HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Panitian River

University of the Philippines Training Center

for Applied Geodesy and Photogrammetry
University of the Philippines Los Baños

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

E.C. Paringit and E.R. Abucay (eds.) (2017), LiDAR Surveys and Flood Mapping of Panitian River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry - 145pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines, Los Banos Los Banos, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.
Program Leader, Phil-LiDAR 1 Program
University of the Philippines Diliman
Quezon City, Philippines 1101
E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-153-9

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	
LIST OF TABLES	VII
LIST OF ACRONYMS AND ABBREVIATIONSCHAPTER 1: OVERVIEW OF THE PROGRAM AND PANITIAN RIVER	VIII
1.1 Background of the Phil-LIDAR 1 Program	
1.2 Overview of the Panitian River Basin	
CHAPTER 2: LIDAR ACQUISITION IN PANITIAN FLOODPLAIN	
2.1 Flight Plans	
2.2 Ground Base Station	
2.3 Flight Missions	
2.4 Survey Coverage	10
CHAPTER 3: LIDAR DATA PROCESSING FOR PANITIAN FLOODPLAIN	
3.1 Overview of LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	20
3.7 LiDAR Image Processing and Orthophotograph Rectification	23
3.8 DEM Editing and Hydro-Correction	24
3.9 Mosaicking of Blocks	25
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	27
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE PANITIAN RIVER BAS	SIN 32
4.1 Summary of Activities	32
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 Bathymetric Survey	
CHAPTER 5: FLOOD MODELING AND MAPPING	52
5.1 Data used in Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated outflow hydrographs and discharge values for different rainfall return period	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis Model Simulation	
5.9 Flood Hazard and Flow Depth Map	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	
ANNEXES	
Annex 1. Optech Technical Specification of the Sensor	
Annex 2. NAMRIA Certificates of Reference Points Used	
Annex 3. Baseline Processing Report of Reference Points Used	
Annex 4. The LiDAR Survey Team Composition	
Annex 5. Data Transfer Sheet For Panitian Floodplain	
Annex 6. Flight Logs	
Annex 7. Flight Status	
Annex 8. Mission Summary Reports	104

Annex 9. Panitian Model Basin Parameters	129
Annex 10. Panitian Model Reach Parameters	
Annex 11. Panitian Field Validation Data	134
Annex 12 Phil-LIDAR 1 LIPLR Team Composition	137

LIST OF FIGURES

Figure 1. I	Map of Panitian River Basin (in brown)	. 2
Figure 2. F	Flight plans and base stations used for Panitian Floodplain	.4
Figure 3.	GPS set-up over PLW-137 as recovered at the top of the ridge along national highway in Br	gy
	Ipilan, Quezon, Palawan (a) and NAMRIA reference point PLW-137 (b) as recovered by the fie	ماد
	team	. 5
Figure 4.	GPS set-up over QZT-1 located at front yard of the Purok president's house, Purok Bagong Sil	(at
	in Sitio Bugon, Barangay Malatgao, Municipality of Quezon along Quezon-Punta Baja (Riz	al
	highway.	. 6
Figure 5.	GPS set-up over QZT-2 located at front of the purok waiting shed, Purok Bagong Sikat in Si	tic
	Bugon, Barangay Malatgao, Municipality of Quezon along Quezon-Punta Baja (Rizal) highway	.7
Figure 6. 0	GPS set-up over PLW-3058 on the ground inside Caranasan Elementary School, Española, Palaw	ar
	(a) and NAMRIA reference point PLW-3058 (b) as recovered by the field team	.8
Figure 7.	Actual LiDAR data acquisition for Panitian Floodplain	11
Figure 8. 9	Schematic Diagram for Data Pre-Processing Component	12
Figure 9. 9	Smoothed Performance Metric Parameters of Panitian Flight 3165	13
Figure 10.	Solution Status Parameters of Panitian Flight 3165P.	L4
Figure 11.	Best Estimated Trajectory for Panitian Floodplain	15
Figure 12.	Boundary of the processed LiDAR data over Panitian Floodplain	16
Figure 13.	Image of data overlap for Panitian Floodplain	17
Figure 14.	Pulse density map of merged LiDAR data for Panitian Floodplain	18
Figure 15.	Elevation difference map between flight lines for Panitian Floodplain.	19
Figure 16.	Quality checking for Panitian flight 3165P using the Profile Tool of QT Modeler	20
Figure 17.	Tiles for Panitian Floodplain (a) and classification results (b) in TerraScan	21
Figure 18.	Point cloud before (a) and after (b) classification	21
Figure 19.	The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM	(d)
	in some portion of Panitian Floodplain.	22
Figure 20.	Portions in the DTM of Panitian Floodplain – a paddy field before (a) and after (b) data retriev	al
	a bridge before (c) and after manual editing (d).	24
Figure 21.	Map of Processed LiDAR Data for Panitian Flood Plain.	26
Figure 22.	Map of Panitian Flood Plain with validation survey points in green	28
Figure 23.	Correlation plot between calibration survey points and LiDAR data	29
Figure 24.	Correlation plot between validation survey points and LiDAR data	30
Figure 25.	Map of Panitian Flood Plain with bathymetric survey points shown in blue	31
Figure 26.	Panitian River Survey Extent	32
Figure 28.	GNSS Network covering Panitian River	34
Figure 27.	GNSS base set up, Trimble® SPS 852, at PLW-137, located at the top of a ridge along the Nation	าล
	Highway in Brgy. Ipilan, Narra, Province of Palawan	34
Figure 29.	GNSS receiver set up, Trimble® SPS 882, at PL-689, located at the approach of Malatgao Brid	ge
	in Brgy. Sowangan, Quezon, Province of Palawan	35
Figure 30.	GNSS receiver set up, Trimble® SPS 985, at UP_IWA-1, located at the approach of Iwahig Brid	ge
	in Brgy. Maasin, Quezon, Province of Palawan	35
Figure 31	. GNSS receiver set up, Trimble® SPS 985, at UP_PAN-1, located on the approach of Paniti	ar
	Bridge in Brgy. Malatgao, Quezon, Province of Palawan	
Figure 32.	GNSS receiver set up, Trimble® SPS 985, at UP_IRA-2, located on the side of Iraan Bridge in Br	gy
	Iraan, Rizal, Province of Palawan	36
Figure 33.	Panitian Bridge as seen from the left bank facing downstream	10

Figure 34.	As-built survey of Panitian Bridge	41
Figure 35.	Location Map of Panitian Bridge River Cross-Section survey	42
Figure 36.	Panitian Bridge cross-section diagram	43
Figure 37.	Bridge as-built form of Panitian Bridge	44
Figure 38.	Water-level markings on Panitian Bridge	45
Figure 39.	Validation points acquisition survey set-up for Panitian River	45
Figure 40.	Validation point acquisition survey of Panitian River Basin	46
Figure 41.	Bathymetric survey of ABSD at Panitian River using a Hi-Target™ GNSS Rover Receiver	47
Figure 42.	Bathymetric survey of ABSD at Panitian River using a Hi-Target™ Echo Sounder	47
Figure 43.	Manual bathymetric survey of ABSD at Panitian River using Nikon® Total Station	48
Figure 44.	Gathering of random bathymetric points along Panitian River	48
Figure 45.	Bathymetric survey of Panitian River	49
Figure 46.	Panitian centerline riverbed profile (Upstream)	50
Figure 47.	Panitian riverbed profile	51
Figure 48.	The location map of Panitian HEC-HMS model used for calibration	52
Figure 49.	Cross-Section Plot of Panitian Bridge	53
Figure 50.	Rating curve at Panitian Bridge, Quezon, Palawan	53
Figure 51.	Rainfall and outflow data at Panitian River Basin used for modeling	54
Figure 52.	Location of Puerto Princesa RIDF relative to Panitian River Basin	55
Figure 53.	Synthetic storm generated for a 24-hr period rainfall for various return periods	55
Figure 54.	Soil map of Panitian River Basin used for the estimation of the CN parameter. (Source: DA)	56
Figure 55.	Land cover map of Panitian River Basin used for the estimation of the CN and watershed	lag
	parameters of the rainfall-runoff model. (Source: NAMRIA)	57
Figure 56.	Slope map of Panitian River Basin	58
_	Stream Delineation Map of the Panitian River Basin	
Figure 58.	HEC-HMS generated Panitian River Basin Model.	60
Figure 59.	River cross-section of Panitian River generated through Arcmap HEC GeoRAS tool	61
Figure 60.	Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro-	62
Figure 61.	Outflow Hydrograph of Panitian produced by the HEC-HMS model	
	compared with observed outflow.	63
Figure 62.	Outflow hydrograph at Panitian Station generated using Puerto Princesa RIDF	
	simulated in HEC-HMS	65
Figure 63.	Sample output of Panitian RAS Model	66
Figure 64.	100-year Flood Hazard Map for Panitian Floodplain overlaid in Google Earth imagery	67
Figure 65.	100-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery	68
Figure 66.	25-year Flood Hazard Map for Panitian Floodplain overlaid in Google Earth imagery	69
Figure 67.	25-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery	70
Figure 68.	5-year Flood Hazard Map for Panitian Floodplain overlaid in Google Earth imagery	71
Figure 69.	5-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery	72
Figure 70.	Affected Areas in Quezon, Palawan during 5-Year Rainfall Return Period	73
_	Affected Areas in Quezon, Palawan during 25-Year Rainfall Return Period	
_	Affected Areas in Quezon, Palawan during 100-Year Rainfall Return Period	
Figure 73.	Validation points for 25-year Flood Depth Map of Panitian Floodplain	76
Figure 7/	Flood man depth vs. actual flood depth	77

LIST OF TABLES

Table 1. Flight planning parameters for Pegasus LiDAR system	3
Table 2. Flight planning parameters for Gemini LiDAR system.	3
Table 3. Details of the recovered NAMRIA horizontal control point PLW-137 used as base station	
LiDAR acquisition	5
Table 4. Details of the established horizontal control point QZT-1 used as base station for the acquisition.	
Table 5. Details of the established horizontal control point QZT-2 used as base station for the	
acquisition.	
Table 6. Details of the recovered control point PLW-3058 used as base station for the LiDAR acquisiti	
re-processed coordinates	
Table 7. Details of the recovered NAMRIA vertical control point PL-412 used as base station for the	
acquisition with established coordinates	
Table 8. Ground control points used during LiDAR data acquisition	
Table 9. Flight missions for LiDAR data acquisition in Panitian Floodplain	9
Table 10. Actual parameters used during LiDAR data acquisition.	10
Table 11. List of municipalities and cities surveyed in Panitian Floodplain LiDAR survey	
Table 12. Self-Calibration Results values for Panitian flights.	15
Table 13. List of LiDAR blocks for Panitian Floodplain.	16
Table 14. Panitian classification results in TerraScan.	20
Table 15. LiDAR blocks with its corresponding area.	24
Table 16. Shift Values of each LiDAR Block of Panitian Floodplain.	25
Table 17. Calibration Statistical Measures.	29
Table 18. Validation Statistical Measures	30
Table 19. List of reference and control points used during the survey in Panitian River	33
Table 20. Baseline Processing Report for Panitian River Static Survey	37
Table 21. Control Point Constraints	38
Table 22. Adjusted Grid Coordinates	
Table 23. Adjusted Geodetic Coordinates	39
Table 24. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	40
Table 25. values for Romblon Rain Gauge computed by PAGASA	
Table 26. Range of Calibrated Values for Panitian	63
Table 27. Summary of the Efficiency Test of Panitian HMS Model	
Table 28. Peak values of the Panitian HECHMS Model outflow using the Romblon RIDF 24-hour values	
Table 29. Municipalities affected in Panitian Floodplain	
Table 30. Affected Areas in Quezon, Palawan during 5-Year Rainfall Return Period	
Table 31. Affected Areas in Quezon, Palawan during 25-Year Rainfall Return Period	
Table 32. Affected Areas in Quezon, Palawan during 100-Year Rainfall Return Period	
Table 33. Actual flood vs simulated flood depth at different levels in the Panitian River Basin	
Table 34. Summary of the Accuracy Assessment in the Panitian River Basin Survey	77

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
ВМ	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
LiDAR	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
PPK	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UPLB	University of the Philippines Los Baños		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND PANITIAN RIVER

Enrico C. Paringit, Dr. Eng., Asst. Prof. Edwin R. Abucay, and Ms. Sandra S. Samantela

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the Southern Luzon region. The university is located in Los Baños in the province of Laguna.

1.2 Overview of the Panitian River Basin

Climate Type I and III prevail in the Mindoro, Marinduque, Romblon, and Palawan (MIMAROPA) region and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Panitian River Basin is a 138,570-hectare watershed located in Palawan. The DENR River Basin Control Office (RBCO) states that the Panitian River Basin has a drainage are of 91 km² and an estimated 146 cubic meter (MCM) annual run-off (RBCO, 2015). The Panitian River Basin covers two (2) municipalities in Palawan; namely, the municipalities of Quezon and Sofronio Española. Specifically, the Panitian River Basin covers the barangays of Alfonso XIII, Malatgao, Sowangan, Tagusao in Quezon municipality; and Isumbo, Labog, Panitian and Punang in Sofronio Espanola. The river basin is characterized by 8-18% slope. The river basin has two soil types: Sibul clay and Tapul clay loam. Other areas are still unclassified (rough mountain land). Cultivated area mixed with brushland/grassland dominates the area followed by closed canopy (mature trees covering >50%), coral reef, cropland mixed with coconut plantation, mangrove vegetation, mossy forest and open canopy (mature trees covering <50%).

Meanwhile, its main stem, the Panitian River, is part of the forty-five (45) river systems under the PHIL-LIDAR 1 Program partner State University and College (SUC), University of the Philippines Los Baños. According to the 2015 national census of PSA, a total of 17,995 persons are residing within the immediate vicinity of the river, which is distributed between barangays Alfonso XIII and Malatgao. In addition, the people living within the Panitian River Basin primarily depend on agriculture particularly fishing, tourism, trade, commerce, and mineral extraction (Palawan Knowledge Platform for Biodiversity and Sustainable Development, 2007).

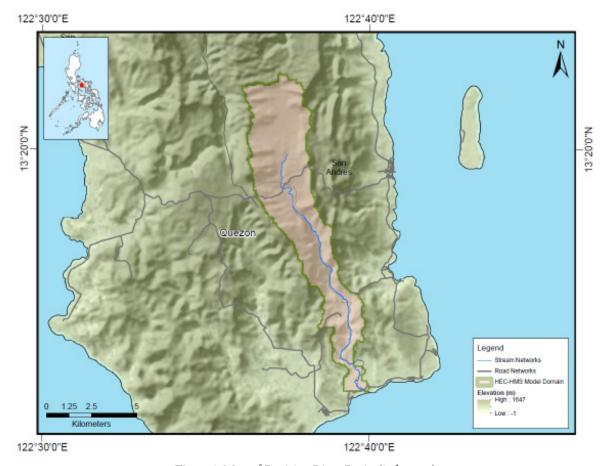


Figure 1. Map of Panitian River Basin (in brown)

Based on the studies conducted by the Mines and Geosciences Bureau, only Alfonso XIII has high flood susceptibility, while Sowangan and Malatgao has low to high flood susceptibility. On the other hand, the remaining the barangays have no flooding issues. The field surveys conducted by the PHIL-LiDAR 1 validation team found that Panitian was affected by flooding in 2013 (Auring) and heavy rains brought by southwest monsoon in August 2016. On August 22, 2016, flooding incidents were reported in barangays Panitian, Alfonso XIII, Pinaglabanan, Maasin, Tabon, Berong, and Quinlongan in the Municipality of Quezon due to heavy rains as per NDRRMC report (National Disaster Risk Reduction and Management Council, 2016). For landslide susceptibility, only Isumbo and Panitian have a range of low to moderate susceptibilities while other barangays have a range of low to high.

CHAPTER 2: LIDAR ACQUISITION IN PANITIAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, and Engr. Gerome Hipolito

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Panitian floodplain in Palawan. These missions were planned for 21 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 1 shows the flight plan for Panitian floodplain.

Table 1. Flight planning parameters for Pegasus LiDAR system.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK42J	1200	30	50	200	30	130	5
BLK42L	1200	30	50	200	30	130	5
BLK42M	1200	30	50	200	30	130	5

Table 2. Flight planning parameters for Gemini LiDAR system.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK42L	600	25	50	100	40	130	5
BLK42M	600	25	50	100	40	130	5
BLK 42eO	850	30	40	125	50	130	5

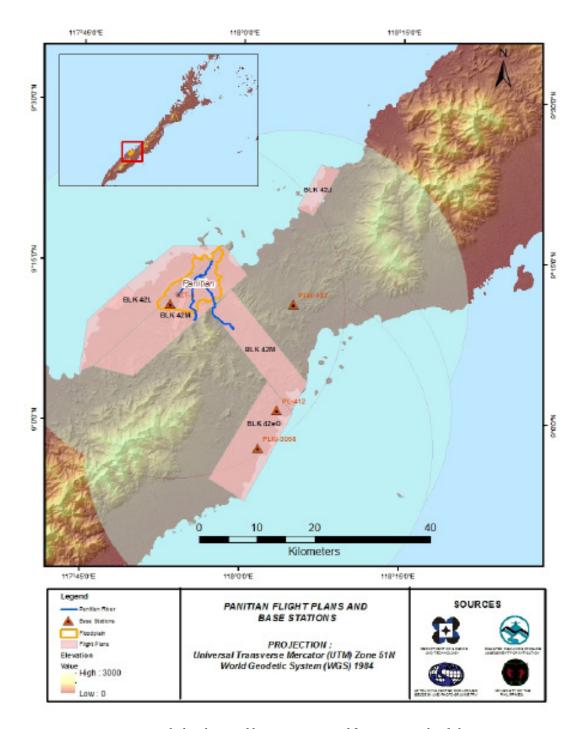


Figure 2. Flight plans and base stations used for Panitian Floodplain

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA ground control points: PLW-137 which is of second (2nd) order accuracy and PLW-3058 which is of third (3rd) order accuracy. Coordinates of PLW-3058 was re-processed to obtain 2nd order accuracy. One (1) NAMRIA benchmark: PL-412 was recovered. The benchmark was used as vertical reference point and was also established as ground control point. The project team also established two (2) ground control points: QZT-1 and QZT-2. The certifications for the NAMRIA reference point is found in Annex 2 while the baseline processing reports for the re-processed and established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (July 12 – 13 and December 5, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Panitian floodplain are shown in Figure 2. The list of team members are shown in Annex 4.

Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 7 show the details about the following NAMRIA control stations and established points while Table 8 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

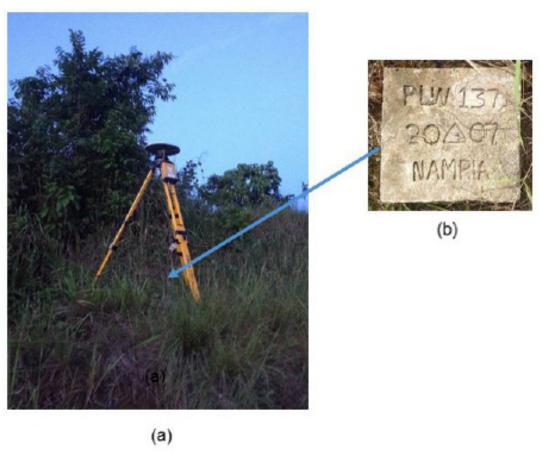


Figure 3. GPS set-up over PLW-137 as recovered at the top of the ridge along national highway in Brgy. Ipilan, Quezon, Palawan (a) and NAMRIA reference point PLW-137 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point PLW-137 used as base station for the LiDAR acquisition.

Station Name	PLW-137		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 11′ 2.95364″ North 118° 4′ 48.04729″ East 35.83359 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 1A (PTM Zone 1A PRS 92)	Easting Northing	453844.056 meters 1015530.347 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 10′ 58.60442″ North 118° 4′ 53.42391″ East 85.64700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 (UTM 50N PRS 92)	Easting Northing	618656.03 meters 1015326.41 meters	

Figure 4. GPS set-up over QZT-1 located at front yard of the Purok president's house, Purok Bagong Sikat in Sitio Bugon, Barangay Malatgao, Municipality of Quezon along Quezon-Punta Baja (Rizal) highway.

Table 4. Details of the established horizontal control point QZT-1 used as base station for the LiDAR acquisition.

Station Name	QZT-1		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 10' 58.89071" North 117° 53' 13.01663" East 9.33800 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 10' 54.52473" North 117° 53' 18.39361" East 85.64700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 (UTM 50N PRS 92)	Easting Northing	597443.484 meters 1015143.507 meters	

Figure 5. GPS set-up over QZT-2 located at front of the purok waiting shed, Purok Bagong Sikat in Sitio Bugon, Barangay Malatgao, Municipality of Quezon along Quezon-Punta Baja (Rizal) highway.

Table 5. Details of the established horizontal control point QZT-2 used as base station for the LiDAR acquisition.

Station Name	QZT-2			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 10′ 57.93286″ North 117° 53′ 13.25970″ East 6.86400 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 10' 53.56696" North 117° 53' 18.63670" East 56.200 meters		
Grid Coordinates, Universal Transverse Mercator Zone 50 (UTM 50N PRS 92)	Easting Northing	597450.975 meters 1015114.108 meters		

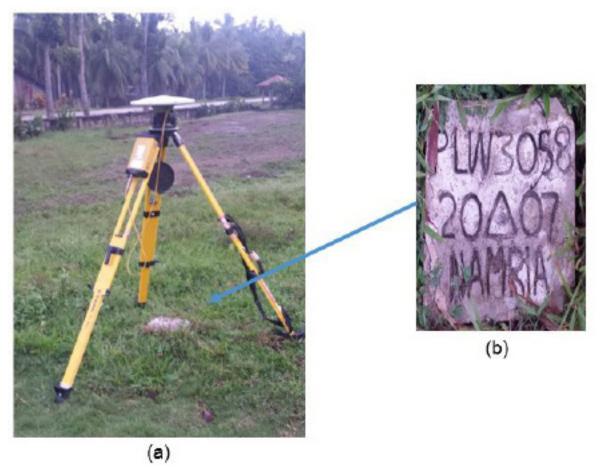


Figure 6. GPS set-up over PLW-3058 on the ground inside Caranasan Elementary School, Española, Palawan (a) and NAMRIA reference point PLW-3058 (b) as recovered by the field team.

Table 6. Details of the recovered control point PLW-3058 used as base station for the LiDAR acquisition with reprocessed coordinates.

Station Name	PL-412		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 57' 34.41144" North 118° 01' 39.35193" East -2.979 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 57' 30.11418" North 118° 01' 44.74872" East 47.176 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 (UTM 50N PRS 92)	Easting Northing	-47,262.005 meters 994,023.989 meters	

Table 7. Details of the recovered NAMRIA vertical control point PL-412 used as base station for the LiDAR acquisition with established coordinates.

Station Name	PLW-3058		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 i	in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 01' 08.45200" North 118° 03' 21.49607" East -0.337 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 01' 04.14225" North 118° 03' 26.88749" East 49.765 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 (UTM 50N PRS 92)	Easting Northing	-44,042.610 meters 100,0578.048 meters	

Table 8. Ground control points used during LiDAR data acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 12, 2015	3161P	1BLK42LMN193A	QZT-1, QZT-2
July 13, 2015	3165P	1BLK42KLM194A	PLW-137, QZT-1, QZT-2
July 13, 2015	3167P	1BLK42KLM194B	PLW-137, QZT-1, QZT-2
December 5, 2015	3573G	2BLK42OWB339A	PL-412, PLW-3058

2.3 Flight Missions

Four (4) missions were conducted to complete the LiDAR data acquisition in Panitian floodplain, for a total of thirteen hours and fifty eight minutes (13+58) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

Table 9. Flight missions for LiDAR data acquisition in Panitian Floodplain.

				Area	Area		Flying Hours	
Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Surveyed within the Floodplain (km2)	Surveyed Outside the Floodplain (km2)	No. of Images (Frames)	Hr	Min
12-Jul-15	3161P	347.69	291.21	62.53	228.68	710	3	33
13-Jul-15	3165P	347.69	251.76	25.63	226.13	583	4	14
13-Jul-15	3167P	28.55	79.92	18.62	61.3	103	2	18
5-Dec-15	3573G	146.39	111.05	8.13	102.92	NA	3	53
TOTA	L	870.32	733.94	114.91	619.03	1,396	13	58

Table 10. Actual parameters used during LiDAR data acquisition.

Flight Number	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
3161P	1200, 1000	30	50	200	25	130	5
3165P	1200, 800	30	50	200	25	130	5
3167P	1200	30	50	200	25	130	5
3573G	600, 850	25, 30	50, 40	100, 125	40, 50	130	5

2.4 Survey Coverage

Panitian floodplain is located in the province of Palawan, with majority of the floodplain situated within the municipality of Quezon. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Panitian floodplain is presented in Figure 7.

Table 11. List of municipalities and cities surveyed in Panitian Floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Quezon	917.97	450.06	49.0%
	Sofronio Espanola 477.50		209.77	43.9%
Palawan	Rizal	980.59	58.52	6.0%
	Brooke's Point	893.39	27.55	3.1%
	Narra	831.19	1.84	0.2%
TOTAL		4100.64	747.74	18.23%

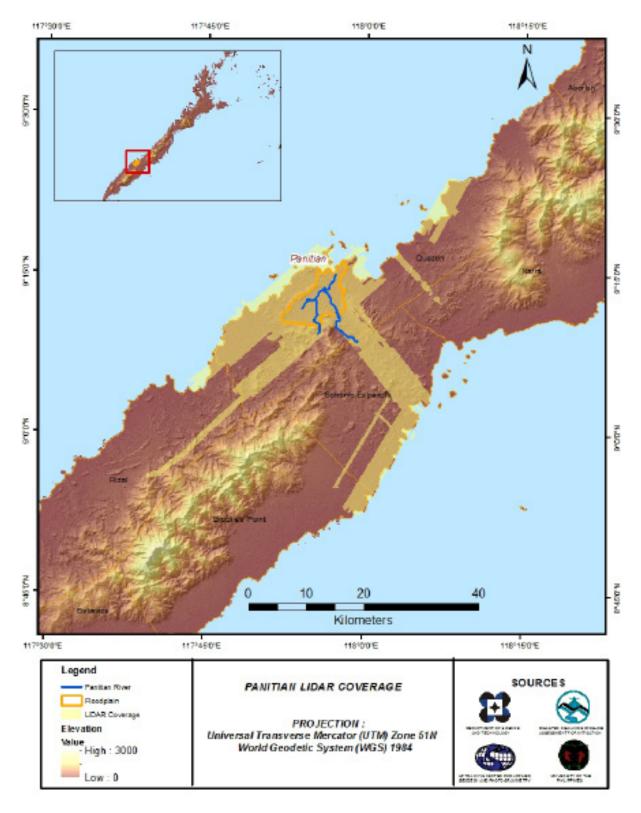


Figure 7. Actual LiDAR data acquisition for Panitian Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING FOR PANITIAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Angelo Carlo B. Bongat, Engr. Ma. Ailyn L. Olanda, Alex John B. Escobido, Marie Denise V. Bueno, Engr. Regis R. Guhiting, and Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

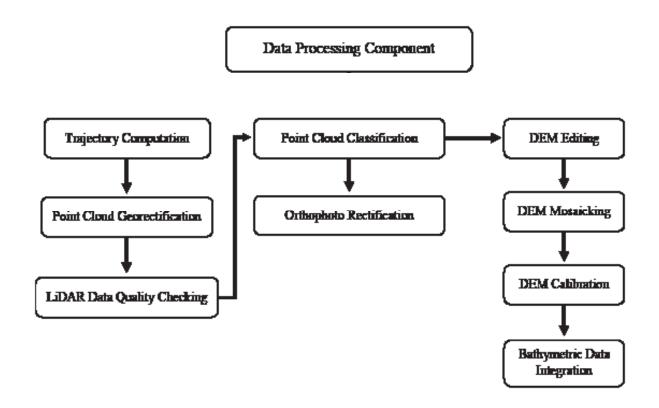


Figure 8. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Panitian floodplain can be found in Annex 5. Missions flown during the first survey conducted on July 2015 and second survey conducted on November 2015 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Pegasus and Gemini system respectively over Municipality Quezon, Palawan.

The Data Acquisition Component (DAC) transferred a total of 84.76 Gigabytes of Range data, 802 Megabytes of POS data, 39.39 Megabytes of GPS base station data and 83.03 gigabytes of raw image data to the data server on December 17, 2015. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Panitian was fully transferred on January 05, 2016 as indicated on the Data Transfer Sheets for Panitian floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3165P, one of the Panitian flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 12, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

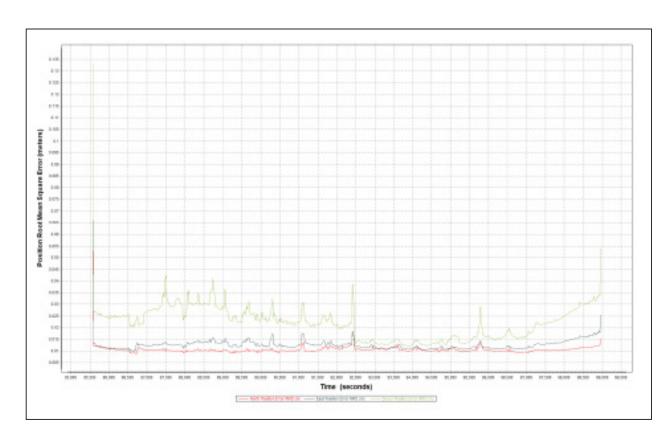


Figure 9. Smoothed Performance Metrics of Panitian Flight 3165.

The time of flight was from 85,500 seconds to 99,000 seconds, which corresponds to morning of July 13, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.80 centimeters, the East position RMSE peaks at 1.80 centimeters, and the Down position RMSE peaks at 3.80 centimeters, which are within the prescribed accuracies described in the methodology.

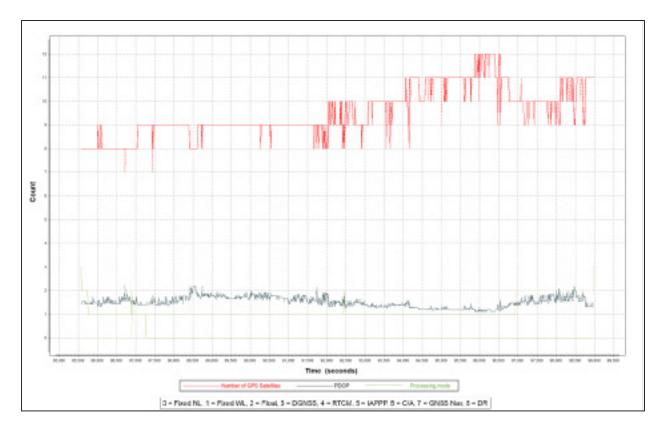


Figure 10. Solution Status Parameters of Panitian Flight 3165P.

The Solution Status parameters of flight 3165P, one of the Panitian flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down below 7. Majority of the time, the number of satellites tracked was between 8 and 11. The PDOP value also did not go above the value of 3, which still indicates optimal GPS geometry. The processing mode stayed at the value of 0 for almost the entire survey time with some parts up to 1 attributed to the turn performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Panitian flights is shown in Figure 11.

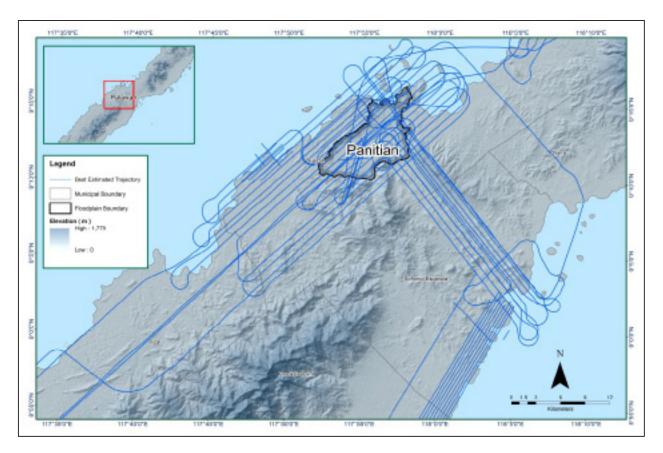


Figure 11. Best Estimated Trajectory for Panitian Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 52 flight lines, 43 of these flight lines contain two channels, since the Pegasus system contains two channels and the remaining nine (9) flight lines contain one channel, since the Gemini system contains only one channel. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Panitian floodplain are given in Table 12.

ParameterAcceptable ValueValueBoresight Correction stdev(<0.001degrees)</td>0.000219IMU Attitude Correction Roll and Pitch Corrections stdev(<0.001degrees)</td>0.000408GPS Position Z-correction stdev(<0.01meters)</td>0.0014

Table 12. Self-Calibration Results values for Panitian flights.

The optimum accuracy is obtained for all Panitian flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Panitian Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

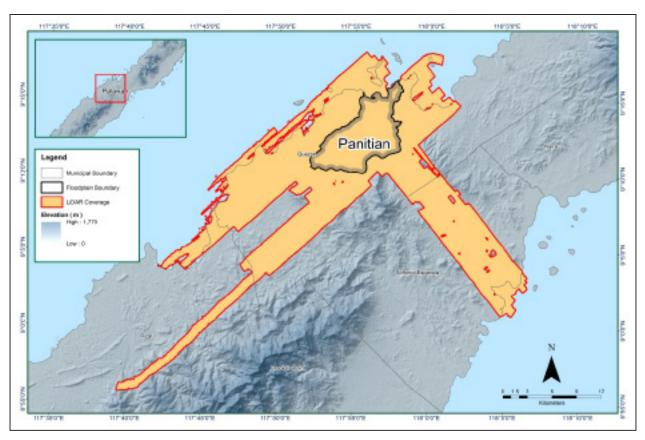


Figure 12. Boundary of the processed LiDAR data over Panitian Floodplain

The total area covered by the Panitian missions is 528.92 sq.km that is comprised of four (4) flight acquisitions grouped and merged into five (5) blocks as shown in Table 13.

Table 13. List of LiDAR blocks for Panitian Floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Polouron PH/421	3161P	107.06
Palawan_Blk42L	3165P	197.06
	3161P	
Palawan_Blk42M	3165P	184.09
	3167P	
Palawan_Blk42M_supplement	3165P	124.74
Palawan_Reflights_Blk42L	3573G	11.54
Palawan_Reflights_Blk42M	3573G	11.49
TOTAL		528.92

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus system employs two channels and the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

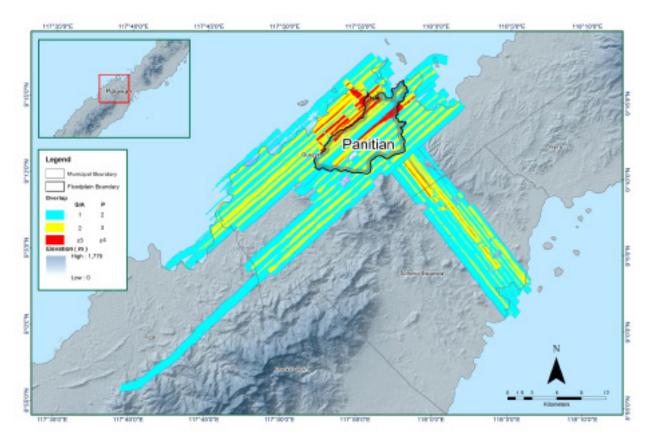


Figure 13. Image of data overlap for Panitian Floodplain.

The overlap statistics per block for the Panitian floodplain can be found in Annex B-1. Mission Summary Reports. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 32.26% and 41.20% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Panitian floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.64 points per square meter.

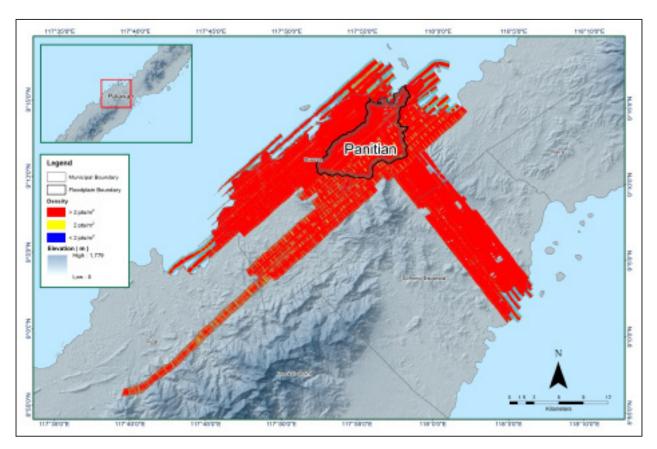


Figure 14. Pulse density map of merged LiDAR data for Panitian Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

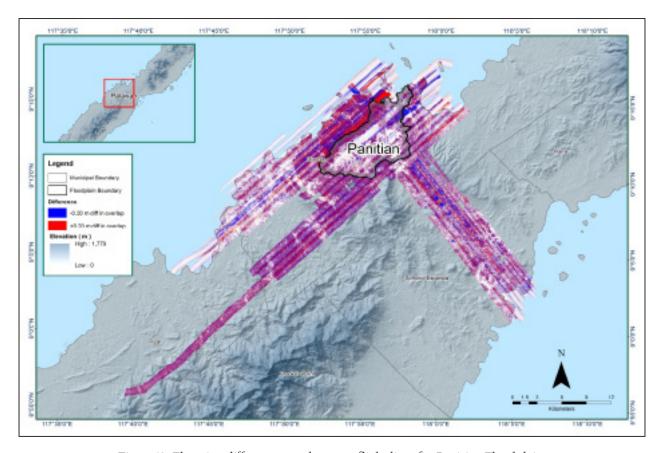


Figure 15. Elevation difference map between flight lines for Panitian Floodplain.

A screen capture of the processed LAS data from a Panitian flight 3165P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed blue line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

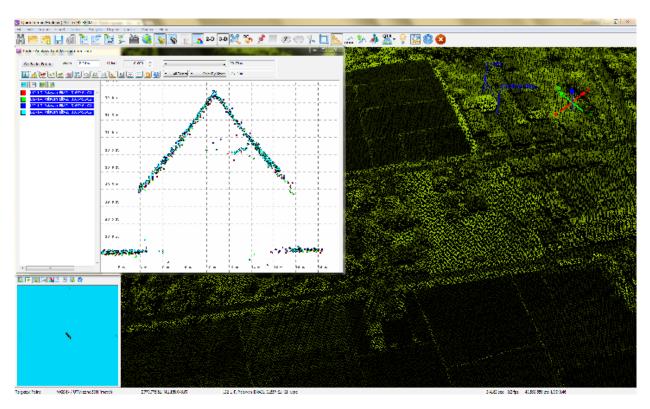


Figure 16. Quality checking for Panitian flight 3165P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	218,494,905
Low Vegetation	156,518,247
Medium Vegetation	326,439,548
High Vegetation	1,347,288,813
Building	25,095,355

Table 14. Panitian classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Panitian floodplain is shown in Figure 17. A total of 480 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 284.36 meters and 42.28 meters respectively.

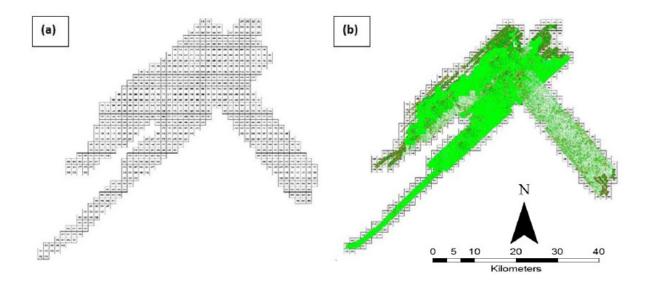


Figure 17. Tiles for Panitian Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

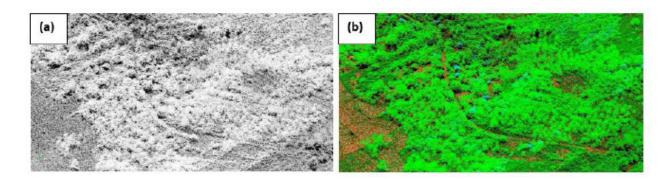


Figure 18. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

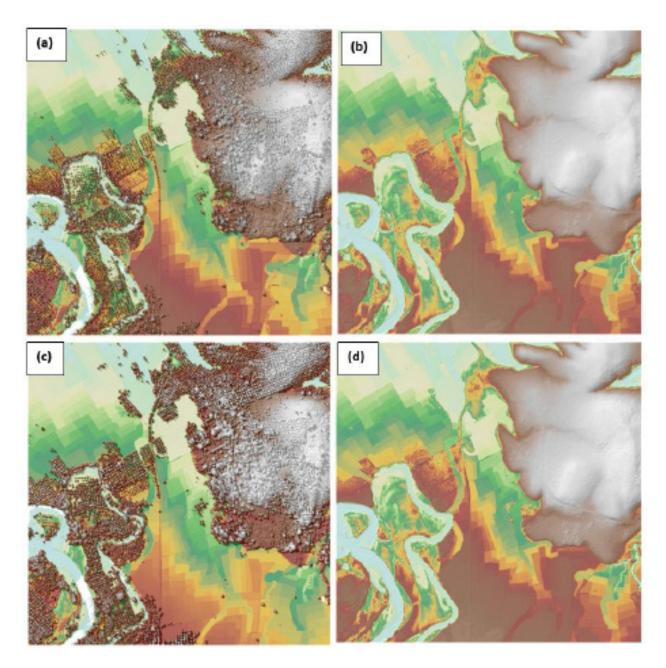


Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Panitian Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Panitian floodplain.

3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for Panitian floodplain. These blocks are composed of Palawan and Palawan Reflights blocks with a total area of 528.92 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Palawan_Blk42L	197.06
Palawan_Blk42M	184.09
Palawan_Blk42M_supplement	124.74
Palawan_Reflights_Blk42L	11.54
Palawan_Reflights_Blk42M	11.49
TOTAL	528.92 sq.km

Table 15. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 22. The rice field or fishpond embankment (Figure 22a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 22b) to allow the correct flow of water. The bridge (Figure 22c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 22d) in order to hydrologically correct the river.

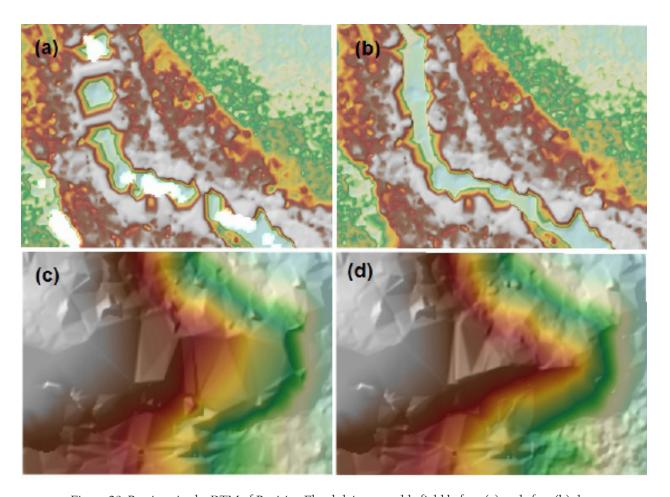


Figure 20. Portions in the DTM of Panitian Floodplain – a paddy field before (a) and after (b) data retrieval; a bridge before (c) and after manual editing (d).

3.9 Mosaicking of Blocks

Palawan Block 42Aa was used as the reference block at the start of mosaicking because it was the first block mosaicked to the larger DTM of West Coast Palawan. Upon inspection of the blocks mosaicked for the Panitian floodplain, it was concluded that the elevation of the DTM for all of the blocks needed adjustment before merging. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Panitian floodplain is shown in Figure 23. It can be seen that the entire Panitian floodplain is 100% covered by LiDAR data.

Table 16. Shift Values of each LiDAR Block of Panitian floodplain.

Mission Blocks	Shift Values (meters)			
	х	У	z	
Palawan_Blk42L	0.00	0.00	6.91	
Palawan_Blk42M	0.00	0.00	6.85	
Palawan_Blk42M_supplement	0.00	0.00	7.04	
Palawan_Reflights_Blk42L	0.00	0.00	6.42	
Palawan_Reflights_Blk42M	0.00	0.00	7.03	

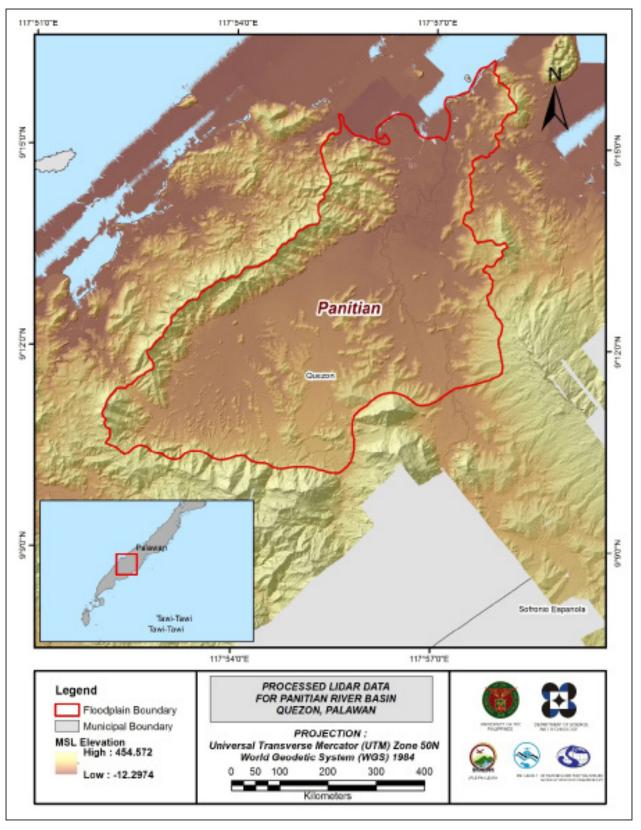


Figure 21. Map of Processed LiDAR Data for Panitian Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Panitian to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 2,654 survey points were used for calibration and validation of Panitian LiDAR data. Random selection of 80% of the survey points, resulting to 2,126 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 11.28 meters with a standard deviation of 0.20 meters. Calibration for Panitian LiDAR data was done by adding the height difference value, 11.28 meters, to Panitian mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

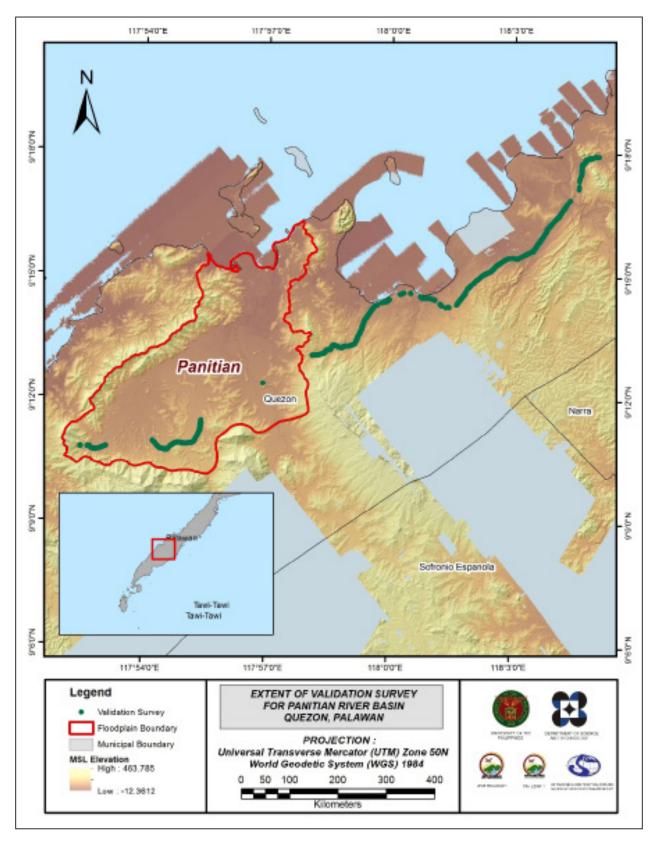


Figure 22. Map of Panitian Flood Plain with validation survey points in green.

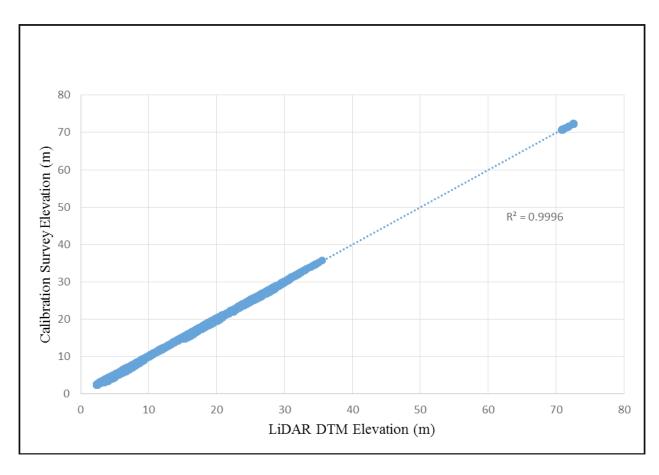


Figure 23. Correlation plot between calibration survey points and LiDAR data.

Table 17. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)
Height Difference	11.28
Standard Deviation	0.20
Average	11.28
Minimum	10.88
Maximum	11.68

The remaining 20% of the total survey points, resulting to 528, were used for the validation of calibrated Panitian DTM. The good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.20 meters, as shown in Table 18.

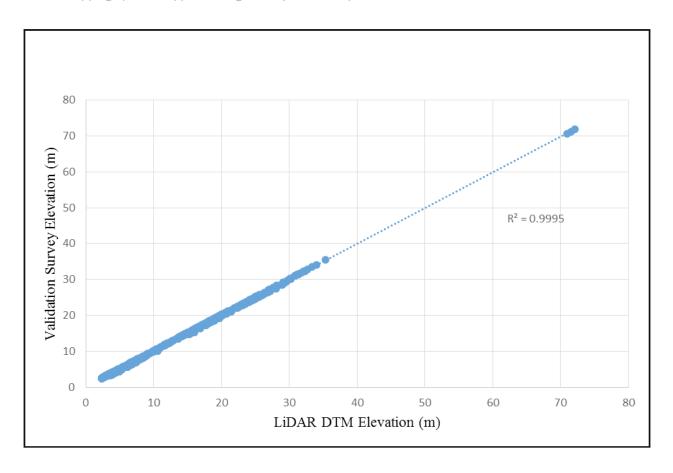


Figure 24. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.20
Standard Deviation	0.20
Average	-0.001
Minimum	-0.40
Maximum	0.40

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathymetric data integration, only centerline was available for Panitian with a total of 1,396 survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.41 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Panitian integrated with the processed LiDAR DEM is shown in Figure 27.

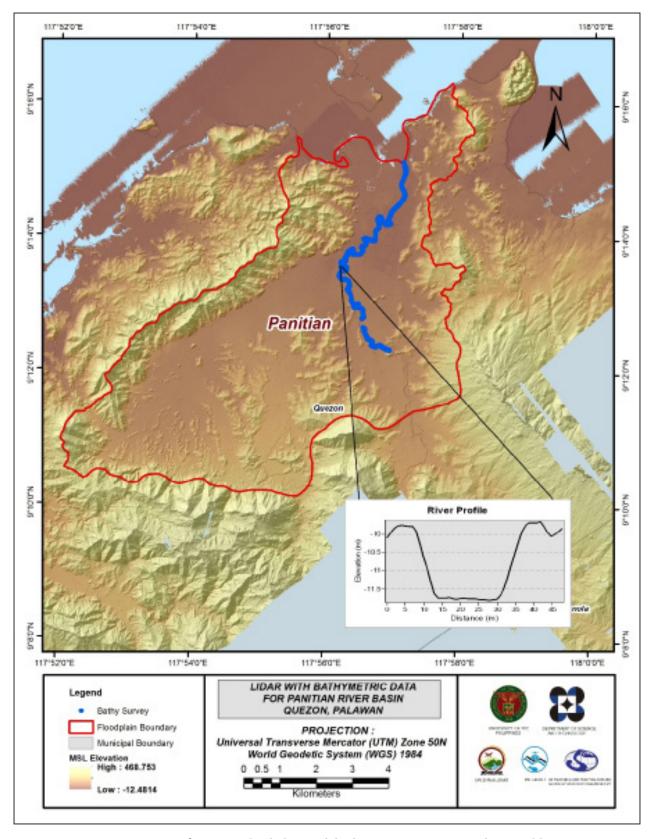


Figure 25. Map of Panitian Flood Plain with bathymetric survey points shown in blue.

CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE PANITIAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

AB Surveying and Development (ABSD) conducted a field survey in Panitian River on November 29, 2015, December 12 and 21, 2015, January 8, 9 and 11, 2016, and February 7, 2016 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Panitian Bridge in Brgy. Malatgao, Municipality of Quezon, Palawan. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 16-28, 2016 using an Ohmex™ Single Beam Echo Sounder and Trimble® SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Panitian River Basin area. The entire survey extent is illustrated in Figure 28.

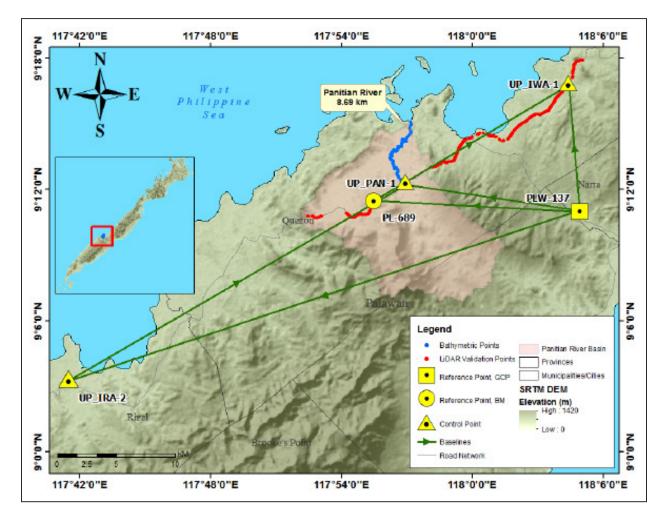


Figure 26. Panitian River Survey Extent

4.2 Control Survey

The GNSS network used for Panitian River is composed of two (2) loops established on August 17, 2016 occupying the following reference points: PLW-137 a second-order GCP, in Brgy. Ipilan, Narra, Palawan and PL-689, a first-order BM, in Brgy. Sowangan, Quezon, Palawan.

Three (3) control points established in the area by ABSD were also occupied: UP_IWA-1 at the approach of Iwahig Bridge in Brgy. Maasin, Quezon, Province of Palawan, UP_PAN-1 at the approach of Panitian Bridge in Brgy. Malatgao, Quezon, Palawan, and UP_IRA-2 located on the side of Iraan Bridge in Brgy. Iraan, Rizal, Palawan.

The summary of reference and control points and its location is summarized in Table 19 while GNSS network established is illustrated in Figure 29.

Table 19. List of reference and control points used during the survey in Panitian River (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)							
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established			
PLW-137	2nd order, GCP	9° 10' 58.60442"N	118° 4' 53.42391"E	85.647	42.162	2007			
PL-689	1st order, BM	9° 11' 28.58925"N	117° 55' 26.91800"E	63.739	21.206	2012			
UP_IWA-1	Established	9° 16' 52.29568"N	118° 4' 23.41753"E	48.751	5.820	12-12-15			
UP_PAN-1	Established	9° 12' 21.10428"N	117° 56' 55.87963"E	52.045	9.455	12-12-15			
UP_IRA-2	Established	9° 3' 19.98819"N	117° 41' 29.97870"E	48.192	6.420	12-04-15			

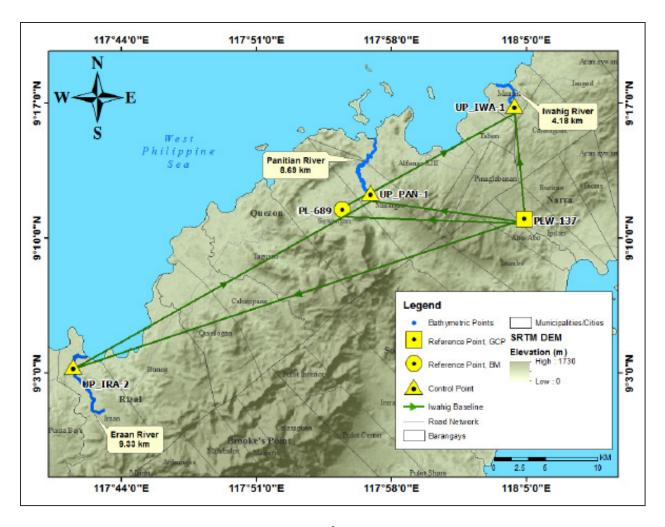


Figure 28. GNSS Network covering Panitian River

The GNSS set-ups on recovered reference points and established control points in Panitian River are shown from Figure 28 to Figure 32.

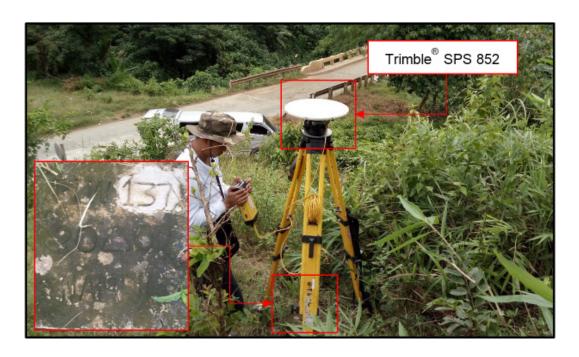


Figure 27. GNSS base set up, Trimble® SPS 852, at PLW-137, located at the top of a ridge along the National Highway in Brgy. Ipilan, Narra, Province of Palawan

Figure 29. GNSS receiver set up, Trimble® SPS 882, at PL-689, located at the approach of Malatgao Bridge in Brgy. Sowangan, Quezon, Province of Palawan

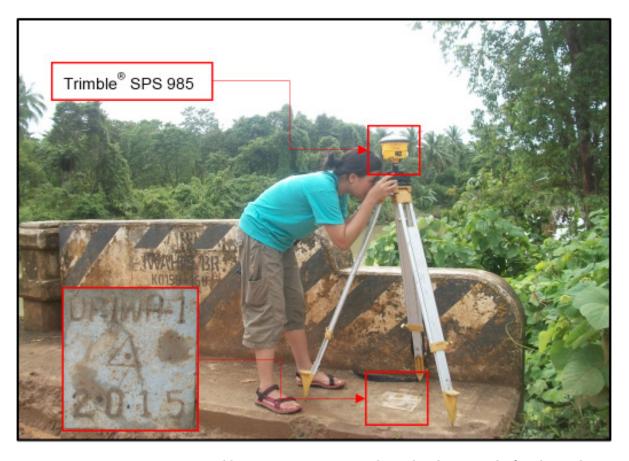


Figure 30. GNSS receiver set up, Trimble® SPS 985, at UP_IWA-1, located at the approach of Iwahig Bridge in Brgy. Maasin, Quezon, Province of Palawan

Figure 31. GNSS receiver set up, Trimble® SPS 985, at UP_PAN-1, located on the approach of Panitian Bridge in Brgy. Malatgao, Quezon, Province of Palawan

Figure 32. GNSS receiver set up, Trimble® SPS 985, at UP_IRA-2, located on the side of Iraan Bridge in Brgy. Iraan, Rizal, Province of Palawan

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Panitian River Basin is summarized in Table 20 generated by TBC software.

Table 20. Baseline Processing Report for Panitian River Static Survey (Source: NAMRIA, UP-TCAGP)

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
PLW-137 UP_ IRA-2	8-17-2016	Fixed	0.005	0.019	251°49'48"	45109.494	-37.444
UP_PAN-1 UP_ IRA-2	8-17-2016	Fixed	0.021	0.026	239°33'45"	32796.203	-3.860
UP_PAN-1 PLW- 137	8-17-2016	Fixed	0.010	0.016	279°52'26"	14796.881	-33.609
PLW-137 PL- 689	8-17-2016	Fixed	0.007	0.025	273°03'42"	17318.825	-21.920
UP_IWA-1 PL- 689	8-17-2016	Fixed	0.010	0.023	238°44'29"	19159.366	14.998
PLW-137 UP_ IWA-1	8-17-2016	Fixed	0.007	0.023	355°10'58"	10904.997	-36.888

As shown in Table 20, a total of six (6) baselines were processed with coordinate and ellipsoidal height values of PLW-137 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 \text{ cm}$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 22 to Table 24 for complete details.

The five (5) control points, PLW-137, PL-689, UP-IWA-1, UP_PAN-1, and UP-IRA-2 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal height of PLW-137 were held fixed during the processing of the control points as presented in Table 22. Through this reference point, the coordinates and ellipsoidal height of the unknown control points will be computed.

Table 21. Control Point Constraints

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
PLW-137	Global	Fixed	Fixed	Fixed				
Fixed = 0.000001(Meter)								

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 23.

Table 22. Adjusted Grid Coordinates

Point ID	Easting	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
PL-689	601526.626	0.011	1016129.888	0.008	15.037	0.045	
PLW-137	618819.123	?	1015257.220	?	35.993	,	LLh
UP_IRA-2	576013.324	0.009	1001066.106	0.005	0.251	0.035	
UP_IWA-1	617870.638	0.011	1026118.407	0.008	-0.349	0.042	
UP_PAN-1	604237.406	0.017	1017749.961	0.005	3.286	0.032	

With the mentioned equation $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \text{ cm}$ for the horizontal and for the vertical, respectively; the computation for the accuracy for:

PL-689 a. $V((1.1)^2 + (0.8)^2$ horizontal accuracy $\sqrt{(1.21 + 0.64)}$ 1.85 < 20 cm = 4.5 < 10 cm vertical accuracy b. **PLW-137** Fixed horizontal accuracy = vertical accuracy Fixed c. UP IRA-2 horizontal accuracy $V((0.9)^2 + (0.5)^2$ = $\sqrt{(0.81 + 0.25)}$ = 1.05 < 20 cm vertical accuracy 3.5 < 10 cm = d. UP IWA-1 horizontal accuracy $V((1.1)^2 + (0.8)^2$ = $\sqrt{(1.21 + 0.64)}$ 1.85 < 20 cm = vertical accuracy 4.2 < 10 cm UP PAN-1 e. horizontal accuracy $\sqrt{((1.7)^2 + (0.5)^2}$ $\sqrt{(2.89 + 0.25)}$ = 3.14 < 20 cm 3.2 < 10 cm vertical accuracy =

Following the given formula, the horizontal and vertical accuracy result of the four (4) occupied control points are within the required precision.

Table 23. Adjusted Geodetic Coordinates

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
PL-689	N9°11'28.58925"	E117°55'26.91800"	63.739	0.045	
PLW-137	N9°10'58.60442"	E118°04'53.42391"	85.647	?	LLh
UP_IRA-2	N9°03'19.98819"	E117°41'29.97870"	48.192	0.035	
UP_IWA-1	N9°16'52.29568"	E118°04'23.41753"	48.751	0.042	
UP_PAN-1	N9°12'21.10428"	E117°56'55.87963"	52.045	0.032	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 24. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 25.

Table 24. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

		Geographic	Coordinates (\	WGS 84)	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (m)	Northing	Easting	MSL Elevation (m)	
PL-689	2nd order, GCP	9°10'58. 60442"N	118°04'53. 42391"E	85.647	1015257.220	618819.123	42.162	
PLW-137	1st order, BM	9°11'28. 58925"N	117°55'26. 91800"E	63.739	1016130.888	601526.626	21.206	
UP_IRA- 2	Established	9°16'52. 29568"N	118°04'23. 41753"E	48.751	1026118.407	617870.638	5.820	
UP_ IWA-1	Established	9°12'21. 10428"N	117°56'55. 87963"E	52.045	1017749.961	604237.406	9.455	
UP_ PAN-1	Established	9°03'19. 98819"N	117°41'29. 97870"E	48.192	1001066.106	576013.324	6.420	

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on November 29, 2015 at the upstream side of Panitian Bridge in Brgy. Malatgao, Municipality of Quezon. A Horizon® Total Station was utilized for this survey as shown in Figure 34.

Figure 33. Panitian Bridge as seen from the left bank facing downstream

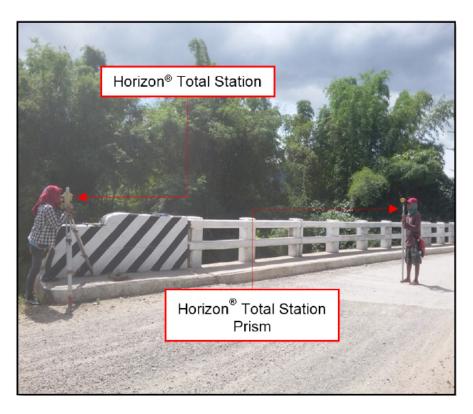


Figure 34. As-built survey of Panitian Bridge

The cross-sectional line of Panitian Bridge is about 182 m with forty-seven (47) cross-sectional points using the control points UP_PAN-1 and UP_PAN-2 as the GNSS base stations. The cross-section diagram, location map, and the bridge data form are shown in Figure 35 to Figure 37. Gathering of random points for the checking of ABSD's bridge cross-section and bridge points data was performed by DVBC on August 17, 2016 using a survey grade GNSS Rover receiver attached to a 2-m pole.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.954 for the bridge points data was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square Correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bridge points data, a computed value of 0.104 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

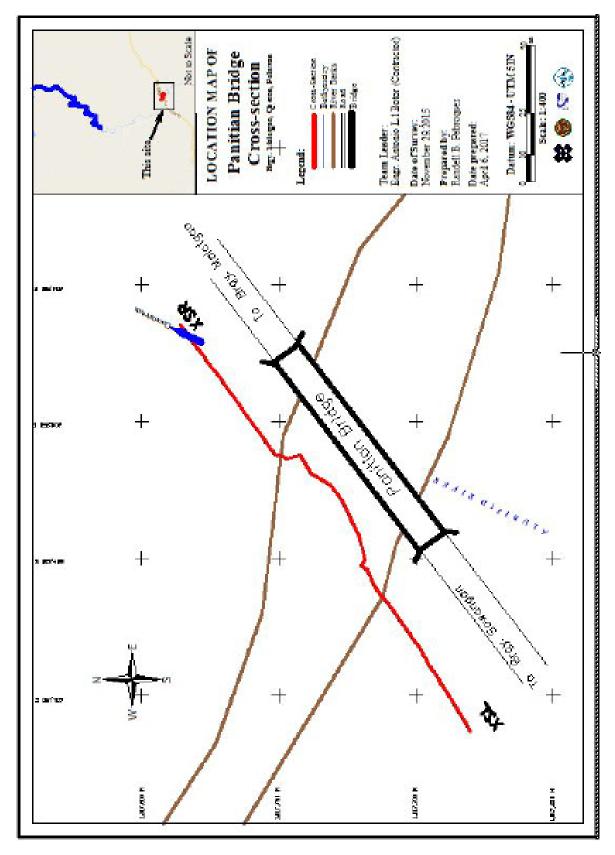


Figure 35. Location Map of Panitian Bridge River Cross-Section survey

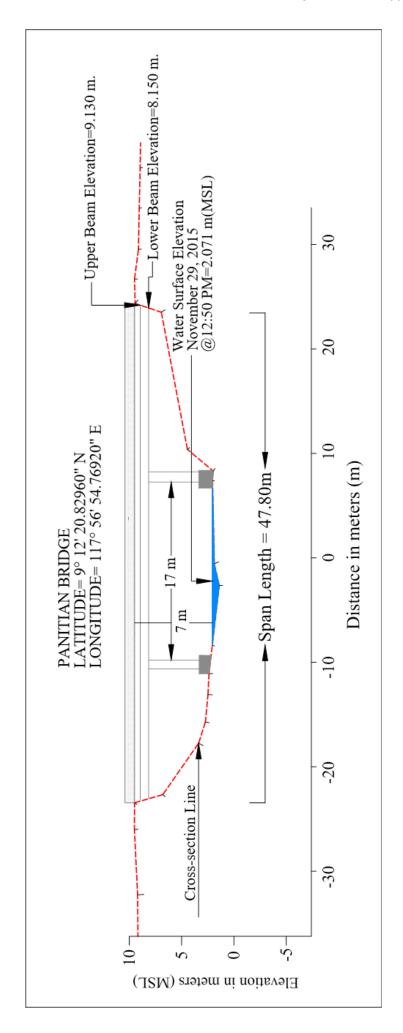
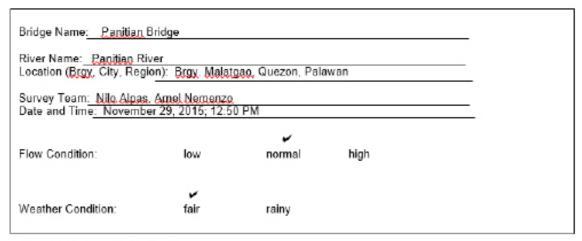
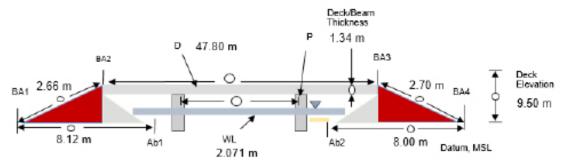




Figure 36. Panitian Bridge cross-section diagram

Bridge Data Form

Cross-sectional View (not to scale)

Legend:

BA = Bridge Approach

P = Pier

Ab = Abutment

D = Deck

WL = Water Level/Surface

MSL = Mean Sea Level

) = Measurement Value

Line Segment	Measurement (m)	Remarks
1. BA1-BA2	2.66 m	
2. BA2-BA3	47.80 m	
3. BA3-BA4	2.70 m	
4. BA1-Ab1	8.12 m	
5. Ab2-BA4	8.00 m	
Deck/beam thickness	1.34 m	
7. Deck elevation	9.50 m	

Note: Observer should be facing downstream

Figure 37. Bridge as-built form of Panitian Bridge

Water surface elevation of Panitian River was determined by a Horizon® Total Station on November 29, 2015 at 12:50 PM at Panitian Bridge area with a value of 2.071 m in MSL as shown in Figure 36. This was translated into marking on the bridge's pier as shown in Figure 38. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Panitian River, the University of the Philippines Los Baños.

Figure 38. Water-level markings on Panitian Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC from August 16-28, 2016 using a survey grade GNSS Rover receiver, Trimble® SPS 985, mounted on a range pole which was attached on the side of the vehicle as shown in Figure 39. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.560 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP_PAN-1 occupied as the GNSS base station in the conduct of the survey.

Figure 39. Validation points acquisition survey set-up for Panitian River

The survey started from Brgy. Maasin, Municipality of Quezon, Palawan going south west along national high way covering six (6) barangays in the Municipality of Quezon, and ended in Brgy. Tagusao, Municipality of Quezon, Palawan. The survey gathered a total of 2,690 points with approximate length of 29.98 km using UP_PAN-1 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 40.

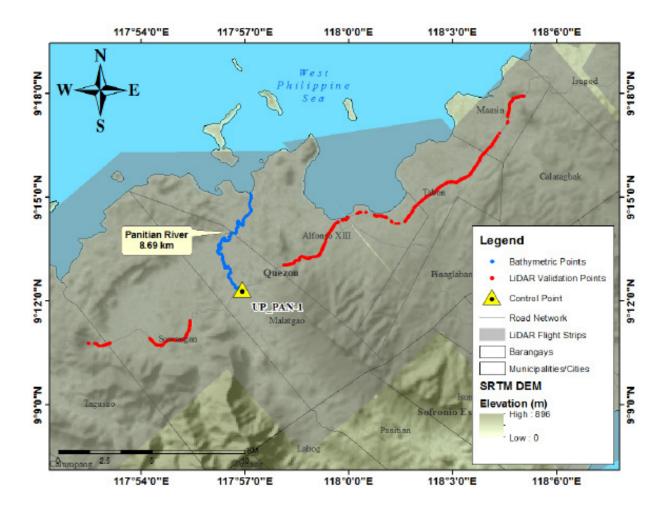


Figure 40. Validation point acquisition survey of Panitian River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed on January 8, 2016 using a Hi-target ™ Echo Sounder as illustrated in Figure 41 and Figure 42. The survey started in Brgy. Malatgao, Municipality of Quezon, Palawan with coordinates 9° 13′ 29.70729″N, 117° 56′ 13.57152″E and ended at the mouth of the river in Brgy. Alfonso XIII, Municipality of Quezon, with 9° 15′ 7.93278″N, 117° 57′ 8.78652″E.

Figure 41. Bathymetric survey of ABSD at Panitian River using a Hi-Target™ GNSS Rover Receiver

Figure 42. Bathymetric survey of ABSD at Panitian River using a Hi-Target™ Echo Sounder

Manual bathymetric survey on the other hand was executed on December 12, 2015, January 8-9 and 11, 2016 using a Nikon® Total Station as illustrated in Figure 43. The survey started in Brgy. Malatgao, Municipality of Quezon with coordinates 9° 12′ 19.21818″N, 117° 56′ 58.15068″E, traversing down the river and ended at the starting point of bathymetric survey using a boat in Brgy. Malatgao, Municipality of Quezon as well. The control points UP_PAN-1, UP_PAN-2, and UP_PAN-3 were used as GNSS base station all throughout the entire survey.

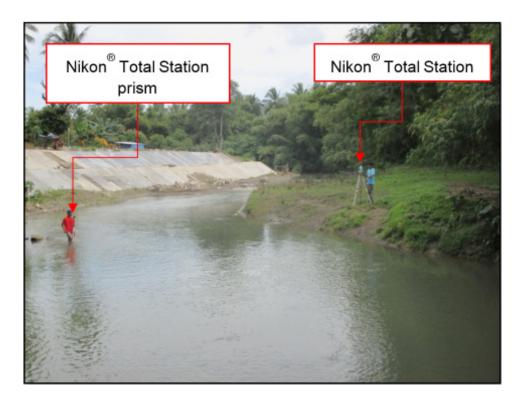


Figure 43. Manual bathymetric survey of ABSD at Panitian River using Nikon® Total Station

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 18, 2016 using a GNSS Rover receiver, Trimble® SPS 882 attached to a 2-m pole, see Figure 44. A map showing the DVBC bathymetric checking points is shown in Figure 46.

Figure 44. Gathering of random bathymetric points along Panitian River

Linear square correlation (R2) and RMSE analysis were also performed on the two (2) datasets and a computed R2 value of 0.998 is within the required range for R2, which is 0.85 to 1. Additionally, an RMSE value of 0.120 was obtained. Both the computed R2 and RMSE values are within the accuracy required by the program.

The bathymetric survey for Panitian River gathered a total of 5,303 points covering 8.69 km of the river traversing barangays Alfonso XIII and Malatgao in the Municipality of Quezon (Figure 45).

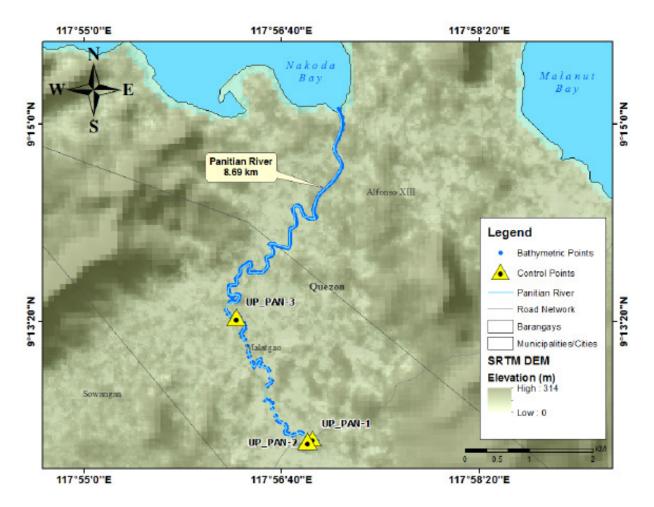


Figure 45. Bathymetric survey of Panitian River

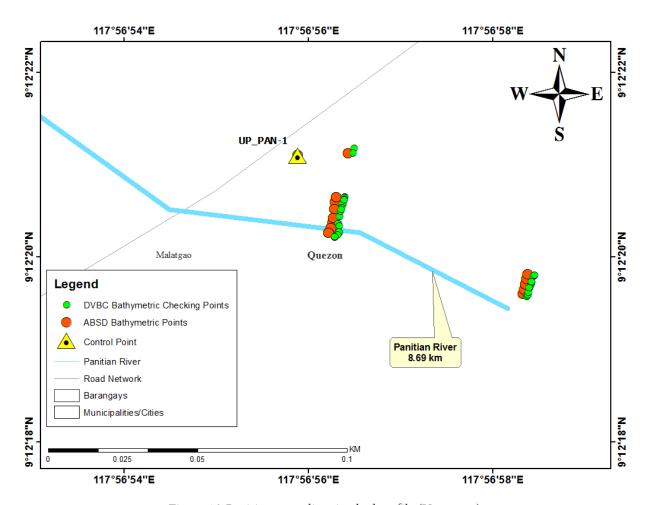
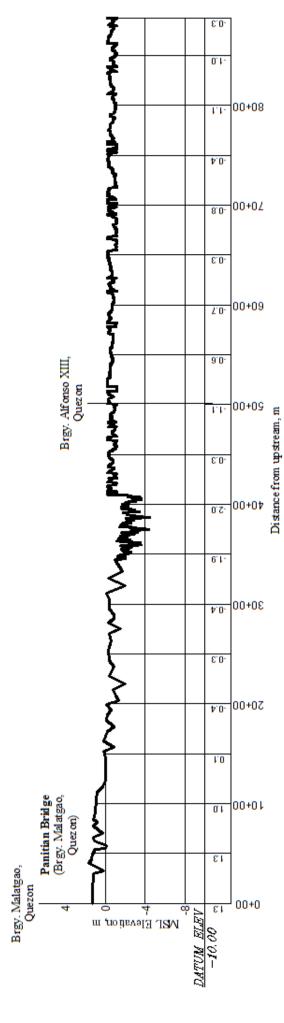



Figure 46. Panitian centerline riverbed profile (Upstream)

A CAD drawing was also produced to illustrate the riverbed profile of Panitian River. As shown in Figure 47, the highest and lowest elevation has a 6-m difference. The highest elevation observed was 1.625 m below MSL located in Brgy. Malatgao, Municipality of Quezon while the lowest was -4.4595 m below MSL located in Brgy. Malatgao, Municipality of Quezon as well.

Panitian Riverbed Profile

Figure 47. Panitian riverbed profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data used in Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Panitian River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Panitian River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a portable rain gauge deployed on a strategic location within the riverbasin (9.205744° N, 117.949240° E). The location of the rain gauge is seen in Figure 48.

The total precipitation for this event is 50.29 mm. It has a peak rainfall of 19.812 mm on February 23, 2017 at 1:00 pm. The lag time between the peak rainfall and discharge is 3 hour and 35 minutes, as seen in Figure 51.

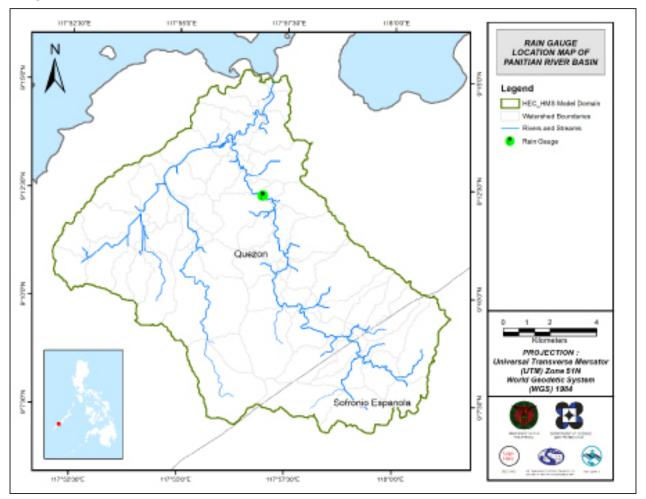


Figure 48. The location map of Panitian HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Panitian Bridge, Quezon, Palawan (9.205753° N, 117.948567° E). It gives the relationship between the observed water levels from the Panitian Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

For Panitian Bridge, the rating curve is expressed as Q = 77.969x2 - 289.22x + 271.49 as shown in Figure 50.

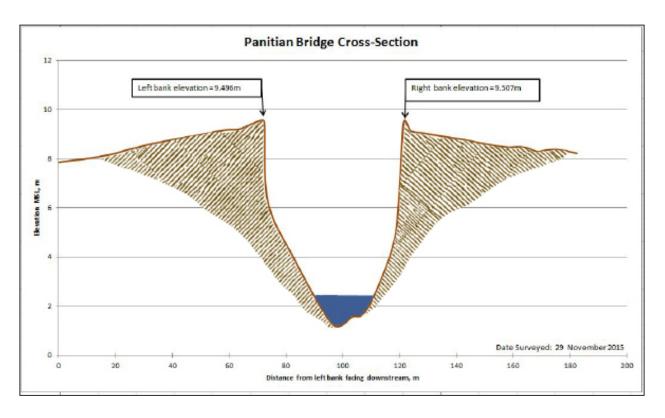


Figure 49. Cross-Section Plot of Panitian Bridge

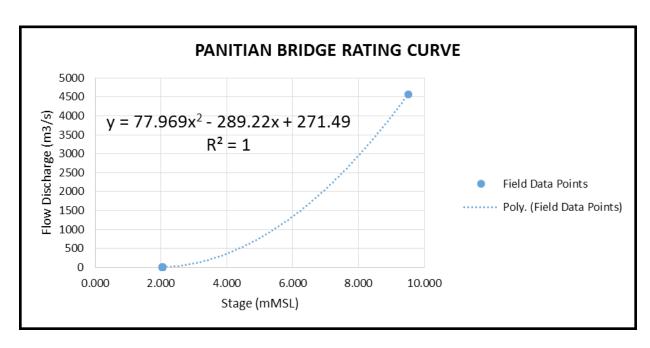


Figure 50. Rating curve at Panitian Bridge, Quezon, Palawan

For the calibration of the HEC-HMS model, shown in Figure 51, actual flow discharge during a rainfall event was collected in the Panitian bridge. Peak discharge is 28.28 cu.m/s on February 23, 2017 at 4:35 pm.

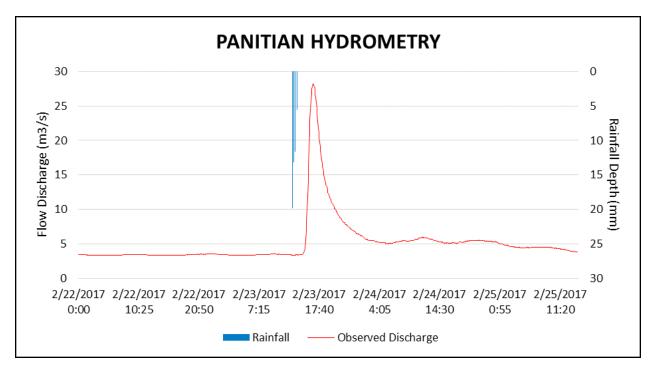


Figure 51. Rainfall and outflow data at Panitian River Basin used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Puerto Princesa Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station chosen based on its proximity to the Panitian watershed. The extreme values for this watershed were computed based on a 58-year record, as shown in Table 25.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	14.8	22	27.3	36.2	49.8	58.8	75.1	88	104.1	
5	21.3	31.9	39.7	52.3	73	86.9	112.8	135.4	156.4	
10	25.6	38.5	48	63	88.4	105.5	137.8	166.8	191.1	
15	28.1	42.2	52.6	69	97	116	151.9	184.5	210.6	
20	29.8	44.7	55.9	73.3	103.1	123.4	161.7	196.8	224.3	
25	31.1	46.7	58.4	76.5	107.8	129.1	169.3	206.4	234.9	
50	35.2	52.9	66.1	86.5	122.2	146.5	192.7	235.8	267.3	
100	39.2	59	73.7	96.4	136.5	163.8	216	265	299.6	

Table 25. values for Romblon Rain Gauge computed by PAGASA

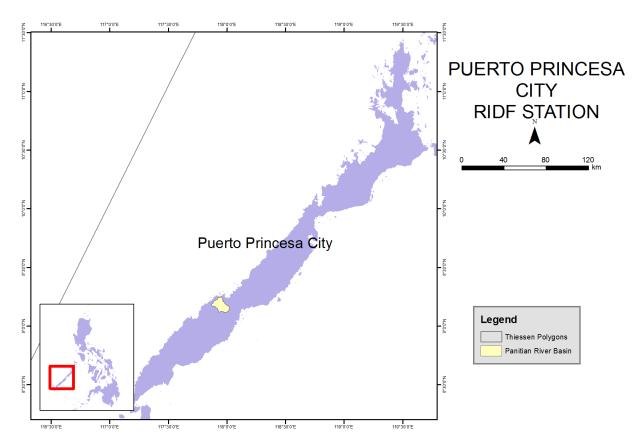


Figure 52. Location of Puerto Princesa RIDF relative to Panitian River Basin

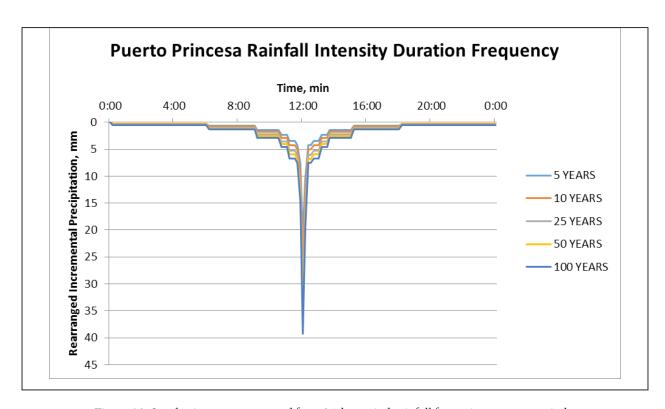


Figure 53. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Panitian River Basin are shown in Figure 54 and Figure 55, respectively.

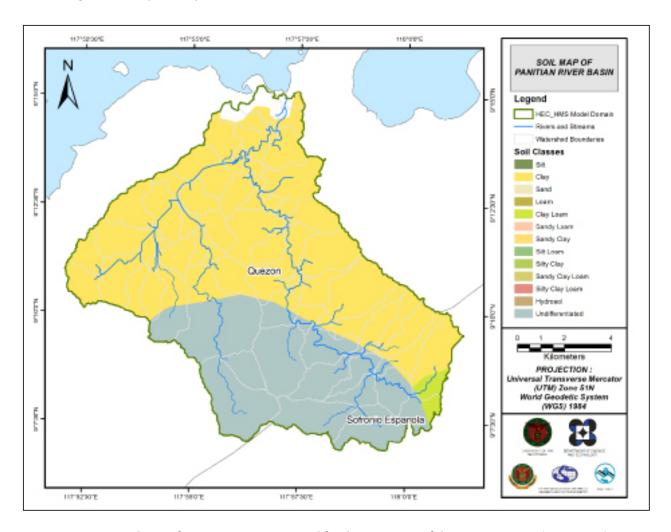


Figure 54. Soil map of Panitian River Basin used for the estimation of the CN parameter. (Source: DA)

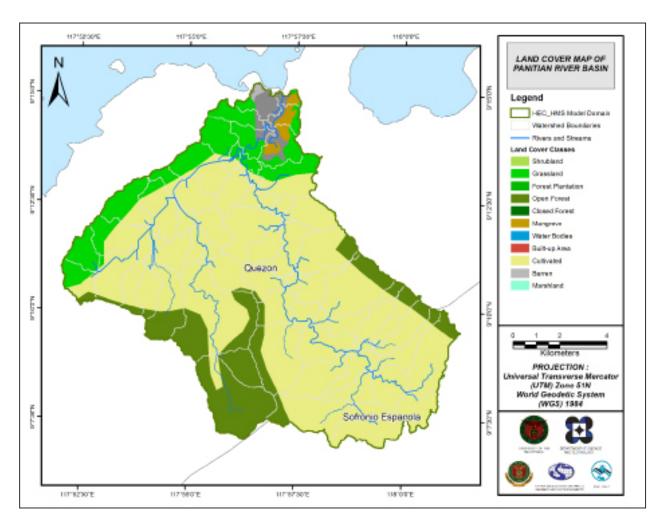


Figure 55. Land cover map of Panitian River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)

For Panitian river basin, the three (3) soil classes identified were sandy clay and clay loam while the rest is undifferentiated soil. The five (5) land cover types identified were largely cultivated land, with portions of open forest, grassland, mangrove, and barren area.

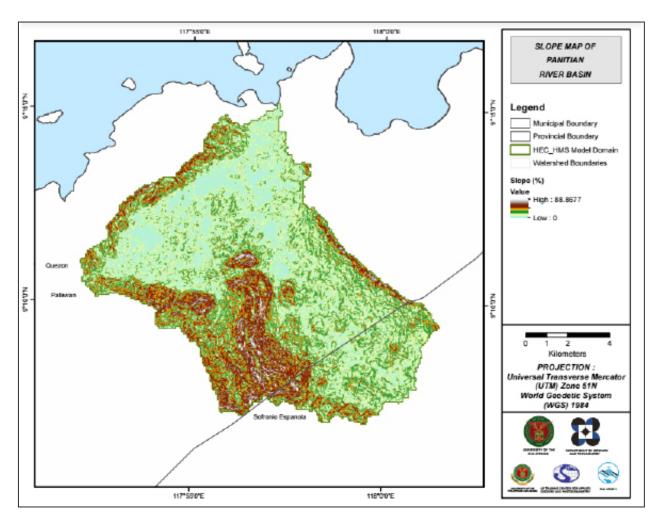


Figure 56. Slope map of Panitian River Basin

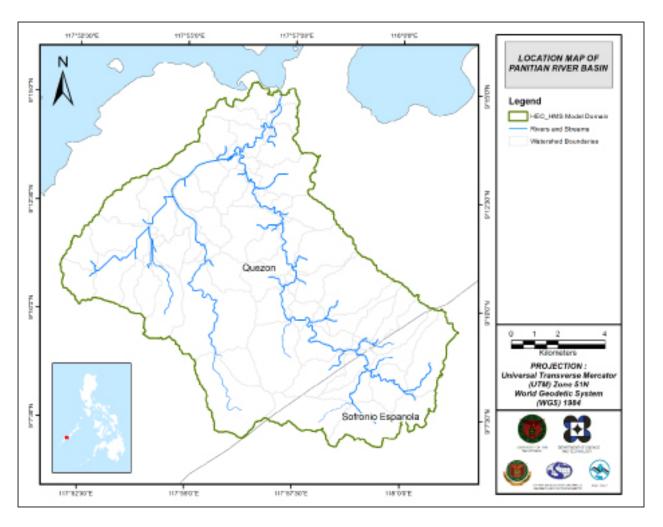


Figure 57. Stream Delineation Map of the Panitian River Basin

Using SAR-based DEM, the Panitian basin was delineated and further subdivided into subbasins. The model consists of 73 sub basins, 37 reaches, and 37 junctions. This basin is illustrated in Figure 58. The main outlet is at Panitian Bridge.

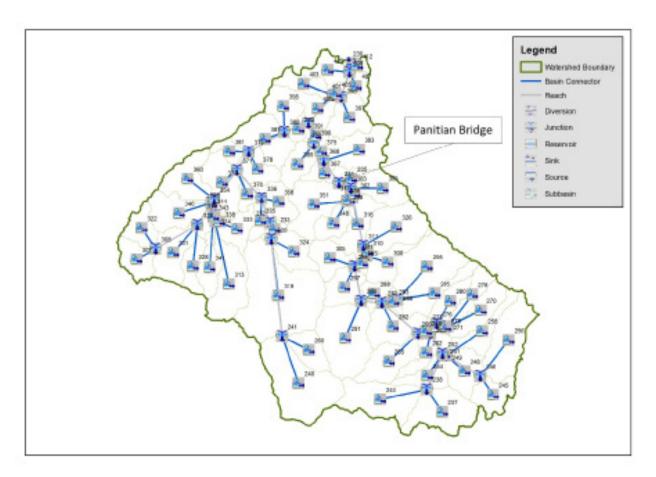


Figure 58. HEC-HMS generated Panitian River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS. The river cross-section of Panitian river is shown in Figure 59.

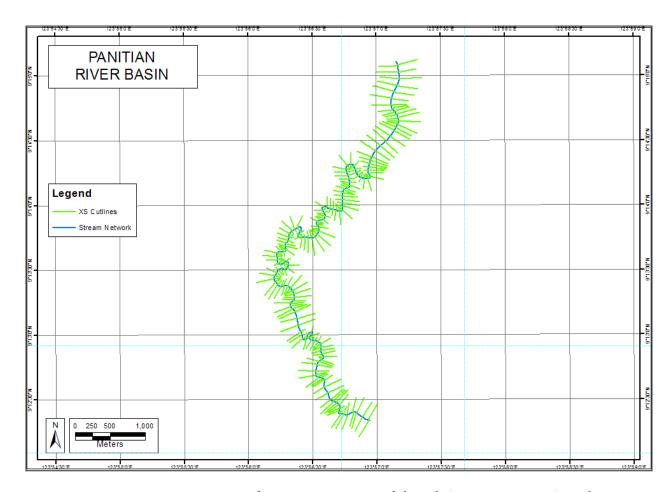


Figure 59. River cross-section of Panitian River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southwest of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

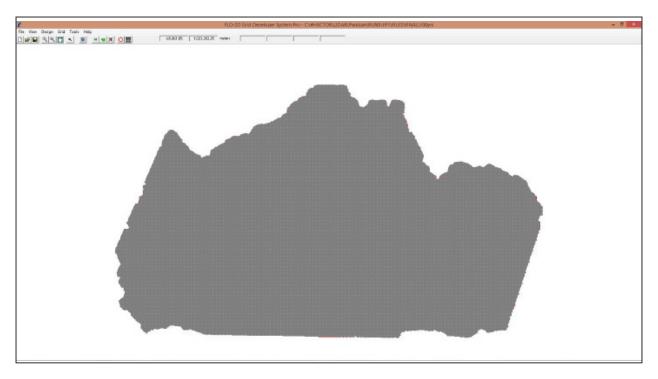


Figure 60. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 48.54492 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 61 316 400.00 m2.

There is a total of 31 961 119.35 m3 of water entering the model. Of this amount, 17 912 361.05 m3 is due to rainfall while 14 048 758.29 m3 is inflow from other areas outside the model. 6 181 008.50 m3 of this water is lost to infiltration and interception, while 6 771 666.39 m3 is stored by the flood plain. The rest, amounting up to 19 008 431.70 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Panitian HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 61 shows the comparison between the two discharge data.values. Figure 63 shows the comparison between the two discharge data.

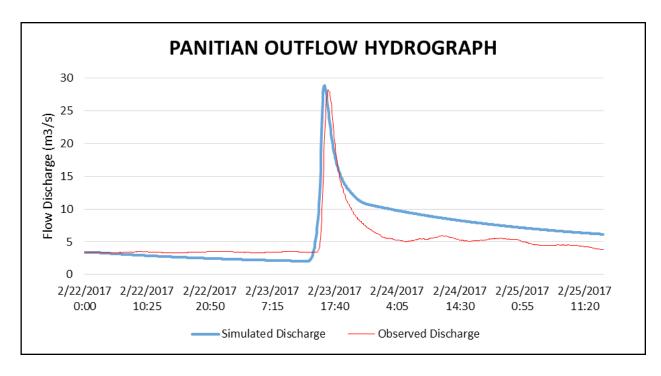


Figure 61. Outflow Hydrograph of Panitian produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 26 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss		Initial Abstraction (mm)	0.1 - 8
Loss	SCS Curve number	Curve Number	35 - 99	
Dooin	Tue in of o une	Clark Unit Hydrograph	Time of Concentration (hr)	0.4 - 6
Basin	n Transform		Storage Coefficient (hr)	0.4 - 5
	Danaffa		Recession Constant	0.3 - 1
Baseflow	Basellow	Recession	Ratio to Peak	0.1 – 0.7
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.01 - 0.09

Table 26. Range of Calibrated Values for Panitian

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.1mm to 8mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 99 for curve number means that there is a diverse characteristic for this watershed depending on its subbasin.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.4 hours to 6 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Same as the curve number, the characteristics of this watershed differs per subbasin.

Manning's roughness coefficient of 0.003 to 0.09 also indicates different characteristics of the river reaches. (Brunner, 2010).

Table 27. Summary of the Efficiency Test of Panitian HMS Model

Accuracy measure	Value
RMSE	2.050
r2	0.901
NSE	0.551
PBIAS	10.716
RSR	0.670

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 2.050.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.901.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.551.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 10.716.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.670.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 62) shows the Panitian outflow using the Puerto Princesa Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

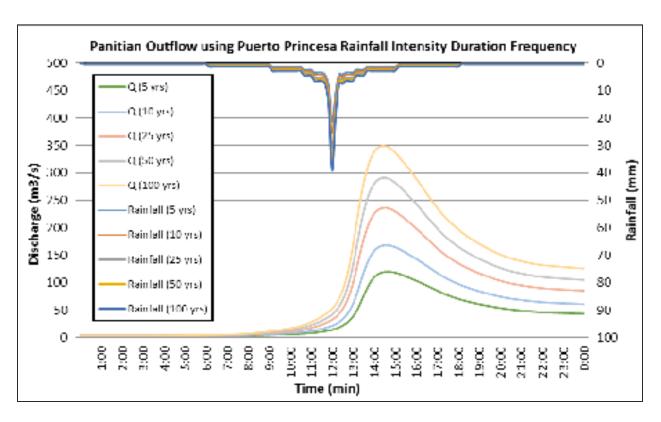


Figure 62. Outflow hydrograph at Panitian Station generated using Puerto Princesa RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Panitian discharge using the Puerto Princesa Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 28.

Table 28. Peak values of the Panitian HECHMS Model outflow using the Romblon RIDF 24-hour values

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	156.40	21.30	120.153	2 hours 40 minutes
10-Year	191.10	25.60	168.270	2 hours 30 minutes
25-Year	234.90	31.10	236.423	2 hours 30 minutes
50-Year	267.30	35.20	291.341	2 hours 30 minutes
100-Year	299.60	39.20	349.004	2 hours 30 minutes

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Panitian River using the HMS base flow is shown on Figure 63 below.

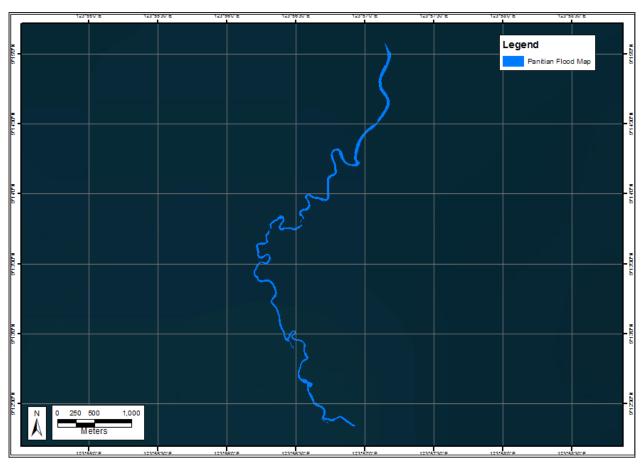


Figure 63. Sample output of Panitian RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Panitian floodplain are shown in Figure 64 to Figure 69. The floodplain, with an area of 106.99 sq. km., covers one municipality namely Quezon. Table 29 shows the percentage of area affected by flooding per municipality.

Table 29. Municipalities affected in Panitian Floodplain

City / Municipality	Total Area	Area Flooded	% Flooded
Quezon	917.97	106.92	11.65

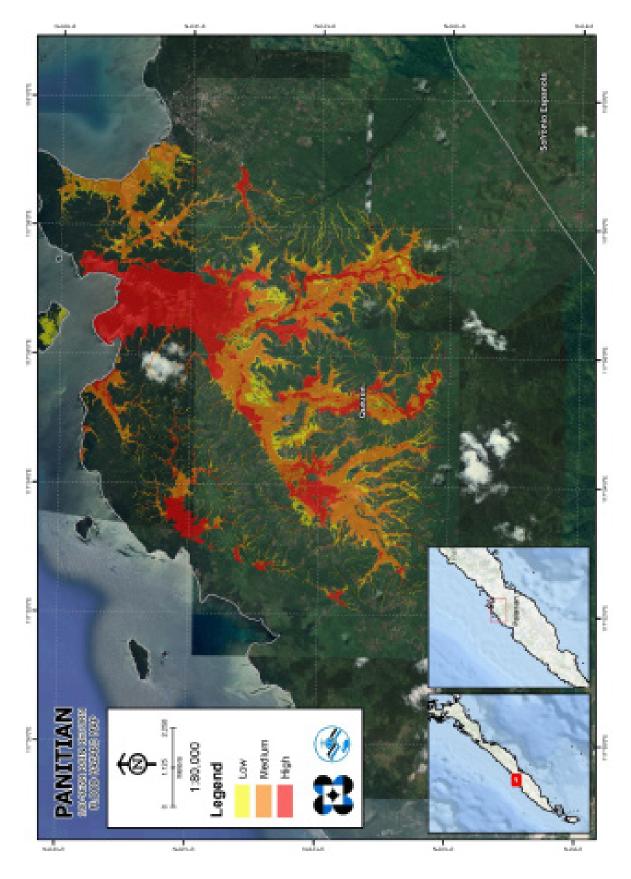


Figure 64. 100-year Flood Hazard Map for Panitian Floodplain overlaid in Google Earth imagery

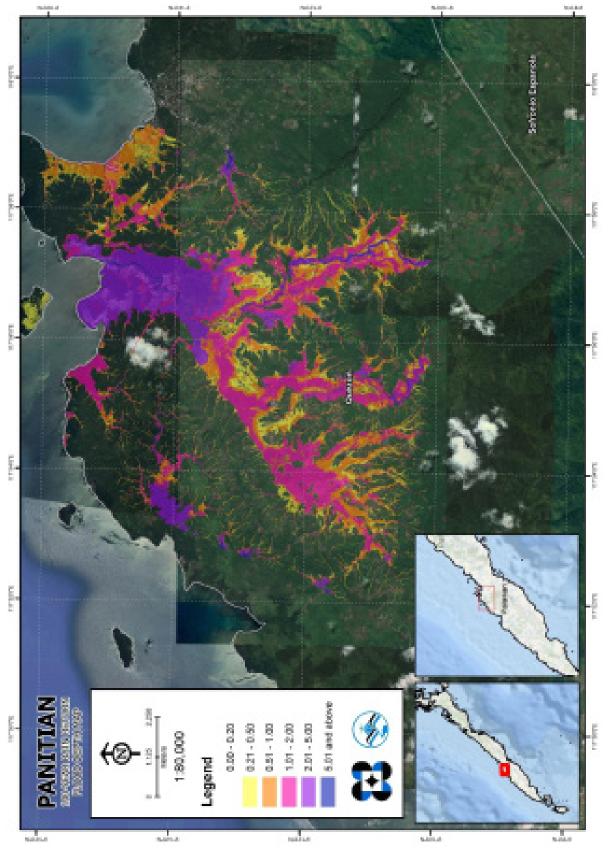


Figure 65. 100-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery

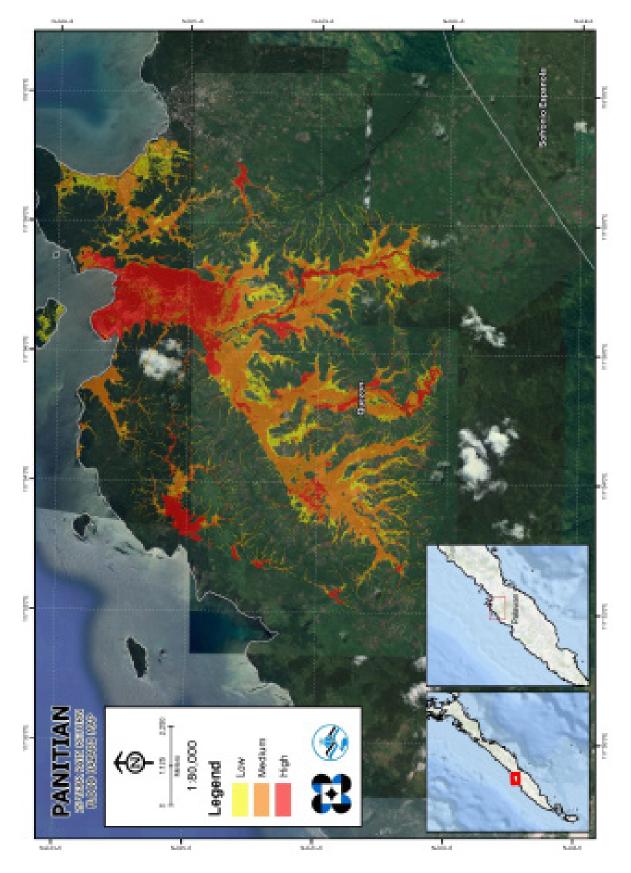


Figure 66. 25-year Flood Hazard Map for Panitian Floodplain overlaid in Google Earth imagery

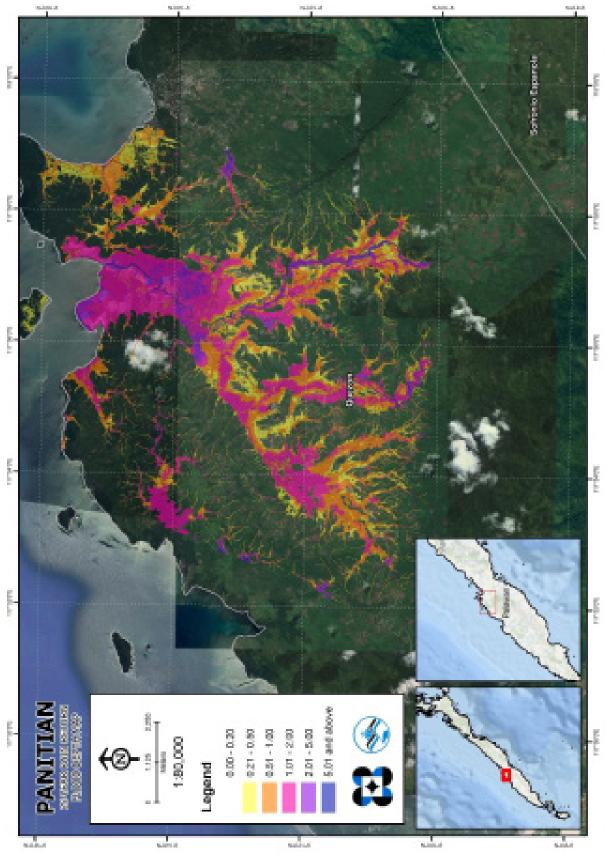
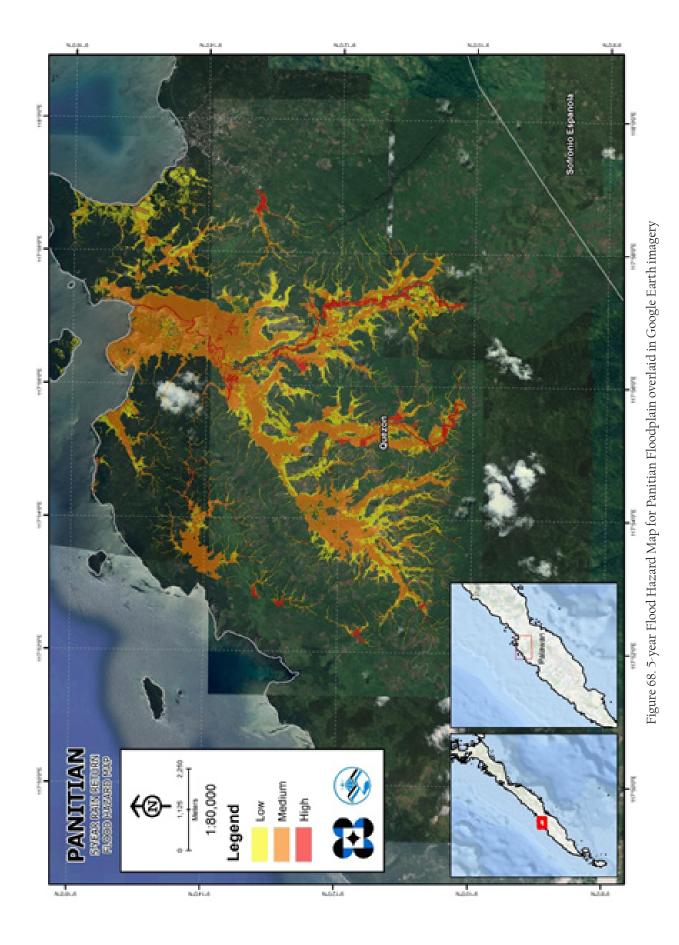



Figure 67. 25-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery

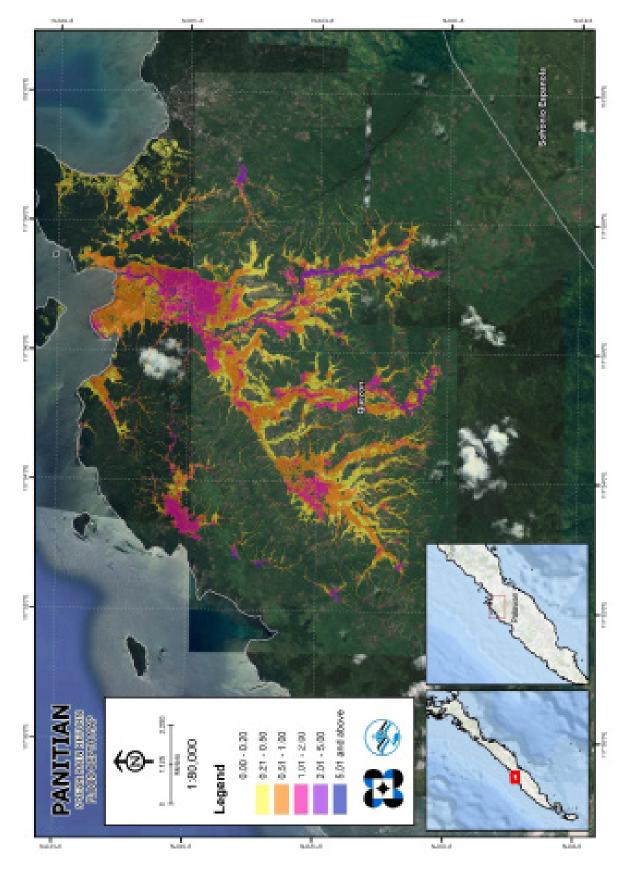


Figure 69. 5-year Flow Depth Map for Panitian Floodplain overlaid in Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Panitian river basin, grouped by municipality, are listed below. For the said basin, one (1) municipality consisting of 4 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 8.09% of the municipality of Quezon with an area of 917.97 sq. km. will experience flood levels of less 0.20 meters. 1.24% of the area will experience flood levels of 0.21 to 0.50 meters while 1.53%, 0.67%, 0.09%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 30 and shown in Figure 70 are the affected areas in square kilometres by flood depth per barangay.

	i e				
Affected area (sq.km.)	Area of affected barangays in Quezon (in sq. km.)				
by flood depth (in m.)	Alfonso XIII	Malatgao	Sowangan	Tagusao	
0.03-0.20	18.38	17.27	35.18	3.46	
0.21-0.50	3.14	3.34	4.74	0.16	
0.51-1.00	4.12	3.8	5.97	0.13	
1.01-2.00	1.7	2.04	2.41	0.042	
2.01-5.00	0.14	0.43	0.27	0.029	
> 5.00	0.053	0.079	0.038	0	

Table 30. Affected Areas in Quezon, Palawan during 5-Year Rainfall Return Period

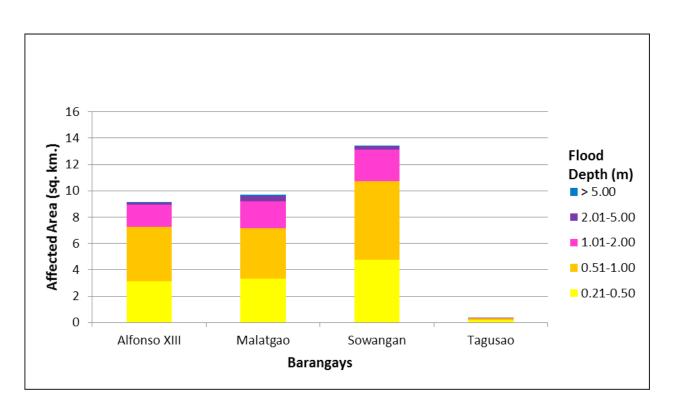


Figure 70. Affected Areas in Quezon, Palawan during 5-Year Rainfall Return Period

For the 25-year return period, 7.52% of the municipality of Quezon with an area of 917.97 sq. km. will experience flood levels of less 0.20 meters. 0.91% of the area will experience flood levels of 0.21 to 0.50 meters while 1.34%, 1.57%, 0.27%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 31 and shown in Figure 71 are the affected areas in square kilometres by flood depth per barangay.

Table 31. Affected Areas in Quezon, Palawan during 25-Year Rainfall Return Period

Affected area (sq.km.)	Area of affected barangays in Quezon (in sq. km.)				
by flood depth (in m.)	Alfonso XIII	Malatgao	Sowangan	Tagusao	
0.03-0.20	16.55	15.65	33.47	3.4	
0.21-0.50	2.28	2.47	3.47	0.15	
0.51-1.00	2.77	3.73	5.65	0.16	
1.01-2.00	4.92	3.9	5.53	0.063	
2.01-5.00	0.92	1.1	0.44	0.044	
> 5.00	0.099	0.11	0.062	0.0006	

Figure 71. Affected Areas in Quezon, Palawan during 25-Year Rainfall Return Period

For the 100-year return period, 7.28% of the municipality of Quezon with an area of 917.97 sq. km. will experience flood levels of less 0.20 meters. 0.75% of the area will experience flood levels of 0.21 to 0.50 meters while 1.20%, 1.44%, 0.95%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 32 and shown in Figure 72 are the affected areas in square kilometres by flood depth per barangay.

Table 32. Affected Areas in C	Duezon, Palawan during 100-Year Rainfall Return Period

Affected area (sq.km.)	Area of affected barangays in Quezon (in sq. km.)				
by flood depth (in m.)	Alfonso XIII	Malatgao	Sowangan	Tagusao	
0.03-0.20	15.86	14.92	32.65	3.37	
0.21-0.50	1.8	2	2.89	0.15	
0.51-1.00	2.78	3.11	4.94	0.16	
1.01-2.00	2.27	4.18	6.67	0.093	
2.01-5.00	4.7	2.6	1.37	0.048	
> 5.00	0.13	0.13	0.084	0.0076	

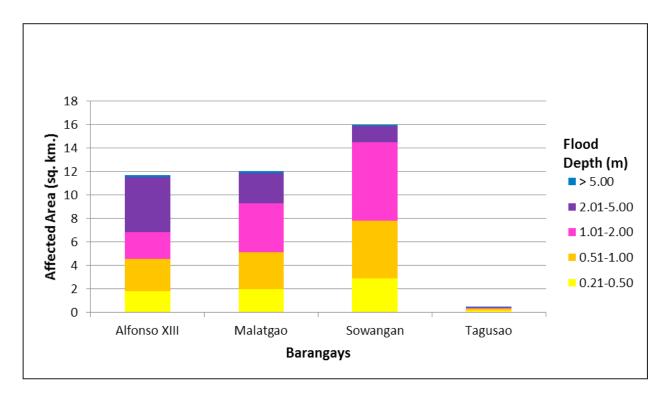


Figure 72. Affected Areas in Quezon, Palawan during 100-Year Rainfall Return Period

Among the barangays in the municipality of Quezon, Sowangan is projected to have the highest percentage of area that will experience flood levels at 5.30%. Meanwhile, Alfonso XIII posted the second highest percentage of area that may be affected by flood depths at 2.99%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews with some residents who have knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 74.

The flood validation consists of 62 points randomly selected all over the Panitian floodplain (Figure 73). Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.88m. Table 33 shows a contingency matrix of the comparison.

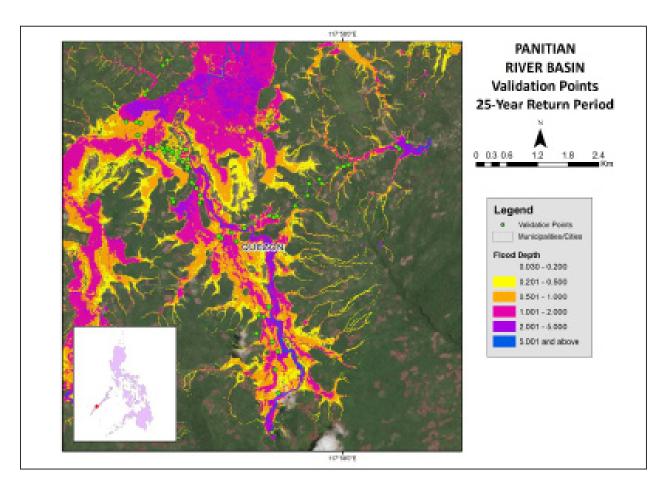


Figure 73. Validation points for 25-year Flood Depth Map of Panitian Floodplain

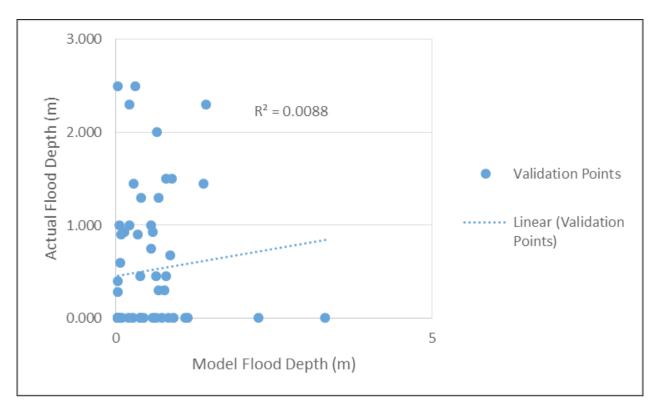


Figure 74. Flood map depth vs. actual flood depth

Table 33. Actual flood vs simulated flood depth at different levels in the Panitian River Basin.

Actual Flood Depth	Modeled Flood Depth (m)						
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	21	4	5	2	2	0	34
0.21-0.50	2	1	4	0	0	0	7
0.51-1.00	4	2	4	0	0	0	10
1.01-2.00	0	2	4	1	0	0	7
2.01-5.00	1	2	0	1	0	0	4
> 5.00	0	0	0	0	0	0	0
Total	28	11	17	4	2	0	62

The overall accuracy generated by the flood model is estimated at 43.55% with 27 points correctly matching the actual flood depths. In addition, there were 15 points estimated one level above and below the correct flood depths while there were 11 points and 7 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 18 points were underestimated in the modelled flood depths of Panitian. Table 34 depicts the summary of the Accuracy Assessment in the Panitian River Basin Survey.

Table 34. Summary of the Accuracy Assessment in the Panitian River Basin Survey

	No. of Points	%
Correct	27	43.55
Overestimated	17	27.42
Underestimated	18	29.03
Total	62	100.00

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

ANNEXES

Annex 1. Optech Technical Specification of the Sensor

1. PEGASUS SENSOR

Figure A-1.1 Pegasus Sensor

2. PARAMETERS AND SPECIFICATIONS OF THE PEGASUS SENSOR

Table A-1.1 Parameters and Specifications of the Pegasus Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

3. GEMINI SENSOR

Figure A-1.2 Gemini Sensor

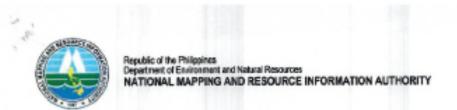

2. PARAMETERS AND SPECIFICATIONS OF THE GEMINI SENSOR

Table A-1.2 Parameters and Specifications of the Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificates of Reference Points Used

1. PLW-137

December 02, 2015

CERTIFICATION

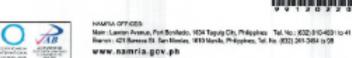
To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: PALAWAN Station Name: PLW-137 Order: 2nd		
Island: LUZON Municipality: PUERTO PRINCESA CITY (CAPITAL)	Barangay: IPILAN MSL Elevation: PRS92 Coordinates		
Latitude: 9° 11' 2.95364"	Longitude: 118° 4' 48.04729"	Ellipsoidal Hgt:	35.83359 m.
	WGS84 Coordinates		
Latitude: 9° 10' 58.60442"	Longitude: 118° 4' 53.42391" PTM/PRS92 Coordinates	Ellipsoidal Hgt:	85.64700 m.
Northing: 1015530.347 m.	Easting: 453844.056 m.	Zone: 1A	
Northing: 1,015,326.41	UTM/PRS92 Coordinates Easting: 618,656.03	Zone: 50	

Location Description

PLW-137
From Narra poblacion, travel SW lowards Brgy. Abo-Abo for 36 kms. Upon reaching the junction turn NW and travel for 4 kms, until reaching Brgy. Ipil. Station is located at the top of the ridge along the highway approximately 170 m SE of KM 133. Mark is the head of 4" copper nail flushed in a cement putty 30cm x 30cm x 120cm embedded 1 m on the ground with inscriptions "PLW-137 2007 NAMRIA."


 Requesting Party:
 UP DREAM

 Purpose:
 Reference

 OR Number:
 8088735 I

 T.N.:
 2015-3959

RUEL DM. BELLEN, MNSA Director, Mapping And Geodesy Branch

ISO 9001: 2004 CERTIFIED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1 PLW-137

Annex 3. Baseline Processing Report of Reference Points Used

1. QZT-1

Project information		Coordinate System	
Name:	C:/Users/tWindows Use/Documents	Name:	UTM
	'Business Center - HCEVLW 137 QZT 1 QZT 2 vce	Datumo	PRS 82
Size:	271 KB	Zone:	50 North (117E)
Modified:	7/24/2015 6:13:47 PM (UTC:8)	Geold:	EGMPH
Time zone:	Taipei Standard Time	Vertical datum:	
Reference number:			
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
plw 137 qzt 1 (B1)	plw 137	qzt 1	Fixed	0.005	0.011	269"40"42"	21218.741	-26.486
plw 137 cpzt 2 (B2)	plw 137	qzt 2	Fixed	0.018	0.037	269"35"56"	21211.522	-28.970

Acceptance Summary

Processed	Passed	Flag	P	Fail	
2	2	0		0	

plw 137 - qzt 1 (7:23:34 AM-1:08:19 PM) (S1)

Baseline observation:	plw 137 opt 1 (B1)
Processed:	7/24/2015 6:14:51 PM
Solution type:	Fored
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.005 m
Vertical precision:	0.011 m
RMS:	0.005 m
Maximum PDOP;	2.209
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	7/13/2016 7:23:34 AM (Local: UTC+8hr)
Processing stop time:	7/13/2015 1:08:19 PM (Local: UTC+8hr)
Processing duration:	05:44:45
Processing interval:	5 seconds

Figure A-3.1 Baseline Processing Report - A

Vector Components (Mark to Mark)

From:	plw 137		-93		
Grid Local Global			sball		
Easting	618656.024 m	Latitude	N9*11'02.95363*	Latitude	N8*10'58.60442*
Northing	1015326.411 m	Longitude	E118'04'48.04733'	Longitude	E118'04'53.42391"
Elevation	35.993 m	Height	35.834 m	Height	85.647 m

Ta:	gzt 1				
Grid Local Global				bal	
Easting	597443.484 m	Latitude	N9"10"58.89071"	Latitude	N9"10'54,52473"
Northing	1015143.507 m	Longitude	E117"63"13.01663"	Longitude	E117"53"18.39361"
Elevation	10.136 m	Height	9.338 m	Height	58.674 m

Vector					
ΔEasting	-21212.540 m	NS Fwd Azimuth	269*40'42*	ΔΧ	19740.467 m
ΔNorthing	-182.904 m	Ellipsoid Dist.	21218.741 m	ΔY	9950.677 m
ΔElevation	-25.857 m	ΔHeight	-26.495 m	ΔZ	-128.040 m

Standard Errors

Vector errors:							
σ ΔE asting	0.002 m	σ NS fwd Azimuth	0.00.00.	σ ΔΧ	0.003 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.002 m	σ ΔΥ	0.005 m		
σ ΔE levation	0.006 m	σ ΔHeight	0.006 m	σ ΔΖ	0.001 m		

Aposteriori Covariance Matrix (Meter*)

	х	Υ	Z
x	0.0000094504		
Υ	-0.0000117410	0.0000274170	
z	-0.0000021534	0.0000044403	0.0000015882

 \mathbf{z}

Figure A-3.2 Baseline Processing Report - B

2. QZT-2

Vector Components (Mark to Mark)

From:	płw 137	plw 137					
Grid		Local		Global			
Easting	618656.024 m	Latitude	N9"11'02.95363"	Latitude	N9*10'58.60442*		
Northing	1015326.411 m	Longitude	E118'04'48.04733'	Longitude	E118'04'53.42391"		
Elevation	35.993 n	Height	35.834 m	Height	85.647 m		

Ta:	qzt 2				
	Grid Lecal Global			Global	
Easting	597450.975 m	Latitude	N9110'57.93286"	Latitude	N9110'53.55596"
Northing	1015114.108 m	Longitude	E117'53'13.25970'	Longitude	E117'53'18.63670"
Elevation	7.660 m	Height	6.864 m	Height	56.200 m

Vector							
ΔEasting	-21205.049 m	NS Fwd Azimuth	269"35"56"	ΔX	18732.854 m		
ΔNorthing	-212.303 m	Ellipsoid Dist.	21211.522 m	ΔΥ	9949.197 m		
ΔElevation	-28.333 m	ΔHeight	-28.970 m	ΔZ	-157.483 m		

Standard Errors

Vector errors:							
σ ΔE asting	0.007 m	σ NS fwd Azimuth	0,00,00,	σ ΔΧ	0.011 m		
σ ΔNorthing	0.003 m	σ Ellipsoid Dist.	0.007 m	σ ΔΥ	0.016 m		
σ ΔE levation	0.019 m	σ ΔHeight	0.019 m	σ ΔΖ	0.005 m		

Aposteriori Covariance Matrix (Meter*)

	х	Υ	Z
x	0.0001228363		
Υ	-0.0001285827	0.0002649111	
z	-0.0000183105	0.0000652757	0.0000238832

23

Figure A-3.3 Baseline Processing Report - C

Processing style

Elevation mask: 10.0 deg

Auto start processing: Yes

Start automatic ID numbering: AUT00001

Continuous vectors: No

Generate residuals: Yes

Antenna model: Automatic

Ephemeris type: Automatic

Frequency: Multiple Frequencies

Processing Interval: Use all data

Force float: No

Acceptance Criteria

Vector Component	Flag 🏲	Fail
Horizontal Precision >	0.060 m + 1.000 ppm	0.100 m + 1.000 ppm
Vertical Precision >	0.100 m + 1.000 ppm	0.200 m + 1.000 ppm

plw 137 - qzt 2 (1:21:54 PM-5:50:14 PM) (S2)

Baseline observation: plw 137 --- cpt 2 (82)

Processed: 7/24/2015 6:15:02 PM

Solution type: Fixed

Frequency used: Dual Frequency (L1, L2)

 Horizontal precision:
 0.018 m

 Vertical precision:
 0.037 m

 RMS:
 0.004 m

 Maximum PDOP:
 1.717

 Ephemeris used:
 Broadcast

 Antenna medel:
 NGS Absolute

 Processing start time:
 7/13/2015 1:21:54 PM (Local: UTC+8hr)

 Processing stop time:
 7/13/2016 5:50:14 PM (Local: UTC+8hr)

Processing duration: 04:28:20
Processing interval: 5 seconds

22

Figure A-3.4 Baseline Processing Report - D

PL-3058 3.

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
PLW3058 PLW13 (B1)	PLW13	PLW3058	Fixed	0.007	0.024	52"27"10"	82603.650	-2.693

Acceptance Summary

Processed	Passed	Flag	Fail				
1	1	0	0				

PLW3058 - PLW13 (7:29:44 AM-1:02:54 PM) (51)

Baseline observation: PLW3058 --- PLW13 (B1) Processed: 1/8/2016 5:57:30 PM Solution type: Frequency used: Dual Frequency (L1, L2) Horizontal precision: 0.007 m Vertical precision: 0.024 m 0.005 m Maximum PDOP: 2.036 Ephemeris used: Broadcast Antenna model: NGS Absolute Processing start time: 12/7/2015 7:30:04 AM (Local: UTC+8hr) Processing stop time: 12/7/2015 1:02:54 PM (Local: UTC+8hr)

05:32:50 Processing duration: Processing interval: 5 seconds

Figure A-3.5 Baseline Processing Report - E

Vector Components (Mark to Mark)

From:	PLW13						
Grid			Local		Global		
Easting	-113741.490 m	Latitude	N8*30'17.42900"	Latitude		N8*30/13.19373*	
Northing	944471.057 m	Longitude	E117*25'55.42676*	Longitude		E117*26'00.86501*	
Elevation	1.573 m	Height	-0.256 m	Height		49.350 m	
To:	PLW3068			3.5			
	Grid		Local		G	ilobal	
Easting	-47282.005 m	Latitude	N8°57'34.41144"	Latitude		N8°57'30.11418"	
Northing	994023.989 m	Longitude	E118*01'39.35193*	Longitude		E118*01'44.74872*	
Bevation	-3.131 m	Height	-2.948 m	m Height		47.207 m	
Vector	600	9.9	2				
ΔEasting	66479.48	4 m NS Fwd Azin	nuth	52°27'10"	ΔΧ	-54449.908 m	
∆Northing	49552.93	2 m Ellipsoid Dist	£.	82603.650 m	ΔΥ	-37251.543 m	
ΔElevation	-4.70	4 m AHeight		-2.693 m	ΔΖ	49706.933 m	

Standard Errors

Vector errors:							
o ∆Easting	0.003 m	o NS fwd Azimuth	0°00'00"	σ ΔΧ	0.008 m		
σ ΔNorthing	0.002 m	or Ellipsoid Dist.	0.003 m	σΔΥ	0.011 m		
σ ΔElevation	0.012 m	σ ΔHeight	0.012 m	σ ΔΖ	0.003 m		

Aposteriori Covariance Matrix (Meter²)

	x		Z
x	0.0000356543		
Y	-0.0000566784	0.0001191653	
z	-0.0000106477	0.0000187894	0.0000078497

Figure A-3.6 Baseline Processing Report - F

4. PL-412

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Dist. (Meter)	ΔHeight (Meter)
PLW-3068 PL- 412 (B1)	PLW-3058	PL-412	Fixed	0.005	0.018	25°22'54"	7278.148	2.612
PLW-3058 PL- 412 (82)	PLW-3058	PL-412	Fixed	0.009	0.034	25°22'54"	7278.131	2.585

Acceptance Summary

Processed	Passed	Flag	P	Fall	-
2	2	0		0	

PLW-3058 - PL-412 (1:37:59 PM-6:11:54 PM) (S1)

 Baseline observation:
 PLW-3058 --- PL-412 (B1)

 Processed:
 1/4/2016 2:09 04 PM

Solution type: Fixed

Frequency used: Dual Frequency (L1, L2)

 Horizontal precision:
 0.006 m

 Vertical precision:
 0.018 m

 RMS:
 0.026 m

 Maximum PDOP:
 2.957

 Ephements used:
 Broadcast

 Antenna model:
 NGS Absolute

 Processing start time:
 12/5/2015 1:38:29 PM (Local: UTC+8hr)

 Processing stop time:
 12/5/2016 6:11:54 PM (Local: UTC+8hr)

Processing duration: 04:33:25
Processing interval: 5 seconds

1

Figure A-3.7 Baseline Processing Report - G

Vector Components (Mark to Mark)

From:	PLW-3058				
Grid		Local		Global	
Easting	-47262.004 m	Latitude	N8°57'34.41133"	Latitude	N8*57'30.11407"
Northing	994023,986 m	Longitude	E118°01'39.35197"	Longitude	E118°01'44.74876"
Elevation	-3.131 m	Height	-2.948 m	Height	47.207 m

To:	PL-412				Ĭ
	Grid		Local		Global
Easting	-44042.610 m	Latitude	N9*01*08.45200*	Latitude	N9*01'04.14225*
Northing	1000578.048 m	Longitude	E118*03'21.49607"	Longitude	E118*03*26.88749*
Elevation	-0.491 m	Height	-0.337 m	Height	49.766 m

Vector	Sin.				1
ΔEasting	3219.394 m	NS Fwd Azimuth	25"22"54"	ΔX	-2271.764 m
ΔNorthing	6554.062 m	Ellipsoid Dist.	7278.148 m	ΔΥ	-2371.208 m
ΔElevation	2.840 m	ΔHeight	2.612 m	ΔZ	6495.211 m

Standard Errors

Vector errors:		ý		9	2
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0*00'00*	σ ΔΧ	0.005 m
σΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.008 m
σ Δ Elevation	0.009 m	σ ΔHeight	0.009 m	σ ΔΖ	0.002 m

Aposteriori Covariance Matrix (Meter*)

	X	Υ	Z
x	0.0000235182		
Υ	-0.0000361146	0.0000644168	
Z	-0.0000050329	0.0000098915	0.0000055951

Figure A-3.8 Baseline Processing Report - H

Annex 4. The LiDAR Survey Team Composition

Table A-4.1 LiDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP

FIELD TEAM

	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
	Research Associate (RA)	ENGR. GEROME B.HIPOLITO	UP-TCAGP
LiDAR Operation	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
	RA	GRACE SINADJAN	UP-TCAGP
	RA	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	RA	JONATHAN ALMALVEZ	UP-TCAGP
Ground Survey, Data Download and	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
Transfer	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	Airborne Security	SSG. ARIES TORNO	PHILIPPINE AIR FORCE (PAF)
	, and office decearity	AT2C JUNMAR PARANGUE	PAF
LiDAR Operation		CAPT. MARK TANGONAN	ASIAN AEROSPACE CORPORATION (AAC)
	Pilot	CAPT. ALBERT PAUL LIM	AAC
		CAPT. JUSTINE JOYA	AAC
		CAPT. RANDY LAGCO	AAC

Annex 5. Data Transfer Sheet For Panitian Floodplain

	-	LOCATION	ZYDACHRAW	ZYBACHAGW	ZYDALDRAWY CATA	ZYCHORNY	COLORAN	Z-DA-CHAW DATA	ZYDADBAW	Z-SDA, DRAWY CMTA	ZEGEDROW	ZEREBAN					
	PLICENT PLAN	KIN	8	2	E	2	8	8	ż	8	2	ž					
	PLUDE	No.	TON	22	8	THESE	35	2	ž.	2	108/128	=					
	SPERMINE	1003	113	110	163	121	101	183	153	100	10	100					
	Tionali	See like	88	246	2	888	250	198	1908	200	958	200					
	LAST TUTTORIS	BASE STATESHIN	293	416	9.0	411	905	908	87	415	3115	100				No.	
		Monthe	293	N.	20	2	113	0.00	07.0	2	=	0.2			Prince of the last	5/26/5	
		5000	2	2	20	6.50	507	17.0	196	8.8	1.36	0000		4		36	
	MOT MORRISON	NUMBER OF THE PERSON	20	8	100001	-50	8	F	000	280	01			Sample	SER.	ナスセ	-
EN SHEET Great	r	WAAAAAAAA	E	603	=	89.	20	0 00	5.0	4.80	080	2	Received by	See of	1	l,	
MATA TRANSPER CHEET EXCETS/palaward		2	18	lo de	88	3	0.00	68	75	985	900	55.2 no	-	2	1 2	di l	
		indepen	h	1000	11.6	95	0	989	68 S	13.0	989	60 F.					
		SMI, (merell)	Na.	z	2	6	8	20	679837	8	10	9000					
	BAN LAS	Dispersion R	0.0	ii.	100	735	5.53	533	1.67	10	9000	000					
		SERVICE	Populari	Populari	Popular	Pagents	Pepoles	Peppera	Pagenter	- cappear	Pepose	Pepadent		1			
		RESIDEN MARKE	18 KADSTRAA	1BLK-GB101A	IBLACORTISSA N	191 K42G#T188A	18,642 POTRSA. PR	18LK42PO1928	TBLKGDLWISSA IN	TBLKGTMT86A. Ph	18UM2/BINE	1BLK42KSriseA	Secretarial form	Anthony - delignment	Postino PA		3
		PUGHT NO. 18	dSMOL	90739	STATE	STAND	SISM	STERP	91915	31000	Stiene	31750		2	160	160	
		DATE	34-Jan-35 3048P	30-Jun-35 8078P	3-Jul	S-bel	11-10	11-14	13-34	13-17	TP-FR	15-34					

Figure A-5.1 Data Transfer Sheet for Panitian Floodplain - A

FLIGHT PLAN	SERVER LOCATION	MACOUNTY TOWN	K	a a	2 2 2	2 2 2 3	2 2 2 2 2	2 2 2 2 3 3	2 2 2 2 3 3 3
	() Actual	22/24/22/48/		22/24/22/48	20/24/20/48/ 31 24/22/48/53/ 510:0	22/24/22/48/53 31/20 31/20/33/30/53 50/42/30/63/	2024/2048/ 31 24/2048/50 5100 24/2030/60/ 5048/51 24/2021/27 20/2021/27 30/50/50/60/	202422485 51 34224485 5100 34223485 34222145 34222145 34222145 51 34222123 342221 34221 342221 342221 342221 342221 342221 342221 342221 342221 342221 342221 342221 342221 342221 342221 34221 342221 342221 342221	202422488 31 31 3120 3120423483 31204830 31204830 31206380 31206380 4861 4861
NAME OF TAXABLE PARTY AND		148	-	1103	80t 80t	80t 80t	801 801 W	801 801 AV 801	891 N N 891
	Base info	148	1kB		(E)	(E) (B)	(B) (B) E	(B) (B) (B) (B)	(a) (a) (a) (a) (a)
-	BASE STATION(S)	989	640		12.1	12.1	12.1	12.1	121 88 82 121 111 121 121 121 121 121 121 121 12
	DIGITORA	5	2	2		2	5 5	2 2 2	2 2 2 2
	RANGE	25.4	14.6	1.62		22.3	22.3	21.2	23 212 23 23 20.9
MESSION LOG		1.0	13	89		5	6 6	2 2 2	6 6 6
-	IMAGESICASI	na	173	N		na na	2 2	5 5 5	5 5 5
	POS	202	OSL	227		218	218	218	232 234 227
	LOGS(ME)	636	370	1	-	930	484	980 484	530 484 555 523
LA3	KHL (sweth)	92	171	484	27%	-	218	87.2 1080	87.2 1080 1343
RAN	Output LAS	ž	NA	NA	NA		¥.	A A	A A A
	SENSOR	OEMNI	GEMINI	GEMINI	CEMMI		CEDANI	GEMINI	GENINI
	MISSION MANE	2BLK42PQR337A	2BUK42Tv338A	28LK42Dv339A	BRESOUGESING	Supplementary of	ZBIK4ZNPG341A	ZBLK42NPG341A ZBLK42NP342A	ZBLK42NPG341A ZBLK42NP342A 2BLK42TWEwF344A
	FLIGHT NO.	3565	3571	3573	3575	1	3581	3581	3581
		# Thoughteline 30-Nov-15	21-Nov-15	26-Nov-15	27-NOV-35		28-Nov-35	28-Nov-15 30-Nov-15	28-Nov-15 30-Nov-15 30-Nov-15

Figure A-5.2 Data Transfer Sheet for Panitian Floodplain - B

Annex 6. Flight Logs

1. Flight Log for 1BLK42LM193A Mission

housen Per-	200	DISTRIBUTION NAMED OF COLUMN	TO SECTION ASSESSMENT	The state of the s	The second secon
DOUGH AN ESTAGAGE, PEG-TH					
110	on Linea	上十七十二十二日 日本の日本	Same		
		political Departure (Airport, Objethesi rice)) C. I. O Paris co	12 Amount of Ambust	12 Algorit of Ambull Maport, Childhodinas:	
20 Singles On 1 20 Singles Of 97.29	1. 23	15 Total Engline Time:	45 Table off.	15 (2 : 55	SETIMAL Flight Time: 3 + 2.3
19 Weather 52	alo	1			
20 Flight Charafterform			2) Baracio		
XLa Dillatie 23.046	on Makin	20.c Others	2	Completed lines	10 81/2 42
of Acquatition Plaint o o forcy Plaint o o system That Plaint o o calingsian Plaint	Alcout Tecritori ACAdesis Figit Others	O LUARI System Internance O Aberel Melitigrano O PIE-LEJAS, Melita Actividos	vities	As Converse	

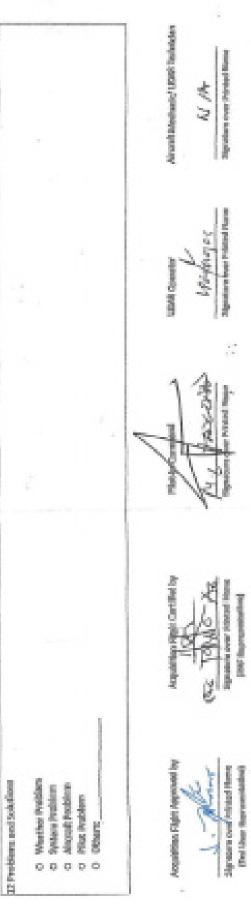


Figure A-5.1 Flight Log for Mission 1BLK42LM193A

Flight Log for 1BLK42LM194A Mission

1 UCAR Charter	TOTAL COLUMN COL	A Signation Names Agr.	MAY A PIPE: WA	S Alove fi Type: Cett nel 2024	S. Mrca T. Nepritth of Sal. 40 to C.
10 Date of the special	Ti.	Wigner, Orpford not.	12 August of Acchael	M. August of Annius (Norgan), Chyffreninich:	
35 Englise Gni 7:23	Mingra Od.	13 Total Engine Time: 9+14	No Table of Land	27 Landings 11:52	Safferial Plage Times
29 Washer	Buth Study				
23 Right Chestication			21 Remarks		
20.4 Stickle	20.b Non Billible	TLc Others		Completed and	lines in 121k.42
o September Right o September Right o Osterston Pilot	o Akanh her right o AK Adeloriight o Othero	O SEAR System Multiplescores o Alexant Maintenance o Pra-SEAR Admin Activities	ieseror or orbities	no ames to	e chight for freezes
22 Problems and Solutions					
C Maather Dockloss O System Prefilem					
O Alexalt-Problem O Plet Poblem					
1965	1				
Asperture The spread by	D. C.	Comments of the Comments of th	A Secretary	Secretarion	About Namental (State Technism
Sgretage over Printed Name	A Spanner Over Printed News		gramms over Priving Huge	Spritables Printed Name	Spillary of Peter Peter

Figure A-5.2 Flight Log for Mission 1BLK42LM194A

Flight Log for 1BLK42JS194B Mission

100mm	17.60	Manuel All	PICK 4 Type WIR	S. Micrath Type: General 2009	newT20SH	6 Arcreft Henditordon:	22% motors
10 Debr: 24/14/15	12 Alignet of Departure (Alignet, Chylbrodince):	(Appert, Onj/Province):	12 Apport of Arrival	12 Asport of Arriva (Majort, Olg/Bovlina): RV - Febro			
	14 fagine Off P: 30	15 Total Engles Time: 2 + 18	15:10 off (5:17	17 tending:		2 + 02	*
Ministrac	Rasny Chardy						
2f Hight-Chaulitothen			21. Florrando				
	23. b Non Gilbbia	Zúc Others		Markeful	Policy	01 KIRS	2
9 - Sequention Mate O teny Taple O Setter Test Right O Collection Taple	o Alcorit Tat Right o AlC Admin Hight o Others	O UDACSprim Nehranaca O Alcork Mehierano O Pili-LDM/Admin Activisia	NOSES	M Comera			
22 Problems and Solutions							
O Westber Politics							
O Spatare/Publism							
			1				
Acquisition Figur, Aspended by	ST-	parameter may	1	UDMI Operation		Arcel Media	Arcelt blecomy (DNR Telebote
J. Hrim	CAL PORTED NO.	CHI	U.A. W. W. W. C. J. Man.	Stortes nav	District Parts	Statistics on	AV /A

Figure A-5.3 Flight Log for Mission 1BLK42JS194B

Flight Log for 2BLK42Ov339A Mission

4

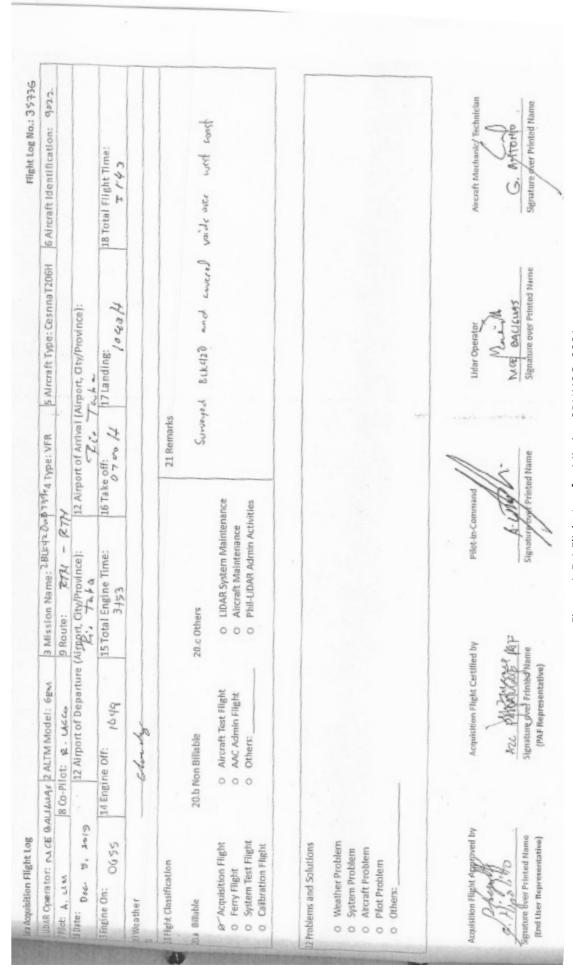


Figure A-5.4 Flight Log for Mission 2BLK42Ov339A

Annex 7. Flight Status

FLIGHT STATUS REPORT PANITIAN FLOODPLAIN (July 11-13 & December 5, 2015)

Table A-7.1 Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
3161P	BLK 42LM	1BLK42LM193A	L. Paragas	July 12, 2015	Surveyed BLK 42L and BLK 42M
3165P	BLK 42LM	1BLK42LM194A	G. Sinadjan	July 13, 2015	Surveyed remaining areas In BLK 42L and BLK 42M
3167P	BLK 42JS	1BLK42JS194B	L. Paragas	July 13, 2015	Surveyed remaining gap in BLK 42J
3573	BLK42 eO; L,M voids	2BLK42Ov339A	MCE Baliguas	05-Dec-15	Surveyed BLK42eO and west voids (BLK42L,M)

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

FLIGHT LOG NO. 3161P AREA: BLOCK 42LM

MISSION NAME: 1BLK42LM193A PRF: 200

Scan Freq: 30 Hz Scan Angle: 25 deg

SURVEY COVERAGE:

LAS

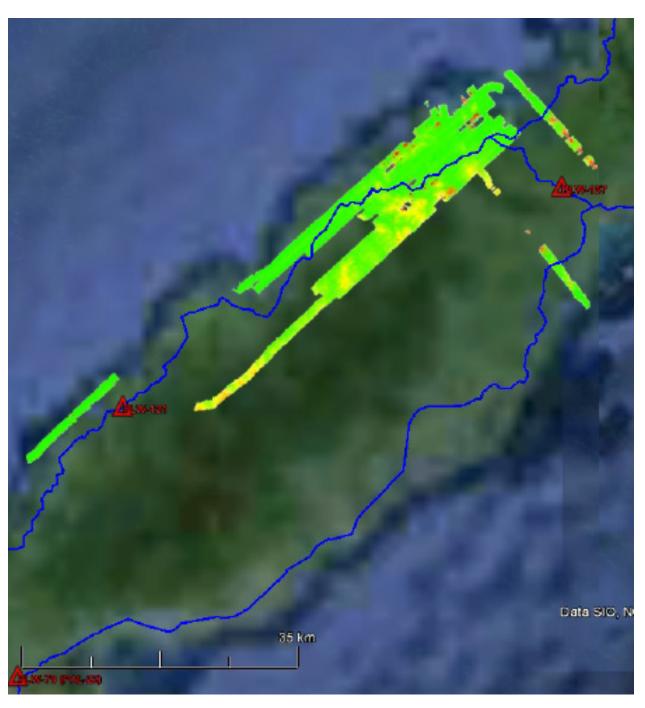


Figure A-7.1 Swath for Flight No. 3161P

FLIGHT LOG NO. 3165P

AREA: BLOCK 42LM

MISSION NAME: 1BLK42LM194A PRF: 200 Scan Freq: 30 Hz Scan Angle: 25 deg

SURVEY COVERAGE:

LAS

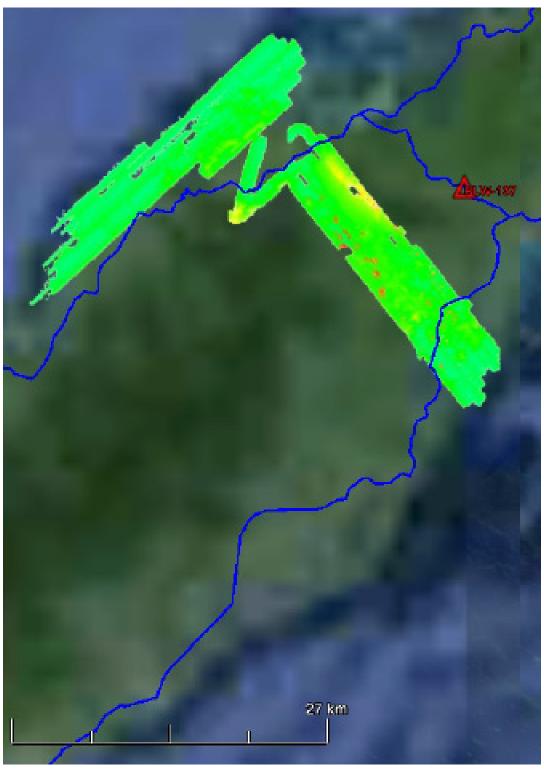


Figure A-7.2 Swath for Flight No. 3165P

FLIGHT LOG NO. 3167P AREA: BLOCK 42JS

MISSION NAME: 1BLK42JS194B PRF: 200

Scan Freq: 30 Hz Scan Angle: 25 deg

SURVEY COVERAGE:

LAS

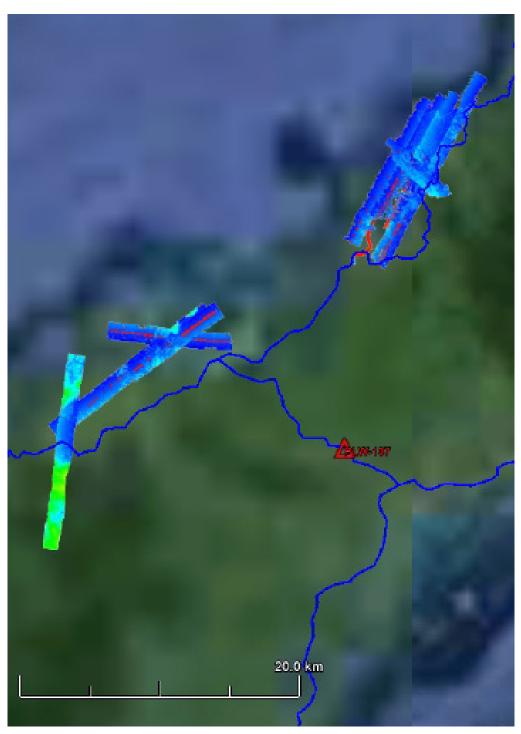


Figure A-7.3 Swath for Flight No. 3167P

FLIGHT NO. 3573G

AREA: BLK 42 EO, 42LKM VOIDS

MISSION NAME: 2BLK42OV339A TOTAL AREA SURVEYED: 111.657 SQ KM

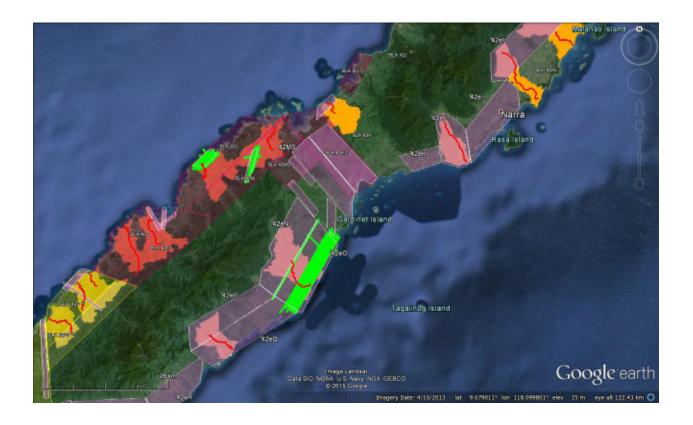


Figure A-7.4 Swath for Flight No. 3573G

Annex 8. Mission Summary Reports

Table A-8.1 Mission Summary Report for Blk 42L

Flight Area	Davao Oriental
Mission Name	Blk 42L
Inclusive Flights	3161P & 3165P
Range data size	57.70 GB
POS	469 MB
Image	78.10 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.80
RMSE for East Position (<4.0 cm)	2.60
RMSE for Down Position (<8.0 cm)	1.35
Boresight correction stdev (<0.001deg)	0.000188
IMU attitude correction stdev (<0.001deg)	0.000512
GPS position stdev (<0.01m)	0.0015
Minimum % overlap (>25)	41.20
Ave point cloud density per sq.m. (>2.0)	2.92
Elevation difference between strips (<0.20 m)	Yes
N. observatel or all orbitals	200
Number of 1km x 1km blocks	286
Maximum Height	330.22
Minimum Height	35.92
Classification (# of points)	
Ground	156485701
Low vegetation	131781027
Medium vegetation	193453766
High vegetation	471929280
Building	7313285
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Melanie Hingpit, Ryan Nicholai Dizon

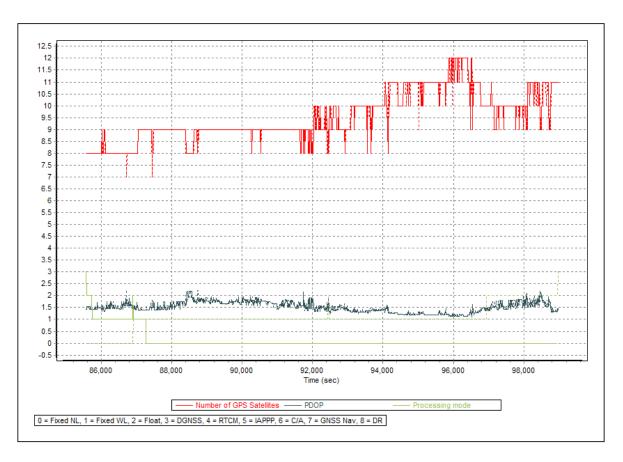


Figure A-8.1. Solution Status

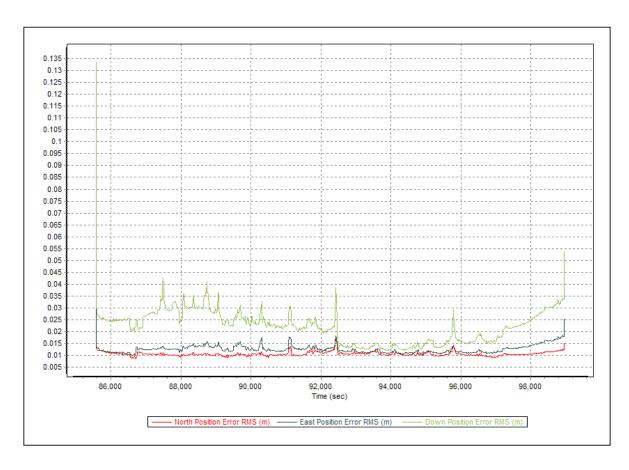


Figure A-8.2. Smoothed Performance Metric Parameters

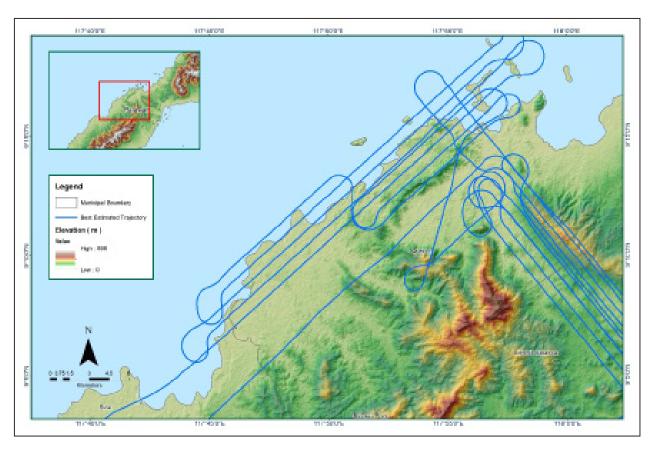


Figure A-8.3. Best Estimated Trajectory

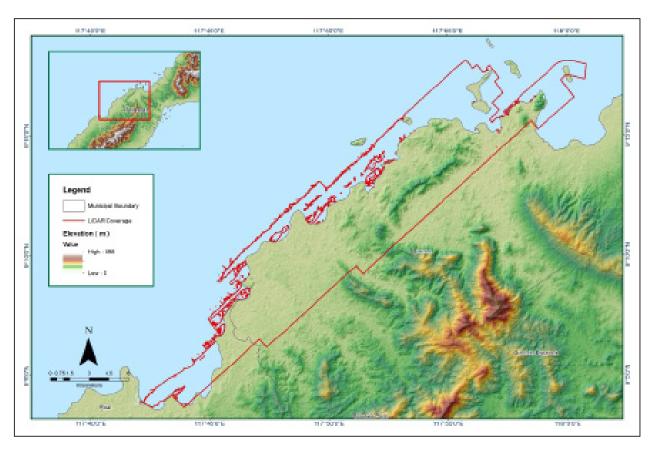


Figure A-8.4. Coverage of LiDAR data

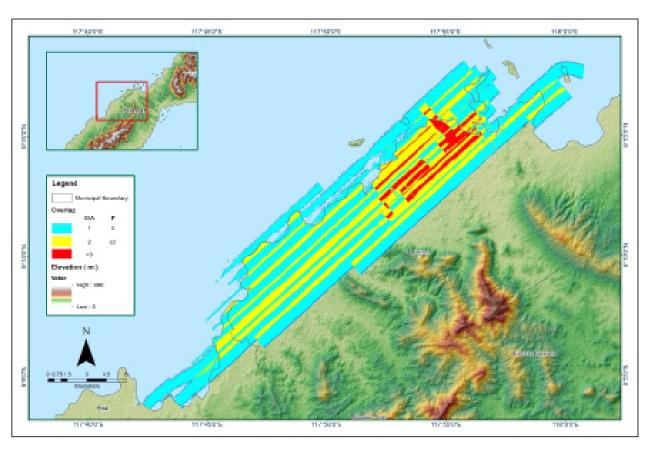


Figure A-8.5. Image of data overlap

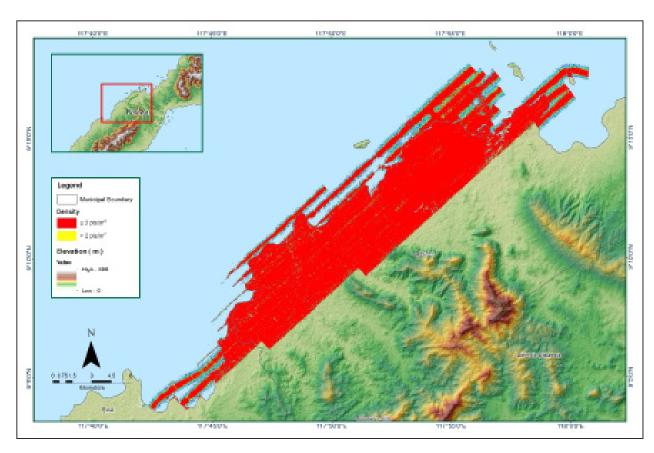


Figure A-8.6. Density map of merged LiDAR data

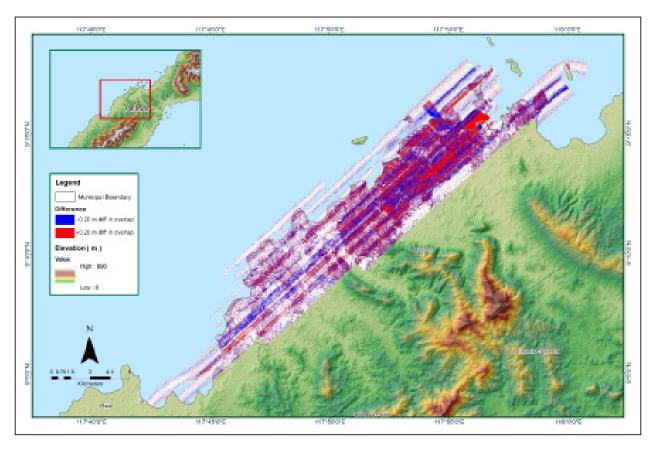


Figure A-8.7. Elevation difference between flight lines

Table A-8.2 Mission Summary Report for Blk 42M

Flight Area	Davao Oriental
Mission Name	Blk 42M
Inclusive Flights	3161P, 3165P & 3167P
Range data size	65.06 GB
POS	575 MB
Image	83.03 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.00
RMSE for East Position (<4.0 cm)	4.60
RMSE for Down Position (<8.0 cm)	6.40
Boresight correction stdev (<0.001deg)	0.000283
IMU attitude correction stdev (<0.001deg)	0.000320
GPS position stdev (<0.01m)	0.0020
Minimum % overlap (>25)	33.01
Ave point cloud density per sq.m. (>2.0)	2.99
Elevation difference between strips (<0.20 m)	Yes
cievation difference between strips (<0.20 iii)	ies
Number of 1km x 1km blocks	287
Maximum Height	577.26
Minimum Height	41
Classification (# of points)	425640270
Ground	125649379
Low vegetation	76720115
Medium vegetation	157777193
High vegetation	708301440
Building	9606648
Orthophoto	No
Processed by	Engr. Regis Guhiting, Aljon Rei Araneta, Engr. Mark Sueden Lyle Magtalas

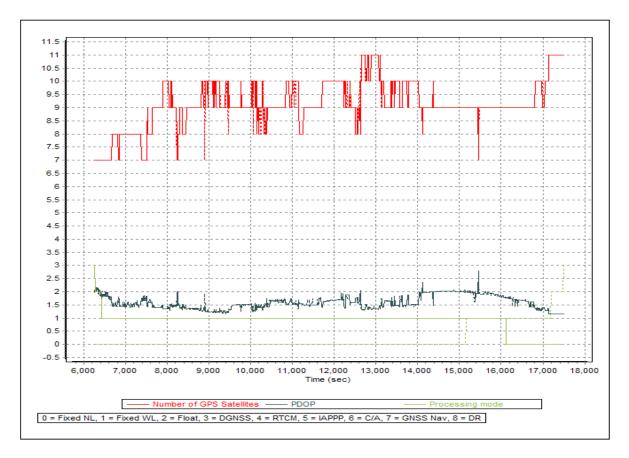


Figure A-8.8. Solution Status

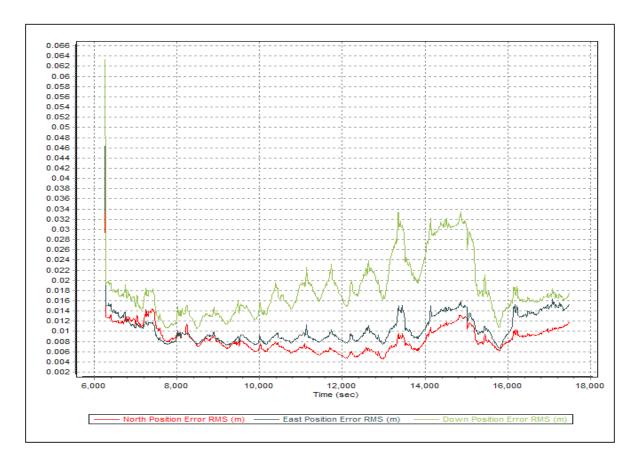


Figure A-8.9. Smoothed Performance Metric Parameters

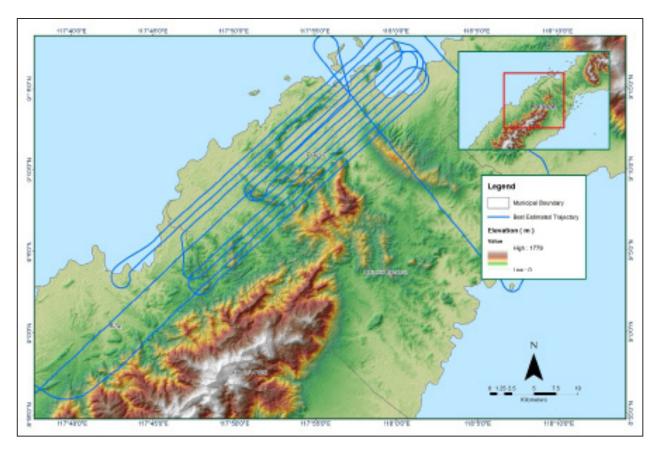


Figure A-8.10. Best Estimated Trajectory

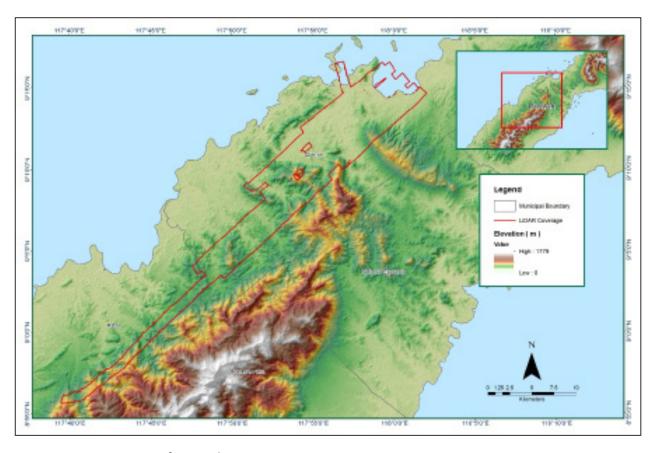


Figure A-8.11. Coverage of LiDAR data

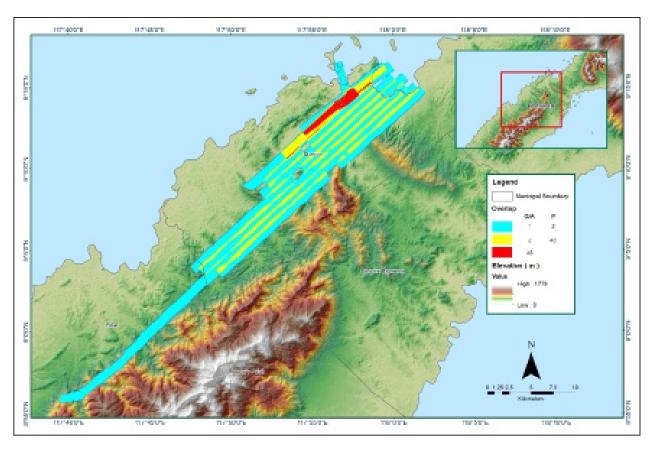


Figure A-8.12. Image of data overlap

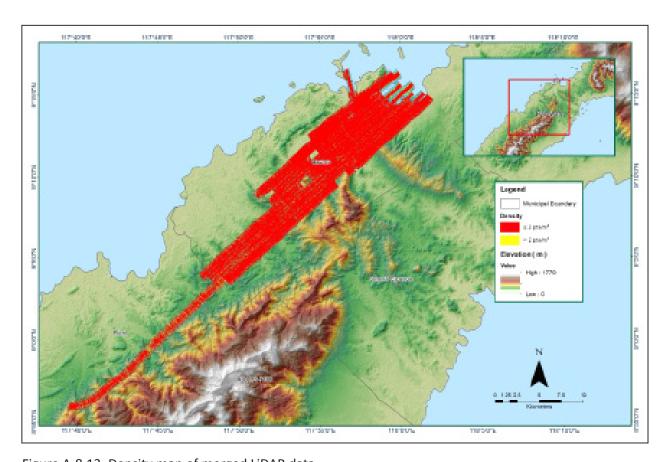


Figure A-8.13. Density map of merged LiDAR data

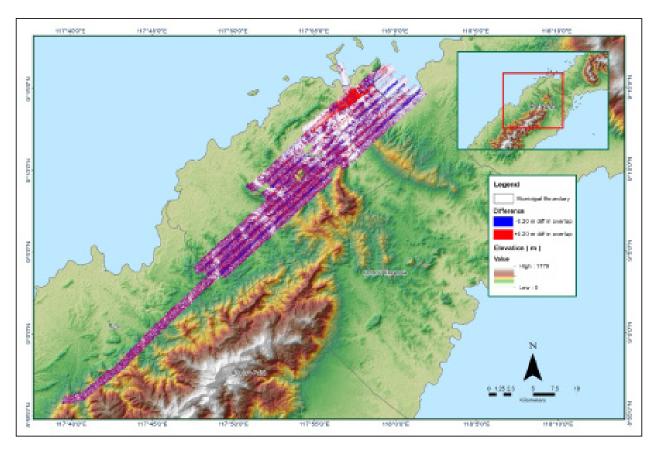


Figure A-8.14. Elevation difference between flight lines

Table A-8.3 Mission Summary Report for Blk 42M Supplement

Flight Area	Davao Oriental
Mission Name	Block 42M Supplement
Inclusive Flights	3165P
Range data size	28.90 GB
POS	255 MB
Image	36.40 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Constant Deuferman and Matrice (in and)	
Smoothed Performance Metrics (in cm)	1.00
RMSE for North Position (<4.0 cm)	1.80
RMSE for East Position (<4.0 cm)	2.60
RMSE for Down Position (<8.0 cm)	1.35
Boresight correction stdev (<0.001deg)	0.000219
IMU attitude correction stdev (<0.001deg)	0.000122
GPS position stdev (<0.01m)	0.0014
Minimum % overlap (>25)	32.96
Ave point cloud density per sq.m. (>2.0)	4.12
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	174
Maximum Height	557.25
	43.67
Minimum Height	45.07
Classification (# of points)	
Ground	115711792
Low vegetation	86033359
Medium vegetation	230045374
High vegetation	215206848
Building	3094395
Orthophoto	No
Processed by	Engr. Regis Guhiting, Engr. Velina Angela Bemida, Engr. Krisha Marie Bautista

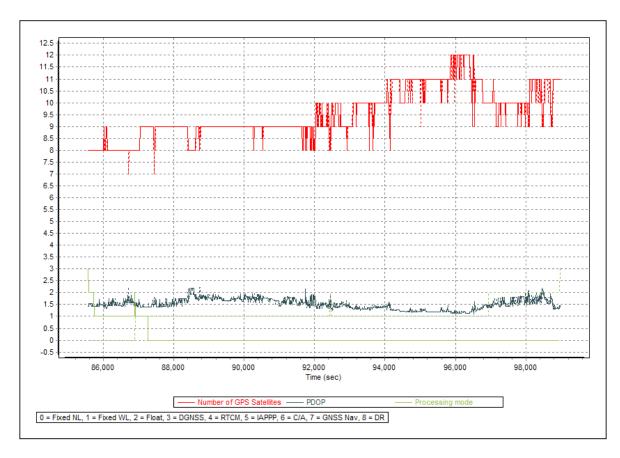


Figure A-8.15. Solution Status

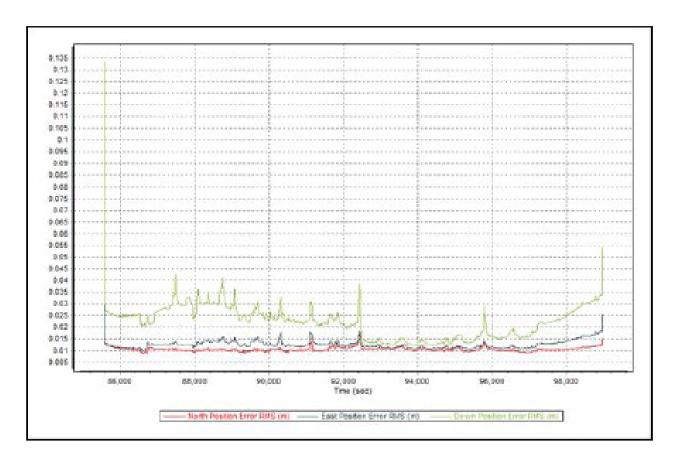


Figure A-8.16. Smoothed Performance Metric Parameters

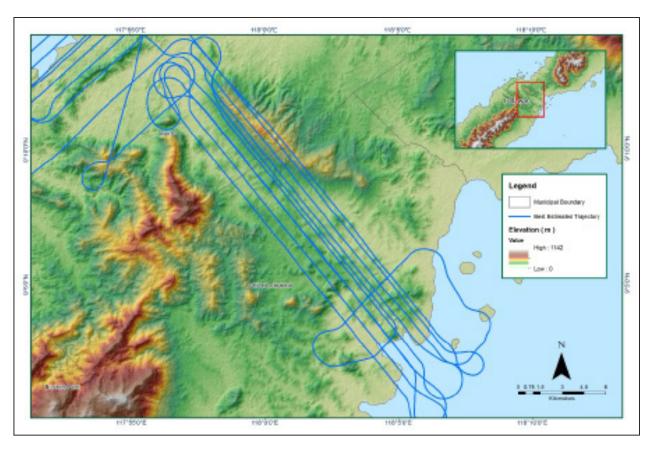


Figure A-8.17. Best Estimated Trajectory

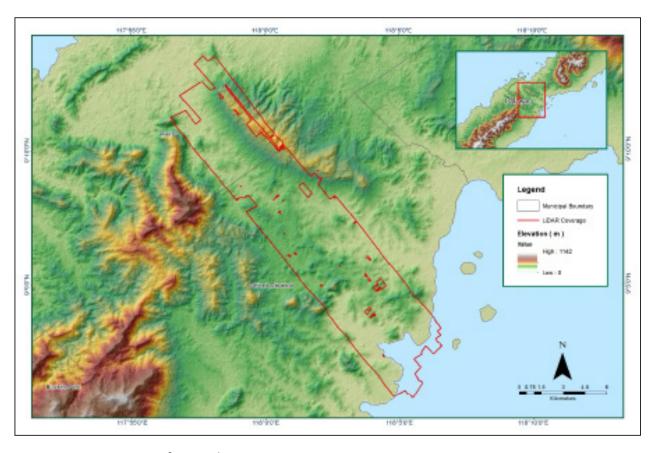


Figure A-8.18. Coverage of LiDAR data

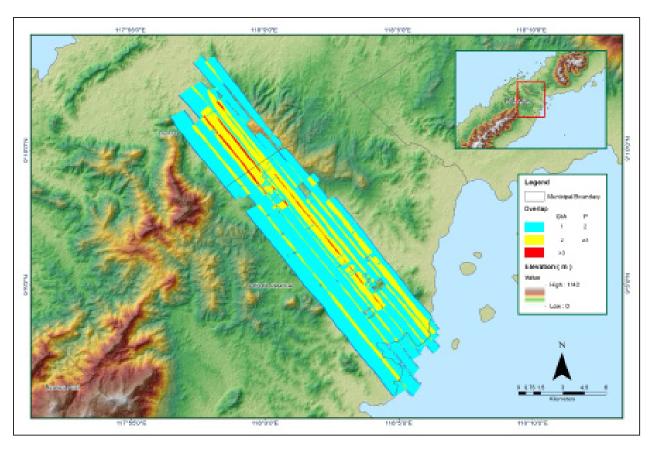


Figure A-8.19. Image of data overlap

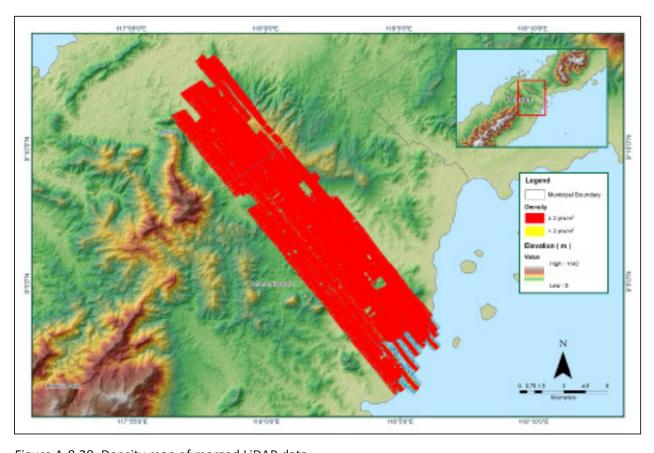


Figure A-8.20. Density map of merged LiDAR data

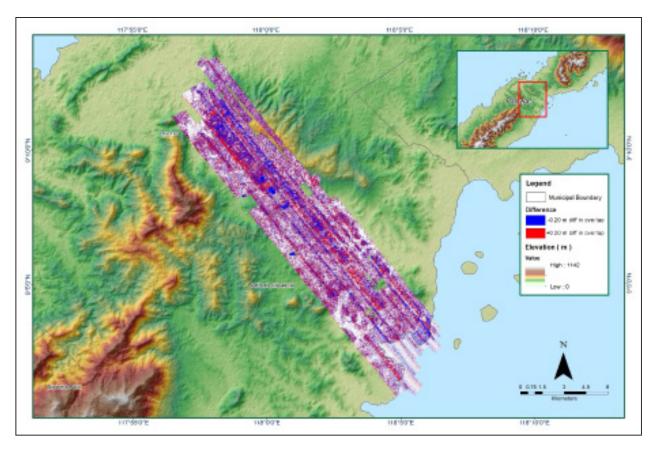


Figure A-8.21. Elevation difference between flight lines

Table A-8.4 Mission Summary Report for Blk 42L

Flight Area	Davao Oriental
Mission Name	Blk42L
Inclusive Flights	3573G
Range data size	19.7 GB
Base data size	12.1 MB
POS	227 MB
Image	NA
Transfer date	January 5, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.01
RMSE for East Position (<4.0 cm)	1.28
RMSE for Down Position (<8.0 cm)	3.39
Times to some some (tele only	0.00
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
·	
Minimum % overlap (>25)	10.06%
Ave point cloud density per sq.m. (>2.0)	3.34
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	30
Maximum Height	108.79 m
Minimum Height	41.08 m
Classification (# of points)	
Classification (# of points) Ground	4 204 000
	4,394,990
Low vegetation Medium vegetation	4,891,248
	12,105,160
High vegetation	14,375,481
Building	63,603
Ortophoto	No
Processed by	Engr. Regis Guhiting, Engr. Christy Lubiano, Kathryn Claudyn Zarate

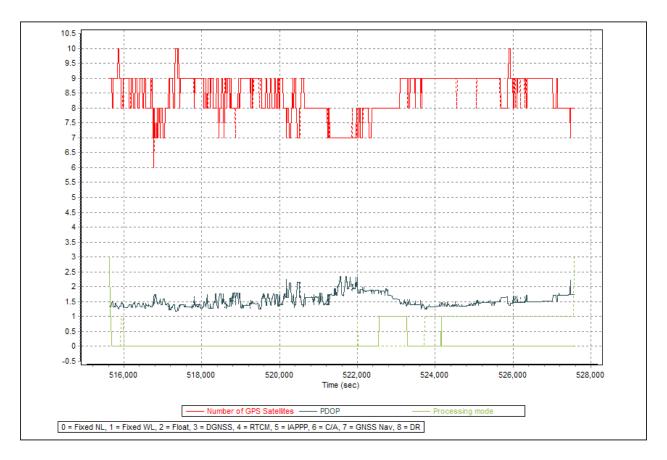


Figure A-8.22. Solution Status

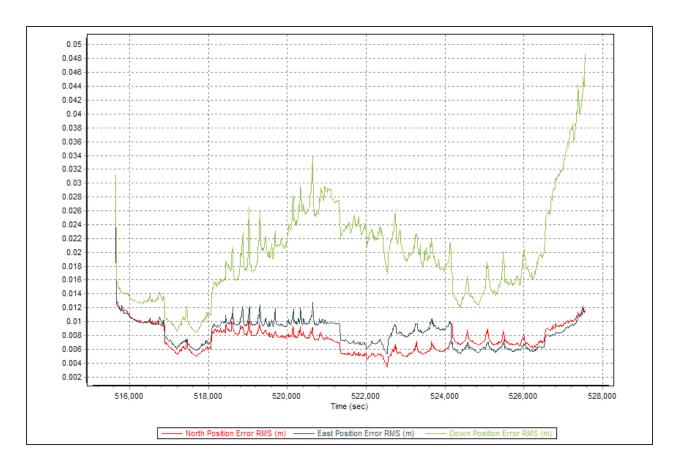


Figure A-8.23. Smoothed Performance Metric Parameters

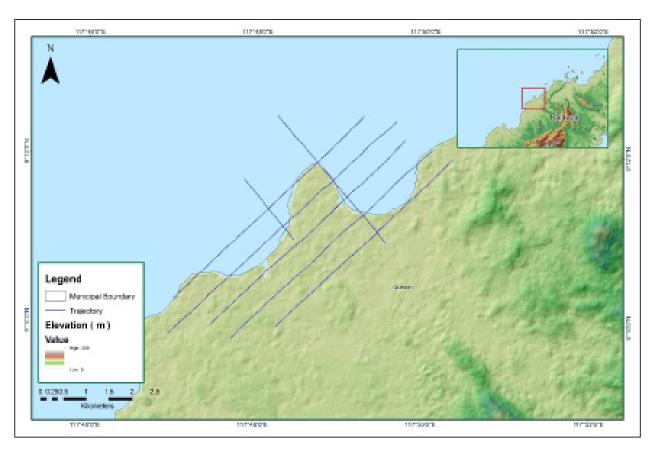


Figure A-8.24. Best Estimated Trajectory

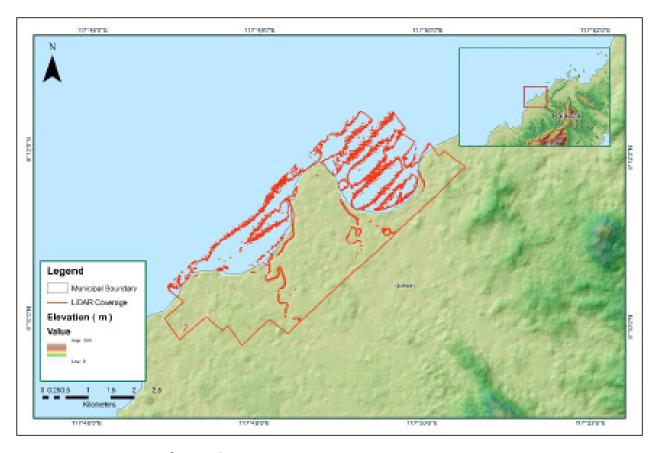


Figure A-8.25. Coverage of LiDAR data

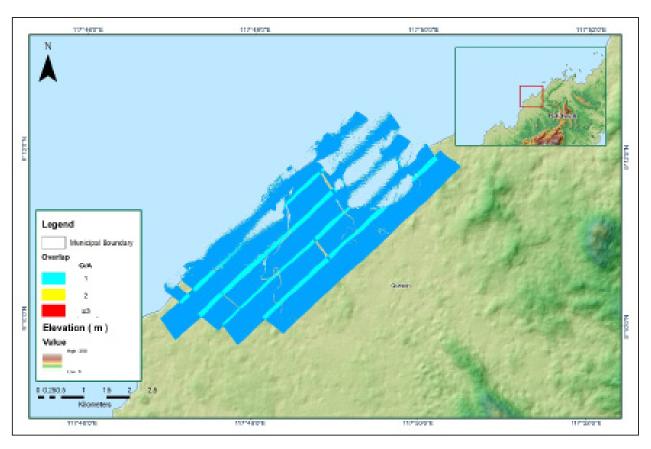


Figure A-8.26. Image of data overlap



Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Table A-8.5 Mission Summary Report for Blk 42M

=11.1.4	2 2:
Flight Area	Davao Oriental
Mission Name	Blk42M
Inclusive Flights	3573G
Range data size	19.7 GB
Base data size	12.1 MB
POS	227 MB
Image	NA
Transfer date	January 5, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.01
RMSE for East Position (<4.0 cm)	1.28
RMSE for Down Position (<8.0 cm)	3.39
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
Minimum % overlap (>25)	21.52%
Ave point cloud density per sq.m. (>2.0)	4.81
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	28
Maximum Height	501.22 m
Minimum Height	46.40 m
Classification (# of points)	
Ground	4,105,596
Low vegetation	4,982,741
Medium vegetation	17,233,950
High vegetation	25,902,556
Building	353,805
<u> </u>	·
Ortophoto	No
Processed by	Engr. Regis Guhiting, Engr. Merven Matthew Natino, Engr. Elainne Lopez

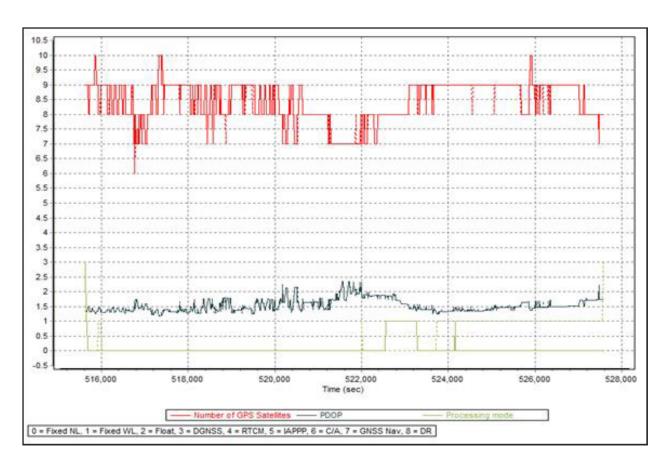


Figure A-8.29. Solution Status

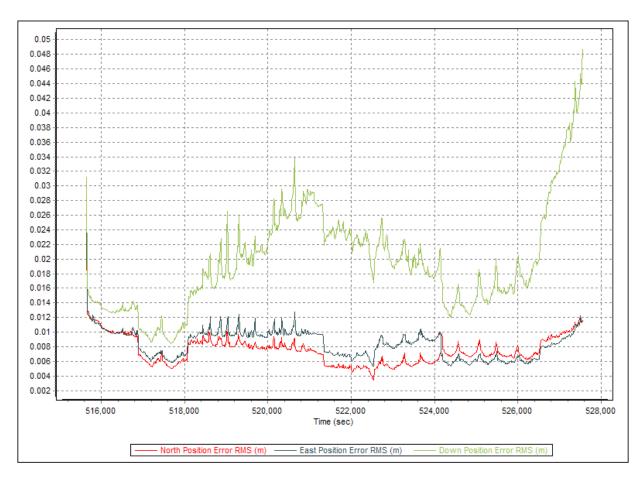


Figure A-8.30. Smoothed Performance Metric Parameters

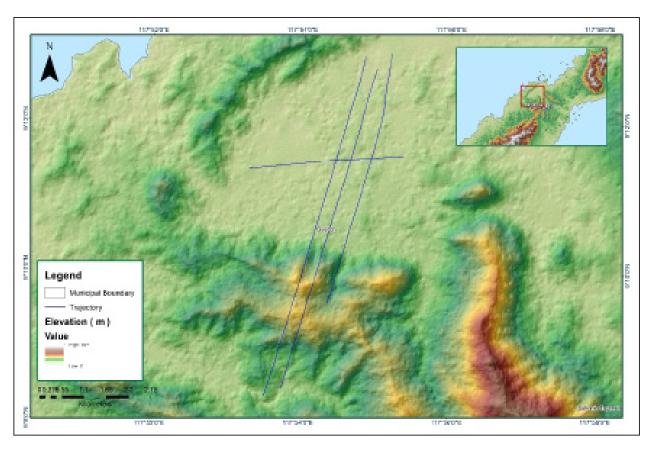


Figure A-8.31. Best Estimated Trajectory

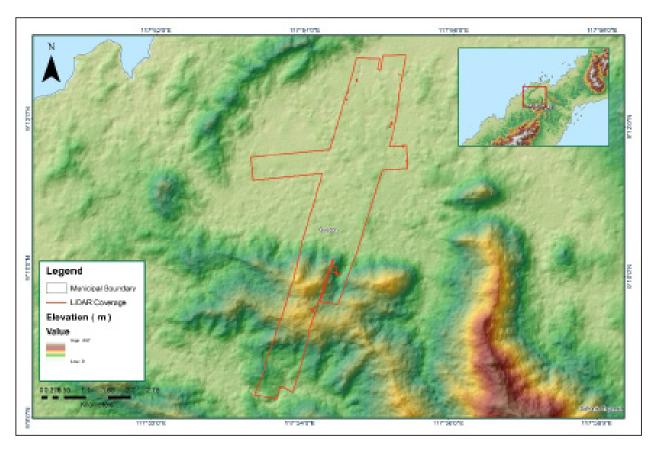


Figure A-8.32. Coverage of LiDAR data

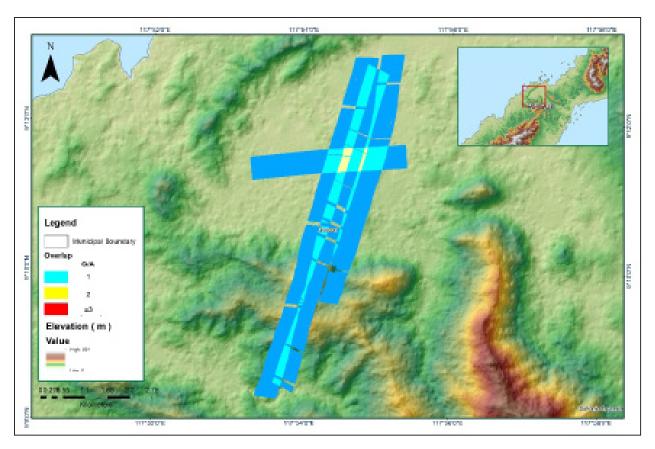


Figure A-8.33. Image of data overlap

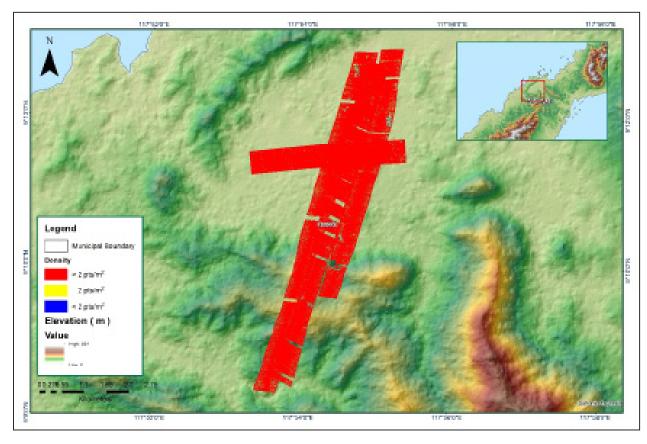


Figure A-8.34. Density map of merged LiDAR data

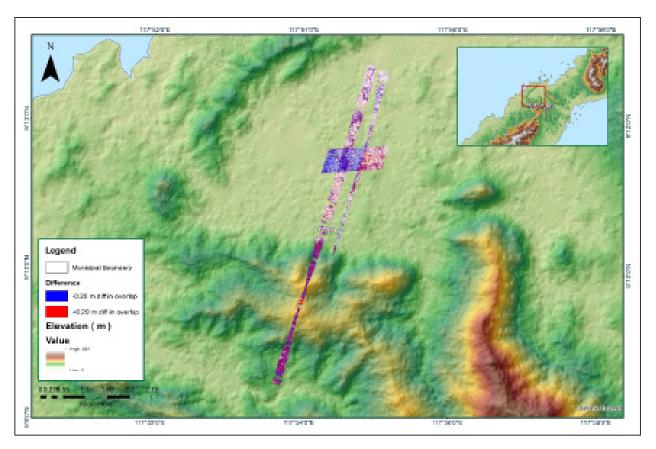


Figure A-8.35. Elevation difference between flight lines

Annex 9. Panitian Model Basin Parameters

Table A-9.1 Panitian Model Basin Parameters

	SCS Cur	SCS Curve Number Loss		Clark Unit Hydrograph Transform	raph Transform			
Sub-basin	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
W1000	1.5500	0000'68	0.0	1.1615	1.8956	0.0059207	1.0000	0.5000
W1010	1.6729	88.3605	0.0	0.9410	1.5358	0.0862861	1.0000	0.5000
W1020	1.5500	0000'68	0.0	0.8828	1.4407	0.0123481	1.0000	0.5000
W1040	1.5500	0000'68	0.0	1.4879	2.4283	0.0856990	1.0000	0.5000
W1050	1.8745	87.1386	0.0	1.2347	2.0150	0.14217	1.0000	0.5000
W1060	1.6504	88.4992	0.0	0.8553	1.3959	0.0704358	1.0000	0.5000
W1070	1.2801	47.9710	0.0	2.9146	0.7031	0.18555	0.6403	0.2134
W1080	1.5500	89.0000	0.0	0.6174	1.0076	0.10396	1.0000	0.5000
W1090	3.5500	0000'82	0.0	0.8496	1.3866	0.0811532	1.0000	0.5000
W1100	4.2793	74.7971	0.0	2.1297	3.4756	0.49233	1.0000	0.5000
W1110	0.7906	40.6230	0.0	2.9093	3.2605	0.11585	0.4356	0.4612
W1120	3.8909	76.5479	0.0	1.4763	2.4092	0.18502	1.0000	0.5000
W1130	0.7752	37.3080	0.0	0.3853	0.6657	0.0080682	1.0000	0.3201
W1140	3.0814	80.4744	0.0	0.6189	1.0100	0.0942840	1.0000	0.5000
W1150	1.3551	42.7190	0.0	1.5779	1.6960	0.0943643	0.4444	0.3137
W1160	0.7906	40.2240	0.0	2.5035	1.2278	0.0191970	0.6533	0.3151
W1170	0.8320	36.7850	0.0	1.8778	1.3792	0.0887748	0.6667	0.1423
W1180	1.9244	34.8290	0.0	2.2465	0.9896	0.10047	1.0000	0.2092
W1190	2.2046	36.7400	0.0	1.5049	1.6270	0.25279	0.6533	0.4612
W1200	2.2116	36.7250	0.0	1.9417	0.9538	0.0223480	1.0000	0.5309
W1210	2.6408	35.3410	0.0	2.7027	2.6347	0.26788	1.0000	0.4612
W1220	1.1106	36.1550	0.0	2.8202	1.5689	0.0532659	0.6667	0.3137

	SCS Cur	SCS Curve Number Loss	10	Clark Unit Hydrograph Transform	raph Transform			
Sub-basin	Initial Abstraction (mm)	Curve	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
W1230	0.9761	40.0800	0.0	1.6193	1.1991	0.0898485	0.6533	0.5304
W1240	2.6353	42.5270	0.0	1.3244	4.7893	0.13995	0.4268	0.3137
W1250	1.7970	52.9400	0.0	0.9067	2.1674	0.0771843	0.2904	0.3137
W1260	3.6218	40.3150	0.0	0.8062	2.9118	0.0766123	1.0000	0.4612
W1270	1.2515	38.3560	0.0	1.3541	0.4321	0.0039688	0.4444	0.3305
W1280	1.0602	36.3960	0.0	1.1870	1.2936	0.0130355	0.6667	0.5438
W1290	2.1266	35.2980	0.0	1.1780	0.9381	0.10840	0.4444	0.3075
W1300	2.6361	36.2380	0.0	1.3348	2.3747	0.0089061	0.6667	0.3137
W1310	4.0338	35.1000	0.0	1.3963	1.3936	0.14015	0.2963	0.4612
W1320	1.8075	35.1000	0.0	1.1121	4.0486	0.0814743	0.6667	0.4612
W1330	7.8717	61.7353	0.0	0.8962	1.4626	0.0935765	1.0000	0.5000
W1340	1.0448	60.6580	0.0	1.2228	1.3012	0.0992965	0.2963	0.2134
W1350	0.9213	37.0390	0.0	3.0959	1.5083	0.21451	0.2963	0.2092
W1360	1.7955	35.9720	0.0	1.3264	1.4399	0.0826233	0.4444	0.3075
W1370	1.8135	36.0200	0.0	1.5190	0.5061	0.0011189	0.9929	0.6918
W1380	2.5919	36.3030	0.0	0.9797	5.3348	0.11493	0.9750	0.4612
W1390	2.1237	35.2040	0.0	3.0315	2.2392	0.0998584	0.6667	0.4612
W1400	2.2402	35.2780	0.0	5.6509	1.8828	0.20799	1.0000	0.4612
W1410	7.9246	61.5769	0.0	1.8018	2.9405	0.3335639	1.0000	0.5000
W1420	2.6878	35.9720	0.0	1.3389	2.2173	0.19649	0.6533	0.4612
W1440	1.5500	89.0000	0.0	1.1855	1.9347	0.0534866	1.0000	0.5000
W1450	0.7906	41.0450	0.0	2.6045	1.2773	0.0286801	1.0000	0.2134
W1490	1.5500	89.0000	0.0	1.4869	2.4266	0.0474255	1.0000	0.5000
W1500	1.5500	89.0000	0.0	1.2453	2.0323	0.0256395	1.0000	0.5000
W720	0.2831	97.8193	0.0	0.7310	1.1930	0.0255943	1.0000	0.5000

	SCS Cur	SCS Curve Number Loss		Clark Unit Hydrograph Transform	raph Transform			
Sub-basin	Initial Abstraction (mm)	Curve	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
W730	1.7357	87.9762	0.0	1.1308	1.8455	0.0796128	1.0000	0.5000
W740	0.2609	97.9869	0.0	0.9187	1.4993	0.0528093	1.0000	0.5000
W750	0.1000	0000.66	0.0	0.5803	0.9471	0.0055745	1.0000	0.5000
W760	3.4094	78.8361	0.0	0.9949	1.6237	0.0731803	1.0000	0.5000
W770	3.0363	80.7052	0.0	1.3862	2.2623	0.0783283	1.0000	0.5000
W780	1.0138	92.6074	0.0	1.7681	2.8856	0.11460	1.0000	0.5000
W790	3.5500	78.0000	0.0	1.0212	1.6665	0.0976909	1.0000	0.5000
W800	2.6936	82.5018	0.0	1.6534	2.6983	0.0312390	1.0000	0.5000
W810	3.1536	80.1078	0.0	1.8776	3.0643	0.0297990	1.0000	0.5000
W820	2.7771	82.0566	0.0	0.7897	1.2888	0.16364	1.0000	0.5000
W830	1.5500	89.0000	0.0	1.2233	1.9964	0.0840282	1.0000	0.5000
W840	2.7310	82.3018	0.0	1.3481	2.2001	0.17349	1.0000	0.5000
W850	3.4310	78.7306	0.0	0.6857	1.1191	0.0445705	1.0000	0.5000
W860	1.6784	88.3272	0.0	1.0431	1.7023	0.0847407	1.0000	0.5000
W870	1.8953	87.0145	0.0	1.2386	2.0214	0.0176516	1.0000	0.5000
W880	2.1649	85.4359	0.0	1.7766	2.8994	0.13898	1.0000	0.5000
W890	1.5500	89.0000	0.0	1.3269	2.1655	0.0410332	1.0000	0.5000
W910	0.7906	41.0450	0.0	4.2012	0.9487	0.10725	1.0000	0.2134
W920	0.7879	41.0450	0.0	0.9959	0.7297	0.0065780	1.0000	0.4635
W930	3.2504	79.6220	0.0	0.9118	1.4880	0.13594	1.0000	0.5000
W940	1.5500	89.0000	0.0	1.2299	2.0071	0.0833659	1.0000	0.5000
W950	0.7906	41.0450	0.0	2.9939	1.4913	0.0011189	1.0000	0.3137
W960	1.5500	89.0000	0.0	0.6186	1.0096	0.0092573	1.0000	0.5000
W970	1.7612	37.6950	0.0	4.5675	3.4294	0.17544	1.0000	0.4612
W980	1.1800	41.0450	0.0	2.2059	2.3606	0.0755787	1.0000	0.3137
066W	2.5319	83.3779	0.0	1.0905	1.7797	0.16204	1.0000	0.5000

Annex 10. Panitian Model Reach Parameters

Table A-10.1 Panitian Model Reach Parameters

Posch			Muskingum Cunge Channel Routing	lel Routing			
	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
	Automatic Fixed Interval	428.85	.0009653472	0.04	Trapezoid	25	П
'	Automatic Fixed Interval	1378.8	0.0015816	0.04	Trapezoid	25	1
	Automatic Fixed Interval	1812.4	.0001736929	0.04	Trapezoid	25	1
	Automatic Fixed Interval	1161.5	.0005999673	0.04	Trapezoid	25	1
	Automatic Fixed Interval	964.97	0.0032622	0.0177436	Trapezoid	25	1
	Automatic Fixed Interval	781.84	0.0027876	0.04	Trapezoid	25	1
	Automatic Fixed Interval	1099.8	0.0098976	0.04	Trapezoid	25	П
	Automatic Fixed Interval	1508.5	0.0038805	0.04	Trapezoid	25	П
	Automatic Fixed Interval	525.98	.0008847450	0.0251335	Trapezoid	25	1
	Automatic Fixed Interval	1612.1	0.0031537	0.04	Trapezoid	25	1
	Automatic Fixed Interval	1873.1	0.0021249	0.04	Trapezoid	25	1
_	Automatic Fixed Interval	297.99	0.0018675	0.0379094	Trapezoid	25	1
	Automatic Fixed Interval	155.56	0.0280264	0.04	Trapezoid	25	1
	Automatic Fixed Interval	543.14	0.0073662	0.04	Trapezoid	25	1
	Automatic Fixed Interval	278.99	.0004121149	0.04	Trapezoid	25	1
	Automatic Fixed Interval	1150.2	0.0030558	0.04	Trapezoid	52	1
_	Automatic Fixed Interval	1338.4	0.0066740	0.04	Trapezoid	25	1
	Automatic Fixed Interval	2503.1	0.0027164	0.0252184	Trapezoid	25	1
	Automatic Fixed Interval	2281.9	0.0021650	0.04	Trapezoid	25	1
_	Automatic Fixed Interval	1247.8	.0007935551	0.04	Trapezoid	25	1
_	Automatic Fixed Interval	536.27	0.0143893	0.0251807	Trapezoid	25	1
	Automatic Fixed Interval	791.84	0.0051836	0.0376477	Trapezoid	25	1
	Automatic Fixed Interval	1742.0	0.0072586	0.0376477	Trapezoid	25	-

Reach			Muskingum Cunge Channel Routing	l Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R490	Automatic Fixed Interval	1223.3	0.0044130	0.0196349	Trapezoid	25	1
R50	Automatic Fixed Interval	568.70	0.0028584	0.04	Trapezoid	25	1
R500	Automatic Fixed Interval	708.70	0.0225090	0.0915195	Trapezoid	25	1
R520	Automatic Fixed Interval	531.42	0.0285070	0.0261333	Trapezoid	25	1
R550	Automatic Fixed Interval	575.27	0.0011709	0.0256107	Trapezoid	25	1
R560	Automatic Fixed Interval	3257.1	0.0043169	0.0167323	Trapezoid	25	1
R570	Automatic Fixed Interval	560.42	0.0054502	0.0167323	Trapezoid	25	1
R580	Automatic Fixed Interval	6185.1	0.0174284	0.04	Trapezoid	25	1
R620	Automatic Fixed Interval	1552.0	0.0044565	0.0113825	Trapezoid	25	1
R630	Automatic Fixed Interval	184.85	0.0071433	0.0113957	Trapezoid	25	1
R650	Automatic Fixed Interval	2590.5	0.0037092	0.0165998	Trapezoid	25	1
R680	Automatic Fixed Interval	1918.5	0.0122503	0.0113825	Trapezoid	25	1
R70	Automatic Fixed Interval	2445.5	0.0010603	0.04	Trapezoid	25	1
R90	Automatic Fixed Interval	2390.4	0.0011305	0.04	Trapezoid	25	1

Annex 11. Panitian Field Validation Data

Table A-11.1 Panitian Field Validation Data

Point	Validation	Validation Coordinates	Model	Validation		-	3	Rain Return/
Number	Lat	Long	Var (m)	Points (m)	בונס	Event	Date	Scenario
1	9.169963	117.9542	3.31	0	-3.31	Auring	Jan. 2013	25-Year
2	9.176879	117.9553	0.38	0	-0.38	Auring	Jan. 2013	25-Year
3	9.181001	117.9547	0.73	0	-0.73	Auring	Jan. 2013	25-Year
4	9.184241	117.9552	0.1	0	-0.1	Auring	Jan. 2013	25-Year
5	9.185909	117.9542	0.26	0	-0.26	Auring	Jan. 2013	25-Year
9	9.18739	117.9514	0.03	0	-0.03	Auring	Jan. 2013	25-Year
7	9.190405	117.9528	1.13	0	-1.13	Auring	Jan. 2013	25-Year
8	9.190614	117.9518	0.03	0	-0.03	Auring	Jan. 2013	25-Year
6	9.192088	117.9537	0.38	0	-0.38	Auring	Jan. 2013	25-Year
10	9.203641	117.9479	0.63	0.45	-0.18	Auring	Jan. 2013	25-Year
11	9.20419	117.9452	0.68	0.3	-0.38	Auring	Jan. 2013	25-Year
12	9.20456	117.9448	0.77	0.3	-0.47	Auring	Jan. 2013	25-Year
13	9.205213	117.947	0.79	0.45	-0.34	Auring	Jan. 2013	25-Year
14	9.206009	117.9493	0.02	1	0.95	Habagat	Aug. 2016	25-Year
15	9.207884	117.9545	0.03	0	-0.03	Auring	Jan. 2013	25-Year
16	9.208102	117.9551	0.03	0	-0.03	Auring	Jan. 2013	25-Year
17	9.2082	117.9538	0.58	0	-0.58	Auring	Jan. 2013	25-Year
18	9.209885	117.9583	0.03	0	-0.03	Auring	Jan. 2013	25-Year
19	9.210411	117.9414	1.1	0	-1.1	Auring	Jan. 2013	25-Year
20	9.210577	117.9367	0.03	0	-0.03	Auring	Jan. 2013	25-Year
21	9.211216	117.9365	0.03	0	-0.03	Auring	Jan. 2013	25-Year
22	9.211802	117.9605	0.05	0	-0.05	Auring	Jan. 2013	25-Year
23	9.211841	117.9415	0.55	0.75	0.2	Auring	Jan. 2013	25-Year

Point	Validation	Validation Coordinates	Model	Validation				Rain Return /
Number	Lat	Long	Var (m)	Points (m)	Error	Event	Date	Scenario
24	9.213006	117.9409	1.39	1.45	90:0	Auring	Jan. 2013	25-Year
25	9.213808	117.9607	0.03	0	-0.03	Auring	Jan. 2013	25-Year
56	9.213846	117.963	90:0	0	-0.06	Auring	Jan. 2013	25-Year
27	9.213793	117.9403	0.03	0	-0.03	Auring	Jan. 2013	25-Year
28	9.214027	117.94	0.03	0	-0.03	Auring	Jan. 2013	25-Year
29	9.214607	117.9625	0.03	0	-0.03	Auring	Jan. 2013	25-Year
30	9.216639	117.9657	0.03	0	-0.03	Auring	Jan. 2013	25-Year
31	9.216436	117.9392	0.03	0	-0.03	Auring	Jan. 2013	25-Year
32	9.21689	117.9668	0.63	0	-0.63	Auring	Jan. 2013	25-Year
33	9.21715	117.9678	0.03	0	-0.03	Auring	Jan. 2013	25-Year
34	9.216984	117.9393	0.03	0	-0.03	Auring	Jan. 2013	25-Year
35	9.217749	117.9385	0.03	0.28	0.25	Auring	Jan. 2013	25-Year
36	9.217912	117.9295	0.03	2.5	2.47	Auring	Jan. 2013	25-Year
37	9.218182	117.9394	0.55	1	0.45	Auring	Jan. 2013	25-Year
38	9.218443	117.9376	0.39	0.45	90.0	Auring	Jan. 2013	25-Year
39	9.219191	117.9368	0.14	0.93	0.79	Auring	Jan. 2013	25-Year
40	9.219363	117.9379	0.4	1.3	0.9	Auring	Jan. 2013	25-Year
41	9.219946	117.9766	0.83	0	-0.83	Auring	Jan. 2013	25-Year
42	9.219413	117.9352	0.2	0	-0.2	Auring	Jan. 2013	25-Year
43	9.219448	117.9365	0.58	0.93	0.35	Auring	Jan. 2013	25-Year
44	9.219813	117.9359	0.08	6.0	0.82	Auring	Jan. 2013	25-Year
45	9.219862	117.939	1.42	2.3	0.88	Auring	Jan. 2013	25-Year
46	9.219801	117.9335	0.28	1.45	1.17	Auring	Jan. 2013	25-Year
47	9.220411	117.9761	2.26	0	-2.26	Auring	Jan. 2013	25-Year
48	9.219815	117.9317	0.67	1.3	0.63	Auring	Jan. 2013	25-Year

Point	Validation	Validation Coordinates	Model	Validation	3 3 3	9	5	Rain Return/
Number	Lat	Long	Var (m)	Points (m)	בונס	Event	Date	Scenario
49	9.219963	117.9353	0.02	9.0	0.53	Auring	Jan. 2013	25-Year
20	9.220101	117.9358	0.35	0.9	0.55	Auring	Jan. 2013	25-Year
51	9.220115	117.9349	0.21	1	0.79	Auring	Jan. 2013	25-Year
52	9.220247	117.9328	0.31	2.5	2.19	Auring	Jan. 2013	25-Year
53	9.221248	117.9781	0.91	0	-0.91	Auring	Jan. 2013	25-Year
54	9.222384	117.9306	0.79	1.5	0.71	Auring	Jan. 2013	25-Year
52	9.224556	117.9311	0.89	1.5	0.61	Auring	Jan. 2013	25-Year
26	9.224728	117.9303	0.65	2	1.35	Auring	Jan. 2013	25-Year
57	9.224838	117.9285	0.21	2.3	2.09	Auring	Jan. 2013	25-Year
58	9.227606	117.9269	0.44	0	-0.44	Auring	Jan. 2013	25-Year
59	9.229517	117.9318	0.86	0.68	-0.18	Auring	Jan. 2013	25-Year
09	9.230366	117.9323	0.03	0.4	0.37	Auring	Jan. 2013	25-Year
61	9.234723	117.935	0.03	0	-0.03	Auring	Jan. 2013	25-Year
62	9.235637	117.9358	0.03	0	-0.03	Auring	Jan. 2013	25-Year

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB)
Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB)
Ms. Sandra Samantela (CHE, UPLB)
Dr. Cristino L. Tiburan (CFNR, UPLB)
Engr. Ariel U. Glorioso (CEAT, UPLB)
Ms. Miyah D. Queliste (CAS, UPLB)
Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula