Hazard Mapping of the Philippines Using LIDAR (Phil-LiDAR 1)

LiDAR Surveys and Flood Mapping of Paliwan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Cebu

© University of the Philippines Diliman and University of the Philippines Cebu 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E. C. Paringit, A. E. Milano, Jr., O. P. Jayag, L. P. Balicanta, C. Cruz, L. Acuña, G. Hipolito, J. S. Mars, R. C. Felismino, M. O. Ang, J. D. Fabila, S. D. Samalburo, G. Apat, J. F. Prieto, M. L. Olanda, J. S. Canlas, C. P. Añonuevo, F. D. Maraya, C. B. de Guzman, J. S. Caballero, P. P. dela Cruz, D. T. Lozano D. C. Tajora, E. Salvador, R. C. Alberto, A. Lagmay, C. Uichanco, S. Sueno, M. Moises, H. Ines, M. del Rosario, K. Punay, N. Tingin, N. Tan, M. Arias (2017), LiDAR Surveys and Flood Mapping Report of Clarin River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry- 142 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Jonnifer Sinogaya Project Leader PHIL-LIDAR 1 Program University of the Philippines - Cebu Cebu City, Philippines 6000 E-mail: jrsinogaya1@up.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR-1)

TABLE OF CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	
CHAPTER 1: OVERVIEW OF THE PROGRAM AND THE PALIWAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	
1.2 Overview of the Paliwan River Basin	
CHAPTER 2: LIDAR DATA ACQUISITION OF THE PALIWAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE PALIWAN FLOODPLAIN	17
3.1 Overview of the LiDAR Data Pore-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE PALIWAN RIVER BASIN	37
4.1 Summary of Activities	37
4.2 Control Survey	39
4.3 Baseline Processing	42
4.4 Network Adjustment	42
4.5 Cross Section, Bridge As-Built, and Water Level Marking	45
4.6 Validation Points Acquisition Survey	48
4.7 Bathymetric Survey	50
CHAPTER 5: FLOOD MODELING AND MAPPING	53
5.1 Data Used for Hydrologic Modeling	53
5.1.1 Hydrometry and Rating Curves	53
5.1.2 Precipitation	53
5.1.3 Rating Curves and River Outflow	54
5.2 RIDF Station	55
5.3 HMS Model	57
5.4 Cross-section Data	61
5.5 Flo 2D Model	62
5.6 Results of HMS Calibration	63
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Perioc	ls65
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method	
5.8 River Analysis (RAS) Model Simulation	67
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	87
REFERENCES	

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Paliwan Floodplain Survey	90
Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey	93
Annex 3. Base Processing Reports of Control Points used in the LiDAR Survey	97
Annex 4. The LiDAR Survey Team Composition	98
Annex 5. Data Transfer Sheet for Lanang Floodplain	99
Annex 6. Flight Logs for the Flight Missions	103
Annex 7. Flight Status	109
Annex 8. Mission Summary Reports	
Annex 9. Lanang Model Basin Parameters	134
Annex 10. Lanang Model Reach Parameters	137
Annex 11. Lanang Field Validation Points	138
Annex 12. Educational Institutions Affected by flooding in Lanang Floodplain	
Annex 13. Health Institutions Affected by flooding in Lanang Floodplain	

LIST OF TABLES

Table 1. Flight Planning Parameters for Gemini LiDAR System	
Table 2. Flight planning parameters for Pegasus LiDAR System	3
Table 3. Flight planning parameters for Aquarius LiDAR System	
Table 4. Flight planning parameters for CASI	
Table 5. Details of the recovered NAMRIA horizontal control point ATQ-18 used as base station 9	
for the LiDAR Acquisition	9
Table 6. Details of the recovered NAMRIA horizontal control point ATQ-20 used as base station	
	10
Table 7. Details of the recovered NAMRIA horizontal control point ATQ-22 used as base station	
	11
Table 8. Details of the recovered NAMRIA horizontal control point AQ-10 used as base station	
for the LiDAR Acquisition	12
Table 9. Details of the recovered NAMRIA vertical control point AQ-78 used as base station	4.
for the LiDAR Acquisition	
Table 10. Ground Control Points used during LiDAR Data Acquisition	
Table 11. Flight Missions for LiDAR Data Acquisition in Paliwan Floodplain	
Table 12. Actual Parameters used during LiDAR Data Acquisition	
Table 13. List of municipalities and cities surveyed of the Paliwan Floodplain LiDAR Acquisition	
Table 14. Self-Calibration Results values for Paliwan flights	
Table 15. List of LiDAR blocks for Paliwan floodplain	
Table 16. Paliwan classification results in TerraScan	
Table 17. LiDAR blocks with its corresponding area	
Table 18. Shift Values of each LiDAR Block of Paliwan floodplain	
Table 20. Validation Statistical Measures	
Table 21. Quality Checking Ratings for Paliwan Building Features	
Table 23. Total Length of Extracted Roads for Paliwan Floodplain	
Table 24. Number of Extracted Water Bodies for Paliwan Floodplain	
Table 25. List of references and control points occupied during control survey in Paliwan River	50
(Source: NAMRIA, UP-TCAGP)	40
Table 26. Baseline processing report for Paliwan River control survey	
Table 27. Constraints applied to the adjustment of the control points	
Table 28. Adjusted grid coordinates for the control points used in the Paliwan River flood	42
plain surveyplain survey	4:
Table 29. Adjusted geodetic coordinates for control points used in the Paliwan River Flood	
Plain validation	
Table 30. The reference and control points utilized in the Paliwan River Static Survey, with their	
corresponding locations (Source: NAMRIA, UP-TCAGP)	44
Table 31. RIDF values for the Paliwan Rain Gauge, as computed by PAGASA	
Table 32. Range of Calibrated Values for the Paliwan River Basin	
Table 33. Summary of the Efficiency Test of Paliwan HMS Model	
Table 34. Peak values of the Paliwan HEC-HMS Model outflow using the Dipolog RIDF	
Table 35. Summary of Paliwan river (1) discharge generated in HEC-HMS	
Table 36. Summary of Paliwan river (2) discharge generated in HEC-HMS	67
Table 37. Validation of river discharge estimates	67
Table 38. Municipalities affected in Paliwan floodplain	
Table 39. Affected Areas in Bugasong, Antique during 5-Year Rainfall Return Period	
Table 40. Affected Areas in Laua-An, Antique during 5-Year Rainfall Return Period	
Table 41. Affected Areas in Bugasong, Antique during 25-Year Rainfall Return Period	
Table 41. Affected Areas in Laua-An, Antique during 25-Year Rainfall Return Period	
Table 42. Affected Areas in Bugasong, Antique during 100-Year Rainfall Return Period	
Table 43. Affected Areas in Bugasong, Antique during 100-Year Rainfall Return Period	
Table 44. Area covered by each warning level with respect to the rainfall scenario	
Table 45. Actual Flood Depth vs Simulated Flood Depth in the Cangaranan-Paliwan River Basin	
Table 46. Summary of Accuracy Assessment in Cangaranan-Paliwan River Basin	

LIST OF FIGURES

Figure 1. Map of the Paliwan River Basin (in brown)	2
Figure 2. Flight plan and base stations using the Gemini system to cover Paliwan Floodplain	5
Figure 3. Flight plan and base stations using the Pegasus system to cover Paliwan Floodplain	
Figure 4. Flight plan and base stations using the Aquarius system to cover Paliwan Floodplain	7
Figure 5. GPS set-up over ATQ-18 as recovered in Barangay Cubay, Barbaza, Province of Antique	
(a) NAMRIA reference point ATQ-18 (b) as recovered by the field team	8
Figure 6. GPS set-up over ATQ-20 as recovered in Brgy. Zaragoza of Bugasong (a) NAMRIA	
reference point ATQ-20 (b) as recovered by the field team	9
Figure 7. ATQ-22 as recovered in Barangay Concepcion, Belison, Province of Antique	
(a). NAMRIA reference point ILO-3134 as recovered by the field team (b)	10
Figure 8. GPS set-up over AQ-10 as recoverd in Brgy. Zaragoza (a) NAMRIA reference point	
AQ-10 (b) as recovered by the field team	11
Figure 9. GPS set-up over AQ-78 as recovered in Barangay Ipayo, Patnongon, Province of	4.2
Antique (a) NAMRIA reference point AQ-78 (b) as recovered by the field team	
Figure 10. Actual LiDAR data acquisition of the Paliwan floodplain	
Figure 11. Schematic Diagram for Data Pre-Processing Component	
Figure 12. Smoothed Performance Metric Parameters of a Paliwan Flight 2593P	
Figure 13. Solution Status Parameters of Paliwan Flight 2593P Figure 14. Best Estimated Trajectory for Paliwan floodplain	
Figure 15. Boundary of the processed LiDAR data over Paliwan Floodplain	
Figure 16. Image of data overlap for Paliwan floodplain	
Figure 17. Density map of merged LiDAR data for Paliwan floodplain	
Figure 18. Elevation difference map between flight lines for Paliwan floodplain	
Figure 19. Quality checking for a Paliwan flight 2593P using the Profile Tool of QT Modeler	
Figure 20. Tiles for Paliwan floodplain (a) and classification results (b) in TerraScan	
Figure 21. Point cloud before (a) and after (b) classification	
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and	
secondary DTM (d) in some portion of Paliwan floodplain	25
Figure 23. Paliwan floodplain with available orthophotographs	
Figure 24. Sample orthophotograph tiles for Paliwan floodplain	
Figure 25. Portions in the DTM of Paliwan floodplain – a bridge before (a) and after	
(b) manual editing; and a paddy field before (c) and after (d) data retrieval	27
Figure 26. Map of Processed LiDAR Data for Paliwan Flood Plain	
Figure 27. Map of Paliwan Flood Plain with validation survey points in green	
Figure 28. Correlation plot between calibration survey points and LiDAR data	
Figure 29. Correlation plot between validation survey points and LiDAR data	
Figure 30. Map of Paliwan Flood Plain with bathymetric survey points shown in blue	33
Figure 31. QC blocks for Paliwan building features	34
Figure 32. Extracted features for Paliwan floodplain	
Figure 33. Extent of the bathymetric survey (in blue line) in Paliwan River	
Figure 34. The GNSS Network established in the Paliwan River survey	39
Figure 35. GNSS base receiver setup, Trimble® SPS 852 at ATQ-20 in Brgy. Zaragoza,	
Municipality of Bugasong, Antique	40
Figure 36. Benchmark, AQ-72, with Trimble® SPS 852 in Brgy. Delima, Municipality of Belison, Ant	ique41
Figure 37. UP-TCAGP established control point, TPN-1, with Trimble® SPS 882 on	
Tipuluan Bridge in Brgy. Pasong, Municipality of Sibalom, Antique	
Figure 38. Cross-section survey in Paliwan Bridge, Municipality of Bugasong	
Figure 39. Paliwan Bridge cross-section survey drawn to scale	
Figure 40. Location map of the Paliwan bridge cross-section survey	
Figure 41. Bridge As-built form of Paliwan Bridge	47
Figure 42. Setup of Trimble® SPS 882 attached to a vehicle (A) and Setting up of GNSS	40
base station at ATQ-20 (B)	
Figure 43. Extent of the LiDAR ground validation survey for the Paliwan River Basin	
Figure 44. Bathymetric survey using a Trimble® SPS 882 in GNSS PPK along Paliwan River	
Figure 45. Extent of the Paliwan River Bathymetry Survey Figure 46. The Paliwan Riverbed Profile from Brgy. Maray, Municipality of Bugasong down	1
to Brgy. Lugta, Municipality of Bugasong	52
Figure 47. The location map of Paliwan HEC-HMS model used for calibration	
Figure 48. Cross-Section Plot of Guinabanga-an Bridge in Brgy. Anilawan	

Figure 49. Rating Curve at Guinabanga-an Bridge, Brgy. Anilawan	54
Figure 50. Rainfall and outflow data of the Paliwan Bridge, which was used for modeling	
Figure 51. Location of the Iloilo RIDF station relative to the Paliwan River Basin	
Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods	56
Figure 53. Soil Map of Paliwan River Basin	57
Figure 54. Land Cover Map of Paliwan River Basin	58
Figure 55. Slope Map of Paliwan River Basin	58
Figure 56. Stream Delineation Map of the Paliwan River Basin	59
Figure 57. The Paliwan Hydrologic Model generated in HEC-GeoHMS	60
Figure 58. River cross-section of Paliwan River through the ArcMap HEC GeoRAS tool	61
Figure 59. A screenshot of the river sub-catchment with the computational area to	
be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	62
Figure 60. Rating Curve at Guinabanga-an Bridge, Brgy. Anilawan	
Figure 61. Generated 100-year rain return flow depth map from FLO-2D Mapper	63
Figure 62. Outflow Hydrograph of Paliwan Bridge produced by the HEC-HMS	
model compared with observed outflow	63
Figure 63. Outflow hydrograph at Paliwan Station generated using the Legazpi RIDF	
simulated in HEC-HMS	65
Figure 64. Paliwan river (1) generated discharge using 5-, 25-, and 100-year Legazpi	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	66
Figure 65. Paliwan river (2) generated discharge using 5-, 25-, and 100-year Iloilo	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	
Figure 66. Sample output map of the Paliwan RAS Model	67
Figure 67. 100-year Flood Hazard Map for Cangaranan-Paliwan Floodplain overlaid	
on Google Earth imagery	69
Figure 68. 100-year Flow Depth Map for Cangaranan-Paliwan Floodplain overlaid	
on Google Eath imagery	7C
Figure 69. 25-year Flood Hazard Map for Cangaranan-Paliwan Floodplain overlaid	
on Google Eath imagery	71
Figure 70. 25-year Flow Depth Map for Cangaranan-Paliwan Floodplain overlaid	
on Google Eath imagery	72
Figure 71. 5-year Flood Hazard Map for Cangaranan-Paliwan Floodplain overlaid	
on Google Eath imagery	73
Figure 72. 5-year Flow Depth Map for Cangaranan-Paliwan Floodplain overlaid on	
Google Earth imagery	
Figure 73. Affected Areas in Bugasong, Antique during 5-Year Rainfall Return Period	
Figure 74. Affected Areas in Laua-An, Antique during 5-Year Rainfall Return Period	
Figure 75. Affected Areas in Bugasong, Antique during 25-Year Rainfall Return Period	
Figure 76. Affected Areas in Laua-An, Antique during 25-Year Rainfall Return Period	
Figure 77. Affected Areas in Bugasong, Antique during 100-Year Rainfall Return Period	
Figure 78. Affected Areas in Laua-An, Antique during 100-Year Rainfall Return Period	
Figure 79. Validation points for 5-year Flood Depth Map of Cangaranan-Paliwan Floodplain	
Figure 80 Flood man denth vs actual flood denth	ጸጸ

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation	IMU	Inertial Measurement Unit
Ab	Abutment	Kts	Knots
ALTM	Airborne LiDAR Terrain Mapper	LAS	LiDAR Data Exchange File format
ARG	automatic rain gauge	LC	Low Chord
ATQ	Antique	LGU	local government unit
AWLS	Automated Water Level Sensor	LiDAR	Light Detection and Ranging
BA	Bridge Approach	LMS	LiDAR Mapping Suite
BM	Benchmark	m AGL	meters Above Ground Level
CAD	Computer-Aided Design	MMS	Mobile Mapping Suite
CN	Curve Number	MSL	mean sea level
CSRS	Chief Science Research Specialist	NAMRIA	National Mapping and Resource Information Authority
DAC	Data Acquisition Component	NSTC	Northern Subtropical Convergence
DEM	Digital Elevation Model	PAF	Philippine Air Force
DENR	Department of Environment and Natural Resources	PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
DOST	Department of Science and Tech- nology	PDOP	Positional Dilution of Precision
DPPC	Data Pre-Processing Component	PPK	Post-Processed Kinematic [technique]
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]	PRF	Pulse Repetition Frequency
DRRM	Disaster Risk Reduction and Management	PTM	Philippine Transverse Mercator
DSM	Digital Surface Model	QC	Quality Check
DTM	Digital Terrain Model	QT	Quick Terrain [Modeler]
DVBC	Data Validation and Bathymetry Component	RA	Research Associate
FMC	Flood Modeling Component	RIDF	Rainfall-Intensity-Duration-Frequency
FOV	Field of View	RMSE	Root Mean Square Error
GiA	Grants-in-Aid	SAR	Synthetic Aperture Radar
GCP	Ground Control Point	SCS	Soil Conservation Service
GNSS	Global Navigation Satellite System	SRTM	Shuttle Radar Topography Mission
GPS	Global Positioning System	SRS	Science Research Specialist
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System	SSG	Special Service Group
HEC-RAS	Hydrologic Engineering Center - River Analysis System	ТВС	Thermal Barrier Coatings
НС	High Chord	UPC	University of the Philippines Cebu
IDW	Inverse Distance Weighted [interpolation method]	WGS	World Geodetic System

CHAPTER 1: OVERVIEW OF THE PROGRAM AND THE PALIWAN RIVER BASIN

Enrico C. Paringit, Dr. Jonnifer Sinogaya, and Engr. Omar P. Jayag

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippine Cebu. UPC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 22 river basins in the Central Visayas Region. The university is located in Cebu City, Cebu.

1.2 Overview of the Paliwan River Basin

Paliwan River Basin is located in the province of Antique at the west of Panay Island. The floodplain and drainage area of 38.48 km² and 28.4 km², respectively, covers the municipalities of Bugasong, Tapaz, Jamindan, Barbaza and Valderrama. The gathered LiDAR data covered 98.05% of the floodplain comprised by four (4) blocks. The LiDAR data was calibrated then mosaicked with an RMSE of -0.06 and then bathy burned. The bathy survey done reached a total length of 9.85 km starting from Maray, Bugasong up to the river mouth with 576 points surveyed. The LiDAR data also showed that there are 4013 buildings, 38.56 km roads, 11 waterbodies and 12 bridges. When Feature Extraction Attribution was conducted, among the building featured, 3852 of them are residential, 64 are schools and five (5) are medical Institutions.

The flood hazard map produced covers the 60.99 km², 74.98 km², 83.16 km² for the 5-year, 25-year, and 100-year rainfall return period in Barbaza which affects one (1) barangay as well as in Laua-an which affects 18 barangays, Bugasong with 28 barangays, Lambunao with one (1) barangay, Patnongon with 20 barangays, San Remigio with two (2) barangays, Tapaz with (1) barangay, and Valderrama with 23 barangays. In addition, a flood depth validation was conducted using 276 randomly generated points which was spread throughout the 6 ranges namely 0m-0.2m, 0.21m-0.5m, 0.51m-1m, 1.01m-2m, 2.10m-5m, 5m+ depth using the 25-year rainfall flood depth map. It yielded a 0.716m RMSE.

The rating curve developed at Brgy. Anilawan Flow Site, Bugasong, Antique shows the relationship between the observed water levels at Brgy. Anilawan Flow Site and outflow of the watershed in this location. This rating curve equation, expressed as Q = 66.291e0.5476x, was used to compute the river outflow at Brgy. Anilawan Flow Site for the calibration of the HEC-HMS model. The resulting outflow was used to simulate the flooded areas using HEC-RAS. The simulated model will be an integral part in determining the real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website.

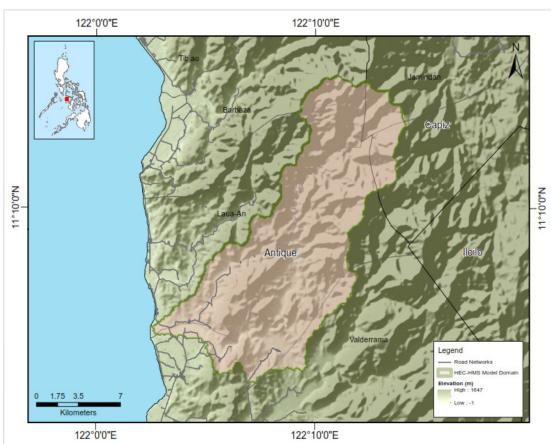


Figure 1. Map of the Paliwan River Basin (in brown)

Chapter 2: LIDAR DATA ACQUISITION OF THE PALIWAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Sandra C. Poblete, Engr. Grace Sinadjan

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1. Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Paliwan Floodplain in Antique. Each flight mission has an average of 12 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Tables 1 to 4. Figures 2 to 4 show the flight plans for Paliwan floodplain.

Table 1	. Flight p	lanning param	eters for Ger	mini LiDAR System.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequen- cy (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43B	1200	30	50	100	50	120	5
BLK43C	1200	30	50	100	50	120	5

Table 2. Flight planning parameters for Pegasus LiDAR System.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequen- cy (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43B	1500	30	50	200	30	130	5

Table 3. Flight planning parameters for Aquarius LiDAR System.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequen- cy (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43K	600	30	36	50	45	130	5

Table 4. Flight planning parameters for CASI.

Block Name	Flying Height (m AGL)	Integration Time	Along Track Resolution	Across Track Reso- lution	Number of Bands	Aperture	Average speed of Plane (kts)
BLK37K	600	10 m/sec	0.6m	0.3m	72	Largest	120

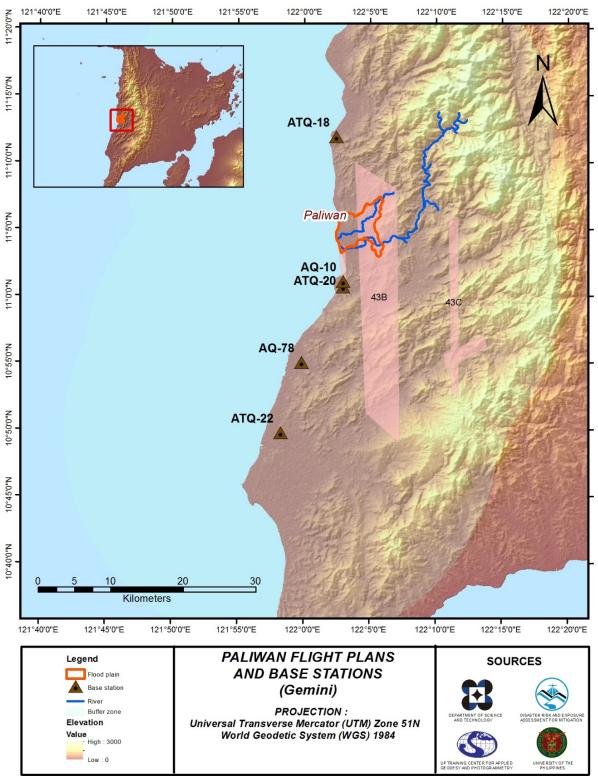


Figure 2. Flight plan and base stations using the Gemini system to cover Paliwan Floodplain.

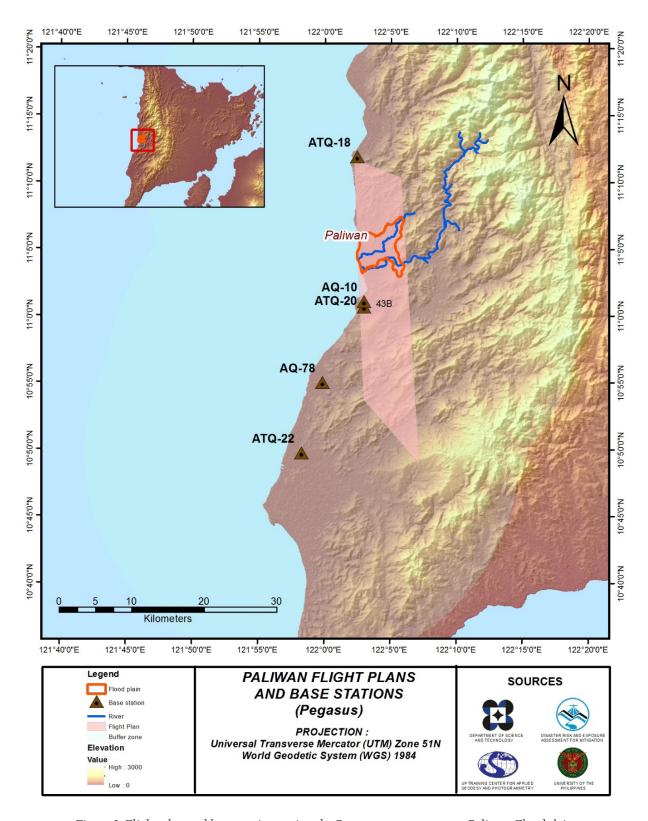


Figure 3. Flight plan and base stations using the Pegasus system to cover Paliwan Floodplain.

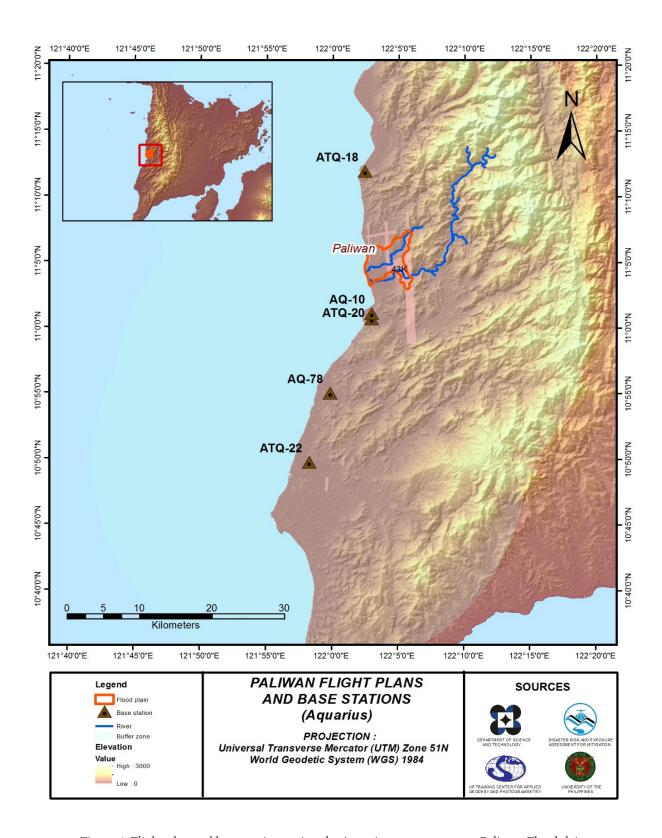


Figure 4. Flight plan and base stations using the Aquarius system to cover Paliwan Floodplain.

2.2 Ground Base Station

The project team was able to recover three (3) NAMRIA reference points: ATQ-18, ATQ-20 and ATQ-22 which is of second (2nd) order accuracy. There are two (2) established reference points: AQ-10 and AQ-78. The certification for the base station is found in Annex 4. These were used as base stations during flight operations for the entire duration of the survey (February 2015 and October 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and TRIMBLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR Acquisition in Paliwan floodplain are shown in Figures 2 to 4.

Figure 5 to Figure 9 shows the recovered NAMRIA control station within the area, in addition Table 5 to Table 9 show the details about the following NAMRIA control stations and established points, Table 10 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

Figure 5. GPS set-up over ATQ-18 as recovered in Barangay Cubay, Barbaza, Province of Antique (a) NAMRIA reference point ATQ-18 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point ATQ-18 used as base station for the LiDAR Acquisition.

Station Name	ATQ-18		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1	1 in 50,000	
	Latitude	11° 11′ 58.67081″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 2′ 22.83300″	
	Ellipsoidal Height	10.902 meters	
Grid Coordinates, Philippine Transverse Merca-	Easting	395155.157 meters	
tor Zone 5 (PTM Zone 5 PRS 92)	Northing	1238579.674 meters	
	Latitude	11° 11′ 54.16068″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 2′ 28.01549″ East	
	Ellipsoidal Height	65.961 meters	
Grid Coordinates, Universal Transverse Merca-	Easting	395155.87 meters	
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1238146.15 meters	

Figure 6. GPS set-up over ATQ-20 as recovered in Brgy. Zaragoza of Bugasong (a) NAMRIA reference point ATQ-20 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point ATQ-20 used as base station for the LiDAR Acquisition.

Station Name	ATQ-20		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	11° 0′ 42.90484″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 2′ 54.07144″	
	Ellipsoidal Height	10.56200 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	396000.488 meters	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1217812.272 meters	
	Latitude	11° 0′ 38.44240″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 2' 59.27039" East	
	Ellipsoidal Height	66.09400 meters	
Grid Coordinates, Universal Transverse Merca-	Easting	396036.89 meters	
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1217386.02 meters	

Figure 7. (a) ATQ-22 as recovered in Barangay Concepcion, Belison, Province of Antique. (b) NAMRIA reference point ILO-3134 as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point ATQ-22 used as base stationfor the LiDAR Acquisition.

Station Name	ATQ-22		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1 iı	n 50,000	
	Latitude	10° 49′ 46.66618″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	121° 58′ 11.90221″	
	Ellipsoidal Height	12.250 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	387365.279 meters	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1197676.056 meters	
	Latitude	10° 49' 42.24271" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	121° 58′ 17.11770″ East	
	Ellipsoidal Height	68.022 meters	
Grid Coordinates, Universal Transverse Merca-	Easting	387404.70 meters	
tor Zone 51 North (UTM 51N PRS 1992)	Northing	1197256.85 meters	

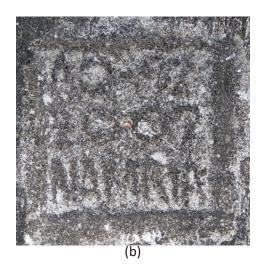


Figure 8. GPS set-up over AQ-10 as recoverd in Brgy. Zaragoza (a) NAMRIA reference point AQ-10 (b) as recovered by the field team.

Table 8. Details of the recovered NAMRIA horizontal control point AQ-10 used as base station for the LiDAR Acquisition.

Station Name	ATQ-10		
Order of Accuracy		2 nd	
Relative Error (horizontal positioning)	1	in 50,000	
	Latitude	11° 01′ 03.59755″	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Longitude	122° 03′ 00.53639″	
	Ellipsoidal Height	11.054 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	396235.105 meters	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1218020.995 meters	
	Latitude	11° 00′ 59.12282″ North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 03′ 05.73482″ East	
	Ellipsoidal Height	66.576 meters	

Figure 9. GPS set-up over AQ-78 as recovered in Barangay Ipayo, Patnongon, Province of Antique (a) NAMRIA reference point AQ-78 (b) as recovered by the field team.

Table 9. Details of the recovered NAMRIA vertical control point AQ-78 used as base station for the LiDAR Acquisition.

Station Name	AQ-78		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)		1 in 50,000	
	Latitude	10° 55′ 03.77330″	
Geographic Coordinates, Philippine Reference of	Longitude	121° 59′ 46.81987″	
1992 Datum (PRS 92)	Ellipsoidal Height	48.448 meters	
Grid Coordinates, Philippine Transverse Merca-	Easting	390150.425 meters	
tor Zone 5 (PTM Zone 5 PRS 92)	Northing	1207471.411 meters	
	Latitude	10° 54′ 59.33002″ North	
Geographic Coordinates, World Geodetic System	Longitude	121° 59′ 52.02741″ East	
1984 Datum (WGS 84)	Ellipsoidal Height	66.5525 meters	
Grid Coordinates, Universal Transverse Mercator	Easting	390319.320 meters	
Zone 51 North (UTM 51N WGS 1984)	Northing	1206987.603 meters	

Table 10. Ground Control Points used during LiDAR data acquisiton.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
Feb. 20, 2015	2593P	1BLK43BDG051A	ATQ-18 and ATQ-22
Feb. 25, 2015	2602G	2BLK43B056A	ATQ-22 and AQ-78
Feb. 26, 2015	2606G	2BLK43BV057A	ATQ-22 and AQ-78
Feb. 27, 2015	2610G	2BLK43BV058A	ATQ-22 and AQ-78
Oct. 25, 2016	8511AC	3BLK43KJ299A	ATQ-20 and AQ-10
Oct. 27, 2016	8515AC	3BLK43K301A	ATQ-20 and AQ-10

2.3. Flight Missions

Six (6) missions were conducted to complete the LiDAR Data Acquisition in Paliwan Floodplain, for a total of twenty-one hours (21) of flying time for RP-C9122, RP-C9022 and RP-C9322 All missions were acquired using the Gemini, Pegasus and Aquarius LiDAR system. Table 11 shows the total area of actual coverage per mission and the flying length for each mission and Table 12 presents the actual parameters used during the LiDAR data acquisition.

Table 11. Flight Missions for LiDAR Data Acquisition in Paliwan Floodplain.

Table II. I fight wissions for Librar Data requisition in Fairwait Froupiani.								
Date Sur- Flight Num-		Flight Plan	Surveyed	Area Sur- veyed with- in the River	Area Surveyed Outside the River	No. of Images (Frames)	Flying Hours	
veyed	ber	Area (km²)	Area (Km²)	Area (km²) Systems (km²)			千	Min
Feb. 20, 2015	2593P	248.27	180.57	12.88	167.69	427	3	29
Feb. 21, 2015	2602G		89.82	7.99	81.83	0	3	17
Feb. 22, 2015	2606G	224.96	221.78	17.75	204.03	0	4	5
Feb. 20, 2015	2610G		34.35	1.15	33.2	0	3	5
Feb. 25, 2015	8511AC	29.89	25.58	4.8	20.78	0	3	35
Feb. 26, 2015	8515AC		17.2	9.02	8.18	0	3	29
TC	TAL	503.12	569.3	53.59	515.71	427	21	00

Table 12. Actual Parameters used during LiDAR Data Acquisiton

Flight Number	Flying Height (AGL) (m)	Overlap (%)	Field of View	PRF (Hz)	Scan Frequency (Hz)	Speed of Plane (Kts)	Average Turn times (Minutes)
2593P	1800	30	40	200	50	120	5
2602G	1200	30	40	100	50	125	5
2606G	1800	30	40	70	56	110	5
2610G	2000	30	34	70	56	110	5
8511AC	600	30	18	45	50	120	5
8515AC	600	30	18	45	50	120	5

2.4. Survey Coverage

Paliwan floodplain is located in the provinces of Antique and Iloilowith majority of the floodplain situated within the municipality of Laua-An. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Paliwan floodplain is presented in Figure 10.

Table 13. List of municipalities and cities surveyed during Paliwan floodplain LiDAR survey.

Province	Municipality/City	Area of Municipality/ City (km²)	Total Area Sur- veyed (km²)	Percentage of Area Surveyed
	Patnongon	135.68	79.96	59 %
	Laua-An	165.65	78.94	48 %
	Bugasong	178.8	69.82	39 %
Antique	San Remigio	370.9	59.9	16 %
	Valderrama	309.67	39.53	13 %
	Barbaza	171.23	14.32	8 %
	Belison	36.8	2.62	7 %
	Sibalom	240.55	10.96	5 %
lloilo	Igbaras	132.37	7.92	6 %
	San Joaquin	200.06	9.1	5 %
	Miagao	170.53	3.11	2 %

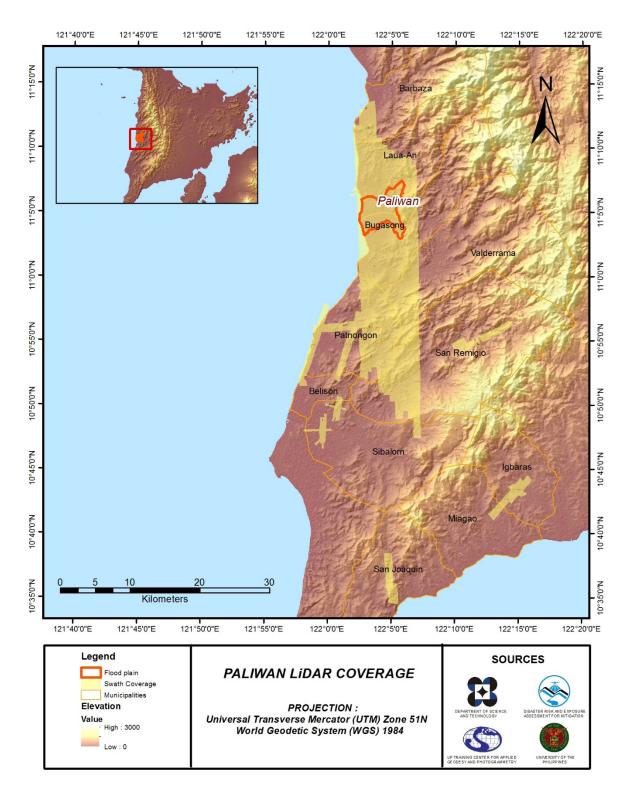


Figure 10. Actual LiDAR data acquisition of the Paliwan floodplain

Chapter 3: LIDAR DATA PROCESSING OF THE PALIWAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Joida F. Prieto , Engr. Ma. Ailyn L. Olanda, Engr. Jovelle Anjeanette S. Canlas, Eng. Czarina Jean P. Añonuevo, Franklin D. Maraya, Chester B. de Guzman

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

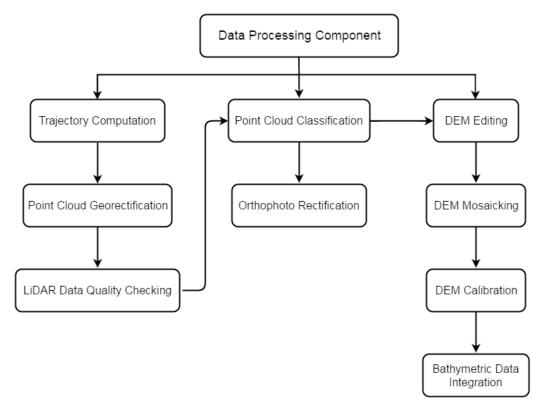


Figure 11. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Paliwan floodplain can be found in Annex 8 (Data Transfer Sheets). Missions flown during the first survey conducted last March 2015 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Pegasus system while missions acquired during the second survey last July 2015 were flown using the Gemini system over Laua-an, Antique. The Data Acquisition Component (DAC) transferred a total of 37.8 Gigabytes of Range data, 761 Megabytes of POS data, 38.69 Megabytes of GPS base station data, and 61.32 Gigabytes of raw image data to the data server last March 23, 2015 for the first survey and July 3, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Paliwan was fully transferred on July 3, 2015, as indicated on the Data Transfer Sheets for Paliwan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 2593P, one of the Paliwan flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 20, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metric Parameters of a Paliwan Flight 2593P.

The time of flight wafrom 455,250 seconds to 463,500 seconds, which corresponds to morning of February 20, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.00 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 3.30 centimeters, which are within the prescribed accuracies described in the methodology.

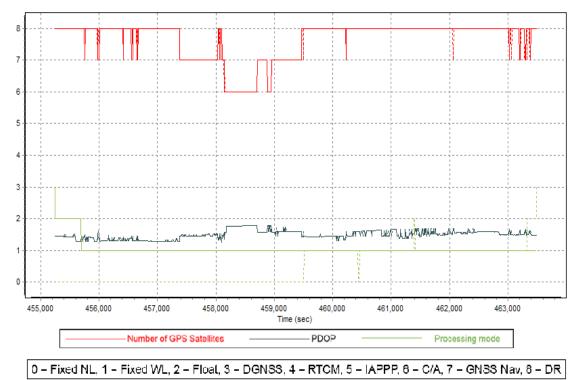


Figure 13. Solution Status Parameters of Paliwan Flight 2593P.

The Solution Status parameters of flight 2593P, one of the Paliwan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Paliwan flights is shown in Figure 14.

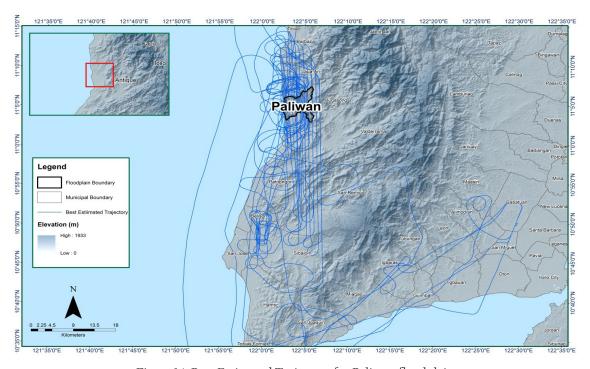


Figure 14. Best Estimated Trajectory for Paliwan floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 19 flight lines, with 6 flight lines containing two channels and the rest containing on channel only, since the Pegasus and Aquarius systems contain two and one channel respectively. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Paliwan floodplain are given in Table 14.

	0	
Parameter	Accepted Value	Computed Value
Boresight Correction stdev	(<0.001degrees)	0.000371
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000661
GPS Position Z-correction stdev	(<0.01meters)	0.0091

Table 14. Self-Calibration Results values for Paliwan flights.

The optimum accuracy is obtained for all Paliwan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Mission Summary Reports found in Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Paliwan Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 15. Boundary of the processed LiDAR data over Paliwan Floodplain

17.23

395.11 sq.km

The total area covered by the Paliwan missions is 395.11 sq.km that is comprised of four (4) flight acquisitions grouped and merged into two (2) blocks as shown in Table 15.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Iloilo_Blk43B	2593P	141.22
	2602G	
Iloilo_Blk43B_additional	2606G	229.08
	2610G	
Iloilo_reflights_Blk43B	8511AC	15.69

Iloilo reflights Blk43B supplement

Table 15. List of LiDAR blocks for Paliwan floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Pegasus and Aquarius systems employ two and one channel respectively, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

8515AC

TOTAL

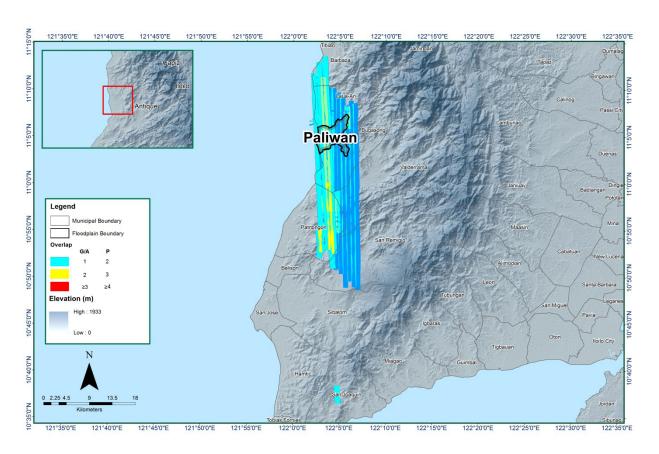


Figure 16. Image of data overlap for Paliwan floodplain.

The overlap statistics per block for the Paliwan floodplain can be found in Annex 5. One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlap is 25.93%, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Paliwan floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.40 points per square meter.

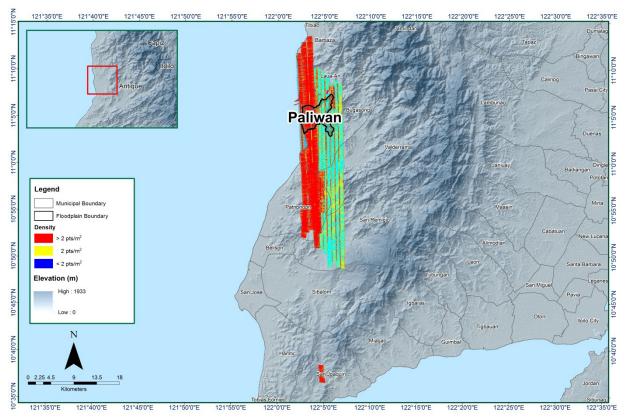


Figure 17. Density map of merged LiDAR data for Paliwan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

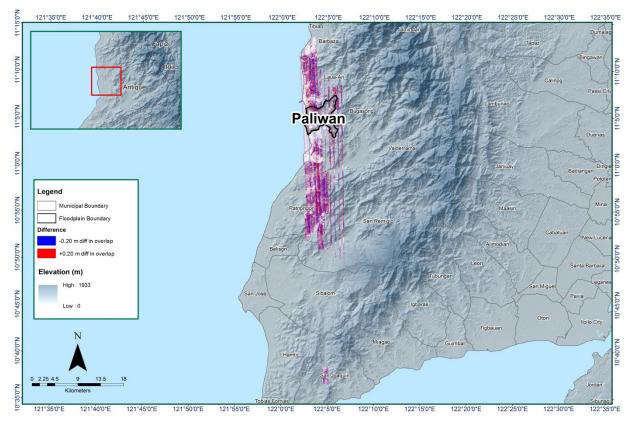


Figure 18. Elevation difference map between flight lines for Paliwan floodplain.

A screen capture of the processed LAS data from a Paliwan flight 2593P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the researcher was satisfied with the quality of the LiDAR data. No reprocessing was done for this LiDAR dataset.

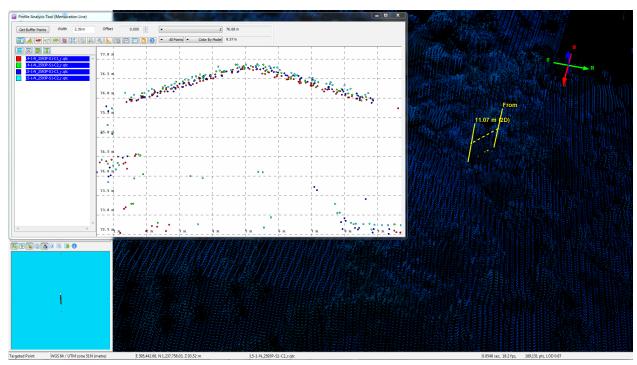


Figure 19. Quality checking for Paliwan flight 2593P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. Paliwan classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	293,176,098
Low Vegetation	102,063,776
Medium Vegetation	227,297,359
High Vegetation	439,049,485
Building	5,263,821

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Paliwan floodplain is shown in Figure 20. A total of 485 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 925.04 meters and 54.48 meters respectively.

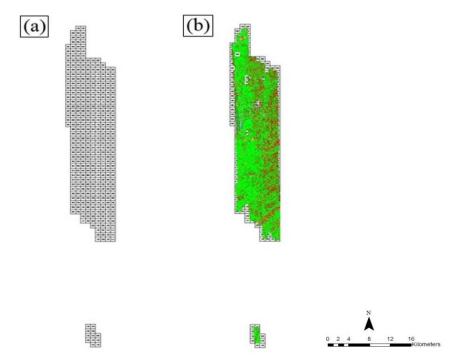


Figure 20. Tiles for Paliwan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

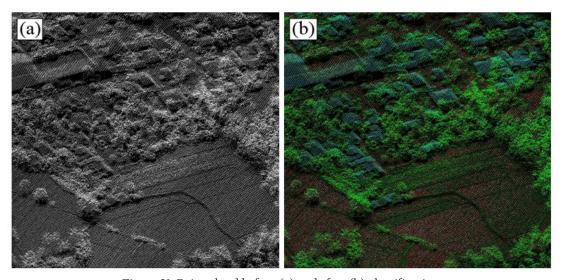


Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

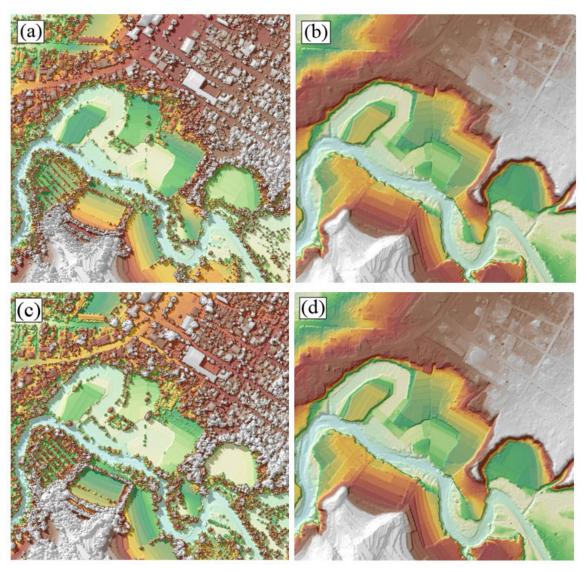


Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Paliwan floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 482 1km by 1km tiles area covered by Paliwan floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Paliwan floodplain has a total of 326.67 sq.km orthophotogaph coverage comprised of 772 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

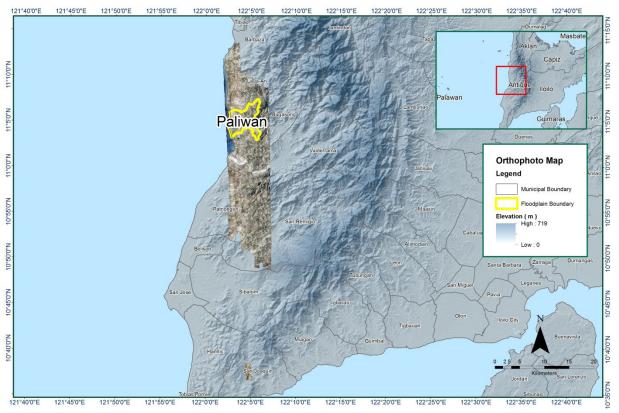


Figure 23. Paliwan floodplain with available orthophotographs.

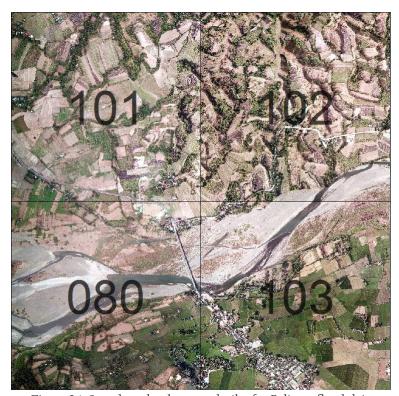


Figure 24. Sample orthophotograph tiles for Paliwan floodplain.

3.8 DEM Editing and Hydro-Correction

Four (4) blocks were processed for Paliwan floodplain. These blocks are composed Iloilo blocks and Iloilo reflights with a total area of 395.11 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Iloilo_Blk43B	136.14
Iloilo_Blk43B_additional	226.06
Iloilo_reflights_Blk43B	15.69
Iloilo_reflights_Blk43B_supplement	17.23
TOTAL	395.11 sq.km

Table 17. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 25. It shows that the paddy field (Figure 25a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 25b). The bridges (Figure 25c) would be an impedance to the flow of water along the river and have to be removed (Figure 25d) in order to hydrologically correct the river.

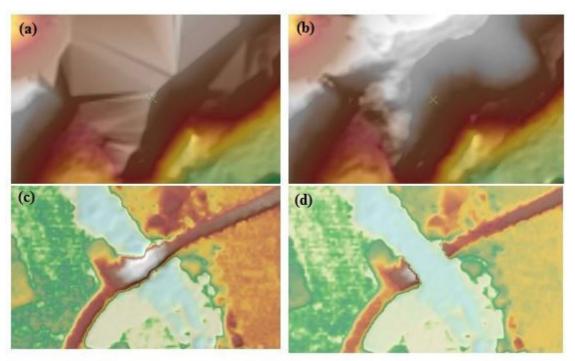


Figure 25. Portions in the DTM of Paliwan floodplain – a paddy field before (a) and after (b) data retrieval; bridge before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Iloilo_Blk43B was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 18 shows the area of each LiDAR block and the shift values applied during mosaicking.

Mosaicked LiDAR DTM for Paliwan floodplain is shown in Figure 26. It can be seen that the Paliwan floodplain is 98.05% covered by LiDAR data.

Table 18. Shift Values of each LiDAR Block of Paliwan floodplain.

Mission Blocks	Shift Values (meters)			
	Х	У	Z	
Iloilo_Blk43B	0	0	0.00	
lloilo_Blk43B_additional(left portion)	0	1	0.22	
lloilo_Blk43B_additional(right portion)	0	1	0.14	
Iloilo_reflights_Blk43B	0	0	0.93	
lloilo_reflights_Blk43B_sup- plement	0	0	0.82	

Figure 26. Map of Processed LiDAR Data for Paliwan Flood Plain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Paliwan to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 9221 survey points were used for calibration and validation of Paliwan LiDAR data. Random selection of 80% of the survey points, resulting to 6866 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 1.58 meters with a standard deviation of 0.14 meters. Calibration of Paliwan LiDAR data was done by adding the height difference value, 1.58 meters, to Paliwan mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

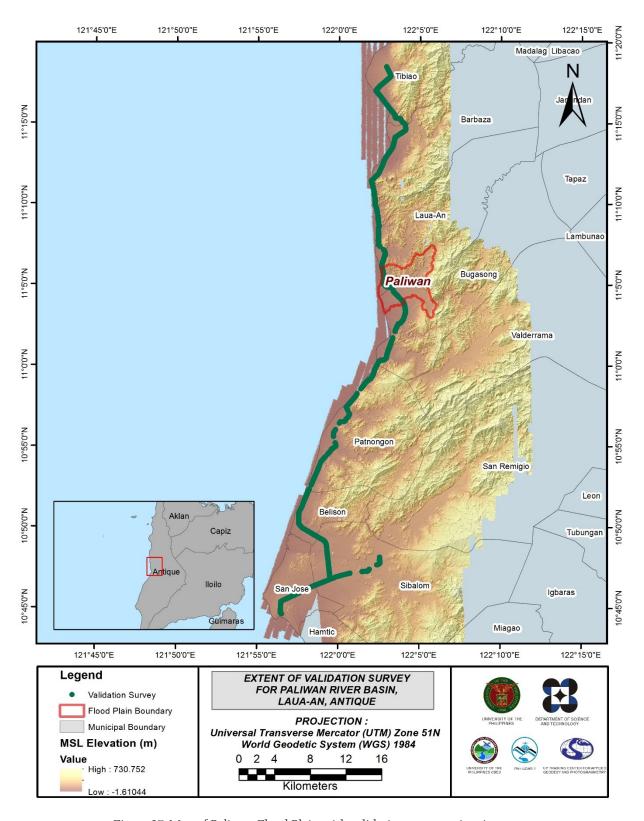


Figure 27. Map of Paliwan Flood Plain with validation survey points in green.

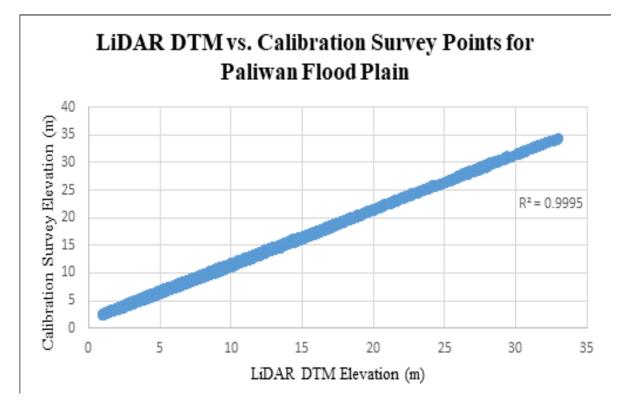


Figure 28. Correlation plot between calibration survey points and LiDAR data.

Table 19. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)
Height Difference	1.58
Standard Deviation	0.14
Average	-1.57
Minimum	-1.73
Maximum	-1.25

The remaining 20% of the total survey points, resulting to 1844 points, were used for the validation of calibrated Paliwan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.09 meters with a standard deviation of 0.05 meters, as shown in Table 20.

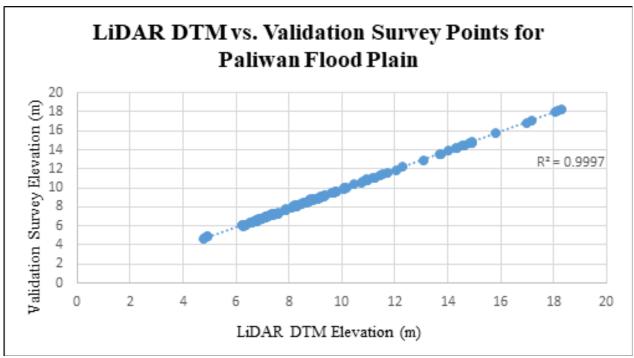


Figure 29. Correlation plot between validation survey points and LiDAR data.

Table 20. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.09
Standard Deviation	0.05
Average	0.07
Minimum	-0.04
Maximum	0.19

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Paliwan with 518 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.0025 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Paliwan integrated with the processed LiDAR DEM is shown in Figure 30.

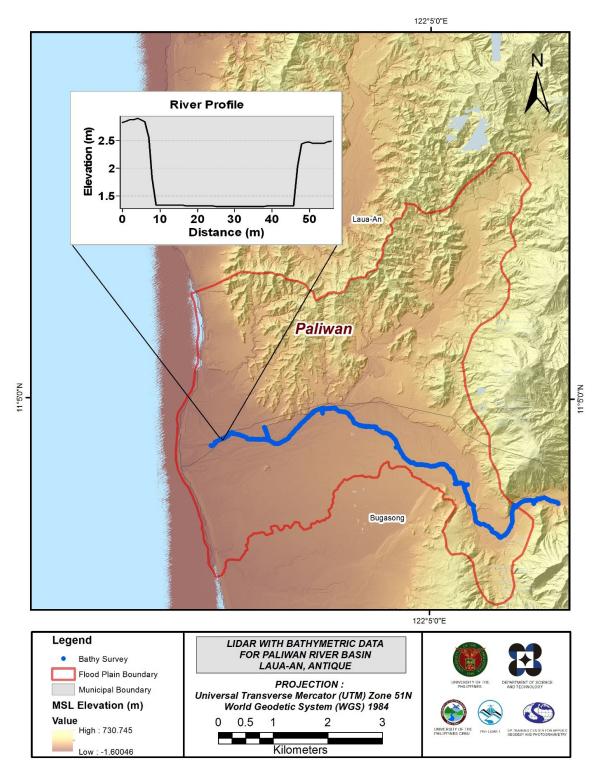


Figure 30. Map of Paliwan Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Paliwan floodplain, including its 200 m buffer, has a total area of 208.01 sq km. For this area, a total of 6.0 sq km, corresponding to a total of 1031 building features, are considered for QC. Figure 31 shows the QC blocks for Paliwan floodplain.

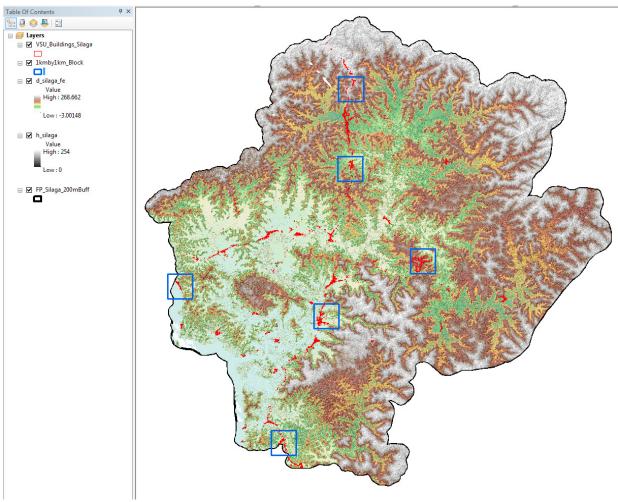


Figure 31. QC blocks for Paliwan building features.

Quality checking of Paliwan building features resulted in the ratings shown in Table 21.

Table 21. Quality Checking Ratings for Paliwan Building Features.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Paliwan				PASSED

3.12.2 Height Extraction

Height extraction was done for 5,690 building features in Paliwan floodplain. Of these building features, none was filtered out after height extraction, resulting to 5,690 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 8.74 m.

3.12.3 Feature Attribution

Feature Attribution was done for (no. of buildings) building features in Paliwan Floodplain with the use of participatory mapping and innovations. The approach used in participatory mapping undergoes the creation of feature extracted maps in the area and presenting spatial knowledge to the community with the premise that the local community in the area are considered experts in determining the correct attributes of the building features in the area.

The innovation used in this process is the creation of an android application called reGIS. The Resource Extraction for Geographic Information System (reGIS) (Resource Extraction for Geographic Information System (reGIS), 17 March 2015) app was developed to supplement and increase the field gathering procedures being done by the UPC Phil-LiDAR 1. The Android application allows the user to automate some procedures in data gathering and feature attribution to further improve and accelerate the geotagging process. The app lets the user record the current GPS location together with its corresponding exposure features, code, timestamp, accuracy and additional remarks. This is all done by a few swipes with the help of the device's pre-defined list of exposure features. This effectively allows unified and standardized sets of data.

Table 22 summarizes the number of building features per type while Table 23 shows the total length of each road type, and Table 24 shows the number of water features extracted per type.

Table 22. Building Features Extracted for Paliwan Floodplain.

Facility Type	No. of Features
Residential	
School	
Market	
Agricultural/Agro-Industrial Facilities	
Medical Institutions	
Barangay Hall	
Military Institution	
Sports Center/Gymnasium/Covered Court	
Telecommunication Facilities	
Transport Terminal	
Warehouse	
Power Plant/Substation	
NGO/CSO Offices	
Police Station	
Water Supply/Sewerage	
Religious Institutions	
Bank	
Factory	
Gas Station	
Fire Station	
Other Government Offices	
Other Commercial Establishments	
Total	

Table 23. Total Length of Extracted Roads for Paliwan Floodplain.

Road Network Length (km)									
Floodplain	Barangay Road	o , , , , ,							
Paliwan									

Table 24. Number of Extracted Water Bodies for Paliwan Floodplain.

Flood	Water Body Type								
Flood- plain	Rivers/ Streams								
Pali-									
wan									

A total of 44 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Paliwan floodplain overlaid with its ground features.

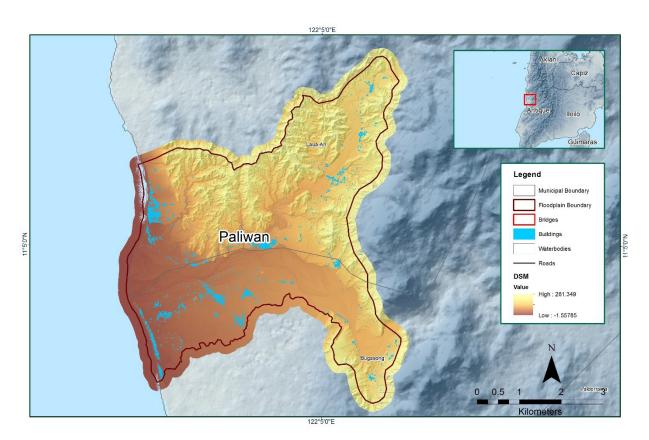


Figure 32. Extracted features for Paliwan floodplain.

Chapter 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LANANG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

Paliwan River Basin covers most of the Municipality of Bugasong, and a small portion of the Municipality of Laua-an, all of which are in Antique. The DENR river Basin Control Office (RCBO) identified it to be one of the 421 river basins in the Philippines, having a drainage area of 206 km² and an estimated 262 million cubic meter annual run-off. It is also one of the seven (7) major river basins in Antique (River Basin Control Office, 2017).

Its main stem, Paliwan River, passes along the Municipality Bugasong and is part of the 23 river systems in Western Visayas. There is a total of 6,791 people residing within the immediate vicinity of the river which is distributed among seven (7) barangays located in Municipality of Bugasong, namely: Maray, Anilawan, Tagudtud North, Talisay, Cubay North, Paliwan, and Lugta (Philippine Statistics Authority, 2016). The river is rich in good quality gravel and sand wherein local private quarry companies extract from the riverbed and export abroad (Guntan, 2015).

In line with this, DVBC conducted field survey in Paliwan River last September 25 – October 9, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section, bridge as-built of Paliwan Bridge piers; ground validation data acquisition of about 82.264 km for the whole province of Antique; and bathymetric survey from Brgy. Maray, Municipality of Bugasong, Antique down to Brgy. Lugta, Municipality of Bugasong, Antique with an estimated length of 9.356 km using GNSS PPK survey technique (Figure 33).

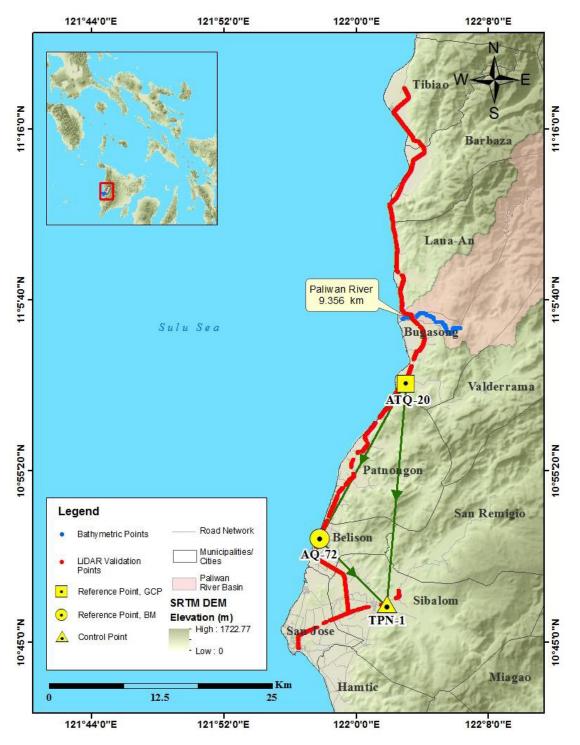


Figure 33. Extent of the bathymetric survey (in blue line) in Paliwan River.

4.2 Control Survey

The GNSS network used in Paliwan River Survey is composed of a single loop established on September 26, 2014 occupying the following reference points: ATQ-20, a second-order GCP, located in Brgy. Zaragoza, Municipality of Bugasong, Antique; and AQ-72, a first-order BM, located in Brgy. Delima, Municipality of Belison, Antique.

A control point was established on the approach of Tipuluan Bridge, namely: TPN-1, in Brgy. Pasong, Brgy. Sibalom, Antique, to use as marker during the survey.

The summary of references and control points used in Paliwan Survey is shown in Table 25, while the GNSS network established is illustrated in Figure 34.

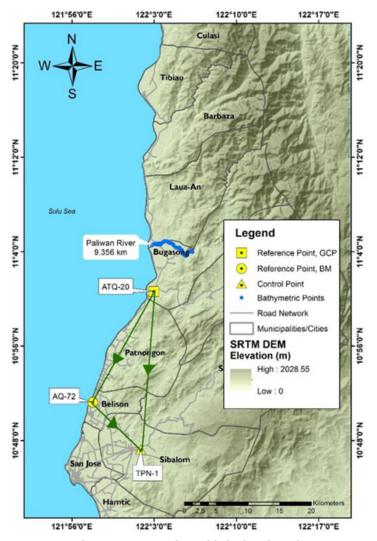


Figure 34. The GNSS Network established in the Paliwan River

Table 25. List of references and control points occupied during the control survey in Paliwan River survey (Source: NAMRIA, UP-TCAGP)

	Order of Accuracy	Geographic Coordinates (WGS 84)						
Control Point		Latitude	Longitude	Ellipsoidal Height (Meter)	BM Ortho (Me- ter)	Date Estab- lished		
ATQ-20	2nd	11°00′38.44240″ N	122°02′59.27039″ E	66.094	-	2009		
AQ-72	1 st	-	-	61.541	5.5842	2007		
TPN-1	-	-	-		-	September 26, 2014		

The GNSS set-ups on recovered reference points and established control points in Paliwan River are shown in Figure 35 to Figure 37.

Figure 35. GNSS base receiver setup, Trimble* SPS 852 at ATQ-20 in Brgy. Zaragoza, Municipality of Bugasong, Antique

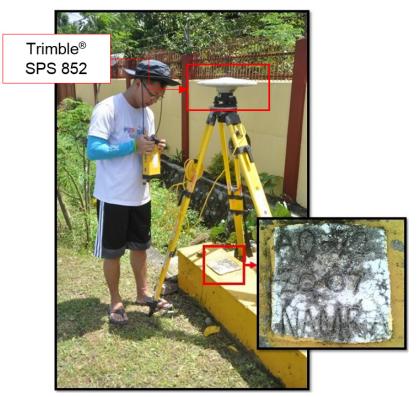


Figure 36. Benchmark, AQ-72, with Trimble* SPS 852 in Brgy. Delima, Municipality of Belison, Antique

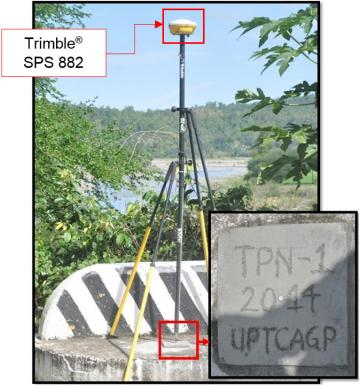


Figure 37. UP-TCAGP established control point, TPN-1, with Trimble* SPS 882 on Tipuluan Bridge in Brgy. Pasong, Municipality of Sibalom, Antique

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Paliwan River Basin is summarized in Table 26 generated by TBC software.

Table 26 Recoline	proceeding cummar	y report for Dalixyan	River control survey
Table 20. Daseille	processing summar	v report for Pairwaii	Kivel Collition Survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
ATQ-20 AQ- 72 (B4775)	09-26-2014	Fixed	0.007	0.022	208°43′33″	19743.041	-4.554
ATQ-20 TPN- 1 (B4775)	09-26-2014	Fixed	0.006	0.021	184°45′37″	24723.786	22.496
AQ-72 TPN- 1 (B4776)	09-26-2014	Fixed	0.005	0.014	134°32′57″	10438.795	27.074

As shown in Table 26, a total of three (3) baselines were processed with reference points ATQ-20 and AQ-72 held fixed for coordinate and elevation values, respectively. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

<20cm and

Where:

x_e is the Easting Error, y_e is the Northing Error, and

z is the Elevation Error

For complete details, see Network Adjustment Report shown in Tables 27 to 30 for reference.

The control point in which the coordinates were fixed during the network adjustment is shown in Table 27. Through this reference point, the coordinates of the unknown control points were computed. A difference in elevation of 0.9288 m between geoid (EGM2008) and MSL values of the reference point AQ-72 was applied for referring the elevation of the control points to MSL.

Table 27. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
ATQ-20	Global	Fixed	Fixed	Fixed	
Fixed = 0.000001(Meter)					

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed control point, ATQ-20, has no values for standard errors.

Table 28. Adjusted grid coordinates for the control points used in the Paliwan River flood plain

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
AQ-72	386654.679	0.063	1200045.589	0.033	6.513	0.256	
ATQ-20	396195.506	?	1217324.5 63	?	10.798	?	LLh
TPN-1	394067.041	0.058	1192699.1 27	0.031	33.065	0.259	

The network is fixed at the reference point, ATQ-20, with known coordinates. With the mentioned equation, for horizontal and for the vertical; the computation for the horizontal and vertical accuracy are as follows:

a. AQ-72 horizontal accuracy = $V((6.3)^2 + (3.3)^2$ = V(39.69 + 10.89)= 7.11 cm < 20 cm

b. TPN-1 horizontal accuracy = $V((5.8)^2 + (3.1)^2$ = V(33.64 + 9.61)= 6.58 cm < 20 cm The list of adjusted geodetic coordinates: Latitude, Longitude, Height and computed standard errors of the control points in the network are shown in Table 29.

Table 29. Adjusted geodetic coordinates for control points used in the Paliwan River Floodplain validation

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
AQ-72	N10°51′14.92748″	E121°57′46.85471″	61.541	0.256	
ATQ-20	N11°00′38.44240″	E122°02′59.27039″	66.094	?	LLh
TPN-1	N10°47′16.56550″	E122°01′51.73167″	88.644	0.259	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

Table 30. The reference and control points utilized in the Paliwan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geograph	ic Coordinates (We	UTM ZONE 51 N		
		Latitude	Longitude	Ellipsoidal Height (m)	Easting	MSL Eleva- tion (m)
ATQ-20	2 nd Order GCP	11°00′38.44240″	122°02′59.27039″	66.094	396195.506	9.8692
AQ-72	1 st Order BM	10°51′14.92748″	121°57′46.85471″	61.541	386654.679	5.5842
TPN-1	UP Estab- lished	10°47′16.56550″	122°01′51.73167″	88.644	394067.041	32.1362

4.5 Cross-section and Bridge As-Built Survey, and Water Level Marking

Cross-section and as-built survey were conducted on October 1 and 7, 2014 at the upstream side of Paliwan Bridge in Brgy. Cubay North, Municipality of Bugasong using GNSS receiver Trimble* SPS 882 in PPK survey technique as shown in Figure 38.

Figure 38. Cross section survey in Paliwan Bridge, Municipality of Bugasong

The cross-sectional line for Paliwan Bridge is about 250 m with twenty (20) points gathered using TAQ-20 as GNSS base station. Cross-section diagram and planimetric map are illustrated in Figure 39 and Figure 40, while the as-built form is shown in Figure 41.

Paliwan Bridge

Latitude: 11° 04' 37.80268" N Longitude: 122° 03' 22.39028" E

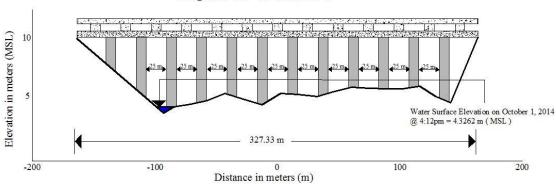


Figure 39. Paliwan Bridge cross-section survey drawn to scale

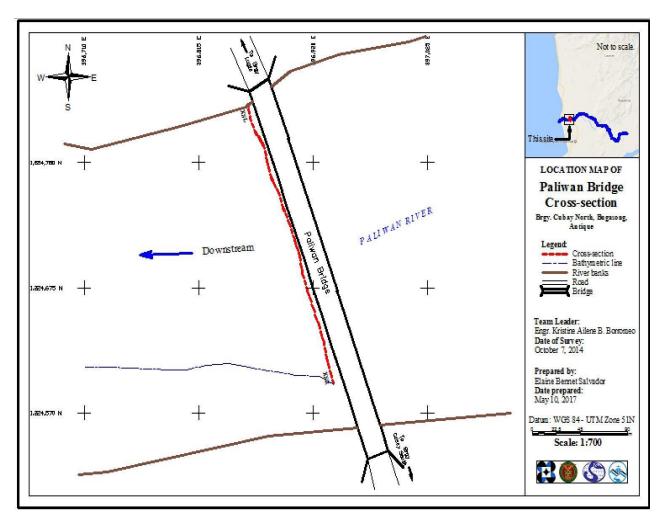


Figure 40. Location map of the Paliwan bridge cross-section survey

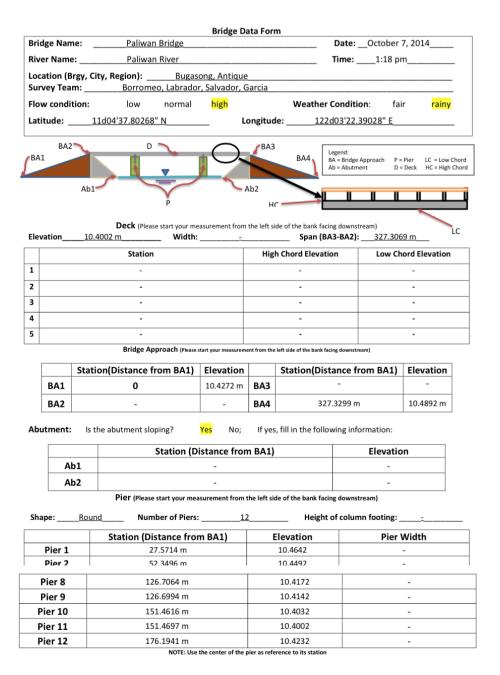


Figure 41. Bridge As-built of Paliwan Bridge

4.6 Validation Points Acquisition Survey

Validation Points Acquisition Survey was conducted last October 3, 5, and 6, 2014 using a survey-grade GNSS rover receiver, Trimble® SPS 882, mounted on a pole which was attached in front of the vehicle as shown in Figure 42. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height of 1.53 m was measured from the ground up to the bottom of notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topo mode.

The first day of ground validation started from Municipality of Tibiao and traversed major roads going to Municipality of Patnongon. Meanwhile, the second day of survey started from Municipality of San Jose up to Municipality of Patnongon, and the third ground validation survey comprised of the remaining areas. ATQ-20 was used as the GNSS base station all throughout the conduct of the survey.

Figure 42. Setup of Trimble* SPS 882 attached to a vehicle (A) and Setting up of GNSS base station at ATQ-20 (B)

The survey acquired 9,787 ground validation points with an approximate length of 82.264 km using the base station ATQ-20, as shown in the map in Figure 43.

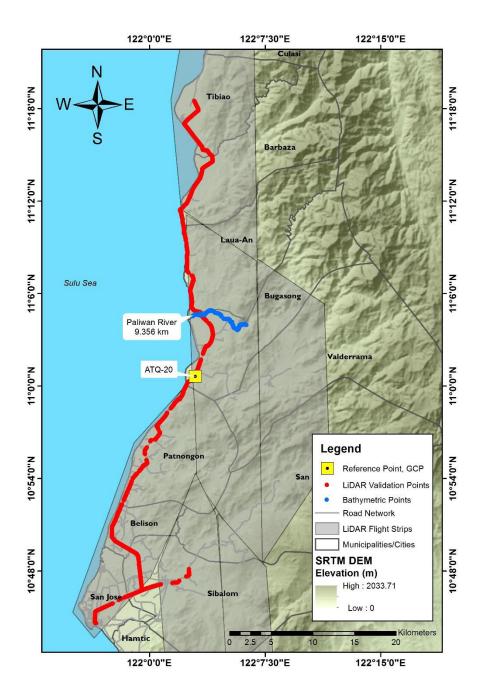


Figure 43. Extent of the LiDAR ground validation survey of Plaiwan River Basin

4.7 Bathymetric Survey

Bathymetric survey was executed in one day, last October 1, 2014 using Trimble® SPS 882 in GNSS PPK survey technique as shown in Figure 44. With the help from the MDRRMO of Bugasong, the survey started upstream from in Brgy. Maray, Municipality of Bugasong with coordinates 11°03′57.90330″ 122°06′17.75217″, traversed down the river by foot and ended the survey in Brgy. Paliwan, Municipality of Bugasong with coordinates 11°04′31.59860″ 122°02′48.56782″.

Figure 44. Bathymetric survey using a Trimble* SPS 882 in GNSS PPK in Paliwan River

The bathymetric line survey has an estimated length of 9.356 km with a total of 485 points acquired using ATQ-20 as GNSS base station. The processed data was generated into map using GIS and processed further using CAD for plotting the centerline of the river. The generated map, shown in Figure 45, exhibits the bathymetry survey coverage, while Figure 46 illustrates the Paliwan riverbed profile. The highest elevation was 33.40 m in mSL in Brgy. Maray, while the lowest elevation was 0.026 m in MSL in Brgy. Paliwan.

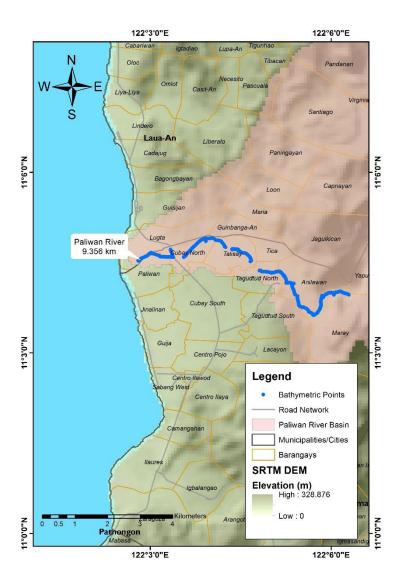
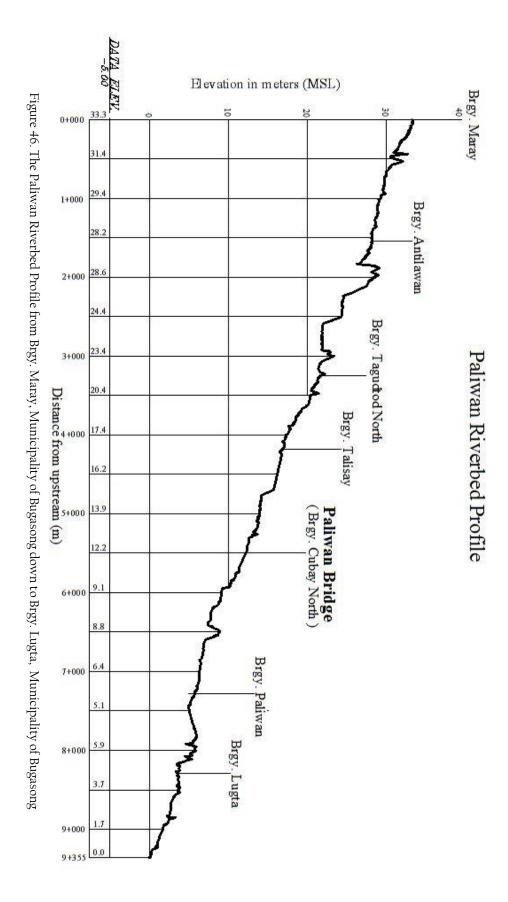



Figure 45. Extent of the Paliwan River Bathymetry Survey

Chapter 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, Marvin Arias

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Paliwan River Basin was monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Paliwan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the UP Cebu Flood Modeling Component (FMC) team. The ARG was installed at Brgy. Maray, Bugasong, Antique (Figure 47). The precipitation data collection started from December 8, 2016 at 4:20 PM to December 9, 2016 at 1:05 AM with a recording interval of 10 minutes.

The total precipitation for this event in Brgy Maray ARG was 48.4 mm, with a peak rainfall of 6.6 mm. on December 8, 2016 at 6:00 in the evening. The lag time between the peak rainfall and discharge is 1 hour and 50 minutes.

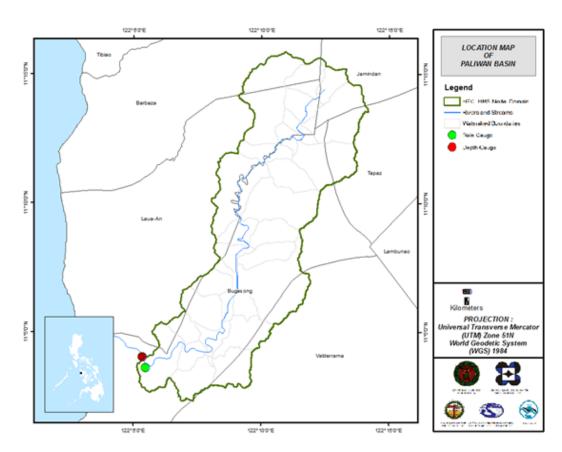


Figure 47. The location map of Paliwan HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section shown in Figure 48 at Brgy Anilawan Flow Site, Bugasong, Antique (11° 4′0.49″N, 122° 5′22.27″E) to establish the relationship between the observed water levels at Brgy Anilawan Flow Site and outflow of the watershed at this location.

For Brgy. Anilawan Flow Site, the rating curve is expressed as Q = 66.291e0.5476x [see y formula] as shown in Figure 49.

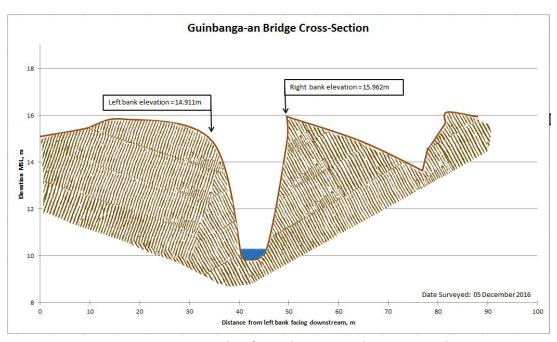


Figure 48. Cross-Section Plot of Guinabanga-an Bridge in Brgy. Anilawan

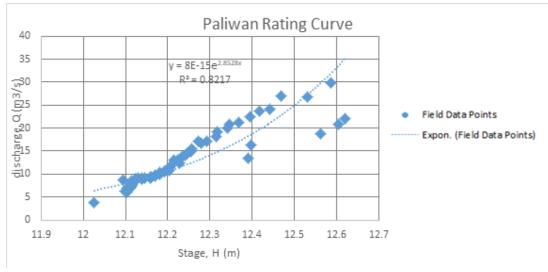


Figure 49. Rating Curve at Guinabanga-an Bridge, Brgy. Anilawan

This rating curve equation was used to compute the river outflow at Brgy. Anilawan Flow Site for the calibration of the HEC-HMS model shown in Figure 50. The total rainfall for this event is 6.6 mm and the peak discharge is 29.9 m³ second at 7:50 PM, December 8, 2016.

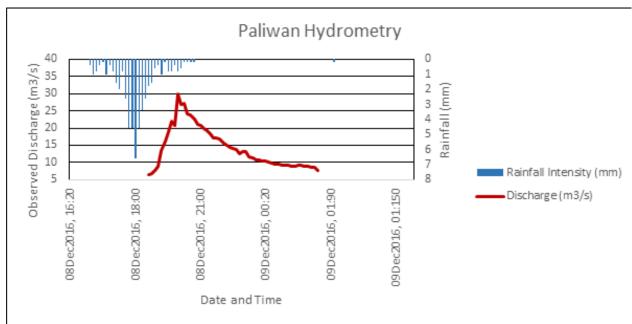


Figure 50. Rainfall and outflow data of the Paliwan River Basin, which was used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed the Rainfall Intensity Duration Frequency (RIDF) values for the Iloilo Rain Gauge (Figure 51). The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time (Figure 52). This station chosen based on its proximity to the Paliwan watershed. The extreme values for this watershed were computed based on a 59-year record shown in Table 31.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
5	28.7	39.4	48	59.4	74.9	90	114.7	131.7	165.2
10	33.9	45.6	55.6	68.1	85	103.6	133.6	155.4	198.9
25	40.5	53.5	65.3	79.2	97.6	120.8	157.6	185.3	241.5
50	45.4	59.4	72.4	87.3	107	133.5	175.3	207.4	273.1
100	50.3	65.2	79.5	95.4	116.4	146.2	193	229.4	304.5

Table 31. RIDF values for Iloilo Rain Gauge computed by PAGASA

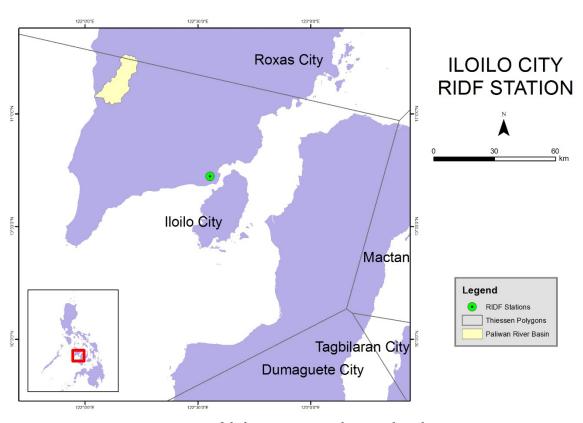


Figure 51. Location of Iloilo RIDF station relative to the Paliwan River Basin

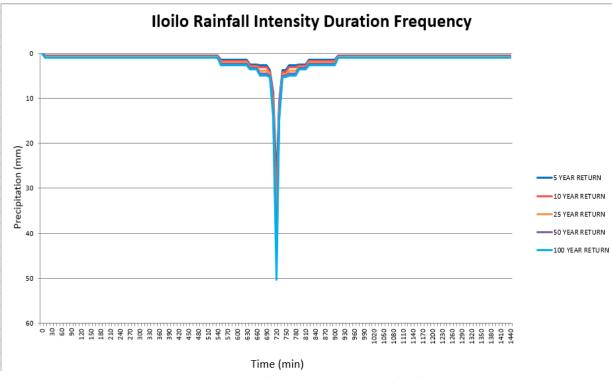


Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods

STREAM DEL

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Paliwan River Basin are shown in Figures 53 and 54, respectively.

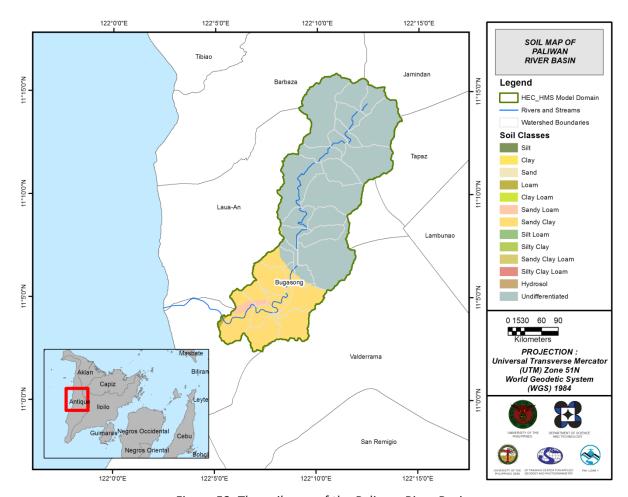


Figure 53. The soil map of the Paliwan River Basin

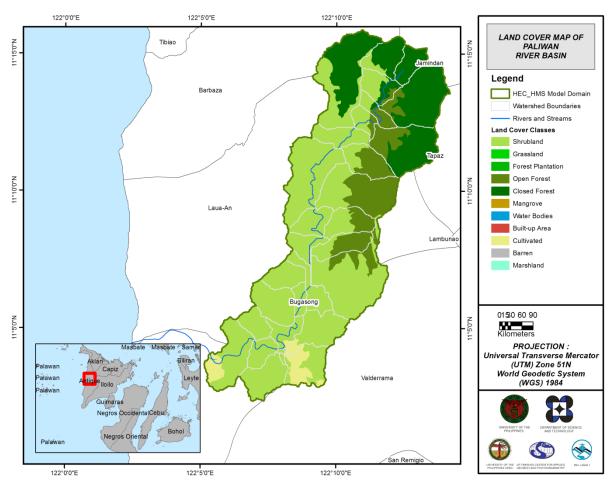


Figure 54. The land cover map of the Paliwan River Basin

For Bago, three soil classes were identified. These are sandy loam, clay, and undifferentiated soil. Moreover, four land cover classes were identified. These are open and closed forest, shubland, and cultivated area.

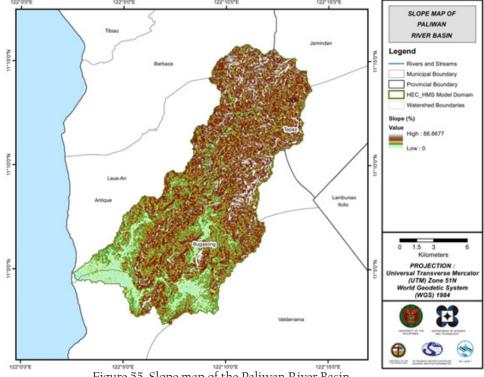


Figure 55. Slope map of the Paliwan River Basin

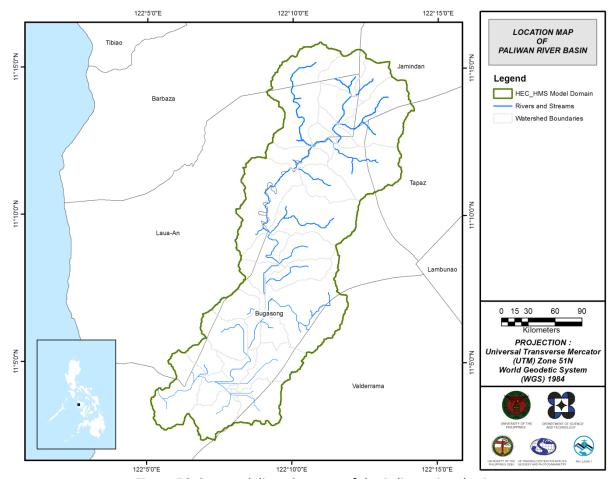


Figure 56. Stream delineation map of the Paliwan river basin

Using the SAR-based DEM, the Paliwan basin was delineated and further subdivided into subbasins. The model consists of 31 sub basins, 15 reaches, and 15 as shown in Figure 57. The main outlet is at Brgy. Anilawan Flow Site.

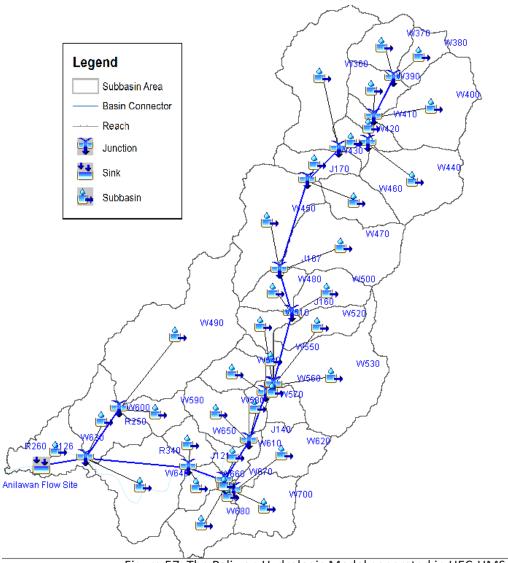


Figure 57. The Paliwan Hydrologic Model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 58).

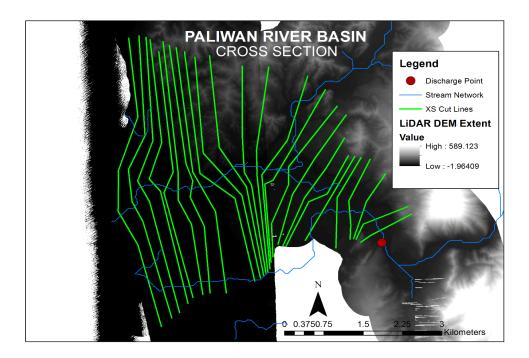


Figure 58. River cross-section of Paliwan River through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively (See Figure 59).

Figure 59. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Development System Pro (FLO-@D GDS Pro)

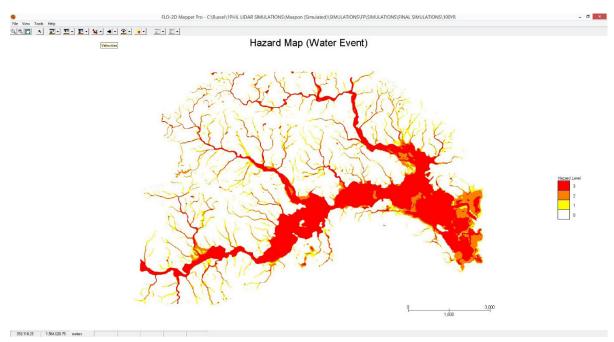


Figure 60. Generated 100-year rain return hazard map from FLO-2D Mapper

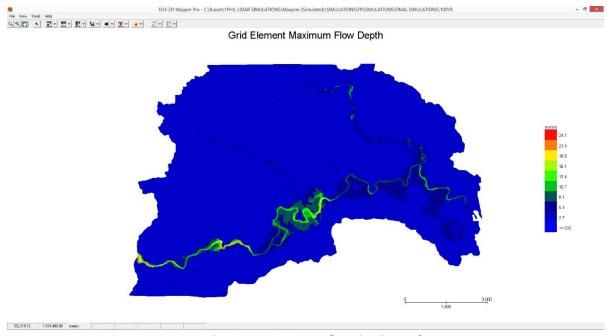


Figure 61. Generated 100-year rain return flow depth map from FLO-2D Mapper

5.6 Results of HMS Calibration

After calibrating the Paliwan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 62 shows the comparison between the two discharge data.

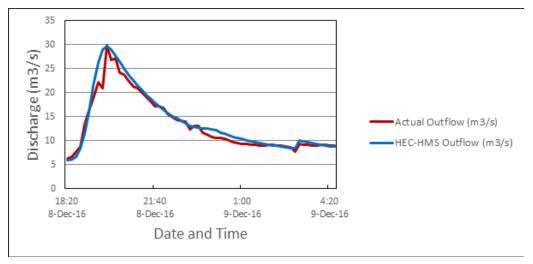


Figure 62. Outflow hydrograph of Paliwan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 32 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Cali- brated Values		
	Loss	SCS Curve number	Initial Abstraction (mm)	0.12-2.36		
	Loss	SCS Curve number	Curve Number	51.5-99		
Basin	Transform	Clark Unit Hydrograph	Clark Unit Unit Unit Charles are a Time of Concentration (hr)			
Dasiii	110115101111	Clark Offic Hydrograph	Storage Coefficient (hr)	1.25-12.1		
	Baseflow	Recession	Recession Constant	1		
	Dasellow	Recession	Ratio to Peak	0.0001		
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0001		

Table 32. Range of Calibrated Values for the Paliwan River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.12 mm - 2.36 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 51.5-99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Paliwan, the basin mostly consists of shrubland, closed and open forests, and cultivated areas, and the soil consists of clay, sandy loam, and undifferentiated areas.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.25 hours to 12.1 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.0001 indicates a much steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0001 for the Paliwan river basin is lower than the usual Manning's n value in the Philippines (Brunner, 2010).

Accuracy measure	Value
RMS Error	1.4
r2	0.9816
NSE	0.94
RSR	0.25
PBIAS	-4.41

Table 33. Summary of the Efficiency Test of Paliwan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.4 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9816.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.25.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of -4.41.

5.7 Calculated Outflow Hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Paliwan outflow using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 165.2m3 in a 5-year return period to 304.5m3 for a 100-year return period.

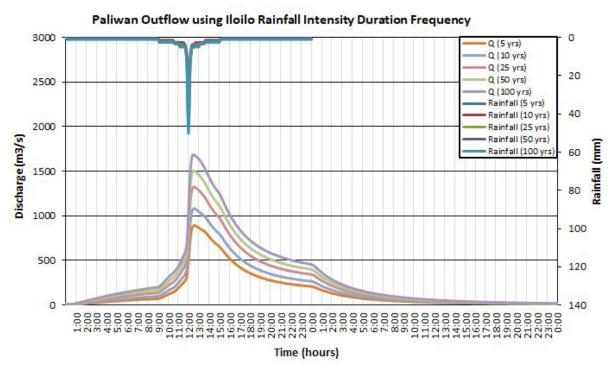


Figure 63. Outflow hydrograph at Paliwan Station generated using Iloilo RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Paliwan discharge using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	165.2	28.7	891.1	40 minutes
10-Year	198.9	33.9	1079.9	30 minutes
25-Year	241.5	40.5	1323.7	30 minutes
50-Year	273.1	45.4	1504.7	30 minutes
100-Year	304.5	50.3	1686.4	30 minutes

Table 34. Peak values of the Paliwan HEC-HMS Model outflow using the Iloilo RIDF

5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method

The river discharges entering the floodplain are shown in Figure 64 to Figure 65 and the peak values are summarized in Table 35 to Table 36.

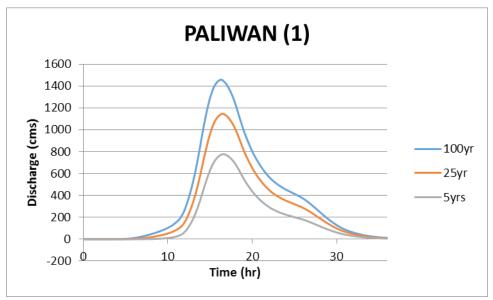


Figure 64. Paliwan river (1) generated discharge using 5-, 25-, and 100-year Iloilo rainfall intensity-duration-frequency (RIDF) in HEC-HMS

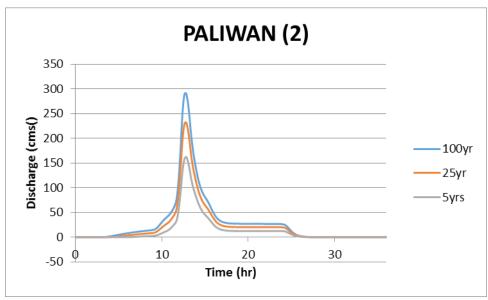


Figure 65. Paliwan river (2) generated discharge using 5-, 25-, and 100-year Iloilo rainfall intensity-duration-frequency (RIDF) in HEC-HMS

Table 35. Summary of Paliwan river (1) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	1457.8	7 hours, 3 minutes
25-Year	1146.6	7 hours, 3 minutes

Table 36. Summary of Paliwan river (2) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	290.6	0 hours, 57 minutes
25-Year	231.6	0 hours, 57 minutes
5-Year	162.2	0 hours, 57 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 37.

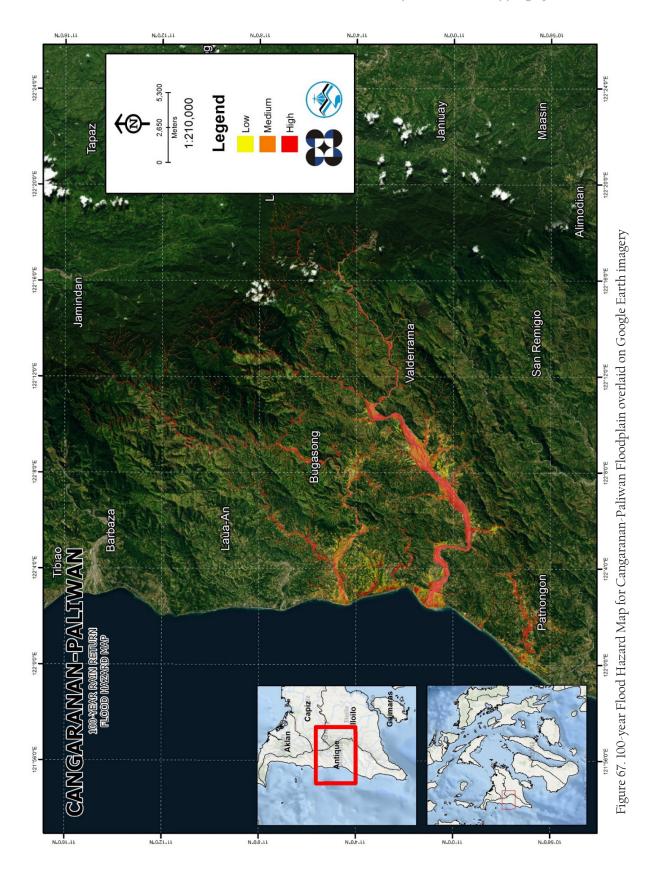
Table 37. Validation of river discharge estimates

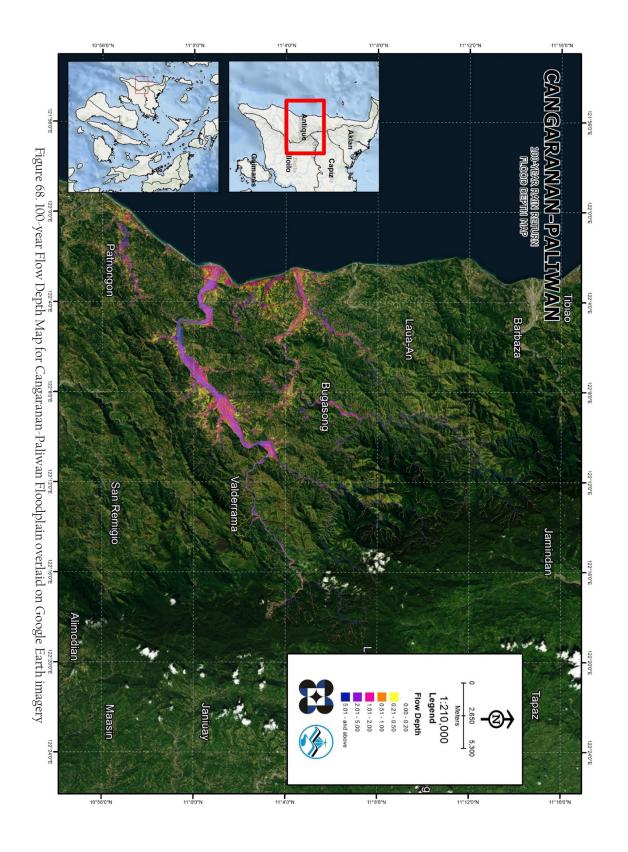
Discharge	OMED(CCC)	ODANKELII	OMED/CDEC)	VALIDATION				
Discharge Point	QMED(SCS), cms	QBANKFUL, cms	QMED(SPEC), cms	Bankful Dis- charge	Specific Dis- charge			
Sumlog (1)	1282.864	2506.382	573.673	Pass	Fail			
Sumlog (2)	255.728	426.104	573.673	Pass	Fail			

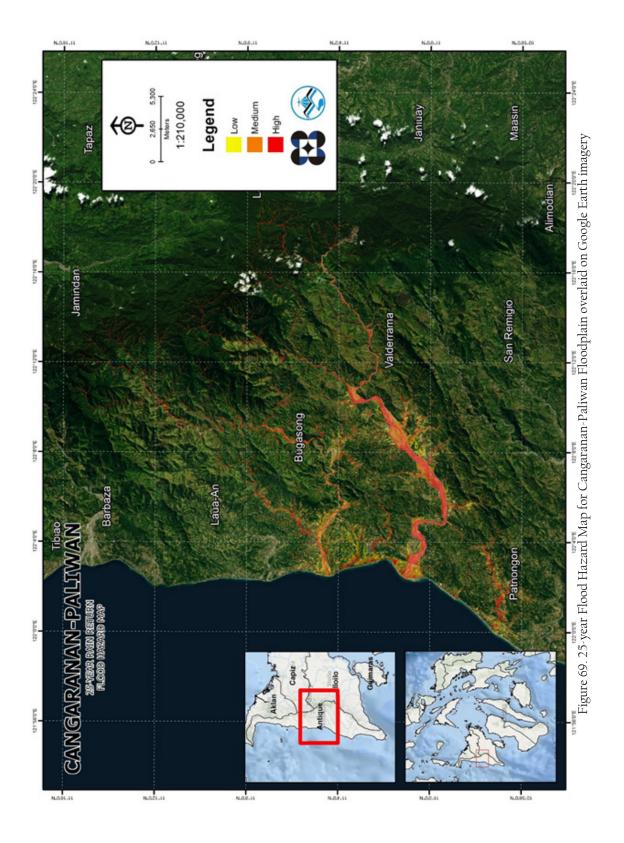
Both river (1) and river (2) have satisfied the conditions for validation using the Bankful method while both rivers did not pass the conditions for validation using the specific discharge method. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

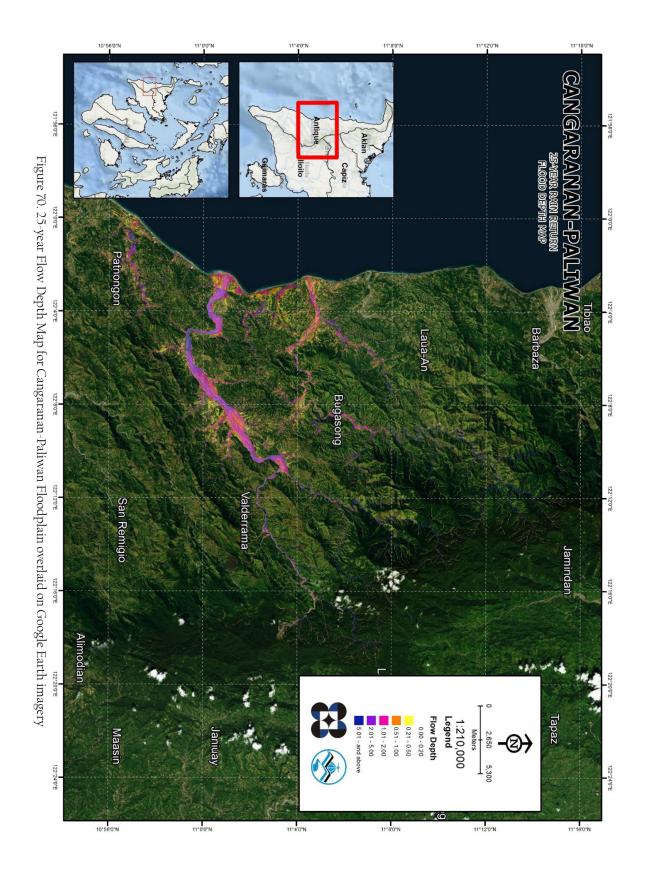
5.8 River Analysis (RAS) Model Simulation

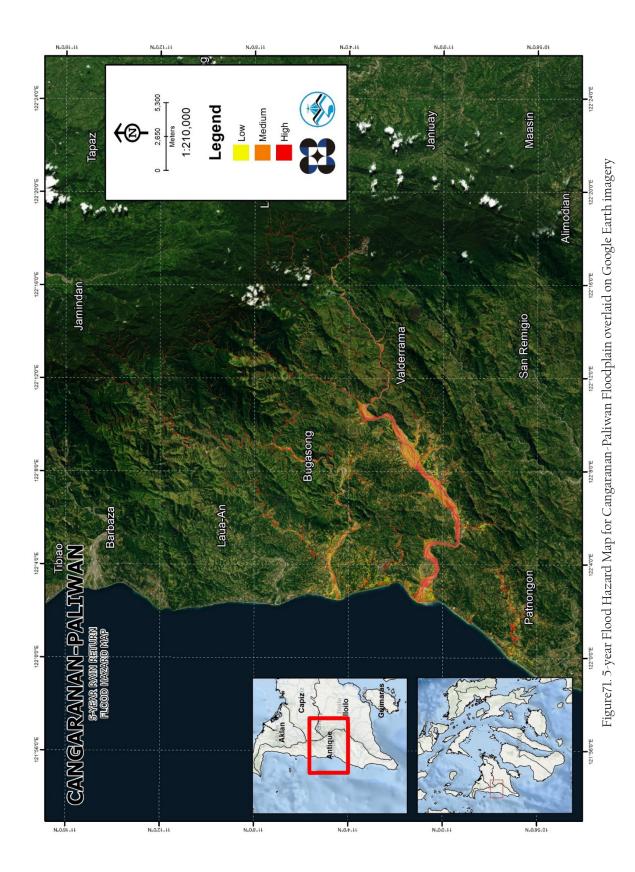
The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Paliwan River using the calibrated HMS event flow is shown in Figure 66.

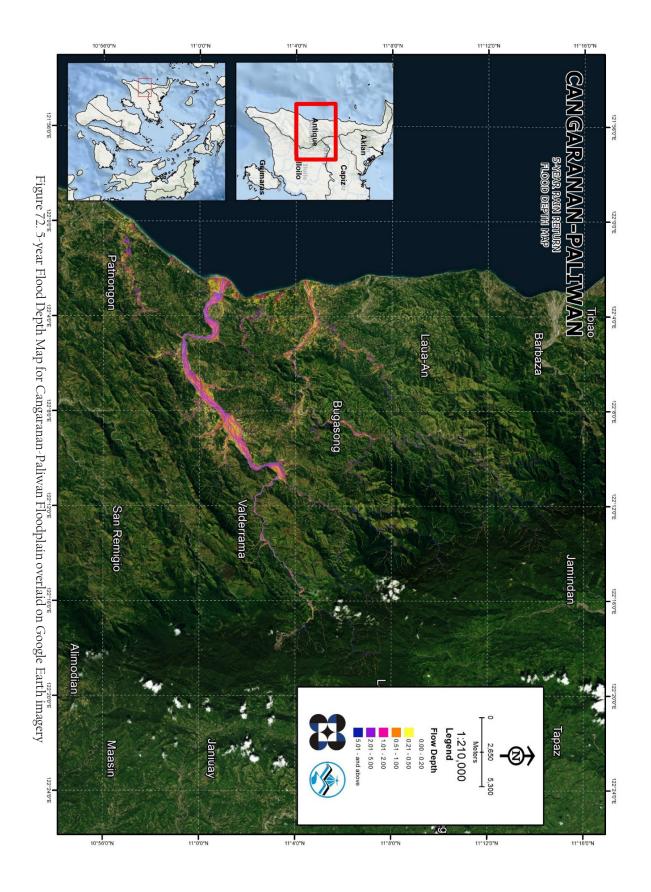

Figure 66. Sample output map of the Paliwan RAS Model


5.9 Flood Depth and Flow Hazard


The resulting hazard and flow depth maps have a 10 m resolution. Figures 67 to 72 show the 5-, 25-, and 100-year rain return scenarios of the Paliwan floodplain. The floodplain, with an area of 55.28 sq.km., covers two municipalities namely, Bugasong, and Laua-An. Table 38 shows the percentage of area affected by flooding in the municipality.


Table 38. Municipalities affected in the Paliwan Floodplain


Municipality	Total Area	Area Flooded	% Flooded
Bugasong	174.08	23.177	13.314
Laua-An	159.77	27.83	17.419



73

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Paliwan river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 34 barangays are expected to experience flooding when subjected to 5-year rainfall return period.

For the 5-year return period, 10.97% of the municipality of Ibajay with an area of 174.08 sq. km. will experience flood levels of less 0.20 meters. 1.55% of the area will experience flood levels of 0.21 to 0.50 meters while 1.04%, 0.7%, 0.36%, and 0.37% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Shown in Figure 73 and in Table 39 are the affected areas in square kilometres by flood depth per barangay.

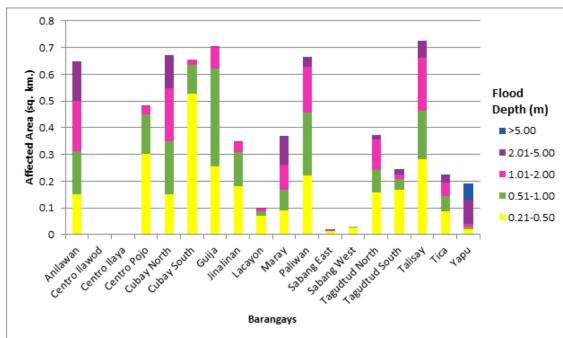


Figure 73. Affected Areas in Bugasong, Antique during 5-Year Rainfall Return Period

				ed A km.			Pal			ecte (sq.						PALIW <i>A</i>
	> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Paliwan	> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20			PALIWAN BASIN
	0	0.0003	0.00093	0.0025	0.013	0.76	Sabang East	0.0002	0.14	0.19	0.16	0.15	1.71	llawod	Centro	
T ₂ kl _e 2	0	0	0	0.000014	0.026	0.049	Sabang West	0	0	0	0	0	0.015	Centro llaya		-
O Affected Area	0	0.018	0.11	0.085	0.16	0.84	Tagudtud North	0	0	0	0	0	0.023	Centro Pojo		_
e in Ruggeong A	0.0002	0.014	0.017	0.042	0.17	2.1	Tagudtud South	0	0.0005	0.032	0.15	0.3	1.06	Cubay North		Aff
Table 20 Affected Areas in Burgsong Antique during 5. Vear Bainfall Return Deriod	0	0.065	0.2	0.18	0.28	0.66	Talisay	0	0.12	0.2	0.2	0.15	0.54	Cubay South		Affected Barangays in Bugasong
Vear Rainfall	0.0004	0.026	0.053	0.054	0.089	0.44	Tica	0	0	0.019	0.11	0.53	3.41	Guija		s in Bugason
Return Period	0.061	0.092	0.011	0.0097	0.019	0.73	Yapu	0	0.0015	0.083	0.36	0.26	0.73	Jinalinan		- 0.d
	0.060702	0.09186	0.010893	0.009693	0.018802	0.727561		0	0.0002	0.035	0.13	0.18	0.85	Lacayon		-
								0	0.0037	0.0083	0.016	0.072	1.46	Maray		
								0.0024	0.1	0.094	0.077	0.091	2.95			

Table 39. Affected Areas in Bugasong, Antique during 5-Year Rainfall Return Period

For the municipality of Laua-An, with an area of 159.77 sq. km., 16.6% will experience flood levels of less 0.20 meters. 0.7% of the area will experience flood levels of 0.21 to 0.50 meters while 0.47%, 0.44%, 0.35%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 and shown in Figure 74 are the affected areas in square kilometres by flood depth per barangay.

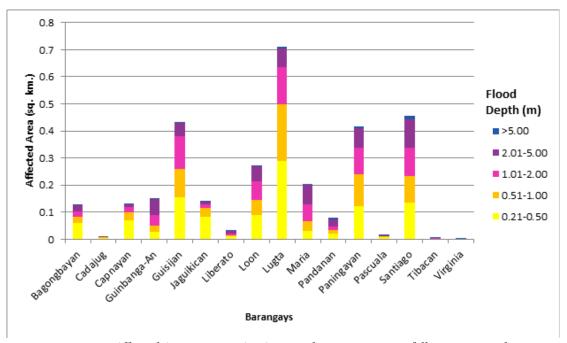


Figure 74. Affected Areas in Laua-An, Antique during 5-Year Rainfall Return Period

			ed A km.			Fallo	Affected Area (sq. km.) 0.21 1.01 > 5.0								PALIWA
> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Idildii	5	> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Bagongbayan	PALIWAN BASIN
0.0044	0.027	0.013	0.014	0.02	0.85	Paningayan		0.0025	0.022	0.019	0.022	0.062	1.74	Cadajug	
0.0081	0.073	0.097	0.12	0.12	2.48	Pascuala		0	0.00039	0.0003	0.0011	0.0057	0.38	Capnayan	
0.00046	0.0028	0.0024	0.003	0.0066	0.4	Santiago		0.0002	0.0084	0.02	0.03	0.07	3.45	Guinbanga-An	
0.014	0.1	0.11	0.099	0.13	5.11	Tibacan		0.0002	0.057	0.039	0.022	0.029	0.9	Guisijan	Affe
0.0004	0.0022	0.0014	0.0012	0.001	0.12	Virginia		0.0023	0.05	0.12	0.1	0.16	2.73	Jaguikican	Affected Barangays in
0.000038	0.000077	0	0.0001	0.00075	0.052			0.004	0.0088	0.014	0.032	0.084	3.93	Liberato	ys in Laua-An
								0.0016	0.0092	0.0064	0.0058	0.0099	0.72	Loon	
								0.0007	0.057	0.067	0.058	0.088	1.32	Lugta	
								0.0058	0.06908	0.138116	0.206895	0.290521	1.38083	Maria	
								0.003606	0.069078	0.063656	0.03502	0.031615	0.960183		

Table 40. Affected Areas in Laua-An, Antique during 5-Year Rainfall Return Period

For the 25-year return period, 10.16% of the municipality of Ibajay with an area of 174.08 sq. km. will experience flood levels of less 0.20 meters. 1.8% of the area will experience flood levels of 0.21 to 0.50 meters while 1.2%, 0.9%, 0.46%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 and shown in Figure 75 are the affected areas in square kilometres by flood depth per barangay.

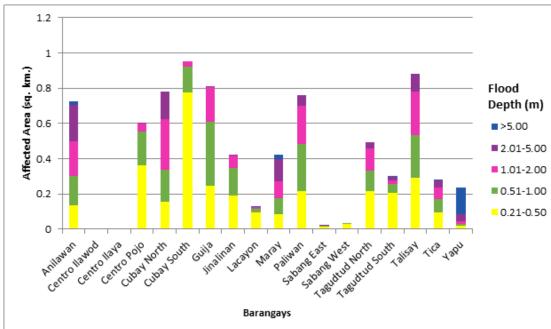


Figure 75. Affected Areas in Bugasong, Antique during 25-Year Rainfall Return Period

		ecte (sq.				Pali					ed A km.			Anil		PALIWA
> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Paliwan		> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Anilawan		PALIWAN BASIN
0	0.06	0.22	0.26	0.22	0.68	Sabang East		0.019	0.21	0.2	0.17	0.13	1.63	llawod	Centro	
0	0.0004	0.00083	0.0036	0.015	0.75	Sabang West		0	0	0	0	0	0.015	Centro llaya		
0	0	0	0.00085	0.032	0.042	Tagudtud North		0	0	0	0	0	0.023	Centro Pojo		
0	0.036	0.13	0.11	0.22	0.72	Tagudtud South		0	0.0006	0.047	0.19	0.36	0.94	Cubay North		Affected
0.0002	0.02	0.017	0.055	0.2	2.04	Talisay		0	0.16	0.28	0.18	0.16	0.43	Cubay South		Affected Barangays in Bugasong
0	0.1	0.25	0.24	0.29	0.5	Tica		0	0	0.032	0.15	0.77	3.11	Guija		ugasong
0.0005	0.04	0.068	0.076	0.095	0.38	Yapu	•	0	0.0026	0.19	0.37	0.24	0.63	Jinalinan		
0.15	0.04	0.015	0.0083	0.021	0.68			0	0.0019	0.072	0.16	0.19	0.78	Lacayon		
								0.000067	0.0044	0.01	0.02	0.094	1.44	Maray		
								0.026623	0.126231	0.094434	0.090022	0.085897	2.89359			

Table 41. Affected Areas in Bugasong, Antique during 25-Year Rainfall Return Period

For the municipality of Laua-An, with an area of 159.77 sq. km., 16.26% will experience flood levels of less 0.20 meters. 0.8% of the area will experience flood levels of 0.21 to 0.50 meters while 0.54%, 0.5%, 0.46%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 and shown in Figure 76 are the affected areas in square kilometres by flood depth per barangay.



Figure 76. Affected Areas in Laua-An, Antique during 25-Year Rainfall Return Period

			ed A km.			Pano	,				ed A km.			Bagon	PALIWA
> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Pandanan		> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Bagongbayan	PALIWAN BASIN
0.011	0.027	0.015	0.016	0.022	0.84	Paningayan		0.0032	0.028	0.021	0.023	0.09	1.7	Cadajug	
0.013	0.096	0.12	0.13	0.12	2.41	Pascuala		0	0.00039	0.0004	0.0013	0.0084	0.37	Capnayan	_
0.00046	0.0034	0.0022	0.0039	0.0067	0.4	Santiago		0.0004	0.013	0.022	0.035	0.082	3.43	Guinbanga-An	
0.023	0.14	0.11	0.1	0.16	5.04	Tibacan		0.01	0.074	0.03	0.017	0.04	0.88	Guisijan	Affected
0.0007	0.0027	0.001	0.0011	0.0011	0.12	Virginia		0.005	0.063	0.13	0.13	0.19	2.64	Jaguikican	Affected Barangays in
0.000038	0.000077	0	0.00021	0.00085	0.051			0.0049	0.012	0.017	0.04	0.095	3.91	Liberato	n Laua-An
								0.0025	0.0095	0.0066	0.0061	0.012	0.72	Loon	
								0.0015	0.079	0.079	0.066	0.077	1.29	Lugta	
								0.013	0.086	0.17	0.27	0.3	1.25	Maria	
								0.0058	0.1	0.059	0.03	0.035	0.93		

Table 42. Affected Areas in Laua-An, Antique during 25-Year Rainfall Return Period

For the 100-year return period, 9.5% of the municipality of Ibajay with an area of 174.08 sq. km. will experience flood levels of less 0.20 meters. 2% of the area will experience flood levels of 0.21 to 0.50 meters while 1.2%, 1.17%, 0.6%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 and shown in Figure 77 are the affected areas in square kilometres by flood depth per barangay.

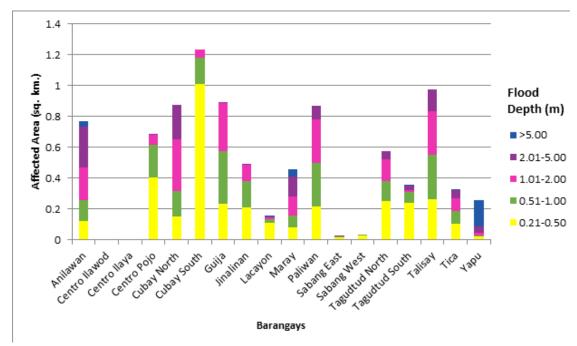


Figure 77. Affected Areas in Bugasong, Antique during 100-Year Rainfall Return Period

	Aff	Pali				ecte (sq.				Anil		PALIWA				
> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Paliwan		> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Anilawan		PALIWAN BASIN
0	0.085	0.28	0.28	0.22	0.57	Sabang East		0.04	0.26	0.21	0.13	0.12	1.58	llawod	Centro	
0	0.0005	0.0011	0.0034	0.019	0.75	Sabang West	-	0	0	0	0	0.000001	0.015	Centro Ilaya		
0	0	0	0.0074	0.031	0.037	Tagudtud North	-	0	0	0	0	0	0.023	Centro Pojo		
0	0.053	0.14	0.13	0.25	0.64	Tagudtud South	-	0	0.0006	0.063	0.21	0.41	0.86	Cubay North		Afi
0.0002	0.027	0.016	0.068	0.24	1.99	Talisay	-	0	0.22	0.34	0.16	0.15	0.34	Cubay South		Affected Barangays in Bugasong
0	0.14	0.28	0.29	0.26	0.41	Tica	-	0	0	0.05	0.17	1.01	2.83	Guija		s in Bugasong
0.0005	0.056	0.082	0.082	0.1	0.34	Yapu	-	0	0.0049	0.31	0.34	0.23	0.54	Jinalinan		-
0.17	0.042	0.015	0.0098	0.021	0.66		-	0	0.0044	0.1	0.17	0.21	0.71	Lacayon		
								0.000067	0.0053	0.012	0.021	0.11	1.41	Maray		
								0.05	0.13	0.12	0.072	0.084	2.86			

Table 43. Affected Areas in Bugasong, Antique during 100-Year Rainfall Return Period

For the municipality of Laua-An, with an area of 159.77 sq. km., 16.1% will experience flood levels of less 0.20 meters. 0.8% of the area will experience flood levels of 0.21 to 0.50 meters while 0.56%, 0.5%, 0.53%, and 0.1% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 and shown in Figure 78 are the affected areas in square kilometres by flood depth per barangay.

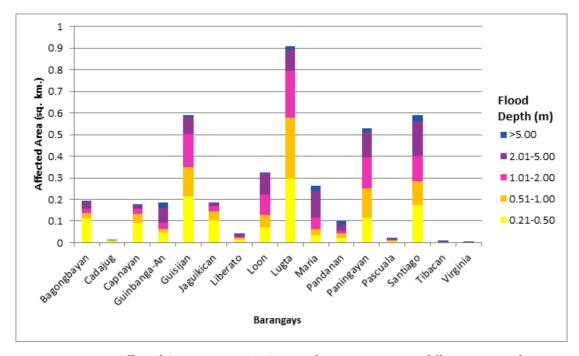


Figure 78. Affected Areas in Laua-An, Antique during 100-Year Rainfall Return Period

			ed A km.			Panc				ed A km.			Bagon	,	PALIWA
> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Pandanan	> 5.00	2.01-5.00	1.01-2.00	0.51-1.00	0.21-0.50	0.03-0.20	Bagongbayan		PALIWAN BASIN
0.018	0.026	0.015	0.017	0.023	0.83	Paningayan	0.0043	0.032	0.02	0.026	0.11	1.67	Cadajug		_
0.018	0.12	0.14	0.13	0.12	2.37	Pascuala	0	0.00039	0.00058	0.0013	0.0092	0.37	Capnayan		-
0.00056	0.0034	0.0025	0.0045	0.0066	0.4	Santiago	0.0006	0.018	0.024	0.039	0.092	3.4	ga-An	Guinban-	-
0.03	0.16	0.12	0.11	0.17	4.98	Tibacan	0.024	0.069	0.031	0.018	0.045	0.87	Guisijan		Affecte
0.0015	0.0023	0.0009	0.0012	0.0012	0.12	Virginia	0.009	0.079	0.15	0.14	0.21	2.57	Jaguikican		Affected Barangays in
0.000051	0.000078	0	0.00049	0.00079	0.051		0.0067	0.013	0.022	0.042	0.1	3.89	Liberato		in Laua-An
							0.0034	0.0098	0.0066	0.0062	0.014	0.71	Loon		_
							0.0034	0.097	0.093	0.057	0.073	1.27	Lugta		_
							0.017	0.097	0.22	0.28	0.3	1.18	Maria		
							0.024	0.12	0.053	0.029	0.035	0.9			

Table 44. Affected Areas in Laua-An, Antique during 100-Year Rainfall Return Period

Among the barangays in the municipality of Bugasong, Cubay South is projected to have the highest percentage of area that will experience flood levels at 2.33%. Meanwhile, Aniliawan posted the second highest percentage of area that may be affected by flood depths at 1.35%.

Among the barangays in the municipality of Laua-An, Santiago is projected to have the highest percentage of area that will experience flood levels at 3.48%. Meanwhile, Jaguikican posted the second highest percentage of area that may be affected by flood depths at 2.55%.

Moreover, the generated flood hazard maps for the Paliwan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 100-year) as shown in Table 44.

Area Covered in sq. km. **Warning** Level 5-year 25-year 100-year 3.4921 2.9709 4.2891 Low Medium 3.212 3.8835 4.2205 3.2045 High 4.2027 5.1207

Table 45. Area covered by each warning level with respect to the rainfall scenario

Of the 16 identified Education Institutions in the Paliwan Flood plain, 4 schools were assessed to be exposed to the Low level flooding during a 5 year scenario.

Of the 4 identified Medical Institutions in the Paliwan Flood Plain, no schools were assessed to be exposed to any of the flooding scenarios.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and/or interviews of some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 79.

The flood validation consists of 156 points randomly selected all over the Cangaranan-Paliwan flood plain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.768 m. Table 45 shows a contingency matrix of the comparison.

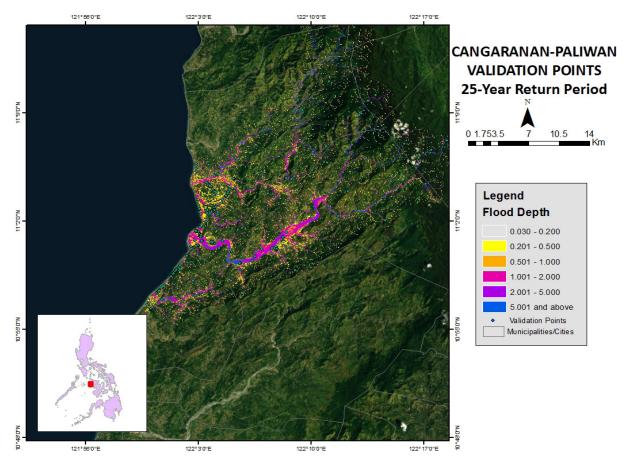


Figure 79. Validation points for 25-year Flood Depth Map of Cangaranan-Paliwan Floodplain

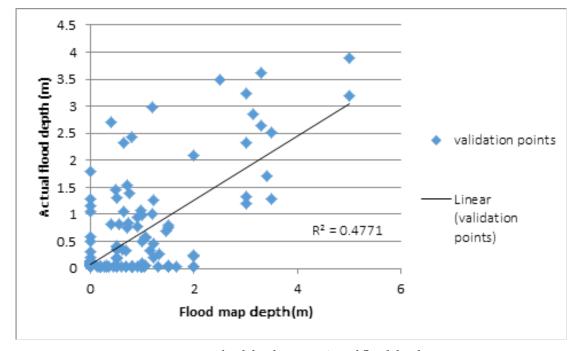


Figure 80. Flood depth map vs Actual flood depth

Table 46. Actual Flood Depth vs. Simulated Flood Depth in the Cangaranan-Paliwan River Basin

CANGA- Mode			d Flood Dep	th (m)				
RAN	AN-PALI-							
WAN	I	0.21						
0-0.20		0.21-	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.2	20	0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	IOLai	
<u>٦</u>	0-0.20	65	1	1	4	0	0	71
급	0.21-0.50	11	3	1	2	1	0	18
Depth (m)	0.51-1.00	12	3	6	4	2	0	27
Flood [1.01-2.00	11	5	6	1	2	0	25
은	2.01-5.00	0	0	0	4	9	0	13
Actual	> 5.00	0	0	0	0	2	0	2
Ac	Total	99	12	14	15	16	0	156

The overall accuracy generated by the flood model is estimated at 53.85%, with 84 points correctly matching the actual flood depths. In addition, there were 34 points estimated one level above and below the correct flood depths while there were 20 points and 16 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 18 points were overestimated while a total of 54 points were underestimated in the modelled flood depths of Cangaranan-Paliwan. Table 46 depicts the summary of the Accuracy Assessment in the Cangaranan-Paliwan River Basin Survey.

Table 47. Summary of Accuracy Assessment in the Cangaranan-Paliwan River Basin Survey

PALIWAN	No. of Points	%
Correct	84	53.85
Overestimated	18	11.54
Underestimated	54	34.62
Total	156	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

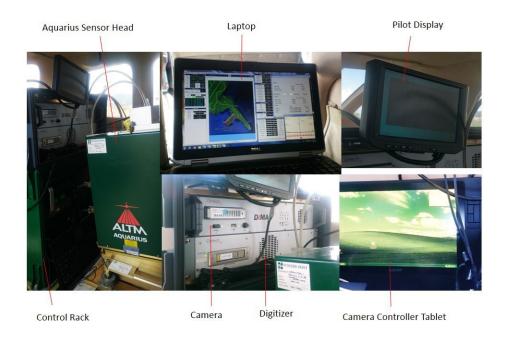
Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Technical Specifications of the LiDAR Sensors used in the Paliwan Floodplain Survey

OPTECH TECHNICAL SPECIFICATION OF THE GEMINI SENSOR


Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

OPTECH TECHNICAL SPECIFICATION OF THE PEGASUS SENSOR

Parameter	Specification		
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, 1Ó		
Elevation accuracy (2)	< 5-20 cm, 1Ó		
Effective laser repetition rate	Programmable, 100-500 kHz		
Position and orientation system	POS AV ™AP50 (OEM)		
Scan width (FOV)	Programmable, 0-75 °		
Scan frequency (5)	Programmable, 0-140 Hz (effective)		
Sensor scan product	800 maximum		
Beam divergence	0.25 mrad (1/e)		
Roll compensation	Programmable, ±37° (FOV dependent)		
Vertical target separation distance	<0.7 m		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)		
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V, 800 W, 30 A		
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;		
Dimensions and weight	Control rack: 650 x 590 x 490 mm; 46 kg		

OPTECH TECHNICAL SPECIFICATION OF THE AQUARIUS SENSOR

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Difficitions and weight	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA CERTIFICATION OF REFERENCE POINTS USED IN THE LIDAR SURVEY

1. ATQ-18

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ANTIQUE					
	Station Name: ATQ-18					
	Order: 2nd					
Island: VISAYAS Municipality: BARBAZA	Barangay: CUBAY MSL Elevation:					
	PRS92 Coordinates					
Latitude: 11° 11' 58.67081"	Longitude: 122° 2' 22.83300"	Ellipsoidal Hgt:	10.90200 m.			
	WGS84 Coordinates					
Latitude: 11º 11' 54.16068"	Longitude: 122° 2' 28.01549"	Ellipsoidal Hgt:	65.96100 m.			
	PTM / PRS92 Coordinates					
Northing: 1238579.674 m.	Easting: 395119.157 m.	Zone: 4				
	UTM / PRS92 Coordinates					
Northing: 1,238,146.15	Easting: 395,155.87	Zone: 51				

Location Description

ATQ-18
From San Jose, travel N to the Mun. of Barbaza. Then from the town proper, proceed to Brgy. Cubay. Station is located on the NE approach of Binangbang Bridge, about 600 m. NE of Barbaza Town Hall, 4 m. from the road centerline, 50 m. SE of Barbaza Multi-Purpose Coop./Natco Network and 25 m. SE of a funeral service outlet. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ATQ-18 2007 NAMRIA".

Requesting Party: PHIL-LIDAR 1 Purpose: Reference OR Number: 8077754 I T.N.: 2015-0504

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Main: Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch: 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

2. ATQ-20

Republic of the Philippings Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

November 14, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ANTIQUE

Station Name: ATQ-20

Order: 2nd

Island: VISAYAS Municipality: BUGASONG

Barangay: ZARAGOZA

MSL Elevation:

PRS92 Coordinates

Latitude: 11° 0' 42.90484"

Longitude: 122° 2' 54.07144"

Ellipsoidal Hgt: 10.56200 m.

WGS84 Coordinates

Latitude: 11° 0° 38,44240"

Longitude: 122° 2' 59.27039"

Ellipsoidal Hgt 66.09400 m.

PTM / PRS92 Coordinates

Northing: 1217812.272 m.

Easting: 396000.488 m.

Zone:

Northing: 1,217,386.02

UTM / PRS92 Coordinates Easting: 396,036.89

Zone:

51

Location Description

ATQ-20

From San Jose, travel N for about 45 km, to Brgy. Zaragoza, Mun. of Bugasong. Station is located on the left side of the first approach of Cangaranan Bridge. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cernent putty, with inscriptions "ATQ-20 2007 NAMRIA".

Requesting Party: Phil Lidar 1

Purpose: OR Number:

T.N.:

Reference FREE ISSUE

2016-2057

RUEL DM. BELEN, MNSA ector, Mapping And Geodesy Branch

NAMORA COPPLICES Main : Lawton Avenue, Poet Bonilacio, 1634 Taguig Clip, Philippines - Tel. No. 1632) 815-4821 to 41 Blanch : GZI Banoca St. San Nicolas, 1910 Manila, Philippines, Tel. No. (632) 241-3494 to 36 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR IMPPING AND GEOSPHTUL INFORMATION MANAGEMENT

3. ATQ-22

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ANTIQUE

Station Name: ATQ-22

Order: 2nd

Barangay: CONCEPCION Island: VISAYAS

Municipality: BELISON MSL Elevation:

PRS92 Coordinates

Latitude: 10° 49' 46.66618" Longitude: 121° 58' 11.90221" Ellipsoidal Hgt: 12.25000 m.

WGS84 Coordinates

Latitude: 10° 49' 42.24271" Longitude: 121° 58' 17.11770" Ellipsoidal Hgt: 68.02200 m.

PTM / PRS92 Coordinates

387365.279 m. Northing: 1197676.056 m. Easting: Zone:

UTM / PRS92 Coordinates

Northing: 1,197,256.85 Easting: 387,404.70 Zone: 51

Location Description

ATQ-22

From San Jose, travel N to Belison for about 20 km. Station is located on top of the N edge of the NW draft on an irrigation canal, 60 m. NE to the nat'l. highway centerline, 120 m. N of the road going to the brgy. proper and about 300 m. E of Km. Post No. 110. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ATQ-22 2007 NAMRIA".

Requesting Party: PHIL-LIDAR 1

Purpose: OR Number: T.N.:

Reference 8077754 I 2015-0503

> RUEL/DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMINA OFFICES: Man : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

4. AQ-78

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ANTIQUE Station Name: AQ-78

Island: Visayas

Municipality: PATNONGON

Barangay: IPAYO

Elevation: 10.6092 m.

Order: 1st Order

Datum: Mean Sea Level

Latitude: 10° 54' 59.40000"

Longitude: 121° 59' 52.10000"

Location Description

Station is located at the northwestern side of the side walk of Ipayo Bridge km. 122+244.79. Mark is the head of a 4in. copper nail set flush on a cement putty with inscriptions "AQ-78,2007,NAMRIA".

Requesting Party: PHIL-LIDAR 1

Purpose: OR Number: Reference 80777541

T.N.:

2015-0506

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMKIA UPFICES: Main: Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch: 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

ANNEX 3. BASE PROCESSING REPORTS OF CONTROL POINTS USED IN THE LIDAR SURVEY

Vector Components (Mark to Mark)

From:	ATQ-20	ATQ-20					
Grld			Local	Global			
Easting	396036.890 m	Latttude	N11°00'42.90484"	Latitude	N11°00'38.44240"		
Northing	1217386.017 m	Longitude	E122°02'54.07144"	Longitude	E122°02'59.27039"		
Elevation	10.798 m	Height	10.563 m	Height	66.094 m		

То:	AQ-	AQ-						
Grid			Local	Global				
Easting	396235.105 m	Latttude	N11°01'03.59755"	Latitude	N11°00'59.13382"			
Northing	1218020.995 m	Longitude	E122°03'00.53639"	Longitude	E122°03'05.73482"			
Elevation	11.276 m	Height	11.054 m	Height	66.576 m			

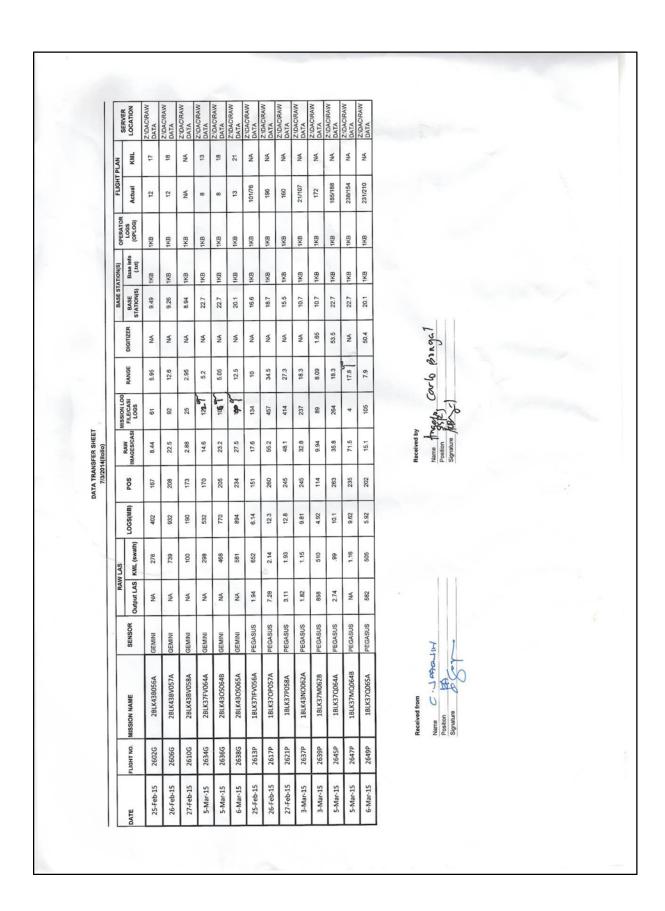
Vector							
ΔEasting	198.215 m	NS Fwd Azlmuth	17°09'16"	ΔΧ	-102.123 m		
ΔNorthing	634.978 m	Ellipsoid Dist.	665.374 m	ΔΥ	-206.684 m		
ΔElevation	0.478 m	ΔHeight	0.491 m	ΔZ	624.160 m		

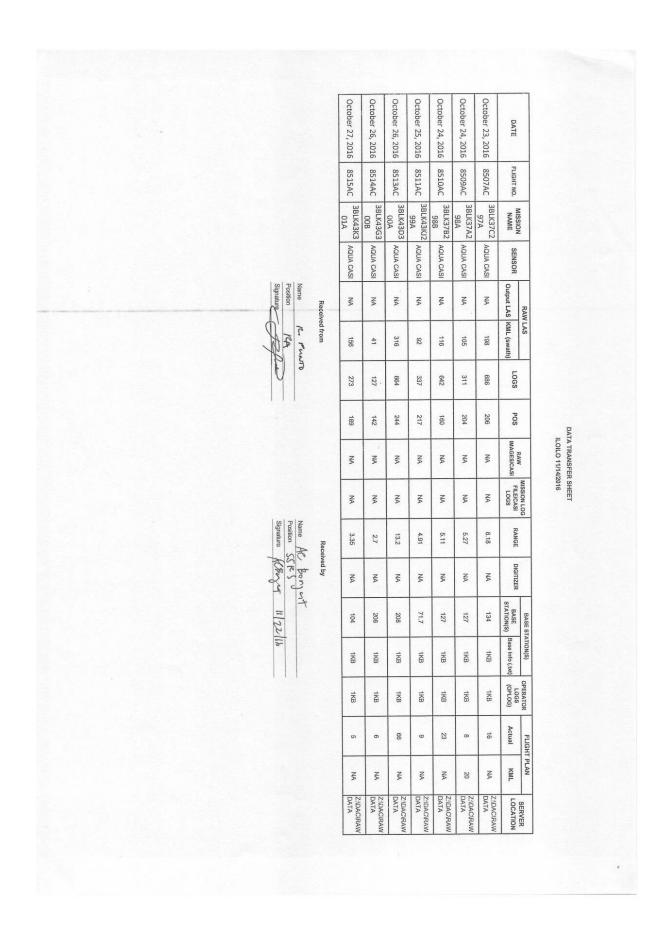
Standard Errors

Vector errors:						
σ ΔEasting	0.001 m	σ NS fwd Azlmuth	0°00'00"	σΔΧ	0.001 m	
σ ΔNorthing	0.000 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.001 m	
σ ΔElevation	0.001 m	σΔHeight	0.001 m	σ ΔΖ	0.000 m	

Aposteriori Covariance Matrix (Meter²)

	х	Y	Z
x	0.0000003727		
Υ	-0.0000004068	0.0000012949	
z	-0.0000001072	0.0000002886	0.0000002405

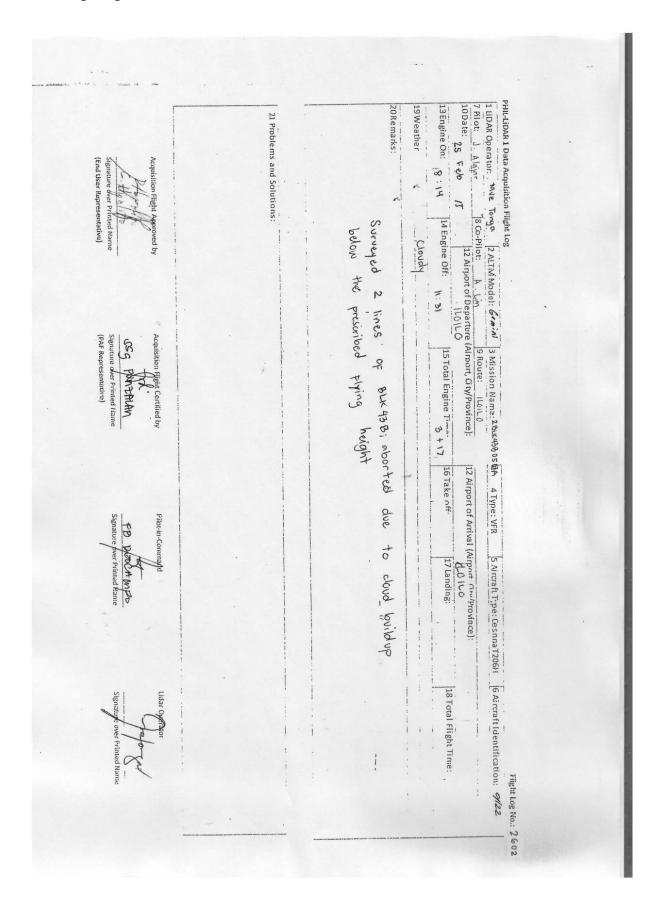

ANNEX 4. THE LIDAR SURVEY TEAM COMPOSITION


Data Acquisition Component Sub-team	Designation	Name	Agency/Affiliation
Data Acquisi- tion Component Leader	Data Component Program Leader	ENRICO C. PARINGIT	UP-TCAGP
Data Acquisi- tion Component Leader	Data Component Proj- ect Leader -I	ENGR. CZAR JAKIRI S. SARMIEN- TO ENGR. LOUIE P. BALICANTA	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP TCAGP
LiDAR Operation	Senior Science Re- search Specialist	ENGR. LOVELYN ASUNCION ENGR. GEROME HIPOLITO ENGR. IRO NIEL ROXAS	UP TCAGP
LiDAR Operation	Research Associate	PAULINE JOANNE ARCEO VERLINA TONGA REGINA FELISMINO MARY CATHERINE ELIZABETH BALIGUAS	UP TCAGP
	Research Associate	MA. REMEDIOS VILLANUEVA KRISTINE ANDAYA	UP TCAGP
Ground Survey	Research Associate	JERIEL PAUL ALAMBAN KENNETH QUISADO IRO NIEL ROXAS SANDRA POBLETE	UP TCAGP
Data Download and Transfer	Senior Science Re- search Specialist	RENAN PUNTO VERLINA TONGA MA. REMEDIOS VILLANUEVA	UP TCAGP
LiDAR Operation	Airborne Security	SSG. LEE JAY PUNZALAN SSG. DAVE GUMBAN	PILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JACKSON JAVIER CAPT. JEFFREY ALAJAR CAPT. BRYAN	ASIAN AEROSPACE CORPORATION (AAC)
LiDAR Operation	Co-Pilot	CAPT. NEIL ACHILLES AGAWIN CAPT. ALBERT LIM CAPT. HOYA	AAC

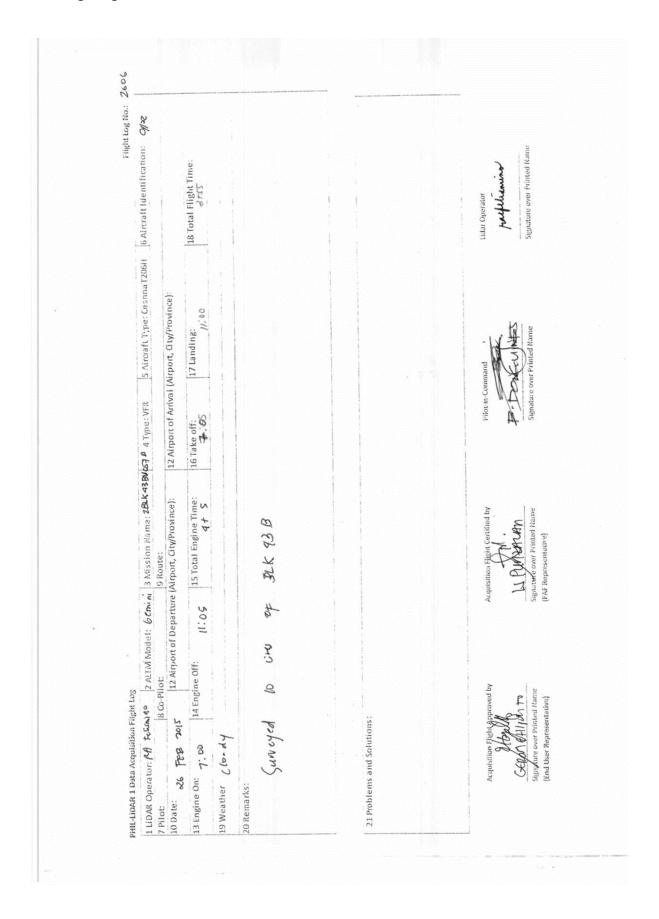
ANNEX 5. DATA TRANSFER SHEET FOR CABULIG FLOODPLAIN

						DATAT	DATA TRANSFER SHEET	E3								
						03/23/2	03/23/2015(Iloilo-gem)					i in the second		Ш	THOUSAND AN	
FLIGHT NO.	MISSION NAME	SENSOR	Output LAS	RAW LAS	LOGS(MB)	POS	RAW	MISSION LOG FILEICASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	SASE Base info	LOGS (OPLOG)	¥	KML	SERVER
16-Feb-15 2566G	2BLK37V047A	gemini	en en	1517	1.13	500	28	506	13	1.36	10.7	1KB	1KB	19	19	Z:IDACIRAW DATA
16-Feb-15 2568G	2BLK37GSIV047B	gemini	na	962	1.34	222	46.8	383	21.9	2.12	6.61	1KB	1KB	7/4	15/12	Z:DACIRAW DATA
17-Feb-15 2570G	2BLK43H048A	gernini	na	1078	1.43	222	48.5	342	21.7	3.4	14.4	1KB	1KB	6	6	Z:IDACIRAW DATA
19-Feb-15 2578G	2BLK43GV050A	gemini	en en	989	891	184	8.07	67.8	19.4	na	11.1	1KB	1KB	7	S.	Z:IDACIRAW DATA
19-Feb-15 2580G	2BLK43F050B	gemini	na	740	066	163	25.6	203	16.2	3.29	4.11	1KB	1KB	4	80	Z:DACIRAW DATA
20-Feb-15 2582G	2BLK43A051A	gemini	en en	169	254	106	6.84	57.4	4.65	SU.	11	1KB	1KB	9	13	Z:IDACIRAW DATA
21-Feb-15 2586G	⊢	gemini	na	613	670	182	15.4	6.63	8.3	1.43	11.5	1KB	1KB	2	10	Z:IDACIRAN DATA
22-Feb-15 2590G	2BLK43A053A	gemini	na	694	26:0	198	21.2	94.4/628	12.1	eu	17	1KB	1KB	S	10	Z:/DAC/RAW DATA
23-Feb-15 2594G	2BLK43C054A	gemini	na	856	1.05	240	28.2	17.2/163	16.3	na	11.6	1KB	1KB	9	14	Z:\DAC\RAW DATA
	Received from						Received by									
	Name Code	C. Jeanstell					Name Position Signature	JOIDA F. PRIETO	F.PRIE	111	3/23/2015	5102				

				2015	3/23/	JOIDA F. PRIETO 3/23/2015	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SE	Position				0	C. Johnson L	Name C. JOATSE		
									Received by						Redelved from		
CATA	3	10176	19	183	177	2	20.7	256	20.2	725	20.0	1.27	213	snetat	TBUG7IFV053A	2601P	22-feb-15
DATA	2	18	100	TREE .	5113	20	21	274	27.9	257	9.69	1.29	2.09	wsetas	18UK43N052A	2597₽	21-feb-15
DATA	2	ñ	NG.	TAGE .	#	2	16.3	218	27	213	7.52	1.01	3.14	pressing	18LK438DG051A	2593P	20-feb-15
DATA	2	£	IKB	SHE	97.75	22	35.2	343	46.9	101	9.47	1,63	5.53	preefod	18LK371050B	25919	29-Feb-15
DATA	2	06/77/02/02	IKB	:Han	16.7	NA.	12.3	523	97.3	417	7.78	739	12	9459545	V000043ENTIBL	2589P	19-Feb-15
DATA	2	1909777	₩B	TG.	7.48	N.	17.4	1671	2.0	190	9.05	1.02	12	srested	181K43ED0498	25879	18-Feb-15
ZIDACYAW GATA	2	89117	NS.	200	EN	22	27.8	314	43	263	9.97	1.7.1	291	pricetod	15UK43EF0494	2585P	18-Feb-15
NIVACANIA	2	\$6770	188	160	20.2	71A	11.4	127	7.	170	6.01	716	1.11	crowtes	9810Q89XIBT	2583P	17-Feb-15
SATA	2	76/77/21	1KB	8	20.2	2	21.4	215	3.5 2.16	263	909	1.35	2.46	popular	TBUKASMINGA	2581P	17-Feb-15
DATA	2	77/18	жь	STALL.	122	23	19.5	251	24.4	221	10.4	1.21	127	ermefes	Влюмеринет	25797	16-Feb-15
MANONOIZ	2	76	ВЖВ	168	10.5	2	14.4	8930	30.6	1961	696	940	1.20	snated	1BLK/43D045A	25650	14-feb-15
LOCATION	KWI	Actesi	(ecros)	CQ1 CQ1 GQ1	EASE STATIONS)	MARKE	RANGE		HUDE BOASE	70	rogsiwe)	Output LAS NAL (awath)	Sylading	NOSKES	MISSION NAME	PUGHT NO.	DATE
	FLIGHT PLAN	MOUN	COGRATOR	SMOUNTS BENG	BASE ST			DOTNOMERIN				SALWAS	NAME				



ANNEX 6. FLIGHT LOGS FOR THE FLIGHT MISSIONS


1. Flight Log for 2593P Mission

		ght Time			idar Operator 1. Pay/13 Signature over Printed Name
		18 Total Flight Time:			Lidar Operator
J Aliciait Type: Cosmic room	(Airport, City/Province):	17 Landing:	430 and 436.		Pilot-in-Command III
MaDS Mype: vrn	12 Airport of Arrival	16 Take off:			Pilot-in-Compand C. Al-Con Signature over Pri
M3 Mission Name: 15/K45/6 9 Route:	(Airport, City/Province):	15 Total Engine Time:	BB and Unids		Acquisition Flight Certified by L. PUPARAM Signature over Printed Name (PAF Representative)
ot: J. Joya	12 Airport of Departure	ne off:	BLK		
1. LOXA) 8 CO-P	7015	23	Surveye	and Solutions:	Acquisition Flight Approved by Front Signature over Printed Name (End User Representative)
	8 Co-Pilot: 0000 Secure Se	Coxd) 2 ALTM Model: Political Mission Name: PLK45 EMUL) SHTYPE: VEN Principle: Commission Name: PLK45 EMUL) SHTYPE: VEN Province PROVINCE	Cox d) 2 ALTM Model: Political Mission Name: PLK45 Ell/d/05/Ftype: VTN 2 ALTM Model: Political Mission Name: PLK45 Ell/d/05/Ftype: VTN 2 Althorit of Departure (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province): 14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: 17 Landing: 18 A.29 19 A.29	50. 1. Loxa) 2 ALTM Model: Reputsion Name: 1918/45 BINGS of Arrival (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province): 15 Take off: 15 Tanding: 15 Tanding: 15 Tanding: 17 Landing: 17 Landing: 18 Laiv Surveyed BLK L3B and Voids over BLK 43D and 436.	Social Solutions: 1. Lox (1) 2 a tim Mode! Regard Mission Name! BLK45BUGDS from Since in the Control of Solutions: 1. Lox (1) 2 by (1) 9 Route: 1. Lox (1) 2 by (1) 9 Route: 1. Los (1) 12 Airport of Departure (Airport, City/Province): 1. Los (1) 12 Airport of Departure (Airport, City/Province): 1. Los (1) 2 by (1) 3 control of Solutions: 1. Los (1) 2 by (1) 3 control of Solutions: 1. Lox (1) 4 control of Solutions: 1. Lox (1) 5 control of Solutions: 1. Lox (1) 6 control of Solutions: 1. Lox (1) 6 control of Solutions: 1. Lox (1) 6 control of Solutions: 1. Lox (1) 7 control of Solutions: 1. Lox (1) 8 control of Solutions:

2. Flight log for 2602G Mission

3. Flight log for 2606G Mission

4. Flight log for 2610G Mission

Acquisition Eligin	21 Problems and Solutions:	20 Remarks: Surva	19 Weather Cloudy	13 Engine On: 7:03	10 Date: 27 FEE	1 LIDAR Operator: MV Tonga 7	
Acquistion Eligin, approved by	olutions:	het hids a		14 Engine Off:	2015 12 Ain	isition Flight Log WE Tong 2 ALTIV	
Acqui		of PLK431		10:08	ort of Departure (A	Model: Gemin 3	
Acquisition Flight Certified by L. DARBALAH Signature over Frinted Hame (FAF Representative)		Surveyed Voids of BLK43B; mission abouted due to and story aint		15 Total Engine Time:	irport, City/Province):	PHIL-LIDAR I Data Acquisition Flight Log 1 LIDAR Operator: MVF Torqs 2 ALTM Model: 6cmin 3 Mission Name: 28LK 436V 859 4 Type: VFR 7 Pilot: 2: Dorgaines 8 Co-Pilot: 4: Um 9 Route:	
Pilot-i Signa		doute d		16 Take off: 3/0 %	12 Airport of Arri	36V SSA 4 Type: VFR	
Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command Filot-in-Command				17 Landing: /o: 05	~	5 Aircraft T;pe: CesnnaT206H	
		cloud buildup			*	aT206H	
Har Operator	1 1	40		18 Total Flight lime:	1	6 Aircraft Identification: 9/22	flight Log No.: 26 🉌

5. Flight log for 8511AC Mission

	Flight Log No.: 8513 AC	6 Aircraft Identification: RP - C4322		18 Total Flight Time.	3+ 25		AN 1180K			Aircraft Mechanic/ LIDAR Technician	Signature over Printed Name
	A T 1977	1	AA	f: 17 Landing:	. 08 21	21 Remarks CONERED NOTE				LIDAR Operator LIDAR Operator LOS PONID M. REVER	Signature over Printed Name
	3 Mission Name State Name A T.		VALD	15 Total	25.75	20.c Others	LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities			Pilot-in-Command	me Signature over Printed Name
n Hight Log	1	Pilot: J. NASTOR	rture (1 1	20.b Non Billable	O Aircraft Test Flight O AAC Admin Flight O Others:			Acquisition Flight	ogradure over Printed Name (PAF Representative)
PHIL-LIDAR 1 Data Acquisition Flight Log		010	10 Date: 0cr. 25, 2016	13 Engine On:	19 Weather	20 Flight Classification 20.a Billable	Acquisition Flight Ferry Flight System Test Flight Calibration Flight	22 Problems and Solutions	Weather Problem System Problem Aircraft Problem Pilot Problem Others:	Acquisition Flight Approved by	(End User Representative)

6. Flight log for 8515AC Mission

Acquisition Flight Approved by I POTHS Signature over/Printed Name (End User gepresentative)	22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:	 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	20.a Billable	20 Flight Classification	19 Weather	06 30	27, 2016	D. LOGRONIO	Operator: Ms ges	PHIL-LIDAR 1 Data Acquisition Flight Log		
Acquisition Right derified by Acquisition Right derified by Acquisition Right derified by Signature over Printed Name (PAF Representative)		Aircraft Test Flight AAC Admin Flight Others:	20.b Non Billable		CHONDY	14 Engine Oii:	Auport of Departure (Airport, City/Province):	8 Co-Pilot: J. NAS TOR	2 ALTM Model:	ght Log		
a H Mr.		LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities	20.c Others			15 lotal Engine Time; 3+ 29	(Alrport, City/Province):	9 Route: ANTIQUE	3 Mission Name: 38LK43K361A			
Pilot-in-Command Pilot-in-Command DANIHON IL DE PONIO Signature over Printed Name	· · · · · · · · · · · · · · · · · · ·	nance	Contino	21 Remarks		16 Take off: 08 35	12 Airport of Arrival (Airport, City/Province):		4 Type: VFR	¥		
LIDAR Operator MS Romania Signature over Pointed Name	e a Wes		LED YOIDS IN ANTIQUE			17 Landing:	irport, City/Province):		5 Aircraft Type: CesnnaT206H			
Aircraft Mechanic/ LIDAR Technician			ŭ		0414	18 Total Flight Time:		27 5.0	6 Aircraft Identification: 80 - 80 - 80 - 80	Flight Log No: VS C	,	

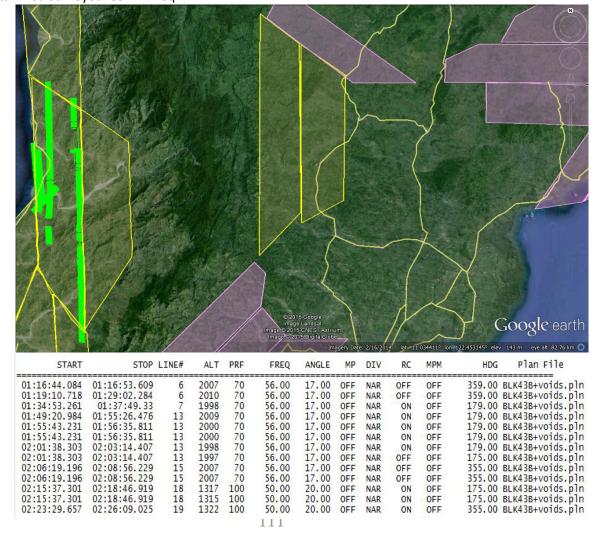
ANNEX 7. FLIGHT STATUS

FLIGHT STATUS REPORT

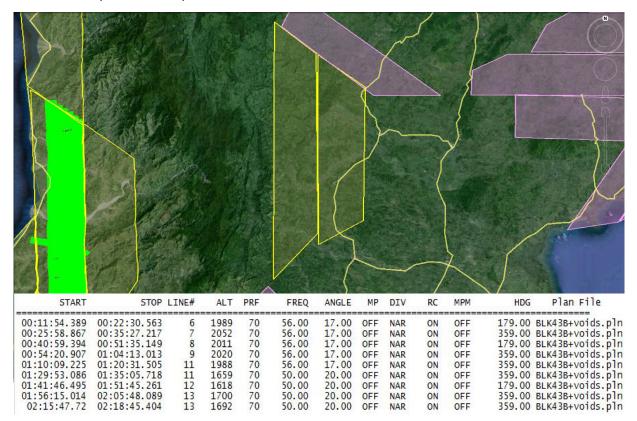
PALIWAN

(February 2015)

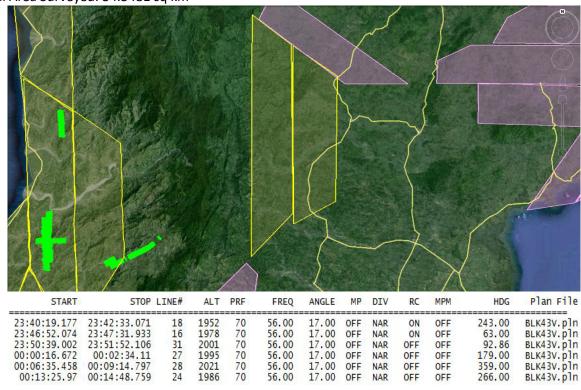
FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
2593P	BLK 43B, 43D, 43G	1BLK43BDG051A	IRO ROXAS	20 FEB 15	Surveyed BLK43B and voids on BLK 43D and 43G
2602G	BLK 43B	2BLK43B056A	MVE TONGA	25 FEB 15	Surveyed 2 lines of BLK43B; aborted due to cloud buildup below the prescribed flying height
2606G	BLK 43B	2BLK43BV057A	RA FELISMINO	26 FEB 15	Surveyed 10 lines of BLK43B
2610G	BLK 43B, 43C	2BLK43BV058A	MVE TONGA	27 FEB 15	Surveyed voids of BLK43B; mission abort- ed due to cloud buildup and strong wind
8511AC	BLK43K, Sibalom2 FP	3BLK43KJ299A	MS REYES	25 OCT 16	Covered voids over Cairawan, Paliwan, and Sibalom2 Floodplains
8515AC	BLK43K	3BLK43K301A	MS REYES	27 OCT 16	Coverd voids over Cairawan, Paliwan, and Cangaranan Floodplains


LAS BOUNDARIES PER MISSION FLIGHT

Flight No. 2593P Area: BLK 43B, 43D, 43G Mission Name: 1BLK43BC051A Total Area Surveyed: 181.2 sq km


Flight No.: 2602G Area: BLK 43B

Mission Name: 2BLK43B056A Total Area Surveyed: 89.4442 sq km


Flight No.: 2606G Area: BLK 43B

Mission Name: 2BLK43BV057A Total Area Surveyed: 221.78 sq km

Flight No.: 2610G Area: BLK 43B, 43C

Mission Name: 2BLK43BV058A Total Area Surveyed: 34.3481 sq km

Flight no.: 8511AC Mission Name: 3BLK43J299A Area: BLK43K, Sibalom2 FP Total area surveyed: 18.2km²

Flight no.: 8515AC Mission Name: 3BLK43K301A

Area: BLK43K

Total area surveyed: 15.52km²

ANNEX 8. MISSION SUMMARY REPORT

Flight Area	Iloilo
Mission Name	Blk43B
Inclusive Flights	2593P
Range data size	16.3 GB
POS	213 MB
Base Data Size	11 MB
Image	27 GB
Transfer date	March 23, 2015
Solutio	n Status
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performs	ance Metrics (in cm)
RMSE for North Position (<4.0 cm)	1.01
RMSE for East Position (<4.0 cm)	1.56
RMSE for Down Position (<8.0 cm)	3.33
Boresight correction stdev (<0.001deg)	0.000371
IMU attitude correction stdev (<0.001deg)	0.000661
GPS position stdev (<0.01m)	0.0091
Minimum % overlap (>25)	25.93%
Ave point cloud density per sq.m. (>2.0)	2.57
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	200
Maximum Height	594.49 m
Minimum Height	54.70 m
Classification (# of points)	
Ground	152,186,273
Low vegetation	75,056,947
Medium vegetation	152,053,797
High vegetation	281,227,721
Building	4,634,683
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Harmond Santos, Engr. Melissa Fernandez

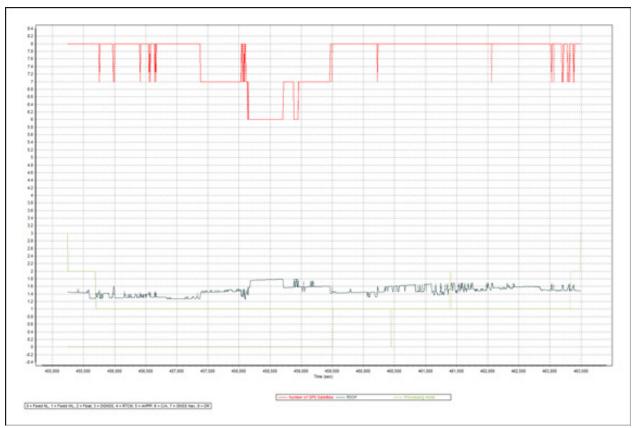


Figure 1.1.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

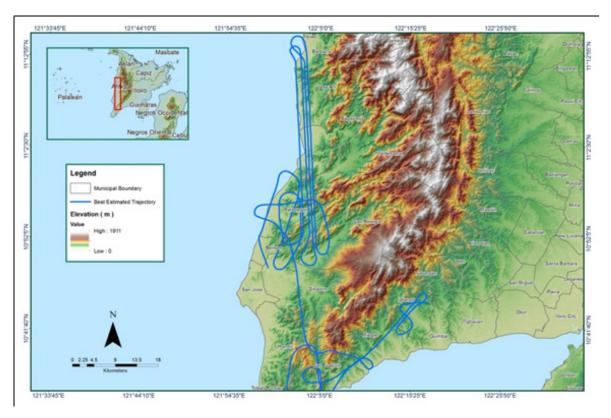


Figure 1.1.3 Best Estimated Trajectory

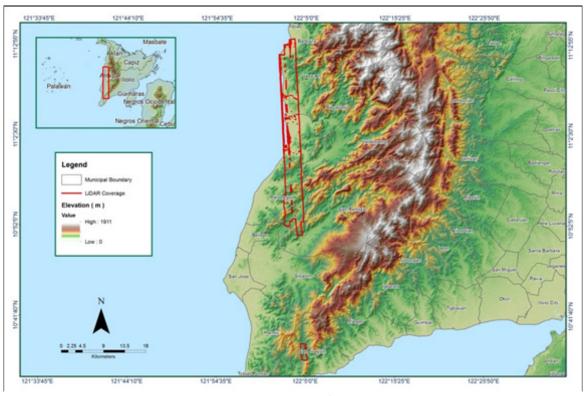


Figure 1.1.4 Coverage of LiDAR data

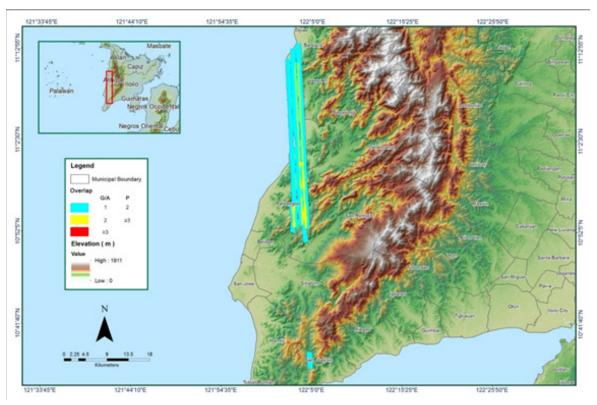


Figure 1.1.5 Image of data overlap

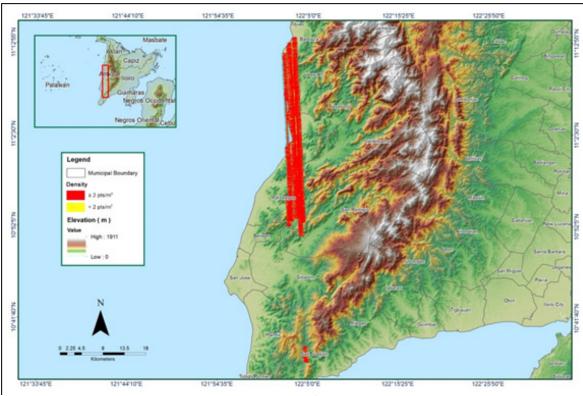


Figure 1.1.6 Density map of merged LiDAR data

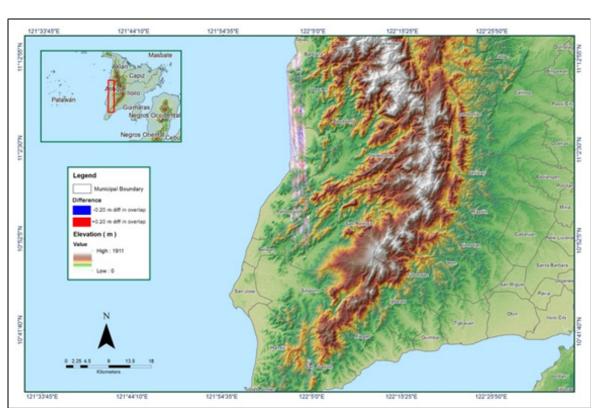


Figure 1.1.7 Elevation difference between flight lines

Flight Area	Iloilo
Mission Name	Blk43B_additional
Inclusive Flights	2602G, 2606G, 2610G
Range data size	21.5 GB
POS	548 MB
Base data size	27.69 MB
Image	33.82 GB
Transfer date	July 07, 2015
Solutio	n Status
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performa	ance Metrics (in cm)
RMSE for North Position (<4.0 cm)	1.34
RMSE for East Position (<4.0 cm)	1.45
RMSE for Down Position (<8.0 cm)	3.95
Boresight correction stdev (<0.001deg)	0.000279
IMU attitude correction stdev (<0.001deg)	0.017983
GPS position stdev (<0.01m)	0.0032
Minimum % overlap (>25)	24.04%
Ave point cloud density per sq.m. (>2.0)	1.91
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	285
Maximum Height	925.04 m
Minimum Height	54.48 m
Classification	n (# of points)
Ground	140,989,825
Low vegetation	27,006,829
Medium vegetation	75,243,562
High vegetation	157,821,764
Building	629,138
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Antonio Chua, Jr., Maria Tamsyn Malabanan

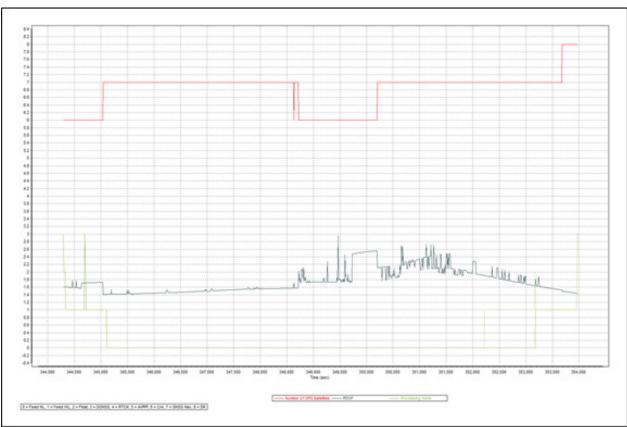


Figure 1.2.1 Solution Status

Figure 1.2.2 Smoothed Performance Metric Parameters

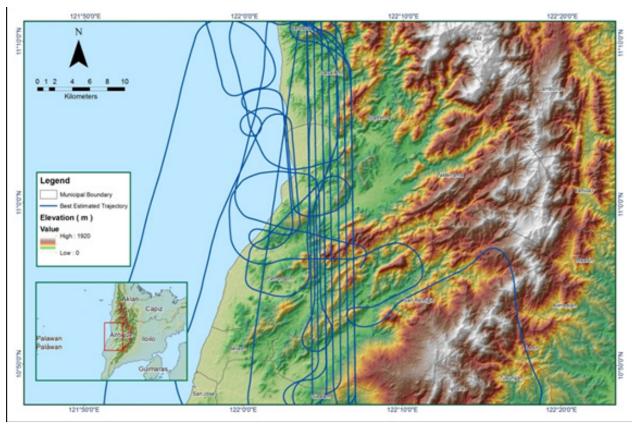


Figure 1.2.3 Best Estimated Trajectory

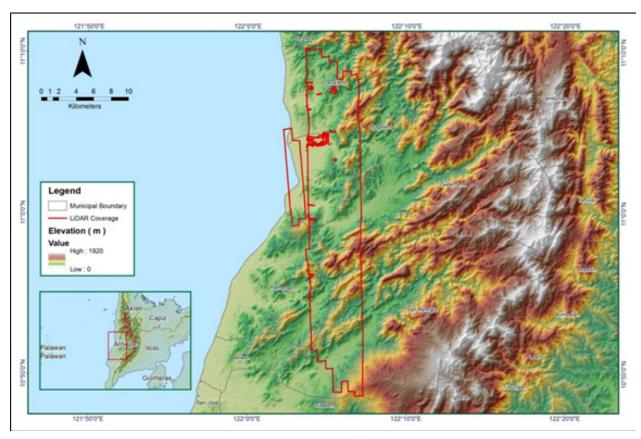


Figure 1.2.4 Coverage of LiDAR data

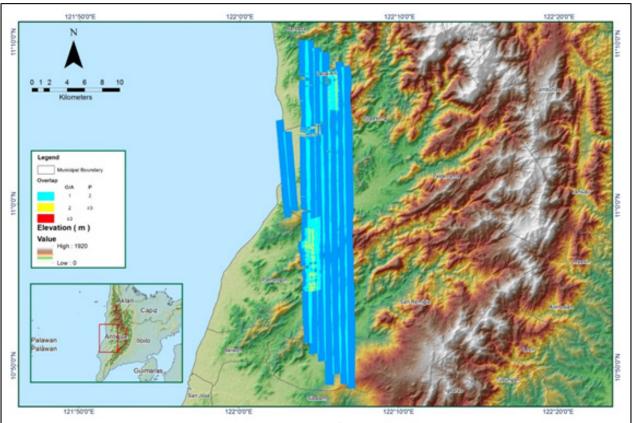


Figure 1.2.5 Image of data overlap

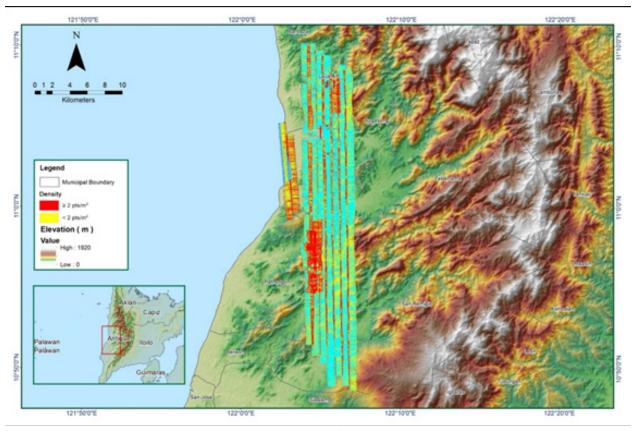


Figure 1.2.6 Density map of merged LiDAR data

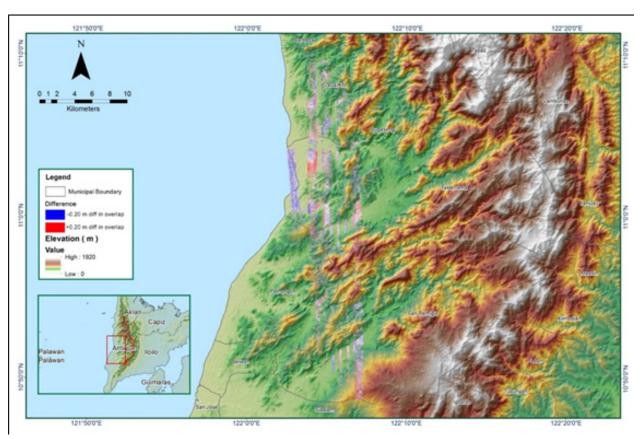


Figure 1.2.7 Elevation difference between flight lines

Flight Area	Iloilo
Mission Name	Blk43B
Inclusive Flights	8511AC
Range data size	4.91 GB
POS	217 MB
Base data size	71.7 MB
Image	NA
Transfer date	October 25, 2016
Solution	n Status
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performa	ance Metrics (in cm)
RMSE for North Position (<4.0 cm)	1.02
RMSE for East Position (<4.0 cm)	1.29
RMSE for Down Position (<8.0 cm)	2.57
Boresight correction stdev (<0.001deg)	0.000449
IMU attitude correction stdev (<0.001deg)	0.000900
GPS position stdev (<0.01m)	0.0013
Minimum % overlap (>25)	47.78
Ave point cloud density per sq.m. (>2.0)	4.16
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	50
Maximum Height	270.21
Minimum Height	51.5
Classification	(# of points)
Ground	14,416,707
Low vegetation	13,416,268
Medium vegetation	12,278,605
High vegetation	17,861,711
Building	2,114,843
Orthophoto	None
Processed by	

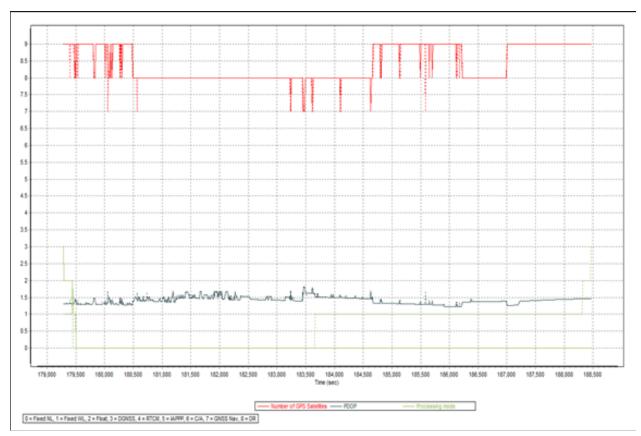


Figure 1.3.1 Solution Status

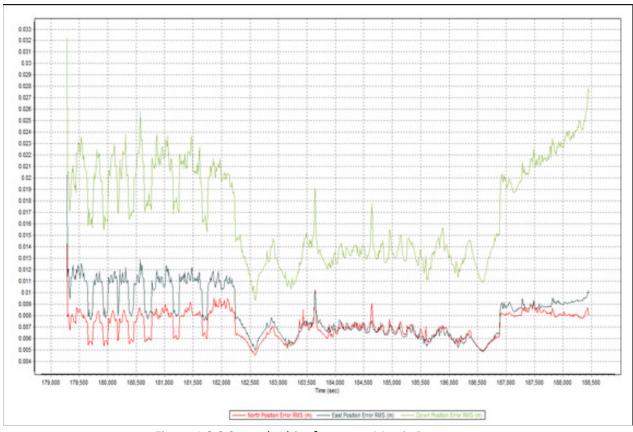


Figure 1.3.2 Smoothed Performance Metric Parameters

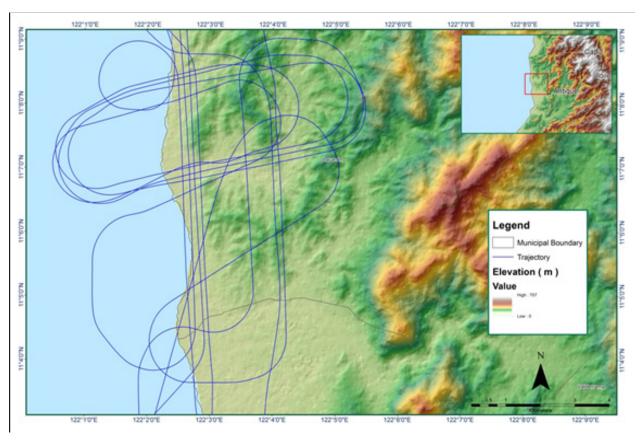


Figure 1.33 Best Estimated Trajectory

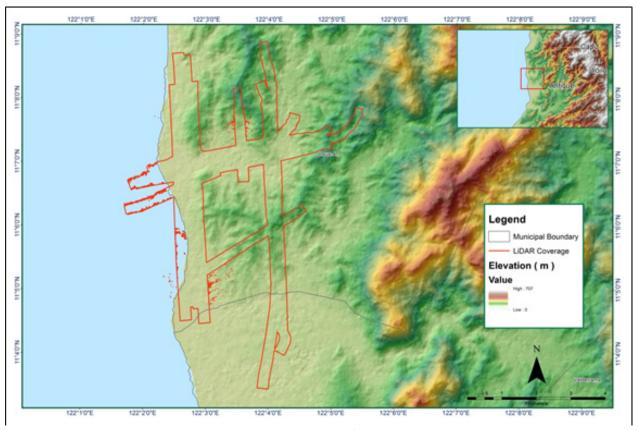


Figure 1.3.4 Coverage of LiDAR data

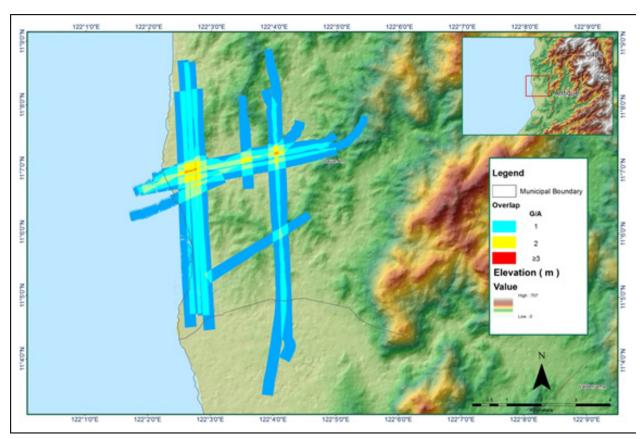


Figure 1.3.5 Image of data overlap

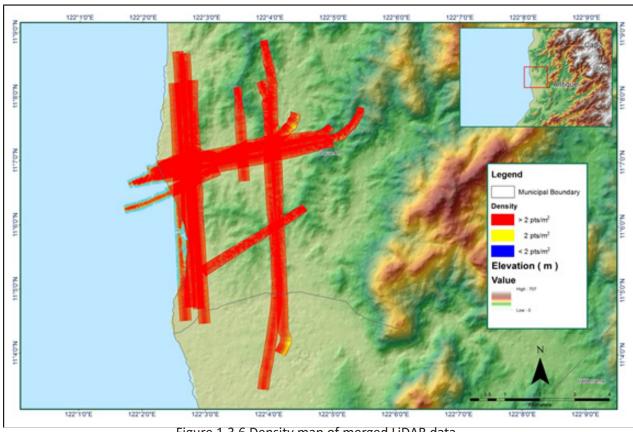


Figure 1.3.6 Density map of merged LiDAR data

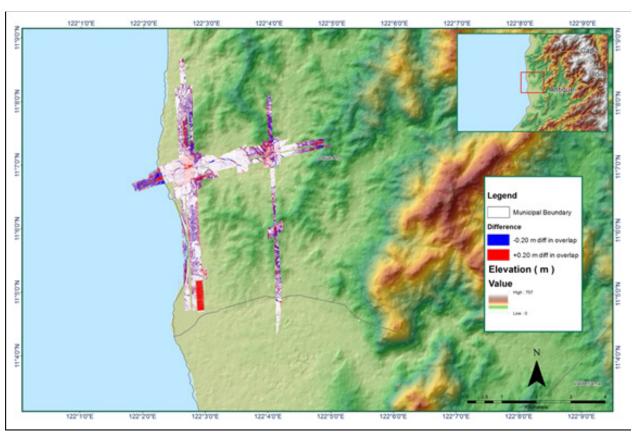


Figure 1.3.7 Elevation difference between flight lines

Flight Area	Iloilo Reflights
Mission Name	Blk43B_supplement
Inclusive Flights	8515AC
Range data size	3.35 GB
Base data size	104 MB
POS	189 MB
Image	NA
Transfer date	October 27, 2016
Solutio	n Status
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Perform	ance Metrics (in cm)
RMSE for North Position (<4.0 cm)	0.82
RMSE for East Position (<4.0 cm)	1.27
RMSE for Down Position (<8.0 cm)	2.21
Boresight correction stdev (<0.001deg)	0.000392
IMU attitude correction stdev (<0.001deg)	0.000914
GPS position stdev (<0.01m)	0.0093
Minimum % overlap (>25)	42.86
Ave point cloud density per sq.m. (>2.0)	3.91
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	38
Maximum Height	481.19
Minimum Height	58.9
Classification	ı (# of points)
Ground	23,696,880
Low vegetation	10,611,556
Medium vegetation	9,775,696
High vegetation	13,078,875
Building	590,106
Ortophoto	None
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, Engr. Harmond Santos

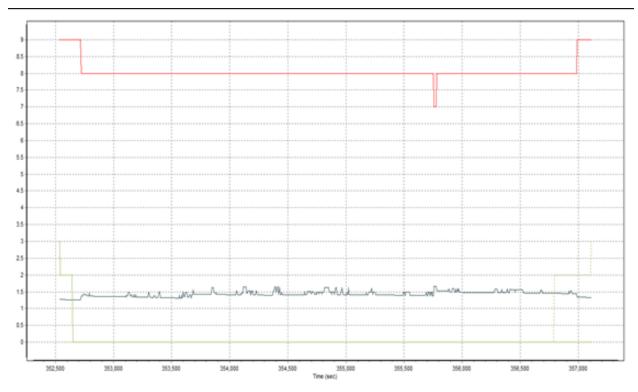


Figure 1.4.1. Solution Status

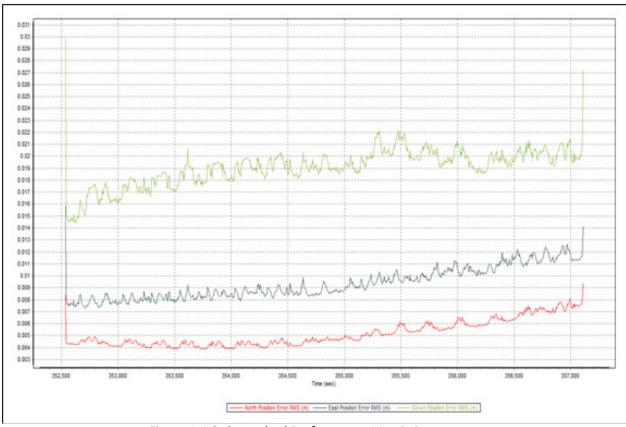


Figure 1.4.2. Smoothed Performance Metric Parameters

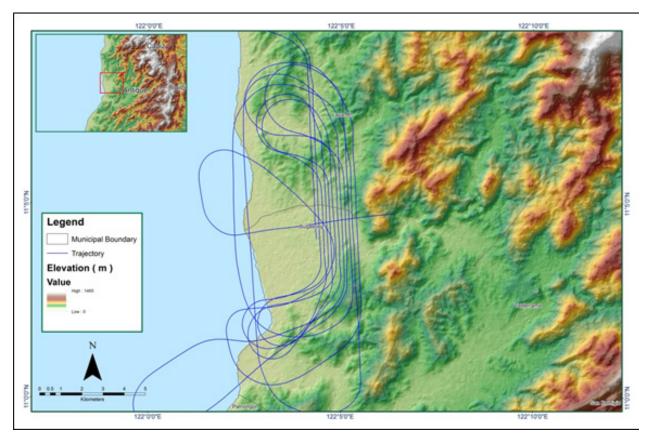


Figure 1.4.3 Best Estimated Trajectory

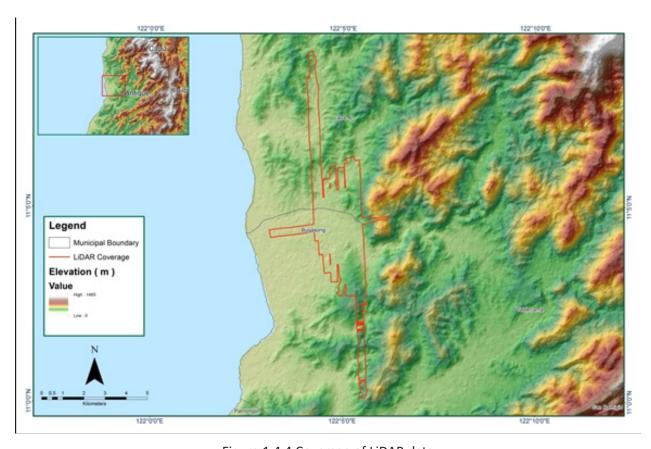


Figure 1.4.4 Coverage of LiDAR data

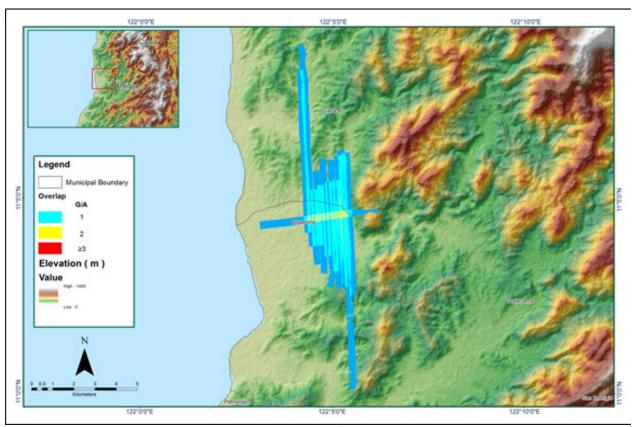


Figure 1.4.5 Image of data overlap

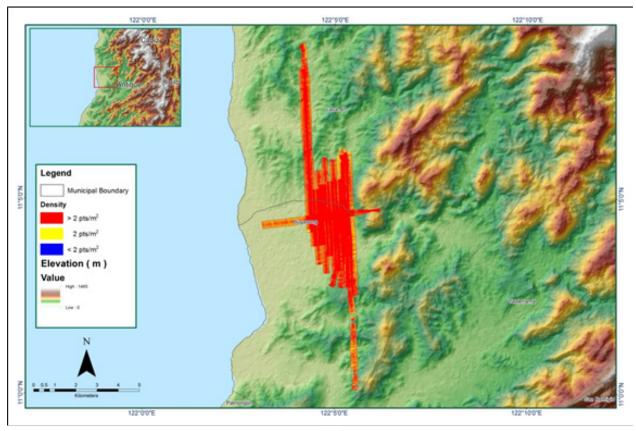


Figure 1.4.6 Density Map of merged LiDAR data

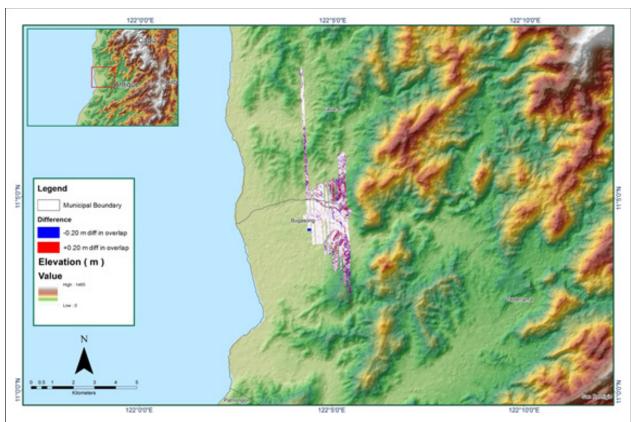


Figure 1.4.7 Elevation Difference Between flight lines

ANNEX 9. PALIWAN MODEL BASIN PARAMETERS

	SCS CI	SCS Curve Number Loss	er Loss	Clark Unit Hydra	Clark Unit Hydrograph Transform		Rece	Recession Baseflow	WC	
Basin Number	Initial Ab- straction (mm)	Curve	Impervious (%)	Time of Con- centration (HR)	Storage Coeffi- cient (HR)	Initial Type	Initial Discharge (M3/S)	Recession	Threshold Type	Ratio to Peak
W360	1.0629	96.314	0	0.27431	4.4247	Discharge	0.43437	_	Ratio to Peak	0.0001
W370	0.68659	66	0	0.0596092	2.1676	Discharge	0.13207	1	Ratio to Peak	0.0001
W380	0.95465	66	0	0.0626814	3.3373	Discharge	0.0923162	1	Ratio to Peak	0.0001
W390	1.1697	94.868	0	0.0666273	1.8537	Discharge	0.1106	_	Ratio to Peak	0.0001
W400	0.63195	66	0	0.11565	1.722	Discharge	0.32935	1	Ratio to Peak	0.0001
W410	0.98641	98.5	0	0.0591217	2.539	Discharge	0.0646545	1	Ratio to Peak	0.0001
W420	0.81573	91.463	0	0.071831	8.8378	Discharge	0.0656467	1	Ratio to Peak	0.0001
W430	0.58691	85.162	0	0.079049	1.9789	Discharge	0.11044	1	Ratio to Peak	0.0001
W440	0.1912	62.812	0	0.0944182	11.817	Discharge	0.29476	1	Ratio to Peak	0.0001
W450	0.27053	58.813	0	0.29361	2.1391	Discharge	0.36017	1	Ratio to Peak	0.0001
W460	1.007	87.569	0	0.081234	2.6602	Discharge	0.14386	_	Ratio to Peak	0.0001
W470	0.31125	67.65	0	0.12263	6.168	Discharge	0.343	~	Ratio to Peak	0.0001

	SCS Cr	SCS Curve Number Loss	er Loss	Clark Unit Hydro	Clark Unit Hydrograph Transform		Rece	Recession Baseflow	WC	
Basin Number	Initial Ab- straction (mm)	Curve	Impervious (%)	Time of Con- centration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W480	1.2941	94.678	0	0.13291	1.4152	Discharge	0.10369	~	Ratio to Peak	0.0001
W490	0.29526	81.199	0	0.26011	6.3296	Discharge	0.65588	1	Ratio to Peak	0.0001
W500	0.33697	57.836	0	0.0767774	6.3373	Discharge	0.13169	7	Ratio to Peak	0.0001
W510	0.84897	93.803	0	0.13743	1.487	Discharge	0.0807787	1	Ratio to Peak	0.0001
W520	0.32524	59.231	0	0.13478	11.294	Discharge	0.12574	1	Ratio to Peak	0.0001
W530	0.36588	51.538	0	0.21943	12.079	Discharge	0.46475	_	Ratio to Peak	0.0001
W540	0.21362	70.474	0	0.076959	2.8945	Discharge	0.10399	1	Ratio to Peak	0.0001
W550	0.39926	81.319	0	0.13553	3.4133	Discharge	0.0021609	1	Ratio to Peak	0.0001
W560	0.34326	57.883	0	0.0787234	2.8382	Discharge	0.10452	7	Ratio to Peak	0.0001
W570	0.1829	74.483	0	0.12166	3.0647	Discharge	0.0468615	7	Ratio to Peak	0.0001
W580	0.29772	79.059	0	0.0765576	6.3113	Discharge	0.16884	7	Ratio to Peak	0.0001
W590	0.36089	85.016	0	0.0451855	2.5234	Discharge	0.0928457	1	Ratio to Peak	0.0001
W600	0.4107	82.379	0	0.12252	6.946	Discharge	0.20987	_	Ratio to Peak	0.0001
W610	0.14547	73.142	0	0.0742638	2.7889	Discharge	0.0788076	~	Ratio to Peak	0.0001

	SCS Cu	SCS Curve Number Loss	er Loss	Clark Unit Hydro	it Hydrograph Transform		Rece	Recession Baseflow	WC	
Basin Number	Initial Ab- straction (mm)	Curve	Impervious (%)	Time of Con- centration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W620	0.29329	81.468	0	0.09075	2.1857	Discharge	0.18583	~	Ratio to Peak	0.0001
W630	0.12044	74.781	0	0.10997	6.1709	Discharge	0.10607	-	Ratio to Peak	0.0001
W640	0.56505	76.182	0	0.1642	2.7678	Discharge	0.34946	1	Ratio to Peak	0.0001
W650	0.2009	72.159	0	0.0475412	1.7536	Discharge	0.0828219	1	Ratio to Peak	0.0001
W660	0.22043	80.149	0	0.0516449	1.9095	Discharge	9602200	1	Ratio to Peak	0.0001
W670	2.3541	80.799	0	0.0252515	1.2529	Discharge	0.0021476	7	Ratio to Peak	0.0001

1000		Musk	ingum Cunge	Muskingum Cunge Channel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R30	Automatic Fixed Interval	2188.36	0.070163	0.0001	Trapezoid	300	1
R50	Automatic Fixed Interval	1949.66	0.060855	0.0001	0.0001 Trapezoid	300	1
R70	Automatic Fixed Interval	1673.38	3.28E-02	0.0001	0.0001 Trapezoid	300	1
R90	Automatic Fixed Interval	2278.65	0.026171	0.0001	Trapezoid	300	1
R110	Automatic Fixed Interval	5785.83	0.023764	0.0001	Trapezoid	300	1
R130	Automatic Fixed Interval	3522.62	0.017139	0.0001	Trapezoid	300	1
R160	Automatic Fixed Interval	3888.53	0.007438	0.0001	Trapezoid	300	1
R170	Automatic Fixed Interval	42.4264	0.105927	0.0001	Trapezoid	300	1
R190	Automatic Fixed Interval	494.975	0.021348	0.0001	0.0001 Trapezoid	300	1
R240	Automatic Fixed Interval	2422.38	0.003718	0.0001	0.0001 Trapezoid	300	1
R250	Automatic Fixed Interval	3688.48	0.008448	0.0001	0.0001 Trapezoid	300	1
R260	Automatic Fixed Interval	2356.08	0.000829	0.0001	0.0001 Trapezoid	300	1
R280	Automatic Fixed Interval	4119.78	0.0187	0.0001	Trapezoid	300	1
R290	Automatic Fixed Interval	2657.7	0.004916	0.0001	Trapezoid	300	1
R300	Automatic Fixed Interval	298.995	0.009267	0.0001	Trapezoid	300	1
R310	Automatic Fixed Interval	450.416	0.010361	0.0001	Trapezoid	300	1
R340	Automatic Fixed Interval	7481.15	0.004143	0.0001	0.0001 Trapezoid	300	1

ANNEX 11. CANGARANAN-PALIWAN FIELD VALIDATION

Point -	Validation Co	ordinates	Model Var	Validation		Event/	Rain
No.	Lat	Long	(m)	Points (m)	Error	Date	Return/
1	11.04404016	122.0643791	0.059999999	0	0.004		Scenario
2	11.04719627	122.0663977	0.029999999	0	0.004		
3	11.06351053	122.0677705	0.029999999	0.43	0.160	Yolanda	5-Year
4	11.00539743	122.0456257	0.100000001	00	0.010	- rorarraa	3 1001
5	11.02699656	122.0551218	0.029999999	0	0.001		
6	11.04017385	122.0687581	0.579999983	0	0.336		
7	10.95677243	122.0074533	0.039999999	0.3	0.068	Frank	100-Year
8	11.06796347	122.0646525	0.200000003	0.51	0.096	Yolanda	<u>5-Year</u>
9	10.94428104	121.9983045	0.029999999	0.2	0.029	Yolanda	5-Year
10	11.00387028	122.1306623	0.419999987	0.51	0.008		
11 12	11.00514439 11.00990291	122.129631 122.0634626	0.029999999 0.050000001	0	0.001 0.003		
14	11.06532562	122.0816394	0.029999999	0	0.003		
15	10.97468923	122.0217892	0.02999999	0	0.001		
16	11.04346102	122.0638124	0.029999999	0	0.003		
17	11.04348437	122.0613686	0.029999999	0.5	0.221	Undang	5-Year
18	11.00606276	122.0470849	0.07	0.5	0.005	Ondang	5 1641
19	11.06772967	122.0827564	0.029999999	0	0.001		
20	11.04149721	122.068553	0.029999999	0	0.001		
21	10.98812702	122.0928609	2.539999962	0	6.452		
22	11.01691689	122.0528669	0.029999999	0	0.001		
24	11.06558671	122.0813709	0	0	0.000		
25	11.04670697	122.0652931	0.029999999	0	0.001		
26	11.03026556	122.0566565	0.029999999	0	0.001		
27	11.0069148	122.0498218	0.129999995	0	0.017		
28	11.06059115	122.0784158	0.100000001	0	0.010		100.1/
29	11.04139844	122.0521073	1 0 00000000	1.2	0.040	Frank	100-Year
30	11.062625	122.0801022	0.029999999	0 10	0.001	Frank	100 Voor
31 34	11.04856519 10.9643594	122.0678507 122.0148831	1.460000038 0.029999999	0.49	0.941 0.001	Frank	100-Year
36	10.9472019	122.033573	0.059999999	0	0.001		
38	10.95911653	122.0094681	0.029999999	0.2	0.029	Yolanda	5-Year
50	11.047771	122.0657988	0.029999999	0.2	0.001	Tolanda	J ICUI
51	11.0607562	122.078375	0	0	0.000		
52	11.00725319	122.048641	1.289999962	0	1.664		
53	11.02790262	122.0567448	0.029999999	0	0.001		
54	11.0186245	122.0524383	0.589999974	1.06	0.221	Frank	100-Year
55	11.02249607	122.0490881	0.460000008	1.21	0.562	Frank	100-Year
56	10.98090202	122.0297158	0.150000006	0	0.023		
58	11.00986712	122.0640066	0	0	0.000	F1	100 1/2
59	11.04588023	122.0511686	0.029999999	0.97	0.884	Frank	100-Year
60 61	11.01102341 11.01053478	122.0621546 122.0655382	0.209999999	0.31	0.044 0.063	Yolanda	5-Year
62	11.02196988	122.0655382	0.039999999	0.31	0.624	Ruping	5-Year
63	11.00339685	122.1306646	0.02333333	0.82	0.260	ιταριτία	J-16a1
64	10.98151275	122.0302327	0.029999999	0.51	0.001		
65	11.04558119	122.0598263	0.029999999	0.5	0.221	Frank	100-Year
66	10.97746062	122.0243589	0.029999999	0	0.001		
67	11.00458605	122.1295053	0	0	0.000		
68	11.05069275	122.0495481	0.029999999	0	0.001		
69	11.02284123	122.0491835	0	1.21	1.464	Frank	100-Year
70	11.00551415	122.1304933	0.119999997	0	0.014		
71	11.00059276	122.0839586	0.100000001	0	0.010	F '	100 1
72	11.0223437	122.0495761	0.330000013	0.68	0.122	Frank	100-Year
73 74	11.0045539 11.02741051	122.1300589 122.055324	0.119999997	0	0.000		
75	11.00298074	122.1308145	0.119999997	0.93	0.014 0.865	Frank	100-Year
76	11.06623469	122.0665362	0.810000002	0.56	0.063	Frank	100-Year
77	11.06617004	122.0661093	0.810000002	0.9	0.810	Frank	100-Year
78	11.04290752	122.067271	0.029999999	0.5	0.001		
79	11.0443049	122.06588	0.029999999	0.26	0.053	Frank	100-Year
80	11.00978012	122.0666671	0.029999999	0	0.001		
81	11.01965115	122.051459	0	1.04	1.082	Frank/	100-Year
						Nitang	
82	11.04550668	122.0652323	0.029999999	0	0.001		
	2.22000						

Point	Validation Co	ordinates	Model Var	Validation		Event/	Rain
No.	Lat	Long	(m)	Points (m)	Error	Date	Return/ Scenario
83	11.00056741	122.0838646	0	0	0.000		Scenario
84	11.01065581	122.0651629	0	0.31	0.096	Yolanda	5-Year
85	11.04641037	122.0592663	0.360000014	0.5	0.020	Frank	100-Year
86 87	11.01834642 11.01912883	122.0521678 122.0519958	0.560000002	1.06 0.5	0.250 0.250	Frank Yolanda	<u>100-Year</u> 5-Year
88	10.95756417	122.0085821	0.029999999	0.5	0.001	Tolarida	5 1641
91	11.08717759	122.0483329	0.029999999	0.9	0.757	Yolanda	5-Year
94 95	10.96952395 10.93302146	122.0702749 122.0299397	0.029999999 0.050000001	0	0.001 0.003		
99	11.02724908	122.0515141	0.400000001	0.5	0.003	Frank	100-Year
100	11.01931613	122.0511899	0	1.25	1.563	Frank	100-Year
101	11.01081041	122.0641007	0.07	0	0.005		
102 103	11.0787808 11.06489892	122.0864507 122.080985	0.07 0.029999999	0	0.005 0.001		
103	11.01820445	122.050985	0.029999999	1.06	1.124	Frank	100-Year
105	11.01793002	122.052489	0.029999999	0	0.001	TTUTIK	100 1001
106	11.01766187	122.0520374	0	0.95	0.903	Frank	100-Year
107	10.98374448	122.0293631	0.029999999	0.68	0.423	Frank	100-Year
108 109	11.00303965 11.04328321	122.1308857 122.0589588	0.039999999	0.35	0.000 0.096	Frank	100-Year
110	11.04326321	122.0563388	0.029999999	0.55	0.030	Frank	100-Year
111	11.07236273	122.0612561	1.25999999	1.21	0.002	Frank	100-Year
112	11.00475658	122.1306831	0.349999994	0.5	0.023	Frank	100-Year
113	11.01092881	122.0640487	0	1.21	0.000	Fuo oli	100 //20
114 115	11.00361797 10.9562659	122.1313115 122.0072416	0	0.3	1.464 0.090	Frank Frank	100-Year 100-Year
117	11.02647552	122.0551956	0	0.5	0.000	TTAIK	100 1001
118	10.95728511	122.0084105	0	0	0.000		
119	11.01771548	122.0515164	0	1.63	2.657	Frank	100-Year
120	11.04570445	122.0595503	0	0.5	0.250	Frank	100-Year
121 122	11.04048376 11.0058659	122.0698528 122.1299482	0.219999999	2	1.000 3.168	Frank Lawin	100-Year 5-Year
123	11.045929	122.0659367	0.029999999	0	0.001	Lavviii	J ICUI
124	11.03307078	122.0574816	0.029999999	0	0.001		
125	11.00378924	122.1312014	0 24 000000	1.21	1.464	Frank	100-Year
126 127	11.00405804 11.02263259	122.1304097 122.0475884	0.310000002 0.829999983	0.73	0.096 0.010	Frank	100-Year
128	11.0228817	122.0481969	0.823333383	1.25	1.563	Frank	100-Year
129	11.02297139	122.0475469	0	0.96	0.922	Lawin	5-Year
130	10.93902928	122.00096	0.029999999	0	0.001		1001/
131	11.04839076	122.0504137 122.0527233	0.99000001	1	0.000	Frank	100-Year
132 133	11.0184566 10.96238128	122.0327233	0.029999999	0	0.000 0.001	Frank	100-Year
134	11.01683328	122.0514692	0.689999998	1.45	0.578	Frank	100-Year
137	10.93818813	122.0004052	0.029999999	0	0.001		
138	10.95733435	122.0089883	0	0.7	0.490	Frank	100-Year
139	11.00617698	122.0423088	0.75999999	1.5	0.548	Frank	100-Year
140	10.99594444	122.0376456	0.029999999	0	0.001		
141	11.09183229	122.0491072	0.029999999	0	0.001		
142	11.00337	122.1152199	0.769999981	0.9	0.017	Frank	100-Year
143	10.95301962	122.0467185	0.360000014	0.61	0.062		400
148	11.01227141	122.0749224	2.420000076	6.39	0.6.5	Frank	100-Year
150	11.07317951	122.0596864	1.299999952	0.5	0.640	Frank	100-Year
151	11.06323004	122.0803316 122.04953	0	0 53	0.000	Frank	100 1/22
152 153	11.00741574 11.04462489	122.04953	0	0.52	0.270	Frank	100-Year
153	11.04462489	122.0500026	1.070000052	0.97	0.000	Frank	100-Year
155	11.04034008	122.0310000	1.070000032	0.97	0.000	Halik	100-16al
156	11.07747132	122.0599095	0.029999999	0.6	0.325	Yolanda	5-Year
130	11.07230103	122.0333033	0.02333333	0.0	0.323	Totaliua	J-1Eq1

ANNEX 12. EDUCATIONAL INSTITUTIONS AFFECTED BY FLOODING IN PALIWAN FLOODPLAIN

	Antique			
	Bugasong			
	Jugusong	Ra	ainfall Scen	ario
Building Name	Barangay	5-year	25-year	100-year
School	Bugasong	Low	-	
School	Bugasong			
School	Bugasong			
School	Bugasong			
Jaguiguican Elementary School	Bugasong			
	Laua-An			
Building Name	Parangay	Ra	ainfall Scen	ario
building Name	Barangay	5-year	25-year	100-year
Guinbanga-an Elementary School	Guinbanga-An			
CRANS National School	Guisijan	Low		
Guisijan Elementary School	Guisijan			
Barangay Maria Day Care Center	Loon			
Eastern Laua-an National High School	Loon	Low		
Maria Elementary School	Loon			
Lugta Day Care Center	Lugta	Low		
Lugta Elementary School	Lugta			
Maria Elementary School	Paningayan	Mediun		
Paningayan Day Care Center	Santiago			
Paningayan Primary School	Santiago			

ANNEX 13. MEDICAL INSTITUTIONS AFFECTED BY FLOODING IN PALIWAN FLOODPLAIN

	Laua-An			
Duilding Name	Downway		Rainfall Scer	nario
Building Name	Barangay	5-year	25-year	100-year
Guinbanga-an Day Care Center	Guinbanga-An			
Guinbanga-an Health Center	Guinbanga-An			
Guisijan Health Center	Guisijan			
Paningayan Health Center	Santiago			