HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Quinonoan River

University of the Philippines Training Center for Applied Grodoxy and Photogramments University of the Philippines, Minidense

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines and University of the Philippines Mindanao 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and J.E. Acosta, (Eds). (2017). LiDAR Surveys and Flood Mapping of Padada River. Quezon City: UP Training Center for Applied Geodesy and Photogrammetry – 138pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Joseph E. Acosta Project Leader, PHIL-LiDAR 1 Program University of the Philippines, Mindanao Tugbok, Philippines 8000 jacosta_96140@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-171-3

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	.iv
LIST OF FIGURES	. vi
LIST OF ACRONYMS AND ABBREVIATIONS	.ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND QUINONOAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Quinonoan River Basin	2
CHAPTER 2: LIDAR DATA ACQUISITION OF THE QUINONOAN FLOODPLAIN	4
2.1 Flight Plans	4
2.2 Ground Base Stations	6
2.3 Flight Missions	10
2.4 Survey Coverage	.11
CHAPTER 3: LIDAR DATA PROCESSING OF THE QUINONOAN FLOODPLAIN	.13
3.1 Overview of the LIDAR Data Pre-Processing	13
3.2 Transmittal of Acquired LiDAR Data	14
3.3 Trajectory Computation	.15
3.4 LiDAR Point Cloud Computation	.17
3.5 LiDAR Quality Checking	.18
3.6 LiDAR Point Cloud Classification and Rasterization	22
3.7 LiDAR Image Processing and Orthophotograph Rectification	24
3.8 DEM Editing and Hydro-Correction	25
3.9 Mosaicking of Blocks	.25
3.10 Calibration and Validation of Mosaicked LiDAR DEM	.28
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	.32
3.12 Feature Extraction	.34
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	34
3.12.2 Height Extraction	.35
3.12.3 Feature Attribution	.35
3.12.4 Final Quality Checking of Extracted Features	37
CHARTER A. LIDAR VALIDATION CURVEY AND MEASUREMENTS OF THE OURIONOAN	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN	20
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	38
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .38
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .38 .40
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .38 .40 .45
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .38 .40 .45 .46
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .38 .40 .45 .46 .49
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .38 .40 .45 .46 .49 .53
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .38 .40 .45 .46 .49 .53
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities	.38 .40 .45 .46 .49 .53 .55 .59
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data Used for Hydrologic Modeling	.38 .40 .45 .46 .49 .53 .59 .59
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey	38 38 40 45 46 49 53 55 59 59 59
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing	.38 .40 .45 .46 .49 .53 .59 .59 .59 .59
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	38 40 45 46 53 59 59 59 60 62
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .38 .40 .45 .46 .49 .53 .59 .59 .59 .60 .62
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .40 .45 .46 .49 .53 .59 .59 .59 .60 .62 .64 .69
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Elo 2D Model	.38 .40 .45 .46 .53 .59 .59 .60 .62 .64 .69 .70
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration	38 40 45 53 59 59 60 62 64 69 70 73
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	38 40 45 53 59 59 60 62 64 69 70 73
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.2 RIDF Station 5.3 Rating Curves and River Outflow. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods	38 40 45 46 53 59 59 59 60 62 64 69 70 73
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing	.38 .40 .45 .59 .59 .59 .59 .60 .62 .64 .69 .70 .73 .75
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .40 .45 .46 .49 .55 .59 .59 .60 .62 .64 .69 .70 .73 .75 .75 .75
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .40 .45 .46 .45 .55 .59 .59 .60 .62 .64 .70 .75 .76 .77
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	38 40 45 55 59 59 59 59 60 62 60 70 75 76 77 81
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	38 40 45 55 59 59 59 60 62 60 70 75 77 81 88
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .40 .45 .59 .59 .59 .60 .64 .69 .70 .75 .77 .81 .88 .91
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN	.38 .40 .45 .59 .59 .59 .59 .60 .62 .73 .75 .77 .88 .91 .92
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. Annex 1. Technical Specifications of the LIDAR Sensors used in the Quinonoan Floodplain	38 40 45 55 59 59 59 59 60 62 64 70 73 75 76 77 81 88 91 92

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey	94
Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	95
Annex 4. The LiDAR Survey Team Composition	98
Annex 5. Data Transfer Sheet for Quinonoan Floodplain	99
Annex 6. Flight logs for the flight missions	101
Annex 7. Flight status reports	106
Annex 8. Mission Summary Reports	112
Annex 9. Quinonoan Model Basin Parameters	127
Annex 10. Quinonoan Model Reach Parameters	130
Annex 11. Quinonoan Field Validation Points	132
Annex 12. Educational Institutions affected by flooding in Quinonoan Flood Plain	137

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system	4
Table 2. Details of the recovered NAMRIA horizontal control point DVE-42 used as base	
station for the LiDAR acquisition	7
Table 3. Details of the recovered NAMRIA horizontal control point DVE-19 used as base	
station for the LiDAR acquisition with re-processed coordinates.	8
Table 4. Details of the recovered NAMRIA horizontal control point DVE-3088 used as base	
station for the LiDAR acquisition with re-processed coordinates	9
Table 5. Details of the recovered NAMRIA horizontal control point DVE-20 used as base	
station for the LiDAR acquisition with re-processed coordinates.	.10
Table 6. Ground control points used during the LiDAR data acquisition	.11
Table 7. Flight missions for LiDAR data acquisition in Quinonoan floodplain	.11
Table 8. Actual parameters used during LiDAR data acquisition.	.12
Table 9. List of municipalities and cities surveyed during Quinonoan floodplain LiDAR survey	.12
Table 10. Self-calibration Results values for Quinonoan flights	.18
Table 11. List of LiDAR blocks for the Quinonoan floodplain	. 19
Table 12. Quinonoan classification results in TerraScan.	.23
Table 13. LiDAR blocks with its corresponding areas.	.26
Table 14. Shift values of each LiDAR block of Quinonoan Floodplain	.27
Table 15. Calibration Statistical Measures	.31
Table 16. Validation Statistical Measures	. 32
Table 17. Details of the quality checking ratings for the building features extracted for the	
Quinonoan River Basin	.36
Table 18. Building features extracted for Quinonoan Floodplain	.37
Table 19. Total length of extracted roads for Quinonoan Floodplain.	.37
Table 20. Number of extracted water bodies for Quinonoan Floodplain	.38
Table 21. List of reference and control points used during the survey in Quinonoan River	
(Source: NAMRIA, UP-TCAGP)	.41
Table 22. The Baseline processing report for the Quinonoan River GNSS static observation	
survey	.46
Table 23. Constraints applied to the adjustment of the control points	.47
Table 24. Adjusted grid coordinates for the control points used in the Quinonoan River flood	
plain survey	.48
Table 25. Adjusted geodetic coordinates for control points used in the Quinonoan River Flood	
Plain validation	.49
Table 26. The reference and control points utilized in the Quinonoan River Static Survey, with	
their corresponding locations (Source: NAMRIA, UP-TCAGP)	.49
Table 27. RIDF values for the Quinonoan River Basin based on average RIDF data of Davao	
station, as computed by PAGASA	.63
Table 28. Range of calibrated values for the Quinonoan River Basin.	.74
Table 29. Summary of the Efficiency Test of the Quinonoan HMS Model	.75
Table 30. The peak values of the Quinonoan HEC-HMS Model outflow using the Davao RIDF	.77
Table 31. Municipalities affected in Quinonoan floodplain	.78
Table 32. Affected Areas in Manay, Davao Oriental during 5-Year Rainfall Return Period	.82
Table 33. Affected Areas in Tarragona, Davao Oriental during 5-Year Rainfall Return Period	.84
Table 34. Affected Areas in Manay, Davao Oriental during 25-Year Rainfall Return Period.	.85
Table 35. Affected Areas in Tarragona, Davao Oriental during 25-Year Rainfall Return Period	.86
Table 36. Affected Areas in Manay, Davao Oriental during 100-Year Rainfall Return Period	.87
Table 37. Affected Areas in Tarragona, Davao Oriental during 100-Year Rainfall Return Period	.88
Table 38. Area covered by each warning level with respect to the rainfall scenarios	.89
Table 39. Actual Flood Depth versus Simulated Flood Depth at different levels in the	
Quinonoan River Basin.	.91
Table 40. Summary of the Accuracy Assessment in the Quinonoan River Basin Survey	.91

LIST OF FIGURES

Figure 1. Map of Quinonoan River Basin (in brown).	2
Figure 2. Flight plans and base stations used for Quinonoan floodplain.	5
Figure 3. GPS set-up over DVE-42 located inside the premises of Don Enrique Elementary	_
School, in front of the flagpole (a) and NAMRIA reference point DVF-42 (b) as recovered by	
the field team	7
Figure 4 GPS set-up over DVE-19 located in front of the flagpole of Gregorio Moralizon	,
Elementary School II (a) and NAMPIA reference point DVE-10 (b) as recovered by the field team	Q
Elementary School II (a) and NAMMA reference point DVL-15 (b) as recovered by the field team Elementary School (a) and NAMMA reference point DVL-15 (b) as recovered by the field team	O
NAMPIA reference point DVE 2008 (b) as recovered by the field team	L L
Figure 6. CDS set up over DVE-30 located inside the premises of Cregorie Marelizen Elementary	9 ,
Figure 6. GPS set-up over DVE-20 located inside the premises of Gregorio Moralizon Elementary	/
School I, at the corner side of the basketball court 3 meters from the gate of the school (a) and	10
NAMIRIA reference point DVE-20 (b) as recovered by the field team	.10
Figure 7. Actual LiDAR survey coverage for Quinonoan floodplain	.13
Figure 8. Schematic diagram for the data pre-processing.	.15
Figure 9. Smoothed Performance Metric Parameters of Quinonoan Flight 7322GC.	.16
Figure 10. Solution Status Parameters of Quinonoan Flight 7322GC.	.17
Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Quinonoan	
Floodplain	.18
Figure 12. Boundaries of the processed LiDAR data over the Quinonoan Floodplain	.19
Figure 13. Image of data overlap for Quinonoan floodplain.	.20
Figure 14. Pulse density map of the merged LiDAR data for Quinonoan floodplain	.21
Figure 15. Elevation difference Map between flight lines for the Quinonoan Floodplain Survey	.22
Figure 16. Quality checking for Quinonoan flight 7322GC using the Profile Tool of QT Modeler	.23
Figure 17. Tiles for Quinonoan floodplain (a) and classification results (b) in TerraScan	.24
Figure 18. Point cloud before (a) and after (b) classification.	.24
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondar	v
DTM (d) in some portion of Ouinonoan floodplain	.25
Figure 20. Portions in the DTM of Ouinonoan floodplain – a bridge before (a) and after	
(b) manual editing	26
Figure 21 Man of processed LiDAR data for the Ouinonoan Floodnlain	28
Figure 22 Map of Quinonoan Floodplain with validation survey points in green	30
Figure 23. Correlation plot between calibration survey points and LiDAR data	31
Figure 24. Correlation plot between the validation survey points and the LiDAR data	32
Figure 25. Man of Ouinonoan floodolain with bathymetric survey points in blue	2/
Figure 26. Blocks (in blue) of Ouinoncan building features that were subjected to OC	25
Figure 27. Extracted features of the Quinonoan Eloodalain	
Figure 28. Ouinonoon Piver Survey Extent	.50
Figure 20. Quinonoan River Basin Control Survey Extent	.40
Figure 29. Quintonodit river basili control survey Extern	.42
incide Den Enrique Lonez Elementary School in Bray, Den Enrique Lonez, Mati City	
Davas Oriental	12
David Offential	.43
Figure 31. GNSS receiver set up, Trimble® SPS 985, at DE-160, located at approach of Calinan	40
Bridge in Brgy. Mayo, City of Mati, Davao Oriental.	.43
Figure 32. GNSS receiver set up, Trimble® SPS 852, at UP_BIT-1, located at the side of the railing	
near the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, City of Mati, Davao Oriental.	44
Figure 33. GNSS receiver set up, Trimble [®] SPS 985, at UP_MAY-1, located beside the approach	
of Mayo Bridge in Brgy. Mayo, City of Mati, Province of Davao Oriental	.45
Figure 34. GNSS receiver set up, Trimble [®] SPS 882, at UP_QUI-1, located beside the approach of	Ī
Quinonoan Bridge in Brgy. San Ignacio, Municipality of Manay, Province of Davao Oriental	.45
Figure 35. Quinonoan Bridge facing downstream	.50
Figure 36. As-built survey of Quinonoan Bridge	.50
Figure 37. Location map of the Quinonoan Bridge cross section.	.51
Figure 38. The Quinonoan cross-section survey in Quinonoan Bridge drawn to scale	.52
Figure 39. Quinonoan Bridge Data Sheet.	.53
Figure 40. Water-level markings on Quinonoan Bridge.	.54
Figure 41. GNSS Rover receiver, Trimble [®] SPS 985 installed on a vehicle for Ground Validation	
Survey	.55
Figure 42. The extent of the LiDAR ground validation survey (in red) for Quinonoan River Basin.	.56
Figure 43. Set up of the bathymetric survey in Quinonoan River	.57

Figure 44. The extent of the Quinonoan River Bathymetry Survey Figure 45. Quality checking points gathered along Quinonoan River by DVBC Figure 46. The Quinonoan Riverbed Profile	.58 .58 .59
Figure 47. Location Map of the Quinonoan HEC-HMS model used for calibration Figure 48. The Rating Curve at Quinonoan Bridge, Tarragona, Davao Oriental	.61
Figure 49. Rainfall and outflow data at Quinonoan Bridge used for modeling Figure 50. The location of the Davao RIDF station relative to the Quinonoan River Basin Figure 51. The synthetic storm generated for a 24-hour period rainfall for various return	.63 .64
periods	.65
Figure 52. Soil Map of Quinonoan River Basin.	.66
Figure 53. Land Cover Map of Quinonoan River Basin.	.67
Figure 54. Slope Map of the Quinonoan River Basin	.68
Figure 55. Stream Delineation Map of Quinonoan River Basin	.69
Figure 56. Quinonoan river basin model generated in HEC-HMS.	.70
Figure 57. River cross-section of Quinonoan River generated through Arcmap HEC GeoRAS tool. Figure 58. A Screenshot of subcatchment with the computational area to be modeled in FLO-2D	.71
GDS Pro.	.72
Figure 59. Generated 100-year rain return hazard map from FLO-2D Mapper	.72
Figure 60. Generated 100-year rain return flow depth map from FLO-2D Mapper	.73
Figure 61. Outflow Hydrograph of Quinonoan produced by the HEC-HMS model compared with	
observed outflow	.74
Figure 62. The Outflow hydrograph at the Quinonoan Bridge, generated using the Davao RIDF	
simulated in HEC-HMS.	.76
Figure 63. Sample output map of the Quinonoan RAS Model.	.78
Figure 64. A 100-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth imagery.	.79
Figure 65. A 100-year Flow Depth Map for Quinonoan Floodplain overlaid on Google Earth imagery.	.79
Figure 66. A 25-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth	80
Figure 67 A 25-year Flow Depth Man for Quinonoan Floodplain overlaid on Google Farth	.00
imagery	80
Figure 68. A 5-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth	01
IIIIdgely	. 81
imageny	00
Figure 70 Affected Areas in Manay, Davao Oriental during 5-Year Painfall Peturn Period	.05 Q/
Figure 70. Affected Areas in Tarragona, Davao Oriental during 5-Year Rainfall Return Period	25
Figure 72 Affected Areas in Manay Davao Oriental during 25-Year Rainfall Return Period	86
Figure 73 Affected Areas in Tarragona Davao Oriental during 25-Year Rainfall Return Period	87
Figure 74. Affected Areas in Manay, Davao Oriental during 100-Year Rainfall Return Period	.88
Figure 75. Affected Areas in Tarragona, Davao Oriental during 100-Year Rainfall Return Period	.90
Figure 76. Validation Points for a 25-year Flood Depth Map of the Quinonoan Floodplain.	.90

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
	I		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
TBC	Thermal Barrier Coatings		
UPC	University of the Philippines Cebu		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND QUINONOAN RIVER

Dr. Joseph E. Acosta and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (UPMin). UPMin is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Davao Region. The university is located in Davao City in the province of Davao del Sur.

1.2 Overview of the Quinonoan River Basin

The Quinonoan River is a stream traversing between the borders of Manay and Tarragona Municipalities in the province of Davao Oriental with its slopes leading to the Pacific Ocean (Robles, 2016). It is a major watershed and one of the biggest inland water bodies in Tarragona. The Quinonoan River originates from Mount Mayo and flows north-easterly then south-easterly until it drains to the Philippine Sea (COAL Asia Holdings and Payawal, 2012). The river mouth is situated in Brgy. Jovellar in the Municipality of Tarragona. Tarragona is bounded by the Municipality of Manay on the north, Mayo Bay on the south, Pacific Ocean on the east, the Municipality of Lupon on the northwest, and Mati City on the southwest. Tarragona Municipality has ample marine water fronting the Pacific Ocean (Bugayong et.al., 2016).

126°20'0"E

Tarragona was named after a town in Spain with the same name. It is said to be the hometown of the Spanish Missionary who came to the area from a Caraga Mission. The story indicates that being far away from his home brought the missionary the feeling of loneliness and longing, and so he named his mission to the coastal community in Davao Oriental as Tarragona in remembrance of his hometown (UP Manila, 2000).

Tarragona was named after a town in Spain with the same name. It is said to be the hometown of the Spanish Missionary who came to the area from a Caraga Mission. The story indicates that being far away from his home brought the missionary the feeling of loneliness and longing, and so he named his mission to the coastal community in Davao Oriental as Tarragona in remembrance of his hometown (UP Manila, 2000).

The Kaagans were one of the indigenous groups who were pioneer settlers in Tarragona and Manay. The sitios with the most number of indigenous residents are Tubaon and Maganda. The name Tubaon came from the creek that always had a reddish color of water. The name Maganda or Mallaganda came from a type of tree they called Mallaganda that used to flourish in the area (Lasco, G. and Pinoy Mountaineer, 2014).

Quinonoan Watershed has a drainage area of 381 square kilometers. There are 8 Barangays within the watershed. The Quinonoan basin model consists of 57 sub basins, 28 reaches, and 28 junctions. The basins were identified based on soil and land cover characteristics of the area.

Mt. Tindok, also called Maytindok, is part of Mt. Mayo Range in Davao Oriental and is reportedly the highest of the three peaks of the range namely Mt. Mayo, Mt. Tindok and Mt. Mambukas. The Mt. Mayo Range is bounded to the west by Lupon, to the south by Mati and to the east by Tarragona and it is within the municipal jurisdiction of Tarragona. Puting Bato Falls can also be found in Brgy. Limot, Tarragona (Ponce, 2013; Mindanao Tripod, 2017).

The Quinonoan River is located south of the Coal Project Area of the Titan Mining and Energy Corporation (TMEC) in Davao Oriental. The said project area is situated in Barangays Old Macopa, Holy Cross, San Ignacio, Capasnan, Lambog, Rizal and Brgy. Dadong all in the Municipalities of Manay and Tarragona. Most of the Barangays stated are within the boundaries of the Quinonoan Watershed. Two (2) major rivers drain the coal project: The Casauman River on the north and the Quinonoan River on the south (COAL Asia Holdings and Payawal, 2012).

According to locals, from the year 1954 to 2014, upstream and intense local rainfall are the usual cause of flooding near the river. However, PAGASA only noted typhoon events such as Low Pressure Area (LPA) events, Typhoon Pablo in 2012, Typhoon Yolanda and Tropical Depression Crising in 2013, and Typhoon Agaton in 2014.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE QUINONOAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, Engr. Kenneth A. Quisado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Quinonoan floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Quinonoan Floodplain in Davao Oriental. These flight missions were planned for 15 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Quinonoan floodplain survey.

Table 1. Flight planning parameters for the Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK80A	1000	30	40	125	50	130	5
BLK80B	1000	30	40	125	50	130	5
BLK83A	1000	40	40	100	50	130	5
BLK84B	1000	40	40	100	50	130	5
BLK85C	1200	40	24	100	60	130	5
BLK86B	1000	30	40	125	50	130	5
BLK86C	850	30	40	125	50	130	5

Figure 2. Flight plans and base stations used for Quinonoan floodplain.

2.2 Ground Base Stations

The project team was able to recover four (4) NAMRIA ground control points: DVE-42 (2nd order accuracy), DVE-19 and DVE-20 (3rd order accuracy) and DVE-3088 (4th order accuracy). The third (3rd) and fourth (4th) order ground control points where then re-processed to obtain coordinates of second (2nd) order accuracy.

The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the re-processed control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (June 19 – July 8, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Quinonoan floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Quinonoan Floodplain LiDAR Survey. Figure 3 to Figure 6 show the recovered NAMRIA reference points and established point within the area of the floodplain, while Table 2 to Table 5 show the details about the following NAMRIA control stations and established points. Table 6, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over DVE-42 located inside the premises of Don Enrique Elementary School, in front of the flagpole (a) and NAMRIA reference point DVE-42 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point DVE-42 used as base station for the LiDAR acquisition.

Station Name	DVE-19		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7°12′55.40701″ North 126°32′20.36757″ East -5.263 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84	Latitude Longitude Ellipsoidal Height	7°12'52.33155" North 126°32'25.86780" East 69.522 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	228220.964 meters 798242.634 meters	

Figure 4. GPS set-up over DVE-19 located in front of the flagpole of Gregorio Moralizon Elementary School II (a) and NAMRIA reference point DVE-19 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point DVE-19 used as base station for the LiDAR acquisition with re-processed coordinates.

Station Name	DVE-19		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude7°12'55.40701" NorthLongitude126°32'20.36757" EastEllipsoidal Height-5.263 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7°12′52.33155″ North 126°32′25.86780″ East 69.522 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	228220.964 meters 798242.634 meters	

Figure 5. GPS set-up over DVE-3088 located inside Don Enrique Lopez Elementary School (a) and NAMRIA reference point DVE-3088 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point DVE-3088 used as base station for the LiDAR acquisition with re-processed coordinates.

Station Name	DVE-3088		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude6°58'54.59451" NorthLongitude126°17'56.18350"EastEllipsoidal Height6.363 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°58′51.56021″ North 126°18′1.70781″ East 80.992 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	201542.167 meters 772547.163 meters	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 6. GPS set-up over DVE-20 located inside the premises of Gregorio Moralizon Elementary School I, at the corner side of the basketball court 3 meters from the gate of the school (a) and NAMRIA reference point DVE-20 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point DVE-20 used as base station for the LiDAR acquisition with re-processed coordinates.

Station Name	DVE-20		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7°12′51.11197″ North 126°32′20.35543″ East -6.215 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7°12'48.03684" North 126°32'25.85577" East 68.572 meters	
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	228219.879 meters 798110.635 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
June 19, 2014	7320GC	2BLK83A84B170A	DVE-42 & DVE-3088
June 20, 2014	7322GC	2BLK84AS&86B171A	DVE-42 & DVE-3088
June 20, 2014	7323GC	2BLK86C&83A171B	DVE-42 & DVE-3088
June 23, 2014	7328GC	2BLK80ABS174A	DVE-19 & DVE-20
July 8, 2014	7358GC	2BLK80BS189A	DVE-19 & DVE-20

Table 6. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

A total of five (5) missions were conducted to complete the LiDAR data acquisition in Quinonoan floodplain, for a total of nineteen hours and fifty three minutes (19+53) of flying time for RP-C9322. All missions were acquired using the Gemini LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 7, while the actual parameters used during the LiDAR data acquisition are presented in Table 8.

Table 7. Flight missions for LiDAR data acquisition in Quinonoan floodplain.

Date Flight	Flight	Flight	Surveyed	Area Surveyed	Area Surveyed	No. of Images (Frames)	Flying Hours	
Surveyed	Number	(km2)	Area (km2)	Floodplain (km2)	Floodplain (km2)		Hr	Min
June 19, 2014	7320GC	190.72	121.57	0.63	120.94	NA	3	47
June 20, 2014	7322GC	251.73	209.19	1.97	207.22	NA	4	11
June 20, 2014	7323GC	199.62	214.08	3.28	210.8	NA	4	9
June 23, 2014	7328GC	211.43	244.67	4.94	239.73	NA	4	23
July 8, 2014	7358GC	138.07	128.52	5.10	123.42	NA	3	23
тот	AL	991.57	918.03	15.92	902.11	NA	19	53

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7320GC	1100	40	40	100	50	130	5
7322GC	1100	30	40	100	50	130	5
7323GC	1100	30	40	100	50	130	5
	1200	30	36	100	50	130	5
7328GC	1100	30	40	100	50	130	5
7358GC	1600	40	40	70	50	130	5
	1300	40	24	70	60	130	5

Table 8. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Quinonoan floodplain (See Annex 7). It is located in the province of Davao Oriental with majority of the floodplain situated within Davao Oriental and municipality of Taragona. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 9. Figure 7, on the other hand, shows the actual coverage of the LiDAR acquisition for the Quinonoan floodplain.

Table 9. List of municipalities and cities surveyed during Quinonoan floodplain LiDAR survey.

Province Municipality/City		Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Tarragona	277.90	154.97	55.76
	Manay	430.89	213.56	49.56
Davao Oriental	Lupon	356.28	84.18	23.63
	Mati	797.38	127.60	16.00
	San Isidro	224.84	24.05	10.70
	Banaybanay	385.28	34.94	9.07
	Caraga	569.48	36.17	6.35
Total		3,042.05	675.47	22.20%

Figure 7. Actual LiDAR survey coverage for Quinonoan floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE QUINONOAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. John Dill P. Macapagal , Engr. Ma. Ailyn L. Olanda, Engr. Jovelle Anjeanette S. Canlas, Jovy Anne S. Narisma , Engr. Ben Joseph J. Harder, Engr. Karl Adrian P. Vergara

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8

Figure 8. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Quinonoan Floodplain can be found in Annex 5. The missions flown during the conduct of the first survey in June 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system over Tarragona, Davao Oriental.

The Data Acquisition Component (DAC) transferred a total of 103.7 Gigabytes of Range data, 1.15 Gigabytes of POS data, 23.98 Megabytes of GPS base station data, and 91.3 Gigabytes of raw image data to the data server on November 12, 2015 for the first survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Quinonoan was fully transferred on November 2015, as indicated on the Data Transfer Sheets for Quinonoan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for Flight 7322GC, one of the Quinonoan flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of June 20, 2014 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

Figure 9. Smoothed Performance Metric Parameters of Quinonoan Flight 7322GC.

The time of flight was from 526500 seconds to 533000 seconds, which corresponds to morning of November 7, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 2.9 centimeters, the East position RMSE peaks at 3.25 centimeters, and the Down position RMSE peaks at 9.0 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 10. Solution Status Parameters of Quinonoan Flight 7322GC.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Quinonoan Flight 7322GC are shown in Figure 10. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 7 and 9, not going lower than 7. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also stayed at the value of 3 for the majority of the survey stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Quinonoan flights is shown in Figure 11.

Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Quinonoan Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 41 flight lines, with each flight line contains one channel, since the Gemini system contains only one channel only. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Quinonoan floodplain are given in Table 10.

Table 10. Self-calibrat	on Results values	for Quinonoan	flights
-------------------------	-------------------	---------------	---------

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000272
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000959
GPS Position Z-correction stdev)	<0.01meters	0.0099

The optimum accuracy values for all Quinonoan flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex 8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Quinonoan Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 12. Boundaries of the processed LiDAR data over the Quinonoan

A total area of 409.48 square kilometers (sq. kms.) were covered by the Quinonoan flight missions as a result of five (5) flight acquisitions, which were grouped and merged into three (3) blocks accordingly, as portrayed in Table 11.

Table 11. List of LiDAR blocks for the Quinonoan floodplain.

LiDAR Blocks	Flight Numbers	Area (sq.km)
Davao_Oriental_Blk80A_ supplement	7328GC	174.97
	7320GC	
Davao_Oriental_Blk83A	7322GC	217.86
	7323GC	
Davao_Oriental_Blk85C	7358GC	16.65
TOTAL		409.48 sq. km.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 13. Image of data overlap for Quinonoan floodplain.

The overlap statistics per block for the Quinonoan floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 31.39% and 36.47% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 14. As seen in the figure below, it was determined that all LiDAR data for the Quinonoan Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 2.73 points per square meter.

Figure 14. Pulse density map of the merged LiDAR data for Quinonoan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

Figure 15. Elevation difference Map between flight lines for the Quinonoan Floodplain Survey.

A screen-capture of the processed LAS data from Quinonoan flight 7322GC loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

Figure 16. Quality checking for Quinonoan flight 7322GC using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	149,269,963	
Low Vegetation	70,219,888	
Medium Vegetation	225,478,274	
High Vegetation	502,029,368	
Building	2,796,395	

Table 12. Quinonoan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Quinonoan floodplain is shown in Figure 17. A total of 389 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 12 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 1,449.33 meters and 55.88 meters respectively.

Figure 17. Tiles for Quinonoan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 18. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show in Figure 19. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Quinonoan floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Quinonoan floodplain.

3.8 DEM Editing and Hydro-Correction

Three (3) mission blocks were processed for the Quinonoan Floodplain Survey. These blocks are composed of Davao Oriental blocks with a total area of 409.48 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

Table 13. LiDAR blocks with its corresponding areas.

LiDAR Blocks	Area (sq. km.)	
Davao_Oriental_Blk83A	174.97	
Davao_Oriental_Blk85C	217.86	
Davao_Oriental_Blk80A_supplement	16.65	
TOTAL	409.48 sq.km	

Figure 20 shows portions of a DTM before and after manual editing. As evident in the figure, the hilly portion (Figure 20a) was misclassified and removed during the classification process. To complete the surface, the hilly portion (Figure 20b) was retrieved and reclassified through manual editing to allow the correct water flow.

Figure 20. Portions in the DTM of Quinonoan floodplain – a bridge before (a) and after (b) manual editing.

3.9 Mosaicking of Blocks

No assumed reference block was used in mosaicking because the identified reference for shifting was an existing calibrated Sumlog DEM overlapping with the blocks to be mosaicked. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for QuinonoanFloodplain is shown in Figure 21. It can be seen that the entire Quinonoan floodplain is 100% covered by LiDAR data.

Mission Dlocks	Shift Values (meters)			
	х	у	Z	
Davao_Oriental_Blk83A	1.40	1.70	-2.72	
Davao_Oriental_Blk85C	-1.00	3.70	-2.98	
Davao_Oriental_Blk80A_supplement	21.00	9.0	-21.20	

Table 14. Shift values of each LiDAR block of Quinonoan Floodplain.

Figure 21. Map of processed LiDAR data for the Quinonoan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Quinonoan to collect points with which the LiDAR dataset is validated is shown in Figure 22. A total of 7,104 survey points were used for calibration and validation of Quinonoan LiDAR data. Random selection of 80% of the survey points, resulting to 5,683 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of the data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.81 meters, with a standard deviation of 0.20 meters. The calibration of the Quinonoan LiDAR data was accomplished by adding the height difference value of 1.81 meters to the Quinonoan mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between the Quinonoan LiDAR data and the calibration data.

Figure 22. Map of Quinonoan Floodplain with validation survey points in green.

Calibration Statistical Measures	Value (meters)
Height Difference	1.81
Standard Deviation	0.20
Average	1.80
Minimum	1.41
Maximum	2.20

Table 15. Calibration S	statistical Measures.
-------------------------	-----------------------

A total of 1,421 survey points lie within the Quinonoan Floodplain; all of which were used to validate the calibrated Quinonoan DTM. A good correlation between the calibrated mosaicked LiDAR elevation and the ground survey elevation values, which point toward the quality of the LiDAR DTM is shown in Figure 24 . The computed RMSE value between the calibrated LiDAR DTM and the validation elevation values is at 0.20 meters with a standard deviation of 0.20 meters, as shown in Table 16.

Figure 24. Correlation plot between the validation survey points and the LiDAR data.

Table 16. Validation Statistical Measures

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.20
Average	-0.01
Minimum	-0.41
Maximum	0.38

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Quinonoan with a total of 1,117 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.49 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Quinonoan integrated with the processed LiDAR DEM is shown in Figure 24.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 25. Map of Quinonoan floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Quinonoan floodplain, including its 200-m buffer, has a total area of 16.30 sq km. For this area, a total of 5.0 sq. km., corresponding to a total of 210 building features, were considered for QC. Figure 26 shows the QC blocks for the Quinonoan floodplain.

Figure 26. Blocks (in blue) of Quinonoan building features that were subjected to QC.

Quality checking of Quinonoan building features resulted in the ratings shown in Table 17.

Table 17. Details of the quality checking ratings for the building features extracted for the Quinonoan River Basin

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Quinonoan	96.20	98.06	93.55	PASSED

3.12.2 Height Extraction

Height extraction was done for 429 building features in Quinonoan floodplain. Of these building features, 12 buildings were filtered out after height extraction, resulting to 417 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 10.88 meters.

3.12.3 Feature Attribution

Field validation for Quinonoan floodplain has already been completed last June 13, 2016. However, due to the change in floodplain scope, new features were found through digitization, and initial attribution was applied through Data Mining, in which the team scans the features in the additional area through reliable sources in the internet like Google Earth. To confirm accuracy and completeness of data gathered, spot checking was conducted last December 15-16, 2016.

Before the actual field validation, courtesy calls were conducted to seek permission and assistance from the Local Government Units of each barangay. This was done to ensure the safety and security in the area for the field validation process to go smoothly. Verification of barangay boundaries was also done to finalize the distribution of features for each barangay.

It was figured out by the Feature Extraction team during the courtesy call that there was a conflict in the boundaries of Tarragona and Manay municipalities. Also, LGUs raised their concern of the Lingayao River which was noted to be covering the center of the Manay municipality and the San Ignacio area and was said to cause flood in large settlement areas in the Municipality. During courtesy call, there was a heavy rain in the afternoon while the spot checking was still ongoing and some of the areas were landslide prone so the team was advised by the barangay captain not to proceed. Hence, validation activities for the areas that were not yet visited was done indoors through the help of barangay officials.

Table 18 summarizes the number of building features per type, while Table 19 shows the total length of each road type. Table 20, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	387
School	14
Market	0
Agricultural/Agro-Industrial Facilities	8
Medical Institutions	1
Barangay Hall	1
Military Institution	0
Sports Center/Gymnasium/Covered Court	1
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	0
Religious Institutions	5
Bank	0
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	0
Other Commercial Establishments	0
Total	417

Table 18. Building features extracted for Quinonoan Floodplain.

Table 19. Total length of extracted roads for Quinonoan Floodplain.

Floodplain	Barangay Road	arangay City/ Road Municipal Road Road		National Road	Others	Total
Quinonoan	3.56	0.00	0.00	2.96	0.00	6.51

Table 20. Number of extracted water bodies for Quinonoan Floodplain.

Water Body Type						
Floodplain	Rivers/ Streams	s/ Lakes/Ponds Sea Dam Fish Pen				Total
Quinonoan	1	0	0	0	0	1

A total of 1 bridge was also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 27 shows the completed Digital Surface Model (DSM) of the Quinonoan floodplain overlaid with its ground features.

Figure 27. Extracted features of the Quinonoan Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE QUINONOAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The AB Surveying and Development (ABSD) conducted a field survey in Quinonoan River on February 20, 2016, March 1-3, 2016, March 14, 2016, and March 20, 2016 with the following scope of work: reconnaissance; control survey; cross-section survey of selected riverbed in Quinonoan Bridge, Municipality in Brgy. San Ignacio, Manay, Davao Oriental; and bathymetric survey from its upstream in Brgy. Dadong, Tarragona to the mouth of the river located in Brgy. San Ignacio, Manay, with an approximate length of 6.3 km using a Horizon[®] Total Station. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on May 10-24, 2016 using a survey grade GNSS receiver Trimble[®] SPS 985 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Quinonoan River Basin area. The entire survey extent is illustrated in Figure 28.

Figure 28. Quinonoan River Survey Extent

4.2 Control Survey

The GNSS network used for Quinonoan River is composed of seven (7) loops established on May 22, 2016 occupying the following reference points: DVE-42 a second-order GCP, in Brgy. Don Enrique Lopez, Mati City, Davao Oriental and DE-160, a first-order BM, in Brgy. Mayo, Mati City, Davao Oriental.

Three (3) control points established in the area by ABSD were also occupied: UP_BIT-1 beside the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, Mati City, Province of Davao Oriental, UP_MAY-1 beside the approach of Mayo Bridge in Brgy. Mayo, Mati City, Davao Oriental, and UP_QUI-1 located beside the approach of Quinonoan Bridge in Brgy. San Ignacio, Manay, Davao Oriental.

Table 21 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 30 shows the GNSS network established in the Quinonoan River Survey.

Table 21. List of reference and control points used during the survey in Quinonoan River (Source: NAMRIA, UP-TCAGP).

Control Order of		Geographic Coordinates (WGS 84)						
Point	Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment		
DVE-42	2nd order, GCP	6°58'51.79295"N	126°18'01.57690"E	80.539	15.122	2007		
DE-160	1st order, BM	6°59'41.20398"N	126°19'30.03464"E	71.754	6.419	2009		
UP_BIT-1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	15.21	2-26-16		
UP_MAY-1	Established	6°59'26.93722"N	126°19'18.72092"E	73.478	8.152	2-27-16		
UP_QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	6.305	2-20-16		

Figure 29. Quinonoan River Basin Control Survey Extent.

Figure 30 to Figure 34 depict the setup of the GNSS on recovered reference points and established control points in the Quinonoan River.

Figure 30. GNSS base set up, Trimble® SPS 852, at DVE-42, located in front of the flagpole inside Don Enrique Lopez Elementary School in Brgy. Don Enrique Lopez, Mati City, Davao Oriental

Figure 31. GNSS receiver set up, Trimble® SPS 985, at DE-160, located at approach of Calinan Bridge in Brgy. Mayo, City of Mati, Davao Oriental.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 32. GNSS receiver set up, Trimble® SPS 852, at UP_BIT-1, located at the side of the railing near the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, City of Mati, Davao Oriental.

Figure 33. GNSS receiver set up, Trimble® SPS 985, at UP_MAY-1, located beside the approach of Mayo Bridge in Brgy. Mayo, City of Mati, Province of Davao Oriental

Figure 34. GNSS receiver set up, Trimble® SPS 882, at UP_QUI-1, located beside the approach of Quinonoan Bridge in Brgy. San Ignacio, Municipality of Manay, Province of Davao Oriental.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 22 presents the baseline processing results of control points in the Quinonoan River Basin, as generated by the TBC software.

Table 22. The Baseline processing report for the Quinonoan River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-42 DE- 160	5-22-2016	Fixed	0.005	0.026	60°47'28"	3110.595	-8.798
UP_MAY-1 DE-160	5-22-2016	Fixed	0.003	0.004	38°23'28"	559.167	-1.723
DVE-42 UP_MAY-1	5-22-2016	Fixed	0.003	0.014	65°29'18"	2602.368	-7.064
UP_BIT-1 UP_MAY-1	5-22-2016	Fixed	0.004	0.018	45°34'22"	4416.378	-7.047
UP_BIT-1 DE-160	5-22-2016	Fixed	0.005	0.025	44°46'00"	4971.649	-8.805
UP_BIT-1 DVE-42	5-22-2016	Fixed	0.003	0.015	201°20'38"	2159.894	0.009
UP_BIT-1 UP_QUI-1	5-22-2016	Fixed	0.007	0.024	53°30'19"	23747.730	-9.665
UP_MAY-1 UP_QUI-1	5-22-2016	Fixed	0.009	0.030	55°18'38"	19383.182	-2.630
UP_QUI-1 DE-160	5-22-2016	Fixed	0.009	0.035	235°49'23"	18848.927	0.881
DVE-42 UP_QUI-1	5-22-2016	Fixed	0.008	0.029	56°30'32"	21949.416	-9.718

As shown in Table 22, a total of ten (10) baselines were processed with the coordinates of DVE-42, and the elevation value of reference points DE-160 held fixed; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $V(\mathbb{PP}((x\mathbb{P}_e)\mathbb{P}^2+\mathbb{PP}(y\mathbb{P}_e)\mathbb{P}^2)) < 20 \text{ cm and } \mathbb{P} \mathbb{P}^2 = 10 \text{ cm}$

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 23 to Table 26.

The five (5) control points, DVE-42, DE-160, UP-BIT-1, UP_MAY-1, and UP-QUI-1 were occupied and observed simultaneously to form a GNSS loop. The coordinate values of DVE-42 and elevation of DE-160 were held fixed during the processing of the control points as presented in Table 23. Through this reference point, the coordinates and ellipsoidal height of the unknown control points will be computed.

Table 23. Constraints applied to the adjustment of the control points.

Point ID	Туре	East o (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
DE-160	Grid				Fixed		
DVE-42	Global	Fixed	Fixed				
Fixed = 0.000001(Meter							

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24.

Table 24. Adjusted grid coordinates for the control points used in the Quinonoan River flood plain
survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
DE-160	774012.369	0.003	204436.373	0.005	6.419	?	е
DVE-42	772508.970	?	201710.753	?	15.122	0.023	LL
UP_BIT-1	770500.332	0.003	200912.560	0.004	15.210	0.025	
UP_MAY- 1	773575.785	0.003	204086.387	0.004	8.152	0.009	

The results of the computation for accuracy are as follows:

а.	DE-160 horizontal accuracy	=	$V((0.3)^2 + (0.5)^2)$
vertical accuracy		=	=V (0.09 + 0.25) =0.34 < 20 cm Fixed
b. vertical	DVE-42 horizontal accuracy accuracy	=	Fixed 2.3 < 10 cm
С.	UP_BIT-1 horizontal accuracy	=	$V((0.3)^2 + (0.4)^2)$ =V (0.09 + 0.16) =0.25 < 20 cm
vertical	accuracy	=	2.5 < 10 cm
d.	UP_MAY-1 horizontal accuracy	=	$V((0.3)^2 + (0.4)^2)$ =V(0.09 + 0.16) =0.25 < 20 cm
vertical	accuracy	=	0.9 < 10 cm
e.	UP_QUI-1 horizontal accuracy	=	$V((0.4)^2 + (0.7)^2)$ = $V(0.16 + 0.49)$ = 0.65 < 20 cm
vertical	accuracy	=	3.4 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
DE-160	N6°59'41.20398"	E126°19'30.03464"	71.754	?	е
DVE-42	N6°58'51.79295"	E126°18'01.57690"	80.539	0.023	LL
UP_BIT-1	N6°57'46.30507"	E126°17'35.96635"	80.537	0.025	
UP_MAY-1	N6°59'26.93722"	E126°19'18.72092"	73.478	0.009	
UP_QUI-1	N7°05'25.95862"	E126°27'58.08622"	70.854	0.034	
DE-160	N6°59'41.20398"	E126°19'30.03464"	71.754	?	е

Table 25. Adjusted geodetic coordinates for control points used in the Quinonoan River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Quinonoan River GNSS Static Survey are seen in Table 26.

Table 26. The reference and control points utilized in the Quinonoan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

		Geograph	UTM ZONE 51 N				
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
DVE-42	2nd order, GCP	6°58'51.79295"N	126°18'01.57690"E	80.539	772508.97	201710.753	15.122
DE-160	1st order, BM	6°59'41.20398"N	126°19'30.03464"E	71.754	774012.369	204436.373	6.419
UP_BIT-1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	770500.332	200912.56	15.21
UP_MAY-1	Established	6°59'26.93722"N	126°19'18.72092"E	73.478	773575.785	204086.387	8.152
UP_QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	784522.58	220097.24	6.305

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on March 20, 2016 at the downstream side of Quinonoan Bridge, Brgy. San Ignacio, Manay using the GNSS receiver Horizon[®] utilizing GNSS RTK survey technique, (Figure 35 and Figure 36).

Figure 35. Quinonoan Bridge facing downstream

Figure 36. As-built survey of Quinonoan Bridge.

The length of the cross-sectional line surveyed at Quinonoan Bridge is about 369 meters (Figure 35) with one hundred seventy-three (173) cross-sectional points using the control points UP_QUI-1 and UP_QUI-2 as the GNSS base stations. The location map, cross-section diagram, and the accomplished bridge data from are shown in Figure 37, Figure 38 and Figure 39 respectively.

Figure 37. Location map of the Quinonoan Bridge cross section.

River Name: Quinonoan River Location (Brgy, City, Region): Brgy, San Ignacio, Manay, Davao Oriental Survey Team: Jayson Jlustre, Ryan Antonio Date and Time: March 20, 2016, 1:03 P.M. Flow Condition: Iow normal high	Bridge Name: Quino	ngan Bridge							
Survey Team: Jayson Jlustre, Ryan Antonio Date and Time: March 20, 2018, 1:03 P.M. Flow Condition: low normal high Weather Condition: fair rainy	River Name: Quinonoan River Location (Brgy, City, Region): Brgy, San Ignacio, <u>Manay</u> , Davao Oriental								
Flow Condition: Iow normal high	Survey Team: Jayson <u>Justre</u> , Ryan Antonio Date and Time: <u>March 20, 2016, 1:03 P.M.</u>								
Flow Condition: Iow normal high Veather Condition: fair rainy			~						
Weather Condition: fair rainy	Flow Condition:	low	normal	high					
Weather Condition: fair rainy				/					
	Weather Condition:	fai	r ra	iny					

Cross-sectional View (not to scale)

Note: Observer should be facing downstream

Figure 39. Quinonoan Bridge Data Sheet.

The water surface elevation of Quinonoan River was determined by a Horizon[®] Total Station on March 20, 2016 at 1:03 PM at Quinonoan Bridge area with a value of 3.252 m in MSL as shown in Figure 38. This was translated into marking on the bridge's pier as shown in Figure 40. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Quinonoan River, UP Mindanao.

Figure 40. Water-level markings on Quinonoan Bridge.

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC on May 14, 2016 using a survey grade GNSS Rover receiver, Trimble[®] SPS 985, mounted on a range pole which was attached on the front of the vehicle as as shown in Figure 41. balanced. The antenna height was 2.476 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topographic mode with UP_QUI-1 occupied as the GNSS base station in the conduct of the survey.

Figure 41. GNSS Rover receiver, Trimble® SPS 985 installed on a vehicle for Ground Validation Survey.

The survey started from Brgy. Mayo, Mati City, Davao Oriental going north east along national high way, traversing one (1) barangay in Mati City, four (4) barangays in Tarragona and ended in Brgy. San Ignacio, Manay, Davao Oriental. A total of 4,051 points were gathered with approximate length of 34.14 km using UP_QUI-1 as GNSS base station for the entire extent validation points acquisition survey, as illustrated in the map in Figure 42.

4.7 River Bathymetric Survey

A manual bathymetric survey was performed on March 1-3, 2016 and on March 14, 2016 using a Horizon[®] Total Station as shown in Figure 43.

Figure 43. Set up of the bathymetric survey in Quinonoan River

The survey started in Brgy. Dadong, Tarragona, Davao Oriental with coordinates 7° 7' 24.75944"N, 126° 26' 11.85148"E and ended at the mouth of the river in Brgy. San Ignacio, Manay, Davao Oriental with coordinates 7° 5' 20.61189"N, 126° 28' 10.00302"E. The control points UP_QUI-1 and UP_QUI-2 served as the GNSS base stations all throughout the survey.

Overall, the extent of the bathymetric survey for the Quinonoan River is shown in Figure 44. To further illustrate this, a CAD drawing of the riverbed profile of the Quinonoan River was produced as seen in Figure 46.

Figure 44. The extent of the Quinonoan River Bathymetry Survey.

Figure 45. Quality checking points gathered along Quinonoan River by DVBC

Figure 46. The Quinonoan Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, Hannah Aventurado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Quinonoan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the University of the Philippines Mindanao Phil-LiDAR1 team. This rain gauge is located in Barangay Dadong, Tarragona, Davao Oriental with the following coordinates: 7°8′20.9″ N, 126°26′22.2″ E as illustrated in Figure 47. The precipitation data collection started from January 26, 2016 at 5:00 AM to January 30, 2016 at 3:40 AM a 10-minute.

The total precipitation for this event in the installed rain gauge was 44.6 mm. It has a peak rainfall of 4.2 mm. on January 27, 2016 at 5:50 AM. The lag time between the peak rainfall and discharge is 2 hours and 40 minutes.

Figure 47. Location Map of the Quinonoan HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Quinonoan Bridge, Brgy. Jovellar, Tarragona, Davao Oriental (7°5'27.17" N, 126°27'58.57" E). It gives the relationship between the observed water level at the Quinonoan Bridge and outflow of the watershed at this location.

Figure 48. The Rating Curve at Quinonoan Bridge, Tarragona, Davao Oriental.

This rating curve equation was used to compute the river outflow at Quinonoan Bridge for the calibration of the HEC-HMS model shown in Figure 49. The peak discharge is 3.04 m3/s at 5:40 in the morning, May 16, 2016.

Figure 49. Rainfall and outflow data at Quinonoan Bridge used for modeling

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Davao Rain Gauge (Table 27). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 46). This station was selected based on its proximity to the Quinonoan watershed. The extreme values for this watershed were computed based on a 59-year record.

Table 27. RIDF values for the Quinonoan River Basin based on average RIDF data of Davao station, as computed by PAGASA

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	19.5	30	38.2	53.2	65.2	71.6	80.3	85.8	91.4	
5	25.1	39.3	51	73.2	88.8	96.4	108.7	114.9	121.1	
10	28.8	45.4	59.4	86.5	104.5	112.8	127.5	134.1	140.7	
15	30.9	48.9	64.2	94	113.3	122.1	138.1	145	151.8	
20	32.4	51.3	67.6	99.3	119.5	128.6	145.5	152.6	159.5	
25	33.5	53.2	70.1	103.3	124.2	133.6	151.2	158.5	165.5	
50	37	59	78.1	115.8	138.9	149	168.8	176.5	183.9	

Figure 50. The location of the Davao RIDF station relative to the Quinonoan River Basin.

Figure 51. The synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

These soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Environment and Natural Resources Management (DENR). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Quinonoan River Basin are shown in Figure 52 and Figure 53 respectively.

Figure 52. Soil Map of Quinonoan River Basin.

Figure 53. Land Cover Map of Quinonoan River Basin.

For Quinonoan, four soil classes were identified. These are are sand, loam, clay loam and silt loam. Moreover, seven land cover classes were identified. These are forest plantation, grassland, shrubland, cultivated lands, mangrove, built-up and inland water bodies.

Figure 54. Slope Map of the Quinonoan River Basin.

Figure 55. Stream Delineation Map of Quinonoan River Basin

Using the SAR-based DEM, the Quinonoan basin was delineated and further subdivided into subbasins. The model consists of 57 sub basins, 28 reaches, 28 junctions, as shown in Figure 56. The main outlet is at Quinonoan Bridge.

Figure 56. Quinonoan river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 57).

Figure 57. River cross-section of Quinonoan River generated through Arcmap HEC GeoRAS tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 58. A Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro.

Figure 59. Generated 100-year rain return hazard map from FLO-2D Mapper

Figure 60. Generated 100-year rain return flow depth map from FLO-2D Mapper

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 22.20007 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Surigao are in Figure 62, 64 and 66.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 22958400.00 m2. The generated flood depth maps for Surigao are in Figure 63, 65, and 67.

There is a total of 61783670.89 m3 of water entering the model. Of this amount, 6072171.66 m3 is due to rainfall while 55711499.22 m3 is inflow from other areas outside the model 4363573.50 m3 of this water is lost to infiltration and interception, while 33831397.31 m3 is stored by the flood plain. The rest, amounting up to 23588699.98 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Quinonoan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 61 shows the comparison between the two discharge data.

Figure 61. Outflow Hydrograph of Quinonoan produced by the HEC-HMS model compared with observed outflow

Table 28 shows the adjusted ranges of values of the parameters used in calibrating the model.

Table 28. Range of calibrated values for the Quinonoan River Basin.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve Number	Initial Abstraction (mm)	1.318 – 5.82
	LUSS	SCS Curve Number	Curve Number	45.876 - 99
	Trensforme	Clark Unit Hydrograph	Time of Concentration (hr)	0.0103 - 0.159
Basin	Iransform		Storage Coefficient (hr)	0.2067 – 3.817
	Baseflow R	Dessesion	Recession Constant	0.912 – 0.935
		Recession	Ratio to Peak	0.27 – 0.595
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0148 - 0.0518

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.318 mm to 5.82 mm means that there is a very small initial fraction of the storm depth after which runoff begins, increasing the river outflow.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Quinonoan, the basin consists mainly of forests and cultivated areas and the soil consists of mostly undifferentiated land and clay loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.0103 hours to 3.817 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.912 to 0.935 indicate that the basin is unlikely to quickly go back to its original discharge. Values of ratio to peak within the range of 0.27 to 0.595 indicate a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Quinonoan river basin reaches' Manning's coefficients range from 0.0148 to 0.0518, showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy measure	Value	
RMSE	2.9	
r2	0.87	
NSE	0.85	
PBIAS	-1.27	
RSR	0.38	

Table 29. Summary of the Efficiency Test of the Quinonoan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.9 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.87.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.85.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.27.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 62) shows the Quinonoan outflow using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods

Figure 62. The Outflow hydrograph at the Quinonoan Bridge, generated using the Davao RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Quinonoan discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	121.1	25.1	422	2 hours, 40 minutes
10-Year	140.7	28.8	528.3	2 hours, 30 minutes
25-Year	165.5	33.5	672.2	2 hours, 20 minutes
50-Year	183.9	37	785	2 hours, 10 minutes
100-Year	202.1	40.5	903.2	2 hours

Table 30. The peak values of the Quinonoan HEC-HMS Model outflow using the Davao RIDF.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 63 shows a generated sample map of the Quinonoan River using the calibrated HMS base flow.

Figure 63. Sample output map of the Quinonoan RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 64 to Figure 69 shows the 5-, 25-, and 100-year rain return scenarios of the Quinonoan floodplain. The floodplain, with an area of 4.53 sq. km., covers two municipalites namely Manay and Tarragona. Table 31 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Davao Oriental	Manay	430.89	3.3563
Davao Oriental	Tarragona	277.9	1.1398

Table 31. Municipalities affected in Quinonoan floodplain.

Figure 64. A 100-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth imagery.

Figure 65. A 100-year Flow Depth Map for Quinonoan Floodplain overlaid on Google Earth imagery.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 66. A 25-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth imagery.

Figure 67. A 25-year Flow Depth Map for Quinonoan Floodplain overlaid on Google Earth imagery.

Figure 68. A 5-year Flood Hazard Map for Quinonoan Floodplain overlaid on Google Earth imagery.

Figure 69. A 5-year Flow Depth Map for Quinonoan Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Quinonoan river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of three barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 0.53% of the municipality of Manay with an area of 430.894 sq. km. will experience flood levels of less than 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.08%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table Table 32 are the affected areas in Manay in square kilometers by flood depth per barangay.

Table 32. Affected Areas in Manay, Da	vao Oriental during	5-Year Rainfall	Return Period.
---------------------------------------	---------------------	-----------------	----------------

Affected area	Areas of affected Barangays in Manay	
(sq. km.) by flood depth (in m.)	San Ignacio	
0-0.20	2.28	
0.21-0.50	0.14	
0.51-1.00	0.15	
1.01-2.00	0.34	
2.01-5.00	0.44	
> 5.00	0.0021	

Figure 70. Affected Areas in Manay, Davao Oriental during 5-Year Rainfall Return Period.

For the municipality of Tarragona with an area of 277.904 sq. km, 0.38% will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters 0.01of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 33 are the affected areas in Tarragona in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Tarragona		
(sq. km.) by flood depth (in m.)	Jovellar	Maganda	
0-0.20	0.32	0.72	
0.21-0.50	0.0053	0.023	
0.51-1.00	0.005	0.012	
1.01-2.00	0.0057	0.006	
2.01-5.00	0.007	0.015	
> 5.00	0	0.014	

Figure 71. Affected Areas in Tarragona, Davao Oriental during 5-Year Rainfall Return Period.

For the municipality of Manay with an area of 430.894 sq. km. will experience flood levels of less than 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.05%, 0.16%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 34 are the affected areas in Manay in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Manay	
(sq. km.) by hood depth (in m.)	San Ignacio	
0-0.20	2.19	
0.21-0.50	0.13	
0.51-1.00	0.1	
1.01-2.00	0.2	
2.01-5.00	0.7	
> 5.00	0.033	

Table 34. Affected Areas in Manay, Davao Oriental during 25-Year Rainfall Return Period.

Figure 72. Affected Areas in Manay, Davao Oriental during 25-Year Rainfall Return Period.

For the municipality of Tarragona with an area of 277.904 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% of the area will experience flood depths of 0.51 to 1 meter., respectively. Listed in Table 35 are the affected areas in Tarragona in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Tarragona		
(sq. km.) by flood depth (in m.)	Jovellar	Maganda	
0-0.20	0.32	0.7	
0.21-0.50	0.0056	0.036	
0.51-1.00	0.0056	0.014	
1.01-2.00	0.0053	0.0072	
2.01-5.00	0.0099	0.015	
> 5.00	0	0.02	

Figure 73. Affected Areas in Tarragona, Davao Oriental during 25-Year Rainfall Return Period

For the the municipality of Manay with an area of 430.894 sq. km. will experience flood levels of less than 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.03%, 0.17%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in Manay in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Manay	
(sq. km.) by hood depth (in m.)	San Ignacio	
0-0.20	2.15	
0.21-0.50	0.14	
0.51-1.00	0.095	
1.01-2.00	0.13	
2.01-5.00	0.74	
> 5.00	0.1	

Table 36. Affected Areas in Manay, Davao Oriental during 100-Year Rainfall Return Period

Figure 74. Affected Areas in Manay, Davao Oriental during 100-Year Rainfall Return Period

For the municipality of Tarragona with an area of 277.904 sq. km. will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% of the area will experience flood depths of 0.51 to 1 meter, respectively. Listed in Table 37 are the affected areas in Tarragona in square kilometers by flood depth per barangay.

Affected area	Area of affected barangays in Tarragona		
(sq. km.) by flood depth (in m.)	Jovellar	Maganda	
0-0.20	0.32	0.69	
0.21-0.50	0.0067	0.044	
0.51-1.00	0.0049	0.015	
1.01-2.00	0.0051	0.0082	
2.01-5.00	0.011	0.012	
> 5.00	0	0.026	

Figure 75. Affected Areas in Tarragona, Davao Oriental during 100-Year Rainfall Return Period.

Brgy. San Ignacio is the only barangay affected in the municipality of Manay in Davao Oriental. The barangay is projected to experience flood in 0.78% of the municipality.

Among the barangays in the municipality of Tarragona in Davao Oriental, Maganda is projected to have the highest percentage of area that will experience flood levels at 0.29%. Meanwhile, Jovellar posted the second highest percentage of area that may be affected by flood depths at 0.12%.

Moreover, the generated flood hazard maps for the Quinonoan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr)

	Area Covered in sq. km.			
warning Level	5 year	25 year	100 year	
Low	0.15315	0.15652	0.16761	
Medium	0.31632	0.19045	0.16419	
High	0.73306	0.96915	1.04159	

Table 38. Area covered by each warning level with respect to the rainfall scenarios

Of the three (3) identified educational institutions in the Quinonoan floodplain, none are supposedly at risk for any of the flood hazards. See Annex 12. Additionally, no medical institutions were identified in the said floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation survey was conducted on November 8-11, 2016. The flood validation consists of 180 points randomly selected all over the Quinonoan flood plain. It has an RMSE value of 1.708.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 76. Validation Points for a 25-year Flood Depth Map of the Quinonoan Floodplain.

Figure 77. Flood Map Depth vs Actual Flood Depth for Quinonoan

QUINONOAN BASIN		Modeled Flood Depth (m)								
		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total		
	0-0.20	27	3	7	15	2	1	55		
	0.21-0.50	0	1	7	7	4	0	19		
Actual	0.51-1.00	1	0	2	18	9	0	30		
Flood	1.01-2.00	0	0	0	3	33	1	37		
(m)	2.01-5.00	0	0	0	0	12	14	26		
()	> 5.00	0	0	0	0	0	13	13		
	Total	28	4	16	43	60	29	180		

Table 39. Actual Flood Depth versus Simulated Flood Depth at different levels in the Quinonoan River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 32.22%, with 58 points correctly matching the actual flood depths. In addition, there were 75 points estimated one level above and below the correct flood depths while there were 25 points and 22 points estimated two levels above and below, and 22 points. A total of 121 points were overestimated while a total of 1 point were underestimated in the modelled flood depths of Quinonoan. Table 40 depicts the summary of the Accuracy Assessment in the Quinonoan River Basin Flood Depth Map.

Table 40. Summary of the Accuracy Assessment in the Quinonoan River Basin Survey.

	No. of Points	%
Correct	58	32.22
Overestimated	121	67.22
Underestimated	1	0.56
Total	180	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Quinonoan Floodplain Survey

1. GEMINI SENSOR

Figure A-1.1. Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver	
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg	
Operating temperature	-10°C to +35°C (with insulating jacket)

Table A-1.1. Parameters and Specifications of Gemini Sensor

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. DVE-42

Figure A-2.1. DVE-42

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR \ Survey

1. DVE-3088

Table A-3.1. DVE-3088

			i rocessing e	- anninany				
Observation	From	To	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-3088 DVE- 42 (B1)	DVE-42	DVE-3088	Fixed	0.001	0.002	160*37'05'	8.200	-0.026
DVE-3088 DVE- 42 (B2)	DVE-42	DVE-3088	Fixed	0.001	0.002	160*36'35'	8.199	-0.029
DVE-42 DVE- 3088 (B3)	DVE-42	DVE-3088	Fixed	0.001	0.002	160*36'48'	8.202	-0.035
DVE-3088 DVE- 42 (B4)	DVE-42	DVE-3088	Fixed	0.001	0.002	160*40'60'	8.200	-0.031
DVE-3088 DVE- 42 (B5)	DVE-42	DVE-3088	Fixed	0.001	0.001	160*40'62"	8.202	-0.035
DVE-42 DVE- 3088 (B6)	DVE-42	DVE-3088	Fixed	0.001	0.001	160*40'63"	8.203	-0.034
Vector Componen	ts (Mark to M	lark)						

Processing Summary

From:	DVE-42	DVE-42					
Grid			Local			lobal	
Easting	201538.187 m	Latitude	N6*58'54.82727"	Latitude		N6*58'51.79295"	
Northing	772554.341 m	Longitude	E126*17'56.05259"	Longitude		E126*18'01.57690"	
Elevation	15.607 m	Height	6.396 m	Height		81.025 m	
To:	DVE-3088						
	Grid		Global				
Easting	201642.172 m	Latitude	N6*58'54.59466"	Latitude		N6*68'61.66037"	
Northing	772647.168 m	Longitude	E126*17'56.18365"	Longitude		E126*18'01.70797"	
Elevation	15.582 m	Height	6.370 m	Height		80.999 m	
Vector							
ΔEasting	3.96	85 m NS Fwd Azi	muth	150*37'05"	ΔX	-3.741 m	
ΔNorthing	-7.17	73 m Ellipsoid Dis	t.	8.200 m	ΔY	-1.703 m	
∆Elevation	-0.02	25 m ΔHeight		-0.026 m	ΔZ	-7.095 m	

Standard Errors

Vector errors:						
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0*00'12"	σΔX	0.001 m	
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m	
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔZ	0.000 m	

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.0000004144		
Y	-0.0000001655	0.0000005443	
z	-0.000000528	0.000000815	0.000000908

2. DVE-19

rector compon	cines from	an to many							
From:	SRS	SRS-51							
	Grid			Lo	cal			G	obal
Easting		186815.622 m	Latit	ude	N8*69*14	4.14996"	Latitude		N8*59'10.56678"
Northing		994698.260 m	Long	gitude	E126*09'0	5.83416"	Longitude		E126*09'12.17833'
Elevation		5.763 m	Heig	jht		3.970 m	Height		74.223 m
To: DVE-19									
	Grid		Local			Global			
Easting		228220.944 m	Latit	ude	N7*12'5	5.40692"	Latitude		N7*12'62.33147
Northing		798242.632 m	Longitude E126*32'20.		0.36690"	36690" Longitude		E126*32'25.86714	
Elevation		4.620 m	Height -5.421 m		6.421 m	Height		69.364 m	
Vector									
∆Easting		41405.32	22 m	NS Fwd Azimuth			167*41'20"	ΔX	-50724.032 m
ΔNorthing		-196355.62	28 m	Ellipsoid Dist.		2	00541.192 m	ΔY	-3051.661 m
ΔElevation		-1.24	13 m	ΔHeight			-9.391 m	ΔZ	-193987.320 m

Table A-3.2. DVE-19

Vector Components (Mark to Mark)

Standard Errors

Vector errors:					
σ ΔEasting	0.015 m	σ NS fwd Azimuth	0*00'00''	σΔX	0.018 m
σ ΔNorthing	0.007 m	σ Ellipsoid Dist.	0.009 m	σΔY	0.024 m
σ ΔElevation	0.027 m	σ ΔHeight	0.027 m	σΔZ	0.008 m

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
x	0.0003330378		
Y	-0.0002190878	0.0005839047	
z	-0.0000099289	0.0000986309	0.0000610561

Occupations

	From	To
Point ID:	SRS-61	DVE-19
Data file:	C:\Users\Windows User\Documents \Business Center - HCE\DVE-19 DVE- 201\SRS51 (Modular) 7-8-14 [1.629m].T02	C:\Users\Windows User\Documents \Business Center - HCE\DVE-19 DVE- 201\DVE-19 07-08-2014.T02
Receiver t∮pe:	SPS852	SPS986
Receiver serial number:	5203K81512	5245F15419
Antenna t∮pe:	Zeph∮r Geodetic 2	SPS985 Internal
Antenna serial number:		
Antenna height (measured):	1.629 m	1.481 m
Antenna method:	Bottom of notch	Bottom of antenna mount

3. DVE-20

Vector Compo	nents (M	ark to Mark)								
From:	DV	VE-20								
Grid		Local			Global					
Easting		228219.879 m		le	N7*12'51.11197"		Latitude			N7*12'48.0368
Northing		798110.635 m		Longitude		20.35543" Longitude		e	E126*32'25.8657	
Elevation		3.741 m		Height -6.216 r		-6.216 m	Height			68.572
To:	DV	E-19					_			
Grid			Local			Global				
Easting		228220.734 m		le	N7*12'55.40683		Latitude			N7*12'62.3313
Northing		798242.630 m		Longitude		E126*32'20.36008" L		Longitude		E126*32'25.8603
Elevation		4.340 m		t	-6.601 m		Height			69.184
Vector										
ΔEasting		0.88	55 m NS Fwd Azimuth				0*03	43"	ΔX	9.390
ΔNorthing	Northing 131.99		6 m Ellipsoid Dist.			131.93	0 m	ΔY	-12.906	
ΔElevation	n 0.69		9 m ΔHeight			0.61	4 m	ΔZ	130.962	
Standard Erro	rs									
Vector errors:										
σ ΔEasting		0.008 m		σ NS fwd Azimuth			0*00'12" σ ΔΧ		х	0.011
$\sigma \Delta Northing$	0.006 m		σ Ellipsoid Dist.		0.006 m σΔΥ		0.012			
σ ΔElevation	ion 0.015 m		σ ΔHeight		0.015 m or ΔZ		0.006			

Aposteriori Covariance Matrix (Meter*)

	x	Y	Z
х	0.0001243942		
Y	-0.0000742449	0.0001616896	
z	-0.0000004838	0.0000124527	0.0000328557

Occupations

	From	To	
Point ID:	DVE-20	DVE-19	
Data file:	C:\Users\Windows User\Documents \Business Center - HCE\DVE-19 DVE- 201\DVE-20 07-08-2014.T02	C:\Users\Windows User\Documents \Business Center - HCE\DVE-19 DVE- 201\DVE-19 07-08-2014.T02	
Receiver t∮pe:	SPS882	SPS986	
Receiver serial number:	6152479948	6246F16419	
Antenna t∮pe:	R8 GNSS/SPS88x Internal	SPS985 Internal	
Antenna serial number:			
Antenna height (measured):	2.000 m	1.481 m	
Antenna method:	Bottom of antenna mount	Bottom of antenna mount	

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation			
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP			
Data Acquisition Compo- nent Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP			
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP			
Survey Supervisor	Supervising Science Re-	LOVELY GRACIA ACUÑA	UP-TCAGP			
	vising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP			
FIELD TEAM						
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP			
LiDAR Operation	Research Associate (RA)	FOR. MA. VERLINA TONGA	UP-TCAGP			
	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP			
Ground Survey, Data Download & Transfer	RA	ENGR. KENNETH QUISADO	UP-TCAGP			
	Airborne Security	TSG. MIKE DIAPANA	PHILIPPINE AIR FORCE (PAF)			
LiDAR Operation	Pilot	CAPT. RAUL CZ SAMAR II	ASIAN AEROSPACE CORPORA- TION (AAC)			
		CAPT. BRYAN JOHN DONGUINES	AAC			

Table A-4.1.	The LiDAR S	Survey Team	Composition				
			•••••••••••••				
FUGHT FLAM SERVICE	Annul Fait, LOOATHON	2 Bildone Jaw		4 NA Everyone Read	4 NA 2000 June June 0 9 2000 June June	4 NA (2010) June 6 9 (2010) June 10 (2010) June 4 1 (2010) June 2010) June 10 (2010) June	4 MA 2144700m_4400 6 A 20400m_4004 6 A 20400m_4044 4 235460 4 235460 4 235460
--	---------------------------	---------------	----------------	--------------------	---	--	--
OF ENATOR LOCK	00074455	292		193	204 434	8	83 65 68
	STATIONE Base Selv (Sel)	4,86	S.62 148		4,66 143	4.66 Vote 5.29 Vote	4.66 ws 5.29 scs 7 ses
		17.6 M	13.3 MM		11	5 N N N	13 e 14
THE REAL PROPERTY OF	1035	See.	1		1		
		217 0.3	224 m		1000	262	262 m 266 m 252 v
		6.21	330	524		609	505
	(USING) THOSE	212	116/38	405		293/192	393/191
Contraction of the local division of the loc	90	2	NA	MA		11	1 1
		OBMIN	ODetec	NINGO		DEMINE	others
		VESTVERY BE	29142546433704	291.KB4ASB68171A		29LKB6C83A1718	2914295C93A1718 2914205173A
The second		Fatsec*	73200	73226		7323G	73250
Date		6/18/2034	115/2024	5/20/2014	V/20/2014	V22/2014	

Annex 5. Data Transfer Sheet for Quinonoan Floodplain

Figure A-5.1. Transfer Sheet for Quinonoan Floodplain - A

							07/00/201	ADavao Orien	tal - ready)								
-																ľ	ſ
				RAN	ILAS		-	NIMIN	MISSION LOG		and the second	BASE 57J	(TION(S)	OPERATOR	FUGHT	PLAN	BERVER
DATE	PUINSHIT NO.	WINDOW NAME	SENSOR	Output LAS	KML (sweth)	romerium	2	INAGENCAN	1009	-		STATIONES	Base Info (Ant)	(00140)	Actual	KML	LOCATION
7/7/2014	7356GC	2BLK80A5188A	Gemini	NA	347/11	589	265	NA	NA	27.7	12	9.58	1400	168	4	374/11	C.Mitbome
7/7/2014	7357GC	284,030651888	Gemini	NN.	406	111	79.8	W	12	5.05	NA N	7.68	1400	160	4	406	C.Mirbome
7/8/2014	7358GC	28LK8085189A	Gemini	NA	165/7/14	310	196	NA.	NA NA	20.1		4.63	140	160	7/3	165/7/14	C.Mittome_
7/10/2014	7362GC	201005C5191A	Gemin	NA	138	244	188	NA NA	ž	7.95	NA	4.7	1100	160	8/15/14	1361	C:Mirbome
7/11/2014	7364GC	28LK85V192A	Gernini	NA NA	234/9/12	480	207	NA.	NA NA	27.3	52	5.8	1108	1408	4/9	234/9/12	C.Mirtome_
7/12/2014	7366GC	28LK79D806V193A	Gemini	YZ.	60	409	241	NA	NN.	12.2	52	4.89	1408	1KOB	5/7	14/17	C.Mittome
7/15/2014	7372GC	261K79F196A	Gernini	VN	30/6	68.7	158	NA	22	3.47	NA NA	4.56	100	160	6	Sore	C.Mirtome
7/16/2014	7374GC	20UK79E5197A	Gemini	NA.	139	239	156	NA NA	MA	9.01	MA	3.42	100	1908	3/4	139	Z:WatborneRaw
		Received from						Received by									
		Position TU Fosition	ALL BANK	44				Name Position Signature	Adiol	Ritere	el	7/28/14	,				

-	23
-	21
10	-
-	- 1
	-1
-	-
-	21
	21
-	Z 1
æ	-21
-	τı
-	61
	ΨI
	- 11
- 14	81
-	
~	- 241
2	- 141
-	-61
-	e j
	301
	-
2	-
	-61
	-51
	-21
-	461
	-81
	351
	164
	- 61
	-1

LiDAR Surveys and Flood Mapping of Quinonoan River

Figure A-5.2. Transfer Sheet for Quinonoan Floodplain - B

Flight Log No.: 7320 S Aircraft Type: Cesnna T206H 6 Aircraft Identification: Ar 7932 18 Total Flight Time: Lidar Operato Surveyed 9 lines in Blk 83A & Clines in Blk 84B 12 Airport of Arrival (Airport, Gty/Province): 17 Landing: re over Printed Name 1 A MAR-5 Pilot-infest Conducted CASI Signature over Printed Name (End Upp Representation Acquisition Flight Approved by **DREAM Data Acquisition Flight Log** 21 Problems and Solutions: 19 Weather 20 Remarks:

Figure A-6.1. Flight Log for Mission 7320GC

1. Flight Log for 7320GC Mission

2. Flight Log for 7322GC Mission

Flight Log No.:	6 Aircraft Identification: R - O		18 Total Flight Time:				idar Operator E partice as Signature over Printed Name
	S Aircraft Type: CesnnaT206H	(Airport, City/Province):	17 Landing:				Printed Name
	CARA Type: VFR	12 Airport of Arriva	16 Take off:	866 8	(ISPO)		Filotin-Comp
	hold 3 Mission Name: LAUG	ture [Airport, Gty/Prownce]:	15 Total Engine Time:	ompleted 83A	Cuitmont		beautistical and the factified by
t Log	gragas 2 ALTM Model: 60	12 Airport of Depa	14 Engine Off: Y.L.S			: 500	Approved by Med Name Intertive)
EAM Data Acquisition Flight	1 UDAR Operator: LK	10 Date: 6 - 70 - 14	13 Engine On: 13 Fut 19 Weather	20 Remarks :		21 Problems and Soluti	Acquidation Fight.

Figure A-6.3. Flight Log for Mission 7323GC

1 UDAR Operator. UK Partagas 2 ALTM Nodel: Gent Chaptersion Name: 2012 AS Gyd Type: VFR 5 Alreaft Type: Cesna 7206H 6 Alreaft Identification: Kp-CG322 7 Pilor: R. Gmodel) 8 Co-Pilor: L. PLPS unce 19 Route: 10 Date: 2.3 -14 1.1 Second 20 Commune (Alreadt, Gty/Province): 12 Alreadt Arrival (Alreadt, Type: Cesna 7206H 6 Alreadt Identification: Kp-CG322 13 Engine O. 1.4 Province): 12 Alreadt of Arrival (Alreadt, Typer, Gty/Province): 2.2 Alreadt Type: Cesna 7206H 6 Alreadt Identification: Kp-CG322 13 Engine O. 1.4 Province): 2.2 Alreadt of Arrival (Alreadt, Gty/Province): 2.2 Alreadt Type: Cesna 7206H 6 Alreadt Identification: Kp-CG3222 13 Engine O. 1.4 Province): 2.2 Alreadt of Arrival (Alreadt, Gty/Province): 2.2 Alreadt Type: Cesna 706H 6 Alreadt Identification: Kp-CG3222 13 Engine O. 1.4 Province): 2.2 Alreadt of Arrival (Alreadt, Gty/Province): 2.2 Alreadt Type: Cesna 7.0 Province): 2.2 Alreadt Type: Cesna 7.0 Province): 2.2 Alreadt 1.2 Alreadt 18 Total Flight Time: Udar Ope 12 Airport of Arrival (Airport, Gty/Province): 16 Take Off: 17 Landing: Signature over Printed Name Completed Block 80A and Block 80B ENERGY-4 Hot-In-Co (with CASI) 15 Total Engine Time: (Md) 14 Engine Off: レイリ ved by **DREAM Data Acquisition Flight Log** 21 Problems and Solutions: ohe Anu 13 Engine On: 17 Signature (End User Acouts) 20 Remarks: 19 Weather

Figure A-6.4. Flight Log for Mission 7328GC

t Log No.:	Y Ch						
Flight	6 Aircraft Identification		18 Total Flight Time:				uder Operator A D D D
	5 Aircraft Type: Cesnna 7206H	(Airport, City/Province):	17 Landing:		(154		Printed Name
+ 51	4 Type: VFR	12 Airport of Arrival	16 Take off:		(without c		Plot-in-Company
8-08-470T	3 Mission Name: V 17 A	Vrport, City/Province):	15 Total Engine Time:		and voids of		and the second s
	2 ALTM Model: Wonf Onsi	12 Airport of Departure (ne Off: //: 5/		8 08 X18 P		Acquisit
A Data Acquisition Flight Log	IDAR Operator: MVC TOVER	Date: July &, col4	Engine On: Far 8:28 14 Engi	Weather Freir	Remarks: Comple H	1 Problems and Solutions:	Acquisition Flight Approved by Signature Dere Printed Name (End Und Representative)

Figure A-6.5. Flight Log for Mission 7358GC

Annex 7. Flight status reports

Davao Mission June 16 to July 16, 2014

Table A-7.1. Flight Status Report

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7320GC	BLK84B	2BLK83A84B170A	LK PARAGAS	June 19, 2014	Started with 86B. Moved to 84B due to high terrain (6 lines). Moved to 83A due to clouds (9 lines). *CASI testing at the end of the mission flight
7322GC	BLK83A, BLK86B	2BLK84AS&86B171A	MV TONGA	June 20, 2014	BLK 83A (3 lines). Moved to 86B (13 lines)
7323GC	BLK86C, BLK83A	2BLK86C&83A171B	LK PARAGAS	June 20, 2014	BLK84A (3 lines) changed area due to rain. BLK86C (10 lines). Cloudy/ rainy moved to BLK83A (7 lines)
7328GC	BLK80A, BLK80B	2BLK80ABS174A	LK PARAGAS	June 23, 2014	With CASI (19 lines)
7358GC	BLK85C	2BLK80BS189A	MV TONGA	July 8, 2014	Covered BLK 85C at 1500m. covered voids at BLK80B at 1200m

SWATH PER FLIGHT MISSION

Flight No. : 7320GC Area: BLK83A, BLK84B Mission Name: 2BLK83A84B170A Parameters: Altitude: 1100

Scan Frequency: 50

Scan Angle: 40

Figure A-7.1. Las for Flight No. 7320GC

Flight No. : 7322GC Area: Mission Name: 2BLK84AS86B171A Parameters: Altitude: 1100

BLK83A, BLK86B

Scan Angle: 40

Scan Frequency: 50

Figure A-7.2. Las for Flight No. 7322GC

Flight No. : 7323GC Area: Mission Name: 2BLK86C83A171B Parameters: Altitude: 1100 / 1200

BLK86C, BLK83A

Scan Angle: 40 / 36

Scan Frequency: 50

Figure A-7.3. LaS for Flight No. 7323GC

Flight No. : 7328GC Area: Mission Name: 2BLK80AB174A Parameters: Altitude: 1100

BLK80A, BLK80B

Scan Angle: 40

Scan Frequency: 50

Figure A-7.4. Las for Flight No. 7328GC

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. : 7358GC Area: Mission Name: 2BLK80BS189A Parameters: Altitude: 1600 / 1300

BLK85C

Scan Angle: 24

Scan Frequency: 60

Figure A-7.5. Las for Flight No. 7358GC

Annex 8. Mission Summary Reports

Flight Area	Davao Oriental
Mission Name	Blk83A
Inclusive Flights	7320G,7322G,7323G
Range data size	56.7 GB
POS	711 MB
Image	na
Transfer date	July 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.9
RMSE for East Position (<4.0 cm)	2.85
RMSE for Down Position (<8.0 cm)	5.9
Boresight correction stdev (<0.001deg)	0.000272
IMU attitude correction stdev (<0.001deg)	0.014248
GPS position stdev (<0.01m)	0.0169
Minimum % overlap (>25)	31.39
Ave point cloud density per sq.m. (>2.0)	2.88
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	217
Maximum Height	1099.91 m
Minimum Height	61.78 m
Classification (# of points)	
Ground	48,414,685
Low vegetation	30,977,716
Medium vegetation	85,948,712
High vegetation	242,710,117
Building	1,534,395
Orthophoto	No

Table A-8.1. Mission Summary Report for Mission Blk83A

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5 Image of data overlap

Figure A-8.6 Density map of merged LiDAR data

Figure A-8.7 Elevation difference between flight lines

Flight Area	Davao Oriental
Mission Name	Blk85C
Inclusive Flights	7358G
Range data size	20.1 GB
POS	196 MB
Image	na
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.4
RMSE for East Position (<4.0 cm)	3.2
RMSE for Down Position (<8.0 cm)	5.5
Boresight correction stdev (<0.001deg)	0.000806
IMU attitude correction stdev (<0.001deg)	0.001274
GPS position stdev (<0.01m)	0.0118
Minimum % overlap (>25)	36.47%
Ave point cloud density per sq.m. (>2.0)	2.40
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	157
Maximum Height	1449.33 m
Minimum Height	93.19 m
Classification (# of points)	
Ground	47587575
Low vegetation	17258521
Medium vegetation	69558418
High vegetation	66403945
Building	128689
Orthophoto	No

Table A-8.2. Mission Summary Report for Mission Blk85C

Figure A-8.8 Solution Status

Figure A-8.9 Smoothed Performance Metric Parameters

Figure A-8.10 Best Estimated Trajectory

Figure A-8.11 Coverage of LiDAR data

Figure A-8.12 Image of data overlap

Figure A-8.13 Density map of merged LiDAR data

Figure A-8.14 Elevation difference between flight lines

Flight Area	Davao Oriental
Mission Name	DavaoOriental_Blk80A_supplement
Inclusive Flights	7328GC
Range data size	26.9 GB
POS data size	239 MB
Base data size	5.61 MB
Image	n/a
Transfer date	July 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.9
RMSE for East Position (<4.0 cm)	5.6
RMSE for Down Position (<8.0 cm)	30.7
Boresight correction stdev (<0.001deg)	0.000359
IMU attitude correction stdev (<0.001deg)	0.091610
GPS position stdev (<0.01m)	0.0023
Minimum % overlap (>25)	18.37%
Ave point cloud density per sq.m. (>2.0)	2.96
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	194
Maximum Height	450.04 m
Minimum Height	55.88 m
Classification (# of points)	
Ground	53,267,703
Low vegetation	21,983,651
Medium vegetation	69,971,144
High vegetation	192,915,306
Building	1,133,311
Orthophoto	No
Processed by	

Table A-8.3. Mission Summary Report for Mission Blk80A_supplement

Figure A-8.15 Solution Status

Figure A-8.16 Smoothed Performance Metric Parameters

Figure A-8.17 Best Estimated Trajectory

Figure A-8.18 Coverage of LiDAR data

Figure A-8.19 Image of data overlap

Figure A-8.20 Density map of merged LiDAR data

Figure A-8.21 Elevation difference between flight lines

Annex 9. Quinonoan Model Basin Parameters

Table A-9.1. Quinonoan Model Basin Parameters

	Ratio to Peak	0.398574	0.398862	0.3969	0.398826	0.271332	0.3987	0.398808	0.59535	0.398808	0.398808	0.3969	0.398826	0.39879	0.270396	0.398808	0.3969	0.405
X	Threshold Type	Ratio to Peak																
ession Baseflo	Recession Constant	0.8379	0.91238	0.91238	0.91238	0.9344104	0.91238	0.9316958	0.91238	0.931	0.931	0.9353708	0.9320584	0.931	0.9342144	0.91238	0.931	0.931
Rec	Initial Discharge (cms)	2.1487	0.20189	0.088245	0.46606	0.49127	1.1742	0.50427	0.26558	0.43079	0.41988	0.0214269	0.37818	0.51591	0.4726	0.37052	0.81284	0.83165
	Initial Type	Discharge																
Unit Transform	Storage Coefficient (HR)	2.38768	1.0271652	0.7251612	1.105368	2.06664	2.25472	1.443	1.32084	1.96392	2.39244	0.5127696	1.22856	1.066332	1.39296	1.0274628	5.90796	3.81696
Clark Hydrograph	Time of Concentration (HR)	0.13879	0.0263595	0.018514	0.0282	0.053585	0.09437	0.036733	0.035115	0.0341105	0.041549	0.0130915	0.0326585	0.028347	0.03703	0.0269055	0.13407	0.14894
r Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Curve Numbe	Curve Number	78.33056	73.10576	98.175	73.00272	71.67888	76.85328	72.9904	71.25776	72.25456	73.64112	71.83792	73.0184	77.11424	77.43232	80.24128	72.11344	65.6656
SCS (Initial Abstraction (mm)	1.64877	3.5265	1.5174	2.34495	2.30958	2.72868	3.414	2.46579	2.37141	1.48722	1.5174	2.28615	1.81731	1.75575	1.431	2.63229	4.9824
Bacin	Number	W1000	W1010	W1020	W1030	W1040	W1050	W1060	W1070	W1080	W1090	W1100	W1110	W1120	W1130	W1140	W580	W590

0.405	0.3969	0.398736	0.271098	0.398682	0.405	0.405	0.405	0.27036	0.27	0.405	0.405	0.3969	0.3969	0.405	0.405	0.3969	0.3969	0.27	0.3969	0.405	0.394758	0.27
Ratio to Peak																						
0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931
0.91476	0.54416	0.26454	0.90723	0.43533	0.42253	0.48143	0.53133	0.42665	0.79398	0.96139	2.8571	0.38955	0.21996	0.56248	1.2691	1.3059	0.5324	0.97081	1.1908	1.0462	0.21069	0.64255
Discharge																						
6.80768	3.09624	2.11908	3.36368	1.47576	1.5618	2.34456	1.74852	1.1606148	1.25904	2.1248	8.27552	1.21344	1.82088	2.54652	2.78608	2.44592	0.905946	1.92272	2.38544	5.9936	1.20036	1.66896
0.11587	0.0536	0.035896	0.085468	0.037494	0.041148	0.059855	0.044251	0.029372	0.047978	0.12381	0.21341	0.0307135	0.032064	0.065015	0.15948	0.10408	0.0231295	0.10991	0.13654	0.15615	0.026521	0.037054
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
82.13296	68.21024	66.73072	73.95696	66.05424	61.8912	65.688	52.92784	77.58128	65.31168	63.07616	83.31232	74.73312	61.57536	62.61024	58.78656	74.704	81.05664	66.70832	66.1584	65.4304	61.90576	77.27888
5.6286	4.5759	3.4887	2.03196	3.3168	5.7417	4.572	5.82	1.73049	3.1386	5.3754	5.4408	1.89276	3.7449	5.7042	4.6776	2.84466	2.61858	3.2382	2.20344	5.1018	2.90166	2.65068
W600	W610	W620	W630	W640	W650	W66D	W670	W680	069M	W700	W710	W720	W730	W740	W750	W760	W770	W780	067W	W800	W810	W820

0.27	0.388962	0.3969	0.27	0.3969	0.3969	0.394002	0.3969	0.405	0.405	0.3969	0.46575	0.406764	0.405	0.405	0.405	0.405504
Ratio to Peak																
0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931	0.931
0.965	0.38081	2.9975	0.28171	0.38295	0.50336	0.79181	0.0105725	0.74766	0.63584	0.62468	0.40796	0.40488	0.1715	0.14142	0.0063435	0.60796
Discharge																
2.79856	0.8915676	3.28688	1.31976	2.21616	1.60296	1.76748	0.43491	3.15936	2.02656	1.78716	1.81428	1.38612	1.1875248	0.8608416	0.2067156	1.35612
0.10883	0.0227625	0.12575	0.0336955	0.0377215	0.0409715	0.04004	0.0111035	0.053775	0.05201	0.045473	0.0402795	0.0352325	0.030939	0.021978	0.0102775	0.051935
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
73.94352	66	75.42752	66.3432	65.31952	71.83792	71.76288	98.175	45.87632	71.6968	62.59792	50.3608	73.5504	98.175	48.86896	71.83792	71.7136
2.14668	1.31784	2.07588	3.1503	3.2598	2.23059	2.28639	2.23059	5.0742	2.29554	3.9687	1.98303	2.2761	2.2761	2.23059	2.04849	2.29323
W83D	W840	W850	W860	W870	W880	W890	006M	W910	W920	W93D	W940	W950	096M	026W	W98D	066M

Annex 10. Quinonoan Model Reach Parameters

	Side Slope	-	-	-	-	-	4	-	-	-	£	-	-	-	-	4	÷
	Width	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
	Shape	Trapezoid															
ge Channel Routing	Manning's n	0.034512	0.03456	0.03456	0.0228971	0.034575	0.03462	0.0228011	0.0230677	0.0231297	0.023111	0.03456	0.0148431	0.0229084	0.034683	0.034704	0.034731
Muskingum <mark>Qun</mark>	Slope	0.088543	0.040544	0.041062	0.20419	0.028849	0.086776	0.055769	0.074493	0.020866	0.064014	0.072591	0.036286	0.089428	0.01598	0.075799	0.014385
	Length (m)	1087.7	1459.4	1688.5	1561.4	2442.1	1150.7	3580.4	2730.4	3357.8	2405.5	1168.3	295.56	1817.3	2300.7	150.71	1884.1
	Time Step Method	Automatic Fixed Interval															
	Reach Number	R100	R120	R130	R140	R150	R170	R180	R190	R200	R220	R240	R290	R300	R330	R350	R360

Table A-10.1. Quinonoan Model Reach Parameters

	Side Slope	-	4	4	£	1	t	t	-	Ļ	÷	Ļ	1
	Width	220	220	220	220	220	220	220	220	220	220	220	220
	Shape	Trapezoid											
ge Channel Routing	Manning's n	0.05184	0.03456	0.05184	0.0229552	0.034374	0.034725	0.0225792	0.0213256	0.0231016	0.0231533	0.0231011	0.02304
Muskingum Cung	Slope	0.006733	0.020237	0.003674	0.017689	0.063283	0.000267	0.054769	0.051357	0.009059	0.01483	0.093393	0.042793
	Length (m)	1633.7	1131.5	648.41	635.98	483.85	2241.7	1366	244.85	1661	1415.2	1161.2	988.41
	Time Step Method	Automatic Fixed Interval											
	Reach Number	R390	R400	R410	R420	R450	R500	R510	R520	R550	R570	R60	R80

Annex 11. Quinonoan Field Validation Points

Table A-11.1. Quinonoan Field Validation Points

Point	Validation	Coordinates	Model Var. (m)	Validation Points (m)	Error (m)	Event/Date	Rain Return/	
Hamber	Lat	Long	336 (11)	r onno (m)			Soenario	
1	7.100428	126.455053	4.017	1.50	6.3353		25-Year	
2	7.100740	125.455708	6.52	5.00	2.3104		25-Year	
3	7.100843	126.453991	9.416	5.50	15.3351		25-Year	
4	7.100658	126.454532	10.792	5.50	28.0053		25-Year	
5	7.101031	126.452907	8.825	5.00	14.6306		25-Year	
6	7.100758	126.453267	8.965	5.00	15.7212		25-Year	
7	7.100562	126.455345	7.214	5.00	4.9018		25-Year	
8	7.101118	126.453360	9.325	5.50	14.6306		25-Year	
9	7.101213	125.452728	9.868	6.50	11.3434		25-Year	
10	7.101535	126.452773	9.665	6.50	10.0172		25-Year	
11	7.100451	125.454460	10.646	6.50	17.1893		25-Year	
12	7.100480	126.454169	12.192	9.00	10.1889		25-Year	
13	7.100666	125.453447	12.707	9.00	13.7418		25-Year	
14	7.100664	126.453718	12.591	9.00	12.8953		25-Year	
15	7.100940	126.453088	12.832	9.00	14.6842		25-Year	
16	7.100936	126.453540	12.759	9.00	14.1301		25-Year	
17	7.100482	126.453898	12.547	9.00	12.5812		25-Year	
18	7.101210	126.453180	13.176	9.00	17.4390		25-Year	
19	7.089614	126.466481	0.031	0.00	0.0010		25-Year	
20	7.089919	125.466324	0.031	0.00	0.0010		25-Year	
21	7.087378	126.467439	0.646	0.50	0.0213	Pablo/ December 01, 2012	25-Year	
22	7.090420	125.455188	0.417	0.50	0.0069	Saston January 01, 2014	25-Year	
23	7.090330	126.466326	0.927	0.00	0.8593		25-Year	
24	7.090553	125.455129	0.63	0.50	0.0169	Saston January 01, 2014	25-Year	
25	7.090365	126.465836	0.797	0.50	0.0882	60,000 January 01, 2014	25-Year	
26	7.090380	126.466083	1.318	1.00	0.1011	Againty January 01, 2014	25-Year	
27	7.089837	125.466744	2.276	1.50	0.6022	Pablo/ December 01, 2012	25-Year	
28	7.089240	125.467127	2.805	1.60	1.4520	Agatoo/ January 01, 2014	25-Year	
29	7.088436	125.468317	3.045	2.00	1.0920	Yolanda/ November 01, 2013	25-Year	
30	7.090702	126.466311	3.622	2.00	2.6309		25-Year	
31	7.087623	125.467671	3.109	2.50	0.3709	Pablo/ December 01, 2012	25-Year	
32	7.089150	125.467928	3.381	2.50	0.7762	Agatoo/ January 01, 2014	25-Year	
33	7.094433	125.469384	0.031	0.00	0.0010		25-Year	
34	7.094478	125.468561	0.032	0.00	0.0010		25-Year	
35	7.092154	126.472510	0.034	0.00	0.0012		25-Year	
36	7.092564	126.476023	0.041	0.00	0.0017		25-Year	
37	7.092700	126.471449	0.038	0.00	0.0014		25-Year	
38	7.092483	126.473320	0.047	0.00	0.0022		25-Year	
39	7.092309	126.467611	0.603	0.00	0.3636		25-Year	

40	7.092241	125.474087	0.079	0.00	0.0062		25-Year
41	7.092639	126.470344	0.111	0.00	0.0123		25-Year
42	7.093167	125.468475	1.113	0.00	1.2388		25-Year
43	7.091873	126.471682	0.675	0.50	0.0306	Pablo/ December 01, 2012	25-Year
44	7.092818	126.467603	1.43	0.00	2.0449		25-Year
45	7.093141	126.468779	1.079	0.00	1.1642		25-Year
46	7.092880	126.468177	1.437	0.00	2.0650		25-Year
47	7.092015	126.467885	1.933	1.00	0.8705	Agaton/ January 01, 2014	25-Year
48	7.091540	126.471028	1.586	1.00	0.3434	Pablo/ December 01, 2012	25-Year
49	7.091796	126.471292	1.491	1.00	0.2411	Pablo/ December 01, 2012	25-Year
50	7.093092	126.467611	2.219	1.00	1.4860	Saston/ January 01, 2014	25-Year
						Intense local rainfall/ July 03,	
51	7.092683	125.458408	2.557	0.50	4.2312	1905	25-Year
52	7.091798	126.470999	2.049	1.50	0.3014	Pablo/ December 01, 2012	25-Year
53	7.092700	126.469164	2.457	1.00	2.1228	1905	25-Year
54	7.092680	125.457425	2.428	1.50	0.8612	Pablo/ July 04, 1905	25-Year
55	7.094049	126.466331	2.553	0.50	4.2148		25-Year
56	7.092637	126.468878	2.547	1.50	1.0962		25-Year
57	7.091497	126.470463	2.354	1.53	0.6790	Pablo/ December 01, 2012	25-Year
58	7.092588	126.469381	2.826	2.00	0.6823		25-Year
59	7.091849	126.468888	2.946	2.00	0.8949		25-Year
60	7.092302	125.470178	2.876	0.00	8.2714		25-Year
61	7.094157	126.466841	3.1	1.50	2.5600		25-Year
62	7.092330	126.469320	3.031	1.50	2.3440		25-Year
63	7.092847	126.467238	3.079	2.00	1.1642		25-Year
64	7.093114	126.466510	3.172	2.00	1.3736		25-Year
65	7.091120	125.469981	2.85	2.00	0.7225	Pablo/ December 01, 2012	25-Year
66	7.091490	126.469435	3.032	2.00	1.0650	Pablo/ December 01, 2012	25-Year
67	7.093765	126.466121	3.418	2.50	0.8427		25-Year
68	7.091774	126.470481	3.27	2.00	1.6129	Pablo/ December 01, 2012	25-Year
69	7.093127	126.467377	3.53	2.50	1.0609	Agaton/ January 01, 2014	25-Year
70	7.093318	126.467767	3.657	2.50	1.3386	Saston/ January 01, 2014	25-Year
71	7.094201	126.467910	4.113	2.50	2.6018	Agaton/ January 01, 2014	25-Year
72	7.093427	126.468574	3.971	2.50	2.1638	Saston/ January 01, 2014	25-Year
73	7.093441	126.468037	4.209	2.50	2.9207	Agaton/ January 01, 2014	25-Year
74	7.087653	126.468354	0.767	0.50	0.0713	Pablo/ December 01, 2012	25-Year
75	7.097813	126.466355	0.087	0.00	0.0076		25-Year
76	7.097682	126.466911	0.032	0.00	0.0010		25-Year
77	7.097508	126.466397	0.06	0.00	0.0036		25-Year
78	7.097754	126.463872	0.139	0.66	0.2714	Pablo/ December 01, 2012	25-Year
79	7.097142	126.464113	0.649	0.50	0.0222		25-Year
80	7.097700	125.454827	0.622	0.00	0.3869		25-Year
81	7.096001	126.464576	1.156	0.00	1.3363		25-Year
82	7.097371	126.463571	1.091	0.50	0.3493		25-Year

83 7.989116 128.482851 0.893 0.56 0.105 Upstream reinfail July 02, 1905 25-Year 84 7.09765 126.46236 0.662 0.00 0.4251 Upstream reinfail July 02, 1905 25-Year 86 7.09785 126.46236 0.458 0.666 0.0012 Paolo/December 01, 2012 25-Year 87 7.09785 126.46288 1.444 0.50 0.4417 Cpoced May 01, 2008 25-Year 87 7.095611 126.46488 1.613 0.00 2.6018 25-Year 87 7.095611 126.46498 1.72 0.70 1.0596 25-Year 90 7.095801 126.46498 1.72 0.70 1.0596 25-Year 91 7.095801 126.46498 1.72 0.70 1.9594 25-Year 92 7.095814 126.46505 1.414 0.00 2.4670 25-Year 93 7.095820 126.46506 1.474 0.00 2.4670 25-Year		-						
84 7.08443 126.48236 0.652 0.00 0.4251 Upstream rainfail/July 02,1905 25-Year 85 7.087881 126.482861 1.488 0.56 0.8812 Upstream rainfail/July 02,1905 25-Year 87 7.086587 126.486385 1.144 0.50 0.4147 Cospec/May 01, 2008 25-Year 88 7.08781 126.48616 0.329 0.00 0.8830 25-Year 97 7.085611 126.44608 1.512 0.00 2.4712 25-Year 90 7.085611 126.446081 1.572 0.00 2.4712 25-Year 91 7.085803 126.446081 1.572 0.00 2.4712 25-Year 92 7.085803 126.45802 1.582 0.00 3.4870 25-Year 93 7.085803 126.45805 1.414 0.00 1.994 25-Year 94 7.085803 126.45810 1.78 0.58 0.4861 Addition Movember 01, 2013 25-Year <tr< td=""><td>83</td><td>7.098118</td><td>126.462851</td><td>0.893</td><td>0.56</td><td>0.1109</td><td>Upstream rainfail/ July 02, 1905</td><td>25-Year</td></tr<>	83	7.098118	126.462851	0.893	0.56	0.1109	Upstream rainfail/ July 02, 1905	25-Year
BS 7.097655 126.462861 1.488 0.56 0.8012 Pablo/ December 01, 2012 25-Year B6 7.097882 126.463365 0.869 0.66 0.0012 Pablo/ December 01, 2012 25-Year B8 7.097675 126.46638 1.144 0.50 0.4147 Cpape/ Quark May 01, 2003 25-Year B8 7.095671 126.46638 1.572 0.00 2.6712 25-Year B9 7.095631 126.464065 1.572 0.00 2.4712 25-Year B1 7.095633 126.464065 1.572 0.00 2.4712 25-Year B2 7.095633 126.464065 1.572 0.00 2.4670 25-Year B4 7.095633 126.46505 1.414 0.00 1.8984 25-Year B5 7.095030 128.464305 1.278 0.50 0.6053 25-Year B6 7.095031 128.467324 1.64 0.57 0.6273 Yolande/ November 01, 2013 25-Year	84	7.095453	126.468236	0.652	0.00	0.4251		25-Year
B6 7.097882 126.46386 0.455 0.66 0.012 Paloir December 11, 2012 25-Year 87 7.09585 126.46688 1.144 0.50 0.417 Cpace/ May 01, 2008 25-Year 88 7.095851 126.46618 1.813 0.00 2.6018 25-Year 90 7.095803 126.466185 1.972 0.00 2.4712 25-Year 91 7.095803 126.46608 1.972 0.00 2.4712 25-Year 92 7.09513 126.466081 1.972 0.00 2.4712 25-Year 93 7.09513 126.466327 1.252 0.00 3.6870 25-Year 94 7.095031 126.46639 1.278 0.50 0.6053 25-Year 95 7.095034 126.46639 1.276 0.50 0.6053 25-Year 95 7.095034 126.46639 1.871 0.8405 Agatod/ January 01, 2014 25-Year 96 7.095034 126.46631	85	7.097695	126.462661	1.488	0.56	0.8612	Upstream rainfail/ July 02, 1905	25-Year
87 7.095657 126.46688 1.144 0.50 0.4147 Copport May 01, 2008 25-Year 88 7.097675 126.46616 0.929 0.00 0.8530 25-Year 89 7.095611 126.46616 1.813 0.00 2.6016 25-Year 90 7.095603 126.46501 1.91 0.50 0.6561 25-Year 91 7.095803 126.46502 1.952 0.65 0.8136 25-Year 92 7.095833 126.46505 1.922 0.65 0.8136 25-Year 94 7.095930 126.46505 1.414 0.00 3.4670 25-Year 95 7.095930 126.46580 1.278 0.50 0.6053 25-Year 96 7.095930 126.46583 1.62 0.67 0.6732 Yolande/ November 01, 2014 25-Year 95 7.095930 126.46584 1.767 0.85 0.8409 Apabod/ January 01, 2014 25-Year 100 7.095955	86	7.097882	126.463369	0.695	0.66	0.0012	Pablo/ December 01, 2012	25-Year
88 7.057675 128.466168 0.929 0.00 0.8830 25-Year 90 7.058611 128.44688 1.613 0.00 2.618 25-Year 91 7.058631 128.446186 1.572 0.00 2.4712 25-Year 92 7.058631 128.46803 1.572 0.00 2.4712 25-Year 93 7.058531 128.468037 1.725 0.70 1.0506 25-Year 94 7.058531 128.468267 1.862 0.00 3.4870 25-Year 95 7.058531 128.468267 1.862 0.00 1.5954 25-Year 96 7.095034 128.46324 1.662 0.75 0.7521 25-Year 97 7.05834 128.467324 1.642 0.75 0.7521 25-Year 98 7.058578 128.467384 1.67 0.85 0.8212 Yolanda/November 01, 2013 25-Year 101 7.059567 128.468334 1.42 0.95 <	87	7.096587	126.466889	1.144	0.50	0.4147	Coscel May 01, 2008	25-Year
85 7 085611 126.464686 1.613 0.00 2.6018 25-Year 91 7 08503 126.464005 1.572 0.00 2.4712 25-Year 92 7 08502 126.464005 1.572 0.00 2.4712 25-Year 93 7.08552 126.46800 1.592 0.65 0.8136 25-Year 94 7.08552 126.46800 1.482 0.00 3.4870 25-Year 95 7.085050 126.46809 1.414 0.00 1.9994 25-Year 96 7.095020 126.46829 1.276 0.85 0.4005 Jaury 01, 2014 25-Year 97 7.095020 126.46730 1.276 0.85 0.8405 Jaury 01, 2014 25-Year 98 7.09573 126.46731 1.767 0.85 0.8405 Jaury 01, 2014 25-Year 100 7.09577 126.46731 1.91 0.95 0.5310 Jaury 01, 2014 25-Year	88	7.097675	126.466168	0.929	0.00	0.8630		25-Year
50 7.096613 128.465116 1.31 0.50 0.6561 25-Year 91 7.095629 128.44608 1.572 0.00 2.4712 25-Year 92 7.095629 128.46802 1.582 0.65 0.6136 25-Year 93 7.095623 128.46802 1.582 0.60 3.4670 25-Year 94 7.095020 128.46805 1.414 0.00 1.9594 25-Year 95 7.095020 128.46828 1.278 0.50 0.6033 25-Year 96 7.095020 128.46839 1.662 0.675 0.6273 Yolande/ November 01, 2014 25-Year 95 7.095020 128.468427 1.42 0.95 0.8273 Yolande/ November 01, 2013 25-Year 101 7.095057 128.468427 1.42 0.95 0.2295 25-Year 102 7.095057 128.46924 1.44 1.35 0.0231 29-Year 104 7.095057 128.46924 <td< td=""><td>89</td><td>7.095611</td><td>126.464686</td><td>1.613</td><td>0.00</td><td>2.6018</td><td></td><td>25-Year</td></td<>	89	7.095611	126.464686	1.613	0.00	2.6018		25-Year
91 7.095803 126.464089 1.572 0.00 2.4712 25.Ytear 93 7.095024 126.468037 1.725 0.70 1.0506 25.Ytear 94 7.095024 126.468037 1.725 0.70 1.0506 25.Ytear 95 7.095020 126.46505 1.414 0.00 3.4670 25.Ytear 96 7.095024 126.46205 1.414 0.00 1.9954 25.Ytear 97 7.095024 126.46205 1.767 0.85 0.6053 25.Ytear 98 7.095024 126.46254 1.62 0.87 0.6273 Yolande/ November 01, 2013 25.Ytear 95 7.095055 126.46730 1.878 0.95 0.2209 25.Ytear 102 7.095071 126.46843 1.44 1.25 0.2209 25.Ytear 102 7.095021 126.46734 1.919 0.95 0.6384 Yolande/ November 01, 2014 25.Ytear 102 7.095057 126.46734	90	7.096613	126.465116	1.31	0.50	0.6561		25-Year
92 7.095829 128.465802 1.552 0.6 0.8136 25-Year 93 7.095144 128.465267 1.862 0.00 3.4670 25-Year 94 7.095050 128.46505 1.842 0.00 1.9594 25-Year 95 7.095050 128.46505 1.444 0.00 1.9594 25-Year 96 7.095050 128.467324 1.64 0.75 0.7521 25-Year 97 7.095050 128.467354 1.767 0.85 0.805 dagtool January 01, 2013 25-Year 98 7.095057 128.467306 1.878 0.95 0.8019 Yolanda/ November 01, 2013 25-Year 100 7.095057 128.467911 1.919 0.95 0.209 25-Year 102 7.095607 128.467911 1.919 0.95 0.5384 Yolanda/ November 01, 2013 25-Year 104 7.095607 128.467324 1.44 1.25 0.209 25-Year 105 7.09563	91	7.095803	125.454089	1.572	0.00	2.4712		25-Year
93 7.095144 126.465137 1.725 0.70 1.0506 25-Year 94 7.095033 126.465267 1.862 0.00 3.4670 25-Year 95 7.095030 126.46509 1.414 0.00 1.9594 25-Year 95 7.095020 126.46304 1.278 0.50 0.6053 25-Year 97 7.095020 126.46384 1.64 0.75 0.7921 26-Year 98 7.095031 126.467304 1.64 0.75 0.6273 Yolande/ November 01, 2013 25-Year 100 7.095057 126.467311 1.95 0.95 0.2390 25-Year 102 7.095057 126.46731 1.91 0.95 0.5390 26-Year 104 7.095562 126.46731 1.91 0.95 0.5384 Yolande/ November 01, 2013 25-Year 105 7.095563 126.46731 1.94 0.95 0.5834 Yolande/ November 01, 2013 25-Year 106 7.095563	92	7.095629	126.465802	1.552	0.65	0.8136		25-Year
94 7.085833 128.465267 1.862 0.00 3.4670 25-Ytear 95 7.095026 128.465055 1.414 0.00 1.9594 25-Ytear 96 7.095026 128.464380 1.278 0.50 0.6053 25-Ytear 97 7.095026 128.464380 1.278 0.50 0.8053 25-Ytear 98 7.095026 128.464380 1.777 0.85 0.8405 Acatoor January 01, 2014 25-Ytear 99 7.095055 128.46543 1.62 0.87 0.6273 Yolanda' November 01, 2013 25-Ytear 100 7.095677 128.46543 1.42 0.95 0.2209 25-Ytear 102 7.095677 128.46543 1.44 1.25 0.0361 Acatoor January 01, 2014 25-Ytear 104 7.095674 128.46543 1.749 0.95 0.6384 Yolanda' November 01, 2013 25-Ytear 105 7.095155 128.466145 1.926 0.2305 1.2566 Acatoor January 0	93	7.095144	125.458137	1.725	0.70	1.0506		25-Year
95 7.095030 128.465095 1.414 0.00 1.9994 25.Yter 96 7.097035 136.454800 1.278 0.50 0.6033 25.Yter 97 7.095032 126.457324 1.64 0.75 0.7821 Acadop/ January 01, 2014 25.Yter 98 7.095705 126.457324 1.622 0.87 0.6273 Yolande/ November 01, 2013 25.Yter 100 7.0957057 126.467324 1.622 0.95 0.2209 25.Yter 101 7.0957057 126.46713 1.414 1.25 0.3390 January 01, 2014 25.Yter 102 7.095824 126.467131 1.919 0.95 0.5390 January 01, 2014 25.Yter 103 7.095824 126.466421 1.749 0.95 0.6384 Yolande/ November 01, 2013 25.Yter 105 7.095945 126.463332 1.975 0.85 1.2686 Apatop/ January 01, 2014 25.Yter 105 7.097950 126.463332 1.975 <	94	7.095533	126.465267	1.862	0.00	3.4670		25-Year
96 7.097026 126.464880 1.278 0.50 0.503 25-Year 97 7.096320 126.467324 1.64 0.75 0.7921 25-Year 98 7.096084 126.467385 1.662 0.87 0.6273 Yolandar/November 01, 2013 25-Year 100 7.095084 126.467305 1.878 0.95 0.8212 Yolandar/November 01, 2013 25-Year 101 7.097067 126.466427 1.42 0.95 0.2209 25-Year 102 7.095642 126.466427 1.42 0.95 0.5380 25-Year 102 7.095942 126.466421 1.44 1.25 0.0261 Agatog/ January 01, 2014 25-Year 105 7.095942 126.466432 1.749 0.95 0.5384 Yolandar/November 01, 2013 25-Year 105 7.095245 126.467332 1.975 0.85 1.256 Agatog/ January 01, 2014 25-Year 105 7.095245 126.46205 1.988 0.85 1.256	95	7.096050	126.465095	1.414	0.00	1.9994		25-Year
97 7.095220 128.467324 1.84 0.75 0.7921 25-Year 98 7.095094 128.463954 1.767 0.85 0.8409 Apatopol January 01, 2014 25-Year 99 7.095785 128.465824 1.767 0.85 0.8409 Yolanda/ November 01, 2013 25-Year 100 7.095057 128.465427 1.42 0.95 0.2209 25-Year 102 7.095677 128.465427 1.42 0.95 0.2330 25-Year 102 7.095677 128.46543 1.44 1.25 0.0361 Apatopol January 01, 2014 25-Year 103 7.095672 128.46543 1.44 1.25 0.0361 Apatopol January 01, 2014 25-Year 105 7.095526 128.46532 1.749 0.95 0.6384 Yolanda/ November 01, 2013 25-Year 106 7.095526 128.46532 1.975 0.85 1.2556 Apatopol January 01, 2014 25-Year 107 7.095526 128.46533 1.925 0.85 1.2556 Apatopol January 01, 2008 25-Year <td< td=""><td>96</td><td>7.097026</td><td>126.464880</td><td>1.278</td><td>0.50</td><td>0.6053</td><td></td><td>25-Year</td></td<>	96	7.097026	126.464880	1.278	0.50	0.6053		25-Year
S8 7.096094 128.463854 1.767 0.85 0.8409 Apactor January 01, 2014 25-Year 99 7.095789 126.466839 1.662 0.87 0.6273 Yolanda/ November 01, 2013 25-Year 100 7.095057 126.467506 1.878 0.95 0.209 25-Year 101 7.095677 126.467911 1.919 0.95 0.2209 25-Year 102 7.095677 126.467911 1.919 0.95 0.39300 25-Year 103 7.095677 126.46711 1.919 0.95 0.3930 25-Year 104 7.095605 126.46633 1.44 1.25 0.0361 Apaton January 01, 2013 25-Year 105 7.095505 126.46718 1.926 0.00 3.7095 25-Year 106 7.095545 126.46332 1.975 0.85 1.2656 Apaton/ January 01, 2014 25-Year 107 7.095591 126.46332 1.975 0.85 1.2656 Apaton/ January 01, 2014 </td <td>97</td> <td>7.096320</td> <td>126.467324</td> <td>1.64</td> <td>0.75</td> <td>0.7921</td> <td></td> <td>25-Year</td>	97	7.096320	126.467324	1.64	0.75	0.7921		25-Year
99 7.095789 126.466839 1.662 0.87 0.6273 Yolanda/ November 01, 2013 25-Year 100 7.095055 128.467506 1.878 0.95 0.8612 Yolanda/ November 01, 2013 25-Year 101 7.095057 126.465427 1.42 0.95 0.2205 25-Year 102 7.095608 126.46543 1.44 1.25 0.0361 Aaabool January 01, 2014 25-Year 103 7.095508 126.46513 1.44 1.25 0.0361 Aaabool January 01, 2014 25-Year 105 7.095508 126.465132 1.749 0.95 1.259 Yolanda/ November 01, 2013 25-Year 106 7.095508 126.46312 1.749 0.95 1.256 Aaabool January 01, 2014 25-Year 107 7.095155 126.46332 1.975 0.85 1.256 Aaabool January 01, 2014 25-Year 108 7.037991 126.466205 1.938 0.85 1.1837 Capacool May 01, 2008 25-Year 110	98	7.096094	126.463554	1.767	0.85	0.8409	Agaton/ January 01, 2014	25-Year
100 7.095055 126.467506 1.878 0.95 0.8612 Yolanda/ November 01, 2013 25-Year 101 7.097057 126.466427 1.42 0.95 0.2209 25-Year 102 7.095577 126.465111 1.919 0.95 0.9390 25-Year 103 7.095542 126.465342 1.749 0.95 0.6384 Yolanda/ November 01, 2013 25-Year 104 7.095505 126.46738 1.989 0.95 1.0795 Yolanda/ November 01, 2013 25-Year 105 7.095555 126.463322 1.975 0.00 3.7095 Yolanda/ November 01, 2013 25-Year 106 7.095551 126.463322 1.975 0.85 1.2656 404000 1.2014 25-Year 107 7.095551 126.463322 1.975 0.85 1.2656 404000 1.2014 25-Year 108 7.037361 126.466206 1.938 0.85 1.1837 Capage/ May 01, 2008 25-Year 110 7.	99	7.095789	126.466839	1.662	0.87	0.6273	Yolanda/ November 01, 2013	25-Year
101 7.097067 125.466427 1.42 0.95 0.2209 25-Year 102 7.095677 126.467911 1.919 0.95 0.9390 25-Year 103 7.095694 126.46543 1.44 1.25 0.0361 Apabop/January 01, 2014 25-Year 104 7.095508 126.46342 1.749 0.95 0.6384 Yolanda/ November 01, 2013 25-Year 105 7.095526 126.463342 1.926 0.00 3.7095 Yolanda/ November 01, 2013 25-Year 106 7.095545 126.463332 1.975 0.85 1.2656 Apabop/ January 01, 2014 25-Year 107 7.095545 126.46205 1.938 0.85 1.1837 Cascop/ May 01, 2008 25-Year 108 7.095790 126.466205 1.938 0.85 1.1837 Cascop/ May 01, 2008 25-Year 110 7.095240 126.466332 1.918 1.25 0.4662 Apabop/ January 01, 2014 25-Year 111 7.09544 1	100	7.095055	126.467506	1.878	0.95	0.8612	Yolanda/ November 01, 2013	25-Year
102 7.095677 126.467911 1.919 0.95 0.9390 25-Year 103 7.095942 126.46543 1.44 1.25 0.0361 Apabool January 01, 2014 25-Year 104 7.095608 126.466342 1.749 0.95 0.6384 Yolanda/ November 01, 2013 25-Year 105 7.095526 126.467138 1.889 0.95 1.0795 Yolanda/ November 01, 2013 25-Year 106 7.095545 126.46332 1.975 0.85 1.2656 Apabool January 01, 2014 25-Year 107 7.095155 126.46302 1.975 0.85 1.2656 Apabool January 01, 2008 25-Year 108 7.097891 126.466205 1.938 0.85 1.1837 Copport May 01, 2008 25-Year 110 7.095450 126.467322 1.244 1.45 0.7992 Yolanda/ November 01, 2013 25-Year 111 7.0954510 126.467392 2.344 1.45 0.7992 Yolanda/ November 01, 2013 25-Year	101	7.097067	126.466427	1.42	0.95	0.2209		25-Year
103 7.095942 126.465643 1.44 1.25 0.0361 dealog/ January 01, 2014 25-Year 104 7.095608 126.466342 1.749 0.95 0.6384 Yolanda/ November 01, 2013 25-Year 105 7.095236 126.467138 1.989 0.95 1.0795 Yolanda/ November 01, 2013 25-Year 106 7.095545 126.463332 1.975 0.85 1.2656 dealog/ January 01, 2014 25-Year 107 7.095155 126.466004 1.727 0.85 0.7691 Gastage/ May 01, 2008 25-Year 108 7.097871 126.466205 1.938 0.85 1.1837 Castage/ May 01, 2008 25-Year 110 7.095940 126.466415 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095940 126.466415 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 1112 7.095940 126.46671 2.44 0.48 0.7992 Yolanda/ November 01, 2013	102	7.095677	125.467911	1.919	0.95	0.9390		25-Year
104 7.095608 126.466342 1.749 0.95 0.6384 Yolanda' November 01, 2013 25-Year 105 7.095236 126.467138 1.989 0.95 1.0795 Yolanda' November 01, 2013 25-Year 106 7.095155 126.463954 1.926 0.00 3.7095 25-Year 107 7.095155 126.463332 1.975 0.85 1.2656 Apagoo/ January 01, 2014 25-Year 108 7.097871 126.466004 1.727 0.85 0.7691 Coscue/ May 01, 2008 25-Year 109 7.097990 126.46615 1.938 0.85 1.1837 Coscue/ May 01, 2008 25-Year 110 7.095200 126.46615 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095200 126.46615 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 112 7.097394 126.46571 2.44 0.38 2.1316 Upstream rainfall 25-Year 114 <td>103</td> <td>7.096942</td> <td>126.465643</td> <td>1.44</td> <td>1.25</td> <td>0.0361</td> <td>Saston/ Jenuary 01, 2014</td> <td>25-Year</td>	103	7.096942	126.465643	1.44	1.25	0.0361	Saston/ Jenuary 01, 2014	25-Year
105 7.095236 126.467138 1.989 0.95 1.0795 Yolanda/ November 01, 2013 25-Year 106 7.095545 126.463954 1.926 0.00 3.7095 25-Year 107 7.096155 126.463332 1.975 0.85 1.2656 Agaton/ January 01, 2014 25-Year 108 7.097871 126.466004 1.727 0.85 0.7691 Cpscop/ May 01, 2008 25-Year 109 7.097990 126.46615 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 110 7.095200 126.46615 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095450 126.465720 1.918 1.25 0.4462 Agaton/ November 01, 2013 25-Year 113 7.095450 126.46571 2.44 0.98 2.1316 Upstream rainfail 25-Year 114 7.095150 126.46571 2.44 0.98 2.1316 Upstream rainfail 25-Year 115	104	7.095608	125.466342	1.749	0.95	0.6384	Yolanda/ November 01, 2013	25-Year
106 7.095545 126.463954 1.926 0.00 3.7095 25-Year 107 7.096155 126.463332 1.975 0.85 1.2656 Apatop/ January 01, 2014 25-Year 108 7.097871 126.466004 1.727 0.85 0.7691 Cpsore/ May 01, 2008 25-Year 109 7.097990 126.466205 1.938 0.85 1.1837 Cpsore/ May 01, 2008 25-Year 110 7.095220 126.466205 1.938 0.85 1.1837 Cpsore/ May 01, 2008 25-Year 111 7.095220 126.466415 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095240 126.465720 1.918 1.25 0.4462 Apatop/ January 01, 2014 25-Year 113 7.095646 126.46571 2.44 0.98 2.1316 Upstream reinfall 25-Year 114 7.095150 126.465737 2.457 1.50 0.9158 Upstream reinfall 25-Year 115	105	7.095236	126.467138	1.989	0.95	1.0795	Yolanda/ November 01, 2013	25-Year
107 7.096155 126.463332 1.975 0.85 1.2656 dastor/ January 01, 2014 25-Year 108 7.097871 126.466004 1.727 0.85 0.7651 Cpsons/ May 01, 2008 25-Year 109 7.097990 126.466205 1.938 0.85 1.1837 Cpsons/ May 01, 2008 25-Year 110 7.095220 126.466415 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095460 126.467392 2.344 1.45 0.7952 Yolanda/ November 01, 2013 25-Year 112 7.095460 126.467392 2.344 1.45 0.7952 Yolanda/ November 01, 2013 25-Year 113 7.095646 126.466066 2.002 1.31 0.4789 Yolanda/ November 01, 2013 25-Year 114 7.095150 126.46539 2.082 0.71 1.8824 Typhoon 25-Year 115 7.09524 126.465305 2.434 0.62 3.2906 25-Year 117	106	7.095545	126.463954	1.926	0.00	3.7095		25-Year
108 7.097871 126.466004 1.727 0.85 0.7691 Cpsppe/ May 01, 2008 25-Year 109 7.097990 126.466205 1.938 0.85 1.1837 Cpsppe/ May 01, 2008 25-Year 110 7.095220 126.466415 1.922 1.21 0.5055 Yolanda/ November 01, 2013 25-Year 111 7.095460 126.465720 1.918 1.25 0.4462 Apagoa/ November 01, 2013 25-Year 112 7.095465 126.465720 1.918 1.25 0.4462 Apagoa/ January 01, 2014 25-Year 113 7.095646 126.46571 2.44 0.98 2.1316 Upstream rainfall 25-Year 114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.095294 126.46533 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.46533 2.497 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year <tr< td=""><td>107</td><td>7.096155</td><td>126.463332</td><td>1.975</td><td>0.85</td><td>1.2656</td><td>Saston/ Jenuary 01, 2014</td><td>25-Year</td></tr<>	107	7.096155	126.463332	1.975	0.85	1.2656	Saston/ Jenuary 01, 2014	25-Year
109 7.097990 126.466205 1.938 0.85 1.1837 Cpsppp May 01, 2008 25-Year 110 7.095220 126.466415 1.922 1.21 0.5069 Yolande/ November 01, 2013 25-Year 111 7.095450 126.467392 2.344 1.45 0.7992 Yolande/ November 01, 2013 25-Year 112 7.097394 126.465720 1.918 1.25 0.4462 Apploy Valande/ November 01, 2013 25-Year 113 7.09646 126.46571 2.44 0.98 2.1316 Upstream rainfall 25-Year 114 7.095150 126.46571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.095294 126.465737 2.457 1.50 0.9158 Upstream rainfall 25-Year 116 7.097394 126.46203 2.062 0.71 1.8824 Typhoon 25-Year 117 7.096534 126.462035 2.457 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year	108	7.097871	126.466004	1.727	0.85	0.7691	Costoe/ May 01, 2008	25-Year
110 7.096220 126.466415 1.922 1.21 0.5069 Yolanda/ November 01, 2013 25-Year 111 7.095460 126.467392 2.344 1.45 0.7992 Yolanda/ November 01, 2013 25-Year 112 7.097394 126.465720 1.918 1.25 0.4462 Apaton/ January 01, 2014 25-Year 113 7.095645 126.466766 2.002 1.31 0.4789 Yolanda/ November 01, 2013 25-Year 114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.098294 126.465395 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year 117 7.095534 126.465911 2.089 0.85 1.5351 Cpscoc 25-Year 118 7.09796 126.465907 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year	109	7.097990	126.466205	1.938	0.85	1.1837	Costoc/ May 01, 2008	25-Year
111 7.095460 126.467392 2.344 1.45 0.7992 Yolanda/ November 01, 2013 25-Year 112 7.097394 126.465720 1.918 1.25 0.4462 Apaboo/ January 01, 2014 25-Year 113 7.095646 126.466066 2.002 1.31 0.4789 Yolanda/ November 01, 2013 25-Year 114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall 25-Year 117 7.09534 126.462737 2.457 1.50 0.9158 Upstream rainfall July 07, 1905 25-Year 117 7.09534 126.465911 2.089 0.85 1.5351 Coscoe 25-Year 118 7.097996 126.466927 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year	110	7.096220	126.466415	1.922	1.21	0.5069	Yolanda/ November 01, 2013	25-Year
112 7.097294 126.465720 1.918 1.25 0.4462 Apatop/ January 01, 2014 25-Year 113 7.096646 126.466066 2.002 1.31 0.4789 Yolanda/ November 01, 2013 25-Year 114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.098294 126.465339 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall/July 07, 1905 25-Year 117 7.096534 126.462911 2.089 0.85 1.5351 Coscoc 25-Year 118 7.097996 126.465911 2.089 0.85 1.5351 Coscoc 25-Year 119 7.098184 126.465912 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098184 126.466064 2.266 1.60 0.7815 Coscoc 25-Year 121 7.	111	7.095460	126.467392	2.344	1.45	0.7992	Yolanda/ November 01, 2013	25-Year
113 7.096646 126.466066 2.002 1.31 0.4789 Yolanda/ November 01, 2013 25-Year 114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.098294 126.465839 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year 117 7.09534 126.463085 2.434 0.62 3.2906 25-Year 118 7.097996 126.465911 2.089 0.85 1.5351 Cpstote 25-Year 119 7.098184 126.466907 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098154 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098033 126.466052 2.384 1.50 0.7815 Cpstote 25-Year 122 7.094893 126.465258	112	7.097394	126.465720	1.918	1.25	0.4462	Agaton/ January 01, 2014	25-Year
114 7.095150 126.464571 2.44 0.98 2.1316 Upstream rainfall 25-Year 115 7.098294 126.465839 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall 29-Year 117 7.096534 126.463085 2.434 0.62 3.2906 29-Year 118 7.097996 126.465911 2.089 0.85 1.5351 Cpscoe 29-Year 119 7.098184 126.466911 2.089 0.85 1.5351 Cpscoe 29-Year 120 7.098184 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.09803 126.466092 2.384 1.50 0.7815 Cpscoe 25-Year 122 7.094893 126.465252 2.734 1.60 1.2860 Upstream rainfail 25-Year 123 7.094693 126.465258 2.966 1.60 <td>113</td> <td>7.096646</td> <td>126.466066</td> <td>2.002</td> <td>1.31</td> <td>0.4789</td> <td>Yolanda/ November 01, 2013</td> <td>25-Year</td>	113	7.096646	126.466066	2.002	1.31	0.4789	Yolanda/ November 01, 2013	25-Year
115 7.098294 126.465839 2.082 0.71 1.8824 Typhoon 25-Year 116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year 117 7.096534 126.462085 2.434 0.62 3.2906 25-Year 118 7.097996 126.465011 2.089 0.85 1.5351 Cpstote 25-Year 119 7.098184 126.465807 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098184 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Cpstote 25-Year 122 7.094883 126.465258 2.966 1.60 1.2860 Upstream rainfail 25-Year 123 7.094693 126.465262 3.058 1.80 1.5826 Agatoo/ January 01, 2014 25-Year 124 7.094714 126.465263	114	7.095150	125.464571	2.44	0.98	2.1316	Upstream rainfall	25-Year
116 7.097112 126.462737 2.457 1.50 0.9158 Upstream rainfall/ July 07, 1905 25-Year 117 7.096534 126.463085 2.434 0.62 3.2906 25-Year 118 7.097996 126.465911 2.089 0.85 1.5351 Cpscoe 25-Year 119 7.098184 126.466907 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098154 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Cpscoe 25-Year 122 7.094883 126.466092 2.384 1.50 0.7815 Cpscoe 25-Year 122 7.094883 126.465258 2.966 1.60 1.2860 Upstream rainfail 25-Year 123 7.094693 126.465258 2.966 1.60 1.8660 Agatogo/ January 01, 2014 25-Year 124 7.094714 126.466262	115	7.098294	126.465839	2.082	0.71	1.8824	Typhoon	25-Year
117 7.096534 126.463085 2.434 0.62 3.2906 25-Year 118 7.097996 126.465911 2.089 0.85 1.5351 Coscoe. 25-Year 119 7.098184 126.465807 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098154 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Coscoe. 25-Year 122 7.094883 126.463952 2.734 1.60 1.2860 Upstream rainfail 25-Year 123 7.094893 126.465258 2.966 1.60 1.8660 Agatoo' January 01, 2014 25-Year 124 7.094714 126.465262 3.058 1.80 1.5826 Agatoo' January 01, 2014 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfail/ July 02, 1905 25-Year 126 7.096716 <t< td=""><td>116</td><td>7.097112</td><td>126.462737</td><td>2.457</td><td>1.50</td><td>0.9158</td><td>Upstream rainfail/ July 07, 1905</td><td>25-Year</td></t<>	116	7.097112	126.462737	2.457	1.50	0.9158	Upstream rainfail/ July 07, 1905	25-Year
118 7.097996 126.465911 2.089 0.85 1.5351 Cpscoc. 25-Year 119 7.098184 126.465807 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098184 126.466064 2.266 1.60 0.4436 Typhcon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Cpscoc. 25-Year 122 7.094883 126.466092 2.384 1.60 1.2860 Upstream rainfail 25-Year 123 7.094893 126.466258 2.966 1.60 1.8660 Agatog/ January 01, 2014 25-Year 124 7.094693 126.466262 3.058 1.80 1.5826 Agatog/ January 01, 2014 25-Year 124 7.094714 126.462104 3.013 1.80 1.4714 Upstream rainfail/ July 02, 1905 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfail/ July 07, 1905 25-Year	117	7.096534	126.463085	2.434	0.62	3.2906		25-Year
119 7.098184 126.468807 2.196 1.00 1.4304 Pablo/ December 01, 2012 25-Year 120 7.098154 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Cpsppe 25-Year 122 7.094883 126.463952 2.734 1.60 1.2860 Upstream rainfail 25-Year 123 7.094693 126.465258 2.966 1.60 1.8660 Agatog/ January 01, 2014 25-Year 124 7.094693 126.465262 3.058 1.80 1.5826 Agatog/ January 01, 2014 25-Year 124 7.094714 126.465262 3.058 1.80 1.5826 Agatog/ January 01, 2014 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfail/ July 02, 1905 25-Year 126 7.096716 126.462638 3.123 1.80 1.7503 Upstream rainfail/ July 07, 1905 25-Year	118	7.097996	126.465911	2.089	0.85	1.5351	Casare	25-Year
120 7.098154 126.466064 2.266 1.60 0.4436 Typhoon 25-Year 121 7.098003 126.466092 2.384 1.50 0.7815 Cpstole 25-Year 122 7.094883 126.463952 2.734 1.60 1.2860 Upstream rainfail 25-Year 123 7.094893 126.465258 2.966 1.60 1.8660 Apatop/ January 01, 2014 25-Year 124 7.094714 126.466262 3.058 1.80 1.5826 Apatop/ January 01, 2014 25-Year 125 7.097441 126.466262 3.058 1.80 1.4714 Upstream rainfail/ July 02, 1905 25-Year 126 7.096716 126.46238 3.123 1.80 1.7503 Upstream rainfail/ July 07, 1905 25-Year	119	7.098184	126.465807	2.196	1.00	1.4304	Pablo/ December 01, 2012	25-Year
121 7.098003 126.466092 2.384 1.50 0.7815 Cpsqc. 25-Year 122 7.094883 126.463952 2.734 1.60 1.2860 Upstream rainfall 25-Year 123 7.094693 126.465258 2.966 1.60 1.8660 Apptod January 01, 2014 25-Year 124 7.094714 126.466262 3.058 1.80 1.5826 Apptod January 01, 2014 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfall/ July 02, 1905 25-Year 126 7.096716 126.462638 3.123 1.80 1.7503 Upstream rainfall/ July 07, 1905 25-Year	120	7.098154	126.466064	2.266	1.60	0.4436	Typhoon	25-Year
122 7.094883 126.463952 2.734 1.60 1.2860 Upstream reinfall 25-Year 123 7.094893 126.465258 2.966 1.60 1.8660 õgatogi January 01, 2014 25-Year 124 7.094714 126.466262 3.058 1.80 1.5826 õgatogi January 01, 2014 25-Year 125 7.097441 126.4662104 3.013 1.80 1.4714 Upstream rainfall/ July 02, 1905 25-Year 126 7.096716 126.46238 3.123 1.80 1.7503 Upstream rainfall/ July 07, 1905 25-Year	121	7.098003	126.466092	2.384	1.50	0.7815	Casare	25-Year
123 7.094693 126.466258 2.966 1.60 1.8660 Agatog/ January 01, 2014 25-Year 124 7.094714 126.466262 3.058 1.80 1.5826 Agatog/ January 01, 2014 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream raintall/ July 02, 1905 25-Year 126 7.096716 126.462638 3.123 1.80 1.7503 Upstream raintall/ July 07, 1905 25-Year	122	7.094883	126.463952	2.734	1.60	1.2860	Upstream rainfall	25-Year
124 7.094714 126.466262 3.058 1.80 1.5826 Agatog/ January 01, 2014 25-Year 125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfall/ July 02, 1905 25-Year 126 7.096716 126.462638 3.123 1.80 1.7503 Upstream rainfall/ July 07, 1905 25-Year	123	7.094693	126.465258	2.966	1.60	1.8660	Apaton/ January 01, 2014	25-Year
125 7.097441 126.462104 3.013 1.80 1.4714 Upstream rainfall/ July 02, 1905 25-Year 126 7.096716 126.462638 3.123 1.80 1.7503 Upstream rainfall/ July 07, 1905 25-Year	124	7.094714	126.466262	3.058	1.80	1.5826	Agatoo/ January 01, 2014	25-Year
126 7.096716 126.462638 3.123 1.80 1.7503 Upstream rainfall/ July 07, 1905 25-Year	125	7.097441	125.452104	3.013	1.80	1.4714	Upstream rainfail/ July 02, 1905	25-Year
	126	7.096716	126.462638	3.123	1.80	1.7503	Upstream rainfail/ July 07, 1905	25-Year
127	7.094796	126.465707	3.208	1.80	1.9825	Seatool January 01, 2014	25-Year	
-----	----------	------------	-------	------	---------	----------------------------------	---------	
128	7.094333	126.465336	3.211	2.00	1.4665	Section January 01, 2014	25-Year	
129	7.097862	126.465633	2.961	2.00	0.9235	égatool January 01, 2014	25-Year	
130	7.094806	125.467489	3.73	2.30	2.0449	Yolanda/ November 01, 2013	25-Year	
131	7.098304	126.465998	3.69	2.50	1.4161	Typhoon	25-Year	
132	7.098528	125.465262	0.03	0.00	0.0009		25-Year	
133	7.099371	125.465282	0.03	0.00	0.0009		25-Year	
134	7.098562	126.464296	0.03	0.00	0.0009		25-Year	
135	7.102342	125.468189	0.03	0.00	0.0009		25-Year	
136	7.098888	125.465149	0.03	0.00	0.0009		25-Year	
137	7.101556	126.467546	0.03	0.00	0.0009		25-Year	
138	7.101786	126.464903	0.03	0.00	0.0009		25-Year	
139	7.102456	125.464886	0.031	0.00	0.0010		25-Year	
140	7.100979	126.460830	0.031	0.00	0.0010		25-Year	
141	7.101626	126.462162	0.031	0.00	0.0010		25-Year	
142	7.099217	125.466177	0.032	0.00	0.0010		25-Year	
143	7.100299	125.462004	0.031	0.00	0.0010		25-Year	
144	7.100557	126.463307	0.031	0.00	0.0010		25-Year	
145	7.100740	126.466766	0.031	0.00	0.0010		25-Year	
146	7.099140	125.464647	0.368	0.00	0.1354		25-Year	
147	7.102739	126.467793	0.358	0.00	0.1282		25-Year	
148	7.101462	125.466019	0.392	0.00	0.1537		25-Year	
149	7.098756	126.466899	0.644	0.00	0.4147		25-Year	
150	7.098683	125.462887	0.572	0.50	0.0052	Upstream rainfall/ July 02, 1905	25-Year	
151	7.099943	126.463913	0.871	0.00	0.7586		25-Year	
152	7.099776	125.461748	1.498	0.00	2.2440		25-Year	
153	7.098313	126.466453	1.569	0.00	2.4618	Pablo/ July 04, 1905	25-Year	
154	7.099317	126.462415	1.035	0.50	0.2862	Upstream rainfail/ July 02, 1905	25-Year	
155	7.098824	126.462131	1.584	0.50	1.1751	Upstream rainfail/ July 03, 1905	25-Year	
156	7.100275	126.460807	1.826	0.00	3.3343		25-Year	
157	7.098182	126.462259	1.643	0.50	1.3064		25-Year	
158	7.101397	126.463766	1.658	0.00	2.7490		25-Year	
159	7.099835	126.463107	1.304	0.00	1.7004		25-Year	
160	7.098759	126.461387	2.119	1.00	1.2522		25-Year	
161	7.098190	126.461676	2.21	1.00	1.4641		25-Year	
162	7.099577	126.459689	3.204	1.50	2.9036		25-Year	
163	7.099773	126.464829	2.886	4.00	1.2410	Yolanda/ July 05, 1905	25-Year	
164	7.099099	126.459753	3.353	2.00	1.8306	Yolanda/ July 05, 1905	25-Year	
165	7.097868	126.461030	3.372	0.50	8.2484		25-Year	
166	7.098585	126.460892	3.591	0.50	9.5543		25-Year	
167	7.101403	125.464384	4.243	0.00	18.0030		25-Year	
168	7.100922	126.465113	3.792	4.00	0.0433	Typhoon/ June 22, 1905	25-Year	
169	7.099026	125.466983	6.099	4.00	4.4058		25-Year	
170	7.104037	126.461518	5.92	5.00	0.8464		25-Year	

171	7.101763	126.463760	5.913	0.00	34.9636	25-Year
172	7.100132	126.464471	5.992	4.00	3.9681	25-Year
173	7.103675	126.461605	6.289	5.00	1.6615	25-Year
174	7.104580	126.461431	6.209	5.00	1.4617	25-Year
175	7.102135	126.462317	6.253	5.00	1.5700	25-Year
176	7.100401	126.464745	6.368	4.00	5.6074	25-Year
177	7.100454	126.469610	6.453	5.00	2.1112	25-Year
178	7.102498	126.462139	6.882	5.00	3.5419	25-Year
179	7.099771	126.464559	7.153	4.00	9.9414	25-Year
180	7.099662	126.466999	7.688	2.00	32.3533	25-Year

RM8E 1.708031

Annex 12. Educational Institutions affected by flooding in Quinonoan Flood

Table A-12.1. Educational Institutions in Manay, Davao Oriental affected by flooding in

Quinonoan Flood Plain

Davao Oriental								
Manax								
Barannav	Building Name	Rainfall Scenario						
conungay	contailing Wallie		25-year	100-year				
San Ignacio	APMAMADA ELEMENTARY SCHOOL							
San Ignacio	DAYCARE CENTER							
San ignacio	MAMADA ELEMENTARY SCHOOL							