HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Malambunga River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Los Baños

PRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and E.R. Abucay (eds.) (2017), LiDAR Surveys and Flood Mapping of Malambunga River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry - 123pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay Project Leader, Phil-LiDAR 1 Program

University of the Philippines, Los Banos Los Banos, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-146-1

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES.	vii
LIST OF ACRONYMS AND ABBREVIATIONS	X
CHAPTER 1: OVERVIEW OF THE PROGRAM AND MALAMBUNGA RIVER.	1
1.1 Background of the Phil-LiDAR 1 Program.	1
1.2 Overview of the Malambunga River Basin	1
	2
CHAPTER 2: LIDAR DATA ACQUISITION OF THE MALAMBUNGA FLOODPLAIN.	3
2.1 Flight Plans.	
2.2 Ground Base Stations.	5
2.3 Flight Missions.	×
2.4 Survey Coverage	8
	10
2.1 Overview of the LiDAR Data Dro Drocoscing	10
2.2 Transmittal of Acquired LiDAR Data	10
3.2 Irdinstrillar of Acquireu LiDAR Dala.	11
3.3 Trajectory Computation	
3.4 LIDAR Point Cloud Computation	13
3.5 LIDAR Data Quality Checking	14
3.6 LIDAR Point Cloud Classification and Rasterization.	
3.7 LiDAR Image Processing and Orthophotograph Rectification.	20
3.8 DEM Editing and Hydro-Correction.	22
3.9 Mosaicking of Blocks	23
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	25
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model.	28
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS	
OF THE MALAMBUNGA RIVER BASIN	30
4.1 Summary of Activities.	
4.2 Control Survey.	32
4.3 Baseline Processing.	36
4.4 Network Adjustment	37
4.5 Cross-section and Bridge As-Built survey and Water Level Marking.	39
4.6 Validation Points Acquisition Survey.	45
4.7 River Bathymetric Survey	47
CHAPTER 5: FLOOD MODELING AND MAPPING.	53
5.1 Data Used for Hydrologic Modeling	53
5.1.1 Hydrometry and Rating Curves.	53
5.1.2 Precipitation	53
5.1.3 Rating Curves and River Outflow	54
5.2 RIDF Station	56
5.3 HMS Model	58
5.4 Cross-section Data	63
5.5 Flo 2D Model	64
5.6 Results of HMS Calibration	65
5.7 Calculated outflow hydrographs and discharge values for different rainfall return period	s67
5.7.1 Hydrograph using the Rainfall Runoff Model	67
5.8 River Analysis (RAS) Model Simulation	69
5.9 Flow Depth and Flood Hazard	69
5 10 Inventory of Areas Exposed to Flooding	76
5 11 Flood Validation	
REFERENCES	81
ANNEXES	0/
Anney 1 Technical Specification of the Degacus Sensor	
Annex 1. Technical Specification of Peferones Deints Lload	ð4 or
Annex 2. NAIVINIA CELUTICALES OF REFERENCE POITILS USED	כة
ATTIEX 3. DASETTIE PTOLESSING REPORTS	

88
89
90
92
95
10
12
13
15

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system.	3
Table 2. Details of the recovered NAMRIA horizontal control point PLW-121	
used as base station for the LiDAR acquisition	6
Table 3. Details of the established horizontal control point BLLM-1A	
used as base station for the LiDAR acquisition	7
Table 4. Ground control points that were used during the LiDAR data acquisition	7
Table 5. Flight missions for the LiDAR data acquisition	
of the Malambunga Floodplain	8
Table 6. Actual parameters used during the LiDAR data acquisition	
of the Malambunga Floodplain	8
Table 8. List of municipalities and cities surveyed	
of the Malambunga Floodplain LiDAR acquisition.	8
Table 8. Self-calibration Results values for Malambunga flights	13
Table 9. List of LiDAR blocks for Malambunga Floodplain.	14
Table 10. Malambunga classification results in TerraScan	18
Table 11. LiDAR blocks with its corresponding areas	22
Table 12. Shift values of each LiDAR block of Malambunga Floodplain.	23
Table 13. Calibration Statistical Measures	27
Table 14. Validation Statistical Measures	28
Table 15. List of Reference and Control Points occupied	
for Malambunga River Survey (Source: NAMRIA; UP-TCAGP)	32
Table 16. Baseline Processing Summary Report for Malambunga River Survey	
Table 17. Constraints applied to the adjustment of the control points.	
Table 18. Adjusted grid coordinates for the control points	
used in the Malambunga River Floodplain survey	
Table 19. Adjusted geodetic coordinates for control points	
used in the Malambunga River Floodplain validation.	
Table 20. The reference and control points utilized	
in the Malambunga River Static Survey,	
with their corresponding locations (Source: NAMRIA, UP-TCAGP)	38
Table 21. RIDF values for Aparri Rain Gauge computed by PAGASA	56
Table 22. Range of calibrated values for the Malambunga River Basin.	65
Table 23. Summary of the Efficiency Test of the Malambunga HMS Model	66
Table 24. Peak values of the Malambunga HEC-HMS Model outflow	
using the Puerto Princesa RIDF 24-hour values	68
Table 25. Municipalities affected in Malambunga Floodplain	69
Table 26. Affected areas in Rizal, Palawan during a 5-Year Rainfall Return Period	76
Table 32. Affected Areas in Rizal, Palawan during 25-Year Rainfall Return Period	77
Table 28. Affected areas in Rizal, Palawan during a 100-Year Rainfall Return Period	78
Table 29. Actual flood vs simulated flood depth at different levels	
in the Malambunga River Basin	80
Table 30. The summary of the Accuracy Assessment	
in the Malambunga River Basin Survey	80

LIST OF FIGURES

Figure 1. Map of the Malambunga River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Malambunga Floodplain survey	4
Figure 3. GPS set-up over PLW-121	6
Figure 4. Actual LiDAR survey coverage of the Malambunga Floodplain.	9
Figure 5. Schematic diagram for Data Pre-Processing Component.	10
Figure 6. Smoothed Performance Metric Parameters of Malambunga Flight 3159P.	11
Figure 7. Solution Status Parameters of Malambunga Flight 3159P.	12
Figure 8. Best Estimated Trajectory of the LiDAR missions	
conducted over the Malambunga Floodplain	13
Figure 9. Boundary of the processed LiDAR data over Malambunga Floodplain	14
Figure 10. Image of data overlap for Malambunga Floodplain.	15
Figure 11. Pulse density map of merged LiDAR data for Malambunga Floodplain.	16
Figure 12. Elevation Difference Map between flight lines for Malambunga Floodplain Survey	17
Figure 13. Quality checking for a Malambunga flight 2842P using the Profile Tool of QT Modeler	18
Figure 14. Tiles for Malambunga Floodplain (a) and classification results (b) in TerraScan	19
Figure 15. Point cloud before (a) and after (b) classification	19
Figure 16. The production of last return DSM (a) and DTM (b), first return DSM (c)	
and secondary DTM (d) in some portion of Malambunga Floodplain	20
Figure 17. Malambunga Floodplain with available orthophotographs.	21
Figure 18. Sample orthophotograph tiles for Malambunga Floodplain.	21
Figure 19. Portions in the DTM of Malambunga floodplain	22
Figure 22. Correlation plot between calibration survey points and LiDAR data	27
Figure 23. Correlation plot between validation survey points and LiDAR data.	28
Figure 24. Map of Malambunga Floodplain with bathymetric survey points shown in blue	29
Figure 25. Extent of the bathymetric survey (in blue line) in Malambunga River	31
and the LiDAR data validation survey (in red).	31
Figure 26. Malambunga River Basin Control Survey Extent	32
Figure 27. GNSS base set-up, Trimble [®] SPS 852, at PLW-121	33
Figure 28. GNSS base set-up, Trimble [®] SPS 882, at PL-749	34
Figure 29. GNSS receiver set-up, Trimble [®] SPS 985, at UP_MAL-1	35
Figure 30. Downstream side of Malambunga Bridge	39
Figure 31. As-built survey of Malambunga Bridge	39
Figure 32. Malabangan Bridge Location Map	41
Figure 33. Malambunga Bridge cross-section diagram	42
Figure 34. Malambunga Bridge Data Sheet	43
Figure 35. Water-level markings on Malambunga Bridge	44
Figure 36. Validation points acquisition survey set up along Malambunga River Basin	45
Figure 37. Validation point acquisition survey of Malambunga River basin	46
Figure 38. Bathymetric survey of ABSD at Malambunga River using a Hi-Target™ Echo Sounder	47
Figure 39. Bathymetric survey of ABSD at Malambunga River using a Hi-Target [™] V30	47
Figure 40. Manual bathymetric survey of ABSD along Malambunga River	
using a Horizon [®] Total Station	48
Figure 41. Gathering of bathymetric checking points along Malambunga River	49
Figure 42. Gathering of bathymetric checking points along Malambunga River	50
Figure 43. Quality checking points gathered along Malambunga River by DVBC	51
Figure 44. The Malambunga riverbed profile	52

Figure 45.	Location map of the Malambunga HEC-HMS model used for calibration.	53
Figure 46.	Cross-section plot of Malambunga Bridge	54
Figure 47.	Rating Curve at Malambunga Bridge, Rizal, Palawan	54
Figure 48.	Rainfall and outflow data of Malambunga River Basin, which was used for modeling	55
Figure 49.	Location of Aparri RIDF Station relative to Malambunga River Basin	57
Figure 50.	Synthetic storm generated for a 24-hr period rainfall for various return periods	57
Figure 51.	The soil map of the Malambunga River Basin	
	used for the estimation of the CN parameter.	58
Figure 52.	The land cover map of the Malambunga River Basin	59
Figure 53.	Slope Map of Malambunga River Basin	60
Figure 54.	Stream Delineation Map of Malambunga River Basin	61
Figure 57.	Malambunga River Basin model generated in HEC-HMS	62
Figure 56.	River cross-section of Malambunga River generated through Arcmap HEC GeoRAS tool	63
Figure 57.	A screenshot of the river sub-catchment with the computational area	
	to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	64
Figure 58.	Outflow hydrograph of Malambunga produced by the HEC-HMS model	
	compared with observed outflow	65
Figure 59.	Outflow hydrograph at Malambunga Station generated	
	using Puerto Princesa RIDF simulated in HEC-HMS	67
Figure 60.	Sample output map of Malambunga RAS Model	69
Figure 61.	A 100-year flood hazard map for Eraan-Malabangan Floodplain	70
Figure 62.	A 100-year Flow Depth Map for Eraan-Malabangan Floodplain	71
Figure 63.	A 25-year Flood Hazard Map for Eraan-Malabangan Floodplain	72
Figure 64.	A 25-year Flow Depth Map for Eraan-Malabangan Floodplain	73
Figure 65.	A 5-year Flood Hazard Map for Eraan-Malabangan Floodplain	74
Figure 66	. A 5-year Flow depth map for Eraan-Malabangan Floodplain.	75
Figure 67.	Affected Areas in Rizal, Palawan during 5-Year Rainfall Return Period	76
Figure 68.	Affected Areas in Rizal, Palawan during 5-Year Rainfall Return Period	77
Figure 69.	Affected Areas in Rizal, Palawan during 100-Year Rainfall Return Period	78
Figure 70.	Validation points for 25-year Flood Depth Map of Malambunga Floodplain	79
Figure 71.	Flood map depth vs. actual flood depth	80

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment f Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
	1		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UPLB	University of the Philippines Los Baños		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		
	-		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND MALAMBUNGA RIVER

Enrico C. Paringit, Dr. Eng. and Asst. Prof. Edwin Abucay

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the). is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the Southern Luzon Region. The university is located in Los Baños in the province of Laguna.

1.2 Overview of the Malambunga River Basin

Climate Type I and III prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Malambunga River Basin is a 81,000-hectare watershed located in Palawan. It covers the barangays of Amas, Saraza and Tubtub in Brooke's Point municipality; and, Campong Ulay and Punta Baja in Rizal. The river basin is generally characterized by >50% slope. Sibul clay and rough mountain land (unclassified) can be found Malambunga River Basin. Closed canopy (mature trees covering <50%) dominates the basin area, followed by cultivated area mixed with brushland/grassland, cropland mixed with coconut plantation, open canopy (mature trees covering <50%) and mossy forests.

Malambunga River passes through Amas, Saraza and Tubtub in Brooke's Point municipality; and, Campong Ulay and Punta Baja in Rizal. The 2010 NSO Census of Population and Housing showed that Saraza in Brooke's Point, and Punta Baja in Rizal are the most populated barangays.

Based on the studies conducted by the Mines and Geosciences Bureau, only Punta Baja has a flood susceptibility range of low to high risk while other barangays have no flooding risk. The field surveys conducted by the PHIL-LiDAR 1 validation team found that two flooding events occurred in 2013 (Auring) and 2015 (heavy rainfall) affecting Punta Baja. As for landslide susceptibility, the other areas of Punta Baja have a range of low to high risk while others have moderate to high risk.

Figure 1. Map of the Malambunga River Basin (in brown)

CHAPTER 2: LIDAR DATA ACQUISITION OF THE MALAMBUNGA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, and Ms. Jasmin M. Domingo

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Malambunga floodplain in Palawan. These missions were planned for 10 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plans and base stations used for Malambunga Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK42M	1200	30	50	200	30	130	5
BLK42N	1200	30	50	200	30	130	5
BLK42O	1200	30	50	200	30	130	5
BLK42P	1200	30	50	200	30	130	5
BLK42S	1200	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 2. Flight Plan and base stations used for the Malambunga Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA ground control point: PLW-121 which is of second (2nd) order accuracy. The project team also established one (1) ground control point: BLLM-1. The certification for the NAMRIA reference point is found in Annex 2 while the baseline processing report for the established ground control point is found in Annex 3. These were used as base stations during flight operation on July 11, 2015. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS[Iro, may SPS-R8 tayo ginamit?] 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Malambunga Floodplain are shown in Figure 2.

Figure 3 shows the recovered NAMRIA reference point within the area. In addition, Table 2 to Table 3 show the details about the following NAMRIA control stations and established points while Table 4 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over PLW-121 as recovered within the vicinity of Cabkungan Elementary School in Brgy. Campong Ulay, Rizal, Palawan (a) and NAMRIA reference point PLW-121 (b) as recovered by the field team

Table 2. Details of the recovered NAMRIA horizontal control point PLW-121 used as base station for the LiDAR
acquisition

Station Name	PLW	-121	
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 56' 1.71426" North 117° 34' 23.99157" East 8.98036 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 1A (PTM Zone 1A PRS 92)	Easting Northing	398086.54 meters 987945.887 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 55′ 57.38325″ North 117° 34′ 29.39124″ East 58.05800 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 North (UTM 50N PRS 92)	Easting Northing	563030.26 meters 987521.12 meters	

Table 3. Details of the established horizontal control point BLLM-1A used as base station for the LiDAR acquisition

Station Name	BLLM-1A		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9° 02' 07.68639" North 117° 38' 28.10618" East -2.0700 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 02' 03.33580" North 117° 38' 33.49665" East 46.965 meters	
Grid Coordinates, Universal Transverse Mercator Zone 50 North (UTM 50N PRS 92)	Easting Northing	570465.682 meters 998772.489 meters	

Table 4. Ground control points that were used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
July 11, 2015	3157P	1BLK42PO192A	PLW-121, BLLM-1A
July 11, 2015	3159P	1BLK42PO192B	PLW-121, BLLM-1A

2.3 Flight Missions

Two (2) missions were conducted to complete the LiDAR data acquisition in Malambunga Floodplain, for a total of seven hours and fifty-five minutes (7+35) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 5 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 6 presents the actual parameters used during the LiDAR data acquisition.

Date	Flight	Flight Plan Area (km2)	Surveyed Area (km2)	Area Surveyed within the Floodplain (km2)	Area Surveyed	No. of	Flying Hours	
Surveyed	Number				Floodplain (km2)	Images (Frames)	Hr	Min
July 11, 2015	3157P	546.67	445.38	39.94	405.44	538	4	23
July 11, 2015	3159P	385.73	231.17	29.40	201.77	1	3	12
TOTAL		932.4	676.55	69.34	607.21	539	7	35

Table 5. Flight missions for the LiDAR data acquisition of the Malambunga Floodplain.

Table 6. Actual parameters used during the LiDAR data acquisition of the Malambunga Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
3157P	1200	30	50	200	25	130	5
3159P	1200	30	50	200	25	130	5

2.4 Survey Coverage

Malambunga Floodplain is situated within the municipality of Rizal in the province of Palawan. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 7. The actual coverage of the LiDAR acquisition for Malambunga Floodplain is presented in Figure 4.

Table 8. List of munici	palities and cities surve	yed of the Malambunga	a Floodplair	LiDAR acquisition.
	1	/	1	L

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Palawan	Rizal	980.59	460.78	46.99%
Palawali	Quezon	917.97	52.71	5.74%
Total		1898.56	513.49	26.37%

Figure 4. Actual LiDAR survey coverage of the Malambunga Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE MALAMBUNGA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Angelo Carlo B. Bongat , Engr. Ma. Ailyn L. Olanda, Engr. Erica Erin E. Elazegui, Marie Denise V. Bueno , Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flow chart shown in Figure 5.

Figure 5. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Malambunga Floodplain can be found in Annex 5. Missions flown during the survey conducted on July 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Palawan. The Data Acquisition Component (DAC) transferred a total of 64.9 Gigabytes of Range data, 4.78 Gigabytes of POS data, 41.2 Megabytes of GPS base station data, and 90.7 Gigabytes of raw image data to the data server on July 11, 2015 for the survey. The Data Pre-process-ing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Malambunga was fully transferred on August 05, 2015, as indicated on the Data Transfer Sheets for Malambunga Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3159P, one of the Malambunga flights, which is the North, East, and Down position RMSE values are shown in Figure 6. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on July 11, 2015 00:00PM. The y-axis is the RMSE value for that particular position.

Figure 6. Smoothed Performance Metrics of Malambunga Flight 3159P.

The time of flight was from 545,000 seconds to 555,000 seconds, which corresponds to afternoon of July 11, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 6 shows that the North position RMSE peaks at 1.40 centimeters, the East position RMSE peaks at 1.60 centimeters, and the Down position RMSE peaks at 0.30 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 7. Solution Status Parameters of Malambunga Flight 3159P.

The Solution Status parameters of flight 3159P,one of the Malambunga flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 7. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Malambunga flights is shown in Figure 8.

Figure 8. Best Estimated Trajectory of the LiDAR missions conducted over the Malambunga Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 24 flight lines, with each flight line containing two channels, since the Pegasus system contain two channels only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Malambunga Floodplain are given in Table 8.

Parameter	Acceptable Value	Computed Value	
Boresight Correction stdev	<0.001degrees	0.000370	
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000735	
GPS Position Z-correction stdev	<0.01meters	0.0025	

Table 8 Self-calibration	Results value	s for Malambung	va fliøhts
Tuble 0. Och cullbracion	recourto varae	o tor manipuli	5ª manuel.

The optimum accuracy was obtained for all Malambunga flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Malambunga Floodplain is shown in Figure 9. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 9. Boundary of the processed LiDAR data over Malambunga Floodplain

The total area covered by the Malambunga missions is 606.96 sq.km that is comprised of two (2) flight acquisitions grouped and merged into eight (3) blocks as shown in Table 9

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Dalawan Dik42N	3157P	189.40	
Palawali_Bik42iv	3159P		
Dalawan Bilk420	3157P	114.57	
Palawall_Bik420	3159P		
Delewer DIKA2D	3157P	307.61	
Palawan_Bik42P	3159P		
	TOTAL	606.96 sq.km	

Table 9. List of LiDAR blocks for Malambunga Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 10. Since the Pegasus system employs two channels, an average value of 2 (blue) for areas where there is limited overlap is expected, as well as a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 10. Image of data overlap for Malambunga Floodplain.

The overlap statistics per block for the Malambunga Floodplain can be found in Annex[Check annex number] One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 13.66% and 21.33% respectively.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 11. It was determined that all LiDAR data for Malambunga Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.11 points per square meter.

Figure 11. Pulse density map of merged LiDAR data for Malambunga Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 12. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 12. Elevation Difference Map between flight lines for Malambunga Floodplain Survey.

A screen capture of the processed LAS data from Malambunga flight 3159P loaded in QT Modeler is shown in Figure 13. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 13. Quality checking for a Malambunga flight 2842P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	321,923,768
Low Vegetation	207,171,454
Medium Vegetation	413,535,820
High Vegetation	1,457,324,855
Building	18,207,670

Table 10. Malambunga classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Malambunga Floodplain is shown in Figure 14. A total of 785 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 10. The point cloud has a maximum and minimum height of 760.06 meters and 40.13 meters respectively.

Figure 14. Tiles for Malambunga Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 15. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 15. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 16. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 16. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Malambunga Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 273 1km by 1km tiles area covered by Malambunga Floodplain is shown in Figure 17. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Malambunga Floodplain has a total of 153.14 sq.km orthophotogaph coverage comprised of 303 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 18.

Figure 17. Malambunga Floodplain with available orthophotographs.

Figure 18. Sample orthophotograph tiles for Malambunga Floodplain.

3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for Malambunga Floodplain. These blocks are composed of Palawan blocks with a total area of 606.96 square kilometers. Table 11 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Palawan_Blk42N	188.81
Palawan_Blk42O	115.29
Palawan_Blk42P	302.86
TOTAL	606.96 sq.km

Table 11. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 19. Data gaps (Figure 19a) were filled to complete the surface (Figure 19b) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 19c) and has to be removed through manual editing (Figure 19d).

Figure 19. Portions in the DTM of Malambunga Floodplain – data gaps before (a) and after (b) filling; and a presence of a building before (c) and after (d) removal

3.9 Mosaicking of Blocks

Palawan_Blk42Aa was used as the reference block at the start of mosaicking because it was the first block mosaicked to the larger DTM of West Coast Palawan. Upon inspection of the blocks mosaicked for the Malambunga Floodplain, it was concluded that the elevation of all blocks for this river basin needed adjustment. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Malambunga floodplain is shown in Figure 20. It can be seen that the entire Malambunga Floodplain is 100% covered by LiDAR data.

Mission Diaska	Shift Values (meters)			
IVIISSION BIOCKS	х	У	z	
Palawan_Blk42N	0.00	0.00	6.49	
Palawan_Blk42O	0.00	0.00	6.48	
Palawan_Blk42P	0.00	0.00	6.55	

Table 12. Shift values of each LiDAR block of Malambunga Floodplain.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 20 . Map of Processed LiDAR Data for Malambunga Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Malambunga to collect points with which the LiDAR dataset was validated is shown in Figure 21. A total of 2,506 survey points were used for calibration and validation of Malambunga LiDAR data. Random selection of 80% of the survey points, resulting to 2,005 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 22. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 14.31 meters with a standard deviation of 0.24 meters. Calibration of Malambunga LiDAR data was done by adding the height difference value, 14.31 meters, to Malambunga mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 21. Map of Malambunga Floodplain with validation survey points in green.

Figure 22. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	14.31
Standard Deviation	0.24
Average	14.31
Minimum	13.84
Maximum	14.79

Table 13. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting to 501 points, were used for the validation of calibrated Malambunga DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 23. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.24meters with a standard deviation of 0.24meters, as shown in Table 14.

Figure 23. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.24
Standard Deviation	0.24
Average	0.002
Minimum	-0.49
Maximum	0.49

Table 14. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, zigzag, centerline, and cross section were available for Malambunga with 5,164 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.37 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Malambunga integrated with the processed LiDAR DEM is shown in Figure 24.

Figure 24. Map of Malambunga Floodplain with bathymetric survey points shown in blue.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MALAMBUNGA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The AB Surveying and Development (ABSD) conducted a field survey in Malambunga River on December 4, 2015, January 20-22, 2016, and January 24-25, 2016 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Malambunga Bridge in Brgy. Punta Baja, Municipality of Rizal, Palawan. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 16-28, 2016 using an Ohmex[™] Single Beam Echo Sounder and Trimble[®] SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Malambunga River Basin area. The entire survey extent is illustrated in Figure 25..

Figure 25. Extent of the bathymetric survey (in blue line) in Malambunga River

and the LiDÁR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Malambunga River is composed of one (1) loop established on August 19, 2016 occupying the following reference points: PLW-121 a second-order GCP, in Brgy. Ransang, Rizal, Palawan and PL-749, a first-order BM, in Brgy. Campong Ulay, Rizal, Palawan.

One (1) control point established in the area by ABSD was also occupied: UP_MAL-1, located beside the approach of Malambunga Bridge in Brgy. Punta Baja, Rizal, Province of Palawan.

The summary of reference and control points and its location is summarized in Table 15 while GNSS network established is illustrated in Figure 26.

Figure 26. Malambunga River Basin Control Survey Extent

Table 15. List of Reference and Control Points occupied for Malambunga River Survey (Source: NAMRIA; UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	ontrol Order of Point Accuracy Latitude		Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
PLW- 121	2nd order, GCP	8°55'57.38325"N	117°34'29.39124"E	58.058	16.172	2007		
PL-749	1st order, BM	8°56'16.45926"N	117°34'53.01226"E	62.444	20.529	2012		
UP_ MAL-1	Established	9°02'21.21274"N	117°39'10.37109"E	52.776	10.881	11-27-15		

The GNSS set-ups on recovered reference points and established control points in Malambunga River are shown from Figure 27 to Figure 29.

Figure 27. GNSS base set-up, Trimble® SPS 852, at PLW-121, located along the basketball court inside Cabcungan Elementary School in Brgy. Ransang, Rizal, Province of Palawan

Figure 28. GNSS base set-up, Trimble® SPS 882, at PL-749, located in front of a monument near the approach of Ilog-Ilog Bridge in Brgy. Campong Ulay, Rizal, Province of Palawan

Figure 29. GNSS receiver set-up, Trimble® SPS 985, at UP_MAL-1, located beside the approach of Malambunga Bridge in Brgy. Punta Baja, Rizal, Province of Palawan

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking was done by removing/masking portions of these baseline data using the same processing software. It was repeatedly processed until all baseline requirements were met. If the reiteration yielded out of the required accuracy, resurvey was initiated.

Baseline processing result of control points in Malambunga River Basin is summarized in Table 16 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
PLW-121 UP_MAL-1	8-19-2016	Fixed	0.004	0.013	36°02'30"	14584.808	-5.287
PLW-121 PL-749	8-19-2016	Fixed	0.004	0.005	50°55'02"	929.614	4.388
UP_MAL-1 PL-749	8-19-2016	Fixed	0.007	0.022	215°03'17"	13688.427	9.643

Table 16 Receli	no Drocossing	Summary Da	port for Mala	mbunga Divor	SURVOY
Table IO. Dasell	he Processing	Summary Ke	sport for Mara	indunga Kivei	Survey

As shown Table 16, a total of three (3) baselines were processed with the coordinate and ellipsoidal height values of PLW-121 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

```
\sqrt{((x_e)^2 + (y_e)^2)} <20cm and z_e < 10 \ cm
```

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each control point. See the Network Adjustment Report shown from Table 17 to Table 19 for the complete details. Refer to Appendix [Check appendix number]for the computation for the accuracy of ABSD.

The three (3) control points, PLW-121, PL-749, and UP_MAL-1 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal height value of PLW-121 were held fixed during the processing of the control points as presented in Table 17. Through this reference point, the coordinates and ellipsoidal height of the unknown control points were computed.

Table 17. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height o (Meter)	Elevation σ (Meter)		
PLW-121	Global	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)							

Table 18	Adjusted gri	d coordinates fo	or the control	points used in	the Malambunga	River Floodp	lain survey
rable io.	rujusteu gri	a cooramates n	of the control	points used in	i the matanibunga	River i looup.	am survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
PL-749	563915.056	0.004	988037.560	0.002	14.692	0.007	
PLW-121	563194.622	?	987450.572	?	10.335	?	LLh
UP_MAL-1	571754.477	0.004	999253.104	0.003	5.044	0.017	

With the mentioned equation, for horizontal and for the vertical; the computation for the accuracy are as follows:

a.PLW-749		
horizontal accuracy	=	$\sqrt{(0.4)^2 + (0.2)^2}$
	=	√ (0.16 + 0.04)
	=	0.04< 20 cm
vertical accuracy	=	0.7< 10 cm
b.PLW-121		
horizontal accuracy	=	Fixed
vertical accuracy	=	Fixed
c.UP_MAL-1		
horizontal accuracy	=	$V((0.4)^2 + (0.3)^2)$
	=	√ (0.16 + 0.09)
	=	0.5< 20 cm
vertical accuracy	=	1.7< 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

Table 19. Adjusted geodetic coordinates for control points used in the Malambunga River Floodplain validation.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
PL-749	N8°56'16.45926"	E117°34'53.01226"	62.444	0.007	
PLW-121	N8°55'57.38325"	E117°34'29.39124"	58.058	?	LLh
UP_MAL-1	N9°02'21.21274"	E117°39'10.37109"	52.776	0.017	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 19. Based on the result of the computation, the equation was satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 20.

Table 20. The reference and control points utilized in the Malambunga River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)			UTN	/I ZONE 51 N	
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
PLW- 121	2nd order, GCP	8°55'57.38325"N	117°34'29.39124"E	58.058	987450.572	563194.622	16.172
PL-749	1st order, BM	8°56'16.45926"N	117°34'53.01226"E	62.444	988037.560	563915.056	20.529
UP_ MAL-1	Established	9°02'21.21274"N	117°39'10.37109"E	52.776	999253.104	571754.477	10.881

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on June 19 and 20, 2016 at the downstream side of New Malambunga Bridge in Brgy. Masi, Municipality of Rizal, Palawan as shown in Figure 37. A survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique and a Total Station through Open Traverse Method was utilized for this survey.

Figure 30. Downstream side of Malambunga Bridge

Figure 31. As-built survey of Malambunga Bridge

The cross-sectional line of Malambunga Bridge is about 121 m with thirty-seven (37) cross-sectional points using the control points UP_MAL-1 and UP_MAL-2 as the GNSS base stations. The cross-section diagram, location map, and the bridge data form are shown in Figure 32 to Figure 34. Gathering of random points for the checking of ABSD's bridge cross-section and bridge points data was performed by DVBC on August 20, 2016 using a survey grade GNSS Rover receiver attached to a 2-m pole.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range was determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signified a strong correlation between the vertical (elevation values) of the two datasets. The computed R2 values of 0.974 and 0.975 for the cross-section data and bridge points data, respectively, were obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square Correlation, Root Mean Square (RMSE) analysis was also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5 m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the cross-section data and bridge points data, the computed values were 0.168 and 0.134, respectively. The computed RMSE value for the bridge points data was 0.174. The computed R2 and RMSE values are within the accuracy requirement of the program.

Bridge Data Form

1. BA1-BA2	3.20 m	
2. BA2-BA3	51.005 m	
3. BA3-BA4	3.30m	
4. BA1-Ab1	3.26 m	
5. Ab2-BA4	7.73 m	
Deck/beam thickness	1.15 m	
Deck elevation	10.966 m	

Note: Observer should be facing downstream

Figure 34. Malambunga Bridge Data Sheet

Water surface elevation of Malambunga River was determined by a Horizon[®] Total Station on December 4, 2015 at 2:30 PM at Malambunga Bridge area with a value of 3.646 m in MSL as shown in Figure 32. This was translated into marking on the bridge's pier as shown in Figure 35. The marking served as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Malambunga River, the University of the Philippines Los Baños.

Figure 35. Water-level markings on Malambunga Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC on August 19, 2016 using a survey grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a range pole which was attached on the side of the vehicle as shown in Figure 36. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.560 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP_MAL-1 occupied as the GNSS base station in the conduct of the survey.

Figure 36. Validation points acquisition survey set up along Malambunga River Basin

The survey started from Brgy. Iraan, Municipality of Rizal, Palawan going southwest along the national highway and ended in Brgy. Punta Baja, Municipality of Rizal, Palawan. The survey gathered a total of 346 points with approximate length of 15.71 km using UP_MAL-1 as GNSS base station for the entire extent of validation points acquisition survey as illustrated in the map in Figure 37. Approximately 50% of roads traversed were unpaved, hence no data was acquired along it.

Figure 37. Validation point acquisition survey of Malambunga River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on January 20, 2016 using a Hi-Target[™] Echo Sounder as illustrated in Figure 38 and Figure 39. The survey started in Brgy. Punta Baja, Municipality of Rizal, Palawan with coordinates 9° 2′ 51.08788″N, 117° 38′ 54.25979″E and ended at the mouth of the river in Brgy. Punta Baja, also in Municipality of Rizal, with coordinates 9° 3′ 13.25050″N, 117° 38′ 38.66812″E.

Figure 38. Bathymetric survey of ABSD at Malambunga River using a Hi-Target™ Echo Sounder

Figure 39. Bathymetric survey of ABSD at Malambunga River using a Hi-Target[™] V30

Manual bathymetric survey was executed from January 20-22, 2016 and on January 24-25, 2016 using a Horizon[®] Total Station as illustrated in Figure 40. The survey started in Brgy. Punta Baja, Municipality of Rizal with coordinates 8° 57' 34.40144"N, 117° 40' 20.46381"E, traversing down the river and ended at the starting point of bathymetric survey using a boat in Brgy. Punta Baja, Municipality of Rizal. The control pointsUP_MAL-1 and UP_MAL-2 were used as GNSS base stations all throughout the entire survey.

Figure 40. Manual bathymetric survey of ABSD along Malambunga River using a Horizon® Total Station

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 20, 2016 using a GNSS Rover receiver, Trimble[®] SPS 882 attached to a 2-m pole, see Figure 41. A map showing the DVBC bathymetric checking points is shown in Figure 43.

Figure 41. Gathering of bathymetric checking points along Malambunga River

Linear square correlation (R2) and RMSE analysis were also performed on the two (2) datasets and a computed R2value of 0.998 is within the required range for R2, which is 0.85 to 1. Additionally, an RMSE value of 0.181 was obtained. Both the computed R2 and RMSE values are within the accuracy required by the program.

The bathymetric survey for Malambunga River gathered a total of 7,048 points covering 13.1 km of the river traversing Brgy. Punta Baja in the Municipality of Rizal. A CAD drawing was also produced to illustrate the riverbed profile of Malabunga River. As shown in Figure 44, the highest and lowest elevation has a 109-m difference. The highest elevation observed was 105.576 m above MSL while the lowest was -3.510 m below MSL, both located in Brgy. Punta Baja, Municipality of Rizal.

Figure 42. Gathering of bathymetric checking points along Malambunga River

Figure 43. Quality checking points gathered along Malambunga River by DVBC Quality checking points gathered along Malabangan River by DVBC

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Malambunga River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Malambunga River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a portable rain gauge deployed on a strategic location within the riverbasin (9.036632° N, 117.654386° E). The location of the rain gauge is seen in Figure 45.

The total precipitation for this event was 136.20 mm. It had a peak rainfall of 8.20 mm. on January 10, 2017 at 6:20 pm. The lag time between the peak rainfall and discharge was 15 hour and 5 minutes, as seen in Figure 48.

Figure 45. Location map of the Malambunga HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Malambunga Bridge, Rizal, Palawan (9.038779° N, 117.652399° E). It gives the relationship between the observed water levels from the Malambunga Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

For Malambunga Bridge, the rating curve is expressed as Q = 1.1683e0.450x as shown in Figure 47.

Figure 46. Cross-section plot of Malambunga Bridge

Figure 47. Rating Curve at Malambunga Bridge, Rizal, Palawan

For the calibration of the HEC-HMS model, shown in Figure 48, actual flow discharge during a rainfall event was collected in the Malambunga bridge. Peak discharge was 161.80 cu.m/s on January 11, 2017 at 8:45 am.

Figure 48. Rainfall and outflow data of Malambunga River Basin, which was used for modeling.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Puerto Princesa Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value was attained at a certain time. This station was chosen based on its proximity to the Malambunga watershed. The extreme values for this watershed were computed based on a 58-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	14.8	22	27.3	36.2	49.8	58.8	75.1	88	104.1
5	21.3	31.9	39.7	52.3	73	86.9	112.8	135.4	156.4
10	25.6	38.5	48	63	88.4	105.5	137.8	166.8	191.1
15	28.1	42.2	52.6	69	97	116	151.9	184.5	210.6
20	29.8	44.7	55.9	73.3	103.1	123.4	161.7	196.8	224.3
25	31.1	46.7	58.4	76.5	107.8	129.1	169.3	206.4	234.9
50	35.2	52.9	66.1	86.5	122.2	146.5	192.7	235.8	267.3
100	39.2	59	73.7	96.4	136.5	163.8	216	265	299.6

Table 21. RIDF values for Aparri Rain Gauge computed by PAGASA

Figure 49. Location of Aparri RIDF Station relative to Malambunga River Basin

Figure 50. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA).

Figure 51. The soil map of the Malambunga River Basin used for the estimation of the CN parameter.

(Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

Figure 52. The land cover map of the Malambunga River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

Figure 53. Slope Map of Malambunga River Basin

Figure 54. Stream Delineation Map of Malambunga River Basin

Using SAR-based DEM, the Malambunga basin was delineated and further subdivided into subbasins. The model consists of 34 sub basins, 17 reaches, and 17 junctions. The main outlet is labelled as 107. This basin model is illustrated in 55. The basins were identified based on soil and land cover characteristics of the area. Precipitation was taken from the portable rain gauge set up by the Data Validation team of UPLB (DVC-UPLB) on a strategic point within the river basin. Finally, it was calibrated using the flow data collected from the Malambunga Bridge.

Figure 57. Malambunga River Basin model generated in HEC-HMS
5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model set-up. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 56. River cross-section of Malambunga River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southeast of the model to the northwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 57. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 31.95605 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 80 183 700.00 m2.

There is a total of 36 447 348.62 m3 of water entering the model. Of this amount, 22 918 238.06 m3 is due to rainfall while 13 529 110.56 m3 is inflow from other areas outside the model. 7 005 949.50 m3 of this water is lost to infiltration and interception, while 4 475 535.98 m3 is stored by the flood plain. The rest, amounting up to 24 965 868.70 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Malambunga HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 58 shows the comparison between the two discharge data.

Figure 58. Outflow hydrograph of Malambunga produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 22 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve	Initial Abstraction (mm)	0.1 - 12
	LOSS	number	Curve Number	35 - 99
Basin	Transform	Clark Unit	Time of Concentration (hr)	0.2 - 16
		Hydrograph	Storage Coefficient (hr)	0.3 - 8
	Deseflow	Decession	Recession Constant	0.3 - 1
	Basellow	Recession	Ratio to Peak	0.3 - 1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.03 – 0.6

Table 22. Range of calibrated values for the Malambunga River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.1 to 12mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 99 for curve number means that there is a diverse characteristic for this watershed depending on its subbasin.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.2 hours to 16 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Same as the curve number, the characteristics of this watershed differs per reach.

Manning's roughness coefficient of 0.03 to 0.6 also indicates different characteristics of the river reaches

Accuracy measure	Value
RMSE	23.598
r2	0.936
NSE	0.554
PBIAS	-18.208
RSR	0.668

Table 23. Summary of the Efficiency Test of the Malambunga HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 23.598.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.936.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.554.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -18.208.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.668.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 59) shows the Malambunga outflow using the Puerto Princesa Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results revealed significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 59. Outflow hydrograph at Malambunga Station generated using Puerto Princesa RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Malambunga discharge using the Puerto Princesa Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 24.

Table 24. Peak values of the Malambunga HEC-HMS Model outflow using the Puerto Princesa RIDF 24-hour
values.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	156.40	21.30	192.998	6 hours 40 minutes
10-Year	191.1	25.60	254.286	6 hours 10 minutes
25-Year	234.90	31.10	337.537	5 hours 50 minutes
50-Year	267.30	35.20	402.619	5 hours 30 minutes
100-Year	299.60	39.20	469.450	5 hours 20 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Malambunga River using the HMS base flow is shown on Figure 60 below.

Figure 60. Sample output map of Malambunga RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Malambunga Floodplain are shown in Figure 17 to 21. The floodplain, with an area of 79.82 sq. km., covers onemunicipalitynamely Rizal. Table 25 shows the percentage of area affected by flooding per municipality.

Table 25. Municipalities affected in Malambunga Floodplain

Municipality	Total Area	Area Flooded	% Flooded
Rizal	980.59	79.76	8.13

Figure 61. A 100-year flood hazard map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain

Figure 62. A 100-year Flow Depth Map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 63. A 25-year Flood Hazard Map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain

Figure 64. A 25-year Flow Depth Map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain

Figure 65. A 5-year Flood Hazard Map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain

Figure 66. A 5-year Flow depth map for Eraan-Malabangan (also known as Iraan-Malambunga) Floodplain.

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Malambunga river basin, grouped by municipality, are listed below. For the said basin, one municipality consisting of 3 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 5.51% of the municipality of Rizal with an area of 980.59 sq. km. will experience flood levels of less 0.20 meters. 0.39% of the area will experience flood levels of 0.21 to 0.50 meters while 0.66%, 1.01%, 0.53%, and 0.00004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters and more than 5 meters, respectively. Listed in Table 26 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by flood depth (in m.)	Area of a	affected barang (in sq. km.)	ays in Rizal		
	Bunog	Iraan	Punta Baja		
0.03-0.20	20.26	25.91	7.87		
0.21-0.50	1.09	2.41	0.36		
0.51-1.00	1.21	4.85	0.43		
1.01-2.00	1.84	7.19	0.91		
2.01-5.00	0.44	3.68	1.13		
> 5.00	0.0004	0	0		

Table 26. Affected areas in Rizal, Palawan during a 5-Year Rainfall Return Period

Figure 67. Affected Areas in Rizal, Palawan during 5-Year Rainfall Return Period

For the 25-year return period, 5.67% of the municipality of Rizal with an area of 980.59 sq. km. will experience flood levels of less 0.20 meters. 0.49% of the area will experience flood levels of 0.21 to 0.50 meters while 0.77%, 0.83%, 0.36%, and 0.008% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meter, respectively. Listed in Table 27 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by flood depth	Area of affe	ected barangays in I (in sq. km.)	Malambunga		
(in m.)	Bunog	Iraan	Punta Baja		
0.03-0.20	20.63	26.92	8		
0.21-0.50	1.08	3.3	0.38		
0.51-1.00	1.31	5.71	0.52		
1.01-2.00	1.55	5.7	0.99		
2.01-5.00	0.28	2.5	0.82		
> 5.00	0.0002	0.079	0.0037		

Table 32. Affected Areas in Rizal, Palawan during 25-Year Rainfall Return Period

Figure 68. Affected Areas in Rizal, Palawan during 5-Year Rainfall Return Period

For the 100-year return period, 5.51% of the municipality of Rizal with an area of 980.59 sq. km. will experience flood levels of less 0.20 meters. 0.39% of the area will experience flood levels of 0.21 to 0.50 meters while 0.67%, 1.01%, 0.53%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 28 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by flood	Area of a	ffected barangay (in sq. km.)	ys in Rizal		
depth (in m.)	Bunog	Iraan	Punta Baja		
0.03-0.20	20.26	25.91	7.87		
0.21-0.50	1.09	2.41	0.36		
0.51-1.00	1.21	4.85	0.43		
1.01-2.00	1.84	7.19	0.91		
2.01-5.00	0.44	3.68	1.13		
> 5.00	0.0004	0.16	0.0086		

Table 28. Affected areas in Rizal, Palawan during a 100-Year Rainfall Return Period

Figure 69. Affected Areas in Rizal, Palawan during 100-Year Rainfall Return Period

Among the barangays in the municipality of Rizal, Iraan is projected to have the highest percentage of area that will experience flood levels at 4.50%. Meanwhile, Bunog posted the second highest percentage of area that may be affected by flood depths at 2.53%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 71.

The flood validation consists of 98 points randomly selected all over the Malambunga Floodplain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.486m. Table 29 shows a contingency matrix of the comparison.

Figure 70. Validation points for 25-year Flood Depth Map of Malambunga Floodplain

Figure 71. Flood map depth vs. actual flood depth

Actual Modeled Flood Depth (m)			th (m)				
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	35	17	15	2	1	0	70
0.21-0.50	4	5	2	0	0	0	11
0.51-1.00	3	3	4	3	1	0	14
1.01-2.00	0	1	0	2	0	0	3
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	42	26	21	7	2	0	98

Table 29. Actual flood vs simulated flood depth at different levels in the Malambunga River Basin.

The overall accuracy generated by the flood model is estimated at 46.94% with 46 points correctly matching the actual flood depths. In addition, there were 26 points estimated one level above and below the correct flood depths while there were 20 points and 3 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 11 points were underestimated in the modelled flood depths of Malambunga. Table 30 depicts the summary of the Accuracy Assessment in the Malambunga River Basin Survey.

Table 30. The summary of the Accuracy Assessment in the Malambunga River Basin Survey

	No. of Points	%
Correct	46	46.94
Overestimated	41	41.84
Underestimated	11	11.22
Total	98	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Technical Specification of the Pegasus Sensor Annex 1.

Laptop

Control Rack

Figure A-1.1 The Pegasus sensor

Table A-1.1 Technical parameters and specifications of the Pegasus sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation dis-	<0.7 m
tance	
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint

5 Dependent on system configuration

NAMRIA Certificates of Reference Points Used Annex 2.

1. PLW-121

	Province: PALAWAN		
	Station Name: PLW-121		
	Order: 2nd		
Island: LUZON	Barangay: CAMPONG ULAY		
CITY (CAPITAL)	MSL Elevation: PRS92 Coordinates		
Latitude: 8º 56' 1.71426"	Longitude: 117º 34' 23.99157"	Ellipsoidal Hgt:	8.98036 m.
	WGS84 Coordinates		
Latitude: 8° 55' 57.38325"	Longitude: 117° 34' 29.39124"	Ellipsoidal Hgt:	58.05800 m
	PTM / PRS92 Coordinates		
Northing: 987945.887 m.	Easting: 398086.54 m.	Zone: 1A	
	UTM / PRS92 Coordinates		
Northing: 987,521.12	Easting: 563,030.26	Zone: 50	

Location Description

PLW-121 From poblacion Rizal travel S towards Brgy. Campong Ulay approximately 16 kms. up to Cabkungan Elem. School. Station is located in an open lot inside the school SW edge of the basketball court. Mark is the head of 4" copper nail flushed in a cement putty 30cm x 30cm x 120cm embedded 1m on the ground with inscriptions "PLW-121 2007 NAMRIA."

Requesting Party: ENGR. CHRISTOPHER CRUZ Purpose: Reference OR Number: 80867671 T.N.: 2015-1696

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch Lor

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Brarch : 421 Barraca El: San Nicolas, 1010 Marila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1 PLW-121

Annex 3. Baseline Processing Reports

Project information		Coordinate System		
Name:	C:\Users\Windows User\Documents	Name:	UTM	
	\Business Center - HCE\PLW121- BLLM1.vce	Datum:	PRS 92	
Size:	189 KB	Zone:	50 North (117E)	
Modified:	8/5/2015 5:59:19 PM (UTC:8)	Geoid:	EGMPH	
Time zone:	Taipei Standard Time	Vertical datum:		
Reference number:				
Description:				

Baseline Processing Report

Processi	ng Summarv
1 1000000	ig communery

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
PLW 121 BLLM1A (B2)	PLW 121	BLLM1A	Fixed	0.004	0.010	33° 32'53"	13490.902	-11.050
PLW 121 BLLM1B (B1)	PLW 121	BLLM1B	Fixed	0.004	0.011	33°32'53"	13490.909	-11.052

Acceptance Summary

Processed	Passed	Flag	P	Fail	•
2	2	0		0	

PLW 121 BLLM1A (B2)
8/5/2015 6:01:20 PM
Fixed
Dual Frequency (L1, L2)
0.004 m
0.010 m
0.009 m
1.767
Broadcast
NGS Absolute
7/11/2015 7:49:34 AM (Local: UTC+8hr)
7/11/2015 1:25:04 PM (Local: UTC+8hr)
05:35:30
5 seconds

PLW 121 - BLLM1A (7:49:14 AM-1:25:04 PM) (S2)

Figure A-3.1 Baseline Processing Report - A

1

From:	PLW 121	W 121										
G	rid		Loca	al		Global						
Easting	563030.260 m	Latit	tude	N8°56'0	1.71425"	Latitude		N8°55'57.38325"				
Northing	987521.114 m	Long	gitude	E117°34'23	3.99161"	Longitude		E117°34'29.39124"				
Elevation	10.335 m	Heig	ght		8.980 m	Height		58.058 m				
To:	BLLM1A											
G	rid		Loca	al		Global						
Easting	570465.682 m	Latit	Latitude N9°02'07.68639"			Latitude		N9°02'03.33580"				
Northing	998772.489 m	Long	gitude	E117°38'28.10618"		Longitude		E117°38'33.49665"				
Elevation	-0.716 m	Heig	ght	-	-2.070 m Height			46.965 m				
Vector												
∆Easting	7435.42	21 m	NS Fwd Azimuth			33°32'53"	ΔX	-5788.617 m				
∆Northing	11251.37	75 m	Ellipsoid Dist.			13490.902 m	ΔY	-5020.895 m				
∆Elevation	-11.05	52 m	∆Height		-11.050 m	ΔZ	11103.460 m					

Vector Components (Mark to Mark)

Standard Errors

Vector errors:										
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.002 m					
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.005 m					
σ ΔElevation	0.005 m	σ ΔHeight	0.005 m	σΔΖ	0.001 m					

Aposteriori Covariance Matrix (Meter²)

	Х	Y	Z
x	0.0000061683		
Y	-0.0000089563	0.0000212884	
z	-0.0000018603	0.0000039102	0.0000013613

Figure A-3.2 Baseline Processing Report - B

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affilia- tion		
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP		
Data Acquisition Com- ponent Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP		
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP		
Survey Supervisor	Supervising Science Re-	LOVELY GRACIA ACUÑA	UP-TCAGP		
	vising SRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP		
	FIELD	ΟΤΕΑΜ	[
LiDAR Operation	Senior Science Research Associate (SSRS)	JASMINE ALVIAR	UP-TCAGP		
	Research Associate (RA)	ENGR. LARAH KRISELLE PARA- GAS	UP-TCAGP		
Ground Survey, Data	RA	GRACE SINADJAN	UP-TCAGP		
Download and Transfer	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP		
	Airborne Security	SSG. ARIES TORNO	PHILIPPINE AIR FORCE (PAF)		
LiDAR Operation	Pilot	CAPT. MARK TANGONAN	ASIAN AERO- SPACE CORPORA- TION (AAC)		
		CAPT. JUSTINE JOYA	AAC		

Table A-3.1 LiDAR Survey Team Composition

Annex 5. Data Transfer Sheets for Malambunga Floodplain Flights

I

	CEDITED	COCATION	WDACIRAW ATA	DACIRAW	NDACIRAW &TA	NDACIRAW ATA	NDACIRAW ATA	NDACIRAW 8.TA	DACIRAW	NDACKRAW ATA	NDACIRAW ATA	NDACIRAW ATA							
	AN	KML.	na Z	na Z	na Na	na Z	na Z	na	na Z	na D.	NA AN	NA Z							
	FLIGHT PL	tual	167	32	35	908	90	4A	16	18	8/123								
	TOR	S Ac	20			170	2	2	CI	7	106	11							
	OPERA	oPLGO 0PLGO	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB							
	TATION(S)	Base Info (.txt)	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB	1KB							
	BASE S	BASE STATION(S)	16.3	4.15	8.43	11.9	20,6	20.6	4.29	11.5	11.5	1.18	310						
		DIGITIZER	29.3	NA	108	NA	113	25.9	67.6	na	11	7.6	15/20	•					
		RANGE	18.3	7.1	35.5	14.8	43.3	21.6	28.8	28.9	7.36	3.33	1 8/						
	ION LOG	E/CASI	252	88	120/9/1	101	369	+	359	295	2	_	torest						
fam	MI MISS	S/CASI FIL	-	0	11 15/	12	N	5	7	4	33	na	AL PAC						
ZUT5(palaw		IMAGE	8	12	, ci	ů,	35	65	41	36	4.5	33.2 na	Receiv Name Posito Signetu						
ICIQ		s) POS	162	107	256	124	. 279	199	214	255	106	3							
		LOGS(ME	2	3.65	11.6	541	ę	8.95	9.62	10.5	3.65	2.7							
	AS	CML (swath)	па	вп	na	eu	na	na	427/407	па	na	96/28							
	RAWI	Output LAS	969	361	1.84	752	2.29	1.11	1.61	1.5	329	160							
		SENSOR	Pegasus	Pogazus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	Pegasus	7. L						
		MISSION NAME	1BLK42S165A	1BLK42S171A	1BLK42QRT188A	1BI.K420RT189A	1BLK42PO192A	1BLK42PO192B	1BLK42LM193A	1BLK42LM194A	1BLK42JS194B	1BLK42KS196A	Name						
		FLIGHT NO.	3049P	3073P	3141P	3145P	3157P	3159P	3161P	3165P	3167P	3173P	1-1-1						
		ATE	14-Jun-15	20-Jun-15	Jul-7	8-Jul	Int-11	11-Jul	12-Jul	13-Jul	13-Jul	15-Jul							

Figure A-5.1 Data Transfer Sheet for Malambunga Floodplain - A

1. Flight Log for 3157P Mission

1

27.06				IDAR Technician
6 Aircraft Identification: 18 Total Flight Time: 1.1.0.7	6111			Aircraft Mechanic/L
Arcra ft Type: CesnnaT206H port, City/Province): 7 Landing:	12.21	pleted BIK.42		UDAR Operator MC Darrerup
12 Alrone: VFR 5 Constraint - Partinel (All 12 Alront of Arrivel (All 16 Take off: 3	8:10	21. Remarks Dance Mittes		Comparison 7 20 6 20 25
3 Mission Name: 184242 9 Route: 200 Taha Mrport, City/Province): 15 Total Engine Time:	4 123	20.c Others 0 LIDAR System Mainter 0 Aircraft Maintenance 0 Phil-LIDAR Admin Act		Plot-i
12 2 ALTM Model: PEG 20-PHOt: JUNY 32 Airport of Departure (32 Airport of Departure (12:29	20.b Non Billable O Aircraft Test Flight O AAC Admin Flight O Others:		Acquisition Flight Ca
рни-цірая I Data Acquisition Flig 1 цірая Орегаюг: L. Para og 7 Pilot: М. Такорепал 18 с 10 Date: 7/11 [15: //	13 Engine On: 9:06	20 Flight Classification 20.a Billable Acquistion Flight o System Test Flight	22 Problems and Solutions O Weather Problem O Alroraft Problem O Phot Problem O Others	Acquisition Flight Approved by

Figure 6.1 Flight Log for Mission 3157P

· Flight Log No.: 3159 P

$\frac{1}{10} = \frac{1}{10} $	1 9 11 0		
$\frac{11}{107} \frac{1}{107} 1$	12 Airport of Arrival	(Airport, City/Province):	
	Engine Time: 16 Take off: $f = \frac{16}{15} \cdot \frac{16}{15} \cdot \frac{1}{12}$	17 Landing: 14	ls total flight Time: 3 f 62
ation 20.b Non Bilable 20.c Oth bon Flight o Aircraft Test Flight o ght o AAC Admin Flight o risst Flight o Others: 0	21 Remark ers LiDAR System Maintenance Aincraft Maintenance Phil-LIDAR Admin Activities	to completed Blkg.	
d Solutions			
ner Problem n Problem A Problem Aroblem			
Ight Approved by Acquisition Flight Certified by Acquisition Flight Certified by CC To DUVIC A Sepresentative)	Pilot-jir Confirmand N. C. Confirmand N. C. Confirmand Signature over Printed Nange	LIDAR Operator GRALE STINAD TAN Signature over Printed Name	Aircraft Mechanic/ LIDAR Techniclan

Figure 6.2 Flight Log for Mission 3159P

Annex 7. Flight Status Reports

IRAAN-MALAMBUNGA FLOODPLAIN

(July 11-13, 2015)

Table	7.1	Flight	Status	Report
Table	/.1	ingin	Julus	neport

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
3157P	BLK 42P, PS, N, M	1BLK42PO192A	L. Paragas	July 11, 2015	Surveyed BLK 42P, PS, N, and parts of M
3159P	BLK 42O, N, P	1BLK42PO192B	G. Sinadjan	July 11, 2015	Surveyed BLK 42O, N, and gaps in BLK 42P

Flight No:	3157P	
Mission Name:	1blk42po192a	
Area:	BLOCK 42P, 42PS, 42N &	& 42M
Parameters:	Altitude: 1200	PRF: 200
	Scan Angle: 50	Overlap: 30

Figure 7.1 Swath for Flight No. 3157P

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No:	3157P	
Mission Name:	1BLK42PO192B	
Area:	BLOCK 420NP	
Parameters:	Altitude: 1200	PRF: 200
	Scan Angle: 50	Overlap: 30

SWATH

Figure 7.1 Swath for Flight No. 3157P

Annex 8. Mission Summary Reports

Flight Area	West Palawan
Mission Name	Block 42N
Inclusive Flights	3157P and 3159P
Range data size	64.90 GB
POS	478MB
Image	90.70 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.22
RMSE for East Position (<4.0 cm)	2.10
RMSE for Down Position (<8.0 cm)	3.40
Boresight correction stdev (<0.001deg)	0.000370
IMU attitude correction stdev (<0.001deg)	0.000558
GPS position stdev (<0.01m)	0.0026
Minimum % overlap (>25)	18.19
Ave point cloud density per sq.m. (>2.0)	2.43
Elevation difference between strips (<0.20m)	Yes
Number of 1km x 1km blocks	251
Maximum Height	658.32
Minimum Height	42.09
Classification (# of points)	
Ground	83015160
Low vegetation	50176090
Medium vegetation	153087772
High vegetation	599974416
Building	9903936
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. JovelleAnjea-
	nette Canlas, Engr. Elainne Lopez

Table A-8.1 Mission Summary Report for Block 42N

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metric Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4 Coverage of LiDAR data

Figure A-8.5 Image of data overlap

Figure A-8.6 Density map of merged LiDAR data

Figure A-8.7 Elevation difference between flight lines

Flight Area	West Palawan
Mission Name	Block 42O
Inclusive Flights	3157P and 3159P
Range data size	64.90 GB
POS	478 MB
Image	90.70 GB
Transfer date	August 5, 2015
	·
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.22
RMSE for East Position (<4.0 cm)	2.10
RMSE for Down Position (<8.0 cm)	3.40
Boresight correction stdev (<0.001deg)	0.000370
IMU attitude correction stdev (<0.001deg)	0.000558
GPS position stdev (<0.01m)	0.0026
	·
Minimum % overlap (>25)	21.33
Ave point cloud density per sq.m. (>2.0)	1.96
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	160
Maximum Height	178.72
Minimum Height	40.13
Classification (# of points)	
Ground	112805844
Low vegetation	95911890
Medium vegetation	80712706
High vegetation	142125592
Building	4713926
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Chelou Pra- do, Alex John Escobido

Figure A-8.8 Solution Status

Figure A-8.9 Smoothed Performance Metric Parameters

Figure A-8.10 Best Estimated Trajectory

Figure A-8.11 Coverage of LiDAR data

Figure A-8.12 Image of data overlap

Figure A-8.13 Density map of merged LiDAR data

Figure A-8.14 Elevation difference between flight lines

Flight Area	West Palawan
Mission Name	Block 42P
Inclusive Flights	3157P and 3159P
Range data size	64.90 GB
POS	478 MB
Image	90.70 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.22
RMSE for East Position (<4.0 cm)	2.10
RMSE for Down Position (<8.0 cm)	3.40
Boresight correction stdev (<0.001deg)	0.000370
IMU attitude correction stdev (<0.001deg)	0.000558
GPS position stdev (<0.01m)	0.0026
Minimum % overlap (>25)	13.66
Ave point cloud density per sq.m. (>2.0)	1.95
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	374
Maximum Height	760.06
Minimum Height	40.51
Classification (# of points)	
Ground	126102764
Low vegetation	61083474
Medium vegetation	179735342
High vegetation	715224847
Building	3589808
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Krisha Marie Bautista

Table A-8.3 Mission Summary Report for Block 42P

Figure A-8.15 Solution Status

Figure A-8.16 Smoothed Performance Metric Parameters

Figure A-8.17 Best Estimated Trajectory

Figure A-8.18 Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.19 Image of data overlap

Figure A-8.20 . Density map of merged LiDAR data

Figure A-8.21 Elevation difference between flight lines

	SCS CI	JRVE NUMBI	ER LOSS	CLARK UNIT HYDRO	GRAPH TRANSFORM	RECE	SSION BASEFLO	Ŵ
Subbasin	Initial Abstraction (MM)	Curve Number	Imperviousness (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (CU.M/S)	Recession Constant	Ratio to Peak
W340	2.6	83	0.0	1.6203	2.6444	0.37032	1	0.5
W350	2.6	83	0.0	1.0994	1.7942	0.36686	1	0.5
W360	1.7999	87.587	0.0	2.7712	4.5226	0.80500	1	0.5
W380	1.7888	87.654	0.0	1.7412	0.83785	0.0723565	1	0.5
W390	1.719	88.078	0.0	2.006	2.8416	2.1839	1	0.5
W400	1.719	88.078	0.0	2.0066	1.8944	0.99897	1	0.5025
W410	2.4269	57.448	0.0	3.4078	1.2188	1.9657	0.62746	0.49749
W420	1.626	87.42	0.0	2.0152	1.7836	1.7726	0.62746	0.71166
W430	2.4269	87.436	0.0	2.271	1.6375	0.63238	0.62746	0.71624
W440	1.5856	56.311	0.0	4.4905	1.0535	0.70676	0.6013	0.74456
W450	1.0623	76.462	0.0	5.0637	1.1701	1.5705	0.57875	0.72972
W460	2.1499	72.656	0.0	4.932	1.1253	2.2554	0.36157	0.99604
W470	0.32231	52.868	0.0	2.8674	1.5738	1.6598	1	0.45107
W480	0.25846	75.537	0.0	0.82866	1.3935	1.5272	0.3335	0.48298
W490	3.4601	71.347	0.0	0.21077	2.5377	0.78460	0.40363	1
W500	0.2066	74.089	0.0	0.43982	1.2523	0.17024	0.58394	0.51876
W510	0.21278	47.774	0.0	1.6877	0.65143	0.68770	1	0.7499
W520	2.5462	38.679	0.0	1.1489	7.3707	0.76608	0.50509	0.67432
W530	0.15173	56.4	0.0	3.295	0.89818	0.44066	1	0.50581

Table A-9.1 Malambunga Model Basin Parameters

Annex 9. Malambunga Model Basin Parameters

0.33333	0.2863	0.74818	0.63406	1	0.61125	0.68403	1	1	0.45196	1	0.30877	0.86247	0.51745	0.46017	
1	1	1	1	1	0.96259	1	1	1	1	0.882	0.66667	1	1	0.57875	
1.8167	0.91583	1.4788	0.0362682	1.3904	0.78994	1.1357	1.3558	0.83336	0.0825134	0.94625	0.93960	1.5455	2.9596	0.44978	
7.6025	5.2818	0.80116	1.2964	7.8198	1.2703	1.5808	0.31831	5.0002	3.9822	8.3045	5.4977	1.1304	5.5321	3.6189	
15.983	12.989	2.7401	2.3472	0.75071	1.8789	1.7125	2.8154	5.4887	15.992	3.7727	13.7	2.5848	13.484	1.3521	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
85.09	55.424	48.694	35.263	49.565	53.3	45.577	51.33	35.224	95.262	50.046	79.206	54.375	75.134	66	
1.0183	5.317	2.3288	3.4923	7.739	2.1074	1.0293	0.71447	3.474	1.5992	12.132	5.0554	3.5106	3.6526	0.15638	
W540	W550	W560	W570	W580	W590	W600	W610	W620	W630	W640	W650	W660	W680	W690	

Parameters
Reach
H
5
Ĕ
ð
Ĕ.
\triangleleft
Malambunga
κ 10.
Annex

			MUSKINGUM C	UNGE CHANNEL I	ROUTING		
REACH	Time Step Method	Length (M)	Slope(M/M)	Manning's n	Shape	Width (M)	Side Slope (xH:1V)
R10	Automatic Fixed Interval	1852.2	0.0037676	0.04	Trapezoid	35	1
R110	Automatic Fixed Interval	2622.3	0.0103528	0.46591	Trapezoid	35	1
R130	Automatic Fixed Interval	3939.8	0.0195294	0.30295	Trapezoid	35	1
R150	Automatic Fixed Interval	1901.0	0.0139141	0.26445	Trapezoid	35	1
R170	Automatic Fixed Interval	463.85	0.0220342	0.0251321	Trapezoid	35	1
R190	Automatic Fixed Interval	1674.1	0.0092792	0.12053	Trapezoid	35	1
R20	Automatic Fixed Interval	748.41	0.0018042	0.04	Trapezoid	35	1
R210	Automatic Fixed Interval	2641.4	0.0428784	0.10819	Trapezoid	35	1
R220	Automatic Fixed Interval	2994.9	0.0352779	0.59945	Trapezoid	35	1
R230	Automatic Fixed Interval	306.57	0.0108348	0.12064	Trapezoid	35	1
R260	Automatic Fixed Interval	2959.4	0.0332614	0.45079	Trapezoid	35	1
R280	Automatic Fixed Interval	1896.6	0.0807550	0.0510904	Trapezoid	35	1
R290	Automatic Fixed Interval	510.71	0.23047	0.11671	Trapezoid	35	1
R50	Automatic Fixed Interval	493.55	0.000792595	0.04	Trapezoid	35	1
R70	Automatic Fixed Interval	4551.4	0.0108124	0.0486594	Trapezoid	35	1
R710	Automatic Fixed Interval	2072.7	0.0026811	0.24021	Trapezoid	35	1
R80	Automatic Fixed Interval	1240.5	0.0090219	0.050407	Trapezoid	35	1

Table A-10.1 Malambunga Model Reach Parameters

Rain Return /	Scenario	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year
ļ	Date														Jan. 3, 2014	Jan. 3, 2014						Jan. 3, 2013
l	Event														Typhoon	Typhoon						Auring
L	Error	-0.03	-0.068	-0.049	-0.132	-0.031	-0.268	-2.209	-0.053	-0.034	-0.056	-0.946	-0.03	-0.03	0.305	0.473	-0.03	-0.306	-0.03	-0.03	-0.138	0.1
Validation Points	(m)	0	0	0	0	0	0	0	0	0	0	0	0	0	0.41	0.56	0	0	0	0	0	0.13
Model Var	(m)	0.03	0.068	0.049	0.132	0.031	0.268	2.209	0.053	0.034	0.056	0.946	0.03	0.03	0.105	0.087	0.03	0.306	0.03	0.03	0.138	0.03
Coordinates	Longitude	117.6253	117.6476	117.6458	117.6434	117.6453	117.648	117.6497	117.6498	117.6494	117.6482	117.6506	117.6454	117.6438	117.6564	117.6572	117.6428	117.6427	117.6422	117.6436	117.6497	117.6499
Validation	Latitude	8.972181	8.997459	8.998876	9.000211	9.003353	9.00773	9.010468	9.013942	9.014916	9.01979	9.022037	9.022435	9.027848	9.031722	9.032267	9.032113	9.034083	9.034199	9.034646	9.036919	9.037003
-	Point Number	1	2	ſ	4	ъ	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Table A-11.1 Malambunga Field Validation Points

Annex 11. Malambunga Field Validation Points

25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year
Jan. 3, 2014			Jan. 3, 2013		Jan. 3, 2014	Jan. 3, 2014					2016							Jan. 3, 2013									
Typhoon			Auring		Typhoon	Typhoon											Heavy Rain	Auring									
0.01	-0.383	-1.206	-0.212	-0.646	-0.126	0.063	-0.631	-0.428	-0.622	-0.622	-0.765	-1.006	-0.978	-0.441	0.718	-0.585	0.712	-0.517	-0.434	0.026	-0.557	-0.372	-0.143	0.046	-0.03	-0.03	-0.03
0.3	0	0.9	0.36	0.75	0.92	1	0	0	0	0	0.2	0	0	0	1.04	0.2	0.75	1.24	0	0.36	0	0	0.1	0.4	0	0	0
0.29	0.383	2.106	0.572	1.396	1.046	0.937	0.631	0.428	0.622	0.622	0.965	1.006	0.978	0.441	0.322	0.785	0.038	1.757	0.434	0.334	0.557	0.372	0.243	0.354	0.03	0.03	0.03
117.6547	117.6508	117.6356	117.6498	117.6357	117.6538	117.654	117.6349	117.6346	117.6352	117.6352	117.6358	117.634	117.6359	117.6352	117.6496	117.6358	117.6536	117.6497	117.6352	117.6359	117.6349	117.6345	117.6357	117.6596	117.6346	117.661	117.6621
9.037217	9.038091	9.038535	9.03881	9.038633	9.03942	9.039424	9.039288	9.039356	9.03937	9.039442	9.039521	9.03951	9.03955	9.039597	9.039825	9.03967	9.039935	9.039906	9.039767	9.039939	9.040037	9.040168	9.040262	9.040716	9.040462	9.041218	9.041344
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49

| | 25-Year | 25-Year
25-Year | 25-Year
25-Year
25-Year | 25-Year
25-Year
25-Year
25-Year | 25-Year
25-Year
25-Year
25-Year
25-Year | 25-Year
25-Year
25-Year
25-Year
25-Year
25-Year | 25-Year
25-Year
25-Year
25-Year
25-Year
25-Year
25-Year | 25-Year | 25-Year 25-Year | 25-Year 25-Year | 25-Year 25-Year | 25-Year | 25-Year | 25-Year 25-Year <t< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<></th></td<></th></td<></th></th></td<></th></t<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<></th></td<></th></td<></th></th></td<> | 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<></th></td<></th></td<></th> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<></th></td<></th></td<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<></th></td<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<></th></td<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<></th></td<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<></th></td<> | 25-Year 25-Year <td< th=""><th>25-Year 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th></th></td<> | 25-Year 25-Year 25-Year 25-Year <th>25-Year 25-Year <td< th=""></td<></th> | 25-Year 25-Year <td< th=""></td<> |
|----------|---------------|--|---|---|--|--|---|---|---|---|---|---|---

--

--
--
--|--
--|--|--|--|
| | -0.37 | -0.37
-0.228 | -0.37
-0.228
-0.258 | -0.37
-0.228
-0.258
-0.893 | -0.37
-0.228
-0.258
-0.893
-0.03 | -0.37
-0.228
-0.258
-0.258
-0.03
-0.072 | -0.37
-0.228
-0.258
-0.258
-0.03
-0.03
-0.03
-0.072
-0.08 | -0.37
-0.228
-0.258
-0.258
-0.258
-0.258
-0.03
-0.03
-0.03
-0.072
-0.08 | -0.37
-0.228
-0.258
-0.258
-0.03
-0.03
-0.03
-0.03
-0.03
-0.08
-0.08 | -0.37
-0.228
-0.258
-0.258
-0.03
-0.03
-0.03
-0.03
-0.08
-0.08
-0.03
-0.03 | -0.37
-0.228
-0.258
-0.258
-0.258
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-1.136 | -0.37
-0.228
-0.258
-0.258
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03
-0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.033 -0.03 -0.03 -0.072 -0.03 -0.072 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.03 -0.03 -0.03 -0.03 -0.03 -0.072 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.258 -0.258 -0.03 -0.03 -0.03 -0.072 -0.08 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.03 -0.033 -0.03 -0.03 -0.03 -0.072 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.258 -0.258 -0.03 -0.03 -0.03 -0.072 -0.07 -0.072 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.238 -0.258 -0.03 -0.033 -0.03 -0.048 -0.048
 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.238 -0.258 -0.03 -0.033 -0.03 -0.034 -0.03 -0.072 -0.03 -0.035 -0.03 -0.034 -0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.238 -0.258 -0.03 -0.033 -0.03 -0.035 -0.03 -0.037 -0.03 -0.037 -0.03 -0.037 -0.03 -0.037 -0.03 -0.034 -0.03
 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.03 -0.033 -0.03 -0.034 -0.03 -0.035 -0.03 -0.03 -0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.03 -0.033 -0.03 -0.035 -0.03 -0.037 -0.03 -0.038 -0.03 -0.038 -0.03 -0.038 -0.03 -0.031 -0.03 -0.0310 -0.034 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.258 -0.258 -0.258 -0.258 -0.258 -0.033 -0.03 -0.035 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.0349 -0.03 -0.0349 -0.03 -0.0349 -0.03 | -0.37 -0.37 -0.228 -0.228 -0.258 -0.238 -0.258 -0.231 -0.258 -0.03 -0.033 -0.03 -0.034 -0.03 -0.035 -0.03 -0.037 -0.03 -0.038 -0.03 -0.038 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.034 -0.03 -0.034 -0.03 -0.0349 -0.03 -0.0349 -0.03 -0.0349 -0.03 -0.0349 -0.03 |
| | 0 | 0 0 | 0 8 0 8 0.1 | 0 8 0 8 0.1 3 0.7 | 7 0 8 0 8 0.1 3 0.7 3 0.7 | 8 0 8 0.1 3 0.1 0 0.7 0 0.7 | 7 0 8 0 8 0.1 3 0.1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 0 8 0 8 0.1 3 0.7 3 0.7 5 0 0 0 5 0 | 8 0 8 0 8 0 9 0 9 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 | 8 0 8 0.1 8 0.1 9 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 | 8 0 8 0 8 0.1 9 0.7 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 | 8 0 8 0 8 0 9 0 2 0 6 0 6 0 6 0 7 0 6 0 7 0 7 0 8 0 9 0 9 0 9 0 10 0 <td>8 0 8 0 8 0 8 0 9 0 9 0 4 0 0 0 0 0 0 0 1 0 0 0</td> <td>8 0 8 0.1 3 0.1 3 0.1 4 0 6 0 0 0 6 0 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0</td> <td>8 0 8 0.1 8 0.1 8 0.1 8 0.1 9 0.1 2 0 4 0 2 0 2 0 6 0 6 0 7 0 9 0 10 0 10 0 10 0 10 0 10 0 10 0</td> <td>8 0 8 0.1 8 0.1 3 0.1 2 0 6 0 6 0 2 0 6 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0<</td> <td>8 0 8 0.1 8 0.1 8 0.1 9 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0</td> <td>8 0 8 0 8 0 2 0 6 0 4 0 2 0 6 0 6 0 7 0 8 0 9 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0</td> <td>$\begin{bmatrix} 3 & 0 & 0 \\ 8 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{bmatrix} 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$</td> <td>$\begin{bmatrix} 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$</td> <td>$\begin{bmatrix} 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> | 8 0 8 0 8 0 8 0 9 0 9 0 4 0 0 0 0 0 0 0 1 0 0 0 | 8 0 8 0.1 3 0.1 3 0.1 4 0 6 0 0 0 6 0 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0
 | 8 0 8 0.1 8 0.1 8 0.1 8 0.1 9 0.1 2 0 4 0 2 0 2 0 6 0 6 0 7 0 9 0 10 0 10 0 10 0 10 0 10 0 10 0
 | 8 0 8 0.1 8 0.1 3 0.1 2 0 6 0 6 0 2 0 6 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0<
 | 8 0 8 0.1 8 0.1 8 0.1 9 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 | 8 0 8 0 8 0 2 0 6 0 4 0 2 0 6 0 6 0 7 0 8 0 9 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0
 | $ \begin{bmatrix} 3 & 0 & 0 \\ 8 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | $ \begin{bmatrix} 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$ | $ \begin{bmatrix} 8 \\ 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$ | $ \begin{bmatrix} 8 \\ 8 \\ 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| | 117.6495 0.37 | 117.6495 0.37 117.6625 0.228 | 117.6495 0.37 117.6625 0.228 117.6367 0.358 | 117.6495 0.37 117.6625 0.228 117.6625 0.358 117.6367 0.358 117.6408 1.593 | 117.6495 0.37 117.6625 0.228 117.6367 0.358 117.6408 1.593 117.6635 0.03 | 117.6495 0.37 117.6625 0.228 117.6367 0.358 117.6408 1.593 117.6635 0.03 117.6363 0.03 | 117.6495 0.37 117.6625 0.228 117.6625 0.358 117.6367 0.358 117.6635 0.03 117.6635 0.03 117.6358 0.072 | 117.6495 0.37 117.6625 0.228 117.6625 0.358 117.6367 0.358 117.6408 1.593 117.6635 0.03 117.6363 0.03 117.6363 0.03 117.6363 0.07 117.6363 0.07 117.6363 0.07 117.6363 0.07 | 117.6495 0.37 117.6625 0.228 117.6625 0.258 117.6367 0.358 117.6635 0.03 117.6635 0.03 117.6358 0.072 117.6358 0.072 117.6403 0.072 117.6656 0.03 | 117.6495 0.37 117.6625 0.228 117.6625 0.358 117.6367 0.358 117.6635 0.03 117.6635 0.03 117.6363 0.03 117.6363 0.03 117.6635 0.03 117.6636 0.03 117.6656 0.03 117.6656 0.03 | 117.664950.37117.662550.228117.662550.358117.63670.358117.63530.03117.66350.072117.63580.072117.65660.03117.66560.03117.66560.03117.66560.03117.66560.03117.66560.03117.66560.03117.63351.136 | 117.64950.37117.66250.228117.66250.358117.63670.358117.63580.03117.63580.072117.63580.072117.63580.078117.63580.078117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63540.03117.63540.03117.63950.03117.63940.584 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63580.03117.63580.072117.63580.072117.63580.03117.65660.03117.63951.136117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03 | 117.64950.37117.66250.228117.66250.358117.63670.358117.63580.03117.63580.072117.63580.072117.63580.078117.63580.03117.63590.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03
 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63570.03117.66350.072117.63580.072117.63580.03117.63560.03117.63951.136117.63951.136117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63870.312
 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63580.03117.66350.03117.63580.072117.63580.08117.63580.03117.63580.03117.63580.03117.63580.03117.63560.03117.63951.136117.63940.584117.63940.03117.63560.03117.63560.03117.63570.312117.63580.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63560.03117.63570.312117.63580.03117.63560.03117.67280.03
 | 117.64950.37117.66250.228117.66250.358117.63670.358117.63530.03117.63530.072117.63580.078117.63580.08117.63580.03117.63560.03117.63950.03117.63950.03117.63950.03117.63940.03117.63950.03117.63870.03117.63870.03117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.63870.312117.64660.754 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63580.03117.66350.03117.63580.03117.65560.03117.65560.03117.65560.03117.65560.03117.65560.03117.65560.03117.65560.03117.65560.03117.63950.03117.63950.03117.63960.03117.63760.03117.63760.03117.63760.03117.64660.03117.64660.03117.64660.312117.64660.342117.64090.948
 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63550.03117.63580.072117.63580.072117.63580.078117.63580.03117.63590.03117.63950.03117.63950.03117.63950.03117.63950.03117.63940.03117.63940.03117.63870.03117.63870.03117.63870.03117.64090.348117.64090.348117.64050.754117.64050.754117.64050.316117.64050.348117.64050.3416 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63630.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63951.136117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63870.03117.63870.312117.64090.3412117.64090.948117.64090.948117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316117.64050.316
 | 117.64950.37117.66250.228117.66250.258117.63670.035117.63550.03117.66350.03117.63580.07117.63580.08117.63580.03117.63590.03117.63950.03117.63950.03117.63950.03117.63950.03117.63950.03117.63960.03117.63960.03117.63970.312117.63960.03117.63870.312117.63870.312117.64090.948117.64090.948117.64050.816117.64050.816117.64050.816117.63560.816117.64050.816117.64050.816117.63560.816117.63560.816117.63560.816117.63560.816117.63560.816117.63560.219 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63670.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63950.03117.63950.03117.63950.03117.63950.03117.63870.03117.63870.03117.63870.03117.63870.03117.64090.346117.64090.346117.63560.340117.63560.340117.63560.340117.63560.340117.63560.340117.63560.340117.63560.340117.63560.340 | 117.64950.37117.66250.228117.66250.258117.63670.358117.63580.03117.66350.03117.653630.03117.63580.03117.63580.03117.63580.03117.63580.03117.63580.03117.63950.03117.63950.03117.63940.03117.63950.03117.63760.03117.63760.03117.63760.312117.63760.312117.63760.312117.63760.312117.63760.312117.63760.312117.63560.312117.63560.312117.63560.219117.63560.219117.63560.219117.63560.219117.63560.312117.63560.312117.63560.312117.63560.319117.63560.319117.63560.319117.63560.319117.63560.319117.63510.319117.63510.319117.63510.319 | 117.64950.37117.66250.228117.66250.258117.63670.358117.636350.03117.66350.03117.63580.03117.63580.03117.63580.03117.63590.03117.63940.03117.63950.03117.63950.03117.63940.03117.63560.03117.63560.03117.63560.03117.63700.312117.63870.03117.63870.03117.63760.312117.64090.312117.63560.316117.63560.316117.63560.316117.63560.349117.63560.349117.63560.349117.63510.349117.63320.36117.63 |
| 0 0/1671 | J.U41U/1 | 9.041896 | 9.041641 | 9.041896
9.041896
9.041641
9.041878 | 9.041641
9.041641
9.041878
9.042284 | 9.041641
9.041641
9.041878
9.041878
9.042284
9.041919 | 9.041641
9.041641
9.041641
9.041878
9.042284
9.042284
9.042284
9.042238 | 9.041641
9.041641
9.041678
9.041878
9.042284
9.041919
9.042238
9.04236 | 9.041896
9.041641
9.041678
9.041878
9.041878
9.042284
9.042284
9.042238
9.042238
9.042238 | 9.041641
9.041641
9.041641
9.041878
9.042284
9.042284
9.042238
9.04236
9.04236
9.042777
9.04294 | 9.041641
9.041641
9.041641
9.041878
9.041878
9.042284
9.042238
9.042238
9.042238
9.042777
9.042777
9.042779 | 9.041896
9.041641
9.041641
9.041878
9.042284
9.042284
9.042284
9.042238
9.042238
9.04224
9.042779
9.042779
9.043045 | 9.041896
9.041641
9.041641
9.041878
9.042284
9.042238
9.042238
9.04236
9.04236
9.04236
9.042779
9.043045
9.043131 | 9.041896
9.041641
9.041641
9.041641
9.041878
9.042284
9.042284
9.042284
9.042238
9.042238
9.04224
9.042779
9.042779
9.043045
9.043131
9.04323
 | 9.041641
9.041641
9.041641
9.041641
9.042284
9.042284
9.042238
9.04236
9.04236
9.04236
9.042779
9.042779
9.0423131
9.043045
9.043131
9.043131
 | 9.041876
9.041641
9.041641
9.041641
9.041878
9.042284
9.042284
9.042238
9.042238
9.042248
9.042346
9.04294
9.04294
9.042345
9.043131
9.043131
9.04323
9.04323
 | 9.041641
9.041641
9.041641
9.041641
9.041878
9.042284
9.042284
9.042238
9.04236
9.04236
9.04294
9.04294
9.04236
9.0423131
9.042345
9.043045
9.043373
9.04365 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.041878 9.041878 9.041878 9.042238 9.04236 9.04236 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.043045 9.043045 9.043131 9.043077 9.043977 9.043977 9.043655 9.043679 9.043679
 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.042284 9.042284 9.042284 9.042284 9.042284 9.042284 9.042286 9.04236 9.042777 9.042779 9.04294 9.0423131 9.04233 9.042345 9.043045 9.043131 9.04333 9.043345 9.04365 9.04365 9.043655 9.043657 9.043657 9.043657 9.043811 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.042238 9.042238 9.04236 9.04236 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.042779 9.04236 9.042779 9.043045 9.043131 9.043131 9.043131 9.043131 9.043365 9.04365 9.04365 9.04365 9.043679 9.043811 9.043831 9.04383
 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.041878 9.041878 9.042284 9.042284 9.042284 9.042284 9.042284 9.042284 9.042286 9.042779 9.042779 9.04236 9.0423131 9.043045 9.043045 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043313 9.043811 9.043811 9.043831 9.043831 9.043831 9.043831 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.041878 9.041878 9.042238 9.042238 9.042238 9.04224 9.04236 9.042777 9.042779 9.042779 9.04236 9.0423131 9.042779 9.042779 9.042779 9.042365 9.042779 9.043045 9.043131 9.04365 9.043813 9.043879 9.043879 9.043873 9.043873 9.043873 9.043873 9.043833 9.043846 9.04393 9.04393 9.04393 9.04393 9.04393 9.04393 9.04393 | 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.042284 9.042284 9.042284 9.042284 9.042284 9.04228 9.04228 9.042238 9.04236 9.042779 9.042779 9.042313 9.04233 9.043345 9.043377 9.043377 9.043377 9.043377 9.043373 9.043365 9.043365 9.043373 9.043373 9.043811 9.043813 9.043846 9.043846 9.043816 9.043816 9.043816 9.043816 9.043816 | 9.041896 9.041641 9.041641 9.041641 9.041641 9.041641 9.041878 9.041878 9.041878 9.041238 9.042284 9.042284 9.042284 9.04236 9.04236 9.04236 9.04236 9.04236 9.0423131 9.0423131 9.04233 9.043045 9.043045 9.043131 9.043313 <t< td=""></t<> |
| | | | | | | | | | | | | | |
 |
 |
 | |
 | |
 | | | | |

25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year	25-Year
			Jan. 3, 2013		Jan. 3, 2013			Jan. 3, 2013					Jan. 3, 2013	Jan. 3, 2013	Jan. 3, 2013					
			Auring		Auring			Auring					Auring	Auring	Auring	Typhoon	Heavy Rain	Typhoon	Typhoon	Heavy Rain
-0.426	-0.078	-0.03	0.34	-0.03	0.124	0.397	-0.03	0.003	-0.098	-0.072	-0.126	-0.229	-0.457	0.219	0.354	0.101	0.076	0.078	0.453	0.092
0	0	0	0.51	0	0.4	0.5	0	0.53	0	0	0	0	0.23	0.71	0.57	0.63	0.49	0.22	0.77	1.1
0.426	0.078	0.03	0.17	0.03	0.276	0.103	0.03	0.527	0.098	0.072	0.126	0.229	0.687	0.491	0.216	0.529	0.414	0.142	0.317	1.008
117.6334	117.6361	117.6357	117.6467	117.6327	117.6481	117.6334	117.635	117.6464	117.6346	117.6342	117.6343	117.6331	117.646	117.6451	117.6453	117.6541	117.6498	117.6528	117.6514	117.6496
9.044852	9.04512	9.045428	9.045774	9.045648	9.045877	9.045668	9.045887	9.046115	9.046141	9.046365	9.046478	9.046841	9.047185	9.047756	9.04776	9.049527	9.049879	9.050504	9.05164	9.05168
78	79	80	81	82	83	84	85	86	87	88	89	06	91	92	93	94	95	96	97	98

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula