable to the Ipil DEM.

Figure 25. Map of Ipil Flood Plain with validation survey points in green

Figure 26. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	1.29
Standard Deviation	0.19
Average	-1.28
Minimum	-1.65
Maximum	-0.86

Table 19. Calibration Statistical N

All survey points were used for the validation of calibrated Ipil DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.18 meters, as shown in Table 20.

Figure 27. Correlation plot between validation survey points and LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.18
Average	0.08
Minimum	-0.39
Maximum	0.40

Table 20. Validatio	on Statistical Measures
---------------------	-------------------------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Ipil with 13,300 bathymetric survey points. The resulting raster surface produced was done by Krigging interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.58 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Ipil integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Ipil Flood Plain with bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Ipil floodplain, including its 200 m buffer, has a total area of 270.51 sq km. For this area, a total of 8.0 sq km, corresponding to a total of 1210 building features, are considered for QC. Figure 29 shows the QC blocks for Ipil floodplain.

Figure 29. Blocks (in blue) of Ipil building features that were subjected to QC

Quality checking of Ipil building features resulted in the ratings shown in Table 21.

Table 21. 🤇	Quality Che	cking Rating	gs for Ipil	Building	Features
-------------	-------------	--------------	-------------	----------	----------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Ipil	99.91	100.00	84.79	PASSED

3.12.2 Height Extraction

Height extraction was done for 26,511 building features in Ipil floodplain. Of these building features, 2,510 were filtered out after height extraction, resulting to 24,001 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 13.63 m.

3.12.3 Feature Attribution

In attribution, combination of participatory mapping and actual field validation was done. Representatives from LGU were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	23,570
School	196
Market	28
Agricultural/Agro-Industrial Facilities	47
Medical Institutions	10
Barangay Hall	20
Military Institution	0
Sports Center/Gymnasium/Covered Court	16
Telecommunication Facilities	0
Transport Terminal	4
Warehouse	1
Power Plant/Substation	0
NGO/CSO Offices	4
Police Station	3
Water Supply/Sewerage	0
Religious Institutions	20
Bank	0
Factory	4
Gas Station	6
Fire Station	0
Other Government Offices	15
Other Commercial Establishments	57
Total	24,001

Table 22. Building	Features	Extracted	for I	pil Fl	oodplain
--------------------	----------	-----------	-------	--------	----------

Table 23. Total Length of Extracted Roads for Ipil Floodplain

	Road Network Length (km)					
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Ipil	409.37	0	70.04	31.61	0	511.02

Table 24. Number	of Extracted	Water	Bodies	for I	pil F	Flood	olain

F			Water Body	Туре			
	Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
	Ipil	6	1	0	1	0	8

A total of 36 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Ipil floodplain overlaid with its ground features.

Figure 30. Extracted features for Ipil floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE IPIL RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, and Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Ipil River on September 2-10, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Tugas Bridge in Brgy.Hinlayagan Ilaud and Trinidad Bridge in Brgy. Poblacion, Trinidad, Bohol; validation points acquisition of about 89 km covering the Ipil River Basin area; and bathymetric survey from its upstream in Brgy. Hinlayagan Ilaud, Municipality of Trinidad to the mouth of the river located in Brgy. Balintawak, in the Municipality of Bien Unidos, with an approximate length of 13.739 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 31).

Figure 31. Extent of the bathymetric survey (in blue) in Ipil River and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network used for Ipil River Basin is composed of a single loop established on September 3, 2016 occupying the following reference points: BHL-57, a second-order GCP in Brgy. Tanghaligue, Municipality of Talibon; BHL-62, a second-oder GCP in Brgy. Humayhumay, Municipality of Ubay; and BH-393, a first-order BM at Hinlayagan Bridge, Brgy. Hinlayagan Ilaya, Municipality of Trinidad.

The summary of reference and control points and its location is summarized in Table 25 while the GNSS network established is illustrated in Figure 32.

Figure 32. GNSS Network covering Ipil River

			Geographic Coord	linates (WGS	84)	
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	BM Ortho (m)	Date Established
BHL-57	2nd order, GCP	10°09′04.81120″N	124°15′25.59670″E	77.040	-	2013
BHL-62	2nd order, GCP	10°03'27.40372"N	124°24'59.17305"E	72.344	-	2013
BH-393	1st order, BM	-	-	-	10.781	2016

Table 25. List of Reference and Control Points occupied for Ipil River Survey

The GNSS set-ups on recovered reference points and established control points in Ipil River are shown in Figure 33 to Figure 35.

Figure 33. GNSS base set up, Trimble^{*} SPS 882, at BHL-57 located along Ubay-Talibon Road, Brgy. Tanghaligue, Municipality of Talibon, Bohol

Figure 34. NSS receiver setup, Trimble^{*} SPS 882, at BHL-62 located along Ubay-Talibon Road, Brgy. Humayhumay, Municipality of Ubay, Bohol

Figure 35. GNSS receiver setup, Trimble[®] SPS 852, at BH-393 located at the approach of Hinlayagan Bridge, Brgy. Hinlayagan Ilaya, Municipality of Trinidad, Bohol

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Ipil River Basin is summarized in Table 26 generated by TBC software.

Observation	Date of Observation	Solution Type	H.Prec. (Meter)	V.Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
BMBH-393 BHL-57 (B3)	09-03-2016	Fixed	0.004	0.020	323°23'48"	16654.717	1.627
BMBH-393 BHL-62 (B2)	09-03-2016	Fixed	0.004	0.018	68°15′50″	8108.333	-3.073
BHL-57 BHL-62 (B1)	09-03-2016	Fixed	0.004	0.018	120°40'53"	20308.187	-4.683

Table 26. Baseline Processing Summary Report for Ipil River Survey

As shown Table 26 a total of three (3) baselines were processed with reference points BHL-57 and BHL-62 held fixed for coordinate value; and BH-393 fixed for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $z_e < 10 \text{ cm} < 20 \text{ cm}$ and $z_e < 10 \text{ cm}$

Where:

xe is the Easting error,

ye is the Northing error, and

ze is the Elevation error

for each control point. See the Network Adjustment Report shown in Table 27 to Table 30 for complete details.

The three (3) control points, BHL-57, BHL-62, and BH-393 were occupied and observed simultaneously to form a GNSS loop. Coordinates of BHL-57 and BHL-62; and elevation value of BH-393 were held fixed during the processing of the control points as presented in Table 29. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID Type		East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
BHL-57	Local	Fixed	Fixed		
BHL-62 Local		Fixed	Fixed		
BMBH-393	Grid				Fixed

Table 27.Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed controls BHL-57 and BHL-62 have no values for grid error elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BHL-57	637719.837	?	1122411.173	?	12.562	0.029	LL
BHL-62	655222.653	?	1112117.428	?	7.569	0.028	LL
BMBH-393	647704.108	0.004	1109084.107	0.004	10.781	?	е

Table 28. Adjusted Grid Coordinates

With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

a. BHL-57

horizontal accuracy = Fixed vertical accuracy = 2.9 cm < 10 cm Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

b. BHL-62

horizontal accuracy	=	Fixed
vertical accuracy	=	2.8 cm < 10 cm

c. BH-393

horizontal accuracy	=	$\sqrt{((0.4)^2 + (0.4)^2)}$
	=	√ (0.16 + 0.16)
	=	0.32 < 20 cm
vertical accuracy	=	Fixed

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
BHL-57	N10°09'04.81120"	E124°15'25.59670"	77.040	0.029	LL
BHL-62	N10°03'27.40372"	E124°24'59.17305"	72.344	0.028	LL
BMBH-393	N10°01'49.69638"	E124°20′51.82322″	75.412	?	е

Table 29. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

Table 30. Reference and control points used and its location (Source: NAMIRIA, UP-TCAGP	e and control points used and its location (Source: NAMRIA, UP-TCAGP)
---	---

Control	Orderet	Geograph	UTM ZONE 51 N				
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	BM Ortho (m)
BHL-57	2nd order, GCP	10°09'04.81120"N	124°15′25.59670″E	77.040	1122411.173	637719.837	12.562
BHL-62	2nd order, GCP	10°03′27.40372″N	124°24′59.17305″E	72.344	1112117.428	655222.653	7.569
BH-393	1st order, BM	10°01′49.69638″N	124°20′51.82322″E	75.412	1109084.107	647704.108	10.781

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on September 4, 2016 at the downstream side of Tugas Bridge in Brgy. Hinlayagan Ilaud, Municipality of Trinidad, Bohol, and Trinidad Bridge in Brgy. Poblacion, Municipality of Trinidad, Bohol as shown in Figure 36 and Figure 38. A Trimble[®] SPS 882 and Trimble[®] SPS 885 GNSS PPK survey technique were utilized for this survey as shown in Figure 37 and Figure 39.

Figure 36. Tugas Bridge facing upstream

Figure 37. Bridge As-Built Survey using PPK Technique in Tugas Bridge

Figure 38. Trinidad Bridge facing downstream

Figure 39. Bridge As-Built Survey using PPK Technique in Trinidad Bridge

The cross-sectional line of Tugas Bridge is about 49.733 m with nineteen (19) cross-sectional points using the control point BHL-57 as the GNSS base station; while the cross-sectional line of Trinidad Bridge is about 110.151 m with seventy-nine (79) cross-sectional points using the control point BH-393 as the GNSS base station. The cross-section diagrams and their location maps are shown in Figure 40 to Figure 43, while its bridge data forms are shown in Figure 44 and Figure 45, respectively.

Figure 40. Tugas Bridge cross-section diagram

Figure 41. Tugas bridge cross-section location map

Figure 42. Trinidad Bridge cross-section diagram

Figure 43. Trinidad bridge cross-section location map

Br	idge Name	: Tugas Bridge			Date: Se	ptember	4, 2016	
Riv	ver Name:	Ipil River		Time: <u>12:00 PM</u>				
Lo	cation (Brg	gy, City,Region): Brgy. Hinl	ayagan Ilaud, N	Municipality of Trinidad, Bohol				
Su	rvey Team	: Mady Miras, Randell Pak	proquez, Janina	Jupiter				
Flo	ow conditio	on: normal			Weather Condit	tion	fair	
La	titude: <u>10°</u>	02'58.90424" N		Longitude: <u>124°21'07.67434" E</u>				
BA	BA2	Ab1 P Deck (Please start vc		Ab2 HC	BA4 BA4 BA = Bridge Ab = Abutr	e Approach nent	P = Pier LC = Low Cl D = Deck HC = High C	
lev	vation: <u>Not</u>	available	Width: <u>2.5 n</u>	<u>1</u> Uish	Span (BA3-BA2): <u>30</u>	.460 m	Chaud Elevation	
1	Station			rign	Chord Elevation	Not available		
1	1	Not available					Not available	
Bridge Approach (Please start your measurement from the left side of the bank facing upstream)								
8		Station(Distance from BA1)	Elevation		Station(Distance BA1)	from	Elevation	
S S	BA1	Station(Distance from BA1) 0	Elevation 4.990 m	BA3	Station(Distance BA1) 39.378 m	from	Elevation 4.961 m	
	BA1 BA2	Station(Distance from BA1) 0 8.919 m	Elevation 4.990 m 5.417 m	BA3 BA4	Station(Distance BA1) 39.378 m 50.989 m	from	Elevation 4.961 m 2.306 m	
h	BA1 BA2 utment:	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No	Elevation 4.990 m 5.417 m ; If yes, fill in t	BA3 BA4 he follow	Station(Distance BA1) 39.378 m 50.989 m	from	Elevation 4.961 m 2.306 m	
l	BA1 BA2 utment:	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No Station	Elevation 4.990 m 5.417 m o; If yes, fill in t (Distance from	BA3 BA4 he follow m BA1)	Station(Distance BA1) 39.378 m 50.989 m ring information:	from Eleva	Elevation 4.961 m 2.306 m tion	
\bı	BA1 BA2 utment:	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No Station	Elevation 4.990 m 5.417 m o; If yes, fill in t (Distance fro Not available	BA3 BA4 he follow m BA1)	Station(Distance BA1) 39.378 m 50.989 m ring information:	Eleva Not ava	Elevation 4.961 m 2.306 m tion ailable	
h	BA1 BA2 utment: Ab1 Ab2	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No Station	Elevation 4.990 m 5.417 m o; If yes, fill in t o (Distance from Not available Not available	BA3 BA4 he follow m BA1)	Station(Distance BA1) 39.378 m 50.989 m ring information:	Eleva Not ava	Elevation 4.961 m 2.306 m tion ailable ailable	
Abu	BA1 BA2 utment: Ab1 Ab2 Shape	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No Station Pier (Please start you e: <u>Not available</u> Numb	Elevation 4.990 m 5.417 m 5.41	BA3 BA4 he follow m BA1) m the left si vailable	Station(Distance BA1) 39.378 m 50.989 m ring information: ide of the bank facing upstr Height of column f	Eleva Not ava Not ava ream) ooting: <u>No</u>	Elevation 4.961 m 2.306 m tion ailable ailable	
Abu	BA1 BA2 utment: Ab1 Ab2 Shape	Station(Distance from BA1) 0 8.919 m Is the abutment sloping? No Station Pier (Please start you e: <u>Not available</u> Numb Station (Distance for the start of the st	Elevation 4.990 m 5.417 m 5.417 m 5.1f yes, fill in t (Distance from Not available Not available ur measurement from er of Piers: <u>Not a</u> from BA1)	BA3 BA4 he follow m BA1) n the left si vailable	Station(Distance BA1) 39.378 m 50.989 m ring information: ide of the bank facing upstr Height of column f levation	Eleva Not ava Not ava ream) ooting: <u>No</u>	Elevation 4.961 m 2.306 m tion ailable ailable bt available Diameter	

Figure 44. Bridge as-built form of Tugas Bridge

Figure 45. Bridge as-built form of Trinidad Bridge

Water surface elevation of Ipil River in Tugas Bridge was determined using Trimble[®] SPS 885 GNSS PPK survey technique on September 7, 2016 at 4:16 PM with a value of 0.813 m in MSL as shown in Figure 46. Meanwhile, water surface elevation of Ipil River in Trinidad Bridge was determined using Trimble[®] SPS 882 GNSS PPK survey technique on September 7, 2016 at 3:34 PM with a value of 0.848 m in MSL as shown in Figure 47. These were translated onto markings on the wall under the bridge using the same technique as shown in Figure 46 and Figure 47, respectively. The markings will serve as reference for flow data gathering and depth gauge deployment of partner HEI responsible for Ipil River, USC.

Figure 46. Water-level markings on Tugas Bridge

Figure 47. Water-level markings on Trinidad Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on September 5 and 7, 2016 using a survey-grade GNSS Rover receiver, Trimble^{*} SPS 885, mounted in front of a vehicle as shown in Figure 48. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 2.168 m and 1.336 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with BH-393 occupied as the GNSS base station.

Figure 48. Validation points acquisition survey set up along Ipil River Basin

The survey branched into two directions – the first branch started from Brgy. Sto. Niño, Municipality of Jetafe, going south it traversed thirteen (13) barangays and ended in Brgy. Concepcion, Municipality of Danao; and the second branch started in Brgy. Poblacion, Municipality of Jetafe ,going east it traversed thirty-three (33) barangays and ended in Brgy. Cabatang, Municipality of Alicia. A total of 13,056 points were gathered with approximate length of 87.888 km using BH-393 as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 49.

Figure 49. Validation point acquisition survey of Ipil River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on September 5 and 6, 2016 using an Ohmex [™] single beam echo sounder and Trimble[®] SPS 885 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 50. The survey started at the upstream portion of the river in Brgy. Hinlayagan Ilaud, Municipality of Trinidad, with coordinates 10°02′58.32639″N, 124°21′08.27857″E, and ended at the mouth of the river in Brgy. Balintawak, Municipality of Talibon with coordinates 10°07′49.14771″N, 124°20′45.83735″E. The partner HEI, USC, suggested an additional 3 km to be surveyed from the major tributary of the river because of flood-affected communities residing there. The survey continued on September 7, 2016, starting in Brgy. Poblacion, Municipality of Trinidad, with coordinates 10°05′35.24563″N, 124°20′41.17341″E and ended in the same mouth of the river.

Figure 50. Bathymetric survey using OHMEX™ single beam echo sounder in Ipil River

The bathymetric survey for Ipil River gathered a total of 33,406 points covering a total estimated length of 13.739 km of the river traversing Barangays Hinlayagan Ilaud, Mabuhay Cabigohan, and Poblacion in Municipality of Trinidad; and Barangays San Roque, San Agustin, and Balintawak in Municipality of Talibon. A CAD drawing was also produced to illustrate the riverbed profile of Ipil River. As shown in Figure 52 and Figure 53, the highest and lowest elevation has a -7.159-m difference. The highest elevation observed was 0.073 m in MSL located in Brgy. Balintawak, Municipality of Talibon while the lowest was -7.086 m below MSL located at the middle portion of the river located in Brgy. Mabuhay Cabigohan, Municipality of Trinidad.

Figure 51. Bathymetric survey of Ipil River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Ipil River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). The nearby rain gauge station of Ipil River basin is located in the Municipality of San Miguel.

The total rain from the San Miguel rain gauge is 12.5 mm. It peaked to 6 mm on September 11, 2016, 22:00. The lag time between the peak rainfall and discharge is 4 hours and 15 minutes, as shown in Figure 57.

Figure 54. The location map of Ipil HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Tugas Bridge, Trinidad (10°2'58.56"N and 124°21'7.2"E). It gives the relationship between the observed water levels and outflow of the watershed at this location.

Figure 55. Cross-Section Plot of Tugas Bridge

Figure 56. Rating Curve at Tugas Bridge, Trinidad

This rating curve equation was used to compute the river outflow at Tugas Bridge for the calibration of the HEC-HMS model shown in Figure 5. Peak discharge is 21.963 m³/s at 1:00, September 12, 2016.

Figure 57. Rainfall and outflow data at Ipil used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Tagbilaran Point Gauge. This station chosen based on its proximity to the Ipil watershed. The extreme values for this watershed were computed based on a 39-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION													
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs					
2	14.4	21.9	26.5	34	43.7	50.4	62.6	73.8	84.1					
5	23.1	35.4	41.8	54.6	65.1	76.5	95.1	108.2	121.2					
10	28.8	44.3	52	68.3	79.3	93.7	116.7	131	145.7					
15	32.1	49.3	57.7	76.1	87.3	103.5	128.8	143.9	159.6					
20	34.3	52.8	61.7	81.5	92.9	110.3	137.3	152.9	169.3					
25	36.1	55.5	64.8	85.6	97.3	115.5	143.8	159.8	176.7					
50	41.5	63.8	74.4	98.5	110.6	131.7	164	181.1	199.7					
100	46.8	72.1	83.8	111.2	123.8	147.7	184	202.3	222.6					

Table 31. RIDF values for Tagbilaran Point Rain Gauge computed by PAGASA

Figure 58. Tagbilaran Point RIDF location relative to Ipil River Basin

Figure 59. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil shapefile (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Environment and Natural Resources Management (Figure 60). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA) and can be seen in Figure 61.

Figure 60. The soil map of the Ipil River Basin used for the estimation of the CN parameter. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

Figure 61. The land cover map of the Ipil River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source: National Mapping and Resource Information Authority)

Figure 62. The slope map of the Ipil River Basin

Figure 63. Stream Delineation Map of Ipil River Basin

Figure 64. The Ipil River Basin Model Domain generated using HEC-HMS.

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 65. River cross-section of Ipil River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

No input.

5.6 Results of HMS Calibration

After calibrating the Ipil HEC-HMS river basin model, its accuracy was measured against the observed values (see Annex 9: Ipil Model Basin Parameters). Figure 66 shows the comparison between the two discharge data.

Figure 66. Outflow Hydrograph of Ipil produced by the HEC-HMS model compared with observed outflow

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve Number	Initial Abstraction (mm)	0.51-4.95
			Curve Number	66.74-97.46
			Impervious (%)	0
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.44-12.06
			Storage Coefficient (hr)	1.48-11.38
	Baseflow	Recession	Recession Constant	0.64-1
			Ratio to Peak	0.13-0.2
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.02-0.04

Table 32. Range of calibrated values for the Ipil River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values 0.51 to 4.95 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.
Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Ipil river basin, the curve number is 66.74 to 97.46.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values 0.44 to 12.06 minutes determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.64 to 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.13 to 0.2 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.02 to 0.04 corresponds to the common roughness in Ipil, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy Measure	Value				
r²	0.9437				
NSE	0.9353				
PBIAS	-1.3024				
RSR	0.2522				

|--|

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.9806 m³/s.

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9437.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.9353.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.3024.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.28.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 67) shows the Ipil outflow using the Tagbilaran Point Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 67. Outflow hydrograph at Ipil generated using Tagbilaran PointRIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Ipil River discharge using the Tagbilaran Point Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	116.5	21.8	446.442	02:50
10-Year	143.3	25.6	579.615	02:50
25-Year	177.2	750.749	02:50	
50-Year	202.4	33.8	879.362	02:50
100-Year	227.3	37.2	1007.088	02:50

Table 34. Peak values of the Ipil HECHMS Model outflow using the Tagbilaran RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Ipil River using the calibrated HMS base flow is shown in Figure 68.

Figure 68. Sample output of Ipil RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 69 to Figure 74 shows the 5-, 25-, and 100-year rain return scenarios of the Ipil floodplain.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Ipil river basin, grouped by municipality, are listed below. For the said basin, ten municipalities consisting of 67 barangays are expected to experience flooding when subjected to 5-yr rainfall return period. The complete list of educational and health institutions affected by flooding in Ipil Floodplain can be seen in Annexes 12-13.

For the 5-year return period, 1.02% of the municipality of Alicia with an area of 81.7 sq. km. will experience flood levels of less 0.20 meters. 0.023% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 0.0079%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Alicia (in sq. km.)
flood depth (in m.)	Katipunan
0.03-0.20	0.84
0.21-0.50	0.019
0.51-1.00	0.01
1.01-2.00	0.0064
2.01-5.00	0.0018
> 5.00	0

Table 35. Affected Areas in Alicia, Bohol during 5-Year Rainfall Return Period

Figure 75. Affected Areas in Alicia, Bohol during 5-Year Rainfall Return Period

For the municipality of Bien Unido, with an area of 27.07 sq. km., 44.6% will experience flood levels of less 0.20 meters. 6.40% of the area will experience flood levels of 0.21 to 0.50 meters while 1.04%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Affected area		А	rea of affected ba	rangays in Bie	n Unido (in s	q. km.)	
(sq. km.) by flood depth (in m.)	Liberty	Mandawa	Nueva Esperanza	Nueva Estrella	Poblacion	Puerto San Pedro	Tuboran
0.03-0.20	1.12	1.03	5.51	3.05	0.59	0.78	0.00017
0.21-0.50	0.15	0.057	0.78	0.55	0.062	0.13	0
0.51-1.00	0.058	0.0049	0.13	0.076	0.0088	0.002	0
1.01-2.00	0.0091	0	0.0079	0.0052	0	0	0
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0

Table 36. Affected Areas in Bien Unido, Bohol during 5-Year Rainfall Return Period

Figure 76. Affected Areas in Bien Unido, Bohol during 5-Year Rainfall Return Period

For the municipality of Dagohoy, with an area of 92.47 sq. km., 0.024% will experience flood levels of less 0.20 meters. 0.001% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0002% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 37 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth	Area of affected barangays in Dagohoy (in sq. km.)
(111 111:)	Cagawasan
0.03-0.20	0.023
0.21-0.50	0.00097
0.51-1.00	0.00019
1.01-2.00	0
2.01-5.00	0
> 5 00	0

Table 37. Affected Areas in Dagohoy, Bohol during 5-Year Rainfall Return Period

Figure 77. Affected Areas in Dagohoy, Bohol during 5-Year Rainfall

For the municipality of Danao, with an area of 109 sq. km., 2.46% will experience flood levels of less 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.05%, 0.02%, 0.007%, and 0.0006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affect in Danao (ted barangays in sq. km.)
fiood depth (in m.)	Dagohoy	San Miguel
0.03-0.20	0.89	1.74
0.21-0.50	0.035	0.051
0.51-1.00	0.024	0.031
1.01-2.00	0.0041	0.019
2.01-5.00	0.0033	0.0042
> 5.00	0	0.0006

Table 38. Affected Areas in Danao, Bohol during 5-Year Rainfall Return Period

Figure 78. Affected Areas in Danao, Bohol during 5-Year Rainfall Return Period

For the municipality of Jetafe, with an area of 94.04 sq. km., 0.025% will experience flood levels of less 0.20 meters. 0.0002% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0001% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 39 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Jetafe (in sq. km.)
	Cabasakan
0.03-0.20	0.024
0.21-0.50	0.0002
0.51-1.00	0.0001
1.01-2.00	0
2.01-5.00	0
> 5.00	0

Table 39. Affected Areas in Jetafe, Bohol during 5-Year Rainfall Return Period

Figure 79. Figure. Affected Areas in Jetafe, Bohol during 5-Year Rainfall Return Period

For the municipality of Pilar, with an area of 114.4 sq. km., 6.28% will experience flood levels of less 0.20 meters. 0.69% of the area will experience flood levels of 0.21 to 0.50 meters while 0.19%, 0.04%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Pilar (in sq. km.)
	La Suerte
0.03-0.20	7.18
0.21-0.50	0.79
0.51-1.00	0.22
1.01-2.00	0.044
2.01-5.00	0.034
> 5.00	0

Table 40. Affected Areas in Pilar, Bohol during 5-Year Rainfall Return Period

Figure 80. Affected Areas in Pilar, Bohol during 5-Year Rainfall Return Period

For the municipality of San Miguel, with an area of 107 sq. km., 86.93% will experience flood levels of less 0.20 meters. 4.52% of the area will experience flood levels of 0.21 to 0.50 meters while 3.43%, 2.02%, 0.57%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 and 42 are the affected areas in square kilometres by flood depth per barangay.

Figure 81. Affected Areas in San Miguel, Bohol during 5-Year Rainfall Return Period

))				
Affected area			Area of	affected bara	ingays in San	Miguel (in sq. km.)			
(sq. km.) by flood depth (in m.)	Bayongan	Bugang	Cabangahan	Caluasan	Camanaga	Cambangay Norte	Capayas	Corazon	Garcia
0.03-0.20	5.62	5.41	7.58	4.8	4.3	3.54	4.57	4.14	7.38
0.21-0.50	0.2	0.42	0.53	0.14	0.15	0.23	0.2	0.2	0.29
0.51-1.00	0.23	0.45	0.27	0.091	0.12	0.2	0.18	0.26	0.16
1.01-2.00	0.17	0.2	0.088	0.082	0.078	0.14	0.08	0.18	0.11
2.01-5.00	0.008	0.0084	0.02	0.059	0.032	0.0056	0.044	0.011	0.088
> 5.00	0	0	0	0.0051	0.0001	0	0.0094	0	0.012

Table 41. Affected Areas in San Miguel, Bohol during 5-Year Rainfall Return Period

Table 42. Affected Areas in San Miguel, Bohol during 5-Year Rainfall Return Period

) D	C				
Affected area (sq.			Area of a	affected bara	ingays in San	Miguel (in sq. km.)			
km.) by flood depth (in m.)	Hagbuyo	Kagawasan	Mahayag	Poblacion	San Isidro	San Jose	San Vicente	Santo Niño	Tomoc
0.03-0.20	7.88	3.17	5.39	1.63	3.81	3.81	1.78	10.07	8.42
0.21-0.50	0.63	0.12	0.35	0.1	0.24	0.21	0.081	0.46	0.3
0.51-1.00	0.38	0.11	0.17	0.14	0.24	0.2	0.047	0.26	0.18
1.01-2.00	0.14	0.063	0.053	0.095	0.19	0.17	0.06	0.16	0.12
2.01-5.00	0.034	0.027	0.013	0.023	0.034	0.092	0.0047	0.039	0.068
> 5.00	0.0013	0.002	0.0002	0.0035	0.0033	0.014	0.00055	0	0.0014

For the municipality of Talibon, with an area of 148 sq. km., 31.2% will experience flood levels of less 0.20 meters. 2.41% of the area will experience flood levels of 0.21 to 0.50 meters while 1.51%, 0.61%, 0.17%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

Affected area			Area	a of affected	barangays i	n Talibon (in s <mark>q.</mark> km.	.)		
(sq. km.) by flood depth (in m.)	Balintawak	Magsaysay	Rizal	San Agustin	San Carlos	San Isidro	San Jose	San Roque	Sikatuna	Zamora
0.03-0.20	2.84	13.19	2.13	6.71	1.21	0.089	0.068	5.04	4.4	10.51
0.21-0.50	0.32	0.4	0.08	0.91	0.093	0.0016	0.0004	0.57	0.42	0.76
0.51-1.00	0.087	0.42	0.052	0.31	0.014	0.0011	0	0.21	0.57	0.57
1.01-2.00	0.013	0.31	0.029	0.05	0.0026	0	0	0.026	0.25	0.22
2.01-5.00	0	0.13	0.0071	0.035	0.0008	0	0	0.0013	0.0067	0.074
> 5.00	0	0.0001	0	0.0005	0	0	0	0	0	0.0012

Table 43. Affected Areas in Talibon, Bohol during 5-Year Rainfall Return Period

Figure 82. Affected Areas in Talibon, Bohol during 5-Year Rainfall Return Period

For the municipality of Trinidad, with an area of 143 sq. km., 51.83% will experience flood levels of less 0.20 meters. 3.73% of the area will experience flood levels of 0.21 to 0.50 meters while 2.61%, 1.29%, 0.39%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 44-45 are the affected areas in square kilometres by flood depth per barangay.

Figure 83. Affected Areas in Trinidad, Bohol during 5-Year Rainfall Return Period

Affected area Area of affected barangays in Trinidad (sq. km.) by flood Banlasan Bongbong Catoogan Hinlayagan Ilaud Hinlayagan Ilaud (sq. km.) by flood Banlasan Bongbong Catoogan Guinobatan Hinlayagan Ilaud Hinl 0.03-0.20 8.03 5.8 0.0766 3.62 1.65 4.78 0.03-0.20 0.44 0.52 0.0042 0.27 0.28 0.41 0.21-0.50 0.31 0.28 0.0007 0.17 0.41 0.41	Area of affected barangays in TrGuinobatanHinlayagan Ilau3.621.650.270.28	nidad (in sq. km.) Hinlayagan Ilaya 4.78	Kauswagan 15.29	Kinan- Oan	La Union
(sq. km.) by flood depth (in m.) Banlasan Bongbong Catoogan Guinobatan Hinlayagan Ilaud Hinl 0.03-0.20 8.03 5.8 0.076 3.62 1.65 4.78 0.03-0.20 8.03 5.8 0.076 3.62 1.65 4.78 0.21-0.50 0.44 0.52 0.0042 0.27 0.28 0.41 0.51-1.00 0.31 0.28 0.0007 0.17 0.41 0.41	GuinobatanHinlayagan Ilau3.621.650.270.28	Hinlayagan Ilaya 4.78	Kauswagan 15.29	Kinan- Oan	La Union 2 80
0.03-0.20 8.03 5.8 0.076 3.62 1.65 4.78 0.21-0.50 0.44 0.52 0.0042 0.27 0.28 0.4 0.51-1.00 0.31 0.28 0.00007 0.17 0.4 0.41	3.62 1.65 0.27 0.28	4.78	15.29	0 C	2 89
0.21-0.50 0.44 0.52 0.0042 0.27 0.28 0.41 0.51-1.00 0.31 0.28 0.00007 0.17 0.41 0.41	0.27 0.28	, c		0.0	U
0.51-1.00 0.31 0.28 0.00007 0.17 0.17 0.41 1.11 0.25 0.00007 0.17 0.17 0.41		0.4	0.55	0.23	0.22
	0.17 0.17	0.41	0.35	0.13	0.16
1.01-2.00 0.13 0.13 0.049 0.002	0.049 0.055	0.29	0.22	0.022	0.027
2.01-5.00 0.078 0.077 0 0.0049 0.034 0.06	0.0049 0.034	0.069	0.087	0.0014	0.0063
> 5.00 0.0064 0.0007 0 0 0 0 0	0 0	0	0.0012	0	0

Table 44. Affected Areas in Trinidad, Bohol during 5-Year Rainfall Return Period

Table 45. Affected Areas in Trinidad, Bohol during 5-Year Rainfall Return Period

Affected area		1	Area of affect	ed barangays in Tr	inidad (in sq. ŀ	ст.)		
(sq. km.) by flood depth (in m.)	La Victoria	Mabuhay Cabigohan	Mahagbu	Manuel M. Roxas	Poblacion	San Isidro	San Vicente	Santo Tomas
0.03-0.20	2.31	1.8	3.92	2.73	3.1	5.25	5.58	3.39
0.21-0.50	0.21	0.14	0.29	0.24	0.52	0.34	0.48	0.19
0.51-1.00	0.13	0.051	0.38	0.33	0.26	0.19	0.26	0.14
1.01-2.00	0.019	0.043	0.24	0.14	0.1	0.11	0.17	0.083
2.01-5.00	0	0.014	0.0019	0.017	0.029	0.058	0.029	0.052
> 5.00	0	0	0	0	0	0.0001	0	0.0076

For the municipality of Ubay, with an area of 264.8 sq. km., 6.09% will experience flood levels of less 0.20 meters. 0.26% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.09%, and 0.006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometres by flood depth per barangay.

Affected			Area	of affecte	ed barangays in U	bay (in sq. km	ı.)		
area (sq. km.) by flood depth (in m.)	Buenavista	Bulilis	Camali- An	Gabi	Hambabauran	Lomangog	Los Angeles	Pag- Asa	Tubog
0.03-0.20	0.052	0.78	4.07	1.36	6.82	1.26	0.52	1.22	0.032
0.21-0.50	0.0006	0.022	0.15	0.059	0.29	0.082	0.021	0.074	0.0016
0.51-1.00	0.0001	0.016	0.13	0.039	0.19	0.019	0.014	0.041	0.0001
1.01-2.00	0.0001	0.012	0.088	0.0095	0.11	0.0018	0.0064	0.012	0
2.01-5.00	0	0.0014	0.0033	0	0.0095	0	0.00048	0	0
> 5.00	0	0	0	0	0	0	0	0	0

Table 46. Affected Areas in Ubay, Bohol during 5-Year Rainfall Return Period

Figure 84. Affected Areas in Ubay, Bohol during 5-Year Rainfall Return Period

For the 25-year return period, 1.01% of the municipality of Alicia with an area of 81.7 sq. km. will experience flood levels of less 0.20 meters. 0.025% of the area will experience flood levels of 0.21 to 0.50 meters while 0.015%, 0.012%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.)	Area of affected barangays in Alicia (in sq. km.)
by nood depth (in m.)	Katipunan
0.03-0.20	0.83
0.21-0.50	0.02
0.51-1.00	0.012
1.01-2.00	0.0098
2.01-5.00	0.0022
> 5.00	0

Table 47. Affected Areas in Alicia, Bohol during 25-Year Rainfall Return Period

Figure 85. Affected Areas in Alicia, Bohol during 25-Year Rainfall Return Period

For the municipality of Bien Unido, with an area of 27.07 sq. km., 40.21% will experience flood levels of less 0.20 meters. 8.16% of the area will experience flood levels of 0.21 to 0.50 meters while 3.49%, and 0.26% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 48 are the affected areas in square kilometres by flood depth per barangay.

Affected area		А	rea of affected ba	irangays in Bie	n Unido (in s	q. km.)	
(sq. km.) by flood depth (in m.)	Liberty	Mandawa	Nueva Esperanza	Nueva Estrella	Poblacion	Puerto San Pedro	Tuboran
0.03-0.20	1.01	0.96	4.92	2.78	0.54	0.68	0.00017
0.21-0.50	0.16	0.12	1.12	0.56	0.089	0.17	0
0.51-1.00	0.15	0.013	0.36	0.34	0.03	0.053	0
1.01-2.00	0.026	0.00039	0.031	0.013	0	0.0013	0
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0

Table 48. Affected Areas in Bien Unido, Bohol during 25-Year Rainfall Return Period

Figure 86. Affected Areas in Bien Unido, Bohol during 25-Year Rainfall Return Period

For the municipality of Dagohoy, with an area of 92.47 sq. km., 0.024% will experience flood levels of less 0.20 meters. 0.001% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0002% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 49 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Dagohoy (in sq. km.)
	Cagawasan
0.03-0.20	0.022
0.21-0.50	0.0013
0.51-1.00	0.00019
1.01-2.00	0
2.01-5.00	0
> 5.00	0

Table 49. Affected Areas in Dagohoy, Bohol during 25-Year Rainfall Return Period

Figure 87. Affected Areas in Dagohoy, Bohol during 25-Year Rainfall

For the municipality of Danao, with an area of 109 sq. km., 2.43% will experience flood levels of less 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters while 0.06%, 0.03%, 0.01%, and 0.0006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affecte Danao (in	ed barangays in n sq. km.)
depth (in m.)	Dagohoy	San Miguel
0.03-0.20	0.88	1.71
0.21-0.50	0.032	0.06
0.51-1.00	0.029	0.037
1.01-2.00	0.01	0.027
2.01-5.00	0.0043	0.0074
> 5.00	0	0.0006

Table 50. Affected Areas in Danao, Bohol during 25-Year Rainfall Return Period

Figure 88. Affected Areas in Danao, Bohol during 25-Year Rainfall Return Period

For the municipality of Jetafe, with an area of 94.04 sq. km., 0.025% will experience flood levels of less 0.20 meters. 0.0002% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0002%, and 0.0001% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 51 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Jetafe (in sq. km.)
	Cabasakan
0.03-0.20	0.024
0.21-0.50	0.00017
0.51-1.00	0.0002
1.01-2.00	0.0001
2.01-5.00	0
> 5.00	0

Table 51. Affected Areas in Jetafe, Bohol during 25-Year Rainfall Return Period

Figure 89. Affected Areas in Jetafe, Bohol during 25-Year Rainfall Return Period

For the municipality of Pilar, with an area of 114.4 sq. km., 5.78% will experience flood levels of less 0.20 meters. 0.7% of the area will experience flood levels of 0.21 to 0.50 meters while 0.62%, 0.08%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Pilar (in sq. km.)
	La Suerte
0.03-0.20	6.61
0.21-0.50	0.8
0.51-1.00	0.71
1.01-2.00	0.088
2.01-5.00	0.053
> 5.00	0

Table 52. Affected Areas in Pilar, Bohol during 25-Year Rainfall Return Period

Figure 90. Affected Areas in Pilar, Bohol during 25-Year Rainfall Return Period

For the municipality of San Miguel, with an area of 107 sq. km., 83.25% will experience flood levels of less 0.20 meters. 4.28% of the area will experience flood levels of 0.21 to 0.50 meters while 4.11%, 4.09%, 1.66%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in square kilometres by flood depth per barangay.

Figure 91. Affected Areas in San Miguel, Bohol during 25-Year Rainfall Return Period

		Table 53. Af	ffected Areas in Si	an Miguel, Bol	hol during 25-Y	[ear Rainfall Return]	Period		
Affected area			Area of a	iffected bara	ngays in San I	Miguel (in sq. km.)			
(sq. km.) by flood depth (in m.)	Bayongan	Bugang	Cabangahan	Caluasan	Camanaga	Cambangay Norte	Capayas	Corazon	Garcia
0.03-0.20	5.45	5.15	7.39	4.7	4.22	3.4	4.47	3.98	7.19
0.21-0.50	0.23	0.24	0.4	0.14	0.14	0.17	0.17	0.18	0.31
0.51-1.00	0.17	0.39	0.45	0.1	0.15	0.18	0.2	0.24	0.2
1.01-2.00	0.29	0.59	0.21	0.084	0.1	0.27	0.13	0.32	0.15
2.01-5.00	0.081	0.099	0.045	0.12	0.066	0.11	0.093	0.058	0.15
> 5.00	0	0	0.0004	0.025	0.0027	0	0.018	0.0006	0.033

Peı
Return
nfal
Xai
ear l
\geq
25
uring
\Box
lou
0
, Ď
Miguel
San
'n,
Areas
fected
3. Afi
Table 53

Table 54. Affected Areas in San Miguel, Bohol during 25-Year Rainfall Return Period

				I	1				
Affected area			Area of a	affected bara	ngays in San	Miguel (in sq. km.)			
(sq. km.) by flood depth (in m.)	Hagbuyo	Kagawasan	Mahayag	Poblacion	San Isidro	San Jose	San Vicente	Santo Niño	Tomoc
0.03-0.20	6.97	3.12	5.12	1.51	3.62	3.64	1.73	9.47	8.23
0.21-0.50	0.41	0.11	0.5	0.064	0.14	0.16	0.083	0.83	0.31
0.51-1.00	0.79	0.12	0.24	0.11	0.22	0.19	0.06	0.35	0.25
1.01-2.00	0.75	0.084	0.088	0.22	0.3	0.29	0.075	0.26	0.17
2.01-5.00	0.15	0.057	0.033	0.083	0.23	0.18	0.025	0.086	0.12
> 5.00	0.0086	0.007	0.0004	0.0092	0.01	0.026	0.001	0.0015	0.0097

For the municipality of Talibon, with an area of 148 sq. km., 28.93% will experience flood levels of less 0.20 meters. 2.74% of the area will experience flood levels of 0.21 to 0.50 meters while 2.29%, 1.42%, 0.51%, and 0.009% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55 are the affected areas in square kilometres by flood depth per barangay.

Affected area			Are	a of affected	barangays i	n Talibon (i	n sq. km.)	1		
(sq. km.) by flood depth (in m.)	Balintawak	Magsaysay	Rizal	San Agustin	San Carlos	San Isidro	San Jose	San Roque	Sikatuna	Zamora
0.03-0.20	2.69	12.96	2.1	4.99	1.19	0.088	0.068	4.58	4.22	9.94
0.21-0.50	0.36	0.37	0.076	1.66	0.087	0.0016	0.0004	0.68	0.2	0.64
0.51-1.00	0.18	0.34	0.066	1.09	0.041	0.0011	0	0.35	0.51	0.81
1.01-2.00	0.034	0.49	0.044	0.23	0.0034	0.0002	0	0.23	0.51	0.56
2.01-5.00	0.0008	0.28	0.017	0.042	0.0019	0	0	0.0096	0.21	0.19
> 5.00	0	0.0031	0	0.0029	0	0	0	0	0	0.0066

Table 55. Affected Areas in Talibon, Bohol during 25-Year Rainfall Return Period

Figure 92. Affected Areas in Talibon, Bohol during 25-Year Rainfall Return Period

For the municipality of Trinidad, with an area of 143 sq. km., 48.26% will experience flood levels of less 0.20 meters. 2.98% of the area will experience flood levels of 0.21 to 0.50 meters while 3.7%, 3.18%, 1.69%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 56-57 are the affected areas in square kilometres by flood depth per barangay.

Figure 93. Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period

Affected area			A	rea of affected	barangays in Trir	nidad (in sq. km.)			
(sq. km.) by flood depth (in m.)	Banlasan	Bongbong	Catoogan	Guinobatan	Hinlayagan Ilaud	Hinlayagan Ilaya	Kauswagan	Kinan- Oan	La Union
0.03-0.20	7.76	5.39	0.073	3.27	1.28	4.48	15.03	3.72	2.77
0.21-0.50	0.42	0.47	0.0058	0.19	0.096	0.2	0.55	0.2	0.15
0.51-1.00	0.39	0.51	0.0011	0.39	0.19	0.33	0.44	0.18	0.19
1.01-2.00	0.28	0.3	0	0.24	0.5	0.56	0.31	0.082	0.17
2.01-5.00	0.14	0.13	0	0.012	0.12	0.36	0.16	0.0046	0.014
> 5.00	0.023	0.0038	0	0.0003	0.0014	0.0091	0.0038	0	0.00069

Table 56. Table 56. Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period

Table 57. Affected Areas in Trinidad, Bohol during 25-Year Rainfall Return Period

Affected area		A	rea of affecte	<mark>d barangays in T</mark> r	inidad (in sq.	km.)		
(sq. km.) by flood depth (in m.)	La Victoria	Mabuhay Cabigohan	Mahagbu	Manuel M. Roxas	Poblacion	San Isidro	San Vicente	Santo Tomas
0.03-0.20	2.18	1.47	3.69	2.21	2.12	4.98	5.32	3.18
0.21-0.50	0.16	0.072	0.14	0.099	0.54	0.35	0.4	0.2
0.51-1.00	0.26	0.12	0.23	0.17	0.92	0.31	0.45	0.2
1.01-2.00	0.067	0.33	0.24	0.51	0.32	0.19	0.25	0.17
2.01-5.00	0	0.051	0.53	0.48	0.11	0.1	0.099	0.1
> 5.00	0	0.0001	0	0.000	0	0.0027	0.0003	0.02

For the municipality of Ubay, with an area of 264.8 sq. km., 5.91% will experience flood levels of less 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.19%, 0.16%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 58 are the affected areas in square kilometres by flood depth per barangay.

Affected area			Are	ea of affecte	d barangays in U	bay (in sq. kr	n.)		
flood depth (in m.)	Buenavista	Bulilis	Camali- An	Gabi	Hambabauran	Lomangog	Los Angeles	Pag-Asa	Tubog
0.03-0.20	0.052	0.76	3.92	1.33	6.65	1.21	0.51	1.18	0.031
0.21-0.50	0.00032	0.033	0.2	0.067	0.34	0.12	0.022	0.097	0.0029
0.51-1.00	0.0007	0.016	0.13	0.045	0.22	0.031	0.017	0.045	0.0002
1.01-2.00	0.0001	0.017	0.16	0.023	0.19	0.0092	0.0085	0.031	0
2.01-5.00	0	0.004	0.045	0.000003	0.024	0.0001	0.0016	0.0014	0
> 5.00	0	0	0	0	0	0	0	0	0

Table 58. Affected Areas in Ubay, Bohol during 25-Year Rainfall Return Period

Figure 94. Affected Areas in Ubay, Bohol during 25-Year Rainfall Return Period

For the 100-year return period, 1.01% of the municipality of Alicia with an area of 81.7 sq. km. will experience flood levels of less 0.20 meters. 0.026% of the area will experience flood levels of 0.21 to 0.50 meters while 0.017%, 0.013%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 59 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Alicia (in sq. km.)
nood depth (in m.)	Katipunan
0.03-0.20	0.82
0.21-0.50	0.021
0.51-1.00	0.014
1.01-2.00	0.011
2.01-5.00	0.0033
> 5.00	0

Table 59. Affected Areas in Alicia, Bohol during 100-Year Rainfall Return Period

Figure 95. Affected Areas in Alicia, Bohol during 100-Year Rainfall Return Period

For the municipality of Bien Unido, with an area of 27.07 sq. km., 37.65% will experience flood levels of less 0.20 meters. 7.74% of the area will experience flood levels of 0.21 to 0.50 meters while 5.99%, 0.26%, and 0.001 of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 60 are the affected areas in square kilometres by flood depth per barangay.

Affected area		А	rea of affected ba	rangays in Bier	n Unido (in so	ι. km.)	
(sq. km.) by flood depth (in m.)	Liberty	Mandawa	Nueva Esperanza	Nueva Estrella	Poblacion	Puerto San Pedro	Tuboran
0.03-0.20	0.95	0.9	4.54	2.63	0.52	0.65	0.00017
0.21-0.50	0.075	0.17	1.13	0.52	0.077	0.13	0
0.51-1.00	0.25	0.022	0.66	0.51	0.063	0.13	0
1.01-2.00	0.065	0.00039	0.098	0.032	0	0.0046	0
2.01-5.00	0.0004	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0

Table 60. Affected Areas in Bien Unido, Bohol during 100-Year Rainfall Return Period

Figure 96. Affected Areas in Bien Unido, Bohol during 100-Year Rainfall Return Period

For the municipality of Dagohoy, with an area of 92.47 sq. km., 0.024% will experience flood levels of less 0.20 meters. 0.001% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0006% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 61 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Dagohoy (in sq. km.)
	Cagawasan
0.03-0.20	0.022
0.21-0.50	0.0012
0.51-1.00	0.00056
1.01-2.00	0
2.01-5.00	0
> 5.00	0

Table 61. Affected Areas in Dagohoy, Bohol during 100-Year Rainfall Return Period

Figure 97. Affected Areas in Dagohoy, Bohol during 100-Year Rainfall

For the municipality of Danao, with an area of 109 sq. km., 2.40% will experience flood levels of less 0.20 meters. 0.09% of the area will experience flood levels of 0.21 to 0.50 meters while 0.07%, 0.04%, 0.01%, and 0.0006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 62 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affecte Danao (in	ed barangays in n sq. km.)
depth (in m.)	Dagohoy	San Miguel
0.03-0.20	0.88	1.7
0.21-0.50	0.031	0.063
0.51-1.00	0.03	0.044
1.01-2.00	0.016	0.03
2.01-5.00	0.0045	0.011
> 5.00	0	0.0007

Table 62. Affected Areas in Danao, Bohol during 100-Year Rainfall Return Period

Figure 98. Affected Areas in Danao, Bohol during 100-Year Rainfall Return Period

For the municipality of Jetafe, with an area of 94.04 sq. km., 0.025% will experience flood levels of less 0.20 meters. 0.0002% of the area will experience flood levels of 0.21 to 0.50 meters while 0.0002%, and 0.0001% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Listed in Table 63 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Jetafe (in sq. km.)
	Cabasakan
0.03-0.20	0.024
0.21-0.50	0.00024
0.51-1.00	0.0002
1.01-2.00	0.0001
2.01-5.00	0
> 5.00	0

Table 63. Affected Areas in Jetafe, Bohol during 100-Year Rainfall Return Period

Figure 99. Affected Areas in Jetafe, Bohol during 100-Year Rainfall Return Period

For the municipality of Pilar, with an area of 114.4 sq. km., 5.67% will experience flood levels of less 0.20 meters. 0.34% of the area will experience flood levels of 0.21 to 0.50 meters while 0.94%, 0.23%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and, 2.01 to 5 meters, respectively. Listed in Table 64 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Pilar (in sq. km.)
	La Suerte
0.03-0.20	6.48
0.21-0.50	0.38
0.51-1.00	1.07
1.01-2.00	0.26
2.01-5.00	0.065
> 5.00	0

Table 64. Affected Areas in Pilar, Bohol during 100-Year Rainfall Return Period

Figure 100. Affected Areas in Pilar, Bohol during 100-Year Rainfall Return Period

For the municipality of San Miguel, with an area of 107 sq. km., 81.03% will experience flood levels of less 0.20 meters. 4.43% of the area will experience flood levels of 0.21 to 0.50 meters while 3.87%, 4.63%, 3.32%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 65 are the affected areas in square kilometres by flood depth per barangay.

Figure 101. Affected Areas in San Miguel, Bohol during 100-Year Rainfall Return Period

))				
Affected area			Area of a	iffected bara	ngays in San	Miguel (in sq. km.)			
(sq. km.) by flood depth (in m.)	Bayongan	Bugang	Cabangahan	Caluasan	Camanaga	Cambangay Norte	Capayas	Corazon	Garcia
0.03-0.20	5.28	4.98	7.29	4.64	4.05	3.3	4.39	3.85	7.06
0.21-0.50	0.26	0.2	0.32	0.15	0.27	0.16	0.16	0.2	0.3
0.51-1.00	0.21	0.29	0.43	0.11	0.14	0.17	0.21	0.22	0.23

Table 65. Affected Areas in San Miguel, Bohol during 100-Year Rainfall Return Period

Table 66. Affected Areas in San Miguel, Bohol during 100-Year Rainfall Return Period

Affected area			Area of a	affected bara	ngays in San	Miguel (in sq. km.)			
(sq. km.) by flood depth (in m.)	Hagbuyo	Kagawasan	Mahayag	Poblacion	San Isidro	San Jose	San Vicente	Santo Niño	Tomoc
0.03-0.20	6.77	3.07	4.99	1.45	3.54	3.56	1.69	6	8.08
0.21-0.50	0.32	0.11	0.46	0.059	0.12	0.14	0.088	1.09	0.34
0.51-1.00	0.57	0.11	0.36	0.073	0.17	0.14	0.06	0.43	0.24
1.01-2.00	0.98	0.099	0.13	0.23	0.28	0.25	0.071	0.32	0.23
2.01-5.00	0.44	0.087	0.047	0.17	0.39	0.35	0.06	0.16	0.17
> 5.00	0.016	0.011	0.0006	0.013	0.017	0.041	0.0014	0.0036	0.022

0.17

0.37 0.15

0.17 0.12

0.27

0.095

0.35

0.55 0.45

0.28

1.01-2.00 2.01-5.00

0.2

0.14

0.21

0.001

0.029

0

0.12 0.097 0.0081

0.0014

0.0001

0.0001

> 5.00

For the municipality of Talibon, with an area of 148 sq. km., 27.58% will experience flood levels of less 0.20 meters. 2.62% of the area will experience flood levels of 0.21 to 0.50 meters while 2.68%, 2.07%, 0.92%, and 0.028% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 67 are the affected areas in square kilometres by flood depth per barangay.

Affected area			Are	ea of affected	barangays i	n Talibon (iı	n sq. km.)			
(sq. km.) by flood depth (in m.)	Balintawak	Magsaysay	Rizal	San Agustin	San Carlos	San Isidro	San Jose	San Roque	Sikatuna	Zamora
0.03-0.20	2.58	12.8	2.08	4.38	1.18	0.088	0.068	3.96	4.09	9.61
0.21-0.50	0.38	0.36	0.073	1.41	0.075	0.0017	0.0004	0.86	0.17	0.56
0.51-1.00	0.25	0.34	0.073	1.7	0.063	0.0012	0.0001	0.6	0.26	0.68
1.01-2.00	0.055	0.4	0.054	0.48	0.0059	0.0005	0	0.33	0.81	0.93
2.01-5.00	0.0013	0.53	0.024	0.05	0.0021	0	0	0.086	0.31	0.36
> 5.00	0	0.022	0.0001	0.0041	0	0	0	0	0	0.015

Table 67. Affected Areas in Talibon, Bohol during 100-Year Rainfall Return Period

Figure 102. Affected Areas in Talibon, Bohol during 100-Year Rainfall Return Period

For the municipality of Trinidad, with an area of 143 sq. km., 46.73% will experience flood levels of less 0.20 meters. 2.37% of the area will experience flood levels of 0.21 to 0.50 meters while 3.34%, 3.69%, 3.54%, and 0.2% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 68-69 are the affected areas in square kilometres by flood depth per barangay.

Figure 103. Affected Areas in Trinidad, Bohol during 100-Year Rainfall Return Period

		Table 6	58. Affected A1	reas in Trinidad,	Bohol during 100-Y	/ear Rainfall Return	n Period		
Affected area			A	rea of affecteo	l barangays in Trir	nidad (in sq. km.)			
(sq. km.) by flood depth (in m.)	Banlasan	Bongbong	Catoogan	Guinobatan	Hinlayagan Ilaud	Hinlayagan Ilaya	Kauswagan	Kinan- Oan	La Union
0.03-0.20	7.58	5.19	0.071	3.16	1.2	4.32	14.85	3.66	2.71
0.21-0.50	0.4	0.3	0.006	0.14	0.059	0.17	0.55	0.21	0.12
0.51-1.00	0.44	0.59	0.0027	0.19	0.12	0.24	0.48	0.16	0.2
1.01-2.00	0.34	0.47	0	0.45	0.28	0.43	0.39	0.15	0.17
2.01-5.00	0.21	0.24	0	0.18	0.5	0.75	0.23	0.0091	0.1
> 5.00	0.044	0.015	0	0.0048	0.028	0.031	0.012	0	0.0013

Table 68. Affected Areas in Trinidad, Bohol during 100-Year Raii	ıfall Return Period
Table 68. Affected Areas in Trinidad, Bohol during 10	0-Year Rai
Table 68. Affected Areas in Trinidad, Bohol	during 10
Table 68. Affected Areas in Trinida	d, Bohol
Table 68. Affected Areas ir	n Trinida
Table 68. Affected	Areas ir
Table 68.	Affected
	Table 68.

Table 69. Affected Areas in Trinidad, Bohol during 100-Year Rainfall Return Period

Affected area			Area of affecte	ed barangays in Tri	nidad (in sq. ŀ	cm.)		
(sq. km.) by flood depth (in m.)	La Victoria	Mabuhay Cabigohan	Mahagbu	Manuel M. Roxas	Poblacion	San Isidro	San Vicente	Santo Tomas
0.03-0.20	2.13	1.41	3.54	2.03	1.85	4.81	5.16	3.05
0.21-0.50	0.13	0.063	0.13	0.078	0.19	0.33	0.34	0.18
0.51-1.00	0.23	0.076	0.19	0.1	0.72	0.34	0.49	0.2
1.01-2.00	0.18	0.1	0.21	0.22	1	0.29	0.36	0.22
2.01-5.00	0.0007	0.36	0.72	1.01	0.23	0.16	0.17	0.18
> 5.00	0	0.031	0.034	0.022	0.019	0.01	0.0017	0.036

For the municipality of Ubay, with an area of 264.8 sq. km., 5.74% will experience flood levels of less 0.20 meters. 0.41% of the area will experience flood levels of 0.21 to 0.50 meters while 0.21%, 0.2%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 70 are the affected areas in square kilometres by flood depth per barangay.

Affected area			Are	ea of affecte	d barangays in U	bay (in sq. kr	n.)		
(sq. km.) by flood depth (in m.)	Buenavista	Bulilis	Camali- An	Gabi	Hambabauran	Lomangog	Los Angeles	Pag-Asa	Tubog
0.03-0.20	0.052	0.75	3.76	1.31	6.5	1.17	0.51	1.14	0.03
0.21-0.50	0.00062	0.043	0.26	0.078	0.4	0.15	0.023	0.12	0.0034
0.51-1.00	0.0003	0.017	0.15	0.046	0.23	0.035	0.019	0.044	0.00031
1.01-2.00	0.0004	0.02	0.19	0.036	0.22	0.019	0.011	0.041	0
2.01-5.00	0.0001	0.0053	0.091	0.0001	0.057	0.0011	0.0024	0.008	0
> 5.00	0	0	0	0	0	0	0	0	0

Table 70. Affected Areas in Ubay, Bohol during 100-Year Rainfall Return Period

Figure 104. Affected Areas in Ubay, Bohol during 100-Year Rainfall Return Period

Among the barangays in the municipality of Alicia, Katipunan is projected to have the highest percentage of area that will experience flood levels at 1.07%.

Among the barangays in the municipality of Bien Unido, Nueva Esperanza is projected to have the highest percentage of area that will experience flood levels at 23.74%. Meanwhile, Liberty posted the second highest percentage of area that may be affected by flood depths at 4.94%.

Among the barangays in the municipality of Dagohoy, Cagawasan is projected to have the highest percentage of area that will experience flood levels at 0.03%.

Among the barangays in the municipality of Danao, San Miguel is projected to have the highest percentage of area that will experience flood levels at 1.85%. Meanwhile, Dagohoy posted the second highest percentage of area that may be affected by flood depths at 0.96%.

Among the barangays in the municipality of Jetafe, Cabasakan is projected to have the highest percentage of area that will experience flood levels at 0.03%.

Among the barangays in the municipality of Pilar, La Suerte is projected to have the highest percentage of area that will experience flood levels at 7.23%.

Among the barangays in the municipality of San Miguel, Santo Niño is projected to have the highest percentage of area that will experience flood levels at 10.24%. Meanwhile, Tomoc posted the second highest percentage of area that may be affected by flood depths at 8.47%.

Among the barangays in the municipality of Talibon, Magsaysayis projected to have the highest percentage of area that will experience flood levels at 13.46%. Meanwhile, Zamora posted the second highest percentage of area that may be affected by flood depths at 11.32%.

Among the barangays in the municipality of Trinidad, Kauswagan is projected to have the highest percentage of area that will experience flood levels at 11.55%. Meanwhile, Banlasan posted the second highest percentage of area that may be affected by flood depths at 6.32%.

Among the barangays in the municipality of Ubay, Hambabauran is projected to have the highest percentage of area that will experience flood levels at 2.80%. Meanwhile, Lomangog posted the second highest percentage of area that may be affected by flood depths at 0.52%.

Moreover, the generated flood hazard maps for the Ipil Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Morning Loval	Ar	ea Covered in sc	ι. km.
warning Level	5 year	25 year	100 year
Low	17.45	17.17	15.89
Medium	14.70	22.76	24.69
High	3.19	10.14	17.28
TOTAL	35.34	50.07	57.86

Table 71. Area covered by each warning level with respect to the rainfall scenario

Of the 31 identified Education Institutions in the Ipil Flood plain, 2 schools were assessed to be exposed to Low level flooding during a 5 year scenario. In the 25 year scenario, 2 schools were assessed to be exposed to low level flooding. In the 100 year scenario, 3 schools were assessed to be exposed to low level flooding. See Appendix D for a detailed enumeration of schools in the Ipil floodplain.

Of the 8 identified Medical Institutions in the Abatan Flood Plain, no medical institutions were assessed to be exposed to any of the flooding scenarios. See **Appendix E** for a detailed enumeration of hospitals and clinics in the Ipil floodplain.

5.11 Flood Validation

A survey was done along the floodplain of Ipil River to validate the generated flood maps. The team gathered secondary data regarding flood occurrence in the area. Ground validation points were acquired as well as the other necessary details like date of occurrence, name of typhoon and actual flood depth.

During validation, the team was assisted by the local Disaster Risk Reduction and Management representatives from the Municipalities of Talibon, Bien Unido and Trinidad. Residents along the floodplain were interviewed of the historical flood events they experiences.

Actual flood depth acquired from the ground validation were then computed and compared to the flood depth simulated by the model. An RMSE value of 0.57 was obtained.

Figure 105. Flood Validation Points of Ipil River Basin

Figure 106. Flood map depth vs actual flood depth

Actual Flood			Modeled	Flood Depth	(m)		
Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	35	3	0	0	0	0	38
0.21-0.50	39	8	3	0	0	0	50
0.51-1.00	21	1	6	1	0	0	29
1.01-2.00	13	1	3	4	1	0	22
2.01-5.00	1	0	1	0	0	0	2
> 5.00	0	0	0	0	0	0	0
Total	109	13	13	5	1	0	141

Table 72. Actual Flood Depth vs Simulated Flood Depth in Ipil

The overall accuracy generated by the flood model is estimated at 37.59% with 53 points correctly matching the actual flood depths. In addition, there were 50 points estimated one level above and below the correct flood depths while there were 23 points and 14 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 80 points were underestimated in the modelled flood depths of Ipil.

Table 73. Summary of Accuracy Assessment in Ipil River Basin Survey

No. of Points		%
Correct	53	37.59
Overestimated	8	5.67
Underestimated	80	56.74
Total	141	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Ipil Floodplain Survey

1. PEGASUS SENSOR

Laptop

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)

Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint5 Dependent on system configuration

2. D-8900 AERIAL DIGITAL CAMERA

Parameter	Specification				
	Camera Head				
Sensor type	60 Mpix full frame CCD, RGB				
Sensor format (H x V)	8, 984 x 6, 732 pixels				
Pixel size	6μm x 6 μm				
Frame rate	1 frame/2 sec.				
FMC	Electro-mechanical, driven by piezo technology (patented)				
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16				
Lenses	50 mm/70 mm/120 mm/210 mm				
Filter	Color and near-infrared removable filters				
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)				
Weight	~4.5 kg (70 mm lens)				
Controller Unit					
	Mini-ITX RoHS-compliant small-form-factor embedded				
Computer	computers with AMD TurionTM 64 X2 CPU				
computer	4 GB RAM, 4 GB flash disk local storage				
	IEEE 1394 Firewire interface				
Removable storage unit	~500 GB solid state drives, 8,000 images				
Power consumption	~8 A, 168 W				
Dimensions	2U full rack; 88 x 448 x 493 mm				
Weight	~15 kg				
Image	e Pre-Processing Software				
Capture One	Radiometric control and format conversion, TIFF or JPEG				
	8,984 x 6,732 pixels				
inage output	8 or 16 bits per channel (180 MB or 360 MB per image)				

Table A-1.2. Parameters and Specification of D-8900 AERIAL DIGITAL CAMERA

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1 BHL-63

				N	lovember 19, 201;
		CERTIFI	CATION		
To whom it may c	oncern:				
This is to cert	ify that according to	the records on file in	this office, the requ	ested survey inform	ation is as follows
		Province: B	OHOL		<u> </u>
		Station Name	BHL-63		
Island: VISAY	AS	Order: 2nd		Barangev: HAG	BUYO
Municipality: S	AN MIGUEL			barangay. HAG	2010
Latitude: 10°	0' 13.39830"	Longitude: 124	ordinates 20' 43.44081''	Ellipsoidal Hot	17 31900 m
	92 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200			-mpooldar rigt.	17.0 IJUU III.
Latitude: 10°	0' 9.39110"	Longitude: 124	20' 48 71189"	Ellineoidal Hat	90 97200
				Laspaoluai rigi:	ov.o7300 m.
Northing: 1106	212 953 m	Fasting: 128	ordinates	7000 5	
Northing. 1100	212.000 m.	Lasung. 420.	232.104 11.	20ne. 5	
Northing: 1,1(06,055.36	Easting: 647,	462.74	Zone: 51	
		Location D	escription		
3HL-63					
To reach the static Hagbuyo Primary the concrete sidew orm with inscription he road: Pot	on travel from San I School which is abo valk of Hagbuyo Bri is"BHL-63, 2007, N 2 ia 2 6 1 pico with	Miguel Town Proper fo out 150 m NE. Mark is dge Km. 131+630 em AMRIA". Ref. no. 1 is Bridge Topper aine	or about 2.5 Km. and the head of a 3 In. bedded with concre an electric post abo	d look for Hagbuyo I copper nail set on a ste cement putty 30 out 30 m NW at the	Bridge before drilled hole on cm x 30 cm x 15 opposite side of
Rei Ioad, Rei, IIo.	2 is a 6. I pipe with	Bridge Tonage sign a	bout 25 m SW.		
requesting "ally.	Reference			An.	/
Pupose:	3947235 B			////	
Pupose: DR Number: T.N.:	2013-1253		RI	JEL DM. BELEN, M	NSA Sty Branch
Pupose: DR Number: Г.N.:	2013-1253		L III GOTOF	mapping And Geod	eay branch ju
Pupose: DR Number: ſ.N.:	2013-1253		Director	.0	
Pupose: DR Number: I.N.:	2013-1253		Director		
Pupose: DR Number: ſ.N.:	2013-1253		Director		
Pupose: DR Number: I.N.:	2013-1253		Director		
Pupose: DR Number: ".N.:	2013-1253		Director		10 (1941) (1953 1030) (1953
Pupose: DR Number: I.N.:	2013-1253		Director		

Figure A-2.1. BHL-63

2. BHL-95

whom it may concern: This is to certify that according	CER	TIEICATION		
whom it may concern: This is to certify that according		THORHOM		
This is to certify that according				
	to the records on f	ile in this office, the req	uested survey informa	ation is as follows -
	Provin			
	Station N	lame: BHL-95		
	Order	: 2nd		
siana: VISAYAS Municipality: LILA			Barangay: TIGU	IS
	PRSS	2 Coordinates		
atitude: 9º 35' 30.96174"	Longitude:	124° 4' 30.01696"	Ellipsoidal Hgt:	19.23800 m.
	WGSI	84 Coordinates		
atitude: 9º 35' 27.03717"	Longitude:	124° 4' 35.32705"	Ellipsoidal Hgt:	83.04800 m.
	PTM	l Coordinates		
lorthing: 1060736.963 m.	Easting:	398459.803 m.	Zone: 5	
	UTM	l Coordinates		
forthing: 1,060,413.57	Easting:	617,967.70	Zone: 51	
0.5	Locati	on Description	the Administra	
-90				
d of a 3 in. copper nail embedd ve ground level with inscritions ave Tree near concrete post ab	Bohol about 2.5 Km ed on a concrete m BHL-95, 2007, NA out 25 m NW: Stati	n. from Lila Proper on the conument 30 cm x 30 cr MRIA". Ref. no. 1 Elect	le left side of the roac n x 1.20 cm set to the ric post about 30 m S corper of Bray. Tiqui	I. Mark is the ∋ ground 0.20 cm W; Ref. no. 2
uesting Party: UP TCACP/D	Det		comer of bigy. Figur	S OF THE NE.
ose: Reference	531		Ah.	
Number: 3947235 B			/ / HAMMAN	
2015-1214		R	UEL DM. BELEN, MI	NSA
		Director	Mapping And Geode	esy Branch pr
		/		
		HE REPLIE IN LUI	n da kanati ng ka kunan kasa dakan kasan dakan kara kasa kasa	I KITA WANKI KARATINA
		n (n (a la a) 9 9 1		

Figure A-2.2. BHL-95

3. BHL-75

Figure A-2.3. BHL-75

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. 63A

Γ

L

Table A-3.1. 63A	

From:	BHL-63						
	Grid	Loc	ocal			Global	
Easting	647463.396 m	Latitude	N10°00'13.31406" La		Latitude		N10°00'09.30688
Northing	1106052.775 m	Longitude	E124°20'43	3.46219"	Longitude		E124°20'48.73327
Elevation	19.432 m	Height	2	20.487 m	Height		84.041 n
To:	BHL-63A						
	Grid	Loc	cal			G	lobal
Easting	647466.981 m	Latitude	N10°00'13	3.84084"	Latitude		N10°00'09.83363
Northing	1106068.972 m	Longitude	E124°20'43	3.58209"	Longitude		E124°20'48.85315
Elevation	19.409 m	Height	2	20.464 m	Height		84.018 r
Vector							
∆Easting	3.58	85 m NS Fwd Azimuth			12°42'51"	ΔX	-1.416 r
ΔNorthing	16.19	7 m Ellipsoid Dist.			16.591 m	ΔY	-4.400 r
∆Elevation	-0.02	23 m ΔHeight		-0.023 m	ΔZ	15.934 r	
Standard Errors Vector errors: σ ΔEasting	0.001 m	σ NS fwd Azimuth			0°00'10" σ Δ	x	0.001 r
σΔNorthing	0.001 m	σ Ellipsoid Dist.			0.001 m σΔ	Y	0.001 r
σ∆Elevation	0.001 m	σ∆Height			0.001 m σΔ	Z	0.001 r
Aposteriori Covari	ance Matrix (Meter²)						
		x		Y			z
x		0.0000011627					
		-0.0000004536		0.00	00009291		
Y							

2. 75A

From:	BHI	-75						
	Grid		Local			Global		
Easting		668101.461 m	Latitude	Latitude N9°57'16.74294" Latitude		N9°57'12.7648		
Northing		1100718.380 m	Longitude	E124°32'0	0.35318"	Longitude		E124°32'05.6269
Elevation		12.452 m	Height	1	12.845 m	Height		76.974
To:	75							
	Grid		L	ocal			G	ilobal
Easting		668103.303 m	Latitude	N9°57'1	7.24192"	Latitude		N9°57'13.263
Northing		1100733.718 m	Longitude	E124°32'00.41598" Longitude		Longitude		E124°32'05.6897
Elevation		12.274 m	Height	ght 12.668 m H		Height		76.796
Vector								
∆Easting		1.84	2 m NS Fwd Azimut	ı		7°06'44'	ΔX	0.026
∆Northing		15.33	8 m Ellipsoid Dist.			15.449 m	ΔY	-3.411
∆Elevation		-0.17	′8 m ∆Height	-		-0.177 m	ΔZ	15.069
Standard Error	S							
Vector errors:								
σ∆Easting		0.000 m	σ NS fwd Azimuth			0°00'06" σ Δ	x	0.001
σ ΔNorthing		0.000 m	σ Ellipsoid Dist.			0.000 m σ Δ	Y	0.001

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.000008194		
Y	-0.000008289	0.0000012571	
Z	-0.000003177	0.0000004601	0.000003613

3. Hotel

From:	BHL	-95								
	Grid			Loc	al		Global			
Easting		617964.842 m	Latit	Latitude N9°35'31.058			Latitude		N9°35'27.13378	
Northing		1060416.528 m	Long	gitude	E124°04'2	29.92362"	Longitude		E124°04'35.23370	
Elevation		26.191 m	Heig	ht		26.080 m	Height		89.890	
To:	Hote	el								
	Grid			Loc	al			Gl	obal	
Easting		594927.168 m	Latit	ude	N9°39'3	32.15822"	Latitude		N9°39'28.1979	
Northing		1067756.448 m	Long	gitude	E123°51'5	54.83035"	Longitude		E123°52'00.13618	
Elevation		49.511 m	Heig	ht		49.981 m	Height		113.124	
Vector										
∆Easting		-23037.67	74 m	NS Fwd Azimuth	uth 287		287°51'07	" ΔX	19772.484 (
∆Northing		7339.92	20 m	Ellipsoid Dist.	24184.956 m		n ΔY	11856.935		
∆Elevation		23.32	20 m	∆Height		23.900 m		n ∆Z	7306.139	
Standard Errors	S									
Vector errors:										
σ∆Easting		0.025 m	σNS	6 fwd Azimuth			0°00'00" σ	ΔX	0.027	
σ∆Northing		0.009 m	σEll	ipsoid Dist.			0.023 m σ	ΔY	0.035	
σ∆Elevation		0.037 m	σΔΗ	leight			0.037 m σ	٨Z	0.011	
Aposteriori Cov	ariance I	Matrix (Meter²)								
				х		Y			z	
х				0.0007210250						
Y				-0.0002800594		0.0	012254248			
7				-0.0001804231		0.00	001515697		0.000123008	

Table A-3.3. Hotel

4. EPHotel

Table	A-3.4	FPHotel
Table	л J.т.	LI HOLCI

From:	Hotel							
G	irid	Lo	cal			Glo	obal	
Easting	594927.168 m	Latitude	N9°39'32	2.15823"	Latitude		N9°39'28.19791'	
Northing	1067756.448 m	Longitude	E123°51'54	4.83035"	Longitude		E123°52'00.13618	
Elevation	49.511 m	Height	4	9.981 m	Height		113.124 m	
To:	EP Hotel							
G	irid	Lo	cal			Glo	obal	
Easting	594929.594 m	Latitude	N9°39'32	2.38755"	Latitude		N9°39'28.42722	
Northing	1067763.497 m	Longitude	E123°51'54	1.91053"	Longitude		E123°52'00.21635'	
Elevation	49.487 m	Height	4	9.956 m	Height		113.100 r	
Vector								
∆Easting	2.42	6 m NS Fwd Azimuth			19°08'04"	ΔX	-1.357 m	
∆Northing	7.04	9 m Ellipsoid Dist.			7.457 m	ΔY	-2.364 m	
∆Elevation	-0.02	25 m <mark>∆Height</mark>		-0.024 m ΔΖ		ΔZ	6.941 m	
Standard Errors								
Vector errors:								
σ ∆Easting	0.002 m	σ NS fwd Azimuth			0°00'49" σ Δ	х	0.003 m	
σ∆Northing	0.001 m	σ Ellipsoid Dist.			0.001 m σ Δ	Y	0.002 m	
σ ∆Elevation	0.003 m	σ ∆Height			0.003 m σ Δ	Z	0.001 m	
Aposteriori Covaria	nce Matrix (Meter²)							
		х		Y			Z	
x		0.0000064477						
Y		-0.0000028257		0.0	000057669			
Z		-0.0000013924		0.0	000012411		0.0000013056	

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub- Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
LIDAR Operation	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
		FIELD TEAM	
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
LiDAR Operation	Posoarch Associate (PA)	IRO NIEL ROXAS	UP-TCAGP
	Research Associate (RA)	KRISTINE JOY ANDAYA	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	MA. KATRINA RANESES	UP-TCAGP
	Airborne Security	SSG. MIKE BERONILLA	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. CESAR ALFONSO III	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. RANDY LAGCO	AAC

Table A-4.1. The LIDAR Survey Team Composition	

SERVER	IDACIRAW	ATA IDACIRAW	NDACIRAW	IDACIRAW ATA	
LAN	2 Va	u z c	a N C	na Z	
FLIGHT P	38/55/25	38/55/25	42	na	
PERATOR	(or coal)		8	8	
ION(S) C	(1xt) (1xt)	(B	(B	4	
BASE STAT BASE	10.2 11	6.91	15.7 11	15.7 11	
DIGITIZER	n BD	g	B	g	12
RANGE	17.4	19.4	32.8	12.9	4 31
IISSION LOG	ua e	Ua	Ja	na	the sea
RAW	BU	Ja	na	na	Received by Name A C Postion S Signature
POS	163	178	302	151	
LOGS(MB)	7.44	8.31	14.1	5.78	
AS MI (cwath)	657/318	2606/367	525/635	1826/263	
RAW L	1.7	1.87	1.6	1.24	
SENSOR	soasus	susse	soasus	egasus	
WISSION NAME	1BLK51LS253A pe	1BLK51LS254A	1BLK51B255A	1BLK51C255B	Received from Name Position Signature
FLIGHT NO.	3401P	3405P	3409P	3411P	
ATE	10-Sep	11-Sep	12-Sep	12-Sep	

Figure A-5.1. Transfer Sheet for Ipil Floodplain - A

Annex 5. Data Transfer Sheet for Ipil Floodplain

1	Г	N	M	M	M	M	N		
		LOCATIC	Z:IDACIRA DATA	Z:IDACIRA DATA	Z:\DAC\RA DATA	Z:IDACIRA DATA	Z:\DAC\RA DATA		
	PLAN	KML	na	na	na	na	па		
4	FLIGHT	Actual	na	na	121/121	75/86	na		
	OPERATOR	(OPLOG)	IKB	IKB	IKB	IKB	1KB		
	(TION(S)	Base Info (.txt)	IKB	IKB	IKB	IKB	1KB		
	BASE STA	BASE TATION(S)	7.05	8.35	9.84	13.1	4.75		
		DIGITIZER	na	na	na	na	na	128/2015	
	-	RANGE	8.79	23.8	5.95	18	16.5	L IO	
	ISSION LOG	FILE/CASI LOGS	па	na	na	na	па	POPER P	
ER SHEET	N	MAGES/CASI	па	na	na	na	na	ceceived by lame Jo ostition	
ATA TRANSF Bohol 10		POS	152	261	124	221	148	E 2 L 0	
		LOGS(MB)	5.94	12.2	4.54	6.1	7.82		
	AS	ML (swath)	na	na	na	na	25/123		
	RAW L	utput LAS K	731	2.37	542	1.22	591		
		SENSOR	egasus	egasus	egasus	egasus	egasus	17 AL	
		IISSION NAME	1BLK51C258A	1BLK51260A	1BLK51S264A	1BLK51G265A	1BLK51S266A	cereived from ame ostion gnature	
		FLIGHT NO. M	3421P	3429P	3445P	3449P	3453P	ας Z 0, 0)	
		비	15-Sep	17-Sep	21-Sep	22-Sep	23-Sep		

Figure A-5.2. Transfer Sheet for Ipil Floodplain - B

1. Flight Log for Mission 1BLK51B255A

D	2 2 0	1 1 1	1			7	*	 1
Flight Log No.: 34 p.	6 Aircraft I dentification: $\mathbb{Z}P - \mathcal{C}_{\mathcal{P}}$	18 Total Flight Time: 4+13		JIS 3				Aircraft Mechaniz, UDAR Technician <u> VA</u> Signature over Printed Name
	S Aircraft Type: Cesnna T206H	17 Landing: [032 F]	S	Jurund BLR	BLK SIB			 LIDAR Operator
	e://RLS/RZZYJ 4 TYPE: VFR addeilaru - 7 - Anlar an vince): 12 Airpôn of Anjva	: Time: 16 Take off: حک 0619 H	21 Remar		ystem Maintenance Maintenance AR Admin Activities			Pllotin-Command M. Co. A. Co. M. Signature over Printed Name
	2 ALTM Model: المحرمين B Mission Nam ot: 7- 1- محرمين B Route: 7 12 Airport of D'Eparture (Airport, Gry/Pro	ne UT: 1037 H IS Total Engine Ub classely		on Billable 20.c Others	Aircraft Test Flight 0 LIDARS AAC Admin Flight 0 Aircraft 0 Others: 0 Phil-LID			Acquisition Flight Certified by S Parameter Protect Partice (PAF Representative)
IL-LIDAR 1 Data Acquisition Flight Log	UDAR Operator: J. Loxas : 1101: C. M. Dares [1] 8 Co. 1911. Date: Syst 12, 2015]	Lengine Un: 06144 At Engine Weather	Flight Classification	.a Billable 20.b N	A Acquisition Flight C O Ferry Flight C O System Test Flight O O Calibration Flight	Problems and Solutions	O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others	Acquisition Filght Apgroved by

Figure A-6. 1. Flight Log for Mission 1BLK51B255A

5.

<u>.</u>

Annex 7. Flight Status Reports

BOHOL

(September 12-23, 2015) Table A-7.1. Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
3409P	BLK 51S INABANGA FP AND BLK 51B MATULID FP	1BLK51B255A	I ROXAS	SEPT 12	SURVEYED BLK 51B AT 1000M THEN 850M ALT; ABNORMAL AVPOSVIEW TERMINATION; DIGI HD WRITING ERROR; SWATH NOT UPDATING – RESTARTED LASER – INC SWATH AND LAS
3411P	BLK 51C AND 51F MATULID FP	1BLK51C255B	J ALVIAR	SEPT 12	SURVEYED BLK 51C AND PARTS OF BLK 51F AT 800M ALT; LOST CHANNEL A PROMPT BUT BOTH LASERS WERE STILL ACQUIRING RANGES
3421P	BLK 51F	1BLK51C258A	KJ ANDAYA	SEPT 15	SURVEYED BLK 51F AT 800M; TOO CLOUDY
3429P	BLK 51C, 51B, 51F	1BLK51260A	I ROXAS	SEPT 17	SURVEYED BLK 51B, 51F, AND 51C; CHANGED MISSION NAME FROM 1BLK75260A TO 1BLK51260A; DESCENDED FROM 1000M TO 800M
3449P	BLK 51A	1BLK51G265A	I ROXAS	SEPT 22	SURVEYED BLK 51A AT 800M
3453P	BLK 51LKS, 51F LOBOC FP	1BLK51S266A	J ALVIAR	SEPT 23	SURVEYED GAPS IN LOBOC FP; IRREGULAR SWATH AND LAS

	LAS/SWATH BOUNDARIES PER MISSION FLIGHT
Flight No.:	3409P
Area:	BLK51S,BLK51B
Mission Name:	1BLK51B255A
Parameters:	Altitude: 1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.1. Swath for Flight No. 3409P

Flight No.:	3411P
Area:	BLK51C, BLK51F
Mission Name:	1BLK51C255B
Parameters:	Altitude: 800-1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.2. Swath for Flight No. 3411P

Flight No.:	3421P
Area:	BLK51F
Mission Name:	1BLK51C258A
Parameters:	Altitude: 800-1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.3. Swath for Flight No. 3421P

Flight No.:	3429P
Area:	BLK51B, BLK51F,BLK51C
Mission Name:	1BLK51260A
Parameters:	Altitude: 800-1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.4. Swath for Flight No. 3429P

Flight No.:	3449P
Area:	BLK51A
Mission Name:	1BLK51G265A
Parameters:	Altitude: 800-1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.5. Swath for Flight No. 3449P

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Flight No.:	3453P
Area:	BLK51F, BLK51LKS
Mission Name:	1BLK51S266A
Parameters:	Altitude:1000m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.6. Swath for Flight No. 3453P
Annex 8: Mission Summary Reports

Flight Area	Bohol
Mission Name	Blk51B
Inclusive Flights	3409P
Range data size	32.8 GB
POS	302 MB
Base Data	15.7 MB
Image	NA
Transfer date	September 21, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.318
RMSE for East Position (<4.0 cm)	1.080
RMSE for Down Position (<8.0 cm)	2.870
Boresight correction stdev (<0.001deg)	0.000157
IMU attitude correction stdev (<0.001deg)	0.000393
GPS position stdev (<0.01m)	0.0008
Minimum % overlap (>25)	31.38
Ave point cloud density per sq.m. (>2.0)	2.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	258
Maximum Height	510.48 m
Minimum Height	65.54 m
Classification (# of points)	
Ground	35,543,081
Low vegetation	22,577,357
Medium vegetation	31,702,271
High vegetation	38,654,593
Building	1,252,854
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Christy Lubiano, Kathryn Claudine Zarate

Table A-8.1. Mission Summary Report for Mission Blk51B

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimate Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density Map of merged LiDAR data

Figure A-8.7. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk51C
Inclusive Flights	3411P, 3429P
Range data size	12.9 GB
POS	151 MB
Base Data	24.05 MB
Image	NA
Transfer date	September 21, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.350
RMSE for East Position (<4.0 cm)	1.416
RMSE for Down Position (<8.0 cm)	3.280
Boresight correction stdev (<0.001deg)	0.000206

Table A-8.2. Mission Summary	Report for	Mission	Blk51C
------------------------------	------------	---------	--------

IMU attitude correction stdev (<0.001deg)	0.000581
GPS position stdev (<0.01m)	0.0091
Minimum % overlap (>25)	20.51
Ave point cloud density per sq.m. (>2.0)	3.55
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	149
Maximum Height	398.62 m
Minimum Height	58.94 m
Classification (# of points)	
Ground	31,388,745
Low vegetation	12,005,662
Medium vegetation	16,254,529
High vegetation	41,356,718
Building	946,900
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Edgardo Gubatanga, Engr. Krisha Marie Bautista

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimate Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density Map of merged LiDAR data

Figure A-8.14. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk51C_additional
Inclusive Flights	3429P
Range data size	23.8 GB
POS	261 MB
Base Data	8.35 MB
Image	NA
Transfer date	October 28, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.966
RMSE for East Position (<4.0 cm)	1.029
RMSE for Down Position (<8.0 cm)	2.475
Boresight correction stdev (<0.001deg)	0.000206
IMU attitude correction stdev (<0.001deg)	0.000581
GPS position stdev (<0.01m)	0.0091
Minimum % overlap (>25)	26.40
Ave point cloud density per sq.m. (>2.0)	2.67
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	376
Maximum Height	493.11 m
Minimum Height	66.88 m
Classification (# of points)	
Ground	47,220,916
Low vegetation	24,759,582
Medium vegetation	33,557,086
High vegetation	62,237,981
Building	1,894,697
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Kathryn Claudyn Zarate

Table A-8.3. Mission Summary Report for Mission Blk51C Additional

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimate Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density Map of merged LiDAR data

Figure A-8.21. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk51F
Inclusive Flights	3421P, 3453P
Range data size	8.79 GB
POS	152 MB
Base Data	11.8 MB
Image	NA
Transfer date	October 28, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.878
RMSE for East Position (<4.0 cm)	1.017
RMSE for Down Position (<8.0 cm)	1.852
Boresight correction stdev (<0.001deg)	0.000328

Table A-8.4. Mission Summary Report for Mission Blk51F

IMU attitude correction stdev (<0.001deg)	0.001372
GPS position stdev (<0.01m)	0.0177
Minimum % overlap (>25)	41.46
Ave point cloud density per sq.m. (>2.0)	4.14
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	155
Maximum Height	395.58 m
Minimum Height	67.56 m
Classification (# of points)	
Ground	20,632,320
Low vegetation	9,004,364
Medium vegetation	9,589,867
High vegetation	14,454,767
Building	338,961
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Marie Denise Bueno

Figure A-8.22. Figure 1.4.1. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimate Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density Map of merged LiDAR data

Figure A-8.28. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk51A
Inclusive Flights	3449P
Range data size	18 GB
POS	221 MB
Base Data	13.1 MB
Image	NA
Transfer date	October 28, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.976
RMSE for East Position (<4.0 cm)	1.195
RMSE for Down Position (<8.0 cm)	3.12
Boresight correction stdev (<0.001deg)	0.000181
IMU attitude correction stdev (<0.001deg)	0.000962
GPS position stdev (<0.01m)	0.0028
Minimum % overlap (>25)	24.82
Ave point cloud density per sq.m. (>2.0)	2.74
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	210
Maximum Height	249.28 m
Minimum Height	67.91 m
Classification (# of points)	
Ground	27,982,165
Low vegetation	21,612,607
Medium vegetation	19,117,741
High vegetation	20,385,805
Building	828,221
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Harond Santos, Kathryn Claudine Zarate

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimate Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density Map of merged LiDAR data

Figure A-8.35. Elevation Difference Between flight lines

Annex 9. Ipil Model Basin Parameters

Table A-9.1. Ipil Model Basin Parameters

	SCS Curve	Sumber Lo	ss Model	Clark Transf	form Model		Recessior	Constant Ba	seflow Model	
Basin Number	Initial Abstraction	Curve Number	Impervious	Time of Concentration	Storage Coefficient	Initial Type	Initial Discharge	Recession Constant	Threshold Type	Ratio to Peak
W140	4.948	68.105	0	0.44063	1.5269	Discharge	0.004109	1	Ratio to Peak	0.13333
W150	2.5742	97.458	0	2.7814	1.8817	Discharge	0.095626	1	Ratio to Peak	0.18824
W160	3.2817	66.743	0	2.4588	1.6054	Discharge	0.025748	1	Ratio to Peak	0.2
W170	3.0798	85.586	0	3.5917	1.5875	Discharge	0.10022	1	Ratio to Peak	0.2
W180	3.841	72.088	0	12.064	8.0833	Discharge	0.72018	1	Ratio to Peak	0.2
W190	0.53014	93.414	0	3.5563	3.383	Discharge	0.76921	0.64027	Ratio to Peak	0.2
W200	0.50966	96.056	0	2.1682	1.4798	Discharge	0.2069	1	Ratio to Peak	0.18447
W210	2.4329	84.407	0	2.6257	2.5758	Discharge	0.21866	1	Ratio to Peak	0.2
W220	1.7817	89.016	0	2.4641	5.1678	Discharge	0.56872	1	Ratio to Peak	0.2
W230	4.3282	83.812	0	1.5289	3.5523	Discharge	0.33535	1	Ratio to Peak	0.2
W240	4.35	79.74	0	3.2887	11.379	Discharge	0.45576	1	Ratio to Peak	0.2
W250	2.9125	79.468	0	0.99754	1.5268	Discharge	0.28536	1	Ratio to Peak	0.196
W260	4.7832	73.376	0	2.8932	4.319	Discharge	0.27915	1	Ratio to Peak	0.2

Annex 10. Ipil Model Reach Parameters

Table A-10.1. Ipil Model Reach Parameters

		Wu	skingum Cunge	Routing Model			
Reach Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R10	Automatic Fixed Interval	428.85	5E-04	0.0299019	Trapezoid	15	1
R110	Automatic Fixed Interval	5206.2	0.004	0.0197094	Trapezoid	15	1
R20	Automatic Fixed Interval	916.1	1E-04	0.0292154	Trapezoid	15	1
R30	Automatic Fixed Interval	3106.3	0.002	0.0407621	Trapezoid	15	1
R50	Automatic Fixed Interval	3851.9	0.002	0.0150973	Trapezoid	15	1
R90	Automatic Fixed Interval	5538.4	0.001	0.0178049	Trapezoid	15	1

Annex 11. Ipil Field Validation Points

Point	Validation Co	oordinates	Model Var	Validation	Frror		Return
Number	Longitude	Latitude	(m)	Points (m)	(m)	Event / Date	Period of Event
1	124.33705	9.9833412	0.25	0.5	0.0625	Ruby	100 Year
2	124.33721	9.9834355	0.35	0.3	0.0025	Ruby	100 Year
С	124.33835	9.9841551	0.71	0.7	0.0001	Seniang	100 Year
4	124.33829	9.9841569	0.58	0.5	0.0064	Yolanda	100 Year
5	124.33759	9.9842347	0.42	0.3	0.0144	Seniang	100 Year
9	124.33749	9.9843194	0.45	0.3	0.0225	Ruby	100 Year
7	124.33744	9.9845967	0.6	0.5	0.01	Queenie	100 Year
8	124.33716	9.9846039	0.19	0.3	0.0121	Ruby	100 Year
6	124.33974	9.9848267	0.03	0.7	0.4489	Ruby	100 Year
10	124.34038	9.9851157	0.03	0.7	0.4489	Ruby	100 Year
11	124.33969	9.9853496	0.03	0.9	0.7569	Seniang	100 Year
12	124.33903	9.9868484	0.03	0.5	0.2209	Ruby	100 Year
13	124.3392	9.9877807	0.03	0.2	0.0289	Ruby	100 Year
14	124.34333	9.9988243	0.4	0.2	0.04	Ruby	100 Year
15	124.3471	10.002355	0.68	2.1	2.0164	Yolanda	100 Year
16	124.34732	10.002875	0.03	0.5	0.2209	Seniang	100 Year
17	124.37035	10.021354	0.03	0.5	0.2209	Seniang	100 Year
18	124.37202	10.022183	0.03	1.1	1.1449	Seniang	100 Year
19	124.37092	10.027091	0.03	0.9	0.7569	Ruby	100 Year
20	124.34291	10.02972	0.03	0.5	0.2209	Ruby	100 Year
21	124.34281	10.029748	0.03	0.2	0.0289	Ruby	100 Year
22	124.37076	10.030026	0.03	0.5	0.2209	Queenie	100 Year
23	124.34093	10.030533	0.03	0.2	0.0289	Ruby	100 Year

158

Table A-11.1. Ipil Field Validation Points

Doint	Validation Co	oordinates	Model Var	Walidation	Error		Return
Number	Longitude	Latitude	(m)	Points (m)	(m)	Event / Date	Period of Event
24	124.37012	10.031257	0.03	0.2	0.0289	Ruby	100 Year
25	124.37019	10.032118	0.03	0.7	0.4489	Seniang	100 Year
26	124.34732	10.032917	0.03	0.7	0.4489	Ruby	100 Year
27	124.34722	10.032925	0.03	2.1	4.2849	Seniang	100 Year
28	124.34745	10.033067	0.03	0.3	0.0729	Ruby	100 Year
29	124.34783	10.033799	0.03	0.5	0.2209	Ruby	100 Year
30	124.34821	10.034323	0.03	1.3	1.6129	Ruby	100 Year
31	124.34773	10.034582	0.11	0.9	0.6241	Ruby	100 Year
32	124.34769	10.034754	0.03	0.5	0.2209	Ruby	100 Year
33	124.34824	10.034825	0.03	0.35	0.1024	Ruby	100 Year
34	124.36782	10.042379	0.03	0.4	0.1369	Ruby	100 Year
35	124.36427	10.044475	0.03	1.1	1.1449	Ruby	100 Year
36	124.36422	10.044479	0.03	0.5	0.2209	Ruby	100 Year
37	124.36343	10.044826	0.03	0.4	0.1369	Ruby	100 Year
38	124.32239	10.047115	0.68	0.9	0.0484	Seniang	100 Year
39	124.32228	10.047186	0.91	1.1	0.0361	Seniang	100 Year
40	124.32203	10.047269	0.59	0.5	0.0081	Ruby	100 Year
41	124.35474	10.048345	0.27	0.2	0.0049	Ruby	100 Year
42	124.35362	10.048428	1.46	1.1	0.1296	Seniang	100 Year
43	124.35367	10.048548	0.92	0.6	0.1024	Seniang	100 Year
44	124.35146	10.048895	0.03	0.2	0.0289	Ruby	100 Year
45	124.35152	10.049012	0.6	0.6	0	Seniang	100 Year
46	124.35173	10.049014	1.24	1.1	0.0196	Seniang	100 Year
47	124.36082	10.049173	0.03	0.3	0.0729	Ruby	100 Year
48	124.34315	10.049721	2.54	1.9	0.4096	Seniang	100 Year
49	124.35931	10.049937	0.03	1.1	1.1449	Seniang	100 Year

Point	Validation C	oordinates	Model Var	Validation	Frror		Return
Number	Longitude	Latitude	(m)	Points (m)	(m)	Event / Date	Period of Event
50	124.3662	10.061405	0.03	0.3	0.0729	Ruby	100 Year
51	124.36634	10.061473	0.03	0.3	0.0729	Seniang	100 Year
52	124.3569	10.062657	0.03	0.2	0.0289	Seniang	100 Year
53	124.35789	10.065454	0.03	0.5	0.2209	Seniang	100 Year
54	124.3576	10.066364	0.04	0.2	0.0256	Ruby	100 Year
55	124.35776	10.066465	0.07	0.5	0.1849	Ruby	100 Year
56	124.34183	10.071758	0.03	0.9	0.7569	Seniang	100 Year
57	124.34224	10.072682	0.03	1.1	1.1449	Seniang	100 Year
58	124.35698	10.072996	0.03	0.9	0.7569	Seniang	100 Year
59	124.35633	10.073556	0.03	0.2	0.0289	Seniang	100 Year
60	124.35626	10.074051	0.03	0	0.0009	Seniang	100 Year
61	124.35656	10.074103	0.03	0.1	0.0049	Seniang	100 Year
62	124.34343	10.07513	0.03	0.2	0.0289	Seniang	100 Year
63	124.34334	10.076312	0.03	0	0.0009	Seniang	100 Year
64	124.34373	10.076453	0.03	0	0.0009	Ruby	100 Year
65	124.35002	10.076522	0.03	0.2	0.0289	Seniang	100 Year
66	124.34958	10.076602	0.03	1.3	1.6129	Seniang	100 Year
67	124.34959	10.076798	0.03	0.2	0.0289	Seniang	100 Year
68	124.34372	10.076854	0.03	0.3	0.0729	Ruby	100 Year
69	124.34965	10.07685	0.03	0.5	0.2209	Ruby	100 Year
70	124.34365	10.077647	0.03	0.2	0.0289	Senaing	100 Year
71	124.3435	10.077939	0.03	1.1	1.1449	Yolanda	100 Year
72	124.34987	10.078004	0.03	0.2	0.0289	Seniang	100 Year
73	124.34347	10.078393	0.06	0.2	0.0196	Ruby	100 Year
74	124.35332	10.078435	0.03	0.5	0.2209	Ruby	100 Year
75	124.35302	10.078501	0.18	0.9	0.5184	Ruby	100 Year
76	124.34987	10.078691	0.03	1.1	1.1449	Yolanda	100 Year
77	124.35029	10.078832	0.03	0.2	0.0289	Seniang	100 Year
78	124.34381	10.079926	0.03	0.5	0.2209	Yolanda	100 Year
79	124.34344	10.079956	0.03	0.7	0.4489	Yolanda	100 Year
80	124.34618	10.080021	0.03	0.2	0.0289	Yolanda	100 Year
81	124.34487	10.080036	0.91	1.5	0.3481	Seniang	100 Year
82	124.3449	10.080082	1.35	1.7	0.1225	Yolanda	100 Year
83	124.3434	10.080099	0.03	0.9	0.7569	Seniang	100 Year
84	124.34492	10.080101	1.7	1.5	0.04	Yolanda	100 Year
85	124.34533	10.081115	0.03	0.2	0.0289	Yolanda	100 Year
86	124.35588	10.082329	0.03	0.7	0.4489	Yolanda	100 Year
87	124.35601	10.082567	0.03	0.2	0.0289	Yolanda	100 Year
88	124.3531	10.084039	0.03	0.4	0.1369	Seniang	100 Year
89	124.35156	10.085705	0.03	0.5	0.2209	Ruby	100 Year
90	124.35072	10.085929	0.03	0.2	0.0289	Ruby	100 Year
91	124.35084	10.085952	0.03	0.6	0.3249	Yolanda	100 Year

Point Validation Coordinates		oordinates	Model Var	Validation	Error		Return
Number	Longitude	Latitude	(m)	Points (m)	(m)	Event / Date	Period of Event
92	124.34779	10.087821	0.03	0.3	0.0729	Seniang	100 Year
93	124.34968	10.088201	0.04	0.85	0.6561	Ruby	100 Year
94	124.35652	10.08836	0.03	1.1	1.1449	Ruby	100 Year
95	124.35724	10.091578	0.03	0.9	0.7569	Ruby	100 Year
96	124.36119	10.094375	0.03	0.2	0.0289	Seniang	100 Year
97	124.36154	10.095149	0.03	0	0.0009	Seniang	100 Year
98	124.31671	10.097115	0.03	0	0.0009	Seniang	100 Year
99	124.31695	10.09739	0.03	0.5	0.2209	Ruby	100 Year
100	124.36266	10.097607	0.07	0.9	0.6889	Ruby	100 Year
101	124.31683	10.098161	0.03	0.2	0.0289	Seniang	100 Year
102	124.3166	10.098849	0.03	0.2	0.0289	Yolanda	100 Year
103	124.31686	10.098905	0.03	0.7	0.4489	Yolanda	100 Year
104	124.31645	10.098933	0.03	0.5	0.2209	Ruby	100 Year
105	124.31662	10.099193	0.03	0.5	0.2209	Ruby	100 Year
106	124.31964	10.10235	0.24	0.5	0.0676	Ruby	100 Year
107	124.31947	10.102655	0.3	0.9	0.36	Ruby	100 Year
108	124.31699	10.102921	0.03	0.5	0.2209	Ruby	100 Year
109	124.31834	10.103489	0.64	0.9	0.0676	Yolanda	100 Year
110	124.3171	10.103509	0.33	0.3	0.0009	Yolanda	100 Year
111	124.31583	10.104585	1	1.5	0.25	Yolanda	100 Year
112	124.31718	10.104599	1.36	0.9	0.2116	Yolanda	100 Year
113	124.31772	10.105576	0.42	0.3	0.0144	Ruby	100 Year
114	124.34364	10.112718	0.03	0.2	0.0289	Ruby	100 Year
115	124.34364	10.112823	0.03	0.2	0.0289	Ruby	100 Year
116	124.34364	10.112833	0.05	0.4	0.1225	Ruby	100 Year
117	124.34394	10.112955	0.03	0.3	0.0729	Ruby	100 Year
118	124.34382	10.11296	0.03	0.3	0.0729	Ruby	100 Year
119	124.3537	10.116678	0.42	0.5	0.0064	Ruby	100 Year
120	124.3533	10.116789	0.21	1.2	0.9801	Yolanda	100 Year
121	124.35257	10.117098	0.05	0.9	0.7225	Ruby	100 Year
122	124.35889	10.118398	0.72	0.9	0.0324	Seniang	100 Year
123	124.35879	10.118447	0.23	0.2	0.0009	Seniang	100 Year
124	124.34762	10.118581	0.1	0.2	0.01	Seniang	100 Year
125	124.35815	10.118577	0.03	0.2	0.0289	Yolanda	100 Year
126	124.34753	10.118717	0.04	1.1	1.1236	Yolanda	100 Year
127	124.34748	10.118773	0.04	0.3	0.0676	Ruby	100 Year
128	124.34689	10.118922	0.03	0.3	0.0729	Yolanda	100 Year
129	124.34701	10.118938	0.03	1.1	1.1449	Yolanda	100 Year
130	124.3446	10.11941	0.03	0.5	0.2209	Ruby	100 Year
131	124.3305	10.121271	0.03	0.2	0.0289	Ruby	100 Year
132	124.33034	10.121708	0.03	0.2	0.0289	Yolanda	100 Year
133	124.32994	10.121864	0.03	1.1	1.1449	Seniang	100 Year

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Point	Validation Coordinates		Model Var	Validation	Error		Return
Number	Longitude	Latitude	(m)	Points (m)	(m)	Event / Date	Period of Event
134	124.32966	10.124426	0.03	0.3	0.0729	Ruby	100 Year
135	124.33011	10.124717	0.03	0.2	0.0289	Ruby	100 Year
136	124.32976	10.124753	0.03	1.3	1.6129	Yolanda	100 Year
137	124.32994	10.124896	0.03	0.3	0.0729	Seniang	100 Year
138	124.33165	10.125086	0.08	0.9	0.6724	Seniang	100 Year
139	124.31712	10.130834	0.03	0.5	0.2209	Seniang	100 Year
140	124.31764	10.130907	0.03	0.9	0.7569	Ruby	100 Year
141	124.3176	10.130996	0.03	0.5	0.2209	Seniang	100 Year

Annex 12. Educational Institutions Affected by flooding in Ipil Floodplain

Bohol								
Rainfall Scena								
Building Name	Barangay	5-year	25-year	100- year				
La Victoria Elem School	Liberty							
Bien Unido Academy	Mandawa	Low	Low	Low				
Bien Unido Central Elem. School	Poblacion		İ					
Holy Child Academy	Poblacion		İ					
Montessori School Inc.	Poblacion		1					
Pres. CPG National Highschool	Puerto San Pedro							
Puerto San Pedro Primary School	Puerto San Pedro							
Hagbuyo Elem School	Hagbuyo							
San Miguel Central School	Poblacion		1					
San Miguel Vocational School	Poblacion							
San Agustin Elem School	San Agustin		1					
San Agustin High School	San Agustin							
Zamora Elem School	Zamora		1					
HInlayagan Ilaya Elem School	Bongbong		1					
Kinan-oan elementary school	Bongbong							
Kinan-oan National High School	Bongbong							
Bohol Maranatha Christian Academy	Guinobatan							
Guinobatan Elementary School	Guinobatan							
Hin Ilaud Elem School	Hinlayagan Ilaya							
Hinlayagan National HS	Hinlayagan Ilaya							
Mabuhay Elementary School (Cabiguhan)	Hinlayagan Ilaya							
Manukan Daycare	Hinlayagan Ilaya							
La Union Elem School	La Union	Low	Low	Low				
La Victoria Elem School	La Victoria							
St. Isidore Academy	Mabuhay Cabigohan							
Mahagbu Elem School	Mahagbu							
Daycare Center	Poblacion			Low				
St. Isidore Academy	Poblacion							
Trinidad Central School	Poblacion							
Trinidad Municipal College	Poblacion							
San Roque Elem School	San Vicente							

Table A-12.1. Educational Institutions Affected by flooding in Ipil Floodplain

Annex 13. Health Institutions affected by flooding in Ipil Floodplain

Bohol									
Inabanga									
		Rai	nfall Scer	nario					
Building Name	Barangay	5-year	25- year	100- year					
Birth Center	Poblacion								
HEALTH STATION	Poblacion								
Brgy.Puertos San Pedro Health Center	Puerto San Pedro								
Hinlayagan ilaya Health Station	Hagbuyo								
Hospital	Poblacion								
Garcia Provincial Hospital	San Jose								
Brgy Mahagbu Health Center	Mahagbu								
Trinidad Health Center	Poblacion								

Table A-13.1. Health Institutions affected by flooding in Ipil Flood Plain