Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Abatan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of San Carlos

APRIL 2017

© University of the Philippines Diliman and University of San Carlos 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit and R. S. Otadoy (eds.) (2017), LiDAR Surveys and Flood Mapping of Abatan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-178pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Roland Emerito S. Otadoy Project Leader, Phil-LiDAR 1 Program University of San Carlos Cebu City, Philippines 6000 E-mail: rolandotadoy2012@gmail.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-175-1

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND ABATAN RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Abatan River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE ABATAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	11
	12
CHAPTER 3: LIDAR DATA PROCESSING OF THE ABATAN FLOODPLAIN	14
3.1 Overview of the LiDAR Data Pre-Processing	14
3.3 Trajectory Computation	. 15
3.4 LiDAR Point Cloud Computation	17
3.5 LiDAR Data Quality Checking	17
3.6 LiDAR Point Cloud Classification and Rasterization	20
3.7 LiDAR Image Processing and Orthophotograph Rectification	22
3.8 DEM Editing and Hydro-Correction	24
3.9 Mosaicking of Blocks	25
3.10 Calibration and Validation of Miosaicked LiDAR DEM	26
3.12 Feature Extraction	29
3.12.1 Quality Checking of Digitized Features' Boundary	31
3.12.2 Height Extraction	31
3.12.3 Feature Attribution	32
3.12.4 Final Quality Checking of Extracted Features	33
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE ABATAN RIVER BASIN	34
4.1 Summary of Activities	34
4.2 Control Survey	35
4.3 Baseline Processing	37
4.4 Network Aujustment	50
4.6 Validation Points Acquisition Survey	44
4.7 Bathymetric Survey	46
CHAPTER 5: FLOOD MODELING AND MAPPING	48
5.1 Data Used for Hydrologic Modeling	48
5.1.1 Hydrometry and Rating Curves	48
5.1.2 Precipitation	48
5.1.3 Rating Curves and River Outflow	49
5.2 RIDF Station	50
5.3 HMS Model	52
5.5 Elo 2D Model	54
5.6 Results of HMS Calibration	
5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods	57
5.7.1 Hydrograph using the Rainfall Runoff Model	57
5.8 River Analysis (RAS) Model Simulation	58
5.9 Flow Depth and Flood Hazard	59
5.10 Inventory of Areas Exposed to Flooding	66
5.11 Flood Validation	105
REFERENCES	108

ANNEXES		109
Annex 1.	Technical Specifications of the LiDAR Sensors used in the Abatan Floodplain Survey	109
Annex 2.	NAMRIA Certification of Reference Points used in the LiDAR Survey	111
Annex 3.	Baseline Processing Reports of Control Points used in the LiDAR Survey	113
Annex 4.	The LiDAR Survey Team Composition	117
Annex 5.	Data Transfer Sheets for the Abatan Floodplain Flights	118
Annex 6.	Flight Logs for the Flight Missions	120
Annex 7.	Flight Status Reports	123
Annex 8.	Mission Summary Reports	127
Annex 9.	Abatan Model Basin Parameters	172
Annex 10). Abatan Model Reach Parameters	173
Annex 11	. Abatan Field Validation Points	174
Annex 12	. Educational Institutions Affected by Flooding in Abatan Floodplain	176
Annex 13	. Medical Institutions Affected by Flooding in Abatan Floodplain	178

LIST OF FIGURES

Figure 1	Location man of the Abatan River Basin (in brown)	2
Figure 2	Elight plans and base stations used to cover the Abatan floodplain survey	2
Figure 3	(a) GPS set-up over BHI-01 in Barangay Mayacabac. Dauis in Bohol: and	
inguic 5.	(b) NAMRIA reference point BHI-01 as recovered by the field team	5
Figure 4.	(a) GPS set-up over BHL-95 in Barangay Tiguis, Lila, Bohol: and (
inguie ii	h) NAMRIA reference point BHI-95, as recovered by the field team	6
Figure 5	(a) GPS set-up over BHI-58 at the nier in Barangay Tungod Inabanga Bohol:	0
inguic of	and (b) NAMRIA reference point BHI -58, as recovered by the field team	7
Figure 6	(a) GPS set-up over BHI -3067 on the seawall in Barangay Ondol. Inahanga, Bohol:	,
inguie of	and (b) NAMRIA reference point BHI -3067, as recovered by the field team	8
Figure 7	(a) GPS set-up over BMBH-503 in Barangay Dao, Dauis, Bohol: and (b) NAMRIA reference	
inguie / i	point BMBH-503, as recovered by the field team	9
Figure 8.	(a) GPS set-up over BMBH-280 in Barangay Tocdog Dacu. Loay. Bohol: and	
	(b) NAMRIA benchmark point, as recovered by the field team	10
Figure 9	Actual LiDAR survey coverage of the Abatan floodplain	.13
Figure 10.	Schematic diagram for the Data Pre-Processing Component.	14
Figure 11	Smoothed Performance Metric Parameters of Abatan Flight 757P	.15
Figure 12	Solution Status Parameters of Abatan Flight 757P	
Figure 13	The best estimated trajectory conducted over the Abatan floodplain	
Figure 14	Boundaries of the processed LiDAR data over the Abatan floodplain	17
Figure 15	Image of data overlap for the Abatan floodplain	18
Figure 16	Pulse density map of merged LiDAR data for the Abatan floodplain	.19
Figure 17	Elevation difference man between flight lines for the Abatan floodplain	.19
Figure 18	Quality checking for Abatan Flight 757P, using the Profile Tool of OT Modeler	.20
Figure 19	(a) Tiles for the Abatan floodplain: and (b) classification results in TerraScan	
Figure 20	Point cloud (a) before and (b) after classification	21
Figure 21	The production of (a) last return DSM and (b) DTM: (c) first return DSM and	
1.6010 21.	(d) secondary DTM in some portion of the Abatan floodplain	22
Figure 22	The Abatan floodplain, with available orthophotographs	
Figure 23	Sample orthophotograph tiles for the Abatan floodplain	
Figure 24.	Portions in the DTM of the Abatan floodplain – a bridge (a) before and (b) after manual	
	editing: and a mountain (c) before and (d) after data retrieval.	24
Figure 25.	Map of the processed LiDAR data for the Abatan floodplain	26
Figure 26.	Map of the Abatan floodplain, with the validation survey points in green	27
Figure 27.	Correlation plot between the calibration survey points and the LiDAR data	28
Figure 28.	Correlation plot between the validation survey points and the LiDAR data	29
Figure 29.	Map of the Abatan floodplain, with the bathymetric survey points shown in blue	30
Figure 30.	Blocks (in blue) of Abatan building features that were subjected to QC	31
Figure 31.	Extracted features for the Abatan floodplain	33
Figure 32.	Extent of the bathymetric survey (in blue line) in the Abatan River and the LiDAR data	
C	validation survey (in red)	34
Figure 33.	GNSS network covering the Abatan River	36
Figure 34.	Trimble [®] SPS 852 GNSS Rover set-up at BHL-01, located on the highest hill in Sitio Dayo,	
_	Panglao Island, Bohol	36
Figure 35.	Trimble [®] SPS 882 GNSS set-up at BH-503, located inside the campus	
	of Dao Elementary School, Barangay Dao, Dauis, Bohol	37
Figure 36.	Trimble [®] SPS 852 GNSS receiver set-up on DOLOR, located at the leftmost	
	approach of the Dolor Bridge (facing downstream), across the Abatan River	
	in Barangay Dolor, Balilihan, Bohol	37
Figure 37.	Bridge as-built survey using PPK Technique	41
Figure 38.	Dolor Bridge location map	41
Figure 39.	Dolor Bridge cross-sectional diagram	42
Figure 40.	Bridge as-built form of the Dolor Bridge	43
Figure 41.	Water level markings on the post of the Dolor Bridge	44
Figure 42.	Validation points acquisition survey set-up along the Abatan River Basin	45
Figure 43.	Extent of the LiDAR ground validation survey of the Abatan River Basin	45
Figure 44.	Bathymetric survey using Ohmex [™] single beam echo sounder in Abatan River	46
Figure 45.	Extent of the bathymetric survey of the Abatan River	46
Figure 46.	Abatan riverbed profile	47
Figure 47.	Location map of the Abatan HEC-HMS model, which was used for calibration	48

Figure 48.	Cross-section plot of the Dolor Bridge	.49
Figure 49.	Rating curve at the Dolor Bridge, Antequera, Bohol	.49
Figure 50.	Rainfall and outflow data at the Dolor Bridge, which were used for modeling	.50
Figure 51.	Tagbilaran Point RIDF location, relative to Abatan River Basin	.51
Figure 52.	Synthetic storm generated from a 24-hour period rainfall, for various return periods	.51
Figure 53.	The soil map of the Abatan River Basin, used for the estimation of the	
	CN parameter	.52
Figure 54.	The land cover map of the Abatan River Basin, used for the estimation of the CN and	
	watershed lag parameters of the rainfall-runoff model	.52
Figure 55.	Slope map of the Abatan River Basin	.53
Figure 56.	Stream delineation map of the Abatan River Basin	.53
Figure 57.	The Abatan River Basin Model domain, generated using HEC-HMS	.54
Figure 58.	River cross-section of the Abatan River, generated through the ArcMap HEC GeoRAS tool	.55
Figure 59.	Screenshot of a sub-catchment, with the computational area to be	
Figure 60	Outflow by drograph of Abstan produced by the UEC UNAS model, compared with observed	.55
Figure 60.	outflow hydrograph of Abatan produced by the HEC-HIVIS model, compared with observed	ГС
Eiguro 61	Outflow bydrograph at Dolor gonorated using Taghilaran Doint PIDE simulated in HEC HMS	.50 50
Figure 62	Sample output man of the Abatan RAS Model	50
Figure 63	100-year flood bazard man for the Abatan floodnlain	60
Figure 64	100-year flow denth man for the Abatan floodnlain	61
Figure 65	25-year flood hazard map for the Abatan floodplain	62
Figure 66.	25-year flow depth map for the Abatan floodplain	.63
Figure 67.	5-year flood hazard map for the Abatan floodplain	.64
Figure 68.	5-year flow depth map for the Abatan floodplain	.65
Figure 69.	Affected areas in Albuquerque, Bohol during a 5-year rainfall return period	.66
Figure 70.	Affected areas in Antequera, Bohol during a 5-year rainfall return period	.68
Figure 71.	Affected areas in Baclayon, Bohol during a 5-year rainfall return period	.69
Figure 72.	Affected areas in Balilihan, Bohol during a 5-year rainfall return period	.71
Figure 73.	Affected areas in Corella, Bohol during a 5-year rainfall return period	.72
Figure 74.	Affected areas in Cortes, Bohol during a 5-year rainfall return period	73
Figure 75.	Affected areas in Maribojoc, Bohol during a 5-year rainfall return period	75
Figure 76.	Affected areas in San Isidro, Bohol during a 5-year rainfall return period	.76
Figure 77.	Affected areas in Sikatuna, Bohol during a 5-year rainfall return period	.77
Figure 78.	Affected areas in Tagbilaran, Bohol during a 5-year rainfall return period	.78
Figure 79.	Affected areas in Albuquerque, Bohol during a 25-year rainfall return period	.79
Figure 80.	Affected areas in Antequera, Bohol during a 25-year rainfall return period	.81
Figure 81.	Affected areas in Baclayon, Bohol during a 25-year rainfall return period	.82
Figure 82.	Affected areas in Balilihan, Bohol during a 25-year rainfall return period	84
Figure 83.	Affected areas in Corella, Bohol during a 25-year rainfall return period	.85
Figure 84.	Affected areas in Cortes, Bohol during a 25-year rainfall return period	.86
Figure 85.	Affected areas in Maribojoc, Bohol during a 25-year rainfall return period	.88
Figure 86.	Affected areas in San Isidro, Bohol during a 25-year rainfall return period	.89
Figure 87.	Affected areas in Sikatuna, Bohol during a 25-year rainfall return period	.90
Figure 88.	Affected areas in Tagbilaran, Bohol during a 25-year rainfall return period	.91
Figure 89.	Affected areas in Albuquerque, Bohol during a 100-year rainfall return period	.92
Figure 90.	Affected areas in Antequera, Bohol during a 100-year rainfall return period	.94
Figure 91.	Affected areas in Baclayon, Bohol during a 100-year rainfall return period	.95
Figure 92.	Affected areas in Ballinan, Bohol during a 100-year rainfall return period	.97
Figure 93.	Affected areas in Corella, Bonol during a 100-year rainfall return period	.98
Figure 94.	Affected areas in Cortes, Bonol during a 100-year rainfall return period	.99
Figure 95.	Affected areas in San Isidro, Bohol during a 100 year rainfall return period	
Figure 07	Affected areas in Sikitupa, Bobol during a 100 year rainfall return pariod	102
Figure 00	Affected areas in Taghilaran, Bohol during a 100-year rainfall return pariod	03
Figure 00	Validation points for a 5-year flood depth map of the Abatan floodalain	
Figure 100	Flood man denth vs. actual flood denth	106
. Parc 100		-00

LIST OF TABLES

Table 1. Table 2.	Flight planning parameters for Pegasus LiDAR system Details of the recovered NAMRIA horizontal control point BHL-01, used as a base station for the LiDAR acquisition	3
Table 3.	Details of the recovered NAMRIA horizontal control point BHL-95, used as a base station for the LiDAR acquisition	6
Table 4.	Details of the established control point BLH-58, used as a base station for the LiDAR acquisition	7
Table 5.	Details of the established control point BHL-3067, used as	8
Table 6.	Details of the established control point BMBH-503, used as	0
Table 7.	etails of the established control point BMBH-280, used as a base station for the LiDAR acquisition	9
Table 8.	Ground control points used during the LiDAR data acquisition	10
Table 9.	Flight missions under the DREAM Program, which covers the Abatan floodplain	11
Table 10.	Flight missions for the LiDAR data acquisition in the Abatan floodplain	11
Table 11.	Actual parameters used during the LiDAR data acquisition	11
Table 12.	List of Municipalities and Cities Surveyed in Abatan	12
Table 13.	Self-calibration results for the Abatan flights	17
Table 14.	List of LiDAR blocks for the Abatan floodplain	18
Table 15.	Abatan classification results in TerraScan	20
Table 16.	LiDAR blocks with their corresponding areas	24
Table 17.	Shift values of each LiDAR block of the Abatan floodplain	25
Table 18.	Calibration statistical measures	28
Table 19.	Validation statistical measures	29
Table 20.	Quality checking ratings for the Abatan building features	31
Table 21.	Building features extracted for the Abatan floodplain	32
Table 22.	Total length of extracted roads for the Abatan floodplain	32
Table 23.	Number of extracted water bodies for the Abatan floodplain	33
Table 24.	List of reference and control points occupied during the Abatan River control survey	35
Table 25.	Baseline processing generated report for the Abatan River control survey	38
Table 26.	Constraints applied to the adjustments of the control points	38
Table 27.	Adjusted grid coordinates for the control points used in the Abatan floodplain survey	39
Table 28.	Adjusted geodetic coordinates for control points used in the Abatan River floodplain validation	40
Table 29.	with their corresponding locations	40
Table 20	PIDE values for the Taghilaran Point Pain Gauge, computed by PAGASA	40 E0
Table 30.	Range of calibrated values for the Abatan River Basin	
Table 31.	Efficiency Test of the Abatan HMS Model	57
Table 33	Peak values of the Abatan HEC-HMS Model outflow using the Taghilaran RIDE	58
Table 34	Municipalities/cities affected in the Abatan floodplain	59
Table 35	Affected areas in Albuquerque, Bohol during a 5-year rainfall return period	66
Table 36.	Affected areas in Antequera. Bohol during a 5-year rainfall return period	67
Table 37.	Affected areas in Baclavon. Bohol during a 5-year rainfall return period	68
Table 38.	Affected areas in Balilihan, Bohol during a 5-year rainfall return period	70
Table 39.	Affected areas in Corella, Bohol during a 5-year rainfall return period	71
Table 40.	Affected areas in Cortes, Bohol during a 5-year rainfall return period	72
Table 41.	Affected areas in Maribojoc, Bohol during a 5-year rainfall return period	74
Table 42.	Affected areas in San Isidro, Bohol during a 5-year rainfall return period	75
Table 43.	Affected areas in Sikatuna, Bohol during a 5-year rainfall return period	77
Table 44.	Affected areas in Tagbilaran, Bohol during a 5-year rainfall return period	78
Table 45.	Affected areas in Albuquerque, Bohol during a 25-year rainfall return period	79
Table 46.	Affected areas in Antequera, Bohol during a 25-year rainfall return period	80
Table 47.	Affected areas in Baclayon, Bohol during a 25-year rainfall return period	81
Table 48.	Affected areas in Balilihan, Bohol during a 25-year rainfall return period	83
Table 49.	Affected areas in Corella, Bohol during a 25-year rainfall return period	84
Table 50.	Affected areas in Cortes, Bohol during a 25-year rainfall return period	85
Table 51.	Affected areas in Maribojoc, Bohol during a 25-year rainfall return period	87
Table 52.	Affected areas in San Isidro, Bohol during a 25-year rainfall return period	88

Table 53.	Affected areas in Sikatuna, Bohol during a 25-year rainfall return period	
Table 54.	Affected areas in Tagbilaran, Bohol during a 25-year rainfall return period	90
Table 55.	Affected areas in Albuquerque, Bohol during a 100-year rainfall return period	
Table 56.	Affected areas in Antequera, Bohol during a 100-year rainfall return period	93
Table 57.	Affected areas in Baclayon, Bohol during a 100-year rainfall return period	94
Table 58.	Affected areas in Balilihan, Bohol during a 100-year rainfall return period	96
Table 59.	Affected areas in Corella, Bohol during a 100-year rainfall return period	
Table 60.	Affected areas in Cortes, Bohol during a 100-year rainfall return period	98
Table 61.	Affected areas in Maribojoc, Bohol during a 100-year rainfall return period	
Table 62.	Affected areas in San Isidro, Bohol during a 100-year rainfall return period	101
Table 63.	Affected areas in Sikatuna, Bohol during a 100-year rainfall return period	
Table 64.	Affected areas in Tagbilaran, Bohol during a 100-year rainfall return period	
Table 65.	Area covered by each warning level, with respect to the rainfall scenario	
Table 66.	Actual flood depth vs. simulated flood depth in the Abatan River Basin	
Table 67.	Summary of Accuracy Assessment in the Abatan River Basin Survey	

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
BSWM	Bureau of Soils and Water Management		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DA	Department of Agriculture		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		

LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NAMRIA	National Mapping and Resource Information Authority			
NSO	National Statistics Office			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RBCO	River Basin Control Office			
RIDF	Rainfall-Intensity-Duration- Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
USC	University of San Carlos			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

CHAPTER 1: OVERVIEW OF THE PROGRAM AND ABATAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. Roland S. Otadoy, and Engr. Aure Flo Oraya

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at a sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for a 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through the DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods" (Paringit, et. al., 2017), available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of San Carlos (USC). USC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the seventeen (17) river basins in the Central Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Abatan River Basin

The Abatan River Basin covers the Municipalities of Balilihan, Cortes, Antequera, San Isidro, Corella, and Catigbian, and small portions of eight (8) other municipalities in the Province of Bohol. The Department of Environment and Natural Resources (DENR) River Basin Control Office (RBCO) identified the basin to have a drainage area of 352 km², and an estimated annual runoff of 211 million cubic meters (MCM) (RBCO, 2015). The basin's main stem, the Abatan River, is part of the seventeen (17) river systems in the Central Visayas Region.

Figure 1. Location map of the Abatan River Basin (in brown)

According to the 2015 national census of the National Statistics Office (NSO), the total population within the immediate vicinity of the river is 11,173. These residents are distributed among three (3) barangays in the Municipality of Antequera, four (4) barangays in the Municipality of Cortes, and three (3) barangays in the Municipality of Maribojoc, in the province of Bohol.

The Municipality of Cortes is known for its industrial products; such as, handmade paper crafts, and iron that is used for roofing. Locals in Cortes harvest sand from the Abatan River for shipment to construction sites, as a source of income. Recently, the local government unit (LGU) of Cortes has been developing a River Cruise on the Abatan River, which will be utilized for boosting tourism, and also for transportation purposes. This will create more employment opportunities for the community (Source: http://www.bohol-philippines.com/cortes.html).

The most recent, severe flooding event in the area of the Abatan River occurred on December 30, 2014, during the landfall of Typhoon Seniang (internationally known as *Jangmi*). The typhoon killed eleven (11) people and displaced 1,700 others, which placed the province under a state of calamity (Source: http://www.rappler.com/nation/79373-bohol-seniang-death-toll).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE ABATAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Julie Pearl S. Mars, and Kristine Joy P. Andaya

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Abatan floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for the floodplain in the province of Bohol. These missions were planned for sixteen (16) lines that ran for at most four and a half (4.5) hours, including take-off, landing, and turning time. The Pegasus LiDAR system was utilized for the missions (See Annex 1 for the sensor specifications). The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 illustrates the flight plans for the Abatan floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK51M	1000/1100/1200	30	50	200	30	130	5
BLK51H	1000/1100/1200	30	50	200	30	130	5

Table 1.	Flight r	lanning	parameters	for Pegasus	LiDAR s	vstem
rapie i.	1 mone p	- maining	Parameters	ioi i eguouo	LIDING	yocciii

Figure 2. Flight plans and base stations used to cover the Abatan floodplain survey

2.2 Ground Base Stations

The field team for this undertaking was able to recover four (4) NAMRIA ground control points: BHL-01, BHL-95, BHL-58, and BHL-3067, which are of first (1st) and second (2nd) order accuracy. The field team also recovered two (2) benchmark points: BMBH-280 and BMBH-503. The certifications for the NAMRIA reference points and the baseline processing reports for the established points are found in Annexes 2 and 3, respectively. These were used as the base stations during the flight operations for the entire duration of the survey, held on August 22-23, 2014, and on September 21, 2015. The base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 852, and SPS 985. The locations of the base stations used during the aerial LiDAR acquisition in the Abatan floodplain are also shown in Figure 2, along with the flight plans. The composition of the full project team is given in Annex 4.

Figure 3 to Figure 8 exhibit the recovered NAMRIA control stations within the area. In addition, Table 2 to Table 7 provide the details about the NAMRIA control stations and established points. Table 8 lists all of the ground control points occupied during the acquisition, with the corresponding dates of utilization.

(a)

Figure 3. (a) GPS set-up over BHL-01 in Barangay Mayacabac, Dauis in Bohol; and (b) NAMRIA reference point BHL-01, as recovered by the field team

Table 2. Details of the recovered NAMRIA horizontal control point BHL-01, used as a base station for the
LiDAR acquisition

Station Name	BHL-01		
Order of Accuracy	1 st		
Relative Error (horizontal positioning)	1 in 100,000		
	Latitude	9° 36' 26.3953"	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	123° 51' 10.6019"	
	Ellipsoidal Height	184.35 meters	
Grid Coordinates, Philippine Transverse	Easting	374086.36320 meters	
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1062513.68434 meters	

	Latitude	9° 36′ 22.44746″ North
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	123° 51' 15.91243" East
	Ellipsoidal Height	247.564 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS	Easting	593754.44681 meters
1992)	Northing	1061993.66019 meters

Figure 4. (a) GPS set-up over BHL-95 in Barangay Tiguis, Lila, Bohol; and (b) NAMRIA reference point BHL-95, as recovered by the field team

Table 3. I	Details of the recovered NAMRIA	horizontal control po	oint BHL-95,	used as a base s	station for the
		LiDAR acquisition			

Station Name	BHL-95			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1	L in 50,000		
	Latitude	9° 35' 30.9568"		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	124° 04' 30.0216"		
	Ellipsoidal Height	19.00 meters		
Grid Coordinates, Philippine Transverse	Easting	398459.94396 meters		
Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1060736.81055 meters		
	Latitude	9° 35′ 27.03243″ North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 04' 35.33150" East		
	Ellipsoidal Height	82.798 meters		
Grid Coordinates, Universal Transverse	Easting	618128.686 meters		
1992)	Northing	1060360.033 meters		

(a)

Figure 5. (a) GPS set-up over BHL-58 at the pier in Barangay Tungod, Inabanga, Bohol; and (b) NAMRIA reference point BHL-58, as recovered by the field team

Station Name	BHL-58			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1	in 50,000		
	Latitude	10° 2' 12.58586"		
Geographic Coordinates, Philippine Reference	Longitude	124° 03' 14.58015"		
	Ellipsoidal Height	3.13800 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting	396297.833 meters		
	Northing	1109952.503 meters		
	Latitude	10° 02′ 8.54469″ North		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	124° 03' 19.85079" East		
	Ellipsoidal Height	65.89700 meters		
Grid Coordinates, Universal Transverse	Easting	615513.67 meters		
	Northing	1109600.04 meters		

Table 4. Details of the established control point BLH-58, used as a base station for the LiDAR acquisition

Figure 6. (a) GPS set-up over BHL-3067 on the seawall in Barangay Ondol, Inabanga, Bohol; and (b) NAMRIA reference point BHL-3067, as recovered by the field team

Station Name	1 2007
acquisition	
Table 5. Details of the established control point BHL-3067, used as a	a base station for the LiDAR

Station Name	BHL-3067			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	10° 03′ 10.47434″North 124°		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	03' 30.07070"East 3.679 meters		
	Ellipsoidal Height			
Grid Coordinates, Universal Transverse	Easting	615979.548 meters		
1984)	Northing	1111379.617 meters		
	Latitude	10° 03' 06.42941" North 124°		
Geographic Coordinates, World Geodetic	Longitude	03' 35.33988" East		
System 1984 Datum (WGS 84)	Ellipsoidal Height	66.412 meters		

Figure 7. (a) GPS set-up over BMBH-503 in Barangay Dao, Dauis, Bohol; and (b) NAMRIA reference point BMBH-503, as recovered by the field team

Station Name	В	MBH-503	
Order of Accuracy		1 st	
Relative Error (horizontal positioning)	1 in 100,000		
	Latitude	9° 34' 53.54895"North 123°	
Geographic Coordinates, Philippine Reference	Longitude	48' 54.10112"East 22.564 meters	
01 1352 Datam (113 52)	Ellipsoidal Height		
Grid Coordinates, Universal Transverse	Easting	589439.266 meters	
Mercator Zone 51 North (UTM 51N WGS 1984)	Northing	1059186.111 meters	
	Latitude	9° 34' 49.60419" North 123°	
Geographic Coordinates, World Geodetic	Longitude	48' 59.41428" East	
System 1984 Datum (WGS 84)	Ellipsoidal Height	85.755 meters	

Table 6. Details of the established control point BMBH-503, used as a base station for the LiDAR acquisition

Figure 8. (a) GPS set-up over BMBH-280 in Barangay Tocdog Dacu, Loay, Bohol; and (b) NAMRIA benchmark point, as recovered by the field team

Table 7.	Details of the established control point BMBH-280, used as a base station for the LiDAR
	acquisition

Station Name	BMBH-280			
Order of Accuracy	2 st			
Relative Error (horizontal positioning)	1	in 50,000		
	Latitude	9° 35′ 33.32448″North 124°		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	02' 54.62703"East 3.860 meters		
	Ellipsoidal Height			
Grid Coordinates, Universal Transverse	Easting	615059.442 meters		
Mercator Zone 51 North (UTM 51N WGS 1984)	Northing	1060477.159 meters		
	Latitude	9° 35' 29.39739" North 124°		
Geographic Coordinates, World Geodetic	Longitude	02' 59.93729" East		
System 1984 Datum (WGS 84)	Ellipsoidal Height	67.604 meters		

Table 8. Ground control points used during the LiDAR data acquisition

Date Surveyed	ate Surveyed Flight Number Mission Name		Ground Control Points
August 22, 2014	1867P	1BLK51M234A	BHL-1 and BMBH-503
August 23, 2014 1871P		1BLK51H235A	BHL-95 and BMBH-280
September 21, 2015 3445P		1BLK51S264A	BHL-58 and BHL-3067

2.3 Flight Missions

Four (4) flight missions under the DREAM program covered around 49 km² (Table 9) within the Abatan floodplain. Three (3) flight missions were conducted under the Phil-LiDAR 1 Program to complete the LiDAR data acquisition in the Abatan floodplain, for a total of eight hours and fifty-two minutes (8+52) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. The flight logs for the missions are found in Annex 6. Table 10 indicates the total area of actual coverage for each mission, and the corresponding flying hours. Table 11 presents the actual parameters used during the LiDAR data acquisition.

Flight Number Mission Name		Area Surveyed within the Floodplain (km²)
755P	1LMSBHL1HS319A	19.82
757P	1BHL1G319B	1.48
759P	1BHL1HS320A	17.99
795P	1BHL1GS329A	3.58
825P 1BHL1GS336A		6.13
TOTAL		49

Table 9. Flight missions under the DREAM Program, which covers the Abatan floodplain

Table 10. Flight missions for the LiDAR data acquisition in the Abatan floodplain

Date	Flight	Flight Plan	ight Ian Surveyed Area Area No. of within the Outside the Images		Flying Hours			
Surveyed	Number	Area (km²)	Area (km ²)	Floodplain (km ²)	Floodplain (km ²)	(Frames)	Hr	Min
August 22, 2014	1867P	122.97	147.57	_	147.57	384	3	12
August 23, 2014	1871P	391.11	265.95	57.07	208.88	795	3	35
September 21, 2015	3445P	298	45.38	_	45.38	NA	2	05
TOTA	AL.	812.08	458.9	57.07	401.83	1179	8	52

Table 11. Actual parameters used during the LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1867P	1000/1100/1200	30	50	200	30	130	5
1871P	1000/1100/1200	30	50	200	30	130	5
3445P	1000/1100/1200	30	50	200	30	130	5

2.4 Survey Coverage

The Abatan floodplain is located in the province of Bohol, situated within the Municipalities of Antequera, Baclayon, Balilihan, Corella, Cortes, Maribojoc, Sikatuna, and Tagbilaran City. The municipalities and cities surveyed with at least one (1) square kilometer coverage are outlined in Table 12. The actual coverage of the LiDAR acquisition for the Abatan floodplain is presented in Figure 9. Annex 7 provides the flight status report for the survey coverage.

Province	Municipality /City	Area of Municipality/ City (km²)	Total Area Surveyed (km²)	Percentage of Area Surveyed
	Baclayon	31.22	1.58	5%
	Balilihan	123.46	39.78	32%
	Batuan	90.27	41.22	46%
	Bilar	137.93	52.5	38%
	Carmen	221.41	60.75	27%
	Catigbian	84.38	12.62	15%
Bohol	Corella	40.09	29.73	74%
	Cortes	30.52	11.47	38%
	Dauis	43.6	43.6	100%
	Panglao	48.09	47.85	99%
	Sevilla	68.37	44.85	66%
	Sikatuna	21.88	16.7	76%
	Tagbilaran	30.72	5.35	17%
	Total	971.94	408	41.98%

12. List of Municipalities and Cities Surveyed in Abatan
12. List of Municipalities and Cities Surveyed in Abatar

Figure 9. Actual LiDAR survey coverage of the Abatan floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE ABATAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto, Ailyn G. Biñas, Engr. Jennifer B. Saguran, Engr. Monalyne C. Rabino, Engr. Justine Y. Francisco , Engr. Ma. Joanne I. Balaga, and Engr. Erica Erin E. Elazegui

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the DAC were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate the correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality checking to ensure that the required accuracies of the program, which are the minimum point density, and the vertical and horizontal accuracies, were met. The point clouds were then categorized into various classes before generating Digital Elevation Models (DEMs), such as the Digital Terrain Model (DTM) and the Digital Surface Model (DSM).

Using the elevation of points gathered from the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry, measured from the field by the Data Validation and Bathymetry Component (DVBC). LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was accomplished through the help of the georectified point clouds, and the metadata containing the time the image was captured.

These processes are summarized in the diagram in Figure 10.

Figure 10. Schematic diagram for the Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

The data transfer sheets for all of the LiDAR missions for the Abatan floodplain can be found in Annex 5. Missions flown during the first survey conducted in November 2013 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system. Missions acquired during the second survey were flown in October 2015 over Maribojoc, Bohol using the same system. The DAC transferred a total of 142.34 Gigabytes of Range data, 1.60 Gigabytes of POS data, 99.47 Megabytes of GPS base station data, and 77.80 Gigabytes of raw image data to the data server on November 20, 2013 for the first survey, and on October 1, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for the Abatan survey was fully transferred on October 28, 2015, as indicated on the data transfer sheets for the Abatan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 757P, one of the Abatan flights, which are the North, East, and Down position RMSE values, are exhibited in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which fell on November 15, 2013 at 00:00 hrs. on that week. The y-axis represents the RMSE value for that particular position.

Figure 11. Smoothed Performance Metrics of Abatan Flight 757P

The time of flight was from 457000 seconds to 468000 seconds, which corresponds to the afternoon of November 15, 2013. The initial spike reflected on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system was starting to compute for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE values of the positions. The periodic increase in RMSE values from an otherwise smoothly curving set of RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 depicts that the North position RMSE peaked at 1.30 centimeters, the East position RMSE peaked at 1.80 centimeters, and the Down position RMSE peaked at 4.40 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 12. Solution Status Parameters of Abatan Flight 757P

The Solution Status parameters of Flight 757P, one of the Abatan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are illustrated in Figure 12. The graphs indicate that the number of satellites during the acquisition did not go down to 5. Majority of the time, the number of satellites tracked was between 5 and 7. The PDOP value did not go above the value of 3.4, which indicates optimal GPS geometry. The processing mode remained at the value of 0 for majority of the survey, with some peaks to up to 2, attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Abatan flights is presented in Figure 13.

Figure 13. The best estimated trajectory conducted over the Abatan floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS data contains seventy-five (75) flight lines, with each flight line containing two (2) channels, since the Pegasus system contains two (2) channels. The summary of the self-calibration results for all flights over the Abatan floodplain, obtained through LiDAR processing in the LiDAR Mapping Suite (LMS) software, is given in Table 13.

Paramete	er	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000539
IMU Attitude Correction Roll and Pitch Correc	0.000832	
GPS Position Z-correction stdev	(<0.01meters)	0.0023

Table 13.	Self-calibration	results for	the Abatar	n flights
10010101	Cell entipleter	received for		- ingines

Optimum accuracy was obtained for all Abatan flights, based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for the individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundaries of the processed LiDAR data on top of an SAR Elevation Data over the Abatan floodplain are represented in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 14. Boundaries of the processed LiDAR data over the Abatan floodplain

The total area covered by the Abatan missions is 1195.46 square kilometers, comprised of nine (9) flight acquisitions that were grouped and merged into nine (9) blocks, as indicated in Table 14.

LiDAR Blocks	Flight Numbers	Area (sq.km)
Bohol_Blk51M	1871P	144.31
Bohol_Blk51H	1867P	258.01
Bohol_Blk1H_additional	3445P	42.56
Bohol_Blk1H	755P	158.38
Bohol_Blk51H_supplement	759P	148.08
Bohol_Blk51G	757P	151.20
Bohol_Blk51G_supplement1	795P	20.92
Bohol_Blk51G_supplement2	825P	171.91
Bohol_Tagbilaran	741P	100.09
TOTAL	1195.46 sq.km	

Table 14. List of LiDAR blocks for the Abatan floodplain

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is presented in Figure 15. Since the Pegasus system employs two (2) channels, it is expected to have an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 15. Image of data overlap for the Abatan floodplain

The overlap statistics per block for the Abatan floodplain can be found in Annex 8. One (1) pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps were 37.27% and 59.98%, respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 (2) points per square meter criterion, is illustrated in Figure 16. It was determined that all LiDAR data for the Abatan floodplain satisfy the point density requirement, and that the average density for the entire survey area is 4.14 points per square meter.

Figure 16. Pulse density map of merged LiDAR data for the Abatan floodplain

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red. Bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 meters relative to the elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.2 meters relative to the elevations of its adjacent flight line. Areas with bright red or bright blue colors were investigated further using the Quick Terrain (QT) Modeler software.

Figure 17. Elevation difference map between flight lines for the Abatan floodplain

A screen capture of the processed LAS data from Abatan Flight 757P loaded in the QT Modeler is provided in Figure 18. The upper left image shows the elevations of the points from two (2) overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data became satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 18. Quality checking for Abatan Flight 757P, using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	685,557,645
Low Vegetation	571,060,984
Medium Vegetation	1,319,531,042
High Vegetation	1,394,649,477
Building	47,537,366

Table 15. Abatan classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data, as well as the final classification image for a block in the Abatan floodplain, are presented in Figure 19. A total of 1,794 1km by 1km tiles were produced. The number of points classified according to the pertinent categories is illustrated in Table 15. The point cloud had a maximum and minimum height of 569.16 meters and 49.56 meters, respectively.

Figure 19. (a) Tiles for the Abatan floodplain; and (b) classification results in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It is visible that the residential structures adjacent or even below canopy were classified correctly, due to the density of the LiDAR data.

Figure 20. Point cloud (a) before and (b) after classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, and the first (S_ASCII) and last (D_ASCII) return DSM of the area are illustrated in Figure 21, in top view display. The images convey that the DTMs are a representation of the bare earth; while the DSMs reflect all features that are present, such as buildings and vegetation.

Figure 21. The production of (a) last return DSM and (b) DTM; (c) first return DSM, and (d) secondary DTM in some portion of the Abatan floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 486 1km by 1km tiles area covered by the Abatan floodplain is shown in Figure 22. After employing tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Abatan floodplain survey attained a total of 400.35 square kilometers in orthophotographic coverage, comprised of 1,166 images. Zoomed-in versions of sample orthophotographs, identified by their tile numbers, are provided in Figure 23.

Figure 22. The Abatan floodplain, with available orthophotographs

Figure 23. Sample orthophotograph tiles for the Abatan floodplain

3.8 DEM Editing and Hydro-Correction

Nine (9) mission blocks were processed for the Abatan floodplain. These blocks are composed of Bohol blocks, with a total area of 1195.46 square kilometers. Table 16 summarizes the names and corresponding areas of the blocks, in square kilometers.

LiDAR Blocks	Area (sq.km)
Bohol_Blk51M	144.31
Bohol_Blk51H	258.01
Bohol_Blk1H_additional	42.56
Bohol_Blk1H	158.38
Bohol_Blk51H_supplement	148.08
Bohol_Blk51G	151.20
Bohol_Blk51G_supplement1	20.92
Bohol_Blk51G_supplement2	171.91
Bohol_Tagbilaran	100.09
TOTAL	1195.46 sq.km

Table 16. LiDAR blocks with the	ir corresponding areas
---------------------------------	------------------------

Portions of the DTM before and after manual editing are exhibited in Figure 24. The bridge (Figure 24a) was considered to be an obstruction to the flow of water along the river, and had to be removed (Figure 24b) in order to hydrologically correct the river. The mountain (Figure 24c) was misclassified and removed during the classification process, and had to be retrieved to complete the surface (Figure 24d). These are represented in the images below.

Figure 24. Portions in the DTM of the Abatan floodplain – a bridge (a) before and (b) after manual editing; and a mountain (c) before and (d) after data retrieval
3.9 Mosaicking of Blocks

The Bohol_Blk1A block was used as the reference block at the start of mosaicking process, because it was one of the first available post-processed blocks in the Bohol area. Table 17 specifies the shift values applied to each LiDAR block during mosaicking.

The mosaicked LiDAR DTM for the Abatan floodplain is shown in Figure 25. It demonstrates that the entire Abatan floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)				
	x	У	z		
Bohol_Blk51M	0.00	0.00	0.00		
Bohol_Blk51H	1.10	0.14	-1.17		
Bohol_Blk1H_additional	0.00	0.00	0.00		
Bohol_Blk1H	0.00	18.00	0.10		
Bohol_Blk1H_supplement	0.00	0.00	0.14		
Bohol_Blk1G	0.00	0.00	0.37		
Bohol_Blk1G_supplement1	0.00	0.00	-0.15		
Bohol_Blk1G_supplement2	0.00	0.00	0.52		
Bohol_Tagbilaran	0.00	0.00	1.17		

Table 17. Shift values of each LiDAR block of the Abatan floodplain

Figure 25. Map of the processed LiDAR data for the Abatan floodplain

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Abatan to collect points with which the LiDAR dataset is validated is shown in Figure 26. A total of 1001 survey points were gathered for calibration and validation of Abatan LiDAR data. However, the point dataset was not used for the calibration of the LiDAR data for Abatan because during the mosaicking process, each LiDAR block was referred to the calibrated Bohol DEM. Therefore, the mosaicked DEM of

Abatan can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Bohol LiDAR DTM and ground survey elevation values is shown in Figure 27. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.29 meters with a standard deviation of 0.19 meters. Calibration of Bohol LiDAR data was done by subtracting the height difference value, 1.29 meters, to Bohol mosaicked LiDAR data. Table 18 shows the statistical values of the compared elevation values between Bohol LiDAR data and calibration data. These values were also applicable to the Abatan DEM.

Figure 26. Map of the Abatan floodplain, with the validation survey points in green

Calibration Statistical Measures	Value (meters)
Height Difference	1.29
Standard Deviation	0.19
Average	-1.28
Minimum	-1.65
Maximum	-0.86

Table 18. Calibration statistical measures

All survey points were used for the validation of calibrated Abatan DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.15 meters, as shown in Table 19.

Figure 28. Correlation plot between the validation survey points and the LiDAR data

Validation Statistical Measures	Value (meters)
RMSE	0.17
Standard Deviation	0.15
Average	0.09
Minimum	-0.43
Maximum	0.47

Table 19. Validation statistical measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Abatan, with 4,521 bathymetric survey points. The resulting raster surface produced was obtained through the Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.02 meters. The extent of the bathymetric survey executed by the DVBC in the Abatan floodplain, integrated with the processed LiDAR DEM, is illustrated in Figure 29.

Figure 29. Map of the Abatan floodplain, with the bathymetric survey points shown in blue

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area, with a 200-meter buffer zone. Mosaicked LiDAR DEM with a 1-meter resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks – comprised of main thoroughfares, such as highways, and municipal and barangay roads – are essential for routing disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

The Abatan floodplain, including its 200-meter buffer zone, has a total area of 178.83 square kilometers. Of this area, a total of 6.0 square kilometers, corresponding to a total of 978 building features, were considered for quality checking (QC). Figure 30 presents the QC blocks for the Abatan floodplain.

Figure 30. Blocks (in blue) of Abatan building features that were subjected to QC

Quality checking of the Abatan building features resulted in the ratings shown in Table 20.

Table 20. Quality checking ratings for the Abatan building features

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Abatan	99.90	100.00	98.47	PASSED

3.12.2 Height Extraction

Height extraction was done for 18,667 building features in the Abatan floodplain. Of these building features, 2,443 were filtered out after height extraction, resulting in 16,224 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 18.33 meters.

3.12.3 Feature Attribution

In the attribution procedure, a combination of participatory mapping and actual field validation were employed. Representatives from the LGUs were invited to assist in the determination of the features. The remaining unidentified features were then validated on the field.

Table 21 summarizes the number of building features per type. Table 22 indicates the total length of each road type, and Table 23 specifies the number of water features extracted per type.

Facility Type	No. of Features
Residential	15,572
School	280
Market	21
Agricultural/Agro-Industrial Facilities	98
Medical Institutions	6
Barangay Hall	22
Military Institution	0
Sports Center/Gymnasium/Covered Court	0
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	5
Power Plant/Substation	0
NGO/CSO Offices	12
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	34
Bank	0
Factory	0
Gas Station	6
Fire Station	1
Other Government Offices	59
Other Commercial Establishments	82
Total	16,224

Table 21	Building	features	extracted	for the	Abatan	floodplain
	0					

Table 22. Total length of extracted roads for the Abatan floodplain

	Road Network Length (km)					
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Abatan	155.65	31.855	59.28	32.689	0.00	289.47

Table 23. Number of extracted water bodies for the Abatan floodplai

Floodulain	Water Body Type					
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Iotal
Abatan	3	0	0	0	0	3

A total of five (5) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 31 displays the Digital Surface Model (DSM) of the Abatan floodplain, overlaid with its ground features.

Figure 31. Extracted features for the Abatan floodplain

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE ABATAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The DVBC conducted field surveys in the Abatan River on June 4 - 14, 2015. The scope of work was comprised of: (i.) courtesy calls with the LGUs of Abatan and the nearby municipalities; (ii.) static survey for the establishment of control point DOLOR at the approach of the bridge; (iii.) cross-section, bridge as-built and water level markings at the Dolor Bridge; (iv.) gathering of ground validation points along major roads, with an estimated length of 14.5 kilometers; and (v.) bathymetric survey of the river in the Municipalities of Antequera and Maribojoc, covering a distance of approximately 15.08 kilometers.

Figure 32. Extent of the bathymetric survey (in blue line) in the Abatan River and the LiDAR data validation survey (in red)

4.2 Control Survey

The GNSS network used for the Abatan River Basin is composed of three (3) loops established on June 8, 2015, occupying the following reference points: (i.) BHL-1, a first-order GCP in Barangay Catarman, Municipality of Dauis; and (ii.) BH-503, a first-order BM in Barangay Dao, Municipality of Dauis. Both are located in the province of Bohol.

The following UP control points in the province of Bohol, were occupied and used as markers during the survey: (i.) DOLOR, located in Barangay Dolor, Municipality of Balilihan; (ii.) INA, located in Barangay Canlinte, Municipality of Inabanga; and (iii.) LOBOC, located in Barangay Poblacion Sawang, Municipality of Loboc.

The summary of reference and control points and their corresponding locations is provided in Table 24; while the established GNSS network is illustrated in Figure 33.

		Geographic Coordinates (WGS 84)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established	
BHL-01	1 st order, GCP	9°36'22.43560"N	123°51'15.91256″E	247.563	-	2007	
BH-503	1 st order, BM	-	-	85.726	22.328	2008	
DOLOR	UP established	-	-	74.335	-	2015	
INA	UP established	-	-	81.908	-	2015	
LOBOC	UP established	-	-	73.769	-	2015	

 Table 24. List of reference and control points occupied during the Abatan River control survey (Source: NAMRIA, UP-TCAGP)

 Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Figure 33. GNSS network covering the Abatan River

The GNSS set-ups on the recovered reference points, BHL-01 and BH-503, are exhibited in Figure 34 and Figure 35, respectively. The established control point, DOLOR, is presented in Figure 36.

Figure 34. Trimble® SPS 852 GNSS Rover set-up at BHL-01, located on the highest hill in Sitio Dayo, Panglao Island, Bohol

Figure 35. Trimble® SPS 882 GNSS set-up at BH-503, located inside the campus of Dao Elementary School, Barangay Dao, Dauis, Bohol

Figure 36. Trimble® SPS 852 GNSS receiver set-up on DOLOR, located at the leftmost approach of the Dolor Bridge (facing downstream), across the Abatan River in Barangay Dolor, Balilihan, Bohol

4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions, with the horizontal and vertical precisions within the +/- 20-centimeter and +/- 10-centimeter requirement, respectively. In cases where one or more of the baselines did not meet all of these criteria, masking was performed. Masking is the removal of portions of baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of

the required accuracy, a re-survey is initiated. The baseline processing results of the control points used in the Abatan River Basin survey, generated by TBC software, are summarized in Table 25.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
BHL1 BH503	06-08-15	Fixed	0.005	0.022	235°34'43"	5045.794	-161.828
BHL1 DOLOR	06-08-15	Fixed	0.006	0.039	27°08'58"	21145.711	-173.237
BH503 DOLOR	06-08-15	Fixed	0.010	0.064	32°30'26"	25695.545	-11.413
INA DOLOR	06-08-15	Fixed	0.010	0.060	220°21'08"	29699.597	-7.535
BHL1 INA	06-08-15	Fixed	0.009	0.027	34°50'24"	50519.954	-165.707
BH503 INA	06-08-15	Fixed	0.013	0.043	36°41'11"	55267.714	-3.844
BHL1 BH503	06-08-15	Fixed	0.004	0.038	235°34'43"	5045.804	-161.825
BHL1 LOBOC	06-08-15	Fixed	0.004	0.027	80°13'56"	19591.794	-173.810
LOBOC BH503	06-08-15	Fixed	0.006	0.076	255°17'11"	24269.112	11.864

Table 25. Baseline processing generated report for the Abatan River control survey

Five (5) control points – BHL-01, BH-503 and DOLOR, INA, and LOBOC – were occupied simultaneously to form a GNSS loop. All three (3) baselines that formed the GNSS loop acquired fixed solutions, and passed the required ±20cm and ±10cm for horizontal and vertical precisions, respectively, as reflected in Table 25.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the adjusted grid coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 centimeters, and z less than 10 centimeters, or in equation form:

$$\sqrt{((x_{e})^{2} + (y_{e})^{2})}$$
 <20cm and z_{e} < 10 cm

Where:

x is the Easting Error,

 y_{p} is the Northing Error, and

z is the Elevation Error

for each control point. See the Network Adjustment Report presented in Table 26 to Table 29 for complete details.

The five (5) control points – BHL-1, BH-503, DOLOR, INA, and LOBOC – were occupied and observed simultaneously to form a GNSS loop. The coordinates of BHL-1 and the elevation values of BH-503 were held fixed during the processing of the control points, as demonstrated in Table 26. Through these reference points, the coordinates and elevation values of the unknown control points were computed.

Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
BH503	Grid					
BHL1	Global	Fixed	Fixed			
Fixed = 0.000001(Meter)						

Table 26. Constraints applied to the adjustments of the control points

The list of adjusted grid coordinates; i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 27. The fixed controls BHL-1 and BH-503 did not yield values for grid errors and elevation errors, respectively.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
BH503	589600.481	0.005	1059131.546	0.005	22.328	?	е
BHL1	593754.454	?	1061993.296	?	184.054	0.049	LL
DOLOR	603353.551	0.011	1080828.082	0.007	10.331	0.089	
INA	622503.084	0.018	1103520.295	0.011	17.794	0.093	
LOBOC	613048.755	0.007	1065364.372	0.007	9.787	0.083	

Table 27. Adjusted grid coordinates for the control points used in the Abatan floodplain survey

With the mentioned equation, for horizontal accuracy, and $z_e < 10 \ cm$ for vertical accuracy, the computations for accuracy are as follows:

a. BHL-1

	Horizontal Accuracy	=	Fixed
	Vertical Accuracy	=	1.9 cm < 10 cm
b.	BH-503		
	Horizontal Accuracy	=	$\sqrt{(0.5)^2 + (0.5)^2}$
		=	√ (0.25 + 0.25)
		=	0.707< 20 cm
	Vertical Accuracy	=	Fixed
c.	DOLOR		
	Horizontal Accuracy	=	$V((1.1)^2 + (0.7)^2)$
		=	√ (1.21 + 0.49)
		=	1.303 < 20 cm
	Vertical Accuracy	=	8.9 cm < 10 cm
d.	INA		
	Horizontal Accuracy	=	$V((1.8)^2 + (1.1)^2)$
		=	√ (3.24 + 1.21)
		=	1.1 < 20 cm
	Vertical Accuracy	=	1.99.3 cm < 10 cm
e.	LOBOC		
	Horizontal Accuracy	=	$\sqrt{((0.7)^2 + (0.7)^2)}$
		=	√ (0.49 + 0.49)
		=	0.99 < 20 cm
	Vertical Accuracy	=	8.3 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy results of the four (4) occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
BH503	N9°34'49.59212"	E123°48'59.41509"	85.726	?	е
BHL1	N9°36'22.43560"	E123°51'15.91256"	247.563	0.049	LL
DOLOR	N9°46'34.81522"	E123°56'32.52432"	74.335	0.089	
INA	N9°58'51.64572"	E124°07'03.51400"	81.908	0.093	
LOBOC	N9°38'10.45985"	E124°01'49.19123"	73.769	0.083	

Table 28. Adjusted geodetic coordinates for control points used in the Abatan River floodplain validation

The corresponding geodetic coordinates of the observed points are within the required accuracy as, shown in Table 28. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The computed coordinates of the reference and control points utilized in the Abatan River GNSS Static Survey are indicated in Table 29.

Table 29. Reference and control points used in the Abatan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TACAGP)

		Geograp	hic Coordinates (WGS 8	UTM Zone 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	MSL Elevation (m)
BHL-01	1 st order, GCP	9°36'22.43560"N	123°51'15.91256″E	247.563	1061993.296	593754.454	184.054
BH-503	1 st order, BM	9°34'49.59212"N	123°48'59.41509"E	85.726	1059131.546	589600.481	22.328
DOLOR	UP established	9°46'34.81522"N	123°56'32.52432"E	74.335	1080828.082	603353.551	10.331
INA	UP established	9°58'51.64572"N	124°07'03.51400"E	81.908	1103520.295	622503.084	17.794
LOBOC	UP established	9°38'10.45985"N	124°01'49.19123"E	73.769	1065364.372	613048.755	9.787

4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

The cross-section and bridge as-built surveys were conducted on June 11, 2015 at the downstream side of the Dolor Bridge in Barangay Anigilan, Municipality of Antequera, Bohol. A Trimble[®] SPS 885 GNSS in PPK survey technique was utilized, as depicted in Figure 37.

Figure 37. Bridge as-built survey using PPK Technique

The length of the cross-sectional line surveyed in the Dolor Bridge is about 48.728 meters with twenty-five (25) cross-sectional points, using the control point DOLOR as the GNSS base station. The location map, cross-section diagram, and bridge as-built data for the Dolor Bridge are illustrated in Figure 38 Figure 39, and Figure 40, respectively.

Figure 38. Dolor Bridge location map

Figure 39. Dolor Bridge cross-sectional diagram

idae Na	me:	orol Bridge	Bridge D	ata Fori	n	Date: June 11 20	15
iuge Na	ine: <u>U</u>					The sume is a construction of the sum of the	172
ver Nan	ne: <u>Aba</u>	tan River				Time: <u>4:30 P.M.</u>	
cation (Brgy, C	ity, Region): <u>Barangay Do</u>	orol, Municip	ality of	Balilihan, Bohc		
rvey ie	am: <u>be</u>						
ow cond	lition:	low normal	high		Weather	Condition:	rain rain
titude:	9d46'3	4.81441" N		Longit	ude: <u>123d56'3</u>	2.52347" E	
BA2		D		/ BA3			
1		in 🔪			BA4	egend: A = Bridge Approach P	= Pier LC = Low (
						b = Abutment D	= Deck HC = High
	Ab1			Ab2			
		P		н	c		
					_		
	2.2.1	Deck (Please start your me	asurement from	the left si	de of the bank facin	g downstream)	
ation <u>10</u>	0.321	wiath: <u>5.4</u>	426 meters		Span (BA3-BAZ): <u>48.02988 meters</u>	<u> </u>
		Station		High	n Chord Elevatio	n Low Ch	ord Elevation
					11.478		10.334
		Bridge Approach (Please :	start your measurem	ent from the	left side of the bank faci	ng downstream)	
	.				C: .: (D' .		
B 4 4	Static	on(Distance from BA1)	Elevation		Station(Dist	ance from BAI)	5 7/19
BAI		U	10.329	BA3	/0	.3320	5.745
BA2		28.30292	10.595	BA4			
					CH 1 C H		
itment:	ls th	e abutment sloping?	Yes No;) If yes	s, fill in the follow	ving information:	
		Station (D	istance fror	n BA1)		Elevati	on
Α	b1						
Α	b2						
		Pier (Please start your mea	surement from	the left sid	de of the bank facin	g downstream)	
						, ,	
	Shape	: <u>Rectangular</u> Number	of Piers: <u>2</u>		Height of colu	mn footing:	
		Station (Distance from	m BA1)	E	Elevation	Pier	Width
Pier 1		38.6113		10.291			
Pier 2		59.6664		10.507			
Pier 3							
Pier 4							
Pier 5							
1101.0							

Figure 40. Bridge as-built form of the Dolor Bridge

Figure 41. Water level markings on the post of the Dolor Bridge

The water surface elevation in MSL of the Abatan River was determined using a Trimble[®] SPS 882 in PPK mode on June 8, 2015 at 16:04:57 hrs. This was translated into markings on the bridge's pier, using a digital level. The marked pier, as displayed in Figure 41, served as reference for flow data gathering and depth gauge deployment by the USC Phil-LiDAR 1 Team.

4.6 Validation Points Acquisition Survey

The validation acquisition survey was conducted on June 12, 2015 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a range pole that was attached in front of a vehicle (Figure 42). The GNSS base station at DOLOR was utilized. The receiver secured with a cable-tie to ensure that it was horizontally and vertically balanced. The antenna height was measured and recorded to be 2.330 meters, from the ground up to the bottom of the notch of the GNSS rover receiver.

Figure 42. Validation points acquisition survey set-up along the Abatan River Basin

The survey was conducted using PPK technique set on a continuous topography mode, which started in Barangay Poblacion, Municipality of Antequera, and ended in Barangay Lincod, Municipality of Maribojoc. The survey gathered 1,024 validation points covering an approximate distance of 14.8 kilometers. The gaps in the validation line, as depicted in Figure 43, were due to some difficulties in acquiring satellite signals, such as dense canopies of trees along the roads.

Figure 43. Extent of the LiDAR ground validation survey of the Abatan River Basin

4.7 Bathymetric Survey

A bathymetric survey was executed on June 8, 2015 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode, as illustrated in Figure 44. The survey started in the upstream portion of the river in Barangay Angilan, Municipality of Antequera, with coordinates 9°45′47.14299″N, 123°56′23.68935″E; and ended at the mouth of the river in Barangay Lincod, Municipality of Maribojoc, with coordinates 9°42′52.78062″N, 123°51′48.11859″E. The control point DOLOR was used as the GNSS base station all throughout the survey.

Figure 44. Bathymetric survey using Ohmex[™] single beam echo sounder in Abatan River

The bathymetric survey for the Abatan River gathered a total of 1,204 points covering 14.5 kilometers of the river, traversing Barangay Angilan in the Municipality of Antequera downstream, until Barangay Lincod, Muncipality of Maribojoc. Both points are in the province of Bohol. A CAD drawing was produced to illustrate the riverbed profile of Abatan River, presented in Figure 46. The profile shows that the highest and lowest elevation had a 9.525-meter difference. The highest elevation observed was –0.481 meters below MSL, located at the middle portion of the Abatan River; while the lowest was –9.044 meters below MSL, also located in the middle portion of the river.

Figure 45. Extent of the bathymetric survey of the Abatan River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Rainfall, water level, and flow in a certain period of time, which are components and data that may affect the hydrologic cycle of the Abatan River Basin, were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a recording rain gauge unit installed by the USC Phil-LiDAR 1 team in Barangay Bantolinao, Antequera. The location of the rain gauge in the watershed is seen in Figure 47.

Total rain from the Bantolinao rain gauge was 31.6 millimeters. It peaked at 2.2 millimeters on July 12, 2016 at 13:15 hrs.

Figure 47. Location map of the Abatan HEC-HMS model, which was used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 48) at the Dolor Bridge, Antequera (9.77641°N, 123.943°E) to establish the relationship between the observed water levels (H) and outflow (Q) of the watershed at this location.

For the Dolor Bridge, the rating curve is expressed as $y = 0.6458e^{0.6369x}$, as shown in Figure 49.

Figure 48. Cross-section plot of the Dolor Bridge

Figure 49. Rating curve at the Dolor Bridge, Antequera, Bohol

This rating curve equation was used to compute for the river outflow at the Dolor Bridge, for the calibration of the HEC-HMS model exhibited in Figure 50. The peak discharge was 9.807 m³/s on July 12, 2016 at 19:00 hrs.

Figure 50. Rainfall and outflow data at the Dolor Bridge, which were used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for the Rainfall Intensity Duration Frequency (RIDF) values for the Tagbilaran Point Gauge (Table 30). This station was selected based on its proximity to the Abatan watershed (Figure 51). The extreme values for this watershed were computed based on a 39-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	14.4	21.9	26.5	34	43.7	50.4	62.6	73.8	84.1
5	23.1	35.4	41.8	54.6	65.1	76.5	95.1	108.2	121.2
10	28.8	44.3	52	68.3	79.3	93.7	116.7	131	145.7
15	32.1	49.3	57.7	76.1	87.3	103.5	128.8	143.9	159.6
20	34.3	52.8	61.7	81.5	92.9	110.3	137.3	152.9	169.3
25	36.1	55.5	64.8	85.6	97.3	115.5	143.8	159.8	176.7
50	41.5	63.8	74.4	98.5	110.6	131.7	164	181.1	199.7
100	46.8	72.1	83.8	111.2	123.8	147.7	184	202.3	222.6

Table 30. RIDF values for the Tagbilaran Point Rain Gauge, computed by PAGASA

Figure 51. Tagbilaran Point RIDF location, relative to Abatan River Basin

Figure 52. Synthetic storm generated from a 24-hour period rainfall, for various return periods

5.3 HMS Model

The soil shapefile was taken from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). These soil datasets were taken before 2004. The soil and land cover maps are presented in Figures 53 and 54, respectively.

Figure 53. The soil map of the Abatan River Basin, used for the estimation of the CN parameter (Source: DA)

Figure 54. The land cover map of the Abatan River Basin, used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model (Source: NAMRIA)

Figure 55. Slope map of the Abatan River Basin

Two (2) soil classes were identified in the Abatan watershed. These are clay loam and clay. The land cover classes identified were tree plantations and perennials, and cultivated lands.

Figure 56. Stream delineation map of the Abatan River Basin

Figure 57. The Abatan River Basin Model domain, generated using HEC-HMS

The Abatan basin model consists of eleven (11) sub-basins and five (5) reaches. The catchment outlet is designated as Outlet 1. The basin model is presented in Figure 57. The Abatan Model Reach Parameters are available in Annex 10. The basins were identified based on the soil and land cover characteristics of the area. Precipitation from July 12, 2016 was taken from a recording rain gauge installed by the USC Phil-LiDAR 1 team. The data was calibrated using the discharge data obtained from the depth gauge and current meter temporarily deployed in the Dolor Bridge in the Municipality of Antequera.

5.4 Cross-section Data

Riverbed cross-sections of the watershed were necessary in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 58).

Figure 58. River cross-section of the Abatan River, generated through the ArcMap HEC GeoRAS tool

5.5 Flo 2D Model

This image is not available for this river basin

Figure 59. Screenshot of a sub-catchment, with the computational area to be modeled in FLO-2D Grid Developer System Pro

5.6 Results of HMS Calibration

After calibrating the Abatan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 displays the comparison between the two (2) discharge data. The Abatan Model Basin Parameters are found in Annex 9.

Figure 60. Outflow hydrograph of Abatan produced by the HEC-HMS model, compared with observed outflow

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
			Initial Abstraction (mm)	6.85-13.60
	Loss	SCS Curve Number	Curve Number	44.52-77.52
			Impervious (%)	0
Basin	Transform	Clark Unit	Time of Concentration (hr)	1.06-14.19
		Hydrograph	Storage Coefficient (hr)	2.10-8.12
	Deceflow	Decession	Recession Constant	0.12-0.40
	Basellow	Recession	Ratio to Peak	0.03-0.10
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.02-0.10

The initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as the initial abstraction decreases. The range of values of 6.85 - 13.60 millimeters for the initial abstraction signifies that there is a minimal to average amount of infiltration or rainfall interception by vegetation.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as the curve number increases. The range of 65 - 90 for the curve number is advisable for Philippine watersheds, depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Abatan, the basin mostly consists of tree plantations and perennials, and the soil consists of clay and clay loam. The curve number for the model ranges from 44.52 to 77.52.

The time of concentration and the storage coefficient are the travel time and the index of temporary storage of runoff in a watershed. The range of calibrated values of 1.06 to 14.19 hours determines the reaction time of the model, with respect to the rainfall. The peak magnitude of the hydrograph decreases when these parameters are increased.

The recession constant is the rate at which the baseflow recedes between storm events; while ratio to peak is the ratio of the baseflow discharge to the peak discharge. A recession constant of 0.12-0.40 implies that the basin will be able to quickly revert to its original discharge. A ratio to peak of 0.03 -0.10 indicates a steeper receding limb of the outflow hydrograph.

A Manning's roughness coefficient of 0.02-0.10 corresponds to the common roughness in the Abatan watershed , which is determined to be cultivated with tree plantations (Brunner, 2010).

Accuracy Measure	Value
r²	0.876
NSE	0.694
PBIAS	-17.456
RSR	0.5499

Table 32. Efficiency Test of the Abatan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 1.2032.

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. A coefficient value close to 1 signifies an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. In the model, it was measured at 0.876.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.694.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate a bias towards over-prediction. The optimal value is 0. In the model, the PBIAS is -17.456.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error units of the values are quantified. The model yieldedan RSR value of 0.5499.

5.7 Calculated outflow hydrographs and Discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph in Figure 61 represents the Abatan outflow using the Tagbilaran RIDF curves in five (5) different return periods (i.e., 5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series), based on the data from PAGASA. The simulation results reveal a significant increase in outflow magnitude as the rainfall intensity increases, for a uniform duration of 24 hours and for varying return periods.

Figure 61. Outflow hydrograph at Dolor generated using Tagbilaran Point RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Abatan River discharge using the Tagbilaran Point RIDF curves in five (5) different return periods is shown in Table 33.

RIDF Period	Pre (îpite) tion	Pea (mai) nfall	Peak Outflow $\left(\frac{m^3}{s}\right)$	Time to Peak
5-year RIDF	121.2	23.100	137.981	3:40
10-year RIDF	145.7	28.800	194.410	3:40
25-year RIDF	176.7	36.100	274.056	3:50
50-year RIDF	199.7	41.500	337.257	3:30
100-year RIDF	222.6	46.800	402.417	3:30

Table 33. Peak values of the Abatan HEC-HMS Model outflow, using the Tagbilaran RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross section, for every time step, for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining the real-time flood inundation extent of the river, after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river is presented. The sample generated map of Abatan River using the calibrated event flow is provided in Figure 62.

Figure 62. Sample output map of the Abatan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting flood hazard and flow depth maps have a 10-meter resolution. Figure 63 to Figure 68 exhibit the 5-year, 25-year, and 100-year rain return scenarios of the Abatan floodplain.

City/ Municipality	Total Area	% Area Flooded	Area Flooded (sq.km.)
Albuquerque			
Antequera			
Baclayon			
Balilihan			
Corella			
Cortes			
Maribojoc			
San Isidro			
Sikatuna			
Tagbilaran			

Table 34 Municir	alities/cities	affected in	the Abatan	floodplain
Table 34. Wrunier	Januics/ cities	anceleu m	the Abatan	nooupiam

5.10 Inventory of Areas Exposed to Flooding

The affected barangays in the Abatan River Basin, grouped by municipality, are listed below. For the said basin, ten (10) municipalities consisting of one hundred and four (104) barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 1.38% of the Municipality of Albuquerque, with an area of 28.5 square kilometers, will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.04%, 0.01%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 35 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of af Albuque	fected barangays in erque (in sq. km.)
flood depth (in m.)	Basacdacu	Cantiguib
0.03-0.20	0.093	0.3
0.21-0.50	0.0012	0.013
0.51-1.00	0.0036	0.0078
1.01-2.00	0.0013	0.0019
2.01-5.00	0.0003	0
> 5.00	0	0

Table 35. Affected areas in Albuquerque, Bohol during a 5-year rainfall return period

Figure 69. Affected areas in Albuquerque, Bohol during a 5-year rainfall return period

For the Municipality of Antequera, with an area of 65.66 square kilometers, 46.26% will experience flood levels of less than 0.20 meters. 2.35% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.39%, 1.1%, 0.68%, and 0.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area			Ar	ea of affecte	ed barangays	in Antequer	a (in sq. km.)			
(sq. km.) by flood depth (in m.)	Angilan	Bantolinao	Bicahan	Bitaugan	Bungahan	Can- Omav	Cansibuan	Celing	Danao	Danicop
0.03-0.20	3.56	3.78	1.46	2.37	3.36	1.53	0.1	1.41	0.4	0.54
0.21-0.50	0.15	0.15	0.055	0.12	0.21	0.084	0.0013	0.062	0.02	0.044
0.51-1.00	0.086	0.084	0.032	0.072	0.084	0.048	0.00061	0.029	0.013	0.011
1.01-2.00	0.067	0.066	0.024	0.039	0.055	0.021	0.00035	0.025	0.0024	0.0062
2.01-5.00	0.086	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0.094	0.063	0.0026	0	0	0.0006	0	0.0003	0	0

Ъ
ĝ,
er
Ц
L L
Ę
re
П
fa
Ę.
гı
ar
je je
5
u T
60
Ĩ
Ē
Ę
F
Ч
2
, Bo
ra, Bo
uera, Bo
quera, Bo
tequera, Bo
Antequera, Bo
ı Antequera, Bo
in Antequera, Bo
as in Antequera, Bo
reas in Antequera, Bo
areas in Antequera, Bo
ed areas in Antequera, Bo
cted areas in Antequera, Bo
fected areas in Antequera, Bo
Affected areas in Antequera, Bo
i. Affected areas in Antequera, Bo
36. Affected areas in Antequera, Bo
le 36. Affected areas in Antequera, Bo
ble 36. Affected areas in Antequera, Bo
Table 36. Affected areas in Antequera, Bo

Affected area		Ar	ea of affect	ed barangays	in Antequer	a (in sq. km	(.	
(sq. km.) by flood depth (in m.)	Mag-Aso	Poblacion	Santo Rosario	Tagubaas	Tupas	Ubojan	Viga	Villa Aurora
0.03-0.20	0.82	0.84	0.96	0.91	2.5	1.3	2.2	2.34
0.21-0.50	0.044	0.073	0.083	0.041	0.17	0.031	0.11	0.1
0.51-1.00	0.025	0.031	0.12	0.021	0.084	0.019	0.076	0.082
1.01-2.00	0.011	0.0075	0.14	0.0074	0.11	0.013	0.078	0.053
2.01-5.00	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0	0	0.0018	0	0.012	0.0005	0.05	0.0033

Figure 70. Affected areas in Antequera, Bohol during a 5-year rainfall return period

For the Municipality of Baclayon, with an area of 33.81 square kilometers, 21.55% will experience flood levels of less than 0.20 meters. 0.97% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.87%, 0.34%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 37 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.)	Area of a	ffected barar	ngays in Bacla	ayon (in sq. k	(m.)
by flood depth (in m.)	Buenaventura	Dasitam	Landican	Libertad	Tanday
0.03-0.20	1.84	1.56	0.0075	1.67	2.21
0.21-0.50	0.078	0.11	0	0.071	0.073
0.51-1.00	0.071	0.085	0	0.065	0.074
1.01-2.00	0.031	0.013	0	0.029	0.043
2.01-5.00	0.0052	0.0008	0	0.0025	0.0053
> 5.00	0	0	0	0	0

Table 37. Affected areas in Baclayon, Bohol during a 5-year rainfall return period

Figure 71. Affected areas in Baclayon, Bohol during a 5-year rainfall return period

For the Municipality of Balilihan, with an area of 104.6 square kilometers, 40.45% will experience flood levels of less than 0.20 meters. 1.93% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.23%, 0.72%, 0.24%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area				Area of aff	ected barar	Igays in Balilihan	i (in sq. km.)		
(sq. km.) by flood depth (in m.)	Baucan Sur	Boctol	Cabad	Candasig	Cantalid	Cantomimbo	Datag Norte	Datag Sur	Del Carmen Este
0.03-0.20	0.029	1.36	1.12	3.09	5.42	0.48	1.78	3.46	2.66
0.21-0.50	0.00023	0.085	0.041	0.16	0.13	0.032	0.053	0.12	0.14
0.51-1.00	0.0011	0.052	0.02	0.073	0.15	0.024	0.051	0.11	0.12
1.01-2.00	0.00069	0.016	0.011	0.032	0.16	0.0094	0.035	0.077	0.045
2.01-5.00	0	0.0005	0.004	0.01	0.085	0.0011	0.0056	0.016	0.0018
> 5.00	0	0	0.0001	0.0002	0	0	0.0004	0	0
-									

(sq. km.) by flood depth (in m.)Del Carmen NorteDel Carmen SurDel Carmen WesteDer Carmen MesteDer Carmen MagsigDer Carmen MagsigSale MagsigSale Mag MagsigSale Mag MassigSale MassigSale Massig <th< th=""><th>Affected area</th><th></th><th></th><th>Area c</th><th>of affected ba</th><th>arangays in B</th><th>alilihan (in sq. k</th><th>m.)</th><th></th><th></th></th<>	Affected area			Area c	of affected ba	arangays in B	alilihan (in sq. k	m.)		
0.03-0.201.792.491.522.935.692.760.132.952.650.21-0.500.170.110.120.130.20.10.240.160.21-0.500.0690.0750.0420.0950.130.0750.000640.130.0560.51-1.000.0130.0490.0870.0340.120.0750.000640.130.0561.01-2.000.0130.0490.00120.0170.0570.02200.032.01-5.0000.00120.0120.0170.0250.017000	(sq. km.) by flood depth (in m.)	Del Carmen Norte	Del Carmen Sur	Del Carmen Weste	Dorol	Magsija	Maslog	Sagasa	Sal-Ing	San Isidro
0.21-0.50 0.17 0.11 0.12 0.13 0.2 0.067 0.24 0.16 0.51-1.00 0.069 0.075 0.042 0.095 0.13 0.075 0.0364 0.13 0.056 1.01-2.00 0.013 0.049 0.087 0.034 0.12 0.065 0.13 0.056 2.01-5.00 0.012 0.0012 0.017 0.057 0.022 0.016 0.03 > 5.00 0 0.0012 0.017 0.057 0.022 0.016 0.016 0.016	0.03-0.20	1.79	2.49	1.52	2.93	5.69	2.76	0.13	2.95	2.65
0.51-1.00 0.069 0.075 0.042 0.095 0.13 0.075 0.13 0.036 1.01-2.00 0.013 0.049 0.0087 0.034 0.12 0.065 0 0.052 0.03 2.01-5.00 0.0002 0.012 0.0012 0.017 0.057 0.022 0 0.016 0.016 > 5.00 0 0.0001 0 0.025 0.0017 0.025 0.017 0.022 0.016 0.016	0.21-0.50	0.17	0.11	0.12	0.13	0.2	0.1	0.0087	0.24	0.16
1.01-2.00 0.013 0.049 0.087 0.034 0.12 0.065 0 0.052 0.03 2.01-5.00 0.0002 0.012 0.017 0.057 0.022 0.016 0.016 > 5.00 0 0.0001 0 0.025 0.017 0.027 0 0.022 0.016	0.51-1.00	0.069	0.075	0.042	0.095	0.13	0.075	0.000064	0.13	0.056
2.01-5.00 0.0002 0.012 0.0012 0.017 0.057 0.022 0.0022 0.016 > 5.00 0 0.0001 0 0.025 0.0017 0 0 0.0048	1.01-2.00	0.013	0.049	0.0087	0.034	0.12	0.065	0	0.052	0.03
>5.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.01-5.00	0.0002	0.012	0.0012	0.017	0.057	0.022	0	0.0022	0.016
	> 5.00	0	0.0001	0	0.025	0.0017	0	0	0	0.0048

Table 38. Affected areas in Balilihan, Bohol during a 5-year rainfall return period

Figure 72. Affected areas in Balilihan, Bohol during a 5-year rainfall return period

For the Municipality of Corella, with an area of 34.7 square kilometers, 100% will experience flood levels of less than 0.20 meters. 4.91% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.05%, 2.5%, 0.58%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas, in square kilometers, by flood depth per barangay.

Affected			Area of affected	d barangays i	n Corella (i	n sq. km.)		
area (sq. km.) by flood depth (in m.)	Anislag	Canangca- An	Canapnapan	Cancatac	Pandol	Poblacion	Sambog	Tanday
0.03-0.20	3.61	5.94	4.18	6.19	2.5	2.7	4.57	6.21
0.21-0.50	0.17	0.25	0.18	0.32	0.13	0.13	0.32	0.2
0.51-1.00	0.17	0.19	0.16	0.29	0.11	0.099	0.2	0.2
1.01-2.00	0.099	0.15	0.11	0.16	0.058	0.057	0.1	0.13
2.01-5.00	0.03	0.034	0.018	0.035	0.0064	0.031	0.015	0.032
> 5.00	0.0005	0	0	0	0	0	0	0.0002

Table 39. Affected areas in Corella, Bohol d	during a 5-year rainfall ret	turn period
--	------------------------------	-------------

Figure 73. Affected areas in Corella, Bohol during a 5-year rainfall return period

For the Municipality of Cortes, with an area of 33.24 square kilometers, 77.69% will experience flood levels of less than 0.20 meters. 3.85% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.96%, 2.99%, 1.26%, and 0.2% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area		Area	a of affected	d barangays	in Cortes (in so	q. km.)	
(sq. km.) by flood depth (in m.)	De La Paz	Fatima	Loreto	Lourdes	Malayo Norte	Malayo Sur	Monserrat
0.03-0.20	1.53	4.48	2.55	3.42	1.42	1.74	1.78
0.21-0.50	0.21	0.19	0.18	0.11	0.097	0.047	0.063
0.51-1.00	0.047	0.14	0.18	0.092	0.082	0.047	0.038
1.01-2.00	0.022	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.01	0.022	0.12	0.026	0.052	0.009	0.0046
> 5.00	0.0003	0	0.036	0.0023	0.0047	0	0

Table 40. Affected areas in Cortes, Bohol during a 5-year rainfall return period

Affected area		Area	of affected b	arangays in	Cortes (in sq.	km.)	
(sq. km.) by flood depth (in m.)	New Lourdes	Patrocinio	Poblacion	Rosario	Salvador	San Roque	Upper de la Paz
0.03-0.20	2.67	0.73	0.045	1.08	0.97	1.61	1.81
0.21-0.50	0.058	0.026	0.025	0.066	0.044	0.024	0.15
0.51-1.00	0.075	0.023	0.061	0.074	0.067	0.029	0.031
1.01-2.00	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.066	0.011	0.0034	0.044	0.038	0.011	0.0041
> 5.00	0.0057	0.0028	0	0.015	0.0005	0	0

Figure 74. Affected areas in Cortes, Bohol during a 5-year rainfall return period

For the Municipality of Maribojoc, with an area of 55.2 square kilometers, 56.96% will experience flood levels of less than 0.20 meters. 4.3% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.6%, 1.43%, 0.49%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas, in square kilometers, by flood depth per barangay.

<u> </u>
° O
ъ
อ
р
Ц
H
Ð
re
Π
لص
Ē
ai.
Ч
ЪГ
ĕ
5
Ś
ы
ЬÛ
Ξ.
Ξ
4
5
Q
q.
ň
<u>_</u>
2
٠Ĕ
S
E
ੁਲ
\geq
7
τ
S
G
area
l area
ed area
cted area
ected area
ffected area
Affected area
1. Affected area
41. Affected area
le 41. Affected area
ble 41. Affected area
able 41. Affected area

		Table 41. Aff	ected areas in	. Maribojoc, Boł	ol during a 5	-year rainfall r	eturn period		
Affected area			Area c	of affected bar	angays in N	laribojoc (in s	sq. km.)		
(sq. km.) by flood depth (in m.)	Agahay	Aliguay	Anislag	Bayacabac	Busao	Cabawan	Candavid	Dipatlong	Jandig
0.03-0.20	1.24	1.83	0.48	1.87	1.68	3.34	1.7	0.02	1.26
0.21-0.50	0.15	0.13	0.17	0.1	0.15	0.44	0.022	0.0001	0.043
0.51-1.00	0.18	0.087	0.11	0.091	0.11	0.18	0.016	0.0002	0.03
1.01-2.00	0.12	0.0068	0.0082	0.077	0.093	0.081	0.024	0	0.017
2.01-5.00	0.028	0	0.00054	0.019	0.022	0.066	0.024	0	0.0042
> 5.00	0.001	0	0	0	0.0041	0.00053	0.0003	0	0

Affected area			Area of a	ffected baran	gays in Mar	ibojoc (in sc	ł. km.)		
(sq. km.) by flood depth (in m.)	Lincod	Pagnitoan	Poblacion	Punsod	San Isidro	San Roque	San Vicente	Tinibgan	Toril
0.03-0.20	2.01	2.83	0.24	1.28	2.2	3.2	0.95	2.65	2.63
0.21-0.50	0.3	0.094	0.021	0.064	0.096	0.15	0.22	0.1	0.11
0.51-1.00	0.053	0.061	0.084	0.059	0.07	0.13	0.031	0.074	0.065
1.01-2.00	0.027	0.025	0.063	0.022	0.045	0.069	0.016	0.054	0.043
2.01-5.00	0.013	0.013	0	0.0081	0.019	0.02	0.001	0.022	0.0095
> 5.00	0	0.0013	0	0	0	0	0	0.0003	0

Figure 75. Affected areas in Maribojoc, Bohol during a 5-year rainfall return period

For the Municipality of San Isidro, with an area of 59.2 square kilometers, 0.83% will experience flood levels of less than 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.03%, 0.02%, 0.02%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in San Isidro (in sq. km.)
	Baunos
0.03-0.20	0.53
0.21-0.50	0.024
0.51-1.00	0.011
1.01-2.00	0.0067
2.01-5.00	0.014
> 5.00	0.032

Table 42. Affected areas in San Isidro, Bohol during a 5-year rainfall return period

Figure 76. Affected areas in San Isidro, Bohol during a 5-year rainfall return period

For the Municipality of Sikatuna, with an area of 41.77 square kilometers, 8.57% will experience flood levels of less than 0.20 meters. 0.48% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.34%, 0.15%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 43 are the affected areas, in square kilometers, by flood depth per barangay.

)	•		
Affected area			Area of	affected barang	ays in Sikatuna	a (in sq. km.)		
(sq. km.) by flood depth (in m.)	Abucay Norte	Abucay Sur	Badiang	Bahaybahay	Cambuac Norte	Canagong	Poblacion I	Poblacion II
0.03-0.20	0.37	0.19	0.014	2.2	0.45	1.2	0.054	0.25
0.21-0.50	0.017	0.022	0.0013	0.12	0.014	0.078	0.0005	0.01
0.51-1.00	0.008	0.0047	0	0.11	0.0076	0.048	0.00048	0.013
1.01-2.00	0.001	0.0001	0	0.042	0.0033	0.026	0	0.0071
2.01-5.00	0	0	0	0.0077	0	0.0072	0	0.000004
> 5.00	0	0	0	0	0	0	0	0

Table 43. Affected areas in Sikatuna, Bohol during a 5-year rainfall return period

For the City of Tagbilaran, with an area of 32.17 square kilometers, 52.22% will experience flood levels of less than 0.20 meters. 2.69% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.6%, 0.9%, 0.22%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq.	Area	of affected	barangays ir	n Tagbilaran	City (in sq.	km.)
km.) by flood depth (in m.)	Вооу	Cabawan	Cogon	Dampas	Dao	Manga
0.03-0.20	1.15	1.16	1.96	0.99	3.6	0.46
0.21-0.50	0.095	0.046	0.097	0.024	0.16	0.043
0.51-1.00	0.073	0.031	0.064	0.02	0.089	0.017
1.01-2.00	0.033	0.019	0.036	0.016	0.057	0.0083
2.01-5.00	0.0017	0.0061	0.0068	0.0072	0.011	0
> 5.00	0	0	0	0	0.0003	0

Table 44. Affected areas in Tagbilaran, Bohol during a 5-year rainfall return period

Affected area	Area	of affected b	arangays in	Tagbilaran (City (in sq. k	m.)
(sq. km.) by flood depth (in m.)	Poblacion II	Poblacion III	San Isidro	Taloto	Tiptip	Ubujan
0.03-0.20	0.22	0.0046	3.13	1.1	1.88	1.16
0.21-0.50	0.011	0.00019	0.08	0.14	0.071	0.097
0.51-1.00	0.0063	0.000001	0.062	0.046	0.059	0.05
1.01-2.00	0.0014	0	0.06	0.006	0.039	0.006
2.01-5.00	0	0	0.029	0.0004	0.0088	0.0004
> 5.00	0	0	0.0002	0	0	0

Figure 78. Affected areas in Tagbilaran, Bohol during a 5-year rainfall return period

For the 25-year return period, 1.35% of the Municipality of Albuquerque, with an area of 28.5 square kilometers, will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.04%, 0.03%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 45 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of affect Albuquerq	ted barangays in ue (in sq. km.)
flood depth (in m.)	Basacdacu	Cantiguib
0.03-0.20	0.09	0.3
0.21-0.50	0.0009	0.014
0.51-1.00	0.0023	0.0098
1.01-2.00	0.0047	0.0052
2.01-5.00	0.0007	0
> 5.00	0	0

Table 45. Affected areas in Albuquerque, Bohol during a 25-year rainfall return period

Figure 79. Affected areas in Albuquerque, Bohol during a 25-year rainfall return period

For the Municipality of Antequera, with an area of 65.66 square kilometers, 44.37% will experience flood levels of less than 0.20 meters. 2.66% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.64%, 1.27%, 1.43%, and 0.77% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area			Ar	ea of affecte	d barangays i	n Antequer	a (in sq. km.)			
(sq. km.) by flood depth (in m.)	Angilan	Bantolinao	Bicahan	Bitaugan	Bungahan	Can- Omav	Cansibuan	Celing	Danao	Danicop
0.03-0.20	3.44	3.64	1.42	2.29	3.22	1.46	0.1	1.35	0.39	0.51
0.21-0.50	0.16	0.17	0.069	0.13	0.25	0.11	0.0019	0.081	0.024	0.065
0.51-1.00	0.11	0.11	0.041	0.083	0.12	0.061	0.00095	0.045	0.017	0.017
1.01-2.00	0.069	0.096	0.03	0.079	0.079	0.04	0.00035	0.034	0.0068	0.011
2.01-5.00	0.066	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0.2	0.13	0.0048	0.0034	0.007	0.0032	0	0.0012	0	0

Affected area		A	rrea of affec	ted barangay	s in Anteque	era (in sq. kn	(''	
(sq. km.) by flood depth (in m.)	Mag-Aso	Poblacion	Santo Rosario	Tagubaas	Tupas	Ubojan	Viga	Villa Aurora
0.03-0.20	0.8	0.77	0.88	0.88	2.38	1.27	2.09	2.24
0.21-0.50	0.046	0.11	0.062	0.047	0.16	0.039	0.11	0.12
0.51-1.00	0.032	0.049	0.061	0.03	0.1	0.021	0.072	0.097
1.01-2.00	0.021	0.017	0.1	0.013	0.062	0.014	0.073	0.087
2.01-5.00	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0	0	0.0064	0.0015	0.04	0.0031	0.1	0.009

Table 46. Affected areas in Antequera, Bohol during a 25-year rainfall return period

Figure 80. Affected areas in Antequera, Bohol during a 25-year rainfall return period

For the Municipality of Baclayon, with an area of 33.81 square kilometers, 20.72% will experience flood levels of less than 0.20 meters. 0.95% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.92%, 0.96%, 0.22%, and 0.002 of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sg. km.)	Area of aff	ected baran	gays in Baclay	yon (in sq. kı	m.)
by flood depth (in m.)	Buenaventura	Dasitam	Landican	Libertad	Tanday
0.03-0.20	1.77	1.49	0.0075	1.6	2.13
0.21-0.50	0.078	0.094	0	0.075	0.075
0.51-1.00	0.057	0.095	0	0.08	0.078
1.01-2.00	0.09	0.08	0	0.065	0.09
2.01-5.00	0.023	0.0035	0	0.021	0.026
> 5.00	0.0008	0	0	0	0

Table 47. Affected areas in Baclayon, Bohol during a 25-year rainfall return period

Figure 81. Affected areas in Baclayon, Bohol during a 25-year rainfall return period

For the Municipality of Balilihan, with an area of 104.6 square kilometers, 38.69% will experience flood levels of less than 0.20 meters. 2.26% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.69%, 1.27%, 0.58%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area				Area of	affected ba	arangays in Balilit	nan (in sq. km.)		
(sq. km.) by flood depth (in m.)	Baucan Sur	Boctol	Cabad	Candasig	Cantalid	Cantomimbo	Datag Norte	Datag Sur	Del Carmen Este
0.03-0.20	0.028	1.28	1.1	2.99	5.22	0.45	1.72	3.3	2.5
0.21-0.50	0.00076	0.11	0.047	0.18	0.14	0.043	0.062	0.15	0.15
0.51-1.00	0.00064	0.08	0.027	0.12	0.16	0.026	0.06	0.14	0.17
1.01-2.00	0.0017	0.042	0.017	0.052	0.22	0.023	0.065	0.15	0.12
2.01-5.00	0.0001	0.0047	0.0099	0.023	0.21	0.0035	0.019	0.054	0.017
> 5.00	0	0	0.0006	0.0018	0.0037	0	6000.0	0.0003	0

Affected area			Area of affe	cted barang	ays in Balili	ihan (in sq. km.			
(sq. km.) by flood depth (in m.)	Del Carmen Norte	Del Carmen Sur	Del Carmen Weste	Dorol	Magsija	Maslog	Sagasa	Sal-Ing	San Isidro
0.03-0.20	1.65	2.32	1.45	2.83	5.53	2.68	0.12	2.79	2.52
0.21-0.50	0.22	0.15	0.14	0.14	0.23	0.11	0.015	0.27	0.22
0.51-1.00	0.13	0.13	0.073	0.11	0.16	0.096	0.00063	0.2	0.09
1.01-2.00	0.041	0.1	0.021	0.067	0.15	0.087	0	0.12	0.043
2.01-5.00	0.0016	0.041	0.0025	0.02	0.11	0.057	0	0.01	0.025
> 5.00	0	0.0005	0	0.052	0.016	0.0001	0	0	0.021

Table 48. Affected areas in Balilihan, Bohol during a 25-year rainfall return period

Figure 82. Affected areas in Balilihan, Bohol during a 25-year rainfall return period

For the Municipality of Corella, with an area of 34.7 square kilometers, 99.24% will experience flood levels of less than 0.20 meters. 5.17% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.87%, 4.4%, 1.73%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area			Area of affected	barangays ii	n Corella (in sq. km.)		
(sq. km.) by flood depth (in m.)	Anislag	Canangca- An	Canapnapan	Cancatac	Pandol	Poblacion	Sambog	Tanday
0.03-0.20	3.43	5.74	4.04	5.93	2.4	2.6	4.31	6.02
0.21-0.50	0.19	0.26	0.18	0.31	0.13	0.14	0.36	0.22
0.51-1.00	0.18	0.23	0.18	0.35	0.13	0.12	0.28	0.22
1.01-2.00	0.18	0.24	0.18	0.28	0.11	0.097	0.19	0.23
2.01-5.00	0.085	0.1	0.069	0.11	0.025	0.054	0.064	0.09
> 5.00	0.002	0.0003	0.0006	0.00035	0.0001	0.0028	0	0.0008

Figure 83. Affected areas in Corella, Bohol during a 25-year rainfall return period

For the Municipality of Cortes, with an area of 33.24 square kilometers, 73.39% will experience flood levels of less than 0.20 meters. 4.19% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.49%, 4.75%, 4.36%, and 0.73% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area		Area	of affected	barangays i	n Cortes (in so	ι. km.)	
(sq. km.) by flood depth (in m.)	De La Paz	Fatima	Loreto	Lourdes	Malayo Norte	Malayo Sur	Monserrat
0.03-0.20	1.36	4.3	2.35	3.28	1.28	1.67	1.72
0.21-0.50	0.24	0.21	0.081	0.13	0.041	0.058	0.075
0.51-1.00	0.16	0.17	0.065	0.11	0.03	0.052	0.057
1.01-2.00	0.038	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.021	0.076	0.45	0.079	0.13	0.038	0.021
> 5.00	0.0031	0.0004	0.11	0.005	0.026	0	0

Table 50. Affected areas in Cortes, B	Bohol during a 25-year rainfall return p	eriod
---------------------------------------	--	-------

Affected area		Area	of affected b	arangays in	Cortes (in sq.	km.)	
(sq. km.) by flood depth (in m.)	New Lourdes	Patrocinio	Poblacion	Rosario	Salvador	San Roque	Upper de la Paz
0.03-0.20	2.55	0.7	0.63	0.95	0.84	1.57	1.19
0.21-0.50	0.068	0.032	0.033	0.063	0.029	0.033	0.3
0.51-1.00	0.075	0.019	0.11	0.07	0.094	0.032	0.44
1.01-2.00	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.13	0.032	0.11	0.21	0.093	0.035	0.022
> 5.00	0.025	0.0039	0.018	0.034	0.016	0.0001	0.0001

Figure 84. Affected areas in Cortes, Bohol during a 25-year rainfall return period

For the Municipality of Maribojoc, with an area of 55.2 square kilometers, 52.52% will experience flood levels of less than 0.20 meters. 3.88% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.2%, 3.39%, 1.7%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 51 are the affected areas, in square kilometers, by flood depth per barangay.

				- -	0		T		
Affected area			Area (of affected bar	angays in N	laribojoc (in	sq. km.)		
(sq. km.) by flood depth (in m.)	Agahay	Aliguay	Anislag	Bayacabac	Busao	Cabawan	Candavid	Dipatlong	Jandig
0.03-0.20	1.13	1.76	0.44	1.79	1.53	2.89	1.67	0.02	1.23
0.21-0.50	0.081	0.12	0.072	0.12	0.11	0.27	0.026	0.00027	0.051
0.51-1.00	0.066	0.066	0.22	0.075	0.1	0.24	0.018	0.0002	0.035
1.01-2.00	0.16	0.11	0.033	0.097	0.18	0.55	0.028	0	0.024
2.01-5.00	0.27	0.00027	0.0026	0.082	0.13	0.14	0.044	0	0.012
> 5.00	0.0064	0	0	0.0012	0.017	0.016	0.0051	0	0.0001

<u> </u>
·Υ
Ч
E.
ŏ.
Ξ
Ħ
Б.
e.
Ξ.
Ð
d
Ľ,
Ľ
Ч
g
5
5
Ń
\sim
ಡ
bo
20
ц.
H
1
0
ă
0
õ
1
Š
<u>,o</u>
0
2
.Ц
ы
7
\sim
Ц
· –
S
3
Ľ
б
J
ē
L
ŏ
£
$\overline{\mathbf{A}}$
-
7
51
e 51
ole 51
able 51
Table 51

Affected area			Area of a	offected barar	ngays in Mari	bojoc (in sq	. km.)		
(sq. km.) by flood depth (in m.)	Lincod	Pagnitoan	Poblacion	Punsod	San Isidro	San Roque	San Vicente	Tinibgan	Toril
0.03-0.20	1.12	2.77	0.23	1.23	2.13	3.1	0.8	2.57	2.55
0.21-0.50	0.35	0.11	0.016	0.066	0.099	0.13	0.3	0.11	0.12
0.51-1.00	0.81	0.073	0.036	0.066	0.085	0.15	0.085	0.09	0.094
1.01-2.00	0.077	0.044	0.12	0.054	0.075	0.14	0.027	0.083	0.072
2.01-5.00	0.05	0.021	0.013	0.021	0.042	0.042	0.0037	0.042	0.026
> 5.00	0.0013	0.0046	0	0.0005	0.000071	0.0001	0	0.0007	0.00022

Figure 85. Affected areas in Maribojoc, Bohol during a 25-year rainfall return period

For the Municipality of San Isidro, with an area of 59.2 square kilometers, 0.86% will experience flood levels of less than 0.20 meters. 0.034% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.03%, 0.02%, 0.02%, and 0.1% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in San Isidro (in sq. km.)				
	Baunos				
0.03-0.20	0.51				
0.21-0.50	0.02				
0.51-1.00	0.017				
1.01-2.00	0.011				
2.01-5.00	0.011				
> 5.00	0.057				

Table 52. Affected areas in San Isidro, Bohol during a 25-year rainfall return period

Figure 86. Affected areas in San Isidro, Bohol during a 25-year rainfall return period

For the Municipality of Sikatuna, with an area of 41.77 square kilometers, 8.33% will experience flood levels of less than 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.43%, 0.27%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 53 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area			Area of	affected barang	ays in Sikatu	na (in sq. km	.)	
(sq. km.) by flood depth (in m.)	Abucay Norte	Abucay Sur	Badiang	Bahaybahay	Cambuac Norte	Canagong	Poblacion I	Poblacion II
0.03-0.20	0.36	0.19	0.013	2.13	0.45	1.16	0.054	0.24
0.21-0.50	0.018	0.017	0.0018	0.11	0.018	0.068	0.00093	0.011
0.51-1.00	0.013	0.014	0.00031	0.13	0.0088	0.064	0.00048	0.01
1.01-2.00	0.0026	0.001	0	0.079	0.0063	0.043	0	0.016
2.01-5.00	0	0	0	0.026	0	0.025	0	0.00016
> 5.00	0	0	0	0	0	0	0	0

Table 53. Affected areas in Sikatuna, Bohol during a 25-year rainfall return period

Figure 87. Affected areas in Sikatuna, Bohol during a 25-year rainfall return period

For the City of Tagbilaran, with an area of 32.17 square kilometers, 49.44% will experience flood levels of less than 0.20 meters. 3.31% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.39%, 1.75%, 0.65%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area	Area	of affected	barangays iı	n Tagbilaran	City (in sq.	km.)
(sq. km.) by flood depth (in m.)	Вооу	Cabawan	Cogon	Dampas	Dao	Manga
0.03-0.20	1.03	1.11	1.86	0.96	3.44	0.41
0.21-0.50	0.12	0.061	0.13	0.031	0.21	0.06
0.51-1.00	0.091	0.042	0.074	0.021	0.13	0.036
1.01-2.00	0.098	0.033	0.069	0.028	0.1	0.02
2.01-5.00	0.01	0.014	0.025	0.018	0.039	0.0002
> 5.00	0	0.00058	0	0.0008	0.0026	0

Table 54. Affected areas in Tagbilaran, Bohol during a 25-year rainfall return period

Affected area	Area	of affected b	arangays in	Tagbilaran (City (in sq. k	m.)
(sq. km.) by flood depth (in m.)	Poblacion II	Poblacion III	San Isidro	Taloto	Tiptip	Ubujan
0.03-0.20	0.21	0.0045	3.01	1	1.8	1.08
0.21-0.50	0.017	0.00023	0.11	0.13	0.086	0.11
0.51-1.00	0.0056	0.000001	0.081	0.13	0.064	0.09
1.01-2.00	0.0051	0	0.082	0.022	0.079	0.027
2.01-5.00	0	0	0.071	0.0018	0.028	0.002
> 5.00	0	0	0.012	0.0001	0.0009	0

Figure 88. Affected areas in Tagbilaran, Bohol during a 25-year rainfall return period

For the 100-year return period, 1.33% of the Municipality of Albuquerque, with an area of 28.5 square kilometers, will experience flood levels of less than 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.05%, 0.04%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 55 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by	Area of affected Albuquerque	l barangays in (in sq. km.)
nood depth (in m.)	Basacdacu	Cantiguib
0.03-0.20	0.09	0.29
0.21-0.50	0.0008	0.015
0.51-1.00	0.0019	0.012
1.01-2.00	0.0052	0.0065
2.01-5.00	0.0014	0
> 5.00	0	0

Table 55. Affected areas in Albuquerque	, Bohol during a 100-year	rainfall return period
---	---------------------------	------------------------

Figure 89. Affected areas in Albuquerque, Bohol during a 100-year rainfall return period

For the Municipality of Antequera, with an area of 65.66 square kilometers, 43.28% will experience flood levels of less than 0.20 meters. 2.82% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.86%, 1.37%, 1.68%, and 1.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 56 are the affected areas, in square kilometers, by flood depth per barangay.

		Table 56.	Affected area	s in Antequer	a, Bohol during	a 100-year ra	infall return pei	iod		
Affected area			Ar	ea of affecte	d barangays i	n Antequer	a (in sq. km.)			
(sq. km.) by flood depth (in m.)	Angilan	Bantolinao	Bicahan	Bitaugan	Bungahan	Can- Omav	Cansibuan	Celing	Danao	Danicop
0.03-0.20	3.37	3.55	1.39	2.25	3.14	1.43	0.1	1.31	0.38	0.49
0.21-0.50	0.17	0.18	0.078	0.13	0.25	0.11	0.0022	0.095	0.027	0.076
0.51-1.00	0.13	0.13	0.044	0.088	0.16	0.074	0.001	0.057	0.019	0.022
1.01-2.00	0.084	0.11	0.036	0.078	0.091	0.053	0.00055	0.038	0.01	0.014
2.01-5.00	0.058	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0.25	0.16	0.0055	0.014	0.014	0.0047	0	0.0019	0	0

Affected area (so km)			Area of affe	ected barange	ays in Antequ	uera (in sq. l	:m.)	
by flood depth (in m.)	Mag-Aso	Poblacion	Santo Rosario	Tagubaas	Tupas	Ubojan	Viga	Villa Aurora
0.03-0.20	0.78	0.71	0.85	0.87	2.32	1.26	2.04	2.18
0.21-0.50	0.048	0.15	0.049	0.049	0.16	0.04	0.11	0.13
0.51-1.00	0.036	0.063	0.05	0.035	0.11	0.026	0.078	0.1
1.01-2.00	0.026	0.026	0.069	0.018	0.059	0.017	0.065	0.11
2.01-5.00	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328	0.05328
> 5.00	0	0	0.0093	0.0032	0.12	0.0062	0.14	0.021

	C	2
•	L	1
	٩	j.
	2	7
	_	÷
	È	1
	Ξ	3
,	Γ	5
	J.)
	-	•
Ξ		
÷	π	٢.
	늘	
	≿	1
	'n	Ś
	۲	÷.
	_	4
	'n	٢.
	J.)
	P	5
	-	5
2	=	<
2	_	5
1	1	1
	α	2
	b	O
	Ē	Ĩ.
•	Ξ	7
	≿	1
_	-	,
	C	2
-	-	
	_	٦.
	9	
-	č	í.
-		
F		
F	C C C C C	, 1011
ŕ	S ROPC	w, both
ŕ	Pra Roho	1107 (NT)
Ļ	IPT3 KOHO	1110 YTT
ŕ	DUDA ROPU	lacta, potr
Ļ	CIIPTA KOHO	darra mon
Ļ	POLIPER KONC	very acta
- -	TPOLIPTA KONC	mont month
- -	Anteoniera Koho	mireducta, pom
- F	Antegliera Koho	TTOOL WITTON DOLL
	n Anteoniera Koho	11 1 TTOOL (NTOOL OF TOOL OF TOOL
	IN ANTPOLIPTA KONC	TTO T TTO A A A A A A A A A A A A A A A
- F	s in Anteoliera Koho	o more a meredare a more
	as in Anteoliera Koho	no m michaela ma
	Pas in Anternera Koho	and the survey acted, point
	ITEAS IN ANTEOULETA KOHO	a can an a micel acta, point
	areas in Anteoliera Koho	mon modern model
	d areas in Anteoniera Boho	mon mondari in annadaria
	PCI APPAS IN ANTPOILIPPA KONC	ou ar cao ar a arred acta, port
	TEC AREAS IN ANTECHIERA KONC	non ar and art a streed acta, port
	Peted areas in Anteoliera Koho	A A A A A A A A A A A A A A A A A A A
	Tected areas in Anteginera Koho	Icorca ar can the three decta, point
	TPCTPCI APPAS IN ANTPOULPTA KONC	TTOC ME CHO TTT TTTCC ACTA' DOTT
	Attected areas in Anteoliera Koho	The march of the state state of the state of
	Attected areas in Anteoliera Boho	TTOO WILL WILL THE TATE A POINT TO THE POINT OF THE P
	6 Atterted areas in Anteoliera Koho	our anton at the att a start of a the anton and a the
	ON ATTECTED BREAS IN ANTECHIERS ACH	UNIT OF THE COLOR OF THE THE CALIFUL AND THE THE CALIFUL THE
	Not Attented areas in Anteniina of a	
	Not attented areas in Antenners Actor	TO DO T TTOOLOG MI CHO THI TTTICO HOLIN' DOTH

Figure 90. Affected areas in Antequera, Bohol during a 100-year rainfall return period

For the Municipality of Baclayon, with an area of 33.81 square kilometers, 20.0.% will experience flood levels of less than 0.20 meters. 0.91% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.96%, 1.22%, 0.44%, and 0.007 of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq.	Area of affe	cted baran	gays in Bacla	yon (in sq. l	km.)
km.) by flood depth (in m.)	Buenaventura	Dasitam	Landican	Libertad	Tanday
0.03-0.20	1.74	1.45	0.0074	1.56	2.09
0.21-0.50	0.074	0.084	0.0001	0.078	0.071
0.51-1.00	0.065	0.096	0	0.078	0.087
1.01-2.00	0.1	0.12	0	0.091	0.1
2.01-5.00	0.045	0.014	0	0.037	0.052
> 5.00	0.0009	0	0	0.0012	0.0001

Table 57. Affected areas in Baclayon, Bohol during a 100-year rainfall return period

Figure 91. Affected areas in Baclayon, Bohol during a 100-year rainfall return period

For the Municipality of Balilihan, with an area of 104.6 square kilometers, 37.259% will experience flood levels of less than 0.20 meters. 2.44% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 1.94%, 1.56%, 0.89%, and 0.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area				Area of	affected bai	angays in Balilih	an (in sq. km.)		
(sq. km.) by flood depth (in m.)	Baucan Sur	Boctol	Cabad	Candasig	Cantalid	Cantomimbo	Datag Norte	Datag Sur	Del Carmen Este
0.03-0.20	0.027	1.23	1.08	2.93	5.11	0.44	1.68	3.18	2.39
0.21-0.50	0.0003	0.12	0.052	0.19	0.15	0.049	0.068	0.17	0.16
0.51-1.00	0.0011	0.097	0.03	0.14	0.16	0.028	0.07	0.16	0.19
1.01-2.00	0.0016	0.057	0.021	0.067	0.23	0.025	0.075	0.18	0.18
2.01-5.00	0.00059	0.0087	0.012	0.032	0.27	0.011	0.033	0.099	0.052
> 5.00	0	0	0.0024	0.0057	0.03	0	0.0017	0.0019	0

Affected area			Area of aff	ected barar	Igays in Bal	ilihan (in sq.	km.)		
(sq. km.) by flood depth (in m.)	Del Carmen Norte	Del Carmen Sur	Del Carmen Weste	Dorol	Magsija	Maslog	Sagasa	Sal-Ing	San Isidro
0.03-0.20	1.56	2.22	1.4	2.76	5.43	2.63	0.11	2.69	2.45
0.21-0.50	0.25	0.16	0.15	0.15	0.25	0.11	0.021	0.28	0.22
0.51-1.00	0.16	0.14	660.0	0.12	0.17	0.094	0.0016	0.23	0.12
1.01-2.00	0.064	0.13	0.032	0.097	0.17	0.1	0	0.14	0.05
2.01-5.00	0.0029	0.07	0.0038	0.031	0.15	0.087	0	0.034	0.032
> 5.00	0	0.0016	0	0.067	0.03	0.0002	0	0	0.036

Table 58. Affected areas in Balilihan, Bohol during a 100-year rainfall return period

Figure 92. Affected areas in Balilihan, Bohol during a 100-year rainfall return period

For the Municipality of Corella, with an area of 34.7 square kilometers, 96.61% will experience flood levels of less than 0.20 meters. 5.36% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 5.16%, 5.34%, 2.89%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 59 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area			Area of affected	barangays in	n Corella (i	n sq. km.)		
(sq. km.) by flood depth (in m.)	Anislag	Canangca- An	Canapnapan	Cancatac	Pandol	Poblacion	Sambog	Tanday
0.03-0.20	3.32	5.61	3.95	5.78	2.33	2.54	4.14	5.9
0.21-0.50	0.21	0.27	0.19	0.31	0.14	0.14	0.38	0.23
0.51-1.00	0.19	0.24	0.18	0.36	0.13	0.13	0.33	0.22
1.01-2.00	0.22	0.27	0.22	0.35	0.13	0.13	0.26	0.28
2.01-5.00	0.13	0.18	0.12	0.18	0.068	0.071	0.1	0.15
> 5.00	0.0043	0.0022	0.0011	0.0036	0.0001	0.0064	0.0002	0.0028

Table 59. Affected areas in Corella, Bohol during a 100-year rainfall return period

Figure 93. Affected areas in Corella, Bohol during a 100-year rainfall return period

For the Municipality of Cortes, with an area of 33.24 square kilometers, 70.72% will experience flood levels of less than 0.20 meters. 4.57% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.5%, 4.83%, 6.15%, and 1.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 60 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area		Area	a of affected	d barangays	in Cortes (in s	q. km.)	
(sq. km.) by flood depth (in m.)	De La Paz	Fatima	Loreto	Lourdes	Malayo Norte	Malayo Sur	Monserrat
0.03-0.20	1.26	4.2	2.27	3.2	1.25	1.63	1.68
0.21-0.50	0.25	0.22	0.088	0.15	0.046	0.065	0.076
0.51-1.00	0.22	0.19	0.061	0.12	0.03	0.055	0.068
1.01-2.00	0.054	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.032	0.13	0.63	0.12	0.26	0.056	0.036
> 5.00	0.0049	0.0019	0.14	0.0085	0.041	0.0035	0.00011

Affected area		Area	of affected b	arangays in	Cortes (in sq.	km.)	
(sq. km.) by flood depth (in m.)	New Lourdes	Patrocinio	Poblacion	Rosario	Salvador	San Roque	Upper de la Paz
0.03-0.20	2.46	0.69	0.61	0.91	0.81	1.54	0.98
0.21-0.50	0.075	0.035	0.029	0.056	0.031	0.035	0.36
0.51-1.00	0.081	0.018	0.042	0.066	0.055	0.035	0.46
1.01-2.00	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831	0.09831
2.01-5.00	0.16	0.042	0.12	0.27	0.11	0.05	0.029
> 5.00	0.056	0.007	0.024	0.053	0.04	0.0012	0.0004

Figure 94. Affected areas in Cortes, Bohol during a 100-year rainfall return period

For the Municipality of Maribojoc, with an area of 55.2 square kilometers, 51.11% will experience flood levels of less than 0.20 meters. 3.54% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 4.12%, 3.72%, 3.12%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 61 are the affected areas, in square kilometers, by flood depth per barangay.

Ą
peric
return
rainfall
)-year
S
Ξ
с С
during
7
Boh
Maribojoc,
areas i
Affected
Table 61.

Affected area (sq.			Area (of affected bar	angays in N	laribojoc (in	sq. km.)		
km.) by flood depth (in m.)	Agahay	Aliguay	Anislag	Bayacabac	Busao	Cabawan	Candavid	Dipatlong	Jandig
0.03-0.20	1.1	1.72	0.43	1.74	1.48	2.81	1.65	0.02	1.21
0.21-0.50	0.077	0.13	0.04	0.12	0.093	0.22	0.028	0.00017	0.059
0.51-1.00	0.067	0.079	0.21	0.083	0.08	0.26	0.02	0.0003	0.037
1.01-2.00	0.069	0.11	0.081	0.079	0.11	0.42	0.027	0	0.03
2.01-5.00	0.39	0.014	0.0048	0.13	0.27	0.37	0.053	0	0.018
> 5.00	0.019	0	0	0.0046	0.022	0.029	0.013	0	0.0001

Affected area (sq.			Area of a	ffected baran	gays in Mar	ibojoc (in sq	l. km.)		
km.) by flood depth (in m.)	Lincod	Pagnitoan	Poblacion	posund	San Isidro	San Roque	San Vicente	Tinibgan	Toril
0.03-0.20	1	2.74	0.22	1.19	2.09	3.04	0.72	2.53	2.5
0.21-0.50	0.24	0.11	0.014	0.069	0.1	0.13	0.29	0.12	0.12
0.51-1.00	0.67	0.08	0.022	0.062	0.086	0.14	0.17	0.099	0.1
1.01-2.00	0.42	0.055	0.062	0.074	0.092	0.19	0.034	0.095	0.088
2.01-5.00	0.056	0.028	0.095	0.032	0.063	0.073	0.0067	0.062	0.042
> 5.00	0.0036	0.0071	0	0.0022	0.0022	0.0004	0	0.0013	0.0013

Figure 95. Affected areas in Maribojoc, Bohol during a 100-year rainfall return period

For the Municipality of San Isidro, with an area of 59.2 square kilometers, 0.83% will experience flood levels of less than 0.20 meters. 0.039% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.03%, 0.02%, 0.02%, and 0.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 62 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affected barangays in San Isidro (in sq. km.)			
depth (in m.)	Baunos			
0.03-0.20	0.49			
0.21-0.50	0.023			
0.51-1.00	0.018			
1.01-2.00	0.012			
2.01-5.00	0.012			
> 5.00	0.07			

Table 62. Affected areas in San Isidro, Bohol during a 100-year rainfall return period

Figure 96. Affected areas in San Isidro, Bohol during a 100-year rainfall return period

For the Municipality of Sikatuna, with an area of 41.77 square kilometers, 8.17% will experience flood levels of less than 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 0.47%, 0.33%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 63 are the affected areas, in square kilometers, by flood depth per barangay.

Affected			Area of a	ffected baranga	ays in Sikatur	na (in sq. km.)		
area (sq. km.) by flood depth (in m.)	Abucay Norte	Abucay Sur	Badiang	Bahaybahay	Cambuac Norte	Canagong	Poblacion I	Poblacion II
0.03-0.20	0.35	0.18	0.013	2.09	0.44	1.13	0.054	0.24
0.21-0.50	0.018	0.015	0.0011	0.11	0.021	0.07	0.0012	0.012
0.51-1.00	0.016	0.019	0.0016	0.13	0.0096	0.073	0.00058	0.011
1.01-2.00	0.0035	0.0027	0	0.1	0.0079	0.047	0	0.018
2.01-5.00	0	0	0	0.044	0.0001	0.039	0	0.0012
> 5.00	0	0	0	0	0	0	0	0

Table 63. Affected areas in Sikatuna, Bohol during a 100-year rainfall return period

Figure 97. Affected areas in Sikatuna, Bohol during a 100-year rainfall return period

For the City of Tagbilaran, with an area of 32.17 square kilometers, 47.59% will experience flood levels of less than 0.20 meters. 3.77% of the area will experience flood levels of 0.21 to 0.50 meters. Meanwhile, 2.66%, 2.4%, 1.08%, and 0.1% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 64 are the affected areas, in square kilometers, by flood depth per barangay.

Affected area	Area	of affected	barangays iı	n Tagbilaran	City (in sq.	km.)
(sq. km.) by flood depth (in m.)	Вооу	Cabawan	Cogon	Dampas	Dao	Manga
0.03-0.20	0.95	1.08	1.79	0.93	3.32	0.39
0.21-0.50	0.15	0.072	0.16	0.04	0.25	0.059
0.51-1.00	0.09	0.049	0.088	0.023	0.16	0.051
1.01-2.00	0.13	0.043	0.085	0.03	0.12	0.025
2.01-5.00	0.035	0.021	0.04	0.027	0.067	0.002
> 5.00	0	0.0014	0.0004	0.0023	0.005	0

Table 64. Affected areas in Tagbilaran, Bohol during a 100-year rainfall return period

Affected area	Area	of affected b	arangays in	Tagbilaran (City (in sq. k	.m.)
(sq. km.) by flood depth (in m.)	Poblacion II	Poblacion III	San Isidro	Taloto	Tiptip	Ubujan
0.03-0.20	0.2	0.0045	2.92	0.95	1.75	1.03
0.21-0.50	0.021	0.00023	0.13	0.12	0.098	0.12
0.51-1.00	0.0057	0.000001	0.095	0.13	0.075	0.094
1.01-2.00	0.0071	0	0.099	0.085	0.085	0.067
2.01-5.00	0.00018	0	0.095	0.0027	0.053	0.0043
> 5.00	0	0	0.022	0.0003	0.002	0

Figure 98. Affected areas in Tagbilaran, Bohol during a 100-year rainfall return period

Among the barangays in the Municipality of Albuquerque, Cantiguib is projected to have the highest percentage of area that will experience flood levels, at 1.14%. Meanwhile, Basacdacu posted the second highest percentage of area that may be affected by flood depths, at 0.35%.

Among the barangays in the Municipality of Antequera, Bantolinao is projected to have the highest percentage of area that will experience flood levels, at 6.39%. Meanwhile, Angilan posted the second highest percentage of area that may be affected by flood depths, at 6.16%.

Among the barangays in the Municipality of Baclayon, Tanday is projected to have the highest percentage of area that will experience flood levels, at 7.11%. Meanwhile, Buenaventura posted the second highest percentage of area that may be affected by flood depths, at 5.99%.

Among the barangays in the Municipality of Balilihan, Magsija is projected to have the highest percentage of area that will experience flood levels, at 5.92%. Meanwhile, Cantomimbo posted the second highest percentage of area that may be affected by flood depths, at 0.53%.

Among the barangays in the Municipality of Corella, Cancatac is projected to have the highest percentage of area that will experience flood levels, at 20.10%. Meanwhile, Tanday posted the second highest percentage of area that may be affected by flood depths, at 19.51%.

Among the barangays in the Municipality of Cortes, Fatima is projected to have the highest percentage of area that will experience flood levels, at 14.8%. Meanwhile, Lourdes posted the second highest percentage of area that may be affected by flood depths, at 11.22%.

Among the barangays in the Municipality of Maribojoc, Cabawan is projected to have the highest percentage of area that will experience flood levels, at 7.45%. Meanwhile, San Roque posted the second highest percentage of area that may be affected by flood depths, at 6.47%.

In the Municipality of San Isidro, Barangay Baunos is projected to experience flood levels at 1.05% of its area.

Among the barangays in the Municipality of Sikatuna, Bahaybahay is projected to have the highest percentage of area that will experience flood levels, at 5.92%. Meanwhile, Canagong posted the second highest percentage of area that may be affected by flood depths, at 3.25%.

Among the barangays in the City of Tagbilaran, Dao is projected to have the highest percentage of area that will experience flood levels, at 12.19%. Meanwhile, San Isidro posted the second highest percentage of area that may be affected by flood depths, at 10.45%.

The generated flood hazard maps for the Abatan floodplain were also used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for the flood hazard maps – "Low", "Medium", and "High" – the affected institutions were given an individual assessment for each flood hazard scenario (i.e., 5-year, 25-year, and 100-year).

Marning Lough	Area	a Covered in s	q. km.	
warning Level	5 year	25 year	100 year	
Low	10.83	12.01	12.32	
Medium	10.35	14.70	16.19	
High	3.80	9.63	13.33	
TOTAL	24.98	36.34	41.84	

Table 65. Area covered by each warning level, with respect to the rainfall scenario

Of the sixty-three (63) identified educational institutions in the Abatan floodplain, six (6) were assessed to be exposed to Low-level flooding during a 5-year scenario. Meanwhile, two (2) schools were assessed to be exposed to Medium-level flooding in the same scenario. In the 25-year scenario, ten (10) schools were found to be exposed to Low-level flooding, and five (5) to Medium-level flooding. In the 100-year scenario, eight (8) schools were discovered to be exposed to Low-level flooding; while another eight (8) were projected to experience Medium-level flooding. See Annex 12 for a detailed enumeration of the schools in the Abatan floodplain.

None of the five (5) identified medical institutions in the Abatan floodplain was assessed to be exposed to any level of flooding in all scenarios. See Annex 13 for a detailed enumeration of the hospitals and clinics in the Abatan floodplain.

5.11 Flood Validation

A survey was conducted along the floodplain of the Abatan River to validate the generated flood maps. The team gathered secondary data regarding flood occurrences in the area. Ground validation points were acquired, as well as other necessary details, including the dates of occurrences, names of typhoons, and actual flood depths.

During the validation process, the team was assisted by the local Disaster Risk Reduction and Management (DRRM) representatives from the Municipalities of Antequera, Cortes and Maribojoc. Residents along the floodplain were interviewed on the historical flood events they have experienced.

Actual flood depths acquired from the ground validation survey were then computed and compared with the flood depths simulated by the model. An RMSE value of 1.32 meters was obtained. The points in the flood map versus the corresponding validation depths are illustrated in Figure 100. Table 66 provides a contingency matrix of the comparison. The validation points are found in Annex 11.

Figure 99. Validation points for a 5-year flood depth map of the Abatan floodplain

Figure 100. Flood map depth vs. actual flood depth

				Modele	d Flood Dep	th (m)		
	AIAN DASIN	0-0.20	D.20 0.21-0.50 0.51-1.00 1.01-2.00 2.01-5.00 > 5.00					
m)	0-0.20	6	2	0	0	1	0	9
th (0.21-0.50	6	3	0	0	1	0	10
Dep	0.51-1.00	1	1	2	2	5	0	11
po	1.01-2.00	0	0	0	8	8	0	16
F	2.01-5.00	2	0	0	1	9	0	12
iual	> 5.00	0	0	0	0	0	0	0
Act	Total	15	6	2	11	24	0	58

Table 66. Actual flood depth vs. simulated flood depth in the Abatan River Basin

The overall accuracy generated by the flood model is estimated at 48.28%, with twenty-eight (28) points correctly matching the actual flood depths. Additionally, there were nineteen (19) points estimated one (1) level above and below the correct flood depths. Meanwhile, there were six (6) points and four (4) points estimated two (2) levels above and below, and three (3) or more levels above and below the correct flood depths, respectively. A total of four (4) points were overestimated, while a total of eleven (11) points were underestimated in the modeled flood depths of Abatan.

Table 67. Summary of Accuracy Assessment in the Abatan River Basin Survey

No. of Points		%
Correct	28	48.28
Overestimated	19	32.76
Underestimated	11	18.97
Total	58	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Abatan Floodplain Survey

Figure A-1.1. Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)

Table A-1.1. Technical specification	ons of the Pegasus sensor
--------------------------------------	---------------------------

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

- 1 Target reflectivity ≥20%
- 2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility
- 3 Angle of incidence ≤20°
- 4 Target size ≥ laser footprint
- 5 Dependent on system configuration

Table A-1.2. Technical specifications of the D-8900 Aerial Digital Camera

Parameter	Specification
	Camera Head
Sensor type	60 Mpix full frame CCD, RGB
Sensor format (H x V)	8, 984 x 6, 732 pixels
Pixel size	6μm x 6 μm
Frame rate	1 frame/2 sec.
FMC	Electro-mechanical, driven by piezo technology (patented)
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16
Lenses	50 mm/70 mm/120 mm/210 mm
Filter	Color and near-infrared removable filters
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)
Weight	~4.5 kg (70 mm lens)
	Controller Unit
	Mini-ITX RoHS-compliant small-form-factor embedded
Computer	computers with AMD TurionTM 64 X2 CPU
	4 GB RAM, 4 GB flash disk local storage
	IEEE 1394 Firewire interface
Removable storage unit	~500 GB solid state drives, 8,000 images
Power consumption	~8 A, 168 W
Dimensions	2U full rack; 88 x 448 x 493 mm
Weight	~15 kg
Imag	e Pre-Processing Software
Capture One	Radiometric control and format conversion, TIFF or JPEG
	8,984 x 6,732 pixels
Image output	8 or 16 bits per channel (180 MB or 360 MB per image)

Annex 2. NAMRIA Certification of Reference Points used in the LiDAR Survey

1. BHL-58

		November 19, 2012
	CERTIFICATION	November 15, 2013
whom it may concern:		
This is to certify that accord	ding to the records on file in this office, the	requested survey information is as follows -
· · · · · · · · · · · · · · · · · · ·	Province: BOHO	
	Station Name: BHt -58	
	Order: 2nd	
Island: VISAYAS Municipality: INABANGA		Barangay: TUNGOD
	PRS92 Coordinates	
Latitude: 10° 2' 12.58586"	Longitude: 124° 3' 14.58015"	Ellipsoidal Hgt: 3.13800 m.
	WGS84 Coordinates	
Latitude: 10° 2' 8.54469"	Longitude: 124º 3' 19.85079"	Ellipsoidal Hgt: 65.89700 m.
	PTM Coordinates	
Northing: 1109952.503 m.	Easting: 396297.833 m.	Zone: 5
	UTM Coordinates	
Northing: 1,109,600.04	Easting: 615.513.67	20042412 (200424)
		Zone: 51
-1L-58	Location Description	Zone: 51
HL-58 b reach the station go directly is e pier's shed second at the left o concrete pavement at the piet th a concrete cement putty 30 scriptions, BHL-58, 2007, NAN e fip pier (left side) about the equesting Party: UP-TCAGP upose: Reference R Number: 3947235 B N.: 2013-1257	Location Description to the Mun. front road turn right about 100 ft you will find the station. Mark is the head er of Brgy. Tongod about 1.1 Km. from Inal orm x 30 cm x 5 cm centered on the triang MRIA". Ref. no. 1 Is shed house opposite the 15 m N. P/DOST	Zone: 51 m thentum left and go N until your reach of a 3 in. copper nail set on a drilled hole banga Public Market. Nail is embedded le at the center of the putty with he station sbout 12 m NE; Ref. no. 2 Is RUEL DM. BELEN, MNSA
HL-58 D reach the station go directly is e pier's shed second at the lef to concrete pavement at the pier th a concrete cement putty 30 scriptions, BHL-58, 2007, NAA e tip pier (left side) about the equesting Party: UP-TCAGP ipose: Reference R Number: 3947235 B N.: 2013-1257	Location Description to the Mun. front road turn right about 100 ft you will find the station. Mark is the head er of Brgy. Tongod about 1.1 Km. from Inal (RRA". Ref. no. 1 Is shed house opposite the 15 m N. P/DOST	Zone: 51 m thenturn left and go N until your reach of a 3 in. copper nail set on a drilled hole banga Public Market. Nail is embedded le at the center of the putty with he station sbout 12 m NE; Ref. no. 2 Is RUFL DM. BELEN, MNSA cor Mepping And Geodesy Branch J.

Figure A-2.1. BHL-58

2. BHL-95

					N	lovember 19, 201
		CER	TIFICATION			
To whom it may a This is to cer	concern: tify that according to	the records on t	file in this office, the rea		/ in farms	-
		Dania				
		Provin Station N	Jame: BHL-95			
lolond: MICAN	46	Order	: 2nd	-		
Municipality: L	.ILA			Baranga	y: TIGU	IIS
		PRS	92 Coordinates			
Latitude: 9°:	35' 30.96174"	Longitude:	124° 4' 30.01696"	Ellipsoid	al Hgt:	19.23800 m.
		WGS	84 Coordinates			
Latitude: 9° :	35' 27.03717"	Longitude:	124° 4' 35.32705"	Ellipsoid	al Hgt:	83.04800 m.
		PTN	1 Coordinates			
Northing: 106	0736.963 m.	Easting:	398459.803 m.	Zone:	5	
Northing: 1,0	60,413.57	UTN Easting:	<i>l Coordinates</i> 617,967.70	Zone:	51	
		Locat	ion Description			
irom Loay Town lead of a 3 in. co loove ground leve Aolave Tree near Requesting Party: Pupose:	travel NE to Lila, Bo pper nail embedded el with inscritions, Br concrete post abou UP-TCAGP/DOS Reference	hol about 2.5 Kn on a concrete rr tL-95, 2007, NA t 25 m NW; Stat T	n. from Lila Proper on th tonument 30 cm x 30 cr MRIA". Ref. no. 1 Elect ion is about 60 m to the	ne left side of m x 1.20 cm s ric post about corner of Brg	the roac set to the t 30 m S ty. Tigui	d. Mark is the e ground 0.20 cm W; Ref. no. 2 s on the NE.
R Number: ∵N.:	3947235 B 2013-1274		R Director	UEL DM. BE Mapping An	LEN, MI d Geode	NSA esy Branch <i>fr</i> -
				7 1 9 2 0 1	3 7 1	

Figure A-2.2. BHL-95

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. BHL-01

Table A-3.1. BHL-01

BHL-1 - B	H-503 (8:24:33 AM-2:09:37 PM) (S2)
Baseline observation:	BHL-1 BH-503 (B2)
Processed:	8/21/2014 10:31:44 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.018 m
RMS:	0.004 m
Maximum PDOP:	2.547
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	8/20/2014 8:24:40 AM (Local: UTC+8hr)
Processing stop time:	8/20/2014 2:09:37 PM (Local: UTC+8hr)
Processing duration:	05:44:57
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	BHI	L-1							
	Grid			Lo	cal			Glo	bal
Easting		593593.389 m	Latit	obu	N9°36'2	6.39544*	Latitude		N9°36'22.44746*
Northing		1062047.763 m	Long	gitude	E123°51'1	0.60199*	Longitude		E123°51'15.91243*
Elevation		184.055 m	Heig	iht	18	¥.337 m	Height		247.564 m
To:	BH-	503							
	Grid			Lo	cal			Glo	bal
Easting		589439.266 m	Latit	obu	N9°34'5	3.54895*	Latitude		N9°34'49.60419*
Northing		1059186.111 m	Long	gitude	E123°48'5	4.10112*	Longitude		E123°48'59.41428*
Elevation		22.356 m	Hoig	iht	3	2.564 m	Height		85.755 m
Vector									
∆Easting		-4154.12	23 m	NS Fwd Azimuth			235°34'49*	ΔX	3281.488 m
∆Northing		-2861.65	š1 m	Ellipsoid Dist.			5045.877 m	ΔY	2579.949 m
∆Elevation		-161.69	99 m	∆Height			-161.773 m	ΔZ	-2839.633 m

2. BHL-3067

Table	A-3.2.	BHL	-3067
-------	--------	-----	-------

Baseline observation:		BHL	-3067 BHL-58 (B4)				
Processed:		1/4/	2017 1:09:49 PM				
Solution type:		Fixe	d				
Frequency used:		Dua	Frequency (L1, L2)				
Horizontal precision:		0.00)2 m				
Vertical precision:		0.00)3 m				
RMS:		0.00)1 m				
Maximum PDOP:		1.80	8				
Ephemeris used:		Brox	adcast				
Antenna model:		Trin	ble Relative				
Processing start time:	:	9/21	1/2015 6:56:43 AM (Lo	cal: UTC+8hr))		
Processing stop time:		9/21	/2015 10:33:07 AM (L	ocal: UTC+8h	r)		
Processing duration:		03:3	36:24				
Processing interval:		1 se	1 second				
Vector Components	s (Mark to Mark)						
Vector Components From:	s (Mark to Mark) BHL-58						
Vector Components From: G	s (Mark to Mark) BHL-58 irid	Lo	cal		Glo	bal	
Vector Components From: G Easting	s (Mark to Mark) BHL-58 irid 615513.667 m	Lo Latitude	cal N10°02'12.58586"	Latitude	Glo	bal N10°02'08.54469	
Vector Components From: G Easting Northing	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m	Lo Latitude Longitude	cal N10°02'12.58586" E124°03'14.58015"	Latitude Longitude	Glo	bal N10°02'08.54469 E124°03'19.85079	
Vector Components From: G Easting Northing Elevation	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m	Lo Latitude Longitude Height	cal N10°02"12.58586" E124°03"14.58015" 3.137 m	Latitude Longitude Height	Glo	bal N10°02'08.54469' E124°03'19.85079' 65.897 m	
Vector Components From: G Easting Northing Elevation To:	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067	Lo Latitude Longitude Height	cal N10°02'12.58586" E124°03'14.58015" 3.137 m	Latitude Longitude Height	Glo	bal N10°02'08.54469' E124°03'19.85079 65.897 m	
Vector Components From: G Easting Northing Elevation To: G	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid	Lo Latitude Longitude Height Lo	cal N10°02"12.58586" E124°03"14.58015" 3.137 m cal	Latitude Longitude Height	Gio	bal N10°02'08.54469 E124°03'19.85079 65.897 m	
Vector Components From: G Easting Northing Elevation To: G Easting	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m	Lo Latitude Longitude Height Lo Latitude	cal N10°02°12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434"	Latitude Longitude Height Latitude	Gio	bal N10°02'08.54469' E124°03'19.85079' 65.897 m bal N10°03'06.42941'	
Vector Components From: G Easting Northing Elevation To: G Easting Northing	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m 1111379.617 m	Lo Latitude Longitude Height Lo Latitude Longitude	cal N10°02'12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434" E124°03'30.07070"	Latitude Longitude Height Latitude Longitude	Gia	bal N10°02'08.54469 E124°03'19.85079 65.897 m bal N10°03'06.42941' E124°03'35.33988'	
Vector Components From: Easting Northing Elevation To: G Easting Northing Elevation	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m 1111379.617 m 2.638 m	Lo Latitude Longitude Height Lo Latitude Longitude Height	cal N10°02°12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434" E124°03'30.07070" 3.679 m	Latitude Longitude Height Latitude Longitude Height	Gio	bal N10°02'08.54469 E124°03'19.85079 65.897 n bal N10°03'06.42941 E124°03'35.33988 66.412 n	
Vector Components From: G Easting Northing Elevation To: G Easting Northing Elevation Vector	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m 1111379.617 m 2.638 m	Lo Latitude Longitude Height Lo Latitude Longitude Height	cal N10°02'12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434" E124°03'30.07070" 3.679 m	Latitude Longitude Height Latitude Longitude Height	Gio	bal N10°02'08.54469 E124°03'19.85079 65.897 n bal N10°03'06.42941 E124°03'35.33988 66.412 n	
Vector Components From: G Easting Northing Elevation To: G Easting Northing Elevation Vector ΔEasting	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m 1111379.617 m 2.638 m 465.88	Latitude Longitude Height Longitude Longitude Longitude Height	cal N10°02°12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434" E124°03'30.07070" 3.679 m	Latitude Longitude Height Latitude Longitude Height	Gio Gio	bal N10°02'08.54469 E124°03'19.85079 65.897 n bal N10°03'06.42941 E124°03'35.33988 66.412 n -217.345 n	
Vector Components From: G Easting Northing Elevation To: G Easting Northing Elevation Vector ΔEasting ΔNorthing	s (Mark to Mark) BHL-58 irid 615513.667 m 1109600.042 m 2.109 m BHL-3067 irid 615979.548 m 1111379.617 m 2.638 m 465.88 1779.57	Latitude Longitude Height Los Latitude Longitude Height Height NS Fwd Azimuth 6 m Ellipsoid Dist.	cal N10°02'12.58586" E124°03'14.58015" 3.137 m cal N10°03'10.47434" E124°03'30.07070" 3.679 m	Latitude Longitude Height Latitude Longitude Height 14°51'15" 1839.978 m	Gic Gic ΔX ΔY	bal N10°02'08.54469' E124°03'19.85079' 65.897 m bal N10°03'06.42941' E124°03'35.33988' 66.412 m -217.345 m -520.694 m	

3. BMBH-280

Baseline observe	ation:	BHL-95 BH-280 (B1)	
Processed:		9/7/2014 6:40:17 PM	
Solution type:		Fixed	
Frequency used:	:	Dual Frequency (L1, L2)	
Horizontal precis	ion:	0.015 m	
Vertical precision	1:	0.022 m	
RMS:		0.005 m	
Maximum PDOP	ŧ	4.342	
Ephemeris used:	:	Broadcast	
Antenna model:		NGS Absolute	
Processing start	timo:	8/24/2014 8:49:03 AM (Lo	cal: UTC+8hr)
Processing stop	time:	8/24/2014 11:10:14 AM (L	.ocal: UTC+8hr)
Processing durat	tion:	02:21:11	
Processing interv	val:	1 second	
Vector Compo	nents (Mark to Mark)		
From:	BHL-95		
	Grid	Local	Global

Table A-3.3. BMBH-280

From:	BHL	95	95						
Grid				Local			Global		
Easting		617967.834 m	Latit	udo	N9°35'30	0.95701*	Latitude		N9°35'27.03243*
Northing		1060413.425 m	Long	jitude	E124°04'30	0.02141*	Longitude		E124°04'35.33150*
Elevation		19.099 m	Heig	ht	18.988 m		Height		82.798 m
To:	BH-	280							
Grid			Local			Global			
Easting		615059.442 m	Latit	udo	N9°35'33.32448"		Latitude		N9*35*29.39739*
Northing		1060477.159 m	Longitude		E124°02'54.62703*		Longitude		E124°02'59.93729*
Elevation		3.917 m	ht	3.860 m Height			67.604 m		
Vector									
∆Easting		-2908.39	1 m	NS Fwd Azimuth			271°26'04*	ΔX	2424.929 m
ΔNorthing		63.73	14 m	Ellipsoid Dist.			2909.765 m	ΔY	1606.833 m
∆Elevation		-15.18	2 m .	ΔHeight			-15.127 m	ΔZ	69.114 m

4. BMBH-503

Table A-3.4. BMBH-503

Baseline observation:	BHL-1 BH-503 (B2)
Processed:	8/21/2014 10:31:44 AM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.004 m
Vertical precision:	0.018 m
RMS:	0.004 m
Maximum PDOP:	2.547
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	8/20/2014 8:24:40 AM (Local: UTC+8hr)
Processing stop time:	8/20/2014 2:09:37 PM (Local: UTC+8hr)
Processing duration:	05:44:57
Processing interval:	1 second

Vector Components (Mark to Mark)

From:	BH	HL-1								
Grid				Local			Global			
Easting		593593.389 m	Latit	udo	N9°36'26	.39544*	Latitude		N9°36'22.44746*	
Northing		1062047.763 m	Long	gitude	E123°51'10	.60199*	Longitude		E123°51'15.91243*	
Elevation		184.055 m	Hoig	ht	184	4.337 m	Height		247.564 m	
To: BH-503 Grid				Lo	cal			Glo	bal	
Easting		589439.266 m	Latit	ude	N9°34'53	.54895*	Latitude		N9*34'49.60419*	
Northing		1059186.111 m	1 m Longitude		E123°48'54.10112		Longitude		E123°48'59.41428*	
Elevation		22.356 m	Height		22.564 m		n Height		85.755 m	
Vector										
∆Easting		-4154.12	3 m	NS Fwd Azimuth			235*34'49*	ΔX	3281.488 m	
ΔNorthing		-2861.65	1 m	Ellipsoid Dist.			5045.877 m	ΔY	2579.949 m	
									1	

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI S. SARMIENTO	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
LiDAR Operation	Senior Science Research Specialist (SSRS)	LOVELY GRACIA ACUNA	UP-TCAGP
LiDAR Operation	Senior Science Research Specialist (SSRS)	GEROME HIPOLITO	UP-TCAGP
LiDAR Operation	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
	Research Associate (RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
LiDAR Operation	RA	ENGR. GRACE SINADJAN	UP-TCAGP
	RA	KRISTINE JOY ANDAYA	UP-TCAGP
Ground Survey	RA	KENNETH QUISADO	
Ground Survey	RA	MA. KATRINA RANESES	
LiDAR Operation	Airborne Security	SSG. ANTONIO VALENCIANO	PILIPPINE AIR FORCE (PAF)
LiDAR Operation	Airborne Security	SSG. MIKE BERONILLA	PILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. SHERWIN CESAR ALFONSO	ASIAN AEROSPACE CORPORATION (AAC)
LiDAR Operation	Pilot	CAPT. FERDINAND DE OCAMPO	AAC
LiDAR Operation	Pilot	CAPT. RANDY LAGCO	AAC

		<u> </u>	-	<u> </u>	
Table A-4.1.	LIDAR	Survey	leam	Composit	nor

Chronic Inductor Concritement anti- concritement Concritement	1	ž	TION	A BY	VH X	Val.	A N	N N N		-
Original Structure (1) Original (1) <thoriginal (1) Original (1) Orig</thoriginal 		1	LOCA	Z DWD	TADMO	WDM1	2.0MC	Z-SDM(
Cold models and anteronelipocol media Colspan="6">Colspan="6">Colspan="6">Colspan="6" Colspan="6">Colspan="6" Colspan="6">Colspan="6" Colspan="6" Colspan="6">Colspan="6" Colsp		NIL	KML	2	W	NA	¥.	ž		
Out of the set of th		FLIGHT	Actual	202	30	154	104	873		
OK Martine Mar		OPENATOR	1001100	103	1000	1KB	1×B	103		
OUTRY TRANSFERE RITET OUTRY TRANSFERE RITET OR MAILES		11 IVO	Dese feb	8	29			8		
OK MAXING		TATS STATI	RASE ATTOMOTO	10.8 19	72.7	4.48	11.8	10.9	±.	
Contract monomerer a fatter accontraction of the second of the se		۲	ATTURN ST	ź	12	W	X	ž	111	
Contract reports rate in a contract reports rate in a contract report rate in a contract rate in a contrate rate in a contract rate in a contract rate in a c		F	a suese	16.3	196.7	11.6	325	21.9	Real Property in	
AVIA AVIA AVIA OR MANI LAS MANI LAS MANI LAS MANI LAS MANI LAS 0 Value MANI LAS MANI LAS MANI LAS MANI LAS MANI LAS 0 Value MANI LAS MANI LAS MANI LAS MANI LAS MANI LAS 0 Value 1435 5.34 903 253 256 441 0 2165 2.80 7.21 2.94 26.6 441 0 2165 2.80 7.21 2.94 26.6 461 4 2165 2.80 7.21 2.94 26.6 461 Monteved by Monteved 7.21 2.94 26.6 26.6 Monteved 7.21 2.94 26.6 26.6 26.6 Monteved 7.21 2.94 26.6 26.6 26.6 Monteved 2.94 2.94 26.6 26.6 26.6 26.6 26.6 26.6 26.6	CL medy)	No. of Concession, Name	FLEGARI	196	2014	81	325	201	HONP I	
RAWILLS <t< td=""><td>DATA TRANSF CONZO14[BOH</td><td>ľ</td><td>NACHORNAL IN</td><td>25</td><td>52.6</td><td>16.3</td><td>1.44</td><td>26.9</td><th>Received by Name Postan Bigneture</th><td></td></t<>	DATA TRANSF CONZO14[BOH	ľ	NACHORNAL IN	25	52.6	16.3	1.44	26.9	Received by Name Postan Bigneture	
RAWING RAWING RAWING 01 01 135 5.34 01 145 1.45 5.34 01 21 1.35 5.34 01 24 1.13 5.84 01 24 1.13 5.84 01 2.13 2.65 1.13 01 2.13 2.63 1.14 01 2.13 2.63 1.13 01 2.13 2.63 1.13 01 2.13 2.63 1.14 01 2.13 2.63 1.13 01 2.14 2.14 1.14	8		SO	8	222	145	58	304		
OR ONHALLS PARTING CANADIA			(BM)SDOT	8.8	808	2.60		191		
08 Oorpustud 928 318 318 318 318 318 318 318 318 318 31			ti i	1.95	100	118	-	250	Multo	
5		10000	Curper LAS	145		100		205	make	
Anger Anger			SENSOR	and a state of the		-	monta	Pugasors	SEL.	

Figure A-5.1. Data Transfer Sheet for Abatan Floodplain – A

Annex 5. Data Transfer Sheets for the Abatan Floodplain Flights

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for 1867P Mission

craft Identification: R-002		otal Flight Time:	M / Panglato	be a tor S IN THET K N
1206H 6 Air		18.Tc	Buk st	C robit
S Aircraft Type: Cesnna	(Airport, City/Province):	17 Landing:) completed	mand Anna II A Conse H
M256A 4Type: VFR	12 Airport of Arrival	16 Take off:	flying height mall islands	Pilotin-Com Filotin-Com
3 Mission Name: 1845	(Airport, City/Province):	15 Total Engine Time: 3 + P	d 2 other 5	isition Flight Certified by
2 ALTM Model: Per	12 Airport of Departure	33H	ssion success Island an	Vecon S Signa
R OPERATOR G. S.M. BUD. PI	+ lan be tonent	425 # 14 Engi	Mr. Mr.	Acquisition Flight Approved by Read that the second standing the second

Figure A-6.1. Flight Log for Mission 1867P

2. Flight Log for 1871P Mission

Flight Log No.: 3 445	es nnaT206H 6 Aircraft I dentification: 722	52 H 18 Total Flight Time: 1+55	of BLK ST gaps;		or Aircraft Mechanic/ LIDAR Technician
APD2512264A	4 Type: VFR 5 Aircraft Type: C BIL-ARAN TAB.BUARAN TAB.BUARAN Ince): 12 Airport of Arrival (Airport, Gty/Provin TAB.BLARAN)	Time: 16 Take off: 17 Landing: 050	21. Remarks Survey co Stem Maintenance Alaintenance R Admin Activities		Pilot-in-Command Mondo II C. Allonco III C. Allonco III Signature over Printed Name
ight Log	A 2ALTM Model: 9 3 Mission Name 3 Co-Pilot: R. (Ages 9 Route: This 12 Airport of Beparture (Airport, City/Provi 15 This Bluf RAD	14 Engine Off: 15 Total Engine 24 C 3 Periptith on towards End	20.b Non Billable 20.c Others O Aircraft Test Flight 0 LiDARSy: O AAC Admin Flight 0 Aircraft N O Others: 0 Phil-LIDA		Acquisition Flight Certified by U Booth I Signature over Printed Name (PAF Representative)
HIL-LIDAR 1 Data Acquisition Fi	1 LIDAR OPERATOR: AND CULO 7 Pilot: C. ALGANNO III & 10 Date: Sup 1 20 20	L3 Engine On! DG 58 H 19 Weather	0 Flight Classification 0.a Billable & Acquisition Flight O Ferty Flight O System Test Flight O Calibration Flight	2 Problems and Solutions Weather Problem O System Problem O Altcaft Problem O Pilot Problem O Others	Acquisitidn Filght Approved by

Annex 7. Flight Status Reports

Table A-7.1. Flight Status Report

FLIGHT STATUS REPORT

BOHOL

August 22-23, 2014; September 21, 2015

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1867P	BLK51M	1BLK51M234A	G.SINADJAN	AUG 22, 2014	Mission successful at 1000m flying height; completed BLK 51M/Panglao island and 2 other small islands.
1871P	BLK51H	1BLK51H235A	I. ROXAS	AUG 23, 2014	Completed BLK51H
3445P	BLK 51LKS	1BLK51S264A	KJ ANDAYA	SEPT 21, 2015	TOO CLOUDY; TRANSFERRED FROM IPIL TO BLK 51 GAPS; FAST CLOUD BUILD UP

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

Flight No.:	1867P
Area:	BLK51M
Mission Name:	1BLK51M234A
Parameters:	Altitude: 1000-1200m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.1. Swath for Flight No. 1867P

Flight No.:	1871P
Area:	BLK51H
Mission Name:	1BLK51H235A
Parameters:	Altitude: 1000-1200m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.2. Swath for Flight No. 1871P

Flight No. :	3445P
Area:	BLK 51LKS
Mission Name:	1BLK51S264A
Parameters:	Altitude: 1000-1200m; Scan Frequency: 30; Scan Angle: 50

Figure A-7.3. Swath for Flight No. 3445P

Annex 8. Mission Summary Reports

Flight Area	Bohol
Mission Name	Blk51H
Inclusive Flights	1871P
Range data size	36.7 GB
POS	222 MB
Base Data	7.77 MB
Image	52.8 GB
Transfer date	September 12. 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.590
RMSE for East Position (<4.0 cm)	2.25
RMSE for Down Position (<8.0 cm)	3.71
Boresight correction stdev (<0.001deg)	0.000267
IMU attitude correction stdev (<0.001deg)	0.000527
GPS position stdev (<0.01m)	0.0011
Minimum % overlap (>25)	59.98
Ave point cloud density per sq.m. (>2.0)	4.84
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	324
Maximum Height	538.15 m
Minimum Height	63.15 m
Classification (# of points)	
Ground	25,839,666
Low vegetation	17,001,662
Medium vegetation	34,290,998
High vegetation	60,423,197
Building	1,084,475
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Irish Cortez, Jovy Narisma

Table A-8.1. Mission Summary Report for Mission Blk51H

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimate Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density Map of merged LiDAR data

Figure A-8.7. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk51M
Inclusive Flights	1867P
Range data size	16.3 GB
POS	188 MB
Base Data	10.8 MB
Image	25 GB
Transfer date	September 12, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.756
RMSE for East Position (<4.0 cm)	3.972
RMSE for Down Position (<8.0 cm)	8.301
Boresight correction stdev (<0.001deg)	0.000223
IMU attitude correction stdev (<0.001deg)	0.008086
GPS position stdev (<0.01m)	0.0119
Minimum % overlap (>25)	36.83
Ave point cloud density per sq.m. (>2.0)	2.77
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	204
Maximum Height	233.24 m
Minimum Height	59.91 m
Classification (# of points)	
Ground	24,791,046
Low vegetation	19,274,610
Medium vegetation	16,194,353
High vegetation	10,284,370
Building	1,684,486
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Christy Lubiano, Engr. Jeffrey Delica

Table A-8.2. Mission Summary Report for Mission Blk51M

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimate Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density Map of merged LiDAR data

Figure A-8.14. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk1H
Inclusive Flights	747P
Range data size	27.2 GB
POS data size	276 MB
Base data size	11.3 MB
Image	NA
Transfer date	December 13, 2013
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.35
RMSE for East Position (<4.0 cm)	2.4
RMSE for Down Position (<8.0 cm)	3.3
Boresight correction stdev (<0.001deg)	0.000481
IMU attitude correction stdev (<0.001deg)	0.001115
GPS position stdev (<0.01m)	0.0071
Minimum % overlap (>25)	37.27
Ave point cloud density per sq.m. (>2.0)	5.90
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	215
Maximum Height	434.43
Minimum Height	54.14
Classification (# of points)	
Ground	391,336,137
Low vegetation	284,571,114
Medium vegetation	828,196,522
High vegetation	879,621,680
Building	14,914,950
Orthophoto	None
Processed by	Engr. Kenneth Solidum, Emmanuel Ricohermoso III, Engr. Elainne Lopez, Engr. Jeffrey Delica

Table A-8.3. Mission Summary Report for Mission Blk1H

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR Data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Abatan
Mission Name	Blk1H_supplement
Inclusive Flights	759P
Range data size	16.5 GB
POS data size	181 MB
Base data size	10.9 MB
Image	NA
Transfer date	December 13, 2013
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	2.4
RMSE for Down Position (<8.0 cm)	3.4
Boresight correction stdev (<0.001deg)	0.000965
IMU attitude correction stdev (<0.001deg)	0.014568
GPS position stdev (<0.01m)	0.0121
Minimum % overlap (>25)	0.05
Ave point cloud density per sq.m. (>2.0)	2.64
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	212
Maximum Height	504.67
Minimum Height	56.28
Classification (# of points)	
Ground	89,158,937
Low vegetation	41,342,087
Medium vegetation	123,594,175
High vegetation	136,316,023
Building	1,983,500
Orthophoto	None
Processed by	Engr. Jeffrey Delica, Engr. Melanie Hingpit, Engr. Benjamin Jonah Magallon

Table A-8.4. Mission Summary Report for Mission Blk1H_supplement

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR Data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Flight Area	Bohol
Mission Name	Blk1H_additional
Inclusive Flights	3445P
Range data size	5.95 GB
POS	124 MB
Base Data	9.84 MB
Image	NA
Transfer date	September 12, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.959
RMSE for East Position (<4.0 cm)	1.06
RMSE for Down Position (<8.0 cm)	1.585
Boresight correction stdev (<0.001deg)	0.000581
IMU attitude correction stdev (<0.001deg)	0.000368
GPS position stdev (<0.01m)	0.0014
Minimum % overlap (>25)	6.23
Ave point cloud density per sq.m. (>2.0)	3.43
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	96
Maximum Height	419.59 m
Minimum Height	181.70 m
Classification (# of points)	
Ground	3,458,277
Low vegetation	204,679
Medium vegetation	5,076,855
High vegetation	14,707,777
Building	213,655
Orthophoto	No
Processed by	Kathryn Claudyn Zarate, Engr. Antonio Chua Jr. Engr. Kenneth Solidum

Table A-8.5. Mission Summary Report for Mission Blk1H_additional

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimate Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density Map of merged LiDAR data

Figure A-8.35. Elevation Difference Between flight lines

Flight Area	Bohol
Mission Name	Blk1G
Inclusive Flights	757P
Range data size	20.8 GB
POS data size	196 MB
Base data size	14 MB
Image	NA
Transfer date	December 3, 2013
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	4.4
Boresight correction stdev (<0.001deg)	0.000555
IMU attitude correction stdev (<0.001deg)	0.067305
GPS position stdev (<0.01m)	0.0023
Minimum % overlap (>25)	51.27
Ave point cloud density per sq.m. (>2.0)	4.64
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	210
Maximum Height	479.71
Minimum Height	63.37
Classification (# of points)	
Ground	174,963,090
Low vegetation	137,982,440
Medium vegetation	301,806,257
High vegetation	288,379,405
Building	5,638,748
Orthophoto	None
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, Simonette Lat

Table A-8.6. Mission Summary Report for Mission Blk1G

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metric Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR Data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines

Flight Area	Bohol
Mission Name	Blk1G_supplement
Inclusive Flights	795P
Range data size	16.5 GB
POS data size	181 MB
Base data size	10.9 MB
Image	NA
Transfer date	December 3, 2013
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	2.3
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.002957
IMU attitude correction stdev (<0.001deg)	0.124985
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	4.97
Ave point cloud density per sq.m. (>2.0)	5.55
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	72
Maximum Height	381.44 m
Minimum Height	376.64 m.
Classification (# of points)	
Ground	22,217,677
Low vegetation	15, 308, 214
Medium vegetation	39,848,009
High vegetation	46,779,326
Building	906,498
Orthophoto	No
Processed by	Engr. Mary Celine Vasquez, Engr. Melanie Hingpit, Engr. Jennifer Saguran

Table A-8.7. Mission Summary Report for Mission Blk1G_supplement

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metric Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR Data

Figure A-8.47. Image of data overlap

Figure A-8.48. Density map of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Bohol
Mission Name	Blk1G_supplement2
Inclusive Flights	825P
Range data size	16.8 GB
POS data size	198 MB
Base data size	13.7 MB
Image	NA
Transfer date	December 11,2013
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	2.3
RMSE for Down Position (<8.0 cm)	5.1
Boresight correction stdev (<0.001deg)	0.000509
IMU attitude correction stdev (<0.001deg)	0.001423
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	57.31
Ave point cloud density per sq.m. (>2.0)	3.33
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	72
Maximum Height	398.17 m
Minimum Height	74.11 m
Classification (# of points)	
Ground	31,454,112
Low vegetation	20,073,082
Medium vegetation	56,308,942
High vegetation	70,114,927
Building	987,974
Orthophoto	
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Simonette Lat

Table A-8.8. Mission Summary Report for Mission Blk1G_supplement2

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metric Parameters

Figure A-8.52. Best Estimated Trajectory

Figure A-8.53. Coverage of LiDAR Data

Figure A-8.54. Image of data overlap

Figure A-8.55. Density map of merged LiDAR data

Figure A-8.56. Elevation difference between flight lines

Flight Area	Bohol
Mission Name	TAGBILARAN
Inclusive Flights	741P
Mission Name	1TGB315A
Range data size	14.5 GB
POS	220 MB
Image	NONE
Transfer date	December 3, 2013
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
BMSE for North Position (<4.0 cm)	0.8
BMSE for East Position (<4.0 cm)	1 15
RMSE for Down Position (<4.0 cm)	3.6
	5.0
Boresight correction stdey (<0.001deg)	0.000330
IMU attitude correction stdev (<0.001deg)	0.000704
GPS position stdev (<0.01m)	0.0066
Minimum % overlap (>25)	51.65%
Ave point cloud density per sq.m. (>2.0)	4.48
Elevation difference between strips (<0.20 m)	
Number of 1km x 1km blocks	129
Maximum Height	291.97 m
Minimum Height	49.56 m
Classification (# of points)	
Ground	66,433,404
Low vegetation	73,526,940
Medium vegetation	177,230,329
High vegetation	171,885,366
Building	17,999,815
Orthophoto	No
Processed by	Engr. Carlyn Ann Ibanez, Engr. Harmond Santos, Engr. Gladys Mae Apat

Table A-8.9. Mission Summary Report for Mission TAGBILARAN

Figure A-8.57. Solution Status

Figure A-8.58. Smoothed Performance Metric Parameters

Figure A-8.59. Best Estimated Trajectory

Figure A-8.60. Coverage of LiDAR Data

Figure A-8.61. Image of data overlap

Figure A-8.62. Density map of merged LiDAR data

Figure A-8.63. Elevation difference between flight lines

Annex 9. Abatan Model Basin Parameters

0.0667 0.0279 0.0995 0.0647 0.07 0.07 0.064 0.0631 0.098 0.07 0.0618 Ratio to Peak Threshold Type **Recession Baseflow** Recession Constant 0.25735 0.11909 0.38416 0.17778 0.26133 0.17778 0.17952 0.11911 0.17157 0.26387 0.4 0.0735072 0.0871803 0.0663871 Discharge 0.073445 0.13726 0.15816 0.14518 0.15307 0.22396 0.12393 0.14261 (m3/s) Initial Initial Type Discharge Coefficient Storage 5.5486 8.12288 4.6833 3.6969 3.1753 4.6763 3.3737 6060.9 2.0972 2.5875 2.516 (hr) **Clark Unit Hydrograph** Transform Concentration Time of 14.1941.6045 3.0075 2.0415 3.5629 11.127 3.0752 12.933 8.476 3.7208 1.0626 (hr) Impervious (%) 0 0 0 0 0 0 0 0 0 0 0 SCS Curve Number Loss 59.547345 56.316135 58.838055 44.524455 58.08723 72.52011 57.53556 55.58235 58.29171 60.24705 67.29522 Number Curve Abstraction 9.6224 8.3858 6.8525 9.2702 13.597 11.416 Initial 8.278 9.2681 8.8644 (mm) 7.891 8.951 Numbei W170 W200 W210 Basin W120 W130 W140 W150 W160 W180 W190 W220

Table A-9.1. Abatan Model Basin Parameters

Annex 10. Abatan Model Reach Parameters

Reach	Muskingum Cunge Channel Routing							
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Slope	
R110	Automatic Fixed Interval	2093.3	0.00001	0.0165953	Trapezoid	20	1	
R30	Automatic Fixed Interval	7287.1	0.003	0.0883741	Trapezoid	20	1	
R60	Automatic Fixed Interval	3229.1	0.0144	0.057996	Trapezoid	20	1	
R80	Automatic Fixed Interval	1612.7	0.0016	0.0595493	Trapezoid	20	1	
R90	Automatic Fixed Interval	6458.8	0.0167	0.0994014	Trapezoid	20	1	

Table A-10.1. Abatan Model Reach Parameters

Annex 11. Abatan Field Validation Points

Point	Validation (Coordinates	Model	Validation	- ()	Event /	Return Period
Number	Longitude	Latitude	Var (m)	Points (m)	Error (m)	Date	of Event
1	9.743176	123.923906	0.07	0.2	0.0169	Ruby	100-Year
2	9.742985	123.924023	1.83	2	0.0289	Seniang	100-Year
3	9.742961	123.92403	1.83	1.7	0.0169	Seniang	100-Year
4	9.743094	123.92385	0.27	0.2	0.0049	Yolanda	100-Year
5	9.742383	123.922811	2.05	1.7	0.1225	Seniang	100-Year
6	9.742709	123.922815	0.27	0.5	0.0529	Seniang	100-Year
7	9.742676	123.922729	1.86	2	0.0196	Seniang	100-Year
8	9.742614	123.922653	1.86	2.5	0.4096	Seniang	100-Year
9	9.74267	123.922688	1.86	1.8	0.0036	Ruby	100-Year
10	9.742745	123.922795	0.27	0.2	0.0049	Seniang	100-Year
11	9.742709	123.922802	0.27	0.3	0.0009	Seniang	100-Year
12	9.742191	123.924419	0.03	2.2	4.7089	Yolanda	100-Year
13	9.742215	123.924399	0.03	2.2	4.7089	Yolanda	100-Year
14	9.740878	123.914366	1.88	1.5	0.1444	Seniang	100-Year
15	9.740861	123.914355	1.88	1.2	0.4624	Yolanda	100-Year
16	9.740866	123.914361	1.88	0.9	0.9604	Yolanda	100-Year
17	9.740842	123.914318	2.36	2.5	0.0196	Yolanda	100-Year
18	9.740871	123.914232	3.06	3	0.0036	Yolanda	100-Year
19	9.741024	123.914276	2.64	2.2	0.1936	Seniang	100-Year
20	9.74108	123.914246	2.78	0	7.7284	Yolanda	100-Year
21	9.741596	123.915014	4.28	2.5	3.1684	Yolanda	100-Year
22	9.741632	123.915045	4.41	2.2	4.8841	Seniang	100-Year
23	9.741656	123.915033	4.41	1.9	6.3001	Seniang	100-Year
24	9.74133	123.91525	3.6	1.5	4.41	Seniang	100-Year
25	9.741323	123.915283	3.35	0.9	6.0025	Seniang	100-Year
26	9.741294	123.915333	3.35	0.7	7.0225	Seniang	100-Year
27	9.741073	123.914153	2.57	1.5	1.1449	Yolanda	100-Year
28	9.741103	123.914138	2.57	1.2	1.8769	Yolanda	100-Year
29	9.741045	123.914131	2.64	0.9	3.0276	Yolanda	100-Year
30	9.741082	123.914116	2.57	0.7	3.4969	Yolanda	100-Year
31	9.741056	123.914213	2.57	0.4	4.7089	Yolanda	100-Year
32	9.733563	123.89997	0.15	0	0.0225	Seniang	100-Year
33	9.721157	123.875892	0.04	0.4	0.1296	Seniang	100-Year
34	9.714653	123.874013	0.03	0.8	0.5929	Seniang	100-Year
35	9.714664	123.873939	0.03	0	0.0009	Yolanda	100-Year
36	9.743188	123.923902	0.07	0.5	0.1849	Yolanda	100-Year
37	9.741106	123.909542	0.03	0.2	0.0289	Seniang	100-Year
38	9.742039	123.912337	3.54	2.1	2.0736	Seniang	100-Year
39	9.742087	123.912939	4.02	3	1.0404	Seniang	100-Year
40	9.742346	123.912083	4.56	2.7	3.4596	Seniang	100-Year
41	9.743315	123.909573	3.74	2.1	2.6896	Seniang	100-Year
42	9.743637	123.910216	3.51	1.6	3.6481	Seniang	100-Year
43	9.743753	123.910298	3.62	0.8	7.9524	Seniang	100-Year
44	9.744101	123.910494	3.7	1.2	6.25	Seniang	100-Year
45	9.744239	123.912715	4.29	1.9	5.7121	Seniang	100-Year
46	9.744464	123.911620	1.01	0.7	0.0961	Seniang	100-Year

Table A-11.1. Abatan Field Validation Points

Point	Validation (Coordinates	Model	Validation		Event /	Return Period
Number	Longitude	Latitude	Var (m)	Points (m)	Error (m)	Date	of Event
47	9.744572	123.914902	0.03	0.5	0.2209	Seniang	100-Year
48	9.746652	123.902461	1.5	1.5	0	Seniang	100-Year
49	9.747242	123.901731	0.03	0.3	0.0729	Seniang	100-Year
50	9.747711	123.902454	1.33	1.1	0.0529	Seniang	100-Year
51	9.748032	123.902388	0.99	0.9	0.0081	Seniang	100-Year
52	9.749866	123.902688	0.05	0.3	0.0625	Seniang	100-Year
53	9.750049	123.903019	0.03	0.5	0.2209	Seniang	100-Year
54	9.750385	123.902981	0.19	0.2	0.0001	Seniang	100-Year
55	9.750713	123.903289	0.06	0.2	0.0196	Seniang	100-Year
56	9.752157	123.903110	0.39	0.5	0.0121	Seniang	100-Year
57	9.752449	123.902437	0.53	0.9	0.1369	Seniang	100-Year
58	9.753168	123.902235	0.24	0.7	0.2116	Seniang	100-Year

Annex 12. Educational Institutions Affected by Flooding in Abatan Floodplain

Table A-12.1. Educational Institutions Affected by Flooding in the Abatan Floodplain

Bohol						
Antequera						
Duilding Name		Rainfall Scenario				
Building Name Barangay	Багандау	5-year	25-year	100-year		
ANGILAN ELEMENTARY SCHOOL	Angilan					
BUNGAHAN ELEMENTARY SCHOOL	Bungahan					
ANTEQUERA SENTRAL SCHOOL	Poblacion	Low	Medium	Medium		
CHRIST THE KING ACADEMY	Poblacion					
CHRIST THE KING ACADEMY (SHELTER)	Poblacion					

Balilihan						
Duilding Name	Derengeu	Rainfall Scenario				
	Багапуау	5-year	25-year	100-year		
CONG. PABLO MALASARIO NATIONAL HIGH SCHOOL	Candasig					
DATAG NORTE ELEMENTARY SCHOOL	Datag Sur					
OUR LADY OF MT. CARMEL ACADEMY	Del Carmen Norte					
BOHOL ISLAND STATE UNIVERSITY-BALILIHAN	Del Carmen Sur	Low	Medium	Medium		
BOHOL ISLAND UNIVERSITY-BALILIHAN	Del Carmen Sur	Low	Medium	Medium		
BALILIHAN CENTRAL ELEMENTARY SCHOOL	Del Carmen Weste					
DAYCARE CENTER	Del Carmen Weste		Low	Low		
DOROL ELEMENTARY SCHOOL	Dorol					
DOROL MULTIPURPOSE BUILDING	Dorol					
PATROCINIO ELEMENTARY SCHOOL	Magsija					

Corella						
		Ra	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100- vear		
ANILAG ELEMENTARY SCHOOL	Anislag		Low	Low		
ANISAG ELEMENTARY SCHOOL	Anislag					
ANISLAG ELEMENTARY SCHOOL	Anislag					
CANANGCAAN ELEMENTARY SCHOOL	Canangca-An					
CANAPNAPAN ELEMENTARY SCHOOL	Canapnapan					
CORELLA ELEMENTARY SCHOOL	Poblacion					
CORELLA NATIONAL HIGH SCHOOL	Poblacion					
SAMBOG ELEMENTARY SCHOOL	Sambog					
PAYAHAN ELEMENTARY SCHOOL	Tanday					

Cortes					
		Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100- vear	
BASILIO GAROTE LIBRARY	De La Paz		Low	Low	
DELA PAZ ELEMENTARY SCHOOL	De La Paz	Low	Low	Low	
DELA PAZ ELEMENTARY SCHOOL ANNEX	De La Paz				

GOLDEN LINK COLLEGE	De La Paz			
WELDING TRAINING CENTER	De La Paz			
FATIMA ELEMENTARY SCHOOL	Fatima			
BRGY. LORETO DAY CARE CENTER	Loreto	Low	Low	Low
LORETO ELEMENTARY SCHHOL	Loreto			
LOURDES ELEMENTARY SCHOOL	Lourdes			
MALAYO NORTE ELEMENTARY SCHOOL	Malayo Norte			
NEW LOURDES ELEMENTARY SCHOOL	New Lourdes			
CORTES CENTRAL ELEMENTARY SCHOOL	Poblacion			
ROSARIO PRIMARY SCHOOL	Rosario			
SAN ROQUE ELEMENTARY SCHOOL	San Roque			
UPPER DELA PAZ PRIMARY SCHOOL	Upper de la Paz			

Maribojoc						
		Rainfall Scenario				
Building Name	Barangay	5-year	25-year	100- vear		
AGAHAY PRIMARY SCHOOL	Agahay					
ALIGUAY PRIMARY SCHOOL	Aliguay					
MARIBOJOC CENTRAL ELEMENTARY SCHOOL	Anislag					
SAN PEDRO CALUNGSOD MISSION SCHOOL INC.	Anislag	Medium	Medium	Medium		
BRGY.BUSAO DAYCARE CENTER	Busao		Low	Medium		
BUSAO DAY CARE CENTER	Busao			Medium		
BUSAO ELEMENTARY SCHOOL	Busao		Low	Low		
BUSAO NATIONAL HIGH SCHOOL	Busao					
CABAWAN ELEMENTARY SCHOOL	Cabawan					
LINCOD ELEMENTARY SCHOOL	Lincod					
PUNSOD DAY CARE CENTER	Punsod					
SAN ROQUE ELEMENTARY SCHOOL	San Roque					
SAN PEDRO CALUNGSOD MISSION SCHOOL INC.	San Vicente	Medium	Medium	Medium		
TORIL PRIMARY SCHOOL	Toril					

Sikatuna					
		Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100- vear	
ABUCAY ELEMENTARY SCHOOL	Abucay Norte				
BAHAY-BAHAY BARANGAY HALL	Bahaybahay				

Tagbilaran						
		Rainfall Scenario				
Building Name	Barangay	5-year	25-year	100- vear		
GREAT MOMDS LEADERSHIP ACADEMY	Dao		Low	Low		
MANGA ELEMENTARY SCHOOL	Manga					
MANGA NATIONAL HIGH SCHOOL	Manga	Low	Low	Medium		
ROYAL CHRISTIAN SCHOOL	San Isidro					
SAN ISIDRO ELEMENTARY SCHOOL	San Isidro					
BOHOL INTERNATIONAL LEARNING CENTER	Tiptip					
TIPTIP ELEMENTARY SCHOOL	Tiptip					
MANGA NATIONAL HIGH SCHOOL	Ubujan		Low	Low		

Annex 13. Medical Institutions Affected by Flooding in Abatan Floodplain

Table A-13.1. Medical	Institutions Affected by	y Flooding in the	e Abatan Floodplain

Bohol						
Corella						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-	100-		
			vear	vear		
CORELLA RURAL HEALTH OFFICE	Poblacion			-		

Cortes						
Building Name	Barangay	Rainfall Scenario				
		5-year	25- vear	100- vear		
BRGY. LORETO HEALTH CENTER	Loreto					
RURAL HEALTH UNIT	Poblacion					
RURAL HEALTH UNIT EXPANSION	Poblacion					

Maribojoc						
Building Name	Barangay	Rainfall Scenario				
		5-year	25- vear	100- vear		
SAN ROQUE HEALTH CENTER	San Roque			, cai		