Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Sumlog River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Mindanao

APRIL 201

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Mindanao 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

E. C. Paringit, and J. E. Acosta, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Sumlog River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry 146pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Joseph E. Acosta Project Leader, Phil-LiDAR 1 Program University of the Philippines Mindanao Davao City, Davao del Sur, 8000 E-mail: jacosta_96140@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-173-7

TABLE OF CONTENTS

Chapter 1 Overview of the Program and Sumlog River	1
1.2 Overview of the Sumley Diver Desin	⊥ 1
Chapter 2 LiDAP Data Acquisition of the Sumley Elegendalain	⊥ 2
2.1 Flight Plans	3
2.2 Ground Base Station	5
2.3 Flight Missions	. 10
2.4 Survey Coverage	.11
Chapter 3 LiDAR Data Processing of the Sumlog	.13
3.1 Overview of the LiDAR Data Pre-Processing	.13
3.2 Transmittal of the Acquired LiDAR Data	.14
3.3 Trajectory Computation	. 15
3.4 LiDAR Point Cloud Computation	.17
3.5 LiDAR Data Quality Checking	. 18
3.6 LiDAR Point Cloud Classification and Rasterization	.22
3.7 LiDAR Image Processing and Orthophotograph Rectification	.24
3.8 DEM Editing and Hydro-Correction	.25
3.9 Mosaicking of Blocks	.26
3.10 Calibration and Validation of Mosaicked LiDAR DEM	.28
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.32
3.12 Feature Extraction	.33
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	.33
3.12.2 Height Extraction	.34
3.12.3 Feature Attribution	.34
3.12.4 Final Quality Checking of Extracted Features	.36
Chapter 4 LIDAR Validation Survey and Measurement of the Sumlog River Basin	.37
4.1 Summary of Activities	.3/
4.2 Control Survey	.38
4.3 BASELINE PROCESSING	.41
4.4 Network Aujustment	.42
4.5 Closs-section, Bruge As-built and Water Level Marking	.44 10
4.0 Valuation Fornts Acquisition Survey	50
Chanter 5 Flood Modeling and Manning	55
5 1 Data Used for Hydrologic Modeling	55
5.1.1 Hydrometry and Rating Curves	55
5.1.2 Precipitation	55
5.1.3 Rating Curves and River Outflow	.56
5.2 RIDE Station	.58
5.3 HMS Model	.60
5.4 Cross-section Data	.64
5.5 Flo 2D Model	.65
5.6 Results of HMS Calibration	.67
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods	.69
5.7.1 Hydrograph using the Rainfall Runoff Model	.69
5.8 River Analysis (RAS) Model Simulation	.70
5.9 Flow Depth and Flood Hazard	.71
5.10 Inventory of Areas Exposed to Flooding	.75
5.11 Flood Validation	. 85
REFERENCES	. 88
ANNEXES	. 89
ANNEX 1. Technical Specifications of the Lidar Sensors Used In The Sumlog Floodplain Survey	.89
ANNEX 2. NAMRIA Certificates of Reference Points Used in the LiDAR Survey	.90
ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	.92
ANNEX 4. The LIDAR Survey Team Composition	.94
ANNEX 5. Data Transfer Sheet for Sumlog Floodplain	.95
ANNEX 6. Flight logs for the Flight Missions	.98

136

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR System	3
Table 2. Description of the recovered NAMRIA horizontal control point DVE-42 used as base stat	ion
for the LiDAR acquisition.	6
Table 3. Description of the recovered NAMRIA horizontal control point DVE-61 used as base stat	ion
for the LiDAR acquisition.	7
Table 4. Description of the recovered NAMRIA horizontal control point DVE-3088 used as base s	tation
for the LiDAR acquisition with re-processed coordinates	8
Table 5. Details of the recovered NAMRIA horizontal control point DVE-3118 used as base station	n for
the LiDAR acquisition with re-processed coordinates.	9
Table 6. Ground control points used during LiDAR data acquisition	.10
Table 7. Flight missions for LiDAR data acquisition in Sumlog Floodplain	.10
Table 8. Actual parameters used during LiDAR data acquisition	.11
Table 9. List of municipalities and cities surveyed during Sumlog Floodplain LiDAR survey	.11
Table 10. Self-Calibration Results values for Sumlog flights	.17
Table 11. List of LiDAR blocks for Sumlog Floodplain	.18
Table 12. Sumlog classification results in TerraScan.	.22
Table 13. LiDAR blocks with its corresponding area	.25
Table 14. Shift Values of each LiDAR Block of Sumlog Floodplain	.26
Table 15. Calibration Statistical Measures	. 30
Table 16. Validation Statistical Measures	.31
Table 17. Quality Checking Ratings for Sumlog Building Features	.33
Table 18. Building Features Extracted for Sumlog Floodplain	.35
Table 19. Total Length of Extracted Roads for Sumlog Floodplain	.36
Table 20. Number of Extracted Water Bodies for Sumlog Floodplain	.36
Table 21. List of reference and control points used during the survey in Sumlog River (Source:	
NAMRIA, UP-TCAGP)	. 38
Table 22. Baseline Processing Report for Sumlog River Static Survey	.41
Table 23. Constraints applied to the adjustment of the control points	.42
Table 24. Adjusted Grid Coordinates for the control points used in the Sumlog River	.42
Table 25. Adjusted geodetic coordinates for control points used in the Sumlog River Floodplain	
Validation	. 43
Table 26. The reference and control points utilized in the Sumlog River Static Survey, with their	
corresponding location (Source: NAMRIA, UP-TCAGP)	.43
Table 27. RIDF values for Davao Rain Gauge computed by PAGASA	.58
Table 28. Range of Calibrated Values for Sumlog	.67
Table 29. Summary of the Efficiency Test of Sumlog HMS Model	.68
Table 30. Peak values of the Sumlog HEC-HMS Model outflow using the Davao RIDF	.70
Table 31. Municipalities affected in Sumlog Floodplain	.71
Table 32. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period	.75
Table 33. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period	.76
Table 34. Affected Areas in San Isidro, Davao Oriental during 5-Year Rainfall Return Period	.77
Table 35. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period	.78
Table 36. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period	. 79
Table 37. Affected Areas in San Isidro, Davao Oriental during 25-Year Rainfall Return Period	.80
Table 38. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period	.81
Table 39. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period	.82
Table 40. Affected Areas in San Isidro, Davao Oriental during 100-Year Rainfall Return Period	.83
Table 41. Area covered by each warning level with respect to the rainfall scenario	.84
Table 42. Actual Flood Depth vs Simulated Flood Depth in Sumlog	.8/
Table 43. Summary of Accuracy Assessment in Sumlog	.8/

LIST OF FIGURES

Figure 1. Map of the Sumlog River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Sumlog Floodplain Survey	4
Figure 3. Photo (a) shows the GPS set-up over DVF-42 located in front of the flagpole inside the	
premises of Don Enrique Elementary School, while Photo (b) depicts a close-up view of NAMRIA	
reference point DVE-42 as recovered by the field team	6
Figure 4. Photo (a) shows the GPS set-up over DVF-61 located at the center of the playground of	
Zign Elementary School, while Photo (b) denicts a close-un view of NAMRIA reference point	
DVF-61 as recovered by the field team	7
Figure 5. Photo (a) shows the GPS set-up over DVE-3088 located inside the premises of Don	
Enrique Elementary School, while Photo (b) denicts a close-up view of NAMRIA reference point	
DVF-3088 as recovered by the field team	8
Figure 6. Photo (a) shows the GPS set-up over DVE-3118 located along the boundary of Barangay	,
Dawan and Badas, while Photo (b) denicts a close-un view of NAMRIA reference point	!
DVF-3118 as recovered by the field team	9
Figure 7 Actual LiDAR survey coverage for Sumlog Floodnlain	12
Figure 8. Schematic Diagram for Data Pre-Processing Component	14
Figure 9. Smoothed Performance Metric Parameters of Sumlog Flight 7337GC	15
Figure 10 Solution Status Parameters of Aunugay Elight 7337GC	16
Figure 11. Best Estimated Trajectory for Sumlog Floodplain	17
Figure 12. Boundary of the processed LiDAR data over Sumlog Floodplain	18
Figure 12. Image of data overlan for Sumlog Floodplain	10
Figure 14. Density man of merged LiDAR data for Sumlog Floodplain	20
Figure 15. Elevation difference man between flight lines for Sumlog Floodplain	20
Figure 16. Quality checking for Augurany flight 2021C using the Drofile Tool of OT Modeler	21
Figure 17. Tiles for Sumlag Eloodalain (a) and classification results (b) in TerraScan	22
Figure 17. Thes for sufficiency (a) and after (b) classification results (b) in remascality and after (b) classification	20
Figure 10. The production of last roturn DSM (a) and DTM (b) first roturn DSM (c) and secondary	25
Pigure 19. The production of last return DSW (a) and DTW (b), first return DSW (c) and secondary	/ 24
Eigure 20. Portions in the DTM of Sumley Floodplain	24
retrieval: a bridge before (c) and after (d) manual editing	26
Figure 21. Map of Processed LiDAR Data for Sumlag Floodplain	20
Figure 22. Map of Sumlag Eloadalain with validation survey points in groop	2/
Figure 22. Map of Suffice Floouplant with valuation survey points in green	29
Figure 25. Correlation plot between validation survey points and LiDAR data	20 21
Figure 24. Correlation plot between valuation survey points and LiDAR data	51 22
Figure 25. Map of Suffice For Sumlag building features	32 33
Figure 27. Extracted features for Sumley Electrician	22
Figure 29. Extracted federates for Suffice Floorpidin	50
Figure 28. Extent of the bathymetric survey (in blue line) in surning River and the LiDAR Data	27
Valladion Survey (In rea)	3/
Figure 29. Suffligg River Basin Control Survey Extent	39
Figure 30. GNSS receiver set up, Inmine [®] SPS 852, at OP_BIT-1, located at the side of the railing	10
near the approach of Bilanagan Bridge in Brgy. Don Enrique Lopez, City of Mati, Davao Oriental	40
Figure 31. GNSS receiver set up, Immole [®] SPS 882, at UP_INIOS-1, located at the approach of	10
Wiusanamat Bridge in Brgy. Kingking, Pantukan, Province of Composteia valley	40 £
Figure 32. GNSS receiver set up, Trimble® SPS 882, at UP_SUM-2, located beside the approach of Swales Deides in Date Hansey Municipality of Lynger, Drawings of Days of Oriental	11
Sumiog Bridge in Brgy. Hangay, Municipality of Lupon, Province of Davao Oriental	41
Figure 33. Upstream side of the Sumlog Bridge	44
Figure 34. The cross-section survey conducted at the Sumlog Bridge	44
Figure 35. Location map of Sumlog Bridge Cross Section	45
Figure 36. The Sumlog Bridge cross-section survey drawn to scale	46
Figure 37. The Sumlog Bridge as-built survey data	4/
Figure 38. Painting of water level markings on Sumlog Bridge	48
Figure 39. The Validation Points Acquisition survey set-up using a GNSS receiver fixed in a van	
along the Sumlog River Basin	49
Figure 40. Extent of the LIDAK ground validation survey along Samar and Eastern Samar	50
Figure 41. Ivianual bathymetric survey of ABSD at Sumlog River using Nikon® lotal Station	51
Figure 42. Gathering of random bathymetric points along Sumlog River	52
Figure 43. Extent of the Sumlog River bathymetric survey	53

Figure 44. Quality checking points gathered along Sumlog River by DVBC	53 54
Figure 46. The location map of Sumlog HEC-HMS model used for calibration	56
Figure 47. Cross-Section Plot of Sumlog Bridge	57
Figure 48. Rating Curve at Sumlog Bridge, Lupon, Davao Oriental.	57
Figure 49. Rainfall and outflow data at Sumlog Bridge used for modeling	
Figure 50. Location of Davao RIDE Station relative to Sumlog River Basin	
Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods	
Figure 52. The soil map of the Sumlog River Basin	60
Figure 53. The land cover map of the Sumlog River Basin	61
Figure 54. The slope map of the Sumlog River Basin	62
Figure 55. Stream delineation map of Sumlog River Basin	63
Figure 56. The Sumlog River Basin model generated in HEC-HMS	64
Figure 57. River Cross-section of the Sumlog River generated through Arcmap HEC GeoRAS to	ol .65
Figure 58. A Screenshot of subcatchment with the computational area to be modeled in FLO-	2D
Grid Developer System Pro (FLO-2D GDS Pro)	66
Figure 59. Outflow Hydrograph of Sumlog produced by the HEC-HMS model compared with c	observed
outflow	67
Figure 60. The Outflow hydrograph at Sumlog Station generated using Cagayan de Oro RIDF	
simulated in HEC-HMS	69
Figure 61 Sample output of Sumlog RAS Model	70
Figure 62. 100-year Flood Hazard Map for Sumlog Floodplain	71
Figure 63. 100-year Flow Depth Map for Sumlog Floodplain	72
Figure 64. 25-year Flood Hazard Map for Sumlog Floodplain	72
Figure 65. 25-year Flow Depth Map for Sumlog Floodplain	73
Figure 66. 5-year Flood Hazard Map for Sumlog Floodplain	73
Figure 67. 5-year Flood Depth Map for Sumlog Floodplain	74
Figure 68. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period	76
Figure 69. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period	77
Figure 70. Affected Areas in San Isidro, Davao Oriental during 5-Year Rainfall Return Period	78
Figure 71. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period	79
Figure 72. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period	80
Figure 73. Affected Areas in San Isidro, Davao Oriental during 25-Year Rainfall Return Period	81
Figure 74. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period	82
Figure 75. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period	83
Figure 76. Affected Areas in San Isidro, Davao Oriental during 100-Year Rainfall Return Period	84
Figure 77. Sumlog Flood Validation Points	86
Figure 78. Flood map depth vs. actual flood depth	86

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		

CHAPTER 1. OVERVIEW OF THE PROGRAM AND SUMLOG RIVER

Dr. Joseph E. Acosta, and Enrico C. Paringit, Dr. Eng

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner University for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (UP MIN). UP MIN is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 10 river basins in the ______. The university is located in ______.

1.2 Overview of the Sumlog River Basin

Sumlog is called as the majestic river in the Municipality of Lupon which is largely part of the town's rich history. Lupon is said to have derived its name from the native word "naluponan," which means a body of land accumulated at the mouth of a river resulting from years of continued accretion. The settlers shortened the word "naluponan" in to what is called now "Lupon". This "naluponan" area was then applied to the mouth of the Sumlog River in the Municipality of Lupon of today (NSCB, 2016).

Sumlog Rver is one of the most important water channels within the gulf town municipalities covering District II, Province of Davao Oriental. It is invaluable because of its water service in the irrigable rice land of the Municipalities of Banaybanay and Lupon estimated to have about 3,100 hectares for the two (2) municipalities or 1,955.00 hectares for Banaybanay and 1,145.00 hectares for Lupon. Historically, the plain areas of Lupon in its creation as a municipality in 1949 were mostly developed with coconut plantation and only small areas were cultivated into rice land (ISRWMDP, 2016).

The Sumlog Watershed area is pre-occupied by the Mandaya, Mansaka and native Kalagan. The indigenous people had long engaged in farming activities, cleaning-up some parcel of forest land for agricultural purposes and wandering in other places starting anew for their planting activities. The natives have the common notion that all lands of public domain are alienable, disposable and can cultivate for such purposes. The coming of logging industries became the critical issues and problems that were identified in the Sumlog Watershed (ISRWMDP, 2016).

Today, Sumlog River is invaluable and essential to the lives of many people of Lupon and Banaybanay being the main source of water for irrigation. Domestic use has a huge contribution to the economic and socio cultural functions of the people, thus, the Sumlog River greatly affects the lives of many people (ISRWMDP, 2016).

Sumlog Watershed has a drainage area of 381 sq. km. and is located in Lupon and San Isidro, Davao Oriental. It then empties into the Davao Gulf. The watershed area is 472 and its river length is 58 kilometers with 51 sub basins, 25 reaches, and 25 junctions. According to locals, from the year 1984 to 2015, buhawi, intense local rainfall and upstream rainfall usually causedf flooding near the river. However, PAGASA only noted typhoon events such as Pablo in 2012, Yolanda in 2013 and Agaton in 2014. The Sumlog flooding usually happen due to siltation problems emanating from the Sumlog Watershed area where sands, stones, boulders and debris stuck-up making the waterways narrower which results to the spread of water in other farm areas (ISRWMDP, 2016).

The location map of Sumlog River Basin is shown in Figure 1.

Figure 1. Map of the Sumlog River Basin (in brown)

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SUMLOG FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, Engr. Kenneth A. Quisado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

In order to acquire LiDAR data, the Data Acquisition Component (DAC) created flight plans within the delineated priority area of the Sumlog Floodplain in the Province of Davao Oriental. These missions were planned for fourteen (14) lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR System is found in Table 1. Figure 2 shows the flight plan for Sumlog Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK83A	1100	30	40	100	50	130	5
BLK84B	1100	30	40	100	50	130	5
BLK85A	1300	40	24	70	60	130	5
BLK86A	1000	30	40	100	50	130	5
BLK86B	1000	30	40	100	50	130	5
BLK86C	1000	30	40	100	50	130	5

Table 1. Flight planning parameters for the Gemini LiDAR System.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 2. Flight plans and base stations used for Sumlog Floodplain Survey

2.2 Ground Base Stations

The Project Team was able to recover four (4) NAMRIA ground control points: DVE-42 and DVE-61 which are of second (2nd) order accuracy, and DVE-3088 and DVE-3118 which are of fourth (4th) order accuracy. Fourth (4th) order ground control points where then re-processed to obtain coordinates of second (2nd) order accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the re-processed control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (June 20 – July 11, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Sumlog Floodplain are shown in Figure 2.

Figures 3 to 6 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 5 show the details about the following NAMRIA control stations and established points, while Table 6 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

(a)

Figure 3. Photo (a) shows the GPS set-up over DVE-42 located in front of the flagpole inside the premises of Don Enrique Elementary School, while Photo (b) depicts a close-up view of NAMRIA reference point DVE-42 as recovered by the field team.

Table 2. Description of the recovered NAMRIA horizontal control point DVE-42 used as base station for the LiDAR acquisition.

Station Name	DVE-42		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 ir	ו 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°58′54.82726″ North 126°17′56.05259″ East 6.395 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	643534.636 meters 772166.69 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°58′51.79295″ North 126°18′1.57690″ East 81.025 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	201538.20 meters 772554.34 meters	

Figure 4. Photo (a) shows the GPS set-up over DVE-61 located at the center of the playground of Zign Elementary School, while Photo (b) depicts a close-up view of NAMRIA reference point DVE-61 as recovered by the field team.

Table 3. Description of the recovered NAMRIA horizontal control point DVE-61 used as base station for the LiDAR acquisition.

Station Name	DVE-61		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°57′39.37336″ North 126°13′22.44550″ East 48.474 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	635140.8 meters 769826.046 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°57'36.33777" North 126°13'27.97256" East 122.953 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	193120.25 meters 770283.71 meters	

Figure 5. GPS set-up over ILN-17 located inside the park in front of Pasuquin Municipal Hall in Pasuquin Ilocos Norte (a) and NAMRIA reference point ILN-17 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ILN-17 used as base station for	r
the LiDAR data acquisition.	

Station Name	ILN-17		
Order of Accuracy	2nd Order		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	18°20'6.62958" North 120°37'1.30945" East 16.73900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	459,520.118 meters 2,027,898.996 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	18°20′0.3524″ North 120°37′5.89113″ East 47.87100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	248,151.17 meters 2,028,794.85 meters	

Figure 6. GPS set-up over ILN-3234 located in front of the Administration Building of Mariano Marcos Memorial University in Batac Ilocos Norte (a) and NAMRIA reference point ILN-3234 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point	ILN-3234 used as base station
for the LiDAR data acquisition.	

Station Name	ILN-32	.34	
Order of Accuracy	4th Ore	der	
Relative Error (horizontal positioning)	1:10,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	18°3′41.82025″ North 120°32′3.1072″ East 22.632 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	452,075.694 meters 1,997,640.111 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	18°3'35.59528" North 120°32'54.91553" East 54.492 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	240,373.73 meters 1,998,605.86 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
June 20, 2014	7322GC	2BLK84AS&86B171A (BLK83A instead of BLK84A)	DVE-42 & DVE-3088
June 20, 2014	7323GC	2BLK86C&83A171B (additional BLK84B)	DVE-42 & DVE-3088
June 27 2014	7337GC	2BLK86A178A	DVE-61 & DVE-3118
July 11, 2014	7364GC	2BLK85V192A (covered BLK85A and voids of BLK84A and BLK83A)	DVE-61 & DVE-3118

Table 6. Ground control points used during LiDAR data acquisition.

2.3 Flight Missions

Four (4) missions were conducted to complete the LiDAR data acquisition in Sumlog Floodplain, for a total of fifteen hours and forty eight minutes (15+48) of flying time for RP-C9322. All missions were acquired using the Gemini LiDAR System. Table 7 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 8 presents the actual parameters used during the LiDAR data acquisition.

Table 7. Flight missions	for LiDAR data acc	uisition in Sumlog	Floodplain

Date Flight		Flight	Surveyed	Area Surveyed	Area Surveyed	No. of	Flyi Hoi	ing urs
Surveyed	Number	(km2)	(km2)	Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
June 20, 2014	7322GC	252.00	209.19	13.64	195.55	NA	4	11
June 20, 2014	7323GC	210.29	214.08	0	214.08	NA	4	9
June 27 2014	7337GC	137.98	176.23	50.35	125.88	NA	3	53
July 11, 2014	7364GC	138.00	195.19	0	195.19	NA	3	35
TOTA	L	738.27	794.69	63.99	730.7	NA	15	48

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7322GC	1100	30	40	100	50	130	5
722200	1100	30	40	100	50	130	5
/32360	1250	30	36	100	50	130	5
7337GC	1100	30	40	100	50	130	5
726400	1600	40	40	70	50	130	5
/30460		40	24	70	60	130	5

Table 8. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

The Sumlog Floodplain is located in the Province of Davao Oriental, specifically within the City of Mati. The list of municipalities/cities surveyed, with at least one (1) square kilometer coverage is shown in Table 9. The actual coverage of the LiDAR acquisition for Sumlog floodplain is presented in Figure 7.

Table 9. List of municipalities and cities surveyed during Sumlog Floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Lupon	356.28	168.19	47.21%
	Banaybanay	385.28	150.20	38.99%
Davao	San Isidro	224.84	69.43	30.88%
Oriental	Tarragona	277.90	58.22	20.95%
	Mati City	797.38	139.24	17.46%
	Manay	430.89	30.16	7.00%
То	tal	2,472.57	615.44	24.89%

Figure 7. Actual LiDAR survey coverage for Sumlog Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE SUMLOG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. John Dill P. Macapagal , Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, Engr. Melissa F. Fernandez , Engr. Ben Joseph J. Harder, Engr. Karl Adrian P. Vergara

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subjected to quality check in order to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR System were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

Figure 8. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

The Data Transfer Sheets for all the LiDAR missions for Sumlog Floodplain can be found in Annex 5. Missions flown during most of the surveys conducted used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini System over Davao Oriental. The Data Acquisition Component (DAC) transferred a total of 87.6 Gigabytes of Range data, .86 Gigabytes of POS data, 23.31 Megabytes of GPS base station data, and 0 Gigabytes of raw image data to the data server on July 2, 2014 for the first survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Sumlog was fully transferred on July 28, 2014, as indicated on the Data Transfer Sheets for Sumlog Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 7337GC, one of the Sumlog flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 8, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 9. Smoothed Performance Metric of Sumlog Flight 7337GC.

The time of flight was from 452,200 seconds to 461,100 seconds, which corresponds to morning of July 8, 2014. The initial spike seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and when the POS system started computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft made a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.20 centimeters, the East position RMSE peaks at 1.85 centimeters, and the Down position RMSE peaks at 2.55 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 10. Solution Status Parameters of Aunugay Flight 7337GC

The Solution Status parameters of flight 7337GC, one of the Sumlog flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 8. Majority of the time, the number of satellites tracked was between 8 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sumlog flights is shown in Figure 11.

Figure 11. Best Estimated Trajectory for Sumlog Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contain 49 flight lines, with each flight line containing one channel, since the Gemini System contained one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Sumlog Floodplain are given in Table 10.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000467
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000774
GPS Position Z-correction stdev)	<0.01meters	0.0020

Table 10. Jen Campration Results values for Junitog inglies

The optimum accuracy is obtained for all Sumlog flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Aunugay Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 12. Boundary of the processed LiDAR data over Sumlog Floodplain.

The total area covered by the Sumlog missions is 589.81 sq.km that comprised of four (4) flight acquisitions grouped and merged into four (4) blocks as shown in Table 11.

LiDAR Blocks	Flight Numbers	Area (sq.km)
DavaoOriental_Blk86A	7337GC	158.52
DavaoOriental_Blk86B	7322GC	160.46
DavaoOriental_Blk86C	7323GC	97.23
DavaoOriental_Blk86A_additional	7364GC	173.60
TOTAL	589.81 sq.km	

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Gemini System employs one channel, we could expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 13. Image of data overlap for Sumlog Floodplain.

The overlap statistics per block for the Sumlog Floodplain can be found in Annex 5. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 33.62% and 35.88% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Sumlog Floodplain satisfied the point density requirement, and the average density for the entire survey area is 2.95 points per square meter.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 14. Density map of merged LiDAR data for Sumlog Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 15. Elevation difference map between flight lines for Sumlog Floodplain.

A screen capture of the processed LAS data from a Sumlog flight 7337GC loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there were differences in elevation, but the differences did not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 16. Quality checking for Aunugay flight 3981G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	166,470,503
Low Vegetation	150,178,023
Medium Vegetation	266,900,575
High Vegetation	703,353,898
Building	5,757,965

Table 12. Sumlog classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Sumlog Floodplain is shown in Figure 17. A total of 670 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 773.03 meters and 47.95 meters respectively.

Figure 17. Tiles for Sumlog Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 18. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Sumlog Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Sumlog floodplain.

3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Sumlog Floodplain. These blocks are comprised of DavaoOriental blocks with a total area of 589.81 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)		
DavaoOriental_Blk86A	158.52		
DavaoOriental_Blk86B	160.46		
DavaoOriental_Blk86C	97.23		
DavaoOriental_Blk86A_additional	173.60		
TOTAL	589.81 sq.km		

Table 13. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure B-13. The river embankment (Figure B-13a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure B-13b) to allow the correct flow of water. The bridge (Figure B-13c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure B-13d) in order to hydrologically correct the river.

Figure 20. Portions in the DTM of Sumlog Floodplain – a paddy field before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing.

3.9 Mosaicking of Blocks

DavaoOriental_Blk86A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Sumlog Floodplain is shown in Figure 20. It can be seen that the entire Sumlog Floodplain is 94.95% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	х	у	z
DavaoOriental_Blk86A	0.00	0.00	0.00
DavaoOriental_Blk86B	2.00	1.00	0.73
DavaoOriental_Blk86C	0	0	-0.16
DavaoOriental_Blk86A_additional	-1.3	0	-1.03

Table 14. Shift Values of each LiDAR Block of Sumlog Floodplain.

Figure 21. Map of Processed LiDAR Data for Sumlog Floodplain.
3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Sumlog to collect points with which the LiDAR dataset is validated is shown in Figure 21. A total of 3,432 survey points were used for calibration and validation of Sumlog LiDAR data. Random selection of 80% of the survey points, resulting to 2,746 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.70 meters with a standard deviation of 0.17 meters. Calibration of Sumlog LiDAR data was done by subtracting the height difference value, 0.70 meters, to Sumlog mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 22. Map of Sumlog Floodplain with validation survey points in green.

Figure 23. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.70
Standard Deviation	0.17
Average	-0.68
Minimum	-1.01
Maximum	-0.35

Table 15. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting to 686 points, were used for the validation of calibrated Sumlog DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.19 meters with a standard deviation of 0.18 meters, as shown in Table 16.

Figure 24. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.19
Standard Deviation	0.18
Average	0.02
Minimum	-0.35
Maximum	0.39

Table 10. Validation Statistical Measures	Table 16.	Validation	Statistical	Measures.
---	-----------	------------	-------------	-----------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Sumlog with 7,231 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.50 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Sumlog integrated with the processed LiDAR DEM is shown in Figure 25.

Figure 25. Map of Sumlog Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks, comprised of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

The Sumlog Floodplain, including its 200 m buffer, has a total area of 66.79 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 776 building features, are considered for QC. Figure B-19 shows the QC blocks for Sumlog Floodplain.

Figure 26. QC blocks for Sumlog building features.

Quality checking of Sumlog building features resulted in the ratings shown in Table 17.

Table 17. Quality Checking Ratings for Sumlog Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Sumlog	99.43	99.81	80.44	PASSED

3.12.2 Height Extraction

Height extraction was done for 7,270 building features in Sumlog Floodplain. Of these building features, 228 were filtered out after height extraction, resulting to 7,042 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 18.31 m.

3.12.3 Feature Attribution

Before the actual field validation, courtesy calls were conducted to seek permission and assistance from the Local Government Units of each barangay. This was done to ensure the safety and security in the area for the field validation process. Verification of barangay boundaries were also done to finalize the distribution of features for each barangay.

The courtesy calls and project presentations were done last April 25 - 26, 2016. Barangay Health Workers (BHWs) were requested and hired to guide the University of the Philippines Mindanao Phil-LiDAR1 field enumerators during validation. The field work activity was conducted from May 2 - 26, 2016. The local hires deployed by the barangay captains were given a brief orientation by the field enumerators before the actual field work. Some of the personnel volunteered to use their own motorcycle vehicles during the validation proper. The team surveyed the fifteen (15) barangays covered by the floodplain namely Poblacion, Corporacion, Ilangay, Cabandiangan, Lanka, Tagugpo, Cocornon, Macangao, San Jose, Limbanhan, Magsaysay and Tagboa, Lupon Municipality; barangays San Roque, Lapu-lapu and Manikling, San Isidro Municipality.

The locals from Municipalities of Lupon and San Isidro raised concerns on nearby rivers such as Cuabo, Quinonoan, Mayo, Talisay, Maug, Bitaogan, and Magtalinga. Cuabo River marks the political boundaries of Lupon and San Isidro where it causes flood to adjacent barangays, specifically in the southern areas of San Isidro. Its tributaries contribute to flooding, sending waters towards Brgy. Iba, then into Brgy. Dugmanon, and lastly into Brgy. Manikling. Both Quinonoan and Mayo River cause floods in the upper areas of the Municipality of Lupon known to locals as the DonCaMar area. This area consists of Barangays Don Mariano Marcos, Calapagan, and Marayag. Other nearby rivers such as Talisay River affects Brgy. Talisay of San Isidro when it overflows. Likewise, Maug River affects Brgy. La Union of San Isidro. Moreover, Bitaogan and Magtalinga are known to overflow during heavy rain to San Isidro.

During field validation, there had been issues regarding the political boundaries of barangays San Jose, Corporacion and Bagumbayan. Despite this, the field validation process went well according to schedule. Some areas were steep and elevated, which made field work more difficult. Some teams encountered buildings which were reported by the local guides as "dangerous place(s)". They also encountered security issues in some areas which then led to pursuing field validation directly using only the maps with the help of the local assistants.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	6304
School	206
Market	10
Agricultural/Agro-Industrial Facilities	129
Medical Institutions	20
Barangay Hall	13
Military Institution	19
Sports Center/Gymnasium/Covered Court	21
Telecommunication Facilities	2
Transport Terminal	1
Warehouse	6
Power Plant/Substation	0
NGO/CSO Offices	1
Police Station	0
Water Supply/Sewerage	1
Religious Institutions	98
Bank	1
Factory	20
Gas Station	6
Fire Station	1
Other Government Offices	28
Other Commercial Establishments	155
Total	7,042

Table 18. Building Features Extracted for Sumlog Floodplain.

Floodplain	Barangay Road	City/ Municipal Road	Provincial Road	National Road	Others	Total
Sumlog	106.87	14.46	0.00	12.29	0.00	133.62

Table 19. Total Length of Extracted Roads for Sumlog Floodplain.

Table 20. Number of Extracted Water Bodies for Sumlog Floodplain.

Floodplain	Rivers/ Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Sumlog	6	0	0	0	7	13

A total of twelve (12) bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprised the flood hazard exposure database for the floodplain. This completed the feature extraction phase of the project.

Figure 27 shows the Digital Surface Model (DSM) of Sumlog Floodplain overlaid with its ground features.

Figure 27. Extracted features for Sumlog Floodplain.

CHAPTER 4 LIDAR VALIDATION SURVEY AND MEASUREMENT OF THE SUMLOG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The AB Surveying and Development (ABSD) conducted a field survey in Sumlog River on March 15-20, 2016 and March 27, 2016 with the following scope: reconnaissance; control survey; cross-section and as-built survey at Sumlog Bridge in Brgy. Ilangay, Lupon, Davao Oriental; and bathymetric survey from its upstream in Brgy. New Visayas, Lupon, Davao Oriental to the mouth of the river located in Brgy. Macangao, Lupon, Davao Oriental, with an approximate length of 15.5 km using a Nikon® Total Station. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on May 10-24, 2016 using a survey grade GNSS receiver Trimble® SPS 985 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Sumlog River Basin area. The entire survey extent is illustrated in Figure 28.

Figure 28. Extent of the bathymetric survey (in blue line) in Sumlog River and the LiDAR Data Validation Survey (in red).

4.2 Control Survey

The GNSS network used for Sumlog River is composed of one (1) loop established on May 20, 2016 occupying the following reference point: UP_BIT-1, an established control point that was referred from the static survey of Bitanayan River on May 10-24, 2016, in Brgy. Don Enrique Lopez, Mati City, Davao Oriental.

Two (2) control points established in the area by ABSD were also occupied: UP_MUS-1 at the approach of Musahamat Bridge in Brgy. Kingking, Pantukan, Province of Compostela Valley and UP_SUM-2 located beside the approach of Sumlog Bridge in Brgy. Ilangay, Lupon, Davao Oriental.

The summary of reference and control points and its location is summarized in Table 21 while GNSS network established is illustrated in Figure 29.

Table 21. List of reference and control points used during the survey in Sumlog River (Source: NAMRIA, UP-TCAGP).

		Geographic Coordinates (WGS 84)						
Control Order of Point Accuracy		Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment		
		Control Su	rvey on December 10,	2016				
UP_BIT-1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	15.21	2-26-16		
UP_MUS- 1	Established	7°08'40.27743"N	125°54'27.05429"E	82.138	14.547	3-23-16		
UP_SUM- 2	Established	6°54'48.60496"N	126°02'48.52278"E	84.364	18.125	3-17-16		

Figure 29. Sumlog River Basin Control Survey Extent.

The GNSS set-ups on recovered reference points and established control points in Sumlog River are shown from Figures 30 to 32.

Figure 30. GNSS receiver set up, Trimble® SPS 852, at UP_BIT-1, located at the side of the railing near the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, City of Mati, Davao Oriental.

Figure 31. GNSS receiver set up, Trimble® SPS 882, at UP_MUS-1, located at the approach of Musahamat Bridge in Brgy. Kingking, Pantukan, Province of Compostela Valley.

Figure 32. GNSS receiver set up, Trimble® SPS 882, at UP_SUM-2, located beside the approach of Sumlog Bridge in Brgy. Ilangay, Municipality of Lupon, Province of Davao Oriental.

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC. It was observed that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines fails to meet all of these criteria, masking was performed. Masking is the process of removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. The Baseline processing result of control points in Sumlog River Basin is summarized in Table 22 generated by TBC software.

Table 22. Baseline Processing Report for Sumlog River Static Survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UP_BIT-1 UP_MUS-1	5-20-2016	Fixed	0.210	0.112	295°15'31"	47122.295	1.549
UP_MUS-1 – UP_SUM-2	5-20-2016	Fixed	0.007	0.011	328°56'37"	29826.325	-2.222
UP_MUS-1 – UP_SUM-2	5-20-2016	Fixed	0.005	0.040	328°56'37"	29826.333	-2.228
UP_BIT-1 UP_SUM-2	5-20-2016	Fixed	0.009	0.028	258°41'02"	27783.534	3.833

As shown Table 22 a total of four (4) baselines were processed with coordinate and elevation values of UP_BIT-1 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment was performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the squares of x and y must be less than 20 cm and z less than 10 cm in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm and } z_e < 10 \text{ cm}$$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown from Tables 23 to 25 for the complete details. Refer to Appendix C for the computation for the accuracy of ABSD.

The three (3) control points, UP-BIT-1, UP_MUS-1, and UP-SUM-2 were occupied and observed simultaneously to form a GNSS loop. The coordinate values of DVE-42 and elevation of DE-160 were held fixed during the processing of the control points as presented in Table 23. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Tuble 25. Constraints applied to the adjustment of the control points	Table 23.	Constraints	applied to	o the adjustn	nent of the co	ntrol points
---	-----------	-------------	------------	---------------	----------------	--------------

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
UP_BIT-1	Global	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)							

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24. All fixed control points have no values for grid errors and elevation error.

Table 24. Adjusted Grid Coordinates for the control points used in the Sumlog River.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
UP_BIT-1	770500.332	?	200912.560	?	15.210	?	LLh
UP_MUS- 1	790872.748	0.005	158376.175	0.010	14.547	0.041	
UP_SUM- 2	765199.921	0.006	173616.342	0.009	18.125	0.040	

With the mentioned equation, $\sqrt{((x_e)^2+(y_e)^2)}<20$ cm for horizontal and $z^e<10$ cm for the vertical; the computation for the accuracy are as follows:

а.	UP_BIT-1 horizontal accuracy	=	Fixed
	vertical accuracy	=	Fixed
b.	UP_MUS-1		
	horizontal accuracy	=	$V((0.3)^2 + (1.0)^2)$
		=	√ (0.09 + 1.00)
		=	1.09 < 20 cm
	vertical accuracy	=	4.1 < 10 cm
с.	UP_SUM-2		
	horizontal accuracy	=	$\sqrt{((0.6)^2 + (0.9)^2)}$
		=	√ (0.36 + 0.81)
		=	1.17 < 20 cm
	vertical accuracy	=	4.0 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

Table 25. Adjusted geodetic coordinates for control points used in the Sumlog River Floodplain Validation.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
UP_BIT-1	N6°57'46.30507"	E126°17'35.96635"	80.537	?	LLh
UP_MUS-1	N7°08'40.27743"	E125°54'27.05429"	82.138	0.041	
UP_SUM-2	N6°54'48.60496"	E126°02'48.52278"	84.364	0.040	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 26.

Table 26. The reference and control points utilized in the Sumlog River Static Survey, with their corresponding location (Source: NAMRIA, UP-TCAGP).

Control Point	Order of Accuracy	Geograph	ic Coordinates (WGS	UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
UP_BIT- 1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	770500.332	200912.56	15.21
UP_ MUS-1	Established	7°08'40.27743"N	125°54'27.05429" E	82.138	790872.748	158376.175	14.547

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on March 27, 2016 at the downstream side of Sumlog Bridge in Brgy. Ilangay, Municipality of Lupon as shown in Figure 33. A Nikon[®] Total Station was utilized for this survey as shown in Figure 34.

Figure 33. Upstream side of the Sumlog Bridge.

Figure 34. The cross-section survey conducted at the Sumlog Bridge.

The cross-sectional line of Sumlog Bridge is about 400 m with two hundred twenty-seven (227) crosssectional points using the control points UP_SUM-1 and UP_SUM-2 as the GNSS base stations. The crosssection diagram and the bridge data form are shown in Figures 36 and 37. Gathering of random points for the checking of ABSD's bridge cross-section and bridge points data was performed by DVBC on May 18, 2016 using a survey grade GNSS Rover receiver attached to a 2-m pole.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 1.00 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square Correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bridge cross-section data, a computed value of 0.290 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 35. Location map of Sumlog Bridge Cross Section.

Figure 36. The Sumlog Bridge cross-section survey drawn to scale.

Bridge Data Form

Note: Observer should be facing downstream

Figure 37. The Sumlog Bridge as-built survey data.

Water surface elevation of Sumlog River was determined by a Nikon[®] Total Station on March 27, 2016 at 11:26 AM at Sumlog Bridge area with a value of 10.376 m in MSL as shown in Figure 36. This was translated into marking on the bridge's pier as shown in Figure 38. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Sumlog River, UP Mindanao.

Figure 38. Painting of water level markings on Sumlog Bridge.

4.6 Validation Points Acquisition Survey

The Validation Points Acquisition survey was conducted by DVBC on May 18, 2016 using a survey grade GNSS Rover receiver, Trimble[®] SPS 985, mounted on a range pole which was attached on the front of the vehicle as shown in Figure 39. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.476 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP_SUM-2 occupied as the GNSS base station in the conduct of the survey.

Figure 39. The Validation Points Acquisition survey set-up using a GNSS receiver fixed in a van along the Sumlog River Basin.

The survey started from Brgy. Poblacion, Lupon, Davao Oriental going east along the national highway, traversing three (3) barangays in the Municipality of Lupon, two (2) barangays in the Municipality of San Isidro, two (2) barangays in Mati City, and in Brgy. Sanghay, Mati City, Davao Oriental. The survey gathered a total of 3,430 points with approximate length of 33.13 km using UP_SUM-2 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 40.

Figure 40. Extent of the LiDAR ground validation survey along Samar and Eastern Samar.

4.7 River Bathymetric Survey

Bathymetric survey was executed manually on March 15, 2016 and March 18-20, 2016 using a Nikon[®] Total Station as seen in Figure C- 13. The survey started in Brgy. New Visayas, Lupon, Davao Oriental with coordinates 6° 58′ 39.45634″N, 126° 4′ 11.60372″E and ended at the mouth of the river in Brgy. Macangao, Lupon, Davao oriental, with coordinates 6° 51′ 59.49757″N, 126° 2′ 16.42555″E. The control points UP_SUM-1 and UP_SUM-2, served as the GNSS base stations all throughout the survey.

Figure 41. Manual bathymetric survey of ABSD at Sumlog River using Nikon[®] Total Station.

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on May 18, 2016 using a GNSS Rover receiver, Trimble[®] SPS 985 attached to a 2-m pole, see Figure 42. A map showing the DVBC bathymetric checking points is shown in Figure 44.

Figure 42. Gathering of random bathymetric points along Sumlog River.

Linear square correlation (R2) and RMSE analysis were also performed on the two (2) datasets and a computed R2 value of 0.90 is within the required range for R2, which is 0.85 to 1. Additionally, an RMSE value of 0.199 was obtained. Both the computed R2 and RMSE values are within the accuracy required by the program.

The bathymetric survey for Sumlog River gathered a total of 8,003 points covering 15.5 km of the river traversing barangays Macangao, Limbahan, Ilangay, Corporacion, Cocornon, Cabadiangan, and New Visayas in the Municipality of Lupon, Davao Oriental. A CAD drawing was also produced to illustrate the riverbed profile of Sumlog River. As shown in Figure 45, the highest and lowest elevation has a 48-m difference. The highest elevation observed was 47.528 m above MSL located in Brgy. New Visayas, Lupon while the lowest was -0.266 m below MSL located in Brgy. Macangao, Lupon.

Figure 43. Extent of the Sumlog River bathymetric survey.

Figure 44. Quality checking points gathered along Sumlog River by DVBC.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, Hannah Aventurado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

The components and data that affect the hydrologic cycle of the river basin were monitored, collected, and analyzed. These include the rainfall, water level, and the flow in a certain period of time.

5.1.2 Precipitation

Precipitation data was taken from the rain gauge installed by the University of the Philippines Mindanao Phil. LiDAR 1. This rain gauge is located in Barangay Maragatas, Lupon, Davao Oriental with the following coordinates: 7° 9′ 18.07″ N, 126° 9′ 47.38″ E (Figure 1). The precipitation data collection started from November 21, 2015 at 1:00 PM to November 23, 2015 at 3:20 PM with a 10-minute recording interval.

The total precipitation for this event in the installed rain gauge was 18.8 mm. It has a peak rainfall of 9 mm. on November 21, 2015 at 1:20 PM. The lag time between the peak rainfall and discharge is 8 hours and 20 minutes.

Figure 46. The location map of Sumlog HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Sumlog Bridge, Barangay Cocornon, Lupon, Davao Oriental (6° 54' 48.92" N, 126° 2' 47.33" E). It gives the relationship between the observed water level at the Sumlog Bridge and outflow of the watershed at this location.

Figure 47. Cross-Section Plot of Sumlog Bridge

For Bacarra Bridge, the rating curve is expressed as Q = 0.094e0.3989h as shown in Figure 48.

Figure 48. Rating Curve at Sumlog Bridge, Lupon, Davao Oriental.

The rating curve equation was used to compute for the river outflow at Sumlog Bridge for the calibration of the HEC-HMS model for Sumlog, as shown in Figure 49. The total rainfall for this event is 18.8 mm and the peak discharge is 29.1 m3/s at 9:40 PM of November 21, 2015.

Figure 49. Rainfall and outflow data at Sumlog Bridge used for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Davao Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Sumlog watershed. The extreme values for this watershed were computed based on a 59-year record.

Table 27. RIDF values for Davao Rain Gauge computed by PAGASA.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	19.5	30	38.2	53.2	65.2	71.6	80.3	85.8	91.4
5	25.1	39.3	51	73.2	88.8	96.4	108.7	114.9	121.1
10	28.8	45.4	59.4	86.5	104.5	112.8	127.5	134.1	140.7
15	30.9	48.9	64.2	94	113.3	122.1	138.1	145	151.8
20	32.4	51.3	67.6	99.3	119.5	128.6	145.5	152.6	159.5
25	33.5	53.2	70.1	103.3	124.2	133.6	151.2	158.5	165.5
50	37	59	78.1	115.8	138.9	149	168.8	176.5	183.9
100	40.5	64.7	85.9	128.1	153.5	164.2	186.3	194.4	202.1

Figure 50. Location of Davao RIDF Station relative to Sumlog River Basin.

Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset, taken in 2004, was sourced out from the Bureau of Soils under the Department of Agriculture. The land cover data, on the other hand, was taken from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Sumlog River Basin are shown in Figures 52 and 53, respectively.

Figure 52. The soil map of the Sumlog River Basin.

Figure 53. The land cover map of the Sumlog River Basin.

For Sumlog, four soil classes were identified. These are loam, sandy clay loam, silty clay loam and undifferentiated land. Moreover, five land cover classes were identified. These are shrublands, forest plantations, open forests, closed forests, and cultivated areas.

Figure 54. The slope map of the Sumlog River Basin.

Figure 55. Stream delineation map of Sumlog River Basin.

Using the SAR-based DEM, the Sumlog basin was delineated and further subdivided into subbasins. The model consists of 51 sub basins, 25 reaches, and 25 junctions, as shown in Figure 56. The main outlet is at Sumlog Bridge.

Figure 56. The Sumlog River Basin model generated in HEC-HMS.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 57. River Cross-section of the Sumlog River generated through Arcmap HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 58. A Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 58.36890 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Sumlog are in Figures __, __, and __.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 43894900.00 m2. The generated flood depth maps for Sumlog are in Figures __, __, and __.

There is a total of 34088534.89 m3 of water entering the model. Of this amount, 15257043.87 m3 is due to rainfall while 18831491.02 m3 is inflow from other areas outside the model. 6156764.50 m3 of this water is lost to infiltration and interception, while 19224428.46 m3 is stored by the flood plain. The rest, amounting up to 8707324.78 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Sumlog HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 59 shows the comparison between the two discharge data.

Figure 59. Outflow Hydrograph of Sumlog produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 28 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve Number	Initial Abstraction (mm)	2.73 – 24.07
	LUSS	SCS Curve Number	Curve Number	36.56 – 99
Desin	Transform		Time of Concentration (hr)	0.022 - 0.226
Basin		Clark Unit Hydrograph	Storage Coefficient (hr)	0.017 - 0.135
	Deceflour	Decession	Recession Constant	0.029 - 1
	Basellow	Recession	Ratio to Peak	0.21 – 0.995
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.011 - 0.129

Table 28. Range of Calibrated Values for Sumlog.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 2.73 mm to 24.07 mm means that there is an average initial fraction of the storm depth after which runoff begins.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

For Sumlog, the basin consists mainly of open forests and cultivated areas and the soil consists of mostly undifferentiated land and loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.017 hours to 0.226 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.029 to 1 indicate that the discharge leaving every subbasin within Sumlog recede differ significantly. Values of ratio to peak within the range of 0.21 to 0.995 indicate an average receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Sumlog river basin reaches' Manning's coefficients range from 0.011 to 0.129, showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy measure	Value
RMSE	1.1
r2	0.944
NSE	0.88
PBIAS	-3.93
RSR	0.34

Table 29. Summary of the Efficiency Test of Sumlog HMS Model.

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.1 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.944.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.88.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -3.93.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.34.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Sumlog outflow using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 60. The Outflow hydrograph at Sumlog Station generated using Cagayan de Oro RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sumlog discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30. A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sumlog discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	121.1	25.1	4334.1	2 hours, 40 minutes
10-Year	140.7	28.8	5374.5	2 hours, 30 minutes
25-Year	165.5	33.5	6748.9	2 hours, 20 minutes
50-Year	183.9	37	7798.9	2 hours, 10 minutes
100-Year	202.1	40.5	8876.4	2 hours

Table 30. Peak values of the Sumlog HEC-HMS Model outflow using the Davao RIDF.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Sumlog River using the calibrated HMS base flow is shown in Figure 61.

Figure 61. . Sample output of Sumlog RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Sumlog floodplain are shown in Figures 15 to 20. The floodplain, with an area of 97.22 sq. km., covers two municipalities. Table 31 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded
Davao Oriental	Lupon	356.28	84.46	23.71 %
Davao Oriental	San Isidro	224.84	12.70	5.65%

Table 31. Municipalities affected in Sumlog Floodplain.

Figure 62. 100-year Flood Hazard Map for Sumlog Floodplain.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 63. 100-year Flow Depth Map for Sumlog Floodplain.

Figure 64. 25-year Flood Hazard Map for Sumlog Floodplain.

Figure 65. 25-year Flow Depth Map for Sumlog Floodplain.

Figure 66. 5-year Flood Hazard Map for Sumlog Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 67. 5-year Flood Depth Map for Sumlog Floodplain.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Sumlog River Basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 20 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 9.90% of the municipality of Lupon with an area of 356.28 sq. km. will experience flood levels of less than 0.20 meters. 3.65% of the area will experience flood levels of 0.21 to 0.50 meters while 3.88%, 3.71%, 2.39%, and 0.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	A	Area of affected barangays in Lupon (in sq. km)							
flood depth (in m.)	Bagum- bayan	Cabad -iangan	Calap- agan	Cocor- non	Corpo- racion	Don Mariano Marcos	Ilangay	Langka	
0.03-0.20	0.48	2	0.24	6.58	0.95	0.0057	1.55	1.01	
0.21-0.50	0.86	0.1	0.82	0.5	0.73	0.0002	0.92	0.033	
0.51-1.00	1.42	0.059	1.11	0.6	0.21	0.00019	1	0.081	
1.01-2.00	2.51	0.086	0.69	0.83	0.21	0	0.58	0.8	
2.01-5.00	1.29	1.08	0.026	2.11	0.44	0	0.56	1.29	
> 5.00	0	0.11	0	0.023	0.015	0	0.058	0.024	

Table 32. Affected Areas in Lupon, Da	avao Oriental during 5-Year	Rainfall Return Period.
---------------------------------------	-----------------------------	-------------------------

Figure 68. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period.

Affected Area (sg. km.) by		Area of affected barangays in Lupon (in sq. km)							
flood depth (in m.)	Lanta- wan	Limba- han	Maca- ngao	Magsay- say	New Visayas	Poblacion	San Isidro	Tagboa	
0.03-0.20	0.38	0.47	1.91	5.6	1.24	4.46	1.06	7.32	
0.21-0.50	1.71	0.56	1.87	0.96	0.032	2.66	0.026	1.24	
0.51-1.00	2.67	1.74	1.65	0.79	0.026	1.12	0.021	1.34	
1.01-2.00	0.36	2.28	3.54	0.3	0.017	0.4	0.017	0.6	
2.01-5.00	0.0001	0.39	0.87	0.11	0.087	0.029	0.02	0.21	

Table 33. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period.

Figure 69. Affected Areas in Lupon, Davao Oriental during 5-Year Rainfall Return Period.

For the 5-year return period, 3.69% of the municipality of San Isidro with an area of 224.84 sq. km. will experience flood levels of less than 0.20 meters. 0.91% of the area will experience flood levels of 0.21 to 0.50 meters while 0.72%, 0.25%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangays in San Isidro (in sq. km)							
flood depth (in m.)	Dugmanon	Iba	Lapu-Lapu	San Roque				
0.03-0.20	3.71	2	0.14	2.45				
0.21-0.50	0.23	1.37	0.066	0.39				
0.51-1.00	0.27	0.97	0.025	0.36				
1.01-2.00	0.16	0.094	0.0031	0.3				
2.01-5.00	0.07	0	0	0.1				

Table 34. Affected Areas in San Isidro, Davao Oriental during 5-Year Rainfall Return Period.

Figure 70. Affected Areas in San Isidro, Davao Oriental during 5-Year Rainfall Return Period.

For the 25-year return period, 7.92% of the municipality of Lupon with an area of 356.28 sq. km. will experience flood levels of less than 0.20 meters. 3.15% of the area will experience flood levels of 0.21 to 0.50 meters while 4.16%, 4.77%, 3.23%, and 0.48% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	A	Area of affected barangays in Lupon (in sq. km)							
flood depth (in m.)	Bagum- bayan	Cabad -iangan	Calap- agan	Cocor- non	Corpo- racion	Don Mariano Marcos	Ilangay	Langka	
0.03-0.20	0.091	1.84	0.094	6.27	0.42	0.0057	0.76	0.95	
0.21-0.50	0.38	0.16	0.37	0.48	0.95	0.0002	0.96	0.032	
0.51-1.00	1.27	0.067	1.36	0.53	0.44	0.00019	1.39	0.031	
1.01-2.00	2.1	0.093	0.84	0.88	0.23	0	0.89	0.22	
2.01-5.00	2.71	0.8	0.22	2.04	0.5	0	0.57	1.84	
> 5.00	0	0.47	0	0.46	0.021	0	0.087	0.16	

Table 35. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period.

Figure 71. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period.

Affected Area (sq. km.) by		Area of affected barangays in Lupon (in sq. km)								
flood depth (in m.)	Lanta- wan	Limba- han	Maca- ngao	Magsay- say	New Visayas	Poblacion	San Isidro	Tagboa		
0.03-0.20	0.036	0.29	1.23	5.05	1.22	2.25	1.04	6.68		
0.21-0.50	0.22	0.4	1.82	0.86	0.035	3.23	0.026	1.3		
0.51-1.00	2.31	1.37	1.8	1.15	0.028	1.91	0.022	1.13		
1.01-2.00	2.52	2.71	3.57	0.5	0.022	1.15	0.023	1.23		
2.01-5.00	0.025	0.64	1.43	0.21	0.028	0.13	0.022	0.35		
> 5.00	0	0.084	0	0.0011	0.36	0	0.0079	0.044		

Table 36. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period.

Figure 72. Affected Areas in Lupon, Davao Oriental during 25-Year Rainfall Return Period.

For the 25-year return period, 3.38% of the municipality of San Isidro with an area of 224.84 sq. km. will experience flood levels of less than 0.20 meters. 0.79% of the area will experience flood levels of 0.21 to 0.50 meters while 0.95%, 0.40%, 0.12%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangays in San Isidro (in sq. km)							
flood depth (in m.)	Dugmanon	Iba	Lapu-Lapu	San Roque				
0.03-0.20	3.58	1.62	0.12	2.27				
0.21-0.50	0.22	1.11	0.075	0.37				
0.51-1.00	0.27	1.45	0.036	0.38				
1.01-2.00	0.25	0.25	0.0057	0.4				
2.01-5.00	0.1	0.1 0.0002 0 0.18						
> 5.00	0.0007	0.0007 0 0 0.012						

Table 37. Affected Areas in San Isidro, Davao Oriental during 25-Year Rainfall Return Period.

Figure 73. Affected Areas in San Isidro, Davao Oriental during 25-Year Rainfall Return Period.

For the 100-year return period, 7.01% of the municipality of Lupon with an area of 356.28 sq. km. will experience flood levels of less than 0.20 meters. 2.63% of the area will experience flood levels of 0.21 to 0.50 meters while 3.92%, 5.61%, 3.77%, and 0.77% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Ļ	Area of affected barangays in Lupon (in sq. km)							
flood depth (in m.)	Bagum- bayan	Cabad -iangan	Calap- agan	Cocor- non	Corpo- racion	Don Mariano Marcos	Ilangay	Langka	
0.03-0.20	0.026	1.75	0.06	6.05	0.19	0.0056	0.57	0.91	
0.21-0.50	0.092	0.2	0.2	0.49	0.96	0.00022	0.89	0.044	
0.51-1.00	0.77	0.058	1.16	0.44	0.56	0.00019	1.37	0.029	
1.01-2.00	2.24	0.089	1.16	0.86	0.25	0	1.09	0.096	
2.01-5.00	3.42	0.48	0.3	1.98	0.57	0	0.59	1.84	
> 5.00	0.0058	0.86	0	0.83	0.013	0	0.15	0.32	

Table 38. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period.

Figure 74. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period.

Affected Area (sq. km.) by	Area of affected barangays in Lupon (in sq. km)							
flood depth (in m.)	Lanta- wan	Limba- han	Maca- ngao	Magsay- say	New Visayas	Poblacion	San Isidro	Tagboa
0.03-0.20	0.012	0.19	0.83	4.74	1.21	1.12	1.03	6.28
0.21-0.50	0.037	0.29	1.49	0.77	0.038	2.46	0.031	1.39
0.51-1.00	0.9	1.13	2.16	1.21	0.029	3.07	0.023	1.05
1.01-2.00	4.01	2.83	3.34	0.77	0.025	1.72	0.025	1.47
2.01-5.00	0.15	0.15 0.95 2.04 0.28 0.021 0.31						0.48
> 5.00	0	0.12	0	0.0029	0.37	0	0.0097	0.062

Table 39. Affected Areas in Lupon, Davao Oriental during 100-Year Rainfall Return Period.

Figure 75. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

For the 100-year return period, 3.19% of the municipality of San Isidro with an area of 224.84 sq. km. will experience flood levels of less than 0.20 meters. 0.73% of the area will experience flood levels of 0.21 to 0.50 meters while 0.97%, 0.57%, 0.17%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by	Area of affected barangays in San Isidro (in sq. km					
flood depth (in m.)	Dugmanon	San Roque				
0.03-0.20	3.51	1.44	0.1	2.13		
0.21-0.50	0.2	0.99	0.079	0.38		
0.51-1.00	0.26	1.51	0.045	0.37		
1.01-2.00	0.32	0.49	0.0072	0.46		
2 01-5 00	0 14	0 0009	0	0.25		

Table 40. Affected Areas in San Isidro, Davao Oriental during 100-Year Rainfall Return Period.

Figure 76. Affected Areas in San Isidro, Davao Oriental during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Lupon in Davao Oriental, Tagboa is projected to have the highest percentage of area that will experience flood levels at 3.01%. Meanwhile, Cocornon posted the second highest percentage of area that may be affected by flood depths at 2.99%.

Among the barangays in the municipality of San Isidro in Davao Oriental, Dugmanon is projected to have the highest percentage of area that will experience flood levels at 1.97%. Meanwhile, Iba posted the second highest percentage of area that may be affected by flood depths at 1.97%.

Moreover, the generated flood hazard maps for the Sumlog Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Table 41. Area covered by each warning level with respect to the rainfall scenario.

	Area Covered in sq. km.					
warning Level	5 year	25 year	100 year			
Low	15.22	13.06	11.01			
Medium	23.30	27.96	28.56			
High	15.74	20.82	25.84			

Of the 34 identified educational institutions in the Sumlog floodplain, six schools were assessed to be highly prone to flooding as they are exposed to the High level flooding for all three rainfall scenarios. Another institution was found to be also susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. See Appendix D for a detailed enumeration of schools in the Sumlog floodplain.

Fourteen (14) medical institutions were identified in the Sumlog floodplain. The Barangay Health Center in Brgy. Limbahan was found to be highly prone to flooding, having High level flooding in all three rainfall scenarios. See Appendix E for a detailed enumeration of hospitals and clinics in the Sumlog Floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation survey was conducted on November 15-18, 2016. The flood validation consists of 180 points randomly selected all over the Sumlog Floodplain. It has an RMSE value of 1.59.

The vlidation data were obtained November 15-18, 2016.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 77. Sumlog Flood Validation Points.

Figure 78. Flood map depth vs. actual flood depth.

CLIMAL		Modeled Flood Depth (m)								
SOIVIL	UG BASIN	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total		
	0-0.20	29	18	3	1	4	0	55		
	0.21-0.50	4	6	17	2	4	1	34		
Actual	0.51-1.00	3	8	16	21	8	6	62		
Flood Donth	1.01-2.00	1	1	3	4	12	5	26		
(m)	2.01-5.00	0	0	0	1	1	1	3		
> 5.00	0	0	0	0	0	0	0			
	Total	37	33	39	29	29	13	180		

Table 42. Actual Flood Depth vs Simulated Flood Depth in Sumlog.

The overall accuracy generated by the flood model is estimated at 31.11%, with 56 points correctly matching the actual flood depths. In addition, there were 85 points estimated one level above and below the correct flood depths while there were 22 points and 17 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 103 points were overestimated while a total of 21 points were underestimated in the modelled flood depths of Sumlog.

Table 43. Summary of Accuracy Assessment in Sumlog.

	No. of Points	%
Correct	56	31.11
Overestimated	103	57.22
Underestimated	21	11.67
Total	180	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Technical Specifications of the Lidar Sensors Used In The Sumlog Floodplain Survey

1. GEMINI SENSOR

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. DVE-42

2. DVE-61

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. DVE-3088

				Processing	Summary						
Observation	From	Т	o	Solution Type	H. Prec. (Meter)	V. I (M	Prec. eter)	Geod Az	etic	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-3088 DVE- 42 (B1)	DVE-42	DVE-30	88	Fixed	0.0	01	0.002	150*3	7'05'	8.200	-0.026
DVE-3088 DVE- 42 (B2)	DVE-42	DVE-30	88	Fixed	0.0	01	0.002	150*3	6:35'	8.199	-0.029
DVE-42 DVE- 3088 (B3)	DVE-42	DVE-30	88	Fixed	0.0	01	0.002	150*3	6'48'	8.202	-0.035
DVE-3088 DVE- 42 (84)	DVE-42	DVE-30	88	Fixed	0.0	01	0.002	150*4	0.60.	8.200	-0.031
DVE-3088 DVE- 42 (85)	DVE-42	DVE-30	88	Fixed	0.0	01	0.001	150*4	0.65.	8.202	-0.035
DVE-42 DVE- 3088 (86)	DVE-42	DVE-30	88	Fixed	0.0	01	0.001	150*4	0.63.	8.203	-0.034
Vector Component	s (Mark to Ma	rk)									
From:	DVE-42										
	Grid			Loc	al					Global	
Easting	20163	8.187 m	Latitud	atitude N6*58'54.		4.82727*	.82727" Latitude		N6*6	N6*58'51.79295"	
Northing	77265	4.341 m	Longitu	gitude E126*17'56.0		5.05259"	.05259" Longitude		E126*18'01.57690"		
Elevation	1	5.607 m	Height			6.396 m	Height				81.025 m
To:	DVE-3088										
	Grid			Loc	al					Global	
Easting	20164	2.172 m	Latitud	e	N6*58'5	4.69466"	Latitude	•		N6*6	8'61.56037"
Northing	77264	7.168 m	Longitu	Jde	E126*17'6	5.18365"	Longitu	de		E126*1	8'01.70797"
Elevation	1	5.582 m	Height			6.370 m	Height				80.999 m
Vector											
ΔEasting		3.98	6 m NS	S Fwd Azimuth			150*3	7'05"	ΔX		-3.741 m
ΔNorthing		-7.17	3 m El	ipsoid Dist.			8.2	00 m	ΔY		-1.703 m
ΔElevation		-0.02	26 m Δł	leight			-0.0	26 m	ΔZ		-7.095 m

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0*00'12"	σΔX	0.001 m
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔY	0.001 m
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.0000004144		
Y	-0.0000001655	0.0000005443	
z	-0.000000528	0.000000815	0.000000908

2. DVE-3118

	r roccosing continuity								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)	
DVE-61 DVE- 3118 (B7)	DVE-61	DVE-3118	Fixed	0.017	0.050	222*67'30'	8321.258	81.505	
DVE-61 DVE- 3118 (B10)	DVE-61	DVE-3118	Fixed	0.013	0.039	222*67'30'	8321.245	81.578	
DVE-61 DVE- 3118 (B11)	DVE-61	DVE-3118	Fixed	0.017	0.043	222*67'29'	8321.266	81.487	

Processing Summary

Vector Components (Mark to Mark)

From:	DVE-61	61				
Grid		Lo	cal		Global	
Easting	193120.234 m	Latitude	N6*57'39.37336	Latitude		N6*67'36.33777"
Northing	770283.711 m	Longitude	E126*13'22.44551	" Longitude		E126*13'27.97256"
Elevation	67.168 m	Height	48.473 r	n Height		122.953 m
To:	DVE-3118					
G	rid	Local			Global	
Easting	187409.531 m	Latitude	N6*54'21.10869	" Latitude		N6*54'18.08333"
Northing	764222.331 m	Longitude	E126*10'17.73142	.73142" Longitude		E126*10'23.26403"
Elevation	138.503 m	Height	129.978 r	n Height		204.433 m
Vector						
∆Easting	-5710.70	3 m NS Fwd Azimuth		222*67'30"	ΔX	4093.802 m
ΔNorthing	-6061.38	1 m Ellipsoid Dist.		8321.258 m	ΔY	4007.271 m
ΔElevation	81.34	l5 m ΔHeight		81.505 m	ΔZ	-6036.086 m

Standard Errors

Vector errors:					
σ ΔEasting	0.007 m	σ NS fwd Azimuth	0*00'00"	σΔX	0.015 m
σ ΔNorthing	0.005 m	σ Ellipsoid Dist.	0.006 m	σΔΥ	0.021 m
σ ΔElevation	0.025 m	σ ΔHeight	0.025 m	σΔZ	0.006 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z		
x	0.0002242317				
Y	-0.0002729544	0.0004576374			
z	-0.0000517484	0.0000689019	0.0000341757		

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation								
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP								
Data Acquisition	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP								
Component Leader	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP								
Survey Supervisor	Supervising Science Research Specialist	ENGR. LOVELYN ASUNCION	UP-TCAGP								
	(Supervising SRS)	LOVELY GRACIA ACUÑA	UP-TCAGP								
FIELD TEAM											
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP								
LiDAR Operation	Research Associate (RA)	FOR. MA. VERLINA TONGA	UP-TCAGP								
	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP								
Ground Survey, Data Download and Transfer	RA	ENGR. KENNETH QUISADO	PHILIPPINE AIR FORCE (PAF)								
LiDAR Operation	Airborne Security	TSG. MIKE DIAPANA	ASIAN AEROSPACE CORPORATION (AAC)								
'		CAPT. RAUL CZ SAMAR II	AAC								
	Pilot	CAPT. BRYAN JOHN DONGUINES									

Table A-4.1. The LiDAR Survey Team Composition

NUN MORE	PORT, LOGATION	ZMitherme_Rawl? 9 stiesss	NA RANDON AM	Bunton Bast	Calibrationa Stael)	D ANNUA PANO	TOUTING STAND		
nan	and a		-	0	4	4	~		
CONTRACTOR DOW	007465	86	145	- 88	805	90	24		
(SNORTH)	Race Sets (Set)	841 96	11 III	50 MB	8 40	7 70	24	£152/	
11094	RIAT CONTRACT	46	3.5	40	83		3	or tolfe	
-	Total Contractor	5	NN S	5	10	(M)	50	70.16	
1.		0	1	-	8	23	12	NON NON	
-	Non Non	disact.	2	1	2	3	577.9	1.1	
-	-	FE 112	224 76	- 242	1.000	202/14	230 013	1 111	
	Induced	6.21	530	524	609	503	562	1	
-	NORL (pawers)	42	116/38	405	161/662	335	2		
See.	04ke		NN.	HA.	12	181	1	. []	
ana ana		COMO	GENERG	DEMIN	DENNE	ORMER	DENING	1994	
and the second		231X34A163A	ANY REALESSESSINGS	291.024.453681.714	29LKB6C83A1718	VELTODEXTER	281K80481744	Modimetrae Nation Copenias Of Decivity	
FLOORT NO.		rausec*	73205	73226	7323G	75260	7328GC*	Chains &	
TATE .		118/2024	15/2014	720/2014	107/07	22/2014	21/2014	MITY PUCK	

	PLANT PLAN	(DRLOD) AAAAA	103 ALARCALLA	1000 20100 2140000	1KB 6 17 W11 3390C	110 0 1110 0 1100 001	AND 2 AVERAGE	10 570 536A	143 300 2.Witherne		
	BAGE STATION(S)	Base info (300)	7.59 100	5.08.149	4.68 143	6.95 110	5.32 IKB	6.49 1×9	7.05 140	kilrife	
8		RANGE DIGITIZER	16.9 MA	14.3 M	28.2 NA	2.90/6. 69 MA	29.7 M	6.58 NA	23.0 NA	E FRIETO	
o Oriental - read	POS RANTENCA LOG	PLECAS LODS	W	ž	N	*	M	ž	M	S.C. DA	
07/08/2014[Davad		POS MAADE	163 M	74.8 NA	265 M	174 MA	279 NA	212 NA	258 NA	Receive Name Feature Eigneium	
	-	roosiwai	366	367	580	166	612	200	499		
	W LAS	KORL (swath)	209/70	179/11	119	158/22	376	597	300		
	5	Coppet	NA	NA	MA	NA	MA	W	×	freby a	
	SENSOR		Gemini	Gemini	Gemin	Gemini	Gernini	Cerrici	Gernini	Krinthine B.A.	
	MAN WANT		28LK86A178A	28LK79C179A	28LK798180A	2BLX84B182A	28LK798SA183A	28LK79V184A	28LK858185A	Received free Name Freeton Eigenture	
	FUGHT NO.		4 7337GC	4 7339GC	4 7340GC	4 7344GC	4 7346GC	4 7348GC	5 7350GC		
-	DATE		6/27/2014	6/28/2014	6/29/2014	1/1/2014	7/2/2014	7/3/2014	7/4/2014		

SERVER	LOCATION	Z:Wittome_	Z:VAirborneRaw	Z.Wittome_	Z:Wittome_	Z:VarborneRaw	Z.Wittome_	Z.Mittome_	Z:Mittome_ Raw	
PLAN	KML	374/11	406	165/7/14	138	234/9/12	14/17	30/6	139	
FLIGHT	Actual	4	4	7/3	8/5/4	4/9	5/7		34	
OPERATOR	(oorloo)	169	1KB	1KB	1KB	1KB	1KB	1KB	108	
now(s)	(tot)	8	8	8	2	2	2	8	2	
BASE STA	, BASE STATION(S)	9.58	7.68	4.83	4.7	5.8	4.89	4.56	3.42	128/14
	-	5	5		4	5	\$	\$	5	eſ
	Tranca	27.7	5.05	20.1	7.95	27.3	12.2	3.47	9.01	The state
ISSION LOG	LOGS	5	5	5	4	4	5	\$	4	HOIOP
RAW	MAGESICASI	5	5	5	5	5	5	5	5	teceived by tame ostition signature
	ŝ	265	79.8	1961	188	207	241	158	156	
	COGS(MB)	589	ŧ	318	244	488	409	68.7	239	
LAS	CML (swath)	347/11	406	16S/7/14	138	234/9/12	60	30/6	139	
RAWI	Output LAS	5	5	12	2	5	X	N.	W	ą
	SENSOR	Gemini	Gemini	Cemini	Gemini	Gemini	Gemini	Gemini	Gemini	Carline Lastre
	MISSION NAME	ZBLKB0AS188A	2BLK80851888	2BLK8065189A	2BLK85CS191A	2BLK85V192A	28LK79D808V193A	281 K79F196A	28LK79E5197A	Received from Name Tit Name Tit Signature
	FUGHT NO.	7356GC	7357GC	7358GC	7362GC	7364GC	7366GC	7372GC	7374GC	
-	DATE	7/7/2014	7/7/2014	7/8/2014	7/10/2014	1/11/2014	1/12/2014	7/15/2014	7/16/2014	

Annex 6. Flight logs for the flight missions

Annex 7. Flight status reports

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7322GC	BLK83A, BLK86B	2BLK84AS&- 86B171A (BLK83A instead of BLK84A)	MV TONGA	June 20, 2014	BLK 83A (3 lines). Moved to 86B (13 lines)
7323GC	BLK86C, BLK83A BLK84B	2BLK- 86C&83A171B (additional BLK84B)	lk paragas	June 20, 2014	Surveyed BLK84B then moved to BLK86C due to rain, howev- er; after surveying 10 lines, rain started to pour and moved to BLK83A.
7337GC	BLK86A	2BLK86A178A	LK PARAGAS	June 27, 2014	Surveyed 12 lines at 1000m
7364GC	BLK 85A	2BLK85V192A	MV TONGA	July 11, 2014	Covered BLK85A and voids of BLK84A and BLK83A

DAVAO ORIENTAL (June 16 - July 16, 2014)
Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LAS BOUNDARIES PER FLIGHT

Flight No. : Area: Mission name: Parameters: FOV: 40 deg; Area covered: 7322GC BLK83A & BLK86B 2BLK84AS86B171A (BLK83A instead of BLK84A) Altitude: 1100 m; Scan Frequency: 50 Hz; Overlap: 30 % 209.19 km2

Flight No. : Area: Mission name: Parameters: FOV: 40 and 36 deg; Area covered:

7323GC BLK86C, BLK83A & BLK84B 2BLK86C83A171B (additional BLK84B) Altitude: 1100 and 1250 m; Overlap: 30 % 214.08 km2

Scan Frequency: 50 Hz;

Flight No. : Area: Mission name: Parameters: FOV: 40 deg; Area covered: 7337GC BLK86A 2BLK86A178A Altitude: 1100 m; Overlap: 30 % 176.23 km2

Scan Frequency: 50 Hz;

Flight No. : Area: Mission name: Parameters: FOV: 40 and 24 deg; Area covered: 7364GC BLK85A 2BLK85V192A Altitude: 1600 and 1300 m; Overlap: 40 % 195.19 km2

Scan Frequency: 50 and 60 Hz;

ANNEX 8. Mission Summary Reports

Flight Area	Davao Oriental
Mission Name	Blk86A
Inclusive Flights	7337G
Range data size	16.9 GB
POS	163 MB
Image	na
Transfer date	July 14, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.85
RMSE for Down Position (<8.0 cm)	2.55
Boresight correction stdev (<0.001deg)	0.000467
IMU attitude correction stdev (<0.001deg)	0.000774
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	15.66%
Ave point cloud density per sq.m. (>2.0)	2.66
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	230
Maximum Height	719.63 m
Minimum Height	66.82 m
Classification (# of points)	
Ground	101343254
Low vegetation	114062832
Medium vegetation	132213048
High vegetation	300594147
Building	3964197
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Angelo Carlo Bongat, Aljon Rei Araneta, Engr. Gladys Mae Apat

Figure 1.1.1 Solution Status

Figure 1.1.2 Smoothed Performance Metric Parameters

Figure 1.1.3 Best Estimated Trajectory

Figure 1.1.4 Coverage of LiDAR data

Figure 1.1.5 Image of data overlap

Figure 1.1.6 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1.1.7 Elevation difference between flight lines

	-
Flight Area	Davao Oriental
Mission Name	Blk86A_additional
Inclusive Flights	7364G
Range data size	27.3 GB
POS	207 MB
Image	na
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.094
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000830
IMU attitude correction stdev (<0.001deg)	0.198724
GPS position stdev (<0.01m)	0.0294
Minimum % overlap (>25)	35.88%
Ave point cloud density per sq.m. (>2.0)	1.96
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	217
Maximum Height	1040.91 m,
Minimum Height	67.12 m
Classification (# of points)	
Ground	20054320
Low vegetation	8107427
Medium vegetation	37709027
High vegetation	194858525
Building	872672
Orthophoto	No
Processed by	Engr. Kenneth Solidum, Engr. Harmond Santos, Engr. Roa Shalemar Redo

Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

Figure 1.2.3 Best Estimated Trajectory

Figure 1.2.4 Coverage of LiDAR data

Figure 1.2.5 Image of data overlap

Figure 1.2.6 Density map of merged LiDAR data

Figure 1.2.7 Elevation difference between flight lines

Flight Area	Davao Oriental
Mission Name	Blk86B
Inclusive Flights	7322G
Range data size	23.0 GB
POS	242 MB
Image	na
Transfer date	July 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.46
RMSE for Down Position (<8.0 cm)	2.6
Boresight correction stdev (<0.001deg)	0.000188
IMU attitude correction stdev (<0.001deg)	0.001441
GPS position stdev (<0.01m)	0.0027
Minimum % overlap (>25)	33.62%
Ave point cloud density per sq.m. (>2.0)	3.30
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	16
Maximum Height	374.79 m
Minimum Height	88.63 m
Classification (# of points)	
Ground	5850713
Low vegetation	5128592
Medium vegetation	8580789
High vegetation	23883495
Building	100524
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Analyn Naldo, Engr. Gladys Mae Apat

Figure 1.3.1 Solution Status

Figure 1.3.2 Smoothed Performance Metric Parameters

Figure 1.3.3 Best Estimated Trajectory

Figure 1.3.4 Coverage of LiDAR data

Figure 1.3.5 Image of data overlap

Figure 1.3.6 Density map of merged LiDAR data

Figure 1.3.7 Elevation difference between flight lines

Flight Area	Davao Oriental
Mission Name	Blk86C
Inclusive Flights	7323G
Range data size	20.4 GB
POS	244 MB
Image	na
Transfer date	July 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.094
RMSE for East Position (<4.0 cm)	1.28
RMSE for Down Position (<8.0 cm)	1.75
Boresight correction stdev (<0.001deg)	0.000523
IMU attitude correction stdev (<0.001deg)	0.003956
GPS position stdev (<0.01m)	0.0152
Minimum % overlap (>25)	22.94%
Ave point cloud density per sq.m. (>2.0)	3.89
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	137
Maximum Height	667.86 m
Minimum Height	65.73 m
Classification (# of points)	
Ground	39222216
Low vegetation	22879172
Medium vegetation	88397711
High vegetation	184017731
Building	820572
Orthophoto	No
Processed by	Engr. Analyn Naldo, Engr. Chelou Prado, Engr. Krisha Marie Bautista

Figure 1.4.1 Solution Status

Figure 1.4.2 Smoothed Performance Metric Parameters

Figure 1.4.3 Best Estimated Trajectory

Figure 1.4.4 Coverage of LiDAR data

Figure 1.4.5 Image of data overlap

Figure 1.4.6 Density map of merged LiDAR data

Figure 1.4.7 Elevation difference between flight lines

Annex 9. Sumlog Model Basin Parameters

		Ratio to Peak	0.21633	0.62544	0.44502	0.47341	0.5	0.5	0.4706	0.99541	0.8145	0.87581	0.46453	0.69348	0.5
MC	Threshold Type	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	Ratio to Peak	
ession Basef		Recession Constant	0.13665	0.30269	0.45589	0.29236	0.56412	0.33318	0.32397	Ļ	0.71922	Ļ	0.28236	0.076966	0.32013
Rece		Initial Dis- charge (cms)	0.64798	0.83821	0.23477	0.47797	1.0982	0.28697	0.12322	0.15722	0.30906	0.18351	0.39186	0.4007	0.18664
		Initial Type	Discharge	Discharge											
Unit	Transform	Storage Coefficient (HR)	0.63471	0.58496	0.073875	0.039083	0.10566	0.032921	0.018924	0.023357	0.035463	0.027447	0.02383	0.059124	0.031907
Clark I	Hydrograph	Time of Concentration (HR)	5.8932	10.594	0.15432	0.083668	0.2262	0.070478	0.028358	0.050003	0.075919	0.058758	0.051016	0.12916	0.068307
er Loss		Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0
urve Numb		Curve Number	68.721	73.023	42.942	66	98.682	59.177	95.629	74.655	76.854	97.248	49.067	93.418	82.631
SCS CI		Initial Abstraction (mm)	7.6643	7.4459	3.23092	17.17	24.074	19.628	11.286	14.004	10.077	14.792	8.0775	13.699	17.724
	Basin	Number	W1000	W1010	W1020	W520	W530	W540	W550	W560	W570	W580	W590	W600	W610

0.56328	0.32013	0.5		Ratio to Peak	0.6	0.21343	0.61127	0.50489	0.43279	0.33333	0.70751	0.80284	0.74979	0.5
Ratio to Peak	Ratio to Peak	Ratio to Peak	MO	Threshold Type	Ratio to Peak									
0.057959	0.32667	0.30673	ession Basefl	Recession Constant	0.36845	0.30131	0.05948	0.13741	0.9523	0.13391	0.12997	0.48014	0.32355	0.27
1.0632	0.10273	0.56926	Reo	Initial Dis- charge (cms)	0.20362	0.32387	0.65024	0.39696	0.16037	0.006107	0.52644	0.39248	0.28729	0.017261
Discharge	Discharge	Discharge		Initial Type	Discharge									
0.13469	0.018033	0.073066	Jnit Transform	Storage Coefficient (HR)	0.03431	0.069655	0.074034	0.04045	0.026293	0.017353	0.052499	0.044094	0.064874	0.025341
0.12962	0.038605	0.15642	Clark U Hydrograph	Time of Concentration (HR)	0.073451	0.10354	0.18279	0.1299	0.056288	0.026005	0.11436	0.097312	0.10762	0.05425
0	0	0	er Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0
81.603	36.557	64.989	urve Numb	Curve Number	78.145	73.469	84.05	87.46	41.215	67.975	48.151	79.108	78.887	62.197
14.259	6.9069	21.522	SCS CI	Initial Abstraction (mm)	12.014	12.915	16.719	15.433	7.5494	11.374	11.333	13.691	14.042	23.895
W620	W630	W640	2. 	Number	W650	W660	W670	W680	W690	W700	W710	W720	W730	W740

0.32168	0.81221	0.44056	0.74952	0.6381	0.47258	0.41648	0.35177		Ratio to Peak	0.87989	0.5	0.48258	0.31419	0.5
Ratio to Peak	MO	Threshold Type	Ratio to Peak											
0.064528	0.21996	۲	0.2277	1	4	0.14491	0.245	ession Basef	Recession Constant	-	0.092959	0.029264	0.029264	0.07534
0.37922	0.091462	0.051433	0.15284	0.22793	0.026175	0.67857	0.19306	Rec	Initial Dis- charge (cms)	3.71E-01	3.98E-01	0.17788	0.052983	0.21198
Discharge		Initial Type	Discharge	Discharge	Discharge	Discharge	Discharge							
0.050519	0.031185	0.020833	0.036076	0.044001	0.025335	0.2958	0.036931	Jnit Transform	Storage Coefficient (HR)	0.052293	0.05255	0.03323	0.021113	0.039154
0.15664	0.066762	0.0446	0.077231	0.11166	0.054238	0.12244	0.079062	Clark Hydrograph	Time of Concentration (HR)	0.11431	0.1125	0.071138	0.031639	0.08382
0	0	0	0	0	0	0	0	er Loss	Impervious (%)	0	0	0	0	0
39.173	80.971	50.458	97.156	64.469	46.107	66.043	64.648	Irve Numb	Curve Number	62.358	67.678	94.63	89.392	65.738
14.908	14.546	5.0359	15.382	12.113	6.7615	11.42	5.9611	SCS CI	Initial Abstraction (mm)	13.933	19.38	14.677	5.166	19.94
W750	W760	M770	W780	067W	W800	W810	W820	a S S S S S S S S S S S S S S S S S S S	Number	W830	W840	W850	W860	W870

0.49434	0.21019	0.48594	0.32827	0.36079	0.27563	0.33333	0.47292	0.48911	0.5719	0.42673	0.23333
Ratio to Peak											
0.30746	0.029264	0.55261	0.039505	0.82852	0.085365	0.029264	0.096791	0.87764	0.20977	0.47464	0.21724
0.16106	0.007429	0.60191	0.020227	0.10496	0.3015	0.17644	0.18218	0.16163	0.2049	0.34169	0.3228
Discharge											
0.039668	0.017881	0.074977	0.018164	0.023979	0.038167	0.025659	0.025761	0.024356	0.03767	0.029518	0.042772
0.084921	0.026796	1.6412	0.021776	0.051335	0.081707	0.05493	0.055149	0.052142	0.080644	0.063191	0.091566
0	0	0	0	0	0	0	0	0	0	0	0
69.468	66	79.56	73.871	91.158	81.851	74.037	50.847	76.86	84.131	80.716	58.257
2.8777	5.7317	6.3136	21.434	3.9005	3.6648	20.553	20.916	5.8191	3.15406	2.73371	5.51628
W880	W890	006M	W910	W920	W930	W940	W950	096M	026W	W980	066M

Annex 10. Sumlog Model Reach Parameters

Deach		M	uskingum Cu	nge Channel	Routing		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	1305.7	0.014951	0.082899	Trapezoid	45.75546	1
R140	Automatic Fixed Interval	3230.8	0.015136	0.046676	Trapezoid	52.11182	1
R150	Automatic Fixed Interval	374.85	0.026987	0.081323	Trapezoid	66.61429	1
R190	Automatic Fixed Interval	780.83	0.09429	0.02422	Trapezoid	29.14583	1
R200	Automatic Fixed Interval	4998.7	0.011439	0.054259	Trapezoid	60.03135	1
R210	Automatic Fixed Interval	11796	0.028468	0.036181	Trapezoid	40.19901	1
R250	Automatic Fixed Interval	1477.5	0.00653	0.12877	Trapezoid	57.41522	1
R260	Automatic Fixed Interval	1323.6	0.006685	0.12891	Trapezoid	9.88333	1
R280	Automatic Fixed Interval	2206.9	0.043565	0.024801	Trapezoid	14.66137	1
R310	Automatic Fixed Interval	3860.4	0.027621	0.085413	Trapezoid	117.1018	1
R330	Automatic Fixed Interval	4069.5	0.011191	0.055239	Trapezoid	82.77004	1
R350	Automatic Fixed Interval	322.13	0.001	0.037773	Trapezoid	80.60591	1
R360	Automatic Fixed Interval	1358.1	0.001	0.08312	Trapezoid	62.81199	1
R370	Automatic Fixed Interval	6539.3	0.015757	0.086652	Trapezoid	24.26474	1
R390	Automatic Fixed Interval	989.83	0.010958	0.057699	Trapezoid	25.85364	1
R400	Automatic Fixed Interval	1818.9	0.032489	0.011134	Trapezoid	10.0025	1
Peach		M	uskingum Cu	nge Channel	Routing		
Number	Time Step Meth- od	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R430	Automatic Fixed Interval	5161.7	0.008608	0.0377	Trapezoid	46.66336	1
R450	Automatic Fixed Interval	4004.2	0.009638	0.055091	Trapezoid	101.4683	1
R470	Automatic Fixed Interval	9990.2	0.011238	0.023846	Trapezoid	151.4146	1
R480	Automatic Fixed Interval	4056.9	0.008351	0.056506	Trapezoid	126.8871	1
R490	Automatic Fixed Interval	10760	0.003022	0.057904	Trapezoid	196.4719	1
R50	Automatic Fixed Interval	2312	0.051682	0.051717	Trapezoid	59.43071	1

R510	Automatic Fixed Interval	3248.4	0.001	0.056282	Trapezoid	86.98583	1
R60	Automatic Fixed Interval	4859.5	0.066359	0.12875	Trapezoid	39.12024	1
R90	Automatic Fixed Interval	4290.2	0.037384	0.055555	Trapezoid	62.06712	1

Annex 11. Sumlog Field Validation Points

Point Number	Validation	Coordinates	Model Var (m)	Validation Points (m)	Error (m)	Event/Date	Rain Return/
	Lat	Long			(,		Scenario
1	6.898257	126.00739	0.51	0.5	0.0001	Intense Local rainfall/ 2015	5-Year
2	6.898706	126.007754	0.53	0.5	0.0009	Intense Local rainfall/ August 2016	5-Year
3	6.900053	126.009119	0.64	0.6	0.0016	Intense Local rainfall/ 2015	5-Year
4	6.901228	126.008946	0.54	0.25	0.0841	Typhoon/ June 2016	5-Year
5	6.898886	126.007936	0.65	0.5	0.0225	Intense Local rainfall/ 2016	5-Year
6	6.899604	126.008664	0.88	0.5	0.1444	Buhawi/ December 2015	5-Year
7	6.897988	126.007117	0.13	1	0.7569	Intense Local rainfall/ 1990	5-Year
8	6.897986	126.007298	0.3	1	0.49	Intense Local rainfall/ 1990	5-Year
9	6.89853	126.00703	0.73	0.9	0.0289	Intense Local rainfall/ May 2016	5-Year
10	6.898804	126.00658	0.65	0.9	0.0625	Intense Local rainfall/ 2016	5-Year
11	6.89889	126.007213	0.93	0.9	0.0009	Intense Local rainfall/ 2016	5-Year
12	6.898526	126.007663	0.63	0.2	0.1849	Intense Local rainfall/ November 2015	5-Year
13	6.898525	126.007844	0.7	0.2	0.25	Intense Local rainfall/ 2015	5-Year
14	6.900961	126.008401	1.02	0.6	0.1764	Yolanda/ November 2013	5-Year
15	6.901046	126.009216	0.79	0.5	0.0841	Typhoon/ December 2015	5-Year
16	6.899244	126.008391	0.7	0.5	0.04	Upstream rainfall/ June 2016	5-Year
17	6.90024	126.008126	0.77	0.7	0.0049	Intense Local rainfall/ 2016	5-Year
18	6.898712	126.006851	0.8	0.9	0.01	Intense Local rainfall/ 2016	5-Year
19	6.899255	126.006673	0.73	0.4	0.1089	Typhoon/ November 2015	5-Year
20	6.900785	126.007587	0.73	0.7	0.0009	Pablo/ December 2012	5-Year
21	6.900787	126.007225	1.22	0.7	0.2704	Upstream rainfall/ June 2016	5-Year
22	6.900787	126.007316	1.29	1.7	0.1681	Upstream rainfall/ June 2016	5-Year
23	6.901411	126.008676	0.79	0.25	0.2916	Typhoon/ June 2016	5-Year
24	6.900511	126.008037	0.4	0.6	0.04	Upstream rainfall	5-Year
25	6.898528	126.007301	0.88	0.5	0.1444	Intense Local rainfall/ 2015	5-Year
26	6.899343	126.007126	0.83	1.1	0.0729	Intense Local rainfall/ 2016	5-Year
27	6.898799	126.007303	0.89	0.9	0.0001	Intense Local rainfall/ May 2016	5-Year
28	6.899162	126.007125	0.99	0.9	0.0081	Intense Local rainfall/ 2016	5-Year
29	6.899612	126.007399	0.88	1.1	0.0484	Intense Local rainfall/ July 2016	5-Year
30	6.899073	126.006943	0.93	0.9	0.0009	Intense Local rainfall/ 2016	5-Year
31	6.899969	126.008034	0.92	0.5	0.1764	Upstream rainfall/ 2015	5-Year
32	6.89979	126.007852	0.95	0.9	0.0025	Upstream rainfall/ June 2016	5-Year
33	6.900781	126.00822	1.12	0.6	0.2704	Yolanda/ November 2013	5-Year
34	6.901231	126.008494	0.99	0.3	0.4761	Intense Local rainfall/ 2016	5-Year
35	6.899883	126.0074	1.04	1.1	0.0036	Intense Local rainfall/ July 2016	5-Year
36	6.873856	126.037517	0.26	0.6	0.1156	Intense Local rainfall/ 2013	5-Year
37	6.873496	126.037334	0.24	0.6	0.1296	Intense Local rainfall/ 2013	5-Year
38	6.870336	126.037043	0.71	0.1	0.3721	Intense Local rainfall/ January 2015	5-Year
39	6.870963	126.03786	0.27	0.05	0.0484	Intense Local rainfall/ 2013	5-Year
40	6.871415	126.037773	0.45	0.7	0.0625	Intense Local rainfall/ January 2015	5-Year
41	6.870523	126.03605	0.71	0.5	0.0441	Agaton/ June 2014	5-Year
42	6.871507	126.037502	0.49	0.7	0.0441	Intense Local rainfall/ January 2015	5-Year
43	6.87098	126.035239	0.65	0.5	0.0225	Intense Local rainfall/ November 28, 2011	5-Year

44	6.872322	126.037236	0.5	0.6	0.01	Intense Local rainfall/ 2015	5-Year
45	6.870705	126.03578	0.54	0.5	0.0016	Agaton/ June 2014	5-Year
46	6.890885	126.016021	0.05	0.5	0.2025	Habagat/ 2012	5-Year
47	6.891064	126.016294	0.33	0.5	0.0289	Habagat/ 2012	5-Year
48	6.890879	126.016925	0.03	0	0.0009		5-Year
49	6.891509	126.017381	0.03	0	0.0009		5-Year
50	6.891885	126.015033	0.15	0	0.0225		5-Year
51	6.891513	126.016658	0.1	0	0.01		5-Year
52	6.892325	126.016934	0.12	0	0.0144		5-Year
53	6.892418	126.016393	0.06	0	0.0036		5-Year
54	6.891338	126.015753	0.06	0	0.0036		5-Year
55	6 891334	126 016476	0.07	0	0.0049		5-Year
56	6 89197	126.015938	0.07	0	0.0010		5-Year
57	6 802781	126.016124	0.07	0	0.0040		5-Vear
57	6 902055	120.010124	0.09	0	0.0001		5-Teal
56	0.892055	120.010002	0.1	0	0.01		5-rear
59	6.892423	126.01567	0.21	0	0.0441		5-Year
60	6.891256	126.014487	0.14	0	0.0196		5-Year
61	6.891973	126.015396	0.2	0	0.04		5-Year
62	6.891286	126.023979	0.22	0.1	0.0144	Intense Local rainfall/ 2008	5-Year
63	6.888396	126.02387	0.14	0.2	0.0036	Intense Local rainfall/ 2015	5-Year
64	6.888663	126.024595	0.28	0.2	0.0064	Intense Local rainfall/ 2015	5-Year
65	6.890115	126.023429	0.36	0.3	0.0036	Local rainfall/ 2016	5-Year
66	6.888577	126.023781	0.24	0.2	0.0016	Intense Local rainfall/ 2015	5-Year
67	6.890297	126.023249	0.4	0.1	0.09		5-Year
68	6.890386	126.023431	0.17	0.3	0.0169	Local rainfall/ 2016	5-Year
69 7 0	6.891012	126.024429	0.14	0.1	0.0016		5-Year
70	6.890107	126.024785	0.03	0.2	0.0289		5-Year
71	0.090304	120.023883	0.24	0.3	0.0036		5-Year
72	6 900290	120.023977	0.24	0.1	0.0190		5 Voor
73	6 880110	120.023009	0.15	0.1	0.0025		5 Vear
74	6 889576	126.023764	0.27	0.2	0.0049		5-Vear
76	6 800204	126.023004	0.33	0.1	0.0029		5-Vear
70	6 890656	126.023701	0.34	0.5	0.0010	Local rainfall/	5-Year
78	6 891648	126.023891	0.39	0.1	0.0841	Intense Local rainfall/ 2008	5-Year
79	6 888752	126.020001	0.00	0.1	0.0009	Intense Local rainfall/ 2015	5-Year
80	6.889833	126.025235	0.03	0.2	0.0289	Intense Local rainfall/ 2015	5-Year
81	6.889934	126.023518	0.14	0	0.0196		5-Year
82	6.888304	126.024141	0.18	0.2	0.0004	Intense Local rainfall/ 2015	5-Year
83	6.890026	126.023338	0.45	0.1	0.1225	Intense Local rainfall/	5-Year
84	6.89083	126.024789	0.3	0.2	0.01	Intense Local rainfall/ 2015	5-Year
85	6.890478	126.02325	0.36	0.1	0.0676	Local rainfall/	5-Year
86	6.890657	126.023432	0.03	0.1	0.0049	Local rainfall/	5-Year
87	6.889848	126.022885	0.5	0.1	0.16	Intense Local rainfall/	5-Year
88	6.890203	126.023791	0.13	0.3	0.0289	Local rainfall/ 2016	5-Year
89	6.934459	126.053543	3.36	1.5	3.4596	Intense Local rainfall/ 2016	5-Year
90	6.934009	126.053269	4.58	1.5	9.4864	Intense Local rainfall/ 2016	5-Year
91	6.923847	126.046062	2.21	0	4.8841		5-Year
92	6.92231	126.046324	0.03	0	0.0009		5-Year
93	6.921495	126.04659	0.26	0	0.0676		5-Year
	L						

94	6.918154	126.046387	4.79	2	7.7841		5-Year
95	6.917707	126.045661	4.84	2	8.0656		5-Year
96	6.908441	126.053737	1.16	0.5	0.4356	Intense Local rainfall/ 1980	5-Year
97	6.91044	126.051942	0.03	0.2	0.0289	Every rainy season/	5-Year
98	6.910535	126.05122	1.01	0.9	0.0121	Intense Local rainfall/ 2008	5-Year
99	6.91308	126.048795	0.48	0	0.2304		5-Year
100	6.913535	126.048256	0.49	0.3	0.0361	Intense Local rainfall/ 1990	5-Year
101	6.91017	126.05185	0.03	0.9	0.7569	Intense Local rainfall/ 2008	5-Year
102	6.908526	126.054642	0.84	1	0.0256	Intense Local rainfall/ 1963 & 2015	5-Year
103	6.90899	126.052656	0.93	1	0.0049	Buhawi/ 1980	5-Year
104	6.911168	126.051043	0.03	0.2	0.0289	Every rainy season/	5-Year
105	6.913555	126.045183	5.02	1	16.1604		5-Year
106	6.914007	126.045095	5.31	1	18.5761		5-Year
107	6.91428	126.044826	5.12	1	16.9744		5-Year
108	6.902704	126.060932	1.17	0.41	0.5776	Upstream rainfall/ 2016	5-Year
109	6.903614	126.059853	1.22	0.67	0.3025	Upstream rainfall/ June 2016	5-Year
110	6.906528	126.056256	1.01	1	0.0001	Buhawi/ 1980	5-Year
111	6.903155	126.061025	1.61	0.71	0.81	Upstream rainfall/ August 2016	5-Year
112	6.90234	126.061291	0.87	0.55	0.1024	Buhawi/ July 2016	5-Year
113	6.903887	126.059493	1.4	0.81	0.3481	Upstream rainfall/ 2016	5-Year
114	6.904343	126.058864	1.16	0.51	0.4225	Upstream rainfall/ June 2016	5-Year
115	6.903158	126.060483	1.18	0.53	0.4225	Upstream rainfall/ June 2016	5-Year
116	6.902068	126.061561	0.76	0.56	0.04	Upstream rainfall/ 2016	5-Year
117	6.902427	126.061925	1.4	0.56	0.7056	Upstream rainfall/ 2016	5-Year
118	6.904612	126.059227	2.24	1.2	1.0816	Upstream rainfall/ July 2016	5-Year
119	6.903433	126.059942	1.29	0.65	0.4096	Upstream rainfall/ June 2016	5-Year
120	6.904977	126.058687	2.06	0.51	2.4025	Upstream rainfall/ June 2016	5-Year
121	6.907798	126.05536	1.44	1	0.1936	Upstream rainfall/ 1980	5-Year
122	6.903428	126.060756	1.59	0.53	1.1236	Upstream rainfall/ June 2016	5-Year
123	6.9027	126.061565	1.7	0.82	0.7744	Upstream rainfall/ July 2016	5-Year
124	6.905432	126.058147	1.8	0.65	1.3225	Buhawi/ June 2016	5-Year
125	6.904065	126.059947	1.93	0.67	1.5876	Upstream rainfall/ June 2016	5-Year
126	6.90398	126.059223	1.78	1.2	0.3364	Upstream rainfall/ July 2016	5-Year
127	6.904339	126.059496	0.66	1.2	0.2916	Upstream rainfall/ July 2016	5-Year
128	6.906794	126.056981	1.89	1	0.7921	Buhawi/ 1980	5-Year
129	6.874681	126.049815	0.03	0	0.0009		5-Year
130	6.874727	126.042584	0.06	0.3	0.0576	Agaton/ January 2014	5-Year
131	6.874863	126.049545	0.09	0	0.0081		5-Year
132	6.874961	126.048371	0.29	0.15	0.0196	Upstream rainfall/ January 2014	5-Year
133	6.874178	126.043756	2.04	0.15	3.5721	Agaton/ January 2014	5-Year
134	6.87482	126.042133	0.46	0.15	0.0961	Pablo/ December 2012	5-Year
135	6.875049	126.048733	0.18	0.15	0.0009	Upstream rainfall/ January 2014	5-Year
136	6.874877	126.047376	0.28	1.4	1.2544	Pablo/ December 2012	5-Year
137	6.874822	126.041862	0.52	0.3	0.0484	Agaton/ January 2014	5-Year
138	6.899627	126.061816	0.9	0.8	0.01	Intense Local rainfall/ 1990	5-Year
139	6.902154	126.062194	1.05	0	1.1025		5-Year
140	6.900534	126.061189	0.97	0.5	0.2209	Upstream rainfall/ 2016	5-Year
141	6.899268	126.061452	1.23	0.8	0.1849	Intense Local rainfall/ 1990	5-Year
142	6.898907	126.06136	1.3	0.8	0.25	Intense Local rainfall/ 1990	5-Year
143	6.872512	126.049982	1.76	1	0.5776	Pablo/ 2012	5-Year
	1			1			

144	6.873682	126.050622	1.96	2	0.0016	Sendong/ 2009	5-Year
145	6.876136	126.048378	2.52	0.15	5.6169	Upstream rainfall/ January 2014	5-Year
146	6.875056	126.047739	2.09	1.4	0.4761	Pablo/ December 2012	5-Year
147	6.920783	126.072981	4.16	2.5	2.7556		5-Year
148	6.921678	126.074252	5.26	2.5	7.6176		5-Year
149	6.921208	126.077142	1.06	2.5	2.0736		5-Year
150	6.971978	126.062826	0.08	0.8	0.5184	Pablo & Yolanda/ Dec 2012 & Nov 2013	5-Year
151	6.971077	126.062368	3.88	0.9	8.8804	Buhawi/ June 2014	5-Year
152	6.962193	126.05327	2.88	0.5	5.6644	Pablo/ December 2012	5-Year
153	6.962644	126.053364	2.97	0.5	6.1009	Pablo/ December 2012	5-Year
154	6.962912	126.053908	2.99	0.5	6.2001	Pablo & Yolanda/ Dec 2012 & Nov 2013	5-Year
155	6.961655	126.052724	2.94	0.2	7.5076	Intense Local rainfall/ 2015	5-Year
156	6.972337	126.0631	2.96	1	3.8416	Buhawi/ 2014	5-Year
157	6.971708	126.062644	5.15	0.6	20.7025	Buhawi/ June 2014	5-Year
158	6.973236	126.063829	0.08	2	3.6864		5-Year
159	6.971348	126.062461	5.05	0.8	18.0625	Upstream rainfall/ 2013	5-Year
160	6.970806	126.062367	4.82	0.8	16.1604	Buhawi/ July 2014	5-Year
161	6.97394	126.066636	5.18	0.5	21.9024	Upstream rainfall/ 2015	5-Year
162	6.971347	126.062551	5.12	1.3	14.5924	Upstream rainfall/ 2013	5-Year
163	6.971076	126.062549	5.57	1.3	18.2329	Buhawi/ June 2014	5-Year
164	6.971164	126.062911	5.54	1.3	17.9776	Buhawi/ June 2014	5-Year
165	6.972966	126.063646	0.47	1	0.2809	Buhawi/ 2014	5-Year
166	6.974033	126.066185	6.56	2	20.7936		5-Year
167	6.974219	126.065372	3.6	0.5	9.61	Upstream rainfall/ 2015	5-Year
168	6.942529	126.048804	0.22	0.5	0.0784		5-Year
169	6.94352	126.049262	2.36	1.5	0.7396	Pablo/ December 2012	5-Year
170	6.94397	126.049446	2.4	1.5	0.81	Pablo/ December 2012	5-Year
171	6.961028	126.051907	3.73	0.9	8.0089	Intense Local rainfall/ 2015	5-Year
172	6.959945	126.051629	3.77	0.6	10.0489	Intense Local rainfall/ 2015	5-Year
173	6.958776	126.050807	4.04	0.6	11.8336	Intense Local rainfall/ 2015	5-Year
174	6.958416	126.050624	4.25	0.6	13.3225	Intense Local rainfall/ 2015	5-Year
175	6.970536	126.062275	4.43	1.4	9.1809	Buhawi/ December 2014	5-Year
176	6.970805	126.062548	5.04	0.8	17.9776	Buhawi/ July 2014	5-Year
177	6.970535	126.062455	4.95	1.4	12.6025	Buhawi/ December 2014	5-Year
178	6.969729	126.061365	4.12	1.2	8.5264	Upstream rainfall/ December 25, 2015	5-Year
179	6.969996	126.062	5.53	1.2	18.7489	Upstream rainfall/ June 24, 2014	5-Year
180	6.970266	126.062092	3.98	1.4	6.6564	Buhawi/ December 2014	5-Year
				-			

RMSE 1.585939

133

Annex 12. Educational Institutions affected by flooding in Sumlog Flood Plain

Davao Oriental							
Lupon							
Building Name	Barangay		Rainfall Scenario				
		5-year	25-year	100-year			
SCHOOL	Bagumbayan	High	High	High			
CABADIANGAN ELEMENTARY SCHOOL	Cabadiangan	High	High	High			
DAY CARE CENTER	Cabadiangan	High	High	High			
TAGUGPO NATIONAL HIGH SCHOOL	Cabadiangan		Low	Medium			
TAGUGPO NATIONAL HIGH SCHOOL PRINCIPAL'S OFFICE	Cabadiangan		Medium	High			
COCORNON ELEMENTARY SCHOOL	Cocornon						
PRESCHOOL	Cocornon						
SOMILDIA DAY CARE CENTER	llangay			Low			
SUMLOG DAY CARE CENTER	llangay	Low	Medium	Medium			
CABANDIANGAN ELEMENTARY SCHOOL	Langka	High	High	High			
ROBERTO CEPULO SR. DAY CARE CENTER	Lantawan	High	High	High			
DAY CARE CENTER	Limbahan	High	High	High			
ILANGAY ELEMENTARY SCHOOL	Limbahan	Medium	Medium	High			
ARABIC SCHOOL	Macangao		Low	Medium			
DAY CARE CENTER	Macangao	Medium	Medium	Medium			
MACANGAO AGRICULTURAL VOCA- TIONAL HIGH SCHOOL	Macangao	Low	Low	Medium			
MACANGAO CENTRAL ELEMENTARY SCHOOL	Macangao	Low	Low	Medium			
MACANGAO DAY CARE CENTER	Macangao		Low	Low			
SAN JOSE ELEMENTARY SCHOOL	Magsaysay	Medium	Medium	Medium			
BENITO BAROL SR. ELEMENTARY SCHOOL	Poblacion	Low	Medium	Medium			
COMARRA MANUEL CENTRAL ELE- MENTARY SCHOOL	Poblacion	Medium	Medium	Medium			
DAY CARE CENTER	Poblacion			Low			
EASTERN DAVAO ISLAMIC INSTITUTE	Poblacion	Low	Medium	Medium			
LUPON NATIONAL COMPREHENSIVE HIGH SCHOOL	Poblacion	Low	Low	Medium			
LUPON VOCATIONAL HIGH SCHOOL	Poblacion	Medium	Medium	High			
LYCEUM LUPON DAVAO ORIENTAL INCORPORATED COLLEGE	Poblacion	Low	Medium	Medium			

MAGDAGONDONG DAY CARE CENTER	Poblacion	Low	Medium	Medium			
NATIONAL CHILD DEVELOPMENT CEN- TER (NCDC)	Poblacion	Low	Medium	Medium			
ROBERTO CEPULO SR. DAY CARE CENTER	Poblacion	High	High	High			
SMART MINDS	Poblacion			Low			
TESDA LUPON SCHOOL OF FISHERIES	Poblacion	Medium	High	High			
UCCP EARLY CHILDHOOD DEVELOP- MENT CENTER	Poblacion	Low	Medium	Medium			
San Isidro							
Duilding Nome	Barangay	Rainfall Scenario					
Building Name		5-year	25-year	100-year			
ARABIC SCHOOL	lba	Low	Low	Medium			
SAN ROQUE ELEMENTARY SCHOOL	San Roque						
Annex 13. Medical Institutions affected by flooding in Sumlog Flood Plain

Davao Oriental				
Lupon				
Building Name	Barangay	5-vear	Rainfall Scenario	o 100-vear
HEALTH CENTER	Cabadiangan	High	High	High
COCORNON HEALTH CENTER	Cocornon			
BARANGAY ILANGAY HEALTH STATION	Limbahan	Medium	High	High
BRGY HEALTH CENTER	Limbahan	High	High	High
MACANGAO HEALTH CENTER	Macangao	Low	Low	Medium
HEALTH CENTER	Magsaysay	Medium	Medium	Medium
DAVAO ORIENTAL PROVINCIAL HOSPI- TAL LUPON	Poblacion		Low	Low
FLORES MATERNITY CLINIC	Poblacion		Low	Low
GRACE MATERNITY & WELLNESS	Poblacion	Low	Medium	Medium
HEALTH CENTER	Poblacion			Low
MEDICAL CLINIC	Poblacion	Low	Low	Medium
MOM'S BIRTHING HOME & DENTAL CLINIC	Poblacion			
MUNICIPAL HEALTH CENTER	Poblacion			Low
HEALTH CENTER	Cabadiangan	High	High	High
COCORNON HEALTH CENTER	Cocornon			
BARANGAY ILANGAY HEALTH STATION	Limbahan	Medium	High	High
BRGY HEALTH CENTER	Limbahan	High	High	High
MACANGAO HEALTH CENTER	Macangao	Low	Low	Medium
HEALTH CENTER	Magsaysay	Medium	Medium	Medium
DAVAO ORIENTAL PROVINCIAL HOSPI- TAL LUPON	Poblacion		Low	Low
FLORES MATERNITY CLINIC	Poblacion		Low	Low
GRACE MATERNITY & WELLNESS	Poblacion	Low	Medium	Medium
HEALTH CENTER	Poblacion			Low
MEDICAL CLINIC	Poblacion	Low	Low	Medium
MOM'S BIRTHING HOME & DENTAL CLINIC	Poblacion			
MUNICIPAL HEALTH CENTER	Poblacion			Low
San Isidro				
Building Name	Barangay	Kaintali Scenario		
HEALTH CENTER	San Roque			