HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Padada River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Mindanao



© University of the Philippines and the University of the Philippines Mindanao 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and J.E. Acosta, (Eds). (2017). LiDAR Surveys and Flood Mapping of Padada River. Quezon City: UP Training Center for Applied Geodesy and Photogrammetry — 166pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Dr. Joseph E. Acosta

Project Leader, Phil-LiDAR 1 Program University of the Philippines Mindanao Davao City, Davao Del Sur, Philippines 8000 E-mail: jeacosta@up.edu.ph

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-170-6

# **TABLE OF CONTENTS**

| TABLE OF CONTENTS                                                                            |      |
|----------------------------------------------------------------------------------------------|------|
| LIST OF TABLES                                                                               | iv   |
| LIST OF FIGURES                                                                              | vi   |
| LIST OF ACRONYMS AND ABBREVIATIONS                                                           | ix   |
| CHAPTER 1. Overview of the Program and Padada Mainit River                                   | 1    |
| 1.1 Background of the Phil-LiDAR 1 Program                                                   | 1    |
| 1.2 Overview of the Padada Mainit River Basin                                                |      |
| CHAPTER 2. LiDAR Acquisition of the Padada Mainit Floodplain                                 | 3    |
| 2.1 Flight Plans                                                                             |      |
| 2.2 Ground Base Stations                                                                     | 5    |
| 2.3 Flight Missions                                                                          | 8    |
| 2.4 Survey Coverage                                                                          | 9    |
| CHAPTER 3. LiDAR Data Processing of the Padada Mainit Floodplain                             | . 11 |
| 3.1 Overview of the LiDAR Data Pre-Processing                                                | . 11 |
| 3.2 Transmittal of Acquired LiDAR Data                                                       | . 12 |
| 3.3 Trajectory Computation                                                                   | . 12 |
| 3.4 LiDAR Point Cloud Computation                                                            | . 15 |
| 3.5 LiDAR Data Quality Checking                                                              | . 15 |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                       | . 20 |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                 | . 22 |
| 3.8 DEM Editing and Hydro-Correction                                                         | . 22 |
| 3.9 Mosaicking of Blocks                                                                     | . 24 |
| 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model                   | . 26 |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model                    | . 30 |
| 3.12 Feature Extraction                                                                      | . 31 |
| 3.12.1 Quality Checking of Digitized Features' Boundary                                      | .31  |
| 3.12.2 Height Extraction                                                                     | . 32 |
| 3.12.3 Feature Attribution                                                                   | . 32 |
| 3.12.4 Final Quality Checking of Extracted Features                                          | . 34 |
| CHAPTER 4. LiDAR Validation Survey and Measurements of the Padada Mainit River Basin         | . 35 |
| 4.1 Summary of Activities                                                                    |      |
| 4.2 Control Survey                                                                           |      |
| 4.3 Baseline Processing                                                                      |      |
| 4.4 Network Adjustment                                                                       |      |
| 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking                         |      |
| 4.6 Validation Points Acquisition Survey                                                     |      |
| 4.7 River Bathymetric Survey                                                                 |      |
| CHAPTER 5. Flood Modeling and Mapping                                                        |      |
| 5.1 Data Used for Hydrologic Modeling                                                        |      |
| 5.1.1 Hydrometry and Rating Curves                                                           | . 55 |
| 5.1.2 Precipitation                                                                          |      |
| 5.1.3 Rating Curves and River Outflow                                                        |      |
| 5.2 RIDF Station                                                                             |      |
| 5.3 HMS Model                                                                                |      |
| 5.4 Cross-Section Data                                                                       |      |
| 5.5 Flo 2D Model                                                                             |      |
| 5.6 Results of HMS Calibration                                                               |      |
| 5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Models |      |
| 5.7.1 Hydrograph Using the Rainfall Runoff Model                                             |      |
| 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method                       |      |
| 5.8 River Analysis (RAS) Model Simulation                                                    |      |
| 5.9 Flow Depth and Flood Hazard                                                              |      |
| 5.10 Inventory of Areas Exposed to Flooding                                                  |      |
| 5.11 Flood Validation                                                                        | 147  |

| REFERENCES                                                               |     |
|--------------------------------------------------------------------------|-----|
| ANNEX                                                                    | 150 |
| ANNEX 1. Optech Technical Specification of the Gemini Sensor             |     |
| ANNEX 2. Namria Certificate of Reference Points Used                     |     |
| ANNEX 3. Baseline Processing Reports of Reference Points Used            |     |
| ANNEX 4. The LiDAR Survey Team Composition                               | 153 |
| ANNEX 5. Data Transfer Sheet for Padada Mainit Floodplain                |     |
| ANNEX 6. Flight Logs                                                     | 156 |
| ANNEX 7. Flight Status Reports                                           | 165 |
| ANNEX 8. Mission Summary Reports                                         | 166 |
| ANNEX 9. Padada-Mainit Model Basin Parameters                            |     |
| ANNEX 10. Padada-Mainit Model Reach Parameters                           | 199 |
| ANNEX 11. Padada-Mainit Field Validation                                 |     |
| ANNEX 12. Educational Institutions Affected In Padada-Mainit Flood Plain |     |
| ANNEX 13. Medical Institutions Affected in Padada-Mainit Flood Plain     |     |

## **LIST OF TABLES**

| Table 1. Flight planning parameters for Gemini LiDAR system                                                                                                                 | 3  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Details of the recovered NAMRIA horizontal control point DVS-85 used as base station for the                                                                       |    |
| LiDAR acquisition                                                                                                                                                           | 6  |
| Table 3. Details of the recovered horizontal control point BLLM-20 used as base station for the LiDAR                                                                       |    |
| acquisition with established coordinates                                                                                                                                    | 7  |
| Table 4. Ground control points used during LiDAR data acquisition                                                                                                           | 8  |
| Table 5. Flight missions for LiDAR data acquisition in Padada Mainit floodplain.                                                                                            | 8  |
| Table 6. Actual parameters used during LiDAR data acquisition.                                                                                                              | 9  |
| Table 7. List of municipalities and cities surveyed during Padada Mainit floodplain LiDAR survey                                                                            | 9  |
| Table 8. Self-Calibration Results values for Padada flights                                                                                                                 |    |
| Table 9. List of LiDAR blocks for Padada floodplain                                                                                                                         | 16 |
| Table 10. Padada classification results in TerraScan                                                                                                                        |    |
| Table 11. LiDAR blocks with its corresponding area.                                                                                                                         |    |
| Table 12. Shift Values of each LiDAR Block of Padada floodplain.                                                                                                            |    |
| Table 13. Calibration Statistical Measures                                                                                                                                  |    |
| Table 14. Validation Statistical Measures.                                                                                                                                  | -  |
| Table 15. Quality Checking Ratings for Padada Building Features                                                                                                             | 31 |
| Table 16. Building Features Extracted for Padada Floodplain.                                                                                                                |    |
| Table 17. Total Length of Extracted Roads for Padada Floodplain                                                                                                             |    |
| Table 18. Number of Extracted Water Bodies for Padada Floodplain.                                                                                                           | 33 |
| Table 19. List of Reference and Control Points used in Padada Mainit River Survey                                                                                           |    |
| (Source: NAMRIA, UP-TCAGP)                                                                                                                                                  |    |
| Table 20. Baseline Processing Report for Padada Mainit River Basin Static Survey                                                                                            |    |
| Table 21. Control Point Constraints                                                                                                                                         |    |
| Table 22. Adjusted Grid Coordinates                                                                                                                                         |    |
| Table 23. Adjusted geodetic coordinates                                                                                                                                     |    |
| Table 24. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)                                                                                          |    |
| Table 25. RIDF values for Davao Rain Gauge computed by PAGASA                                                                                                               |    |
| Table 26. Range of Calibrated Values for Padada         Table 27. Comparison of Calibrated Values for Padada                                                                |    |
| Table 27. Summary of the Efficiency Test of Padada HMS Model                                                                                                                |    |
| Table 28. Peak values of the Padada HEC-HMS Model outflow using the Davao RIDF                                                                                              |    |
| Table 29. Summary of Digos Padada-Mainit river (1) discharge generated in HEC-HMS                                                                                           |    |
| Table 30. Summary of Digos Padada-Mainit river (2) discharge generated in HEC-HMS                                                                                           |    |
| Table 31. Summary of Digos Padada-Mainit river (3) discharge generated in HEC-HMS                                                                                           |    |
| Table 32. Summary of Digos Padada-Mainit river (4) discharge generated in HEC-HMS                                                                                           |    |
| Table 33. Summary of Digos Padada-Mainit river (5) discharge generated in HEC-HMS                                                                                           |    |
| Table 34. Summary of Digos Padada-Mainit river (6) discharge generated in HEC-HMS         Table 35. Summary of Digos Padada-Mainit river (7) discharge generated in HEC-HMS |    |
| Table 36. Summary of Digos Padada-Mainit river (8) discharge generated in HEC-HMS                                                                                           |    |
| Table 37. Summary of Digos Padada-Mainit river (9) discharge generated in HEC-HMS                                                                                           |    |
| Table 38. Summary of Digos Padada-Mainit river (10) discharge generated in HEC-HMS                                                                                          |    |
| Table 39. Validation of river discharge estimates                                                                                                                           |    |
| Table 40. Municipalities affected in Padada floodplain                                                                                                                      |    |
| Table 41. Affected Areas in Bansalan, Davao del Sur during 5-Year Rainfall Return Period                                                                                    |    |
| Table 42. Affected Areas in Digos City, Davao del Sur during 5 Year Rainfall Return Period                                                                                  |    |
| Table 43. Affected Areas in Hagonoy, Davao del Sur during 5-Year Rainfall Return Period                                                                                     |    |
| Table 44. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period                                                                                    |    |
| Table 45. Affected Areas in Magsaysay, Davao del Sur during 5-Year Rainfall Return Period                                                                                   |    |
| Table 46. Affected Areas in Malalag, Davao del Sur during 5-Year Rainfall Return Period                                                                                     |    |
| Table 47. Affected Areas in Matanao, Davao del Sur during 5-Year Rainfall Return Period                                                                                     |    |
| Table 48. Affected Areas in Padada, Davao del Sur during 5-Year Rainfall Return Period                                                                                      |    |
| Table 49. Affected Areas in Santa Cruz, Davao del Sur during 5-Year Rainfall Return Period                                                                                  |    |
| Table 50. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period                                                                                       |    |
|                                                                                                                                                                             |    |

| Table 51. Affected Areas in Columbio, Sultan Kudarat during 5-Year Rainfall Return Period                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Table 52. Affected Areas in Bansalan, Davao del Sur during 25-Year Rainfall Return Period                                               |
| Table 53. Affected Areas in Digos City, Davao del Sur during 25-Year Rainfall Return Period                                             |
| Table 54. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return Period                                                |
| Table 55. Affected Areas in Kiblawan, Davao del Sur during 25-Year Rainfall Return Period 110                                           |
| Table 56. Affected Areas in Magsaysay, Davao del Sur during 25-Year Rainfall Return Period 113                                          |
| Table 57. Affected Areas in Malalag, Davao del Sur during 25-Year Rainfall Return Period 114                                            |
| Table 58. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period 115                                            |
| Table 59. Affected Areas in Padada, Davao del Sur during 25-Year Rainfall Return Period 118                                             |
| Table 60. Affected Areas in Santa Cruz, Davao del Sur during 25-Year Rainfall Return Period 120                                         |
| Table 61. Affected Areas in Sulop, Davao del Sur during 25-Year Rainfall Return Period 121                                              |
| Table 62. Affected Areas in Columbio, Sultan Kudarat during 25-Year Rainfall Return Period 124                                          |
| Table 63. Affected Areas in Bansalan, Davao del Sur during 100-Year Rainfall Return Period 125                                          |
| Table 64. Affected Areas in Digos City, Davao del Sur during 100-Year Rainfall Return Period 126                                        |
| Table 65. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period 128                                           |
| Table 66. Affected Areas in Kiblawan, Davao del Sur during 100-Year Rainfall Return Period                                              |
| Table 67. Affected Areas in Magsaysay, Davao del Sur during 100-Year Rainfall Return Period                                             |
| Table 68. Affected Areas in Malalag, Davao del Sur during 100-Year Rainfall Return Period                                               |
| Table 69. Affected Areas in Matanao, Davao del Sur during 100-Year Rainfall Return Period                                               |
| Table 70. Affected Areas in Padada, Davao del Sur during 100-Year Rainfall Return Period                                                |
| Table 71. Affected Areas in Santa Cruz, Davao del Sur during 100-Year Rainfall Return Period                                            |
| Table 72. Affected Areas in Sulop, Davao del Sur during 100-Year Rainfall Return Period141                                              |
| Table 73. Affected Areas in Columbio, Sultan Kudarat during 100-Year Rainfall Return Period                                             |
| Table 74. Area covered by each warning level with respect to the rainfall scenario                                                      |
| Table 75. Actual Flood Depth vs Simulated Flood Depth in Padada         Table 75. Actual Flood Depth vs Simulated Flood Depth in Padada |
| Table 76. Summary of Accuracy Assessment in Padada                                                                                      |
|                                                                                                                                         |

## **LIST OF FIGURES**

| Figure 1. Map of Digos River Basin                                                                                                                                                     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2. Flight plans used for Padada-Mainit floodplain                                                                                                                               |     |
| Figure 3. Flight plans and base stations for Padada Mainit floodplain.                                                                                                                 | . 5 |
| Figure 4. GPS set-up over DVS-85 located inside Mariano Sarona Elementary School, inside the                                                                                           |     |
| fence of the flagpole (a) and NAMRIA reference point DVS-85 (b) as recovered by the field team                                                                                         | 6   |
| Figure 5. GPS set-up over BLLM-20 located inside Mariano Sarona Elementary School, inside the                                                                                          |     |
| fence of the flagpole (a) and reference point BLLM-20 (b) as recovered by the field team                                                                                               | 7   |
| Figure 6. Actual LiDAR survey coverage for Padada Mainit floodplain                                                                                                                    |     |
| Figure 7. Schematic Diagram for Data Pre-Processing Component                                                                                                                          |     |
| Figure 8. Smoothed Performance Metric Parameters of a Padada Flight 7418GC                                                                                                             |     |
| Figure 9. Solution Status Parameters of Padada Flight 7481GC.                                                                                                                          |     |
| Figure 10. Best estimated trajectory for the Padada floodplain                                                                                                                         |     |
| Figure 11. Boundary of the processed LiDAR data over Padada Floodplain                                                                                                                 |     |
| Figure 12. Image of data overlap for Padada floodplain.                                                                                                                                |     |
| Figure 13. Density map of merged LiDAR data for Padada floodplain                                                                                                                      |     |
| Figure 14. Elevation difference map between flight lines for Padada floodplain.                                                                                                        |     |
| Figure 15. Quality checking for a Padada flight 7418GC using the Profile Tool of QT Modeler.                                                                                           |     |
| Figure 16. Tiles for Padada floodplain (a) and classification results (b) in TerraScan.                                                                                                |     |
| Figure 17. Point cloud before (a) and after (b) classification.                                                                                                                        | 20  |
| Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and                                                                                                 |     |
| secondary DTM (d) in some portion of Padada floodplain                                                                                                                                 | 21  |
| Figure 19. Portions in the DTM of Padada floodplain – a bridge before (a) and after (b) manual                                                                                         |     |
| editing; a paddy field before (c) and after (d) data retrieval; and a building before (e) and                                                                                          |     |
| after (f) manual editing.                                                                                                                                                              |     |
| Figure 20. Map of Processed LiDAR Data for Padada Flood Plain                                                                                                                          |     |
| Figure 21. Map of Padada Flood Plain with validation survey points in green                                                                                                            |     |
| Figure 22. Correlation plot between calibration survey points and LiDAR data                                                                                                           |     |
| Figure 23. Correlation plot between validation survey points and LiDAR data.                                                                                                           |     |
| Figure 24. Map of Padada Flood Plain with bathymetric survey points shown in blue                                                                                                      |     |
| Figure 25. Padada building features that were subjected to QC blocks                                                                                                                   |     |
| Figure 26. Extracted features for Padada floodplain.                                                                                                                                   |     |
| Figure 27. Padada-Mainit River survey extent                                                                                                                                           |     |
| Figure 28. Overall GNSS Survey loop of Padada Mainit River Basin<br>Figure 29. GNSS base receiver setup, Trimble <sup>®</sup> SPS 852 at DVS-1 at the east side of Pier, in Brgy. Leon | 38  |
| Garcia Sr., Davao City, Davao Del Sur                                                                                                                                                  | 20  |
| Figure 30. GNSS base receiver setup, Trimble <sup>®</sup> SPS 882 at DV-76 at the Gov. Miranda Bridge Approach,                                                                        |     |
| Brgy. Guadalupe, Municipality of Carmen, Davao Del Norte                                                                                                                               |     |
| Figure 31. GNSS base receiver setup, Trimble <sup>®</sup> SPS 882 at DS-09 located at stair of Nograles Park along                                                                     |     |
| Mac Arthur Highway, in Brgy. Talomo, Davao City, Davao Del Sur                                                                                                                         |     |
| Figure 32. GNSS base receiver setup, Trimble <sup>®</sup> SPS 852 at UP-CEB on the right approach of Cebulan                                                                           | 40  |
| Bridge in Brgy Darong, Municipality of Santa Cruz, Davao Del Sur                                                                                                                       | /11 |
| Figure 33. GNSS base receiver setup, Trimble <sup>®</sup> SPS 882 at UP-DIG, right approach of Digos Bridge in                                                                         | 41  |
| Brgy. Aplaya, Digos City, Davao Del Sur                                                                                                                                                | /11 |
| Figure 34. GNSS base receiver setup, Trimble <sup>®</sup> SPS 852 at UP-LIP2, on the right approach of Lipadas                                                                         | 71  |
| Bridge along National Highway in Brgy. Lizada, Toril District, Davao Del Sur                                                                                                           | 12  |
| Figure 35. GNSS base receiver setup, Trimble <sup>®</sup> SPS 882 at UP-PAD, Padada Bridge, Brgy. Guihing,                                                                             | 72  |
| Municipality of Hagonoy, Davao del Sur                                                                                                                                                 | 42  |
| Figure 36. Cross-section and bridge as-built survey at the downstream side of Tologan Bridge, Brgy.                                                                                    | 72  |
| Tologan, Hagonoy, Davao del Sur                                                                                                                                                        | 46  |
| Figure 37. Tologan bridge cross-section location map                                                                                                                                   |     |
| Figure 38. Tologan bridge cross-section location map                                                                                                                                   |     |
| Figure 39. Tologan Bridge Data Form                                                                                                                                                    |     |
| Figure 40. Water level markings on the post of Tologan Bridge                                                                                                                          |     |
| Figure 41. Validation points acquisition survey set-up for Davao del Sur.                                                                                                              |     |
|                                                                                                                                                                                        |     |

| Figure 42. Validation points acquisition survey coverage for Padada-Mainit River                       |    |
|--------------------------------------------------------------------------------------------------------|----|
| Figure 43. Bathymetric survey setup in Padada-Mainit River (upstream)                                  | 53 |
| Figure 44. Bathymetric survey of Padada-Mainit River                                                   | 54 |
| Figure 45. Padada-Mainit Riverbed Profile                                                              |    |
| Figure 46. Padada-Mainit Riverbed Profile                                                              | 55 |
| Figure 47. Cross-Section Plot of Tologan Bridge                                                        |    |
| Figure 48. Rating Curve at Tologan Bridge, Matanao, Davao del Sur                                      | 56 |
| Figure 49. Rainfall and outflow data at Tologan Bridge used for modeling                               | 57 |
| Figure 50. Location of Davao RIDF Station relative to Padada River Basin                               |    |
| Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods            | 59 |
| Figure 52. Soil Map of Padada River Basin (Source: NAMRIA)                                             |    |
| Figure 53. Land Cover Map of Padada River Basin (Source: NAMRIA)                                       | 61 |
| Figure 54. Slope Map of Padada River Basin                                                             |    |
| Figure 55. Stream Delineation Map of Padada River Basin                                                |    |
| Figure 56. The Padada river basin model generated using HEC-HMS.                                       |    |
| Figure 57. River cross-section of Padada River generated through Arcmap HEC GeoRAS tool                |    |
| Figure 58. A screenshot of the river subcatchment with the computational area to be modeled            |    |
| in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)                                                   | 65 |
| Figure 59. Outflow Hydrograph of Padada produced by the HEC-HMS model compared with observed           |    |
| outflow                                                                                                | 66 |
| Figure 60. Outflow hydrograph at Padada Station generated using the Davao RIDF                         |    |
| simulated in HEC-HMS                                                                                   | 68 |
| Figure 61. Digos Padada-Mainit river (1) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 62. Digos Padada-Mainit river (2) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 63. Digos Padada-Mainit river (3) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 64. Digos Padada-Mainit river (4) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 65. Digos Padada-Mainit river (5) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 66. Digos Padada-Mainit river (6) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 67. Digos Padada-Mainit river (7) generated discharge using 5-, 25-, and 100-year GenSan rainfa | II |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 68. Digos Padada-Mainit river (8) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 69. Digos Padada-Mainit river (9) generated discharge using 5-, 25-, and 100-year GenSan rainfa |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 70. Digos Padada-Mainit river (10) generated discharge using 5-, 25-, and 100-year GenSan rain  |    |
| intensity-duration-frequency (RIDF) in HEC-HMS                                                         |    |
| Figure 71. Sample output of Padada RAS Model                                                           |    |
| Figure 72. 100-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery            |    |
| Figure 73. 100-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery              |    |
| Figure 74. 25-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery             |    |
| Figure 75. 25-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery               |    |
| Figure 76. 5-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery              |    |
| Figure 77. 5-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery                |    |
| Figure 78. Affected Areas in Bansalan, Davao del Sur during 5-Year Rainfall Return Period              |    |
| Figure 79. Affected Areas in Digos City, Davao del Sur during 5-Year Rainfall Return                   |    |
| Figure 80. Affected Areas in Digos City, Davao del Sur during 5-Year Rainfall Return Period            |    |
| Figure 81. Affected Areas in Hagonoy, Davao del Sur during 5-Year Rainfall Return Period               |    |
| Figure 82. Affected Areas in Hagonoy, Davao del Sur during 5-Year Rainfall Return Period               |    |
| Figure 83. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period              |    |
| Figure 84. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period              |    |
|                                                                                                        |    |

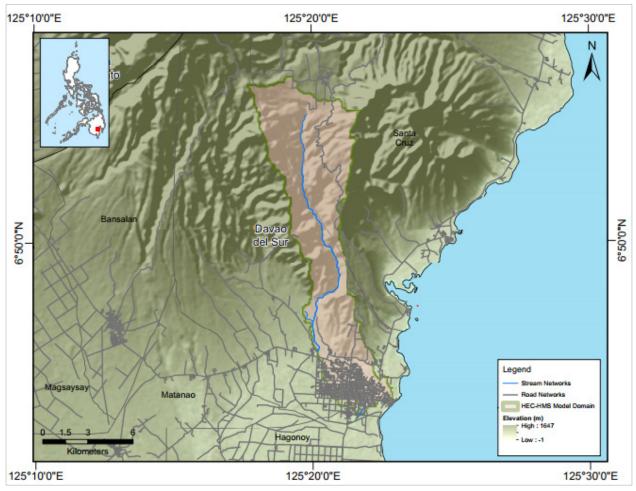
Figure 93. Affected Areas in Santa Cruz, Davao del Sur during 5-Year Rainfall Return Period...... 100 Figure 95. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period...... 102 Figure 99. Affected Areas in Digos, Davao del Sur during 25-Year Rainfall Return Period ...... 107 Figure 100. Affected Areas in Digos, Davao del Sur during 25-Year Rainfall Return Period ...... 107 Figure 102. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return Period....... 109 Figure 104. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return Period...... 111 Figure 108. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period ...... 116 Figure 109. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period ...... 116 Figure 110. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period ...... 117 Figure 113. Affected Areas in Santa Cruz, Davao del Sur during 25-Year Rainfall Return Period...... 120 Figure 114. Affected Areas in Sulop, Davao del Sur during 25-Year Rainfall Return Period...... 122 Figure 118. Affected Areas in Bansalan, Davao del Sur during 100-Year Rainfall Return Period ...... 125 Figure 119. Affected Areas in Digos, Davao del Sur during 100-Year Rainfall Return Period ...... 127 Figure 120. Affected Areas in Digos, Davao del Sur during 100-Year Rainfall Return Period ...... 127 Figure 122. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period...... 129 Figure 124. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period......131 Figure 126. Affected Areas in Magsaysay, Davao del Sur during 100-Year Rainfall Return Period........... 133 Figure 127. Affected Areas in Malalag, Davao del Sur during 100-Year Rainfall Return Period...... 134 Figure 131. Affected Areas in Padada, Davao del Sur during 100-Year Rainfall Return Period......139 Figure 133. Affected Areas in Santa Cruz, Davao del Sur during 100-Year Rainfall Return Period........... 140 Figure 138. Flood Validation Points of Padada River Basin......147 Figure 139. Flood Map Depth vs Actual Flood Depth for Padada......148

# LIST OF ACRONYMS AND ABBREVIATIONS

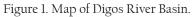
| AAC     | Asian Aerospace Corporation                                       |  |  |  |
|---------|-------------------------------------------------------------------|--|--|--|
| Ab      | abutment                                                          |  |  |  |
| ALTM    | Airborne LiDAR Terrain Mapper                                     |  |  |  |
| ARG     | automatic rain gauge                                              |  |  |  |
| ATQ     | Antique                                                           |  |  |  |
| AWLS    | Automated Water Level Sensor                                      |  |  |  |
| BA      | Bridge Approach                                                   |  |  |  |
| BM      | benchmark                                                         |  |  |  |
| CAD     | Computer-Aided Design                                             |  |  |  |
| CN      | Curve Number                                                      |  |  |  |
| CSRS    | Chief Science Research Specialist                                 |  |  |  |
| DAC     | Data Acquisition Component                                        |  |  |  |
| DEM     | Digital Elevation Model                                           |  |  |  |
| DENR    | Department of Environment and<br>Natural Resources                |  |  |  |
| DOST    | Department of Science and<br>Technology                           |  |  |  |
| DPPC    | Data Pre-Processing Component                                     |  |  |  |
| DREAM   | Disaster Risk and Exposure<br>Assessment for Mitigation [Program] |  |  |  |
| DRRM    | Disaster Risk Reduction and<br>Management                         |  |  |  |
| DSM     | Digital Surface Model                                             |  |  |  |
| DTM     | Digital Terrain Model                                             |  |  |  |
| DVBC    | Data Validation and Bathymetry<br>Component                       |  |  |  |
| FMC     | Flood Modeling Component                                          |  |  |  |
| FOV     | Field of View                                                     |  |  |  |
| GiA     | Grants-in-Aid                                                     |  |  |  |
| GCP     | Ground Control Point                                              |  |  |  |
| GNSS    | Global Navigation Satellite System                                |  |  |  |
| GPS     | Global Positioning System                                         |  |  |  |
| HEC-HMS | Hydrologic Engineering Center -<br>Hydrologic Modeling System     |  |  |  |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System          |  |  |  |
| HC      | High Chord                                                        |  |  |  |
|         |                                                                   |  |  |  |
| IDW     | Inverse Distance Weighted<br>[interpolation method]               |  |  |  |

| kts      | knots                                                                                        |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|
| LAS      | LiDAR Data Exchange File format                                                              |  |  |  |
| LC       | Low Chord                                                                                    |  |  |  |
| LGU      | local government unit                                                                        |  |  |  |
| Lidar    | Light Detection and Ranging                                                                  |  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |
| NAMRIA   | National Mapping and Resource<br>Information Authority                                       |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |
| РРК      | Post-Processed Kinematic [technique]                                                         |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |
| ТВС      | Thermal Barrier Coatings                                                                     |  |  |  |
| UPM      | University of the Philippines<br>Mindanao                                                    |  |  |  |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |

# CHAPTER 1. OVERVIEW OF THE PROGRAM AND PADADA MAINIT RIVER


[]

#### 1.1 Background of the Phil-LiDAR 1 Program


The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods." (Paringit, et. Al. 2017)

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (UPM). UPM is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Southern Mindanao Region. The university is located in Davao City in the province of Davao del Sur.



#### 1.2 Overview of the Padada Mainit River Basin



# CHAPTER 2. LIDAR ACQUISITION OF THE PADADA MAINIT FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, Engr. Kenneth A. Quisado

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Padada Mainit floodplain in Davao del Sur. These missions were planned for 15 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plan for Padada Mainit floodplain.

| Block Name | Flying<br>Height<br>(m AGL) | Overlap (%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
|------------|-----------------------------|-------------|----------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| BLK87A     | 1000                        | 30          | 40                   | 100                                             | 50                        | 130                    | 5                                 |
| BLK87B     | 1000                        | 30          | 40                   | 100                                             | 50                        | 130                    | 5                                 |
| BLK87C     | 1000                        | 30          | 40                   | 100                                             | 50                        | 130                    | 5                                 |
| BLK87D     | 1000                        | 30          | 40                   | 100                                             | 50                        | 130                    | 5                                 |
| BLK87E     | 1000                        | 30          | 40                   | 100                                             | 50                        | 130                    | 5                                 |
| BLK87F     | 1000                        | 35          | 40                   | 100                                             | 50                        | 130                    | 5                                 |

Table 1. Flight planning parameters for Gemini LiDAR system.

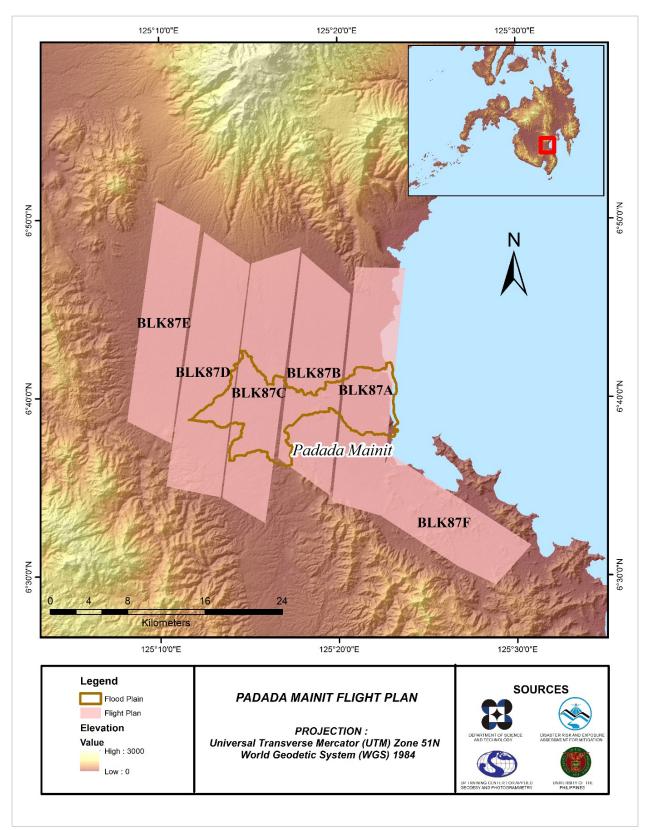



Figure 2. Flight plans used for Padada-Mainit floodplain.

#### 2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA ground control point: DVS-85 with second (2<sup>nd</sup>) order accuracy. The project team was able to recover BLLM-20 with fourth (4th) order accuracy. BLLM-20 was then re-processed to obtain coordinates of 2<sup>nd</sup> order accuracy. The certification for the NAMRIA reference point is found in ANNEX 2 while the baseline processing report for the re-processed control point is found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey (July 29 – August 7, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Padada Mainit floodplain are shown in Figure 3.

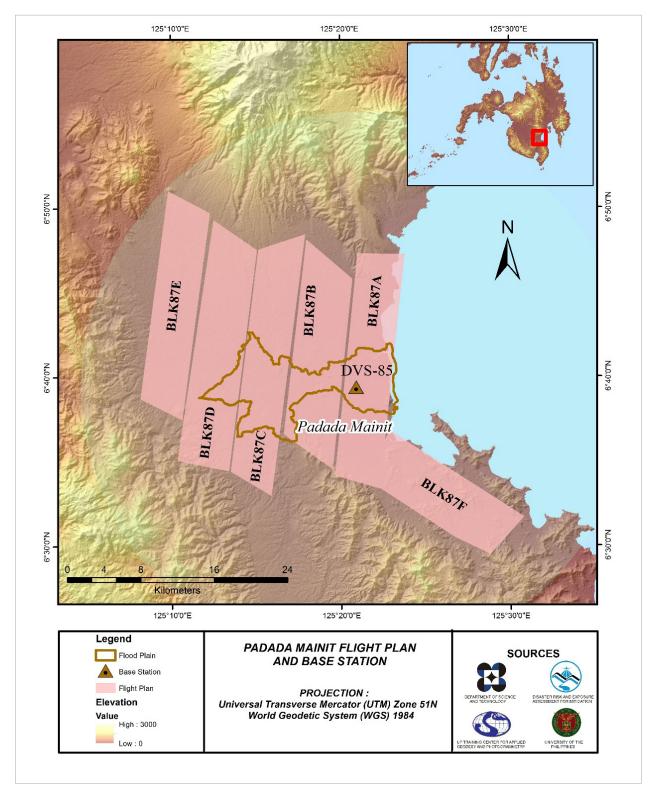



Figure 3. Flight plans and base stations for Padada Mainit floodplain.

Figure 4 to Figure 5 show the recovered NAMRIA reference point and established ground control point within the area. In addition, Table 2 to Table 3 show the details about the following NAMRIA control station and the established GCP while Table 4 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.



Figure 4. GPS set-up over DVS-85 located inside Mariano Sarona Elementary School, inside the fence of the flagpole (a) and NAMRIA reference point DVS-85 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point DVS-85 used as base station for the LiDAR acquisition.

| Station Name                                                                           | DVS-85                                      |                                                                |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2 <sup>nd</sup>                             |                                                                |  |
| Relative Error (horizontal positioning)                                                | 1 in 50,000                                 |                                                                |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 6°39'26.23973" North<br>125°20'48.72707" East<br>6.143 m       |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 538185.160 meters<br>736134.492 meters                         |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 6°39'23.20570" North<br>125°20'54.29136" East<br>79.008 meters |  |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 759472.609 meters<br>736433.274 meters                         |  |



Figure 5. GPS set-up over BLLM-20 located inside Mariano Sarona Elementary School, inside the fence of the flagpole (a) and reference point BLLM-20 (b) as recovered by the field team.

| Table 3. Details of the recovered horizontal control point BLLM-20 used as base station for the LiDAR acquisition |
|-------------------------------------------------------------------------------------------------------------------|
| with established coordinates.                                                                                     |

| Station Name                                                                           | LLM-20                                      |                                                                |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2 <sup>nd</sup>                             |                                                                |  |
| Relative Error (horizontal positioning)                                                | 1 in 50,000                                 |                                                                |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 6°39'25.99473" North<br>125°20'48.37658" East<br>5.656 meters  |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 538174.400 meters<br>736126.960 meters                         |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 6°39'22.96071" North<br>125°20'53.94087" East<br>78.521 meters |  |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS 1992) | Easting<br>Northing                         | 759461.875 meters<br>736425.694 meters                         |  |

|                |               | · · · · · ·   |                       |
|----------------|---------------|---------------|-----------------------|
| Date Surveyed  | Flight Number | Mission Name  | Ground Control Points |
| July 29, 2014  | 7400GC        | 2BLK87A210A   | DVS-85 & BLLM-20      |
| July 31, 2014  | 7404GC        | 2BLK87AS212A  | DVS-85 & BLLM-20      |
| August 1, 2014 | 7406GC        | 2BLK87BC213A  | DVS-85 & BLLM-20      |
| August 2, 2014 | 7408GC        | 2BLK87E214A   | DVS-85 & BLLM-20      |
| August 4, 2014 | 7412GC        | 2BLK87CSD216A | DVS-85 & BLLM-20      |
| August 5, 2014 | 7414GC        | 2BLK87F217A   | DVS-85 & BLLM-20      |
| August 6, 2014 | 7416GC        | 2BLK87F218A   | DVS-85 & BLLM-20      |
| August 7, 2014 | 7418GC        | 2BLK87FV219A  | DVS-85 & BLLM-20      |

Table 4. Ground control points used during LiDAR data acquisition

## 2.3 Flight Missions

Eight (8) missions were conducted to complete the LiDAR data acquisition in Padada Mainit floodplain, for a total of twenty six hours and four minutes (26+04) of flying time for RP-C9322. All missions were acquired using the Gemini LiDAR system. Table 5 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 6 presents the actual parameters used during the LiDAR data acquisition.

| Date           | Flight | Flight             | Surveyed   | Area<br>Surveyed                               | Area<br>Surveyed<br>outside             | Flying Hours       |    |     |
|----------------|--------|--------------------|------------|------------------------------------------------|-----------------------------------------|--------------------|----|-----|
| Surveyed       | Number | Plan Area<br>(km²) | Area (km²) | within the<br>Floodplain<br>(km <sup>2</sup> ) | the<br>Floodplain<br>(km <sup>2</sup> ) | Images<br>(Frames) | Hr | Min |
| July 29, 2014  | 7400GC | 126.830            | 48.522     | 10.930                                         | 37.592                                  | NA                 | 2  | 5   |
| July 31, 2014  | 7404GC | 126.830            | 169.442    | 36.996                                         | 132.446                                 | NA                 | 3  | 35  |
| August 1, 2014 | 7406GC | 128.067            | 193.272    | 35.864                                         | 157.408                                 | NA                 | 3  | 41  |
| August 2, 2014 | 7408GC | 110.715            | 187.645    | 0.023                                          | 187.622                                 | NA                 | 4  | 11  |
| August 4, 2014 | 7412GC | 118.656            | 214.753    | 40.086                                         | 174.667                                 | NA                 | 3  | 53  |
| August 5, 2014 | 7414GC | 96.261             | 70.780     | 0                                              | 70.780                                  | NA                 | 2  | 41  |
| August 6, 2014 | 7416GC | 353.270            | 139.714    | 3.721                                          | 135.993                                 | NA                 | 2  | 41  |
| August 7, 2014 | 7418GC | 353.270            | 127.479    | 8.166                                          | 119.313                                 | NA                 | 3  | 17  |
| TOTAL          |        | 1413.89            | 1151.607   | 135.786                                        | 1015.821                                | NA                 | 26 | 4   |

Table 5. Flight missions for LiDAR data acquisition in Padada Mainit floodplain.

| Flight<br>Number | Flying<br>Height<br>(m AGL) | Overlap (%) | FOV (θ) | PRF<br>(KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|-----------------------------|-------------|---------|--------------|---------------------------|---------------------------|-----------------------------------|
| 7400GC           | 1000                        | 30          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7404GC           | 1000                        | 30          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7406GC           | 1000                        | 30          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7408GC           | 1000                        | 30          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7412GC           | 1000                        | 35          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7414GC           | 1000                        | 35          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7416GC           | 1000                        | 35          | 40      | 100          | 50                        | 130                       | 5                                 |
| 7418GC           | 1000                        | 35          | 40      | 100          | 50                        | 130                       | 5                                 |

Table 6. Actual parameters used during LiDAR data acquisition.

#### 2.4 Survey Coverage

Padada Mainit floodplain is located in the provinces of Davao del Sur with the majority of the floodplain situated within the municipalities of Padada and Kiblawan. Municipalities of Hagonoy, Kiblawan, Padada and Sulop are fully covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 7. The actual coverage of the LiDAR acquisition for Padada Mainit floodplain is presented in Figure 6.

| Table 7. List of m | unicipalities and citie | es surveyed during Padada | a Mainit floodplain L | iDAR survey. |
|--------------------|-------------------------|---------------------------|-----------------------|--------------|
|                    |                         |                           |                       |              |

| Province       | Municipality/City | Area of Municipality/<br>City (km <sup>2</sup> ) | Total Area<br>Surveyed (km <sup>2</sup> ) | Percentage of Area<br>Surveyed |
|----------------|-------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|
|                | Hagonoy           | 85.69                                            | 85.69                                     | 100 %                          |
|                | Kiblawan          | 80.03                                            | 80.03                                     | 100 %                          |
|                | Padada            | 55.97                                            | 55.97                                     | 100%                           |
|                | Sulop             | 50.8                                             | 50.8                                      | 100%                           |
| David and day  | Matanao           | 123.39                                           | 121.26                                    | 98%                            |
| Davao del Sur  | Magsaysay         | 109.8                                            | 68.01                                     | 61%                            |
|                | Digos             | 226.71                                           | 90.29                                     | 39%                            |
|                | Bansalan          | 136.18                                           | 54                                        | 39%                            |
|                | Santa Maria       | 263.25                                           | 93.37                                     | 35%                            |
|                | Malalag           | 444.99                                           | 107.61                                    | 24%                            |
| Sultan Kudarat | Columbio          | 574.07                                           | 26.29                                     | 5%                             |
| TOTAL          |                   | 2150.88                                          | 833.32                                    | 64%                            |

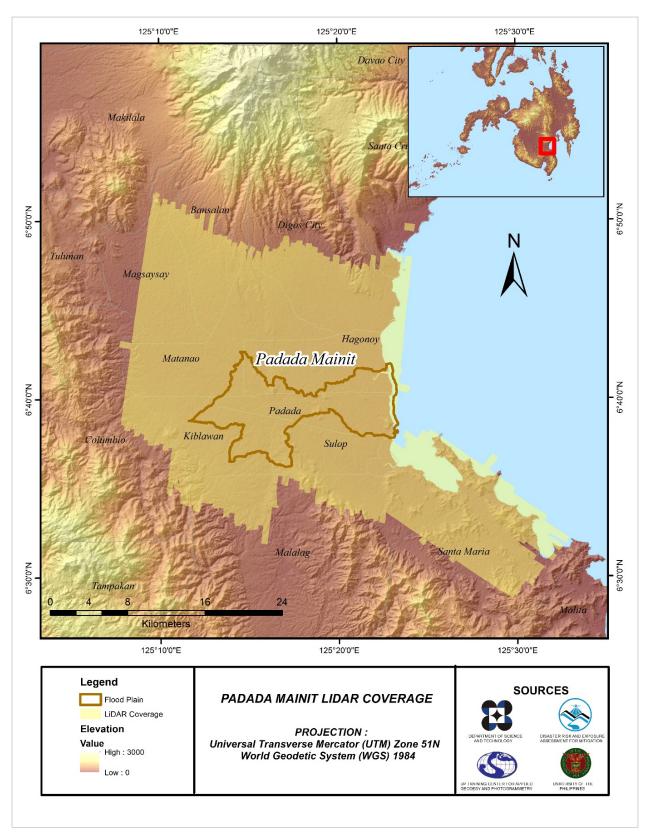



Figure 6. Actual LiDAR survey coverage for Padada Mainit floodplain

# CHAPTER 3. LIDAR DATA PROCESSING OF THE BALANGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. John Dill P. Macapagal , Engr. Ma. Ailyn L. Olanda, Engr. Velina Angela S. Bemida, Alex John B. Escobido , Engr. Ben Joseph J. Harder, and Engr. Karl Adrian P. Vergara

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

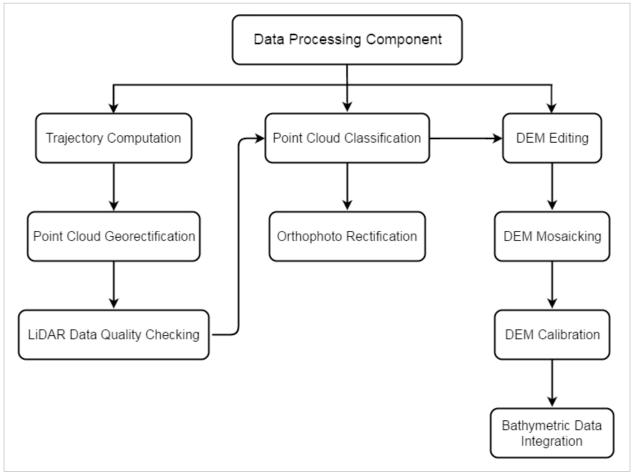



Figure 7. Schematic Diagram for Data Pre-Processing Component

#### 3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry

measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Padada floodplain can be found in ANNEX 5. Missions flown during the first survey conducted on August 2014 used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Gemini system over Hagonoy, Davao Del Sur. The Data Acquisition Component (DAC) transferred a total of 116.47 Gigabytes of Range data, 1.40 Gigabytes of POS data, 34.65 Megabytes of GPS base station data, and 0 Gigabytes of raw image data to the data server on August 28, 2014 for the first survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Padada was fully transferred on August 29, 2014, as indicated on the Data Transfer Sheets for Padada floodplain.

#### 3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 7481GC, one of the Padada flights, which is the North, East, and Down position RMSE values are shown in Figure B-2. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on August 28, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

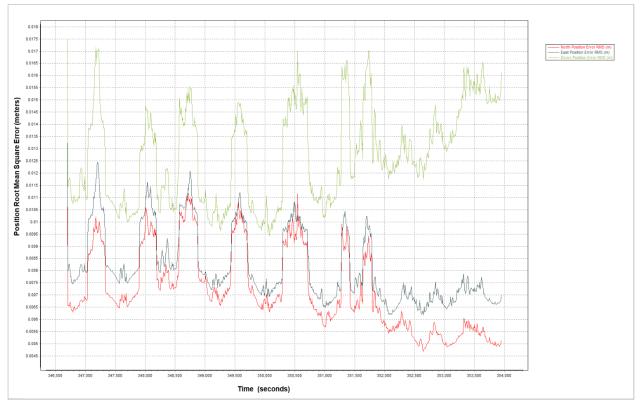



Figure 8. Smoothed Performance Metric Parameters of a Padada Flight 7418GC.

The time of flight was from 347,700 seconds to 354,000 seconds, which corresponds to morning of August 28, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.75 centimeters, the East position RMSE peaks at 1.33 centimeters, and the Down position RMSE peaks at 1.13 centimeters, which are within the prescribed accuracies described in the methodology.

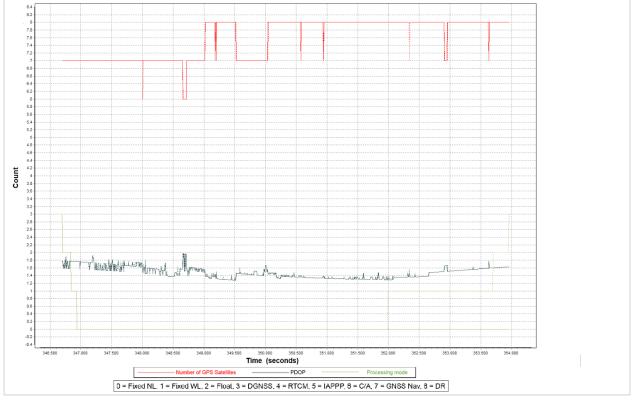



Figure 9. Solution Status Parameters of Padada Flight 7481GC.

The Solution Status parameters of flight 7418GC, one of the Padada flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Padada flights is shown in Figure 10.

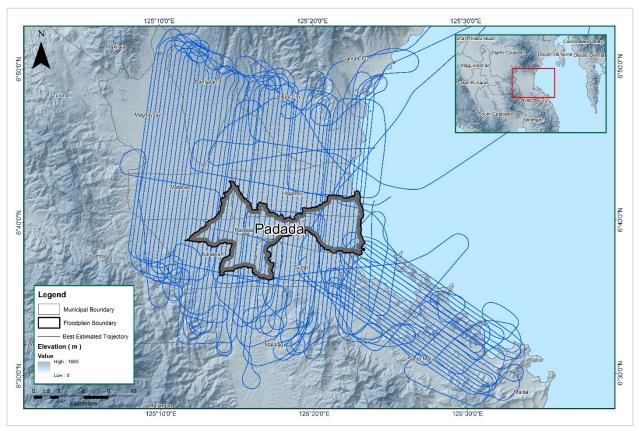



Figure 10. Best estimated trajectory for the Padada floodplain.

## 3.4 LiDAR Point Cloud Computation

The produced LAS data contains 88 flight lines, with each flight line containing one channel, since the Gemini system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Padada floodplain are given in Table 8.

| Parameter                                                |                 | Acceptable Value |
|----------------------------------------------------------|-----------------|------------------|
| Boresight Correction stdev                               | (<0.001degrees) | 0.000368         |
| IMU Attitude Correction Roll and Pitch Corrections stdev | (<0.001degrees) | 0.000843         |
| GPS Position Z-correction stdev                          | (<0.01meters)   | 0.0082           |

Table 8. Self-Calibration Results values for Padada flights.

The optimum accuracy is obtained for all Padada flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the ANNEX 8. Mission Summary Reports.

## 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Padada Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

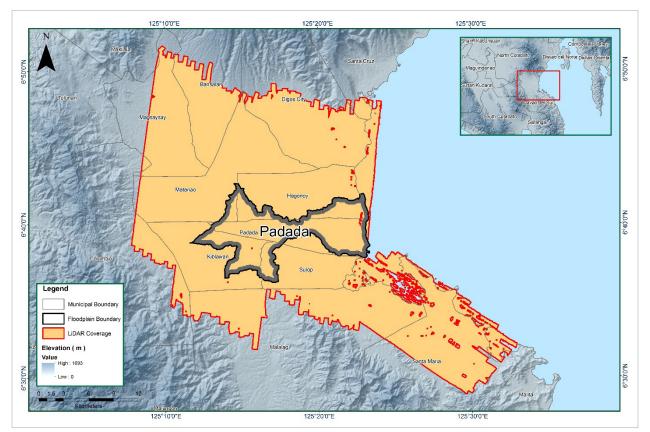



Figure 11. Boundary of the processed LiDAR data over Padada Floodplain

The total area covered by the Padada missions is 951.55 sq.km that is comprised of twelve (12) flight acquisitions grouped and merged into six (6) blocks as shown in Table 9.

| LiDAR Blocks       | Flight Numbers | Area (sq. km) |
|--------------------|----------------|---------------|
|                    | 7400GC         | 164.20        |
| DavaoDelSur_Blk87A | 7404GC         | 164.20        |
| DavaoDelSur_Blk87B | 7406GC         | 189.17        |
|                    | 7412GC         |               |
| DavaoDelSur_Blk87C | 7416GC         | 214.47        |
|                    | 7418GC         |               |
|                    | 7416GC         | 00.00         |
| DavaoDelSur_Blk87D | 7418GC         | 96.69         |
| DavaoDelSur_Blk87E | 7408GC         | 184.12        |
|                    | 7414GC         |               |
| DavaoDelSur_Blk87F | 7416GC         | 102.89        |
|                    | 7418GC         | _             |
| то                 | TAL            | 951.55 sq.km  |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

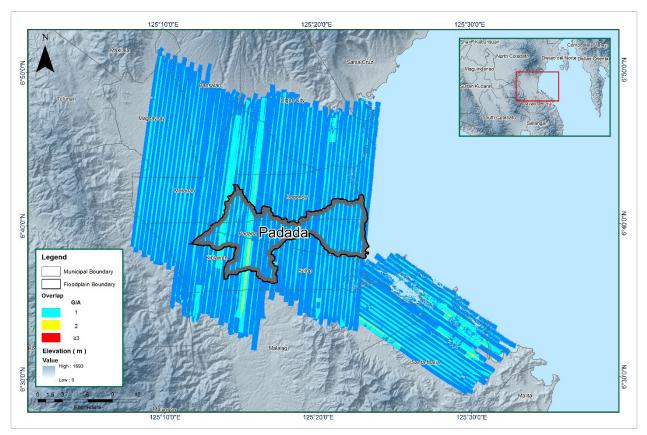



Figure 12. Image of data overlap for Padada floodplain.

The overlap statistics per block for the Padada floodplain can be found in ANNEX B-1. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.84% and 39.32% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Padada floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.19 points per square meter.

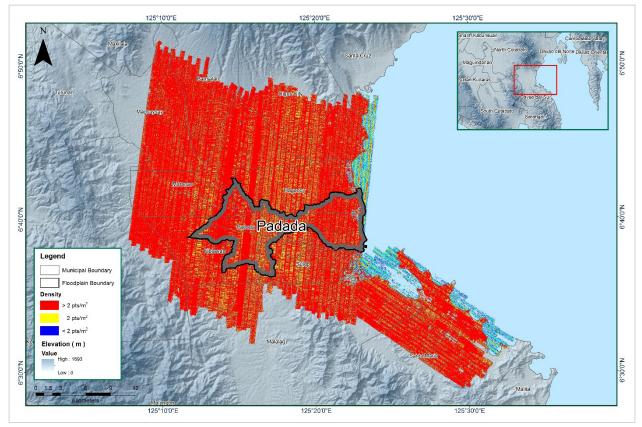



Figure 13. Density map of merged LiDAR data for Padada floodplain.

#### LIDAR Surveys and Flood Mapping of Padada River

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

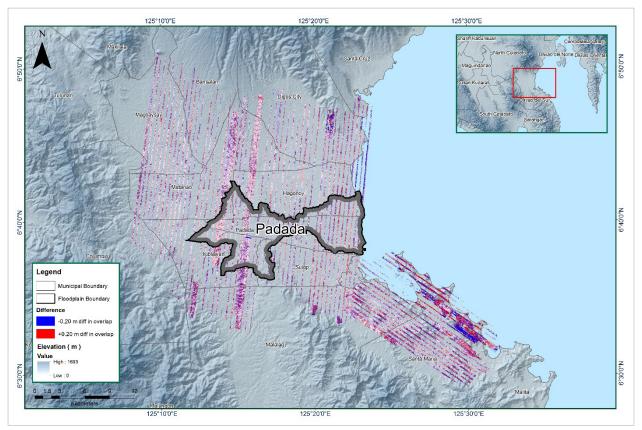



Figure 14. Elevation difference map between flight lines for Padada floodplain.

A screen capture of the processed LAS data from a Padada flight 7418GC loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

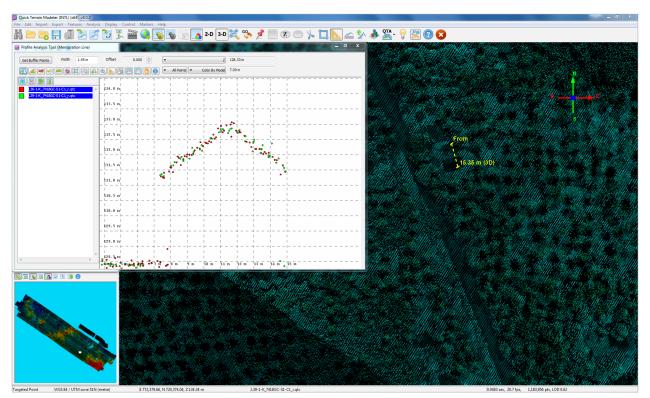



Figure 15. Quality checking for a Padada flight 7418GC using the Profile Tool of QT Modeler.

#### 3.6 LiDAR Point Cloud Classification and Rasterization

Table 10. Padada classification results in TerraScan.

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 411,528,005            |
| Low Vegetation    | 493,419,283            |
| Medium Vegetation | 750,468,680            |
| High Vegetation   | 1,095,920,912          |
| Building          | 23,770,774             |

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Padada floodplain is shown in Figure 16. A total of 1,267 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 10. The point cloud has a maximum and minimum height of 1,039.27 meters and 52.50 meters respectively.

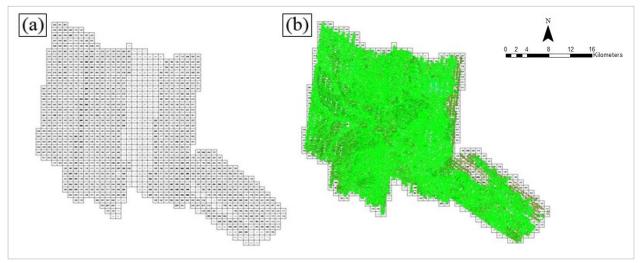



Figure 16. Tiles for Padada floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

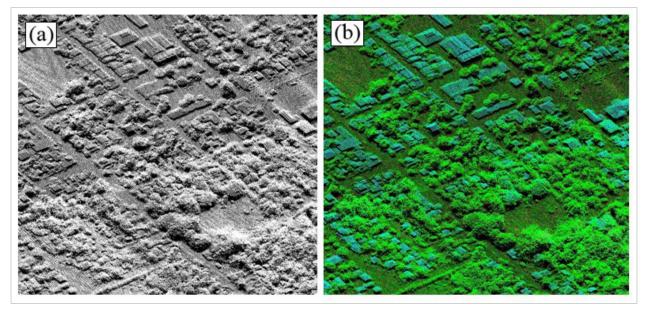



Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

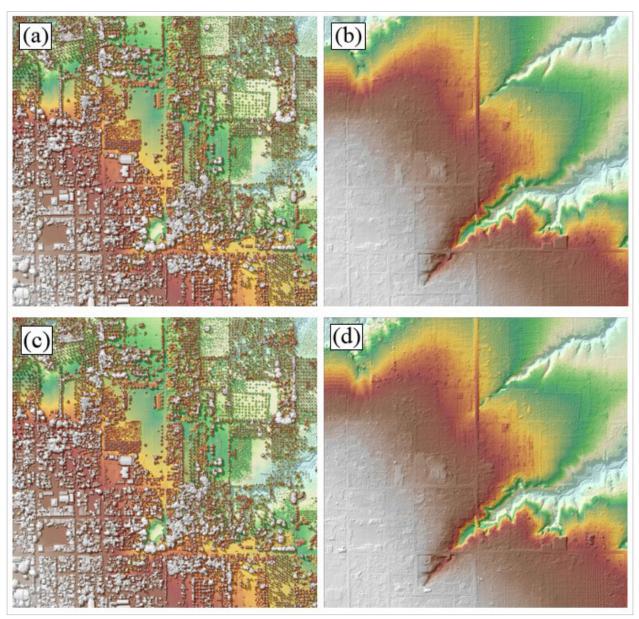



Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Padada floodplain.

#### 3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Padada floodplain.

#### 3.8 DEM Editing and Hydro-Correction

Six (6) mission blocks were processed for Padada flood plain. These blocks are composed of DavaoDelSur blocks with a total area of 951.55 square kilometers. Table 11 shows the name and corresponding area of each block in square kilometers.

| Table II. LIDAR DIOCKS WITH Its | s corresponding area. |
|---------------------------------|-----------------------|
| LiDAR Blocks                    | Area (sq.km)          |
| DavaoDelSur_87A                 | 164.20                |
| DavaoDelSur_87B                 | 189.17                |
| DavaoDelSur_87C                 | 214.47                |
| DavaoDelSur_87E                 | 184.12                |
| DavaoDelSur_87D                 | 96.69                 |
| DavaoDelSur_87F                 | 102.89                |
| TOTAL                           | 951.55 sq.km          |

Table 11. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 19. The river embankment (Figure 19a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 19b) to allow the correct flow of water. The bridge (Figure 19c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 19d) in order to hydrologically correct the river. Another example is a building that is still present in the DTM after classification (Figure 19e) and has to be removed through manual editing (Figure 19f).

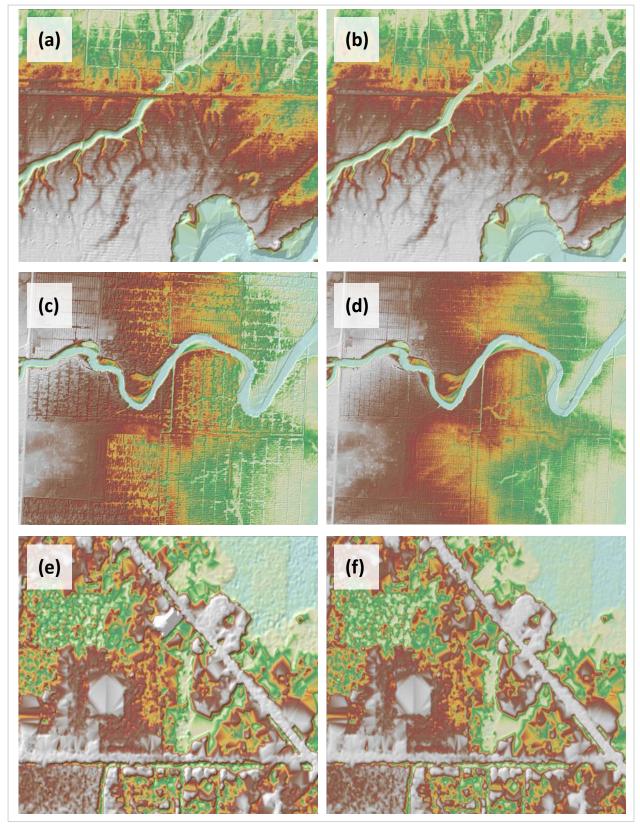



Figure 19. Portions in the DTM of Padada floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing.

#### 3.9 Mosaicking of Blocks

Davao Oriental Blk87A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Padada floodplain is shown in Figure 20. It can be seen that the entire Padada floodplain is 99.50% covered by LiDAR data.

|                 |      | Shift Values (meters) |       |  |  |  |
|-----------------|------|-----------------------|-------|--|--|--|
| Mission Blocks  | x    | У                     | z     |  |  |  |
| DavaoDelSur_87A | 0.00 | 0.00                  | -0.80 |  |  |  |
| DavaoDelSur_87B | 0.00 | 0.00                  | 0.00  |  |  |  |
| DavaoDelSur_87C | 0.00 | 0.00                  | 0.00  |  |  |  |
| DavaoDelSur_87E | 0.00 | 0.00                  | 0.28  |  |  |  |
| DavaoDelSur_87D | 3.00 | 1.00                  | 1.06  |  |  |  |
| DavaoDelSur_87F | 3.10 | 0.50                  | -0.14 |  |  |  |

Table 12. Shift Values of each LiDAR Block of Padada floodplain.

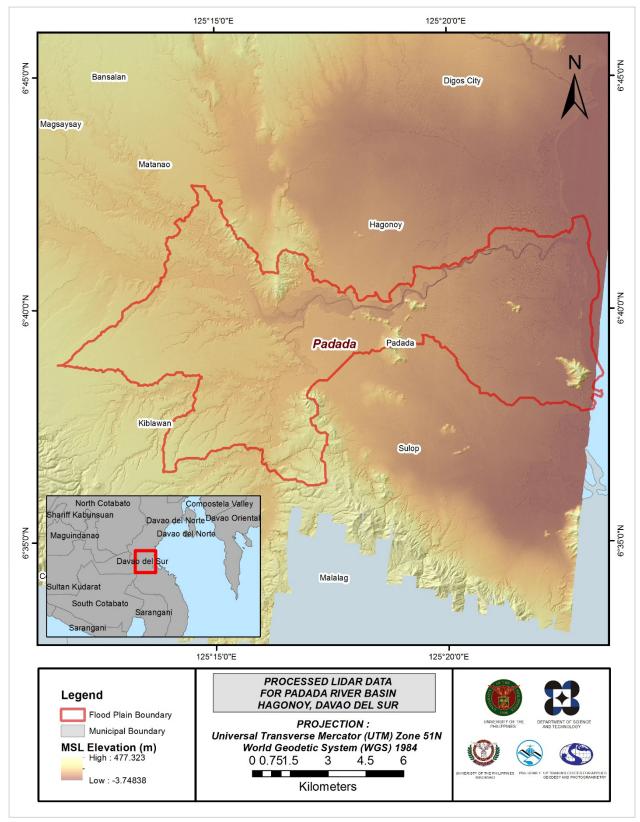



Figure 20. Map of Processed LiDAR Data for Padada Flood Plain.

#### 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Padada to collect points with which the LiDAR dataset is validated is shown in Figure 21. A total of 21,221 survey points were used for calibration and validation of Padada LiDAR data. Random selection of 80% of the survey points, resulting to 16,977 points, were used for calibration. A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.20 meters with a standard deviation of 0.12 meters. Calibration of Padada LiDAR data was done by adding the height difference value, 0.20 meters, to Padada mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

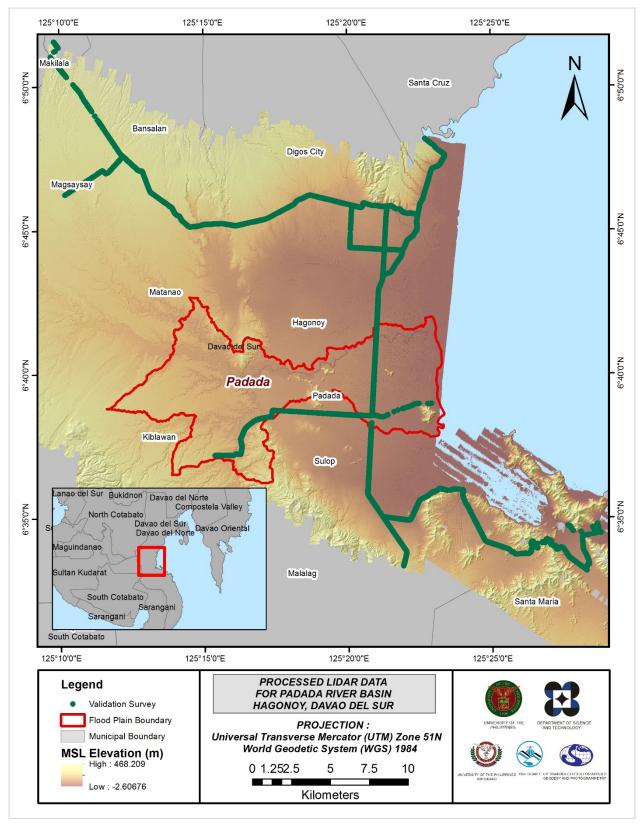



Figure 21. Map of Padada Flood Plain with validation survey points in green.

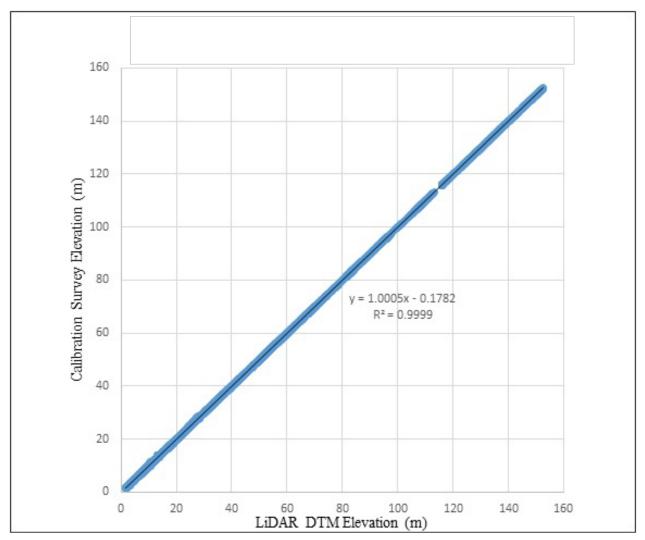



Figure 22. Correlation plot between calibration survey points and LiDAR data

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 0.20           |
| Standard Deviation               | 0.12           |
| Average                          | 0.16           |
| Minimum                          | -0.07          |
| Maximum                          | 0.39           |

Table 13. Calibration Statistical Measures.

The remaining 20% of the total survey points, resulting to 4,244 points, were used for the validation of calibrated Padada DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 23. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.13 meters, as shown in Table 14.

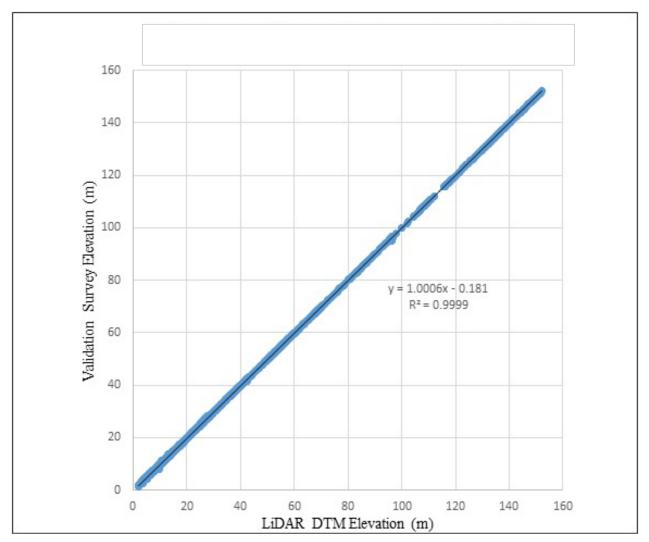



Figure 23. Correlation plot between validation survey points and LiDAR data.

| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.20           |
| Standard Deviation              | 0.13           |
| Average                         | 0.16           |
| Minimum                         | -0.10          |
| Maximum                         | 0.42           |

Table 14. Validation Statistical Measures.

### 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data and cross-section was available for Padada with 2,293 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.39 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Padada integrated with the processed LiDAR DEM is shown in Figure 24.

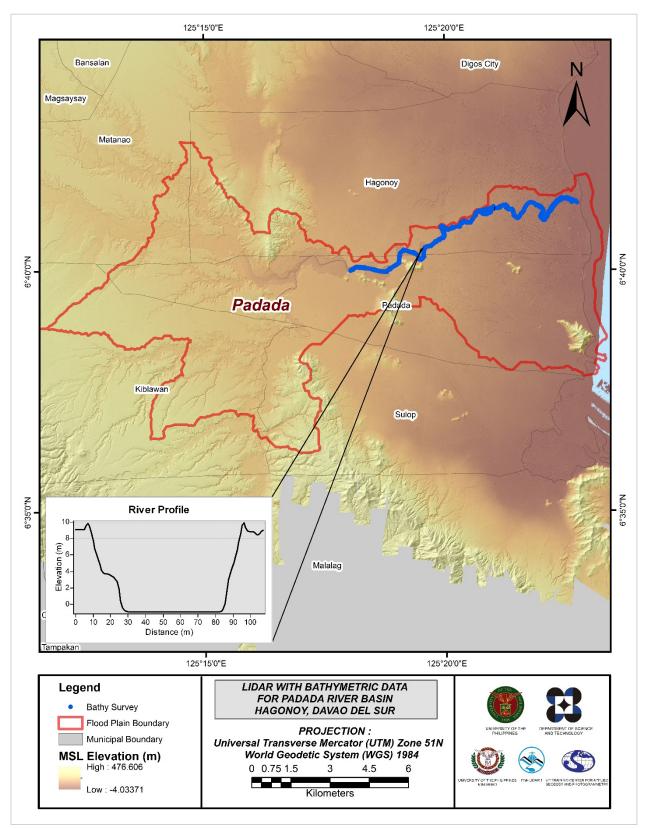



Figure 24. Map of Padada Flood Plain with bathymetric survey points shown in blue.

# 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

# 3.12.1 Quality Checking of Digitized Features' Boundary

Padada floodplain, including its 200 m buffer, has a total area of 127.48 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 1,139 building features, are considered for QC. Figure 26. shows the QC blocks for Padada floodplain.

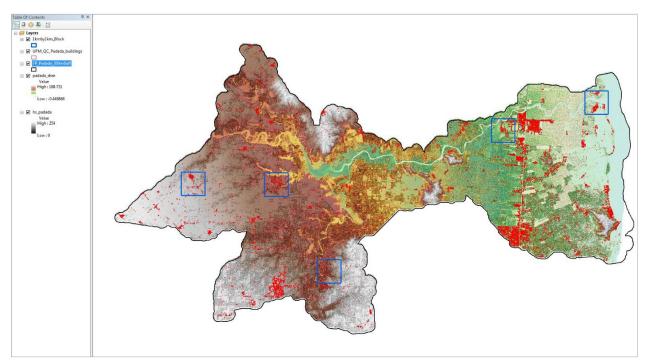



Figure 25. Padada building features that were subjected to QC blocks

### Quality checking of Padada building features resulted in the ratings shown in Table 15.

Table 15. Quality Checking Ratings for Padada Building Features.

| Floodplain | Completeness | Correctness | Quality | Remarks |
|------------|--------------|-------------|---------|---------|
| Padada     | 97.18        | 93.68       | 84.37   | PASSED  |

# 3.12.2 Height Extraction

Height extraction was done for 17, 365 building features in Padada floodplain. Of these building features, 1,406 were filtered out after height extraction, resulting to 15,959 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 16.27 m.

### 3.12.3 Feature Attribution

Before the actual field validation, courtesy calls were conducted to seek permission and assistance from the Local Government Units of each barangay. This was done to ensure the safety and security in the area for the field validation process to go smoothly. Verification of barangay boundaries was also done to finalize the distribution of features for each barangay.

The courtesy calls and project presentations were done on February 15 - 18, 2016. Barangay Health Workers (BHWs) were requested and hired to guide the University of the Philippines Mindanao Phil-LiDAR1 field enumerators during validation. The field work activity was conducted from February 29 to April 1, 2016. The local hires deployed by the barangay captains were given a brief orientation by the field enumerators before the actual field work. Some of the personnel volunteered to use their own motorcycle vehicles during the validation proper. The team surveyed the thirty-eight (38) barangays covered by the floodplain namely Paligue, Guihing, Aplaya, Poblacion, Hagonoy Crossing, Tologan, Mahayahay, Lapulabao, New Quezon, La Union, Maliit Digos, Clib, Malabang, San Guillermo, Piape, San Isidro, Punta Piape, Lower Limonzo, Upper Limonzo, NCO District, Almendras, Southern Paligue, Northern Paligue, Don Sergio Osmeña, Lower Katipunan, Lower Malinao, Upper Malinao, Molopolo, New Sibonga, Bagumbayan, Manual, Santo Niño, Poblacion, Buri, Kauswagan, Bagumbayan, Katipunan, and Tanwalang.

One of the concerns of the team during field validation was the steepness of the roads in the area which are very difficult to pass through via van. It was also raised that the Balutakay River affects northern reaches of the Municipality of Hagonoy. Also, the Mainit River causes floods in Kiblawan and the western reaches of Padada. Flood waters from there then flow towards Sulop.

Table 16 summarizes the number of building features per type. On the other hand, Table 17 shows the total length of each road type, while Table 18 shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 14,627          |
| School                                  | 361             |
| Market                                  | 23              |
| Agricultural/Agro-Industrial Facilities | 166             |
| Medical Institutions                    | 59              |
| Barangay Hall                           | 35              |
| Military Institution                    | 1               |
| Sports Center/Gymnasium/Covered Court   | 33              |
| Telecommunication Facilities            | 0               |
| Transport Terminal                      | 2               |
| Warehouse                               | 34              |
| Power Plant/Substation                  | 3               |
| NGO/CSO Offices                         | 11              |
| Police Station                          | 3               |
| Water Supply/Sewerage                   | 6               |
| Religious Institutions                  | 158             |
| Bank                                    | 4               |
| Factory                                 | 86              |
| Gas Station                             | 17              |
| Fire Station                            | 1               |
| Other Government Offices                | 33              |
| Other Commercial Establishments         | 296             |
| Total                                   | 15,959          |

Table 16. Building Features Extracted for Padada Floodplain.

Table 17. Total Length of Extracted Roads for Padada Floodplain.

| Floodplain | Barangay<br>Road | City/<br>Municipal<br>Road | Provincial<br>Road | National Road | Others | Total  |
|------------|------------------|----------------------------|--------------------|---------------|--------|--------|
| Padada     | 253.75           | 38.31                      |                    | 6.94          | 0.00   | 299.00 |

Table 18. Number of Extracted Water Bodies for Padada Floodplain.

|            |                    | v               |     |     |          |            |       |
|------------|--------------------|-----------------|-----|-----|----------|------------|-------|
| Floodplain | Rivers/<br>Streams | Lakes/<br>Ponds | Sea | Dam | Fish Pen | Irrigation | Total |
| Padada     | 4                  | 0               | 0   | 0   | 84       | 1          | 88    |

A total of 44 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

# 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 26 shows the Digital Surface Model (DSM) of Padada floodplain overlaid with its ground features.

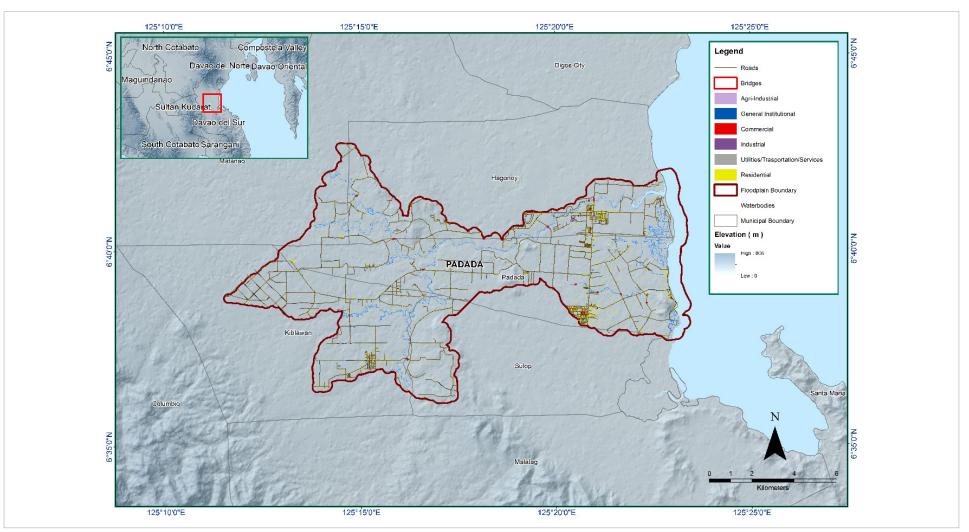



Figure 26. Extracted features for Padada floodplain.

# CHAPTER 4. LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BALANGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 4.1 Summary of Activities

Padada-Mainit River Basin is located in the Province of Davao del Sur. It covers the Municipalities of Bansalan, Magsaysay, Kiblawan, Malalag, and Matanao in Davao del Sur, a portion of the Municipalities of Columbio, Tulunan, and Tampakan in Sultan Kudarat, North Cotabato, and South Cotabato, respectively. The basin has a catchment area of 1,303 km<sup>2</sup> with an estimated annual run-off of 2,606 MCM according to DENR-RCBO.

Padada River originates from Matanao, Davao del Sur and is joined by Mainit River downstream in Brgy. San Guillermo, Hagonoy, Davao del Sur. It empties to Davao Gulf at Guihing Aplaya, Hagonoy, Davao del Sur. The river is used to irrigate rice fields, banana and mango plantations, and as a cooling water of a sugar mill along its banks (Davao Sugar Central Corporation). The University of the Philippines Mindanao is the partner HEI that is responsible for monitoring Padada-Mainit River.

In line with this, a field survey in Padada-Mainit River from June 28 to July 12, 2015 was conducted with the following scope of work: reconnaissance survey to assess the actual condition of the river and recovery of existing control points; courtesy call with UP Mindanao and LGUs of Davao del Sur; control survey for the establishment of a control point at the approach of Tologan Bridge; cross-section, bridge-as-built and water level marking in Tologan Bridge in Brgy. Tologan, Municipality of Hagonoy, Davao Del Sur; validation points acquisition along concrete roads with estimated distance of 122 km; and bathymetric survey of Padada-Mainit River with an approximate length of 10 km as shown in Figure 27.

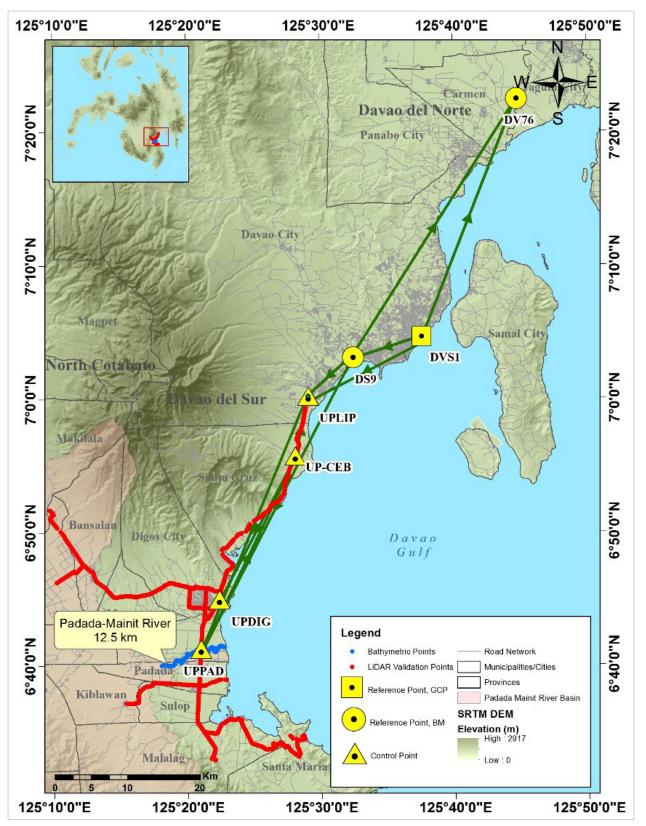



Figure 27. Padada-Mainit River survey extent

# 4.2 Control Survey

The GNSS network used in Padada-Mainit River survey was composed of six (6) loops established on July 4 and 5, 2015 with the following reference points: DVS-1, a first order GCP in Brgy. Leon Garcia Sr, Davao City, Davao Del Sur; and DV-76, a first order benchmark located Brgy. Guadalupe, Municipality of Carmen, Davao Del Norte.

Five (5) control points were established along approach of bridges namely: UP-CEB at Cebulan Bridge in Brgy. Darong, Municipality of Sta. Cruz Davao Del Sur; UP-DIG in Digos Bridge in Brgy. Aplaya, Digos City, Davao Del Sur; UP-LIP2 at Lipadas Bridge approach in Brgy. Lizada, Davao City, Daao Del Sur; and UP-PAD at Padada Bridge, in Brgy. Guihing, Muncipality of Hagonoy, Davao Del Sur. A NAMRIA established control point namely DS-9, located in Brgy. Talomo, Davao City, was also occupied to use as marker during the survey.

The summary of reference and control points and its location is summarized in Table 19, and the GNSS network established is illustrated in Figure 28.

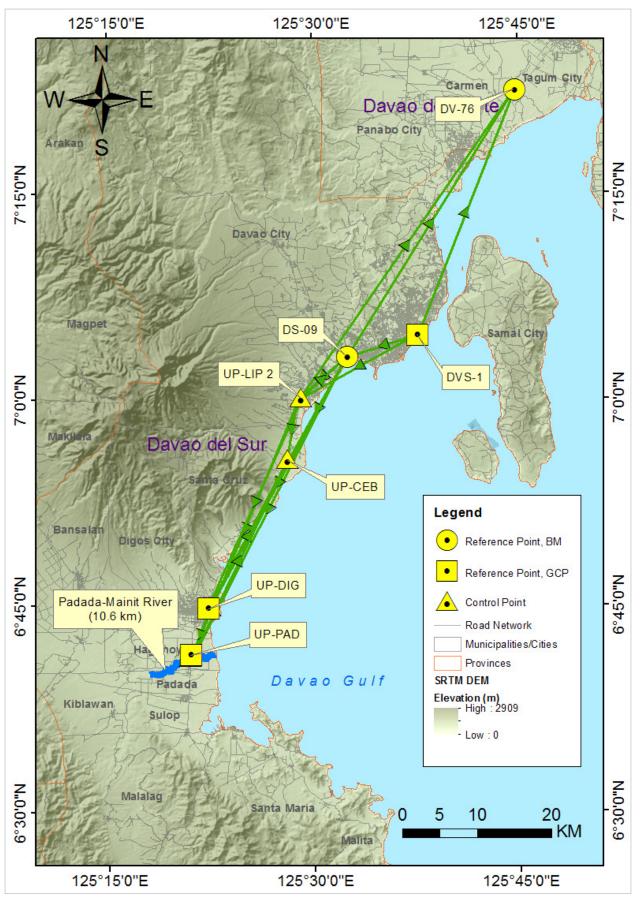



Figure 28. Overall GNSS Survey loop of Padada Mainit River Basin

|                  |                           | Geographic Coordinates (WGS UTM Zone 52N) |                  |                            |                           |                               |  |  |
|------------------|---------------------------|-------------------------------------------|------------------|----------------------------|---------------------------|-------------------------------|--|--|
| Control<br>Point | Order of Accuracy         | Latitude                                  | Longitude        | Ellipsoid<br>Height<br>(m) | Elevation<br>(MSL)<br>(m) | Date of<br>Establish-<br>ment |  |  |
| DVS-1            | 1 <sup>st</sup> order GCP | 7°04'38.36201"                            | 125°37'36.77094" | 68.5                       | -                         | 2013                          |  |  |
| DV-76            | 1 <sup>st</sup> order BM  | -                                         | -                | 76.155                     | 8.359                     | 2007                          |  |  |
| DS-9             | Used as Marker            | -                                         | -                | -                          | -                         | 2007                          |  |  |
| UP-CEB           | UP Established            | -                                         | -                | -                          | -                         | 7-5-2015                      |  |  |
| UP-DIG           | UP Established            | -                                         | -                | -                          | -                         | 7-5-2015                      |  |  |
| UP-LIP2          | UP Established            | _                                         | -                | -                          | -                         | 7-4-2015                      |  |  |
| UP-PAD           | UP Established            | -                                         | -                | -                          | -                         | 7-5-2015                      |  |  |

#### Table 19. List of Reference and Control Points used in Padada Mainit River Survey (Source: NAMRIA, UP-TCAGP)

The GNSS set up for control points used are shown in Figure 29 to Figure 35 respectively.



Figure 29. GNSS base receiver setup, Trimble® SPS 852 at DVS-1 at the east side of Pier, in Brgy. Leon Garcia Sr., Davao City, Davao Del Sur

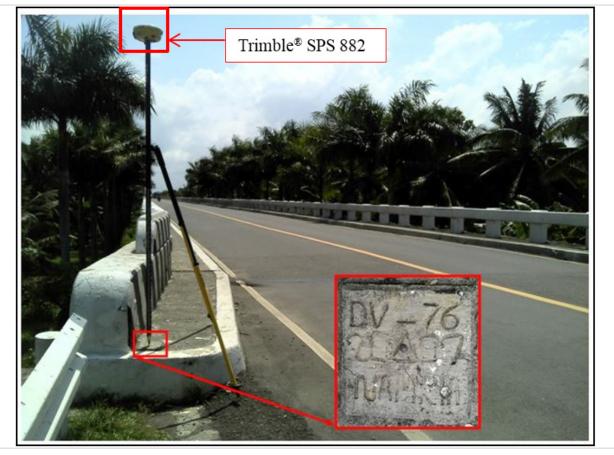



Figure 30. GNSS base receiver setup, Trimble® SPS 882 at DV-76 at the Gov. Miranda Bridge Approach, Brgy. Guadalupe, Municipality of Carmen, Davao Del Norte




Figure 31. GNSS base receiver setup, Trimble® SPS 882 at DS-09 located at stair of Nograles Park along Mac Arthur Highway, in Brgy. Talomo, Davao City, Davao Del Sur



Figure 32. GNSS base receiver setup, Trimble® SPS 852 at UP-CEB on the right approach of Cebulan Bridge in Brgy Darong, Municipality of Santa Cruz, Davao Del Sur



Figure 33. GNSS base receiver setup, Trimble® SPS 882 at UP-DIG, right approach of Digos Bridge in Brgy. Aplaya, Digos City, Davao Del Sur



Figure 34. GNSS base receiver setup, Trimble® SPS 852 at UP-LIP2, on the right approach of Lipadas Bridge along National Highway in Brgy. Lizada, Toril District, Davao Del Sur

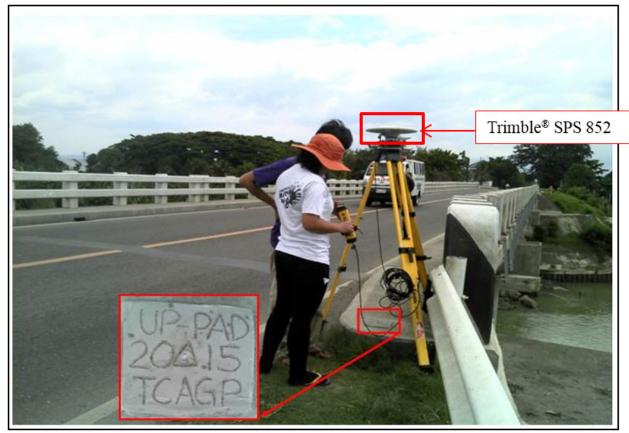



Figure 35. GNSS base receiver setup, Trimble® SPS 882 at UP-PAD, Padada Bridge, Brgy. Guihing, Municipality of Hagonoy, Davao del Sur

## 4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Padada Mainit River Basin is summarized in Table 20, generated by TBC software.

| Observation  | Date of     | Solution | H. Prec. | V. Prec. | Coordotto Ar | Ellipsoid Dist. | ∆ Height |
|--------------|-------------|----------|----------|----------|--------------|-----------------|----------|
| Observation  | Observation | Туре     | (Meter)  | (Meter)  | Geodetic Az. | (Meter)         | (m)      |
| UPPAD UPCEB  | 7-4-2015    | Fixed    | 0.005    | 0.024    | 26°11'09"    | 29668.539       | 20.427   |
| DVS1 DS9     | 6-30-2015   | Fixed    | 0.004    | 0.013    | 252°53'03"   | 9875.482        | 3.720    |
| DVS1 UPLIP2  | 7-4-2015    | Fixed    | 0.003    | 0.016    | 242°19'23"   | 17735.680       | 10.641   |
| UPLIP2 UPPAD | 7-4-2015    | Fixed    | 0.004    | 0.017    | 203°09'13"   | 37929.527       | 4.455    |
| UPLIP2 UPCEB | 7-4-2015    | Fixed    | 0.004    | 0.024    | 192°23'44"   | 8451.500        | 24.864   |
| UPPAD UPTOL  | 7-4-2015    | Fixed    | 0.003    | 0.014    | 240°13'14"   | 2487.973        | 1.230    |
| DVS1 DS9     | 6-30-2015   | Fixed    | 0.006    | 0.033    | 252°53'03"   | 9875.477        | 3.723    |
| DS9 UPLIP2   | 6-30-2015   | Fixed    | 0.006    | 0.042    | 229°36'22"   | 8229.009        | 6.907    |
| UPLIP2 DS9   | 6-30-2015   | Fixed    | 0.006    | 0.035    | 229°36'23"   | 8228.967        | 6.965    |
| DS9 UPPAD    | 6-30-2015   | Fixed    | 0.011    | 0.036    | 207°47'10"   | 45445.416       | 11.450   |
| DS9 UPCEB    | 7-5-2015    | Fixed    | 0.011    | 0.046    | 210°44'50"   | 15809.215       | 31.878   |
| DS9 DV76     | 6-30-2015   | Fixed    | 0.005    | 0.049    | 32°23'13"    | 42306.620       | 3.850    |
| DVS1 DV76    | 7-5-2015    | Fixed    | 0.003    | 0.015    | 21°57'24"    | 35381.584       | 7.644    |
| UPLIP2 DV76  | 7-5-2015    | Fixed    | 0.006    | 0.021    | 35°09'36"    | 50225.907       | -2.996   |
| DS9 UPDIG    | 6-30-2015   | Fixed    | 0.006    | 0.039    | 209°08'05"   | 38212.638       | 8.511    |
| UPLIP2 UPDI  | 7-5-2015    | Fixed    | 0.003    | 0.017    | 203°44'17"   | 30638.805       | 1.495    |
| UPDIG UPPAD  | 7-5-2015    | Fixed    | 0.004    | 0.017    | 200°41'13"   | 7298.998        | 2.930    |
| UPDIG UPCEB  | 7-5-2015    | Fixed    | 0.004    | 0.025    | 27°58'39"    | 22414.077       | 23.379   |

Table 20. Baseline Processing Report for Padada Mainit River Basin Static Survey

As shown in Table 20 a total of 18 baselines were processed and all of them passed the required accuracy set by the project.

### 4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm} \text{ and } z_e < 10 \text{ cm}$$

Where:

 $x_e$  is the Easting Error,  $y_e$  is the Northing Error, and  $z_e$  is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table C-3 to Table C-5 for the complete details.

The seven (7) control points, DVS-1, DV-76, DS-9, UP-CEB, UP-DIG, UP-LIP2 and UP-PAD were occupied and observed simultaneously to form GNSS LOOP. Coordinates of DVS-1 and elevation value of DV-76 were held fixed during the processing of the control points as presented in Table 21. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

| Point ID                | Туре   | North<br>(Meter) | East<br>(Meter) | Height<br>(Meter) | Elevation<br>(Meter) |  |
|-------------------------|--------|------------------|-----------------|-------------------|----------------------|--|
| DVS-1                   | Global | Fixed            | Fixed           |                   |                      |  |
| DV-76                   | Grid   |                  |                 |                   | Fixed                |  |
| Fixed = 0.000001(Meter) |        |                  |                 |                   |                      |  |

#### Table 21. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 22. The fixed control point DV-76 and DVS-1, has no values for standard elevation and coordinates error, respectively.

| Point ID | Easting<br>(Meter) | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| DS9      | 780765.613         | 0.009                    | 780155.271          | 0.007                        | 3.801                | 0.079                         |            |
| DV76     | 803241.598         | 0.008                    | 816030.498          | 0.008                        | 8.359                | ?                             | е          |
| DVS1     | 790192.921         | ?                        | 783116.705          | ?                            | 0.771                | 0.064                         | LL         |
| UPCEB    | 772752.259         | 0.012                    | 766517.370          | 0.011                        | 34.883               | 0.097                         |            |
| UPDIG    | 762330.012         | 0.011                    | 746661.467          | 0.009                        | 10.556               | 0.090                         |            |
| UPLIP2   | 774523.929         | 0.008                    | 774785.649          | 0.007                        | 10.067               | 0.072                         |            |
| UPPAD    | 759783.560         | 0.011                    | 739817.613          | 0.010                        | 13.208               | 0.089                         |            |

#### Table 22. Adjusted Grid Coordinates

The networks are fixed at reference points DVS-1 and DV-76. With the mentioned equation,  $\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm}$  and  $z_e < 10 \text{ cm}$  for the vertical, the computations for the horizontal and vertical accuracy are as follows:

| a. DVS-1                                 |                                                                | e. UP-DIG           |                                                                                      |
|------------------------------------------|----------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------|
| horizontal accuracy<br>vertical accuracy | = Fixed<br>= 6.4cm < 10 cm                                     | horizontal accuracy | = √((1.1) <sup>2</sup> + (0.9) <sup>2</sup><br>= √(1.21 + 0.81)<br>= 1.42 cm < 20 cm |
| b. DV-76                                 |                                                                | vertical accuracy   | = 9.0 cm < 10 cm                                                                     |
| horizontal accuracy                      | $= \sqrt{((0.8)^2 + (0.8)^2)^2}$<br>= $\sqrt{(0.64 + 0.64)^2}$ | f. UP-LIP2          |                                                                                      |
| vertical accuracy                        | = 1.13 cm < 20 cm<br>= Fixed                                   | horizontal accuracy | = √((0.8) <sup>2</sup> + (0.7) <sup>2</sup><br>= √(0.64+ 0.49<br>= 1.06 cm < 20 cm   |
| c. DS-09                                 |                                                                | vertical accuracy   | = 7.2 cm< 10 cm                                                                      |
| horizontal accuracy                      | $= \sqrt{((0.9)^2 + (0.7)^2)^2}$                               | g. UP-PAD           |                                                                                      |
|                                          | = v(0.81 + 0.49)<br>= 1.14 cm < 20 cm                          | horizontal accuracy | $= \sqrt{((1.1)^2 + (1.0)^2)}$ $= \sqrt{(1.21 + 1.0)}$                               |
| vertical accuracy                        | = 7.9 cm < 10 cm                                               |                     | = 1.49 cm < 20 cm                                                                    |
|                                          |                                                                | vertical accuracy   | = 8.9 cm < 10 cm                                                                     |
| d. UP-CEB                                |                                                                |                     |                                                                                      |
| horizontal accuracy                      | $= \sqrt{((1,2)^2 + (1,1)^2)}$                                 |                     |                                                                                      |

| $= V((1.2)^2 + (1.1)^2)$ |
|--------------------------|
| = √(1.44 + 1.21)         |
| = 2.69 cm < 20 cm        |
| = 1.63 cm < 10 cm        |
|                          |

Following the given formula, the horizontal and vertical accuracy result of the seven (7) occupied control points are within the required accuracy of the program.

| Point ID | Latitude        | Longitude         | Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
|----------|-----------------|-------------------|-------------------|-------------------------|------------|
| DS9      | N7°03'03.72282" | E125°32'29.23786" | 72.195            | 0.079                   |            |
| DV76     | N7°22'26.51286" | E125°44'48.14120" | 76.155            | ?                       | е          |
| DVS1     | N7°04'38.36201" | E125°37'36.77094" | 68.500            | 0.064                   | LL         |
| UPCEB    | N6°55'41.41306" | E125°28'05.94638" | 104.051           | 0.097                   |            |
| UPDIG    | N6°44'57.07991" | E125°22'23.41362" | 80.677            | 0.090                   |            |
| UPLIP    | N7°00'10.77316" | E125°29'05.16478" | 78.215            | 0.089                   |            |
| UPLIP2   | N7°00'10.11838" | E125°29'05.04512" | 79.165            | 0.072                   |            |
| UPPAD    | N6°41'14.79422" | E125°20'59.46050" | 83.620            | 0.089                   |            |

| Table 23. Adjusted geodetic coordinates |
|-----------------------------------------|
|-----------------------------------------|

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 24.

| Control<br>Point |                           | Geographic         | Coordinates (WGS 8 | UTM ZONE 51 N              |              |                |                    |
|------------------|---------------------------|--------------------|--------------------|----------------------------|--------------|----------------|--------------------|
|                  | Order of Accuracy         | Latitude Longitude |                    | Ellipsoid<br>Height<br>(m) | Northing (m) | Easting<br>(m) | BM<br>Ortho<br>(m) |
| DVS-1            | 1 <sup>st</sup> Order GCP | 7°04'38.36201"     | 125°37'36.77094"   | 68.5                       | 783116.705   | 790192.921     | 0.771              |
| DV-76            | 1 <sup>st</sup> Order M   | 7°22'26.51286"     | 125°44'48.14120"   | 76.155                     | 816030.498   | 803241.598     | 8.359              |
| DS-9             | Used as Marker            | 7°03'03.72282"     | 125°32'29.23786"   | 72.195                     | 780155.271   | 780765.613     | 3.801              |
| UP-CEB           | UP Established            | 6°55'41.41306"     | 125°28'05.94638"   | 104.051                    | 766517.37    | 772752.259     | 34.883             |
| UP-DIG           | UP Established            | 6°44'57.07991"     | 125°22'23.41362"   | 80.677                     | 746661.467   | 762330.012     | 10.556             |
| UP-LIP2          | UP Established            | 7°00'10.11838"     | 125°29'05.04512"   | 79.165                     | 774785.649   | 774523.929     | 10.067             |
| UP-PAD           | UP Established            | 6°41'14.79422"     | 125°20'59.46050"   | 83.62                      | 739817.613   | 759783.56      | 13.208             |

Table 24. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)

### 4.5 Cross-section and Bridge As-Built Survey and Water Level Marking

Cross-section and as-built survey were conducted on July 8, 2015 at the downstream side of Tologan Bridge in Brgy. Tologan, Municipality of Hagonoy, Davao Del Sur using a GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique as shown in Figure 36. The control point UP-PAD was used as the GNSS base station for both cross-section and bridge as-built surveys.



Figure 36. Cross-section and bridge as-built survey at the downstream side of Tologan Bridge, Brgy. Tologan, Hagonoy, Davao del Sur

A total of fifty seven (57) cross-section points were gathered with an estimated length of 106.7 m from left to right banks. The location map, cross-section diagram, and as-built data form for Tologan Bridge are displayed in Figure 37 to Figure 39, respectively.

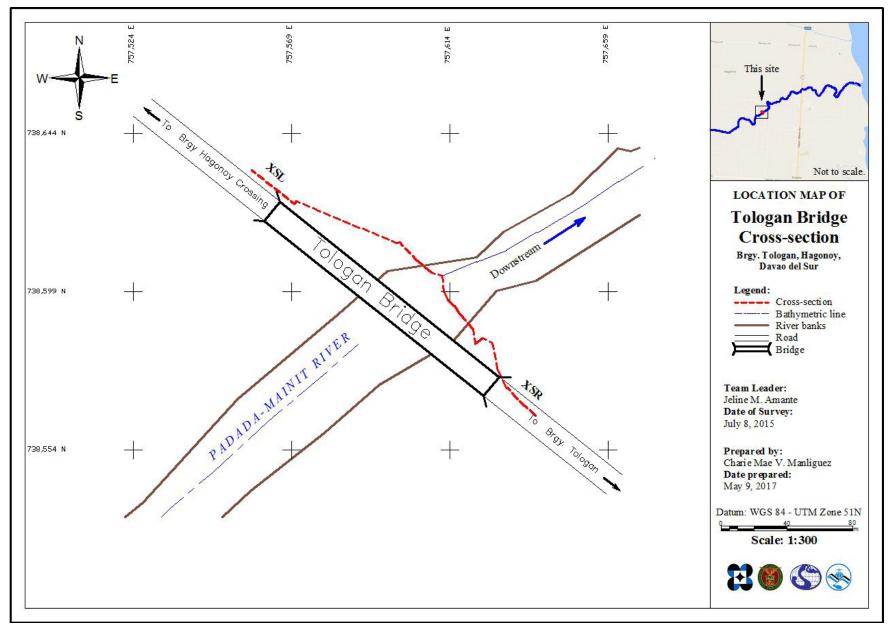



Figure 37. Tologan bridge cross-section location map

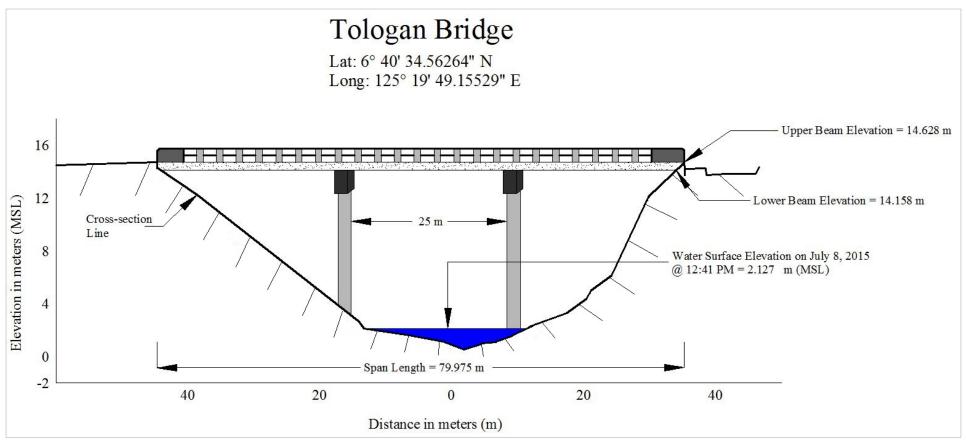



Figure 38. Tologan bridge cross-section location map

|      | vey Tea<br>w condi    | m: <u>I</u>                 | i <b>ty, Region):</b> <u>Brgy. Tol</u><br>DVBC/DVC Davao del S<br>low <u>normal</u> | ur Survey Tear                  | <u>n</u>                             | -<br>Veather Cond        | ition:                               | <u>fair</u>              | rainy     |           |
|------|-----------------------|-----------------------------|-------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|-----------|-----------|
| ati  | tude: _               | _6°40                       | '34.56264''N_                                                                       | Lo                              | Longitude: <u>125°19'49.15529"</u> E |                          |                                      |                          |           |           |
|      | BA2                   | 2                           | D                                                                                   | $\bigcirc$                      | <b>BA3</b>                           |                          |                                      |                          |           |           |
| 3A:  | L                     | 1                           |                                                                                     |                                 |                                      | BA4 B                    | egend:<br>A = Bridge A<br>b = Abutme |                          |           | = Low Cho |
|      |                       | Ab1                         |                                                                                     |                                 | Ab = Abutment D = Deck HC = High C   |                          |                                      |                          |           |           |
| AUT- |                       |                             |                                                                                     |                                 |                                      |                          |                                      |                          |           |           |
|      |                       |                             | Deals (a)                                                                           |                                 |                                      | -                        |                                      |                          |           |           |
| lev  | ation: 1              | 4.663 ו                     | Deck (Please start your r<br>m (MSL) Width: <u>8</u> .                              | neasurement from<br>.205 meters |                                      |                          | -                                    | ream)<br>_ <b>meters</b> |           |           |
|      |                       |                             | Station                                                                             |                                 | High Chord Elevation                 |                          |                                      | Low Chord Elevation      |           |           |
| 1    |                       |                             | -                                                                                   |                                 |                                      | 14.628 m                 |                                      | 14.158 m                 |           |           |
| 2    |                       |                             |                                                                                     |                                 |                                      |                          |                                      |                          |           |           |
| 3    |                       |                             |                                                                                     |                                 |                                      |                          |                                      |                          |           |           |
| 4    |                       |                             |                                                                                     |                                 |                                      |                          |                                      |                          |           |           |
|      |                       |                             | Bridge Approach (Plea                                                               | se start your measureme         | ent from the                         | left side of the bank fa | cing downstr                         | eam)                     |           |           |
|      |                       | Stati                       | on(Distance from BA1                                                                | ) Elevation                     | ````````````````````````````````     |                          |                                      |                          | Elevation |           |
|      | BA1                   |                             | 0                                                                                   | 14.479                          | BA3                                  | AJ                       |                                      | 5.288                    |           | 14.655    |
|      | BA2                   |                             | 15.333                                                                              | 14.728                          | <sup>28</sup> <b>BA4</b> 106.092     |                          |                                      |                          | 13.813    |           |
|      | Abı                   | ıtment                      | : Is the abutment slopin                                                            | ng? <u>Yes</u>                  | No;                                  | If yes, fill in          | the follo <sup>,</sup>               | wing inform              | ation:    |           |
|      | Station (Distance fro |                             |                                                                                     |                                 |                                      |                          |                                      |                          |           |           |
|      | A                     | b1                          |                                                                                     |                                 |                                      |                          | 12.113                               |                          |           |           |
|      | Ab2 80.37             |                             |                                                                                     |                                 |                                      |                          |                                      | 4.342                    |           |           |
|      |                       |                             | Pier (Please start your m                                                           | easurement from t               | the left si                          | de of the bank faci      | ng downst                            | tream)                   |           |           |
|      |                       | CY                          | LINDRICAL N                                                                         | Height of column footing:       |                                      |                          |                                      |                          |           |           |
|      | Shape                 | Station (Distance from BA1) |                                                                                     |                                 |                                      | Elevation                |                                      | Pier Width               |           |           |
|      | Shape                 |                             |                                                                                     | om BA1)                         |                                      |                          |                                      | -                        |           |           |
|      | Shape:<br>Pier 1      |                             | 42.825                                                                              | om BA1)                         |                                      | 14.627                   |                                      |                          |           |           |
|      |                       |                             |                                                                                     | om BA1)                         |                                      | 14.627<br>14.640         |                                      |                          | -         |           |
|      | Pier 1                |                             | 42.825                                                                              | om BA1)                         |                                      |                          |                                      |                          | -         |           |

Figure 39. Tologan Bridge Data Form

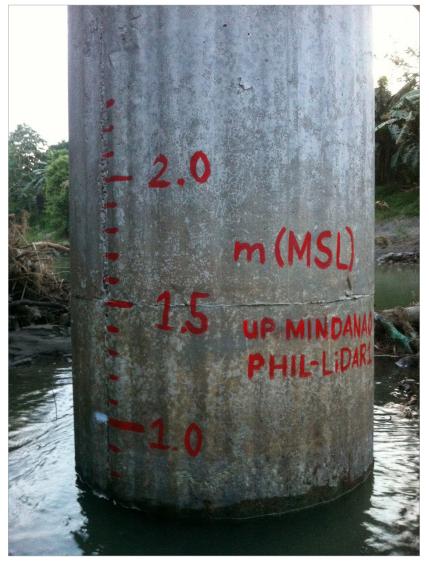



Figure 40. Water level markings on the post of Tologan Bridge

Water surface elevation in MSL of Tologan Bridge was determined using Trimble<sup>®</sup> SPS 882 in PPK mode survey on July 8, 2015 at 12:42 PM. This was translated onto marking the bridge's pier using a digital level. The marked pier, see Figure 40, shall serve as reference for flow data gathering and depth gauge deployment by the accompanying HEI, UP Mindanao, who is responsible for Padada-Mainit River.

# 4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted from July 8 to 11, 2015 using a survey-grade GNSS Rover receiver, Trimble<sup>®</sup> SPS 882, mounted on a range pole which was attached on the left side of the vehicle as shown in Figure 41. It was secured with a cable tie to ensure that it was horizontally and vertically balanced. The antenna height was measured and recorded to be 2.463 m from the ground up to the bottom of notch of the GNSS Rover receiver.



Figure 41. Validation points acquisition survey set-up for Davao del Sur.

The survey was conducted using PPK technique on a continuous topography mode, which covered the major roads of the Municipalities of Bansalan, Magsaysay, Manatao, Kiblawan, Sulop, Santa Maria, Santa Cruz, Padada, and Hagonoy and Digos City as illustrated in Figure 42. The survey gathered a total of 21, 217 validation points covering an approximate distance of 122 km using the control point UP-PAD as the GNSS base station.

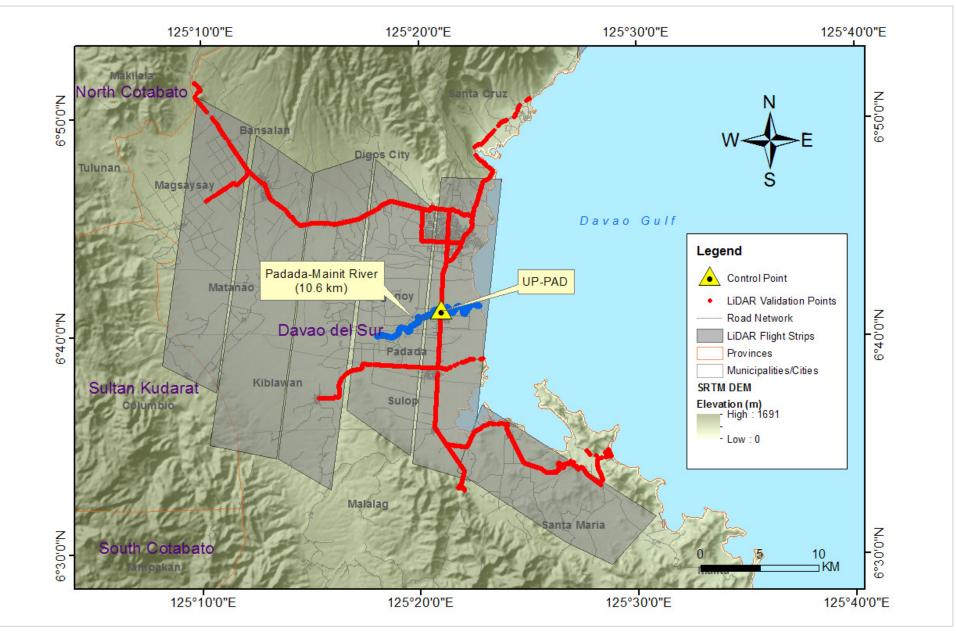



Figure 42. Validation points acquisition survey coverage for Padada-Mainit River

## 4.7 River Bathymetric Survey

Bathymetric survey was conducted from July 3 and 10, 2015 using a survey grade GNSS Rover receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique as shown in Figure 43. The control point UP-PAD was used as base station for the survey. The river was traversed manually which started at the upstream portion of the river in Brgy. Son Sergio Osmeña Sr., Municipality of Padada with coordinates 6°39'59.70560" 125°18'02.19947", down to the mouth of the river in Brgy. Guihing Aplaya, also in Padada with coordinates 6°41'23.82323" 125°22'44.41592".



Figure 43. Bathymetric survey setup in Padada-Mainit River (upstream)

The entire coverage for the bathymetric survey for Padada-Mainit River is 12.5 km with a total of 2,262 bathymetric points gathered as shown in Figure 44. A CAD drawing was also produced to illustrate the riverbed profile of Padada Mainit river. As shown in Figure 45, an elevation drop of 16.85 m in MSL was observed within the approximate distance of 12.5 km from downstream in Brgy. Tologan to Brgy. Guihing Aplaya. The lowest elevation was measured at -5.516 m located near the mouth of the river. The surveyed portion of the river passed at the barangay boundaries of Brgy. Tologan to Brgy. Guihing Aplaya

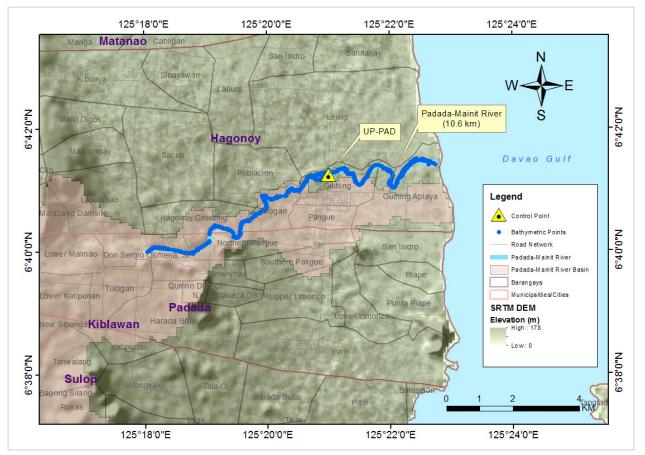



Figure 44. Bathymetric survey of Padada-Mainit River

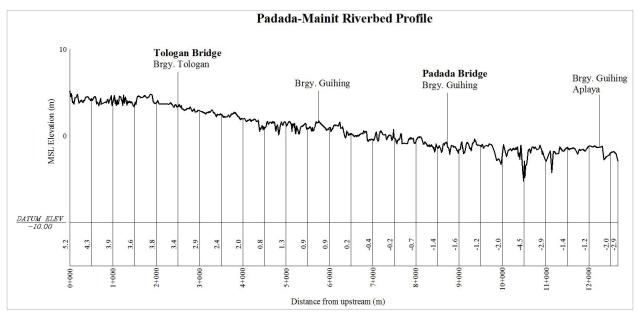



Figure 45. Padada-Mainit Riverbed Profile

# **CHAPTER 5. FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, Hannah Aventurado

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

## 5.1 Data Used for Hydrologic Modeling

### 5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the river basin was monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Padada-Mainit river were monitored, collected and analyzed.

### 5.1.2 Precipitation

Precipitation data was taken from the rain gauge installed by the University of the Philippines Mindanao Phil. LiDAR 1. This rain gauge is located in Barangay Bagumbayan, Matanao, Davao del Sur with the following coordinates: 6° 38' 26.3" N, 125° 13' 40.4" E (Figure 46). The precipitation data collection started from October 1, 2015 at 12:00 NN to October 3, 2015 at 11:00 PM with a 10-minute recording interval.

The total precipitation for this event in the installed rain gauge was 12.8 mm. It has a peak rainfall of 6.6 mm. on October 1, 2015 at 12:50 PM. The lag time between the peak rainfall and discharge is 14 hours and 20 minutes.

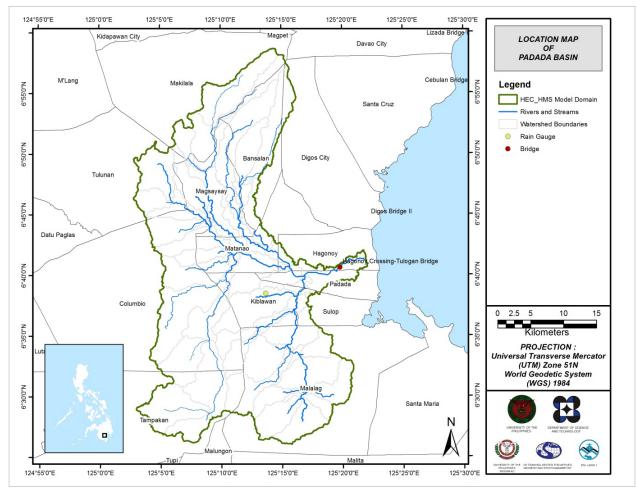



Figure 46. Padada-Mainit Riverbed Profile

# 5.1.3 Rating Curves and River Outflow

A rating curve was developed at Diversion Bridge or Tologan Bridge AWLS, Barangay Hagonoy Crossing, Matanao, Davao del Sur (6° 40' 35.4" N, 125° 19' 47.78" E). It gives the relationship between the observed water level at Tologan Bridge and outflow of the watershed at this location.

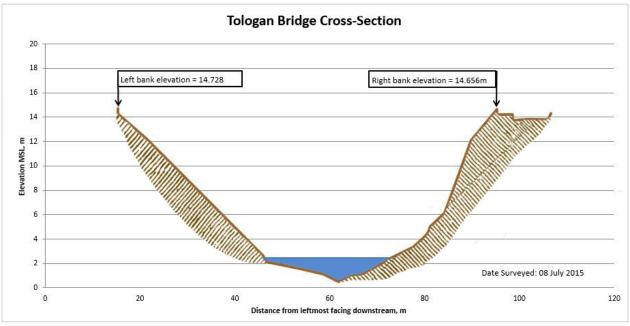



Figure 47. Cross-Section Plot of Tologan Bridge

For Tologan Bridge, the rating curve is expressed as  $Q = 0.0031e^{3.5497x}$  as shown in Figure 48.

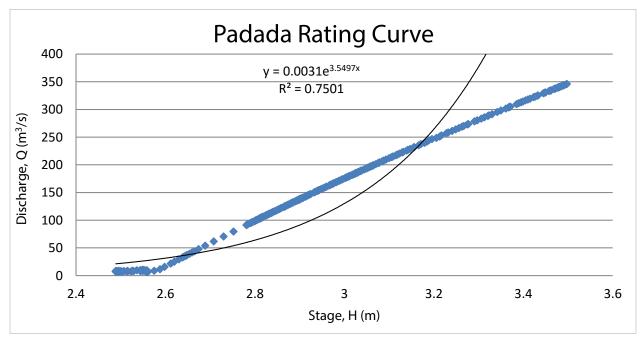



Figure 48. Rating Curve at Tologan Bridge, Matanao, Davao del Sur

The rating curve equation was used to compute for the river outflow at Tologan Bridge for the calibration of the HEC-HMS model for Padada, as shown in Figure 49. The total rainfall for this event is 12.8 mm and the peak discharge is 345.8 m<sup>3</sup>/s at 3:10 AM ofOctober 2, 2015.

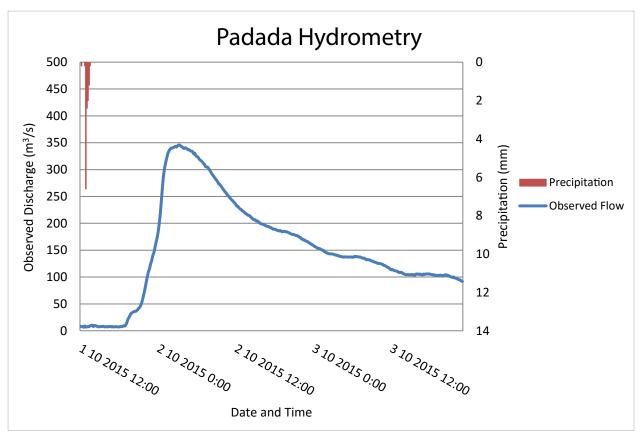



Figure 49. Rainfall and outflow data at Tologan Bridge used for modeling

### **5.2 RIDF Station**

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Davao Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Padada watershed. The extreme values for this watershed were computed based on a 59-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |  |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|--|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |  |
| 2                                                | 19.5    | 30      | 38.2    | 53.2  | 65.2  | 71.6  | 80.3  | 85.8   | 91.4   |  |
| 5                                                | 25.1    | 39.3    | 51      | 73.2  | 88.8  | 96.4  | 108.7 | 114.9  | 121.1  |  |
| 10                                               | 28.8    | 45.4    | 59.4    | 86.5  | 104.5 | 112.8 | 127.5 | 134.1  | 140.7  |  |
| 15                                               | 30.9    | 48.9    | 64.2    | 94    | 113.3 | 122.1 | 138.1 | 145    | 151.8  |  |
| 20                                               | 32.4    | 51.3    | 67.6    | 99.3  | 119.5 | 128.6 | 145.5 | 152.6  | 159.5  |  |
| 25                                               | 33.5    | 53.2    | 70.1    | 103.3 | 124.2 | 133.6 | 151.2 | 158.5  | 165.5  |  |
| 50                                               | 37      | 59      | 78.1    | 115.8 | 138.9 | 149   | 168.8 | 176.5  | 183.9  |  |
| 100                                              | 40.5    | 64.7    | 85.9    | 128.1 | 153.5 | 164.2 | 186.3 | 194.4  | 202.1  |  |

Table 25. RIDF values for Davao Rain Gauge computed by PAGASA

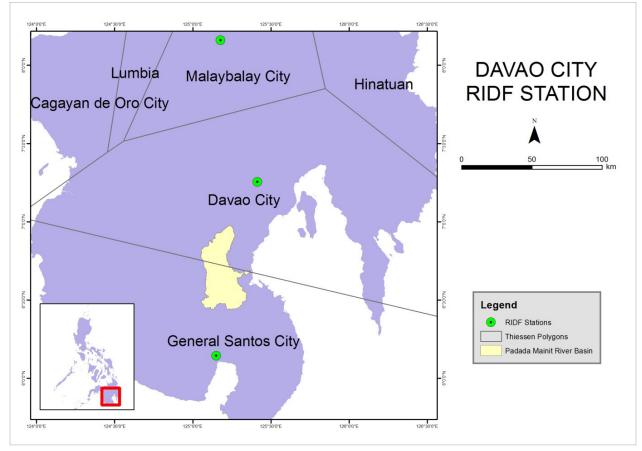



Figure 50. Location of Davao RIDF Station relative to Padada River Basin

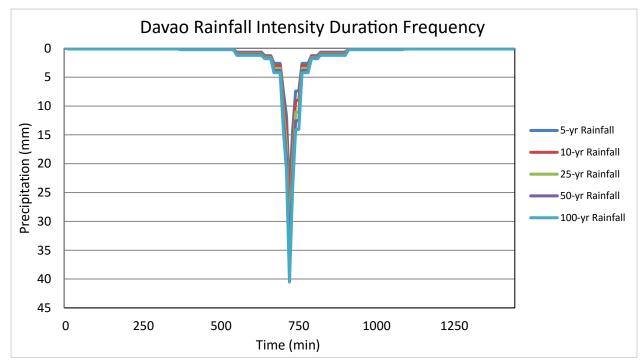



Figure 51. Synthetic storm generated for a 24-hr period rainfall for various return periods

### 5.3 HMS Model

The soil dataset was taken before 2004 by the Bureau of Soils and Water Management (BSWM), under the Department of Agriculture (DA). The land cover dataset file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Musi-Musi River Basin are shown in Figures 52 and 53, respectively.

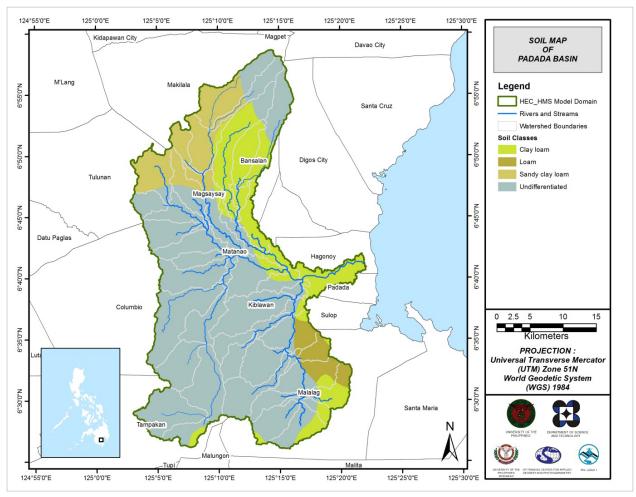



Figure 52. Soil Map of Padada River Basin (Source: NAMRIA)

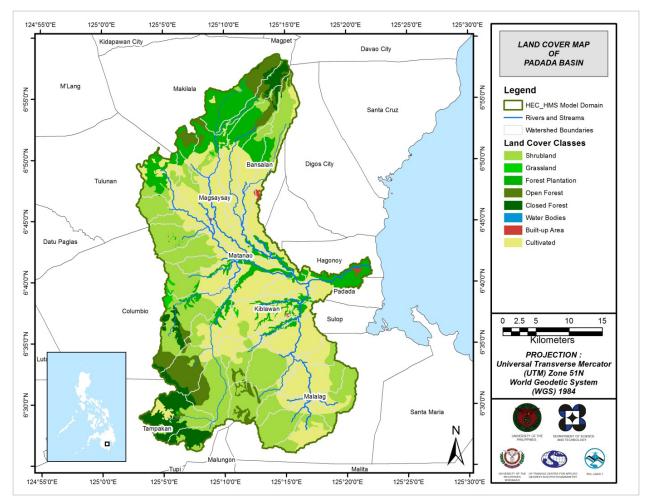



Figure 53. Land Cover Map of Padada River Basin (Source: NAMRIA)

For Padada, four soil classes were identified. These are loam, clay loam, silty clay loam and undifferentiated land. Moreover, eight land cover classes were identified. These are shrublands, grasslands, forest plantations, open forests, close forests, water bodies, built-up areas, and cultivated land.

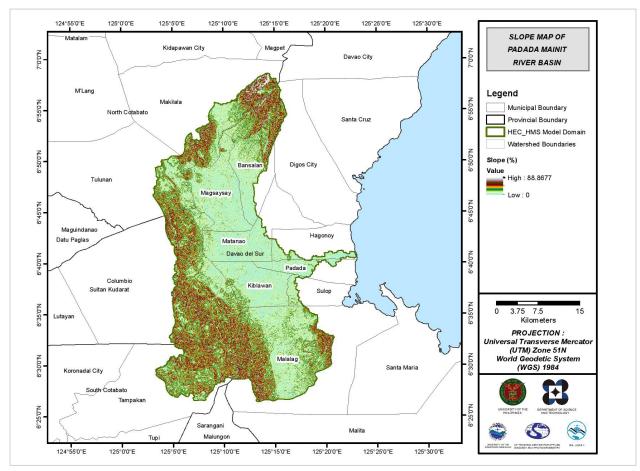



Figure 54. Slope Map of Padada River Basin

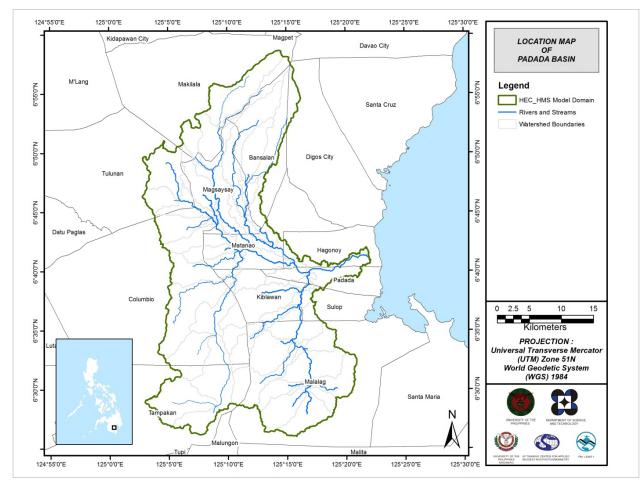



Figure 55. Stream Delineation Map of Padada River Basin

Using the SAR-based DEM, the Padada basin was delineated and further subdivided into subbasins. The model consists of 53 sub basins, 26 reaches, and 26 junctions, as shown in Figure 56. The main outlet is at Tologan Bridge.



Figure 56. The Padada river basin model generated using HEC-HMS.

## 5.4 Cross-Section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

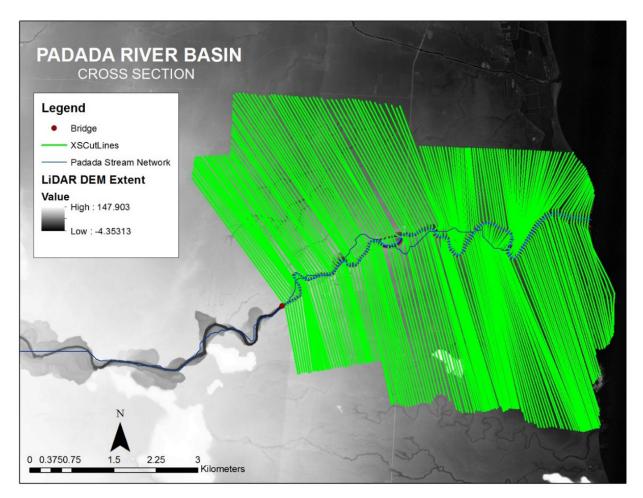



Figure 57. River cross-section of Padada River generated through Arcmap HEC GeoRAS tool

## 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.



Figure 58. A screenshot of the river subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 58.36890 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m<sup>2</sup>/s. The generated hazard maps for Padada are in Figures 72, 74, and 76.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 43894900.00 m<sup>2</sup>. The generated flood depth maps for Padada are in Figures 73, 75, and 77.

There is a total of 34088534.89 m<sup>3</sup> of water entering the model. Of this amount, 15257043.87 m<sup>3</sup> is due to rainfall while 18831491.02 m<sup>3</sup> is inflow from other areas outside the model. 6156764.50 m<sup>3</sup> of this water is lost to infiltration and interception, while 19224428.46 m<sup>3</sup> is stored by the flood plain. The rest, amounting up to 8707324.78 m<sup>3</sup>, is outflow.

### 5.6 Results of HMS Calibration

After calibrating the Padada HEC-HMS river basin model, its accuracy was measured against the observed values. The Padada Model Basin Parameters are on ANNEX 9. Figure 59 shows the comparison between the two discharge data.

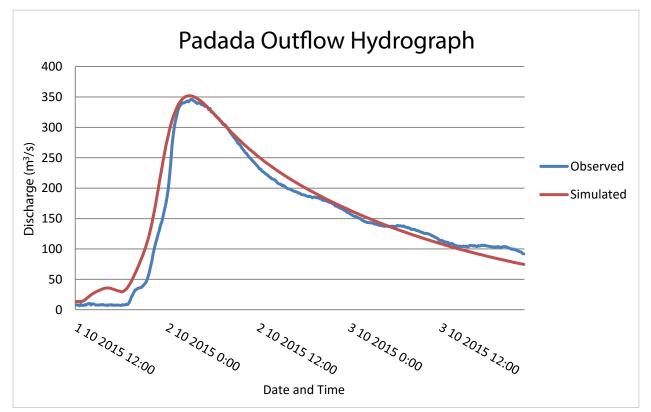



Figure 59. Outflow Hydrograph of Padada produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 26 are the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation<br>Type         | Method                     | Parameter                | Range of Calibrated<br>Values |
|-----------------------|-----------------------------|----------------------------|--------------------------|-------------------------------|
|                       |                             |                            | Initial Abstraction (mm) | 0.0048 - 0.014                |
|                       | Loss                        | SCS Curve Number           | Curve Number             | 80.5 - 99                     |
| <b>D</b>              | Clark Unit                  | Time of Concentration (hr) | 1.937 – 22.848           |                               |
| Basin                 | Basin Transform<br>Baseflow | Hydrograph                 | Storage Coefficient (hr) | 0.0656 - 0.764                |
|                       |                             | Recession                  | Recession Constant       | 0.4                           |
|                       |                             |                            | Ratio to Peak            | 0.402 - 0.8                   |
| Reach                 | Routing                     | Muskingum-Cunge            | Manning's Coefficient    | 0.1                           |

Table 26. Range of Calibrated Values for Padada

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.0048 mm to 0.014 mm means that there is a very small initial fraction of the storm depth after which runoff begins, increasing the river outflow.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Padada, the basin consists mainly of brushlands,

built-up areas, forests, inland water, and cultivated areas and the soil consists of mostly undifferentiated land, loam, and clay loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.0656 hours to 22.848 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.4 indicates that the basin will go back relatively quickly to is original discharge. Ratio to peak values of 0.402 - 0.8 indicate an average receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Padada river basin reaches' Manning's coefficient is 0.1, showing that the catchment is mostly filled with floodplains with trees (Brunner, 2010).

| Root Mean Square Error (RMSE)                     | 23.3  |
|---------------------------------------------------|-------|
| Pearson Correlation Coefficient (r <sup>2</sup> ) | 0.949 |
| Nash-Sutcliffe (E)                                | 0.94  |
| Percent Bias (PBIAS)                              | -5.35 |
| Observation Standard Deviation Ratio (RSR)        | 0.25  |

#### Table 27. Summary of the Efficiency Test of Padada HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 23.3 m<sup>3</sup>/s.

The Pearson correlation coefficient (r<sup>2</sup>) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.949.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -5.35.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.25.

# 5.7 Calculated Outflow Hydrographs and Discharge Values for Different Rainfall Return Models

# 5.7.1 Hydrograph Using the Rainfall Runoff Model

The summary graph in Figure 60 shows the Padada outflow using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

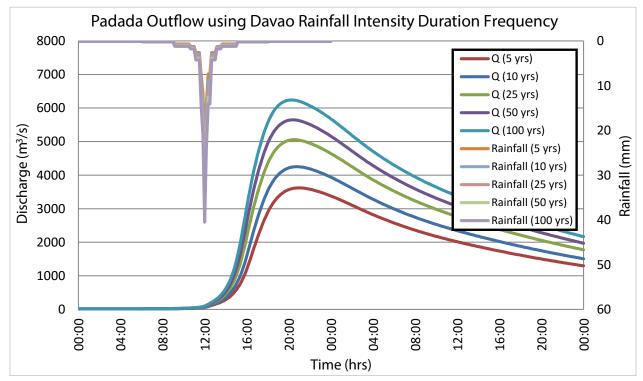



Figure 60. Outflow hydrograph at Padada Station generated using the Davao RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Padada discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 28.

| RIDF Period | Total<br>Precipitation<br>(mm) | Peak rainfall<br>(mm) | Peak outflow<br>(m³/s) | Time to Peak        | Lag Time   |
|-------------|--------------------------------|-----------------------|------------------------|---------------------|------------|
| 5-yr        | 121.1                          | 25.1                  | 3621.4                 | 9 hours             | 10 minutes |
| 10-yr       | 140.7                          | 28.8                  | 4253                   | 8 hours, 40 minutes | 10 minutes |
| 25-yr       | 165.5                          | 33.5                  | 5057.1                 | 8 hours, 30 minutes | 10 minutes |
| 50-yr       | 183.9                          | 37                    | 5647.2                 | 8 hours, 20 minutes | 10 minutes |
| 100-yr      | 202.1                          | 40.5                  | 6241.2                 | 8 hours, 10 minutes | 10 minutes |

# 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method

The river discharge values for the three rivers entering the floodplain are shown in Figure 61 to Figure 70 and the peak values are summarized in Table 29 to Table 38.

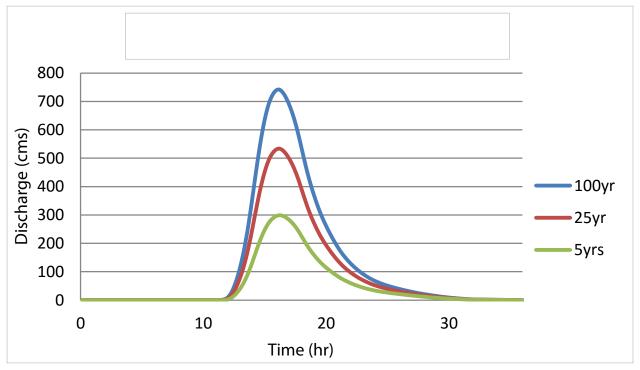



Figure 61. Digos Padada-Mainit river (1) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

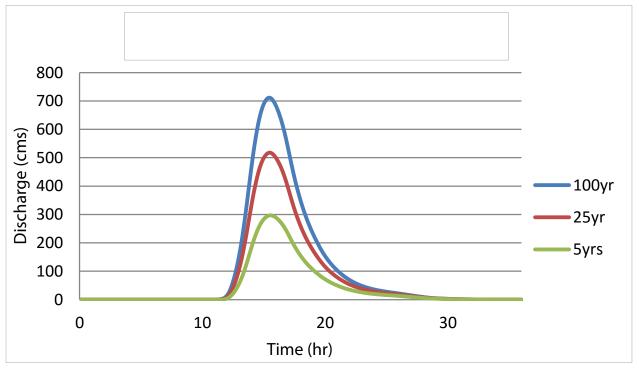



Figure 62. Digos Padada-Mainit river (2) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

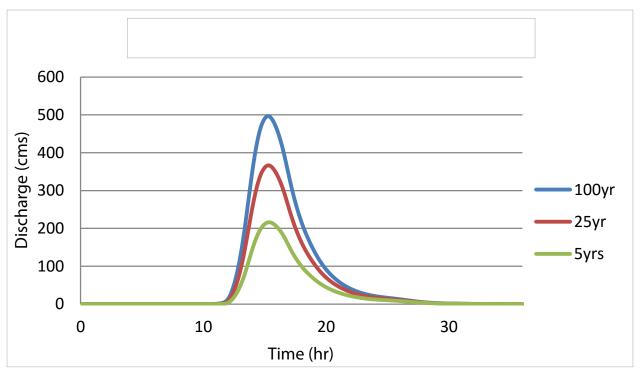



Figure 63. Digos Padada-Mainit river (3) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

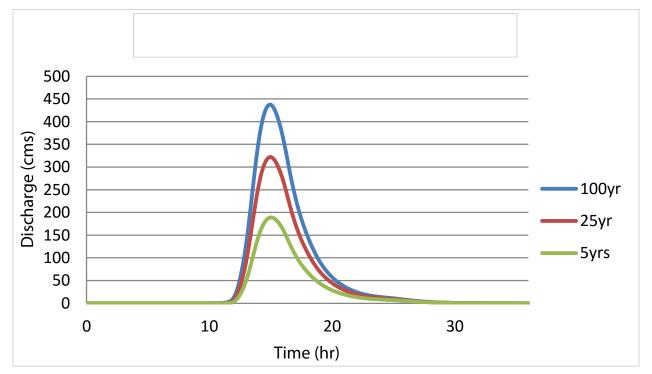



Figure 64. Digos Padada-Mainit river (4) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

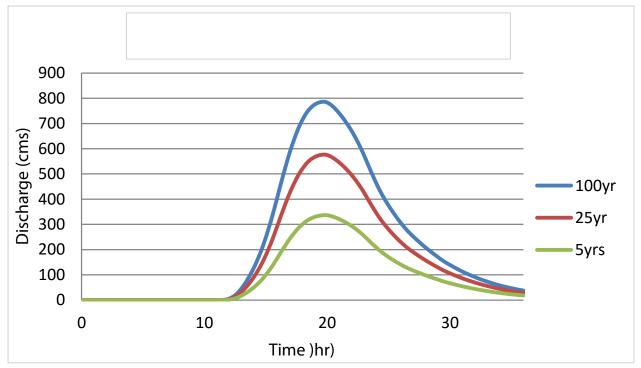



Figure 65. Digos Padada-Mainit river (5) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

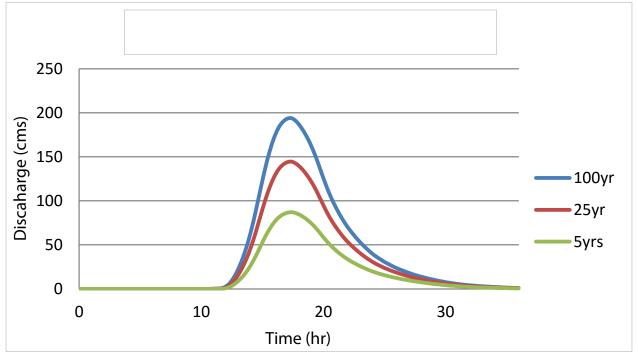



Figure 66. Digos Padada-Mainit river (6) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

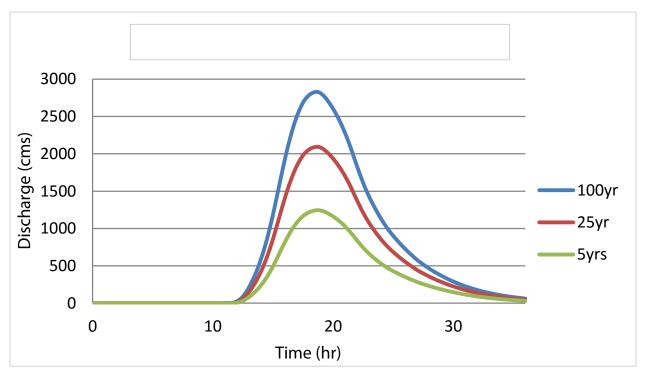



Figure 67. Digos Padada-Mainit river (7) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

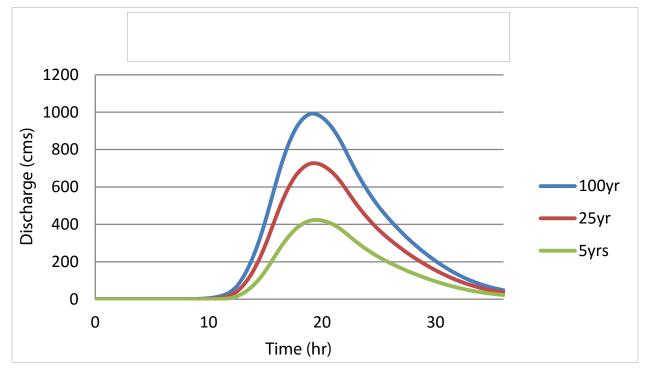



Figure 68. Digos Padada-Mainit river (8) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

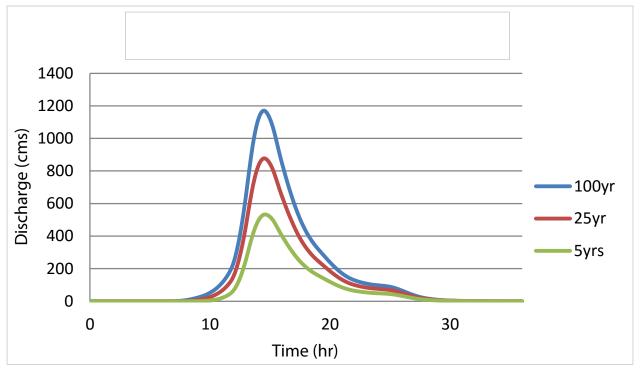



Figure 69. Digos Padada-Mainit river (9) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

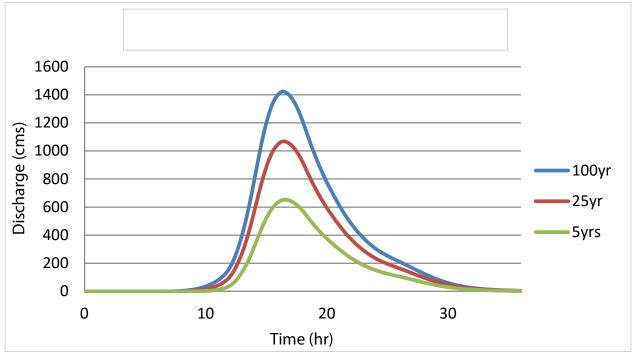



Figure 70. Digos Padada-Mainit river (10) generated discharge using 5-, 25-, and 100-year GenSan rainfall intensity-duration-frequency (RIDF) in HEC-HMS

| Table 29. Summary of Digos Padada | a-Mainit river (1) | ) discharge generated in HEC-HMS |
|-----------------------------------|--------------------|----------------------------------|
|                                   |                    | /                                |

| <b>RIDF</b> Period | Peak discharge (cms) | Time-to-peak         |
|--------------------|----------------------|----------------------|
| 100-Year           | 742.1                | 16 hours, 10 minutes |
| 25-Year            | 533.8                | 16 hours, 10 minutes |
| 5-Year             | 298.8                | 16 hours, 10 minutes |

Table 30. Summary of Digos Padada-Mainit river (2) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 711.4                | 15 hours, 30 minutes |
| 25-Year     | 517.9                | 15 hours, 30 minutes |
| 5-Year      | 297.0                | 15 hours, 30 minutes |

Table 31. Summary of Digos Padada-Mainit river (3) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 496.6                | 15 hours, 20 minutes |
| 25-Year     | 366.5                | 15 hours, 20 minutes |
| 5-Year      | 216.1                | 15 hours, 20 minutes |

Table 32. Summary of Digos Padada-Mainit river (4) discharge generated in HEC-HMS

| <b>RIDF</b> Period | Peak discharge (cms) | Time-to-peak |
|--------------------|----------------------|--------------|
| 100-Year           | 437.5                | 15 hours     |
| 25-Year            | 322.2                | 15 hours     |
| 5-Year             | 189.1                | 15 hours     |

Table 33. Summary of Digos Padada-Mainit river (5) discharge generated in HEC-HMS

| <b>RIDF</b> Period | Peak discharge (cms) | Time-to-peak         |
|--------------------|----------------------|----------------------|
| 100-Year           | 786.1                | 19 hours, 40 minutes |
| 25-Year            | 576.6                | 19 hours, 50 minutes |
| 5-Year             | 336.7                | 19 hours, 50 minutes |

| Table 54. Summary of Digos Factada Wanne Hver (6) disenarge generated in Hiel-Hwis |                      |                      |  |
|------------------------------------------------------------------------------------|----------------------|----------------------|--|
| <b>RIDF Period</b>                                                                 | Peak discharge (cms) | Time-to-peak         |  |
| 100-Year                                                                           | 194.0                | 17 hours, 20 minutes |  |
| 25-Year                                                                            | 144.6                | 17 hours, 20 minutes |  |
| 5-Year                                                                             | 87.1                 | 17 hours, 20 minutes |  |

Table 34. Summary of Digos Padada-Mainit river (6) discharge generated in HEC-HMS

Table 35. Summary of Digos Padada-Mainit river (7) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 2828.5               | 18 hours, 40 minutes |
| 25-Year     | 2094.0               | 18 hours, 40 minutes |
| 5-Year      | 1245.1               | 18 hours, 40 minutes |

Table 36. Summary of Digos Padada-Mainit river (8) discharge generated in HEC-HMS

| <b>RIDF Period</b> | Peak discharge (cms) | Time-to-peak         |
|--------------------|----------------------|----------------------|
| 100-Year           | 992.5                | 19 hours, 10 minutes |
| 25-Year            | 727.4                | 19 hours, 10 minutes |
| 5-Year             | 423.7                | 19 hours, 10 minutes |

Table 37. Summary of Digos Padada-Mainit river (9) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 1170.7               | 14 hours, 30 minutes |
| 25-Year     | 877.5                | 14 hours, 30 minutes |
| 5-Year      | 532.2                | 14 hours, 40 minutes |

Table 38. Summary of Digos Padada-Mainit river (10) discharge generated in HEC-HMS

| RIDF Period | Peak discharge (cms) | Time-to-peak         |
|-------------|----------------------|----------------------|
| 100-Year    | 1422.6               | 16 hours, 20 minutes |
| 25-Year     | 1068.2               | 16 hours, 30 minutes |
| 5-Year      | 652.6                | 16 hours, 30 minutes |

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 39.

|                          |                             |                            |                              | VALID                | ATION                 |
|--------------------------|-----------------------------|----------------------------|------------------------------|----------------------|-----------------------|
| Discharge Point          | Q <sub>MED(SCS)</sub> , cms | Q <sub>BANKFUL</sub> , cms | Q <sub>MED(SPEC)</sub> , cms | Bankful<br>Discharge | Specific<br>Discharge |
| Digos Padada-Mainit (1)  | 174.416                     | 124.630                    | 259.924                      | Pass                 | Pass                  |
| Digos Padada-Mainit (2)  | 261.360                     | 505.830                    | 221.683                      | Pass                 | Pass                  |
| Digos Padada-Mainit (3)  | 190.168                     | 203.899                    | 162.377                      | Pass                 | Pass                  |
| Digos Padada-Mainit (4)  | 166.408                     | 151.237                    | 140.196                      | Pass                 | Pass                  |
| Digos Padada-Mainit (5)  | 296.296                     | 731.433                    | 36743.401                    | Fail                 | Fail                  |
| Digos Padada-Mainit (6)  | 76.648                      | 76.674                     | 107.938                      | Pass                 | Pass                  |
| Digos Padada-Mainit (7)  | 1095.688                    | 1309.632                   | 690.353                      | Pass                 | Fail                  |
| Digos Padada-Mainit (8)  | 372.856                     | 15.040                     | 447.020                      | Fail                 | Pass                  |
| Digos Padada-Mainit (9)  | 468.336                     | 5882.497                   | 312.181                      | Fail                 | Fail                  |
| Digos Padada-Mainit (10) | 574.288                     | 7881.141                   | 430.064                      | Fail                 | Pass                  |

Table 39. Validation of river discharge estimates

Eight out of nine of the results from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. One did not pass and will need further recalculation. The eight passing values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

# 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Padada River using the calibrated HMS base flow is shown in Figure 71.



Figure 71. Sample output of Padada RAS Model

## 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Padada floodplain are shown in Figures 72 to 77. The floodplain, with an area of 512.4 sq. km., covers 11 municipalities from two provinces. Table 40 shows the percentage of area affected by flooding per municipality.

| rable 40. Wunterparties anceted in radada noodprani |              |            |              |           |  |  |  |  |  |  |  |
|-----------------------------------------------------|--------------|------------|--------------|-----------|--|--|--|--|--|--|--|
| Province                                            | Municipality | Total Area | Area Flooded | % Flooded |  |  |  |  |  |  |  |
| Davao del Sur                                       | Bansalan     | 136.179    | 20.2365      | 14.86%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Digos City   | 226.709    | 86.3046      | 38.07%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Hagonoy      | 85.6941    | 85.5357      | 99.82%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Kiblawan     | 80.0285    | 56.3096      | 70.36%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Magsaysay    | 109.802    | 0.4289       | 0.39%     |  |  |  |  |  |  |  |
| Davao del Sur                                       | Malalag      | 444.995    | 64.6711      | 14.53%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Matanao      | 123.395    | 80.772       | 65.46%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Padada       | 55.9731    | 55.9232      | 99.91%    |  |  |  |  |  |  |  |
| Davao del Sur                                       | Santa Cruz   | 267.54     | 3.58132      | 1.34%     |  |  |  |  |  |  |  |
| Davao del Sur                                       | Sulop        | 50.7967    | 50.5043      | 99.42%    |  |  |  |  |  |  |  |
| Sultan Kudarat                                      | Columbio     | 574.067    | 1.47215      | 0.26%     |  |  |  |  |  |  |  |

Table 40. Municipalities affected in Padada floodplain

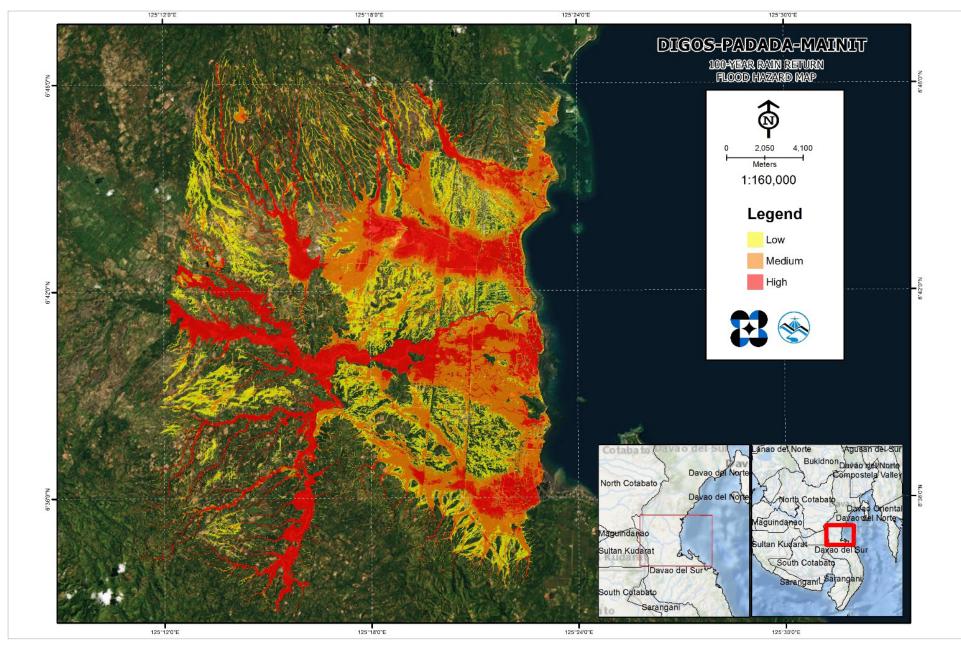



Figure 72. 100-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery

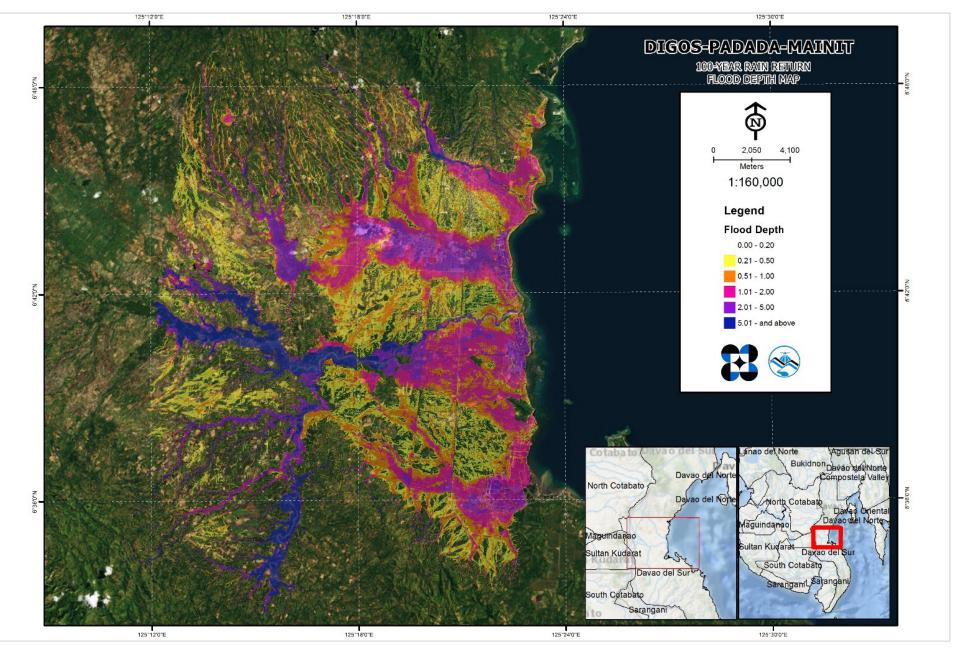



Figure 73. 100-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery

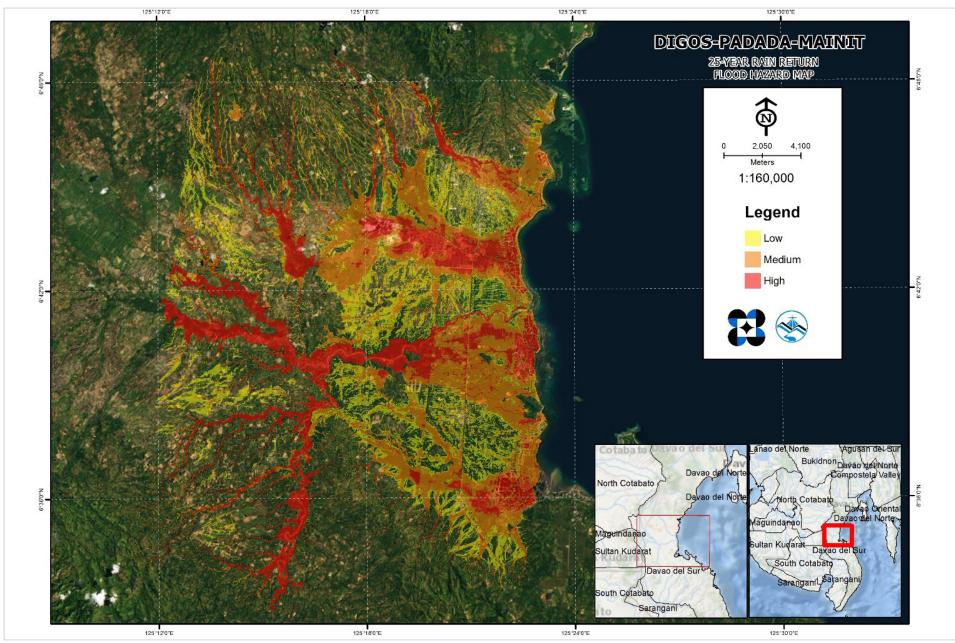



Figure 74. 25-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery

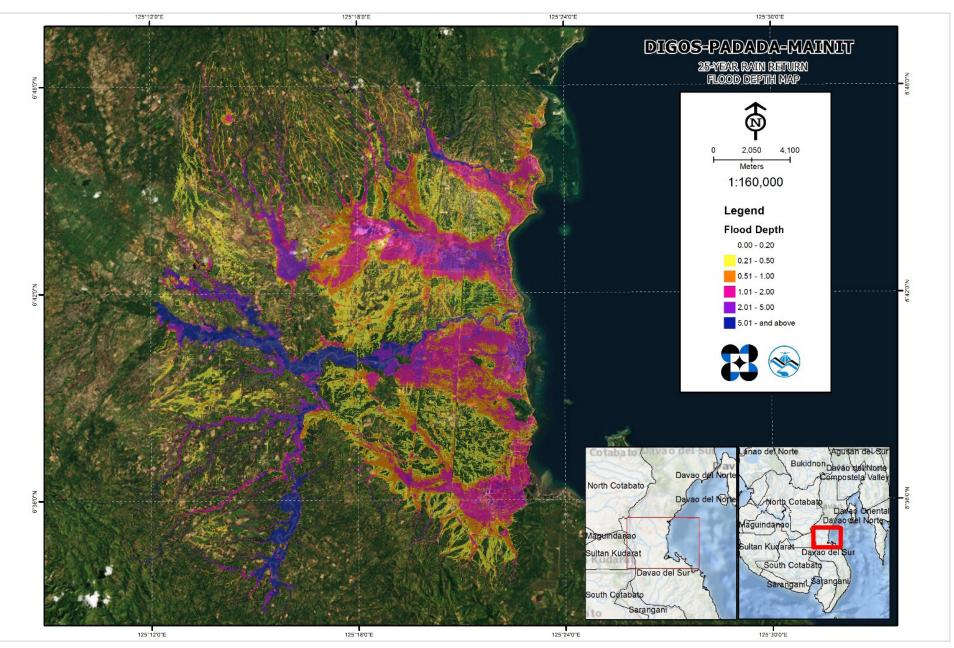



Figure 75. 25-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery

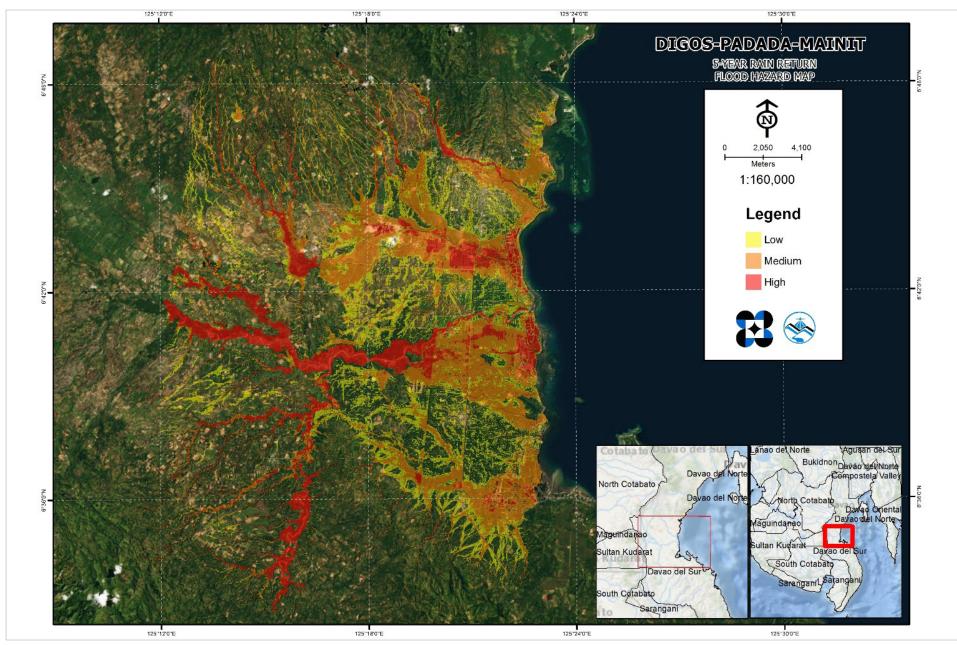



Figure 76. 5-year Flood Hazard Map for Padada Floodplain overlaid on Google Earth imagery

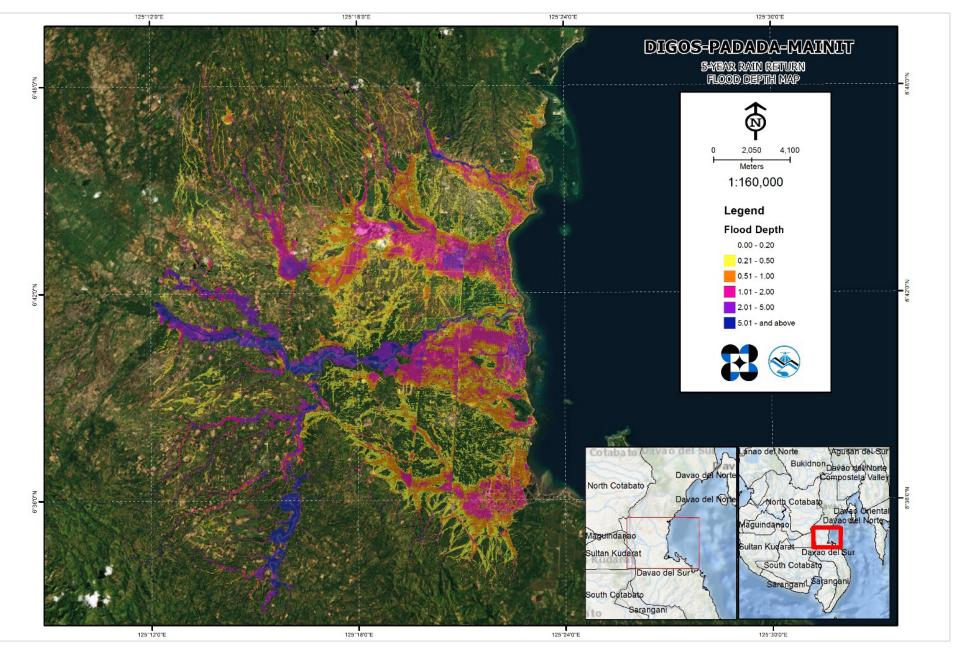



Figure 77. 5-year Flow Depth Map for Padada Floodplain overlaid on Google Earth imagery

# 5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Padada river basin, grouped by municipality, are listed below. For the said basin, two provinces with 11 municipalities consisting of 165 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 11.95% of the municipality of Bansalan with an area of 136.18 sq. km. will experience flood levels of less than 0.20 meters. 1.83% of the area will experience flood levels of 0.21 to 0.50 meters while 0.71%, 0.26%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |          | Affected Barangays in Bansalan |            |          |            |           |                  |          |  |  |  |  |  |
|------------------------------------------------|----------|--------------------------------|------------|----------|------------|-----------|------------------|----------|--|--|--|--|--|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Anonang  | Bonifacio                      | Buenavista | Mabunga  | New Clarin | Poblacion | Poblacion<br>Dos | Union    |  |  |  |  |  |
| 0.03-0.20                                      | 1.67915  | 1.40863                        | 2.22078    | 4.29807  | 0.5692     | 1.40413   | 1.50362          | 3.19673  |  |  |  |  |  |
| 0.21-0.50                                      | 0.121015 | 0.11589                        | 0.26014    | 1.0222   | 0.047251   | 0.175816  | 0.388758         | 0.354758 |  |  |  |  |  |
| 0.51-1.00                                      | 0.066026 | 0.038871                       | 0.134543   | 0.184573 | 0.05079    | 0.105444  | 0.101234         | 0.284573 |  |  |  |  |  |
| 1.01-2.00                                      | 0.020667 | 0.015584                       | 0.035893   | 0.107132 | 0.037899   | 0.041852  | 0.019058         | 0.078693 |  |  |  |  |  |
| 2.01-5.00                                      | 0.0004   | 0.0071                         | 0.013889   | 0.027019 | 0.00504    | 0.052679  | 0                | 0.049307 |  |  |  |  |  |
| > 5.00                                         | 0        | 0                              | 0          | 0        | 0          | 0.0002    | 0                | 0.0007   |  |  |  |  |  |

Table 41. Affected Areas in Bansalan, Davao del Sur during 5-Year Rainfall Return Period

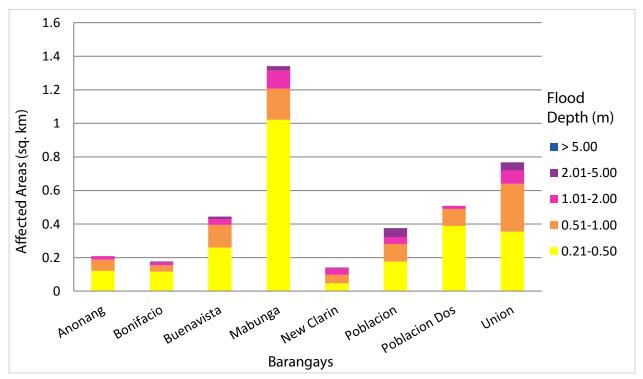



Figure 78. Affected Areas in Bansalan, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 27.32% of the municipality of Digos City with an area of 226.71 sq. km. will experience flood levels of less than 0.20 meters. 5.85% of the area will experience flood levels of 0.21 to 0.50 meters while 3.21%, 1.26%, 0.39%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Table 42. Affected Areas in | n Digos City, Davao | del Sur during 5-Year | Rainfall Return Period |
|-----------------------------|---------------------|-----------------------|------------------------|
|                             |                     |                       |                        |

| Affected Area                          |          | Affected Barangays in Digos City |          |          |          |          |          |          |          |          |           |          |  |  |
|----------------------------------------|----------|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Aplaya   | Balabag                          | Cogon    | Colorado | Dawis    | Dulangan | Goma     | Igpit    | Kiagot   | Lungag   | Mahayahay | Matti    |  |  |
| 0.03-0.20                              | 2.92945  | 0.112932                         | 2.6713   | 4.1491   | 2.06728  | 0.101149 | 2.70938  | 1.6613   | 1.95339  | 4.78706  | 4.38347   | 5.0093   |  |  |
| 0.21-0.50                              | 1.41359  | 0.002507                         | 1.51115  | 1.25046  | 0.790991 | 0.004682 | 0.244052 | 0.910955 | 0.057042 | 0.320497 | 0.356018  | 0.72687  |  |  |
| 0.51-1.00                              | 0.200393 | 0.003217                         | 0.855973 | 1.54851  | 0.15673  | 0.000004 | 0.09489  | 0.917193 | 0.029165 | 0.154681 | 0.208859  | 0.540675 |  |  |
| 1.01-2.00                              | 0.069054 | 0.000972                         | 0.10881  | 0.457001 | 0.052785 | 0        | 0.050043 | 0.713219 | 0.032202 | 0.056105 | 0.121394  | 0.366419 |  |  |
| 2.01-5.00                              | 0.062249 | 0.0003                           | 0.002335 | 0.11688  | 0.0001   | 0        | 0.010127 | 0.076261 | 0.014475 | 0.006024 | 0.068814  | 0.126065 |  |  |
| > 5.00                                 | 0.01379  | 0                                | 0        | 0.0005   | 0        | 0        | 0        | 0        | 0.0003   | 0        | 0         | 0.0026   |  |  |

| Affected Area                          |          | Affected Barangays in Digos City |          |            |           |           |          |          |                 |          |          |          |  |  |
|----------------------------------------|----------|----------------------------------|----------|------------|-----------|-----------|----------|----------|-----------------|----------|----------|----------|--|--|
| (sq. km.) by<br>flood depth<br>(in m.) | Ruparan  | San Agustin                      | San Jose | San Miguel | San Roque | Sinawilan | Soong    | Tiguman  | Tres de<br>Mayo | Zone 1   | Zone 2   | Zone 3   |  |  |
| 0.03-0.20                              | 3.12452  | 4.52138                          | 1.79551  | 1.16728    | 5.33558   | 3.57716   | 0.801675 | 1.55843  | 2.28727         | 2.15671  | 1.01792  | 2.05706  |  |  |
| 0.21-0.50                              | 0.131282 | 0.497939                         | 0.719523 | 0.954988   | 0.592635  | 0.539769  | 0.02295  | 0.760809 | 0.44748         | 0.064203 | 0.293495 | 0.639876 |  |  |
| 0.51-1.00                              | 0.068775 | 0.249661                         | 0.243097 | 0.512346   | 0.345792  | 0.249701  | 0.010368 | 0.342499 | 0.36562         | 0.037197 | 0.08828  | 0.060973 |  |  |
| 1.01-2.00                              | 0.040714 | 0.102573                         | 0.175979 | 0.120351   | 0.091661  | 0.057018  | 0.007206 | 0.029812 | 0.127611        | 0.027953 | 0.032234 | 0.008187 |  |  |
| 2.01-5.00                              | 0.032788 | 0.044078                         | 0.001979 | 0          | 0.029253  | 0.022749  | 0.003465 | 0.0003   | 0.123843        | 0.034302 | 0.098808 | 0.005806 |  |  |
| > 5.00                                 | 0.0022   | 0                                | 0        | 0          | 0         | 0.008126  | 0        | 0        | 0.024907        | 0.0017   | 0.095596 | 0.009481 |  |  |

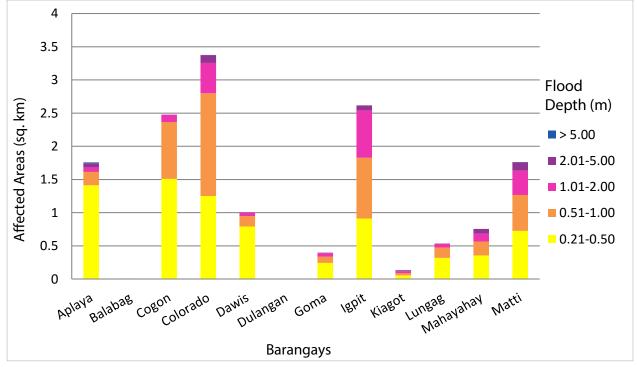



Figure 79. Affected Areas in Digos City, Davao del Sur during 5-Year Rainfall Return

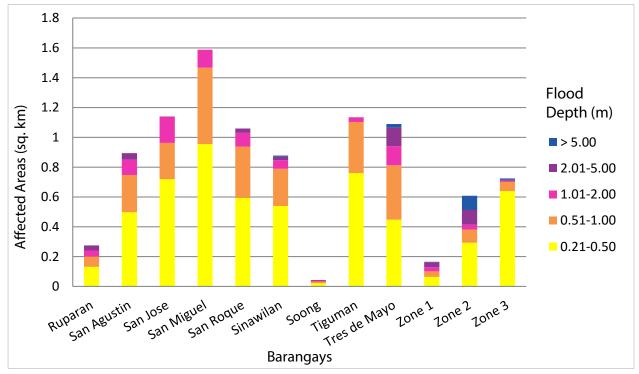



Figure 80. Affected Areas in Digos City, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 53.04% of the municipality of Hagonoy with an area of 85.69 sq. km. will experience flood levels of less than 0.20 meters. 20.20% of the area will experience flood levels of 0.21 to 0.50 meters while 12.37%, 10.31%, 3.61%, and 0.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                        | Tuble (5. Theorem Theorem Theorem Construction of Contracting Street Fundamentation |                               |          |                   |                     |          |          |          |           |          |           |          |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|----------|-------------------|---------------------|----------|----------|----------|-----------|----------|-----------|----------|--|--|
| Affected Area                          |                                                                                     | Affected Barangays in Hagonoy |          |                   |                     |          |          |          |           |          |           |          |  |  |
| (sq. km.) by<br>flood depth<br>(in m.) | Balutakay                                                                           | Clib                          | Guihing  | Guihing<br>Aplaya | Hagonoy<br>Crossing | Kibuaya  | La Union | Lanuro   | Lapulabao | Leling   | Mahayahay | Matti    |  |  |
| 0.03-0.20                              | 0.842103                                                                            | 2.53232                       | 1.63413  | 3.37478           | 1.88948             | 1.65609  | 3.18745  | 1.71696  | 2.9779    | 6.12276  | 1.74853   | 5.0093   |  |  |
| 0.21-0.50                              | 0.633555                                                                            | 0.352124                      | 0.582032 | 1.48033           | 0.643721            | 1.03481  | 0.256456 | 1.06218  | 1.21617   | 3.13614  | 0.61428   | 0.72687  |  |  |
| 0.51-1.00                              | 0.797702                                                                            | 0.364171                      | 0.099986 | 0.326116          | 0.07971             | 1.94376  | 0.193428 | 0.619508 | 0.554742  | 1.79245  | 0.079514  | 0.540675 |  |  |
| 1.01-2.00                              | 1.67474                                                                             | 0.130356                      | 0.024617 | 0.092583          | 0.032277            | 1.00317  | 0.14449  | 0.741511 | 0.094742  | 2.33812  | 0.014634  | 0.366419 |  |  |
| 2.01-5.00                              | 0.573128                                                                            | 0.070317                      | 0.077667 | 0.052672          | 0.173962            | 0.341736 | 0.048333 | 0.000342 | 0.010646  | 0.392902 | 0.007234  | 0.126065 |  |  |
| > 5.00                                 | 0                                                                                   | 0.0182                        | 0.090307 | 0.001795          | 0.076688            | 0        | 0.010373 | 0        | 0.002068  | 0        | 0.0003    | 0.0026   |  |  |

| Affected Area                          |                     |              |               |          | Af        | fected Baran | gays in Hagor    | ιογ        |           |          |          |          |
|----------------------------------------|---------------------|--------------|---------------|----------|-----------|--------------|------------------|------------|-----------|----------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Malabang<br>Damsite | Maliit Digos | New<br>Quezon | Paligue  | Poblacion | Sacub        | San<br>Guillermo | San Isidro | Sinayawan | Tologan  | Zone 2   | Zone 3   |
| 0.03-0.20                              | 2.4554              | 1.60266      | 2.87716       | 0.778971 | 2.7191    | 4.10097      | 0.811025         | 0.09294    | 1.26823   | 1.05821  | 1.01792  | 2.05706  |
| 0.21-0.50                              | 0.27126             | 0.374943     | 0.427615      | 0.395995 | 0.862653  | 2.46689      | 0.215026         | 0.245245   | 0.818808  | 0.216562 | 0.293495 | 0.639876 |
| 0.51-1.00                              | 0.228327            | 0.717182     | 0.278955      | 0.135718 | 0.100368  | 0.370824     | 0.398174         | 0.784243   | 0.673931  | 0.056948 | 0.08828  | 0.060973 |
| 1.01-2.00                              | 0.074643            | 0.182375     | 0.559358      | 0.0173   | 0.065699  | 0            | 0.202793         | 1.1602     | 0.24773   | 0.035761 | 0.032234 | 0.008187 |
| 2.01-5.00                              | 0.046788            | 0.018928     | 0.85146       | 0        | 0.027508  | 0            | 0.123705         | 0.231291   | 0         | 0.044894 | 0.098808 | 0.005806 |
| > 5.00                                 | 0.0001              | 0.0002       | 0             | 0        | 0.011804  | 0            | 0                | 0          | 0         | 0.095576 | 0.095596 | 0.009481 |

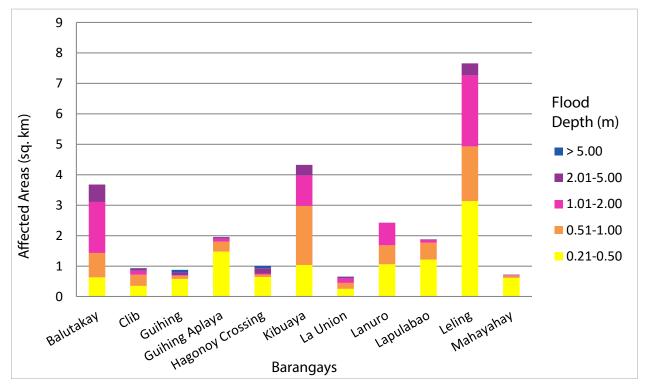



Figure 81. Affected Areas in Hagonoy, Davao del Sur during 5-Year Rainfall Return Period

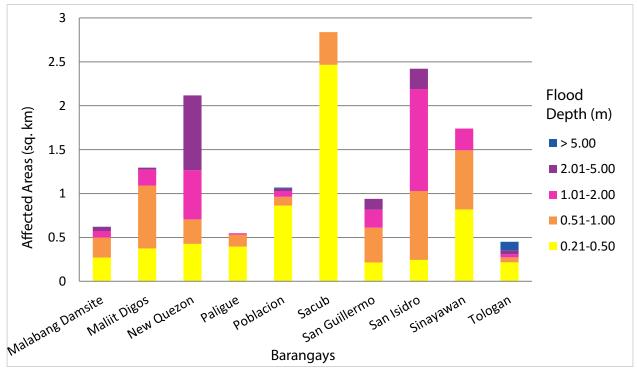



Figure 82. Affected Areas in Hagonoy, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 57.20% of the municipality of Kiblawan with an area of 80.03 sq. km. will experience flood levels of less than 0.20 meters. 4.78% of the area will experience flood levels of 0.21 to 0.50 meters while 2.34%, 3.37%, 2.45%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          | Affected Barangays in Kiblawan |               |            |          |           |            |          |              |          |  |  |  |
|----------------------------------------|----------|--------------------------------|---------------|------------|----------|-----------|------------|----------|--------------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Abnate   | Bagong<br>Negros               | Bagong Silang | Bagumbayan | Balasiao | Bonifacio | Bulol-Salo | Bunot    | Cogon-Bacaca | Dapok    |  |  |  |
| 0.03-0.20                              | 2.82741  | 1.2883                         | 1.37987       | 4.98015    | 1.70666  | 2.31437   | 0.900342   | 2.7004   | 0.586506     | 1.72966  |  |  |  |
| 0.21-0.50                              | 0.449643 | 0.026808                       | 0.069695      | 0.281088   | 0.082685 | 0.072136  | 0.018012   | 0.101329 | 0.029886     | 0.12702  |  |  |  |
| 0.51-1.00                              | 0.080711 | 0.011439                       | 0.100389      | 0.21953    | 0.1556   | 0.05215   | 0.021318   | 0.070099 | 0.008729     | 0.131447 |  |  |  |
| 1.01-2.00                              | 0.020754 | 0.011376                       | 0.159544      | 0.45454    | 0.169588 | 0.054724  | 0.052349   | 0.043304 | 0.010081     | 0.108294 |  |  |  |
| 2.01-5.00                              | 0.0001   | 0.003062                       | 0.092004      | 0.129622   | 0.059095 | 0.04519   | 0.022119   | 0.041266 | 0.005928     | 0.061641 |  |  |  |
| > 5.00                                 | 0        | 0                              | 0.002112      | 0          | 0.0023   | 0.0026    | 0.0004     | 0.0073   | 0            | 0.035073 |  |  |  |

Table 44. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period

| Affected Area                          |          | Affected Barangays in Kiblawan |          |          |          |          |          |          |             |          |  |  |  |
|----------------------------------------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|-------------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Ihan     | Kibongbong                     | Kimlawis | Kisulan  | Lati-An  | Manual   | Maraga-A | Molopolo | New Sibonga | Panaglib |  |  |  |
| 0.03-0.20                              | 0.505869 | 0.778326                       | 1.414    | 0.893574 | 1.21386  | 1.32143  | 1.47403  | 2.45045  | 1.56539     | 0.499435 |  |  |  |
| 0.21-0.50                              | 0.051943 | 0.101185                       | 0.021937 | 0.029713 | 0.05193  | 0.409952 | 0.038083 | 0.118485 | 0.111794    | 0.066177 |  |  |  |
| 0.51-1.00                              | 0.051136 | 0.013412                       | 0.016585 | 0.0135   | 0.07772  | 0.014596 | 0.034026 | 0.073652 | 0.169808    | 0.080438 |  |  |  |
| 1.01-2.00                              | 0.102293 | 0.011829                       | 0.024286 | 0.007802 | 0.129498 | 0        | 0.070139 | 0.117746 | 0.28194     | 0.14902  |  |  |  |
| 2.01-5.00                              | 0.066708 | 0.015261                       | 0.027    | 0.003184 | 0.109134 | 0        | 0.010513 | 0.083817 | 0.270666    | 0.331911 |  |  |  |
| > 5.00                                 | 0.023805 | 0                              | 0.0035   | 0        | 0.034511 | 0        | 0.0006   | 0.0002   | 0.011993    | 0.056724 |  |  |  |

| Affected Area                          |          | Affected Barangays in Kiblawan |          |            |          |           |            |          |          |           |  |  |  |
|----------------------------------------|----------|--------------------------------|----------|------------|----------|-----------|------------|----------|----------|-----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Pasig    | Poblacion                      | Pocaleel | San Isidro | San Jose | San Pedro | Santo Niño | Tacub    | Tacul    | Waterfall |  |  |  |
| 0.03-0.20                              | 0.594276 | 1.71435                        | 1.20053  | 1.33346    | 0.802458 | 3.3504    | 1.1455     | 1.45783  | 0.934851 | 0.710668  |  |  |  |
| 0.21-0.50                              | 0.028787 | 0.048391                       | 0.045752 | 0.222199   | 0.0569   | 0.410438  | 0.043301   | 0.251451 | 0.291734 | 0.169881  |  |  |  |
| 0.51-1.00                              | 0.02227  | 0.02488                        | 0.09497  | 0.027063   | 0.041365 | 0.12513   | 0.045672   | 0.02675  | 0.045214 | 0.024144  |  |  |  |
| 1.01-2.00                              | 0.049732 | 0.033916                       | 0.130698 | 0.059544   | 0.066859 | 0.194481  | 0.124881   | 0.047575 | 0.008659 | 0.001791  |  |  |  |
| 2.01-5.00                              | 0.011391 | 0.036663                       | 0.035661 | 0.065506   | 0.084439 | 0.06687   | 0.249261   | 0.029806 | 0.000497 | 0.000314  |  |  |  |
| > 5.00                                 | 0        | 0.0027                         | 0        | 0.000262   | 0.0127   | 0         | 0.000338   | 0.0008   | 0        | 0         |  |  |  |

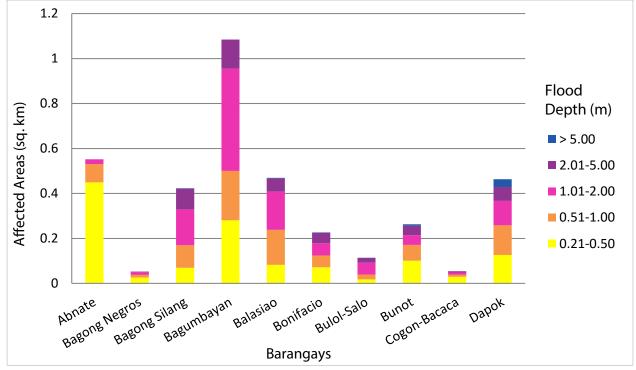



Figure 83. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period

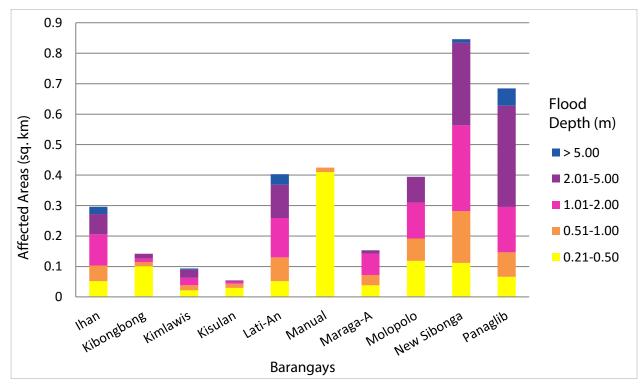



Figure 84. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period

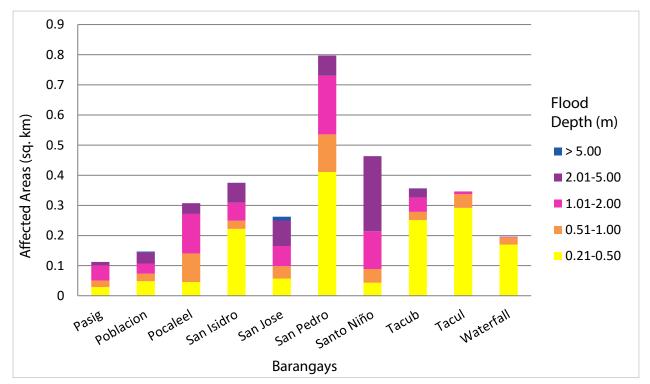



Figure 85. Affected Areas in Kiblawan, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 0.33% of the municipality of Magsaysay with an area of 109.8 sq. km. will experience flood levels of less than 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% and 0.01% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area          | Affected Barangay in |
|------------------------|----------------------|
| (sq. km.) by           | Magsaysay            |
| flood depth<br>(in m.) | New Ilocos           |
| 0.03-0.20              | 0.362584             |
| 0.21-0.50              | 0.040246             |
| 0.51-1.00              | 0.015465             |
| 1.01-2.00              | 0.009809             |
| 2.01-5.00              | 0.0008               |
| > 5.00                 | 0                    |

Table 45. Affected Areas in Magsaysay, Davao del Sur during 5-Year Rainfall Return Period

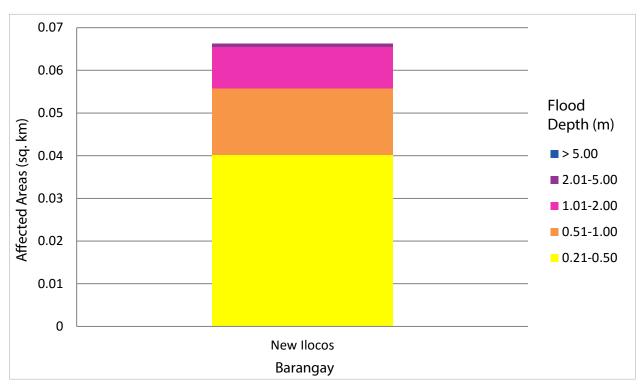



Figure 86. Affected Areas in Magsaysay, Davao del Sur during 5-Year Rainfall Return Period

#### LIDAR Surveys and Flood Mapping of Padada River

For the 5-year return period, 11.03% of the municipality of Malalag with an area of 445 sq. km. will experience flood levels of less than 0.20 meters. 1.43% of the area will experience flood levels of 0.21 to 0.50 meters while 1.08%, 0.71%, 0.27%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                                |            |          | 0,             |                 |          |              |
|------------------------------------------------|------------|----------|----------------|-----------------|----------|--------------|
| Affected                                       |            |          | Affected Baran | gays in Malalag |          |              |
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Bagumbayan | Bolton   | Kiblagon       | Lapu-Lapu       | Mabini   | New Baclayon |
| 0.03-0.20                                      | 0.018046   | 0.592654 | 13.3678        | 31.2595         | 1.37987  | 2.47581      |
| 0.21-0.50                                      | 0.007853   | 0.073941 | 3.95435        | 1.60857         | 0.031577 | 0.666991     |
| 0.51-1.00                                      | 0.004997   | 0.017773 | 2.63575        | 1.35888         | 0.018455 | 0.766998     |
| 1.01-2.00                                      | 0.000815   | 0.012296 | 1.3522         | 1.53614         | 0.009436 | 0.237191     |
| 2.01-5.00                                      | 0          | 0.008087 | 0.169522       | 1.00224         | 0.013002 | 0.006784     |
| > 5.00                                         | 0          | 0.0003   | 0.008867       | 0.0702          | 0.00422  | 0            |

Table 46. Affected Areas in Malalag, Davao del Sur during 5-Year Rainfall Return Period

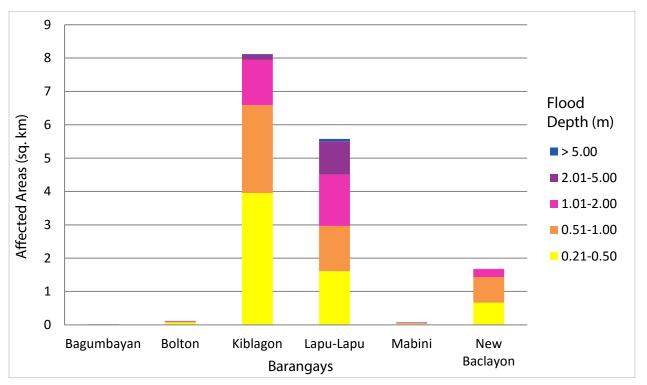



Figure 87. Affected Areas in Malalag, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 46.46% of the municipality of Matanao with an area of 123.4 sq. km. will experience flood levels of less than 0.20 meters. 6.59% of the area will experience flood levels of 0.21 to 0.50 meters while 5.22%, 5.60%, 1.54%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          | Affected Barangays in Matanao |            |          |          |          |          |             |          |            |  |  |  |
|----------------------------------------|----------|-------------------------------|------------|----------|----------|----------|----------|-------------|----------|------------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Asbang   | Asinan                        | Bagumbayan | Bangkal  | Buas     | Buri     | Cabligan | Camanchiles | Ceboza   | Colonsabak |  |  |  |
| 0.03-0.20                              | 0.039863 | 1.06975                       | 3.20139    | 0.701123 | 0.090418 | 0.102914 | 0.322749 | 2.28688     | 2.9108   | 0.740093   |  |  |  |
| 0.21-0.50                              | 0.001219 | 0.139629                      | 0.309275   | 0.070631 | 0.009874 | 0.008842 | 0.349119 | 0.21207     | 0.575872 | 0.112582   |  |  |  |
| 0.51-1.00                              | 0.000001 | 0.06078                       | 0.195076   | 0.03106  | 0.000904 | 0.001273 | 0.810952 | 0.133041    | 0.140318 | 0.052028   |  |  |  |
| 1.01-2.00                              | 0        | 0.039038                      | 0.257353   | 0.031695 | 0.000102 | 0        | 1.9415   | 0.093508    | 0.101359 | 0.037025   |  |  |  |
| 2.01-5.00                              | 0        | 0.023103                      | 0.233527   | 0.0058   | 0        | 0        | 0.100848 | 0.05679     | 0.054883 | 0.0022     |  |  |  |
| > 5.00                                 | 0        | 0                             | 0.010908   | 0        | 0        | 0        | 0        | 0.001293    | 0.01098  | 0          |  |  |  |

Table 47. Affected Areas in Matanao, Davao del Sur during 5-Year Rainfall Return Period

| Affected Area                          |                   | Affected Barangays in Matanao |          |          |           |          |              |          |                  |             |  |  |  |
|----------------------------------------|-------------------|-------------------------------|----------|----------|-----------|----------|--------------|----------|------------------|-------------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Dongan-<br>Pekong | Kabasagan                     | Kapok    | Kibao    | La Suerte | Langa-An | Lower Marber | Manga    | New<br>Katipunan | New Visayas |  |  |  |
| 0.03-0.20                              | 2.78303           | 1.14435                       | 0.496025 | 1.05957  | 1.98441   | 1.41512  | 1.27362      | 6.08191  | 5.76656          | 2.50995     |  |  |  |
| 0.21-0.50                              | 0.164202          | 0.101344                      | 0.044859 | 0.049531 | 0.521194  | 0.26182  | 0.117475     | 1.67473  | 0.4356           | 0.617242    |  |  |  |
| 0.51-1.00                              | 0.204678          | 0.021346                      | 0.014355 | 0.046218 | 0.278294  | 0.017748 | 0.084038     | 2.34483  | 0.284868         | 0.042899    |  |  |  |
| 1.01-2.00                              | 0.14223           | 0.014829                      | 0.020015 | 0.039454 | 0.097886  | 0.024623 | 0.091706     | 2.36141  | 0.232494         | 0.001282    |  |  |  |
| 2.01-5.00                              | 0.110087          | 0                             | 0.0024   | 0.022761 | 0.125379  | 0.010455 | 0.107742     | 0.376113 | 0.168893         | 0.0002      |  |  |  |
| > 5.00                                 | 0                 | 0                             | 0        | 0.0013   | 0.025502  | 0.00009  | 0.006194     | 0.002    | 0.0157           | 0           |  |  |  |

| Affected Area                          |           | Affected Barangays in Matanao |          |             |          |           |           |           |            |          |  |  |  |
|----------------------------------------|-----------|-------------------------------|----------|-------------|----------|-----------|-----------|-----------|------------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Poblacion | Saboy                         | San Jose | San Vicente | Saub     | Sinaragan | Sinawilan | Tamlangon | Tibongbong | Towak    |  |  |  |
| 0.03-0.20                              | 1.29893   | 0.828118                      | 2.76818  | 1.48369     | 1.29297  | 4.38951   | 6.2145    | 0.789739  | 1.21396    | 1.07575  |  |  |  |
| 0.21-0.50                              | 0.150252  | 0.251038                      | 0.311693 | 0.185562    | 0.344065 | 0.595647  | 0.346805  | 0.051778  | 0.047964   | 0.068062 |  |  |  |
| 0.51-1.00                              | 0.146788  | 0.325568                      | 0.103031 | 0.095454    | 0.189325 | 0.501194  | 0.210853  | 0.020264  | 0.036275   | 0.044484 |  |  |  |
| 1.01-2.00                              | 0.094955  | 0.295307                      | 0.124482 | 0.036213    | 0.123447 | 0.354879  | 0.246637  | 0.012657  | 0.031991   | 0.057748 |  |  |  |
| 2.01-5.00                              | 0.08199   | 0.130416                      | 0.053793 | 0.010386    | 0.010318 | 0.020339  | 0.161852  | 0.011022  | 0.000892   | 0.017537 |  |  |  |
| > 5.00                                 | 0.013561  | 0                             | 0        | 0           | 0        | 0.0014    | 0.0003    | 0.0002    | 0.0007     | 0        |  |  |  |

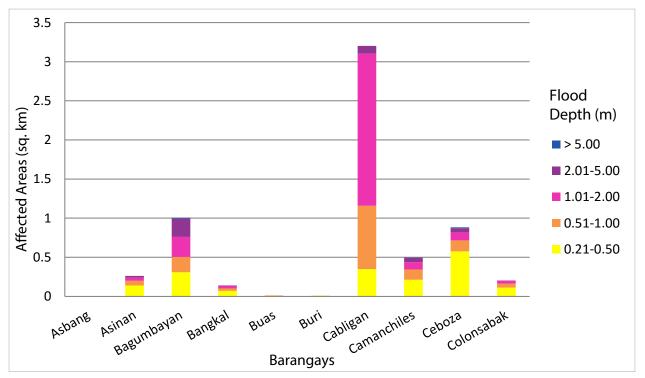



Figure 88. Affected Areas in Matanao, Davao del Sur during 5-Year Rainfall Return Period

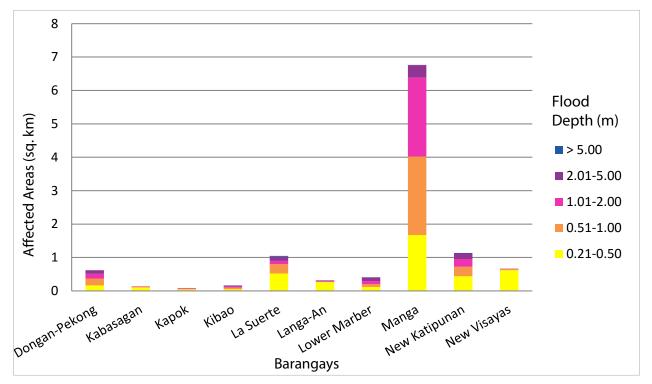



Figure 89. Affected Areas in Matanao, Davao del Sur during 5-Year Rainfall Return Period

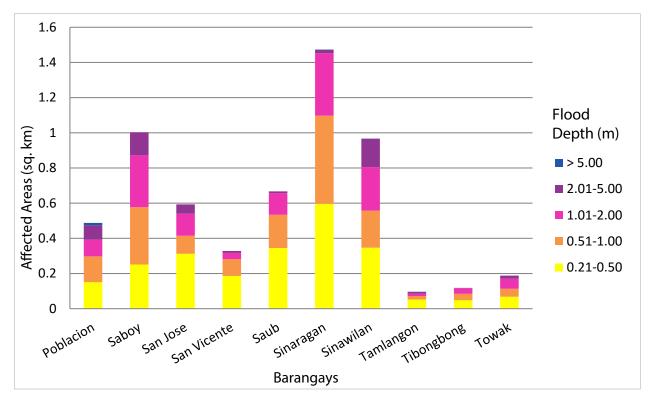



Figure 90. Affected Areas in Matanao, Davao del Sur during 5-Year Rainfall Return Period

#### LIDAR Surveys and Flood Mapping of Padada River

For the 5-year return period, 65.79% of the municipality of Padada with an area of 55.97 sq. km. will experience flood levels of less than 0.20 meters. 21.36% of the area will experience flood levels of 0.21 to 0.50 meters while 6.70%, 2.42%, 2.49%, and 1.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           |                              |                 | Affected           | Barangays i      | n Padada         |                            |                     |          |
|------------------------------------------------|-----------|------------------------------|-----------------|--------------------|------------------|------------------|----------------------------|---------------------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Almendras | Don Sergio<br>Osmena,<br>Sr. | Harada<br>Butai | Lower<br>Katipunan | Lower<br>Limonzo | Lower<br>Malinao | N C<br>Ordaneza<br>Distric | Northern<br>Paligue | Palili   |
| 0.03-0.20                                      | 0.622305  | 1.53652                      | 3.15229         | 4.30497            | 1.83783          | 3.32775          | 0.673851                   | 2.11406             | 5.94933  |
| 0.21-0.50                                      | 0.280609  | 0.513307                     | 1.71104         | 0.376542           | 0.673046         | 0.578493         | 0.174694                   | 0.810332            | 2.50134  |
| 0.51-1.00                                      | 0.034125  | 0.372988                     | 0.527557        | 0.149083           | 0.146774         | 0.330406         | 0.042539                   | 0.194392            | 0.578611 |
| 1.01-2.00                                      | 0         | 0.28336                      | 0.08948         | 0.172243           | 0.050936         | 0.459752         | 0.0118                     | 0.045441            | 0.063941 |
| 2.01-5.00                                      | 0         | 0.394535                     | 0.0077          | 0.209678           | 0.002            | 0.702399         | 0                          | 0.054111            | 0.0003   |
| > 5.00                                         | 0         | 0.232211                     | 0               | 0.136612           | 0                | 0.147446         | 0                          | 0.149493            | 0        |

Table 48. Affected Areas in Padada, Davao del Sur during 5-Year Rainfall Return Period

| Affected                                       |          |             | Af                  | fected Baran | gays in Pada        | da       |                  |                  |
|------------------------------------------------|----------|-------------|---------------------|--------------|---------------------|----------|------------------|------------------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Piape    | Punta Piape | Quirino<br>District | San Isidro   | Southern<br>Paligue | Tulogan  | Upper<br>Limonzo | Upper<br>Malinao |
| 0.03-0.20                                      | 0.679639 | 2.46921     | 0.457198            | 1.52497      | 1.52117             | 1.41883  | 2.53527          | 2.69686          |
| 0.21-0.50                                      | 0.418943 | 0.653036    | 0.032504            | 0.650722     | 0.627855            | 0.79484  | 0.733036         | 0.424097         |
| 0.51-1.00                                      | 0.147664 | 0.233314    | 0.0005              | 0.476957     | 0.124457            | 0.170363 | 0.154598         | 0.064133         |
| 1.01-2.00                                      | 0.0008   | 0.0228      | 0                   | 0.0484       | 0.004852            | 0.0006   | 0.044297         | 0.056744         |
| 2.01-5.00                                      | 0        | 0           | 0                   | 0            | 0                   | 0        | 0.0057           | 0.018978         |
| > 5.00                                         | 0        | 0           | 0                   | 0            | 0                   | 0        | 0                | 0                |

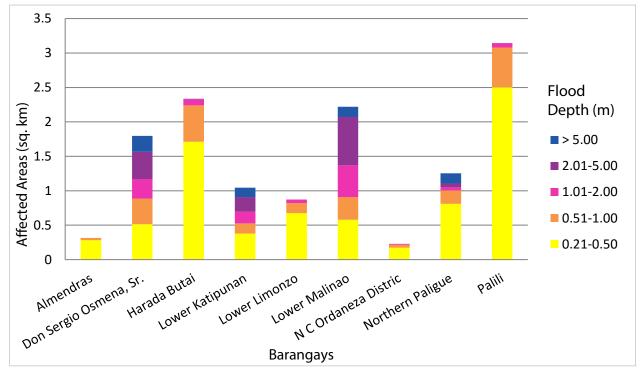



Figure 91. Affected Areas in Padada, Davao del Sur during 5-Year Rainfall Return Period

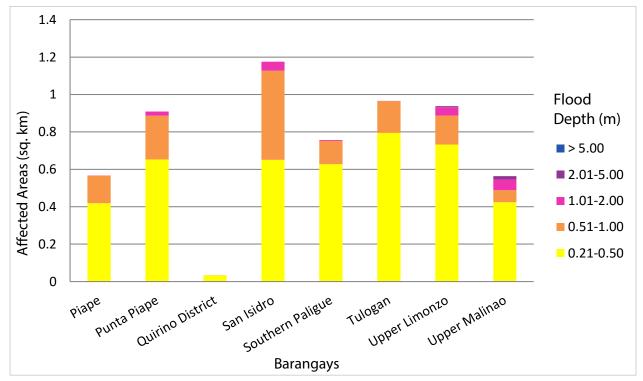



Figure 92. Affected Areas in Padada, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 0.95% of the municipality of Santa Cruz with an area of 267.54 sq. km. will experience flood levels of less than 0.20 meters. 0.15% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, 0.08%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          | Affected Baranga | ays in Santa Cruz |
|----------------------------------------|------------------|-------------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Bato             | Tagabuli          |
| 0.03-0.20                              | 2.4827           | 0.068196          |
| 0.21-0.50                              | 0.378281         | 0.011563          |
| 0.51-1.00                              | 0.408695         | 0.000769          |
| 1.01-2.00                              | 0.21032          | 0                 |
| 2.01-5.00                              | 0.0208           | 0                 |
| > 5.00                                 | 0                | 0                 |

Table 49. Affected Areas in Santa Cruz, Davao del Sur during 5-Year Rainfall Return Period

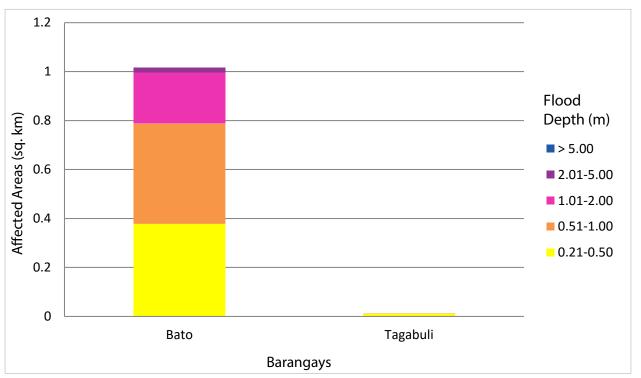



Figure 93. Affected Areas in Santa Cruz, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 61.40% of the municipality of Sulop with an area of 50.8 sq. km. will experience flood levels of less than 0.20 meters. 19.77% of the area will experience flood levels of 0.21 to 0.50 meters while 11.38%, 5.59%, 0.95%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           |          |          | Affected | Barangays       | in Sulop  |          |          |          |
|------------------------------------------------|-----------|----------|----------|----------|-----------------|-----------|----------|----------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Balasinon | Buguis   | Carre    | Clib     | Harada<br>Butai | Katipunan | Kiblagon | Labon    | Laperas  |
| 0.03-0.20                                      | 0.232376  | 1.18957  | 0.902191 | 0.520821 | 2.09956         | 1.18273   | 0.427775 | 0.479456 | 0.825669 |
| 0.21-0.50                                      | 0.153349  | 0.045935 | 0.039682 | 0.01488  | 0.954898        | 0.447894  | 0.672708 | 0.017984 | 0.27799  |
| 0.51-1.00                                      | 0.055409  | 0.03339  | 0.024439 | 0.007807 | 0.481306        | 0.067209  | 0.958601 | 0.00814  | 0.090703 |
| 1.01-2.00                                      | 0.000742  | 0.034754 | 0.020764 | 0.001664 | 0.098963        | 0.016136  | 0.24747  | 0.005413 | 0.002539 |
| 2.01-5.00                                      | 0         | 0.034131 | 0.01699  | 0.001182 | 0.0028          | 0.047404  | 0        | 0.004834 | 0.0006   |
| > 5.00                                         | 0         | 0        | 0.0036   | 0.000142 | 0               | 0.010675  | 0        | 0.001413 | 0        |

Table 50. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period

| Affected                                       |          |          | А        | ffected Bara | ngays in Sulo | р        |          |          |
|------------------------------------------------|----------|----------|----------|--------------|---------------|----------|----------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Lapla    | Litos    | Luparan  | Mckinley     | New Cebu      | Osmeña   | Palili   | Parame   |
| 0.03-0.20                                      | 0.697052 | 0.668059 | 0.33992  | 0.795141     | 1.80916       | 0.350832 | 4.75894  | 0.50938  |
| 0.21-0.50                                      | 0.021817 | 0.026214 | 0.008487 | 0.038055     | 0.456737      | 0.010519 | 2.19199  | 0.012963 |
| 0.51-1.00                                      | 0.010536 | 0.02322  | 0.004472 | 0.061533     | 0.266138      | 0.00535  | 0.802617 | 0.010909 |
| 1.01-2.00                                      | 0.014104 | 0.012853 | 0.005747 | 0.049815     | 0.067089      | 0.002493 | 0.964308 | 0.009726 |
| 2.01-5.00                                      | 0.018713 | 0.013541 | 0.009281 | 0.00609      | 0.009555      | 0.001096 | 0.005142 | 0.010636 |
| > 5.00                                         | 0.004213 | 0.0104   | 0.001388 | 0            | 0.0004        | 0        | 0        | 0.0003   |

| Affected                                       |           |          | А          | ffected Bara | ngays in Sulo | р        |           |           |
|------------------------------------------------|-----------|----------|------------|--------------|---------------|----------|-----------|-----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Poblacion | Roxas    | Solongvale | Tagolilong   | Tala-O        | Talas    | Tanwalang | Waterfall |
| 0.03-0.20                                      | 0.502378  | 3.21777  | 2.30219    | 1.0386       | 2.5489        | 1.11639  | 1.7747    | 0.90055   |
| 0.21-0.50                                      | 0.575323  | 0.17489  | 1.1267     | 0.028328     | 0.768714      | 0.836738 | 0.650765  | 0.491826  |
| 0.51-1.00                                      | 0.683321  | 0.183019 | 0.455963   | 0.011463     | 0.374304      | 0.593017 | 0.270374  | 0.296274  |
| 1.01-2.00                                      | 0.702245  | 0.115154 | 0.092488   | 0.011142     | 0.113209      | 0.170207 | 0.059928  | 0.02239   |
| 2.01-5.00                                      | 0.0007    | 0.05018  | 0.0005     | 0.005614     | 0.0001        | 0.0004   | 0.241515  | 0.000992  |
| > 5.00                                         | 0         | 0.016045 | 0          | 0.0005       | 0             | 0        | 0.12452   | 0         |

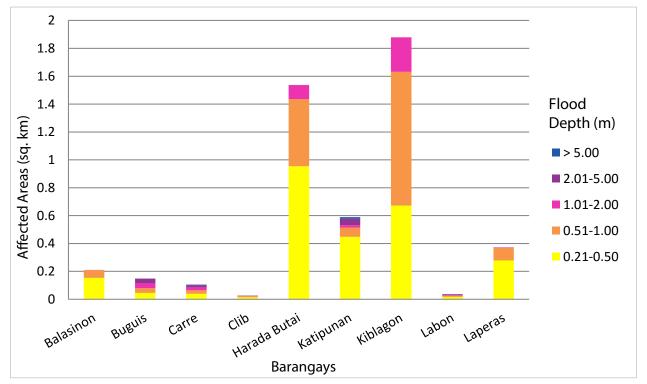



Figure 94. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period

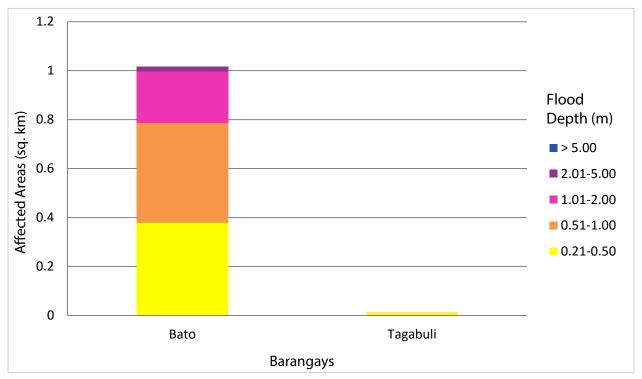



Figure 95. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period

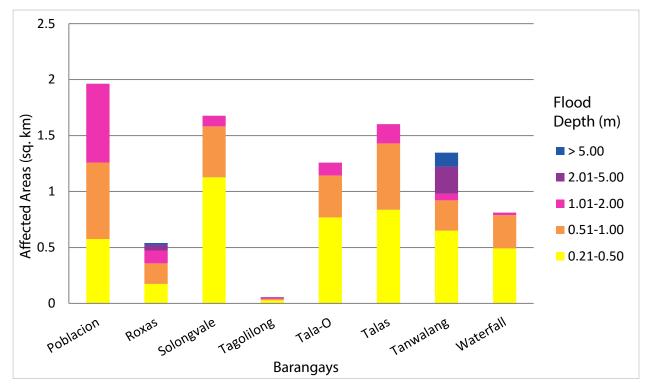




Figure 96. Affected Areas in Sulop, Davao del Sur during 5-Year Rainfall Return Period

For the 5-year return period, 0.24% of the municipality of Columbio with an area of 574.067 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Affected Barangay in<br>Columbio |
|-------------------------------|----------------------------------|
| flood depth<br>(in m.)        | Datablao                         |
| 0.03-0.20                     | 1.39067                          |
| 0.21-0.50                     | 0.02969                          |
| 0.51-1.00                     | 0.014751                         |
| 1.01-2.00                     | 0.01476                          |
| 2.01-5.00                     | 0.017973                         |
| > 5.00                        | 0.0043                           |



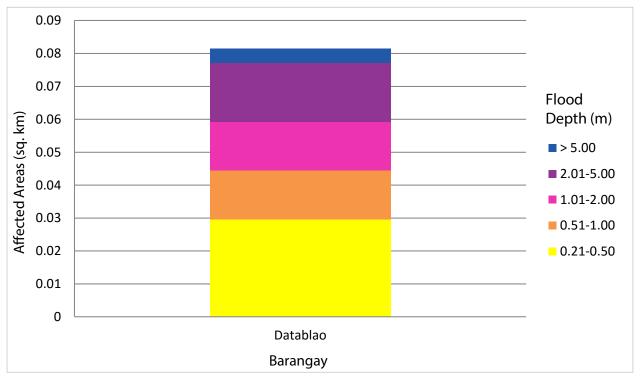



Figure 97. Affected Areas in Columbio, Sultan Kudarat during 5-Year Rainfall Return Period

For the 25-year return period, 10.62% of the municipality of Bansalan with an area of 136.18 sq. km. will experience flood levels of less than 0.20 meters. 2.59% of the area will experience flood levels of 0.21 to 0.50 meters while 0.98%, 0.48%, 0.19%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |          |           | Aff        | ected Baran | gays in Bansa | lan       |                  |          |
|------------------------------------------------|----------|-----------|------------|-------------|---------------|-----------|------------------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Anonang  | Bonifacio | Buenavista | Mabunga     | New Clarin    | Poblacion | Poblacion<br>Dos | Union    |
| 0.03-0.20                                      | 1.60987  | 1.34427   | 2.0714     | 3.33942     | 0.532855      | 1.28824   | 1.27358          | 3.00853  |
| 0.21-0.50                                      | 0.142879 | 0.147071  | 0.314918   | 1.81209     | 0.054655      | 0.194801  | 0.525083         | 0.341582 |
| 0.51-1.00                                      | 0.085356 | 0.05411   | 0.183677   | 0.284251    | 0.056757      | 0.150779  | 0.178833         | 0.342422 |
| 1.01-2.00                                      | 0.035793 | 0.026919  | 0.064771   | 0.160398    | 0.055009      | 0.070182  | 0.036369         | 0.197738 |
| 2.01-5.00                                      | 0.013359 | 0.013509  | 0.030382   | 0.047548    | 0.010903      | 0.070421  | 0.0006           | 0.069594 |
| > 5.00                                         | 0        | 0.0002    | 0.0001     | 0.0001      | 0             | 0.0057    | 0                | 0.0049   |

Table 52. Affected Areas in Bansalan, Davao del Sur during 25-Year Rainfall Return Period

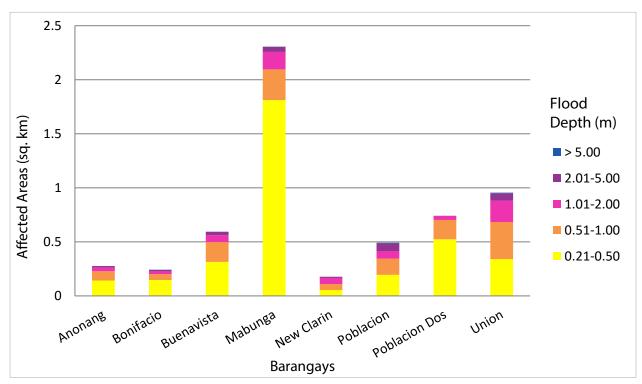



Figure 98. Affected Areas in Bansalan, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 24.44% of the municipality of Digos City with an area of 226.71 sq. km. will experience flood levels of less than 0.20 meters. 6.71% of the area will experience flood levels of 0.21 to 0.50 meters while 4.44%, 2.15%, 0.63%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Table 53. Affected Areas in Digo | s City, Davao del Sur during 21 | 5-Year Rainfall Return Period |
|----------------------------------|---------------------------------|-------------------------------|
|----------------------------------|---------------------------------|-------------------------------|

| Affected Area                          |          |          |          |          | Aff      | ected Barang | ays in Digos ( | City     |          |          |           |          |
|----------------------------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|----------|----------|-----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Aplaya   | Balabag  | Cogon    | Colorado | Dawis    | Dulangan     | Goma           | Igpit    | Kiagot   | Lungag   | Mahayahay | Matti    |
| 0.03-0.20                              | 2.12476  | 0.167608 | 2.08466  | 3.78364  | 1.65599  | 0.097516     | 2.49115        | 1.17526  | 1.92244  | 4.69374  | 4.35425   | 4.69692  |
| 0.21-0.50                              | 1.7767   | 0.007106 | 1.29816  | 1.02291  | 1.07252  | 0.007934     | 0.370198       | 0.939615 | 0.070934 | 0.369055 | 0.443953  | 0.813748 |
| 0.51-1.00                              | 0.617703 | 0.004442 | 1.45577  | 1.81519  | 0.269134 | 0.000369     | 0.166749       | 0.945263 | 0.031028 | 0.224049 | 0.267246  | 0.604391 |
| 1.01-2.00                              | 0.08512  | 0.003898 | 0.303453 | 0.889769 | 0.057212 | 0.000015     | 0.066244       | 1.20477  | 0.035918 | 0.085471 | 0.177809  | 0.511883 |
| 2.01-5.00                              | 0.071049 | 0.0027   | 0.007535 | 0.221087 | 0.017828 | 0            | 0.025624       | 0.124232 | 0.025479 | 0.029934 | 0.120258  | 0.25378  |
| > 5.00                                 | 0.01549  | 0        | 0        | 0.0027   | 0        | 0            | 0              | 0        | 0.000782 | 0        | 0.0046    | 0.0068   |

| Affected Area                          |          |             |          |            | Aff       | ected Barang | ays in Digos | City     |                 |          |          |          |
|----------------------------------------|----------|-------------|----------|------------|-----------|--------------|--------------|----------|-----------------|----------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Ruparan  | San Agustin | San Jose | San Miguel | San Roque | Sinawilan    | Soong        | Tiguman  | Tres de<br>Mayo | Zone 1   | Zone 2   | Zone 3   |
| 0.03-0.20                              | 3.03244  | 4.07376     | 1.31386  | 0.708851   | 5.04226   | 3.39011      | 0.787975     | 1.13373  | 2.0441          | 2.12395  | 0.837083 | 1.67405  |
| 0.21-0.50                              | 0.183075 | 0.785167    | 1.04285  | 1.05533    | 0.671242  | 0.493485     | 0.031481     | 0.934216 | 0.455377        | 0.071215 | 0.352008 | 0.93906  |
| 0.51-1.00                              | 0.081044 | 0.331871    | 0.294143 | 0.689102   | 0.463411  | 0.433955     | 0.012143     | 0.545798 | 0.459694        | 0.047035 | 0.158341 | 0.140589 |
| 1.01-2.00                              | 0.052867 | 0.153941    | 0.281845 | 0.301684   | 0.194882  | 0.089734     | 0.008        | 0.077473 | 0.208089        | 0.030453 | 0.048536 | 0.012238 |
| 2.01-5.00                              | 0.046753 | 0.074994    | 0.00338  | 0          | 0.055827  | 0.037362     | 0.006065     | 0.000627 | 0.159183        | 0.043666 | 0.092426 | 0.006663 |
| > 5.00                                 | 0.004104 | 0           | 0        | 0          | 0         | 0.009877     | 0            | 0        | 0.055783        | 0.00574  | 0.137943 | 0.010182 |

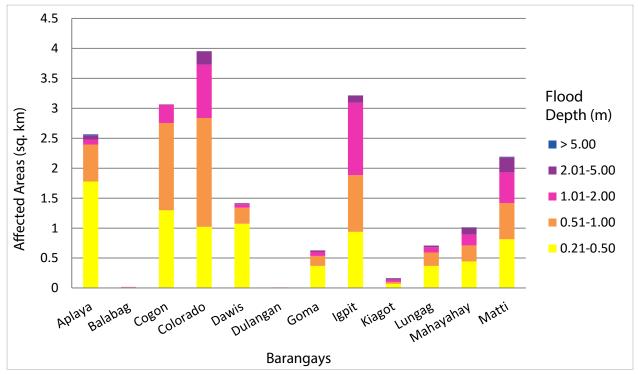



Figure 99. Affected Areas in Digos, Davao del Sur during 25-Year Rainfall Return Period

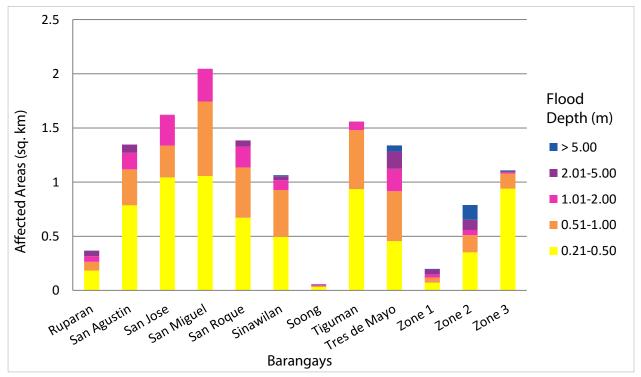



Figure 100. Affected Areas in Digos, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 41.93% of the municipality of Hagonoy with an area of 85.69 sq. km. will experience flood levels of less than 0.20 meters. 23.70% of the area will experience flood levels of 0.21 to 0.50 meters while 13.07%, 14.16%, 7.07%, and 0.71% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                        |           | Tuble 9 Infected filedo in Fingonoy, Duvio del our during 25 Fear Raman Recurit Feriod |          |                   |                     |          |          |          |           |         |           |          |  |  |
|----------------------------------------|-----------|----------------------------------------------------------------------------------------|----------|-------------------|---------------------|----------|----------|----------|-----------|---------|-----------|----------|--|--|
| Affected Area                          |           | Affected Barangays in Hagonoy                                                          |          |                   |                     |          |          |          |           |         |           |          |  |  |
| (sq. km.) by<br>flood depth<br>(in m.) | Balutakay | Clib                                                                                   | Guihing  | Guihing<br>Aplaya | Hagonoy<br>Crossing | Kibuaya  | La Union | Lanuro   | Lapulabao | Leling  | Mahayahay | Matti    |  |  |
| 0.03-0.20                              | 0.481004  | 2.40266                                                                                | 1.23222  | 2.59957           | 1.39879             | 1.72093  | 3.03403  | 1.035    | 2.62579   | 3.94768 | 1.52078   | 5.0093   |  |  |
| 0.21-0.50                              | 0.515667  | 0.202709                                                                               | 0.745425 | 1.8009            | 0.936761            | 1.19393  | 0.287483 | 1.2653   | 1.3527    | 3.63542 | 0.7519    | 0.72687  |  |  |
| 0.51-1.00                              | 0.610233  | 0.321313                                                                               | 0.239636 | 0.639601          | 0.205427            | 1.22528  | 0.210202 | 0.485031 | 0.769009  | 2.17208 | 0.164641  | 0.540675 |  |  |
| 1.01-2.00                              | 1.58028   | 0.415705                                                                               | 0.054132 | 0.187195          | 0.05775             | 1.48417  | 0.225951 | 1.11204  | 0.307673  | 2.88087 | 0.021302  | 0.366419 |  |  |
| 2.01-5.00                              | 1.33404   | 0.095866                                                                               | 0.077857 | 0.083839          | 0.096843            | 0.405944 | 0.071832 | 0.243123 | 0.027734  | 1.15122 | 0.012989  | 0.126065 |  |  |
| > 5.00                                 | 0         | 0.029434                                                                               | 0.160074 | 0.017166          | 0.213624            | 0.0013   | 0.012267 | 0        | 0.002868  | 0       | 0.0012    | 0.0026   |  |  |

| Table 54. Affected Are | as in Hagonoy, Davao | del Sur during 25-Year | Rainfall Return Period |
|------------------------|----------------------|------------------------|------------------------|
|                        |                      |                        |                        |

| Affected Area                          |                     |              |               |          | Af        | fected Baran | gays in Hagon    | юу         |           |          |          |          |
|----------------------------------------|---------------------|--------------|---------------|----------|-----------|--------------|------------------|------------|-----------|----------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Malabang<br>Damsite | Maliit Digos | New<br>Quezon | Paligue  | Poblacion | Sacub        | San<br>Guillermo | San Isidro | Sinayawan | Tologan  | Zone 2   | Zone 3   |
| 0.03-0.20                              | 2.3014              | 1.44492      | 2.55979       | 0.518151 | 2.07265   | 2.74329      | 0.71244          | 0.023295   | 0.804839  | 0.746868 | 1.01792  | 2.05706  |
| 0.21-0.50                              | 0.258942            | 0.378643     | 0.473802      | 0.531469 | 1.35832   | 3.19957      | 0.112472         | 0.053475   | 0.889785  | 0.364049 | 0.293495 | 0.639876 |
| 0.51-1.00                              | 0.289188            | 0.708603     | 0.246301      | 0.236864 | 0.213901  | 1.08956      | 0.249034         | 0.331711   | 0.664516  | 0.128173 | 0.08828  | 0.060973 |
| 1.01-2.00                              | 0.164583            | 0.357386     | 0.2939        | 0.0414   | 0.079395  | 0.0052       | 0.49815          | 1.49689    | 0.819718  | 0.051246 | 0.032234 | 0.008187 |
| 2.01-5.00                              | 0.061207            | 0.062728     | 1.42086       | 0.0001   | 0.050532  | 0            | 0.164045         | 0.608554   | 0         | 0.092817 | 0.098808 | 0.005806 |
| > 5.00                                 | 0.001308            | 0.0004       | 0.0001        | 0        | 0.020912  | 0            | 0.014581         | 0          | 0         | 0.133449 | 0.095596 | 0.009481 |

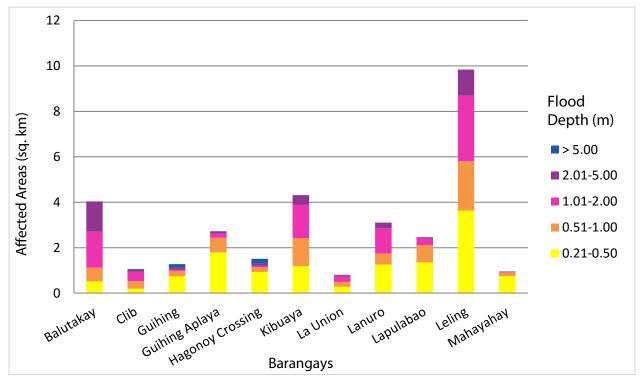
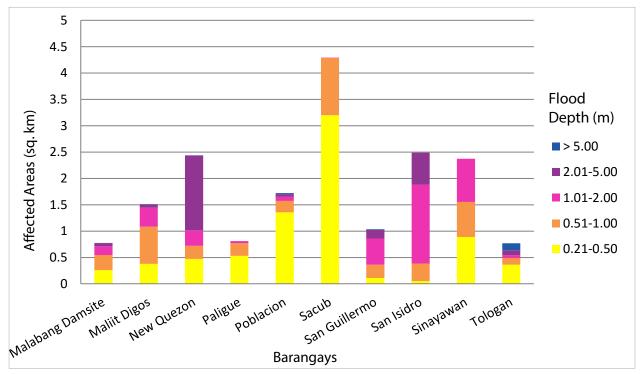
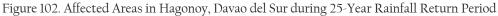





Figure 101. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return





For the 25-year return period, 52.90% of the municipality of Kiblawan with an area of 80.03 sq. km. will experience flood levels of less than 0.20 meters. 7.21% of the area will experience flood levels of 0.21 to 0.50 meters while 2.17%, 3.18%, 4.32%, and 0.61% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                        |          |                                |               | ,          |          | 0         |            |          |              |          |  |  |  |
|----------------------------------------|----------|--------------------------------|---------------|------------|----------|-----------|------------|----------|--------------|----------|--|--|--|
| Affected Area                          |          | Affected Barangays in Kiblawan |               |            |          |           |            |          |              |          |  |  |  |
| (sq. km.)<br>by flood depth<br>(in m.) | Abnate   | Bagong<br>Negros               | Bagong Silang | Bagumbayan | Balasiao | Bonifacio | Bulol-Salo | Bunot    | Cogon-Bacaca | Dapok    |  |  |  |
| 0.03-0.20                              | 2.46201  | 1.23485                        | 1.3028        | 4.66288    | 1.63852  | 2.25917   | 0.874019   | 2.64378  | 0.530959     | 1.64104  |  |  |  |
| 0.21-0.50                              | 0.753098 | 0.074076                       | 0.081482      | 0.45217    | 0.06696  | 0.092945  | 0.027457   | 0.112713 | 0.079929     | 0.106071 |  |  |  |
| 0.51-1.00                              | 0.124227 | 0.011751                       | 0.075679      | 0.164892   | 0.104165 | 0.050256  | 0.017455   | 0.085244 | 0.009245     | 0.090482 |  |  |  |
| 1.01-2.00                              | 0.038079 | 0.014081                       | 0.122856      | 0.357448   | 0.24561  | 0.054829  | 0.033798   | 0.057589 | 0.010209     | 0.195005 |  |  |  |
| 2.01-5.00                              | 0.0012   | 0.00622                        | 0.212649      | 0.425996   | 0.116969 | 0.076575  | 0.058248   | 0.052368 | 0.010689     | 0.111258 |  |  |  |
| > 5.00                                 | 0        | 0                              | 0.008148      | 0.001542   | 0.0037   | 0.007399  | 0.003563   | 0.012    | 0.0001       | 0.049278 |  |  |  |

| Affected Area                          |          | Affected Barangays in Kiblawan |          |          |          |          |          |          |             |          |  |  |  |
|----------------------------------------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|-------------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Ihan     | Kibongbong                     | Kimlawis | Kisulan  | Lati-An  | Manual   | Maraga-A | Molopolo | New Sibonga | Panaglib |  |  |  |
| 0.03-0.20                              | 0.392791 | 0.635541                       | 1.39436  | 0.864682 | 1.15627  | 1.03224  | 1.44373  | 2.345    | 1.45496     | 0.456867 |  |  |  |
| 0.21-0.50                              | 0.063017 | 0.230474                       | 0.026379 | 0.052926 | 0.044127 | 0.678893 | 0.046783 | 0.166378 | 0.084967    | 0.038232 |  |  |  |
| 0.51-1.00                              | 0.084859 | 0.018702                       | 0.015765 | 0.013488 | 0.051183 | 0.035285 | 0.029078 | 0.062435 | 0.110265    | 0.040254 |  |  |  |
| 1.01-2.00                              | 0.117106 | 0.015181                       | 0.0251   | 0.010992 | 0.128247 | 0        | 0.054843 | 0.125297 | 0.280604    | 0.073665 |  |  |  |
| 2.01-5.00                              | 0.105007 | 0.021208                       | 0.039237 | 0.005684 | 0.169395 | 0        | 0.052065 | 0.139193 | 0.452777    | 0.391641 |  |  |  |
| > 5.00                                 | 0.038975 | 0.000485                       | 0.006458 | 0        | 0.067434 | 0        | 0.0009   | 0.006047 | 0.028022    | 0.183046 |  |  |  |

| Affected Area                          |          | Affected Barangays in Kiblawan |          |            |          |           |            |          |          |           |  |  |  |
|----------------------------------------|----------|--------------------------------|----------|------------|----------|-----------|------------|----------|----------|-----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Pasig    | Poblacion                      | Pocaleel | San Isidro | San Jose | San Pedro | Santo Niño | Tacub    | Tacul    | Waterfall |  |  |  |
| 0.03-0.20                              | 0.570904 | 1.6553                         | 1.16666  | 1.10197    | 0.761655 | 3.06889   | 1.08595    | 1.21774  | 0.720178 | 0.56341   |  |  |  |
| 0.21-0.50                              | 0.042449 | 0.083333                       | 0.046094 | 0.426862   | 0.04989  | 0.579378  | 0.045867   | 0.464613 | 0.453268 | 0.297342  |  |  |  |
| 0.51-1.00                              | 0.01867  | 0.029183                       | 0.051551 | 0.031982   | 0.04525  | 0.168812  | 0.037643   | 0.028843 | 0.090651 | 0.042723  |  |  |  |
| 1.01-2.00                              | 0.047325 | 0.031271                       | 0.15882  | 0.032179   | 0.061956 | 0.119534  | 0.068194   | 0.047056 | 0.016226 | 0.002412  |  |  |  |
| 2.01-5.00                              | 0.027108 | 0.057164                       | 0.084486 | 0.113558   | 0.111839 | 0.215561  | 0.345777   | 0.054765 | 0.000932 | 0.00091   |  |  |  |
| > 5.00                                 | 0        | 0.004654                       | 0        | 0.00148    | 0.03413  | 0.0003    | 0.025516   | 0.002219 | 0        | 0         |  |  |  |

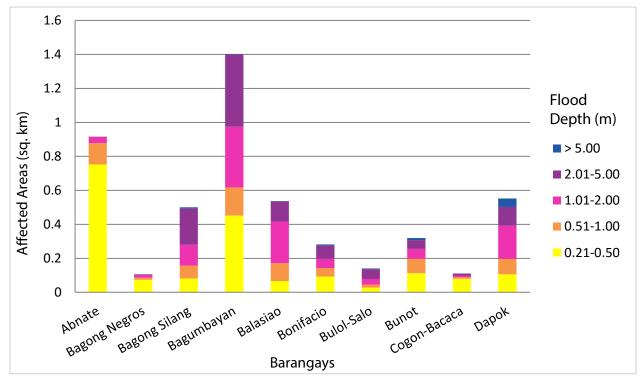



Figure 103. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return

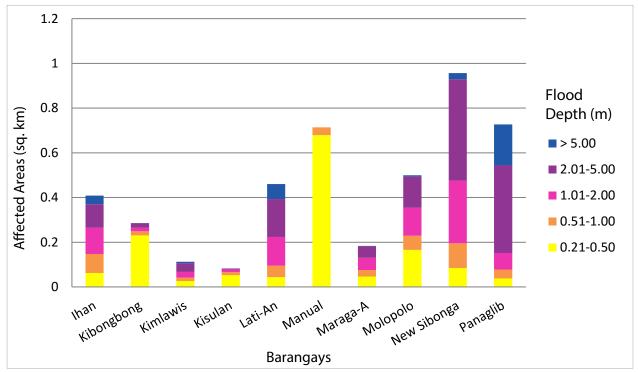



Figure 104. Affected Areas in Hagonoy, Davao del Sur during 25-Year Rainfall Return Period

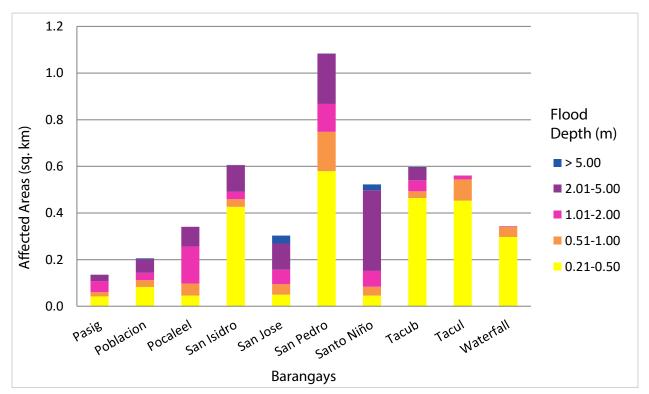



Figure 105. Affected Areas in Kiblawan, Davao del Sur during 25-Year Rainfall Return

For the 25-year return period, 0.30% of the municipality of Magsaysay with an area of 109.8 sq. km. will experience flood levels of less than 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.01%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 56. Affected Areas in Magsaysay, Davao del Sur during 25-Year Rainfall Return Period

| Affected Area<br>(sq. km.) by | Affected Barangay in<br>Magsaysay |
|-------------------------------|-----------------------------------|
| flood depth<br>(in m.)        | New Ilocos                        |
| 0.03-0.20                     | 0.327891                          |
| 0.21-0.50                     | 0.058881                          |
| 0.51-1.00                     | 0.02084                           |
| 1.01-2.00                     | 0.015593                          |
| 2.01-5.00                     | 0.0057                            |
| > 5.00                        | 0                                 |

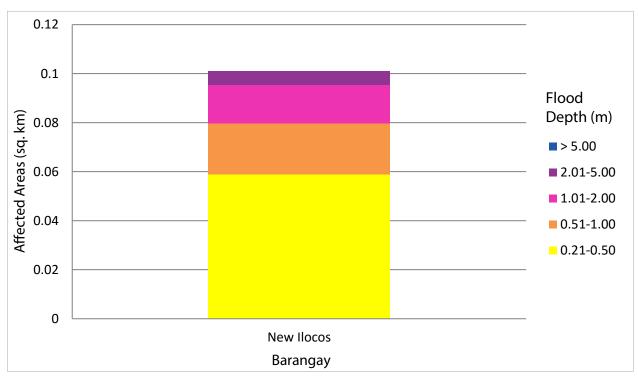



Figure 106. Affected Areas in Magsaysay, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 10.34% of the municipality of Malalag with an area of 445 sq. km. will experience flood levels of less than 0.20 meters. 1.32% of the area will experience flood levels of 0.21 to 0.50 meters while 1.24%, 1.03%, 0.54%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                                |            | l.                            | 3,       | 0         |          |              |  |  |  |  |  |  |  |
|------------------------------------------------|------------|-------------------------------|----------|-----------|----------|--------------|--|--|--|--|--|--|--|
| Affected                                       |            | Affected Barangays in Malalag |          |           |          |              |  |  |  |  |  |  |  |
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Bagumbayan | Bolton                        | Kiblagon | Lapu-Lapu | Mabini   | New Baclayon |  |  |  |  |  |  |  |
| 0.03-0.20                                      | 0.014434   | 0.534189                      | 11.8301  | 30.0538   | 1.36073  | 2.21588      |  |  |  |  |  |  |  |
| 0.21-0.50                                      | 0.006012   | 0.103109                      | 3.44947  | 1.72941   | 0.040211 | 0.557039     |  |  |  |  |  |  |  |
| 0.51-1.00                                      | 0.00795    | 0.036677                      | 3.585    | 1.19268   | 0.020286 | 0.672696     |  |  |  |  |  |  |  |
| 1.01-2.00                                      | 0.003315   | 0.01768                       | 2.19409  | 1.68152   | 0.013221 | 0.676106     |  |  |  |  |  |  |  |
| 2.01-5.00                                      | 0          | 0.012496                      | 0.405185 | 1.94553   | 0.015095 | 0.032056     |  |  |  |  |  |  |  |
| > 5.00                                         | 0          | 0.0009                        | 0.024666 | 0.23263   | 0.00702  | 0            |  |  |  |  |  |  |  |

Table 57. Affected Areas in Malalag, Davao del Sur during 25-Year Rainfall Return Period

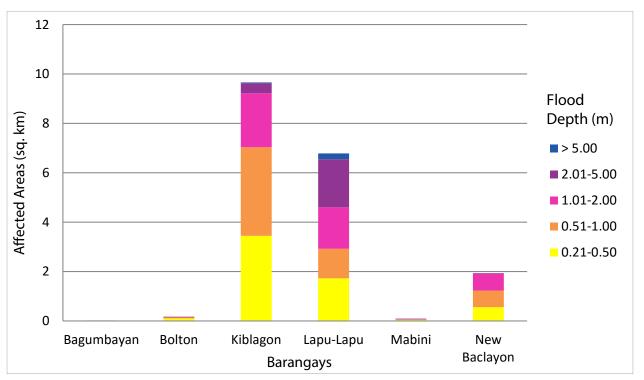



Figure 107. Affected Areas in Malalag, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 42.34% of the municipality of Matanao with an area of 123.4 sq. km. will experience flood levels of less than 0.20 meters. 7.58% of the area will experience flood levels of 0.21 to 0.50 meters while 5.57%, 6.45%, 3.68%, and 0.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay

| Affected Area                          |          | Affected Barangays in Matanao |            |          |          |          |          |             |          |            |  |  |  |  |
|----------------------------------------|----------|-------------------------------|------------|----------|----------|----------|----------|-------------|----------|------------|--|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Asbang   | Asinan                        | Bagumbayan | Bangkal  | Buas     | Buri     | Cabligan | Camanchiles | Ceboza   | Colonsabak |  |  |  |  |
| 0.03-0.20                              | 0.039204 | 0.963495                      | 2.89695    | 0.646398 | 0.08498  | 0.099914 | 0.083898 | 2.14644     | 2.42861  | 0.67578    |  |  |  |  |
| 0.21-0.50                              | 0.001728 | 0.213538                      | 0.395015   | 0.095856 | 0.013684 | 0.010335 | 0.211946 | 0.266516    | 0.904423 | 0.139964   |  |  |  |  |
| 0.51-1.00                              | 0.000151 | 0.059894                      | 0.228349   | 0.04215  | 0.002028 | 0.002779 | 0.567989 | 0.177365    | 0.217006 | 0.069977   |  |  |  |  |
| 1.01-2.00                              | 0        | 0.062445                      | 0.290087   | 0.04016  | 0.000607 | 0        | 2.20648  | 0.12483     | 0.168918 | 0.049007   |  |  |  |  |
| 2.01-5.00                              | 0        | 0.032926                      | 0.365512   | 0.015746 | 0        | 0        | 0.621142 | 0.110142    | 0.062018 | 0.0092     |  |  |  |  |
| > 5.00                                 | 0        | 0                             | 0.031609   | 0        | 0        | 0        | 0        | 0.015691    | 0.017644 | 0          |  |  |  |  |

| Affected Area                          |                   | Affected Barangays in Matanao |          |          |           |          |              |         |                  |             |  |  |  |
|----------------------------------------|-------------------|-------------------------------|----------|----------|-----------|----------|--------------|---------|------------------|-------------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Dongan-<br>Pekong | Kabasagan                     | Kapok    | Kibao    | La Suerte | Langa-An | Lower Marber | Manga   | New<br>Katipunan | New Visayas |  |  |  |
| 0.03-0.20                              | 2.68333           | 1.04435                       | 0.445036 | 1.02633  | 1.74011   | 1.19285  | 1.1178       | 5.52767 | 5.44779          | 2.0596      |  |  |  |
| 0.21-0.50                              | 0.205898          | 0.187056                      | 0.084081 | 0.085666 | 0.399468  | 0.458544 | 0.168655     | 1.32887 | 0.545604         | 0.971038    |  |  |  |
| 0.51-1.00                              | 0.121757          | 0.024955                      | 0.016223 | 0.045187 | 0.537484  | 0.033625 | 0.125193     | 2.27841 | 0.323312         | 0.140214    |  |  |  |
| 1.01-2.00                              | 0.241637          | 0.024001                      | 0.022115 | 0.056423 | 0.174306  | 0.023723 | 0.105683     | 2.1999  | 0.280072         | 0.002206    |  |  |  |
| 2.01-5.00                              | 0.150961          | 0.0015                        | 0.0102   | 0.039143 | 0.140767  | 0.021562 | 0.142701     | 1.57094 | 0.269439         | 0.0004      |  |  |  |
| > 5.00                                 | 0.000651          | 0                             | 0        | 0.0027   | 0.040524  | 0.000458 | 0.020742     | 0.0045  | 0.0379           | 0           |  |  |  |

| Affected Area                          |           | Affected Barangays in Matanao |          |             |          |           |           |           |            |          |  |  |  |
|----------------------------------------|-----------|-------------------------------|----------|-------------|----------|-----------|-----------|-----------|------------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Poblacion | Saboy                         | San Jose | San Vicente | Saub     | Sinaragan | Sinawilan | Tamlangon | Tibongbong | Towak    |  |  |  |
| 0.03-0.20                              | 1.18536   | 0.691479                      | 2.49557  | 1.40193     | 1.11094  | 4.07984   | 5.97094   | 0.741232  | 1.18605    | 1.02793  |  |  |  |
| 0.21-0.50                              | 0.140034  | 0.211967                      | 0.486631 | 0.209886    | 0.372669 | 0.618388  | 0.390698  | 0.082512  | 0.059956   | 0.090633 |  |  |  |
| 0.51-1.00                              | 0.136751  | 0.240936                      | 0.134136 | 0.145796    | 0.263594 | 0.570891  | 0.255149  | 0.027673  | 0.03752    | 0.044973 |  |  |  |
| 1.01-2.00                              | 0.179812  | 0.458575                      | 0.127036 | 0.066057    | 0.170998 | 0.514651  | 0.248779  | 0.018495  | 0.043843   | 0.055965 |  |  |  |
| 2.01-5.00                              | 0.122415  | 0.227042                      | 0.11779  | 0.020241    | 0.041923 | 0.076802  | 0.306182  | 0.013356  | 0.003507   | 0.044085 |  |  |  |
| > 5.00                                 | 0.022108  | 0.000449                      | 0.000021 | 0           | 0        | 0.0024    | 0.0092    | 0.002392  | 0.000903   | 0        |  |  |  |

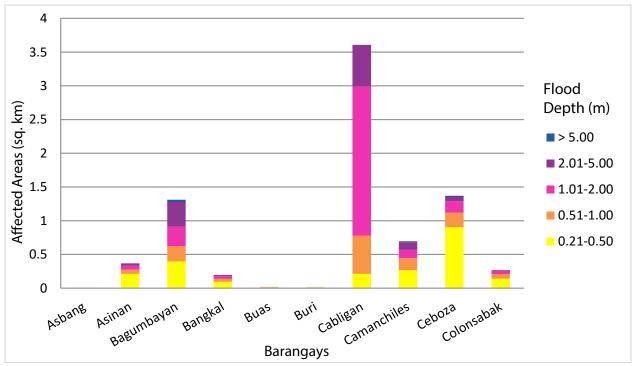



Figure 108. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period

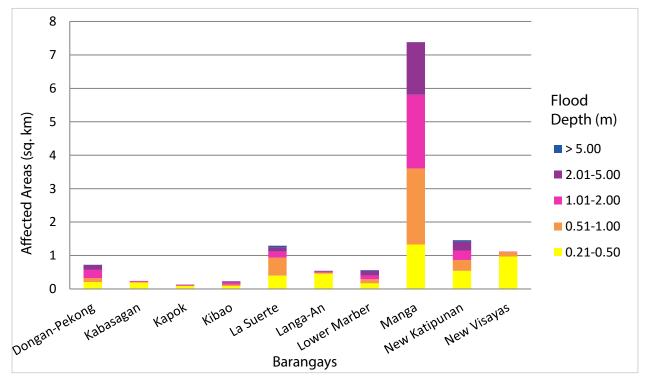



Figure 109. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period

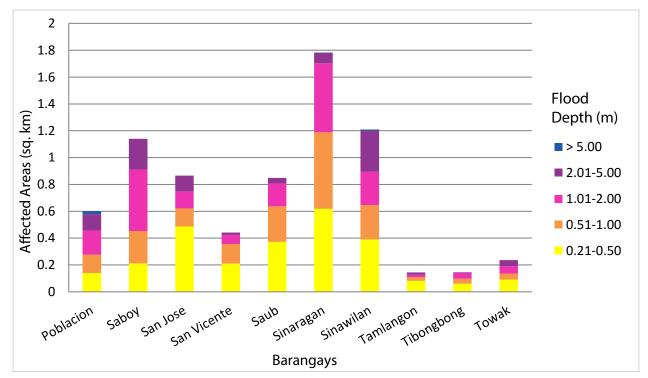



Figure 110. Affected Areas in Matanao, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 52.76% of the municipality of Padada with an area of 55.97 sq. km. will experience flood levels of less than 0.20 meters. 27.14% of the area will experience flood levels of 0.21 to 0.50 meters while 11.38%, 3.92%, 2.67%, and 2.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           |                              |                 | Affected           | Barangays i      | n Padada         |                            |                     |          |
|------------------------------------------------|-----------|------------------------------|-----------------|--------------------|------------------|------------------|----------------------------|---------------------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Almendras | Don Sergio<br>Osmena,<br>Sr. | Harada<br>Butai | Lower<br>Katipunan | Lower<br>Limonzo | Lower<br>Malinao | N C<br>Ordaneza<br>Distric | Northern<br>Paligue | Palili   |
| 0.03-0.20                                      | 0.45618   | 1.21713                      | 2.30474         | 4.00344            | 1.23832          | 2.8857           | 0.590004                   | 1.58183             | 4.58444  |
| 0.21-0.50                                      | 0.395401  | 0.395819                     | 1.95072         | 0.50757            | 1.13457          | 0.626726         | 0.233578                   | 1.11153             | 3.19077  |
| 0.51-1.00                                      | 0.085278  | 0.448606                     | 0.961284        | 0.242839           | 0.267349         | 0.392734         | 0.062834                   | 0.368878            | 1.16583  |
| 1.01-2.00                                      | 0.0003    | 0.54624                      | 0.257622        | 0.166286           | 0.067346         | 0.445639         | 0.017749                   | 0.065357            | 0.154178 |
| 2.01-5.00                                      | 0         | 0.216529                     | 0.0137          | 0.280993           | 0.003            | 0.870774         | 0.0001                     | 0.046078            | 0.0016   |
| > 5.00                                         | 0         | 0.510397                     | 0               | 0.152801           | 0                | 0.325177         | 0                          | 0.194151            | 0        |

Table 59. Affected Areas in Padada, Davao del Sur during 25-Year Rainfall Return Period

| Affected                                       |          |             | Af                  | fected Baran | gays in Pada        | da       |                  |                  |
|------------------------------------------------|----------|-------------|---------------------|--------------|---------------------|----------|------------------|------------------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Piape    | Punta Piape | Quirino<br>District | San Isidro   | Southern<br>Paligue | Tulogan  | Upper<br>Limonzo | Upper<br>Malinao |
| 0.03-0.20                                      | 0.489671 | 2.01539     | 0.445701            | 1.20343      | 1.19119             | 0.982411 | 1.97955          | 2.35888          |
| 0.21-0.50                                      | 0.353223 | 0.899048    | 0.039664            | 0.610526     | 0.829514            | 1.05277  | 1.14707          | 0.71048          |
| 0.51-1.00                                      | 0.384451 | 0.413458    | 0.004838            | 0.637092     | 0.245748            | 0.33736  | 0.265336         | 0.085173         |
| 1.01-2.00                                      | 0.019701 | 0.050468    | 0                   | 0.237293     | 0.011874            | 0.012092 | 0.072941         | 0.066914         |
| 2.01-5.00                                      | 0        | 0           | 0                   | 0.0127       | 0                   | 0        | 0.0085           | 0.039371         |
| > 5.00                                         | 0        | 0           | 0                   | 0            | 0                   | 0        | 0                | 0                |

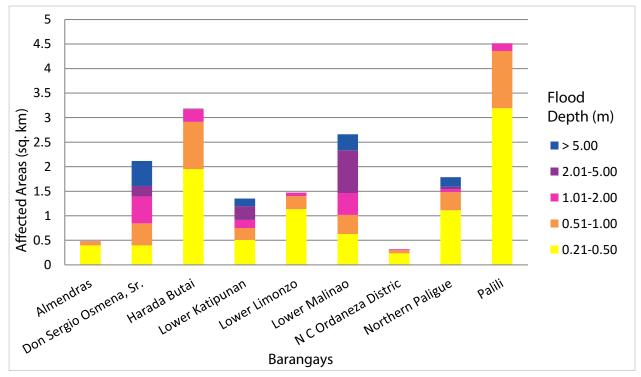



Figure 111. Affected Areas in Padada, Davao del Sur during 25-Year Rainfall Return Period

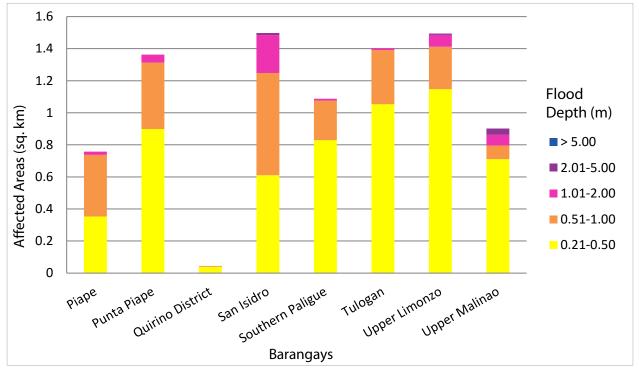



Figure 112. Affected Areas in Padada, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 0.86% of the municipality of Santa Cruz with an area of 267.54 sq. km. will experience flood levels of less than 0.20 meters. 0.13% of the area will experience flood levels of 0.21 to 0.50 meters while 0.14%, 0.19%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          | Affected Baranga | ays in Santa Cruz |
|----------------------------------------|------------------|-------------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Bato             | Tagabuli          |
| 0.03-0.20                              | 2.24871          | 0.054899          |
| 0.21-0.50                              | 0.324265         | 0.015493          |
| 0.51-1.00                              | 0.354022         | 0.010038          |
| 1.01-2.00                              | 0.505296         | 0.0001            |
| 2.01-5.00                              | 0.0652           | 0                 |
| > 5.00                                 | 0.0033           | 0                 |

Table 60. Affected Areas in Santa Cruz, Davao del Sur during 25-Year Rainfall Return Period

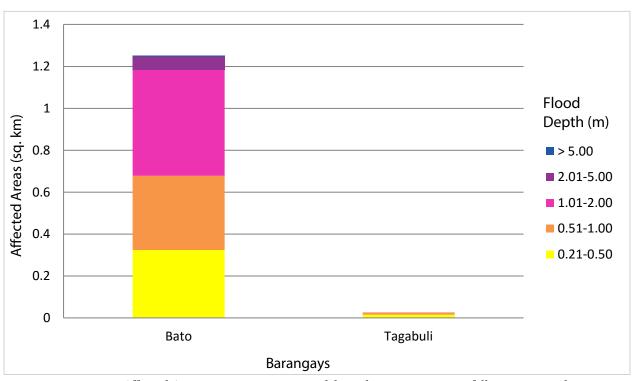



Figure 113. Affected Areas in Santa Cruz, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 51.93% of the municipality of Sulop with an area of 50.8 sq. km. will experience flood levels of less than 0.20 meters. 20.28% of the area will experience flood levels of 0.21 to 0.50 meters while 15.39%, 9.42%, 1.92%, and 0.52% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           | Affected Barangays in Sulop |          |          |                 |           |          |          |          |  |  |  |  |  |  |
|------------------------------------------------|-----------|-----------------------------|----------|----------|-----------------|-----------|----------|----------|----------|--|--|--|--|--|--|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Balasinon | Buguis                      | Carre    | Clib     | Harada<br>Butai | Katipunan | Kiblagon | Labon    | Laperas  |  |  |  |  |  |  |
| 0.03-0.20                                      | 0.177924  | 1.16099                     | 0.88147  | 0.51323  | 1.53343         | 0.932934  | 0.205748 | 0.470354 | 0.76692  |  |  |  |  |  |  |
| 0.21-0.50                                      | 0.152299  | 0.047441                    | 0.043008 | 0.017886 | 1.09214         | 0.603761  | 0.428304 | 0.022371 | 0.245398 |  |  |  |  |  |  |
| 0.51-1.00                                      | 0.108412  | 0.031641                    | 0.030507 | 0.010285 | 0.798269        | 0.153521  | 0.940891 | 0.009955 | 0.176169 |  |  |  |  |  |  |
| 1.01-2.00                                      | 0.00374   | 0.036575                    | 0.024728 | 0.003033 | 0.205882        | 0.02013   | 0.67485  | 0.007125 | 0.008415 |  |  |  |  |  |  |
| 2.01-5.00                                      | 0         | 0.059789                    | 0.022653 | 0.001523 | 0.0082          | 0.048829  | 0.05676  | 0.005286 | 0.000446 |  |  |  |  |  |  |
| > 5.00                                         | 0         | 0.001343                    | 0.0055   | 0.000541 | 0               | 0.012973  | 0        | 0.002148 | 0.000154 |  |  |  |  |  |  |

| Table 61. Affected Areas in Sulop. | , Davao del Sur during 25-Year Rainfall Return Period |
|------------------------------------|-------------------------------------------------------|
|                                    |                                                       |

| Affected                                       |          |          | А        | ffected Bara | ngays in Sulo | р        |          |          |
|------------------------------------------------|----------|----------|----------|--------------|---------------|----------|----------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Lapla    | Litos    | Luparan  | Mckinley     | New Cebu      | Osmeña   | Palili   | Parame   |
| 0.03-0.20                                      | 0.683415 | 0.654229 | 0.33282  | 0.769171     | 1.70133       | 0.346021 | 3.40226  | 0.502136 |
| 0.21-0.50                                      | 0.025141 | 0.022642 | 0.011347 | 0.036927     | 0.316804      | 0.013223 | 2.87211  | 0.013618 |
| 0.51-1.00                                      | 0.012761 | 0.024013 | 0.005475 | 0.041808     | 0.471754      | 0.006357 | 1.01818  | 0.01219  |
| 1.01-2.00                                      | 0.01388  | 0.024098 | 0.005204 | 0.084123     | 0.082734      | 0.003293 | 1.16708  | 0.010734 |
| 2.01-5.00                                      | 0.022225 | 0.016623 | 0.010849 | 0.018604     | 0.035161      | 0.001396 | 0.265566 | 0.014936 |
| > 5.00                                         | 0.009013 | 0.012683 | 0.003599 | 0            | 0.0013        | 0        | 0        | 0.0003   |

| Affected                                       |           |          | А          | ffected Bara | ngays in Sulo | р        |           |           |
|------------------------------------------------|-----------|----------|------------|--------------|---------------|----------|-----------|-----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Poblacion | Roxas    | Solongvale | Tagolilong   | Tala-O        | Talas    | Tanwalang | Waterfall |
| 0.03-0.20                                      | 0.277924  | 3.09981  | 1.93936    | 1.02222      | 2.07255       | 0.726794 | 1.45036   | 0.755546  |
| 0.21-0.50                                      | 0.3575    | 0.163978 | 0.968507   | 0.036183     | 0.979699      | 0.747008 | 0.633977  | 0.449236  |
| 0.51-1.00                                      | 0.626037  | 0.138849 | 0.869097   | 0.016092     | 0.51107       | 0.83533  | 0.558381  | 0.413047  |
| 1.01-2.00                                      | 1.15506   | 0.252139 | 0.199633   | 0.011797     | 0.239805      | 0.373582 | 0.087004  | 0.091933  |
| 2.01-5.00                                      | 0.04745   | 0.082011 | 0.001251   | 0.00885      | 0.0021        | 0.03404  | 0.208009  | 0.002272  |
| > 5.00                                         | 0         | 0.020364 | 0          | 0.0006       | 0             | 0        | 0.195569  | 0         |

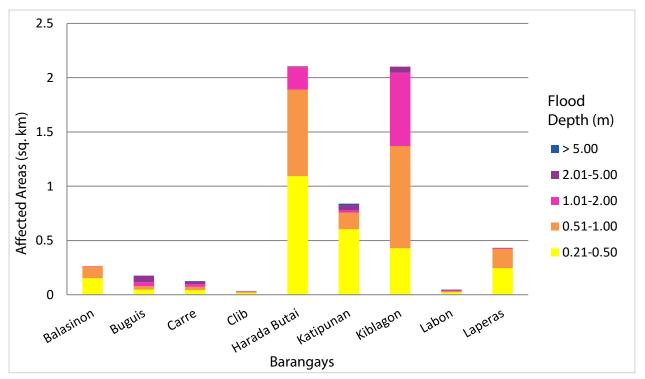



Figure 114. Affected Areas in Sulop, Davao del Sur during 25-Year Rainfall Return Period

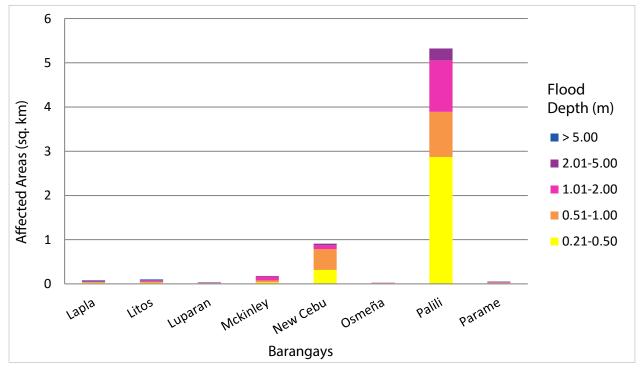



Figure 115. Affected Areas in Sulop, Davao del Sur during 25-Year Rainfall Return Period

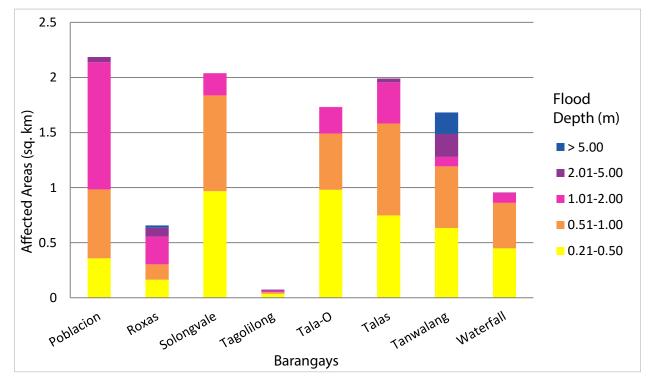



Figure 116. Affected Areas in Sulop, Davao del Sur during 25-Year Rainfall Return Period

For the 25-year return period, 0.24% of the municipality of Columbio with an area of 574.067 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Affected Barangay in<br>Columbio |
|-------------------------------|----------------------------------|
| flood depth<br>(in m.)        | Datablao                         |
| 0.03-0.20                     | 1.37677                          |
| 0.21-0.50                     | 0.030386                         |
| 0.51-1.00                     | 0.019288                         |
| 1.01-2.00                     | 0.015963                         |
| 2.01-5.00                     | 0.022633                         |
| > 5.00                        | 0.0071                           |

Table 62. Affected Areas in Columbio, Sultan Kudarat during 25-Year Rainfall Return Period

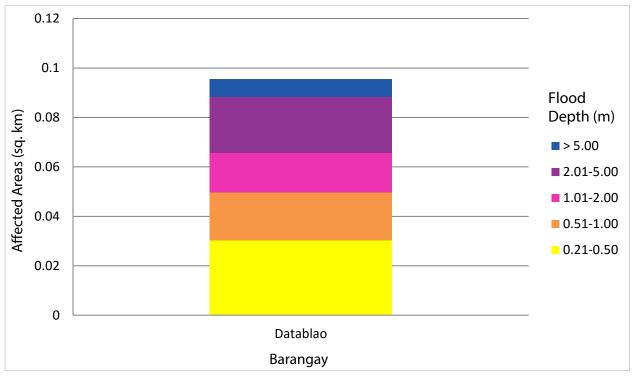



Figure 117. Affected Areas in Columbio, Sultan Kudarat during 25-Year Rainfall Return Period

For the 100-year return period, 9.70% of the municipality of Bansalan with an area of 136.18 sq. km. will experience flood levels of less than 0.20 meters. 3.08% of the area will experience flood levels of 0.21 to 0.50 meters while 1.16%, 0.67%, 0.25%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |          | Affected Barangays in Bansalan |            |          |            |           |                  |          |  |  |  |  |  |
|------------------------------------------------|----------|--------------------------------|------------|----------|------------|-----------|------------------|----------|--|--|--|--|--|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Anonang  | Bonifacio                      | Buenavista | Mabunga  | New Clarin | Poblacion | Poblacion<br>Dos | Union    |  |  |  |  |  |
| 0.03-0.20                                      | 1.55252  | 1.29378                        | 1.95713    | 2.70031  | 0.503187   | 1.21131   | 1.12             | 2.87078  |  |  |  |  |  |
| 0.21-0.50                                      | 0.156801 | 0.164428                       | 0.34312    | 2.28128  | 0.063945   | 0.22064   | 0.609809         | 0.356113 |  |  |  |  |  |
| 0.51-1.00                                      | 0.105476 | 0.069183                       | 0.235033   | 0.401933 | 0.057686   | 0.167085  | 0.229844         | 0.319034 |  |  |  |  |  |
| 1.01-2.00                                      | 0.051269 | 0.040475                       | 0.083127   | 0.198865 | 0.067434   | 0.093917  | 0.054318         | 0.317687 |  |  |  |  |  |
| 2.01-5.00                                      | 0.021193 | 0.017412                       | 0.045538   | 0.064147 | 0.017927   | 0.076175  | 0.0016           | 0.091046 |  |  |  |  |  |
| > 5.00                                         | 0        | 0.0008                         | 0.0013     | 0.0004   | 0          | 0.011     | 0                | 0.0101   |  |  |  |  |  |

Table 63. Affected Areas in Bansalan, Davao del Sur during 100-Year Rainfall Return Period

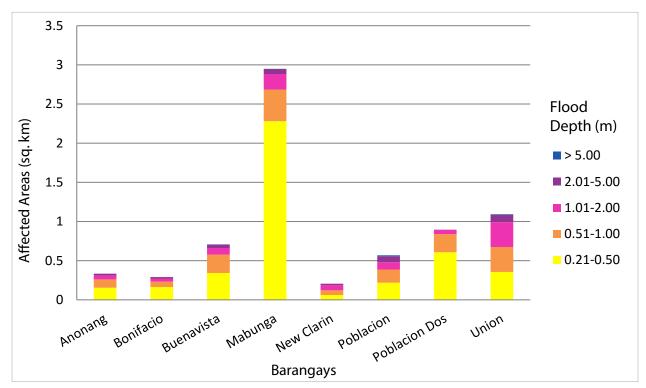



Figure 118. Affected Areas in Bansalan, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 22.01% of the municipality of Digos City with an area of 226.71 sq. km. will experience flood levels of less than 0.20 meters. 6.92% of the area will experience flood levels of 0.21 to 0.50 meters while 5.18%, 2.95%, 0.90%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          |          |          |          | Aff      | ected Barang | ays in Digos ( | City     |          |          |           |          |
|----------------------------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|----------|----------|-----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Aplaya   | Balabag  | Cogon    | Colorado | Dawis    | Dulangan     | Goma           | Igpit    | Kiagot   | Lungag   | Mahayahay | Matti    |
| 0.03-0.20                              | 1.5858   | 0.111392 | 1.78985  | 3.35438  | 1.37203  | 0.039846     | 2.23185        | 0.808834 | 1.90087  | 4.55897  | 4.06312   | 4.3165   |
| 0.21-0.50                              | 1.62719  | 0.002871 | 1.03556  | 0.916381 | 1.21589  | 0.02324      | 0.48318        | 0.770008 | 0.083743 | 0.353477 | 0.454912  | 0.832813 |
| 0.51-1.00                              | 1.2278   | 0.002275 | 1.83472  | 1.60329  | 0.391405 | 0.038577     | 0.206165       | 1.00027  | 0.03063  | 0.254776 | 0.268522  | 0.647093 |
| 1.01-2.00                              | 0.15569  | 0.003061 | 0.47332  | 1.34907  | 0.072332 | 0.003278     | 0.135477       | 1.40436  | 0.037643 | 0.104566 | 0.204471  | 0.602778 |
| 2.01-5.00                              | 0.078849 | 0.000328 | 0.016135 | 0.300715 | 0.025725 | 0.000894     | 0.05937        | 0.297955 | 0.031662 | 0.052876 | 0.142996  | 0.361103 |
| > 5.00                                 | 0.01679  | 0        | 0        | 0.005119 | 0        | 0            | 0              | 0        | 0.002028 | 0        | 0.0074    | 0.013281 |

| Affected Area                          |          |             |          |            | Aff       | ected Barang | ays in Digos | City     |                 |          |          |          |
|----------------------------------------|----------|-------------|----------|------------|-----------|--------------|--------------|----------|-----------------|----------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Ruparan  | San Agustin | San Jose | San Miguel | San Roque | Sinawilan    | Soong        | Tiguman  | Tres de<br>Mayo | Zone 1   | Zone 2   | Zone 3   |
| 0.03-0.20                              | 2.94381  | 3.51863     | 1.00792  | 0.490088   | 4.84502   | 3.30059      | 0.780458     | 0.871794 | 1.86563         | 2.10261  | 0.639257 | 1.40491  |
| 0.21-0.50                              | 0.231369 | 1.10376     | 1.17641  | 1.02798    | 0.705364  | 0.443304     | 0.035648     | 1.06421  | 0.470285        | 0.076789 | 0.439721 | 1.1079   |
| 0.51-1.00                              | 0.094983 | 0.428917    | 0.386104 | 0.756211   | 0.505878  | 0.534585     | 0.013519     | 0.546714 | 0.462247        | 0.049738 | 0.224757 | 0.237529 |
| 1.01-2.00                              | 0.063488 | 0.235721    | 0.354154 | 0.480687   | 0.258004  | 0.119238     | 0.008074     | 0.20789  | 0.302578        | 0.035098 | 0.069792 | 0.015504 |
| 2.01-5.00                              | 0.059726 | 0.126368    | 0.011501 | 0          | 0.080755  | 0.045729     | 0.007865     | 0.001236 | 0.185142        | 0.047766 | 0.094789 | 0.006763 |
| > 5.00                                 | 0.006901 | 0.010488    | 0        | 0          | 0.0002    | 0.011077     | 0.0001       | 0        | 0.099229        | 0.010063 | 0.158143 | 0.010482 |

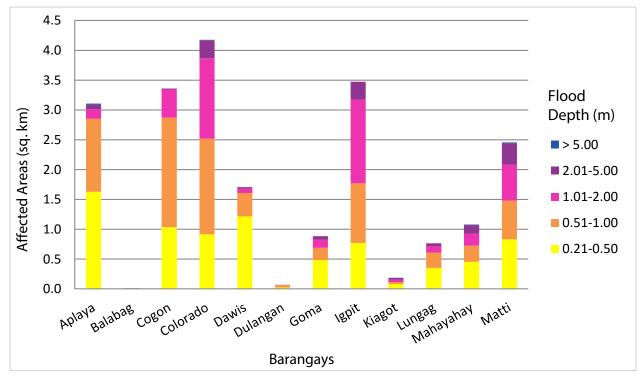



Figure 119. Affected Areas in Digos, Davao del Sur during 100-Year Rainfall Return Period

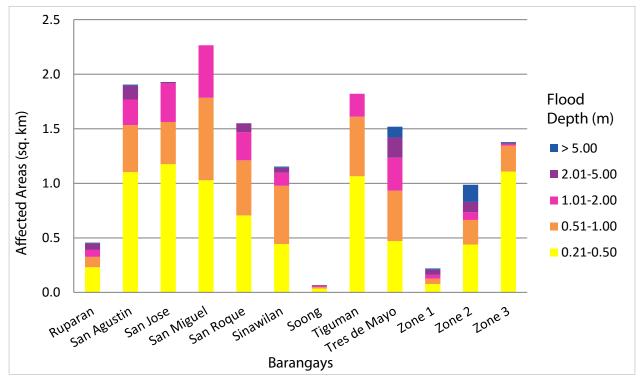



Figure 120. Affected Areas in Digos, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 34.70% of the municipality of Hagonoy with an area of 85.69 sq. km. will experience flood levels of less than 0.20 meters. 22.79% of the area will experience flood levels of 0.21 to 0.50 meters while 15.47%, 15.99%, 10.20%, and 0.82% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                        |           |                               | Table 65. Alle | cted Areas In     | падопоу, Da         | vao dei Sur di | aring 100- i ea | r Kaiman Ket | um period |         |           |          |  |  |
|----------------------------------------|-----------|-------------------------------|----------------|-------------------|---------------------|----------------|-----------------|--------------|-----------|---------|-----------|----------|--|--|
| Affected Area                          |           | Affected Barangays in Hagonoy |                |                   |                     |                |                 |              |           |         |           |          |  |  |
| (sq. km.) by<br>flood depth<br>(in m.) | Balutakay | Clib                          | Guihing        | Guihing<br>Aplaya | Hagonoy<br>Crossing | Kibuaya        | La Union        | Lanuro       | Lapulabao | Leling  | Mahayahay | Matti    |  |  |
| 0.03-0.20                              | 0.316036  | 2.33531                       | 0.889063       | 2.12987           | 1.08146             | 1.15715        | 2.89832         | 0.669907     | 2.33624   | 2.84892 | 1.44219   | 5.0093   |  |  |
| 0.21-0.50                              | 0.442023  | 0.199844                      | 0.797521       | 1.63605           | 1.0111              | 0.632222       | 0.357491        | 1.22394      | 1.18684   | 3.74027 | 0.656557  | 0.72687  |  |  |
| 0.51-1.00                              | 0.593656  | 0.195022                      | 0.480747       | 1.06551           | 0.259816            | 1.67579        | 0.181689        | 0.648499     | 0.855753  | 2.34018 | 0.319552  | 0.540675 |  |  |
| 1.01-2.00                              | 1.45295   | 0.528787                      | 0.091569       | 0.387445          | 0.238187            | 2.06002        | 0.295279        | 0.831677     | 0.448892  | 3.05005 | 0.028702  | 0.366419 |  |  |
| 2.01-5.00                              | 1.71656   | 0.171238                      | 0.083657       | 0.085039          | 0.089063            | 0.451883       | 0.094199        | 0.766471     | 0.040587  | 1.81045 | 0.015689  | 0.126065 |  |  |
| > 5.00                                 | 0         | 0.037571                      | 0.170974       | 0.024366          | 0.236176            | 0.002207       | 0.013567        | 0            | 0.002714  | 0       | 0.0018    | 0.0026   |  |  |

| Affected Area                          |                     |              |               |          | Af        | fected Baran | gays in Hagon    | юу         |           |          |          |          |
|----------------------------------------|---------------------|--------------|---------------|----------|-----------|--------------|------------------|------------|-----------|----------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Malabang<br>Damsite | Maliit Digos | New<br>Quezon | Paligue  | Poblacion | Sacub        | San<br>Guillermo | San Isidro | Sinayawan | Tologan  | Zone 2   | Zone 3   |
| 0.03-0.20                              | 2.22628             | 1.36244      | 2.30957       | 0.340101 | 1.54813   | 2.12232      | 0.658575         | 0.014503   | 0.513835  | 0.538001 | 1.01792  | 2.05706  |
| 0.21-0.50                              | 0.252466            | 0.332858     | 0.566044      | 0.554297 | 1.66949   | 3.08162      | 0.08693          | 0.020427   | 0.715609  | 0.369341 | 0.293495 | 0.639876 |
| 0.51-1.00                              | 0.262259            | 0.458604     | 0.220642      | 0.351245 | 0.400993  | 1.70798      | 0.183826         | 0.130434   | 0.64325   | 0.280152 | 0.08828  | 0.060973 |
| 1.01-2.00                              | 0.244089            | 0.67732      | 0.289257      | 0.08214  | 0.100357  | 0.0307       | 0.53372          | 1.25839    | 0.982074  | 0.091153 | 0.032234 | 0.008187 |
| 2.01-5.00                              | 0.089116            | 0.064762     | 1.58235       | 0.0002   | 0.058056  | 0            | 0.268736         | 1.09017    | 0.165232  | 0.095952 | 0.098808 | 0.005806 |
| > 5.00                                 | 0.002408            | 0.0003       | 0.028893      | 0        | 0.022112  | 0            | 0.018935         | 0          | 0         | 0.144378 | 0.095596 | 0.009481 |

## Table 65. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period

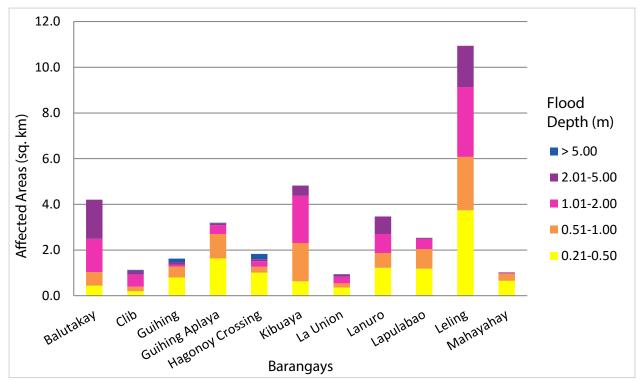



Figure 121. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return

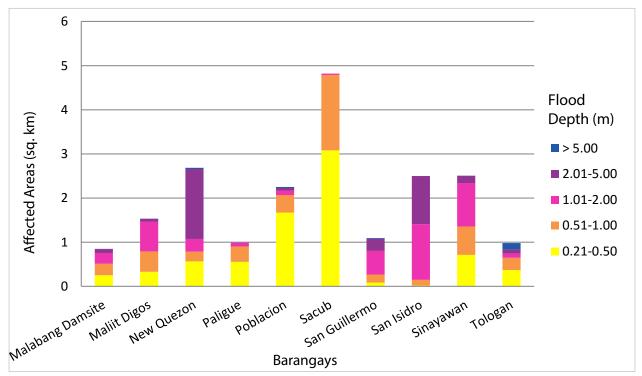



Figure 122. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 49.73% of the municipality of Kiblawan with an area of 80.03 sq. km. will experience flood levels of less than 0.20 meters. 9.12% of the area will experience flood levels of 0.21 to 0.50 meters while 2.36%, 2.89%, 5.12%, and 1.18% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

Table 66. Affected Areas in Kiblawan, Davao del Sur during 100-Year Rainfall Return Period

| , 0                                                     |                                |                  |               |            |          |           |            |          |              |          |  |
|---------------------------------------------------------|--------------------------------|------------------|---------------|------------|----------|-----------|------------|----------|--------------|----------|--|
| Affected Area<br>(sq. km.)<br>by flood depth<br>(in m.) | Affected Barangays in Kiblawan |                  |               |            |          |           |            |          |              |          |  |
|                                                         | Abnate                         | Bagong<br>Negros | Bagong Silang | Bagumbayan | Balasiao | Bonifacio | Bulol-Salo | Bunot    | Cogon-Bacaca | Dapok    |  |
| 0.03-0.20                                               | 2.17018                        | 1.1763           | 1.25352       | 4.38141    | 1.6066   | 2.21576   | 0.85357    | 2.6033   | 0.470841     | 1.5865   |  |
| 0.21-0.50                                               | 0.987084                       | 0.128199         | 0.080033      | 0.630897   | 0.062762 | 0.113919  | 0.034602   | 0.118848 | 0.13655      | 0.118579 |  |
| 0.51-1.00                                               | 0.163086                       | 0.012286         | 0.075994      | 0.163542   | 0.079635 | 0.052074  | 0.018806   | 0.09741  | 0.009346     | 0.069498 |  |
| 1.01-2.00                                               | 0.053974                       | 0.015801         | 0.129014      | 0.258237   | 0.245376 | 0.056111  | 0.026193   | 0.065357 | 0.010416     | 0.172567 |  |
| 2.01-5.00                                               | 0.004291                       | 0.008394         | 0.252856      | 0.606903   | 0.177156 | 0.087077  | 0.074231   | 0.061175 | 0.013776     | 0.188039 |  |
| > 5.00                                                  | 0                              | 0                | 0.012203      | 0.023936   | 0.0044   | 0.016232  | 0.007138   | 0.0176   | 0.000203     | 0.057957 |  |

| Affected Area<br>(sq. km.)<br>by flood depth<br>(in m.) | Affected Barangays in Kiblawan |            |          |          |          |          |          |          |             |          |
|---------------------------------------------------------|--------------------------------|------------|----------|----------|----------|----------|----------|----------|-------------|----------|
|                                                         | Ihan                           | Kibongbong | Kimlawis | Kisulan  | Lati-An  | Manual   | Maraga-A | Molopolo | New Sibonga | Panaglib |
| 0.03-0.20                                               | 0.320479                       | 0.551974   | 1.37799  | 0.837594 | 1.11521  | 0.863083 | 1.42038  | 2.26768  | 1.40673     | 0.428852 |
| 0.21-0.50                                               | 0.08042                        | 0.292716   | 0.03157  | 0.075215 | 0.04578  | 0.792304 | 0.055209 | 0.211383 | 0.098293    | 0.02651  |
| 0.51-1.00                                               | 0.077781                       | 0.033168   | 0.018329 | 0.013988 | 0.046072 | 0.091028 | 0.029066 | 0.057372 | 0.092927    | 0.023901 |
| 1.01-2.00                                               | 0.113541                       | 0.017784   | 0.021811 | 0.013892 | 0.116447 | 0        | 0.043791 | 0.097893 | 0.267174    | 0.061001 |
| 2.01-5.00                                               | 0.160274                       | 0.021895   | 0.047638 | 0.007084 | 0.195831 | 0        | 0.077552 | 0.193406 | 0.500709    | 0.291343 |
| > 5.00                                                  | 0.049259                       | 0.005371   | 0.009966 | 0        | 0.097322 | 0        | 0.0014   | 0.016616 | 0.045761    | 0.352099 |

| Affected Area<br>(sq. km.)<br>by flood depth<br>(in m.) | Affected Barangays in Kiblawan |           |          |            |          |           |            |          |          |           |
|---------------------------------------------------------|--------------------------------|-----------|----------|------------|----------|-----------|------------|----------|----------|-----------|
|                                                         | Pasig                          | Poblacion | Pocaleel | San Isidro | San Jose | San Pedro | Santo Niño | Tacub    | Tacul    | Waterfall |
| 0.03-0.20                                               | 0.552789                       | 1.5959    | 1.14435  | 0.911813   | 0.73119  | 2.84582   | 1.04485    | 1.0495   | 0.553758 | 0.460497  |
| 0.21-0.50                                               | 0.053981                       | 0.127258  | 0.048626 | 0.592102   | 0.052517 | 0.72065   | 0.042781   | 0.596486 | 0.569025 | 0.37773   |
| 0.51-1.00                                               | 0.015207                       | 0.029626  | 0.0379   | 0.038769   | 0.043793 | 0.210279  | 0.03849    | 0.045046 | 0.136781 | 0.063901  |
| 1.01-2.00                                               | 0.03193                        | 0.035033  | 0.129268 | 0.031082   | 0.06881  | 0.114856  | 0.062138   | 0.028719 | 0.020882 | 0.003527  |
| 2.01-5.00                                               | 0.05226                        | 0.062932  | 0.14681  | 0.129212   | 0.114231 | 0.255126  | 0.279073   | 0.085922 | 0.001305 | 0.001143  |
| > 5.00                                                  | 0.000288                       | 0.01015   | 0.000662 | 0.005057   | 0.05418  | 0.008449  | 0.141619   | 0.010447 | 0        | 0         |

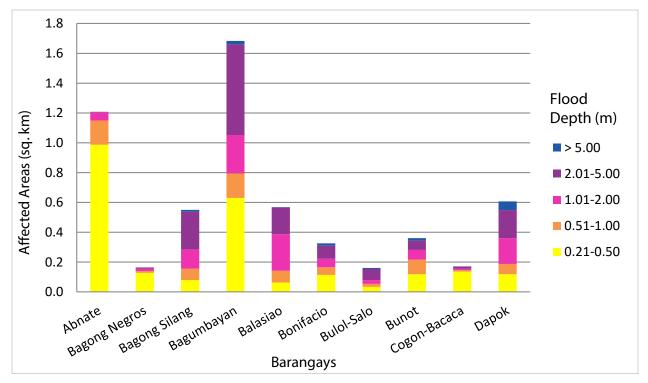



Figure 123. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return

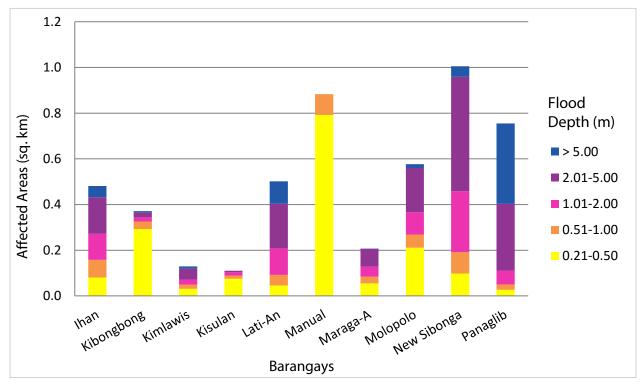



Figure 124. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period

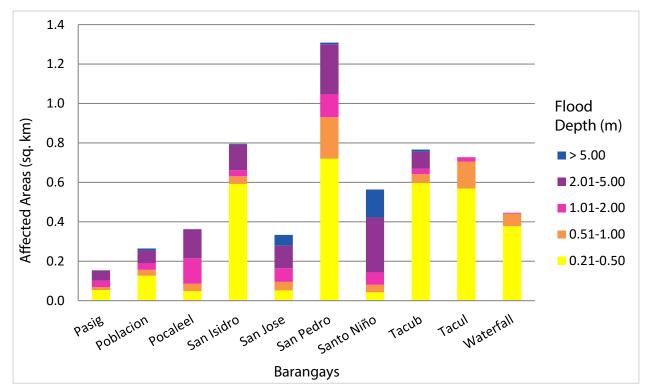



Figure 125. Affected Areas in Hagonoy, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 0.27% of the municipality of Magsaysay with an area of 109.8 sq. km. will experience flood levels of less than 0.20 meters. 0.06% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.02%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Affected Barangay in<br>Magsaysay |  |  |  |  |
|-------------------------------|-----------------------------------|--|--|--|--|
| flood depth<br>(in m.)        | New Ilocos                        |  |  |  |  |
| 0.03-0.20                     | 0.299809                          |  |  |  |  |
| 0.21-0.50                     | 0.070381                          |  |  |  |  |
| 0.51-1.00                     | 0.029933                          |  |  |  |  |
| 1.01-2.00                     | 0.017602                          |  |  |  |  |
| 2.01-5.00                     | 0.011179                          |  |  |  |  |
| > 5.00                        | 0                                 |  |  |  |  |

Table 67. Affected Areas in Magsaysay, Davao del Sur during 100-Year Rainfall Return Period

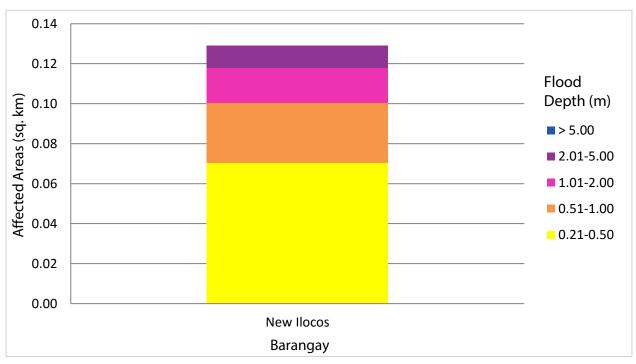



Figure 126. Affected Areas in Magsaysay, Davao del Sur during 100-Year Rainfall Return Period

## LIDAR Surveys and Flood Mapping of Padada River

For the 100-year return period, 9.96% of the municipality of Malalag with an area of 445 sq. km. will experience flood levels of less than 0.20 meters. 1.26% of the area will experience flood levels of 0.21 to 0.50 meters while 1.26%, 1.13%, 0.78%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

|                                                            |                               |          | <i>,</i> | 8         |          |              |  |  |  |  |  |
|------------------------------------------------------------|-------------------------------|----------|----------|-----------|----------|--------------|--|--|--|--|--|
| Affected<br>Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Affected Barangays in Malalag |          |          |           |          |              |  |  |  |  |  |
|                                                            | Bagumbayan                    | Bolton   | Kiblagon | Lapu-Lapu | Mabini   | New Baclayon |  |  |  |  |  |
| 0.03-0.20                                                  | 0.013733                      | 0.513317 | 11.1762  | 29.1547   | 1.34489  | 2.1025       |  |  |  |  |  |
| 0.21-0.50                                                  | 0.003771                      | 0.095823 | 3.07571  | 1.92267   | 0.049678 | 0.438467     |  |  |  |  |  |
| 0.51-1.00                                                  | 0.009517                      | 0.057665 | 3.78266  | 1.10549   | 0.020958 | 0.640359     |  |  |  |  |  |
| 1.01-2.00                                                  | 0.004691                      | 0.021153 | 2.5697   | 1.50071   | 0.015827 | 0.905333     |  |  |  |  |  |
| 2.01-5.00                                                  | 0                             | 0.015694 | 0.833742 | 2.52603   | 0.015788 | 0.067113     |  |  |  |  |  |
| > 5.00                                                     | 0                             | 0.001397 | 0.050514 | 0.625923  | 0.00942  | 0            |  |  |  |  |  |

Table 68. Affected Areas in Malalag, Davao del Sur during 100-Year Rainfall Return Period

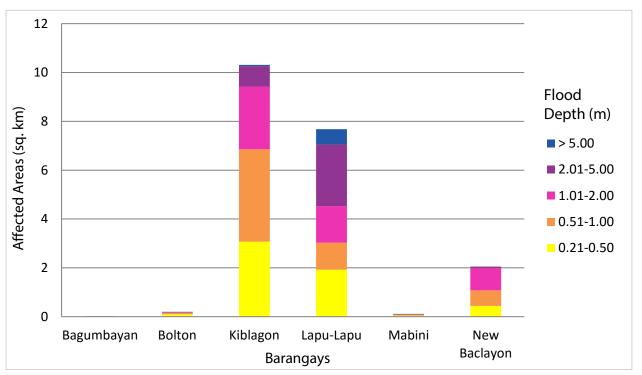



Figure 127. Affected Areas in Malalag, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 39.50% of the municipality of Matanao with an area of 123.4 sq. km. will experience flood levels of less than 0.20 meters. 8.25% of the area will experience flood levels of 0.21 to 0.50 meters while 5.44%, 6.26%, 5.77%, and 0.29% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          | Affected Barangays in Matanao |            |          |          |          |          |             |          |            |  |  |  |
|----------------------------------------|----------|-------------------------------|------------|----------|----------|----------|----------|-------------|----------|------------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Asbang   | Asinan                        | Bagumbayan | Bangkal  | Buas     | Buri     | Cabligan | Camanchiles | Ceboza   | Colonsabak |  |  |  |
| 0.03-0.20                              | 0.039102 | 0.886932                      | 2.64985    | 0.608199 | 0.081179 | 0.096536 | 0.0401   | 2.02568     | 2.06888  | 0.626818   |  |  |  |
| 0.21-0.50                              | 0.001831 | 0.267968                      | 0.481176   | 0.108874 | 0.016348 | 0.012424 | 0.106211 | 0.309074    | 1.17975  | 0.157673   |  |  |  |
| 0.51-1.00                              | 0.000151 | 0.059528                      | 0.259755   | 0.048994 | 0.002966 | 0.003967 | 0.386636 | 0.187577    | 0.193168 | 0.084767   |  |  |  |
| 1.01-2.00                              | 0        | 0.075615                      | 0.315177   | 0.04675  | 0.000807 | 0.0001   | 1.46364  | 0.127129    | 0.251074 | 0.05516    |  |  |  |
| 2.01-5.00                              | 0        | 0.042049                      | 0.425402   | 0.027492 | 0        | 0        | 1.53579  | 0.119184    | 0.087675 | 0.019509   |  |  |  |
| > 5.00                                 | 0        | 0.000207                      | 0.076161   | 0        | 0        | 0        | 0        | 0.015337    | 0.023062 | 0          |  |  |  |

| Table 69 Affected Areas in M  | Aatanao Davao del Sur during   | g 100-Year Rainfall Return Period  |
|-------------------------------|--------------------------------|------------------------------------|
| Tuble 05.7 meeted 7 meas m 14 | fucultuo, Duvuo dei our during | gibb i cui itunnun itecuin i ciibu |

| Affected Area                          |                   |           |          |          | Affected Barang | ays in Matanad | )            |         |                  |             |
|----------------------------------------|-------------------|-----------|----------|----------|-----------------|----------------|--------------|---------|------------------|-------------|
| (sq. km.)<br>by flood depth<br>(in m.) | Dongan-<br>Pekong | Kabasagan | Kapok    | Kibao    | La Suerte       | Langa-An       | Lower Marber | Manga   | New<br>Katipunan | New Visayas |
| 0.03-0.20                              | 2.59236           | 0.9595    | 0.417662 | 0.972719 | 1.6115          | 1.04602        | 1.06599      | 5.09176 | 5.22483          | 1.76287     |
| 0.21-0.50                              | 0.259291          | 0.260117  | 0.10472  | 0.091181 | 0.344297        | 0.57702        | 0.15285      | 1.04356 | 0.612944         | 1.179       |
| 0.51-1.00                              | 0.105869          | 0.033047  | 0.018257 | 0.033194 | 0.545858        | 0.057194       | 0.151297     | 1.99063 | 0.359808         | 0.230738    |
| 1.01-2.00                              | 0.26294           | 0.021333  | 0.021    | 0.062427 | 0.332023        | 0.021355       | 0.126265     | 2.12785 | 0.324046         | 0.003122    |
| 2.01-5.00                              | 0.179327          | 0.007868  | 0.016015 | 0.053911 | 0.145444        | 0.029734       | 0.158628     | 2.58438 | 0.323583         | 0.0007      |
| > 5.00                                 | 0.004448          | 0         | 0        | 0.0056   | 0.053538        | 0.000933       | 0.025742     | 0.0048  | 0.0589           | 0           |

| Affected Area                          |           | Affected Barangays in Matanao |          |             |          |           |           |           |            |          |  |
|----------------------------------------|-----------|-------------------------------|----------|-------------|----------|-----------|-----------|-----------|------------|----------|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Poblacion | Saboy                         | San Jose | San Vicente | Saub     | Sinaragan | Sinawilan | Tamlangon | Tibongbong | Towak    |  |
| 0.03-0.20                              | 1.11994   | 0.615762                      | 2.3017   | 1.33478     | 0.991524 | 3.89573   | 5.77979   | 0.699941  | 1.1584     | 0.98081  |  |
| 0.21-0.50                              | 0.15606   | 0.186267                      | 0.598668 | 0.218245    | 0.372368 | 0.62323   | 0.445798  | 0.113276  | 0.076579   | 0.120055 |  |
| 0.51-1.00                              | 0.107427  | 0.227023                      | 0.174838 | 0.147861    | 0.324404 | 0.566514  | 0.290349  | 0.032878  | 0.038785   | 0.046519 |  |
| 1.01-2.00                              | 0.215629  | 0.461517                      | 0.125701 | 0.08305     | 0.18933  | 0.642329  | 0.246468  | 0.021506  | 0.044896   | 0.053614 |  |
| 2.01-5.00                              | 0.154455  | 0.337028                      | 0.15653  | 0.026474    | 0.082499 | 0.130867  | 0.380549  | 0.015166  | 0.012156   | 0.062585 |  |
| > 5.00                                 | 0.03297   | 0.002852                      | 0.003748 | 0.000899    | 0        | 0.0043    | 0.038001  | 0.002892  | 0.000965   | 0        |  |

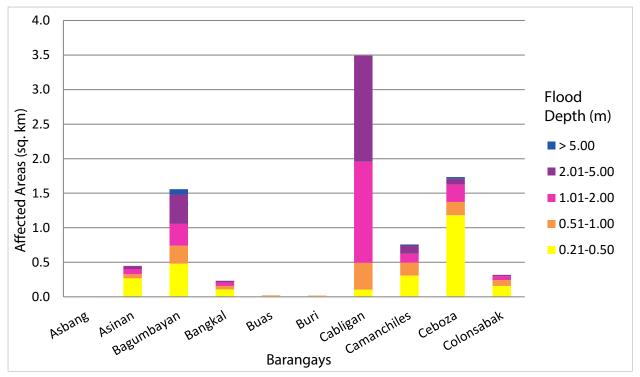



Figure 128. Affected Areas in Matanao, Davao del Sur during 100-Year Rainfall Return Period

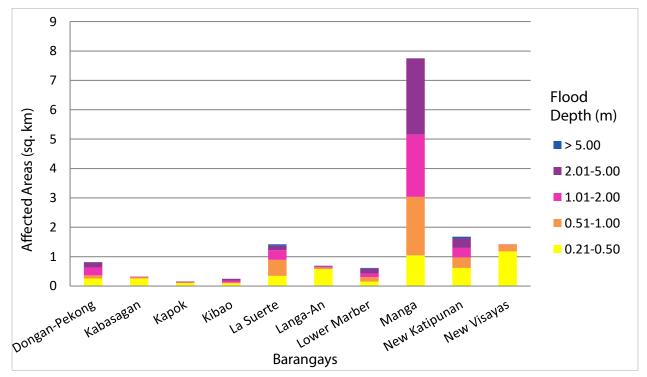



Figure 129. Affected Areas in Matanao, Davao del Sur during 100-Year Rainfall Return Period

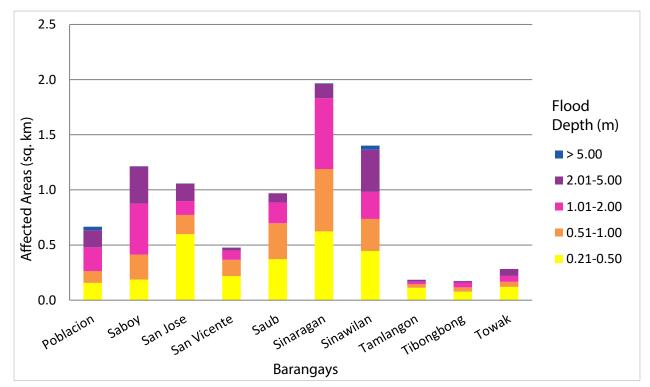



Figure 130. Affected Areas in Matanao, Davao del Sur during 100-Year Rainfall Return Period

### LIDAR Surveys and Flood Mapping of Padada River

For the 100-year return period, 43.91% of the municipality of Padada with an area of 55.97 sq. km. will experience flood levels of less than 0.20 meters. 28.94% of the area will experience flood levels of 0.21 to 0.50 meters while 15.59%, 5.92%, 3.04%, and 2.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           |                              |                 | Affected           | Barangays i      | n Padada         |                            |                     |          |
|------------------------------------------------|-----------|------------------------------|-----------------|--------------------|------------------|------------------|----------------------------|---------------------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Almendras | Don Sergio<br>Osmena,<br>Sr. | Harada<br>Butai | Lower<br>Katipunan | Lower<br>Limonzo | Lower<br>Malinao | N C<br>Ordaneza<br>Distric | Northern<br>Paligue | Palili   |
| 0.03-0.20                                      | 0.350171  | 0.987384                     | 1.87146         | 3.79575            | 0.86392          | 2.58481          | 0.523847                   | 0.887134            | 3.69403  |
| 0.21-0.50                                      | 0.417283  | 0.389224                     | 1.9124          | 0.627322           | 1.28571          | 0.568645         | 0.277356                   | 0.96022             | 3.52858  |
| 0.51-1.00                                      | 0.162186  | 0.395655                     | 1.26491         | 0.284143           | 0.475653         | 0.413225         | 0.081812                   | 1.09388             | 1.55119  |
| 1.01-2.00                                      | 0.007419  | 0.695575                     | 0.421589        | 0.174883           | 0.080802         | 0.538368         | 0.021649                   | 0.181073            | 0.322123 |
| 2.01-5.00                                      | 0         | 0.330596                     | 0.0177          | 0.31021            | 0.0045           | 0.900997         | 0.0001                     | 0.044153            | 0.0032   |
| > 5.00                                         | 0         | 0.541552                     | 0               | 0.162621           | 0                | 0.540703         | 0                          | 0.201369            | 0        |

Table 70. Affected Areas in Padada, Davao del Sur during 100-Year Rainfall Return Period

| Affected                                       |          |             | Af                  | fected Baran | gays in Pada        | da       |                  |                  |
|------------------------------------------------|----------|-------------|---------------------|--------------|---------------------|----------|------------------|------------------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Piape    | Punta Piape | Quirino<br>District | San Isidro   | Southern<br>Paligue | Tulogan  | Upper<br>Limonzo | Upper<br>Malinao |
| 0.03-0.20                                      | 0.393461 | 1.73191     | 0.438897            | 1.02697      | 0.963334            | 0.731483 | 1.60797          | 2.12158          |
| 0.21-0.50                                      | 0.331962 | 0.977003    | 0.040758            | 0.630399     | 0.891022            | 1.11501  | 1.35721          | 0.890019         |
| 0.51-1.00                                      | 0.452941 | 0.587359    | 0.010547            | 0.53671      | 0.385446            | 0.500766 | 0.405424         | 0.121857         |
| 1.01-2.00                                      | 0.068682 | 0.08209     | 0                   | 0.484365     | 0.038528            | 0.037498 | 0.090705         | 0.070517         |
| 2.01-5.00                                      | 0        | 0           | 0                   | 0.0226       | 0                   | 0        | 0.0127           | 0.05684          |
| > 5.00                                         | 0        | 0           | 0                   | 0            | 0                   | 0        | 0                | 0                |

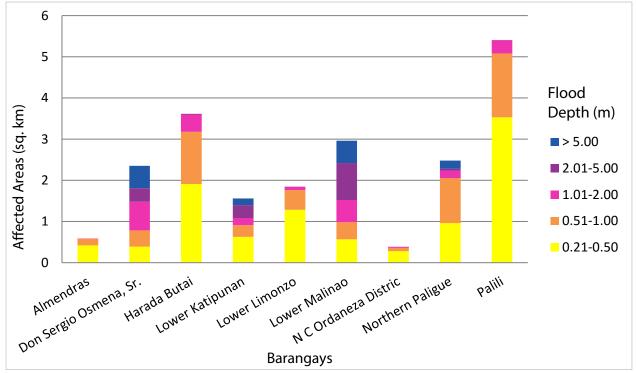
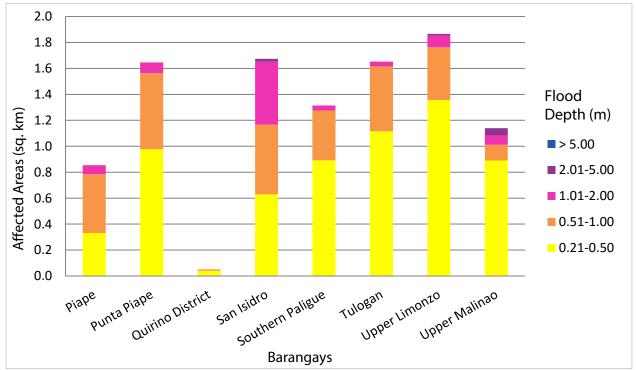




Figure 131. Affected Areas in Padada, Davao del Sur during 100-Year Rainfall Return Period





For the 100-year return period, 0.79% of the municipality of Santa Cruz with an area of 267.54 sq. km. will experience flood levels of less than 0.20 meters. 0.12% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 0.24%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          | Affected Baranga | ays in Santa Cruz |
|----------------------------------------|------------------|-------------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Bato             | Tagabuli          |
| 0.03-0.20                              | 2.06787          | 0.040796          |
| 0.21-0.50                              | 0.313401         | 0.019218          |
| 0.51-1.00                              | 0.30898          | 0.009883          |
| 1.01-2.00                              | 0.625145         | 0.010632          |
| 2.01-5.00                              | 0.1736           | 0                 |
| > 5.00                                 | 0.0118           | 0                 |

Table 71. Affected Areas in Santa Cruz, Davao del Sur during 100-Year Rainfall Return Period

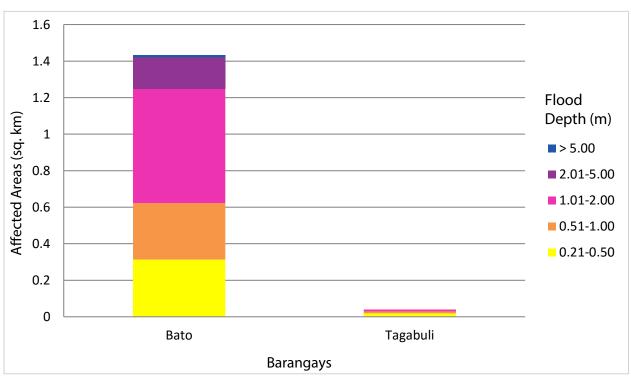



Figure 133. Affected Areas in Santa Cruz, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 46.68% of the municipality of Sulop with an area of 50.8 sq. km. will experience flood levels of less than 0.20 meters. 20.09% of the area will experience flood levels of 0.21 to 0.50 meters while 16.71%, 11.57%, 3.82%, and 0.61% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected                                       |           |          |          | Affected | Barangays       | in Sulop  |          |          |          |
|------------------------------------------------|-----------|----------|----------|----------|-----------------|-----------|----------|----------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Balasinon | Buguis   | Carre    | Clib     | Harada<br>Butai | Katipunan | Kiblagon | Labon    | Laperas  |
| 0.03-0.20                                      | 0.149261  | 1.14446  | 0.86772  | 0.507219 | 1.18287         | 0.764506  | 0.153272 | 0.464914 | 0.729619 |
| 0.21-0.50                                      | 0.138633  | 0.050396 | 0.046457 | 0.021048 | 1.12581         | 0.673556  | 0.276403 | 0.024302 | 0.208842 |
| 0.51-1.00                                      | 0.147363  | 0.028432 | 0.033417 | 0.010848 | 0.961789        | 0.249152  | 0.726917 | 0.011941 | 0.241786 |
| 1.01-2.00                                      | 0.007522  | 0.03551  | 0.027944 | 0.004555 | 0.354061        | 0.021221  | 1.06285  | 0.00805  | 0.016279 |
| 2.01-5.00                                      | 0         | 0.067801 | 0.025886 | 0.001734 | 0.0135          | 0.050376  | 0.087111 | 0.005406 | 0.00074  |
| > 5.00                                         | 0         | 0.01118  | 0.006542 | 0.001093 | 0               | 0.013436  | 0        | 0.002626 | 0.000235 |

| Table 72. Affected Areas in | Sulop, Davao del Sur durir | ng 100-Year Rainfall Return Period |
|-----------------------------|----------------------------|------------------------------------|
|                             |                            |                                    |

| Affected                                       |          |          | А        | ffected Bara | ngays in Sulo | р        |          |          |
|------------------------------------------------|----------|----------|----------|--------------|---------------|----------|----------|----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Lapla    | Litos    | Luparan  | Mckinley     | New Cebu      | Osmeña   | Palili   | Parame   |
| 0.03-0.20                                      | 0.674971 | 0.644306 | 0.328988 | 0.752904     | 1.65027       | 0.341597 | 2.54363  | 0.497588 |
| 0.21-0.50                                      | 0.026929 | 0.025319 | 0.013136 | 0.040798     | 0.244691      | 0.01478  | 3.25115  | 0.014933 |
| 0.51-1.00                                      | 0.014035 | 0.022619 | 0.00519  | 0.036418     | 0.554416      | 0.007624 | 1.10634  | 0.011123 |
| 1.01-2.00                                      | 0.013334 | 0.027013 | 0.005233 | 0.08561      | 0.106422      | 0.004793 | 1.21079  | 0.012234 |
| 2.01-5.00                                      | 0.024973 | 0.021044 | 0.010831 | 0.034904     | 0.051127      | 0.001496 | 0.614486 | 0.017139 |
| > 5.00                                         | 0.012192 | 0.013986 | 0.005917 | 0            | 0.002158      | 0        | 0        | 0.000897 |

| Affected                                       |           |          | А          | ffected Bara | ngays in Sulo | р        |           |           |
|------------------------------------------------|-----------|----------|------------|--------------|---------------|----------|-----------|-----------|
| Area<br>(sq. km.) by<br>flood depth<br>(in m.) | Poblacion | Roxas    | Solongvale | Tagolilong   | Tala-O        | Talas    | Tanwalang | Waterfall |
| 0.03-0.20                                      | 0.194961  | 3.04853  | 1.75752    | 1.01089      | 1.74206       | 0.526414 | 1.34547   | 0.690945  |
| 0.21-0.50                                      | 0.27338   | 0.149958 | 0.839697   | 0.042217     | 1.14368       | 0.64141  | 0.491717  | 0.425804  |
| 0.51-1.00                                      | 0.448546  | 0.121791 | 1.08884    | 0.018543     | 0.534671      | 0.897101 | 0.770479  | 0.438579  |
| 1.01-2.00                                      | 1.14397   | 0.24537  | 0.288884   | 0.012847     | 0.373667      | 0.547754 | 0.106859  | 0.152675  |
| 2.01-5.00                                      | 0.403106  | 0.167406 | 0.002909   | 0.01055      | 0.011142      | 0.104074 | 0.206607  | 0.00403   |
| > 5.00                                         | 0         | 0.024106 | 0          | 0.0007       | 0             | 0        | 0.215167  | 0         |

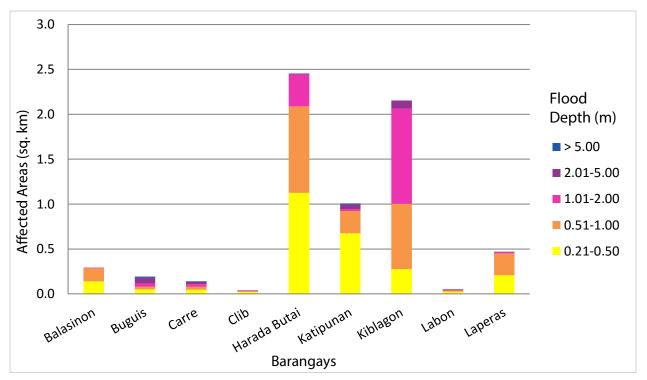



Figure 134. Affected Areas in Sulop, Davao del Sur during 100-Year Rainfall Return Period




Figure 135. Affected Areas in Sulop, Davao del Sur during 100-Year Rainfall Return Period

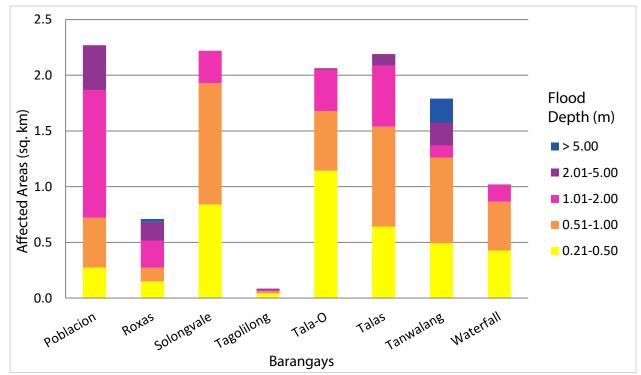



Figure 136. Affected Areas in Sulop, Davao del Sur during 100-Year Rainfall Return Period

For the 100-year return period, 0.24% of the municipality of Columbio with an area of 574.067 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in the table are the affected areas in square kilometers by flood depth per barangay.

| Affected Area<br>(sq. km.) by | Affected Barangay in<br>Columbio |
|-------------------------------|----------------------------------|
| flood depth<br>(in m.)        | Datablao                         |
| 0.03-0.20                     | 1.36294                          |
| 0.21-0.50                     | 0.035573                         |
| 0.51-1.00                     | 0.02114                          |
| 1.01-2.00                     | 0.0173                           |
| 2.01-5.00                     | 0.025596                         |
| > 5.00                        | 0.0096                           |

Table 73. Affected Areas in Columbio, Sultan Kudarat during 100-Year Rainfall Return Period

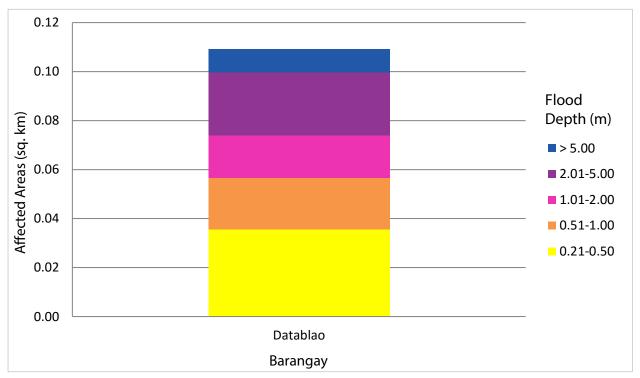



Figure 137. Affected Areas in Columbio, Sultan Kudarat during 100-Year Rainfall Return Period

Among the barangays in the municipality of Bansalan in Davao del Sur, Mabunga is projected to have the highest percentage of area that will experience flood levels at 4.15%. Meanwhile, Union posted the second highest percentage of area that may be affected by flood depths at 2.91%.

Among the barangays in the municipality of Digos City in Davao del Sur, Colorado is projected to have the highest percentage of area that will experience flood levels at 3.32%. Meanwhile, Matti posted the second highest percentage of area that may be affected by flood depths at 2.99%.

Among the barangays in the municipality of Hagonoy in Davao del Sur, Leling is projected to have the highest percentage of area that will experience flood levels at 16.09%. Meanwhile, Sacub posted the second highest percentage of area that may be affected by flood depths at 8.10%.

Among the barangays in the municipality of Kiblawan in Davao del Sur, Bagumbayan is projected to have the highest percentage of area that will experience flood levels at 7.58%. Meanwhile, San Pedro posted the second highest percentage of area that may be affected by flood depths at 5.19%.

Brgy. New Ilocos is the only barangay affected in the municipality of Magsaysay in Davao del Sur. The barangay is projected to experience flood in 0.39% of the municipality.

Among the barangays in the municipality of Malalag in Davao del Sur, Lapu-Lapu is projected to have the highest percentage of area that will experience flood levels at 8.28%. Meanwhile, Kiblagon posted the second highest percentage of area that may be affected by flood depths at 4.83%.

Among the barangays in the municipality of Matanao in Davao del Sur, Manga is projected to have the highest percentage of area that will experience flood levels at 10.41%. Meanwhile, Sinawilan posted the second highest percentage of area that may be affected by flood depths at 5.82%.

Among the barangays in the municipality of Padada in Davao del Sur, Palili is projected to have the highest percentage of area that will experience flood levels at 16.26%. Meanwhile, Lower Malinao posted the second highest percentage of area that may be affected by flood depths at 9.91%.

Among the barangays in the municipality of Santa Cruz in Davao del Sur, Bato is projected to have the highest percentage of area that will experience flood levels at 1.31%. Meanwhile, Tagabuli posted the second highest percentage of area that may be affected by flood depths at 0.03%.

Among the barangays in the municipality of Sulop in Davao del Sur, Palili is projected to have the highest percentage of area that will experience flood levels at 17.18%. Meanwhile, Solongvale posted the second highest percentage of area that may be affected by flood depths at 7.83%.

Brgy. Datablao is the only barangay affected in the municipality of Columbio in Sultan Kudarat. The barangay is projected to experience flood in 0.26% of the municipality.

Moreover, the generated flood hazard maps for the Padada Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

| Table 74. Area covered by each warning le | evel with respect to the rainfall scenario |
|-------------------------------------------|--------------------------------------------|
|-------------------------------------------|--------------------------------------------|

| Warning Loval | А      | rea Covered in sq. kr | n        |
|---------------|--------|-----------------------|----------|
| Warning Level | 5 year | 25 year               | 100 year |
| Low           | 77.86  | 88.36                 | 92.38    |
| Medium        | 64.82  | 79.54                 | 89.35    |
| High          | 24.82  | 43.29                 | 57.18    |
| TOTAL         | 167.5  | 211.19                | 238.91   |

Of the 94 identified educational institutions in the Padada floodplain, one school was assessed to be relatively prone to flooding as it is exposed to the Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. This would be Felipe-Inocencia Deluao National High School. Six other institutions were found to be also susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and Medium level flooding in the 25- and 100-year rainfall scenarios. See Appendix 12 for a detailed enumeration of schools in the Padada floodplain.

Nine medical institutions were identified in the Padada floodplain. J.P Laurel Health Center in Brgy. Vicente Hizon Sr. was found to be relatively prone to flooding, having Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. See Appendix 13 for a detailed enumeration of hospitals and clinics in the Padada floodplain.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, validation survey work was done. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation survey was conducted on May 23-31, 2016. The flood validation consists of 180 points randomly selected all over the Padada flood plain. It has an RMSE value of 0.99.

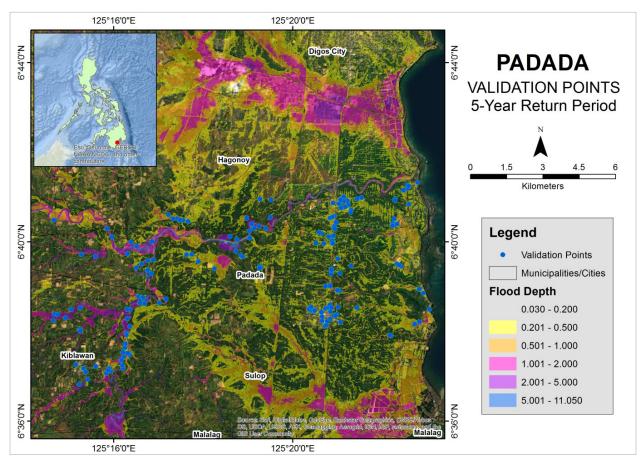



Figure 138. Flood Validation Points of Padada River Basin

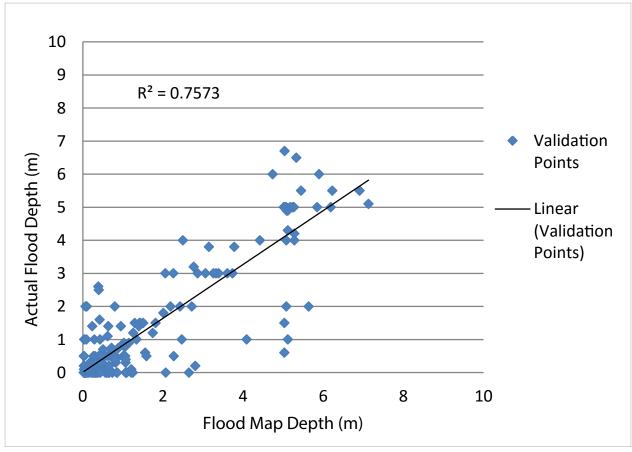



Figure 139. Flood Map Depth vs Actual Flood Depth for Padada

| I            | PADADA    |        |           | MODEL     | ED FLOOD DE | PTH (m)   |        |       |
|--------------|-----------|--------|-----------|-----------|-------------|-----------|--------|-------|
|              | BASIN     | 0-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00   | 2.01-5.00 | > 5.00 | Total |
|              | 0-0.20    | 26     | 16        | 15        | 6           | 3         | 0      | 66    |
| (m) h        | 0.21-0.50 | 4      | 10        | 9         | 8           | 1         | 0      | 32    |
| Depth        | 0.51-1.00 | 2      | 2         | 4         | 6           | 2         | 2      | 18    |
| od D         | 1.01-2.00 | 2      | 2         | 4         | 8           | 4         | 3      | 23    |
| al Flo       | 2.01-5.00 | 0      | 2         | 0         | 0           | 14        | 17     | 33    |
| Actual Flood | > 5.00    | 0      | 0         | 0         | 0           | 1         | 7      | 8     |
| 1            | Total     | 34     | 32        | 32        | 28          | 25        | 29     | 180   |

The overall accuracy generated by the flood model is estimated at 38.33%, with 69 points correctly matching the actual flood depths. In addition, there were 63 points estimated one level above and below the correct flood depths while there were 32 points and 16 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 92 points were overestimated while a total of 19 points were underestimated in the modelled flood depths of Padada.

| Table 76. Summary of Accuracy As | ssessment in Padada |
|----------------------------------|---------------------|
|----------------------------------|---------------------|

|                | No. of Points | %     |
|----------------|---------------|-------|
| Correct        | 69            | 38.33 |
| Overestimated  | 92            | 51.11 |
| Underestimated | 19            | 10.56 |
| Total          | 180           | 100   |

## REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

## ANNEXES

## ANNEX 1. Technical Specifications of the LiDAR Sensors used in the Padada Floodplain Survey

 Waveform Digitizer
 Sensor with Built-in Camera
 Pilot Display

Table A-1.1 Technical Specifications of the LiDAR Sensors used in the Padada Floodplain Survey

| Parameter                       | Specification                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| Operational envelope (1,2,3,4)  | 150-4000 m AGL, nominal                                                                                          |
| Laser wavelength                | 1064 nm                                                                                                          |
| Horizontal accuracy (2)         | 1/5,500 x altitude, (m AGL)                                                                                      |
| Elevation accuracy (2)          | <5-35 cm, 1 σ                                                                                                    |
| Effective laser repetition rate | Programmable, 33-167 kHz                                                                                         |
| Position and orientation system | POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/<br>Galileo/L-Band receiver                              |
| Scan width (WOV)                | Programmable, 0-50°                                                                                              |
| Scan frequency (5)              | Programmable, 0-70 Hz (effective)                                                                                |
| Sensor scan product             | 1000 maximum                                                                                                     |
| Beam divergence                 | Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal                                                     |
| Roll compensation               | Programmable, ±5° (FOV dependent)                                                                                |
| Range capture                   | Up to 4 range measurements, including 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> , and last returns     |
| Intensity capture               | Up to 4 intensity returns for each pulse, including last (12 bit)                                                |
| Video Camera                    | Internal video camera (NTSC or PAL)                                                                              |
| Image capture                   | Compatible with full Optech camera line (optional)                                                               |
| Full waveform capture           | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                    |
| Data storage                    | Removable solid state disk SSD (SATA II)                                                                         |
| Power requirements              | 28 V; 900 W;35 A(peak)                                                                                           |
| Dimensions and weight           | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg |
| Operating temperature           | -10°C to +35°C (with insulating jacket)                                                                          |
| Relative humidity               | 0-95% no-condensing                                                                                              |
|                                 |                                                                                                                  |

### ANNEX 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

1. DVS-85 Table A-2.1. NAMRIA Certification of Reference Points used in the LiDAR Survey



# ANNEX 3. Baseline Processing Reports of Reference Points Used in the LiDAR Survey

1. BLLM-20 Table A-3.1. Baseline Processing Reports of Control Points used in the LiDAR Survey

|                                                                                           |         |                  |                | Processing            | Summary               |                         |                 |            |       |                               |                    |  |
|-------------------------------------------------------------------------------------------|---------|------------------|----------------|-----------------------|-----------------------|-------------------------|-----------------|------------|-------|-------------------------------|--------------------|--|
| Observation                                                                               | From    | т                | o              | Solution Type         | H. Prec.<br>(Meter)   |                         | Prec.<br>eter)  | Geod<br>Az |       | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |  |
| DVS-85 BLLM-20<br>(B1)                                                                    | DVS-85  | BLLM-2           | 20             | Fixed                 | 0.0                   | 02                      | 0.002           | 235°0      | 2'39" | 13.135                        | -0.48              |  |
| DVS-85 BLLM-20<br>(B2)                                                                    | DVS-85  | BLLM-2           | 20             | Fixed                 | 0.0                   | 03                      | 0.003           | 234°5      | 8'48" | 13.129                        | -0.37              |  |
|                                                                                           |         |                  |                | Acceptance            | Summary               |                         |                 |            |       |                               |                    |  |
| Processe                                                                                  | d       |                  | Pass           | -                     | Flag                  | P                       | >               |            |       | Fail                          | •                  |  |
| 2                                                                                         |         |                  | 2              |                       | -                     | 0                       |                 |            |       | 0                             |                    |  |
| From:                                                                                     | DVS-85  |                  |                | Lec.                  | - 2                   |                         |                 |            |       | Global                        |                    |  |
|                                                                                           | Grid    |                  |                | Loc                   | al                    |                         |                 |            |       | Global                        |                    |  |
| Easting                                                                                   | 759     | 472.609 m        | Latitu         | de                    | N6°39'26              | N6°39'26.23973" Latitud |                 |            |       | N6°3                          | N6°39'23.2057      |  |
| Northing                                                                                  | 736     | 433.274 m        | Longi          | tude                  | E125°20'48.72707" Lon |                         |                 | ongitude   |       |                               | E125°20'54.2913    |  |
| Elevation                                                                                 |         | 8.556 m          | Heigh          | t                     |                       | 6.143 m                 | Height          |            | 79.0  |                               |                    |  |
| To:                                                                                       | BLLM-20 |                  |                |                       |                       |                         |                 |            |       |                               |                    |  |
|                                                                                           | Grid    |                  |                | Loc                   | al                    |                         |                 |            |       | Global                        |                    |  |
| Easting                                                                                   | 759     | 461.875 m        | Latitu         | de                    | N6°39'25              | 5.99473"                | Latitude        | e -        |       | N6°3                          | 9'22.9607          |  |
| Northing                                                                                  | 736     | 425.694 m        | Longi          | tude                  | E125°20'48            | 3.37658"                | Longitu         | de         |       | E125°2                        | 0'53.9408          |  |
| Elevation                                                                                 |         | 8.068 m          | Heigh          | t                     |                       | 5.656 m                 | Height          |            |       |                               | 78.521             |  |
| Vector                                                                                    |         |                  |                |                       |                       |                         |                 |            |       |                               |                    |  |
| ∆Easting                                                                                  |         | -10.73           | 4 m N          | IS Fwd Azimuth        |                       |                         | 235°0           | 2'39"      | ΔX    |                               | 8.556              |  |
|                                                                                           | -7.58   | 0 m E            | Ilipsoid Dist. |                       |                       |                         | 35 m            | ΔY         |       | 6.545                         |                    |  |
| ΔNorthing                                                                                 |         |                  |                |                       |                       | -0.                     |                 |            |       |                               | -7.532             |  |
| -                                                                                         |         |                  | 9 m ∆          | Height                |                       |                         | -0.4            | 87 m       | ΔZ    |                               | -1.032             |  |
| ∆Elevation<br>Standard Errors                                                             |         |                  | 9 m ∆          | Height                |                       |                         | -0.4            | 87 m       | ΔΖ    |                               | -1.532             |  |
| ∆Elevation<br>Standard Errors<br>Vector errors:                                           |         | -0.48            |                | Height<br>fwd Azimuth |                       |                         | -0.4<br>0°00'08 |            |       |                               |                    |  |
| ΔNorthing<br>ΔElevation<br>Standard Errors<br>Vector errors:<br>σ ΔEasting<br>σ ΔNorthing |         | -0.48<br>0.001 m | σNS            |                       |                       |                         |                 | "σΔ)       | ¢     |                               | 0.001              |  |

#### Aposteriori Covariance Matrix (Meter<sup>2</sup>)

|   | x            | Y           | Z           |
|---|--------------|-------------|-------------|
| x | 0.000006677  |             |             |
| Y | -0.000002217 | 0.000006603 |             |
| Z | -0.000000325 | 0.000000893 | 0.000001088 |

## ANNEX 4. The LiDAR Survey Team Composition

| Data Acquisition<br>Component<br>Sub-Team | Designation                                     | Name                         | Agency / Affiliation                 |  |  |
|-------------------------------------------|-------------------------------------------------|------------------------------|--------------------------------------|--|--|
| PHIL-LIDAR 1                              | Program Leader                                  | ENRICO C. PARINGIT, D.ENG    |                                      |  |  |
| Data Acquisition<br>Component Leader      | Data Component<br>Project Leader – I            | ENGR. CZAR JAKIRI SARMIENTO  |                                      |  |  |
|                                           | Chief Science<br>Research Specialist<br>(CSRS)  | ENGR. CHRISTOPHER CRUZ       | UP-TCAGP                             |  |  |
| Survey Supervisor                         | Supervising Science                             | LOVELY GRACIA ACUÑA          |                                      |  |  |
|                                           | Research Specialist<br>(Supervising SRS)        | ENGR. LOVELYN ASUNCION       |                                      |  |  |
|                                           | /                                               | FIELD TEAM                   | ,                                    |  |  |
|                                           | Senior Science<br>Research Specialist<br>(SSRS) | JULIE PEARL MARS             |                                      |  |  |
| LiDAR Operation                           | Research Associate<br>(RA)                      | FOR. MA. VERLINA TONGA       | UP-TCAGP                             |  |  |
|                                           | RA                                              | ENGR. LARAH KRISELLE PARAGAS |                                      |  |  |
| Ground Survey                             | RA                                              | JERIEL PAUL ALAMBAN, GEOL    | UP-TCAGP                             |  |  |
|                                           | Airborne Security                               | TSG. MIKE DIAPANA            | Philippine Air Force<br>(PAF)        |  |  |
| LiDAR Operation                           | Pilot                                           | CAPT. JOHN BRYAN DONGUINES   | Asian Aerospace<br>Corporation (AAC) |  |  |
|                                           |                                                 | CAPT. NEIL ACHILLES AGAWIN   | AAC                                  |  |  |

Table A-4.1. The LiDAR Survey Team Composition

## ANNEX 5. Data Transfer Sheet for Padada Floodplain

|           |            |                           |          |              |              |          | DATA TRANSFE<br>0812/2014/Davas I                 |                 |       |              |                |                     |                 |                   |      |             |
|-----------|------------|---------------------------|----------|--------------|--------------|----------|---------------------------------------------------|-----------------|-------|--------------|----------------|---------------------|-----------------|-------------------|------|-------------|
|           |            |                           |          |              |              |          | da la so rejuiras                                 |                 |       |              | GASE ST        | AT1086(5)           | OPERATOR        | FLIGHT            | PLAN | SERVER      |
|           |            | MISSION NAME              | SENSOR   |              | LAS          | LOGS[VB] | POS RXW                                           | FILECAN<br>LOGS | RANCE | CHIEFT.ZOR   | DAGE           | Ease infe<br>[.tst] | LDG5<br>(OPLOG) | Actual            | KML. | LOCATION    |
| DATE      | FLIGHT NO. | moorum nome               |          | Output LA8   | HML (aveath) |          |                                                   | 0,000           | 5.84  | NA           | 3.78 103 103 3 |                     |                 | Z:Withome_<br>Raw |      |             |
| 7/31/2014 | 7400GC     | 2BLK87A210A               | Gemini   | NA.          | 74           |          |                                                   | NA              |       |              |                | 1KB                 | 168             | 3                 |      | Z:Wittome_  |
| 7/31/2014 | 7404GC     | 28LK87AS212A              | Gemini   | N4           | 258          | 1        |                                                   | NA              | 15.1  |              | 5.41           |                     | 1KB             | 3/3/6/3/3         | N    | Z:VAtborne_ |
| 8/1/2014  | 7406GC     | 2BLK878C213A              | Gornini  | NA.          | 244          | 428      |                                                   | NA              | 19.3  |              | 8.02           |                     | 169             | 5                 |      | 2 Nationa   |
| 8/2/2014  | 7408GC     | 28LK87E214A               | Gerriri  | and a second |              |          |                                                   |                 |       |              |                |                     |                 |                   |      | 2 Raw       |
|           |            | Received from             | s_bhabye | NA           | 272          | 480      | 242 NA<br>Received<br>Name<br>Poston<br>Signature |                 |       | IE <u>TD</u> |                |                     |                 |                   |      | 3 Raw       |
|           |            | Received from<br>Name T ( |          |              | 272          | 480      | Received<br>Name<br>Posteri                       | **              |       |              |                |                     |                 |                   |      | 0 Paw       |

|                                                                                                                 |              |               |        |            |                |          |     | ATA TRANSFE<br>3/28/2014(Dava |                          |       |           |            |           |          |            |           |        |                 |
|-----------------------------------------------------------------------------------------------------------------|--------------|---------------|--------|------------|----------------|----------|-----|-------------------------------|--------------------------|-------|-----------|------------|-----------|----------|------------|-----------|--------|-----------------|
| DATE FLIGHT NO                                                                                                  | MISSION NAME |               | RAW    | LAS        |                |          | RAW | MISSION                       | T                        | T     | BASE ST   | ATION(S)   | 1         | QUICK    | FUOR       |           |        |                 |
|                                                                                                                 |              |               | SENSOR | Output LAS | KML<br>(swath) | LOGS(MB) | POS | IMAGES/CAS                    | LOG<br>FILE/CASI<br>LOGS | RANGE | DIGITIZER | BASE       | Base Info | OPERATOR | PROCESS    |           | T PLAN | SERVER LOCATION |
| 3/4/2014                                                                                                        | 7412GC       | 2BLK87CSD216A | Gemini | 21         | 310            | 537      | 165 | NA                            | LUGS                     | 010   |           | STATION(S) | (.txt)    | (OPLOG)  | (Boundary) | Actual    | KML    |                 |
| 3/5/2014                                                                                                        | 7414GC       | 2BLK87E217A   | Gemini |            | 88             |          | 146 |                               | NA                       | 24.2  | NA        | 4.99       | 1KB       | 1KB      | 3382       | 3/3/7/3/3 | NA     | Z:\DAC\RAWDATA  |
| 3/6/2014                                                                                                        | 7416GC       | 28LK87F218A   | Gemini |            | 184            | 194      | 148 | NA                            | NA                       | 7.62  | NA        | 3.11       | 1KB       | 1KB      | 786        | 5/5       | NA     | Z:\DAC\RAWDATA  |
| 3/7/2014                                                                                                        | 7418GC       | 2BLK87FV219A  | Gemini |            | 181            |          |     | NA                            |                          | 8.31  | NA        | 3.55       | 1KB       | 1KB      | 1616       | 5         | 11     | Z:\DAC\RAWDATA  |
| /9/2014                                                                                                         | 7422GC       | 2COMA221A     | Gemini |            |                |          | 180 | NA                            | NA                       | 14.4  | NA        | 3.49       | 1KB       | 1KB      | 1233       | 9/10      |        | Z:\DAC\RAWDATA  |
| /9/2014                                                                                                         | 7423GC       | 2COMBSCD221B  |        |            |                |          | 219 | NA                            | NA                       | 19.8  | NA        | 9.95       | 1KB       | 1KB      | 2848       | 5         | 12     |                 |
| /10/2014                                                                                                        |              | 2COMDS222A    | Gemini |            |                |          | 175 | NA                            | NA                       | 16.6  | NA        | 9.95       | 1KB       | 1KB      |            | 7/5/3     |        | Z:\DAC\RAWDATA  |
| /11/2014                                                                                                        |              |               |        |            |                |          | 157 | NA                            | NA                       | 9.69  | NA        | 4.38       | 1KB       | 1KB      |            | 3/3       |        | Z:\DAC\RAWDATA  |
| the second se |              | 2BLK82V223A   | Gemini | 8.44       | 119            | 279      | 135 | NA                            | NA                       | 9.61  | NA        |            |           |          |            |           | 8      | Z:\DAC\RAWDATA  |
| /11/2014                                                                                                        |              | 2BLK82V223B   | Gemini | 4.32       | 64             | 184      | 132 | NA                            |                          | 5.65  |           |            |           |          |            | 7/11      | NA     | Z:\DAC\RAWDATA  |
| /12/2014                                                                                                        | 7428GC       | 2TAGV224A     | Gemini | 20.1       | 287            |          | 223 |                               |                          |       | NA        |            | 1KB       | 1KB      | 434        | 8         | 6      | Z:\DAC\RAWDATA  |
| /13/2014                                                                                                        | 7430GC       | 2TAGV225A     | Gemini |            |                |          |     |                               |                          | 22.6  | NA        |            | 1KB       | 1KB      | 2667       | 23/23     |        | Z:\DAC\RAWDATA  |
|                                                                                                                 |              |               |        |            | 54             | 320      | 179 | NA                            | NA                       | 9.38  | NA        | 3.58       | 1KB       | 1KB      | 1283       | 18/18     | NA     | Z:\DAC\RAWDATA  |

#### Received from



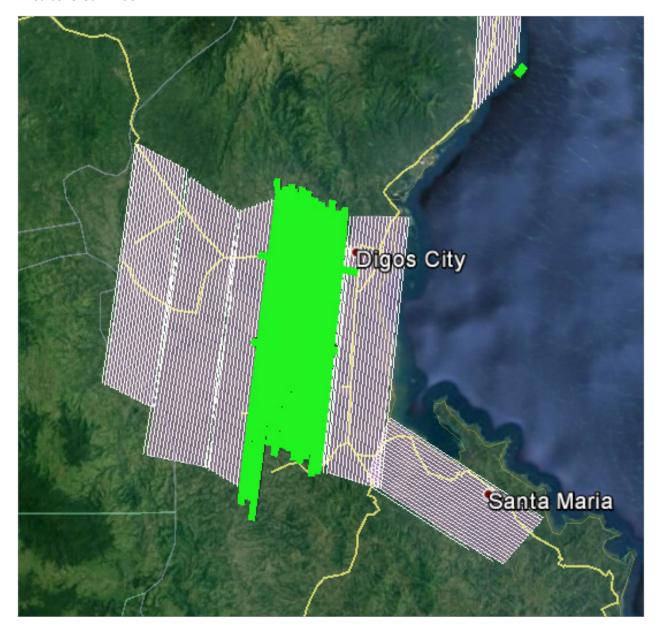


## ANNEX 6. Flight Logs for the Flight Missions

Table A-6.1. Flight Logs for the Flight Missions DAVAO CITY AND COMPOSTELA VALLEY (July 16 - August 13, 2014)

| Flight No | Area                         | Mission       | Operator   | Date Flown     | Remarks                                                                                                                    |
|-----------|------------------------------|---------------|------------|----------------|----------------------------------------------------------------------------------------------------------------------------|
| 7400GC    | BLK87A                       | 2BLK87A210A   | MV TONGA   | July 29, 2014  | Surveyed BLK87A (3<br>lines) then aborted the<br>mission due to strong wind<br>gustiness; flown without<br>CASI @ 1000 AGL |
| 7404GC    | BLK87A                       | 2BLK87AS212A  | MV TONGA   | July 31, 2014  | Completed the remaining<br>lines of BLK87A (9 lines)<br>without CASI @ 1000 AGL                                            |
| 7406GC    | BLK87C                       | 2BLK87BC213A  | LK PARAGAS | August 1, 2014 | Surveyed BLK87B (9 lines)<br>and BLK87C (4 lines)<br>without CASI A @ 1000 AGL                                             |
| 7408GC    | BLK87E                       | 2BLK87DE214A  | MVE TONGA  | August 2, 2014 | Completed BLK 87E (11<br>lines) and covered BLK87D<br>(3 lines) without CASI @<br>1000 AGL                                 |
| 7412GC    | BLK87B                       | 2BLK87CSD216A | LK PARAGAS | August 4, 2014 | Completed the remaining<br>lines of BLK87CD (15 lines)<br>without CASI @ 1000 AGL                                          |
| 7414GC    | BLK87F                       | 2BLK87E217A   | JP MARS    | August 5, 2014 | 5 lines @1000m. aborted due to rain and strong wind                                                                        |
| 7416GC    | BLK87B,<br>BLK87D,<br>BLK87F | 2BLK87F218A   | MVE TONGA  | August 6, 2014 | 7 lines @1000m; filled up<br>voids in BLK 87D                                                                              |
| 7418GC    | BLK87B,<br>BLK87D,<br>BLK87F | 2BLK87FV219A  | LK PARAGAS | August 7, 2014 | 17 lines @1000m, filled up<br>voids in BLK 87                                                                              |

Flight No. : 7400GC Area: BLK87A Mission name: 2LK87A210A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz; Scan Angle: 20 deg; Overlap: 30 % Area covered: 48.522 km²

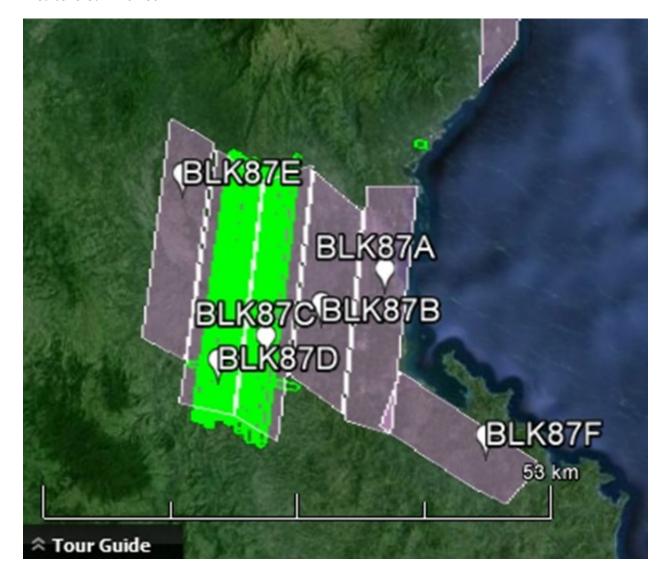



LIDAR Surveys and Flood Mapping of Padada River

Flight No. : 7404GC Area: BLK87A Mission name: 2BLK87AS212A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz; Scan Angle: 20 deg; Overlap: 30 % Area covered: 169.442 km²



Flight No. : 7406GC Area: BLK87C Mission name: 2BLK87BC213A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz; Scan Angle: 20 deg; Overlap: 30 % Area covered: 193.272 km²

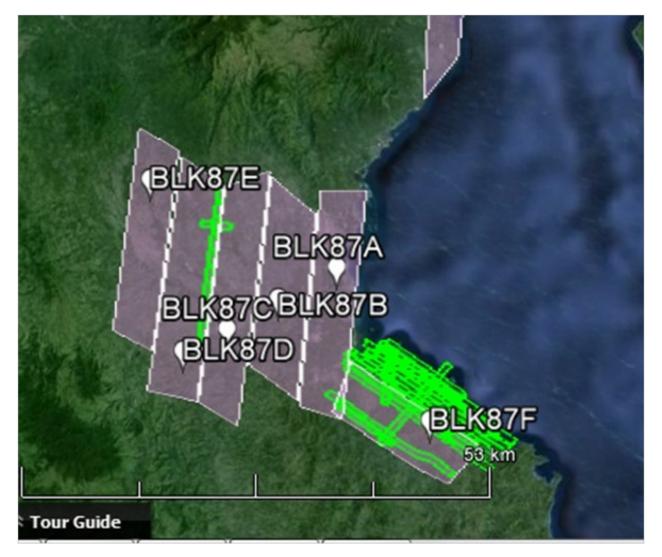



LIDAR Surveys and Flood Mapping of Padada River

Flight No. : 7408GC Area: BLK87E Mission name: 2BLK87E214A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz Scan Angle: 20 deg; Overlap: 30 % Area covered: 187.645 km<sup>2</sup>



Flight No. : 7412GC Area: BLK87B Mission name: 2BLK87CSD216A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz Scan Angle: 20 deg; Overlap: 35 % Area covered: 70.780 km<sup>2</sup>




LIDAR Surveys and Flood Mapping of Padada River

Flight No. : 7214GC Area: BLK87F Mission name: 2BLK87F217A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz Scan Angle: 20 deg; Overlap: 35 % Area covered: 70.780 km<sup>2</sup>



Flight No. : 7216GC Area: BLK87B, BLK87D, BLK87F Mission name: 2BLK87F218A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz Scan Angle: 20 deg; Overlap: 35 % Area covered: 139.714 km<sup>2</sup>



LIDAR Surveys and Flood Mapping of Padada River

Flight No. : 7418GC Area: BLK87B, BLK87D, BLK87F Mission name: 2BLK87FV219A Parameters: Altitude: 1000 m; Scan Frequency: 50 Hz Scan Angle: 20 deg; Overlap: 35 % Area covered: 127.479 km<sup>2</sup>



## ANNEX 7. Flight Status Reports

## ANNEX 8. Mission Summary Reports

|                                               | ble A-8.1. Mission Summary Reports                                        |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------|--|--|
| Flight Area                                   | Davao Oriental                                                            |  |  |
| Mission Name                                  | Blk87A                                                                    |  |  |
| Inclusive Flights                             | 7400G, 7404G                                                              |  |  |
| Range data size                               | 20.94 GB                                                                  |  |  |
| Base data size                                | 8.08 MB                                                                   |  |  |
| POS                                           | 316 MB                                                                    |  |  |
| Image                                         | na                                                                        |  |  |
| Transfer date                                 | August 12, 2014                                                           |  |  |
| Solution Status                               |                                                                           |  |  |
| Number of Satellites (>6)                     | Yes                                                                       |  |  |
| PDOP (<3)                                     | Yes                                                                       |  |  |
| Baseline Length (<30km)                       | Yes                                                                       |  |  |
| Processing Mode (<=1)                         | Yes                                                                       |  |  |
| Smoothed Performance Metrics (in cm)          |                                                                           |  |  |
| RMSE for North Position (<4.0 cm)             | 4.0                                                                       |  |  |
| RMSE for East Position (<4.0 cm)              | 2.0                                                                       |  |  |
| RMSE for Down Position (<8.0 cm)              | 12.0                                                                      |  |  |
| Boresight correction stdev (<0.001deg)        | 0.000347                                                                  |  |  |
| IMU attitude correction stdev (<0.001deg)     | 0.22618                                                                   |  |  |
| GPS position stdev (<0.01m)                   | 0.0104                                                                    |  |  |
| Minimum % overlap (>25)                       | 25.84%                                                                    |  |  |
| Ave point cloud density per sq.m. (>2.0)      | 3.07                                                                      |  |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                       |  |  |
| Number of 1km x 1km blocks                    | 209                                                                       |  |  |
| Maximum Height                                | 565.04                                                                    |  |  |
| Minimum Height                                | 68.87                                                                     |  |  |
| Chariffertion (Heferint-)                     |                                                                           |  |  |
| Classification (# of points)                  |                                                                           |  |  |
| Ground                                        | 60085896                                                                  |  |  |
| Low vegetation                                | 64666486                                                                  |  |  |
| Medium vegetation                             | 97681467                                                                  |  |  |
| High vegetation                               | 217149246                                                                 |  |  |
| Building                                      | 9552969                                                                   |  |  |
| Orthophoto                                    | No                                                                        |  |  |
| Processed by                                  | Engr. Analyn Naldo, Engr. Edgardo Gubatanga, Jr.,<br>Engr. Jeffrey Delica |  |  |

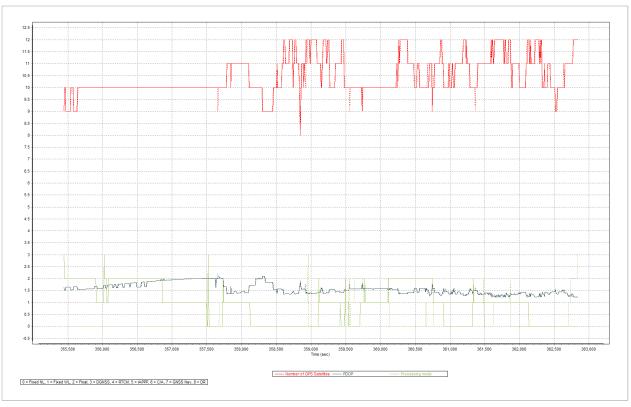



Figure 1.1.1 Solution Status

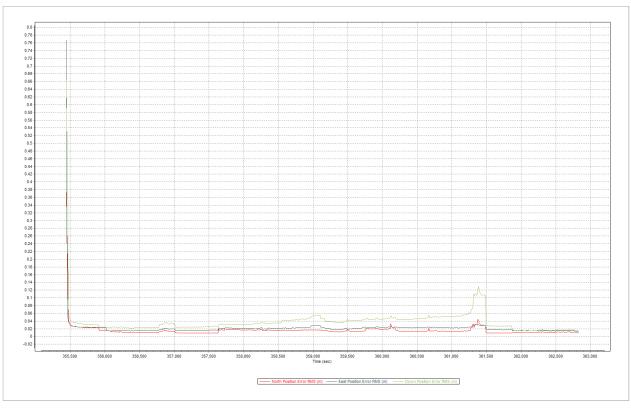



Figure 1.1.2 Smoothed Performance Metric Parameters

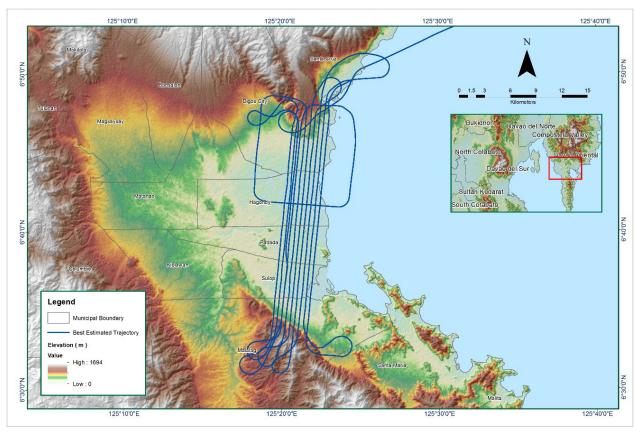



Figure 1.1.3 Best Estimated Trajectory

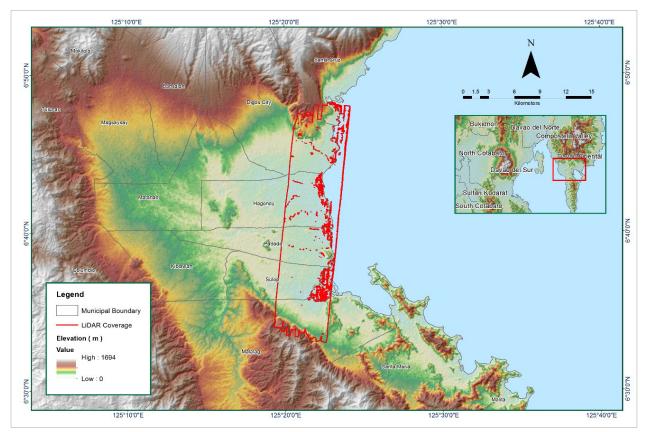



Figure 1.1.4 Coverage of LiDAR data

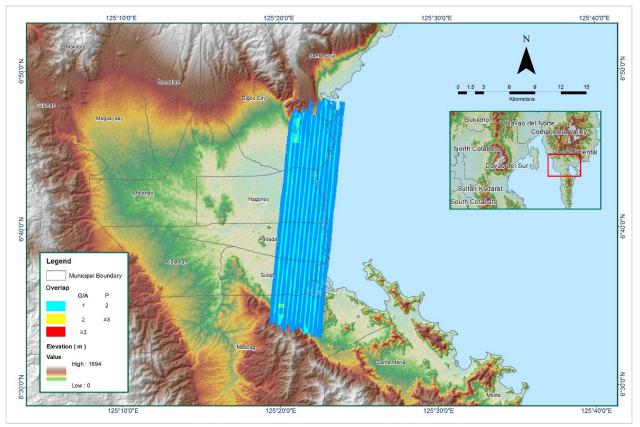



Figure 1.1.5 Image of data overlap

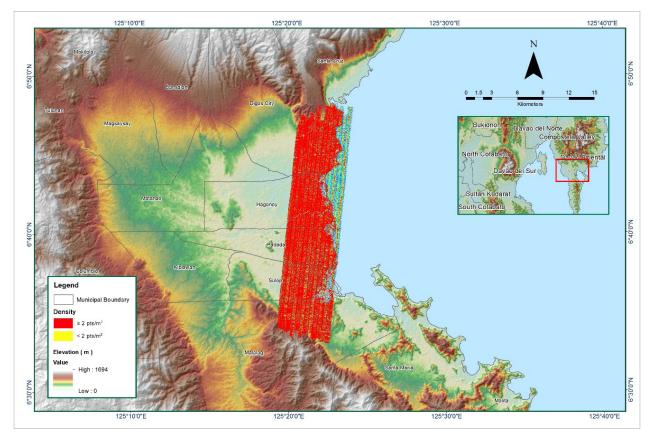



Figure 1.1.6 Density map of merged LiDAR data

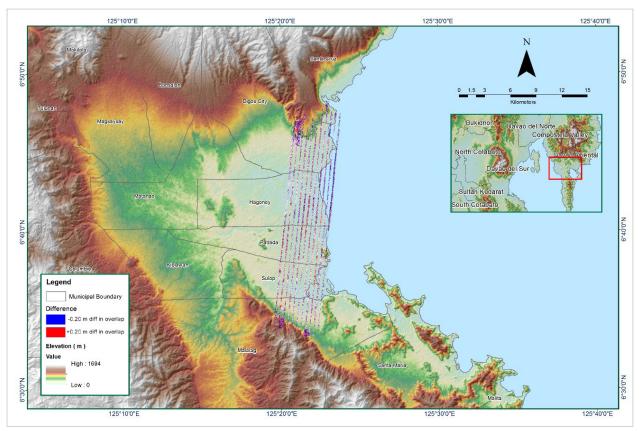



Figure 1.1.7 Elevation difference between flight lines

| Flight Area                                   | Davao Oriental                                                   |
|-----------------------------------------------|------------------------------------------------------------------|
| Mission Name                                  | Blk87B                                                           |
| Inclusive Flights                             | 7406G                                                            |
| Range data size                               | 19.3 GB                                                          |
| Base data size                                | 5.41 MB                                                          |
| POS                                           | 204 MB                                                           |
| Image                                         | n/a                                                              |
| Transfer date                                 | August 12, 2014                                                  |
|                                               |                                                                  |
| Solution Status                               |                                                                  |
| Number of Satellites (>6)                     | Yes                                                              |
| PDOP (<3)                                     | Yes                                                              |
| Baseline Length (<30km)                       | Yes                                                              |
| Processing Mode (<=1)                         | Yes                                                              |
|                                               |                                                                  |
| Smoothed Performance Metrics (in cm)          |                                                                  |
| RMSE for North Position (<4.0 cm)             | 1.15                                                             |
| RMSE for East Position (<4.0 cm)              | 1.85                                                             |
| RMSE for Down Position (<8.0 cm)              | 3.4                                                              |
|                                               |                                                                  |
| Boresight correction stdev (<0.001deg)        | 0.000252                                                         |
| IMU attitude correction stdev (<0.001deg)     | 0.000532                                                         |
| GPS position stdev (<0.01m)                   | 0.0017                                                           |
|                                               |                                                                  |
| Minimum % overlap (>25)                       | 18.61%                                                           |
| Ave point cloud density per sq.m. (>2.0)      | 2.81                                                             |
| Elevation difference between strips (<0.20 m) | Yes                                                              |
|                                               |                                                                  |
| Number of 1km x 1km blocks                    | 237                                                              |
| Maximum Height                                | 450.25 m                                                         |
| Minimum Height                                | 71.22 m                                                          |
|                                               |                                                                  |
| Classification (# of points)                  |                                                                  |
| Ground                                        | 82393954                                                         |
| Low vegetation                                | 95202868                                                         |
| Medium vegetation                             | 138559665                                                        |
| High vegetation                               | 184854717                                                        |
| Building                                      | 3481798                                                          |
|                                               |                                                                  |
| Orthophoto                                    | No                                                               |
| Processed by                                  | Engr. Irish Cortez, Engr. Chelou Prado,<br>Engr. Gladys Mae Apat |

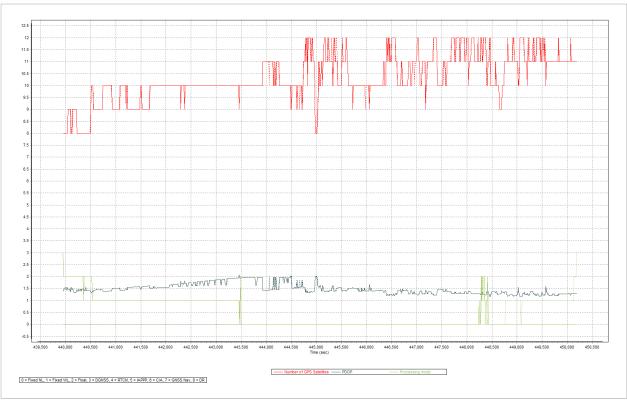



Figure 1.2.1 Solution Status

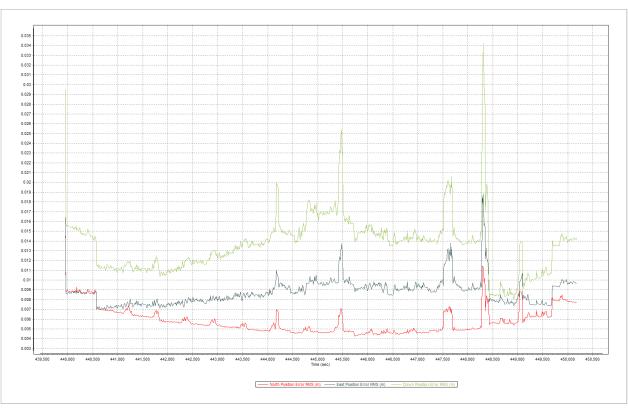



Figure 1.2.2 Smoothed Performance Metric Parameters

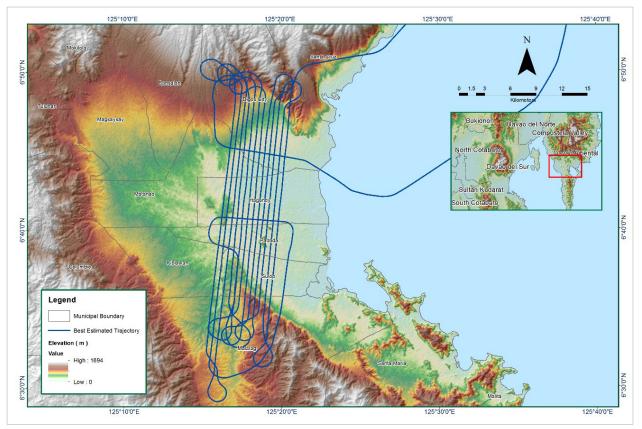



Figure 1.2.3 Best Estimated Trajectory

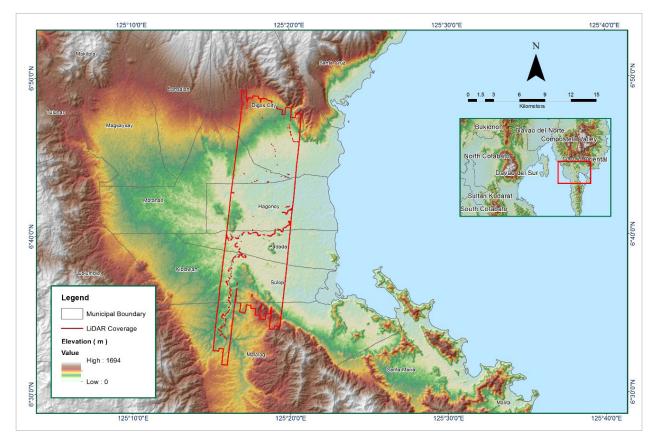



Figure 1.2.4 Coverage of LiDAR data

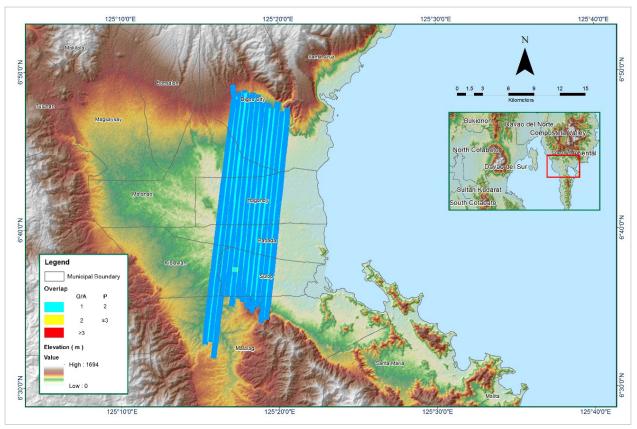



Figure 1.2.5 Image of data overlap

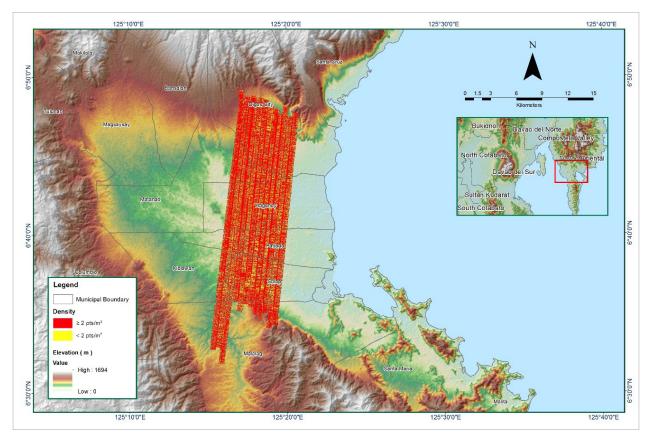



Figure 1.2.6 Density map of merged LiDAR data

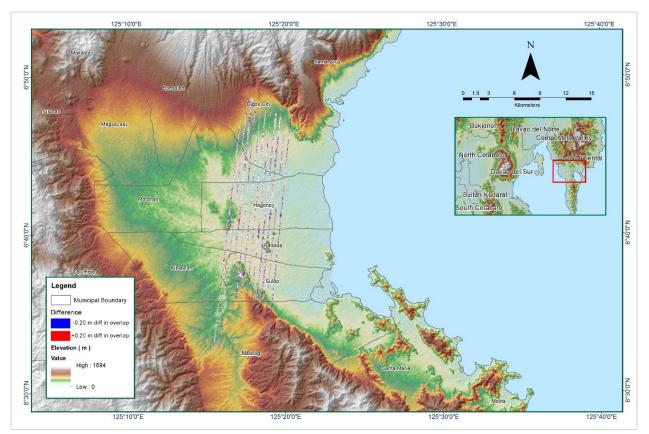



Figure 1.2.7 Elevation difference between flight lines

| Flight Area                                   | Davao Oriental                                              |
|-----------------------------------------------|-------------------------------------------------------------|
| Mission Name                                  | Blk87C                                                      |
| Inclusive Flights                             | 7412G,7416G,7418G                                           |
| Range data size                               | 46.91 GB                                                    |
| Base data size                                | 12.03 MB                                                    |
| POS                                           | 483 MB                                                      |
| Image                                         | na                                                          |
| Transfer date                                 | August 29, 2014                                             |
|                                               |                                                             |
| Solution Status                               |                                                             |
| Number of Satellites (>6)                     | Yes                                                         |
| PDOP (<3)                                     | Yes                                                         |
| Baseline Length (<30km)                       | Yes                                                         |
| Processing Mode (<=1)                         | Yes                                                         |
|                                               |                                                             |
| Smoothed Performance Metrics (in cm)          |                                                             |
| RMSE for North Position (<4.0 cm)             | 0.086                                                       |
| RMSE for East Position (<4.0 cm)              | 1.3                                                         |
| RMSE for Down Position (<8.0 cm)              | 1.7                                                         |
|                                               |                                                             |
| Boresight correction stdev (<0.001deg)        | 0.000338                                                    |
| IMU attitude correction stdev (<0.001deg)     | 0.001055                                                    |
| GPS position stdev (<0.01m)                   | 0.0217                                                      |
|                                               |                                                             |
| Minimum % overlap (>25)                       | 34.74%                                                      |
| Ave point cloud density per sq.m. (>2.0)      | 3.51                                                        |
| Elevation difference between strips (<0.20 m) | Yes                                                         |
|                                               |                                                             |
| Number of 1km x 1km blocks                    | 272                                                         |
| Maximum Height                                | 974.67 m                                                    |
| Minimum Height                                | 85.76 m                                                     |
|                                               |                                                             |
| Classification (# of points)                  |                                                             |
| Ground                                        | 103627080                                                   |
| Low vegetation                                | 138780410                                                   |
| Medium vegetation                             | 238339931                                                   |
| High vegetation                               | 233212584                                                   |
| Building                                      | 4306437                                                     |
|                                               |                                                             |
| Orthophoto                                    | No                                                          |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Harmond Santos,<br>Ailyn Biñas |

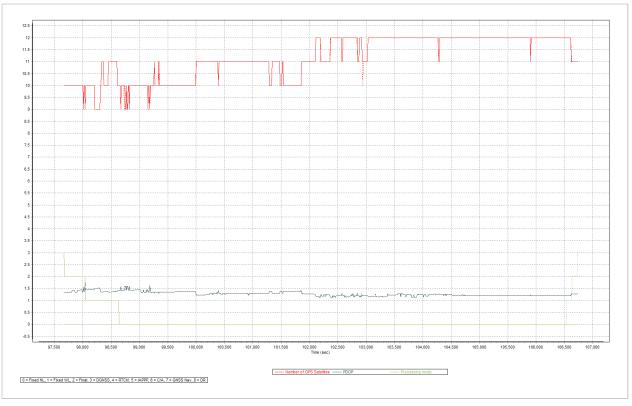



Figure 1.3.1 Solution Status

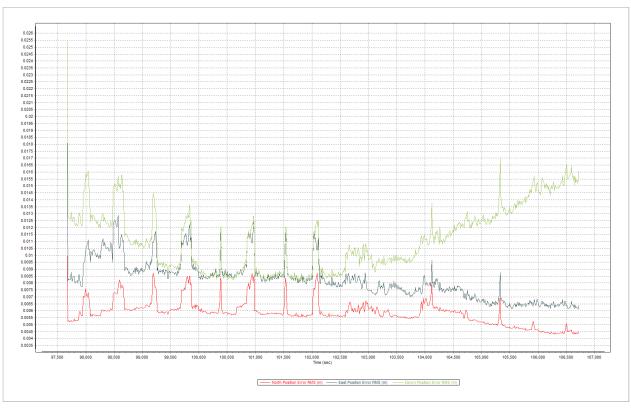



Figure 1.3.2 Smoothed Performance Metric Parameters

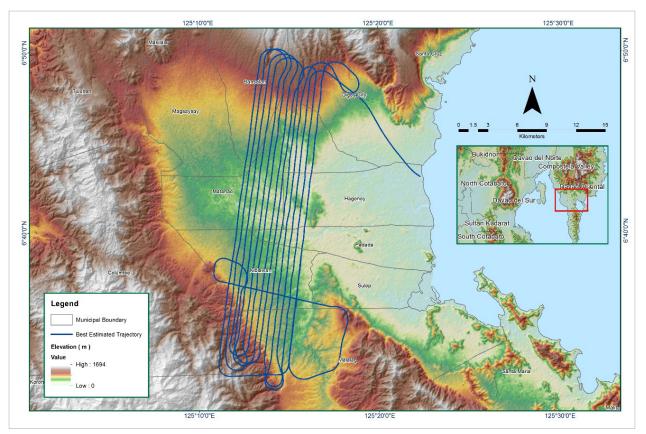



Figure 1.3.3 Best Estimated Trajectory

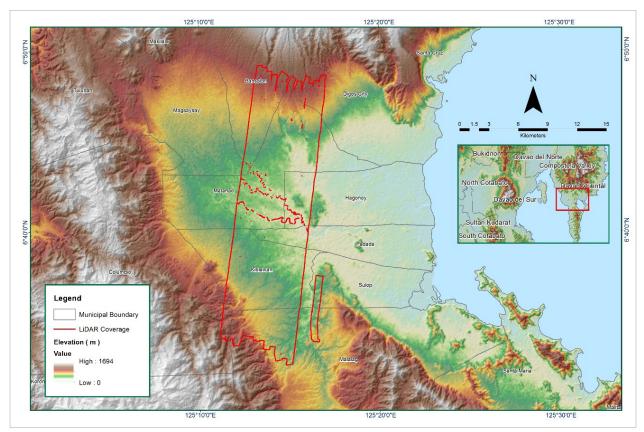



Figure 1.3.4 Coverage of LiDAR data

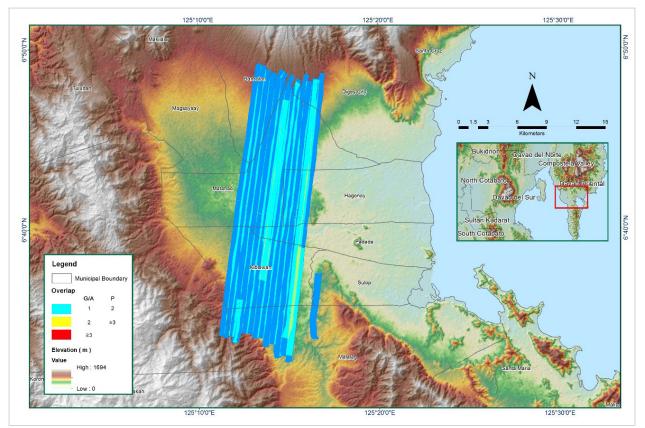



Figure 1.3.5 Image of data overlap

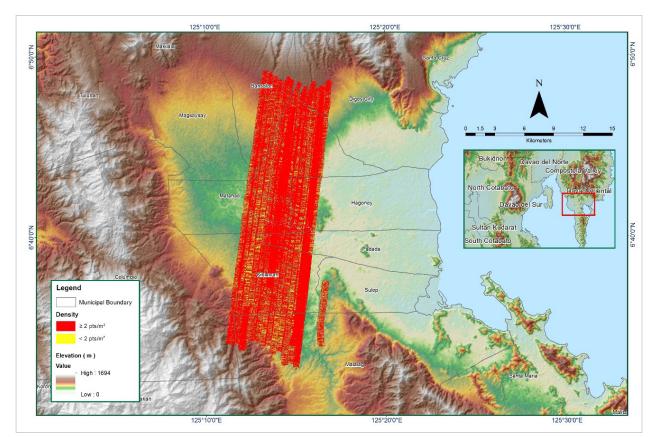



Figure 1.3.6 Density map of merged LiDAR data

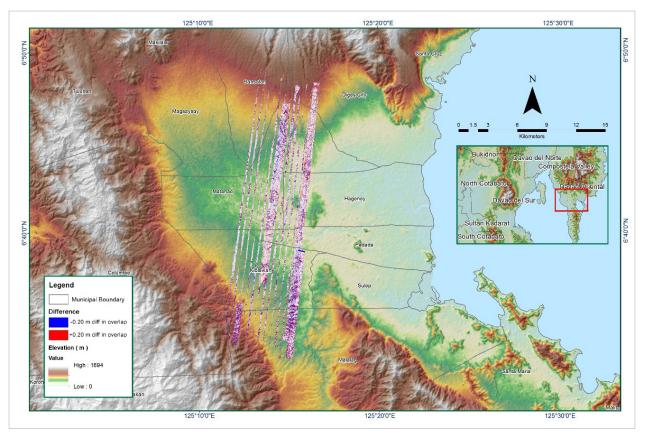



Figure 1.3.7 Elevation difference between flight lines

| Flight Area                                   | Davao Oriental                                                         |
|-----------------------------------------------|------------------------------------------------------------------------|
| Mission Name                                  | BIk87E                                                                 |
| Inclusive Flights                             | 7408G                                                                  |
| Range data size                               | 21.7 GB                                                                |
| Base data size                                | 6.02 MB                                                                |
| POS                                           | 242 MB                                                                 |
| Image                                         | na                                                                     |
| Transfer date                                 | August 12, 2014                                                        |
|                                               |                                                                        |
| Solution Status                               |                                                                        |
| Number of Satellites (>6)                     | Yes                                                                    |
| PDOP (<3)                                     | Yes                                                                    |
| Baseline Length (<30km)                       | Yes                                                                    |
| Processing Mode (<=1)                         | Yes                                                                    |
|                                               |                                                                        |
| Smoothed Performance Metrics (in cm)          |                                                                        |
| RMSE for North Position (<4.0 cm)             | 1.15                                                                   |
| RMSE for East Position (<4.0 cm)              | 1.55                                                                   |
| RMSE for Down Position (<8.0 cm)              | 2.8                                                                    |
|                                               |                                                                        |
| Boresight correction stdev (<0.001deg)        | 0.000618                                                               |
| IMU attitude correction stdev (<0.001deg)     | 0.001499                                                               |
| GPS position stdev (<0.01m)                   | 0.0076                                                                 |
|                                               |                                                                        |
| Minimum % overlap (>25)                       | 37.86%                                                                 |
| Ave point cloud density per sq.m. (>2.0)      | 3.32                                                                   |
| Elevation difference between strips (<0.20 m) | Yes                                                                    |
|                                               |                                                                        |
| Number of 1km x 1km blocks                    | 233                                                                    |
| Maximum Height                                | 576.07 m                                                               |
| Minimum Height                                | 112.62 m                                                               |
|                                               |                                                                        |
| Classification (# of points)                  |                                                                        |
| Ground                                        | 97064594                                                               |
| Low vegetation                                | 137647512                                                              |
| Medium vegetation                             | 156988685                                                              |
| High vegetation                               | 182232363                                                              |
| Building                                      | 3955979                                                                |
|                                               |                                                                        |
| Orthophoto                                    | No                                                                     |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Antonio Chua, Jr.,<br>Engr. Elainne Lopez |

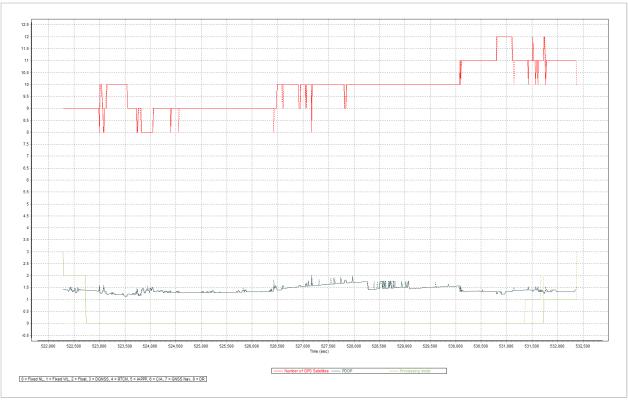



Figure 1.4.1 Solution Status



Figure 1.4.2 Smoothed Performance Metric Parameters

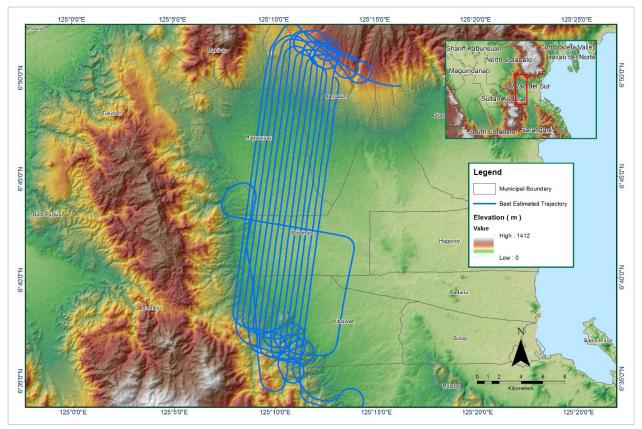



Figure 1.4.3 Best Estimated Trajectory

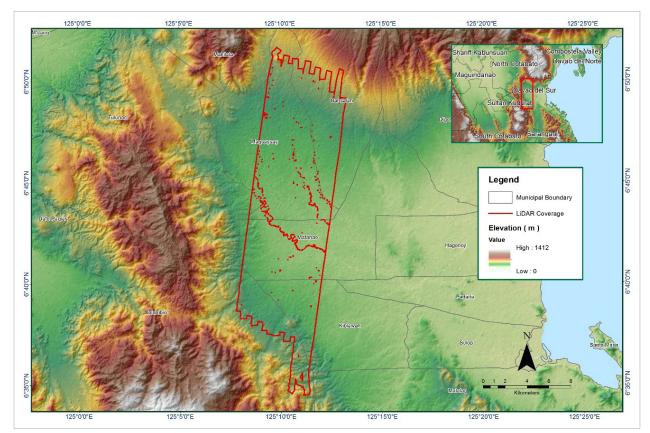



Figure 1.4.4 Coverage of LiDAR data

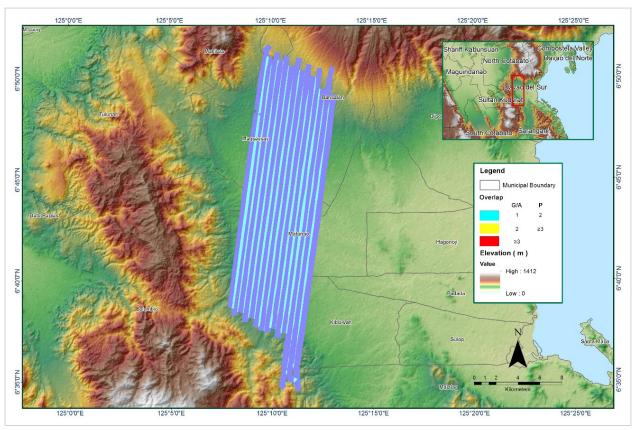



Figure 1.4.5 Image of data overlap

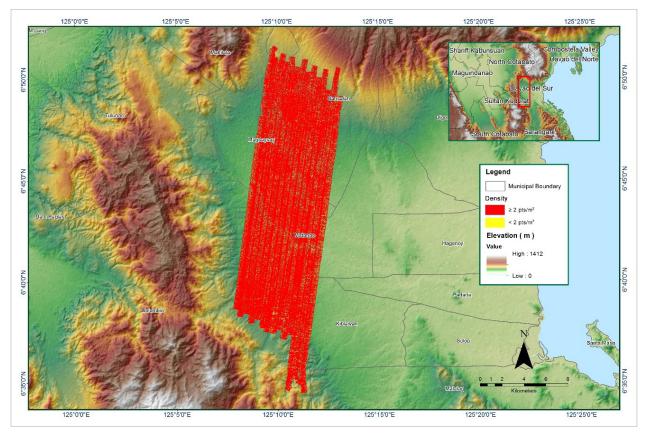



Figure 1.4.6 Density map of merged LiDAR data

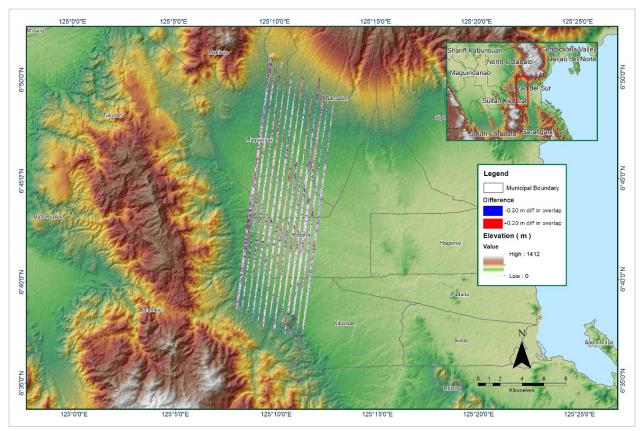



Figure 1.4.7 Elevation difference between flight lines

| Flight Area                                   | Davao Oriental                                                |
|-----------------------------------------------|---------------------------------------------------------------|
| Mission Name                                  | Blk87D                                                        |
| Inclusive Flights                             | 7416G,7418G                                                   |
| Range data size                               | 22.71 GB                                                      |
| Base data size                                | 7.04 MB                                                       |
| POS                                           | 328 MB                                                        |
| Image                                         | na                                                            |
| Transfer date                                 | August 29, 2014                                               |
|                                               |                                                               |
| Solution Status                               |                                                               |
| Number of Satellites (>6)                     | Yes                                                           |
| PDOP (<3)                                     | Yes                                                           |
| Baseline Length (<30km)                       | Yes                                                           |
| Processing Mode (<=1)                         | Yes                                                           |
|                                               |                                                               |
| Smoothed Performance Metrics (in cm)          |                                                               |
| RMSE for North Position (<4.0 cm)             | 1.12                                                          |
| RMSE for East Position (<4.0 cm)              | 1.24                                                          |
| RMSE for Down Position (<8.0 cm)              | 1.7                                                           |
|                                               |                                                               |
| Boresight correction stdev (<0.001deg)        | none                                                          |
| IMU attitude correction stdev (<0.001deg)     |                                                               |
| GPS position stdev (<0.01m)                   |                                                               |
|                                               |                                                               |
| Minimum % overlap (>25)                       | 39.32%                                                        |
| Ave point cloud density per sq.m. (>2.0)      | 3.59                                                          |
| Elevation difference between strips (<0.20 m) | Yes                                                           |
|                                               |                                                               |
| Number of 1km x 1km blocks                    | 133                                                           |
| Maximum Height                                | 569.06 m                                                      |
| Minimum Height                                | 52.5 m                                                        |
|                                               |                                                               |
| Classification (# of points)                  |                                                               |
| Ground                                        | 39876217                                                      |
| Low vegetation                                | 37379107                                                      |
| Medium vegetation                             | 66825805                                                      |
| High vegetation                               | 161736747                                                     |
| Building                                      | 1338775                                                       |
|                                               |                                                               |
| Orthophoto                                    | No                                                            |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Melanie Hingpit,<br>Jovy Narisma |

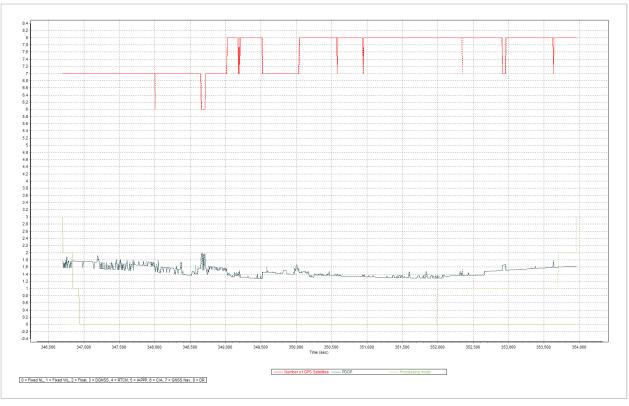



Figure 1.5.1 Solution Status

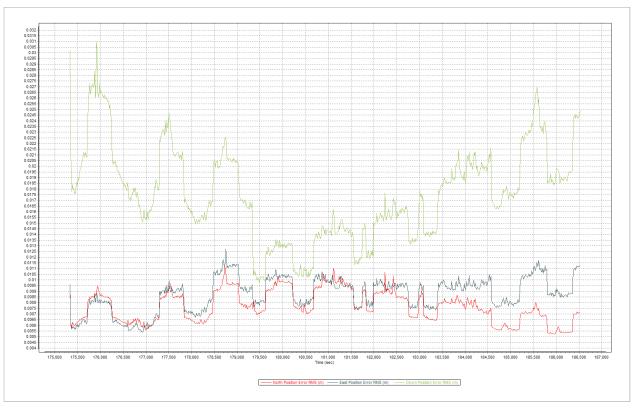



Figure 1.5.2 Smoothed Performance Metric Parameters

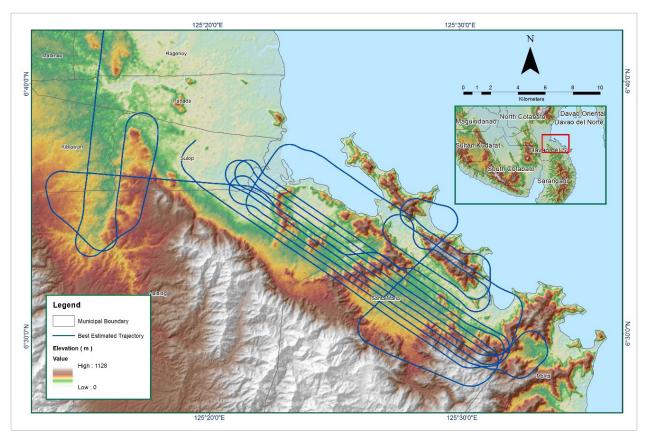



Figure 1.5.3 Best Estimated Trajectory

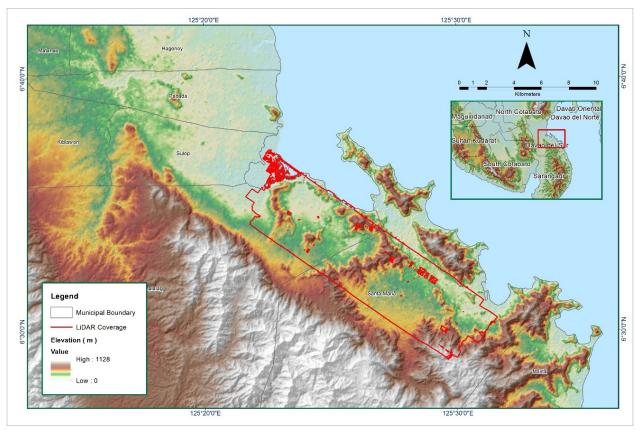



Figure 1.5.4 Coverage of LiDAR data

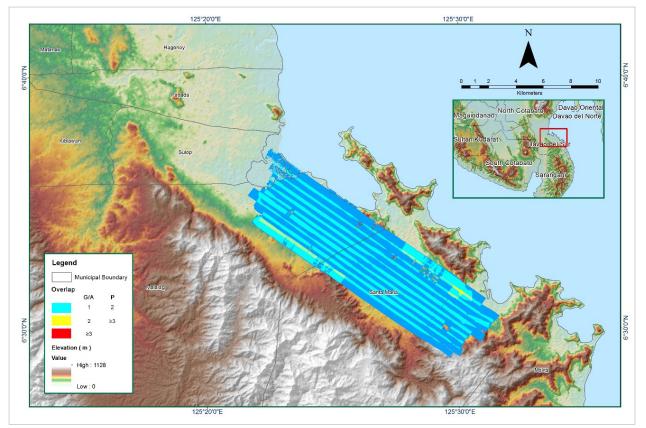



Figure 1.5.5 Image of data overlap

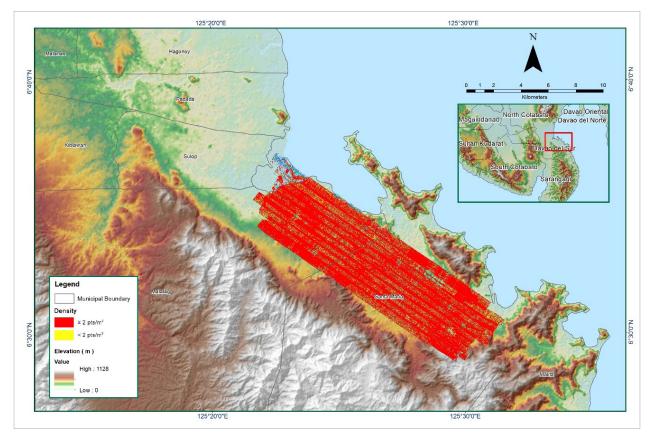



Figure 1.5.6 Density map of merged LiDAR data

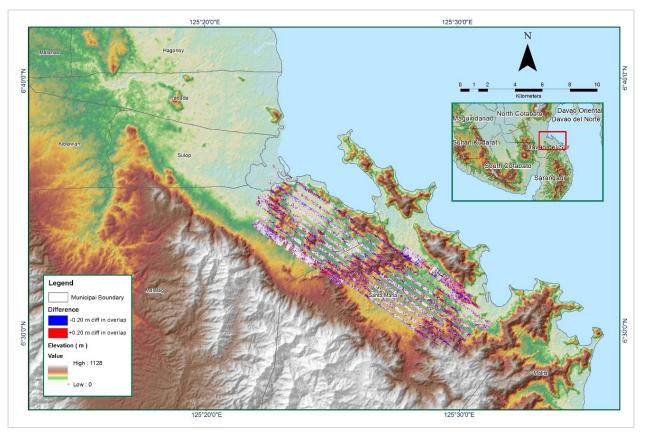



Figure 1.5.7 Elevation difference between flight lines

| Flight Area                                   | Davao Oriental                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------|
| Mission Name                                  | Blk87F                                                                            |
| Inclusive Flights                             | 7414G,7416G,7418G                                                                 |
| Range data size                               | 30.33 GB                                                                          |
| Base data size                                | 10.15 MB                                                                          |
| POS                                           | 474 MB                                                                            |
| Image                                         | na                                                                                |
| Transfer date                                 | August 29, 2014                                                                   |
|                                               | 100000000000000000000000000000000000000                                           |
| Solution Status                               |                                                                                   |
| Number of Satellites (>6)                     | Yes                                                                               |
| PDOP (<3)                                     | Yes                                                                               |
| Baseline Length (<30km)                       | Yes                                                                               |
| Processing Mode (<=1)                         | Yes                                                                               |
|                                               |                                                                                   |
| Smoothed Performance Metrics (in cm)          |                                                                                   |
| RMSE for North Position (<4.0 cm)             | 1.06                                                                              |
| RMSE for East Position (<4.0 cm)              | 1.05                                                                              |
| RMSE for Down Position (<8.0 cm)              | 1.8                                                                               |
|                                               |                                                                                   |
| Boresight correction stdev (<0.001deg)        | 0.002173                                                                          |
| IMU attitude correction stdev (<0.001deg)     | 0.017677                                                                          |
| GPS position stdev (<0.01m)                   | 0.0275                                                                            |
|                                               |                                                                                   |
| Minimum % overlap (>25)                       | 23.82%                                                                            |
| Ave point cloud density per sq.m. (>2.0)      | 2.86                                                                              |
| Elevation difference between strips (<0.20 m) | Yes                                                                               |
|                                               |                                                                                   |
| Number of 1km x 1km blocks                    | 183                                                                               |
| Maximum Height                                | 1039.27 m                                                                         |
| Minimum Height                                | 53.5 m                                                                            |
|                                               |                                                                                   |
| Classification (# of points)                  |                                                                                   |
| Ground                                        | 28480264                                                                          |
| Low vegetation                                | 19742900                                                                          |
| Medium vegetation                             | 52073127                                                                          |
| High vegetation                               | 116735255                                                                         |
| Building                                      | 1134816                                                                           |
|                                               |                                                                                   |
| Orthophoto                                    | No                                                                                |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Edgardo Gubatanga, Jr.,<br>Engr. John Dill Macapagal |

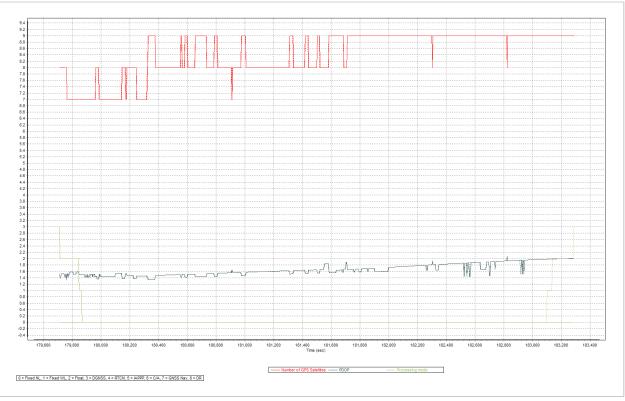



Figure 1.6.1 Solution Status

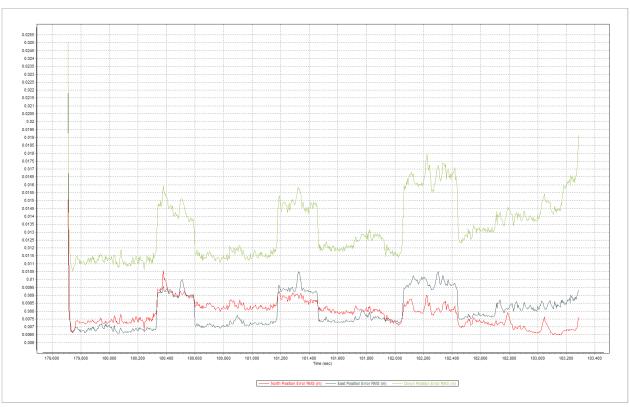



Figure 1.6.2 Smoothed Performance Metric Parameters

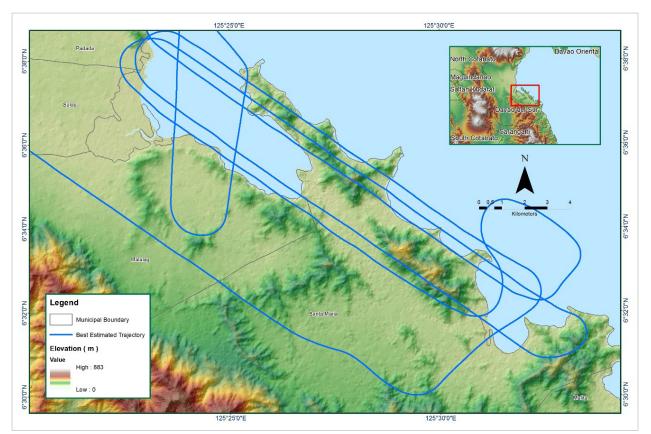



Figure 1.6.3 Best Estimated Trajectory

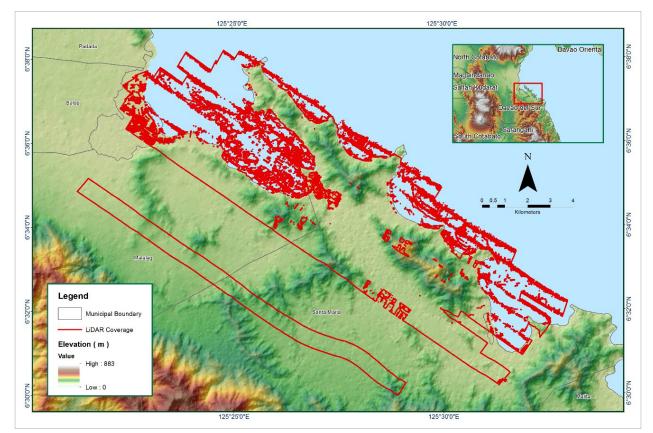



Figure 1.6.4 Coverage of LiDAR data

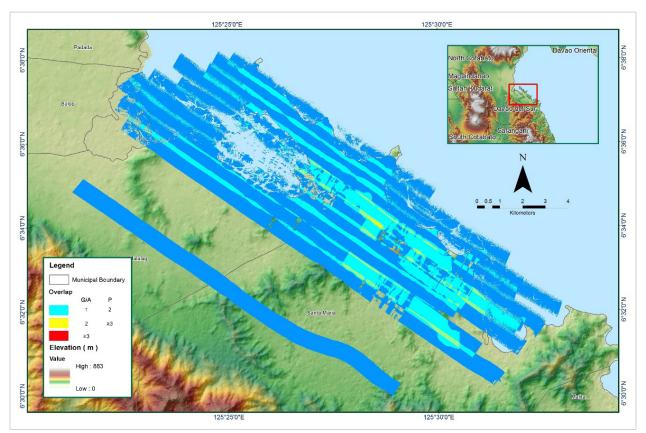



Figure 1.6.5 Image of data overlap

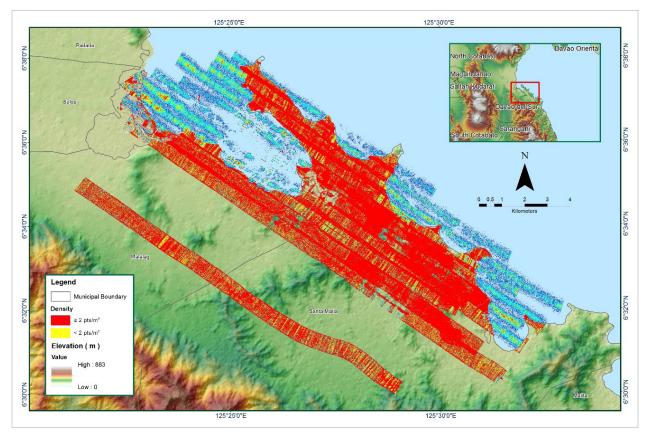



Figure 1.6.6 Density map of merged LiDAR data

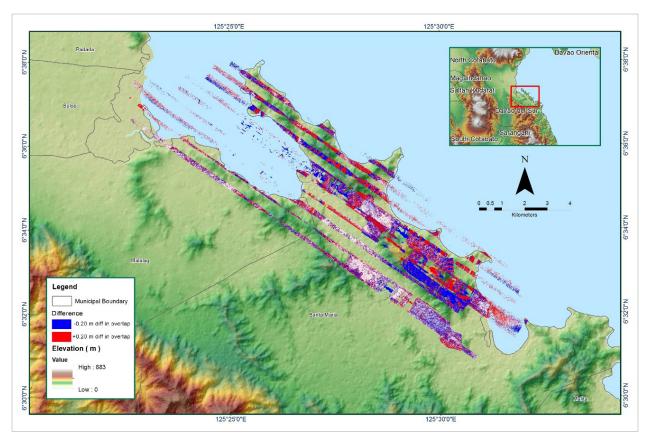



Figure 1.6.7 Elevation difference between flight lines

### ANNEX 9. Padada-Mainit Model Basin Parameters

| Destin          | SCS Cur                        | ve Number       | Loss              | Clark Unit<br>Hydrograph Transform |                             | Recession Baseflow |                               |                       |                |               |
|-----------------|--------------------------------|-----------------|-------------------|------------------------------------|-----------------------------|--------------------|-------------------------------|-----------------------|----------------|---------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR)   | Storage Coefficient<br>(HR) | Initial Type       | Initial<br>Discharge<br>(cms) | Recession<br>Constant | Threshold Type | Ratio to Peak |
| W1000           | 0.0066                         | 99              | 0                 | 14.1057                            | 0.226709                    | Discharge          | 0.17609                       | 0.4                   | Ratio to Peak  | 0.6           |
| W1010           | 0.0066                         | 99              | 0                 | 4.36977                            | 0.155111                    | Discharge          | 0.11062                       | 0.4                   | Ratio to Peak  | 0.603         |
| W1020           | 0.0066                         | 99              | 0                 | 15.345                             | 0.512919                    | Discharge          | 0.26566                       | 0.4                   | Ratio to Peak  | 0.603         |
| W1030           | 0.0066                         | 99              | 0                 | 8.39817                            | 0.141089                    | Discharge          | 0.30515                       | 0.4                   | Ratio to Peak  | 0.603         |
| W1040           | 0.0048474                      | 99              | 0                 | 8.58843                            | 0.155928                    | Discharge          | 0.30559                       | 0.4                   | Ratio to Peak  | 0.6           |
| W1050           | 0.0066                         | 99              | 0                 | 17.5311                            | 0.194897                    | Discharge          | 0.50811                       | 0.4                   | Ratio to Peak  | 0.6           |
| W1060           | 0.0066                         | 99              | 0                 | 4.71771                            | 0.166145                    | Discharge          | 0.18962                       | 0.4                   | Ratio to Peak  | 0.6           |
| W540            | 0.0066                         | 99              | 0                 | 10.4193                            | 0.22869                     | Discharge          | 0.5562                        | 0.4                   | Ratio to Peak  | 0.8           |
| W550            | 0.0047758                      | 99              | 0                 | 8.7777                             | 0.218682                    | Discharge          | 0.22608                       | 0.4                   | Ratio to Peak  | 0.8           |
| W560            | 0.0066                         | 99              | 0                 | 20.8026                            | 0.420066                    | Discharge          | 0.47467                       | 0.4                   | Ratio to Peak  | 0.8           |
| W570            | 0.0066                         | 99              | 0                 | 14.6313                            | 0.764127                    | Discharge          | 0.63743                       | 0.4                   | Ratio to Peak  | 0.603         |
| W580            | 0.0066                         | 99              | 0                 | 4.03767                            | 0.148127                    | Discharge          | 0.35731                       | 0.4                   | Ratio to Peak  | 0.602232      |
| W590            | 0.0066                         | 99              | 0                 | 6.00768                            | 0.215568                    | Discharge          | 0.15917                       | 0.4                   | Ratio to Peak  | 0.602992      |
| W600            | 0.0066                         | 99              | 0                 | 21.3156                            | 0.361125                    | Discharge          | 0.38534                       | 0.4                   | Ratio to Peak  | 0.60288       |
| W610            | 0.0066                         | 99              | 0                 | 11.4507                            | 0.40878                     | Discharge          | 0.40005                       | 0.4                   | Ratio to Peak  | 0.602912      |
| W620            | 0.0066                         | 99              | 0                 | 7.34202                            | 0.268384                    | Discharge          | 0.29147                       | 0.4                   | Ratio to Peak  | 0.603         |
| W630            | 0.0066                         | 99              | 0                 | 8.9973                             | 0.151678                    | Discharge          | 0.093004                      | 0.4                   | Ratio to Peak  | 0.8           |
| W640            | 0.0066                         | 99              | 0                 | 20.8035                            | 0.342522                    | Discharge          | 0.31058                       | 0.4                   | Ratio to Peak  | 0.8           |
| W650            | 0.0057952                      | 99              | 0                 | 5.93901                            | 0.223217                    | Discharge          | 0.16634                       | 0.4                   | Ratio to Peak  | 0.6           |
| W660            | 0.0066                         | 99              | 0                 | 4.85847                            | 0.592353                    | Discharge          | 0.21336                       | 0.4                   | Ratio to Peak  | 0.602696      |
| W670            | 0.0066                         | 99              | 0                 | 3.1104                             | 0.117272                    | Discharge          | 0.019589                      | 0.4                   | Ratio to Peak  | 0.602992      |

| Basin  | SCS Cur                        | ve Number       | Loss              |                                  | ark Unit<br>aph Transform   | Recession Baseflow |                               |                       |                |               |  |
|--------|--------------------------------|-----------------|-------------------|----------------------------------|-----------------------------|--------------------|-------------------------------|-----------------------|----------------|---------------|--|
| Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage Coefficient<br>(HR) | Initial Type       | Initial<br>Discharge<br>(cms) | Recession<br>Constant | Threshold Type | Ratio to Peak |  |
| W680   | 0.0052214                      | 99              | 0                 | 8.60562                          | 0.674379                    | Discharge          | 0.28281                       | 0.4                   | Ratio to Peak  | 0.6           |  |
| W690   | 0.0066                         | 99              | 0                 | 21.4668                          | 0.309096                    | Discharge          | 0.17129                       | 0.4                   | Ratio to Peak  | 0.6008        |  |
| W700   | 0.0095422                      | 99              | 0                 | 7.79022                          | 0.410049                    | Discharge          | 0.30931                       | 0.4                   | Ratio to Peak  | 0.6           |  |
| W710   | 0.0066                         | 99              | 0                 | 8.50401                          | 0.316305                    | Discharge          | 0.21667                       | 0.4                   | Ratio to Peak  | 0.403632      |  |
| W720   | 0.0066                         | 99              | 0                 | 4.58874                          | 0.250412                    | Discharge          | 0.091433                      | 0.4                   | Ratio to Peak  | 0.403744      |  |
| W730   | 0.011278                       | 99              | 0                 | 15.48                            | 0.552906                    | Discharge          | 0.16589                       | 0.4                   | Ratio to Peak  | 0.402         |  |
| W740   | 0.0066                         | 99              | 0                 | 7.71858                          | 0.127556                    | Discharge          | 0.015626                      | 0.4                   | Ratio to Peak  | 0.602992      |  |
| W750   | 0.0083504                      | 99              | 0                 | 3.05244                          | 0.075125                    | Discharge          | 0.00181                       | 0.4                   | Ratio to Peak  | 0.404008      |  |
| W760   | 0.0141364                      | 99              | 0                 | 2.95965                          | 0.160901                    | Discharge          | 0.00072                       | 0.4                   | Ratio to Peak  | 0.603         |  |
| W770   | 0.0066                         | 99              | 0                 | 6.01272                          | 0.212023                    | Discharge          | 0.045939                      | 0.4                   | Ratio to Peak  | 0.603         |  |
| W780   | 0.0066                         | 99              | 0                 | 5.70366                          | 0.440046                    | Discharge          | 0.34943                       | 0.4                   | Ratio to Peak  | 0.603         |  |
| W790   | 0.0066                         | 99              | 0                 | 16.8084                          | 0.408402                    | Discharge          | 0.42677                       | 0.4                   | Ratio to Peak  | 0.602696      |  |
| W800   | 0.0066                         | 99              | 0                 | 9.1485                           | 0.333828                    | Discharge          | 0.38894                       | 0.4                   | Ratio to Peak  | 0.602864      |  |
| W810   | 0.0066                         | 99              | 0                 | 5.71041                          | 0.21069                     | Discharge          | 0.165                         | 0.4                   | Ratio to Peak  | 0.602992      |  |
| W820   | 0.0066                         | 99              | 0                 | 5.21406                          | 0.18313                     | Discharge          | 0.073144                      | 0.4                   | Ratio to Peak  | 0.603         |  |
| W830   | 0.0066044                      | 99              | 0                 | 22.8483                          | 0.368496                    | Discharge          | 0.69282                       | 0.4                   | Ratio to Peak  | 0.6           |  |
| W840   | 0.0103426                      | 99              | 0                 | 8.11008                          | 0.443124                    | Discharge          | 0.31473                       | 0.4                   | Ratio to Peak  | 0.602992      |  |
| W850   | 0.0066                         | 99              | 0                 | 7.75359                          | 0.48519                     | Discharge          | 0.55671                       | 0.4                   | Ratio to Peak  | 0.602904      |  |
| W860   | 0.0066                         | 99              | 0                 | 7.72002                          | 0.12497                     | Discharge          | 0.072697                      | 0.4                   | Ratio to Peak  | 0.602888      |  |
| W870   | 0.0066                         | 99              | 0                 | 10.7748                          | 0.258374                    | Discharge          | 0.3789                        | 0.4                   | Ratio to Peak  | 0.602936      |  |
| W880   | 0.0066                         | 99              | 0                 | 7.61193                          | 0.409266                    | Discharge          | 0.096814                      | 0.4                   | Ratio to Peak  | 0.603         |  |
| W890   | 0.0066                         | 99              | 0                 | 9.0225                           | 0.302616                    | Discharge          | 0.15413                       | 0.4                   | Ratio to Peak  | 0.8           |  |

| Desin           | SCS Curve Number Loss          |                 |                   | Clark Unit<br>Hydrograph Transform |                             | Recession Baseflow |                               |                       |                |               |
|-----------------|--------------------------------|-----------------|-------------------|------------------------------------|-----------------------------|--------------------|-------------------------------|-----------------------|----------------|---------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR)   | Storage Coefficient<br>(HR) | Initial Type       | Initial<br>Discharge<br>(cms) | Recession<br>Constant | Threshold Type | Ratio to Peak |
| W900            | 0.0066                         | 99              | 0                 | 16.2396                            | 0.489645                    | Discharge          | 0.18753                       | 0.4                   | Ratio to Peak  | 0.603         |
| W910            | 0.0066                         | 99              | 0                 | 13.9815                            | 0.506169                    | Discharge          | 0.37911                       | 0.4                   | Ratio to Peak  | 0.60288       |
| W920            | 0.0077994                      | 80.501          | 0                 | 12.717                             | 0.321678                    | Discharge          | 0.3539                        | 0.4                   | Ratio to Peak  | 0.402         |
| W930            | 0.0066                         | 99              | 0                 | 2.99799                            | 0.072409                    | Discharge          | 0.00614                       | 0.4                   | Ratio to Peak  | 0.603         |
| W940            | 0.0066                         | 99              | 0                 | 13.7106                            | 0.467235                    | Discharge          | 0.3999                        | 0.4                   | Ratio to Peak  | 0.6           |
| W950            | 0.0066                         | 99              | 0                 | 3.19068                            | 0.173048                    | Discharge          | 0.036984                      | 0.4                   | Ratio to Peak  | 0.603         |
| W960            | 0.0066                         | 99              | 0                 | 13.4091                            | 0.472473                    | Discharge          | 0.14874                       | 0.4                   | Ratio to Peak  | 0.602976      |
| W970            | 0.0066                         | 99              | 0                 | 10.9242                            | 0.276372                    | Discharge          | 0.42128                       | 0.4                   | Ratio to Peak  | 0.401992      |
| W980            | 0.0106928                      | 99              | 0                 | 8.21655                            | 0.194311                    | Discharge          | 0.50371                       | 0.4                   | Ratio to Peak  | 0.6           |
| W990            | 0.0066                         | 99              | 0                 | 1.93725                            | 0.065634                    | Discharge          | 0.007246                      | 0.4                   | Ratio to Peak  | 0.8           |

### ANNEX 10. Padada-Mainit Model Reach Parameters

| Reach  | Muskingum Cunge Channel Routing |            |          |             |           |       |            |  |  |  |  |  |  |
|--------|---------------------------------|------------|----------|-------------|-----------|-------|------------|--|--|--|--|--|--|
| Number | Time Step Method                | Length (m) | Slope    | Manning's n | Shape     | Width | Side Slope |  |  |  |  |  |  |
| R100   | Automatic Fixed Interval        | 5831.7     | 0.009068 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R110   | Automatic Fixed Interval        | 7172       | 0.013854 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R120   | Automatic Fixed Interval        | 1703.4     | 0.006005 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R150   | Automatic Fixed Interval        | 8834.2     | 0.00349  | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R170   | Automatic Fixed Interval        | 6176.4     | 0.004808 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R180   | Automatic Fixed Interval        | 18580      | 0.005911 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R200   | Automatic Fixed Interval        | 544.97     | 0.000397 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R210   | Automatic Fixed Interval        | 270.71     | 0.0033   | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R220   | Automatic Fixed Interval        | 1263       | 0.000394 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R230   | Automatic Fixed Interval        | 5288.4     | 0.003653 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R240   | Automatic Fixed Interval        | 9442.8     | 0.003111 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R260   | Automatic Fixed Interval        | 12045      | 0.000773 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R270   | Automatic Fixed Interval        | 3427.1     | 0.003216 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R280   | Automatic Fixed Interval        | 5664.7     | 0.009287 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R290   | Automatic Fixed Interval        | 4551.3     | 0.005118 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R310   | Automatic Fixed Interval        | 2672.4     | 0.002994 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R330   | Automatic Fixed Interval        | 7432.1     | 0.008984 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R350   | Automatic Fixed Interval        | 12594      | 0.016843 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R370   | Automatic Fixed Interval        | 6829.1     | 0.002192 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |

| Reach  | Muskingum Cunge Channel Routing |            |          |             |           |       |            |  |  |  |  |  |  |
|--------|---------------------------------|------------|----------|-------------|-----------|-------|------------|--|--|--|--|--|--|
| Number | Time Step Method                | Length (m) | Slope    | Manning's n | Shape     | Width | Side Slope |  |  |  |  |  |  |
| R390   | Automatic Fixed Interval        | 1104.7     | 0.003444 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R40    | Automatic Fixed Interval        | 8668.2     | 0.018854 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R400   | Automatic Fixed Interval        | 2032.4     | 0.010641 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R430   | Automatic Fixed Interval        | 6782.1     | 0.002993 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R460   | Automatic Fixed Interval        | 1084.7     | 0.00407  | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R480   | Automatic Fixed Interval        | 1008.4     | 0.003721 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |
| R500   | Automatic Fixed Interval        | 13818      | 0.029372 | 0.099504    | Trapezoid | 52.4  | 1          |  |  |  |  |  |  |

## ANNEX 11. Padada-Mainit Field Validation

| Point  | Validation | Coordinates | Model   | Validation |         |                         | Rain                |
|--------|------------|-------------|---------|------------|---------|-------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error   | Event                   | Return/<br>Scenario |
| 1      | 6.643977   | 125.283658  | 5.02    | 5.00       | 0.0004  | Buhawi/ 2010            | 5-Year              |
| 2      | 6.619464   | 125.270169  | 5.02    | 5.00       | 0.0004  | Buhawi/ 2000            | 5-Year              |
| 3      | 6.659733   | 125.279311  | 5.03    | 1.50       | 12.4609 | Heavy rain              | 5-Year              |
| 4      | 6.638153   | 125.271794  | 5.03    | 0.60       | 19.6249 | Heavy rain/ 2015        | 5-Year              |
| 5      | 6.672456   | 125.320767  | 5.04    | 5.00       | 0.0016  | Buhawi/Heavy rain/ 2015 | 5-Year              |
| 6      | 6.666795   | 125.280864  | 5.04    | 6.70       | 2.7556  | Buhawi/ 2014            | 5-Year              |
| 7      | 6.632740   | 125.271421  | 5.05    | 5.00       | 0.0025  | Heavy rain              | 5-Year              |
| 8      | 6.667613   | 125.312417  | 5.08    | 5.00       | 0.0064  | Heavy rain/ 2009        | 5-Year              |
| 9      | 6.654851   | 125.280733  | 5.08    | 2.00       | 9.4864  | Buhawi/ 2010            | 5-Year              |
| 10     | 6.673287   | 125.318062  | 5.08    | 4.00       | 1.1664  | Heavy rain / 2015       | 5-Year              |
| 11     | 6.620724   | 125.269905  | 5.09    | 4.90       | 0.0361  | Buhawi/ 2000            | 5-Year              |
| 12     | 6.646266   | 125.275892  | 5.12    | 4.90       | 0.0484  | Heavy rain/ 2015        | 5-Year              |
| 13     | 6.643729   | 125.278142  | 5.12    | 4.30       | 0.6724  | Heavy rain/ 2015        | 5-Year              |
| 14     | 6.656196   | 125.279380  | 5.12    | 1.00       | 16.9744 | Heavy rain              | 5-Year              |
| 15     | 6.668129   | 125.317326  | 5.17    | 5.00       | 0.0289  | Heavy rain/ 2009        | 5-Year              |
| 16     | 6.658473   | 125.277051  | 5.24    | 5.00       | 0.0576  | Heavy rain              | 5-Year              |
| 17     | 6.632010   | 125.271405  | 5.24    | 5.00       | 0.0576  | Yolanda/ 2014           | 5-Year              |
| 18     | 6.618685   | 125.265541  | 5.27    | 5.00       | 0.0729  | Heavy rain/ 2015        | 5-Year              |
| 19     | 6.641522   | 125.272782  | 5.28    | 4.20       | 1.1664  | Heavy rain/ 2015        | 5-Year              |
| 20     | 6.643919   | 125.276428  | 5.28    | 4.00       | 1.6384  | Heavy rain/ 2015        | 5-Year              |
| 21     | 6.671645   | 125.323302  | 5.33    | 6.50       | 1.3689  | Buhawi/Heavy rain/ 2015 | 5-Year              |
| 22     | 6.645632   | 125.277795  | 5.45    | 5.50       | 0.0025  | Heavy rain/ 2015        | 5-Year              |
| 23     | 6.665004   | 125.275266  | 5.64    | 2.00       | 13.2496 | Buhawi/ 2014            | 5-Year              |
| 24     | 6.627306   | 125.270857  | 5.85    | 5.00       | 0.7225  | Heavy rain              | 5-Year              |
| 25     | 6.623777   | 125.270268  | 5.9     | 6.00       | 0.0100  | Buhawi/ 2000            | 5-Year              |
| 26     | 6.657041   | 125.275122  | 6.19    | 5.00       | 1.4161  | Heavy rain              | 5-Year              |
| 27     | 6.659985   | 125.281472  | 6.23    | 5.50       | 0.5329  | Heavy rain              | 5-Year              |
| 28     | 6.625599   | 125.270217  | 6.91    | 5.50       | 1.9881  | Heavy rain              | 5-Year              |
| 29     | 6.670757   | 125.317229  | 7.13    | 5.10       | 4.1209  | Heavy rain / 2013       | 5-Year              |
| 30     | 6.639751   | 125.244599  | 2.07    | 0.00       | 4.2849  |                         | 5-Year              |
| 31     | 6.674803   | 125.244383  | 2.19    | 2.00       | 0.0361  | Milenyo/ 2014           | 5-Year              |
| 32     | 6.668561   | 125.266059  | 2.26    | 3.00       | 0.5476  | Heavy rain/ 2015        | 5-Year              |
| 33     | 6.666629   | 125.273190  | 2.5     | 4.00       | 2.2500  | Buhawi/ 2014            | 5-Year              |
| 34     | 6.646032   | 125.277451  | 2.65    | 0.00       | 7.0225  |                         | 5-Year              |
| 35     | 6.671572   | 125.264229  | 2.72    | 2.00       | 0.5184  | Heavy rain/ 2015        | 5-Year              |
| 36     | 6.615551   | 125.257034  | 3.33    | 3.00       | 0.1089  | Ondoy                   | 5-Year              |
| 37     | 6.645420   | 125.286206  | 3.61    | 3.00       | 0.3721  | Buhawi/ 2010            | 5-Year              |
| 38     | 6.663176   | 125.312162  | 4.09    | 1.00       | 9.5481  | Buhawi/ 2013            | 5-Year              |
| 39     | 6.675512   | 125.316131  | 4.74    | 6.00       | 1.5876  | Titang                  | 5-Year              |
| 40     | 6.671702   | 125.319006  | 3.39    | 3.00       | 0.1521  | Heavy rain / 2015       | 5-Year              |
| 41     | 6.637428   | 125.244175  | 2.06    | 3.00       | 0.8836  | Ondoy                   | 5-Year              |
| 42     | 6.638402   | 125.248790  | 3.78    | 3.80       | 0.0004  | Heavy rain/ 2015        | 5-Year              |
| 43     | 6.641556   | 125.250884  | 2.81    | 0.20       | 6.8121  | Heavy rain/ 2014        | 5-Year              |

| Point  | Validation | Coordinates | Model   | Validation |        |                         | Rain                |
|--------|------------|-------------|---------|------------|--------|-------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event                   | Return/<br>Scenario |
| 44     | 6.642083   | 125.254321  | 4.42    | 4.00       | 0.1764 | Heavy rain/ 2014        | 5-Year              |
| 45     | 6.634220   | 125.254105  | 2.77    | 3.20       | 0.1849 | Bagyo/ November 2015    | 5-Year              |
| 46     | 6.633496   | 125.254192  | 3.06    | 3.00       | 0.0036 | Bagyo/ November 2015    | 5-Year              |
| 47     | 6.613702   | 125.253831  | 3.74    | 3.00       | 0.5476 | Ondoy                   | 5-Year              |
| 48     | 6.635219   | 125.272732  | 2.47    | 1.00       | 2.1609 | Heavy rain/Buhawi/ 2003 | 5-Year              |
| 49     | 6.662251   | 125.271771  | 3.15    | 3.80       | 0.4225 | Buhawi/ 2014            | 5-Year              |
| 50     | 6.668672   | 125.309951  | 3.26    | 3.00       | 0.0676 | Heavy rain/ 2009        | 5-Year              |
| 51     | 6.675832   | 125.324992  | 2.87    | 3.00       | 0.0169 | Upstream rain/ 2012     | 5-Year              |
| 52     | 6.661220   | 125.259923  | 2.43    | 2.00       | 0.1849 | Heavy rain/ August 2015 | 5-Year              |
| 53     | 6.661968   | 125.254593  | 2.27    | 0.50       | 3.1329 | Heavy rain/ August 2015 | 5-Year              |
| 54     | 6.622714   | 125.269601  | 2.01    | 1.80       | 0.0441 | Buhawi/ 2000            | 5-Year              |
| 55     | 6.675298   | 125.290212  | 1.01    | 0.50       | 0.2601 | Titang/1971             | 5-Year              |
| 56     | 6.674690   | 125.292426  | 1.02    | 0.50       | 0.2704 | Titang/1971             | 5-Year              |
| 57     | 6.625159   | 125.272624  | 1.03    | 0.80       | 0.0529 | Heavy rain/ Yearly      | 5-Year              |
| 58     | 6.624865   | 125.272641  | 1.03    | 0.90       | 0.0169 | Heavy rain/ Yearly      | 5-Year              |
| 59     | 6.666584   | 125.348325  | 1.04    | 0.50       | 0.2916 | Heavy rain/ Yearly      | 5-Year              |
| 60     | 6.675231   | 125.288797  | 1.04    | 0.50       | 0.2916 | Titang/1971             | 5-Year              |
| 61     | 6.666340   | 125.348343  | 1.06    | 0.50       | 0.3136 | Heavy rain/ Yearly      | 5-Year              |
| 62     | 6.641849   | 125.345470  | 1.07    | 0.30       | 0.5929 | Heavy rain/ 2008        | 5-Year              |
| 63     | 6.619639   | 125.265206  | 1.07    | 0.40       | 0.4489 | Buhawi/ 2014            | 5-Year              |
| 64     | 6.624638   | 125.272647  | 1.07    | 0.80       | 0.0729 | Heavy rain/ Yearly      | 5-Year              |
| 65     | 6.654980   | 125.350783  | 1.07    | 0.00       | 1.1449 |                         | 5-Year              |
| 66     | 6.641205   | 125.339972  | 1.09    | 0.00       | 1.1881 |                         | 5-Year              |
| 67     | 6.640543   | 125.344037  | 1.1     | 0.00       | 1.2100 |                         | 5-Year              |
| 68     | 6.619677   | 125.255356  | 1.15    | 0.90       | 0.0625 | Heavy rain/ 2006        | 5-Year              |
| 69     | 6.642229   | 125.347015  | 1.21    | 0.00       | 1.4641 |                         | 5-Year              |
| 70     | 6.676238   | 125.348967  | 1.21    | 0.10       | 1.2321 | Heavy rain/ May 2016    | 5-Year              |
| 71     | 6.617765   | 125.263931  | 1.25    | 0.00       | 1.5625 |                         | 5-Year              |
| 72     | 6.641619   | 125.271617  | 1.26    | 1.20       | 0.0036 | Heavy rain/ 2015        | 5-Year              |
| 73     | 6.650673   | 125.347071  | 1.3     | 1.50       | 0.0400 | Heavy rain/ 2010        | 5-Year              |
| 74     | 6.646022   | 125.277558  | 1.34    | 1.00       | 0.1156 | Heavy rain/ 2015        | 5-Year              |
| 75     | 6.676235   | 125.348625  | 1.4     | 1.40       | 0.0000 | Titang/ 1970            | 5-Year              |
| 76     | 6.642238   | 125.346566  | 1.42    | 1.50       | 0.0064 | Heavy rain/ June 2015   | 5-Year              |
| 77     | 6.639651   | 125.245788  | 1.44    | 1.50       | 0.0036 | Heavy rain/ 2015        | 5-Year              |
| 78     | 6.648398   | 125.350757  | 1.51    | 1.50       | 0.0001 |                         | 5-Year              |
| 79     | 6.619494   | 125.264757  | 1.56    | 0.60       | 0.9216 | Heavy rain/ 2015        | 5-Year              |
| 80     | 6.618874   | 125.264653  | 1.59    | 0.50       | 1.1881 | Buhawi/ 2014            | 5-Year              |
| 81     | 6.619605   | 125.255467  | 1.75    | 1.20       | 0.3025 | Heavy rain/ 2006        | 5-Year              |
| 82     | 6.648626   | 125.349943  | 1.82    | 1.50       | 0.1024 |                         | 5-Year              |
| 83     | 6.657762   | 125.355153  | 0.07    | 0.00       | 0.0049 |                         | 5-Year              |
| 84     | 6.657563   | 125.373677  | 0.51    | 0.70       | 0.0361 | Bagyo/ 2009             | 5-Year              |
| 85     | 6.643229   | 125.347118  | 0.55    | 0.10       | 0.2025 | Heavy rain/ 2015        | 5-Year              |
| 86     | 6.631735   | 125.369839  | 0.55    | 0.50       | 0.0025 | Titang/ 1970            | 5-Year              |
| 87     | 6.678513   | 125.355090  | 0.56    | 0.00       | 0.3136 |                         | 5-Year              |

| Point  | Validation | Coordinates | Model   | Validation |        |                           | Rain                |
|--------|------------|-------------|---------|------------|--------|---------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event                     | Return/<br>Scenario |
| 88     | 6.685864   | 125.374537  | 0.57    | 0.20       | 0.1369 | Heavy rain/ 2006          | 5-Year              |
| 89     | 6.668625   | 125.348220  | 0.6     | 0.00       | 0.3600 |                           | 5-Year              |
| 90     | 6.656662   | 125.347705  | 0.6     | 0.10       | 0.2500 | Heavy Rain                | 5-Year              |
| 91     | 6.661298   | 125.314216  | 0.6     | 0.00       | 0.3600 |                           | 5-Year              |
| 92     | 6.668911   | 125.348418  | 0.62    | 0.50       | 0.0144 | Heavy rain/river overflow | 5-Year              |
| 93     | 6.641729   | 125.339360  | 0.62    | 1.10       | 0.2304 | buhawi/ 2010              | 5-Year              |
| 94     | 6.675529   | 125.347155  | 0.64    | 1.40       | 0.5776 | Titang/1970               | 5-Year              |
| 95     | 6.657346   | 125.321493  | 0.64    | 0.00       | 0.4096 |                           | 5-Year              |
| 96     | 6.654653   | 125.347638  | 0.65    | 0.00       | 0.4225 |                           | 5-Year              |
| 97     | 6.674235   | 125.294360  | 0.66    | 0.20       | 0.2116 | Heavy rain/ 2000          | 5-Year              |
| 98     | 6.686568   | 125.376173  | 0.66    | 0.00       | 0.4356 |                           | 5-Year              |
| 99     | 6.659354   | 125.298203  | 0.66    | 0.00       | 0.4356 |                           | 5-Year              |
| 100    | 6.625329   | 125.271824  | 0.7     | 0.50       | 0.0400 | Heavy rain/ Yearly        | 5-Year              |
| 101    | 6.671971   | 125.348524  | 0.71    | 0.50       | 0.0441 | Heavy rain/ 2008          | 5-Year              |
| 102    | 6.658511   | 125.372160  | 0.72    | 0.70       | 0.0004 | Bagyo/ 2009               | 5-Year              |
| 103    | 6.636106   | 125.378708  | 0.72    | 0.75       | 0.0009 | Heavy rain/ 2009          | 5-Year              |
| 104    | 6.674775   | 125.291294  | 0.73    | 0.50       | 0.0529 | Titang/1971               | 5-Year              |
| 105    | 6.667105   | 125.347953  | 0.74    | 0.00       | 0.5476 |                           | 5-Year              |
| 106    | 6.640818   | 125.341408  | 0.74    | 0.00       | 0.5476 |                           | 5-Year              |
| 107    | 6.658030   | 125.372958  | 0.76    | 0.50       | 0.0676 | Bagyo/ 2009               | 5-Year              |
| 108    | 6.681187   | 125.348315  | 0.8     | 2.00       | 1.4400 | Buhawi/ 1986              | 5-Year              |
| 109    | 6.639783   | 125.349746  | 0.82    | 0.30       | 0.2704 | Heavy rain/ 2009          | 5-Year              |
| 110    | 6.632014   | 125.369384  | 0.82    | 0.50       | 0.1024 | Titang/1970               | 5-Year              |
| 111    | 6.676778   | 125.286964  | 0.83    | 0.40       | 0.1849 | Heavy rain/ 2000          | 5-Year              |
| 112    | 6.628856   | 125.270958  | 0.85    | 0.00       | 0.7225 |                           | 5-Year              |
| 113    | 6.666172   | 125.348155  | 0.86    | 0.00       | 0.7396 |                           | 5-Year              |
| 114    | 6.636921   | 125.380439  | 0.89    | 0.75       | 0.0196 | Heavy rain/ 2009          | 5-Year              |
| 115    | 6.675936   | 125.348059  | 0.95    | 1.40       | 0.2025 | Titang/1970               | 5-Year              |
| 116    | 6.688735   | 125.379821  | 0.03    | 0.50       | 0.2209 | Heavy rain/ Yearly        | 5-Year              |
| 117    | 6.680614   | 125.376578  | 0.03    | 0.20       | 0.0289 | Heavy rain/ 2006          | 5-Year              |
| 118    | 6.673578   | 125.370597  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 119    | 6.675245   | 125.371092  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 120    | 6.680471   | 125.354097  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 121    | 6.682952   | 125.351829  | 0.03    | 0.10       | 0.0049 | Heavy rain/ 42515         | 5-Year              |
| 122    | 6.677637   | 125.354892  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 123    | 6.672749   | 125.349021  | 0.03    | 0.50       | 0.2209 | Heavy rain/ 1970          | 5-Year              |
| 124    | 6.671444   | 125.348929  | 0.03    | 0.50       | 0.2209 | Heavy rain/ 2013          | 5-Year              |
| 125    | 6.668594   | 125.346767  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 126    | 6.642509   | 125.340181  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 127    | 6.637914   | 125.347172  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 128    | 6.637323   | 125.344262  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 129    | 6.635330   | 125.345392  | 0.03    | 0.20       | 0.0289 | Upstream rain/ 2002       | 5-Year              |
| 130    | 6.641609   | 125.384241  | 0.03    | 0.00       | 0.0009 |                           | 5-Year              |
| 131    | 6.687832   | 125.375930  | 0.04    | 1.00       | 0.9216 | Titang/ 1960              | 5-Year              |

| Point  | Validation | Coordinates | Model   | Validation |        |                       | Rain                |
|--------|------------|-------------|---------|------------|--------|-----------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event                 | Return/<br>Scenario |
| 132    | 6.672890   | 125.371410  | 0.04    | 0.00       | 0.0016 |                       | 5-Year              |
| 133    | 6.640720   | 125.347376  | 0.04    | 0.01       | 0.0009 | Heavy rain/ May 2016  | 5-Year              |
| 134    | 6.618257   | 125.256237  | 0.04    | 0.00       | 0.0016 |                       | 5-Year              |
| 135    | 6.672690   | 125.370489  | 0.05    | 0.00       | 0.0025 |                       | 5-Year              |
| 136    | 6.620420   | 125.259960  | 0.05    | 0.00       | 0.0025 |                       | 5-Year              |
| 137    | 6.679695   | 125.352887  | 0.07    | 2.00       | 3.7249 | Buhawi/1984           | 5-Year              |
| 138    | 6.673923   | 125.349515  | 0.07    | 0.00       | 0.0049 |                       | 5-Year              |
| 139    | 6.669826   | 125.344160  | 0.07    | 0.00       | 0.0049 |                       | 5-Year              |
| 140    | 6.679281   | 125.351366  | 0.08    | 0.00       | 0.0064 |                       | 5-Year              |
| 141    | 6.680893   | 125.350518  | 0.09    | 1.00       | 0.8281 | Titang/1972           | 5-Year              |
| 142    | 6.660384   | 125.350093  | 0.09    | 0.00       | 0.0081 |                       | 5-Year              |
| 143    | 6.681973   | 125.353609  | 0.1     | 2.00       | 3.6100 | Buhawi/1980           | 5-Year              |
| 144    | 6.620988   | 125.252603  | 0.1     | 0.10       | 0.0000 | Heavy rain/ 2015      | 5-Year              |
| 145    | 6.682743   | 125.371434  | 0.12    | 0.00       | 0.0144 |                       | 5-Year              |
| 146    | 6.670038   | 125.343164  | 0.15    | 0.00       | 0.0225 |                       | 5-Year              |
| 147    | 6.642395   | 125.350287  | 0.15    | 0.00       | 0.0225 |                       | 5-Year              |
| 148    | 6.639233   | 125.348720  | 0.18    | 0.30       | 0.0144 | Heavy rain/ 2009      | 5-Year              |
| 149    | 6.657519   | 125.320932  | 0.21    | 0.00       | 0.0441 |                       | 5-Year              |
| 150    | 6.682167   | 125.371355  | 0.24    | 0.00       | 0.0576 |                       | 5-Year              |
| 151    | 6.666006   | 125.344867  | 0.24    | 1.40       | 1.3456 | Titang/1970           | 5-Year              |
| 152    | 6.636865   | 125.351087  | 0.25    | 0.30       | 0.0025 | Heavy rain/ 2009      | 5-Year              |
| 153    | 6.661752   | 125.313946  | 0.26    | 0.00       | 0.0676 |                       | 5-Year              |
| 154    | 6.656739   | 125.304162  | 0.26    | 0.10       | 0.0256 | Heavy rain            | 5-Year              |
| 155    | 6.687474   | 125.376532  | 0.27    | 0.50       | 0.0529 | Heavy rain/ 1985      | 5-Year              |
| 156    | 6.650268   | 125.347253  | 0.27    | 0.30       | 0.0009 | Heavy rain/ 2013-2014 | 5-Year              |
| 157    | 6.635829   | 125.345815  | 0.27    | 0.30       | 0.0009 | Heavy rain/ 2014      | 5-Year              |
| 158    | 6.682698   | 125.357328  | 0.29    | 0.00       | 0.0841 |                       | 5-Year              |
| 159    | 6.683511   | 125.352278  | 0.29    | 1.00       | 0.5041 | Heavy rain/ 1994-1996 | 5-Year              |
| 160    | 6.637113   | 125.346171  | 0.31    | 0.00       | 0.0961 |                       | 5-Year              |
| 161    | 6.661178   | 125.314667  | 0.31    | 0.00       | 0.0961 |                       | 5-Year              |
| 162    | 6.661913   | 125.293777  | 0.31    | 0.50       | 0.0361 | Heavy rain/ 2014      | 5-Year              |
| 163    | 6.642203   | 125.357240  | 0.31    | 0.20       | 0.0121 | Heavy rain            | 5-Year              |
| 164    | 6.641106   | 125.341435  | 0.32    | 0.00       | 0.1024 |                       | 5-Year              |
| 165    | 6.656821   | 125.320978  | 0.33    | 0.00       | 0.1089 |                       | 5-Year              |
| 166    | 6.639239   | 125.349285  | 0.34    | 0.30       | 0.0016 | Heavy rain/ 2009      | 5-Year              |
| 167    | 6.666116   | 125.341956  | 0.36    | 0.00       | 0.1296 |                       | 5-Year              |
| 168    | 6.638827   | 125.344239  | 0.36    | 0.00       | 0.1296 |                       | 5-Year              |
| 169    | 6.650176   | 125.345523  | 0.37    | 0.00       | 0.1369 |                       | 5-Year              |
| 170    | 6.673306   | 125.372118  | 0.38    | 0.00       | 0.1444 |                       | 5-Year              |
| 171    | 6.681789   | 125.352265  | 0.39    | 2.60       | 4.8841 | Titang/ 1969          | 5-Year              |
| 172    | 6.683060   | 125.358968  | 0.4     | 0.50       | 0.0100 | Buhawi/ 1985          | 5-Year              |
| 173    | 6.682283   | 125.351148  | 0.4     | 2.50       | 4.4100 | Titang/ 1969          | 5-Year              |
| 174    | 6.647548   | 125.381867  | 0.4     | 0.50       | 0.0100 | Titang/ November 1970 | 5-Year              |
| 175    | 6.682520   | 125.321154  | 0.42    | 1.60       | 1.3924 | Titang/1971           | 5-Year              |

| Point<br>Number | Validation      | Coordinates | Model   | Validation |        |                      | Rain                |  |  |
|-----------------|-----------------|-------------|---------|------------|--------|----------------------|---------------------|--|--|
|                 | Lat             | Long        | Var (m) | Points (m) | Error  | Event                | Return/<br>Scenario |  |  |
| 176             | 6.642141        | 125.347735  | 0.42    | 0.10       | 0.1024 | Heavy rain/ May 2016 | 5-Year              |  |  |
| 177             | 6.649127        | 125.380339  | 0.43    | 1.00       | 0.3249 | Titang/1970          | 5-Year              |  |  |
| 178             | 6.682306        | 125.325262  | 0.44    | 0.00       | 0.1936 |                      | 5-Year              |  |  |
| 179             | 6.656094        | 125.347738  | 0.45    | 0.30       | 0.0225 | Heavy rain           | 5-Year              |  |  |
| 180             | 6.662004        | 125.295676  | 0.46    | 0.50       | 0.0016 | Titang/ 1970         | 5-Year              |  |  |
|                 | RMSE = 0.993702 |             |         |            |        |                      |                     |  |  |

### ANNEX 12. Educational Institutions Affected In Padada-Mainit Flood Plain

|                                                 |                     | R      | Rainfall Scenario |          |  |  |  |
|-------------------------------------------------|---------------------|--------|-------------------|----------|--|--|--|
| Building Name                                   | Barangay            | 5-year | 25-year           | 100-year |  |  |  |
| HAGONOY                                         |                     |        |                   |          |  |  |  |
| CIRIACO B. GAYUD ELEMENTARY SCHOOL              | Clib                |        |                   |          |  |  |  |
| CIRIACO B. GAYUD ELEMENTARY SCHOOL<br>CANTEEN   | Clib                |        |                   |          |  |  |  |
| CLIB PRIMARY SCHOOL                             | Clib                |        |                   |          |  |  |  |
| DAY CARE CENTER                                 | Clib                |        |                   |          |  |  |  |
| LA UNION ELEMENTARY SCHOOL                      | Clib                |        |                   |          |  |  |  |
| COMMUNITY RESOURCE CENTER                       | Guihing             | Low    | Low               | Medium   |  |  |  |
| DAY CARE                                        | Guihing             | Medium | Medium            | Medium   |  |  |  |
| GUIHING CENTRAL ELEMENTARY SCHOOL               | Guihing             | Low    | Medium            | Medium   |  |  |  |
| HAGONOY NATIONAL HIGH SCHOOL                    | Guihing             | Low    | Medium            | Medium   |  |  |  |
| LITTLE JOSEPH CHRISTIAN LEARNING CENTER         | Guihing             | Low    | Low               | Medium   |  |  |  |
| ALTERNATIVE LEARNING CENTER(ALS)                | Guihing Aplaya      |        | Low               | Low      |  |  |  |
| APLAYA-GUIHING ELEMENTARY SCHOOL                | Guihing Aplaya      | Low    | Medium            | Medium   |  |  |  |
| CHRYSANTHEMUM DAY CARE CENTER                   | Guihing Aplaya      | Low    | Low               | Medium   |  |  |  |
| GADECO ELEMENTARY SCHOOL                        | Guihing Aplaya      |        | Low               | Low      |  |  |  |
| MAGIC CROSS DAYCARE                             | Guihing Aplaya      |        | Low               | Low      |  |  |  |
| TOLOGAN ELEMENTARY SCHOOL                       | Hagonoy<br>Crossing |        | Medium            | Medium   |  |  |  |
| WALING WALING DAY CARE CENTER                   | Hagonoy<br>Crossing |        |                   |          |  |  |  |
| DAY CARE CENTER                                 | La Union            |        |                   |          |  |  |  |
| ALTERNATIVE LEARNING CENTER(ALS)                | Lapulabao           | Low    | Low               | Low      |  |  |  |
| GUIHING HIGH SCHOOL - ANNEX                     | Lapulabao           |        |                   |          |  |  |  |
| GUIHING HIGH SCHOOL ANNEX                       | Lapulabao           |        | Low               | Low      |  |  |  |
| LAPULABAO DAY CARE CENTER                       | Lapulabao           |        | Low               | Low      |  |  |  |
| LAPULABAO ELEMENTARY SCHOOL                     | Lapulabao           |        |                   |          |  |  |  |
| CIRIACO B. GAYUD ELEMENTARY SCHOOL              | Malabang<br>Damsite |        |                   |          |  |  |  |
| MADRASAH                                        | Malabang<br>Damsite |        |                   |          |  |  |  |
| MALIIT DIGOS ELEMENTARY SCHOOL                  | New Quezon          |        |                   |          |  |  |  |
| HAGONOY NATIONAL HIGH SCHOOL                    | Paligue             | Low    | Medium            | Medium   |  |  |  |
| SAMPAGUITA DAY CARE CENTER                      | Paligue             | Medium | Medium            | Medium   |  |  |  |
| KI                                              | BLAWAN              |        |                   |          |  |  |  |
| FELIPE-INOCENCIA DELUAO NATIONAL HIGH<br>SCHOOL | Bagong Silang       | Medium | High              | High     |  |  |  |

| Duilding Name                                           | Barangay                  | R      | Rainfall Scenario |          |  |
|---------------------------------------------------------|---------------------------|--------|-------------------|----------|--|
| Building Name                                           | Barangay                  | 5-year | 25-year           | 100-year |  |
| FELIPE-INOCENCIA DELUAO NATIONAL HIGH<br>SCHOOL CANTEEN | Bagong Silang             | Medium | High              | High     |  |
| FELIPE-INOCENCIA NATIONAL HIGH SCHOOL<br>K-12 BUILDING  | Bagong Silang             | Medium | Medium            | High     |  |
| FELIPE-INOCENCIA DELUAO NATIONAL HIGH<br>SCHOOL         | Dapok                     | Low    | Medium            | Medium   |  |
| KIBLAWAN CENTRAL ELEMENTARY SCHOOL                      | Dapok                     | Low    | Low               | Low      |  |
| POBLACION COMMUNITY LEARNING CENTER (ABANDONED)         | Dapok                     |        |                   | Low      |  |
| SERAPION C. BASALO MEMORIAL FOUNDATION COLLEGES. INC.   | Dapok                     | Low    | Low               | Low      |  |
| DAY CARE CENTER                                         | Kibongbong                | Low    | Low               | Low      |  |
| MOLOPOLO ELEMENTARY SCHOOL                              | Kibongbong                |        |                   |          |  |
| HOLY CROSS OF KIBLAWAN                                  | Kisulan                   | Low    | Low               | Medium   |  |
| KIBLAWAN CENTRAL ELEMENTARY SCHOOL                      | Kisulan                   |        | Low               | Low      |  |
| DAY CARE CENTER                                         | New Sibonga               |        |                   |          |  |
| NEW SIBONGA ELEMENTARY SCHOOL                           | New Sibonga               |        |                   |          |  |
| MOLOPOLO NATIONAL HIGHSCHOOL                            | San Isidro                | Low    | Low               | Low      |  |
| MARANATA DAYCARE CENTER                                 | San Jose                  |        |                   |          |  |
| DAYCARE CENTER                                          | San Pedro                 |        |                   |          |  |
| LA SUERTE ELEMENTARY SCHOOL                             | San Pedro                 | Low    | Low               | Low      |  |
| MARCIANO APIAG ELEMENTARY SCHOOL                        | San Pedro                 |        |                   |          |  |
| BAGUMBAYAN DAY CARE CENTER                              | Santo Niño                |        |                   |          |  |
| BENITO PEREZ ELEMENTARY SCHOOL                          | Santo Niño                |        |                   |          |  |
| MARCIANO APIAG ELEMENTARY SCHOOL                        | Tacub                     |        |                   |          |  |
| MARCIANO APIAG ELEMENTARY SCHOOL                        | Tacul                     |        |                   |          |  |
| SULATORIO ELEMENTARY SCHOOL                             | Waterfall                 | Low    | Low               | Medium   |  |
| M                                                       | ATANAO                    |        |                   |          |  |
| DAY CARE CENTER                                         | Dongan-Pekong             |        |                   |          |  |
| LEONCIO PILINO ELEMENTARY SCHOOL                        | Dongan-Pekong             |        |                   |          |  |
| CEBOZA ELEMENTARY SCHOOL                                | Tibongbong                |        |                   |          |  |
| CEBOZA ELEMENTARY SCHOOL                                | Towak                     |        |                   |          |  |
| P.                                                      | ADADA                     |        |                   |          |  |
| DAISY DAY CARE CENTER                                   | Don Sergio<br>Osmena, Sr. | Low    | Medium            | Medium   |  |
| KATIPUNAN DAY CARE CENTER                               | Harada Butai              | Low    | Low               | Low      |  |
| KATIPUNAN ELEMENTARY SCHOOL                             | Harada Butai              | Low    | Low               | Low      |  |
| SAN GUILLERMO ELEMENTARY SCHOOL                         | Lower Katipunan           |        |                   |          |  |
| ECCD CENTER (SOUTHERN PALIGUE DAY CARE)                 | Lower Limonzo             |        | Low               | Low      |  |

|                                                      |                         | Rainfall Scenario |         |          |
|------------------------------------------------------|-------------------------|-------------------|---------|----------|
| Building Name                                        | Barangay                | 5-year            | 25-year | 100-year |
| PADADA NATIONAL HIGH SCHOOL                          | Lower Limonzo           | Low               | Medium  | Medium   |
| ROMAGERA ELEMENTARY SCHOOL                           | Lower Limonzo           |                   | Low     | Low      |
| DON SERGIO OSMEÑA ELEMENTARY SCHOOL                  | N C Ordaneza<br>Distric | Medium            | Medium  | Medium   |
| CATLEYA DCC                                          | Northern Paligue        |                   |         |          |
| LMC KINDERGARTEN                                     | Northern Paligue        | Low               | Low     | Medium   |
| TOLOGAN ELEMENTARY SCHOOL                            | Northern Paligue        |                   |         |          |
| ATO PADADA CHRISTIAN SCHOOL                          | Palili                  |                   |         |          |
| DAY CARE CENTER                                      | Palili                  |                   |         |          |
| FIDEL A. RAZONABLE SR. PRIMARY SCHOOL                | Palili                  | Low               | Medium  | Medium   |
| GAUDIOSO ORBITA ELEMENTARY SCHOOL                    | Palili                  | Low               | Low     | Low      |
| LOWER LIMONZO DAY CARE ECCD CENTER                   | Palili                  |                   |         | Low      |
| NCO DAY CARE CENTER                                  | Palili                  | Low               | Low     | Low      |
| PADADA CENTRAL SCHOOL                                | Palili                  |                   |         | Low      |
| PADADA STAR BRIGHT LEARNING CENTER                   | Palili                  |                   |         |          |
| SAINT MICHAEL                                        | Palili                  | Low               | Medium  | Medium   |
| SOUTHEASTERN COLLEGE                                 | Palili                  | Medium            | Medium  | Medium   |
| SUNRISE LEARNING CENTER                              | Palili                  |                   |         |          |
| MARIA CLETA R. DELOS SANTOS NATIONAL<br>HIGH SCHOOL  | Punta Piape             | Low               | Medium  | Medium   |
| PHILIPPINE NIPPON TECHNICAL COLLEGE OF DAVAO DEL SUR | Punta Piape             | Low               | Medium  | Medium   |
| PIAPE ELEMENTARY SCHOOL                              | Punta Piape             | Low               | Low     | Low      |
| PUNTA PIAPE DAY CARE CENTER                          | Punta Piape             |                   |         |          |
| ROMAGERA ELEMENTARY SCHOOL                           | Punta Piape             | Low               | Low     | Low      |
| DAHLIA DAY CARE CENTER                               | San Isidro              |                   |         |          |
| MALINAO ELEMENTARY SCHOOL                            | Tulogan                 | Low               | Medium  | Medium   |
| PADADA NATIONAL HIGH SCHOOL                          | Tulogan                 | Medium            | Medium  | Medium   |
| CARMELO C. DELOS CIENTOS NATIONAL TRADE SCHOOL       | Upper Limonzo           | Low               | Medium  | Medium   |
| MARIANO SARONA ELEMENTARY SCHOOL                     | Upper Limonzo           |                   | Low     | Low      |
| NORTHERN PALIGUE DAY CARE CENTER                     | Upper Limonzo           | Low               | Medium  | Medium   |
|                                                      | SULOP                   |                   |         |          |
| NEW CEBU ELEMENTARY SCHOOL                           | Buguis                  |                   |         |          |
| NEW CEBU ELEMENTARY SCHOOL                           | Carre                   |                   |         |          |
| NEW CEBU ELEMENTARY SCHOOL                           | Osmeña                  |                   |         |          |
| TANWALANG DAY CARE CENTER                            | Roxas                   |                   |         |          |
| TANWALANG ELEMENTARY SCHOOL                          | Roxas                   | Low               | Medium  | High     |
| TANWALANG ELEMENTARY SCHOOL LIBRARY                  | Roxas                   | Low               | Medium  | Medium   |

# ANNEX 13. Medical Institutions Affected in Padada-Mainit Flood Plain

|                                                   | _               | R      | ainfall Scena | rio      |  |  |
|---------------------------------------------------|-----------------|--------|---------------|----------|--|--|
| Building Name                                     | Barangay        | 5-year | 25-year       | 100-year |  |  |
| HAGONOY                                           |                 |        |               |          |  |  |
| BARANGAY HEALTH CENTER                            | Clib            |        |               |          |  |  |
| GUIHING COMMUNITY HOSPITAL                        | Guihing         | Low    | Low           | Low      |  |  |
| GUIHING HEALTH CENTER                             | Guihing         |        | Low           | Medium   |  |  |
| J. HAGONOY MEDICAL CLINIC                         | Guihing         |        |               |          |  |  |
| NUTRITION CENTER                                  | Guihing         | Low    | Low           | Medium   |  |  |
| BOTIKANG BARANGAY                                 | Guihing Aplaya  | Low    | Low           | Low      |  |  |
| HEALTH CENTER                                     | Guihing Aplaya  |        |               |          |  |  |
| BOTIKANG BARANGAY                                 | Lapulabao       | Low    | Low           | Low      |  |  |
| HEALTH CENTER                                     | Lapulabao       | Low    | Low           | Low      |  |  |
| GUIHING HEALTH CENTER                             | Paligue         |        |               | Low      |  |  |
|                                                   | KIBLAWAN        |        |               |          |  |  |
| HEALTH CENTER                                     | Abnate          | Low    | Low           | Low      |  |  |
| KIBLAWAN HEALTH CENTER                            | Dapok           |        |               |          |  |  |
| MAILA GARCIA-ARELLANO MATERNITY & LYING-IN CLINIC | Dapok           |        |               |          |  |  |
| CAMINERO DENTAL CLINIC                            | Kisulan         |        |               |          |  |  |
| KIBLAWAN HEALTH CENTER                            | Kisulan         |        |               |          |  |  |
| NEW SIBONGA HEALTH CENTER                         | New Sibonga     |        |               |          |  |  |
| GREGORIO MATAS DISTRICT HOSPITAL                  | Poblacion       |        | Low           | Low      |  |  |
| HEALTH CENTER                                     | San Pedro       |        |               |          |  |  |
| HEALTH CENTER                                     | Santo Niño      |        |               |          |  |  |
| HEALTH CENTER                                     | Abnate          | Low    | Low           | Low      |  |  |
| KIBLAWAN HEALTH CENTER                            | Dapok           |        |               |          |  |  |
| MAILA GARCIA-ARELLANO MATERNITY & LYING-IN CLINIC | Dapok           |        |               |          |  |  |
| CAMINERO DENTAL CLINIC                            | Kisulan         |        |               |          |  |  |
| KIBLAWAN HEALTH CENTER                            | Kisulan         |        |               |          |  |  |
| NEW SIBONGA HEALTH CENTER                         | New Sibonga     |        |               |          |  |  |
| GREGORIO MATAS DISTRICT HOSPITAL                  | Poblacion       |        | Low           | Low      |  |  |
| HEALTH CENTER                                     | San Pedro       |        |               |          |  |  |
| HEALTH CENTER                                     | Santo Niño      |        |               |          |  |  |
|                                                   | PADADA          |        |               |          |  |  |
| HEALTH CENTER                                     | Lower Katipunan |        |               |          |  |  |
| NEW SIBONGA HEALTH CENTER                         | Lower Katipunan |        |               |          |  |  |
| SOUTHERN PALIGUE HEALTH CENTER                    | Lower Limonzo   | Low    | Low           | Low      |  |  |

| De la la companya de | B                       | R      | Rainfall Scenario |          |
|----------------------------------------------------------------------------------------------------------------|-------------------------|--------|-------------------|----------|
| Building Name                                                                                                  | Barangay                | 5-year | 25-year           | 100-year |
| DON SERGIO OSMEÑA HEALTH CENTER                                                                                | N C Ordaneza<br>Distric |        |                   | Low      |
| ASILO HOSPITAL                                                                                                 | Palili                  |        |                   |          |
| BARON-YEE HOSPITAL                                                                                             | Palili                  | Medium | Medium            | Medium   |
| FN RAMIR PAANAKAN                                                                                              | Palili                  |        |                   |          |
| GLORY MATERNITY CLINIC                                                                                         | Palili                  | Low    | Medium            | Medium   |
| HEALTH CENTER                                                                                                  | Palili                  | Low    | Low               | Low      |
| MUNICIPAL EMERGENCY HOSPITAL                                                                                   | Palili                  |        |                   |          |
| PHL MEDICALAND DIAGNOSTIC CENTER                                                                               | Palili                  |        |                   |          |
| SOUTH DAVAO MEDICAL SPECIALIST HOSPITAL                                                                        | Palili                  |        |                   |          |
| PIAPE BARANGAY HEALTH CENTER                                                                                   | Punta Piape             |        |                   | Low      |
| GONZALES HOSPITAL                                                                                              | Southern Paligue        |        |                   |          |
| HEALTH CENTER                                                                                                  | Tulogan                 | Low    | Low               | Medium   |
| NORTHERN PALIGUE HEALTH CENTER                                                                                 | Upper Limonzo           | Medium | Medium            | Medium   |
| SOUTH DAVAO MEDICAL SPECIALIST HOSPITAL                                                                        | Upper Limonzo           |        |                   |          |
| SOUTH DAVAO MEDICAL SPECIALIST HOSPITAL<br>- CANTEEN                                                           | Upper Limonzo           | Medium | Medium            | Medium   |
| BARANGAY HEALTH CENTER                                                                                         | Upper Malinao           |        |                   |          |
|                                                                                                                | SULOP                   |        |                   |          |
| HEALTH CENTER (ABANDONED)                                                                                      | Katipunan               |        | Low               | Low      |