HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Mayo River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Mindanao

APRIL 2017

© University of the Philippines Diliman and University of the Philippines Mindanao 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and J.E. Acosta, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Mayo River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-130 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Joseph E. Acosta

Project Leader, Phil-LiDAR 1 Program University of the Philippines Mindanao Davao City, Davao del Sur, 8000 E-mail: jacosta_96140@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-196-0

TABLE OF CONTENTS

TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND MAYO RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Mayo River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE MAYO FLOODPLAIN	5
2.1 Flight Plans	5
2.2 Ground Base Stations	7
2.3 Flight Missions	12
2.4 Survey Coverage	13
CHAPTER 3: LIDAR DATA PROCESSING OF THE MAYO FLOODPLAIN	15
3.1 Overview of the LiDAR Data Pre-Processing	15
3.2 Transmittal of Acquired LiDAR Data	16
2.2 Trainstantia of Acquired LIDAN Data	16
2.4 LiDAD Doint Cloud Computation	10
3.4 LIDAR POINt Cloud Computation	10
3.5 LIDAR Data Quality Checking	19
3.6 LIDAR Point Cloud Classification and Rasterization	23
3.7 LiDAR Image Processing and Orthophotograph Rectification	25
3.8 DEM Editing and Hydro-Correction	26
3.9 Mosaicking of Blocks	28
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	30
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	33
3.12 Feature Extraction	35
3.12.1 Quality Checking of Digitized Features' Boundary	35
3 12 2 Height Extraction	36
3 12 3 Feature Attribution	36
2 12 / Einal Quality Checking of Extracted Features	50
S.12.4 Final Quality Checking of Extracted Fedures.	37 30
/ _ / / ` / / / / K / / K / K / K / K /	
4.1 Summary of Activitios	эо эо
4.1 Summary of Activities	38
4.1 Summary of Activities	38
4.1 Summary of Activities	38 40 45
4.1 Summary of Activities	38 40 45 46
4.1 Summary of Activities	38 40 45 46 49
 4.1 Summary of Activities	38 40 45 46 49 54
 4.1 Summary of Activities	38 40 45 46 46 49 54 56
 4.1 Summary of Activities	38 40 45 46 49 54 56 61
 4.1 Summary of Activities	38 40 45 46 46 54 56 61
 4.1 Summary of Activities	38 40 45 46 49 54 56 61 61
 4.1 Summary of Activities	38 40 45 46 49 54 56 61 61 61
 4.1 Summary of Activities	38 40 45 45 46 56 61 61 61 61
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 63 64
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 63 64 64
 4.1 Summary of Activities	38 40 45 46 61 61 61 61 63 64 64 66 71
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5 SEIo 2DModel 	38 40 45 46 61 61 61 61 61 63 64 66 71 72
 4.1 Summary of Activities	38 40 45 46 54 61 61 61 61 61 63 64 66 71 72 72
 4.1 Summary of Activities	38 40 45 46 46 56 61 61 61 61 61 63 64 66 71 72 73 73
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5Flo2DModel. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 	38 40 45 46 49 56 61 61 61 61 61 61 63 64 71 72 73 75 75
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 63 64 64 66 71 72 73 75 75
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 61 63 64 64 63 64 71 72 73 75 75
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 61 63 64 71 72 73 75 75 77
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 63 64 71 72 73 75 75 77 78 85
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 61 63 64 71 72 73 75 75 77 78 85 92
 4.1 Summary of Activities	38 40 45 46 46 61 61 61 61 61 61 63 64 71 72 75 75 75 75 75 75 75 78 92 95
 4.1 Summary of Activities	38 40 45 46 46 61 61 61 61 61 61 61 61 63 64 71 72 75 75 75 75 77 78 92 96
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.4 Cross-section Data. 5.5Flo2DModel. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 	38 40 45 46 46 61 61 61 61 61 61 61 61 61 61 61 61 61 61 72 73 75 75 77 78 92 96 96
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5Flo2DModel. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. 	38 40 45 46 49 56 61 61 61 61 61 61 61 61 61 61 61 61 71 72 73 75 75 77 78 75 77 78 92 96 96 96 96 97
 4.1 Summary of Activities	38 40 45 46 49 56 61 61 61 61 61 61 61 61 61 61 61 61 61 72 75 75 75 77 78 92 96 96 97 99

Annex 5. Data Transfer Sheet for Mayo Floodplain	
Annex 6. Flight Logs for the Flight Missions	104
Annex 7. Flight Status Reports	
Annex 8. Mission Summary Reports	113
Annex 9. Mayo Model Basin Parameters	118
Annex 10. Mayo Model Reach Parameters	120
Annex 11. Mayo Field Validation Points	121
Annex 12. Educational Institutions affected by flooding in Mayo Floodplain	
Annex 13. Health Institutions affected by flooding in Mayo Floodplain	127
Annex 13. Health Institutions affected by flooding in Mayo Floodplain	127

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system	5
Table 2. Details of the recovered NAMRIA horizontal control point DVE-42 used as base station for the LiDAR acquisition	8
Table 3. Details of the recovered NAMRIA horizontal control point DVE-61 used as base station for the LiDAR acquisition	9
Table 4. Details of the recovered NAMRIA horizontal control point DVE-3088 used as base station for the LiDAR acquisition with established coordinates	.10
Table 5. Details of the recovered NAMRIA horizontal control point DVE-3118 used as base station for the LiDAR acquisition with established coordinates	.11
Table 6. Ground control points used during the LiDAR data acquisition	.12
Table 7. Flight missions for the LiDAR data acquisition in Mayo Floodplain	12
Table 8. Actual parameters used during the LiDAR data acquisition of the Mayo Floodplain	12
Table 9. List of municipalities and cities surveyed of the Mayo Floodplain LiDAR acquisition	13
Table 10. Self-calibration Results values for Mayo flights	18
Table 11. List of LiDAR blocks for Mayo Floodplain	19
Table 12. Mayo classification results in TerraScan	23
Table 13. LiDAR blocks with its corresponding areas	26
Table 14. Shift values of each LiDAR block of Mayo Floodplain	28
Table 15. Calibration Statistical Measures	32
Table 16. Validation Statistical Measures	33
Table 17. Quality Checking Ratings for Mayo Building Features	35
Table 18. Building Features Extracted for Mayo Floodplain	36
Table 19. Total Length of Extracted Roads for Mayo Floodplain	37
Table 20. Number of Extracted Water Bodies for Mayo Floodplain	37
Table 21. List of Reference and Control Points occupied for Mayo River Survey	40
Table 22. Baseline Processing Summary Report for Mayo River Survey	.45
Table 23. Constraints applied to the adjustment of the control points	46
Table 24. Adjusted grid coordinates for the control points used in the Mayo River Floodplain survey	.46
Table 25. Adjusted geodetic coordinates for control points used in the Mayo River Floodplain validation	47
Table 26. The reference and control points utilized in the Balamban River Static Survey,with their corresponding locations (Source: NAMRIA, UP-TCAGP)	.48
Table 27. RIDF values for Davao Rain Gauge computed by PAGASA	64
Table 28. Range of calibrated values for the Mayo River Basin	73
Table 29. Summary of the Efficiency Test of the Balamban HMS Model	.74
Table 30. Peak values of the Mayo HEC-HMS Model outflow using the Davao RIDF 24-hour values	76
Table 31. Municipalities affected in Mayo Floodplain	78
Table 32. Affected areas in Mati City, Davao Oriental during a 5-Year Rainfall Return Period	85
Table 33. Affected areas in Tarragona, Davao Oriental during a 5-Year Rainfall Return Period	86
Table 34. Affected areas in Mati City, Davao Oriental during a 25-Year Rainfall Return Period	87
Table 35. Affected areas in Tarragona, Davao Oriental during a 25-Year Rainfall Return Period	88
Table 36. Affected areas in Mati City, Davao Oriental during a 100-Year Rainfall Return Period	89

Table 37. Affected areas in Tarragona, Davao Oriental during a 100-Year Rainfall Return Period	90
Table 38. Areas covered by each warning level with respect to the rainfall scenarios	91
Table 39. Actual flood vs simulated flood depth at different levels in the Mayo River Basin	93
Table 40. Summary of the Accuracy Assessment in the Mayo River Basin Survey	94

LIST OF FIGURES

Figure 1. Map of Mayo River Basin (in brown)	2
Figure 2. Mayo River flood history	3
Figure 3. Flight Plan and base station used for the Mayo Floodplain survey	6
Figure 4. GPS set-up over DVE-42 located inside the premises of Don Enrique Elementary School,	
in front of the flagpole (a) and NAMRIA reference point DVE-42 (b) as recovered	
by the field team	8
Figure 5. GPS set-up over DVE-61 located at the center of the playground of Zign Elementary School	ol,
about 10 m W of school flagpole (a) and NAMRIA reference point DVE-61 (b) as recovered	t
by the field team	9
Figure 6. GPS set-up over DVE-3088 located inside Don Enrique Lopez Elementary School (a)	
and NAMRIA reference point DVE-3088 (b) as recovered by the field team.	10
Figure 7. GPS set-up over DVE-3118 located along the boundary of Barangays Dawan	
and Badas (a) and NAMRIA reference point DVE-3118 (b) as recovered by the field team.	11
Figure 8. Actual LiDAR survey coverage of the Mayo Floodplain.	14
Figure 9. Schematic diagram for Data Pre-Processing Component.	15
Figure 10. Smoothed Performance Metric Parameters of Mayo Flight 7362GC	16
Figure 11. Solution Status Parameters of Mayo Flight 7362GC.	17
Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Mayo Floodplain	18
Figure 13. Boundary of the processed LiDAR data over Mayo Floodplain	19
Figure 14. Image of data overlap for Mayo Floodplain	20
Figure 15. Pulse density map of merged LiDAR data for Mayo Floodplain	21
Figure 16. Elevation Difference Map between flight lines for Mayo Floodplain Survey.	22
Figure 17. Quality checking for Mayo Flight 7362GC using the Profile Tool of QT Modeler	23
Figure 18. Tiles for Mayo Floodplain (a) and classification results (b) in TerraScan.	24
Figure 19. Point cloud before (a) and after (b) classification	24
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Mayo Floodplain.	25
Figure 21.Portions in the DTM of Mayo Floodplain – a bridge before (a) and after	
(b) manual editing.	27
Figure 22. Map of Processed LiDAR Data for Mayo Floodplain	29
Figure 23. Map of Mayo Floodplain with validation survey points in green.	31
Figure 24. Correlation plot between calibration survey points and LiDAR data	32
Figure 25. Correlation plot between validation survey points and LiDAR data.	33
Figure 26. Map of Mayo Floodplain with bathymetric survey points shown in blue.	34
Figure 27. Blocks (in blue) of Mayo building features that were subjected to QC	35
Figure 28. Extracted features for Mayo Floodplain.	37
Figure 29. Extent of the bathymetric survey (in blue line) in Mayo River	39
and the LiDAR data validation survey (in red).	39
Figure 30. The GNSS Network established in the Mayo River Survey	41
Figure 31. GNSS base set up, Trimble [®] SPS 852, at DVE-42, located in front of the flagpole	
inside Don Enrique Lopez Elementary School in Brgy. Don Enrique Lopez. Mati City.	
Davao Oriental	42
Figure 32. GNSS receiver set up. Trimble [®] SPS 985. at DE-160. located at approach of Calinan Bridg	e
in Brgy. Mayo, City of Mati. Davao Oriental	43
Figure 33. GNSS receiver set up. Trimble [®] SPS 852. at UP BIT-1. located at the side of the railing	
near the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez. City of Mati. Davao	
Oriental	43
	-

Figure 34. GNSS receiver set up, Trimble [®] SPS 985, at UP_MAY-1, located beside the approach
of Mayo Bridge in Brgy. Mayo, City of Mati, Province of Davao Oriental
Figure 35. GNSS receiver set up, Trimble [®] SPS 882, at UP_QUI-1, located beside the approach
of Quinonoan Bridge in Brgy. San Ignacio, Municipality of Manay, Province of Davao
Oriental
Figure 36. Mayo Bridge facing downstream
Figure 37. As-built survey of Mayo Bridge50
Figure 38. Mayo Bridge cross-section diagram51
Figure 39. As-built survey of Mayo Bridge52
Figure 40. Water level markings on Mayo Bridge53
Figure 41. Validation points acquisition survey set-up for Mayo River
Figure 42. Validation point acquisition survey of Mayo River basin
Figure 43. Manual bathymetric survey of ABSD at Bugnan Mayo River using Horizon [®] Total Station56
Figure 44. Gathering of random bathymetric points along Bugnan Mayo River
Figure 45. Extent of the Mayo River Bathymetry Survey
Figure 46. Quality checking points gathered along Mayo River by DVBC
Figure 47. Mayo riverbed profile
Figure 48. Location map of the Balamban HEC-HMS model used for calibration
Figure 49. Cross-section plot of Mayo Bridge
Figure 50. Rating curve at Mayo Bridge, Tarragona, Davao Oriental
Figure 51. Rainfall and outflow data at Mayo Bridge used for modeling
Figure 52. Location of Davao RIDF Station relative to Mayo River Basin
Figure 53. Synthetic storm generated for a 24-hr period rainfall for various return periods
Figure 54. Soil Map of Mayo River Basin used for the estimation of the CN parameter
Figure 55. Land Cover Map of Mayo River Basin used for the estimation of the Curve Number (CN)
and the watershed lag parameters of the rainfall-runoff model
Figure 56. Slope Map of Mayo River Basin
Figure 57. Stream Delineation Map of Mayo River Basin
Figure 58. Mavo River Basin model generated in HEC-HMS70
Figure 59. River cross-section of Mayo River generated through Arcmap HEC GeoRAS tool
Figure 60. Screenshot of the river sub-catchment with the computational area to be modeled
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)
Figure 61. Outflow hydrograph of Balamban produced by the HEC-HMS model compared
with observed outflow
Figure 62. Outflow hydrograph at Mayo Station generated using the Dayao RIDF simulated
in HEC-HMS.
Figure 63. Sample output map of Mayo RAS Model
Figure 64, 100-year Flood Hazard Map for Mayo Floodplain overlaid on Google Farth imagery
Figure 65, 100-year Flow Depth Map for Mayo Floodplain overlaid on Google Farth imagery 80
Figure 66, 25-year Flood Hazard Map for Mayo Floodplain overlaid on Google Earth imagery 81
Figure 67 25-year Flow Depth Map for Mayo Floodplain overlaid on Google Earth imagery
Figure 68, 5-year Flood Hazard Map for Mayo Floodplain overlaid on Google Earth imagery 83
Figure 69, 5-year Flood Depth Map for Mayo Floodplain overlaid on Google Farth imagery
Figure 70. Affected Areas in Mati City, Davao Oriental during 5-Year Rainfall Return Period
Figure 71 Affected Areas in Tarragona Davao Oriental during 5-Year Rainfall Return Period 86
Figure 72 Affected Areas in Mati City, Davao Oriental during 25-Year Rainfall Return Period 87
Figure 73. Affected Areas in Tarragona Davao Oriental during 25-Year Rainfall Return Period 88
Figure 74. Affected Areas in Mati City, Davao Oriental during 100-Year Rainfall Return Period 89
Figure 75. Affected Areas in Tarragona. Davao Oriental during 100-Year Rainfall Return Period

Figure 76. Mayo Flood Validation Points	92
Figure 77. Flood map depth vs. actual flood depth	93

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DA-BSWM	Department of Agriculture - Bureau of Soil and Water Management		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
USC	University of San Carlos			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND MAYO RIVER

Enrico C. Paringit, Dr. Eng., Dr. Joseph E. Acosta, and Dr. Ruth James

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (USC) is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Southern Mindanao Region. The university is located in Davao City in the province of Davao del Sur.

1.2 Overview of the Mayo River Basin

The Mayo River Basin covers two (2) municipalities and one (1) city in Davao Oriental, namely the Municipalities of Lupon and Tarragona and the City of Mati on the southeastern side of Mindanao. The DENR River Basin Control Office (RBCO) states that the Mayo River Basin has a drainage area of 146 km² and an estimated 292 cubic meter (MCM) annual run-off (RBCO, 2015).

The Mayo Watershed traverses between the City of Mati and the Municipality of Tarragona with the Pacific Ocean and Mayo Bay on its east and south. It has a total drainage area of 294 square kilometers. It has 22 junctions, 22 reaches, and 45 subbasins. The Mayo River, the main stem of Mayo River Basin, is part of the fourteen (14) river systems under the PHIL-LIDAR 1 Program partner HEI, UP Mindanao.

Mayo River serves as one of the major drainage systems in the area of the Mt. Mayo mountain range. It is described as generally dendritic abound with vegetation. The Mt. Mayo Range is bounded to the west by Lupon, to the South by Mati, and to the east by Tarragona. It is the closest forest neighbor from Mt. Hamiguitan which is a national park and wildlife sanctuary. From Mount Mayo, the river flows downstream to Mayo bay facing the Pacific Ocean where local sea turtles known as pawikans and dugongs can be found (Republic Act No. 4755, 1966; Lasco, 2014; Ibanez, 2015).

The Mineral Production Sharing Agreement (MPSA) 184 XI between the Municipalities of Lupon and Tarragona is considered to be a gold-rush site and is host to artisan mining activities. It has been explored for copper and gold until 2012 when the Mines and Geosciences Bureau (MGB) issued a cease and desist order against all small-scale mining operations in the area (Oro East, 2011; ABS-CBN, 2014).

Figure 1. Map of Mayo River Basin (in brown)

Mati comes from the Mandayan word "Maa-ti" which refers to the creek that dries up easily even after heavy rain. The river flows towards the Pacific Ocean into Mayo Bay where rich marine life and various species of sea turtles, sea cows, dolphins, and whale sharks can be seen (Lim, 2014). Based on local history, the site of Dahican was settled by Moro pirates as an anchoring place for their vintas due to its fine harbor. It had no particular name yet but they gradually called it Dahican from the word "dahic" which "means to set on shore a boat". It has been the official name of the barrio since the advent of the American regime (Capili, 2014). Currently, Dahican is known for its rich marine life and ecotourism. Its 7 kilometers of white sand beach offers a wide range of activities including skimboarding and surfing which invites a diverse crowd: from small kids and local hobbyists to first-time tourists (Triptheislands, 2013).

Historical accounts indicate that the early residents of the locality include the Mandayans along the river and on Mt. Mayo, Kalagans, and Maranaos at the harbor of Mati. These tribes' indigenous culture carries strong traces of Indo-Malayan and Arabic influences (Official Website of the City of Mati, 2017; Philippine Cities, 2017; Travelgrove Inc., 2017).

Mayo River has been part of the Mandaya tribe's history and culture. In fact, the river is a key element in the tribe's creation myth. The Children of Limokon (Cole, 1916; Gale, 2002) tells the story of the Limokon, a kind of dove that was powerful and could talk like men. One limokon laid two eggs in Mayo River and when they hatched, became a man and a woman. Their children are now the Mandaya still living along the Mayo River. In the oral traditions of the Kaagan, their early civilization is situated at "Bawiy" which is now called the Mayo River in Mati City (Sunstar, 2015).

Another pioneering settler is the Kaagan or Kalagan tribe. Kaagan came from the word "kaag" which means "to inform," "to secure," "to warn," or "secrecy". It is a native word used to inform other members of the tribe when something is about to happen. The Kaagans, also called Tagakaolo-Kaagan, were part of the Tagakaolo tribe converted to Islam. Kaagans lived along the riverbanks of Mayo River, Mati, Davao Oriental; Summog (Sumlog), Lupon, Davao Oriental; Mamuyapoy, Tarragona, Davao Oriental; Bingcungan; Hijo and Pantukan, Compostela Valley Province (Manuel, 2010; Lasco, 2014).

According to the 2015 national census of PSA, a total of 12,581 persons distributed among Barangay Don Salvador Lopez, Sr., Mayo, and Don Enrique Lopez in the City of Mati are residing within the immediate vicinity of the river.

Locals say that from the year 1988 to 2014, local rainfall and "buhawi" are the usual cause of flooding near the river. However, PAGASA only noted typhoon events such as Pablo in 2012 and Yolanda and Zoraida in 2013. Also, on November 8, 2011, heavy rains brought by the Inter Tropical Convergence Zone (ITCZ) flooded Mati City with one (1) house in Brgy. Central partially damaged as per NDRRMC report (National Disaster Risk Reduction and Management Council, 2011).

Nevertheless, Brgy. Mayo was hailed on November 2015 as one of the best prepared barangays in terms of disaster risk prevention. Upon inspection, all 26 barangays in the City of Mati have their own fully-functional Barangay Disaster Operations Center (Deloso, 2015).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE MAYO FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, and Engr. Kenneth A. Quisado.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Mayo Floodplain in Davao Oriental. These missions were planned for 14 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 3 shows the flight plans and base stations used for Mayo Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK84B	1000	40	40	100	50	130	5
BLK84C	1200	30	26	70	60	130	5
BLK85B	1200	30	26	70	60	130	5

Table 1. Flight planning parameters for the Gemini LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 3. Flight Plan and base station used for the Mayo Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover four (4) NAMRIA ground control points: DVE-42 and DVE-61 which are of second (2nd) order accuracy, and DVE-3088 and DVE-3118 which are of fourth (4th) order accuracy. Fourth (4th) order ground control points where then re-processed to obtain coordinates of second (2nd) order accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing reports for the re-processed control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (June 19 – July 11, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Mayo Floodplain are shown in Figure 3.

Figure 4 to Figure 7 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 5 present the details about the following NAMRIA control stations and established points while Table 6 lists all ground control points occupied during the acquisition with the corresponding dates of utilization. The list of team members are found in Annex 4.

Figure 4. GPS set-up over DVE-42 located inside the premises of Don Enrique Elementary School, in front of the flagpole (a) and NAMRIA reference point DVE-42 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point DVE-42 used as base station for the LiDAR
acquisition.

Station Name	DVE-42		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°58'54.82726" North 126°17'56.05259" East 6.395 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	643534.636 meters 772166.69 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°58'51.79295" North 126°18'1.57690" East 81.025 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	201538.20 meters 772554.34 meters	

Figure 5. GPS set-up over DVE-61 located at the center of the playground of Zign Elementary School, about 10 m W of school flagpole (a) and NAMRIA reference point DVE-61 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point DVE-61 used as base station for the LiDAR
acquisition.

Station Name	DVI	E-61
Order of Accuracy	21	nd
Relative Error (Horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°57'39.37336" North 126°13'22.44550" East 48.474 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	635140.8 meters 769826.046 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°57'36.33777" North 126°13'27.97256" East 122.953 meters
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	193120.25 meters 770283.71 meters

Figure 6. GPS set-up over DVE-3088 located inside Don Enrique Lopez Elementary School (a) and NAMRIA reference point DVE-3088 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point DVE-3088 used as base station for the LiDAR acquisition with established coordinates.

Station Name	DVE-	3088
Order of Accuracy	21	nd
Relative Error (horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°58'54.82726" North 126°17'56.05259" East 6.395 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°58'51.79294" North 126°18'1.57690" East 81.024 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	864582.336 meters 772975.574 meters

(a)

Figure 7. GPS set-up over DVE-3118 located along the boundary of Barangays Dawan and Badas (a) and NAMRIA reference point DVE-3118 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point DVE-3118 used as base station for the LiDAR acquisition with established coordinates.

Station Name	DVE-	3118
Order of Accuracy	2r	nd
Relative Error (horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	6°54′21.10869″ North 126°10′17.73141″ East 48.474 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	6°54'18.08333" North 126°10'23.26402" East 204.434 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	850554.409 meters 764461.564 meters

Date Surveyed	Flight Number	Mission Name	Ground Control Points
June 19, 2014	7320GC	2BLK83A84B170A	DVE-42 & DVE-3088
July 01, 2014	7344GC	2BLK84BCR182A	DVE-42 & DVE-3088
July 10, 2014	7362GC	2BLK85CS191A	DVE-61 & DVE-3118
July 11, 2014	7364GC	2BLK85V192A	DVE-61 & DVE-3118

Table 6. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

Four (4) missions were conducted to complete the LiDAR data acquisition in Mayo Floodplain, for a total of thirteen hours and forty four minutes (13+44) of flying time for RP-C9322. All missions were acquired using the Gemini LiDAR system. Table 7 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 8 presents the actual parameters used during the LiDAR data acquisition.

Table 7. Flight missions for the LiDAR data acquisition in Mayo Floodplain.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	Area Surveyed	Area Surveyed Outside the	No. of Images	FI H	ying ours
		(km2)	(km2)	within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
June 19, 2014	7320GC	71.239	121.572	1.611	119.961	NA	3	47
July 01, 2014	7344GC	156.234	74.469	0.121	74.348	NA	3	11
July 10, 2014	7362GC	103.499	68.350	21.768	46.582	NA	3	11
July 11, 2014	7364GC	103.499	195.195	4.415	190.780	NA	3	35
тот	AL	629.683	459.586	27.915	431.671	NA	13	44

Table 8. Actual parameters used during the LiDAR data acquisition of the Mayo Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7320GC	1000	40	40	100	50	130	5
7344GC	1200	45	24	70	60	130	5
7362GC	1200	40	26	70	60	130	5
7364GC	1200	40	40, 24	70	50, 60	130	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Mayo Floodplain (See Annex 7). Mayo Floodplain is located in the province of Davao Oriental, specifically within the city of Mati. The list of municipalities/ cities surveyed, with at least one (1) square kilometer coverage is shown in Table 9. The actual coverage of the LiDAR acquisition for Bugnan Mayo floodplain is presented in Figure 8.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Manay	430.894	137.905	32.00%
	Banaybanay	385.281	113.955	29.58%
Davao Oriental	Mati	797.379	175.831	22.05%
	Tarragona	277.903	38.11	13.71%
	Lupon	356.281	40.392	11.34%
Tota		1891.457	506.193	26.76%

Table 9. List of municipalities and cities surveyed of the Mayo Floodplain LiDAR acquisition.

Figure 8. Actual LiDAR survey coverage of the Mayo Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE MAYO FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos , Engr. John Dill P. Macapagal , Engr. Ma. Ailyn L. Olanda, Engr. Chelou P. Prado, Engr. Krisha Marie Bautista , Engr. Ben Joseph J. Harder, and Engr. Karl Adrian P. Vergara

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

Figure 9. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Mayo floodplain can be found in Annex 5. Missions flown during the first survey conducted on June 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system over Mati City, Davao Oriental.

The Data Acquisition Component (DAC) transferred a total of 58.14 Gigabytes of Range data, 0.79 Gigabytes of POS data, 21.07 Megabytes of GPS base station data, and 0 Gigabytes of raw image data to the data server on July 28, 2014 for the first survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Mayo was fully transferred on July 28, 2014, as indicated on the Data Transfer Sheets for Mayo Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metricparameters of the computed trajectory for flight 7362GC, one of the Mayo flights, which is the North, East, and Down position RMSE values are shown in Figure B-2. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell onJuly 28, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 10. Smoothed Performance Metric Parameters of Mayo Flight 7362GC

The time of flight was from 345,400 seconds to 354,200 seconds, which corresponds to morning of July 28, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 0.80 centimeters, the East position RMSE peaks at 1.00 centimeters, and the Down position RMSE peaks at 2.40 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 11. Solution Status Parameters of Mayo Flight 7362GC.

The Solution Statusparameters of flight 7362GC, one of the Mayoflights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition. Majority of the time, the number of satellites tracked was between 5 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Mayo flights is shown in Figure 12.

Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Mayo Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 44flight lines, with each flight line containing one channel, since the Gemini system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Mayo Floodplain are given in Table 10.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000237
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000612
GPS Position Z-correction stdev	<0.01meters	0.0074

Table 10. Self-calibration Results values for M	Mayo flights.
---	---------------

The optimum accuracy is obtained for all Mayo flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Report.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Mayo Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 13. Boundary of the processed LiDAR data over Mayo Floodplain

The total area covered by the Mayo missions is 165.28 sq.km that is comprised of four (4) flight acquisitions grouped and merged into three (3) blocks as shown in Table 11.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Davao_Oriental_Blk85B_additional	7362G	69.62
	7364G	
Davao_Oriental_Blk84C	7344G	68.56
Davao_Oriental_Blk84B	7320G	27.10
TOTAL		165.28 sq.km

|--|

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini system employs one channel, an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines are expected.

Figure 14. Image of data overlap for Mayo Floodplain.

The overlap statistics per block for the Mayo Floodplain can be found in Annex 5. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 33.97% and 42.20% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Mayo Floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.06 points per square meter.

Figure 15. Pulse density map of merged LiDAR data for Mayo Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 16. Elevation Difference Map between flight lines for Mayo Floodplain Survey.

A screen capture of the processed LAS data from a Mayo flight 7362GC loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 17. Quality checking for Mayo Flight 7362GC using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	73,335,366	
Low Vegetation	54,578,389	
Medium Vegetation	89,720,916	
High Vegetation	230,029,114	
Building	6,380,663	

Table 12.	Mayo	classification	results in	TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Mayo Floodplain is shown in Figure 18. A total of 262 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 623.53 meters and 64.32 meters, respectively.

Figure 18. Tiles for Mayo Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 19. Point cloud before (a) and after (b) classification
The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 20. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Mayo Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Mayo floodplain.

3.8 DEM Editing and Hydro-Correction

Three (3) mission blocks were processed for Mayo flood plain. These blocks are composed of Davao_ Oriental blocks with a total area of 165.28 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Davao_Oriental_Blk85B_additional	69.62
Davao_Oriental_Blk84B	27.10
Davao_Oriental_Blk84C	68.56
TOTAL	165.28

Table 13. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 21) in order to hydrologically correct the river.

Figure 21. Portions in the DTM of Mayo Floodplain – a bridge before (a) and after (b) manual editing.

3.9 Mosaicking of Blocks

Davao_Oriental_86Awas used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

nation de Division		Charles Lands	
MISSION BIOCKS	Shift Values (meters)		
	х	У	Z
Davao_Oriental_Blk85B_additional	1.30	0.00	-0.22
Davao_Oriental_Blk84B	0.50	-0.10	0.59
Davao_Oriental_Blk84C	1.10	-0.20	0.15

Table 14. Shift values of each LiDAR block of Mayo Floodplain.

Figure 22. Map of Processed LiDAR Data for Mayo Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Mayo to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 1,367 survey points were used for calibration and validation of Mayo LiDAR data. Random selection of 80% of the survey points, resulting to 1,094 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values are shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.68 meters with a standard deviation of 0.17 meters. Calibration of Mayo LiDAR data was done by subtracting the height difference value, 0.68 meters, to Mayo mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 23. Map of Mayo Floodplain with validation survey points in green.

Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	0.68
Standard Deviation	0.17
Average	-0.66
Minimum	-1.00
Maximum	-0.31

The remaining 20% of the total survey points, resulting to 273 points, were used for the validation of calibrated Mayo DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.18 meters with a standard deviation of 0.18 meters, as shown in Table 16.

Figure 25. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.18
Standard Deviation	0.18
Average	0.02
Minimum	-0.33
Maximum	0.37

Table 16. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Mayo with 3,785 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.43 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Mayo integrated with the processed LiDAR DEM is shown in Figure 26.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 26. Map of Mayo Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Mayo Floodplain, including its 200 m buffer, has a total area of 22.07 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 553 building features, are considered for QC. Figure 27 shows the QC blocks for Mayo Floodplain.

Figure 27. Blocks (in blue) of Mayo building features that were subjected to QC

Quality checking of Mayo building features resulted in the ratings shown in Table 17.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Мауо	99.88	99.76	99.52	PASSED

Table 17. Quality	Checking	Ratings for	r Mayo	Building	Features
-------------------	----------	-------------	--------	----------	----------

3.12.2 Height Extraction

Height extraction was done for 1,108 building features in Mayo Floodplain. Of these building features, 148 was filtered out after height extraction, resulting in 960 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 19.87 m.

3.12.3 Feature Attribution

Before the actual field validation, courtesy calls were conducted to seek permission and assistance from the Local Government Units of each barangay. This was done to ensure the safety and security in the area for the field validation process to go smoothly. Verification of barangay boundaries was also done to finalize the distribution of features for each barangay.

The courtesy calls and project presentations were done on May 26, 2016. Barangay Health Workers (BHWs) were requested and hired to guide the University of the Philippines Mindanao Phil-LiDAR1 field enumerators during validation. The field work activity was conducted from June 6-7, 2016. The local hires deployed by the barangay captains were given a brief orientation by the field enumerators before the actual field work. The team surveyed the three (3) barangays covered by the floodplain namely Dahican, Don Enrique Lopez and Don Martin Marundan, Mati City.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 presents the number of water features extracted per type.

	7 1
Facility Type	No. of Features
Residential	806
School	39
Market	0
Agricultural/Agro-Industrial Facilities	63
Medical Institutions	2
Barangay Hall	2
Military Institution	0
Sports Center/Gymnasium/Covered Court	3
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	0
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	0
Water Supply/Sewerage	1
Religious Institutions	18
Bank	0
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	2
Other Commercial Establishments	24
Total	960

Table 18. Building Features Extracted for Mayo Floodplain.

Floodplain	Road Network Length (km)						
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others		
Mayo	20.41	0.00	0.00	5.66	0.00	26.07	

Table 19. Total Length of Extracted Roads for Mayo Floodplain.

Table 20. Number of Extracted Water Bodies for Mayo Floodplain.

Floodplain	Water Body Type						
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Mayo	1	0	0	0	0	1	

One (1) bridge was also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 28 shows the Digital Surface Model (DSM) of Mayo Floodplainoverlaid with its ground features.

Figure 28. Extracted features for Mayo Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MAYO RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, and Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The AB Surveying and Development (ABSD) conducted a field survey in Mayo River on February 27, 2016, March 4-6, 2016, and March 20, 2016 with the following scope: reconnaissance; control survey; cross-section and as-built survey at Mayo Bridge in Brgy. Mayo, Mati City, Davao Oriental; and bathymetric survey from its upstream in Brgy. Don Salvador Lopez, Sr. to the mouth of the river located in Brgy. Don Enrique Lopez, Mati City, with an approximate length of 8.53 km using a Horizon® Total Station. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on May 10-24, 2016 using a survey grade GNSS receiver Trimble® SPS 985 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Mayo River Basin area. The entire survey extent is illustrated in Figure 29.

Figure 29. Extent of the bathymetric survey (in blue line) in Mayo River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Mayo River is composed of seven (7) loops established on May 22, 2016 occupying the following reference points: DVE-42 a second-order GCP, in Brgy. Don Enrique Lopez, Mati City, Davao Oriental and DE-160, a first-order BM, in Brgy. Mayo, Mati City, Davao Oriental.

Three (3) control points established in the area by ABSD were also occupied: UP_BIT-1 beside the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, Mati City, Province of Davao Oriental, UP_MAY-1 beside the approach of Mayo Bridge in Brgy. Mayo, Mati City, Davao Oriental, and UP_QUI-1 located beside the approach of Quinonoan Bridge in Brgy. San Ignacio, Manay, Davao Oriental.

The summary of reference and control points and its location is summarized in Table 21 while GNSS network established is illustrated in Figure 30.

Table 21. List of Reference and Control Points occupied for Mayo River Survey

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)						
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
DVE-42	2nd order, GCP	6°58'51.79295"N	126°18'01.57690"E	80.539	15.122	2007		
DE-160	1st order, BM	6°59'41.20398"N	126°19'30.03464"E	71.754	6.419	2009		
UP_BIT- 1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	15.21	2-26-16		
UP_ MAY-1	Established	6°59'26.93722"N	126°19'18.72092"E	73.478	8.152	2-27-16		
UP_ QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	6.305	2-20-16		

(Source: NAMRIA; UP-TCAGP)

Figure 30. The GNSS Network established in the Mayo River Survey.

The GNSS set-ups on recovered reference points and established control points in Mayo River are shown from Figure 31 to Figure 35.

Figure 31. GNSS base set up, Trimble® SPS 852, at DVE-42, located in front of the flagpole inside Don Enrique Lopez Elementary School in Brgy. Don Enrique Lopez, Mati City, Davao Oriental

Figure 32. GNSS receiver set up, Trimble® SPS 985, at DE-160, located at approach of Calinan Bridge in Brgy. Mayo, City of Mati, Davao Oriental

Figure 33. GNSS receiver set up, Trimble® SPS 852, at UP_BIT-1, located at the side of the railing near the approach of Bitanagan Bridge in Brgy. Don Enrique Lopez, City of Mati, Davao Oriental

Figure 34. GNSS receiver set up, Trimble® SPS 985, at UP_MAY-1, located beside the approach of Mayo Bridge in Brgy. Mayo, City of Mati, Province of Davao Oriental

Figure 35. GNSS receiver set up, Trimble® SPS 882, at UP_QUI-1, located beside the approach of Quinonoan Bridge in Brgy. San Ignacio, Municipality of Manay, Province of Davao Oriental

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Mayo River Basin is summarized in Table 22 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-42 DE-160	5-522-2016	Fixed	0.005	0.026	60°47'28"	3110.595	-8.798
UP_MAY-1 DE-160	5-522-2016	Fixed	0.003	0.004	38°23'28"	559.167	-1.723
DVE-42	12-7-2015	Fixed	0.006	0.028	305°11'33"	6328.249	-229.449
UP_MAY-1	5-522-2016	Fixed	0.003	0.014	65°29'18"	2602.368	-7.064
UP_BIT-1	12-7-2015	Fixed	0.004	0.021	13°03'37"	19960.518	-55.135
UP_MAY-1	5-522-2016	Fixed	0.004	0.018	45°34'22"	4416.378	-7.047
UP_BIT-1 DE-160	5-522-2016	Fixed	0.005	0.025	44°46'00"	4971.649	-8.805
UP_BIT-1 DVE-42	5-522-2016	Fixed	0.003	0.015	201°20'38"	2159.894	0.009
UP_BIT-1	12-7-2015	Fixed	0.004	0.019	320°20'42"	10551.869	-275.506
UP_QUI-1	5-522-2016	Fixed	0.007	0.024	53°30'19"	23747.730	-9.665

Table 22. Baseline Processing Summary Report for Mayo River Survey

As shown Table 22 a total of ten (10) baselines were processed with coordinates of DVE-42 and elevation of DE-160 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the squares of x and y must be less than 20 cm and z less than 10 cm in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown from Table C- 3Table 23 to Table C- 5 Table 25 for the complete details.

The five (5) control points, DVE-42, DE-160, UP-BIT-1, UP_MAY-1, and UP-QUI-1 were occupied and observed simultaneously to form a GNSS loop. The coordinate values of DVE-42 and elevation of DE-160 were held fixed during the processing of the control points as presented in Table C- 323. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
DE-160	Grid				Fixed
DVE-42	Global	Fixed	Fixed		
Fixed = 0.00000	1 (Meter)				

Table 23. Constraints applied to the adjustment of the control points.

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24. All fixed control points have no values for grid errors and elevation error.

Table 24. Adjusted grid coordinates for the control points used in the Mayo River Floodplain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
DE-160	774012.369	0.003	204436.373	0.005	6.419	?	е
DVE-42	772508.970	?	201710.753	?	15.122	0.023	LL
UP_BIT-1	770500.332	0.003	200912.560	0.004	15.210	0.025	
UP_MAY-1	773575.785	0.003	204086.387	0.004	8.152	0.009	
UP_QUI-1	784522.580	0.004	220097.240	0.007	6.305	0.034	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm \text{ and } z_e < 10 cm$ for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

a. DE-160			
ho	prizontal accuracy	=	$\sqrt{((0.3)^2 + (0.5)^2)}$
		=	0.34 < 20 cm
Ve	ertical accuracy	=	Fixed
b. DVE-42			
h	orizontal accuracy	=	Fixed
vertical ac	curacy	=	2.3 < 10 cm
c. UP_BIT-	1		
h	orizontal accuracy	=	$\sqrt{(0.3)^2 + (0.4)^2}$
		=	√ (0.09 + 0.16)
		=	0.25 < 20 cm
Ve	ertical accuracy	=	2.5 < 10 cm
d. UP_MA	Y-1		
h	orizontal accuracy	=	$\sqrt{(0.3)^2 + (0.4)^2}$
		=	√ (0.09 + 0.16)
		=	0.25 < 20 cm
Ve	ertical accuracy	=	0.9 < 10 cm
e. UP_QU	I-1		
h	orizontal accuracy	=	$\sqrt{(0.4)^2 + (0.7)^2}$
		=	√ (0.16 + 0.49)
		=	0.65 < 20 cm
Ve	ertical accuracy	=	3.4 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required precision.

Table 25. Adjusted	geodetic coordinate	s for control points us	sed in the Mav	o River Floodpla	ain validation.
1 6	()				

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
DE-160	N6°59'41.20398"	E126°19'30.03464"	71.754	?	е
DVE-42	N6°58'51.79295"	E126°18'01.57690"	80.539	0.023	LL
UP_BIT-1	N6°57'46.30507"	E126°17'35.96635"	80.537	0.025	
UP_MAY-1	N6°59'26.93722"	E126°19'18.72092"	73.478	0.009	
UP_QUI-1	N7°05'25.95862"	E126°27'58.08622"	70.854	0.034	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 26.

Table 26. The reference and control points utilized in the Balamban River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control	Order of	Geographic	Coordinates (WGS 84)		UT	M ZONE 51 N		
Point	Accuracy	Latitude	Longitude	Ellips- oidal Height (m)	Northing (m)	Easting (m)	EGM Ortho (m)	BM Ortho (m)
DVE-42	2nd order, GCP	6°58'51.79295"N	126°18'01.57690"E	80.539	772508.97	201710.753	15.122	287.844
DE-160	1st order, BM	6°59'41.20398"N	126°19'30.03464"E	71.754	774012.369	204436.373	6.419	58.767
UP_BIT-1	Established	6°57'46.30507"N	126°17'35.96635"E	80.537	770500.332	200912.56	15.21	3.317
UP_MAY-1	Established	6°59'26.93722"N	126°19'18.72092"E	73.478	773575.785	204086.387	8.152	4.332
UP_QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	784522.58	220097.24	6.305	13.001

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on March 20, 2016 at the downstream side of Mayo Bridge in Brgy. Mayo, City of Mati as shown in Figure 36. Horizon[®] Total Station was utilized for this survey as shown in Figure 37.

Figure 36. Mayo Bridge facing downstream

Figure 37. As-built survey of Mayo Bridge

The cross-sectional line of Mayo Bridge is about 151 m with two hundred fourteen (214) cross-sectional points using the control points UP_MAY-1 and UP_MAY-2 as the GNSS base stations. The cross-section diagram and the bridge data form are shown in Figure 38 and Figure 39. Gathering of random points for the checking of ABSD's bridge cross-section and bridge points data was performed by DVBC on May 16, 2016 using a survey grade GNSS Rover receiver attached to a 2-m pole.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.96 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bridge cross-section data, a computed value of 0.429 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 38. Mayo Bridge cross-section diagram

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 39. As-built survey of Mayo Bridge

Water surface elevation of Bugnan Mayo River was determined by a Horizon[®] Total Station on March 20, 2016 at 2:57 PM at Mayo Bridge area with a value of 3.827 m in MSL as shown in Figure 38. This was translated into marking on the bridge's pier as shown in Figure 40. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Bugnan Mayo River, UP Mindanao.

Figure 40. Water level markings on Mayo Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC om May 16, 2016 using a survey grade GNSS Rover receiver, Trimble[®] SPS 985, mounted on a range pole which was attached on the front of the vehicle as shown in Figure 41. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.476 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP_MAY-1 occupied as the GNSS base station in the conduct of the survey.

Figure 41. Validation points acquisition survey set-up for Mayo River

The survey started from Brgy. Dahican, Mati City, Davao Oriental going north east along national high way and ended in Brgy. Tagabakid, Mati City, Davao Oriental. The survey gathered a total of 1,365 points with approximate length of 15.1 km using UP_MAY-1 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 42. Due to the presence of heavy canopy in the survey area, around 20% of the surveyed area have no data.

Figure 42. Validation point acquisition survey of Mayo River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed manually on March 4 - 6, 2016 using a Horizon[®] Total Station as seen in Figure 43. The survey started in Brgy. Don Salvador Lopez, Sr., Mati City, Davao Oriental with coordinates 7° 2' 19.47587"N, 126° 16' 3.16644"E and ended at the mouth of the river in Brgy. Don Enrique Lopez, Mati City, Davao Oriental with coordinates 6° 59' 18.13026"N, 126° 19' 25.58137"E. The control points UP_MAY-1 and UP_MAY-2 served as the GNSS base stations all throughout the survey.

Figure 43. Manual bathymetric survey of ABSD at Bugnan Mayo River using Horizon® Total Station

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on May 16, 2016 using a GNSS Rover receiver, Trimble[®] SPS 985 attached to a 2-m pole, see Figure 44. A map showing the DVBC bathymetric checking points is shown in Figure 46.

Figure 44. Gathering of random bathymetric points along Bugnan Mayo River

Linear square correlation (R2) and RMSE analysis were also performed on the two (2) datasets and a computed R2 value of 0.99 is within the required range for R2, which is 0.85 to 1. Additionally, an RMSE value of 0.142 was obtained. Both the computed R2 and RMSE values are within the accuracy required by the program.

The bathymetric survey for Bugnan Mayo River gathered a total of 4,150 points covering 8.53 km of the river traversing Barangays Don Salvador Lopez, Sr., Don Enrique Lopez, and Mayo in the City of Mati. A CAD drawing was also produced to illustrate the riverbed profile of Bugnan Mayo River. As shown in Figure 47, the highest and lowest elevation has a 135-m difference. The highest elevation observed was 135.324 m above MSL located in Brgy. Don Salvador Lopez, Sr., Mati City while the lowest was -0.628 m below MSL located in Brgy. Don Enrique Lopez, Mati City.

Figure 45. Extent of the Mayo River Bathymetry Survey

Figure 46. Quality checking points gathered along Mayo River by DVBC

Figure 47. Mayo riverbed profile.
CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Enrico C. Paringit, Dr. Eng., Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil R. Tingin, Narvin Clyd Tan, and Hannah Aventurado

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Silaga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the rain gauge installed by the University of the Philippines Mindanao Phil. LiDAR 1. This rain gauge is located in Barangay Limot, Tarragona, Davao Oriental with the following coordinates: 7° 4′ 16.72″ N, 126° 16′ 43.61″ E (Figure 1). The precipitation data collection started from October 9, 2016 at 7:00 PM to October 11, 2016 at 2:00 PM with a 10-minute recording interval.

The total precipitation for this event in the installed rain gauge was 75.2 mm. It has a peak rainfall of 15.4 mm. on October 10, 2016 at 1:00 PM. The lag time between the peak rainfall and discharge is 3 hours and 20 minutes.

Figure 48. Location map of the Balamban HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Mayo Bridge, Barangay Mayo, Tarragona, Davao Oriental (6° 59' 25.01" N, 126° 19' 17.76" E). It gives the relationship between the observed water level at the Mayo Bridge and outflow of the watershed at this location.

Figure 49. Cross-section plot of Mayo Bridge

For Mayo Bridge, the rating curve is expressed as Q = 4.26E-07e4.05xas shown in Figure 50.

Figure 50. Rating curve at Mayo Bridge, Tarragona, Davao Oriental

The rating curve equation was used to compute for the river outflow at Mayo Bridge for the calibration of the HEC-HMS model for Mayo, as shown in Figure 51. The total rainfall for this event is 75.2 mm and the peak discharge is 102.5 m3/s at 4:20 PM of October 10, 2016.

Figure 51. Rainfall and outflow data at Mayo Bridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Davao Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Mayo watershed. The extreme values for this watershed were computed based on a 59-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION								
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	19.5	30	38.2	53.2	65.2	71.6	80.3	85.8	91.4
5	25.1	39.3	51	73.2	88.8	96.4	108.7	114.9	121.1
10	28.8	45.4	59.4	86.5	104.5	112.8	127.5	134.1	140.7
15	30.9	48.9	64.2	94	113.3	122.1	138.1	145	151.8
20	32.4	51.3	67.6	99.3	119.5	128.6	145.5	152.6	159.5
25	33.5	53.2	70.1	103.3	124.2	133.6	151.2	158.5	165.5
50	37	59	78.1	115.8	138.9	149	168.8	176.5	183.9
100	40.5	64.7	85.9	128.1	153.5	164.2	186.3	194.4	202.1

Table 27. RIDF values for Davao Rain Gauge computed by PAGASA

Figure 52. Location of Davao RIDF Station relative to Mayo River Basin

Figure 53. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA - BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Mayo River Basin are shown in Figures 53 and Figure 54, respectively.

Figure 54. Soil Map of Mayo River Basin used for the estimation of the CN parameter.

Figure 55. Land Cover Map of Mayo River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model.

For Mayo, three soil classes were identified. These are clay, sandy clay loam, and undifferentiated land. Moreover, six land cover classes were identified. These are shrublands, forest plantations, open forests, closed forests, water bodies, and cultivated areas.

Figure 56. Slope Map of Mayo River Basin

Figure 57. Stream Delineation Map of Mayo River Basin

Using the SAR-based DEM, the Mayo basin was delineated and further subdivided into subbasins. The model consists of 45 sub basins, 22 reaches, and 22 junctions, as shown in Figure 58. The main outlet is at Mayo Bridge.

Figure 58. Mayo River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 59. River cross-section of Mayo River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modeling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northwest of the model to the southeast, following the main channel. As such, boundary elements northwest of the model are assigned as outflow elements.

Figure 60. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 23.81 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Mayo are in Figures 64, 66, and 68.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63,728,800.00 m2. The generated flood depth maps for Mayo are in Figures 65, 67, and 69.

There is a total of 61,013,245.56 m3 of water entering the model, of which 27,602,867.63 m3 is due to rainfall and 33,410,377.93 m3 is inflow from basins upstream. 3,929,004.00 m3 of this water is lost to infiltration and interception, while 1,941,097.02 m3 is stored by the flood plain. The rest, amounting up 55,143,145.00 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Mayo HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 61 shows the comparison between the two discharge data.

Figure 61. Outflow hydrograph of Balamban produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 28 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.097 – 30.053
			Curve Number	35.285 – 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.0167 – 0.165
			Storage Coefficient (hr)	0.0167 – 96.127
	Baseflow	Recession	Recession Constant	0.00008 - 0.028
			Ratio to Peak	0.00013 - 0.0645
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.053

T 11 20 D	C 1.1 , 1	1 (1 14	D' D'
Table / & Range	of calibrated	values for	the Mav	o River Basin
Tuble 20. Runge	or camprated	values for	cite iviay	O INIVEL DUSIII.
0				

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.097 mm to 30.053 mm means that there is a small initial fraction of the storm depth after which runoff begins, increasing the river outflow.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Mayo, the basin consists mainly of shrublands and open forests and the soil consists of mostly undifferentiated land and sandy clay loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.0167 hours to 96.127 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.00013 to 0.028 indicate that the basin is likely to quickly go back to its original discharge. Values of ratio to peak within the range of 0.00013 to 0.0645 indicate a much steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Mayo river basin reaches' Manning's coefficient is 0.053, showing that the catchment is mostly filled with floodplains with light brushlands (Brunner, 2010).

Accuracy measure	Value
RMSE	4.2
r2	0.962
NSE	0.96
PBIAS	9.31
RSR	0.21

Table 29. Summary of the Efficiency Test of the Balamban HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 4.2 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.962.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.96.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 9.31.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.21.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 62) shows the Mayo outflow using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 62. Outflow hydrograph at Mayo Station generated using the Davao RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Mayo discharge using the Davao Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

Table 30. Peak values of the Mayo HEC-HMS Model outflow using the Davao RIDF 24-hour values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	121.1	25.1	255.5	2 hours, 20 minutes
10-Year	140.7	28.8	335.3	2 hours, 10 minutes
25-Year	165.5	33.5	447.6	2 hours
50-Year	183.9	37	536.1	1 hour, 50 minutes
100-Year	202.1	40.5	623.3	1 hour, 40 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Balamban River using the calibrated HMS event flow is shown in Figure 60.

Figure 63. Sample output map of Mayo RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 100-, 25-, and 5-year rain return scenarios of the Mayo floodplain are shown in Figures 15 to 20. The floodplain, with an area of 63.73 sq. km., covers two municipalities. Table 31 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded
Davao Oriental	Mati City	797.382	40.2854	5.05%
Davao Oriental	Tarragona	277.904	23.4413	8.44%

Table 31. Municipalities affected in Mayo Floodplain

Figure 64. 100-year Flood Hazard Map for Mayo Floodplain overlaid on Google Earth imagery

Figure 65. 100-year Flow Depth Map for Mayo Floodplain overlaid on Google Earth imagery

Figure 66. 25-year Flood Hazard Map for Mayo Floodplain overlaid on Google Earth imagery

Figure 67. 25-year Flow Depth Map for Mayo Floodplain overlaid on Google Earth imagery

Figure 68. 5-year Flood Hazard Map for Mayo Floodplain overlaid on Google Earth imagery

Figure 69. 5-year Flood Depth Map for Mayo Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Mayo river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of seven barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 2.82% of the municipality of Mati City with an area of 797.38 sq. km. will experience flood levels of less than 0.20 meters. 0.29% of the area will experience flood levels of 0.21 to 0.50 meters while 0.47%, 0.67%, 0.75%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 32 and shown in Figure 70 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Mati City (in sq. km.)					
flood depth (in m.)	Don Enrique Lopez	Don Salvador Lopez	Мауо	Tagabakid		
0.03-0.20	3.66	7.12	5.45	6.25		
0.21-0.50	0.87	0.22	0.88	0.35		
0.51-1.00	2	0.15	1.43	0.16		
1.01-2.00	3.29	0.16	1.79	0.097		
2.01-5.00	3.22	0.53	2.17	0.041		
> 5.00	0.043	0.39	0.024	0.0017		

Table 32. Affected areas in Mati City, Davao Oriental during a 5-Year Rainfall Return Period

Figure 70. Affected Areas in Mati City, Davao Oriental during 5-Year Rainfall Return Period

For the 5-year return period, 7.83% of the municipality of Tarragona with an area of 277.904 sq. km. will experience flood levels of less than 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 0.07%, 0.06%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 and shown in Figure 71 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Tarragona (in sq. km.)				
flood depth (in m.)	Dadong	Limot	Ompao		
0.03-0.20	0.38	19.19	2.18		
0.21-0.50	0.0095	0.84	0.078		
0.51-1.00	0.0016	0.31	0.025		
1.01-2.00	0	0.19	0.01		
2.01-5.00	0	0.17	0.0004		
> 5.00	0	0.047	0		

Table 33. Affected areas in Tarragona, Davao Oriental during a 5-Year Rainfall Return Period

Figure 71. Affected Areas in Tarragona, Davao Oriental during 5-Year Rainfall Return Period

For the 25-year return period, 1.81% of the municipality of Mati City with an area of 797.38 sq. km. will experience flood levels of less than 0.20 meters. 0.19% of the area will experience flood levels of 0.21 to 0.50 meters while 0.31%, 0.57%, 1.04%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 34 and shown in Figure 72 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Mati City (in sq. km.)					
flood depth (in m.)	Don Enrique Lopez	Don Salvador Lopez	Mayo	Tagabakid		
0.03-0.20	3.24	0	5.13	6.1		
0.21-0.50	0.52	0	0.63	0.4		
0.51-1.00	1.22	0	1.04	0.18		
1.01-2.00	2.87	0	1.57	0.13		
2.01-5.00	4.91	0	3.29	0.081		
> 5.00	0.32	0	0.093	0.0083		

Table 34. Affected areas in Mati City, Davao Oriental during a 25-Year Rainfall Return Period

Figure 72. Affected Areas in Mati City, Davao Oriental during 25-Year Rainfall Return Period

For the 25-year return period, 7.67% of the municipality of Tarragona with an area of 277.904 sq. km. will experience flood levels of less than 0.20 meters. 0.40% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, 0.09%, 0.08%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 and shown in Figure 73 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Tarragona (in sq. km.)				
flood depth (in m.)	Dadong	Limot	Ompao		
0.03-0.20	0.37	18.81	2.14		
0.21-0.50	0.014	1	0.095		
0.51-1.00	0.0023	0.38	0.034		
1.01-2.00	0	0.24	0.013		
2.01-5.00	0	0.23	0.005		
> 5.00	0	0.099	0		

Table 35. Affected areas in Tarragona, Davao Oriental during a 25-Year Rainfall Return Period

Figure 73. Affected Areas in Tarragona, Davao Oriental during 25-Year Rainfall Return Period

For the 100-year return period, 1.76% of the municipality of Mati City with an area of 797.38 sq. km. will experience flood levels of less than 0.20 meters. 0.21% of the area will experience flood levels of 0.21 to 0.50 meters while 0.26%, 0.59%, 1.07%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 and shown in Figure 74 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Mati City (in sq. km.)					
flood depth (in m.)	Don Enrique Lopez	Don Salvador Lopez	Mayo	Tagabakid		
0.03-0.20	3.06	0	4.98	6.01		
0.21-0.50	0.6	0	0.62	0.44		
0.51-1.00	1.03	0	0.87	0.2		
1.01-2.00	2.87	0	1.71	0.13		
2.01-5.00	5.01	0	3.43	0.098		
> 5.00	0.5	0	0.14	0.013		

Table 36. Affected areas in Mati City, Davao Oriental during a 100-Year Rainfall Return Period

Figure 74. Affected Areas in Mati City, Davao Oriental during 100-Year Rainfall Return Period

For the 100-year return period, 7.58% of the municipality of Tarragona with an area of 277.904 sq. km. will experience flood levels of less than 0.20 meters. 0.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.10%, 0.09%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and shown in Figure 75 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Tarragona (in sq. km.)				
flood depth (in m.)	Dadong	Limot	Ompao		
0.03-0.20	0.37	18.57	2.12		
0.21-0.50	0.017	1.13	0.11		
0.51-1.00	0.0022	0.43	0.038		
1.01-2.00	0.0003	0.26	0.016		
2.01-5.00	0	0.25	0.0068		
> 5.00	0	0.13	0		

Table 37. Affected areas in Tarragona, Davao Oriental during a 100-Year Rainfall Return Period

Figure 75. Affected Areas in Tarragona, Davao Oriental during 100-Year Rainfall Return Period

Among the barangays in the municipality of Mati City in Davao Oriental, Don Enrique Lopez is projected to have the highest percentage of area that will experience flood levels at 1.64%. Meanwhile, Mayo posted the second highest percentage of area that may be affected by flood depths at 1.47%.

Among the barangays in the municipality of Tarragona in Davao Oriental, Limot is projected to have the highest percentage of area that will experience flood levels at 7.47%. Meanwhile, Ompao posted the second highest percentage of area that may be affected by flood depths at 0.83%.

Moreover, the generated flood hazard maps for the Mayo Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area Covered in sq. km.			
Level	5 year	25 year	100 year	
Low	2.95	2.59	2.79	
Medium	6.19	5.29	5.14	
High	10.50	13.22	13.97	
TOTAL	19.64	21.1	21.9	

Table 38. Areas covered by each warning level with respect to the rainfall scenarios

Of the six identified educational institutions in the Mayo Floodplain, one school was assessed to be highly prone to flooding as it is exposed to the High level flooding for all three rainfall scenarios. This is the Limot Elementary School in Brgy. Don Enrique Lopez. Another institution was found to be also relatively susceptible to flooding, experiencing Low level flooding in the 5- and 25-year return periods, and Medium level flooding in the 100-year rainfall scenario. The educational institutions exposed to flooding are shown in Annex 12.

Only one medical institution was identified in the Mayo Floodplain. The Barangay Mayo Health Center in Brgy. Tagabukid was found to be relatively prone to flooding, having Medium level flooding in all three rainfall scenarios. The medical institutions exposed to flooding are found in Annex 13.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed.

The flood validation survey was conducted on October 11-13, 2016. The flood validation consists of 180 points randomly selected all over the Mayo Floodplain. It has an RMSE value of 1.35.

Figure 76. Mayo Flood Validation Points

Figure 77. Flood map depth vs. actual flood depth

Actual	Modeled Flood Depth (m)						
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	22	18	13	13	1	0	67
0.21-0.50	2	3	17	7	11	0	40
0.51-1.00	2	1	2	5	16	0	26
1.01-2.00	0	0	0	5	9	0	14
2.01-5.00	1	1	0	0	15	12	29
> 5.00	0	0	0	0	0	4	4
Total	27	23	32	30	52	16	180

Table 39. Actual flood vs simulated flood depth at different levels in the Mayo River Basin.

The overall accuracy generated by the flood model is estimated at 28.33%, with 51 points correctly matching the actual flood depths. In addition, there were 64 points estimated one level above and below the correct flood depths while there were 38 points and 27 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 122 points were overestimated while a total of 7 points were underestimated in the modelled flood depths of Mayo.

	No. of Points	%
Correct	51	28.33
Overestimated	122	67.78
Underestimated	7	3.89
Total	180	100

Table 40. Summary of the Accuracy Assessment in the Mayo River Basin Survey

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

ANNEXES

Annex 1. Optech Technical Specification of the Gemini Sensor

Parameter	Specification		
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)		
Elevation accuracy (2)	<5-35 cm, 1 σ		
Effective laser repetition rate	Programmable, 33-167 kHz		
Position and orientation system	POS AV™ AP50 (OEM);		
220-channel dual frequency GPS/GNSS/ Galileo/L-Band receiver	Programmable, 0-75 °		
Scan width (WOV)	Programmable, 0-50°		
Scan frequency (5)	Programmable, 0-70 Hz (effective)		
Sensor scan product	1000 maximum		
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal		
Roll compensation	Programmable, ±5° (FOV dependent)		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)		
Video Camera	Internal video camera (NTSC or PAL)		
Image capture	Compatible with full Optech camera line (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V; 900 W;35 A(peak)		
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg		
Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg	-10°C to +35°C		
Operating temperature	-10°C to +35°C (with insulating jacket)		
Relative humidity	0-95% no-condensing		

	D		C . I	e
lable A-1.1.	Parameters a	ind Specificatio	on of the l	Gemini Sensoi

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint5 Dependent on system configuration
Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. DVE-42

Figure A-2.1. DVE-42

2. DVE-61

. 1997				July 11, 2014
	CERTIFICATION			
whom it may concern: This is to certify that according to t	the records on file in this office, the	requested survey	informa	tion is as follows -
	Province: DAVAO ORIENTAL			
	Station Name: DVE-61			
Interde MINIDANAO	Order: 2nd	Barangay	UPPE	RBLISS
Municipality: MATI (CAPITAL)		MSL Elev	ation:	
	PRS92 Coordinates	. Ellipsoida	I Lat	48 47400 m
Latitude: 6º 57' 39.37336"	Longitude: 126° 13' 22.44550	Ellipsoida	n Hyt	40.47400 111.
	WGS84 Coordinates			100 0000
Latitude: 6º 57' 36.33777"	Longitude: 126º 13' 27.97256	" Ellipsoida	al Hgt:	122.95300 m.
	PTM / PRS92 Coordinates			
Northing: 769826.046 m.	Easting: 635140.8 m.	Zone:	5	
Northing: 770,283.71	UTM / PRS92 Coordinates Easting: 193,120.25	Zone:	52	
	Location Description			
DVE-61 DVE-61" is in Barangay Upper Bliss, rom City Hall of mati, going east tow ign Elem. School, about 10 m "W" o .30x0.30x1.0 m. concrete monumer	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head at with inscription "DVE-61 2007 NA	reach the station located at the cer of 4" copper nail e MRIA".	travel for the of t mbedd	or about 2.5 kms. he playground of ed in a
DVE-61 DVE-61" is in Barangay Upper Bliss, or City Hall of mati, going east tow fign Elem. School, about 10 m "W" of .30x0.30x1.0 m. concrete monumer tequesting Party: UP TCAGP / En 'upose: Reference DR Number: 8796507 A '.N.:	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head at with inscription "DVE-61 2007 NA gr. Christopher Cruz	reach the station located at the cer of 4" copper nail e MRIA". RUEL DM. BE rector, Mabping A	travel for inter of t mbedd	or about 2.5 kms. he playground of ed in a MNSA desy Branch
DVE-61 DVE-61" is in Barangay Upper Bliss, rom City Hall of mati, going east tow ign Elem. School, about 10 m "W" of 30x0.30x1.0 m. concrete monumer Requesting Party: UP TCAGP / En Pupose: Reference DR Number: 8796507 A F.N.: 2014-1586	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head nt with inscription "DVE-61 2007 NA gr. Christopher Cruz Dir	reach the station located at the cer of 4" copper nail e MRIA". RUEL DM. BE rector, Mapping A	travel for the of t mbedd	or about 2.5 kms. he playground of ed in a MNSA desy Branch
DVE-61 DVE-61" is in Barangay Upper Bliss, rom City Hall of mati, going east tow ign Elem. School, about 10 m "W" o .30x0.30x1.0 m. concrete monumer Requesting Party: UP TCAGP / En Pupose: Reference DR Number: 8796507 A r.N.: 2014-1586	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head nt with inscription "DVE-61 2007 NA gr. Christopher Cruz Dir	reach the station located at the cer of 4" copper nail e MRIA". RUEL DM. BE rector, Mapping A	travel for the of t mbedd	or about 2.5 kms. he playground of ed in a MNSA desy Branch
DVE-61 DVE-61" is in Barangay Upper Bliss, rom City Hall of mati, going east tow ign Elem. School, about 10 m "W" o 30x0.30x1.0 m. concrete monumer Requesting Party: UP TCAGP / En Pupose: Reference DR Number: 8796507 A T.N.: 2014-1586	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head at with inscription "DVE-61 2007 NA gr. Christopher Cruz	reach the station located at the cer of 4" copper nail e MRIA". RUEL DM. BE rector, Mapping A	travel for the of t mbedd	The playground of ed in a MNSA desy Branch T
VE-61 DVE-61" is in Barangay Upper Bliss, om City Hall of mati, going east tow ign Elem. School, about 10 m "W" of 30x0.30x1.0 m. concrete monumer Requesting Party: UP TCAGP / En Pupose: Reference OR Number: 8796507 A ".N.: 2014-1586	Location Description Gov. Mati City, Davao Oriental. To ards brgy. Zign, Mati City. Station is of school flagpole. Mark is the head it with inscription "DVE-61 2007 NA gr. Christopher Cruz Dir Dir RIA OFFICES:	reach the station located at the cer of 4" copper nail e MRIA". RUEL DM. BE rector, Mapping A 9 9 0 7 1 1 2 0 Tel. No: (632) 810-4831 to 41 No. (632) 241-3494 to 96	travel fa inter of t imbedd	Ansa Alesy Branch

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. DVE-3088

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-3088 DVE- 42 (B1)	DVE-42	DVE-3088	Fixed	0.001	0.002	150*37'05"	8.200	-0.026
DVE-3088 DVE- 42 (B2)	DVE-42	DVE-3088	Fixed	0.001	0.002	150*36'35"	8.199	-0.029
DVE-3088 DVE- 42 (B3)	DVE-42	DVE-3088	Fixed	0.001	0.002	150*40'50"	8.200	-0.031
DVE-42 DVE- 3088 (B4)	DVE-42	DVE-3088	Fixed	0.001	0.001	150*40'53"	8.203	-0.034
DVE-42 DVE- 3088 (B6)	DVE-42	DVE-3088	Fixed	0.001	0.002	150*41'28"	8.204	-0.032

Processing Summary

Acceptance Summary

Processed	Passed	Flag	Þ	Fail	Þ
6	5	0		0	

Vector Compone	ents (Mark to Mark)

From:	DVE-42					
	Grid		Local	Glo		ilobal
Easting	864582.336	m Latitude	N6*58'54.82726"	Latitude		N6*58'51.79294"
Northing	772975.574	m Longitude	E126*17'56.05259	Longitude		E126*18'01.57690"
Elevation	15.606	m Height	6.395 m	Height		81.024 m
To:	DVE-3088					
	Grid		Local		G	ilobal
Easting	864586.414	m Latitude	N6*58'54.59466'	Latitude		N6*68'61.66036"
Northing	772968.449	m Longitude	E126*17'56.18366"	Longitude		E126*18'01.70798*
Elevation	15.581	m Height	6.369 m	Height		80.998 m
Vector						
ΔEasting	4	078 m NS Fwd Azin	muth	150*37'05"	ΔX	-3.741 m
ΔNorthing	-7.	126 m Ellipsoid Dist	L	8.200 m	ΔY	-1.703 m
ΔElevation	.0.	025 m Alteight		-0.026 m	ΔZ	-7.095 m

Standard Errors

Vector errors:						
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0*00'12"	σΔX	0.001 m	
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔY	0.001 m	
σ ΔElevation	0.001 m	σ ΔHeight	0.001 m	σΔΖ	0.000 m	

2. DVE-3118

Table A-3.2. DVE-3118

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
DVE-61 DVE- 3118 (B1)	DVE-61	DVE-3118	Fixed	0.017	0.050	222°57'30"	8321.258	81.505
DVE-61 DVE- 3118 (B2)	DVE-61	DVE-3118	Fixed	0.013	0.040	222°57'30"	8321.247	81.572
DVE-61 DVE- 3118 (B3)	DVE-61	DVE-3118	Fixed	0.017	0.043	222°57'29"	8321.266	81.487

Acceptance Summary

Processed	Passed	Flag 🏱		Fail	Þ
3	3	0		0	

Vector Components (Mark to Mark)

From:	DVE-61	DVE-61					
	Grid	L.	ocal		Gk		obal
Easting	856189.978 m	Latitude	N6°57'39	.37336"	Latitude		N6°57'36.33777"
Northing	770596.911 m	Longitude	E126°13'22	.44550"	Longitude		E126°13'27.97255"
Elevation	57.159 m	Height	4	8.474 m	Height		122.954 m
To: DVE-3118							
	Grid	Local		Global		obal	
Easting	850554.409 m	Latitude	N6°54'21	.10869"	9" Latitude		N6°54'18.08333"
Northing	764461.564 m	Longitude	tude E126°10'17.73141"		l" Longitude		E126°10'23.26402"
Elevation	138.504 m	Height	12	9.979 m	n Height		204.434 m
Vector							
∆Easting	-5635.57	0 m NS Fwd Azimuth	1		222°57'30"	ΔX	4093.802 m
∆Northing	-6135.34	7 m Ellipsoid Dist.			8321.258 m	ΔY	4007.271 m
∆Elevation	81.34	l5 m ∆Height			81.505 m	ΔZ	-6036.086 m

Standard Errors

Vector errors:							
σ∆Easting	0.007 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.015 m		
σ ∆Northing	0.005 m	σ Ellipsoid Dist.	0.006 m	σΔΥ	0.021 m		
σ ΔElevation	0.025 m	σ∆Height	0.025 m	σΔZ	0.006 m		

Aposteriori Covariance Matrix (Meter²)

	x	Y	Z
x	0.0002242317		
Y	-0.0002729544	0.0004576374	
z	-0.0000517483	0.0000689019	0.0000341757

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation		
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, DR.ENG	UP-TCAGP		
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP		
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP		
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP		
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP		

Table A-4.1. The LiDAR Survey Team Composition

Senior Science Research JULIE PEARL MARS **UP-TCAGP** Specialist (SSRS) FOR. MA. VERLINA Research Associate (RA) **UP-TCAGP** LiDAR Operation TONGA RA ENGR. LARAH KRISELLE **UP-TCAGP** PARAGAS Ground Survey, Data RA ENGR. KENNETH **UP-TCAGP** Download and Transfer QUISADO PHILIPPINE AIR FORCE Airborne Security TSG. MIKE DIAPANA (PAF) **LiDAR Operation** ASIAN AEROSPACE Pilot CAPT. RAUL CZ SAMAR CORPORATION (AAC) Ш CAPT. BRYAN JOHN AAC DONGUINES

FIELD TEAM

oodplain
0 E]
May
for
Sheet
unsfer
Tra
Data
Annex 5.

DATA TRANSFER SHEET

		BASE STATION(S) ASSESSMENT AND FLICHT PLAN	BASE Base Mar (PNLOG) LOCATION LOCATION		9 NA 7.59 1KB 1KB ALAJEJEJEJA 2. 2. Mittome Rawl7	24 3370C	3 NA 5.08 1KB 1KB K 170.44 2.14/ibome_Raw/7	2 11 23000	2 NM 4.68 tKB 1KB 1KB K	000 ATT	NA R or 1KB 1KB 1KB	9 158/22 634A	7 NA 5.32 1KB 1KB 0 1KB 0 2.4/irborne_Raw(1	376 6364	3 NA 6.49 1KB 1KB 1KB 4 2'Nifome_Ravit	V909 100	7.05 TAU 1X8 8 300 646A			
		FLIGHT	1	in the second	ALAISISISI	COLORIS LE	~	,	v	2		50	c	7	14		80			
		VOED AVAILANT	(00100)		188		EX:		148		108		1KB		1108		EV.			
		(SINON(S)	Bace Info Cost		1108		140		1KB		1KB		1KG		1×0	1	2			
		BASE ST	BASE	(shours)	7.55		5.08		4.68		8.05	20.0	5.32		6.49		1.05			
			CONTRER		N		M		MA		MA		NA.		¥2	-	£			
8			BUNN		16.9		14.3		28.2	2.90/6	69		29.7		6.58	0.00	63.0			
R SHEET		MISSION LOG	FILECASI LOOS		¥		ž		ž		M		\$		\$	5				
Davao Ori		RAW	-	T	4		<		<	ſ	<	T	<	Ť.						
17/08/2014(ľ	906	2	ľ	163 N	163 NA	16 3 MA	16 3 M		74.8 N		285 N	t	174 N	t	279 N	t	212 10	N ARC	202
	F	LOGSTWRN		ſ	366		367		280		188		612	1	200	400				
		KML (swath)		KML (swath)			179/11		119		158/22		376	1	597	500	20			
	L	RA	Output		ž	NN.	-	MA	5		NA		NA		NA					
	L	SENSOR			Cemo	Camin		Gemini		and and a second	Cellino	Camini		Gemini		Gemini				
		MISSION NAME		* 0C F V DOA IOC	WO/TWOONIGT	2BLK79C179A		28LK798180A		A COTOLOU IOC	WYOTOLOVION	PBLK7985A183A		28LK79V184A		2BLK85B185A				
		FLIGHT NO.		733765	70/00/	7339GC		7340GC	Ī	TRACC	Doute l	7346GC		7348GC	Ì	7350GC	1			
-		DATE		AF0C17C1A	ATO I LAN	6/28/2014		6/29/2014		211/2014	LEASIEL	7/2/2014		7/3/2014		7/4/2014				

KILLIE PRIE TO u 11 P. IDA Received by

Figure A-5.1. Transfer Sheet for Mayo Floodplain - A

DATA TRANSFER SHEET 07/08/2014(Davao Oriental - ready) RAW LAS RAW LAS RESIGN LOG BASE STATION(S) OPERATOR FLIGHT PLAN SERVER	SERVER	LOCATION	Z:VairborneRaw	Z:'Airborne Raw	Z:Vairborne Raw	Z:\Airborne Raw	Z:\Airborne_ Raw	Z:\Airborne_	Z:\Airborne_	Z:Vairborne_		
DATA TRANSFER SHEET O7/08/2014(Davao Oriental - ready) MISSION NAME SENSOR RAW LAS LOGS(MB) POS RAW Cod RANGE RANGE DIGITZER BASE STATION(S) OPERATOR FLIGHT PLAN SERVER MISSION NAME SENSOR Output LAS KML (swath) LOGS(MB) POS IMAGES.CLASI FLOGS RANGE DIGITZER BASE RATION(S) (cPLOG) Actual KML LOCATION COLOUCI LAS KML (swath) LOGS(MB) LOGS RANGE DIGITZER BASE RATION(S) CPLOG) Actual KML LOCATION		374/11	406	165/7/14	138	234/9/12	14/17	30/6	139			
		FLIGHT	Actual	4	4	7/3	8/5/4	4/9	5/7	3	3/4	
		OPERATOR	(DOLOG)	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	
		ATION(S)	Base Info (.txt)	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	
		BASE ST	, BASE STATION(S)	9.58	7.68	4.83	4.7	5.8	4.89	4.56	3.42	
		DIGITIZER		NA	NA		NA	NA	NA	NA	NA	
		BANCE		27.7	5.05	20.1	7.95	27.3	12.2	3.47	9.01	
SHEET Ital - ready)		MISSION LOG	LOGS	NA	NA	NA	NA	NA	N.	NA.	NA	
TRANSFER		RAW	IMAGES/CASI	NA	NA	NA	NA	NA	NA	AN	NA	
DATA 07/08/2014		Pre	2	265	79.8	196	188	207	241	158	156	
		COMMON	LoGS(MB)		111	318	244	488	409	68.7	239	
		ILAS	KML (swath)	347/11	406	165/7/14	138	234/9/12	60	30/6	139	
		RAW	Output LAS	NA	NA	NA	NA	ş	MA	NA	NA	
			SENSOR	Gemini	Gemini	Gemini	Gemini	Gemini	Gemini	Gemini	Gemini	
			MISSION NAME	2BLK80AS188A	2BLK8085188B	2BLK80BS189A	2BLK85CS191A	2BLK85V192A	2BLK79D80BV193A	2BLK79E196A	2BLK79ES197A	
			FLIGHT NO.	7356GC	7357GC	7358GC	7362GC	7364GC	7366GC	7372GC	7374GC	
	-		DATE	7/7/2014	7/7/2014	7/8/2014	7/10/2014	7/11/2014	7/12/2014	7/15/2014	7/16/2014	

Received from Name TIN AN Position LA

AMATINA WIT 3 Signature

Received by

Name Position Signatur

7/82/6 JOIDA F. PRIETO

i,

Figure A-5.2. Transfer Sheet for Mayo Floodplain - B

1. Flight Log for Mission 7320GC

Ч.

105

.

$\frac{1}{3}$	VIA SALA		6 Aircraft Idantification
1/4 12 Airport of Departure (Airport, Gty/Provin MH/ 14 Engine Off: 1.5 Total Engine Ti 5.4		2 Alforatt Type: Cestinal 2000	b Aliciari luenuncauon:
14 Engine Off: 16:4% 15 Total Engine Ti $3 \neq 11$	ce): 12 Airport of Arrival	(Airport, City/Province):	
	ne: 16 Take off:	17 Landing:	18 Total Flight Time:
nplota BLK84C (vithout	(1540		
tions:			
/			
t Aptroved by Acquisition and Catified by Acquisition and Catified by Eignafure overprinted Name inted Name (PAP Representative)	Pilot-in-comm	and Convinity Printed Name	Lidar Operator LK Porgas Signaturgover Printed Name

106

Ŷ

		Wa Mission Name: zavy	4 + OV /4244 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification:	66
Pilot: C. SAMAK 8 Co-Pil	ot: B. Dorguine	9 Route: MA	11			
Date: July 11, 2014	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):		
SEngine On: 14 Engl	ne Off: 9:45	15 Total Engine Time: 0+35	16 Take off:	17 Landing:	18 Total Flight Time:	
Weather tair						
Remarks: Complet A BLK	854 and void	11 in BLK 84	a C without	(1547)		
1 Problems and Solutions:						
Acquisition Flight Approved by	Acquir	sition Flight Certified by	Pilot-in-Comm	puet	Lidar Operator	
Signature over Printed Name (End User Representative)	Signat (PAF R	ture over Printed Name tepresentative)	Signature over	Printed Name	Signature over Printed Name	

Figure A-6.4. Flight Log for Mission 7364GC

Annex 7. Flight Status Reports

DAVAO ORIENTAL June 16 - July 16, 2014

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7320GC	BLK84B	2BLK83A84B170A	LK PARAGAS	June 19, 2014	Started with 86B. Moved to 84B due to high terrain (6 lines). Moved to 83A due to clouds (9 lines). *CASI testing at the end of the mission flight
7344GC	BLK84C	2BLK84BCR182A	MV TONGA	July 01, 2014	Encountered abnormal POS behavior. Completed 14 lines. Lines cut due to clouds.
7362GC	BLK85B_ additional	2BLK85CS191A	lk paragas	July 10, 2014	Covered BLK85B at 1200m. Experienced strong head wind.
7364GC	BLK85B_ additional	2BLK85V192A	MV TONGA	July 11, 2014	Covered BLK 86A at 1300m. with voids area in BLK 85B

Table A-7.1.	Flight Status	Report
	0	-1

LAS BOUNDARIED PER FLIGHT

Flight No. : Area: Mission name: Parameters: Scan Angle: 20deg; Area covered: 7320GC BLK84B 2BLK83A84B170A Altitude: 1000 m; Overlap: 40 % 105.391 sq.km.

Scan Frequency: 50Hz;

Figure A-7.1. Swath for Flight No. 7320GC

Flight No. : Area: Mission name: Parameters: Scan Angle: 12 deg; Area covered:

7344GC BLK84C 2BLK84BCR182A Altitude: 1200m; Overlap: 45 % 194.96 sq.km

Scan Frequency: 60Hz;

Figure A-7.2. Swath for Flight No. 7344GC

Flight No. : Area: Mission name: Parameters: Scan Angle: 13 deg; Area covered: 7362GC BLK85B_additional 2BLK85CS191A Altitude: 1200m; Overlap: 40 % 60.6 sq.km

Scan Frequency: 60Hz;

Figure A-7.3. Swath for Flight No. 7362GC

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :7364GCArea:BLK85B_additionalMission name:2BLK85V192AParameters:Altitude: 1200m;Scan Angle: 12 deg/ 20 deg;Overlap: 40 %Area covered:80.6 sq.km

Figure A-7.4. Swath for Flight No. 7364GC

Flight Area Davao Oriental Mission Name Blk85B Additional **Inclusive Flights** 7362G,7364G Range data size 43.2 GB POS 395 MB Image na Transfer date July 28, 2014 **Solution Status** Number of Satellites (>6) Yes PDOP (<3) Yes Baseline Length (<30km) Yes Processing Mode (<=1) Yes Smoothed Performance Metrics(in cm) RMSE for North Position (<4.0 cm) 0.085 RMSE for East Position (<4.0 cm) 1.0 RMSE for Down Position (<8.0 cm) 2.4 Boresight correction stdev (<0.001deg) 0.000237 IMU attitude correction stdev (<0.001deg) 0.0074 GPS position stdev (<0.01m) 0.000612 Minimum % overlap (>25) 42.20% Ave point cloud density per sq.m. (>2.0) 3.63 Elevation difference between strips (<0.20m) Yes Number of 1km x 1km blocks 100 Maximum Height 473.31 m Minimum Height 64.36 m Classification (# of points) Ground 32762250 Low vegetation 26062179 Medium vegetation 36538890 High vegetation 103876886 Building 2730384 Orthophoto No Processed by Engr. Kenneth Solidum, Engr. AnalynNaldo, Engr. Melanie Hingpit

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk85B_Additional

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.5. Image of Data Overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Annex 9. Mayo Model Basin Parameters

Table A-9.1. Mayo Model Basin Parameters

Basin	SCS Cu	irve Number	. Loss	Clark Unit Hydrogi	raph Transform		Rece	ssion Basefle	MC	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W460	20.729	87.447	0	2.1008	47.592	Discharge	0.13446	0.011284	Ratio to Peak	0.02868
W470	30.053	38.323	0	1.4673	33.402	Discharge	0.13802	0.012638	Ratio to Peak	0.027261
W480	2.8737	66	0	0.15795	682.42	Discharge	0.098534	0.000869	Ratio to Peak	0.043019
W490	15.028	66	0	0.10505	46.953	Discharge	0.041906	0.003161	Ratio to Peak	0.043896
W500	21.179	66	0	0.12669	47.514	Discharge	0.030115	0.001747	Ratio to Peak	0.019119
W510	11.44	73.599	0	0.13698	17.791	Discharge	0.041321	0.000903	Ratio to Peak	0.005441
W520	5.3632	35.285	0	0.036303	0.37666	Discharge	0.001134	0.000253	Ratio to Peak	0.003327
W530	17.904	40.851	0	0.15615	63.113	Discharge	0.237818	0.055439	Ratio to Peak	0.31
W540	22.207	53.616	0	0.11542	18.516	Discharge	0.042142	0.011278	Ratio to Peak	0.0125
W550	9.3957	36.679	0	0.15864	29.975	Discharge	0.080999	0.000783	Ratio to Peak	0.001645
W560	23.196	35.338	0	0.16225	12.61	Discharge	0.130829	0.003344	Ratio to Peak	0.011756
W570	8.691	97.696	0	0.12382	96.127	Discharge	0.040348	0.001543	Ratio to Peak	0.042158
W580	8.8546	73.753	0	0.13106	13.875	Discharge	0.052798	0.000516	Ratio to Peak	0.008498
W590	3.822	62.211	0	0.14209	20.322	Discharge	0.067572	0.017892	Ratio to Peak	0.094858
W600	49.233	60.847	0	0.72783	34.053	Discharge	0.10564	0.007639	Ratio to Peak	0.13943
W610	2.36	66.068	0	0.10861	13.119	Discharge	0.03593	0.023873	Ratio to Peak	0.018362
W620	12.198	57.499	0	0.13802	36.543	Discharge	0.058984	0.005114	Ratio to Peak	0.02868
W630	12.424	91.992	0	0.097509	2.6029	Discharge	0.034415	0.000345	Ratio to Peak	0.001548
W640	17.617	65.036	0	0.0986	3.9405	Discharge	0.024706	0.000364	Ratio to Peak	0.00158
W650	13.414	42.675	0	0.12973	66.795	Discharge	0.1265	0.019578	Ratio to Peak	0.0618
W660	21.357	37.503	0	0.030484	0.016667	Discharge	0.001312	0.000888	Ratio to Peak	0.013
W670	24.325	37.503	0	0.096453	0.068933	Discharge	0.008798	0.000259	Ratio to Peak	0.011
W680	8.8549	51.821	0	0.15795	0.70068	Discharge	0.096251	0.00082	Ratio to Peak	0.000305

Basin Number	SCS Cu	rve Numbe	r Loss	Clark Unit Hy Transfo	drograph rm		Rece	ssion Baseflo	M	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	THreschold Type	Ratio to Peak
W690	46.509	37.259	0	0.1169	10.457	Discharge	0.031954	0.004528	Ratio to Peak	0.064529
W700	2.7889	71.859	0	0.13268	0.36755	Discharge	0.122426	0.000114	Ratio to Peak	0.000144
W710	20.199	53.743	0	0.15315	31.801	Discharge	0.037121	0.028252	Ratio to Peak	0.003777
W720	98.891	43.592	0	0.13356	1.5559	Discharge	0.048933	0.000572	Ratio to Peak	0.000459
W730	17.862	66.407	0	0.15104	0.4251	Discharge	0.10778	0.000345	Ratio to Peak	0.000217
W740	8.5201	42.607	0	0.16523	43.475	Discharge	0.181356	0.02414	Ratio to Peak	0.21778
W750	8.031	40.333	0	0.070513	0.88694	Discharge	0.05439	0.001465	Ratio to Peak	0.000212
W760	4.6894	68.631	0	0.060041	0.66673	Discharge	0.04565	0.004714	Ratio to Peak	0.000459
W770	2.4646	44.653	0	2.1169	0.34525	Discharge	0.175854	0.000258	Ratio to Peak	0.000212
W780	4.7621	72.887	0	0.095601	0.7242	Discharge	0.047338	0.00279	Ratio to Peak	0.000458
W790	4.8915	76.427	0	0.10597	0.3248	Discharge	0.067478	0.000111	Ratio to Peak	0.000318
W800	5.9774	70.048	0	0.065995	0.52202	Discharge	1.06E-02	0.000171	Ratio to Peak	0.000145
W810	9.3092	38.512	0	0.12093	2.2524	Discharge	4.38E-02	0.00291	Ratio to Peak	0.000459
W820	2.3349	82.118	0	0.63796	1.7592	Discharge	0.13877	0.000171	Ratio to Peak	0.000674
W830	5.4976	66.722	0	0.13554	1.3393	Discharge	0.043451	0.000381	Ratio to Peak	0.000312
W840	5.968	68.664	0	0.084639	1.5795	Discharge	0.024107	0.000586	Ratio to Peak	0.000133
W850	0.10232	66	0	0.034699	1.6554	Discharge	0.000955	0.000172	Ratio to Peak	0.005018
W860	0.0972639	66	0	0.16295	1.3004	Discharge	0.025373	7.57E-05	Ratio to Peak	0.001494
W870	0.20808	85.865	0	0.016667	1.4112	Discharge	0.035965	0.000114	Ratio to Peak	0.000144
W880	0.75083	79.471	0	0.016667	0.83537	Discharge	0.093719	7.57E-05	Ratio to Peak	0.000991
W890	1.851	64.999	0	0.14292	0.80387	Discharge	0.030846	7.57E-05	Ratio to Peak	0.000674
006M	5.6319	66	0	0.14046	1.0867	Discharge	0.016936	0.000387	Ratio to Peak	0.000495

Annex 10. Mayo Model Reach Parameters

	Side Slope	Ч	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ч
	Width	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381	230.5381
	Shape	Trapezoid																					
nel Routing	Manning's n	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053
Muskingum Cunge Chan	Slope	0.12667	0.074397	0.0189	0.18029	0.042634	0.074297	0.061422	0.05174	0.035417	0.18162	0.042381	0.000196	0.029266	0.079639	0.015812	0.028183	0.018293	0.012169	0.014283	0.001	0.12017	0.092725
	Length (m)	1556.4	1381.2	668.7	4499.3	110.71	6226.7	419.71	3411.9	1859.9	1617.8	5351.9	590.42	4278.2	4662.2	4603.5	1279.5	283.14	509.41	3822.7	1754.6	104.85	1101.5
	Time Step Method	Automatic Fixed Interval																					
Reach	Number	R100	R140	R160	R170	R190	R200	R210	R230	R250	R280	R320	R330	R340	R350	R370	R380	R390	R410	R430	R450	R50	R70

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
1	6.974279	126.30853	0.08	0	0.0064		25-Year
2	6.973988	126.307539	0.09	0	0.0081		25-Year
3	6.973413	126.308363	0.11	0.02	0.0081	Pablo/ December 2012	25-Year
4	6.972282	126.3076	0.12	0	0.0144		25-Year
5	6.985238	126.317336	0.37	0.2	0.0289	Pablo/ 2012	25-Year
6	6.984663	126.313777	0.5	0.3	0.04	Pablo/ 2012	25-Year
7	6.984199	126.313981	0.52	0.4	0.0144	Pablo/ 2012	25-Year
8	6.980696	126.314164	0.54	0	0.2916		25-Year
9	6.985014	126.317948	0.67	0.3	0.1369	Pablo/ 2012	25-Year
10	6.987839	126.319441	0.81	0.3	0.2601	Pablo/ December 2012	25-Year
11	6.984549	126.317165	0.71	0.4	0.0961	Pablo/ 2012	25-Year
12	6.984118	126.317511	0.87	0.5	0.1369	Pablo/ 2012	25-Year
13	6.981716	126.315047	0.87	0.1	0.5929	Pablo/ 2012	25-Year
14	6.985821	126.318184	0.97	0.4	0.3249	Pablo/ 2012	25-Year
15	6.97524	126.309945	1.33	0.6	0.5329	Pablo/ December 2012	25-Year
16	6.990538	126.308827	1.22	0	1.4884		25-Year
17	6.991178	126.30924	1.3	0.5	0.64		25-Year
18	6.991321	126.308467	1.37	0.5	0.7569	Pablo/ 2012	25-Year
19	6.97602	126.309794	1.76	1.2	0.3136	Pablo/ 2012	25-Year
20	6.995603	126.305303	1.66	0.2	2.1316	Pablo/ 2012	25-Year
21	6.978806	126.312746	1.98	1	0.9604		25-Year
22	6.977517	126.311134	2.31	1	1.7161	Typhoon/ 2014	25-Year
23	6.988607	126.319967	0.72	0.4	0.1024	Pablo and Yolanda/ 2012 and 2013	25-Year
24	6.989011	126.320332	1	0.5	0.25	Pablo/ 2012	25-Year
25	7.010394	126.324075	0.03	0	0.0009		25-Year
26	7.009526	126.323785	0.03	0	0.0009		25-Year
27	7.011579	126.324253	0.04	0	0.0016		25-Year
28	7.009109	126.323549	0.57	0.4	0.0289	Intense local rainfall/ 2014	25-Year
29	7.008279	126.323624	0.7	0.6	0.01	Typhoon	25-Year
30	7.008929	126.323762	0.7	0.5	0.04	Intense local rainfall/ 2014	25-Year
31	6.997212	126.326405	1.02	0.1	0.8464	Buhawi	25-Year
32	7.001417	126.331303	1.15	0	1.3225		25-Year
33	7.001763	126.331299	1.21	0	1.4641		25-Year
34	7.007067	126.323533	0.86	0.5	0.1296	Buhawi/ 2015	25-Year

Annex 11. Mayo Field Validation Points Table A-11.1. Mayo Field Validation Points

Pơồt	Malidation	Colorglintages	M. 0.0 21	Valied-	0. 6363 04	Ev&ent/aDagte	10 Raÿe ar
Number	10.52169 V	/G\$84) 71755	0,77,1	ation	1.766241	Senyang	Return
77	10. 521 27	12 3.9715 753	0.99	1 1	0.0001	Yolanda	100-Year
3 8	<u>90999788</u>	1223.328052	0.746	1 ⁰ 5	0.169.4696	Yolanda	1050 Yeelsr
3 6	<u>90998519</u>	122337177724	0 .808	0.2	0.1389664	Senyang	1050 Yeelfr
80	60.39823	1263.328637	01.9719	<u> </u>	0.229941	Pable/2015	1250 Year
88	90.97338	1263.3767826	<u>1</u> :38	Ø: 7	9: 6644	Intense local	1050 Yeelfr
82	10.51771	123.71789	0.199	2	3.243601	Senyang	100-Year
39	0.999203	120.328384	1.15	0.8	0.1225	Pablo/ 2015	25-Year
40	7.005789	126.322994	0.98	0.9	0.0064	Bunawi/ 2015	25-Year
41	7.008601	126.324032	1.1/	0.6	0.3249	Typnoon	25-Year
42	6.99546	126.327247	1.34	0.5	0.7056	rainfall/ 2011	25-year
43	6.998247	126.327661	1.55	0	2.4025		25-Year
44	7.001958	126.31637	1.65	1.1	0.3025	Buhawi/ 2013	25-Year
45	7.003001	126.331372	1.76	0	3.0976		25-Year
46	6.996178	126.325119	1.76	1.1	0.4356	Buhawi/ 2011	25-Year
47	6.991995	126.322718	1.94	0.4	2.3716	Yolanda/ 2013	25-Year
48	6.996371	126.326099	2.05	0.55	2.25	Buhawi/ 2013	25-Year
49	7.002776	126.331257	2.05	0	4.2025		25-Year
50	6.991728	126.321509	1.93	0.4	2.3409	Yolanda/ 2013	25-Year
51	7.001004	126.317415	2.04	1.2	0.7056	Buhawi and Yolanda/ 2013	25-Year
52	6.995878	126.325752	2.27	0.3	3.8809	Agaton/ 2014	25-Year
53	7.00202	126.313883	2.45	1.5	0.9025	Buhawi/ 2013	25-Year
54	6.992987	126.323231	2.56	0.6	3.8416	Yolanda and Agaton/ 2013 and 2014	25-Year
55	7.00249	126.331032	2.63	1.5	1.2769		25-Year
56	7.002408	126.312959	2.62	1.5	1.2544	Buhawi/ 2013	25-Year
57	7.005507	126.309492	3.26	2.2	1.1236	Yolanda/ August 14, 2014	25-Year
58	7.004968	126.310067	3.26	2.3	0.9216	Yolanda/ August 14, 2014	25-Year
59	7.000783	126.330052	3.96	3.1	0.7396		25-Year
60	7.002457	126.329689	4.12	3.2	0.8464	Pablo/ December 2012	25-Year
61	7.006717	126.33344	0.07	0	0.0049		25-Year
62	7.00647	126.333385	0.07	0	0.0049		25-Year
63	7.007485	126.331752	0.09	0	0.0081		25-Year
64	7.007568	126.330965	0.08	0	0.0064		25-Year
65	7.006458	126.334067	0.1	0	0.01		25-Year
66	7.006804	126.333065	0.1	0.1	0	Intense local rainfall/ 2014	25-Year
67	7.007161	126.332091	0.1	0	0.01		25-Year
68	7.00724	126.331443	0.11	0	0.0121		25-Year

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
69	7.007136	126.331767	0.11	0	0.0121		25-Year
70	7.006461	126.332877	0.11	0.4	0.0841	Intense local rainfall	25-Year
71	7.00691	126.332607	0.11	0.1	1E-04	Intense local rainfall/ 2014	25-Year
72	7.005501	126.335614	0.12	2.1	3.9204	Typhoon/ 2013	25-Year
73	7.006637	126.332471	0.12	0.3	0.0324	Intense local rainfall	25-Year
74	7.004846	126.335627	0.13	0.51	0.1444	Intense local rainfall	25-Year
75	7.005123	126.335483	0.18	0.51	0.1089	Intense local rainfall	25-Year
76	7.005008	126.336078	0.22	0	0.0484		25-Year
77	7.005301	126.335821	0.22	0	0.0484		25-Year
78	7.004637	126.335804	0.22	0.51	0.0841	Intense local rainfall	25-Year
79	7.005772	126.33507	0.26	0.1	0.0256		25-Year
80	7.005577	126.336093	0.29	2.1	3.2761	Typhoon/ 2013	25-Year
81	7.006102	126.335029	0.3	0.1	0.04		25-Year
82	7.005529	126.333257	0.31	0	0.0961		25-Year
83	7.005008	126.335015	0.33	0	0.1089		25-Year
84	7.005284	126.334964	0.35	0.1	0.0625	Intense local rainfall	25-Year
85	7.00631	126.334353	0.37	0	0.1369		25-Year
86	7.00541	126.334139	0.4	0.1	0.09	Intense local rainfall	25-Year
87	7.005241	126.333792	0.43	0.1	0.1089	Intense local rainfall	25-Year
88	7.005434	126.334801	0.4	0.1	0.09	Intense local rainfall	25-Year
89	7.004533	126.335459	0.47	0.1	0.1369	Intense local rainfall	25-Year
90	7.003705	126.334729	0.45	0.5	0.0025	Intense local rainfall/ 2015	25-Year
91	7.005601	126.334854	0.43	0.1	0.1089		25-Year
92	7.004112	126.335067	0.46	0.5	0.0016	Intense local rainfall/ October 2016	25-Year
93	7.005133	126.334563	0.45	0.1	0.1225	Intense rainfall	25-Year
94	7.005268	126.334336	0.47	0.1	0.1369	Intense local rainfall	25-Year
95	7.005345	126.334621	0.45	0	0.2025		25-Year
96	7.005621	126.33449	0.5	0.1	0.16	Intense local rainfall	25-Year

Point Number	Validation (in V	Coordinates VGS84)	Model Var (m)	Valid- ation Points	Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
97	7.00582	126.334648	0.53	0	0.2809		25-Year
98	7.004128	126.334891	0.61	0.41	0.04	Intense local rainfall/ October 2016	25-Year
99	7.004063	126.334629	0.64	0.5	0.0196	Intense local rainfall/ 2015	25-Year
100	7.004149	126.334814	0.64	0.41	0.0529	Intense local rainfall/ October 2016	25-Year
101	7.004086	126.333803	0.86	0.33	0.2809	Yolanda and Intense rainfall/ 2014	25-Year
102	7.004556	126.33513	0.71	0	0.5041		25-Year
103	7.004247	126.334462	0.76	0.5	0.0676	Intense local rainfall/ October 2016	25-Year
104	7.004314	126.335304	0.75	0	0.5625		25-Year
105	7.00433	126.335092	0.76	0	0.5776		25-Year
106	7.004782	126.334615	0.81	0	0.6561		25-Year
107	7.004369	126.33526	0.79	0	0.6241		25-Year
108	7.004296	126.334539	0.82	0.5	0.1024	Intense local rainfall/ October 2016	25-Year
109	7.004373	126.335151	0.83	0	0.6889		25-Year
110	7.004443	126.335094	0.85	0	0.7225		25-Year
111	7.004398	126.335003	0.85	0	0.7225		25-Year
112	7.00434	126.334246	0.97	0	0.9409		25-Year
113	7.004531	126.334663	0.99	0	0.9801		25-Year
114	7.00472	126.334518	1.06	0	1.1236		25-Year
115	7.004555	126.33426	1.1	0	1.21		25-Year
116	7.004647	126.334447	1.1	0	1.21		25-Year
117	7.00451	126.334157	1.11	0	1.2321		25-Year
118	7.006501	126.286855	0.04	0	0.0016		25-Year
119	7.00771	126.285747	0.07	0	0.0049		25-Year
120	6.997975	126.298552	1.95	0.5	2.1025	Intense local rainfall/ 2013	25-Year
121	7.01158	126.29328	2.33	0.5	3.3489	Pablo/ 2012	25-Year
122	6.998382	126.298359	2.34	1.1	1.5376	Typhoon/ 2005	25-Year
123	6.998051	126.299228	2.29	0.5	3.2041	Intense local rainfall/ 2013	25-Year
124	7.011619	126.291531	2.42	0.5	3.6864		25-Year
125	6.999096	126.298105	2.49	0.95	2.3716	Upstream Rainfall/ 2014- 2015	25-Year

Point Number	Validation Coordinates (in WGS84)		alidation Coordinates Model Valid- Erro (in WGS84) Var ation (m) Points		Error	Event/Date	Rain Return / Scenario
	Lat	Long		(m)			
126	6.998988	126.298413	2.5	0.95	2.4025	Upstream Rainfall/ 2014- 2015	25-Year
127	6.998882	126.298181	2.56	0.95	2.5921	Upstream Rainfall/ 2014- 2015	25-Year
128	6.998706	126.298596	2.59	0.95	2.6896	Upstream Rainfall/ 2014- 2015	25-Year
129	6.998778	126.298394	2.64	0.95	2.8561	Upstream Rainfall/ 2014- 2015	25-Year
130	7.013906	126.28712	2.83	0.4	5.9049		25-Year
131	7.010927	126.2939	2.8	0.4	5.76	Yolanda/ 2013	25-Year
132	7.014457	126.287727	2.97	0.5	6.1009	Intense local rainfall/ 2015	25-Year
133	7.013536	126.290221	2.85	2.1	0.5625		25-Year
134	7.009008	126.294734	3.68	0.62	9.3636	Intense local rainfall/ September 2012	25-Year
135	7.010779	126.294688	3.5	2.5	1		25-Year
136	7.015512	126.291201	3.64	2.5	1.2996		25-Year
137	7.012633	126.29384	3.73	2.5	1.5129		25-Year
138	7.009816	126.296399	3.78	2.5	1.6384		25-Year
139	7.00169	126.298331	3.86	2.5	1.8496		25-Year
140	7.012455	126.294389	5.93	2.5	11.7649		25-Year
141	7.00916	126.298705	5.93	2.5	11.7649		25-Year
142	7.011186	126.295793	5.87	3.5	5.6169		25-Year
143	7.011367	126.295165	5.95	3.5	6.0025		25-Year
144	7.012036	126.294511	6.01	3.5	6.3001		25-Year
145	7.011468	126.294653	6.02	3.5	6.3504		25-Year
146	7.010536	126.297667	5.91	3.5	5.8081		25-Year
147	7.015661	126.294309	6.06	3.5	6.5536		25-Year
148	7.018222	126.282032	0.04	0	0.0016		25-Year
149	7.017187	126.282539	0.04	0	0.0016		25-Year
150	7.017831	126.282912	0.03	0	0.0009		25-Year
151	7.022283	126.284617	3.27	0.6	7.1289	Intense local rainfall/ 2015	25-Year
152	7.020535	126.286512	3.29	0.5	7.7841	Intense local rainfall/ 2013	25-Year
153	7.019901	126.28644	3.37	0.5	8.2369	Yolanda/ 2013	25-Year
154	7.022067	126.284877	3.44	0.6	8.0656	Intense local rainfall/ 2015	25-Year

Point Number	Validation (in V	Validation Coordinates (in WGS84)		ModelValid-ErrorEvent/DateVaration(m)Points		ModelValid-ErroVaration(m)Points	Event/Date	Rain Return / Scenario
	Lat	Long		(m)				
155	7.020874	126.286301	3.47	0.5	8.8209	Agaton/ January 2014	25-Year	
156	7.015138	126.289108	3.4	0.5	8.41	Intense local rainfall/ 2013	25-Year	
157	7.020733	126.285882	3.54	0.9	6.9696	Agaton/ 2014	25-Year	
158	7.022895	126.284289	3.59	0.6	8.9401	Intense local rainfall/ 2015	25-Year	
159	7.017107	126.288294	3.6	0.9	7.29	Intense local rainfall/ 2015	25-Year	
160	7.02005	126.285465	3.73	0.9	8.0089	Intense local rainfall/ 2015	25-Year	
161	7.022377	126.282931	3.89	1.5	5.7121	Intense local rainfall/ 2015	25-Year	
162	7.025074	126.282397	4.06	1.5	6.5536	Yolanda & Pablo/ 2012 & 2013	25-Year	
163	7.016235	126.289091	4.24	0.9	11.1556	Intense local rainfall/ 2015	25-Year	
164	7.020525	126.28757	6.07	5	1.1449	Buhawi/ 2011	25-Year	
165	7.025189	126.284351	6.15	5	1.3225		25-Year	
166	7.021992	126.287322	6.15	5	1.3225		25-Year	
167	7.024535	126.285114	6.27	5.5	0.5929		25-Year	
168	7.023099	126.286158	6.32	5.5	0.6724		25-Year	
169	7.020176	126.289283	6.26	5.5	0.5776		25-Year	
170	7.020181	126.28779	6.34	5.5	0.7056		25-Year	
171	7.021901	126.290687	1.17	2	0.6889		25-Year	
172	7.020618	126.291168	1.93	2	0.0049		25-Year	
173	7.023376	126.291234	2.25	2	0.0625		25-Year	
174	7.021703	126.292628	2.73	2	0.5329		25-Year	
175	7.02516	126.286052	3.92	2.5	2.0164		25-Year	
176	7.026591	126.284736	3.95	2.5	2.1025		25-Year	
177	7.026121	126.285063	4.15	2.5	2.7225		25-Year	
178	7.025237	126.286791	4.41	2.5	3.6481		25-Year	
179	7.025757	126.285797	4.48	2.5	3.9204		25-Year	
180	7.020613	126.289644	6.23	4	4.9729		25-Year	

Annex 12. Educational Institutions affected by flooding in Mayo Floodplain

Davao Oriental								
Mati City								
Building Name	Rainfall Scenario							
		5-year	25-year	100-year				
LIMOT ELEMENTARY SCHOOL	Don Enrique Lopez	High	High	High				
LIMOT ELEMENTARY SCHOOL (STAGE)	Don Enrique Lopez	High	High	High				
PAGCOR BUILDING	Don Enrique Lopez							
MAYO NATIONAL HIGH SCHOOL	Tagabakid	Low	Low	Low				
VICENTE ALMARIO SR. MEMORIAL SCHOOL	Tagabakid	Low	Low	Low				
VICENTE ALMARIO SR. MEMORIAL SCHOOL ADMIN BLDG.	Tagabakid	Low	Low	Medium				

Table A-12.1. Educational Institutions in Mati City, Davao Oriental affected by flooding in Mayo Floodplain

Annex 13. Health Institutions affected by flooding in Mayo Floodplain

Davao Oriental							
Mati City							
Building Name	Barangay	Rainfall Scenario					
		5-year	25-year	100-year			
BARANGAY MAYO HEALTH CENTER	Tagabakid	Medium	Medium	Medium			

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)