HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Talomo River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Mindanao

APRIL 201

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Mindanao 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and J.E. Acosta, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Talomo River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-161 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Joseph E. Acosta

Project Leader, Phil-LiDAR 1 Program University of the Philippines Mindanao Davao City, Davao del Sur, 8000 E-mail: jacosta_96140@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-174-4

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND TALOMO RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Talomo River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE TALOMO FLOODPLAIN	5
2.1 Flight Plans	5
2.2 Ground Base Stations	7
2.3 Flight Missions	12
2 4 Survey Coverage	13
CHAPTER 3: LIDAR DATA PROCESSING OF THE TALOMO FLOODPLAIN	15
3.1 Overview of the LiDAR Data Pre-Processing	15
3.2 Transmittal of Acquired LiDAR Data	16
2.2 Trainstantial of Acquired LIDAN Data	10
2.4 LiDAB Doint Cloud Computation	10
3.4 LIDAR POINT Cloud Computation	10
3.5 LIDAR Data Quality Checking	19
3.6 LIDAR Point Cloud Classification and Rasterization	23
3.7 LiDAR Image Processing and Orthophotograph Rectification	25
3.8 DEM Editing and Hydro-Correction	27
3.9 Mosaicking of Blocks	29
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	31
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	34
3.12 Feature Extraction	36
3.12.1 Quality Checking of Digitized Features' Boundary	36
3 12 2 Height Extraction	36
3 12 3 Feature Δttribution	37
3 12 / Final Quality Checking of Extracted Features	28
CHAPTER A. LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TALOMO RIVER BASI	N 30
Charlen 4. Elban Valibarion Sonver and measurements of the factorio niver basi	
1 1 Summary of Activities	20
4.1 Summary of Activities	39
4.1 Summary of Activities 4.2 Control Survey	39 40
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 	39 40 44
 4.1 Summary of Activities	39 40 44 45
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 	39 40 44 45 48
 4.1 Summary of Activities	39 40 44 45 48 57
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey 	39 40 44 45 48 57 59
 4.1 Summary of Activities	39 40 45 45 57 59 62
 4.1 Summary of Activities	39 40 44 45 48 57 59 62
 4.1 Summary of Activities	39 40 44 45 57 59 62 62
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62 62 62 62
 4.1 Summary of Activities	39 40 45 45 57 59 62 62 62 62 62 64 65
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62 62 62 62 65 67
 4.1 Summary of Activities	39 40 44 45 48 57 62
 4.1 Summary of Activities	39 40 44 45 45 57 59 62 62
 4.1 Summary of Activities	39 40 44 45 57 59 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 63 63 73 73 73
 4.1 Summary of Activities	39 40 44 45 45 57 59 62 62
 4.1 Summary of Activities	39 40 44 45 45 57 59 62 62
 4.1 Summary of Activities	39 40 44 45 45 57 59 62 62 62 62 62 62 62 62 62 62 62 62 62 62 73 74 76 76 76
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62 62 62 62 62 62 62 62 62 62 62 72 73 74 76 77 77
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62 62 62 62 62 63 72 73 74 76 76 77 78
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 62 62 62 62 62 63 73 74 76 76 76 77 78 78
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62 73 74 76 76 76 76 73 76 76 76 76 76 78 78 78 78
 4.1 Summary of Activities	39 40 44 45 48 57 59 62 62
 4.1 Summary of Activities	39 40 44 45 48 57 59 62
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 	39 40 44 45 45 57 59 62
 4.1 Summary of Activities	39 40 44 45 45 57 59 62 62 62 62 62 62 62 62 62 62 62 62 62 62 72 73 73 74 76 76 76 76 77 78 93 97 97 97 98
 4.1 Summary of Activities	39 40 44 45 45 62 73 73 74 76 76 76 76 76 79 78
 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing	39 40 44 45 45 62 73 74 76 76 76 76 76 77 78 93 93 97 98 97 97

Annex 6. Flight Logs for the Flight Missions	105
Annex 7. Flight Status Reports	110
Annex 8. Mission Summary Reports	115
Annex 9. Talomo Model Basin Parameters	135
Annex 10. Talomo Model Reach Parameters	138
Annex 11. Talomo Field Validation Points	140
Annex 12. Educational Institutions affected by flooding in Talomo Floodplain	148
Annex 13. Health Institutions affected by flooding in Talomo Floodplain	151

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system	5
Table 2. Details of the recovered NAMRIA horizontal control point DVS-1 used as base station for the LiDAR acquisition	8
Table 3. Details of the recovered NAMRIA horizontal control point DVA-133 used as base station for the LiDAR acquisition	9
Table 4. Details of the recovered NAMRIA horizontal control point DVA-133 used as base station for the LiDAR acquisition	.10
Table 5. Details of the established control point DVS-1A used as base station for the LiDAR acquisition	.11
Table 6. Ground control points used during the LiDAR data acquisition	.12
Table 7. Flight missions under the DREAM Program covering the Talomo Floodplain	.12
Table 8. Flight missions for the LiDAR data acquisition in Talomo Floodplain	.12
Table 9. Actual parameters used during the LiDAR data acquisition of the Talomo Floodplain	.13
Table 10. List of municipalities and cities surveyed during the Talomo Floodplain LiDAR acquisition	.13
Table 11. Self-calibration Results values for Talomo flights	.18
Table 12. List of LiDAR blocks for Talomo Floodplain	.19
Table 13. Talomo classification results in TerraScan	.23
Table 14. LiDAR blocks with its corresponding areas	.27
Table 15. Shift values of each LiDAR block of Talomo Floodplain	.29
Table 16. Calibration Statistical Measures	.33
Table 17. Validation Statistical Measures	.34
Table 18. Quality Checking Ratings for Talomo Building Features	.36
Table 19. Building Features Extracted for Talomo Floodplain	.37
Table 20. Total Length of Extracted Roads for Talomo Floodplain	.38
Table 21. Number of Extracted Water Bodies for Talomo Floodplain	.38
Table 22. List of Reference and Control Points occupied for Talomo River Survey	.40
Table 23. Baseline Processing Summary Report for Talomo River Static Survey	.44
Table 24. Constraints applied to the adjustment of the control points	.45
Table 25. Adjusted grid coordinates for the control points used in the Talomo River Floodplain survey	.45
Table 26. Adjusted geodetic coordinates for control points used in the Talomo River Floodplain validation	.46
Table 27. Reference and control points utilized in the Talomo River Static Survey,with their corresponding locations (Source: NAMRIA, UP-TCAGP)	.47
Table 28. RIDF values for Davao Rain Gauge computed by PAGASA	.65
Table 29. Range of calibrated values for the Talomo River Basin	.74
Table 30. Summary of the Efficiency Test of the Talomo HMS Model	.75
Table 31. Peak values of the Talomo HEC-HMS Model outflow using the Davao RIDF 24-hour values	.76
Table 32. Municipalities/ cities affected in Talomo Floodplain	.78
Table 33. Affected areas in Davao City, Davao del Sur during a 5-Year Rainfall Return Period	.86
Table 34. Affected areas in Davao City, Davao del Sur during a 5-Year Rainfall Return Period	.86
Table 35. Affected areas in Davao City, Davao del Sur during a 25-Year Rainfall Return Period	88
Table 36. Affected areas in Davao City, Davao del Sur during a 25-Year Rainfall Return Period	.88

Table 37. Affected areas in Davao City, Davao del Sur during a 100-Year Rainfall Return Period	90
Table 38. Affected areas in Davao City, Davao del Sur during a 100-Year Rainfall Return Period	90
Table 39. Areas covered by each warning level with respect to the rainfall scenarios	92
Table 40. Actual flood vs simulated flood depth at different levels in the Talomo River Basin	94
Table 41. Summary of the Accuracy Assessment in the Talomo River Basin Survey	95

LIST OF FIGURES

Figure 1. Map of Talomo River Basin (in brown)	2
Figure 2. Talomo River flood history	3
Figure 3. Flight Plan and base station used for the Talomo Floodplain survey	6
Figure 4. GPS set-up over DVS-1 at Sta. Ana Wharf, Davao City (a) and NAMRIA reference point	
DVS-1 (b) as recovered by the field team	8
Figure 5. GPS set-up over DVA-133 at Barangay Manay, Panabo in Davao del Norte (a)	
and NAMRIA reference point DVA-133 (b) as recovered by the field team.	9
Figure 6. GPS set-up over DVA-3237 at Barangay Nanyo, Panabo in Davao del Norte (a)	
and NAMRIA reference point DVA-3237 (b) as recovered by the field team.	10
Figure 7. GPS set-up over DVS-1A in the town proper of Davao City, Davao del Sur (a) and NAMRIA	
reference point DVS-1A (b) as recovered by the field team	11
Figure 8. Actual LiDAR survey coverage of the Talomo Floodplain	14
Figure 9. Schematic diagram for Data Pre-Processing Component.	15
Figure 10. Smoothed Performance Metric Parameters of T alomo Flight 7388GC	16
Figure 11. Solution Status Parameters of Talomo Flight 7388GC.	17
Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Talomo Floodplain.	18
Figure 13. Boundary of the processed LiDAR data over Talomo Floodplain	19
Figure 14. Image of data overlap for Talomo Floodplain	20
Figure 15. Pulse density map of merged LiDAR data for Talomo Floodplain	21
Figure 16. Elevation Difference Map between flight lines for Talomo Floodplain Survey.	22
Figure 17. Quality checking for Talomo Flight 7388GC using the Profile Tool of QT Modeler.	23
Figure 18. Tiles for Talomo Floodplain (a) and classification results (b) in TerraScan	24
Figure 19. Point cloud before (a) and after (b) classification	24
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Talomo Floodplain.	25
Figure 21. Talomo Floodplain with available orthophotographs	26
Figure 22. Sample orthophotograph tiles for Talomo floodplain	26
Figure 23. Portions in the DTM of Talomo floodplain – a bridge before (a) and after (b) manual	
editing; and a building before (c) and after (d) manual editing	28
Figure 24. Map of Processed LiDAR Data for Talomo Floodplain	30
Figure 25. Map of Talomo Floodplain with validation survey points in green	32
Figure 26. Correlation plot between calibration survey points and LiDAR data	33
Figure 27. Correlation plot between validation survey points and LiDAR data.	34
Figure 28. Map of Talomo Floodplain with bathymetric survey points shown in blue	35
Figure 29. Blocks (in blue) of Talomo building features subjected to QC	36
Figure 30. Extracted features for Talomo Floodplain	38
Figure 31. Extent of the bathymetric survey (in blue line) in Talomo River and the LiDAR data	
validation survey (in red)	39
Figure 32. The GNSS Network established in the Talomo River Survey.	41
Figure 33. GNSS base receiver set up, Trimble® SPS 852 at DVS-1 in Sta. Ana Wharf, Davao City	42
Figure 34. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-KAE, Kalye Apike	
Bridge in Brgy. Calinan, Davao City	42
Figure 35. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-LAS in Brgy. Little	ì
Panay, Panabo City	43
Figure 36. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-MTL, Mintal	
Bridge in Brgy. Mintal, Davao City	43
Figure 37. Cross-section Survey at Mintal Bridge	48

Figure 38. Location map of Kalye-Apike Bridge cross-section survey	49
Figure 39. Kalye-Apike Bridge cross-section diagram	50
Figure 40. Kalye-Apike Bridge Data Form	51
Figure 41. Location map of Mintal Bridge cross-section survey	52
Figure 39. Mintal Bridge cross-section diagram	53
Figure 43. Mintal Bridge Data Form	54
Figure 44. Water level markings on Talomo Bridge	55
Figure 45. Water Level marking at the left (A) and right pier (B) of the bridge facing downstream	
of Mintal Bridge	56
Figure 46. Ground Validation Set-up (A) and (B) GPS base receiver set up, Trimble® SPS 852	
at DVS-1, in Sta. Ana Port	57
Figure 47. Validation point acquisition survey of Talomo River basin	58
Figure 48. Actual Execution of Manual Bathymetry in Talomo River	59
Figure 49. Extent of the Talomo River Bathymetry Survey in Davao City, Davao del Sur	60
Figure 50. Talomo riverbed profile.	61
Figure 51. Location map of the Talomo HEC-HMS model used for calibration	63
Figure 52. Cross-section plot of Kalye Apike Bridge	64
Figure 53. Rating curve at Kalye Apike Bridge, Davao, Davao del Sur	64
Figure 54. Rainfall and outflow data at Kalye Apike Bridge used for modeling	65
Figure 55. Location of Davao RIDF Station relative to Talomo River Basin	66
Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.	66
Figure 57. Soil Map of Talomo River Basin used for the estimation of the CN parameter	67
Figure 58. Land Cover Map of Talomo River Basin used for the estimation of the Curve	
Number (CN) and the watershed lag parameters of the rainfall-runoff model	68
Figure 59. Slope Map of Talomo River Basin	69
Figure 60. Stream Delineation Map of Talomo River Basin	70
Figure 61. Talomo River Basin model generated in HEC-HMS	71
Figure 62. River cross-section of Talomo River generated through Arcmap HEC GeoRAS tool	72
Figure 60. Screenshot of the river sub-catchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	73
Figure 64. Outflow hydrograph of Talomo produced by the HEC-HMS model compared	
with observed outflow	74
Figure 65. Outflow hydrograph at Talomo Station generated using the Davao RIDF simulated	
in HEC-HMS.	76
Figure 66. Sample output map of Talomo RAS Model	77
Figure 67. 100-year Flood Hazard Map for Talomo Floodplain overlaid on Google Earth imagery	79
Figure 68. 100-year Flow Depth Map for Talomo Floodplain overlaid on Google Earth imagery	80
Figure 69. 25-year Flood Hazard Map for Talomo Floodplain overlaid on Google Earth imagery	81
Figure 70. 25-year Flow Depth Map for Talomo Floodplain overlaid on Google Earth imagery	82
Figure 71. 5-year Flood Hazard Map for Talomo Floodplain overlaid on Google Earth imagery	83
Figure 72. 5-year Flood Depth Map for Talomo Floodplain overlaid on Google Earth imagery	84
Figure 73. Affected Areas in Davao City, Davao del Sur during 5-Year Rainfall Return Period	87
Figure 74. Affected Areas in Davao City, Davao del Sur during 5-Year Rainfall Return Period	87
Figure 75. Affected Areas in Davao City, Davao del Sur during 25-Year Rainfall Return Period	89
Figure 76. Affected Areas in Davao City, Davao del Sur during 25-Year Rainfall Return Period	89
Figure 77. Affected Areas in Davao City, Davao del Sur during 100-Year Rainfall Return Period	91
Figure 78. Affected Areas in Davao City, Davao del Sur during 100-Year Rainfall Return Period	
	91
Figure 79. Talomo Flood Validation Points	91 93

LiDAR Surveys and Flood Mapping of Talomo River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DA-BSWM	Department of Agriculture - Bureau of Soil and Water Management		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UPM	University of the Philippines Mindanao		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND TALOMO RIVER

Enrico C. Paringit, Dr. Eng., Dr. Joseph E. Acosta, and Dr. Ruth James

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (USC) is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Southern Mindanao Region. The university is located in Davao City in the province of Davao del Sur.

1.2 Overview of the Talomo River Basin

The Talomo River is a stream in the province of Davao del Sur, on the southeastern side of Mindanao. It traverses Davao City and drains into Talomo Bay in the Davao Gulf (Mines and Geosciences Bureau, 2014). It is part of the three (3) major rivers that provide major drainage way in Davao City and primary drainage system in Mt. Talomo area. It is a waterway connecting Mt. Talomo and Apo Range and is part of the thirteen (13) river systems in the Davao Region.

The upstream portion of Talomo River is characterized by rapids and rocky terrain while its banks have dense of canopy cover. Although shallow, downstream portion of the river could still be navigable by a rubber boat but its banks are still characterized by dense canopy covers.

Talomo River Basin is located in the eastern portion of Davao City, Davao del Sur. It has a drainage area of 244 km2 and an estimated 488 million cubic meter (MCM) annual run-off according to DENR-RCBO. The Talomo River has a total watershed area of 230.07 square kilometers with a river length of 51.2 kilometers. It has 71 subbasins, 35 junctions, and 35 reaches. It is also among the eight (8) river basins in Davao City.

Along the Talomo river lives a population of 138,840 which is composed of (6) barangays namely; Tacunan, Mintal, Catalunan Grande, Catalunan Pequeño, Bago Gallera and Talomo Proper, which are all part of Davao City.

Davao City is the largest city in the Philippines in terms of land area. It is bounded by Davao del Norte in the north, Davao Gulf and Samal City on the east, the province of Cotabato on the west, and Digos City and the municipality of Sta. Cruz on the south.

Davao serves as the main trade, commerce, and industry hub of the island of Mindanao. Being the regional center of Davao Region, the highly urbanized City of Davao is bustling with rich cultural heritage. It has also played a part in various historical events including the Second World War (Dacumos, 2012; City Government of Davao, 2011).

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of Talomo River Basin (in brown)

During World War II in 1945, the allied forces of the United States and the Philippines started a campaign to recapture and liberate Mindanao from the Japanese forces. Davao City was the last major Philippine City under the Japanese control (Battad, 2011). The Battle of Davao was fought with the American-Filipino troops and the Japanese soldiers on either side. The Talomo River was utilized by the Americans in an attempt to cut off the Japanese who retreated into the highlands (Bell, 1999; Smith, 2005).

Talomo River serves as one of the major drainage systems of Mt. Talomo in the eastern part of Mt. Apo along with Lipadas and Sibulan Rivers (GreedyPeg, 2016). Davao City's drinking water is sourced from the Talomo-Lipadas Watersheds which originates from Mt. Talomo (Mallare, 2016). Five (5) run-of-the-river hydropower systems managed by Hedcor also utilizes the said river as a source of renewable energy for the country (Hedcor, 2015; MindanaoTimes, 2017).

River Tubing, locally known as Paanod, is a recreational activity that utilizes an inner tube to navigate the Talomo River (ABS-CBN, 2015; Cairo, 2016). An ancestral domain of the Obu-Manuvu tribe can be found in the upper part of the Talomo River (EuroGenerics, 2011).

Pollution is the primary problem identified in Talomo Watershed (Mallare, 2016). Other issues include deforestation, land use conflict, and improper cultivation of hilly lands (PCEEM, 2017). Population increase near Talomo River also increases the demand for water, food, and shelter resulting to depletion of groundwater resources, increase in volume of wastewater, and increase in risk of agricultural runoff (Sherbinin, 1998; Abayon et.al., 2013).

Figure 2. Talomo River flood history

A study by the World Wildlife Fund (WWF) in 2011 found that areas near the rivers in Davao City are susceptible to floods even though it is located in a typhoon-free zone. This includes the two biggest rivers that run through the city: Davao and Talomo Rivers (Carillo, 2016).

According to locals, from the year 2004 to 2017, local rainfall and upstream rainfall are the usual cause of flooding near the river. However, PAGASA only noted typhoon events such as Typhoon Pablo in 2012. The recent flooding events caused Talomo River to overflow on June 5, 2013 where 371 families were affected in Davao city. The two (2) hour heavy rains triggered floods in some areas in Davao City caused evacuation of some residents along the riverbanks.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE TALOMO FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Ms. Sandra C. Poblete, and Engr. Grace Sinadjan

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Talomo floodplain in Davao del Sur. These missions were planned for 12 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 1 shows the flight plan for Talomo floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK82A	850, 1000	30, 35	40, 50	125	40, 50	130	5
BLK82B	850, 1000	30, 35	40, 50	125	40, 50	130	5
BLK82C	850, 1000	30, 35	40, 50	125	40, 50	130	5
BLK82D	1000	35	40	125	50	130	5
BLK82E	850, 1000	30	40, 50	125	40, 50	130	5
BLK82F	850, 1000	30, 35	40, 50	125	40, 50	130	5
BLK82G	850, 1000	30, 35	40, 50	125	40, 50	130	5
BLK82H	850	30	50	125	40	130	5

Table 1. Flight planning parameters for the Gemini LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 3. Flight Plan and base station used for the Talomo Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: DVS-1, DVA-133, DVA-3237, which are of first (1st), second (2nd) and fourth (4th) order accuracy, respectively. The project team also established one (1) ground control point, DVS-1A. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the established control point are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (July 18 to August 11, 2014). Base stations were observed using dual frequency GPS receivers: TRIMBLE SPS 852, TRIMBLE SPS 882 and TRIMBLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Talomo floodplain are shown in Figure 3.

Figure 4 to Figure 7 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 5 show the details about the following NAMRIA control stations and established points, while Table 6 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization. The list of team members are found in Annex 4.

Figure 4. GPS set-up over DVS-1 at Sta. Ana Wharf, Davao City (a) and NAMRIA reference point DVS-1 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point DVS-1 used as base station for the LiDAR
acquisition.

Station Name	DVS-1		
Order of Accuracy	1st		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 4′ 41.48387″ North 125° 37′ 31.24815″ East -4.50700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	569,084.935 meters 782,663.345 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 4′ 38.36201″ North 125° 37′ 36.77094″ East 68.27510 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	790,026.11 meters 783162.17 meters	

(a)

Figure 5. GPS set-up over DVA-133 at Barangay Manay, Panabo in Davao del Norte (a) and NAMRIA reference point DVA-133 (b) as recovered by the field team.

Station Name	DVA-133		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 20' 57.02014" North 125° 35' 57.50044" East 23.957 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	566,168.597 meters 812,626.211 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 20' 53.82313" North 125° 36' 2.99870" East 96.163 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	786,976.44 meters 813,130.63 meters	

Table 3. Details of the recovered NAMRIA horizontal control point DVA-133 used as base station for the LiDAR acquisition.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

(a)

Figure 6. GPS set-up over DVA-3237 at Barangay Nanyo, Panabo in Davao del Norte (a) and NAMRIA reference point DVA-3237 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point DVA-133 used as base station for the LiDAR acquisition.

Station Name	DVA	3237
Order of Accuracy	4	th
Relative Error (horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 19' 59.93670" North 125° 38' 7.27962" East 16.912 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	570,151.447 meters 810,878.179 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 19' 56.74722" North 125° 38' 12.77896" East 89.238 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	791,135.56 meters 811,353.56 meters

(a)

Figure 7. GPS set-up over DVS-1A in the town proper of Davao City, Davao del Sur (a) and NAMRIA reference point DVS-1A (b) as recovered by the field team.

Table 5. Details of the established control point DVS-1A used as base station for the LiDAR acquisition.

Station Name	DVS	5-1A
Order of Accuracy	2nd (establ	ished point)
Relative Error (horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 4′ 42.20000″ North 125° 37′ 32.82000″ East -4.50 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	569,133.093 meters 782,685.309 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 4′ 38.34585″ North 125° 37′ 36.60874″ East 68.265 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	790,187.943 meters 783,116.18 meters

Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 18, 2014	7378GC	2BLK82A199A	DVS-1, DVS-1A
July 23, 2014	7388GC	2BLK82DAB204A	DVS-1, DVS-1A
July 29, 2014	7401GC	2BLK87EFGHS210B	DVS-1, DVS-1A
August 11, 2014	7426GC	2BLK82V223A	DVA-133, DVA-3237; DVS- 1, DVS-1A
August 11, 2014	7427GC	2BLK82V223B	DVA-133, DVA-3237; DVS- 1, DVS-1A

Table 6. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

Two (2) missions under DREAM program covered around seventy-six (76) square kilometers (Table 7) within Talomo floodplain. Five (5) missions under Phil-LiDAR program were conducted to complete the LiDAR data acquisition in Talomo floodplain, for a total of fifteen hours and nineteen minutes (15+19) of flying time for RP-C9322. The missions were acquired using the Gemini LiDAR system. Table 8 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 9 presents the actual parameters used during the LiDAR data acquisition.

Table 7. Flight missions under the DREAM Program covering the Talomo Floodplain.

Flight Number	Mission Name	Area Surveyed within the Floodplain (sq. km.)
94P	1DV017B	32.36
115P	1DV029A	43.15
TOTAL	75.51	

Table 8. Flight missions for the LiDAR data acquisition in Talomo Floodplain.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	Area Surveyed	Area Surveyed Outside the	No. of Images	Fl ⁱ He	ying ours
		(km2)	(km2)	within theFloodplain(Frames)Floodplain(km2)(km2)		(Frames)	Hr	Min
July 18, 2014	7378GC	326.51	177.79	58.49	119.3	NA	4	05
July 23, 2014	7388GC	338.75	208.11	4.46	203.65	NA	4	05
July 29, 2014	7401GC	534.84	83.43	0	83.43	NA	1	59
August 11, 2014	7426GC	486.08	97.12	2.59	94.53	NA	2	41
August 11, 2014	7427GC	326.51	48.56	0.2	48.36	NA	2	29
тоти	AL .	2,012.69	615.01	65.74	549.27	NA	15	19

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7378GC	850	30	50	125	40	130	5
7388GC	1000	30	40	125	50	130	5
7401GC	850	30	50	125	40	130	5
7426GC	1000	35	40	125	50	130	5
7427GC	1000	35	40	125	50	130	5

Table 9. Actual parameters used during the LiDAR data acquisition of the Talomo Floodplain.

2.4 Survey Coverage

Talomo floodplain is located along the province of Davao del Sur with majority of the floodplain situated within the municipality of Davao City. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 10. The actual coverage of the LiDAR acquisition for Talomo floodplain is presented in Figure 8.

Table 10. List of municipalities and cities surveyed during the Talomo Floodplain LiDAR acquisition.

Province	Municipality/ City	Area of Total Area Municipality/City Surveyed (km2) (km2)		Percentage of Area Surveyed
Davao del Norte	Panabo City	301.68	114.94	38.10%
	Braulio E. Dujali	119.23	6.85	5.75%
Davao del Sur	Davao City	2,224.82	340.16	15.29%
	Santa Cruz	267.54	11.8	4.41%
Total		2913.27	473.75	16.26%

Figure 8. Actual LiDAR survey coverage of the Talomo Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE TALOMO FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos , Engr. John Dill P. Macapagal , Engr. Ma. Ailyn L. Olanda, Engr. Merven Mattew D. Natino, Engr. Melissa F. Fernandez , Engr. Ben Joseph J. Harder, Engr. Karl Adrian P. Vergara

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Talomo floodplain can be found in Annex 5. Missions flown during the first survey conducted on January 2013 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system while missions acquired during the second survey on August 2014 were flown using the Gemini system over Sta. Rita, Samar.

The Data Acquisition Component (DAC) transferred a total of 136.91 Gigabytes of Range data, 1.37 Gigabytes of POS data, 66.32 Megabytes of GPS base station data, and 126.3 Gigabytes of raw image data to the data server on January 23, 2013 for the first survey and August 2, 2014 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Talomo was fully transferred on August 29, 2014, as indicated on the Data Transfer Sheets for Talomo floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 7388GC, one of the Talomo flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 23, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metrics of Talomo Flight 7388GC.

The time of flight was from 262000 seconds to 274500 seconds, which corresponds to morning of July 23, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 1.00 centimeters, the East position RMSE peaks at 1.42 centimeters, and the Down position RMSE peaks at 2.2 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Talomo Flight 7388GC.

The Solution Status parameters of flight 7388GC, one of the Talomo flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure B-3. The graphs indicate that the number of satellites during the acquisition did not go down to 7. Majority of the time, the number of satellites tracked was between 7 and 11. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Talomo flights is shown in Figure 12.

Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Talomo Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 71 flight lines, , with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Talomo floodplain are given in Table 11.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000857
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.002434
GPS Position Z-correction stdev	<0.01meters	0.0169

Table 11.	Self-calibration	Results v	alues for	Talomo	flights.
-----------	------------------	-----------	-----------	--------	----------

The optimum accuracy is obtained for all Talomo flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Talomo Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data over Talomo Floodplain

The total area covered by the Talomo missions is 853.54 sq.km that is comprised of eight (8) flight acquisitions grouped and merged into seven (7) blocks as shown in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq. km)
DavaoDelSur_Blk82A	7378GC	105.58
DavaoDelSur_Blk82B	7388GC	120.5
DavaoDelSur_Blk82_voids	7426GC	116.99
	7427GC	
DavaoDelSur_Blk82E	7388GC	228.68
	7401GC	
Davao City	115P	281.79
	94P	
	96P	
TOTAL		853.54 sq. km

Table 12	List of	Lidar	blocks	for Ta	alomo	Floodr	lain
1 abic 12.	LIGUOI	LIDIN	DIOCKS	101 16	uomo	110004	main.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 14. Image of data overlap for Talomo Floodplain.

The overlap statistics per block for the Talomo floodplain can be found in Annex 8: Mission Summary Reports. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.93% and 29.34% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Talomo floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.86 points per square meter.

Figure 15. Pulse density map of merged LiDAR data for Talomo Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation Difference Map between flight lines for Talomo Floodplain Survey.

A screen capture of the processed LAS data from a Talomo flight 7388GC loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for Talomo Flight 7388GC using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	377,651,908
Low Vegetation	369,217,896
Medium Vegetation	706,614,815
High Vegetation	1,135,809,855
Building	91,351,661

Table 13. Talomo classification results in TerraScar	Table 13. T	Talomo	classification	results in	TerraScar
--	-------------	--------	----------------	------------	-----------

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Talomo floodplain is shown in Figure 18. A total of 1,314 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 13. The point cloud has a maximum and minimum height of 883.49 meters and 38.75 meters, respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 18. Tiles for Talomo Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification
The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Talomo Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 321 1km by 1km tiles area covered by Talomo floodplain is shown in Figure 21. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Talomo floodplain has a total of 216.47 sq.km orthophotogaph coverage comprised of 1,544 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Talomo Floodplain with available orthophotographs

Figure 22. Sample orthophotograph tiles for Talomo Floodplain.

3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for Talomo flood plain. These blocks are composed of Davao City and DavaoDelSur blocks with a total area of 853.54 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
DavaoDelSur_Blk82A	105.58
DavaoDelSur_Blk82B	120.5
DavaoDelSur_Blk82_voids	116.99
DavaoDelSur_Blk82E	228.68
Davao City_115P	
Davao City_94P	228.68
Davao City_96P	
TOTAL	853.54 sq. km

Table 14. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 23. The bridge (Figure 23a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 23b) in order to hydrologically correct the river. Another example is a building that is still present in the DTM after classification (Figure 23c) and has to be removed through manual editing (Figure 23d).

Figure 23. Portions in the DTM of Talomo Floodplain – a bridge before (a) and after (b) manual editing; and a building before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

DavaoDelSur_Blk82A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Talomo floodplain is shown in Figure 24. It can be seen that the entire Talomo floodplain is 99.8% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	х	У	Z
DavaoDelSur_Blk82A	0.00	0.00	0.00
DavaoDelSur_Blk82B	0.00	0.00	-0.63
DavaoDelSur_Blk82_voids	0.50	0.50	0.00
DavaoDelSur_Blk82E	0.00	0.00	0.00
Davao City_115P	0.00	0.00	0.00
Davao City_94P	0.00	0.00	0.00
Davao City_96P	0.00	0.00	0.00

Table 15. Shift values of each LiDAR block of Talomo Floodplain.

Figure 24. Map of Processed LiDAR Data for Talomo Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Talomo to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 2,364 survey points were used for calibration and validation of Talomo LiDAR data. Random selection of 80% of the survey points, resulting to 1,891 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 1.81 meters with a standard deviation of 0.15 meters. Calibration of Talomo LiDAR data was done by adding the height difference value, 1.81 meters, to Talomo mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 25. Map of Talomo Floodplain with validation survey points in green.

Figure 26. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	1.81
Standard Deviation	0.15
Average	1.80
Minimum	1.50
Maximum	2.11

Table 16. Calibration S	Statistical Measures
-------------------------	----------------------

The remaining 20% of the total survey points, resulting to 472 points, were used for the validation of calibrated Talomo DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.17 meters, as shown in Table 17.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.17
Standard Deviation	0.17
Average	0.00
Minimum	-0.35
Maximum	0.34

Table 17. Validation Statistical Measure	S
--	---

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline and cross-section data were available for Talomo with 716 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.11 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Talomo integrated with the processed LiDAR DEM is shown in Figure 28.

Figure 28. Map of Talomo Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Talomo floodplain, including its 200 m buffer, has a total area of 102.10 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 4207 building features, are considered for QC. Figure 29 shows the QC blocks for Talomo floodplain.

Figure 29. Blocks (in blue) of Talomo building features subjected to QC

Quality checking of Talomo building features resulted in the ratings shown in Table 18.

Fable 18. Quality	Checking Ratings fo	or Talomo Building Features
-------------------	---------------------	-----------------------------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Talomo	99.74	100.00	96.60	PASSED

3.12.2 Height Extraction

Height extraction was done for 53,621 building features in Talomo floodplain. Of these building features, 12,859 were filtered out after height extraction, resulting to 40,762 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.10m.

3.12.3 Feature Attribution

Field validation for Talomo floodplain has already been completed last November 13-25, 2015. However, in November of the same year, there were changes in the Feature Extraction Manual given by UP Diliman Data Pre-Processing Component, which then prompted for the conduct of the another field work on September 5-22, 2016 for the digitized features in the additional area scope.

Before the actual field validation, courtesy calls were conducted to seek permission and assistance from the Local Government Units of each barangay. This was done to ensure the safety and security in the area for the field validation process to go smoothly. Verification of barangay boundaries was also done to finalize the distribution of features for each barangay.

Barangay Health Workers (BHWs) were requested and hired to guide the University of the Philippines Mindanao Phil-LiDAR1 field enumerators during validation. The local hires deployed by the barangay captains were given a brief orientation by the field enumerators before the actual field work. The team surveyed the twenty-one (21) barangays covered by the floodplain namely New Carmen, New Valencia, Biao Escuela, Matina Biao, Langub, Tacunan, Catalunan Grande, Matina Pangi, Ma-a, Matina Crossing, Matina Aplaya, Bucana, Talomo Proper, Catalunan Pequeno, Biao Guianga, Biao Joacquin, Ula, Talandang, and some parts of Mintal, Tugbok, and Sto. Nino, Davao City.

Table 19 summarizes the number of building features per type. On the other hand, Table 20 shows the total length of each road type, while Table 21 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	38,099
School	448
Market	43
Agricultural/Agro-Industrial Facilities	245
Medical Institutions	52
Barangay Hall	10
Military Institution	0
Sports Center/Gymnasium/Covered Court	66
Telecommunication Facilities	17
Transport Terminal	20
Warehouse	50
Power Plant/Substation	8
NGO/CSO Offices	31
Police Station	6
Water Supply/Sewerage	4
Religious Institutions	359
Bank	18
Factory	44
Gas Station	48
Fire Station	1
Other Government Offices	57
Other Commercial Establishments	1,136
Total	40,762

Table 19. Building Features Extracted for Talomo Floodplain.

Floodplain		Road Network Length (km)				
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Talomo	409.62	54.35	0.00	55.33	0.00	519.29

Table 20. Total Length of Extracted Roads for Talomo Floodplain.

Table 21. Number of Extracted Water Bodies for Talomo Floodplain.

Floodplain	Water Body Type				Total	
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen					
Talomo	2	1	0	0	0	3

A total of 13 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 30 shows the Digital Surface Model (DSM) of Talomo floodplain overlaid with its ground features.

Figure 30. Extracted features for Talomo Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TALOMO RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, and Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted static and establishment of control points, bridge cross-section, as-built and MSL-based elevation markings, ground validation, and bathymetric surveys in Talomo River from October 15 to 27, 2014. This is to capture the actual geomorphology of the river. Bridge cross-section and water level elevation data shall be used to calculate the cross-sectional area. Furthermore, the cross-sectional area will be used in computing for stream discharge which is necessary for flood modelling. These models will serve to augment the early flood warning system for the communities in the floodplain areas of Davao City. The entire survey extent is illustrated in Figure 31.

Figure 31. Extent of the bathymetric survey (in blue line) in Talomo River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used in Tagulaya-Sibulan River survey was composed of six (6) loops established on July 4 and 5, 2015 with the following reference points: DVS-1, a first order GCP in Brgy. Leon Garcia Sr, Davao City, Davao Del Sur; and DV-76, a first order benchmark located Brgy. Guadalupe, Municipality of Carmen, Davao Del Norte.

A GSS network was established on July 4 and 5, 2015 for a previous Phil-LiDAR survey in Digos River occupying the refence points: DVS-1, a first order GCP in Brgy. Leon Garcia Sr., Davai City, Dava Del Sur; and DV-76, a first order benchmark located in Brgy. Guadalupe, Municipality of Carmen, Davao Del Norte.

The GNSS network used in the survey is composed of three loops established on October 16, 2014 occupying the control point DVS-1, a first order GCP in Brgy. Leon Garcia Sr, Davao City, Davao Del Sur, with fixed coordinates and elevation values from the previous Davao field work.

Three control points were established along approach of bridges namely: UP-KAE at Kalye Apike Bridge in Brgy. Calinan, Davao City, Davao Del Norte; UP-LAS at Lasang Bridge in Brgy. Maduao, Panabo City, Davao Del Norte; and UP-MTL at Mintal Bridge in Brgy. Mintal, Davao City, Davao Del Sur; to use as reference points for the survey as shown in Figure 32. The summary of reference and control points and its location is summarized in Table 22.

Table 22. List of Reference	and Control Points of	occupied for Talomo	River Survey
		1	

Control Point	Order of Accuracy		Geographic Coordinates (WGS 84)					
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
DVS-1	1st Order, GCP	7°04'38.36202"	125°37'36.77094"	68.500	0.771	2013		
UP-KAE	UP Established	-	-	-	-	October 16, 2014		
UP-LAS	UP Established	-	-	-	-	October 16, 2014		
UP-MTL	UP Established	-	-	-	-	October 16, 2014		

(Source: NAMRIA; UP-TCAGP)

Figure 32. The GNSS Network established in the Talomo River Survey.

The GNSS set up made in the location of the reference and control points are exhibited in Figure 33 to Figure 36.

Figure 33. GNSS base receiver set up, Trimble® SPS 852 at DVS-1 in Sta. Ana Wharf, Davao City

Figure 34. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-KAE, Kalye Apike Bridge in Brgy. Calinan, Davao City

Figure 35. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-LAS in Brgy. Little Panay, Panabo City

Figure 36. GNSS receiver occupation set up, Trimble® SPS 882 at control point UP-MTL, Mintal Bridge in Brgy. Mintal, Davao City

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Talomo River Basin is summarized in Table 23 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
DVS1 UPKAE (B3)	10-6-2014	Fixed	0.003	0.018	301°56'03"	22698.648	-8.798
DVS1 UPMTL (B6)	10-6-2014	Fixed	0.003	0.020	278°05'36"	13963.237	-1.723
DVS1 UPLAS (B1)	10-6-2014	Fixed	0.003	0.013	7°42'04"	24652.588	-229.449
UPKAE UPMTL (B4)	10-6-2014	Fixed	0.003	0.018	151°31'59"	11419.131	-7.064
UPKAE UPLAS (B2)	10-6-2014	Fixed	0.005	0.030	61°08'38"	25760.778	-55.135
UPMTL UPLAS (B5)	10-6-2014	Fixed	0.003	0.020	37°18'28"	28249.074	-7.047

Table 23	Raseline	Processing	Summary	Report	for Talor	no River	Static Survey
1 upic 25.	Dusenne	1 roccoomig	Juilling	repore	101 1 4101	no naver	othere our vey

As shown in Table 23, a total of six (6) baselines were processed with reference points DVS-1 held fixed for grid and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 24 to Table 26 for the complete details.

The four (4) control points, DVS-1, UP-KAE, UP-LAS, and UP-MTL were occupied and observed simultaneously to form a GNSS loop. The coordinates and elevation values of point DVS-1 were held fixed during the processing of the control points as presented in Table 24. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 24.	Constraints	applied t	to the adius	tment of the o	control points.
1 upic 2 1.	Constraints	appirea	to the dajus		poincioi poinco.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
DVS-1	Grid	Fixed	Fixed		Fixed			
Fixed = 0.000001 (Meter)								

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 25. The fixed control points LYT-101 has no values for grid errors; and LY-106, for elevation error.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
DVS1	790192.921	?	783116.705	?	0.771	?	ENe
UPKAE	770850.418	0.007	795019.989	0.006	197.198	0.052	
UPLAS	793358.273	0.006	807581.490	0.006	12.404	0.046	
UPMTL	776349.630	0.006	785005.363	0.006	110.718	0.051	

The network is fixed at reference point DVS-1 with known coordinates and elevation. With the mentioned

equation, $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \text{ cm}$ for horizontal for the vertical, respectively; the computation

for the accuracy are as follows:

а.	DVS-1 horizontal accuracy vertical accuracy	= =	Fixed Fixed
b.	UP-KAE horizontal accuracy vertical accuracy	= = =	√((0.07) ² + (0.06) ²) √ (0.49 + 0.36) 0.92 cm < 20 cm 5.2 cm < 10 cm
с.	UP-LAS horizontal accuracy vertical accuracy	= = =	√((0.06) ² + (0.06) ²) √ (0.36 + 0.36) 0.85 cm < 20 cm 4.6 cm < 10 cm
d.	UP-MTL horizontal accuracy	= = =	$V((0.06)^2 + (0.06)^2)$ V(0.36 + 0.36) 0.85 cm < 20 cm 5.1 cm < 10 cm
			5.1 5hh · 10 6hh

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
DE-160	N6°59'41.20398"	E126°19'30.03464"	71.754	?	е
DVE-42	N6°58'51.79295"	E126°18'01.57690"	80.539	0.023	LL
UP_BIT-1	N6°57'46.30507"	E126°17'35.96635"	80.537	0.025	
UP_MAY-1	N6°59'26.93722"	E126°19'18.72092"	73.478	0.009	
UP_QUI-1	N7°05'25.95862"	E126°27'58.08622"	70.854	0.034	

Table 26. Adjusted geodetic coordinates for control points used in the Talomo River Floodplain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 26. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 27.

Table 27. Reference and control points utilized in the Talomo River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

		4			
	BM Ortho (m)	287.84	58.767	3.317	4.332
	EGM Ortho (m)	0.771	197.198	12.404	110.718
TM ZONE 51 N	Easting (m)	790192.921	770850.418	793358.273	776349.630
	Northing (m)	783116.705	795019.989	807581.490	785005.363
	Ellips- oidal Height (m)	68.500	266.926	80.420	179.729
Coordinates (WGS 84)	Longitude	125°37'36.77094"	125°27'08.90858"	125°39'24.47345"	125°30'06.27926"
Geographic	Latitude	7°04'38.36202"	7°11'09.07739"	7°17'53.61604"	7°05'42.29301"
Order of	Accuracy	1st Order, GCP	UP Established	UP Established	UP Established
Control	Point	DVS1	UPKAE	UPLAS	UPMTL

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on October 16, 2014 along the downstream side of Kalye-Apike Bridge in Brgy. Calinan, Davao City and October 22 and 25, 2014 at the downstream side of Mintal Bridge in Brgy. Mintal, Davao City using GNSS receiver, Trimble[®] SPS 882 in PPK survey technique as shown in Figure 37.

Figure 37. Cross-section Survey at Mintal Bridge

The length of cross-sectional lines for Kalye Apike Bridge is 123.58 m with thirteen points; while of Mintal Bridge is 204 m with a total of sixteen (16) points, both acquired using the cotrol point DVS-1 as the GNSS base station, respectively. Their location maps, cross-section diagrams, and bridge as-built form of the two bridges are shown in Figure 38 to Figure 43.

Figure 38. Location map of Kalye-Apike Bridge cross-section survey

50

LA TITUDE = 7-11-09.57047 " N. LONGITUDE = 125-27-08.81408" E.

KALYE APIKE BRIDGE TALOMO RIVER

		Bridge Da	ata Form		
Bridge Name:	Kalye Apike Bridge			Date:	10-16-2014
River Name:	Talomo River			Time	: <u>5:29 PM</u>
Location (Brgy, C	ity, Region): Brgy. Wan	gan and Cal	inan Davao City	Region XI	
Survey Team:	Team Patrizcia Dela (ruz - DVBC			
Flow condition:	low normal	high	Wea	ther Condit	tion: 🕞 rainy
Latitude:	7-11-09.57047 "N		Longitude:	125 - 27 - 0	08.81408 " E
Ab1	Deck (Mease start your me	asurement from 7.774 m	Ab 2 HC m the left side of the ba	Legend: DA = Dridge Ab = Abutm	Approach P=Pier LC = Low Ch ent D=Deck HC=High Ch eam) 34.957 m
	Station		High Chord Ele	vation	Low Chord Elevation
1	BA2		198.8892	m	197.3242 m
2					
3					
4					
5					
	Bridge Approach (Hears	tart your measurer	nent from the left side of the	bank facing upstress	m)

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	198.5672	BA3	67.347 m	198.8472
BA2	32.396 m	198.8872	BA4	123.580 m	197.8292

Abutment: Is the abutment sloping? Yes

Yes No If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1		
Ab2		

Pier (Please start your measurement from the left side of the bank facing upstream)

Shape: Oblic

Number of Piers: 1 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	49.709 m	193.9192 m	
Pier 2			
Pier 3			
Pier 4			
Pier 5			
Pier 6			

NOTE: Use the center of the pier as reference to its station

Figure 40. Kalye-Apike Bridge Data Form

Figure 41. Location map of Mintal Bridge cross-section survey

The water surface elevation in Kalye Apike Bridge is 193.919 m (MSL) acquired on October 16, 2014 at 5:27 PM. These markings on the bridge piers (Figure 44) shall also serve as a reference for flow data gathering and depth gauge deployment of UP Mindanao PHIL-LIDAR 1.

Figure 44. Water level markings on Talomo Bridge

Meanwhile, the water surface elevation of Talomo River at Mintal Bridge at the left and right banks was acquired using PPK survey technique on October 25, 2014 at 3:29 PM. The resulting water surface elevation data of 104.935 m (MSL) was applied as markings on the right and left abutments of the bridge facing downstream as shown in Figure 45. This will be used as reference for the flow measurement and depth gauge deployment of partner HEI, UP Mindanao.

Figure 45. Water Level marking at the left (A) and right pier (B) of the bridge facing downstream of Mintal Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 21 and 23, 2015 using a survey grade GNSS Rover receiver mounted on a pole which was attached in front of the vehicle as shown in Figure 46. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topography mode.

The first day of ground validation started from Brgy. Toril, Davao City and traversed major roads going to Brgy. Magugpo Poblacion in Tagum City. Meanwhile, the second day of survey started from Brgy. 4-A in Davao City along Maharlika Highway, and ended in Brgy. Darong Santa Cruz, Davao del Sur. Point DVS-1 was used as base station all throughout the conduct of the survey.

Figure 46. Ground Validation Set-up (A) and (B) GPS base receiver set up, Trimble® SPS 852 at DVS-1, in Sta. Ana Port

The survey acquired 13,126 ground validation points with an approximate length of 94 km using the base station DVS-1, as shown in the map in Figure 47.

Figure 47. Validation point acquisition survey of Talomo River basin

4.7 River Bathymetric Survey

Manual bathymetric survey was conducted on October 17 to 21, 2014 using a Trimble[®] SPS 882 GNSS receiver in a PPK survey technique as shown in Figure 48. The survey started in the upstream part of the river in Brgy. Mintal, Davao City, Davao Del Sur with coordinates 7°05′40.66644″ 125°30′06.88067″, traversed down the river by foot and ended at the mouth of it in Brgy. Maina Aplaya, also in Davao City with coordinates 7°02′47.89194″ 125°33′40.86268″.

Figure 48. Actual Execution of Manual Bathymetry in Talomo River

The bathymetric survey covered a total length of approximately 11.90 km with a total of 717 points gathered using DVS-1 as GNSS base station all throughout the survey. Canopy cover along the river prohibited GPS signals to penetrate; thus, resulting in float data. The processed data were generated into a map using GIS software as shown in Figure 49.

Figure 49. Extent of the Talomo River Bathymetry Survey in Davao City, Davao del Sur

61

CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Enrico C. Paringit, Dr. Eng., Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil R. Tingin, Narvin Clyd Tan, and Hannah Aventurado

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Talomo River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Talomo River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the Baguio District ARG located in Barangay Baguio, Davao, Davao del Sur with the following coordinates: 7° 10′ 19.31″ N, 125° 24′ 12.24″ E (Figure 51). The precipitation data collection started from July 31, 2015 at 1:00 PM to August 2, 2015 at 2:30 PM with a 15-minute recording interval.

The total precipitation for this event in the installed rain gauge was 14.37 mm. It has a peak rainfall of 3.33 mm. on July 31, 2015 at 6:45 PM. The lag time between the peak rainfall and discharge is 12 hours and 25 minutes.

Figure 51. Location map of the Talomo HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Kalye Apike Bridge, Barangay Calinan, Davao, Davao del Sur (7° 11' 9.13" N, 125° 27' 9" E). It gives the relationship between the observed water level at the Kalye Apike Bridge and outflow of the watershed at this location.

Kalye Apike Bridge Cross-Section

Figure 52. Cross-section plot of Kalye Apike Bridge

For Kalye Apike Bridge, the rating curve is expressed as Q = 1.00E-306e3.65x as shown in Figure 53.

Figure 53. Rating curve at Kalye Apike Bridge, Davao, Davao del Sur

The rating curve equation was used to compute for the river outflow at Kalye Apike Bridge for the calibration of the HEC-HMS model for Talomo, as shown in Figure 54. The total rainfall for this event is 14.37 mm and the peak discharge is 29.2 m3/s at 7:10 AM of August 1, 2015.

Figure 54. Rainfall and outflow data at Kalye Apike Bridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Davao Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Talomo watershed. The extreme values for this watershed were computed based on a 59-year record.

		COMPUT	TED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	19.5	30	38.2	53.2	65.2	71.6	80.3	85.8	91.4
5	25.1	39.3	51	73.2	88.8	96.4	108.7	114.9	121.1
10	28.8	45.4	59.4	86.5	104.5	112.8	127.5	134.1	140.7
15	30.9	48.9	64.2	94	113.3	122.1	138.1	145	151.8
20	32.4	51.3	67.6	99.3	119.5	128.6	145.5	152.6	159.5
25	33.5	53.2	70.1	103.3	124.2	133.6	151.2	158.5	165.5
50	37	59	78.1	115.8	138.9	149	168.8	176.5	183.9
100	40.5	64.7	85.9	128.1	153.5	164.2	186.3	194.4	202.1

Table 28. RIDF values for Davao Rain Gauge computed by PAGASA

Figure 55. Location of Davao RIDF Station relative to Talomo River Basin

Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA - BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Talomo River Basin are shown in Figure 57 and Figure 58, respectively.

Figure 57. Soil Map of Talomo River Basin used for the estimation of the CN parameter.

Figure 58. Land Cover Map of Talomo River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model.

For Talomo, three (3) soil classes were identified. These are clay, silty clay loam and undifferentiated land. Moreover, seven (7) land cover classes were identified. These are shrublands, grasslands, forest plantations, open forests, closed forests, built-up areas, and cultivated areas.

Figure 59. Slope Map of Talomo River Basin

Figure 60. Stream Delineation Map of Talomo River Basin

Using the SAR-based DEM, the Talomo basin was delineated and further subdivided into subbasins. The model consists of 71 sub basins, 35 reaches, and 35 junctions, as shown in Figure 61. The main outlet is at Kalye Apike Bridge.

Figure 61. Talomo River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the north of the model to the south, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 60. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 14.54883 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Talomo are in Figures Figure 67, Figure 69, and Figure 71.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 12824400.00 m2. The generated flood depth maps for Talomo are in Figures Figure 68, Figure 70, and Figure 72.

There is a total of 4156394.14 m3 of water entering the model. Of this amount, 4156394.14 m3 is due to rainfall while 0 m3 is inflow from other areas outside the model. 984200.00 m3 of this water is lost to infiltration and interception, while 878971.22 m3 is stored by the flood plain. The rest, amounting up to 2293222.86 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Talomo HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 64 shows the comparison between the two discharge data.

Figure 64. Outflow hydrograph of Talomo produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 29 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	1.86 – 19.726
			Curve Number	37.68 – 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02 – 0.07
			Storage Coefficient (hr)	0.024 - 0.069
	Baseflow	Recession	Recession Constant	0.0044 – 0.015
			Ratio to Peak	0.327 – 0.75
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.19012

Table 29. Range of calibrated values for the Talomo River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.86 mm to 19.726 mm means that there is a small initial fraction of the storm depth after which runoff begins, increasing the river outflow.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Talomo, the basin consists mainly of forest plantations and cultivated areas and the soil consists of mostly undifferentiated land and clay.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 0.07 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.0044 to 0.015 indicate that the basin is highly likely to quickly go back to its original discharge. Values of ratio to peak within the range of 0.327 to 0.75 indicate an average receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Talomo river basin reaches' Manning's coefficient is 0.19012, showing that the catchment is filled with rough surfaces that impede flow and runoff. (Brunner, 2010).

Accuracy measure	Value
RMSE	3.3
r2	0.751
NSE	0.73
PBIAS	5.61
RSR	0.52

Table 30. Summary of the Efficiency Test of the Talomo HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 3.3 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.751.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.73

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 5.61.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.52.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Talomo outflow using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 65. Outflow hydrograph at Talomo Station generated using the Davao RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Talomo discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

Table 31 Peak values of the Talomo	HE(-HMS Model outflow usin	or the Davao RIDE 14-hour values
Table JI. I can values of the Tablib	TILC' THE MOUCH OUTION USIN	$g \operatorname{the Davao \operatorname{RiD1}} 2+ \operatorname{hour values}$.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	121.1	25.1	1442.7	5 hours, 10 minutes
10-Year	140.7	28.8	1810.3	5 hours
25-Year	165.5	33.5	2304.8	4 hours, 50 minutes
50-Year	183.9	37	2686.3	4 hours, 40 minutes
100-Year	202.1	40.5	3070.5	4 hour, 30 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Talomo River using the calibrated HMS base flow is shown in Figure 66.

Figure 66. Sample output map of Talomo RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Talomo floodplain are shown in Figure 67 to Figure 72. The floodplain, with an area of 31.24 sq. km., covers only one muncipality. Table 32 shows the percentage of area affected by flooding per municipality/ city.

Province	Municipality/ City	Total Area	Area Flooded	% Flooded
Davao del Sur	Davao City	2224.82	31.24	1.4%

Table 32. Municipalities/ cities affected in Talomo Floodplain

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Talomo river basin, grouped by municipality, are listed below. For the said basin, only one municipality consisting of 22 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 2.69% of the municipality of Davao City with an area of 2224.82 sq. km. will experience flood levels of less than 0.20 meters. 0.18% of the area will experience flood levels of 0.21 to 0.50 meters while 0.08%, 0.06%, 0.04%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 and Table 34, and shown in Figure 73 and Figure 74 are the affected areas in square kilometres by flood depth per barangay.

Table 33. Affected areas in Davao City, Davao del Sur during a 5-Year Rainfall Return Period

Affected area (sq. km.) by				Area of affect	ed barangays	in Davao C	ity (in sq.	km.)			
flood depth (in Ba m.) Gal	ago lera	Bago Oshiro	Callawa	Catalunan Grande	Catalunan Pequeño	Langub	Ma-A	Mandug	Matina Aplaya	Matina Biao	Matina Crossing
0.03-0.20	6.	0.084	4.93	4.69	2.28	5.7	0.74	0.19	2.69	2.29	2.29
0.21-0.50 0.0	047	0.0037	0.2	0.2	0.11	0.25	0.13	0.003	0.43	0.083	0.39
0.51-1.00 0.0	016	0.0023	0.092	0.15	0.072	0.19	0.03	0.0021	0.066	0.06	0.07
1.01-2.00 0.0	015	0.00066	0.067	0.12	0.054	0.14	0.03	0.0019	0.0031	0.051	0.012
2.01-5.00 0.0	336	0	0.046	0.046	0.03	0.21	0.0017	0.0003	0	0.034	0.00078
> 5.00 0.00	036	0	0.0042	0.0015	0.0031	0.054	0	0	0	0.0052	0

Table 34. Affected areas in Davao City, Davao del Sur during a 5-Year Rainfall Return Period

Affected area (sq. km.) by				Area of aff	ected barang	ays in Davao	City (in sq.	km.)			
flood depth (in m.)	Matina Pangi	Mintal	New Carmen	New Valencia	Pangyan	Santo Niño	Tacunan	Talandang	Talomo	Ula	Waan
0.03-0.20	1.55	1.27	5.95	3.08	0.12	0.45	10.99	0.95	4.01	0.49	4.14
0.21-0.50	0.18	0.051	0.26	0.12	0.0017	0.024	0.58	0.038	0.76	0.022	0.11
0.51-1.00	0.11	0.024	0.099	0.077	0.0006	0.012	0.33	0.019	0.32	0.0078	0.066
1.01-2.00	0.12	0.018	0.11	0.046	0.0001	0.0039	0.18	0.0067	0.21	0.0033	0.053
2.01-5.00	0.068	0.0024	0.089	0.022	0	0	0.081	0	0.13	0.0002	0.12
> 5.00	0.0036	0	0.001	0.00025	0	0	0.019	0	0.0067	0	0.046

Figure 73. Affected Areas in Davao City, Davao del Sur during 5-Year Rainfall Return Period

Figure 74. Affected Areas in Davao City, Davao del Sur during 5-Year Rainfall Return Period

For the 25-year return period, 2.57% of the municipality of Davao City with an area of 2224.82 sq. km. will experience flood levels of less than 0.20 meters. 0.22% of the area will experience flood levels of 0.21 to 0.50 meters while 0.11%, 0.08%, 0.06%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 and Table 36, and shown in Figure 75 and Figure 76 are the affected areas in square kilometres by flood depth per barangay.

Affected area (so. km.) bv				Area of affect	ted barangays	in Davao Ci	ty (in sq.	km.)			
flood depth (in m.)	Bago Gallera	Bago Oshiro	Callawa	Catalunan Grande	Catalunan Pequeño	Langub	Ma-A	Mandug	Matina Aplaya	Matina Biao	Matina Crossing
0.03-0.20	0.84	0.082	4.84	4.55	2.18	5.48	0.67	0.19	2.39	2.25	2.09
0.21-0.50	0.063	0.0042	0.24	0.25	0.16	0.26	0.16	0.0036	0.67	0.089	0.51
0.51-1.00	0.029	0.0032	0.1	0.16	0.076	0.27	0.04	0.0019	0.12	0.066	0.14
1.01-2.00	0.028	0.00066	0.083	0.16	0.083	0.19	0.039	0.0023	0.012	0.058	0.027
2.01-5.00	0.041	0.000099	0.069	0.072	0.049	0.26	0.02	0.0003	0	0.053	0.0029
> 5.00	0.014	0	0.009	0.0075	0.0087	0.095	0	0	0	0.012	0

Table 35. Affected areas in Davao City, Davao del Sur during a 25-Year Rainfall Return Period

Table 36. Affected areas in Davao City, Davao del Sur during a 25-Year Rainfall Return Period

Affected area				Area of aff	ected barang	ays in Davao	City (in sq.	km.)			
flood depth (in m.)	Matina Pangi	Mintal	New Carmen	New Valencia	Pangyan	Santo Niño	Tacunan	Talandang	Talomo	Ula	Waan
0.03-0.20	1.45	1.24	5.78	3.02	0.12	0.44	10.71	0.94	3.42	0.48	4.07
0.21-0.50	0.17	0.064	0.33	0.14	0.0022	0.03	0.64	0.043	0.98	0.028	0.13
0.51-1.00	0.14	0.03	0.11	0.085	0.00051	0.018	0.41	0.026	0.56	0.011	0.069
1.01-2.00	0.17	0.027	0.11	0.064	0.00029	0.0065	0.26	0.0087	0.28	0.0041	0.062
2.01-5.00	0.1	0.0076	0.12	0.035	0	0	0.13	0.0005	0.19	0.001	0.12
> 5.00	0.011	0	0.042	0.0014	0	0	0.037	0	0.022	0	0.099

Figure 75. Affected Areas in Davao City, Davao del Sur during 25-Year Rainfall Return Period

For the 100-year return period, 2.50% of the municipality of Davao City with an area of 2224.82 sq. km. will experience flood levels of less than 0.20 meters. 0.24% of the area will experience flood levels of 0.21 to 0.50 meters while 0.13%, 0.09%, 0.07%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and Table 38, and shown in Figure 77 and Figure 78 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sg. km.) bv				Area of affect	ed barangays	in Davao Ci	ity (in sq.	km.)			
flood depth (in m.)	Bago Gallera	Bago Oshiro	Callawa	Catalunan Grande	Catalunan Pequeño	Langub	Ma-A	Mandug	Matina Aplaya	Matina Biao	Matina Crossing
0.03-0.20	0.78	0.08	4.77	4.45	2.12	5.37	0.63	0.19	2.18	2.22	1.97
0.21-0.50	0.066	0.006	0.27	0.28	0.18	0.24	0.18	0.0044	0.82	0.089	0.55
0.51-1.00	0.045	0.003	0.11	0.18	0.085	0.26	0.048	0.0017	0.18	0.073	0.21
1.01-2.00	0.047	0.0012	0.085	0.18	0.089	0.24	0.04	0.0026	0.021	0.06	0.036
2.01-5.00	0.051	0.000099	0.086	660.0	0.066	0.29	0.035	0.0003	0	0.063	0.004
> 5.00	0.023	0	0.015	0.019	0.014	0.13	0	0	0	0.02	0

Table 37. Affected areas in Davao City, Davao del Sur during a 100-Year Rainfall Return Period

Table 38. Affected areas in Davao City, Davao del Sur during a 100-Year Rainfall Return Period

Affected area				Area of aff	ected barang	ays in Davao	City (in sq.	km.)			
flood depth (in m.)	Matina Pangi	Mintal	New Carmen	New Valencia	Pangyan	Santo Niño	Tacunan	Talandang	Talomo	Ula	Waan
0.03-0.20	1.4	1.21	5.67	2.99	0.11	0.42	10.53	0.93	3.07	0.47	4.02
0.21-0.50	0.16	0.076	0.39	0.15	0.0023	0.037	0.68	0.044	0.97	0.031	0.13
0.51-1.00	0.11	0.035	0.12	0.087	0.00071	0.021	0.45	0.031	0.76	0.013	0.071
1.01-2.00	0.21	0.028	0.11	0.077	0.00029	0.0082	0.3	0.01	0.38	0.0048	0.066
2.01-5.00	0.14	0.014	0.13	0.041	0	0.0005	0.17	0.0012	0.23	0.0014	0.1
> 5.00	0.018	0	0.087	0.0042	0	0	0.054	0	0.033	0	0.15

Figure 77. Affected Areas in Davao City, Davao del Sur during 100-Year Rainfall Return Period

Figure 78. Affected Areas in Davao City, Davao del Sur during 100-Year Rainfall Return Period

Among the barangays in the municipality of Davao City in Davao del Sur, Tacunan is projected to have the highest percentage of area that will experience flood levels at 0.55%. Meanwhile, Langub posted the second highest percentage of area that may be affected by flood depths at 0.29%.

Moreover, the generated flood hazard maps for the Talomo Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area Covered in sq. km.				
Level	5 year	25 year	100 year		
Low	4.21	5.15	5.58		
Medium	2.51	3.40	4.04		
High	1.75	2.53	3.13		
TOTAL	8.46	11.07	12.76		

Table 39. Areas covered by each warning level with respect to the rainfall scenarios

Of the 60 identified educational institutions in the Talomo floodplain, eight schools were assessed to be relatively prone to flooding as they are exposed to the Medium level flooding for all three rainfall scenarios. Four other institutions were found to be also susceptible to flooding, experiencing Low level flooding in the 5-year return period, and Medium level flooding in the 25- and 100-year rainfall scenarios. The educational institutions exposed to flooding are shown in Annex 12.

15 medical institutions were identified in the Talomo floodplain. 318 Phamacia King Inc. in Brgy. Matina Aplaya and Amboy Dental Clinic, Central Park Veterinary Clinic, and Farmacia Rowems in Brgy. Talomo were found to be relatively prone to flooding, having Low level flooding in all three rainfall scenarios. The medical institutions exposed to flooding are shown in Annex 13.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what was needed.

The flood validation survey was conducted on December 4-8, 2015. The flood validation consisted of 180 points randomly selected all over the Talomo flood plain. It had an RMSE value of 0.93.

125°30'0"E

Figure 79. Talomo Flood Validation Points

Figure 80. Flood map depth vs. actual flood depth

Actual	Modeled Flood Depth (m)							
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20	27	25	8	4	4	1	69	
0.21-0.50	4	8	2	1	0	0	15	
0.51-1.00	8	5	3	1	0	0	17	
1.01-2.00	2	4	11	9	3	0	29	
2.01-5.00	0	0	6	7	16	3	32	
> 5.00	0	0	0	0	13	5	18	
Total	41	42	30	22	36	9	180	

Table 40. Actual flood vs simulated flood depth at different levels in the Talomo River Basin.

The overall accuracy generated by the flood model is estimated at 37.78%, with 68 points correctly matching the actual flood depths. In addition, there were 74 points estimated one level above and below the correct flood depths while there were 27 points and 11 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 52 points were overestimated while a total of 60 points were underestimated in the modelled flood depths of Talomo. The summary of the accuracy assessment is presented in Table 41.

	No. of Points	%
Correct	68	37.78
Overestimated	52	28.89
Underestimated	60	33.33
Total	180	100

Table 41. Summary of the Accuracy Assessment in the Talomo River Basin Survey

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.
ANNEXES

Annex 1. Optech Technical Specification of the Gemini Sensor

Figure A-1.1. Parameters and Specification of the Gemini Sensor

Control Rack

Laptop

Table A-1.1. Parameters and Specification of the Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
220-channel dual frequency GPS/GNSS/ Galileo/L-Band receiver	Programmable, 0-75 °
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg	-10°C to +35°C
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence $\leq 20^{\circ}$

4 Target size \geq laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. DVS-1

DVS-1

Location Description

DVS-1 From Davao City hall travel southeast along San Pedro street for 400 meters. Upon reaching the "T" intersection of San Pedro street and Quezon boulevard travel for 2.1 kms. up to the cross intersection of roads at Monteverde street, Leon Garcia street and Quezon boulevard. From this intersection turn right to Sta. Ana pier. The station is located on the east side of the new pier; 94 meters Northeast of coast guard house and north of the old pier. Station mark is 0.15 m x 0.01 m in diameter brass rod with cross cut on top, set in a drill hole, centered in a 30 cm x 30 cm 0.15 m x 0.01 m in diameter brass rods with cross cut on top, set in drill holes, centered in cement patty on concrete pavement of wharf. Inscribed on top with the reference mark numbers and arrow pointing to the station concrete pavement of wharf. Inscribed on top with the reference mark numbers and arrow pointing to the station.

Requesting Party:	UP-TCAGP
Pupose:	Reference
OR Number:	3943584 B
T.N.:	2013-0366

RUELOM. BELEN, MNSA Director, Mapping and Geodesy Department 1

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barroca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.1. DVS-1

2. DVA-133

Figure A-2.2. DVA-133

3. DVA-3237

				July 25, 2014
	CI	ERTIFICATION		
o whom it may concern: This is to certify that a	ccording to the records of	on file in this office, the r	equested survey inform	ation is as follows -
	Province:	DAVAO DEL NORTE		
	Station	Name: DVA-3237		
Island: MINDANAO	Or	der: 4th	Barangay: NAN	YO
Municipality: CITY OF	PANABO	RS92 Coordinates	MSL Elevation:	
Latitude: 7º 19' 59.93	670" Longitud	de: 125º 38' 7.27962"	Ellipsoidal Hgt:	16.91200 m.
	W	GS84 Coordinates		
Latitude: 7º 19' 56.74	1722" Longitud	de: 125º 38' 12.77896"	Ellipsoidal Hgt:	89.23800 m.
	PTM	/ PRS92 Coordinates		
Northing: 810878.179	m. Easting:	570151.447 m.	Zone: 5	
Northing: 811,399.31	UTM Easting:	/ PRS92 Coordinates 790,969.56	Zone: 51	
	Lo	cation Description		
DVA-3237			Cohool	
Marked is the head of a 4	lide the flagpole inside th I" copper nail embedded	and centered on a 0.25	cm. x 0.25cm. x 1.00m.	concrete
nonument with inscription	ns "DVA-3237; 2008; LM	S XI."		
Requesting Party: UP-T Pupose: Refer	CAGP / Engr. Christop rence	her Cruz	Ma	/
DR Number: 8799 C.N.: 2014	582 A -1737		ATTIK	
		Dire	RUEL OM. BELEN, N	INSA Jesy Branch
				flor
			/	
		ļ		
	NAMRIA OFFICES: Main : Lawton Avenue, Fort Bu	onifacio, 1634 Taguig City, Philippines Tai	No.: (632) 810-4831 to 41	
	Institut - Californi Prograda, Part de	ormation recover regard only in implying a re-	100. 000 000 000 000 000 000 000 000 000	

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. DVS-1A

Table A-3.1. DVS-1A

DVS-01 18 - DVS-01A 1	8 (9:38:44 AM-2:08:59 PM) (S1)
Baseline observation:	DVS-01 18 DVS-01A 18 (B1)
Processed:	7/23/2014 10:09:22 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.001 m
RMS:	0.000 m
Maximum PDOP:	1.748
Ephemeris used:	Broadcast
Antenna model:	Trimble Relative
Processing start time:	7/18/2014 9:38:44 AM (Local: UTC+8hr)
Processing stop time:	7/18/2014 2:08:59 PM (Local: UTC+8hr)
Processing duration:	04:30:15
Processing interval:	5 seconds

Vector Components (Mark to Mark)

From:	DVS-01 18						
	Grid		Loc	al			Global
Easting	790192.921 m	Latit	ude	N7°04'38.36201"	Latitude		N7"04"38.36201"
Northing	783116.705 m	Long	gitude	E125°37'36.77094"	Longitude		E125"37"36.77094"
Elevation	0.546 m	Heig	pht	68.275 m	Height		68.275 m
To:	DVS-01A 18						
	Grid		Loc	al			Global
Easting	790187.943 m	Latit	ude	N7°04'38.34585"	Latitude		N7"04"38.34585"
Northing	783116.180 m	Long	gitude	E125°37'36.60874"	Longitude		E125*37*36.60874*
Elevation	0.535 m	Heig	pht	68.265 m	Height		68.265 m
Vector							
∆Easting	-4.97	78 m	NS Fwd Azimuth		264*18*12*	ΔX	4.016 m
∆Northing	-0.52	25 m	Ellipsoid Dist.		5.002 m	ΔY	2.941 m
ΔElevation	-0.01	1 m	∆Height		-0.010 m	ΔZ	-0.494 m

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, DR.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

Table A-4.1. The LiDAR Survey Team Composition

	TILLE		
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP
LiDAR Operation	Research Associate (RA)	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
	RA	FOR. MA. VERLINA TONGA	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	ENGR. KENNETH QUISADO	UP-TCAGP
	Airborne Security	TSG. MIKE DIAPANA	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. RAUL CZ SAMAR II	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. JOHN BRYAN DONGUINES	AAC

FIELD TEAM

Annex 5. Data Transfer Sheet for Talomo Floodplain

							DATA TR	VANSFER SHEL	ta								
							07/08/2014(D4	avao Oriental -	ready)								
				RAM	VLAS							0101 0					
DATE	FLIGHT NO.	MISSION NAME	SENSOR			LOGS/MBI	ave	RAW	MISSION LOG			DASE ST	ATION(S)	OPERATOR	FLIGHT	T PLAN	
				Output LAS	KML (swath)		2	IMAGESICASI	LOGS	RANGE	DIGITIZER	BASE	Base Info	(OPLOG)	Actual	KML	LOCATION
7/18/2014	7378GC	2BLK82A199A	Gemini	MA	242	493	243	A M					-				ZIDACIRAU
						-	24	-	LAN .	1.47	NA	8.53	1KB	1KB	111	16	DATA
7/22/2014	7386GC	2BLK82CSD203A	Gemini	NA	141/159	637	267	MA	MA	000							ZIDACIRAV
* WOLI CLIL									5	7.07	NA	0.61	1KB	1KB	3/3	NA	DATA
6T02/c2/1	138861	ZBLK8ZAB204A	Gemini	NA	89	488	228	NA	NA	214	NA.	000					Z:VDAC/RAV
ALOCIACIT	7300022	- ACCULCON IGC								217	VV	0.09	1KB	1KB	4/3	10	DATA
4707/L7/1	DODEC!	ZBLK6ZFHZUDA	Gemini	NA	93	591	241	NA	NA	29	NA	17.6	1KR	4KD			Z'IDACIRAN
7/27/2014	7396GC	2BLK82GSH2D8A	Gamini	NA.	000	Var								a	5	NA	DATA
				-	1007	ROJ	214	NA	NA	27.1	NA	5.65	1KB	1KB	4/4	NA	DATA
7/29/2014	7401GC	2BLK82EFGHS210B	Gemini	NA	83	339	104	MA					1				ZIDACIRAM
								La la	va	07.0	NA	1.1	IKB	1KB	12/12/12	NA	DATA

Received from

Name TIN ANDAYA 2

Name

Figure A-5.1. Transfer Sheet for Talomo Floodplain - A

	ſ		-															
-				8	W LAS				MISSION									
ATE	UGHT NO.	MISSION NAME	SENSOR		KMI	LOGSIMBI	BOR	RAW	100			BASE ST	ATION(S)	OPERATOR	QUICK	FLIGHT	LAN	
				Output	(swath)		3	-	FILECASI	HANGE	DIGITIZER	BASE	Base Info	100100	(kmi	Actual	in a	SERVER LOCATH
14 74	12GC	2BLK87CSD216A	Gernini	21	310	627	100					Inhuman	(mar)	forma and	(Boundary)			
14 74	14GC	2BLK87E217A	Gamini	100	00		001	2	NV.	24.2	MA	4.99	1KB	IKB	382	3/3/7/3/3	NA	7-IDACIDAMINAT
14 74	1001	The second se		00.0	00	901	140	M	NA	7.62	NA	3.11	1KB	KB .	3	-		/ WOLLAND
	DOOT	ZBLK8/F218A	Gemini	5.39	184	194	148	AIA							8	0.0	NA.	Z:UDACURAWDAT
14 74	18GC	2BLK87FV219A	Gemini	12.7	101	366	100		5	0.31	NA	3.55	1KB	IKB	616		11	Z:UDAC/RAWDAT
74	DOGC	2COMA231A			TOT	3	100	MA	NA.	14.4	NA	3.49	1KB	KB	233	0110	NA	
	2024	VTTTUIN	Ceman	16.5	248	423	219	MA	NA	10.0	-			I			-	L'IUMCIRAWUAT
4 74	23GC	2COMBSCD221B	Gemini		210	206	176			0.01	2	OR'R	IKB	IKB .	948		12	Z'IDACIRAWDAT
74	24GC	2COMD6223A	A a mini		440	200	011	VN	W	16.6	NA	9.95	1KB	KB	080	6/5/3	VN	TA CLUDINA IN THE
		Contraction of the second seco	Cermin	0.44	39	236	157	MA	ALA .	0.60	-			İ				I NUMANUAL
14 74	26GC	2BLK82V223A	Gemini	8.44	119	279	135			0.01	N.	4.38	TKB	KB	064 3	2		Z:\DAC\RAWDAT
14 74	27GC	28LK82V2238	Gemini	430	64	101			5	10.8	NA	7.83	1KB	KB 1	813 7	111	A	Z-IDACIRAWDAT
14 743	28GC	DTAGU734A			5	104	132	N	NA.	5.65	M	7.83	1KB	KB A	1			The second se
		WHERE AND	Cemin	20.1	287	530	223	NA N	MA	22.6	AN		-					C-UACIRAWDAT
14	3060	2TAGV225A	Gemini	5.95	34	326	170	ALK .		0000	2		INB	×B ×B	967 2	3/23	AA	Z:UDAC/RAWDAT/
								-	5	N.30	VN	3.58	1KB	KB 1	1 583	8/18	N	7-IDACIPAINDAT

Received from

ANDAYA AL Name Signature Position

010 Name Position

Figure A-5.2. Transfer Sheet for Talomo Floodplain - B

1. Flight Log for Mission 2BLK82A199A

UDAR Operator: MV Ennove 2 ALTM	Model: 6+C 3 Mission Name: 28UG	ZAPSOA4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: RP C
Pilot: Concernent & Co-Pilot:	PUNDING 9 Route:			
Date: 7 -18-14 12 AIT	ort of Departure (Airport, Gty/Province):	12 Airport of Arrival	(Airport, Gty/Province):	
Engine On: 14 Engine Off: $0 + 3c_{j}$ 14 Engine Off: 1	$\frac{1}{4} + \frac{1}{44}$ 15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Filght Time:
) Remarks:				
Surrey	d 12 lives of B1k	82 CABC	~	
	Without CASI	. •		
21 Problems and Solutions:				
	~			
Acquisition Flight Approved by Country Over Phinted Name (End User Representative)	Acquisition Filling Construct by Segregative cowe Printed Name (MA Propresentative)	Plictin-Commi	Printed Name	Udar Operator Artor Sykaume bover Prhated kamme

Figure A-6.1. Flight Log for Mission 2BLK82A199A

		5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: K	20567
10 Date: 12 Airport of Départure (Airport, City/Province): 12 Airport of Départure (Airport, City/Province): 12	12 Airport of Arrival	(Airport, Gity/Province):		
13 Engine On: $g \neq 1 q$ 14 Engine Off: $g \neq 1 q$ 14 Engine Off: 12 $f \neq 2 q$ 15 Total Engine Time: 16 $f \neq 2 q$ 19 Weather	16 Take off:	17 Landing:	18 Total Flight Time:	
20 Remarks:				
Surveyed the Rest of	BIKER R	& 6 lines of GL	K 52.0	
(without casi)	. (
21 Problems and Solutions:				
Acquisition front Approved by Acquisition Fight Sertified by Signature over Printed Name (End User Representative)	Pilot-In-Commu	Printed Name	Udar Operator A A A A A A A A A A A A A A A A A A A	
Eigura A-6 2 Elight Log for	r Mission 2RI K83			

ъ.

9 Boute: (Mirport, City/Province): 13 Total Engine Time: 15 Take off: 15 Take off:	Completed if 3 Mission Name: 24.8 % 4 Type: VR 5 Alrcraft Type: Casina 1206H 6 Alrcraft Identified in the control of	Flight Log No.: 7-40/		:e:				ul	
9 Route: EFCHS 210G (Nipor, Chy/Province): 12 Airport of Arrival (Nipor, Chy/Province): 15 Total Engine Time: 16 Take off: 17 Landing: 15 Take off: 17 Landing: 15 Take off: 17 Landing: 16 Take off: 16 Landing: 16 Take off: 18 Landing: 16 Take off: 18 Landing: 17 Landing: 18 Landing: 18 Take off: 18 Landing: 18 Take off: 18 Landing: 18 Landing: 18 Take off: 18 18	Completed Bile 826 and rolling: 13 Argan of Arrivan Index Connat Topes (Gennar Topes (Gennar Topes (Gennar Topes) 2.4 Arroots (Pagan rune (Mirport, ChylProvince): 13 Argan of Arrivan (Mirport, ChylProvince): 2.4 Arroots (Pagan rune (Mirport, ChylProvince): 13 Argan of Arrivan (Mirport, ChylProvince): 2.4 Arroots (Pagan of Arrivan (Mirport, ChylProvince): 13 Argan of Arrivan (Mirport, ChylProvince): 2.4 Arroots (Pagan of Arrivan (Mirport, ChylProvince): 13 Arroot of Arrivan (Mirport, ChylProvince): 2.4 Arroots (Pagan of Arrivan (Mirport, ChylProvince): 13 Arroot of Arrivan (Mirport, ChylProvince): 2.4 Arroots (Pagan of Arrivan (Mirport, ChylProvince): 14 Corner (Mirport, ChylProvince): 15 Take off: 17 Landing: 2.4 Arroots (Pagan of Arrivan (Mirport, ChylProvince): 15 Take off: 17 Landing: 15 Landing: 17 Landing: 15 Landing: 18 La	6 Aircraft Identifie		18 Total Flight Tin	# "	•		Udar Operator Life Pro Fond a Signature over Printed Na	
9 Route: EFCHS 2100 (Airport, Gty/Province): 12 Airport of Arrival 15 Total Engine Time: 16 Take off: 1 4 5 9 3//c 8 2 6 a. d Voids OT 3//c 8 2 6 a. d Voids OT afficient of the off: 07 2000 1000 Monted by Pilot-in-Comma separate of the officient o	La Altron of Departure (Altron, 19 Route: EFCHS 2103 La Altron of Departure (Altron, Clty/Province): 12 Altron of Arrival Engine Off: 15 Total Engine Time: 16 Take off: 1 + 59 Comple te U B/k 826 a. d Voi a's ON Comple te U B/k 826 a. d Voi a's ON Requisitor fame In Acquisitor fame Pilot-in: Command B/A B/A B/A B/A B/A B/A B/A B/A B/A B/A		(Airport, City/Province):	17 Landing:	Alock SLE, 1			nd GLAINES Printed Name	
9 Route: EFC (Airport, City/Province): 15 Total Engine Time: 7 4 5 9 3//c 8 2 6 a. d a. d a. d a. d	Completed and manages and manages of a second secon	4 Type: VFR	HS 210 G 12 Airport of Arrival	16 Take off:	Voids On	5- -		Plot-in-Community	
	Engine Off: La Althory of Departure Engine Off: Le F40 Comple H Acquis by Acquis	3 Mission Name: 2 & CO	9 Route: EFC (Airport, City/Province):	15 Total Engine Time:	3/k 826 and		1	adon fran Cardined by the cong Printed Name apresentative)	

107

DAR Operatory & Payag	arc 2 ALTM Model: 6C	3 Mission Name: 2 BL 82	V224 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	7322
ate: KN ghines a ate: 8 - 11-14	12 Airpost of Departure	9 Route: (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):		-
ngine Onicy P 3 1	t Engine Off:	15 Total Engine Time: 2 + 4/	16 Take off:	17 Landing:	18 Total Flight Time:	
leather						
emarks:	Surveyed	ni spier	81682			
Problems and Solutions:						
	3	1				
Acquisition Flight Appro	ved by Acqu Name Signa	ssition fight stilled by the over Printed Name Representative)	Pilot-In-Con	mand a second se	Lidar Operator Appendix Signature over Printed Name	-

108

Figure A-6.4. Flight Log for Mission 2BLK82V223A

alsition Flight Log or: AM V 700 96 2 ALTM Model: C	a Mission Name: 7716-871	AP D 4 Type: VFR	S Aircraft Twoe: Cestina T206H	Fight 6 Aircraft Identification	CCC No.: 772
NOV 1011-14 & ALIM MOULT	9 Route:	11 1 4 1 Abe: ALK	P AILCOATT 1970E: LESUNA 1200H	b Aircratt Identification:	tist
4 12 Airport of Departu	re (Airport, Gty/Province):	12 Airport of Arrival	(Airport, Gty/Province):		
14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
*					
S	uncyed voids	in Blic 87			
lutions:					
)				
	l				
n Flight Approved by	Lequisition fight Cartified by	Pilot-in-Con	pueuu	Lidar Operator]
over Printed Name	ignature over Printed Name PAF Representative)	B. DC	ALC IN ES	Signature over Printed Name	-
				/	
	Figure A-6.4. Flight Lo	og for Mission 2BI	LK82V223B		

Annex 7. Flight Status Reports

DAVAO CITY

(July 16 - August 13, 2014

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7378GC	BLK82A, 82B, 82C	2BLK82A199A	MV Tonga	July 18, 2014	Flown BLK82ABC and surveyed 12 lines without CASI @ 850 AGL
7388GC	BLK82A,82B, 82E	2BLK82DAB204A	MV Tonga	July 23, 2014	Completed the remaining lines of BLK82AB (8 lines) and proceed to BLK82E (6 lines) without CASI @ 1000 AGL
7401GC	BLK82E, 82F, 82G, 82H	2BLK87EFGHS210B	LK Paragas	July 29, 2014	Surveyed BLK87EFGH (7 lines) without CASI @ 850 AGL
7426GC	BLK82A, 82D, 82F, 82G	2BLK82V223A	LK Paragas	August 11, 2014	14 lines that filled up BLK 82 voids
7427GC	BLK82A, 82B, 82C	2BLK82V223B	MV Tonga	August 11, 2014	Filled up voids in BLK 82@1000m

Table A-7.1. Flight Status Report

LAS BOUNDARIES PER FLIGHT

Flight No.: Area: Mission Name: Parameters: Scan Angle: 7378GC BLK82A, BLK82B, BLK82C 2BLK82A199A Altitude: 850 m; Scan Fr 25 deg; Overlap: 30%

Scan Frequency: 40 Hz;

Figure A-7.1. Swath for Flight No. 7378GC

Area:

Flight No.: 7401GC BLK82E, BLK82F, BLK82G, BLK82H Mission Name: 2BLK87EFGHS210B Parameters: Scan Frequency: 40 Hz; Altitude: 850 m; Overlap: 30% Scan Angle: 25 deg;

Figure A-7.2. Swath for Flight No. 7401GC

Flight No.: Area: Mission Name: Parameters: Scan Angle: 7426GC BLK82A, BLK82D, BLK82F, BLK82G 2BLK82V223A Altitude: 1000 m; 20 deg; Overlap: 35%

Scan Frequency: 50 Hz;

Figure A-7.3. Swath for Flight No. 7426GC

Flight No.: Area: Mission Name: Parameters: Scan Angle: 7427GC BLK82A, BLK82B, BLK82C 2BLK82V223B Altitude: 1000 m; 20 deg; Overlap: 35%

Scan Frequency: 50 Hz;

Figure A-7.4. Swath for Flight No. 7427GC

Annex 8. Mission Summary Reports

Elight Area	Davias Dol Sur	
Mission Name	BIK82A	
	/3/86	
Range data size	48.3 GB	
POS data size	243 MB	
Base data size	8.53 MB	
Image	na	
Transfer date	August 7, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.0	
RMSE for East Position (<4.0 cm)	1.42	
RMSE for Down Position (<8.0 cm)	2.2	
Boresight correction stdev (<0.001deg)	0.000857	
IMU attitude correction stdev (<0.001deg)	0.002434	
GPS position stdev (<0.01m)	0.0169	
Minimum % overlap (>25)	27.93%	
Ave point cloud density per sq.m. (>2.0)	3.86	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	149	
Maximum Height	883.49 m	
Minimum Height	66.48 m	
Classification (# of points)		
Ground	29,381,439	
Low vegetation	32,643,635	
Medium vegetation	115,735,540	
High vegetation	209,802,627	
Building	3,579,878	
Orthophoto	No	
Processed By	Engr. Carlyn Ann Ibañez, Engr. Harmond Santos, Engr. Jeffrey Delica	

Table A-8.1. Mission Summary Report for Mission Blk82A

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.5. Image of Data Overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Davao Del Sur	
Mission Name	Blk82B	
Inclusive Flights	7378G,7388G	
Range data size	69.7 GB	
POS data size	471 MB	
Base data size	17.22 MB	
Image	na	
Transfer date	August 7, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.06	
RMSE for East Position (<4.0 cm)	1.25	
RMSE for Down Position (<8.0 cm)	2.6	
Boresight correction stdev (<0.001deg)	0.000555	
IMU attitude correction stdev (<0.001deg)	0.002846	
GPS position stdev (<0.01m)	0.0102	
Minimum % overlap (>25)	10.46%	
Ave point cloud density per sq.m. (>2.0)	2.79	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	164	
Maximum Height	460.63 m	
Minimum Height	66.77 m	
Classification (# of points)		
Ground	42,418,988	
Low vegetation	48,280,364	
Medium vegetation	94,050,611	
High vegetation	197,058,041	
Building	10,388,900	
Orthophoto	No	
Processed By	Engr. Carlyn Ann Ibañez, Engr. Harmond Santos, Engr. Jeffrey Delica	

Table A-8.2. Mission Summary Report for Mission Blk82B

Figure A-8.8. Solution Status Parameters

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of Data Overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Davao Del Sur
Mission Name	Blk82 Voids
Inclusive Flights	7427G,7426G
Range data size	15.26 GB
POS data size	267 MB
Base Data Size	15.66 MB
Image	na
Transfer date	August 29, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.5
RMSE for East Position (<4.0 cm)	3.1
RMSE for Down Position (<8.0 cm)	7.4
Boresight correction stdev (<0.001deg)	0.001127
IMU attitude correction stdev (<0.001deg)	0.016683
GPS position stdev (<0.01m)	0.0248
Minimum % overlap (>25)	10.46%
Ave point cloud density per sq.m. (>2.0)	2.79
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	272
Maximum Height	421.89 m
Minimum Height	67.51 m
Classification (# of points)	
Ground	40,594,810
Low vegetation	34,398,304
Medium vegetation	58,498,265
High vegetation	166,572,237
Building	4,853,133
Orthophoto	No
Processed By	Engr. Analyn Naldo, Engr. Harmond Santos, Ailyn Biñas

Table A-8.3. Mission Summary Report for Mission Blk82 Voids

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of Data Overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Davao Del Sur	
Mission Name	Blk82E	
Inclusive Flights	7388G,7401G	
Range data size	29.65 GB	
POS data size	332 MB	
Base Data Size	15.79 MB	
Image	na	
Transfer date	August 7, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.05	
RMSE for East Position (<4.0 cm)	1.25	
RMSE for Down Position (<8.0 cm)	2.7	
Boresight correction stdev (<0.001deg)	0.000183	
IMU attitude correction stdev (<0.001deg)	0.633546	
GPS position stdev (<0.01m)	0.0028	
Minimum % overlap (>25)	24.76%	
Ave point cloud density per sq.m. (>2.0)	2.92	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	318	
Maximum Height	403.82 m	
Minimum Height	62.44 m	
Classification (# of points)		
Ground	75,679,213	
Low vegetation	78,983,338	
Medium vegetation	146,928,343	
High vegetation	282,014,947	
Building	24,716,788	
Orthophoto	No	
Processed By	Engr. Irish Cortez, Engr. Harmond Santos, Ailyn Biñas	

Table A-8.4. Mission Summary Report for Mission Blk82E

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of Data Overlap

Figure A-8.27. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.28. Elevation difference between flight lines

Annex 9. Talomo Model Basin Parameters

Racin		Inte Number	1000	Clark I Init Hvdrog	ranh Trancform		Rece	seion Bacefl	MU	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Type	Ratio to Peak
W1000	4.0218	66	0	0.046724	0.045751	Discharge	0.060103	0.009604	Ratio to Peak	0.50132
W1010	7.4379	45.723	0	0.035392	0.034655	Discharge	0.027641	0.0147	Ratio to Peak	0.5
W1020	9.4434	66.292	0	0.048278	0.047274	Discharge	0.038495	0.009845	Ratio to Peak	0.75
W1030	2.3662	90.519	0	0.041036	0.040182	Discharge	0.040942	0.004445	Ratio to Peak	0.50243
W1040	5.2978	66	0	0.02	0.024	Discharge	0.000545	0.004445	Ratio to Peak	0.49244
W1050	5.2978	66	0	0.02	0.024	Discharge	0.001675	0.004445	Ratio to Peak	0.735
W1060	4.9292	86.693	0	0.035256	0.034523	Discharge	0.04095	0.004445	Ratio to Peak	0.49242
W1070	3.7768	82.858	0	0.055066	0.053921	Discharge	0.050203	0.004445	Ratio to Peak	0.49241
W1080	3.9317	81.34	0	0.044682	0.043752	Discharge	0.041061	0.004445	Ratio to Peak	0.735
W1090	4.0936	80.606	0	0.048812	0.047796	Discharge	0.059072	0.006533	Ratio to Peak	0.735
W1100	2.3779	81.634	0	0.045406	0.044461	Discharge	0.071006	0.004445	Ratio to Peak	0.49225
W1110	10.239	62.609	0	0.048796	0.047782	Discharge	0.035969	0.004445	Ratio to Peak	0.5
W1120	9.9142	64.292	0	0.034198	0.033487	Discharge	0.010819	0.004445	Ratio to Peak	0.5
W1130	16.364	61.001	0	0.070236	0.068775	Discharge	0.074744	0.004445	Ratio to Peak	0.5
W1140	14.289	65.332	0	0.044242	0.043321	Discharge	0.039137	0.004445	Ratio to Peak	0.5
W1150	4.3577	83.365	0	0.036556	0.035796	Discharge	0.051336	0.004445	Ratio to Peak	0.49244
W1160	7.0033	52.441	0	0.040624	0.039779	Discharge	0.035591	0.009751	Ratio to Peak	0.5
W1170	9.4899	73.569	0	0.061724	0.06044	Discharge	0.13658	0.0098	Ratio to Peak	0.575
W1180	3.664	81.634	0	0.024358	0.024	Discharge	0.018514	0.004445	Ratio to Peak	0.49
W1190	2.3781	81.634	0	0.03325	0.032558	Discharge	0.042467	0.004445	Ratio to Peak	0.4802
W1200	4.5875	84.188	0	0.02	0.024	Discharge	0.007108	0.004445	Ratio to Peak	0.75
W1210	5.6156	80.944	0	0.048664	0.047653	Discharge	0.11362	0.004445	Ratio to Peak	0.49241
W1220	3.519	84.586	0	0.042612	0.041726	Discharge	0.053808	0.004445	Ratio to Peak	0.49243

Basin Number	scs cu	rve Numbei	r Loss	Clark Unit Hy Transfo	drograph rm		Rece	ssion Baseflo	MC	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	THreschold Type	Ratio to Peak
W1230	3.4466	84.81	0	0.040112	0.039277	Discharge	0.049258	0.004445	Ratio to Peak	0.49236
W1240	3.7836	81.634	0	0.03558	0.03484	Discharge	0.041038	0.004445	Ratio to Peak	0.4802
W1250	5.2978	81.634	0	0.02	0.024	Discharge	0.001728	0.004445	Ratio to Peak	0.49
W1260	7.875	81.634	0	0.030666	0.030028	Discharge	0.015738	0.004445	Ratio to Peak	0.32667
W1270	19.726	49.128	0	0.044628	0.043701	Discharge	0.019544	0.004445	Ratio to Peak	0.5
W1280	16.212	54.024	0	0.059002	0.057775	Discharge	0.094323	0.004445	Ratio to Peak	0.5
W1290	4.0272	76.832	0	0.059738	0.058496	Discharge	0.034233	0.004445	Ratio to Peak	0.4802
W1300	6.0297	76.832	0	0.04072	0.039874	Discharge	0.065439	0.004445	Ratio to Peak	0.32667
W1310	14.366	57.009	0	0.040834	0.039985	Discharge	0.066374	0.004445	Ratio to Peak	0.5
W1320	13.482	58.559	0	0.032964	0.032279	Discharge	0.052379	0.004445	Ratio to Peak	0.5
W1330	4.0397	76.832	0	0.038918	0.03811	Discharge	0.085804	0.004445	Ratio to Peak	0.4802
W1340	15	78.4	0	0.064308	0.06297	Discharge	7.54E-02	0.010096	Ratio to Peak	0.5
W1350	15.586	55	0	0.02	0.024	Discharge	9.15E-03	0.01	Ratio to Peak	0.5
W1360	15.586	55	0	0.033468	0.032771	Discharge	0.086031	0.01	Ratio to Peak	0.5
W1370	15	78.4	0	0.04976	0.048725	Discharge	0.06996	0.010096	Ratio to Peak	0.5
W1380	15.586	55	0	0.03081	0.030168	Discharge	0.048522	0.01	Ratio to Peak	0.5
W1390	15.586	55	0	0.037904	0.037116	Discharge	0.075651	0.01	Ratio to Peak	0.5
W1400	6.7	72.03	0	0.032202	0.031532	Discharge	0.0231	0.010098	Ratio to Peak	0.33333
W1410	6.6996	72.03	0	0.056462	0.055288	Discharge	0.057788	0.010099	Ratio to Peak	0.49
W1420	6.5334	66	0	0.051818	0.05074	Discharge	0.04446	0.006533	Ratio to Peak	0.5047
W720	2.6293	86.086	0	0.05684	0.055657	Discharge	0.15566	0.009847	Ratio to Peak	0.49216
W730	2.0881	65.878	0	0.045044	0.044107	Discharge	0.050157	0.009837	Ratio to Peak	0.49242
W740	2.3692	87.209	0	0.041434	0.040572	Discharge	0.042205	0.009983	Ratio to Peak	0.49239
W750	3.5311	87.203	0	0.046414	0.045449	Discharge	0.075654	0.015062	Ratio to Peak	0.735

SCS Cu	irve Numbei	r Loss	Clark Unit Hy Transfo	drograph rm		Rece	ssion Baseflo	M	
al tion	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	THreschold Type	Ratio to Peak
76	58.317	0	0.033088	0.0324	Discharge	0.028119	0.006699	Ratio to Peak	0.32667
78	58.146	0	0.047046	0.046068	Discharge	0.056339	0.00882	Ratio to Peak	0.48736
14	89.049	0	0.029312	0.028702	Discharge	0.01517	0.004445	Ratio to Peak	0.33333
27	37.683	0	0.069848	0.068394	Discharge	0.084315	0.015072	Ratio to Peak	0.49
963	86.2	0	0.070008	0.068551	Discharge	0.019594	0.006667	Ratio to Peak	0.32667
69t	84.985	0	0.058538	0.05732	Discharge	0.098238	0.006696	Ratio to Peak	0.32667
961	55.499	0	0.030356	0.029724	Discharge	0.03431	0.004445	Ratio to Peak	0.50199
585	66	0	0.15796	7.5333	Discharge	0.034373	0.010097	Ratio to Peak	0.5
36	56.694	0	0.02	0.024	Discharge	0.011843	0.006533	Ratio to Peak	0.49244
581	79.158	0	0.052126	0.051042	Discharge	0.12024	0.00882	Ratio to Peak	0.52988
189	61.67	0	0.057378	0.056184	Discharge	0.12518	0.00882	Ratio to Peak	0.49242
075	92.199	0	0.040028	0.039194	Discharge	0.038878	0.015074	Ratio to Peak	0.50245
797	85.476	0	0.033172	0.032482	Discharge	0.036013	0.004445	Ratio to Peak	0.4802
218	66	0	0.047244	0.046261	Discharge	0.044541	0.009536	Ratio to Peak	0.735
004	66	0	0.02	0.024	Discharge	0.002942	0.009848	Ratio to Peak	0.49259
513	89.82	0	0.024474	0.024	Discharge	0.02636	0.009847	Ratio to Peak	0.49
614	89	0	0.026524	0.025972	Discharge	0.017639	0.009847	Ratio to Peak	0.4802
659	85.466	0	0.048272	0.047267	Discharge	0.057659	0.006533	Ratio to Peak	0.4802
614	66	0	0.02	0.024	Discharge	9.58E-05	0.010056	Ratio to Peak	0.49
777	89.012	0	0.04466	0.043732	Discharge	0.040681	0.01008	Ratio to Peak	0.4802
731	89.892	0	0.021528	0.024	Discharge	0.013414	0.010098	Ratio to Peak	0.48882
889	83.659	0	0.037458	0.036678	Discharge	0.040674	0.010096	Ratio to Peak	0.48446
267	83.816	0	0.046482	0.045516	Discharge	0.041154	0.010098	Ratio to Peak	0.48901
)46	66	0	0.022738	0.024	Discharge	0.011067	0.006698	Ratio to Peak	0.50238

Parameters
Reach
Model
Talomo
10.
Annex

	Side Slope	-	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Width	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63	28.63
	Shape	Trapezoid																					
nel Routing	Manning's n	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012	0.19012
Muskingum Cunge Chan	Slope	0.015269	0.000602	0.001107	0.003247	0.004304	0.007766	0.011193	0.028365	0.031548	0.022647	0.003158	0.022736	0.002208	0.018704	0.026924	0.03635	0.047154	0.005754	0.025681	0.048253	0.014418	0.002088
	Length (m)	972.91	1397.7	2247.8	3722.1	665.23	88.279	1101.5	3069.6	2424.4	2188.6	2284	255.55	1094.9	522.1	5275.2	10089	4559.1	2681.6	2830.2	361.4	2165.1	789.36
	Time Step Method	Automatic Fixed Interval																					
Reach	Number	R100	R110	R150	R160	R170	R180	R190	R200	R210	R250	R270	R290	R30	R310	R320	R350	R360	R400	R410	R440	R450	R470

Reach			Muskingum Cunge Chanı	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R480	Automatic Fixed Interval	2477.8	0.002369	0.19012	Trapezoid	28.63	1
R490	Automatic Fixed Interval	4039.1	0.07225	0.19012	Trapezoid	28.63	1
R530	Automatic Fixed Interval	1183.9	0.002041	0.19012	Trapezoid	28.63	1
R580	Automatic Fixed Interval	3257	0.045634	0.19012	Trapezoid	28.63	1
R60	Automatic Fixed Interval	2996	0.001572	0.19012	Trapezoid	28.63	1
R600	Automatic Fixed Interval	1900.1	0.002901	0.19012	Trapezoid	28.63	1
R620	Automatic Fixed Interval	2746.6	0.061437	0.19012	Trapezoid	28.63	1
R640	Automatic Fixed Interval	1429.6	0.12659	0.19012	Trapezoid	28.63	1
R660	Automatic Fixed Interval	7833.8	0.016456	0.19012	Trapezoid	28.63	1
R690	Automatic Fixed Interval	3242.4	0.004075	0.19012	Trapezoid	28.63	1
R710	Automatic Fixed Interval	2572.5	0.004075	0.19012	Trapezoid	28.63	1
R80	Automatic Fixed Interval	3641.4	0.021156	0.19012	Trapezoid	28.63	1
R90	Automatic Fixed Interval	1160.5	0.015523	0.19012	Trapezoid	28.63	1

Annex 11. Talomo Field Validation Points

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
1	7.066217	125.5333	0.05	0	0.0025	0	25-Year
2	7.063377	125.5397	0.03	0	0.0009	0	25-Year
3	7.060662	125.5404	0.04	0	0.0016	0	25-Year
4	7.06674	125.5362	0.24	0.1	0.0196	Intense local rainfall/ 2009	25-Year
5	7.063115	125.538	0.17	0.1	0.0049	Intense local rainfall/ 2009	25-Year
6	7.06184	125.54	0.47	0	0.2209	0	25-Year
7	7.067109	125.5349	0.48	0.5	0.0004	Intense local rainfall/ June 2009	25-Year
8	7.065526	125.5348	0.49	0	0.2401	0	25-Year
9	7.063183	125.5421	0.03	0.4	0.1369	Intense local rainfall/ June 2009	25-Year
10	7.062371	125.5419	0.08	0.4	0.1024	Intense local rainfall/ 2009	25-Year
11	7.062828	125.5409	0.98	1	0.0004	Intense local rainfall/ January 2015	25-Year
12	7.065179	125.5407	2.62	1.5	1.2544	Flash flood/ 2015	25-Year
13	7.063001	125.5425	1.16	1.5	0.1156	Flash flood/ June 1995	25-Year
14	7.06391	125.5415	1.14	1.2	0.0036	Buhawi/ June 29, 2009	25-Year
15	7.062543	125.5435	1.28	2	0.5184	Intense local rainfall/ 2012	25-Year
16	7.067265	125.5394	1.57	1.4	0.0289	Intense local rainfall/ May 24, 1990	25-Year
17	7.06708	125.54	4.39	5.3	0.8281	Flash flood/ 1995	25-Year
18	7.065724	125.5402	4.25	5.3	1.1025	Flash flood/ 1995	25-Year
19	6.97602	126.309794	1.76	1.2	0.3136	Pablo/ 2012	25-Year
20	6.995603	126.305303	1.66	0.2	2.1316	Pablo/ 2012	25-Year
21	6.978806	126.312746	1.98	1	0.9604		25-Year
22	6.977517	126.311134	2.31	1	1.7161	Typhoon/ 2014	25-Year
23	6.988607	126.319967	0.72	0.4	0.1024	Pablo and Yolanda/ 2012 and 2013	25-Year
24	6.989011	126.320332	1	0.5	0.25	Pablo/ 2012	25-Year
25	7.010394	126.324075	0.03	0	0.0009		25-Year

Table A-11.1. Talomo Field Validation Points

Point Number	Validation (in V	Coordinates VGS84)	Model Var	Valid- ation	Error	Event/Date	Rain Return /
	Lat	Long	(m)	Points (m)			Scenario
26	7.063451	125.5427	5.82	5.2	0.3844	Flash flood/ 1995	25-Year
27	7.061902	125.545	4.87	5.2	0.1089	Intense local rainfall/ 2008- 2009	25-Year
28	7.063177	125.5433	4.07	4.2	0.0169	Flash flood/ 1995	25-Year
29	7.064906	125.541	4.2	5	0.64	Flash flood/ 1995	25-Year
30	7.060229	125.5469	4.57	5.8	1.5129	Upstream rainfall/ 1994	25-Year
31	7.060615	125.5462	4.46	4.2	0.0676	Intense local rainfall/ 1992- 1994	25-Year
32	7.060893	125.546	4.48	4.9	0.1764	Flash flood/ 1994	25-Year
33	7.061518	125.5455	5.01	3.9	1.2321	Flash flood/ 1995	25-Year
34	7.061244	125.5458	5.07	4.3	0.5929	Flash flood/ 1995	25-Year
35	7.061702	125.5452	4.43	3.7	0.5329	Intense local rainfall/ 2009	25-Year
36	7.063606	125.5425	5.36	4.8	0.3136	Flash flood/ 1995	25-Year
37	7.063084	125.5436	4.43	6	2.4649	Intense local rainfall/ 2012	25-Year
38	7.0637	125.5421	4.6	5.2	0.36	Intense local rainfall/ 1995	25-Year
39	7.06552	125.5404	4.31	5.1	0.6241	Intense local rainfall/ 1995	25-Year
40	7.081459	125.5384	0.06	0	0.0036	0	25-Year
41	7.080308	125.534	0.08	0.2	0.0144	Intense local rainfall/ 2011	25-Year
42	7.079128	125.535	0.07	0	0.0049	0	25-Year
43	7.080114	125.5364	0.2	0	0.04	0	25-Year
44	7.079562	125.5382	0.24	0	0.0576	0	25-Year
45	7.079532	125.5436	0.32	0.1	0.0484	Intense local rainfall/ 2015	25-Year
46	7.079068	125.5459	0.82	0	0.6724	0	25-Year
47	7.076978	125.548	0.49	0.2	0.0841	Intense local rainfall/ 2011	25-Year
48	7.076348	125.5475	0.52	0.3	0.0484	Intense local rainfall/ 2015	25-Year
49	7.07831	125.5358	0.48	0.3	0.0324	Intense local rainfall/ 2015	25-Year
50	7.07797	125.5484	0.95	1.1	0.0225	Intense local rainfall/ 2011	25-Year

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
51	7.079043	125.5505	1.21	0.2	1.0201	Intense local rainfall/ 2015	25-Year
52	7.079147	125.5481	2.41	0	5.8081	0	25-Year
53	7.079316	125.5502	2.04	0.2	3.3856	Intense local rainfall/ 2015	25-Year
54	7.070235	125.5581	1.52	0.8	0.5184	Intense local rainfall/ 2011	25-Year
55	7.070062	125.5567	4.69	0	21.9961	0	25-Year
56	7.080522	125.5278	0.06	0	0.0036	0	25-Year
57	7.079822	125.5236	0.04	0	0.0016	0	25-Year
58	7.077176	125.5282	0.03	0	0.0009	0	25-Year
59	7.081716	125.5243	0.33	0	0.1089	0	25-Year
60	7.080626	125.5253	0.24	0.1	0.0196	Intense local rainfall/ 2014	25-Year
61	7.078454	125.5259	0.24	0.2	0.0016	Intense local rainfall/ 2015	25-Year
62	7.076027	125.5235	0.5	0.1	0.16	Intense local rainfall/ 2015	25-Year
63	7.073547	125.5205	0.53	1.2	0.4489	Intense local rainfall/ 2014	25-Year
64	7.075324	125.5198	0.81	0.1	0.5041	Intense local rainfall/ 2015	25-Year
65	7.077741	125.524	0.3	1.5	1.44	Intense local rainfall/ June 7, 2015	25-Year
66	7.078437	125.529	0.5	0.2	0.09	Intense local rainfall/ 2014	25-Year
67	7.078654	125.5223	1.01	0	1.0201	0	25-Year
68	7.078463	125.5242	1.15	0	1.3225	0	25-Year
69	7.075414	125.5199	0.91	1.2	0.0841	Intense local rainfall/ June 2015	25-Year
70	7.073142	125.5223	0.96	1	0.0016	Intense local rainfall/ 2015	25-Year
71	7.078844	125.5207	1.21	1.2	0.0001	Intense local rainfall/ October 2015	25-Year
72	7.078649	125.5233	0.92	1.1	0.0324	Intense local rainfall/ 2015	25-Year
73	7.070507	125.5249	1.58	2	0.1764	Intense local rainfall/ June 7, 2015	25-Year
74	7.073779	125.5214	0.94	2.1	1.3456	Intense local rainfall/ June 7, 2015	25-Year
75	7.072234	125.5231	2.33	2.2	0.0169	Intense local rainfall/ 2015	25-Year

Point Number	Validation (in V	Coordinates /GS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
76	7.078928	125.5218	1.83	0	3.3489	0	25-Year
77	7.068685	125.5275	1.9	2.2	0.09	Intense local rainfall/ June 2015	25-Year
78	7.072884	125.5365	4.67	5	0.1089	Intense local rainfall/ June 7, 2015	25-Year
79	7.07119	125.5322	4.83	5.2	0.1369	Intense local rainfall/ 2015	25-Year
80	7.069366	125.5352	4.64	5.1	0.2116	Intense local rainfall/ 2015	25-Year
81	7.068264	125.5385	5.54	6.2	0.4356	Intense local rainfall/ June 7, 2015	25-Year
82	7.092763	125.5036	0.03	0.1	0.0049	Intense local rainfall/ 2014	25-Year
83	7.090157	125.5092	0.07	0	0.0049	0	25-Year
84	7.088259	125.5133	0.03	0	0.0009	0	25-Year
85	7.090796	125.5072	0.22	0.2	0.0004	Intense local rainfall/ 2014	25-Year
86	7.089404	125.5107	0.25	0	0.0625	0	25-Year
87	7.084451	125.52	0.18	0	0.0324	0	25-Year
88	7.084179	125.5201	0.46	0	0.2116	0	25-Year
89	7.08443	125.5239	5.34	0	28.5156	0	25-Year
90	7.081227	125.5144	0.03	0.1	0.0049	Intense local rainfall/ 2013	25-Year
91	7.078162	125.5156	0.04	0	0.0016	0	25-Year
92	7.076821	125.5171	0.03	0	0.0009	0	25-Year
93	7.082933	125.5165	0.14	1.8	2.7556	Intense local rainfall/ 2015	25-Year
94	7.082824	125.52	0.19	0.1	0.0081	Intense local rainfall/ 2013	25-Year
95	7.082492	125.5145	0.41	0.15	0.0676	Intense local rainfall/ 2008	25-Year
96	7.079816	125.5147	0.68	0	0.4624	0	25-Year
97	7.080842	125.519	0.97	0.08	0.7921	Intense local rainfall/ 2013	25-Year
98	7.079053	125.5155	1	0	1	0	25-Year
99	7.081657	125.5185	1.95	0.4	2.4025	Intense local rainfall/ 2014	25-Year
100	7.048805	125.5603	0.37	1	0.3969	Buhawi/ June 29, 2011	25-Year
101	7.047255	125.5627	0.37	1.6	1.5129	Buhawi/ June 29, 2011	25-Year
102	7.058212	125.5588	0.57	0.4	0.0289	Buhawi/ June 29, 2011	25-Year

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
103	7.059192	125.5613	0.8	1.7	0.81	Buhawi/ June 29, 2011	25-Year
104	7.053857	125.562	1.02	1.2	0.0324	Buhawi/ June 29, 2011	25-Year
105	7.050956	125.5636	0.84	1.2	0.1296	Buhawi/ June 29, 2011	25-Year
106	7.062078	125.5624	0.96	1.8	0.7056	Buhawi/ June 29, 2011	25-Year
107	7.06225	125.5641	0.86	1.7	0.7056	Buhawi/ June 29, 2011	25-Year
108	7.058174	125.5491	1.53	1.3	0.0529	Buhawi/ June 2009	25-Year
109	7.057736	125.5632	2.18	2.1	0.0064	Buhawi/ June 29, 2011	25-Year
110	7.0571	125.5639	2.07	2.9	0.6889	Buhawi/ June 29, 2011	25-Year
111	7.054009	125.5506	0.06	1	0.8836	Heavy rainfall/ June 29, 2011	25-Year
112	7.05309	125.5534	0.09	1	0.8281	Heavy rainfall/ June 29, 2011	25-Year
113	7.051357	125.5564	0.03	1.4	1.8769	Heavy rainfall/ June 29, 2011	25-Year
114	7.050438	125.5592	0.11	1	0.7921	Heavy rainfall/ June 29, 2011	25-Year
115	7.050012	125.5543	0.18	1	0.6724	Heavy rainfall/ June 29, 2011	25-Year
116	7.049727	125.557	0.03	0.5	0.2209	Heavy rainfall/ June 29, 2011	25-Year
117	7.058333	125.5531	0.42	0.26	0.0256	Heavy rainfall/ June 29, 2011	25-Year
118	7.057892	125.5511	0.2	0.25	0.0025	Heavy rainfall/ June 29, 2011	25-Year
119	7.054633	125.5522	0.21	0.8	0.3481	Heavy rainfall/ June 29, 2011	25-Year
120	7.053992	125.5537	0.25	0.8	0.3025	Heavy rainfall/ June 29, 2011	25-Year
121	7.050447	125.5576	0.27	1	0.5329	Heavy rainfall/ June 29, 2011	25-Year
122	7.050279	125.5552	0.21	1	0.6241	Heavy rainfall/ June 29, 2011	25-Year
123	7.049623	125.5594	0.13	1	0.7569	Heavy rainfall/ June 29, 2011	25-Year
124	7.059335	125.5517	0.21	0.3	0.0081	Heavy rainfall/ June 29, 2011	25-Year
125	7.05608	125.5521	0.49	1.4	0.8281	Heavy rainfall/ June 29, 2011	25-Year

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
126	7.054778	125.5588	0.48	0.2	0.0784	Heavy rainfall/ June 29, 2011	25-Year
127	7.05307	125.5571	0.46	0.3	0.0256	Heavy rainfall/ June 29, 2011	25-Year
128	7.052002	125.5541	0.42	0.3	0.0144	Heavy rainfall/ June 29, 2011	25-Year
129	7.051164	125.5585	0.48	0.4	0.0064	Heavy rainfall/ June 29, 2011	25-Year
130	7.049098	125.5562	0.48	0.3	0.0324	Heavy rainfall/ June 29, 2011	25-Year
131	7.065715	125.5584	0.52	0.1	0.1764	Heavy rainfall/ 1990's	25-Year
132	7.056268	125.5507	1.19	1.5	0.0961	Heavy rainfall/ June 29, 2011	25-Year
133	7.057085	125.55	2.19	1.8	0.1521	Heavy rainfall/ June 29, 2011	25-Year
134	7.055271	125.5512	2.42	1.5	0.8464	Heavy rainfall/ June 29, 2011	25-Year
135	7.053007	125.5522	2.03	2.5	0.2209	Heavy rainfall/ June 29, 2011	25-Year
136	7.050471	125.5531	2.42	2.5	0.0064	Heavy rainfall/ June 29, 2011	25-Year
137	7.049383	125.5537	1.81	2.5	0.4761	Heavy rainfall/ June 29, 2011	25-Year
138	7.048286	125.5561	2.01	2.5	0.2401	Heavy rainfall/ June 29, 2011	25-Year
139	7.058649	125.5615	4.74	2.5	5.0176	Heavy rainfall/ June 29, 2011	25-Year
140	7.061285	125.5586	0.13	0.2	0.0049	Intense local rainfall/ June 29, 2011	25-Year
141	7.059479	125.5584	0.47	0.2	0.0729	Intense local rainfall/ June 28, 2011	25-Year
142	7.061269	125.5616	0.85	1.9	1.1025	Intense local rainfall/ June 29, 2011	25-Year
143	7.056841	125.5616	1.47	3.2	2.9929	Intense local rainfall/ June 29, 2011	25-Year
144	7.054117	125.5639	0.83	2.35	2.3104	Intense local rainfall/ June 29, 2011	25-Year
145	7.060185	125.5615	0.82	2.1	1.6384	Intense local rainfall/ June 29, 2011	25-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
146	7.05566	125.5627	0.9	2.4	2.25	Intense local rainfall/ June 29, 2011	25-Year
147	7.054484	125.563	0.81	2.7	3.5721	Intense local rainfall/ June 28, 2011	25-Year
148	7.048976	125.5621	0.86	1.02	0.0256	Intense local rainfall/ June 29, 2011	25-Year
149	7.047695	125.565	0.93	1	0.0049	Intense local rainfall/ June 28, 2011	25-Year
150	7.059456	125.5627	2.14	2.4	0.0676	Intense local rainfall/ June 29, 2011	25-Year
151	7.058195	125.5618	1.9	2.6	0.49	Intense local rainfall/ June 29, 2011	25-Year
152	7.053569	125.565	1.8	2.2	0.16	Intense local rainfall/ June 29, 2011	25-Year
153	7.047638	125.5589	0.03	1	0.9409	Intense local rainfall/ 2003	25-Year
154	7.052216	125.5646	1.77	3.8	4.1209	Intense local rainfall/ June 29, 2011	25-Year
155	7.059265	125.5644	2.51	3.5	0.9801	Intense local rainfall/ June 29, 2011	25-Year
156	7.064459	125.5567	0.06	0	0.0036	0	25-Year
157	7.062288	125.5571	0.18	0	0.0324	0	25-Year
158	7.061567	125.5567	0.15	0	0.0225	0	25-Year
159	7.057407	125.5573	0.07	0	0.0049	0	25-Year
160	7.056586	125.5586	0.06	0	0.0036	0	25-Year
161	7.055619	125.5536	0.06	0	0.0036	0	25-Year
162	7.060148	125.5519	0.23	0	0.0529	0	25-Year
163	7.05904	125.5561	0.36	0	0.1296	0	25-Year
164	7.056976	125.5534	0.23	0	0.0529	0	25-Year
165	7.056601	125.5559	0.28	0	0.0784	0	25-Year
166	7.054979	125.5551	0.16	0	0.0256	0	25-Year
167	7.060669	125.5557	0.45	0	0.2025	0	25-Year
168	7.058327	125.5543	0.46	0	0.2116	0	25-Year
169	7.056336	125.5548	0.48	0	0.2304	0	25-Year
170	7.059591	125.5545	0.48	0	0.2304	0	25-Year
171	7.066427	125.5603	0.53	0	0.2809	0	25-Year
172	7.065526	125.5599	0.98	0	0.9604	0	25-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
173	7.06561	125.561	2.31	0	5.3361	0	25-Year
174	7.049972	125.5618	0.33	1.5	1.3689	/ June 28, 2011	25-Year
175	7.047896	125.5612	0.09	1	0.8281	Upstream rainfall/ June 29, 2011	25-Year
176	7.047638	125.5589	0.03	1	0.9409	Upstream rainfall/ June 29, 2011	25-Year
177	7.055576	125.5615	0.84	1.8	0.9216	Upstream rainfall/ June 29, 2011	25-Year
178	7.056744	125.5629	0.8	2.5	2.89	Upstream rainfall/ June 28, 2011	25-Year
179	7.055745	125.5636	1.79	2.53	0.5476	Upstream rainfall/ June 29, 2011	25-Year
180	7.055561	125.5643	2.04	3.2	1.3456	Upstream rainfall/ June 29, 2011	25-Year

RMSE 0.927134

Annex 12. Educational Institutions affected by flooding in Talomo Floodplain

Table A-12.1. Educational Institutions in Davao City, Davao del Sur affected by flooding in Talomo
Floodplain

Davao Del Sur						
Davao City						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
KEITH WILLIAMS BIBLE COLLEGE GYMNASIUM	Bago Gallera			Low		
KEITH WILLIAMS BIBLE COLLEGE ROOM	Bago Gallera			Low		
PROJECT HOPE	Bago Gallera	Medium	Medium	Medium		
CATALUNAN GRANDE ELEMENTARY SCHOOL	Catalunan Grande					
EARLY CHILDHOOD CARE AND DEVELOPMENT (DAY CARE)	Catalunan Grande					
EVANGELICAL MISSION COLLEGE	Catalunan Grande					
EVANGELICAL MISSION COLLEGE (CANTEEN)	Catalunan Grande					
EVANGELICAL MISSION COLLEGE (DORM)	Catalunan Grande					
JESUS J. SORIANO NATIONAL HIGH SCHOOL	Catalunan Grande					
MODERN DAY MONTESSORI ACADEMY	Catalunan Grande					
SAINT FRANCIS XAVIER LEARNING CENTER	Catalunan Grande					
CASA CARMELITE SCHOOL OF DAVAO INC WITH MONTESSOR*	Catalunan Pequeño					
CASA CARMELITE SCHOOL OF DAVAO INC.	Catalunan Pequeño					
CASA CARMELITE SCHOOL OF DAVAO INC. WITH MONTESSO*	Catalunan Pequeño					
CATALUNAN PEQUEÑO ELEMENTARY SCHOOL	Catalunan Pequeño					
CATALUNAN PEQUEÑO NATIONAL HIGHSCHOOL	Catalunan Pequeño					
CHILD CENTER MINISTRY	Catalunan Pequeño	Low	Low	Low		
WELLSPRING CENTRAL BAPTIST SCHOOL INC.	Catalunan Pequeño					
ARK LEARNING CENTER	Matina Aplaya	Low	Low	Low		
ISKUL PANGANARAN SAGA BADJAO (BADJAO LEARNING CEN*	Matina Aplaya					
MATINA APLAYA ELEMENTARY SCHOOL	Matina Aplaya	Low	Low	Low		
ACADEMIC LEARNING CENTER	Matina Crossing	Low	Medium	Medium		

Davao del Sur						
Davao City						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
CATALUNAN GRANDE ELEMENTARY SCHOOL	Tacunan					
DAVAO VISION COLLEGES	Tacunan					
JESUS J. SORIANO NATIONAL HIGH SCHOOL	Tacunan					
SHEPERD MY LAMB CHRISTIAN ACADEMY, INC	Tacunan					
SKY LINE TUTORIAL CENTER	Tacunan					
UCCP RAINBOW CHILD DEVELOPMENT MINISTRY	Tacunan					
ABA SEA SCHOOL	Talomo		Low	Low		
ARK LEARNING CENTER	Talomo					
B.A.S.I.C. LEARNING CENTER	Talomo					
BANGKAL MISSION DAY CARE SCHOOL	Talomo					
DAVAO CITY MADRASAH COMPREHENSIVE DEVELOPMENT PRO*	Talomo					
DAVAO CITY SPECIAL NATIONAL HIGH SCHOOL	Talomo	Low	Low	Medium		
DAVAO CITY SPECIAL NATIONAL HIGH SCHOOL (FACULTY)	Talomo	Low	Low	Low		
DAVAO SPECIAL EDUCATION EARNING CENTER (ABANDONED)	Talomo					
DEAF MINISTRIES INTERNATIONAL PHILIPPINES	Talomo	Medium	Medium	Medium		
DITE AUTOMOTIVE, DRIVING, MOTORCYCLE SCHOOL	Talomo		Low	Medium		
EVANGELICAL MISSION COLLEGE	Talomo					
GOLDEN CROWN TUTORIAL & MUSIC STUDIO	Talomo			Low		
GOV. VICENTE DUTERTE NATIONAL HIGH SCHOOL	Talomo	Medium	Medium	Medium		
GOV. VICENTE DUTERTE NATIONAL HIGH SCHOOL (UNDER *	Talomo	Medium	Medium	Medium		
GOV. VICENTE DUTERTE NATIONAL HIGH SCHOOL COVERED*	Talomo	Medium	Medium	Medium		
GOV. VICENTE DUTERTE NATIONAL HIGH SCHOOL GYM	Talomo		Low	Medium		
GOV. VICENTE DUTERTE NATIONAL HIGH SCHOOL PRINCIP*	Talomo	Low	Medium	Medium		
INTL. CHRISTIAN SCHOOL OF DAVAO	Talomo		Low	Low		
ISLAMIC SCHOOL	Talomo					
KIDS CAMP	Talomo					

Davao del Sur						
Davao City						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
LEAP OF FAITH LEARNING CENTER	Talomo					
LEON GARCIA ELEMENTARY SCHOOL	Talomo	Medium	Medium	Medium		
LEON GARCIA ELEMENTARY SCHOOL GYM	Talomo	Medium	Medium	Medium		
MABINI ELEMENTARY SCHOOL	Talomo	Low	Medium	Medium		
MABINI ELEMENTARY SCHOOL (COVERED COURT)	Talomo	Low	Medium	Medium		
MABINI NATIONAL HIGH SCHOOL	Talomo	Low	Low	Low		
MONTESSORI DE MANILA	Talomo					
PROJECT HOPE DAY CARE CENTER	Talomo	Medium	Medium	Medium		
ROYAL VALLEY SDA ELEM. SCHOOL	Talomo	Low	Low	Low		
SPED BANGKAL (ELEMENTARY)	Talomo	Low	Low	Low		
SPED BANGKAL (ELEMENTARY) SOCIAL HALL	Talomo		Low	Low		
TALOMO ISLAMIC INSTITUTE	Talomo		Low	Low		

Annex 13. Health Institutions affected by flooding in Talomo Floodplain

Davao Oriental					
Mati City					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
MEDICAL CLINIC	Catalunan Grande				
WELL FAMILY MID-WIFE CLINIC	Catalunan Grande				
318 PHAMACIA KING INCORPORATION	Matina Aplaya	Low	Low	Low	
FERNANDEZ MEDICAL CLINIC	Matina Aplaya				
MERCURY DRUG	Matina Aplaya			Low	
AMBOY DENTAL CLINIC	Talomo	Low	Low	Low	
ANTERIA MEDICAL EQUIPMENT	Talomo				
CENTRAL PARK VETERINARY CLINIC	Talomo	Low	Low	Low	
DAVAO ADVENTIST HOSPITAL	Talomo			Low	
DAVAO ANALYTICAL LABORATORIES INC.	Talomo		Low	Low	
FARMACIA ROWEMS	Talomo	Low	Low	Low	
FRANCX-M PHARMACY	Talomo				
MERCURY DRUG	Talomo				
SAVE-ON DRUGSTORE	Talomo		Low	Low	
STAREX DRUG CENTER	Talomo		Low	Low	

Table A-13.1. Health Institutions in Davao City, Davao del Sur affected by flooding in Talomo Floodplain