HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

# LiDAR Surveys and Flood Mapping of Casiligan River



University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines-Los Baños









© University of the Philippines Diliman and University of the Philippines-Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit, E.R. Abucay, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Casiligan River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry 168pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay Project Leader PHIL-LIDAR 1 Program University of the Philippines, Los Baños Los Baños, Philippines 4031 erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

Nationnal Library of the Philippines ISBN:987-621-430-134-8

# TABLE OF CONTENTS

| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                       |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VII                                                                                                                                                                     |
| LIST OF ACRONYMS AND ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IX                                                                                                                                                                      |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND CASILIGAN RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                       |
| 1.1 Background of the Phil-LIDAR 1 Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                       |
| 1.2 Overview of the Casiligan River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                       |
| CHAPTER2:LIDARDATAACQUISITIONOFTHECASILIGANFLOODPLAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                       |
| 2.1 Flight Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                       |
| 2.2 Ground Base Stations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                       |
| 2.3 Flight Missions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                       |
| 2.4 Survey Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                      |
| CHAPTER3:LIDARDATAPROCESSINGOFTHECASILIGANFLOODPLAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                                      |
| 3.1 Overview of the LiDAR Data Pre-Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                      |
| 3.2 Transmittal of Acquired LiDAR Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                      |
| 3.3 Trajectory Computation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                      |
| 3.4 LiDAR Point Cloud Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                      |
| 3.5 LiDAR Data Quality Checking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                      |
| 3.6 LiDAR Point Cloud Classification and Rasterization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                      |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                      |
| 3.8 DEM Editing and Hydro-Correction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                                                                                                                                      |
| 3.9 Mosaicking of Blocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                      |
| 3.10 Calibration and Validation of Mosaicked LiDAR DEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                      |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                      |
| 3.12 Feature Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                      |
| 3.12.1 Quality Checking of Digitized Features' Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                      |
| 3.12.2 Height Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32                                                                                                                                                                      |
| 3.12.3 Feature Attribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                                                                      |
| 3.12.4 Final Quality Checking of Extracted Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                      |
| CHARTER 4. LIDAD VALIDATION CURVEY AND MEASUREMENTS OF THE CASH ICAN DIVER PASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NI DE                                                                                                                                                                   |
| CHAPTER 4. LIDAR VALIDATION SURVET AND MEASUREMENTS OF THE CASILIGAN RIVER BASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                      |
| 4.1 Summary of Activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                                                                      |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>35<br>36                                                                                                                                                          |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>35<br>36<br>41                                                                                                                                                    |
| 4.3 Baseline Processing.<br>4.4 Network Adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35<br>35<br>36<br>41<br>41                                                                                                                                              |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35<br>36<br>41<br>41<br>44                                                                                                                                              |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N35<br>36<br>41<br>41<br>44<br>44                                                                                                                                       |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N35<br>35<br>41<br>41<br>41<br>44<br>48<br>51                                                                                                                           |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N35<br>36<br>41<br>41<br>44<br>44<br>48<br>51<br>54                                                                                                                     |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N33<br>35<br>41<br>41<br>44<br>44<br>51<br>54                                                                                                                           |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N33<br>35<br>36<br>41<br>41<br>44<br>48<br>51<br>54<br>54                                                                                                               |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N33<br>35<br>36<br>41<br>41<br>41<br>44<br>44<br>51<br>54<br>54                                                                                                         |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>54<br>55                                                                                                   |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>55<br>57                                                                                                   |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>59                                                                                       |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>55<br>57<br>59<br>64                                                                                       |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | N33<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>55<br>57<br>57<br>64<br>65                                                                                       |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>55<br>57<br>57<br>64<br>65<br>66                                                                           |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> </ul>                                                                                                                                                                                                                                                                           | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>65<br>66<br>68                                                                     |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> </ul>                                                                                                                                                                                                                | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>59<br>64<br>68<br>68<br>68                                                         |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> </ul>                                                                                                                               | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>59<br>64<br>68<br>68<br>68                                                               |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> </ul>                                                                             | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>59<br>64<br>68<br>68<br>68<br>68<br>68                                             |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> </ul>                                                                           | N33<br>35<br>36<br>41<br>41<br>44<br>54<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>64<br>68<br>68<br>68<br>68<br>69<br>69                                             |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.3 Rating Curves and River Outflow.</li> <li>5.4 Riper Station.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.10 Inventory of Areas Exposed to Flooding.</li> </ul>                                     | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>65<br>66<br>68<br>68<br>68<br>68<br>69<br>69<br>76                                 |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.11 Flood Validation.</li> </ul>                           | N33<br>35<br>36<br>41<br>41<br>44<br>51<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>59<br>64<br>68<br>68<br>68<br>68<br>68<br>68<br>69<br>76<br>76                     |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration .</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.11 Flood Validation.</li> </ul>                                                                           | N33<br>35<br>36<br>41<br>44<br>44<br>51<br>54<br>54<br>54<br>54<br>54<br>55<br>57<br>57<br>59<br>64<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>69<br>76<br>104<br>106 |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration .</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.11 Flood Validation.</li> </ul>                                                                           | N33<br>35<br>36<br>41<br>44<br>44<br>54<br>54<br>54<br>54<br>54<br>54<br>55<br>57<br>59<br>64<br>68<br>68<br>68<br>68<br>68<br>68<br>69<br>69<br>104<br>106<br>107      |
| <ul> <li>4.1 Summary of Activities.</li> <li>4.2 Control Survey.</li> <li>4.3 Baseline Processing.</li> <li>4.4 Network Adjustment.</li> <li>4.5 Cross-section and Bridge As-Built survey and Water Level Marking.</li> <li>4.6 Validation Points Acquisition Survey.</li> <li>4.7 River Bathymetric Survey.</li> <li>CHAPTER 5: FLOOD MODELING AND MAPPING.</li> <li>5.1 Data Used for Hydrologic Modeling.</li> <li>5.1.1 Hydrometry and Rating Curves.</li> <li>5.1.2 Precipitation.</li> <li>5.1.3 Rating Curves and River Outflow.</li> <li>5.2 RIDF Station.</li> <li>5.3 HMS Model.</li> <li>5.4 Cross-section Data.</li> <li>5.5 Flo 2D Model.</li> <li>5.6 Results of HMS Calibration.</li> <li>5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods.</li> <li>5.7.1 Hydrograph using the Rainfall Runoff Model.</li> <li>5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method.</li> <li>5.8 River Analysis (RAS) Model Simulation.</li> <li>5.9 Flow Depth and Flood Hazard.</li> <li>5.11 Flood Validation.</li> </ul> | N33<br>35<br>36<br>41<br>44<br>44<br>54<br>54<br>54<br>54<br>54<br>54<br>55<br>66<br>68<br>68<br>68<br>68<br>68<br>68<br>68<br>69<br>69<br>69<br>69<br>76<br>104<br>107 |

| ANNEX 3. Baseline Processing Reports of Reference Points Used                     | 112 |
|-----------------------------------------------------------------------------------|-----|
| ANNEX 4. The LIDAR Survey Team Composition.                                       | 113 |
| ANNEX 5. Data Transfer Sheet for Casiligan Floodplain.                            | 114 |
| ANNEX 6. Flight logs for the flight missions.                                     | 116 |
| ANNEX 7. Flight status reports.                                                   | 119 |
| ANNEX 8. Mission Summary Reports.                                                 | 123 |
| ANNEX 9. Casiligan Model Basin Parameters.                                        | 133 |
| ANNEX 10. Casiligan Model Reach Parameters.                                       | 135 |
| ANNEX 11. Casiligan Field Validation Points.                                      | 136 |
| ANNEX 12. Educational Institutions Affected by flooding in Casiligan Flood Plain. | 150 |
| ANNEX 13. Health Institutions affected by flooding in Casiligan Floodplain.       | 152 |

# LIST OF TABLES

| Table 1. Flight planning parameters for Aquarius LiDAR system         Table 2. Flight planning parameters for Gemini LiDAR System         Table 3. Details of the recovered NAMPIA berizontal control point MPE 54 used as base station | 3<br>4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| for the LiDAR acquisition.                                                                                                                                                                                                              | /      |
| Table 4. Details of the recovered NAMRIA horizontal control point MRE-44 used as base station<br>for the LiDAR acquisition.                                                                                                             | 8      |
| Table 5. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base station                                                                                                                                         | 9      |
| Table 6. Details of the recovered NAMRIA horizontal control point MRE-32 used as base station                                                                                                                                           | 10     |
| Table 7. Details of the recovered NAMRIA horizontal control point MRE-11 used as base station<br>for the LiDAR acquisition.                                                                                                             | 10     |
| Table 8. Ground control points used during LiDAR data acquisition                                                                                                                                                                       | 11     |
| Table 9. Flight missions for LiDAR data acquisition in Casiligan floodplain                                                                                                                                                             | 11     |
| Table 10. Actual parameters used during LiDAR data acquisition                                                                                                                                                                          | 12     |
| Table 11. List of municipalities and cities surveyed during Casiligan floodplain LiDAR survey                                                                                                                                           | 13     |
| Table 12. Self-Calibration Results values for Casiligan flights.                                                                                                                                                                        | 19     |
| Table 13. List of LiDAR blocks for Casiligan floodplain.                                                                                                                                                                                | 20     |
| Table 14. Casiligan classification results in TerraScan.                                                                                                                                                                                | 25     |
| Table 15. LiDAR blocks with its corresponding area.                                                                                                                                                                                     | 30     |
| Table 16. Shift Values of each LiDAR Block of Casiligan floodplain                                                                                                                                                                      | 32     |
| Table 17. Calibration Statistical Measures.                                                                                                                                                                                             | 36     |
| Table 18. Validation Statistical Measures.                                                                                                                                                                                              | 37     |
| Table 19. List of reference and control points occupied in Casiligan River (Pola) survey                                                                                                                                                | 43     |
| Table 20. Baseline processing report for Pola River Basin control survey                                                                                                                                                                | 47     |
| Table 21. Control Point Constraints                                                                                                                                                                                                     | 48     |
| Table 22. Adjusted Grid Coordinates                                                                                                                                                                                                     | 48     |
| Table 23. Adjusted Geodetic Coordinates                                                                                                                                                                                                 | 49     |
| Table 24. List of references and control points used in Pola (Cashigan) River Survey                                                                                                                                                    | 49     |
| (Source: MAININA and OF-ICAGE)<br>Table 25. PIDE values for Tavabas Pain Gauge computed by PAGASA                                                                                                                                       | 50     |
| Table 26. Range of Values for Casiligan                                                                                                                                                                                                 |        |
| Table 27. Municipalities affected by flooding in Casiligan floodnlain                                                                                                                                                                   | 07     |
| Table 28. Affected Areas in Gloria. Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                               | 00     |
| Table 29. Affected Areas in Pinamalavan, Oriental Mindoro during 5-Vear Rainfall Return Period                                                                                                                                          | , 5    |
| Table 30. Affected Areas in Pinamalayan, Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                          | 78     |
| Table 31. Affected Areas in Pola. Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                                 |        |
| Table 32. Affected Areas in Pola, Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                                 | 80     |
| Table 33. Affected Areas in Socorro, Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                              | 82     |
| Table 34. Affected Areas in Socorro, Oriental Mindoro during 5-Year Rainfall Return Period                                                                                                                                              | 83     |
| Table 35. Affected Areas in Gloria, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                              | 85     |
| Table 36. Affected Areas in Pinamalayan, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                         | 87     |
| Table 37. Affected Areas in Pinamalayan, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                         | 88     |
| Table 38. Affected Areas in Pola, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                                | 90     |
| Table 39. Affected Areas in Pola, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                                | 90     |
| Table 40. Affected Areas in Socorro, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                             | 93     |
| Table 41. Affected Areas in Socorro, Oriental Mindoro during 25-Year Rainfall Return Period                                                                                                                                             | 94     |
| Table 42. Affected Areas in Gloria, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                             | 96     |
| Table 43. Affected Areas in Pinamalayan, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                        | 98     |
| Table 44. Affected Areas in Pinamalayan, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                        | 99     |
| Table 45. Affected Areas in Pola, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                               | 101    |
| Table 46. Affected Areas in Pola, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                               | 101    |
| Table 47. Affected Areas in Socorro, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                            | 104    |
| Table 48. Attected Areas in Socorro, Oriental Mindoro during 100-Year Rainfall Return Period                                                                                                                                            | 104    |
| Jable /19 Actual Flood Denth vs Simulated Flood Denth at different levels in the Casiligan River Basin                                                                                                                                  |        |
| Table 49. Actual Flood Depth vs Simulated Flood Depth at different levels in the Casiligan River Dasin                                                                                                                                  | 109    |

# LIST OF FIGURES

| - Bare 1 map of the baombar mere baom in brother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 Flight plan and hase stations used for Casiligan floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                |
| Figure 3 GPS set-up over MRE-54 as recovered inside the compound of the barangay hall of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                |
| Maliangcog municipality of Pinamalayan Oriental Mindoro (a) and NAMRIA reference noi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt                                                                                                                               |
| MRE-54 (b) as recovered by the field team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |
| Figure 4. GPS set-up over MRE-44 as recovered just outside the compound of the barangay hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                |
| of Hanny Valley municipality of Poyas Oriental Mindoro (a) NAMPIA reference point A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | лрг_//                                                                                                                           |
| (b) as recovered by the field team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VII\L-44                                                                                                                         |
| (b) as recovered by the held team<br>Figure E. CDS set up over MPE 4562 as recovered just outside the compound of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                |
| harangay hall of Pray Dagala gala municipality of Dinamalayan Oriontal Minde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)                                                                                                                              |
| and NAMPIA reference point MPE 4562 (b) as recovered by the field team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 (a)                                                                                                                           |
| and NAMIRIA reference point MRE-4503 (b) as recovered by the field team.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 /                                                                                                                              |
| Figure 5. Actual LIDAR Survey coverage for Casiligan nooupidin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                               |
| Figure 7. Schematic Diagram for Data Pre-Processing Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                               |
| Figure 8. Smoothed Performance Metric Parameters of a Casiligan Flight 1054A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/                                                                                                                               |
| Figure 9. Solution Status Parameters of Casiligan Fight 1054A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                                                                                                               |
| Figure 10. The best estimated trajectory of the LIDAR missions conducted over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                               |
| the Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                               |
| Figure 11. Boundary of the processed LIDAR data over Casiligan Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                               |
| Figure 12. Image of data overlap for Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
| Figure 13. Density map of merged LiDAR data for Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                               |
| Figure 14. Elevation difference map between flight lines for Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                               |
| Figure 15. Quality checking for a Casiligan flight 1054A using the Profile Tool of QT Modeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                               |
| Figure 16. Tiles for Casiligan floodplain (a) and classification results (b) in TerraScan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                                                                                                                               |
| Figure 17. Point cloud before (a) and after (b) classification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27                                                                                                                               |
| Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                               |
| secondary DTM (d) in some portion of Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
| Figure 19. Casiligan floodplain with available orthophotographs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                                                                                                               |
| Figure 20. Sample orthophotograph tiles for Casiligan floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                               |
| Figure 21. Portions in the DTM of Casiligan floodplain – a bridge before (a) and after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                               |
| (b) manual editing; a pit before (c) and after (d) interpolation; and a building before (e) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d after                                                                                                                          |
| (f) manual editing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |
| Figure 22. Map of Processed LiDAR Data for Casiligan Flood Plain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                               |
| Figure 23. Map of Casiligan Flood Plain with validation survey points in green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33<br>35                                                                                                                         |
| Figure 23. Map of Casiligan Flood Plain with validation survey points in green<br>Figure 24. Correlation plot between calibration survey points and LiDAR data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33<br>35<br>36                                                                                                                   |
| Figure 23. Map of Casiligan Flood Plain with validation survey points in green<br>Figure 24. Correlation plot between calibration survey points and LiDAR data<br>Figure 25. Correlation plot between validation survey points and LiDAR data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33<br>35<br>36<br>37                                                                                                             |
| Figure 23. Map of Casiligan Flood Plain with validation survey points in green<br>Figure 24. Correlation plot between calibration survey points and LiDAR data<br>Figure 25. Correlation plot between validation survey points and LiDAR data<br>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33<br>35<br>36<br>37<br>39                                                                                                       |
| Figure 23. Map of Casiligan Flood Plain with validation survey points in green<br>Figure 24. Correlation plot between calibration survey points and LiDAR data<br>Figure 25. Correlation plot between validation survey points and LiDAR data<br>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue<br>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>35<br>36<br>37<br>39<br>41                                                                                                 |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33<br>35<br>36<br>37<br>39<br>41                                                                                                 |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33<br>35<br>36<br>37<br>39<br>41<br>43                                                                                           |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble<sup>®</sup> SPS 882 setup at MRE-32, located in the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43                                                                                     |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,                                                                         |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,                                                                         |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>ega Sr.,<br>45                                                                   |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45                                                                   |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45                                                                   |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point locatedat Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro</li> <li>Figure 31. GNSS receiver Trimble® SPS 852 setup at ORM-1, located at Subaan Bridge</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45<br>45                                                             |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45<br>45<br>45                                                       |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33<br>35<br>36<br>37<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45<br>45<br>45                                                       |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45                                                       |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>35<br>36<br>39<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45<br>45<br>45<br>46<br>50                                           |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>35<br>36<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45<br>45                                                       |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>51                               |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45<br>45<br>50<br>51<br>51                               |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45<br>45<br>50<br>51<br>51<br>52<br>53                   |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point locatedat Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro</li> <li>Figure 31. GNSS receiver Trimble® SPS 852 setup at ORM-4, located at Subaan Bridgein Barangay Subaan, Municipality of Socorro, Oriental Mindoro</li> <li>Figure 32. GNSS receiver Trimble® SPS 852 setup at ORM-4, located at the right side of theapproach of Pola Bridge in Barangay Casiligan, Municipality of Pola</li> <li>Figure 33. (a) Span of Pola Bridge from the upstream and (b) cross-section survey atpola Bridge, Brgy. Casiligan, Municipality of Pola, Oriental Mindoro</li> <li>Figure 34. Casiligan bridge cross-section location map.</li> <li>Figure 35. Pola Bridge Data Form.</li> <li>Figure 36. Pola Bridge Data Form.</li> <li>Figure 37. Water Marking at Pola Bridge.</li> <li>Figure 38. Marking of the pier at Pola Bridge.</li> </ul> | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>44<br>45<br>45<br>45<br>45<br>45<br>50<br>51<br>51<br>51<br>53                   |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and theLiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the.</li> <li>Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Orte Oriental Mindoro</li> <li>Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro</li> <li>Figure 31. GNSS receiver Trimble® SPS 852 setup at ORM-1, located at Subaan Bridge</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33<br>35<br>36<br>39<br>41<br>43<br>43<br>44<br>ega Sr.,<br>45<br>45<br>45<br>45<br>45<br>45<br>50<br>51<br>51<br>52<br>53<br>53 |
| <ul> <li>Figure 23. Map of Casiligan Flood Plain with validation survey points in green.</li> <li>Figure 24. Correlation plot between calibration survey points and LiDAR data.</li> <li>Figure 25. Correlation plot between validation survey points and LiDAR data.</li> <li>Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.</li> <li>Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the</li> <li>LiDAR data validation survey (red)</li> <li>Figure 28. GNSS Network of Pola River field survey.</li> <li>Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>35<br>36<br>37<br>39<br>41<br>43<br>43<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>50<br>51<br>51<br>51<br>52<br>53<br>54 |

| Figure 41. Bathymetric survey setup in a banca with "katig" on the sides in Casiligan-Pola River | 56      |
|--------------------------------------------------------------------------------------------------|---------|
| Figure 42. Bathymetric survey of Casiligan River                                                 | 57      |
| Figure 43. Riverbed Profile of Pola River                                                        | 58      |
| Figure 44. Location of Puerto Princesa RIDF relative to Casiligan River Basin                    | 60      |
| Figure 45. Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods      | 60      |
| Figure 46. The soil map of the Casiligan River Basin used for the estimation of the CN parameter | 61      |
| (Source of data: Digital soil map of the Philippines published by the Bureau of So               | oil and |
| Water Management – Department of Agriculture)                                                    |         |
| Figure 47. The land cover map of the Casiligan River Basin used for the estimation of the CN     | 62      |
| and watershed lag parameters of the rainfall-runoff model. (Source of data: NAMRIA)              |         |
| Figure 48. Slope Map of the Casiligan River Basin                                                | 63      |
| Figure 49. Stream Delineation Map of the Casiligan River Basin                                   | 64      |
| Figure 50. The Casiligan river basin model generated using HEC-HMS                               | 65      |
| Figure 51. Flo 2D Model                                                                          | 66      |
| Figure 52. Sample output of Casiligan RAS Model                                                  | 68      |
| Figure 53. 100-year Flood Hazard Map for Casiligan Floodplain                                    | 69      |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                       |
|---------|-------------------------------------------------------------------|
| Ab      | abutment                                                          |
| ALTM    | Airborne LiDAR Terrain Mapper                                     |
| ARG     | automatic rain gauge                                              |
| ATQ     | Antique                                                           |
| AWLS    | Automated Water Level Sensor                                      |
| BA      | Bridge Approach                                                   |
| BM      | benchmark                                                         |
| CAD     | Computer-Aided Design                                             |
| CN      | Curve Number                                                      |
| CSRS    | Chief Science Research Specialist                                 |
| DAC     | Data Acquisition Component                                        |
| DEM     | Digital Elevation Model                                           |
| DENR    | Department of Environment and Natural<br>Resources                |
| DOST    | Department of Science and Technology                              |
| DPPC    | Data Pre-Processing Component                                     |
| DREAM   | Disaster Risk and Exposure Assessment for<br>Mitigation [Program] |
| DRRM    | Disaster Risk Reduction and Management                            |
| DSM     | Digital Surface Model                                             |
| DTM     | Digital Terrain Model                                             |
| DVBC    | Data Validation and Bathymetry<br>Component                       |
| FMC     | Flood Modeling Component                                          |
| FOV     | Field of View                                                     |
| GiA     | Grants-in-Aid                                                     |
| GCP     | Ground Control Point                                              |
| GNSS    | Global Navigation Satellite System                                |
| GPS     | Global Positioning System                                         |
| HEC-HMS | Hydrologic Engineering Center - Hydrologic<br>Modeling System     |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System          |
| НС      | High Chord                                                        |
| IDW     | Inverse Distance Weighted [interpolation method]                  |

| IMU      | Inertial Measurement Unit                                                                    |  |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|--|
| kts      | knots                                                                                        |  |  |  |
| LAS      | LiDAR Data Exchange File format                                                              |  |  |  |
| LC       | Low Chord                                                                                    |  |  |  |
| LGU      | local government unit                                                                        |  |  |  |
| Lidar    | Light Detection and Ranging                                                                  |  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |  |
| MSL      | mean sea level                                                                               |  |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |  |
| РРК      | Post-Processed Kinematic [technique]                                                         |  |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |  |
| QC       | Quality Check                                                                                |  |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |  |
| RA       | Research Associate                                                                           |  |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |  |
| SSG      | Special Service Group                                                                        |  |  |  |
| твс      | Thermal Barrier Coatings                                                                     |  |  |  |
| UPC      | University of the Philippines Cebu                                                           |  |  |  |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |  |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |  |
| WGS      | World Geodetic System                                                                        |  |  |  |

### CHAPTER 1: OVERVIEW OF THE PROGRAM AND CASILIGAN RIVER

Enrico C. Paringit, Dr. Eng., and Prof. Edwin R. Abucay, Joan Pauline P. Talubo

### 1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS" (Paringit, et. Al. 2017). The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the MIMAROPA Region. The university is located in Los Baños in the province of Laguna.

### 1.2 Overview of the Casiligan River Basin

Casiligan River is a 37,651-ha watershed located in Oriental Mindoro. It is bounded on the east by the Pola Bay, in the north by the Municipality of Naujan, on the northwest by Naujan Lake, Socorro Municipality on the west and Pinamalayan Municipality in the south. The entire basin covers 33 barangays including Santa Maria in Naujan, Pagalagala in Pinamalayan; Batuhan, Casiligan, Malibago, Maluanluan, Matulatula, Pahilahan, Panikihan, and Tagbakin in Pola; Bagsok, Bayuin, Bugtong na Tuog, Calubasanhon, Calubayan, Catiningan, Colocmoy, Happy Valley, Leuteboro I, Leuteboro II, Ma. Concepcion, Mabuhay II, Malugay, Matungao, Monteverde, Pasi II, Subaan, Villareal, Zone I, Zone II, Zone III, and Zone IV in Socorro; and Concepcion in Victoria.

Climate Type I and III prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Casiligan river passes through the municipalities Pola (Batuhan, Calubasanhon, Casiligan, Malibago, Maluanluan, Pahilahan, Panikihan, Tagbakin, Zone I, Zone II) and Socorro (Bagsok, Calocmoy, Calubayan, Catiningan, Leuteboro I and II, Matungao, Monteverde, Zone I to IV). The mouth of the river is densely populated while its outskirts, from the downstream to upstream direction, are dominated by rice paddies and agricultural lands. Based on the 2010 NSO Census of Population and Housing, Panikihan is the most populated barangay in the area



Figure 1. Map of the Casiligan River Basin in brown

Pola exhibits a geomorphologic characteristic that varies from flat alluvial plains to rolling hinterlands, hills and mountainous peaks wherein the two later occupy most of its land area or a four-fifth allocation. Moreover, its highest point is at 594 meter above sea level located at Brgy. Calima and it is primarily drained by the Casiligan and Pula rivers as was stated at the Official Website of Pola, Oriental Mindoro. The geologic classification in the basin area is predominantly Pliocene-Pleistocene, Recent and Pliocene-Quarternary. The soil types that can be found in the area include Bulacan clay loam, Luisiana clay loam, Maranlig gravelly sandy clay loam, Quingua clay loam, San Manuel clay loam, and San Manuel sandy loam. Unclassified soils (rough mountainous land) and Hydrosols can also be found in the area. Owing to its generally flat topography, cultivated area mixed with brushland/grassland occupies large land in the basin area. Other land cover types include crop land mixed with coconut plantation and arable land (crops mainly cereals and sugar).

Based on the studies conducted by the Mines and Geosciences Bureau, no barangay susceptible to flooding. However, all barangays have low to high susceptibilities to flooding. Barangay Batuhan in Pola has high susceptibility to flooding. The field surveys conducted by the PHIL-LiDAR 1 validation team showed only two notable weather disturbances that caused flooding in 2005 (Lando) and 2013 (Yolanda). For landslides, all barangays have varying susceptibilities ranging from low to high. Barangays Bacungan, Pahilahan, Pula, Tagbakin, and Zone I in Pola; Fortuna and Concepcion inSocorro has moderate to high susceptibilities to landslides.

### CHAPTER 2: LIDAR DATA ACQUISITION OF THE CASILIGAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, Mr. Merlin A. Fernando

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

### 2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Casiligan Floodplain in Oriental Mindoro. These missions were planned for 21 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Casiligan Floodplain.

| Block<br>Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Max Field<br>of View<br>(θ) | Pulse Repetition<br>Frequency (PRF)<br>(kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn<br>Time<br>(Minutes) |
|---------------|-----------------------------|----------------|-----------------------------|----------------------------------------------|---------------------------|---------------------------|--------------------------------------|
| BLK28A        | 750                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28B        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28C        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28D        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28E        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28F        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28G        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28GS       | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28H        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28I        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28J        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |

#### Table 1. Flight planning parameters for Aquarius LiDAR system.

| Block<br>Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Max Field<br>of View<br>(θ) | Pulse Repetition<br>Frequency (PRF)<br>(kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn<br>Time<br>(Minutes) |
|---------------|-----------------------------|----------------|-----------------------------|----------------------------------------------|---------------------------|---------------------------|--------------------------------------|
| BLK28A        | 800,<br>1000,<br>1200       | 30             | 30, 36, 40                  | 100                                          | 50                        | 130                       | 5                                    |
| BLK28AS       | 800,<br>1000,<br>1200       | 30             | 30, 36, 40                  | 100                                          | 50                        | 130                       | 5                                    |
| BLK28B        | 800,<br>1000,<br>1200       | 30             | 30, 36, 40                  | 100                                          | 50                        | 130                       | 5                                    |
| BLK28C        | 800,<br>1000,<br>1200       | 30             | 30, 36, 40                  | 100                                          | 50                        | 130                       | 5                                    |
| BLK28D        | 800,<br>1000,<br>1200       | 30             | 30, 36, 40                  | 100                                          | 50                        | 130                       | 5                                    |
| BLK28F        | 800,<br>1200                | 30             | 30, 40                      | 100                                          | 50                        | 130                       | 5                                    |
| BLK28H        | 1000                        | 30             | 36                          | 100                                          | 50                        | 130                       | 5                                    |
| BLK28GS       | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28H        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28I        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |
| BLK28J        | 600                         | 30             | 36                          | 50                                           | 45                        | 130                       | 5                                    |

Table 2. Flight planning parameters for Gemini LiDAR System



Figure 2. Flight plan and base stations used for Casiligan floodplain.

### 2.2 Ground Base Stations

The project team was able to recover three (3) NAMRIA ground control points: MRE-54, MRE-44, and MRE-32 which are of second (2nd) order accuracy. The project team also re-established ground control points MRE-11 which is of third (3rd) order accuracy, and MRE-4563 which is of fourth (4th) order accuracy. The certifications for the NAMRIA reference points are found in Annex 2 the while the baseline processing report for the established ground control point is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (February 2 - 13, 2014 and October 22 - 23, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Casiligan floodplain are shown in Figure 2.

Figure 3 to Figure 5 show the recovered NAMRIA reference points within the area. In addition, Table 3 to Table 7 show the details about the following NAMRIA control stations and established points while Table 8 shows the list of all ground control points occupied during the acquisition together with the dates the corresponding dates of utilization.



Figure 3. GPS set-up over MRE-54 as recovered inside the compound of the barangay hall of Maliangcog, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA reference point MRE-54 (b) as recovered by the field team.

# Table 3. Details of the recovered NAMRIA horizontal control point MRE-54 used as base station for the LiDAR acquisition.

| Station Name                                                                        | MRE-54                                      |                                                                     |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                     |  |
| Relative Error (Horizontal positioning)                                             | 1:50,000                                    |                                                                     |  |
| Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 12°59′12.43671′′ North<br>121°24′46.52637′′ East<br>42.40800 meters |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 3 (PTM Zone 3 PRS 92)      | Easting<br>Northing                         | 544797.009 meters<br>1436124.562 meters                             |  |
| Geographic Coordinates World Geodetic System<br>1984 Datum (WGS 84)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 12°59'7.43505'' North<br>122°41'8.09853'' East<br>91.39500 meters   |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 327864.09 meters<br>1436121.49 meters                               |  |



Figure 4. GPS set-up over MRE-44 as recovered just outside the compound of the barangay hall of Happy Valley, municipality of Roxas, Oriental Mindoro (a) NAMRIA reference point MRE-44 (b) as recovered by the field team

# Table 4. Details of the recovered NAMRIA horizontal control point MRE-44 used as base station for the LiDAR acquisition.

| Station Name                                                                        | MRE-44                                      |                                                                      |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                      |  |
| Relative Error (Horizontal positioning)                                             | 1:50,000                                    |                                                                      |  |
| Geographic Coordinates, Philippine Reference of<br>1992 Datum (PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 12°38′59.03778′′ North<br>121°24′32.60444′′ East<br>87.94200 meters  |  |
| Grid Coordinates, Philippine Transverse<br>Mercator Zone 3 (PTM Zone 3 PRS 92)      | Easting<br>Northing                         | 544436.519 meters<br>1398838.995 meters                              |  |
| Geographic Coordinates World Geodetic System<br>1984 Datum (WGS 84)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 12°38'54.11733'' North<br>121°24'37.66392'' East<br>137.80400 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 327214.81 meters<br>1398840.08 meters                                |  |



Figure 5. GPS set-up over MRE-4563 as recovered, just outside the compound of the barangay hall of Brgy. Pagala-gala, municipality of Pinamalayan, Oriental Mindoro (a) and NAMRIA reference point MRE-4563 (b) as recovered by the field team.

# Table 5. Details of the recovered NAMRIA horizontal control point MRE-4563 used as base station for the LiDAR acquisition with reprocessed coordinates.

| Station Name                                                                        | MRE-4563                                    |                                                                   |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                   |  |
| Relative Error (horizontal positioning)                                             | 1:50,000                                    |                                                                   |  |
| Grid Coordinates, World Geodetic System<br>1984 Datum (WGS 84)                      | Latitude<br>Longitude<br>Ellipsoidal Height | 13°00'53.01692'' North<br>121°24'51.45337'' East<br>73.715 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 328034.015 meters<br>1439300.319 meters                           |  |

Table 6. Details of the recovered NAMRIA horizontal control point MRE-32 used as base station for the LiDAR acquisition.

| Station Name                                                                        | MRE-32                                      |                                                                     |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                     |  |
| Relative Error (Horizontal positioning)                                             | 1:50                                        | ),000                                                               |  |
| Geographic Coordinates, Philippine Reference of<br>1992 Datum (PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 13°10′28.85064′′ North<br>121°16′38.44761′′ East<br>19.49300 meters |  |
| Grid Coordinates, Philippine Transverse Mercator<br>Zone 3 (PTM Zone 3 PRS 92)      | Easting<br>Northing                         | 530065.679 meters<br>1456889.419 meters                             |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 13°10'23.79251" North<br>121°16'43.46244" East<br>67.64700 meters   |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 313296.85 meters<br>1457002.75 meters                               |  |

# Table 7. Details of the recovered NAMRIA horizontal control point MRE-11 used as base station for the LiDAR acquisition.

| Station Name                                                                        | MRE-11                                      |                                                                     |  |
|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--|
| Order of Accuracy                                                                   | 2nd                                         |                                                                     |  |
| Relative Error (horizontal positioning)                                             | 1:50,000                                    |                                                                     |  |
| Geographic Coordinates, Philippine Reference of<br>1992 Datum (PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 12°44'50.41380'' North<br>121°29'7.80130'' East<br>5.11500 meters   |  |
| Grid Coordinates, Philippine Transverse Mercator<br>Zone 3 (PTM Zone 3 PRS 92)      | Easting<br>Northing                         | 552720.766 meters<br>1409650.153 meters                             |  |
| Geographic Coordinates, World Geodetic System<br>1984 Datum (WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 12°44'45.47630'' North<br>121°29'12.85191'' East<br>54.91100 meters |  |
| Grid Coordinates, Universal Transverse Mercator<br>Zone 51 North (UTM 51N PRS 1992) | Easting<br>Northing                         | 335581.55 meters<br>1409587.05 meters                               |  |

Table 8. Ground control points used during LiDAR data acquisition

| Date Surveyed | Flight Number | Mission Name    | Ground Control Points |
|---------------|---------------|-----------------|-----------------------|
| 2-Feb-14      | 1054A         | 3BLK28B033B     | MRE-54                |
| 3-Feb-14      | 1056A         | 3BLK28C034A     | MRE-54                |
| 3-Feb-14      | 1058A         | 3BLK28CD034B    | MRE-54                |
| 5-Feb-14      | 1066A         | 3BLK28DS036A    | MRE-54, MRE-4563      |
| 6-Feb-14      | 1070A         | 3BLK28DSE037A   | MRE-54, MRE-4563      |
| 12-Feb-14     | 1092A         | 3BLK28ABES043A  | MRE-54, MRE-4563      |
| 12-Feb-14     | 1094A         | 3BLK28BS043B    | MRE-54, MRE-4563      |
| 13-Feb-14     | 1096A         | 3BLK28NAJ044A   | MRE-32, MRE-44        |
| 13-Feb-14     | 1098A         | 3BLK28JSI044B   | MRE-44, MRE-32        |
| 22-Oct-15     | 8300G         | 2BLK28ABC295A   | MRE-54, MRE-11        |
| 22-Oct-15     | 8301G         | 2BLK28CD295B    | MRE-54, MRE-11        |
| 23-Oct-15     | 8302G         | 2BLK28ASEHI296A | MRE-54, MRE-11        |

### 2.3 Flight Missions

Twelve (12) missions were conducted to complete the LiDAR Data Acquisition in Casiligan floodplain, for a total of forty-four hours and forty minutes (44+40) of flying time for RP-C9122 and RP-C9322. All missions were acquired using the Aquarius and Gemini LiDAR systems. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

| Elizabet      |        | Elight Plan Surveyed    | Area<br>Surveyed | Area<br>Surveyed                  | No. of                             | Flying<br>Hours    |    |     |
|---------------|--------|-------------------------|------------------|-----------------------------------|------------------------------------|--------------------|----|-----|
| Date Surveyed | Number | Area (km <sup>2</sup> ) | Area (km²)       | within the<br>Floodplain<br>(km²) | Outside the<br>Floodplain<br>(km²) | Images<br>(Frames) | H  | Min |
| 2-Feb-14      | 1054A  | 103.26                  | 90.45            | 36.25                             | 54.19                              | 1093               | 3  | 41  |
| 3-Feb-14      | 1056A  | 118.79                  | 89.97            | 27.81                             | 62.16                              | 1111               | 3  | 41  |
| 3-Feb-14      | 1058A  | 236                     | 100.03           | 37.61                             | 62.42                              | 1016               | 3  | 23  |
| 5-Feb-14      | 1066A  | 117.20                  | 95.19            | 15.80                             | 79.38                              | 1088               | 3  | 35  |
| 6-Feb-14      | 1070A  | 204.55                  | 134.14           | 1.89                              | 132.25                             | 1517               | 4  | 29  |
| 12-Feb-14     | 1092A  | 322.44                  | 225.61           | 44.87                             | 180.73                             | 1176               | 4  | 5   |
| 12-Feb-14     | 1094A  | 103.26                  | 51.18            | 20.55                             | 30.62                              | 500                | 2  | 29  |
| 13-Feb-14     | 1096A  | 101.12                  | 102.83           | 3.83                              | 99.00                              | 571                | 3  | 35  |
| 13-Feb-14     | 1098A  | 248.23                  | 76.86            | 4.40                              | 72.46                              | 909                | 3  | 59  |
| 22-Oct-15     | 8300G  | 251.55                  | 141.96           | 91.94                             | 50.02                              | 430                | 3  | 50  |
| 22-Oct-15     | 8301G  | 436.28                  | 176.03           | 80.18                             | 95.85                              | 776                | 4  | 6   |
| 23-Oct-15     | 8302G  | 366.66                  | 117.20           | 1.59                              | 115.61                             | 443                | 3  | 47  |
| TOTAL         |        | 2609.34                 | 1401.43          | 366.73                            | 1034.70                            | 10630              | 44 | 40  |

Table 9. Flight missions for LiDAR data acquisition in Casiligan floodplain.

| Flight<br>Number | Flying Height<br>(m AGL) | Overlap<br>(%) | FOV<br>(θ) | PRF<br>(khz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|--------------------------|----------------|------------|--------------|---------------------------|---------------------------|-----------------------------------|
| 1054A            | 1100, 650                | 30             | 40         | 70, 50       | 50                        | 130                       | 5                                 |
| 1056A            | 650                      | 30             | 36         | 50           | 50                        | 130                       | 5                                 |
| 1058A            | 650                      | 30             | 36         | 50           | 50                        | 130                       | 5                                 |
| 1066A            | 650                      | 30             | 36         | 50           | 40                        | 130                       | 5                                 |
| 1070A            | 650                      | 30             | 36         | 50           | 40                        | 130                       | 5                                 |
| 1092A            | 650                      | 30             | 36         | 50           | 40                        | 130                       | 5                                 |
| 1094A            | 650                      | 30             | 36         | 50           | 40                        | 130                       | 5                                 |
| 1096A            | 1100                     | 30             | 30         | 33           | 40                        | 130                       | 5                                 |
| 1098A            | 650                      | 30             | 36         | 50           | 50                        | 130                       | 5                                 |
| 8300G            | 1200, 1100               | 30             | 36         | 100          | 50                        | 130                       | 5                                 |
| 8301G            | 1100                     | 30             | 30, 36     | 100          | 50                        | 130                       | 5                                 |
| 8302G            | 1300                     | 30             | 30         | 100          | 50                        | 130                       | 5                                 |

Table 10. Actual parameters used during LiDAR data acquisition

#### 2.4 Survey Coverage

Casiligan floodplain is located in the province of Oriental Mindoro, with majority of the floodplain situated within the municipality of Socorro. Municipalities of Socorro, Pola, Gloria, and Pinamalayan are mostly covered by the survey. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Casiligan floodplain is presented in Figure 5.

Table 11. List of municipalities and cities surveyed during Casiligan floodplain LiDAR survey.

| Province         | Municipality/<br>City | Area of<br>Municipality/City<br>(km²) | Total Area<br>Surveyed<br>(km²) | Percentage of<br>Area Surveyed |
|------------------|-----------------------|---------------------------------------|---------------------------------|--------------------------------|
|                  | Socorro               | 206.05                                | 151.42                          | 73.48%                         |
|                  | Pola                  | 127.04                                | 89.22                           | 70.23%                         |
|                  | Gloria                | 327.28                                | 184.91                          | 56.50%                         |
|                  | Pinamalayan           | 206.87                                | 114.36                          | 55.28%                         |
|                  | Bansud                | 197.00                                | 60.76                           | 30.84%                         |
| Oriental Mindara | Naujan Lake           | 76.11                                 | 11.79                           | 15.49%                         |
|                  | Roxas                 | 90.14                                 | 12.80                           | 14.20%                         |
|                  | Bongabong             | 493.74                                | 56.70                           | 11.48%                         |
|                  | Naujan                | 431.57                                | 48.53                           | 11.24%                         |
|                  | Mansalay              | 477.24                                | 42.10                           | 8.82%                          |
|                  | Victoria              | 216.22                                | 10.56                           | 4.88%                          |
|                  | Bulalacao             | 365.58                                | 5.42                            | 1.48%                          |
| TOTA             | \L                    | 1230.49                               | 625.26                          | 50.81%                         |



Figure 6. Actual LiDAR survey coverage for Casiligan floodplain.

### CHAPTER 3: LIDAR DATA PROCESSING OF THE CASILIGAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Angelo Carlo B. Bongat, Engr. Ma. Ailyn L. Olanda, Engr. Mark Joshua A. Salvacion, Engr. Krishia Marie Bautista, Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 7.



Figure 7.Schematic Diagram for Data Pre-Processing Component

### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Casiligan floodplain can be found in Annex 5. Missions flown during the first survey conducted on February 2014 used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Aquarius system while missions acquired during the second survey on October 2015 were flown using the Gemini system over Pola, Oriental Mindoro.

The Data Acquisition Component (DAC) transferred a total of 132.15 Gigabytes of Range data, 2.138 Gigabytes of POS data, 120 Megabytes of GPS base station data, and 462.46 Gigabytes of raw image data to the data server on February 6, 2014 for the first survey and November 12, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Casiligan was fully transferred on November 12, 2015, as indicated on the Data Transfer Sheets for Casiligan floodplain.

### 3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 1054A, one of the Casiligan flights, which is the North, East, and Down position RMSE values are shown in Figure 8. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 1, 2014 00:00AM. The y-axis is the RMSE value for that particular position.



Figure 8. Smoothed Performance Metric Parameters of a Casiligan Flight 1054A.

The time of flight was from 18300 seconds to 28100 seconds, which corresponds to afternoon of February 1, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 2.60 centimeters, the East position RMSE peaks at 1.50 centimeters, and the Down position RMSE peaks at 5.90 centimeters, which are within the prescribed accuracies described in the methodology.



Figure 9. Solution Status Parameters of Casiligan Flight 1054A.

The Solution Status parameters of flight 1054A, one of the Casiligan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 9. The graphs indicate that the number of satellites during the acquisition. Majority of the time, the number of satellites tracked was between 6 and 8. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Casiligan flights is shown in Figure 10.



Figure 10. The best estimated trajectory of the LiDAR missions conducted over the Casiligan floodplain.

### 3.4 LiDAR Point Cloud Computation

The produced LAS data contains 116 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Casiligan floodplain are given in Table 12.

| Parameter                                                   | Acceptable Value | Value    |
|-------------------------------------------------------------|------------------|----------|
| Boresight Correction stdev)                                 | <0.001degrees    | 0.000424 |
| IMU Attitude Correction Roll and<br>Pitch Correction stdev) | <0.001degrees    | 0.000955 |
| GPS Position Z-correction stdev)                            | <0.01meters      | 0.0019   |

| Table 12. Self-Calibration Results values for Casiligan | flights. |
|---------------------------------------------------------|----------|
|---------------------------------------------------------|----------|

The optimum accuracy is obtained for all Casiligan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

### 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Casiligan Floodplain is shown in Figure 11. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 11. Boundary of the processed LiDAR data over Casiligan Floodplain

The total area covered by the Casiligan missions is 688.64 sq.km that is comprised of ten (10) flight acquisitions grouped and merged into eleven (11) blocks as shown in Table 13.

| LiDAR Blocks                         | Flight Numbers | Area (sq. km) |
|--------------------------------------|----------------|---------------|
| OrientalMindoro_Blk28A_supplement    | 1092A          | 60.86         |
| OrientalMindoro_Blk28B               | 1054A          | 75.67         |
| OrientalMindoro_Blk28B_supplement    | 1094A          | 48.08         |
| Oriental Mindoro_Blk 28Bs_additional | 1098A          | 11.67         |
| OrientalMindoro_Blk28C               | 1056A          | 29.65         |
| OrientalMindoro_Blk28D               | 1058A          | 68.57         |
| Oriental Mindoro_Blk28D_supplement   | 1066A          | 90.29         |
| OrientalMindoro_Reflights_Blk28A     | 8300G          | 81.71         |
| OrientalMindoro_Reflights_Blk28A_    | 8300G          | 29 57         |
| supplement                           | 8302G          | 38.57         |
| Oriental Minders Deflights DIK29D    | 8301G          | 74.40         |
| Onentalivindoro_Rellights_Bik28B     | 8300G          | 74.40         |
| OrientalMindoro_Reflights_Blk28D     | 8301G          | 109.17        |
| TOTAL                                |                | 688.64 sq.km  |

Table 13. List of LiDAR blocks for Casiligan floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 12. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 12. Image of data overlap for Casiligan floodplain.

The overlap statistics per block for the Casiligan floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 31.26% and 65.39% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 13. It was determined that all LiDAR data for Casiligan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.442 points per square meter.



Figure 13. Density map of merged LiDAR data for Casiligan floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 14. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.



Figure 14. Elevation difference map between flight lines for Casiligan floodplain.

A screen capture of the processed LAS data from a Casiligan flight 1054A loaded in QT Modeler is shown in Figure 15. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.



Figure 15. Quality checking for a Casiligan flight 1054A using the Profile Tool of QT Modeler.

### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 357,009,765            |
| Low Vegetation    | 444,662,437            |
| Medium Vegetation | 574,660,953            |
| High Vegetation   | 935,427,708            |
| Building          | 27,973,763             |

| Fable 14. Casiligar | classification | results in | TerraScan. |
|---------------------|----------------|------------|------------|
|---------------------|----------------|------------|------------|

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Casiligan floodplain is shown in Figure 16. A total of 1,203 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 673.05 meters and 45.57 meters respectively.



Figure 16. Tiles for Casiligan floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 17. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.



Figure 17. Point cloud before (a) and after (b) classification.

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 18. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.



Figure 18. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Casiligan floodplain.

### 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,044 1km by 1km tiles area covered by Casiligan floodplain is shown in Figure 19. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Casiligan floodplain survey attained a total of 382.36 km2 in orthophotogaph coverage, comprised of 3,793 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 20.



Figure 19. Casiligan floodplain with available orthophotographs.



Figure 20. Sample orthophotograph tiles for Casiligan floodplain.
# 3.8 DEM Editing and Hydro-Correction

Eleven (11) mission blocks were processed for Casiligan flood plain. These blocks are composed of OrientalMindoro and OrientalMindoro\_reflights blocks with a total area of 688.64 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

| LiDAR Blocks                                    | Area (sq.km) |
|-------------------------------------------------|--------------|
| OrientalMindoro_Blk28A_supplement               | 60.86        |
| OrientalMindoro_Blk28B                          | 75.67        |
| OrientalMindoro_Blk28B supplement               | 48.08        |
| Oriental Mindoro_Blk 28Bs_additional            | 11.67        |
| OrientalMindoro_Blk28C                          | 29.65        |
| OrientalMindoro_Blk28D                          | 68.57        |
| OrientalMindoro_Blk28D_supplement               | 90.29        |
| OrientalMindoro_Reflights_Blk28A                | 81.71        |
| OrientalMindoro_Reflights_Blk28A_<br>supplement | 38.57        |
| OrientalMindoro_Reflights_Blk28B                | 74.40        |
| OrientalMindoro_Reflights_Blk28D                | 109.17       |
| TOTAL                                           | 688.64 sq.km |

| Table 15. | LiDAR | blocks | with | its | correspond | ling area. |  |
|-----------|-------|--------|------|-----|------------|------------|--|
|           |       |        |      |     | 1          | 0          |  |

Portions of DTM before and after manual editing are shown in Figure 21. The bridge (Figure 21a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 21b) in order to hydrologically correct the river. The pit (Figure 21c) has been misclassified and removed during classification process and has to be interpolated to complete the surface (Figure 21d) to allow the correct flow of water. Another example is a building that is still present in the DTM after classification (Figure 21e) and has to be removed through manual editing (Figure 21f).



Figure 21. Portions in the DTM of Casiligan floodplain – a bridge before (a) and after (b) manual editing; a pit before (c) and after (d) interpolation; and a building before (e) and after (f) manual editing.

### 3.9 Mosaicking of Blocks

OrientalMindoro\_Blk29M was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Casiligan floodplain is shown in Figure 22. The entire Casiligan flood plain is 86.26% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

|                                        | Sł    | Shift Values (meters) |       |  |  |  |
|----------------------------------------|-------|-----------------------|-------|--|--|--|
| Wission Blocks                         | х     | у                     | z     |  |  |  |
| OrientalMindoro_Blk28A_supplement      | 0.00  | 0.00                  | 0.94  |  |  |  |
| OrientalMindoro_Blk28B                 | 0.00  | 0.00                  | 0.90  |  |  |  |
| OrientalMindoro_Blk28B_supplement      | 0.00  | 0.00                  | 0.68  |  |  |  |
| Oriental Mindoro_Blk 28Bs_additional   | 0.00  | 0.00                  | 0.68  |  |  |  |
| OrientalMindoro_Blk28C                 | 0.00  | 0.00                  | 0.68  |  |  |  |
| OrientalMindoro_Blk28C_supplement      | -0.17 | 0.00                  | 0.68  |  |  |  |
| OrientalMindoro_Blk28D                 | 0.00  | 0.00                  | 0.75  |  |  |  |
| Oriental Mindoro_Blk28D_supplement     | 0.00  | 0.00                  | 0.92  |  |  |  |
| OrientalMindoro_Reflight28A            | 0.00  | 0.00                  | 0.04  |  |  |  |
| OrientalMindoro_Reflight28A_supplement | 0.00  | 0.00                  | 0.00  |  |  |  |
| OrientalMindoro_Reflight28B            | 0.00  | 0.00                  | 0.00  |  |  |  |
| OrientalMindoro_Reflight28D            | 0.00  | 0.00                  | -0.12 |  |  |  |

### Table 16. Shift Values of each LiDAR Block of Casiligan floodplain



Figure 22. Map of Processed LiDAR Data for Casiligan Flood Plain.

### 3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Casiligan to collect points with which the LiDAR dataset is validated is shown in Figure 23. A total of 19,114 survey points were used for calibration and validation of Casiligan LiDAR data. Random selection of 80% of the survey points, resulting to 15,291 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.60 meters with a standard deviation of 0.17 meters. Calibration of Casiligan LiDAR data was done by subtracting the height difference value, 2.60 meters, to Casiligan mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between LiDAR data and calibration data.



Figure 23. Map of Casiligan Flood Plain with validation survey points in green.



Figure 24. Correlation plot between calibration survey points and LiDAR data.

| Calibration Statistical Measures | Value (meters) |  |
|----------------------------------|----------------|--|
| Height Difference                | 2.60           |  |
| Standard Deviation               | 0.17           |  |
| Average                          | -2.59          |  |
| Minimum                          | -3.03          |  |
| Maximum                          | -1.70          |  |

Table 17. Calibration Statistical Measures.

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 469 points. These were used for the validation of calibrated Casiligan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.10 meters with a standard deviation of 0.10 meters, as shown in Table 18.



Figure 25. Correlation plot between validation survey points and LiDAR data.

| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.10           |
| Standard Deviation              | 0.10           |
| Average                         | -0.02          |
| Minimum                         | -0.29          |
| Maximum                         | 0.45           |

| res. |
|------|
|      |

### 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Casiligan with 4,510 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barrier method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.49 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Casiligan integrated with the processed LiDAR DEM is shown in Figure 26.



Figure 26. Map of Casiligan Flood Plain with bathymetric survey points shown in blue.

### 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

### 3.12.1 Quality Checking of Digitized Features' Boundary

Abra floodplain, including its 200 m buffer, has a total area of 776.76 sq km. For this area, a total of 24.0 sq km, corresponding to a total of 5,893 building features, are considered for QC. Figure 28 shows the QC blocks for Abra floodplain.



Figure 28. Blocks (in blue) of Abra building features that was subjected to QC.

Quality checking of Abra building features resulted in the ratings shown in Table 20.

Table 20. Details of the quality checking ratings for the building features extracted for the Abra River Basin

| FLOODPLAIN | COMPLETENESS | CORRECTNESS | QUALITY | REMARKS |
|------------|--------------|-------------|---------|---------|
| Abra       | 99.44        | 99.98       | 97.30   | PASSED  |

### 3.12.2 Height Extraction

Height extraction was done for 51,234 building features in Abra floodplain. Of these building features, 843 were filtered out after height extraction, resulting to 50,391 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 14.87 meters.

### 3.12.3 Feature Attribution

Data collected from various sources which includes OpenStreetMap and Google Maps/Earth were used in the attribution of building features. Areas where there is no available data were subjected for field attribution using ESRI's Collector App. The app can be accessed offline and data collected can be synced to ArcGIS Online when WiFi or mobile data is available.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 49,140          |
| School                                  | 749             |
| Market                                  | 37              |
| Agricultural/Agro-Industrial Facilities | 4               |
| Medical Institutions                    | 38              |
| Barangay Hall                           | 6               |
| Military Institution                    | 0               |
| Sports Center/Gymnasium/Covered Court   | 11              |
| Telecommunication Facilities            | 2               |
| Transport Terminal                      | 16              |
| Warehouse                               | 3               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 1               |
| Police Station                          | 3               |
| Water Supply/Sewerage                   | 0               |
| Religious Institutions                  | 56              |
| Bank                                    | 10              |
| Factory                                 | 32              |
| Gas Station                             | 23              |
| Fire Station                            | 2               |
| Other Government Offices                | 51              |
| Other Commercial Establishments         | 207             |
| Total                                   | 50,391          |

Table 21. Building features extracted for Abra Floodplain.

Table 22. Total length of extracted roads for Abra Floodplain.

| Floodplain | Road Network Length (km)                             |        |       |               | Total  |        |
|------------|------------------------------------------------------|--------|-------|---------------|--------|--------|
|            | Barangay City/Municipal Provincial<br>Road Road Road |        |       | National Road | Others |        |
| Abra       | 382.5                                                | 225.68 | 12.17 | 100.03        | 0.00   | 720.38 |

| Floodplain | Water Body Type                             |     |   |   |   |     |
|------------|---------------------------------------------|-----|---|---|---|-----|
|            | Rivers/Streams Lakes/Ponds Sea Dam Fish Pen |     |   |   |   |     |
| Abra       | 147                                         | 164 | 0 | 0 | 0 | 311 |

A total of 25 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

## 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the completed Digital Surface Model (DSM) of the Abra floodplain overlaid with its ground features.



Figure 29. Extracted features of the Abra Floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE CASILIGAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, Engr. Lorenz R. Taguse

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

### 4.1 Summary of Activities

The project team conducted a field survey in Casiligan River on May 30 to June 11, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; ground validation data acquisition of about 15.41 km; and bathymetric survey from Brgy. Casiligan to Brgy. Batuhan in the Municipality of Pola, Oriental Mindoro with an approximate length of 3.77 km. A follow up survey commenced from October 27, 2014 to November 3, 2014 with the following activities: courtesy call to the LGU of Socorro and University of the Philippines Los Baños as partner SUC assigned in Casiligan River; bridge as-built and water level marking of Pola Bridge in Brgy. Casiligan, Municipality of Pola, Oriental Mindoro .

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 27. Extent of the bathymetric survey (light blue line) in Casiligan River and the LiDAR data validation survey (red)

## 4.2 Control Survey

A GNSS network was established for previous PHIL-LiDAR fieldwork in Mindoro on February 28 – March 11, 2013 occupying MR-178, a first-order BM located at the approach of Panggalaan Bridge in Brgy. Bucayao, Calapan City, Oriental Mindoro; and MRE-32, a second order GCP in Brgy. Poblacion 1, Mun. of Victoria, Oriental Mindoro.

The GNSS network used for Pola River Basin is composed of two (2) loops and four (4) baselines established on May 30 and May 31, 2014 occupying the reference point MRE-32, a second-order GCP fixed from the previous field survey in Mindoro Oriental for Mag Asawang Tubig river.

Three (3) control points were established namely: ORM-1, located in Subaan Bridge in Barangay Subaan, Municipality of Socorro; ORM-4 in Pola Bridge, Brgy. Casiligan, Municipality of Pola; and SUB-01, located within the Maramot Residence in Brgy. Subaan, Municipality of Socorro. An LMS-established control point namely MRE-4650, located at Bansud Bridge, Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro was also occupied to use as marker in the survey.

The summary of references and control points and its location is summarized in Table 19 while the GNSS network established is illustrated in Figure 28.



Figure 28. GNSS Network of Pola River field survey

| Control Orde<br>Point Accu | Order of          | Geographic Coordinates (WGS 84) |                  |                           |                         |                     |  |
|----------------------------|-------------------|---------------------------------|------------------|---------------------------|-------------------------|---------------------|--|
|                            | Accuracy          | Latitude                        | Longitude        | Ellipsoidal<br>Height (m) | Elevation<br>in MSL (m) | Date<br>Established |  |
| MRE-32                     | 2nd order,<br>GCP | 13°10'23.79251"                 | 121°16'43.46244" | 65.638                    | 17.175                  | 2007                |  |
| ORM-1                      | UP<br>Established | -                               | -                | -                         | -                       | 5-30-2014           |  |
| ORM-4                      | UP<br>Established | -                               | -                | -                         | -                       | 5-31-2014           |  |
| SUB-01                     | UP<br>Established | -                               | -                | -                         | -                       | 5-31-2014           |  |

### Table 19. List of reference and control points occupied in Casiligan River (Pola) survey

The GNSS setup in the recovered reference point, MRE-32; and control points, SUB-1, ORM-1 and ORM-4 are shown in Figure 29 to Figure 32.



Figure 29. GNSS receiver Trimble® SPS 882 setup at MRE-32, located in the Municipal Park of Victoria, in front of the statue of the former Mayor Alfredo G. Ortega Sr., Oriental Mindoro



Figure 30. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro



Figure 31. GNSS receiver Trimble® SPS 852 setup at ORM-1, located at Subaan Bridge in Barangay Subaan, Municipality of Socorro, Oriental Mindoro



Figure 32. GNSS receiver Trimble® SPS 852 setup at ORM-4, located at the right side of the approach of Pola Bridge in Barangay Casiligan, Municipality of Pola

# 4.3 Baseline Processing

The GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points used in Pola River Basin survey is summarized in Table 20 generated by TBC software.

| Observation   | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) V. Prec.<br>(Meter) |       | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
|---------------|------------------------|------------------|-----------------------------------------|-------|-----------------|-------------------------------|--------------------|
| ORM-1 SUB-01  | 05-30-2014             | Fixed            | 0.004                                   | 0.006 | 301°40'27"      | 1466.251                      | 4.823              |
| SUB-01 MRE-32 | 05-30-2014             | Fixed            | 0.010                                   | 0.031 | 318°11'52"      | 15342.18                      | -9.283             |
| SUB-01 ORM-4  | 6-1-2014               | Fixed            | 0.003                                   | 0.022 | 48°43'17"       | 7475.934                      | -19.149            |
| ORM-1 MRE 32  | 05-30-2014             | Fixed            | 0.010                                   | 0.032 | 319°54'33"      | 13942.72                      | -14.146            |

Table 20. Baseline processing report for Pola River Basin control survey

As shown in Table 20, a total of four (4) baselines were processed and all of them passed the required accuracy set by the project.

### 4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

 $\sqrt{((x_e)^2 + (y_e)^2)}$  <20cm and  $z_e < 10 \text{ cm}$ where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

The four control points, MRE-32, ORM-1, ORM-4 and SUB-01 were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of MRE-32 were held fixed during the processing of the control points as presented in Table 21. Through these reference points, the coordinates and elevation of the unknown control points were computed.

### Table 21. Control Point Constraints

| Point ID                 | Point ID Type |       | East σ North σ<br>(Meter) (Meter) |       | Elevation σ<br>(Meter) |  |  |  |  |
|--------------------------|---------------|-------|-----------------------------------|-------|------------------------|--|--|--|--|
| MRE-32                   | Grid          | Fixed | Fixed                             | Fixed | Fixed                  |  |  |  |  |
| Fixed = 0.000001 (Meter) |               |       |                                   |       |                        |  |  |  |  |

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 22. All fixed control points have no values for grid and elevation errors.

| Point ID | Easting<br>(Meter) | Easting<br>Error (Meter) |             | Northing<br>Error<br>(Meter) |        | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|--------------------------|-------------|------------------------------|--------|-------------------------------|------------|
| MRE-32   | 313449.201         | ?                        | 1456936.499 | ?                            | 17.175 | ?                             | ENe        |
| ORM-1    | 322358.982         | 0.007                    | 1446211.774 | 0.003                        | 30.565 | 0.028                         |            |
| SUB-01   | 323601.847         | 0.007                    | 1445433.872 | 0.003                        | 25.687 | 0.028                         |            |

### Table 22. Adjusted Grid Coordinates

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 23. Using the equation  $\sqrt{((x_e)^2+(y_e)^2)}<20cm$  for horizontal accuracy, and  $z_e<10cm$  for the vertical; below is the computation for accuracy that passed the required precision:

| а. | <b>MRE-32</b><br>Horizontal Accuracy<br>Vertical Accuracy | =<br>= | Fixed<br>Fixed               |
|----|-----------------------------------------------------------|--------|------------------------------|
| b. | ORM-1                                                     |        |                              |
|    | Horizontal Accuracy                                       | =      | $\sqrt{((0.7)^2 + (0.3)^2)}$ |
|    |                                                           | =      | √ (0.49 + 0.90)              |
|    |                                                           | =      | 1.2 cm < 20 cm               |
|    | Vertical Accuracy                                         | =      | 2.8 cm < 10 cm               |
| c. | SUB-01                                                    |        |                              |
|    | Horizontal Accuracy                                       | =      | $\sqrt{((0.7)^2 + (0.3)^2)}$ |
|    |                                                           | =      | √ (0.49 + 0.90)              |
|    |                                                           | =      | 1.2 cm < 20 cm               |
|    | Vertical Accuracy                                         | =      | 2.8 cm < 10 cm               |

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required accuracy of the project.

| Point ID | Latitude         | Longitude         | Ellipsoid | Height | Constraint |
|----------|------------------|-------------------|-----------|--------|------------|
| MRE-32   | N13°10'23.79251" | E121°16'43.46244" | 65.368    | ?      | ENe        |
| ORM-1    | N13°04'36.74731" | E121°21'41.63863" | 79.500    | 0.028  |            |
| SUB-01   | N13°04'11.69491" | E121°22'23.06063" | 74.676    | 0.028  |            |

Table 24. List of references and control points used in Pola (Casiligan) River Survey (Source: NAMRIA and UP-TCAGP)

| Control<br>Point |                      | Geographic Coordinates (WGS 84) |                  |                           |              |             |              |  |  |  |
|------------------|----------------------|---------------------------------|------------------|---------------------------|--------------|-------------|--------------|--|--|--|
|                  | Order of<br>Accuracy | Latitude                        | Longitude        | Ellipsoidal<br>Height (m) | Northing (m) | Easting (m) | BM Ortho (m) |  |  |  |
| MRE-32           | 2nd Order,<br>GCP    | 13°10'23.79251"                 | 121°16'43.46244" | 65.368                    | 1456936.499  | 313449.201  | 17.175       |  |  |  |
| ORM-1            | UP Established       | 13°04'36.74731"                 | 121°21'41.63863" | 79.5                      | 1446211.774  | 322358.982  | 30.565       |  |  |  |
| ORM-4            | UP Established       | 13°06'52.16736"                 | 121°25'29.58456" | 55.523                    | 1450329.531  | 329251.554  | 6.585        |  |  |  |
| SUB-01           | UP Established       | 13°04'11.69491"                 | 121°22'23.06063" | 74.676                    | 1445433.872  | 323601.847  | 25.687       |  |  |  |

### 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on June 9, 2014 at the ustream side of Pola Bride in Brgy. Casiligan, Municipality of Pola, Oriental Mindoro using a GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique as shown in Figure 33.



Figure 33. (a) Span of Pola Bridge from the upstream and (b) cross-section survey at Pola Bridge, Brgy. Casiligan, Municipality of Pola, Oriental Mindoro

The cross-sectional line length in Pola Bridge is about 84.02 m with 20 cross-sectional points acquired using ORM-4 as the GNSS base station for this survey. The summary of gathered cross-section, its location map, and as-built data for Pola Bridge are indicated in Figure 34 to Figure 36.



47



| Bridge I                                               | Name: _          | POLA BRIDGE                  |                    |              | Date:                            | Octob                                  | er 31, 2014                     |                                   |
|--------------------------------------------------------|------------------|------------------------------|--------------------|--------------|----------------------------------|----------------------------------------|---------------------------------|-----------------------------------|
| River Na                                               | ame:             | POLA RIVER                   |                    |              | Time:                            | 4:30                                   | pm                              |                                   |
| Location                                               | n (Brgy,         | City,Region): Brgy. Casiliga | in, Municipa       | ality of f   | Pola, Orienta                    | I Mindor                               | 0,                              |                                   |
| Survey 1                                               | Team:            | Team Bernard                 |                    |              |                                  |                                        |                                 |                                   |
| Flow co                                                | ndition:         | low normal                   | ) high             | Weath        | er Condition                     | : (fa                                  | ir rainy                        |                                   |
| Latitude                                               | e:               | 13d06'52.16724" N            | _ Lo               | ongitud      | e:                               | 121d25'2                               | 29.58420" E                     |                                   |
|                                                        |                  |                              |                    |              |                                  |                                        |                                 |                                   |
| BA1                                                    | BAZ              |                              | 0,                 | CBA3         | BA4                              | rgendt<br>A = Bridge Ar<br>b = Abutmer | pproach P = Pier<br>Nt D = Deck | LC + Low Chord<br>HC + High Chord |
|                                                        | 44               |                              | <u> </u>           | 1.2          |                                  |                                        |                                 |                                   |
|                                                        | AD               | P                            |                    | H            |                                  |                                        |                                 |                                   |
|                                                        |                  | Deck(Please start your me    | asurement from     | the left sk  | de of the bank fa                | cing downs                             | tream)                          |                                   |
| Elevation6.6572 Width:8.50 cm Span (BA3-BA2):34.033 LC |                  |                              |                    |              |                                  |                                        |                                 |                                   |
|                                                        | Station          |                              |                    |              | Chord Eleva                      | tion                                   | Low Cho                         | rd Elevation                      |
| 1                                                      |                  |                              |                    |              | 5.031 m                          |                                        | 6.9                             | 933 m                             |
| 2                                                      |                  |                              |                    |              |                                  |                                        |                                 |                                   |
| 3                                                      |                  |                              |                    |              |                                  |                                        |                                 |                                   |
| 4                                                      |                  |                              |                    |              |                                  |                                        |                                 |                                   |
|                                                        |                  | Bridge Approach (Here)       | fart your measurem | est from the | left side of the basis           | facing downs                           | a manufi                        |                                   |
|                                                        | Sta              | tion(Distance from BA1)      | Elevation          |              | Station(Di                       | stance                                 | from BA1)                       | Elevation                         |
| BA                                                     | 1                | 0                            | 4.309 m            | BA3          |                                  | 60.878                                 |                                 | 6.694 m                           |
| BA                                                     | 2                | 27.590                       | 6.923 m            | BA4          | 1                                | 147.382                                |                                 | 2.782 m                           |
| Abutme                                                 | ent: Is          | the abutment sloping? (      | Yes No;            | If yes       | , fill in the fol                | iowing in                              | formation:                      |                                   |
|                                                        |                  | Station(Di                   | stance from        | n BA1)       |                                  |                                        | Elevatio                        | n                                 |
| L                                                      | Ab1              |                              | 33.038             |              |                                  |                                        | 3.503 n                         | n                                 |
|                                                        | Ab2              |                              | 57.063             |              |                                  |                                        | 1.093 m                         | n                                 |
| s                                                      | hape: <u>RE</u>  | Pier (Please start your mee  | Piers:2            | the left si  | de of the bankfa<br>Height of co | cing downs<br>lumn foo                 | ting:                           |                                   |
|                                                        |                  | Station (Distance from       | n BA1)             | Elevation    |                                  |                                        | Pier \                          | Width                             |
| Pier                                                   | r 1              | 29.76869                     |                    | 6.932 m      |                                  |                                        |                                 |                                   |
| Pier                                                   | r 2              | 58.26116                     |                    |              | 6.652 m                          | _                                      |                                 |                                   |
| Pier                                                   | * 4              |                              |                    |              |                                  | +                                      |                                 |                                   |
| Pier 4                                                 |                  |                              |                    |              |                                  | +                                      |                                 |                                   |
| Pier                                                   | Pier 5<br>Pier 6 |                              |                    |              |                                  | +                                      |                                 |                                   |
| Pie                                                    | Pier 6           |                              |                    |              |                                  |                                        |                                 |                                   |
| Pie<br>Pier<br>Pier                                    | r 6<br>r 7       |                              |                    |              |                                  |                                        |                                 |                                   |

Figure 36. Pola Bridge Data Form



Figure 37. Water Marking at Pola Bridge



Figure 38. Marking of the pier at Pola Bridge

Water surface elevation of Pola River was determined using a Trimble<sup>®</sup> SPS 882 in PPK mode survey on June 9, 2014 at 4:21 PM at Pola Bridge. The elevation that was referred to MSL was at 0.343 m. The water surface elevation was then translated onto marking the bridge's pier thru Digital Level. The marked pier will serve as reference for flow data gathering and depth gauge deployment by the accompanying SUC, University of the Philippines Los Baños, who is responsible for monitoring Casiligan River.

### 4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 31, 2014 using a survey-grade GNSS Rover receiver, Trimble® SPS 882, mounted on a pole which was attached in front of the vehicle as shown in Figure 39. It was secured with a cable tie to ensure that it was horizontally and vertically balanced. The antenna height was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The antenna height is 1.498 m from the ground. The survey was conducted using PPK technique on a continuous topography mode.



Figure 39. Validation points acquisition survey setup by the survey team: A Trimble® SPS 882 is mounted in a 2 m pole and attached in front of the vehicle

The survey acquired 1,415 validation points with an approximate length of 15.41 km as shown in the map in Figure 40. The activity started from the Municipality of Socorro to the Municipality of Pola traversing the main national high way and the control point SUB-01 served as the GNSS base station for the survey,



Figure 40. Validation points acquisition survey along Pola River Basin

### 4.7 River Bathymetric Survey

Bathymetric survey was done on June 9, 2014 using Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique and an Ohmex<sup>™</sup> Single Beam Echosounder attached to a boat as shown in Figure 41. The survey started in the upstream part of the river in Brgy. Casiligan, Municipality of Pola with coordinates 13°06'45.58405" 121°25'35.35263", down to the mouth of the river in Brgy. Batuhan, also in Pola with coordinates 13°08'29.24420" 121°26'32.48795". The control point ORM-4 was occupied as the GNSS base station all throughout the survey.



Figure 41. Bathymetric survey setup in a banca with "katig" on the sides in Casiligan-Pola River

The bathymetric survey gathered about 9.3 km of bathymetry line with 4,483 points covering four barangays in Municipality of Pola namely: Panikihan, Batuhan and Poblacion, as shown in Figure 42. A CAD drawing was also produced to illustrate the Pola riverbed profile, as shown in Figure 43. An elevation drop of 0.50 m was observed within the approximate distance of 9.31 km.







# Pola (Casiligan) Riverbed Profile

# CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A.Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

### 5.1 Data Used for Hydrologic Modeling

No gathered rainfall data for Casiligan river basin. The HMS model is not calibrated. The values generated HMS model are by default.

### 5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Tayabas Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station chosen based on its proximity to the Casiligan watershed. The extreme values for this watershed were computed based on a 41-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |  |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|--|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |  |
| 2                                                | 21      | 32.7    | 42      | 59.3  | 83    | 99.9  | 128.2 | 161.5  | 195.9  |  |
| 5                                                | 29.6    | 42.1    | 52.5    | 77.3  | 116.1 | 143   | 192.6 | 232.3  | 279.5  |  |
| 10                                               | 35.4    | 48.3    | 59.4    | 89.2  | 138   | 171.5 | 235.2 | 279.3  | 334.9  |  |
| 15                                               | 38.6    | 51.8    | 63.3    | 96    | 150.3 | 187.6 | 259.3 | 305.7  | 366.1  |  |
| 20                                               | 40.9    | 54.3    | 66.1    | 100.7 | 159   | 198.9 | 276.1 | 324.3  | 388    |  |
| 25                                               | 42.6    | 56.2    | 68.2    | 104.3 | 165.7 | 207.5 | 289.1 | 338.5  | 404.8  |  |
| 50                                               | 48      | 62      | 74.7    | 115.5 | 186.2 | 234.3 | 329.1 | 382.5  | 456.7  |  |
| 100                                              | 53.4    | 67.8    | 81.1    | 126.6 | 206.6 | 260.8 | 368.8 | 426.2  | 508.3  |  |

Table 25. RIDF values for Tayabas Rain Gauge computed by PAGASA



Figure 44. Location of Puerto Princesa RIDF relative to Casiligan River Basin



Figure 45. Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods

# 5.3 HMS Model

The soil shape file (dated pre-2004) was taken from the Bureau of Soils and Water Management under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil map and the land cover map can be found in Figures 46 and Annex 47, respectively.



Figure 46. The soil map of the Casiligan River Basin used for the estimation of the CN parameter. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)



Figure 47. The land cover map of the Casiligan River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source of data: NAMRIA)



Figure 48. Slope Map of the Casiligan River Basin


Figure 49. Stream Delineation Map of the Casiligan River Basin

Using SAR-based DEM, the Casiligan basin was delineated and further subdivided into subbasins. The model consists of 51 sub basins, 25 reaches, and 24 junctions. The main outlet is labelled as Casiligan\_ outlet. This basin model is illustrated in Figure 50. The basins were identified based on soil and land cover characteristics of the area.



Figure 50. The Casiligan river basin model generated using HEC-HMS

### 5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

#### 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.



Figure 61. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 100.06329 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Tineg are in Figure 68, 70, and 72.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63 792 800.00 m2. The generated flood depth maps for Tineg are in Figure 69, 71, and 73.

There is a total of 465 228 177.98 m3 of water entering the model. Of this amount, 25 253 779.51 m3 is due to rainfall while 439 974 398.47 m3 is inflow from other areas outside the model. 11 329 565.00 m3 of this water is lost to infiltration and interception, while 24 641 579.81 m3 is stored by the flood plain. The rest, amounting up to 429 257 024.59 m3, is outflow.

#### 5.6 Results of HMS Calibration

Enumerated in Table 26 are the range of values of the parameters in the model (see also Annex 9: Casiligan Model Basin Parameters).

| Hydrologic<br>Element | Calculation Type | Method     | Parameter                        | Range of<br>Calibrated Values |
|-----------------------|------------------|------------|----------------------------------|-------------------------------|
|                       | Loss             | SCS Curve  | Initial Abstraction<br>(mm)      | 0.7 - 14                      |
|                       | LOSS             | number     | Curve Number                     | 35 - 83                       |
| Basin                 | Transform        | Clark Unit | Time of<br>Concentration<br>(hr) | 0.3 - 25                      |
|                       |                  | Hydrograph | Storage<br>Coefficient (hr)      | 0.03 - 6                      |

| Table 26. Range | of Values fo | r Casiligan |
|-----------------|--------------|-------------|
|-----------------|--------------|-------------|

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.7 to 14mm means that there is minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 35 to 83 for curve number is lower than the advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.3 hours to 25 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

# 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

#### 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Casiligan River using the calibrated HMS base flow is shown in Figure 52.



Figure 52. Sample output of Casiligan RAS Model

### 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Casiligan floodplain are shown in Figure 17 to 21. The floodplain, with an area of 264.29 sq. km., covers four municipalities namely Gloria, Pinamalayan, Pola, and Socorro. Table 27 shows the percentage of area affected by flooding per municipality.

| Municipality | Total Area | Area Flooded | % Flooded |
|--------------|------------|--------------|-----------|
| Gloria       | 327.28     | 10.17        | 3.11%     |
| Pinamalayan  | 206.87     | 96.65        | 46.72%    |
| Pola         | 127.04     | 58.76        | 46.26%    |
| Socorro      | 206.06     | 98.147       | 47.63%    |

Table 27. Municipalities affected by flooding in Casiligan floodplain





Figure 54. 100-year Flow Depth Map for Casiligan Floodplain









# 5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Casiligan river basin, grouped by municipality, are listed below. For the said basin, four municipalities consisting of 62 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 2.71% of the municipality of Gloria with an area of 327.28 sq. km. will experience flood levels of less 0.20 meters. 0.15% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.07%, 0.02%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 28 are the affected areas in square kilometres by flood depth per barangay.

| Affected area | Area of affe | ected barangays in | Gloria (in sq. km.) |
|---------------|--------------|--------------------|---------------------|
| depth (in m.) | Agos         | Buong Lupa         | Malamig             |
| 0.03-0.20     | 0.58         | 3.55               | 4.75                |
| 0.21-0.50     | 0.059        | 0.17               | 0.25                |
| 0.51-1.00     | 0.078        | 0.12               | 0.31                |
| 1.01-2.00     | 0.035        | 0.03               | 0.17                |
| 2.01-5.00     | 0.0002       | 0.016              | 0.042               |
| > 5.00        | 0            | 0.0022             | 0.0001              |

Table 28. Affected Areas in Gloria, Oriental Mindoro during 5-Year Rainfall Return Period



Figure 59. Affected Areas in Gloria, Oriental Mindoro during 5-Year Rainfall Return Period

For the municipality of Pinamalayan, with an area of 206.87 sq. km., 32.77% will experience flood levels of less 0.20 meters. 6.01% of the area will experience flood levels of 0.21 to 0.50 meters while 3.63%, 2.57%, 1.70%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 29-30 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area                       |         |          |          | Area of | affected b | arangays ir | n Pinamala | ıyan (in sq. kr | ('u       |         |                   |          |            |
|----------------------------------------|---------|----------|----------|---------|------------|-------------|------------|-----------------|-----------|---------|-------------------|----------|------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Anoling | Bacungan | Bangbang | Buli    | Cacawan    | Calingag    | Inclanay   | Maliangcog      | Maningcol | Marayos | Marfrancis-<br>co | Nabuslot | Pagalagala |
| 0.03-0.20                              | 0.96    | 1.11     | 2.48     | 0.61    | 0.02       | 4.93        | 2.88       | 3.59            | 0.62      | 4.27    | 3.4               | 6.14     | 4.45       |
| 0.21-0.50                              | 0.029   | 0.25     | 0.6      | 0.011   | 0          | 0.9         | 0.47       | 0.58            | 0.054     | 0.25    | 0.62              | 1.72     | 1.28       |
| 0.51-1.00                              | 0.019   | 0.39     | 0.2      | 0.0018  | 0          | 0.36        | 0.44       | 0.22            | 0.031     | 0.38    | 0.29              | 0.3      | 0.7        |
| 1.01-2.00                              | 0.0093  | 0.19     | 0.11     | 0.0004  | 0          | 0.15        | 0.63       | 0.24            | 0.0013    | 0.52    | 0.089             | 0.1      | 0.24       |
| 2.01-5.00                              | 0.0013  | 0.0015   | 0.05     | 0.0013  | 0          | 0.024       | 0.54       | 0.25            | 0         | 0.27    | 0.0028            | 0.028    | 0.21       |
| > 5.00                                 | 0       | 0.0014   | 0.0052   | 0.0009  | 0          | 0           | 0          | 0.0044          | 0         | 0       | 0                 | 0        | 0.0068     |

Table 29. Affected Areas in Pinamalayan, Oriental Mindoro during 5-Year Rainfall Return Period

Table 30. Affected Areas in Pinamalayan, Oriental Mindoro during 5-Year Rainfall Return Period

| Affected<br>area                       |         |                    |                   | Ar          | ea of affected l | barangays | in Pinama      | layan (in sq. k | (iu           |           |            |       |            |
|----------------------------------------|---------|--------------------|-------------------|-------------|------------------|-----------|----------------|-----------------|---------------|-----------|------------|-------|------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Palayan | Pambisan<br>Malaki | Pambisan<br>Munti | Panggulayan | Papandayan       | Sabang    | Santa<br>Maria | Santa Rita      | Santo<br>Niño | Zone<br>I | Zone<br>II | Zone  | Zone<br>IV |
| 0.03-0.20                              | 3.57    | 6.58               | 3.46              | 3.66        | 0.54             | 9.05      | 1.77           | 0.4             | 0.98          | 0.82      | 0.46       | 0.49  | 0.55       |
| 0.21-0.50                              | 1.12    | 1.08               | 0.33              | 0.76        | 0.079            | 0.38      | 0.81           | 0.013           | 0.25          | 0.29      | 0.29       | 0.096 | 0.18       |
| 0.51-1.00                              | 0.48    | 0.55               | 0.52              | 0.48        | 0.0025           | 0.47      | 0.42           | 0.0097          | 0.3           | 0.29      | 0.37       | 0.099 | 0.18       |
| 1.01-2.00                              | 0.097   | 0.66               | 0.63              | 0.13        | 0                | 0.84      | 0.44           | 0.005           | 0.11          | 0.032     | 0.033      | 0.041 | 0.024      |
| 2.01-5.00                              | 0.012   | 0.67               | 0.13              | 0.01        | 0                | 1.09      | 0.14           | 0.0001          | 0.026         | 0.014     | 0.0046     | 0     | 0.037      |
| > 5.00                                 | 0.00064 | 0.18               | 0                 | 0.0028      | 0                | 0.02      | 0.077          | 0               | 0             | 0.0001    | 0          | 0     | 0          |

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



75

For the municipality of Pola, with an area of 127.4 sq. km., 29.47% will experience flood levels of less 0.20 meters. 4.20% of the area will experience flood levels of 0.21 to 0.50 meters while 5.69%, 2.76%, 0.47%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 31-32 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |          |         | Area of at | ffected ba | arangays in Pola | a (in sq. km | ı.)      |            |
|------------------------|----------|---------|------------|------------|------------------|--------------|----------|------------|
| flood depth<br>(in m.) | Bacungan | Batuhan | Bayanan    | Calima     | Calubasanhon     | Casiligan    | Malibago | Maluanluan |
| 0.03-0.20              | 1.11     | 2.69    | 0.48       | 1.78       | 1.83             | 3.06         | 5.66     | 0.69       |
| 0.21-0.50              | 0.25     | 0.82    | 0.019      | 0.073      | 0.38             | 0.58         | 0.9      | 0.93       |
| 0.51-1.00              | 0.39     | 1.87    | 0.0031     | 0.043      | 0.58             | 1.14         | 0.72     | 0.75       |
| 1.01-2.00              | 0.19     | 0.26    | 0.000095   | 0.013      | 0.51             | 0.81         | 0.39     | 0.34       |
| 2.01-5.00              | 0.0015   | 0       | 0          | 0.0041     | 0.082            | 0.18         | 0.029    | 0.16       |
| > 5.00                 | 0.0014   | 0       | 0          | 0.0015     | 0                | 0            | 0        | 0          |

Table 31. Affected Areas in Pola, Oriental Mindoro during 5-Year Rainfall Return Period

Table 32. Affected Areas in Pola, Oriental Mindoro during 5-Year Rainfall Return Period

| Affected<br>area       |            | Are                                       | a of affected | d baranga | ys in Pola (i   | n sq. km.) |           |            |
|------------------------|------------|-------------------------------------------|---------------|-----------|-----------------|------------|-----------|------------|
| flood depth<br>(in m.) | Matulatula | Pahilahan                                 | Panikihan     | Pula      | Puting<br>Cacao | Tagbakin   | Zone<br>I | Zone<br>II |
| 0.03-0.20              | 0.63       | 6.37                                      | 9.24          | 0.34      | 0.13            | 2.15       | 0.82      | 0.46       |
| 0.21-0.50              | 0.033      | 3 0.16 0.54 0.0021 0.0018 0.065 0.29 0.29 |               |           |                 |            |           |            |
| 0.51-1.00              | 0.026      | 0.1                                       | 0.89          | 0.0005    | 0.0002          | 0.062      | 0.29      | 0.37       |
| 1.01-2.00              | 0.0034     | 0.08                                      | 0.79          | 0.001     | 0               | 0.048      | 0.032     | 0.033      |
| 2.01-5.00              | 0          | 0.017                                     | 0.094         | 0.0019    | 0               | 0.012      | 0.014     | 0.0046     |
| > 5.00                 | 0          | 0                                         | 0.0001        | 0.0023    | 0               | 0          | 0.0001    | 0          |



For the municipality of Socorro, with an area of 206.06 sq. km., 36.01% will experience flood levels of less 0.20 meters. 5.38% of the area will experience flood levels of 0.21 to 0.50 meters while 3.38%, 1.79%, 0.78%, and 0.30% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 33-34 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |        |                                         | Area of af | fected baran | gays in Soco | rro (in sq. | km.)           |                 |  |
|------------------------|--------|-----------------------------------------|------------|--------------|--------------|-------------|----------------|-----------------|--|
| flood depth<br>(in m.) | Bagsok | Bayuin                                  | Calocmoy   | Calubayan    | Catiningan   | Fortuna     | Leuteboro<br>I | Leuteboro<br>II |  |
| 0.03-0.20              | 5.32   | 8.2                                     | 3.43       | 6.87         | 6.41         | 2.17        | 6.53           | 2.54            |  |
| 0.21-0.50              | 1.49   | 1.49 0.89 0.67 0.47 1.35 0.055 1.91 0.3 |            |              |              |             |                |                 |  |
| 0.51-1.00              | 0.3    | 1.18                                    | 0.5        | 0.82         | 0.26         | 0.047       | 1.03           | 0.13            |  |
| 1.01-2.00              | 0.031  | 0.75                                    | 0.44       | 0.69         | 0.087        | 0.057       | 0.16           | 0.047           |  |
| 2.01-5.00              | 0.027  | 0.19                                    | 0.082      | 0.12         | 0.063        | 0.18        | 0.064          | 0.0061          |  |
| > 5.00                 | 0      | 0.039                                   | 0          | 0.0057       | 0.025        | 0.26        | 0              | 0               |  |

Table 33. Affected Areas in Socorro, Oriental Mindoro during 5-Year Rainfall Return Period

Table 34. Affected Areas in Socorro, Oriental Mindoro during 5-Year Rainfall Return Period

| Affected<br>area       |         | Are                                       | a of affected | barangay | s in Socor | ro (in sq. | km.)       |             |            |
|------------------------|---------|-------------------------------------------|---------------|----------|------------|------------|------------|-------------|------------|
| flood depth<br>(in m.) | Malugay | Matungao                                  | Monteverde    | Subaan   | Villareal  | Zone<br>I  | Zone<br>II | Zone<br>III | Zone<br>IV |
| 0.03-0.20              | 15.46   | 4.29                                      | 3.63          | 0.97     | 6.06       | 0.82       | 0.46       | 0.49        | 0.55       |
| 0.21-0.50              | 0.63    | 1.11 0.096 0.17 1.08 0.29 0.29 0.096 0.18 |               |          |            |            |            |             |            |
| 0.51-1.00              | 0.64    | 0.2                                       | 0.16          | 0.081    | 0.68       | 0.29       | 0.37       | 0.099       | 0.18       |
| 1.01-2.00              | 0.58    | 0.056                                     | 0.13          | 0.0094   | 0.52       | 0.032      | 0.033      | 0.041       | 0.024      |
| 2.01-5.00              | 0.6     | 0                                         | 0.03          | 0.0003   | 0.19       | 0.014      | 0.0046     | 0           | 0.037      |
| > 5.00                 | 0.24    | 0                                         | 0.0055        | 0        | 0.042      | 0.0001     | 0          | 0           | 0          |



79

For the 25-year return period, 2.65% of the municipality of Gloria with an area of 327.28 sq. km. will experience flood levels of less 0.20 meters. 0.11% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.15%, 0.004%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

| Affected area | Area of affe | cted barangays in G | iloria (in sq. km.) |
|---------------|--------------|---------------------|---------------------|
| depth (in m.) | Agos         | Buong Lupa          | Malamig             |
| 0.03-0.20     | 0.56         | 3.47                | 4.64                |
| 0.21-0.50     | 0.041        | 0.16                | 0.16                |
| 0.51-1.00     | 0.069        | 0.18                | 0.29                |
| 1.01-2.00     | 0.083        | 0.065               | 0.33                |
| 2.01-5.00     | 0.0069       | 0.021               | 0.11                |
| > 5.00        | 0            | 0.0033              | 0.0004              |

Table 35. Affected Areas in Gloria, Oriental Mindoro during 25-Year Rainfall Return Period



Figure 63. Affected Areas in Gloria, Oriental Mindoro during 25-Year Rainfall Return Period

For the municipality of Pinamalayan, with an area of 206.87 sq. km., 26.51% will experience flood levels of less 0.20 meters. 7.87% of the area will experience flood levels of 0.21 to 0.50 meters while 5.22%, 3.81%, 3.09%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 36-37 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area                       |         |          |          | Area of | affected b | arangays ii | n Pinamala | ıyan (in sq. kr | n.)       |         |                   |          |          |
|----------------------------------------|---------|----------|----------|---------|------------|-------------|------------|-----------------|-----------|---------|-------------------|----------|----------|
| (sq. km.) by<br>flood depth<br>(in m.) | Anoling | Bacungan | Bangbang | Buli    | Cacawan    | Calingag    | Inclanay   | Maliangcog      | Maningcol | Marayos | Marfrancis-<br>co | Nabuslot | Pagalaga |
| 0.03-0.20                              | 0.94    | 66.0     | 1.65     | 0.6     | 0.02       | 3.67        | 2.14       | 2.68            | 0.57      | 4.11    | 2.76              | 4.27     | 3.42     |
| 0.21-0.50                              | 0.037   | 0.19     | 0.95     | 0.014   | 0          | 1.47        | 0.59       | 1.05            | 0.087     | 0.15    | 0.7               | 2.62     | 1.51     |
| 0.51-1.00                              | 0.022   | 0.36     | 0.55     | 0.0047  | 0          | 0.69        | 0.63       | 0.45            | 0.047     | 0.22    | 0.6               | 1.14     | 1.29     |
| 1.01-2.00                              | 0.017   | 0.39     | 0.2      | 0.0013  | 0          | 0.42        | 0.46       | 0.29            | 0.0031    | 0.43    | 0.31              | 0.21     | 0.42     |
| 2.01-5.00                              | 0.0038  | 0.023    | 0.077    | 0.0012  | 0          | 0.12        | 1.12       | 0.41            | 0         | 0.77    | 0.022             | 0.051    | 0.24     |
| > 5.00                                 | 0       | 0.0025   | 0.01     | 0.0022  | 0          | 0.0004      | 0.025      | 0.0085          | 0         | 0.012   | 0                 | 0        | 0.0073   |

ത

I

Table 36. Affected Areas in Pinamalayan, Oriental Mindoro during 25-Year Rainfall Return Period

Table 37. Affected Areas in Pinamalayan, Oriental Mindoro during 25-Year Rainfall Return Period

| Affected<br>area                       |         |                    |                   | Ar          | ea of affected t | parangays | in Pinama      | layan (in sq. kı | m.)           |           |            |        |            |
|----------------------------------------|---------|--------------------|-------------------|-------------|------------------|-----------|----------------|------------------|---------------|-----------|------------|--------|------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Palayan | Pambisan<br>Malaki | Pambisan<br>Munti | Panggulayan | Papandayan       | Sabang    | Santa<br>Maria | Santa Rita       | Santo<br>Niño | Zone<br>I | Zone<br>II | Zone   | Zone<br>IV |
| 0.03-0.20                              | 2.88    | 4.86               | 2.92              | 3.17        | 0.47             | 8.64      | 1.19           | 0.39             | 0.75          | 0.64      | 0.29       | 0.36   | 0.47       |
| 0.21-0.50                              | 1.18    | 2.06               | 0.29              | 0.83        | 0.15             | 0.3       | 0.98           | 0.017            | 0.24          | 0.29      | 0.28       | 0.16   | 0.14       |
| 0.51-1.00                              | 0.87    | 0.84               | 0.43              | 0.57        | 0.0074           | 0.3       | 0.75           | 0.01             | 0.28          | 0.2       | 0.22       | 0.058  | 0.26       |
| 1.01-2.00                              | 0.33    | 0.85               | 0.73              | 0.45        | 0                | 0.68      | 0.49           | 0.0092           | 0.35          | 0.29      | 0.36       | 0.13   | 0.067      |
| 2.01-5.00                              | 0.031   | 0.89               | 0.69              | 0.021       | 0                | 1.6       | 0.16           | 0.0004           | 0.047         | 0.1       | 0.0019     | 0.0097 | 0.0021     |
| > 5.00                                 | 0.0019  | 0.23               | 0                 | 0.0059      | 0                | 0.32      | 0.081          | 0                | 0             | 0.0001    | 0          | 0      | 0          |

0.21-0.50 0.03-0.20 0.51-1.00 2.01-5.00 Flood Depth £ ^50% VI anoZ III auoZ I ll anoZ | auo<u>Z</u> oñiN otne2 Santa Rita I sine Mistria Buedes nevebnede9 neveluggne itnuM nesidme9 Pambisan Malaki Barangays nevele9 elegelege¶ Jolsude N Marfrandsco Marayos loognineM 3co gneileM Yeneloni gegnileO Cacawan ilna Bangbang ueBuroeg BnilonA 10 œ w 12 寸 CN.  $\mathbf{O}$ Affected Area (sq. km.)



For the municipality of Pola, with an area of 127.4 sq. km., 25.34% will experience flood levels of less 0.20 meters. 2.51% of the area will experience flood levels of 0.21 to 0.50 meters while 4.22%, 7.04%, 3.51%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 38-39 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |          |         | Area of a | ffected ba | arangays in Pola | a (in sq. kn | n.)      |            |
|------------------------|----------|---------|-----------|------------|------------------|--------------|----------|------------|
| flood depth<br>(in m.) | Bacungan | Batuhan | Bayanan   | Calima     | Calubasanhon     | Casiligan    | Malibago | Maluanluan |
| 0.03-0.20              | 0.99     | 1.37    | 0.47      | 1.72       | 1.56             | 2.57         | 4.51     | 0.24       |
| 0.21-0.50              | 0.19     | 0.3     | 0.025     | 0.09       | 0.19             | 0.26         | 0.76     | 0.14       |
| 0.51-1.00              | 0.36     | 0.68    | 0.007     | 0.071      | 0.51             | 0.51         | 1.13     | 0.95       |
| 1.01-2.00              | 0.39     | 1.48    | 0.00074   | 0.021      | 0.86             | 1.87         | 0.98     | 1.21       |
| 2.01-5.00              | 0.023    | 1.81    | 0         | 0.0087     | 0.25             | 0.56         | 0.32     | 0.32       |
| > 5.00                 | 0.0025   | 0       | 0         | 0.0026     | 0                | 0            | 0        | 0          |

Table 38. Affected Areas in Pola, Oriental Mindoro during 25-Year Rainfall Return Period

Table 39. Affected Areas in Pola, Oriental Mindoro during 25-Year Rainfall Return Period

| Affected<br>area       |            | Are       | a of affected | d baranga | ys in Pola (i   | n sq. km.) |           |            |
|------------------------|------------|-----------|---------------|-----------|-----------------|------------|-----------|------------|
| flood depth<br>(in m.) | Matulatula | Pahilahan | Panikihan     | Pula      | Puting<br>Cacao | Tagbakin   | Zone<br>I | Zone<br>II |
| 0.03-0.20              | 0.61       | 6.28      | 8.38          | 0.33      | 0.13            | 2.1        | 0.64      | 0.29       |
| 0.21-0.50              | 0.031      | 0.18      | 0.37          | 0.0032    | 0.002           | 0.078      | 0.29      | 0.28       |
| 0.51-1.00              | 0.032      | 0.12      | 0.51          | 0.0009    | 0.0011          | 0.061      | 0.2       | 0.22       |
| 1.01-2.00              | 0.014      | 0.1       | 1.3           | 0.0012    | 0               | 0.067      | 0.29      | 0.36       |
| 2.01-5.00              | 0          | 0.051     | 0.99          | 0.0021    | 0               | 0.028      | 0.1       | 0.0019     |
| > 5.00                 | 0          | 0         | 0.0002        | 0.0047    | 0               | 0          | 0.0001    | 0          |

2.01-5.001.01-2.00 0.51-1.00 0.21-0.50 Flood Depth (m) > 5.00 II a UON I REPARENT AUTON I AUTON I AUTON DE SEU AUTON DE SEU AUTON DE SEU AUTON DE LA COMPACIÓN DE LA COMPACI URHINIUR A Ueyellyed enelnen verluenen verluenen verluenen verlen Barangays <sup>Leg</sup>lises <sup>Loqueseqnies</sup> euffes veueree veurree veurree veurree 5.5 0.5 1.5  $\circ$ ĽŅ. 寸 ١Ŋ. ιņ, сN -ಕ m Affected Area (sq. km.)

Figure 65. Affected Areas in Pola, Oriental Mindoro during 25-Year Rainfall Return Period

84

For the municipality of Socorro, with an area of 206.06 sq. km., 30.03% will experience flood levels of less 0.20 meters. 7.10% of the area will experience flood levels of 0.21 to 0.50 meters while 4.79%, 3.75%, 1.57%, and 0.44% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 40-41 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |        |        | Area of af | fected baran | gays in Soco | rro (in sq. | km.)           |                 |
|------------------------|--------|--------|------------|--------------|--------------|-------------|----------------|-----------------|
| flood depth<br>(in m.) | Bagsok | Bayuin | Calocmoy   | Calubayan    | Catiningan   | Fortuna     | Leuteboro<br>I | Leuteboro<br>II |
| 0.03-0.20              | 3.01   | 7.4    | 2.43       | 6.64         | 4.48         | 2.1         | 4.4            | 2.17            |
| 0.21-0.50              | 2.56   | 0.58   | 0.95       | 0.25         | 2.43         | 0.063       | 2.41           | 0.57            |
| 0.51-1.00              | 1.3    | 0.87   | 0.63       | 0.72         | 1.08         | 0.036       | 1.89           | 0.17            |
| 1.01-2.00              | 0.26   | 1.84   | 0.87       | 0.91         | 0.11         | 0.042       | 0.9            | 0.086           |
| 2.01-5.00              | 0.034  | 0.53   | 0.23       | 0.44         | 0.078        | 0.13        | 0.11           | 0.03            |
| > 5.00                 | 0      | 0.048  | 0          | 0.013        | 0.026        | 0.39        | 0              | 0               |

Table 40. Affected Areas in Socorro, Oriental Mindoro during 25-Year Rainfall Return Period

Table 41. Affected Areas in Socorro, Oriental Mindoro during 25-Year Rainfall Return Period

| Affected<br>area       |         | Arc      | ea of affected | l baranga | ys in Socor | ro (in sq | . km.)     |             |            |
|------------------------|---------|----------|----------------|-----------|-------------|-----------|------------|-------------|------------|
| flood depth<br>(in m.) | Malugay | Matungao | Monteverde     | Subaan    | Villareal   | Zone<br>I | Zone<br>II | Zone<br>III | Zone<br>IV |
| 0.03-0.20              | 15.07   | 2.83     | 3.55           | 0.78      | 5.26        | 0.64      | 0.29       | 0.36        | 0.47       |
| 0.21-0.50              | 0.59    | 1.84     | 0.11           | 0.29      | 1.11        | 0.29      | 0.28       | 0.16        | 0.14       |
| 0.51-1.00              | 0.57    | 0.81     | 0.1            | 0.13      | 0.82        | 0.2       | 0.22       | 0.058       | 0.26       |
| 1.01-2.00              | 0.7     | 0.17     | 0.19           | 0.03      | 0.78        | 0.29      | 0.36       | 0.13        | 0.067      |
| 2.01-5.00              | 0.89    | 0.0067   | 0.087          | 0.0035    | 0.55        | 0.1       | 0.0019     | 0.0097      | 0.0021     |
| > 5.00                 | 0.35    | 0        | 0.0077         | 0         | 0.067       | 0.0001    | 0          | 0           | 0          |

Flood Depth (m) > 5.00 2.01-5.001.01-2.000.51-1.00 0.21-0.50 URE GINS PLIPA BURREW Barangays  $\bigcirc$ Q Ľ'n en) đ сN <del>, I</del> Affected Area (sq. km.)

Figure 66. Affected Areas in Socorro, Oriental Mindoro during 25-Year Rainfall Return Period

86

For the 100-year return period, 2.65% of the municipality of Gloria with an area of 327.28 sq. km. will experience flood levels of less 0.20 meters. 0.11% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.15%, 0.04%, and 0.001% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay. Listed in Table 42 are the affected areas in square kilometres by flood depth per barangay.

| Affected area | Area of affe | cted barangays in G | iloria (in sq. km.) |
|---------------|--------------|---------------------|---------------------|
| depth (in m.) | Agos         | Buong Lupa          | Malamig             |
| 0.03-0.20     | 0.56         | 3.47                | 4.64                |
| 0.21-0.50     | 0.041        | 0.16                | 0.16                |
| 0.51-1.00     | 0.069        | 0.18                | 0.29                |
| 1.01-2.00     | 0.083        | 0.065               | 0.33                |
| 2.01-5.00     | 0.0069       | 0.021               | 0.11                |
| > 5.00        | 0            | 0.0033              | 0.0004              |

| Table 42. Affected Areas in Gloria, O | riental Mindoro during 100-Year Rainfall Return Period |
|---------------------------------------|--------------------------------------------------------|
|---------------------------------------|--------------------------------------------------------|



Figure 67. Affected Areas in Gloria, Oriental Mindoro during 100-Year Rainfall Return Period

For the municipality of Pinamalayan, with an area of 206.87 sq. km., 26.51% will experience flood levels of less 0.20 meters. 7.87% of the area will experience flood levels of 0.21 to 0.50 meters while 5.22%, 3.81%, 3.09%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 43-44 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area                       |         |          |          | Area of | affected b | arangays ii | n Pinamala | ayan (in sq. kr | (·u       |         |                   |          |            |
|----------------------------------------|---------|----------|----------|---------|------------|-------------|------------|-----------------|-----------|---------|-------------------|----------|------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Anoling | Bacungan | Bangbang | Buli    | Cacawan    | Calingag    | Inclanay   | Maliangcog      | Maningcol | Marayos | Marfrancis-<br>co | Nabuslot | Pagalagala |
| 0.03-0.20                              | 0.94    | 66.0     | 1.65     | 0.6     | 0.02       | 3.67        | 2.14       | 2.68            | 0.57      | 4.11    | 2.76              | 4.27     | 3.42       |
| 0.21-0.50                              | 0.037   | 0.19     | 0.95     | 0.014   | 0          | 1.47        | 0.59       | 1.05            | 0.087     | 0.15    | 0.7               | 2.62     | 1.51       |
| 0.51-1.00                              | 0.022   | 0.36     | 0.55     | 0.0047  | 0          | 0.69        | 0.63       | 0.45            | 0.047     | 0.22    | 0.6               | 1.14     | 1.29       |
| 1.01-2.00                              | 0.017   | 0.39     | 0.2      | 0.0013  | 0          | 0.42        | 0.46       | 0.29            | 0.0031    | 0.43    | 0.31              | 0.21     | 0.42       |
| 2.01-5.00                              | 0.0038  | 0.023    | 0.077    | 0.0012  | 0          | 0.12        | 1.12       | 0.41            | 0         | 0.77    | 0.022             | 0.051    | 0.24       |
| > 5.00                                 | 0       | 0.0025   | 0.01     | 0.0022  | 0          | 0.0004      | 0.025      | 0.0085          | 0         | 0.012   | 0                 | 0        | 0.0073     |

Table 43. Affected Areas in Pinamalayan, Oriental Mindoro during 100-Year Rainfall Return Period

Table 44. Affected Areas in Pinamalayan, Oriental Mindoro during 100-Year Rainfall Return Period

| Affected<br>area                       |         |                    |                   | Are         | a of affected l | parangays | in Pinamal     | ayan (in sq. k | m.)           |           |            |        |            |
|----------------------------------------|---------|--------------------|-------------------|-------------|-----------------|-----------|----------------|----------------|---------------|-----------|------------|--------|------------|
| (sq. km.) by<br>flood depth<br>(in m.) | Palayan | Pambisan<br>Malaki | Pambisan<br>Munti | Panggulayan | Papandayan      | Sabang    | Santa<br>Maria | Santa Rita     | Santo<br>Niño | Zone<br>I | Zone<br>II | Zone   | Zone<br>IV |
| 0.03-0.20                              | 2.88    | 4.86               | 2.92              | 3.17        | 0.47            | 8.64      | 1.19           | 0.39           | 0.75          | 0.64      | 0.29       | 0.36   | 0.47       |
| 0.21-0.50                              | 1.18    | 2.06               | 0.29              | 0.83        | 0.15            | 0.3       | 0.98           | 0.017          | 0.24          | 0.29      | 0.28       | 0.16   | 0.14       |
| 0.51-1.00                              | 0.87    | 0.84               | 0.43              | 0.57        | 0.0074          | 0.3       | 0.75           | 0.01           | 0.28          | 0.2       | 0.22       | 0.058  | 0.26       |
| 1.01-2.00                              | 0.33    | 0.85               | 0.73              | 0.45        | 0               | 0.68      | 0.49           | 0.0092         | 0.35          | 0.29      | 0.36       | 0.13   | 0.067      |
| 2.01-5.00                              | 0.031   | 0.89               | 0.69              | 0.021       | 0               | 1.6       | 0.16           | 0.0004         | 0.047         | 0.1       | 0.0019     | 0.0097 | 0.0021     |
| > 5.00                                 | 0.0019  | 0.23               | 0                 | 0.0059      | 0               | 0.32      | 0.081          | 0              | 0             | 0.0001    | 0          | 0      | 0          |





89

For the municipality of Pola, with an area of 127.4 sq. km., 25.34% will experience flood levels of less 0.20 meters. 2.51% of the area will experience flood levels of 0.21 to 0.50 meters while 4.22%, 7.04%, 3.51%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 45-46 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |          |         | Area of at | ffected ba | arangays in Pola | a (in sq. km | ı.)      |            |
|------------------------|----------|---------|------------|------------|------------------|--------------|----------|------------|
| flood depth<br>(in m.) | Bacungan | Batuhan | Bayanan    | Calima     | Calubasanhon     | Casiligan    | Malibago | Maluanluan |
| 0.03-0.20              | 0.99     | 1.37    | 0.47       | 1.72       | 1.56             | 2.57         | 4.51     | 0.24       |
| 0.21-0.50              | 0.19     | 0.3     | 0.025      | 0.09       | 0.19             | 0.26         | 0.76     | 0.14       |
| 0.51-1.00              | 0.36     | 0.68    | 0.007      | 0.071      | 0.51             | 0.51         | 1.13     | 0.95       |
| 1.01-2.00              | 0.39     | 1.48    | 0.00074    | 0.021      | 0.86             | 1.87         | 0.98     | 1.21       |
| 2.01-5.00              | 0.023    | 1.81    | 0          | 0.0087     | 0.25             | 0.56         | 0.32     | 0.32       |
| > 5.00                 | 0.0025   | 0       | 0          | 0.0026     | 0                | 0            | 0        | 0          |

Table 45. Affected Areas in Pola, Oriental Mindoro during 100-Year Rainfall Return Period

#### Table 46. Affected Areas in Pola, Oriental Mindoro during 100-Year Rainfall Return Period

| Affected<br>area       |            | Are       | a of affected | d baranga | ys in Pola (i   | n sq. km.) |           |            |
|------------------------|------------|-----------|---------------|-----------|-----------------|------------|-----------|------------|
| flood depth<br>(in m.) | Matulatula | Pahilahan | Panikihan     | Pula      | Puting<br>Cacao | Tagbakin   | Zone<br>I | Zone<br>II |
| 0.03-0.20              | 0.61       | 6.28      | 8.38          | 0.33      | 0.13            | 2.1        | 0.64      | 0.29       |
| 0.21-0.50              | 0.031      | 0.18      | 0.37          | 0.0032    | 0.002           | 0.078      | 0.29      | 0.28       |
| 0.51-1.00              | 0.032      | 0.12      | 0.51          | 0.0009    | 0.0011          | 0.061      | 0.2       | 0.22       |
| 1.01-2.00              | 0.014      | 0.1       | 1.3           | 0.0012    | 0               | 0.067      | 0.29      | 0.36       |
| 2.01-5.00              | 0          | 0.051     | 0.99          | 0.0021    | 0               | 0.028      | 0.1       | 0.0019     |
| > 5.00                 | 0          | 0         | 0.0002        | 0.0047    | 0               | 0          | 0.0001    | 0          |





For the municipality of Socorro, with an area of 206.06 sq. km., 30.03% will experience flood levels of less 0.20 meters. 7.10% of the area will experience flood levels of 0.21 to 0.50 meters while 4.79%, 3.75%, 1.57%, and 0.44% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Tables 47-48 are the affected areas in square kilometres by flood depth per barangay.

| Affected<br>area       |        |        | Area of af | fected baran | gays in Soco | rro (in sq. | km.)           |                 |
|------------------------|--------|--------|------------|--------------|--------------|-------------|----------------|-----------------|
| flood depth<br>(in m.) | Bagsok | Bayuin | Calocmoy   | Calubayan    | Catiningan   | Fortuna     | Leuteboro<br>I | Leuteboro<br>II |
| 0.03-0.20              | 3.01   | 7.4    | 2.43       | 6.64         | 4.48         | 2.1         | 4.4            | 2.17            |
| 0.21-0.50              | 2.56   | 0.58   | 0.95       | 0.25         | 2.43         | 0.063       | 2.41           | 0.57            |
| 0.51-1.00              | 1.3    | 0.87   | 0.63       | 0.72         | 1.08         | 0.036       | 1.89           | 0.17            |
| 1.01-2.00              | 0.26   | 1.84   | 0.87       | 0.91         | 0.11         | 0.042       | 0.9            | 0.086           |
| 2.01-5.00              | 0.034  | 0.53   | 0.23       | 0.44         | 0.078        | 0.13        | 0.11           | 0.03            |
| > 5.00                 | 0      | 0.048  | 0          | 0.013        | 0.026        | 0.39        | 0              | 0               |

Table 47. Affected Areas in Socorro, Oriental Mindoro during 100-Year Rainfall Return Period

Table 48. Affected Areas in Socorro, Oriental Mindoro during 100-Year Rainfall Return Period

| Affected<br>area<br>(sq. km.) by<br>flood depth<br>(in m.) | Area of affected barangays in Socorro (in sq. km.) |          |            |        |           |           |            |             |            |  |
|------------------------------------------------------------|----------------------------------------------------|----------|------------|--------|-----------|-----------|------------|-------------|------------|--|
|                                                            | Malugay                                            | Matungao | Monteverde | Subaan | Villareal | Zone<br>I | Zone<br>II | Zone<br>III | Zone<br>IV |  |
| 0.03-0.20                                                  | 15.07                                              | 2.83     | 3.55       | 0.78   | 5.26      | 0.64      | 0.29       | 0.36        | 0.47       |  |
| 0.21-0.50                                                  | 0.59                                               | 1.84     | 0.11       | 0.29   | 1.11      | 0.29      | 0.28       | 0.16        | 0.14       |  |
| 0.51-1.00                                                  | 0.57                                               | 0.81     | 0.1        | 0.13   | 0.82      | 0.2       | 0.22       | 0.058       | 0.26       |  |
| 1.01-2.00                                                  | 0.7                                                | 0.17     | 0.19       | 0.03   | 0.78      | 0.29      | 0.36       | 0.13        | 0.067      |  |
| 2.01-5.00                                                  | 0.89                                               | 0.0067   | 0.087      | 0.0035 | 0.55      | 0.1       | 0.0019     | 0.0097      | 0.0021     |  |
| > 5.00                                                     | 0.35                                               | 0        | 0.0077     | 0      | 0.067     | 0.0001    | 0          | 0           | 0          |  |



Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Moreover, the generated flood hazard maps for the Tineg Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

| Warning | Area Covered in sq. km. |         |          |  |  |  |
|---------|-------------------------|---------|----------|--|--|--|
| Level   | 5 year                  | 25 year | 100 year |  |  |  |
| Low     | 81.42                   | 79.64   | 79.16    |  |  |  |
| Medium  | 102.41                  | 99.92   | 100.51   |  |  |  |
| High    | 226.15                  | 288.35  | 317.94   |  |  |  |
| TOTAL   | 409.99                  | 467.92  | 497.61   |  |  |  |

Table 39. Area covered by each warning level with respect to the rainfall scenarios

Of the 131 identified Educational Institutions in Tineg flood plain, 11 were assessed to be exposed to low, 17 to medium, and 16 to high level flooding during the 5-year scenario. In the 25-year scenario, 8 were assessed to be exposed to low, 12 to medium, and 42 to high level flooding. In the 100-year scenario, 7 were assessed to be exposed to low, 5 to medium, and 54 to high level flooding. See Annex 12 for a detailed enumeration of schools in the Tineg floodplain.

Of the 30 identified Medical Institutions in Tineg flood plain, 2 were assessed to be exposed to low, 1 to medium, and 1 to high level flooding in the 5-year scenario. In the 25-year scenario, 3 were assessed to be exposed to low, 3 to medium, and 1 to high level flooding. In the 100-year scenario, 5 were assessed to be exposed to low, 3 to medium, and 3 to high level flooding. See Annex 13 for a detailed enumeration of hospitals and clinics in the Tineg floodplain.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, a validation survey work was performed. Field personnel gathered data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through the help of a local DRRM office in obtaining maps or situation reports about the past flooding events and through interviews with some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 71.

The flood validation consists of 99 points randomly selected all over the Casiligan flood plain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.924m. Table 49 shows a contingency matrix of the comparison. The validation points are found in Annex 11.



Figure 71. Validation points for 25-year Flood Depth Map of Casiligan Floodplain


Figure 72. Flood map depth vs actual flood depth

| Actual             | Modeled Flood Depth (m) |           |           |           |           |        |       |  |  |
|--------------------|-------------------------|-----------|-----------|-----------|-----------|--------|-------|--|--|
| Flood<br>Depth (m) | 0-0.20                  | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00 | Total |  |  |
| 0-0.20             | 14                      | 3         | 2         | 3         | 2         | 0      | 24    |  |  |
| 0.21-0.50          | 8                       | 3         | 2         | 0         | 4         | 0      | 17    |  |  |
| 0.51-1.00          | 13                      | 6         | 5         | 12        | 5         | 0      | 41    |  |  |
| 1.01-2.00          | 3                       | 3         | 1         | 7         | 3         | 0      | 17    |  |  |
| 2.01-5.00          | 0                       | 0         | 0         | 0         | 0         | 0      | 0     |  |  |
| > 5.00             | 0                       | 0         | 0         | 0         | 0         | 0      | 0     |  |  |
| Total              | 38                      | 15        | 10        | 22        | 14        | 0      | 99    |  |  |

Table 49. Actual Flood Depth vs Simulated Flood Depth at different levels in the Casiligan River Basin.

The overall accuracy generated by the flood model is estimated at 29.29% with 29 points correctly matching the actual flood depths. In addition, there were 29 points estimated one level above and below the correct flood depths while there were 23 points and 12 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 34 points were underestimated in the modelled flood depths of Casiligan. Table 50 depicts the summary of the Accuracy Assessment in the Casiligan River Basin Survey.

Table 50. Summary of Accuracy Assessment in the Casiligan River Basin Survey

|                | No. of<br>Points | %      |
|----------------|------------------|--------|
| Correct        | 29               | 29.29  |
| Overestimated  | 36               | 36.36  |
| Underestimated | 34               | 34.34  |
| Total          | 99               | 100.00 |

# REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

# ANNEXES

# ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Casiligan Floodplain Survey

#### 1. AQUARIUS SENSOR



Figure A-1.1. Aquarius Sensor

| Table A-1.1. | Parameters and | Specification | of Aquariu | s Sensor |
|--------------|----------------|---------------|------------|----------|
|              |                | 1             | L          |          |

| Parameter                        | Specification                                                                   |  |  |
|----------------------------------|---------------------------------------------------------------------------------|--|--|
| Operational altitude             | 300-600 m AGL                                                                   |  |  |
| Laser pulse repetition rate      | 33, 50. 70 kHz                                                                  |  |  |
| Scan rate                        | 0-70 Hz                                                                         |  |  |
| Scan half-angle                  | 0 to ± 25 °                                                                     |  |  |
| Laser footprint on water surface | 30-60 cm                                                                        |  |  |
| Depth range                      | 0 to > 10 m (for k < 0.1/m)                                                     |  |  |
| Topographic mode                 |                                                                                 |  |  |
| Operational altitude             | 300-2500                                                                        |  |  |
| Range Capture                    | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns           |  |  |
| Intensity capture                | 12-bit dynamic measurement range                                                |  |  |
| Position and orientation system  | POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS) |  |  |
| Data Storage                     | Ruggedized removable SSD hard disk (SATA III)                                   |  |  |
| Power                            | 28 V, 900 W, 35 A                                                               |  |  |
| Image capture                    | 5 MP interline camera (standard); 60 MP full frame (optional)                   |  |  |
| Full waveform capture            | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                   |  |  |
| Dimensions and weight            | Sensor:250 x 430 x 320 mm; 30 kg;<br>Control rack: 591 x 485 x 578 mm; 53 kg    |  |  |
| Operating temperature            | 0-35°C                                                                          |  |  |
| Relative humidity                | 0-95% no-condensing                                                             |  |  |

#### 2. GEMINI SENSOR



#### Figure A-1.2. Gemini Sensor

Table A-1.2. Parameters and Specification of Gemini Sensor

| Parameter                       | Specification                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| Operational envelope (1,2,3,4)  | 150-4000 m AGL, nominal                                                                                          |
| Laser wavelength                | 1064 nm                                                                                                          |
| Horizontal accuracy (2)         | 1/5,500 x altitude, (m AGL)                                                                                      |
| Elevation accuracy (2)          | <5-35 cm, 1 σ                                                                                                    |
| Effective laser repetition rate | Programmable, 33-167 kHz                                                                                         |
| Position and orientation system | POS AV™ AP50 (OEM);<br>220-channel dual frequency GPS/GNSS/Galileo/L-Band<br>receiver                            |
| Scan width (WOV)                | Programmable, 0-50°                                                                                              |
| Scan frequency (5)              | Programmable, 0-70 Hz (effective)                                                                                |
| Sensor scan product             | 1000 maximum                                                                                                     |
| Beam divergence                 | Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal                                                     |
| Roll compensation               | Programmable, ±5° (FOV dependent)                                                                                |
| Range capture                   | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns                                            |
| Intensity capture               | Up to 4 intensity returns for each pulse, including last (12 bit)                                                |
| Video Camera                    | Internal video camera (NTSC or PAL)                                                                              |
| Image capture                   | Compatible with full Optech camera line (optional)                                                               |
| Full waveform capture           | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                    |
| Data storage                    | Removable solid state disk SSD (SATA II)                                                                         |
| Power requirements              | 28 V; 900 W;35 A(peak)                                                                                           |
| Dimensions and weight           | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg |
| Operating temperature           | -10°C to +35°C (with insulating jacket)                                                                          |
| Relative humidity               | 0-95% no-condensing                                                                                              |

### ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. MRE-54



This is to certify that according to the records on file in this office, the requested survey information is as follows -

|                             | Province: OF | RIENTAL MINDORO    |           |         |             |
|-----------------------------|--------------|--------------------|-----------|---------|-------------|
|                             | Station      | Name: MRE-54       |           |         |             |
| Island: LUZON               | Orde         | er: 2nd            | Baranga   | y: MAL  | IANGCOG     |
| municipality. Pinomouo ron  | PRS          | 592 Coordinates    |           |         |             |
| Latitude: 12º 59' 12.43671" | Longitude    | 121° 24' 46.52637" | Ellipsoid | al Hgt: | 42.40800 m. |
|                             | WG           | S84 Coordinates    |           |         |             |
| Latitude: 12º 59' 7.43505"  | Longitude    | 121º 24' 51.55668" | Ellipsoid | al Hgt: | 91.39500 m. |
|                             | PT           | M Coordinates      |           |         |             |
| Northing: 1436124.562 m.    | Easting:     | 544797.009 m.      | Zone:     | 3       |             |
|                             | UT           | M Coordinates      |           |         |             |
| Northing: 1,436,121.49      | Easting:     | 327,864.09         | Zone:     | 51      |             |
|                             |              |                    |           |         |             |

#### MRE-54

Location Description

From Calapan City to Roxas, along Nat'l Road, approx. 100 m from Pula Bridge, along Brgy. Sto. Niño, right turn to Brgy. Road leading to Gloria Airport, passing through Brgy. Sto. Niño, Brgy. Sta. Maria, Brgy. Pambigan Malaki, all in Mun. of Pinamalayan. approx. 7.8 Km. from Nat'l Road, 1.1 Km. from Brgy. Chapel, 600 m from Maliangkog Elem. School, left side of road located Brgy. Hall of Maliangkog, Pinamalayan, Oriental Mindoro. Station is located beside of flagpole near gate of brgy. hall. Mark is the head of a 4 in, copper nail flushed in a cement block embedded in the ground with inscriptions, "MRE-54, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795255 A T.N.: 2014-196

the For RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

J



AB AL Annualization CIP/4701/12/09/814

NAMRIA OFFICES: Main : Lowton Avenue, Fort Bonifacia, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.1. MRE-54

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

#### 2. MRE-44



February 04, 2014

#### CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

|                             | Province: ORIENTAL MINDORO    |                               |
|-----------------------------|-------------------------------|-------------------------------|
|                             | Station Name: MRE-44          |                               |
| Island: LUZON               | Order: 2nd                    |                               |
| Municipality: ROXAS         |                               | Barangay: HAPPY VALLEY        |
|                             | PRS92 Coordinates             |                               |
| Latitude: 12º 38' 59.03778" | Longitude: 121° 24' 32.60444" | Ellipsoidal Hgt: 87.94200 m.  |
|                             | WGS84 Coordinates             |                               |
| Latitude: 12º 38' 54.11733" | Longitude: 121° 24' 37.66392" | Ellipsoidal Hgt: 137.80400 m. |
|                             | PTM Coordinates               |                               |
| Northing: 1398838.995 m.    | Easting: 544436.519 m.        | Zone: 3                       |
| Nothing: d and a second     | UTM Coordinates               |                               |
| Norming: 1,398,840.08       | Easting: 327,214.81           | Zone: 51                      |

#### MRE-44

Location Description

From Calapan City to Bulalacao, approx. 4 Km. from Roxas Town Proper, along Nat'l Road is an intersection going to Roxas Proper, Mansalay, and Bongabong, Oriental Mindoro. Turn right to road leading to Bongabong Town Proper, approx. 6.9 Km., passing through Brgy. San Aquilino, Brgy. Libertad, Brgy. Little Tanauan, and Brgy. San Mariano, all in Mun. of Roxas. Along Brgy. San Rafael, left side of road located Km. post 130 about 50 m after RCBCulvert, turn left to Brgy. Road leading to Sitio Amawan, approx. 800 m passing through San Rafael Elem. School, and GK Village, left side of road located Brgy. Hall of Happy Valley, Roxas, Oriental Mindoro. Station is located beside of streetlight outside wall of brgy. hall. Mark is the head of a 4 in. copper nial flushed in a cement block embedded in the ground with inscriptions, "MRE-44, 2007, NAMRIA".

| Requesting Party: | UP-DREAM  |
|-------------------|-----------|
| Pupose:           | Reference |
| OR Number:        | 8795255 A |
| T.N.:             | 2014-198  |

the FOR RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch





NAMRIA OFFICES:

Main : Lawton Avenue, Fart Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Berraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.2. MRE-44

#### 3. MRE-32



April 05, 2013

#### CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

| 1                           |                               |                  |             |  |  |  |  |  |
|-----------------------------|-------------------------------|------------------|-------------|--|--|--|--|--|
| Province: ORIENTAL MINDORO  |                               |                  |             |  |  |  |  |  |
|                             |                               |                  |             |  |  |  |  |  |
| Island: LUZON               | Order: 2nd                    |                  |             |  |  |  |  |  |
| Municipality: VICTORIA      |                               | Barangay:        |             |  |  |  |  |  |
|                             | PRS92 Coordinates             |                  |             |  |  |  |  |  |
| Latitude: 13º 10' 28.85064" | Longitude: 121º 16' 38.44761" | Ellipsoidal Hgt: | 19.49300 m. |  |  |  |  |  |
|                             | WGS84 Coordinates             |                  |             |  |  |  |  |  |
| Latitude: 13° 10' 23.79251" | Longitude: 121º 16' 43.46244" | Ellipsoidal Hgt: | 67.64700 m. |  |  |  |  |  |
|                             | PTM Coordinates               |                  |             |  |  |  |  |  |
| Northing: 1456889.419 m.    | Easting: 530065.679 m.        | Zone: 3          |             |  |  |  |  |  |
| Madhia                      | UTM Coordinates               |                  |             |  |  |  |  |  |
| Northing: 1,457,002.75      | Easting: 313,296.85           | Zone: 51         |             |  |  |  |  |  |

#### MRE-32

Location Description

From Calapan City to Roxas, along Nat'l. Road approx. 34 Km. travel to Victoria Town Proper, 10 Km. from intersection of Naujan, left turn to Shell Gasoline Station, approx. 150 m, right side of road located Mun. Hall of Victoria, Oriental Mindoro. Station is located in Mun. Park in front of Former Mayor Statue, along corner of pathwalk. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRE-32, 2007, NAMRIA".

 Requesting Party:
 UP-TCAGP

 Pupose:
 Reference

 OR Number:
 3943485 B

 T.N.:
 2013-0270

RUEL DM. BELEN, MNSA Director, Mapping and Geodesy Department





NAMRIA OFFICES: Main : Lawton Avenue, Fort Banifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. Sen Nicolas, 1010 Manile, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.3. MRE-32

#### 4. MRE-11



Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 28, 2015

#### CERTIFICATION

#### To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

|                                          | Province: ORIENTAL MINDORO                       |                  |             |
|------------------------------------------|--------------------------------------------------|------------------|-------------|
|                                          | Station Name: MRE-11                             |                  |             |
|                                          | Order: 3rd                                       |                  |             |
| Island: LUZON<br>Municipality: BONGABONG | Barangay:<br>MSL Elevation:<br>PRS92 Coordinates |                  |             |
| Latitude: 12º 44' 50.41380"              | Longitude: 121º 29' 7.80130"                     | Ellipsoidal Hgt: | 5.11500 m.  |
|                                          | WGS84 Coordinates                                |                  |             |
| Latitude: 12º 44' 45.47630"              | Longitude: 121º 29' 12.85191"                    | Ellipsoidal Hgt: | 54.91100 m. |
|                                          | PTM / PRS92 Coordinates                          |                  |             |
| Northing: 1409650.153 m.                 | Easting: 552720.766 m.                           | Zone: 3          |             |
|                                          | UTM / PRS92 Coordinates                          |                  |             |
| Northing: 1,409,587.05                   | Easting: 335,581.55                              | Zone: 51         |             |

Location Description

MRE-11 To reach the station from Calapan town proper, travel SE to S ialong the nat'l. road for about 120 kms. leading to the town of iBongabong, passing by the towns of Victoria, Pinamalayan and iBansud. Station is located inside the school compound of iMagdalena Umali Suyon Elem. School on the SE corner of the ifooting of a concrete landmark bearing the school name. It is iabout 20 m. W of the main gate along Gov. Umali St. Mark is the ihead of a 4 in. copper nail embedded and centered on a 0.15 m. x i0.15 m. cement putty, with inscriptions "MRE-11 1997 NAMRIA".

| eference |
|----------|
| 088472 1 |
| 15-3525  |
|          |

RUEL DM. BELEN MNSA Director, Mapping And Geodesy Branch



AB ADED

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1534 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Noceas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

SO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. MRE-11

# ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

#### 1. MRE-4563

Table A-3.1. MRE-4563

#### Vector Components (Mark to Mark)

| From:             | MR | MRE-54          |                             |                 |                 |          |                   |    |                   |
|-------------------|----|-----------------|-----------------------------|-----------------|-----------------|----------|-------------------|----|-------------------|
| Grid              |    |                 | Lo                          | cal             |                 | Global   |                   |    |                   |
| Easting           |    | 328016.924 m    | Lati                        | tude            | N12*59'0        | 7.43505" | Latitude          |    | N12*59'07.43505"  |
| Northing          |    | 1436055.870 m   | Lon                         | gitude          | E121°24'5       | 1.55668" | Longitude         |    | E121°24'51.55668" |
| Elevation         |    | 41.949 m Height |                             | ght             | 91.395 m Height |          | Height            |    | 91.395 m          |
| To:               | MR | MRE-4563        |                             |                 |                 |          |                   |    |                   |
| Grid              |    |                 | Local                       |                 | Global          |          |                   |    |                   |
| Easting           |    | 328034.015 m    | Lati                        | tude            | N13*00'5        | 3.01692" | Latitude          |    | N13*00'53.01692*  |
| Northing          |    | 1439300.319 m   | Longitude E121°24'51.45337* |                 | Longitude       |          | E121°24'51.45337* |    |                   |
| Elevation         |    | 24.394 m        | Height 73.715 m             |                 | Height          |          | 73.715 m          |    |                   |
| Vector            |    |                 |                             |                 |                 |          |                   |    |                   |
| ∆Easting          |    | 17.09           | 1 m                         | NS Fwd Azimuth  |                 |          | 359°56'42"        | ΔX | 392.071 m         |
| ∆Northing         |    | 3244.45         | i0 m                        | Ellipsoid Dist. |                 |          | 3244.605 m        | ΔY | -635.982 m        |
| <b>∆Elevation</b> |    | -17.55          | 5 m                         | ∆Height         |                 |          | -17.680 m         | ΔZ | 3157.508 m        |

#### 2. MRE-11

#### Table A-3.2. MRE-11

| Project information |                                | Coordinate System |                 |
|---------------------|--------------------------------|-------------------|-----------------|
| Name:               |                                | Name:             | UTM             |
| Size:               |                                | Datum:            | WGS 1984        |
| Modified:           | 10/12/2012 4:40:11 PM (UTC:-6) | Zone:             | 51 North (123E) |
| Time zone:          | Mountain Standard Time         | Geoid:            | EGM96 (Global)  |
| Reference number:   |                                | Vertical datum:   |                 |
| Description:        |                                |                   |                 |

# Baseline Processing Report

| Processi | ng | Summary |  |
|----------|----|---------|--|
|----------|----|---------|--|

| Observation                          | From          | То                | Solution Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | ΔX<br>(Meter) | ΔY<br>(Meter) | ΔZ<br>(Meter)      | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
|--------------------------------------|---------------|-------------------|---------------|---------------------|---------------------|---------------|---------------|--------------------|-----------------|-------------------------------|--------------------|
| MRE54 - 22<br>MRE11 AM1 -22<br>(B3)  | MRE54 -<br>22 | MRE11<br>AM1 -22  | Fixed         | 0.006               | 0.035               | -<br>9779.846 | 890.616       | -<br>25831.85<br>3 | 163*25'4<br>1*  | 27635.21<br>5                 | -36.405            |
| MRE54 - 22<br>MRE11 PM2 - 22<br>(B2) | MRE54 -<br>22 | MRE11<br>PM2 - 22 | Fixed         | 0.004               | 0.023               | -<br>9779.877 | 890.724       | -<br>25831.85<br>6 | 163°25'4<br>1"  | 27635.23<br>2                 | -36.300            |

#### Acceptance Summary

| Processed | Passed | Flag | Þ | Fail | • |
|-----------|--------|------|---|------|---|
| 2         | 2      | 0    |   | 0    |   |

| MRE54 - 22 MRE11 AM1 -22 (B3)          |
|----------------------------------------|
| 11/5/2015 4:50:09 PM                   |
| Fixed                                  |
| Dual Frequency (L1, L2)                |
| 0.006 m                                |
| 0.035 m                                |
| 0.005 m                                |
| 3.705                                  |
| Broadcast                              |
| NGS Absolute                           |
| 10/22/2015 7:40:33 AM (Local: UTC+8hr) |
| 10/22/2015 8:58:26 AM (Local: UTC+8hr) |
| 01:17:53                               |
| 1 second                               |
|                                        |

#### MRE54 - 22 - MRE11 AM1 -22 (7:40:13 AM-8:58:26 AM) (S3)

#### Vector Components (Mark to Mark)

| From:      | MRE54 - 22    |                     |            |         |             |     |                   |
|------------|---------------|---------------------|------------|---------|-------------|-----|-------------------|
| G          | rid           | Lo                  | cal        |         |             | Gk  | bal               |
| Easting    | 328016.924 m  | Latitude            | N12°59'07  | .43505" | Latitude    |     | N12°59'07.43505"  |
| Northing   | 1436055.870 m | Longitude           | E121*24'51 | .55668" | Longitude   |     | E121°24'51.55668" |
| Elevation  | 43.116 m      | Height              | 9          | 1.395 m | Height      |     | 91.395 m          |
| To:        | MRE11 AM1 -22 |                     |            |         |             |     |                   |
| G          | rid           | Lo                  | cal        |         |             | Glo | bal               |
| Easting    | 335735.169 m  | Latitude            | N12*44'45  | .47242" | Latitude    |     | N12*44'45.47242*  |
| Northing   | 1409521.797 m | Longitude           | E121*29'12 | .85426" | Longitude   |     | E121°29'12.85426" |
| Elevation  | 5.611 m       | Height              | 5          | 4.990 m | Height      |     | 54.990 m          |
| Vector     |               |                     |            |         |             |     |                   |
| ∆Easting   | 7718.24       | 5 m NS Fwd Azimuth  |            |         | 163*25'41"  | ΔX  | -9779.902 m       |
| ∆Northing  | -26534.07     | 3 m Ellipsoid Dist. |            |         | 27635.215 m | ΔY  | 890.711 m         |
| ∆Elevation | -37.50        | 5 m ∆Height         |            |         | -36.405 m   | ΔZ  | -25831.822 m      |

# ANNEX 4. The LIDAR Survey Team Composition

| Data Acquisition<br>Component Sub-Team | Designation                                  | Name                                 | Agency/ Affiliation  |
|----------------------------------------|----------------------------------------------|--------------------------------------|----------------------|
| PHIL-LIDAR 1                           | Program Leader                               | ENRICO C. PARINGIT,<br>D.ENG         | UP-TCAGP             |
| Data Acquisition<br>Component Leader   | Data Component<br>Project Leader - I         | ENGR. CZAR JAKIRI<br>SARMIENTO       | UP-TCAGP             |
|                                        | Chief Science Research<br>Specialist (CSRS)  | ENGR. CHRISTOPHER<br>CRUZ            | UP-TCAGP             |
| Survey Supervisor                      | Supervising Science                          | LOVELY GRACIA ACUÑA                  |                      |
|                                        | (Supervising SRS)                            | LOVELYN ASUNCION                     | UP-ICAGP             |
|                                        | FIELD                                        | TEAM                                 |                      |
|                                        | Senior Science Research<br>Specialist (SSRS) | PAULINE JOANNE<br>ARCEO              | UP-TCAGP             |
|                                        |                                              | ENGR. IRO NIEL ROXAS                 | UP-TCAGP             |
| LIDAR Operation                        | Research Associate (RA)                      | MILLIE SHANE REYES                   | UP-TCAGP             |
|                                        |                                              | MARY CATHERINE<br>ELIZABETH BALIGUAS | UP-TCAGP             |
| Ground Survey, Data                    | Bacaarch Accaciata (BA)                      | GRACE SINADJAN                       | UP-TCAGP             |
| Download and Transfer                  | Research Associate (RA)                      | GEF SORIANO                          | UP-TCAGP             |
|                                        | Airborne Security                            | TSG ERIC CACANINDIN                  | PHILIPPINE AIR FORCE |
|                                        | And the Security                             | TSG AWIC CHARISMA<br>NAVARRO         | (PAF)                |
| LiDAR Operation                        |                                              | CAPT. JEFFREY JEREMY<br>ALAJAR       |                      |
|                                        | Dilat                                        | CAPT. JACKSON JAVIER                 | ASIAN AEROSPACE      |
|                                        | FIIOL                                        | CAPT. MARK<br>TANGONAN               | CORPORATION (AAC)    |
|                                        |                                              | CAPT. JEROME MOONEY                  |                      |

Table A-4.1. The LiDAR Survey Team Composition

| SCRNER         |                    | X:Marborne_Raw(10<br>\$2A | X:Mittome_Raw(10 | SAA           | X:Marborne, Hawkin |                                             |                                          |  |
|----------------|--------------------|---------------------------|------------------|---------------|--------------------|---------------------------------------------|------------------------------------------|--|
| PLAN           | KML                | NN                        | NIN              | NN            | NIA                |                                             |                                          |  |
| FLIGHT         | Actual             | 89993                     | 354/2            | 239438        | 9.1043             |                                             |                                          |  |
| DFERATOR LOGS  | Incorned           | 0929                      | 6258             | 6109          | 3098               |                                             |                                          |  |
| (sheo          | Ease Info<br>(1of) | 188                       | 198              | 198           | 100                |                                             |                                          |  |
| BASE STATE     | gramow(s)          | 6.1248                    | 0.12545          | 6.29MB        | 6.2948             | 44                                          |                                          |  |
| and the second |                    | 46.908                    | NN               | 17208         | NN                 | 0 02/04                                     |                                          |  |
|                |                    | 14.8GB                    | 11.808           | 12.208        | 11.308             | - File                                      |                                          |  |
| MISSION        | LOG FLE            | 26502                     | 36543            | 500/B         | 49163              | adian add                                   | -                                        |  |
| Rour Roll      | INAGES             | 52.908                    | 73.708           | 77.208        | 65.508             | teceived by<br>terme<br>Nation<br>Signature | 600                                      |  |
|                | 2                  | 22248                     | 20640            | 210MB         | 201MB              |                                             | 0                                        |  |
|                | -                  | 820435                    | 1.70468          | 1.06MB        | 1.82MB             |                                             | el L                                     |  |
| 3              | NML I              | (2890)                    | 67268            | 700408        | 646803             |                                             | Africe P                                 |  |
| RAW            | Output             | NN N                      | NN               | NN            | NN                 |                                             | date                                     |  |
|                | SENSOR             | ADUARUS                   | ADUARUS          | AQUARUS       | NOUNTER            | 14c                                         | Ventied by<br>Name<br>Poston<br>Signatre |  |
|                | MISSION NAME       | AUTOMACK UN               | 18002880338      | 364 KCISCO34A | SELCOCOMB          | Received from<br>Nama 150 M                 |                                          |  |
| -              | 9                  | ADADA                     | 1054A            | 1066A         | 1058A              |                                             |                                          |  |
|                | DATE               | 1 2014                    | 1.2014           | 3.2014        | 3 2014             |                                             |                                          |  |

ANNEX 5. Data Transfer Sheet for Casiligan Floodplain

Figure A-5.1. Transfer Sheet for Casiligan Floodplain - A

109

Figure A-5.2. Transfer Sheet for Casiligan Floodplain - B

| SERVER LOCATION       | We REENAST geostorage IV.Air<br>borne Barw,1088A | V/FREEMAS/geostoraee3/Air<br>borne Raw/1090A | WERENAS/sectoriste/3/Air<br>borne Raw/1092A | WERENAS/secondorase3/Air<br>borne Raw/J054A | WERENAS/geostorage3/Air<br>borne Raw/1096A | WFRENAS/geostorage3/Air<br>borne #aw/1098A | M/REENASJacostorage 3/Air<br>borne Rew/1104A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N N                   | 12                                               | NIA                                          | NIA                                         | Ň                                           | NN                                         | NN.                                        | NIX                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual                |                                                  | NN                                           | NN                                          |                                             |                                            |                                            | *                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NATOR<br>005<br>PLOG  | 900                                              | 202                                          | ×                                           | 20                                          | ų                                          | R                                          | 8                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100.00                | 95                                               | 9                                            | 8                                           | 9                                           | 6                                          | 12                                         | act.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E RECEORD             | 19                                               | 14.7                                         | 15.4                                        | 13.4                                        | 55                                         |                                            | 5.80                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BA65<br>BA65          | -                                                | *                                            | -                                           | -                                           | -                                          |                                            | -                                            | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DIGITIZER             | z                                                | X                                            | z                                           | Z                                           | Z                                          | 2                                          | 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bawa                  | z                                                | 4.96                                         | 127                                         | 89                                          | 7,46                                       | -                                          | 103                                          | S. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NUN LOO               | - Allan                                          | 2 A 16                                       | N No                                        | 28                                          | ñ                                          | Ŕ                                          | 000110000                                    | Agua agu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| and the second        | N.768                                            | 13.4                                         | 237                                         | 3 1                                         | Sid                                        | 812                                        | 808                                          | and by an an and by an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ğ                     | -00<br>-02                                       | 10                                           | 2                                           | 128                                         | h                                          | 1                                          | 276                                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LOOS                  | 12346                                            | 82248                                        | 1 70MB                                      | 2.27MB                                      | 17263                                      | 2002                                       | 1.0048                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RAW LAS FORL (Swetch) | 781                                              | 215                                          | 1995                                        | 200                                         | 011                                        | 205                                        | 787                                          | Hand - Hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Coreson               | ANN SUDAU                                        | ANN SUBAL                                    | ANN SUBAL                                   | ANN SUBAL                                   | ANN SUBAL                                  | ANN SLIDAL                                 | NN SUBNU                                     | ALLER DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STANK NORSEN          | MUNCERSOLAN NO                                   | SBUCKNOUS NO                                 | ON NCHARGON AG                              | DV SOCOBBOAD                                | ON ANDLANDOLD                              | AD REPORTED AND                            | DA ABAORUSUREA                               | and the section and the section and the section and se |
| UGHT NO.              | 1088A                                            | 1000A                                        | C 10801                                     | 10944                                       | 10004                                      | THOMA                                      | TIOM 30                                      | a z ( c   s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e<br>E                | 700                                              | 2014                                         | 7100                                        | 0014                                        | 1001                                       | 1100                                       | Nego                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

111

| -  |   |
|----|---|
| 5  |   |
| 쀻  |   |
| ŵ  | 2 |
| 85 | æ |
| ж. | = |
| 12 | 5 |
| 3  | 죍 |
| 띁  |   |
| *  | 0 |
| A. |   |
| ď  |   |

| - AVE         | ALL PLATE AND IN | Antonio Lance             |         | RAN        | VLAS        |          |      | -           | MISSION LOG |       |           | BASE ST   | ATION(5)  | ABCBANNO.  | FLIGHT    | PLAN |            |
|---------------|------------------|---------------------------|---------|------------|-------------|----------|------|-------------|-------------|-------|-----------|-----------|-----------|------------|-----------|------|------------|
|               |                  | SHOW NOW SHOW             | SENSOR  | Oriput LAS | KML (swath) | LOGS(MB) | POS  | IMAGESICASI | FILECASI    | RANGE | DIGITIZER | BASE      | Base Info | 1001       | Actual    | KMI  | SERVER     |
| Oct. 22, 2015 | 8300             | 2BLK28ABC295A             | Gemini  | 2          | 400         | 676      | 3.00 | 100         |             |       |           | febourvie | (unv)     | france and |           |      | TUNDALIN   |
|               |                  |                           |         |            |             |          |      | 107         | 17          | 701   | 24/       | 15.6      | 1KB       | 1KB        | 24        | 2    | DATA       |
| Oct. 22, 2015 | 8301             | 2BLK28CSD295B             | Gernini | 2          | 587         | 196      | 249  | 39.1/10.5   | 307/67      | 22.7  | g         | 15.6      | 1KB       | 1KB        | 22/24     |      | ZYDAC/RAW  |
| And the state | 0000             | Contract Contract         |         |            |             |          |      |             |             |       |           |           |           |            |           |      | DATA       |
| 001 49, 2010  | 2058             | 2BLK28ASEHI296A           | Cemin   | 2          | 343         | 583      | 228  | 28.2        | 223         | 14.5  | s         | 11.5      | 188       | 100        | 22.04     | 5    | ZYDACRAW   |
| 2100 10 10    |                  |                           |         |            |             |          |      |             |             |       |           |           |           |            |           | 1    | DATA       |
| OCT. 24, 2015 | 8304             | ZBLKZ5FHS297A             | Gemin   | 2          | 315         | 519      | 214  | 24.8        | 187         | 142   | 221       | 8.92      | 1KB       | 108        | 511/24141 |      | ZIDACRAW   |
| ALL 26 2016   |                  | 2CALIBBLK28FSGS298        |         |            |             | Ī        |      |             |             |       |           |           |           |            | •         |      | DATA       |
| 001 40, 4010  | 0000             | V                         | Germini | 2          | 136         | 308      | 220  | 8           | 2           | 10.7  | 429       | 8.28      | 1K0       | 1KB        | 28/27     | 2    | Z'UDACIRAW |
| Out of one    | 0200             | ART LAND TO A             |         |            |             |          |      |             |             |       |           |           |           |            |           |      | DATA       |
| 001 20, 2013  | 0000             | ZBUK28J299A               | Gemini  | ę          | 312         | 356      | 205  | 2           | 2           | 14    | 153       | 8.39      | 560       | 1KB        | 760       |      | ZYDACRAW   |
| And no more   |                  | and the set of the set of |         |            |             | Ī        |      |             |             |       |           |           |           |            |           |      | DATA       |
| 001.69, 6013  | 2150             | ZBLKZBJKLSS01A            | Gernini | 5          | ş           | 292      | 215  | 2           | 2           | 11    | 123       | 7.5       | 19(8)     | 19CB       | 7         | 020  | ZIDACRAW   |
|               |                  |                           |         |            |             |          |      |             |             |       |           |           |           |            |           | 2    | DATA       |

teceived fro

51/21/11

Figure A-5.4. Transfer Sheet for Casiligan Floodplain - D

ANNEX 6. Flight logs for the Flight Missions

1. Flight Log for Mission 1054A

| LUDAR Operator: & ARCED                                                                                      | 2 ALTM Model: Aguinator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 Mission Name: 3624 2680                                                                               | 39.5 4 Type: VFR                   | 5 Aircraft Type: Cesnna T206H                       | 6 Aircraft Identification:                           | KPPIDD |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------|
| PHOT: J.R. JANER                                                                                             | 8 Co-Pilot: J. ALAJAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 Route:                                                                                                |                                    |                                                     |                                                      |        |
| 0 Date:<br>PERdurang 2, Tole                                                                                 | 12 Airport of Departure (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Airport, City/Province):                                                                               | 12 Airport of Arrival              | (Airport, Gty/Province):                            |                                                      |        |
| 3 Engine On: 12.53                                                                                           | 14 Engine Off:<br>16 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 Total Engine Time:<br>3 + 4H                                                                         | 16 Take off:                       | 17 Landing:                                         | 18 Total Flight Time:                                |        |
| 19 Weather                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                    |                                                     |                                                      |        |
| 0 Remarks:                                                                                                   | si cosised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 (1+4K)                                                                                               |                                    |                                                     |                                                      |        |
| 21 Problems and Solutions:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                    |                                                     |                                                      |        |
| Acquisition Flight Ap<br>Acquisition Flight Ap<br>LaNert Acu<br>Stenature over Philot<br>[End User Represent | proved by Acquired | Holiton Flight Certified by<br>M. Fask Categoriditin R. F.<br>Maren Over Finted Name<br>Representative) | riasi in Ca<br>Nell<br>Signature e | magnet<br>find<br>for the fill<br>over Printed Name | Lidar Operator<br>Bandar Signature over Printed Name |        |
|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                    |                                                     |                                                      |        |
|                                                                                                              | ι.<br>Έ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onre A-6.1. Flight Lo                                                                                   | o for Mission 1(                   | 154.A                                               |                                                      |        |

| 7 Pilot: J. P.LAJAR. 8 Co-Pilot: J<br>10 Date:<br>13 Engine On:<br>2 3 4<br>14 Engine Off:<br>2 3 4              | Model: AQUARUE          | 3 Mission Name: JBUK28Co                                                                                                              | 569 4 Type: VFR       | 5 Aircraft Type: CesnnaT206H          | 6 Aircraft Identification: 12P9/12                        |
|------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-----------------------------------------------------------|
| 10 Date: $2\pi g_{\mu\nu}M_{\nu}$ $g_{\nu}$ 30/4 12 Airpo<br>13 Engine On: $2_{2}$ $g_{\nu}$ 14 Engine Off: $12$ | JAVIER                  | 9 Route:                                                                                                                              |                       |                                       |                                                           |
| 13 Engine On: 244 14 Engine Off: 12 08                                                                           | ort of Departure ()     | Airport, City/Province):                                                                                                              | 12 Airport of Arrival | (Airport, Gty/Province):              |                                                           |
|                                                                                                                  | 6                       | 15 Total Engine Time:                                                                                                                 | 16 Take off:          | 17 Landing:                           | 18 Total Flight Time:                                     |
| 9 Weather                                                                                                        |                         |                                                                                                                                       |                       |                                       |                                                           |
| 0 Remarks:                                                                                                       |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  | COMMENT                 | 11/21 UNES.                                                                                                                           |                       |                                       |                                                           |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
| 21 Problems and Solutions:                                                                                       |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
| Acquisition Flight Approved by<br>Apple Activity<br>Signature over Printed Name<br>(End User Representative)     | Acqui<br>Signa<br>Charl | ation Flight Certified by<br>An Edit Conditionary N Phr P<br>In Edit Conditionary N Phr P<br>two over Printed Name<br>Representative) | Pilot-in-Con          | wmand<br>ALAN Pro-<br>keyPrinted Name | Udar Operator<br>PU MK (60<br>Signature over Frinted Name |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  |                         |                                                                                                                                       |                       |                                       |                                                           |
|                                                                                                                  |                         | Figure A-6.2. Fligh                                                                                                                   | t Log for Missi       | ion 1056A                             |                                                           |

5



| Operator: 10.0 Loyp                        | N6 2         | ALTM Model: MQUMIQUE     | 3 Mission Name: JPUL 200 03                | 4.0 4 Type: VFR       | 5 Aircraft Type: Cesnna T206H | 6 Aircraft Identification: RP3/22 |
|--------------------------------------------|--------------|--------------------------|--------------------------------------------|-----------------------|-------------------------------|-----------------------------------|
| J. MUM                                     | 8 Co-Pilo    | IL J JAMPE               | 9 Route:                                   |                       |                               |                                   |
| Resumtury 2, 1014                          | 1            | 2 Airport of Departure ( | (Airport, Gty/Province):                   | 12 Airport of Arrival | (Airport, Gtty/Province):     |                                   |
| ne On: rLSY                                | 14 Engine    | e Off:<br>Ki (7          | 15 Total Engine Time:<br>スインシ              | 16 Take off:          | 17 Landing:                   | 18 Total Flight Time:             |
| ther                                       |              |                          |                                            |                       |                               |                                   |
| completed m                                | 114ion       | se c and fi              | rished some lines                          | n D.                  |                               |                                   |
| blems and Solutions                        |              |                          |                                            |                       |                               |                                   |
| Acquisition Flight A                       | Ad barond by | Acqu                     | usition Flight Certified by                | Pilotin-Co            | And And                       | Ludar Operator                    |
| -agnature over Print<br>(End User Represen | tative)      | Segn                     | alure over Printed Name<br>Representative) | Signature o           | by Printed Name               | Signature gyer Printed Name       |
| ~                                          |              |                          |                                            |                       |                               |                                   |
|                                            |              |                          |                                            |                       |                               |                                   |

| LIDAR Operator: PU MKCRD           | 2 ALTM Model: KODRUX             | 3 Mission Name: abuk 280K 0344                                                                         | 4 Type: VFR          | 5 Aircraft Type: Cesnna T206H     | 6 Aircraft Identification: AP(132 |
|------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|-----------------------------------|
| Pilot: J. JANIAR 8 Co.             | Pilot: J. ALASAR                 | 9 Route:                                                                                               |                      |                                   |                                   |
| 00ate: Pris. C, PM                 | 12 Airport of Departure (J       | Airport, City/Province): 1                                                                             | 2 Airport of Arrival | (Airport, Gity/Province):         |                                   |
| 3 Engine On: 1349 14 En            | gine Off:<br>1724                | 15 Total Engine Time: 1<br>3 + 35                                                                      | 6 Take off:          | 17 Landing:                       | 18 Total Flight Time:             |
| 9 Weather                          |                                  |                                                                                                        |                      |                                   |                                   |
| 0 Remarks:                         | LAN NGJIW                        | / in lines.                                                                                            | વૃત્વદીઓનું.         |                                   |                                   |
| 21 Problems and Solutions:         |                                  |                                                                                                        |                      |                                   |                                   |
| Acquisition Flight Approves<br>440 | 1 by Acquir<br>A Signal<br>Invel | utition Flight Certified by<br>BPLC Construction D. M. P. P. Lune over Printed Name<br>Representative) | Pilotin-Com          | mand<br>Davidt<br>ee Printed Name | Lidar Operator                    |
|                                    |                                  |                                                                                                        |                      |                                   |                                   |



| American     All MARK     Broater       Tother     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101)       1 (All 101)     1 (All 101)     1 (All 101)     1 (All 101) <td< th=""><th>1 LIDAR Operator:   NO RO</th><th>XAS 2 ALTM MODEL: AGUA</th><th>3 Mission Name: 36 LK28 DS</th><th>E03344 Type: VFR</th><th>S Aircraft Type: Cesnna T206H</th><th>6 Aircraft Identification:</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 LIDAR Operator:   NO RO                                     | XAS 2 ALTM MODEL: AGUA                                                         | 3 Mission Name: 36 LK28 DS       | E03344 Type: VFR                    | S Aircraft Type: Cesnna T206H     | 6 Aircraft Identification: |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-------------------------------------|-----------------------------------|----------------------------|---|
| Observer:     1.2.6.6.1.14     12.0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 Pilot: JALAJAK                                              | 8 CO-PILOT: J J AVIER                                                          | 9 Route:                         | the strength of the strength of the | Altered Planford and              |                            | T |
| 3 Fourier Oi:     3 Fourier Frieden Eine:     3 Frank off:     3 Fourier Frieden       9 Weather     3 Weather     3 Frank off:     3 Frank off:     3 Frank off:       30 Remarks:     5 Mm plet Pal     3 BL/C 29 D     3 Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Per Per Per                                                   | LA AUTOON OF DEPARTURE                                                         | (wrbort, city/Prownce):          | 12 Airport of Arrival               | wrport, Uty/Prownce):             |                            |   |
| Denote:<br>Denote:<br>Denote:<br>1 Proteiner and Solution:<br>1 Proteiner And Solu | 13 Engine On:<br>12 54                                        | 14 Engine Off:                                                                 | 15 Total Engine Time:<br>4 + 29  | 16 Take off:                        | 17 Landing:                       | 18 Total Flight Time:      |   |
| Otherwise     SLIC290       Indernand     Indernand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 Weather                                                    |                                                                                |                                  |                                     |                                   |                            | T |
| 1 hobitms and Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Remarks:                                                   | Com                                                                            | 1 pleted 3BLIC                   | 061                                 |                                   |                            |   |
| 21 Problems and Solutions:     21 Problems and Solutions:       21 Problems and Solutions:     Aquisition flight Approval by Control of the Command       21 Problems and Solutions:     Aquisition flight Approval by Control of the Command       21 Problems:     Salid Solutions:       21 Problems:     Problems:       22 Problems:     Problems:       23 Problems:     Problems:       24 Problems:     Problems:       25 Problems:     Problems:       26 Problems:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                |                                  |                                     |                                   |                            |   |
| Acquisition flight Approved by     Acquisition flight Approved by     Acquisition flight Approved by       And Total Full     Acquisition flight Approved by     Plot is Command       And Total Full     Still Unit of Nu Contract     Idot in Command       Still Unit of Nu Contract     Still Unit of Nu Contract     Idot in Command       Still Unit of Nu Contract     Still Unit of Nu Contract     Idot in Command       Still Unit of Nu Contract     Still Unit of Nu Contract     Idot in Command       Still Unit of Nu Contract     Still Unit of Nu Contract     Idot in Command       Still Unit of Nu Contract     Nu Figure contract Nu Contract     Idot in Contract       Still Unit of Nu Contract     Nu Figure contract Nu Contract     Idot in Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 Problems and Solution                                      | 12                                                                             |                                  |                                     |                                   |                            |   |
| Acquisition flight Approved by Acquisition flight Contract Interview of the Contract Interview o                                                                                                                                                                                                                                                 |                                                               |                                                                                |                                  |                                     |                                   |                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acquisition Flight J<br>440 - LoNEL-A<br>Signature over Price | Approved by Ace<br>Cubica State<br>Approved by Ace<br>State<br>Approved by Ace | unistion flight Certified by<br> | Phes-in-Com                         | mand<br>ADDIATC<br>sectioned Name | Udur Operator              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                                |                                  |                                     |                                   |                            |   |

ъ.

| of Operator: No DoxP.    | C 2 ALTM Model: Sectores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 Mayion Name:                                                                                 | 4 Type: VFR           | 5 Aircraft Type: CesnnaT206H        | 6 Aircraft Identification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (CIPPAN) |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3. J. J. J. J. MILLER    | Co-Pilot: J. ALAIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 Route:                                                                                       |                       |                                     | and the state of t |          |
| e: fag. 12, 2014         | 12 Airport of Departure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Airport, City/Province):                                                                      | 12 Airport of Arrival | (Airport, Gty/Province):            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ne On: 402 14            | Engine Off:<br>1313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 Total Engine Time:<br>9405                                                                  | 16 Take off:          | 17 Landing:                         | 18 Total Flight Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| arks:                    | corp belook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | that in Anarl A                                                                                | 2 v.                  |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| blems and Solutions:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Acquisition Flight Appro | Acquired by Acquir | istion Fligh Certified by<br>intervention of the state<br>over Printed Name<br>Representative) | Pilot in Con          | mand<br>for ULAF<br>ee Frinced Name | Udar Operator<br>1' Roffy S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| ~                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                       |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

Figure A-6.6. Flight Log for Mission 1092A

| Note that is a contract of the second of                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode     Id. Antiport of Obsanture (Autoria (Auto                                                                                                                                                                                                                                                              |
| Id regine Ottis     35 Total Engine Times:     16 Take Ottis     12 Landing:     18 Total Flight Time:       Andrewood Mark     Angrete Line And And And     10     Andrewood     10 Andrewood       Andrewood Mark     Angrete Line Andrewood     Andrewood     Andrewood     Andrewood       Andrewood Mark     Angrete Line Andrewood     Andrewood     Andrewood     Andrewood       Andrewood Mark     Angrete Line Andrewood     Andrewood     Andrewood     Andrewood       Andrewood Mark     Andrewood     Andrewood     Andrewood     Andrewood       Andrewood Mark     Andrewood     Andrewood     Andrewood     Andrewood       Andrewood Mark     Andrewood     Andrewood     Andrewood     Andrewood       Andrewood     Andrewood     Andrewood     Andrewood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ampleted line in the line in t                                                                                                                                                                                                                                    |
| angleded line in the Pro-<br>tions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1001:<br>Math Approved by<br>Math |
| Nons:     Main of the field of                                                                                                                                                                                                                                                               |
| Might Approved by     Acquisition Flight Certified by     Palot in Command       A cutaLA     Command     Palot in Command       A cutaLA     Command     March in Command       Signature core Printed Name     Signature core Printed Name     Signature core Printed Name       Presentative)     INF Representative)     Signature core Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| High Approved by     Acquisition Fligh Certified by     Palor in Command.       A cutary     Acduary     Palor in Command.       A cutary     Acduary     Acutary       A cutary     Article and     Article and       A cutary     Article and     Article and       A cutary     Article and     Article and       Article and     Article and     Article and       Article and     Article and     Article and       Synature over Printed Name     Synature over Printed Name     Synature over Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| New Approved by Arquisition Fleek Certified by Arquisition Fleek Certified by Pator in Community Actual Actua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A cutain of the factor over Printed Name Separative over Printed Name Proceedative) (PMS Representative) (PMS Representative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A Cult-J A Coll-J A Coll-J A Cult-Let Concertained Ref Separate over Printed Name Separate over Printed Name presentative) [PMS Representative]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Figure A-6.7. Flight Log for Mission 1094A

119

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AM Data Acquisition Flight Log                                                                                 |                    | The state of the second se | A ATIMA VED             | C Alreadt Tune: Cesona 7206H | 6 Aircraft Identification:                                | C. ledy             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-----------------------------------------------------------|---------------------|
| One of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAR Operator: pto CoxPrS 2 ALTN                                                                                | M Model: AQA       | 3 Mission Name: Generative 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d type: vra             | Section 1990 - Section 1990  |                                                           |                     |
| Reprint Constraint     State off.     It total fight Time:       Reprint Constraint     10     10     10     10       Reprint Constraint     31 + 37     10     10     10       Reprint Constraint     10     10     10     10     10       Reprint Constraint     10     10     10     10     10       Reprint Constraint     MOLIN     10     10     10     10       Reprint Constraint     MOLIN     10     10     10     10       Reprint Constraint     10     10     10     10     10       Reprint Constrant     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date: JONIER AUTON                                                                                             | rport of Departure | (Airport, Gity/Province): 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 Airport of Arrival    | (Airport, Gty/Province):     |                                                           |                     |
| Marcher<br>Renative<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>Marcher<br>March | Engine On: 14 Engine Off                                                                                       | fi:<br>13          | 15 Total Engine Time: 10<br>3 + 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 Take off:             | 17 Landing:                  | 18 Total Flight Time:                                     |                     |
| MCRIAI CAPITION<br>MCRIAI CAPITION<br>Internet<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manuari<br>Manua       | Weather                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                              |                                                           |                     |
| Inderive and Solutions:       Inderive and Solutions:         Indervision:       Indervision:         Indervision:       Indervisin: <th>Remarks:</th> <th>and</th> <th>N cometered.</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:                                                                                                       | and                | N cometered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                              |                                                           |                     |
| Marrie : Roma Handel     Remaining       Marrie : Roma Handel     Marrie : Roma Handel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Problems and Solutions:                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                              |                                                           |                     |
| Addition in the representation of the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                              |                                                           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acquisition Flight Approved by<br>Amale and Acatal<br>Signature over Printed Hame<br>(Ind User Representative) | A2<br>88<br>87     | ususan fight Certified by<br>Eductor and Angele Pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flocton-Co<br>Sugnature | La en el Parne               | Udar Operator<br>1. Pallytys<br>Signature of Printed Name | CERTIFILD PHOTOCOPY |

120



# **DREAM Data Acquisition Flight Log**

Flight Log No.: J 0 78

| A     B CO-PHOE: U-MAU ARC.     B ROUTE:       2014     22 Airport of Capatrume (Vironot, City/Province):     22 Airport of Arrival (Aironot, City/Province):       2014     22 Airport of Capatrume (Vironot, City/Province):     23 Airport of Arrival (Aironot, City/Province):       2014     12 Strong from City:     12 Lording:     18 Total Flight Time:       2014     12 Airport of Arrival (Aironot, City/Province):     12 Airport of Arrival (Aironot, City/Province):     18 Total Flight Time:       2015     12 Airport     16 Take off:     12 Lording:     18 Total Flight Time:       12 Airport     12 Airport     12 Airport of Arrival (Aironot, City/Province):     18 Total Flight Time:       21 Lording:     16 Take off:     12 Lording:     18 Total Flight Time:       12 Airport of Arrival (Aironot, City/Province):     10 Flight Time:     18 Total Flight Time:       12 Airport of Arrival (Aironot, City/Province):     10 Flight Time:     18 Total Flight Time:       12 Airport of Arrival (Aironot, City/Province):     10 Flight Time:     18 Total Flight Time:       12 Airport of Arrival (Aironot, City/Province):     10 Airbort     18 Airbort       12 Airbort of Arrival (Aironot, City/Province):     18 Airbort of Airbort     18 Airbort of Airbort       12 Airbort of Airbort     18 Airbort of Airbort of Airbort Airbort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A     B complete     B found       3     14 found of 0 papature (Uniport, CityProvince):     12 Auron of Annai (Vuront, CityProvince):     13 Auron of Annai (Vuront, CityProvince):       3     14 found 0 papature (Vuront, CityProvince):     13 Auron of Annai (Vuront, CityProvince):     13 Auron of Annai (Vuront, CityProvince):       3     14 found of 0:     15 Total Engine Time:     15 Tata Off.     12 Auron of Annai (Vuront, CityProvince):       3     14 found of 0:     15 Total Engine Time:     15 Tata Off.     12 Auron of Annai (Vuront, CityProvince):       3     14 found of 0:     15 Total Engine Time:     12 Auron of Annai (Vuront, CityProvince):     12 Auron of Annai (Vuront, CityProvince):       Applications:     An Auron     Mathematication     10 Auron of Annai (Vuront, CityProvince):     10 Auron of Annai (Vuront, CityProvince):       Applications:     An Auron     Mathematication     10 Annai (Vuront, CityProvince):     10 Annot (Vuront, CityProvince):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tor: RU ARGED 2       | ALTM Model: AQUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Mission Name: 20LKUCE                                                               | 0448 4 Type: VFR      | 5 Aircraft Type: Cesnna T206H | 6 Aircraft Identification: | TCIBA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|-------|
| Bold     12 Amont of Departure (Alroot, Gity/Province):     12 Amont of Departure (Alroot, Gity/Province):       April 1     14 Funding:     15 Total Engine Time:     16 Take off:     17 Landing:     18 Total Flight Time:    Proceeded  Proceeded  Proceeded  April 1     16 Take off:     17 Landing:     18 Total Flight Time:    Proceeded  April 1  Proceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ling     12 Amont of Departure (Auront, Gry/Province):     12 Auront of Departure (Auront, Gry/Province):       39     Jafenjine Off:     Is Total Engine Trans:     16 Take off:     12 Junding:     18 Total Flight Trans:       39     Jafenjine Off:     Is Total Engine Trans:     16 Take off:     10 Junding:     18 Total Flight Trans:       30     Jafenjine Off:     Is Total Engine Trans:     16 Take off:     10 Junding:     18 Total Flight Trans:       31     Jafenjine Off:     Is Total Engine Trans:     16 Take off:     10 Junding:     18 Total Flight Trans:       50     Istantian     Istantian     Istantian     Istantian     Istantian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A 8 Co-Pilo           | DE U. MANAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 Route:                                                                              |                       |                               |                            |       |
| Index     Is Total Engine Entre:     Is Total Engine Time:     Is Total Flight Time:       Is Adding:     Is Total Engine Time:     Is Total Flight Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Flight Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Engine Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Engine Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Engine Time:         Adding:     Is Total Engine Time:     Is Total Engine Time:     Is Total Engine Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30     Note: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 pice .              | 2 Airport of Departure (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Airport, City/Prowince):                                                             | 12 Airport of Arrival | (Airport, City/Province):     |                            |       |
| private D/21 Linds.<br>private D/21 Linds.<br>dottons:<br>dottons:<br>Analytication Privation                                                                                                                                                                                                                                                                                                                                            | proceeds 5/21 Linds.<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton:<br>dotton: | d 14 Engin            | e Off:<br>1688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 Total Engine Time:<br>31.57                                                        | 16 Take off:          | 17 Landing:                   | 18 Total Flight Time:      |       |
| Proveded 15/27 Linds.<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutions:<br>Indutio | privated b/21 Linds.<br>obtions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>dottions:<br>d                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                       |                               |                            |       |
| olutions:<br>a fight Approved by<br>Arry Arcourds<br>Try Arcourds<br>Signature of Printed Name<br>Protin Compared<br>Protin Compared<br>Pro                                                                                                   | olations:<br>Marine Statistical Fight Centred by<br>Marine Statistical Statistical Para<br>Statistical Marine Statistical Marine<br>Marine Statistical Marine<br>Marine Statistical Marine<br>Marine Statistical Marine<br>Marine Statistical Marine<br>Marine Marine<br>Marine<br>Marine Marine<br>Marine Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marine<br>Marin                                    |                       | Lawrood Lawrood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 13/27 Linds.                                                                        |                       |                               |                            |       |
| Image: Signature of Prince Hame     Print in Compared       Image: Signature of Prince Mane     Print in Compared       Image: Signature of Prince Mane     Jost Unit Plane       Image: Signature of Prince Mane     Jost Unit Plane       Image: Prince Mane     Signature over Princed Name       Image: Prince Mane     Signature over Princed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And Alphoned by     Acquisition flight Certified by     Pilot in Compared       And Alphoned by     Acquisition flight Certified by     Pilot in Compared       And Alphoned by     Certified by     Pilot in Compared       And Alphoned by     Sectioned by     Pilot in Compared       And Alphone     Sectioned by     Pilot in Compared       Early Activity     Sectioned by     Jack of the section       Sectioned hame     Sectioned hame     Jack on the section       Certified hame     Sectioned hame     Sectioned hame       Instruct of hame     Sectioned hame     Sectioned hame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | olutions:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                       |                               |                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | an flight Approved by | Acquired to the second | uisition flight Certified by<br>apetra start Carl and prove<br>ature own Printed Name | Pilotin Con           | 1000                          | Udar Operator              |       |

Figure A-6.9. Flight Log for Mission 1098A

| Derator: M CE BAU                                                           | Kes & 2 ALTM Model: Genui                                                                                 | 3 Mission Name: 245 A                                                                      | 4 Type: VFR                          | 5 Aircraft Type: Cesnna T206H                               | 6 Aircraft Identification: 7322 |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|---------------------------------|
| 1 THAKONAN                                                                  | 8 Co-Pilot: J M00/05Y<br>12 Airport of Departure                                                          | 9 Route: ChLhPAN - C                                                                       | 9 Leppin<br>12 Airport of Arrival (A | irport, City/Province):                                     |                                 |
| Safs :no                                                                    | 14 Engine Off: loS5                                                                                       | 15 Total Engine Time:<br>3450                                                              | 16 Take off:<br>0710                 | 17 Landing:<br>10 5 0                                       | 18 Total Flight Time:<br>3 440  |
|                                                                             |                                                                                                           |                                                                                            |                                      |                                                             |                                 |
| suffication                                                                 | 20 h Moor Billshie                                                                                        |                                                                                            | 21 Remarks                           |                                                             | Action of a                     |
| e<br>quisition Flight<br>rry Flight<br>stem Test Flight<br>libration Flight | <ul> <li>20.0 Non billable</li> <li>AAC Admin Flight</li> <li>AAC Admin Flight</li> <li>Others:</li></ul> | 20.C Others<br>O LIDAR System Mainter<br>O Aircraft Maintenance<br>O Phil-LIDAR Admin Acti | vities                               | d Ble 28 A 4 B 4 60                                         | rend 2 lines of birkac          |
| is and Solutions                                                            |                                                                                                           |                                                                                            |                                      |                                                             | -                               |
| eather Problem<br>stem Problem<br>craft Problem<br>ot Problem<br>hers:      |                                                                                                           | 1                                                                                          |                                      |                                                             |                                 |
| on Flight Approved by                                                       | Acquisition Flight Cert<br>AddV, CHent Usin J MM<br>Signature over Printed<br>(PAF Representativ          | fied by Pilotin Signature                                                                  | command                              | Lidar Operator<br>Misperfell<br>Signature over Printed Name | Aircraft Mechanic/fechnician    |
|                                                                             |                                                                                                           | Li~ Λ 6 101 Elizh+ 1                                                                       |                                      |                                                             |                                 |



| Plot:     MTAK 0/MV     8 Co-Plot:     J MODVEY     9 Route:     2018     2018     2019     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010     2010 | Flight Classification     21 Remarks       a Billable     20.b Non Billable     20.c Others       a Billable     20.b Non Billable     20.c Others       a Remarks     20.b Non Billable     20.c Others       a Substituent Flight     0 Aircraft Test Flight     0 LIDAR System Maintenance       a System fight     0 Others:     0 Phil-LIDAR Admin Activities | Acquisition Flight Approved by Acquisition Flight Certified by Plot-in-Command Lidar Operator Arcanta |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| IDAR OPERATOR: MCBALIANS<br>Illot: M TANKONAN 800<br>Date: 04-23, 2015                                                            |                                                                            |                                                                                                    |                                |                                                      |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------|-------------------------------------------|
| Date: 0.04. 23, 2015                                                                                                              | 2 ALTM Model: Gemini                                                       | 3 Mission Name: 2812296                                                                            | 4 Type: VFR                    | 5 Aircraft Type: Cesnna T206H                        | 6 Aircraft Identification: 93             |
| Date: 04. 23, 2015                                                                                                                | Pilot: J MOONEY                                                            | 9 Route: CALAPAN - CALP                                                                            | N-64                           |                                                      |                                           |
|                                                                                                                                   | 12 Airport of Departure (                                                  | (Airport, City/Province): 12                                                                       | Airport of Arrival             | (Airport, City/Province):                            |                                           |
| Engine On: 530 14 Er                                                                                                              | ngine Off: N19                                                             | 15 Total Engine Time: 16<br>3443                                                                   | Take off:<br>0735              | 17 Landing:                                          | 18 Total Flight Time:<br>2 + 377          |
| Weather                                                                                                                           |                                                                            |                                                                                                    |                                |                                                      |                                           |
| Flight Classification<br>a Billable 20.<br>A Acquisition Flight<br>O Ferry Flight<br>O System Test Flight<br>O Calibration Flight | b Non Billable                                                             | 20.c Others<br>0 LIDAR System Maintenanc<br>0 Aircraft Maintenance<br>0 Phil-LIDAR Admin Activitie | 21 Remarks<br>Supplew<br>(with | rented flight for BIK281<br>routs due to clouds) and | b, completed BIK28E<br>award BIK28 H&I    |
| <ul> <li>Systematics fromeining</li> <li>Aircraft Problem</li> <li>Pilot Problem</li> <li>Others:</li> </ul>                      |                                                                            | ~                                                                                                  |                                |                                                      |                                           |
| Acquisition Flight Approved by                                                                                                    | Acquisition Fight Certi<br>Myd.C.C.HArrisba AA<br>Signature over Printed D | fied by Pilot-in Edgin<br>Arades P4F PILot-in Edgin                                                | and<br>J 620 0 Kr              | Lidar Operator                                       | Alrcraft Mechanic/ Technicis<br>G. MMO NJ |

# ANNEX 7. Flight status reports

#### CASILIGAN FLOODPLAIN February 2-15, 2014; October 23-25, 2015

| FLIGHT<br>NO. | AREA                            | MISSION         | OPERATOR                      | DATE FLOWN    | REMARKS                                                                                                        |
|---------------|---------------------------------|-----------------|-------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|
| 1054A         | BLK 28B                         | 3BLK28B033B     | PAULINE<br>ARCEO              | FEB 2, 2014   | Change parameters due to<br>high dropouts (600agl, 50prf,<br>18degrees scan angle), not<br>finished            |
| 1056A         | BLK 28C                         | 3BLK28C034A     | PAULINE<br>ARCEO              | FEB 3, 2014   | Finished lower half of<br>BLK28C                                                                               |
| 1058A         | BLK 28CD                        | 3BLK28CD034B    | IRO ROXAS                     | FEB 3, 2014   | Finished the rest of BLK28C and some lines of BLK28D                                                           |
| 1066A         | BLK 28D                         | 3BLK28DS036A    | PAULINE<br>ARCEO              | FEB 5, 2014   | Survey 8 lines BLK28D                                                                                          |
| 1070A         | BLOCK 28D<br>& 28E              | 3BLK28DSE037A   | IRO ROXAS                     | FEB 6, 2014   | Finished Block 28D and some<br>lines of Block 28E                                                              |
| 1092A         | BLK 28A,<br>BLK 28D,<br>BLK 28E | 3BLK28ABES043A  | IRO ROXAS                     | FEB 12, 2014  | Survey lines in BLK28A, 28D<br>and 28E                                                                         |
| 1094A         | BLK 28B                         | 3BLK28BS043B    | PAU ARCEO                     | FEB 12, 2014  | Mission Complete                                                                                               |
| 1096A         | BLK28A, AS                      | 3BLK28NAJ044A   | IRO ROXAS                     | FEB 13, 2014  | Mission Completed                                                                                              |
| 1098A         | BLK28J,I                        | 3BLK28JSI044B   | PAU ARCEO                     | FEB 13, 2014  | Mission Complete                                                                                               |
| 8300G         | BLK 28A, B,<br>AS               | 2BLK28ABC295A   | MCE<br>BALIGUAS &<br>MS REYES | Oct. 22, 2015 | Completed BLK28 A & B and covered 2 lines of BLK28C.                                                           |
| 8301G         | BLK<br>28B,C,D,H                | 2BLK28CSD295B   | MCE<br>BALIGUAS &<br>MS REYES | Oct. 22, 2015 | Completed BLK28C and covered 13 lines of BLK28D.                                                               |
| 8302G         | BLK<br>28AS,C,D,F               | 2BLK28ASEHI296A | MCE<br>BALIGUAS               | Oct. 23, 2015 | Supplemental flight for<br>BLK28A, completed BLK28<br>E (with voids due to clouds)<br>and covered BLK28 H & I. |

#### Table A-7.1. Flight Status Reports

#### LAS/SWATH BOUNDARIES PER MISSION FLIGHT

| FLIGHT LOG NO. | 1054A       | Scan Freq:  | 45 kHz |
|----------------|-------------|-------------|--------|
| AREA:          | BLOCK 28B   | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28B033B | Alt:        | 600m   |



Figure A-7.1. Swath for Flight No. 1054A

| FLIGHT LOG NO. | 1054A       | Scan Freq:  | 45 kHz |
|----------------|-------------|-------------|--------|
| AREA:          | BLOCK 28B   | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28B033B | Alt:        | 600m   |



Figure A-7.2. Swath for Flight No. 1056A

| FLIGHT LOG NO. | 1058A        | Scan Freq:  | 45 kHz |
|----------------|--------------|-------------|--------|
| AREA:          | BLOCK 28CD   | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28CD034B | Alt:        | 600 m  |



Figure A-7.3. Swath for Flight No. 1058A

| FLIGHT LOG NO. | 1066A        | Scan Freq:  | 45 kHz |
|----------------|--------------|-------------|--------|
| AREA:          | BLOCK 28D    | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28DS036A | Alt:        | 600 m  |



Figure A-7.4. Swath for Flight No. 1066A

| FLIGHT LOG NO. | 1070A           | Scan Freq:  | 45 kHz |
|----------------|-----------------|-------------|--------|
| AREA:          | 28D & BLOCK 28E | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28DSE037A   | Alt:        | 600 m  |



Figure A-7.5. Swath for Flight No. 1070A

FLIGHT LOG NO. AREA: MISSION NAME: 1092A BLK 28A,28D and 28E 3BLK28ABES043A Scan Freq: 45 kHz Scan Angle: 36 deg Alt: 600 m



Figure A-7.6. Swath for Flight No. 1092A

FLIGHT LOG NO. AREA: MISSION NAME:

#### 1094A BLOCK 28B 3BLK28BS043B

Scan Freq:45 kHzScan Angle:36 degAlt:600 m



Figure A-7.7. Swath for Flight No. 1094A
| FLIGHT LOG NO. | 1096A         | Scan Freq:  | 40 kHz |
|----------------|---------------|-------------|--------|
| AREA:          | BLOCK 28A, AS | Scan Angle: | 30 deg |
| MISSION NAME:  | 3BLK28NAJ044A | Alt:        | 1100 m |



Figure A-7.8. Swath for Flight No. 1096A

| FLIGHT LOG NO. | 1098A         | Scan Freq:  | 45 kHz |
|----------------|---------------|-------------|--------|
| AREA:          | BLOCK 28JI    | Scan Angle: | 36 deg |
| MISSION NAME:  | 3BLK28JSI044B | Alt:        | 600 m  |



Figure A-7.9. Swath for Flight No. 1098A

| FLIGHT        | NO.:   | 8300G          | 8300G            |  |  |  |
|---------------|--------|----------------|------------------|--|--|--|
| AREA:         |        | Oriental Mindo | Oriental Mindoro |  |  |  |
| MISSION NAME: |        | 2BLK28ABC29    | 5A               |  |  |  |
| ALT:          | 1200 m | SCAN FREQ:     | 50               |  |  |  |

SCAN ANGLE: 36



Figure A-7.10. Swath for Flight No. 8300G

| FLIGHT | NO.:    | 8301G          |                  |             |    |  |  |  |
|--------|---------|----------------|------------------|-------------|----|--|--|--|
| AREA:  |         | Oriental Mindo | Oriental Mindoro |             |    |  |  |  |
| MISSIO | N NAME: | 2BLK28CSD295   | 5B               |             |    |  |  |  |
| ALT:   | 1000 m  | SCAN FREQ:     | 50               | SCAN ANGLE: | 40 |  |  |  |

SURVEY COVERAGE:

<image>

Figure A-7.11. Swath for Flight No. 8301G

| FLIGHT NO.:   | 8302G            |    |
|---------------|------------------|----|
| AREA:         | Oriental Mindoro | )  |
| MISSION NAME: | 2BLK28ASEHI296   | A  |
| ALT: 1200 m   | SCAN FREQ: 5     | 50 |
|               |                  |    |

SCAN ANGLE: 30



Figure A-7.12. Swath for Flight No. 8302G

# ANNEX 8. Mission Summary Reports

| Flight Area                                   | llocos                                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------|
| Mission Name                                  | Blk06_A                                                                                      |
| Inclusive Flights                             | 7104GC, 7105GC                                                                               |
| Range data size                               | 42.6GB                                                                                       |
| Base data size                                | 24.9 MB                                                                                      |
| POS                                           | 460MB                                                                                        |
| Image                                         | N/A                                                                                          |
| Transfer date                                 | April 22, 2014                                                                               |
|                                               |                                                                                              |
| Solution Status                               |                                                                                              |
| Number of Satellites (>6)                     | No                                                                                           |
| PDOP (<3)                                     | No                                                                                           |
| Baseline Length (<30km)                       | No                                                                                           |
| Processing Mode (<=1)                         | No                                                                                           |
|                                               |                                                                                              |
| Smoothed Performance Metrics (in cm)          |                                                                                              |
| RMSE for North Position (<4.0 cm)             | 2.7                                                                                          |
| RMSE for East Position (<4.0 cm)              | 3.3                                                                                          |
| RMSE for Down Position (<8.0 cm)              | 3.3                                                                                          |
|                                               |                                                                                              |
| Boresight correction stdev (<0.001deg)        | 0.000184                                                                                     |
| IMU attitude correction stdev (<0.001deg)     | 0.000642                                                                                     |
| GPS position stdev (<0.01m)                   | 0.0064                                                                                       |
|                                               |                                                                                              |
| Minimum % overlap (>25)                       | 37.38%                                                                                       |
| Ave point cloud density per sq.m. (>2.0)      | 3.43                                                                                         |
| Elevation difference between strips (<0.20 m) | Yes                                                                                          |
|                                               |                                                                                              |
| Number of 1km x 1km blocks                    | 419                                                                                          |
| Maximum Height                                | 614.2m                                                                                       |
| Minimum Height                                | 39.17m                                                                                       |
|                                               |                                                                                              |
| Classification (# of points)                  |                                                                                              |
| Ground                                        | 167,502,975                                                                                  |
| Low vegetation                                | 193,929,105                                                                                  |
| Medium vegetation                             | 261,271,939                                                                                  |
| High vegetation                               | 401,795,646                                                                                  |
| Building                                      | 13,519,422                                                                                   |
| Orthophoto                                    | NO                                                                                           |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Abigail Ching, Engr.<br>Harmond Santos, Engr. Melissa Fernandez |

Table A-8.1. Mission Summary Report for Mission Blk06A



Figure A-8.1. Solution Status



Figure A-8.2. Smoothed Performance Metrics Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure A-8.3. Best Estimated Trajectory



Figure A-8.4. Coverage of LiDAR data



Figure A-8.5. Image of Data Overlap



Figure A-8.6.Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure A-8.7. Elevation difference between flight lines

# ANNEX 9. Casiligan Model Basin Parameters

| Desin  | SCS C                          | urve Number L   | Clark Unit Hydrograph<br>Transform |                                  |                                |
|--------|--------------------------------|-----------------|------------------------------------|----------------------------------|--------------------------------|
| Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%)                  | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) |
| W1000  | 5.7659                         | 54.296          | 0                                  | 7.7279                           | 0.37742                        |
| W1010  | 4.491                          | 58.27           | 0                                  | 15.522                           | 0.83986                        |
| W1020  | 6.5083                         | 63.068          | 0                                  | 8.8057                           | 0.82658                        |
| W1040  | 2.5515                         | 83.27           | 0                                  | 0.9169                           | 1.4964                         |
| W1050  | 4.2114                         | 53.204          | 0                                  | 5.122                            | 0.087716                       |
| W520   | 7.1766                         | 46.4            | 0                                  | 19.356                           | 0.69432                        |
| W530   | 7.5598                         | 37.936          | 0                                  | 2.6583                           | 0.12323                        |
| W540   | 5.0653                         | 37.177          | 0                                  | 1.8849                           | 0.069751                       |
| W550   | 5.8734                         | 74.903          | 0                                  | 1.9953                           | 0.07384                        |
| W560   | 3.3924                         | 78.919          | 0                                  | 3.6714                           | 5.9917                         |
| W580   | 5.3872                         | 49.773          | 0                                  | 21.162                           | 1.7208                         |
| W590   | 13.712                         | 35.996          | 0                                  | 10.55                            | 0.6838                         |
| W630   | 6.7113                         | 71.562          | 0                                  | 1.8568                           | 0.10165                        |
| W640   | 5.5617                         | 43.423          | 0                                  | 24.625                           | 2.0018                         |
| W650   | 4.8958                         | 51.158          | 0                                  | 10.98                            | 0.39657                        |
| W660   | 9.3834                         | 51.532          | 0                                  | 11.806                           | 0.64289                        |
| W670   | 5.9889                         | 54.195          | 0                                  | 12.743                           | 0.45554                        |
| W680   | 8.8037                         | 81.366          | 0                                  | 3.7561                           | 0.33532                        |
| W690   | 2.067                          | 60.834          | 0                                  | 3.0859                           | 0.11709                        |
| W700   | 4.1714                         | 53.328          | 0                                  | 21.323                           | 1.1566                         |
| W710   | 4.6542                         | 51.86           | 0                                  | 20.328                           | 0.74046                        |
| W720   | 1.5733                         | 62.825          | 0                                  | 2.7518                           | 0.11268                        |
| W730   | 4.6573                         | 59.26           | 0                                  | 0.32359                          | 0.039273                       |
| W740   | 6.1491                         | 53.483          | 0                                  | 8.3998                           | 0.45769                        |
| W750   | 10.79                          | 44.807          | 0                                  | 6.5256                           | 0.34907                        |
| W760   | 7.894                          | 41.482          | 0                                  | 7.1044                           | 0.39607                        |
| W770   | 3.1306                         | 60.71           | 0                                  | 10.733                           | 0.38198                        |
| W780   | 2.9495                         | 35.888          | 0                                  | 20.531                           | 1.1136                         |
| W790   | 6.0353                         | 35.415          | 0                                  | 11.663                           | 0.64365                        |
| W800   | 13.475                         | 52.92           | 0                                  | 2.7731                           | 0.15177                        |
| W810   | 4.7431                         | 53.414          | 0                                  | 7.7873                           | 0.42254                        |
| W820   | 3.8671                         | 54.293          | 0                                  | 9.5179                           | 0.51878                        |
| W830   | 5.9889                         | 54.234          | 0                                  | 4.6251                           | 0.36986                        |
| W840   | 5.9889                         | 35.419          | 0                                  | 5.222                            | 0.97835                        |
| W850   | 6.1328                         | 52.938          | 0                                  | 5.7722                           | 0.50013                        |
| W860   | 4.7184                         | 51.53           | 0                                  | 8.0385                           | 0.29196                        |
| W870   | 4.7194                         | 51.53           | 0                                  | 0.44175                          | 0.036409                       |

## Table A-9.1. Casiligan Model Basin Parameters

| W880 | 4.7187  | 51.53  | 0 | 8.5481  | 0.31067  |
|------|---------|--------|---|---------|----------|
| W890 | 0.73421 | 62.825 | 0 | 2.628   | 0.097192 |
| W900 | 2.8205  | 57.916 | 0 | 11.453  | 2.0757   |
| W910 | 2.9903  | 38.98  | 0 | 7.0086  | 1.2706   |
| W920 | 3.2215  | 60.465 | 0 | 8.6809  | 0.70584  |
| W930 | 1.7083  | 42.401 | 0 | 16.964  | 0.4144   |
| W940 | 5.6218  | 77.597 | 0 | 10.952  | 0.89146  |
| W950 | 2.3095  | 59.865 | 0 | 3.7508  | 0.061996 |
| W960 | 2.4349  | 60.58  | 0 | 7.3555  | 0.2684   |
| W970 | 0.99348 | 62.554 | 0 | 0.52604 | 0.028533 |
| W980 | 1.6381  | 62.63  | 0 | 2.6091  | 0.2127   |
| W990 | 7.2707  | 79.039 | 0 | 8.1609  | 0.44457  |

# ANNEX 10. Casiligan Model Reach Parameters

| Poach  | Muskingum Cunge Channel Routing |            |           |                       |  |  |  |  |
|--------|---------------------------------|------------|-----------|-----------------------|--|--|--|--|
| Number | Length (M)                      | Slope(M/M) | Shape     | Side Slope<br>(xH:1V) |  |  |  |  |
| R1060  | 1016.7                          | 0.001074   | Trapezoid | 1                     |  |  |  |  |
| R110   | 3880.3                          | 0.001074   | Trapezoid | 1                     |  |  |  |  |
| R120   | 2095                            | 0.010999   | Trapezoid | 1                     |  |  |  |  |
| R140   | 902.67                          | 0.010999   | Trapezoid | 1                     |  |  |  |  |
| R150   | 495.98                          | 0.010999   | Trapezoid | 1                     |  |  |  |  |
| R180   | 573.55                          | 0.010999   | Trapezoid | 1                     |  |  |  |  |
| R190   | 822.25                          | 0.01057    | Trapezoid | 1                     |  |  |  |  |
| R200   | 2232.8                          | 0.004224   | Trapezoid | 1                     |  |  |  |  |
| R230   | 5313.2                          | 0.005154   | Trapezoid | 1                     |  |  |  |  |
| R240   | 740.12                          | 0.040096   | Trapezoid | 1                     |  |  |  |  |
| R250   | 2478.1                          | 0.00786    | Trapezoid | 1                     |  |  |  |  |
| R260   | 1886.5                          | 0.009012   | Trapezoid | 1                     |  |  |  |  |
| R280   | 2952.2                          | 0.008029   | Trapezoid | 1                     |  |  |  |  |
| R30    | 2501.4                          | 0.01332    | Trapezoid | 1                     |  |  |  |  |
| R300   | 613.55                          | 0.002773   | Trapezoid | 1                     |  |  |  |  |
| R310   | 2741.8                          | 0.002773   | Trapezoid | 1                     |  |  |  |  |
| R360   | 1499.4                          | 0.001272   | Trapezoid | 1                     |  |  |  |  |
| R390   | 1310.8                          | 0.001272   | Trapezoid | 1                     |  |  |  |  |
| R420   | 956.27                          | 0.000515   | Trapezoid | 1                     |  |  |  |  |
| R430   | 1722.1                          | 5.15E-04   | Trapezoid | 1                     |  |  |  |  |
| R450   | 955.98                          | 0.000515   | Trapezoid | 1                     |  |  |  |  |
| R460   | 521.13                          | 0.005152   | Trapezoid | 1                     |  |  |  |  |
| R480   | 1501.5                          | 0.012839   | Trapezoid | 1                     |  |  |  |  |
| R60    | 1270.5                          | 0.001134   | Trapezoid | 1                     |  |  |  |  |
| R70    | 3035.8                          | 0.000561   | Trapezoid | 1                     |  |  |  |  |

# Table A-10.1. Tineg Model Reach Parameters

# ANNEX 11. Casiligan Field Validation Points

| Point  | Validation | Coordinates | Model   | Validation    | Error |                  |                                      | Rain                |
|--------|------------|-------------|---------|---------------|-------|------------------|--------------------------------------|---------------------|
| Number | Lat        | Long        | Var (m) | points<br>(m) | (m)   | Event            | Date                                 | Return/<br>Scenario |
| 1      | 13.10759   | 121.4135    | 0.43    | 1.35          | 0.92  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 2      | 13.10744   | 121.4133    | 0       | 1             | 1     | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 3      | 13.10789   | 121.4132    | 1.24    | 0.93          | -0.31 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 4      | 13.10783   | 121.414     | 1.39    | 0.84          | -0.55 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 5      | 13.10752   | 121.4142    | 0.33    | 1.4           | 1.07  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 6      | 13.10806   | 121.4146    | 0.26    | 0.67          | 0.41  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 7      | 13.10898   | 121.4149    | 0.66    | 0.42          | -0.24 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 8      | 13.10932   | 121.4154    | 0.7     | 0.55          | -0.15 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 9      | 13.11065   | 121.4156    | 0.62    | 0.3           | -0.32 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 10     | 13.11094   | 121.4163    | 0.12    | 0.24          | 0.12  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 11     | 13.11178   | 121.4197    | 0.39    | 0.68          | 0.29  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 12     | 13.11255   | 121.4203    | 0.46    | 0.57          | 0.11  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 13     | 13.11444   | 121.4238    | 2.29    | 0.82          | -1.47 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 14     | 13.11428   | 121.4241    | 0       | 0.94          | 0.94  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 15     | 13.11425   | 121.424     | 0       | 0.77          | 0.77  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 16     | 13.11428   | 121.4243    | 2.7     | 0.37          | -2.33 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 17     | 13.11431   | 121.427     | 1.06    | 0.76          | -0.3  | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 18     | 13.11351   | 121.4273    | 0.77    | 0.77          | 0     | Yolanda/<br>Nona | Nov. 8,<br>2013;<br>Dec. 15,<br>2016 | 25-Year             |
| 19     | 13.11061   | 121.428     | 0.5     | 0.45          | -0.05 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 20     | 13.10986   | 121.4284    | 1.76    | 0.79          | -0.97 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 21     | 13.10962   | 121.4295    | 2.36    | 1.3           | -1.06 | Nona             | Dec. 15,<br>2015                     | 25-Year             |
| 22     | 13.10917   | 121.4305    | 1.49    | 0.97          | -0.52 | Nona             | Dec. 15,<br>2015                     | 25-Year             |

Table A-11.1. Casiligan Field Validation Points

|    |          |          |      |      | 1     | 1    |                  |         |
|----|----------|----------|------|------|-------|------|------------------|---------|
| 23 | 13.11012 | 121.4332 | 1.74 | 1.7  | -0.04 | Nona | Dec. 15,<br>2015 | 25-Year |
| 24 | 13.11304 | 121.4325 | 2.24 | 1.08 | -1.16 | Nona | Dec. 15,<br>2015 | 25-Year |
| 25 | 13.11314 | 121.4314 | 1.46 | 0.82 | -0.64 | Nona | Dec. 15,<br>2015 | 25-Year |
| 26 | 13.11281 | 121.4295 | 1.07 | 0.85 | -0.22 | Nona | Dec. 15,<br>2015 | 25-Year |
| 27 | 13.12162 | 121.4155 | 0.03 | 0.12 | 0.09  | Nona | Dec. 15,<br>2015 | 25-Year |
| 28 | 13.12187 | 121.4158 | 0    | 0.8  | 0.8   | Nona | Dec. 15,<br>2015 | 25-Year |
| 29 | 13.11439 | 121.4245 | 0    | 0.3  | 0.3   | Nona | Dec. 15,<br>2015 | 25-Year |
| 30 | 13.11413 | 121.4244 | 0    | 0.84 | 0.84  | Nona | Dec. 15,<br>2015 | 25-Year |
| 31 | 13.11406 | 121.4247 | 0    | 0.42 | 0.42  | Nona | Dec. 15,<br>2015 | 25-Year |
| 32 | 13.11375 | 121.4246 | 0.84 | 0.57 | -0.27 | Nona | Dec. 15,<br>2015 | 25-Year |
| 33 | 13.11339 | 121.425  | 3.97 | 0.4  | -3.57 | Nona | Dec. 15,<br>2015 | 25-Year |
| 34 | 13.11296 | 121.4251 | 2.61 | 0.79 | -1.82 | Nona | Dec. 15,<br>2015 | 25-Year |
| 35 | 13.11236 | 121.4254 | 1.17 | 0.82 | -0.35 | Nona | Dec. 15,<br>2015 | 25-Year |
| 36 | 13.11181 | 121.4255 | 0    | 0.84 | 0.84  | Nona | Dec. 15,<br>2015 | 25-Year |
| 37 | 13.11116 | 121.426  | 1.76 | 1.33 | -0.43 | Nona | Dec. 15,<br>2015 | 25-Year |
| 38 | 13.11092 | 121.426  | 0    | 0.48 | 0.48  | Nona | Dec. 15,<br>2015 | 25-Year |
| 39 | 13.11036 | 121.4264 | 2.47 | 0.78 | -1.69 | Nona | Dec. 15,<br>2015 | 25-Year |
| 40 | 13.11039 | 121.4266 | 0    | 0.83 | 0.83  | Nona | Dec. 15,<br>2015 | 25-Year |
| 41 | 13.10984 | 121.4268 | 1.09 | 0.69 | -0.4  | Nona | Dec. 15,<br>2015 | 25-Year |
| 42 | 13.10975 | 121.4267 | 0    | 1.03 | 1.03  | Nona | Dec. 15,<br>2015 | 25-Year |
| 43 | 13.10901 | 121.4272 | 1.66 | 1.04 | -0.62 | Nona | Dec. 15,<br>2015 | 25-Year |
| 44 | 13.10767 | 121.4274 | 2.3  | 0.86 | -1.44 | Nona | Dec. 15,<br>2015 | 25-Year |
| 45 | 13.10653 | 121.4272 | 2.74 | 1.3  | -1.44 | Nona | Dec. 15,<br>2015 | 25-Year |
| 46 | 13.10481 | 121.4265 | 1.85 | 1.06 | -0.79 | Nona | Dec. 15,<br>2015 | 25-Year |
| 47 | 13.10459 | 121.4266 | 0    | 0.87 | 0.87  | Nona | Dec. 15,<br>2015 | 25-Year |

| 48 | 13.12116 | 121.4156 | 0    | 1.5  | 1.5   | Nona | Dec. 15,<br>2015 | 25-Year |
|----|----------|----------|------|------|-------|------|------------------|---------|
| 49 | 13.12137 | 121.4159 | 0    | 0.98 | 0.98  | Nona | Dec. 15,<br>2015 | 25-Year |
| 50 | 13.12194 | 121.4164 | 0.03 | 1.5  | 1.47  | Nona | Dec. 15,<br>2015 | 25-Year |
| 51 | 13.14218 | 121.441  | 2.42 | 0    | -2.42 |      |                  | 25-Year |
| 52 | 13.14259 | 121.441  | 0    | 0.4  | 0.4   | Nona | December<br>2015 | 25-Year |
| 53 | 13.14301 | 121.4409 | 0.03 | 0    | -0.03 |      |                  | 25-Year |
| 54 | 13.14281 | 121.441  | 0.49 | 0    | -0.49 |      |                  | 25-Year |
| 55 | 13.14291 | 121.4415 | 0    | 0    | 0     |      |                  | 25-Year |
| 56 | 13.14348 | 121.4416 | 0.26 | 0    | -0.26 |      |                  | 25-Year |
| 57 | 13.14361 | 121.442  | 2.42 | 0    | -2.42 |      |                  | 25-Year |
| 58 | 13.14016 | 121.4402 | 2.43 | 0.28 | -2.15 |      | June 24,<br>2013 | 25-Year |
| 59 | 13.14035 | 121.4397 | 0.79 | 0.1  | -0.69 | Nona | December<br>2015 | 25-Year |
| 60 | 13.14094 | 121.4391 | 0.03 | 0    | -0.03 |      |                  | 25-Year |
| 61 | 13.14076 | 121.4387 | 0    | 0    | 0     |      |                  | 25-Year |
| 62 | 13.14027 | 121.4382 | 0.24 | 0.4  | 0.16  | Nona | December<br>2015 | 25-Year |
| 63 | 13.13886 | 121.4383 | 0.03 | 0.35 | 0.32  | Nona | December<br>2015 | 25-Year |
| 64 | 13.13882 | 121.4389 | 1.12 | 0.05 | -1.07 | Nona | December<br>2015 | 25-Year |
| 65 | 13.13928 | 121.4394 | 1.04 | 0.11 | -0.93 | Nona | December<br>2015 | 25-Year |
| 66 | 13.13905 | 121.4399 | 0.98 | 0    | -0.98 |      |                  | 25-Year |
| 67 | 13.13834 | 121.4399 | 2.29 | 0.33 | -1.96 | Nona | December<br>2015 | 25-Year |
| 68 | 13.13805 | 121.4404 | 1.24 | 0    | -1.24 |      |                  | 25-Year |
| 69 | 13.13725 | 121.4405 | 0    | 0    | 0     |      |                  | 25-Year |
| 70 | 13.13724 | 121.4409 | 0    | 0    | 0     |      |                  | 25-Year |
| 71 | 13.10125 | 121.4255 | 0.95 | 0.66 | -0.29 | Nona | December<br>2015 | 25-Year |
| 72 | 13.10205 | 121.4259 | 1.22 | 0.8  | -0.42 | Nona | December<br>2015 | 25-Year |
| 73 | 13.10261 | 121.4258 | 1.17 | 0.84 | -0.33 | Nona | December<br>2015 | 25-Year |
| 74 | 13.10371 | 121.4264 | 1.12 | 1.52 | 0.4   | Nona | December<br>2015 | 25-Year |
| 75 | 13.10443 | 121.4261 | 0.98 | 1.62 | 0.64  | Nona | December<br>2015 | 25-Year |
| 76 | 13.10451 | 121.4257 | 1.76 | 1.63 | -0.13 | Nona | December<br>2015 | 25-Year |
| 77 | 13.0977  | 121.4309 | 0.26 | 0.66 | 0.4   | Nona | December<br>2015 | 25-Year |
| 78 | 13.09741 | 121.4297 | 0.09 | 0.35 | 0.26  | Nona | December<br>2015 | 25-Year |

| 79 | 13.09771 | 121.4301 | 0.32 | 1.13 | 0.81 | Nona             | December<br>2015                     | 25-Year |
|----|----------|----------|------|------|------|------------------|--------------------------------------|---------|
| 80 | 13.09759 | 121.4287 | 0.54 | 0.62 | 0.08 | Nona             | December<br>2015                     | 25-Year |
| 81 | 13.09729 | 121.4275 | 0.19 | 0.6  | 0.41 | Nona             | December<br>2015                     | 25-Year |
| 82 | 13.09708 | 121.4267 | 0.27 | 0.75 | 0.48 | Nona             | December<br>2015                     | 25-Year |
| 83 | 13.09724 | 121.4255 | 0.31 | 0.42 | 0.11 | Nona             | December<br>2015                     | 25-Year |
| 84 | 13.09713 | 121.4243 | 0.35 | 0.73 | 0.38 | Nona             | December<br>2015                     | 25-Year |
| 85 | 13.10348 | 121.4045 | 1.15 | 1.21 | 0.06 | Nona             | December<br>2015                     | 25-Year |
| 86 | 13.10337 | 121.4047 | 0    | 0.87 | 0.87 | Nona             | December<br>2015                     | 25-Year |
| 87 | 13.1424  | 121.4408 | 0.03 | 0.1  | 0.07 | Habagat          |                                      | 25-Year |
| 88 | 13.14235 | 121.4408 | 0    | 0    | 0    | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 89 | 13.1424  | 121.4409 | 0    | 0    |      | Yolanda/<br>Nona | Nov. 8,<br>2013;<br>Dec. 15,<br>2016 | 25-Year |
| 90 | 13.14275 | 121.4407 | 0    | 0    |      | Yolanda/<br>Nona | Nov. 8,<br>2013;<br>Dec. 15,<br>2017 | 25-Year |
| 91 | 13.1432  | 121.4405 | 0    | 0    |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 92 | 13.14328 | 121.4406 | 0    | 0.1  |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 93 | 13.14277 | 121.4414 | 0    | 0    |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 94 | 13.14024 | 121.4391 | 1.14 | 0.7  |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 95 | 13.13984 | 121.4394 | 2.27 | 0.74 |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 96 | 13.13918 | 121.4397 | 0    | 0.29 |      | 1                | 2014                                 | 25-Year |
| 97 | 13.1037  | 121.4045 | 0.16 | 0.6  |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 98 | 13.1035  | 121.4045 | 0    | 0.66 |      | Nona             | Dec. 15,<br>2015                     | 25-Year |
| 99 | 13.1082  | 121.3963 | 0.49 | 0.2  |      | Nona             | Dec. 15,<br>2015                     | 25-Year |

# ANNEX 12. Educational Institutions affected by flooding Tineg Flood Plain

Table A-12.1. Educational Institutions in Abra affected by flooding in Tineg Flood Plain

|                                                   | Abra             |                   |              |          |  |  |
|---------------------------------------------------|------------------|-------------------|--------------|----------|--|--|
|                                                   | Bangued          |                   |              |          |  |  |
| Building Name                                     | Barangay         | Rainfall Scenario |              |          |  |  |
|                                                   |                  | 5-year            | 25-year      | 100-year |  |  |
| BACSIL ES                                         | Angad            |                   |              |          |  |  |
| DANGDANGLA ES                                     | Dangdangla       |                   |              |          |  |  |
| ABRA VALLEY COLLEGES                              | Lingtan          |                   |              |          |  |  |
| DATA CENTER COLLEGE                               | Lipcan           |                   |              |          |  |  |
| DIVINE WORD COLLEGE OF BANGUED                    | Lipcan           | Medium            | Medium       | Medium   |  |  |
| MACARCARMAY ES                                    | Macarcarmay      |                   |              |          |  |  |
| COSILI WEST PS                                    | Macray           |                   |              |          |  |  |
| CALOT ES                                          | Maoay            |                   |              |          |  |  |
| SINALANG PILOT ELEMENTARY SCHOOL                  | Palao            |                   |              |          |  |  |
| PATUCANNAY DAY CARE CENTER                        | Patucannay       |                   |              | High     |  |  |
| PATUCANNAY ES                                     | Patucannay       |                   | Low          | High     |  |  |
| STA. ROSA PS                                      | Santa Rosa       |                   |              | Low      |  |  |
| ABRA HIGH SCHOOL                                  | Zone 2 Poblacion | Low               | Low          | Low      |  |  |
| ABRA HS                                           | Zone 2 Poblacion |                   |              |          |  |  |
| ABRA STATE INSTITUTE OF SCIENCE AND<br>TECHNOLOGY | Zone 2 Poblacion | Medium            | Medium       | Medium   |  |  |
| BANGUED WEST CENTRAL SCHOOL                       | Zone 2 Poblacion |                   |              |          |  |  |
| BANGBANGAR ES                                     | Zone 3 Poblacion |                   |              |          |  |  |
| ABRA HIGH SCHOOL                                  | Zone 4 Poblacion |                   |              |          |  |  |
| ABRA HIGH SCHOOL                                  | Zone 4 Poblacion |                   |              |          |  |  |
| ABRA HIGH SCHOOL                                  | Zone 4 Poblacion |                   | Low          | Low      |  |  |
| BANGUED NORTH ES                                  | Zone 4 Poblacion |                   |              |          |  |  |
| BANGUED WEST CENTRAL SCHOOL                       | Zone 4 Poblacion |                   |              |          |  |  |
| ABRA VALLEY COLLEGES                              | Zone 5 Poblacion |                   |              |          |  |  |
| HOLY SPIRIT ACADEMY OF BANGUED                    | Zone 5 Poblacion |                   |              |          |  |  |
|                                                   | Bucay            |                   |              |          |  |  |
| Building Name                                     | Barangay         | R                 | ainfall Scen | ario     |  |  |
|                                                   |                  | 5-year            | 25-year      | 100-year |  |  |
| BANGBANGCAG PRIMARY SCHOOL                        | Bangbangcag      |                   | Medium       | High     |  |  |
| PANGTOD NHS                                       | Bangbangcag      |                   |              |          |  |  |

| BANGCAGAN PS                                  | Bangcagan                                                                        |                       |                                    |                              |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------|-----------------------|------------------------------------|------------------------------|--|--|
| BANGCAGAN PRIMARY SCHOOL                      | Bugbog                                                                           |                       |                                    |                              |  |  |
| PAGALA WEST ELEMENTARY SCHOOL                 | Bugbog                                                                           |                       |                                    |                              |  |  |
| BUCAY CS                                      | North Poblacion                                                                  |                       |                                    |                              |  |  |
| CRISTINA B. GONZALES MHS                      | North Poblacion                                                                  | Low                   | Medium                             | Medium                       |  |  |
| OUR LADY OF FATIMA SCHOOL                     | North Poblacion                                                                  |                       |                                    |                              |  |  |
| PAGALA EAST PRIMARY SCHOOL                    | Pagala                                                                           | Low                   | High                               | High                         |  |  |
| PANGTOD NHS                                   | Palaquio                                                                         |                       |                                    |                              |  |  |
| BUCAY NORTH ELEMENTARY SCHOOL                 | San Miguel                                                                       | Low                   | High                               | High                         |  |  |
| LUBLUBNAC PRIMARY SCHOOL                      | Tabiog                                                                           |                       |                                    |                              |  |  |
| TABIOG ES                                     | Tabiog                                                                           |                       |                                    |                              |  |  |
| Danglas                                       |                                                                                  |                       |                                    |                              |  |  |
| Building Name                                 | Barangay                                                                         | R                     | ainfall Scen                       | ario                         |  |  |
|                                               |                                                                                  | 5-year                | 25-year                            | 100-year                     |  |  |
| WESTERN ABRA NHS                              | Padangitan                                                                       |                       |                                    |                              |  |  |
| Dolores                                       |                                                                                  |                       |                                    |                              |  |  |
| Building Name                                 | Barangay                                                                         | Rainfall Scenario     |                                    | ario                         |  |  |
|                                               |                                                                                  | 5-year                | 25-year                            | 100-year                     |  |  |
| MUDIIT ELEMENTARY SCHOOL                      | Mudiit                                                                           |                       |                                    |                              |  |  |
| MUDIIT ES                                     | Mudiit                                                                           |                       |                                    |                              |  |  |
| DOLORES CS                                    | Poblacion                                                                        |                       |                                    |                              |  |  |
| DON ROSALIO EDUARTE ES                        | Talogtog                                                                         |                       |                                    |                              |  |  |
|                                               | La Paz                                                                           |                       |                                    |                              |  |  |
| Building Name                                 | Barangay                                                                         | Rainfall Scenario     |                                    | ario                         |  |  |
|                                               |                                                                                  |                       |                                    |                              |  |  |
|                                               |                                                                                  | 5-year                | 25-year                            | 100-year                     |  |  |
| CANAN ES                                      | Canan                                                                            | 5-year                | 25-year                            | 100-year                     |  |  |
| CANAN ES                                      | Canan<br>agangilang                                                              | 5-year                | 25-year                            | 100-year                     |  |  |
| CANAN ES<br>La<br>Building Name               | Canan<br>agangilang<br>Barangay                                                  | 5-year                | 25-year<br>ainfall Scen            | 100-year                     |  |  |
| CANAN ES<br>Li<br>Building Name               | Canan<br>agangilang<br>Barangay                                                  | 5-year<br>R<br>5-year | 25-year<br>ainfall Scen<br>25-year | 100-year<br>ario<br>100-year |  |  |
| CANAN ES<br>Li<br>Building Name<br>METODIO ES | Canan<br>agangilang<br>Barangay<br>Laguiben                                      | 5-year<br>R<br>5-year | 25-year<br>ainfall Scen<br>25-year | 100-year<br>ario<br>100-year |  |  |
| CANAN ES                                      | Canan<br>agangilang<br>Barangay<br>Laguiben<br>Presentar                         | 5-year<br>R<br>5-year | 25-year<br>ainfall Scen<br>25-year | 100-year<br>ario<br>100-year |  |  |
| CANAN ES                                      | Canan<br>agangilang<br>Barangay<br>Laguiben<br>Presentar<br>Tagodtod             | 5-year<br>R<br>5-year | 25-year<br>ainfall Scen<br>25-year | 100-year<br>ario<br>100-year |  |  |
| CANAN ES                                      | Canan<br>agangilang<br>Barangay<br>Laguiben<br>Presentar<br>Tagodtod<br>Tagodtod | 5-year<br>R<br>5-year | 25-year<br>ainfall Scen<br>25-year | 100-year<br>ario<br>100-year |  |  |

| Lagayan                   |                |                   |                   |          |  |  |
|---------------------------|----------------|-------------------|-------------------|----------|--|--|
| Building Name             | Barangay       | R                 | Rainfall Scenario |          |  |  |
|                           |                | 5-year            | 25-year           | 100-year |  |  |
| LAGAYAN CS                | Poblacion      |                   |                   |          |  |  |
| PULOT NHS                 | Pulot          | ĺ                 |                   |          |  |  |
|                           | Langiden       |                   |                   |          |  |  |
| Building Name             | Barangay       | R                 | ainfall Scen      | ario     |  |  |
|                           |                | 5-year            | 25-year           | 100-year |  |  |
| LANGIDEN NHS              | Poblacion      |                   |                   |          |  |  |
| P                         | Peñarrubia     |                   |                   |          |  |  |
| Building Name             | Barangay       | R                 | ainfall Scen      | ario     |  |  |
|                           |                | 5-year            | 25-year           | 100-year |  |  |
| PEÑARRUBIA CS             | Dumayco        |                   |                   |          |  |  |
| PEÑARRUBIA CS             | Poblacion      |                   |                   |          |  |  |
| SAN QUINTIN NHS           | Tattawa        |                   |                   |          |  |  |
| Pidigan                   |                |                   |                   |          |  |  |
| Building Name             | Barangay       | Rainfall Scenario |                   | ario     |  |  |
|                           |                | 5-year            | 25-year           | 100-year |  |  |
| CASILAGAN PS              | Alinaya        | High              | High              | High     |  |  |
| GARRETA ES                | Garreta        | Low               | Medium            | High     |  |  |
| BANAY PS                  | Monggoc        | High              | High              | High     |  |  |
| PANGTUD PS                | Pangtud        |                   | High              | High     |  |  |
| PIDIGAN CS                | Poblacion West |                   | High              | High     |  |  |
| POBLACION WEST PS         | Poblacion West |                   | High              | High     |  |  |
| SUYO NATIONAL HIGH SCHOOL | Suyo           |                   |                   |          |  |  |
| SUYO PILOT ES             | Suyo           | High              | High              | High     |  |  |
|                           | San Juan       |                   |                   |          |  |  |
| Building Name             | Barangay       | R                 | ainfall Scen      | ario     |  |  |
|                           |                | 5-year            | 25-year           | 100-year |  |  |
| NORTHERN ABRA NHS         | Lam-Ag         |                   | Low               | High     |  |  |
| NANGOBONGAN PS            | Nangobongan    |                   |                   |          |  |  |
|                           |                |                   |                   |          |  |  |

| San Quintin                             |                |                   |         |          |  |
|-----------------------------------------|----------------|-------------------|---------|----------|--|
| Building Name                           | Barangay       | Rainfall Scenario |         |          |  |
|                                         |                | 5-year            | 25-year | 100-year |  |
| PALANG PS                               | Palang         | Low               | High    | High     |  |
| PANTOC ES                               | Pantoc         |                   |         |          |  |
| SAN QUINTIN CS                          | Poblacion      | High              | High    | High     |  |
| SAN QUINTIN NHS                         | Poblacion      |                   | High    | High     |  |
| VILLA MERCEDES ES                       | Villa Mercedes |                   |         |          |  |
| Tayum                                   |                |                   |         |          |  |
| Building Name                           | Barangay       | Rainfall Scenario |         | ario     |  |
|                                         |                | 5-year            | 25-year | 100-year |  |
| BAGALAY ES                              | Bagalay        |                   |         |          |  |
| BASBASA ES                              | Basbasa        |                   |         |          |  |
| BUMAGCAT ES                             | Bumagcat       |                   |         |          |  |
| DON MARCOS ROSALES ES                   | Cabaroan       |                   | High    | High     |  |
| GADDANI NATIONAL HIGH SCHOOL( G.N.H.S.) | Gaddani        | Medium            | Medium  | Medium   |  |
| DON MARCOS ROSALES ES                   | Patucannay     |                   | Medium  | High     |  |
| HOLY SPIRIT CONVENT                     | Poblacion      |                   |         | High     |  |
| TAYUM CS                                | Poblacion      |                   |         |          |  |

# Table A-12.2. Educational Institutions affected by flooding in the Tineg Floodplain

| llocos Sur                   |             |        |              |          |
|------------------------------|-------------|--------|--------------|----------|
| Bantay                       |             |        |              |          |
| Building Name                | Barangay    | R      | ainfall Scen | ario     |
|                              |             | 5-year | 25-year      | 100-year |
| BANAOANG ELEMENTARY SCHOOL   | Banaoang    |        |              |          |
| BANTAY EAST CS               | Barangay 5  |        | Medium       | Medium   |
| ILOCOS SUR COMMUNITY COLLEGE | Barangay 6  | High   | High         | High     |
| BANTAY NHS                   | Cabalanggan | Low    | High         | High     |
| BULAG ES                     | Cabalanggan | Low    | High         | High     |
| ORA EAST ES                  | Ora         |        |              |          |
| ORA WEST ES                  | Ora         |        |              |          |
| PAING ES                     | Paing       |        | Low          | High     |
| SILANG ES                    | Puspus      |        | Medium       | High     |
| SAN JULIAN ES                | San Julian  | High   | High         | High     |
| SALLACONG ELEMENTARY SCHOOL  | San Mariano |        |              |          |

| Caoayan                        |                  |                   |              |          |  |
|--------------------------------|------------------|-------------------|--------------|----------|--|
| Building Name                  | Barangay         | R                 | ainfall Scen | ario     |  |
|                                |                  | 5-year            | 25-year      | 100-year |  |
| ANONANG NAGUILIAN COMM. SCHOOL | Anonang Mayor    | High              | High         | High     |  |
| BAGGOC P. QUITIQUIT ES         | Baggoc           | High              | High         | High     |  |
| BAGGOC P. QUITIQUIT ES         | Callaguip        | High              | High         | High     |  |
| FUERTE ES                      | Manangat         |                   |              |          |  |
| PANDAN ES                      | Manangat         | High              | High         | High     |  |
| NANSUAGAO PS                   | Nansuagao        | Medium            | High         | High     |  |
| PURO NHS CAOAYAN               | Nansuagao        | High              | High         | High     |  |
| PANTAY QUITIQUIT PS            | Pantay-Quitiquit | High              | High         | High     |  |
| NAGPANAOAN ES                  | PantayTamurong   | High              | High         | High     |  |
| PANTAY TAMURONG ES             | PantayTamurong   | High              | High         | High     |  |
| PANTAY TAMURONG NHS            | PantayTamurong   | Medium            | High         | High     |  |
| VILLAMAR ES                    | Villamar         | High              | High         | High     |  |
| Santa                          |                  |                   |              |          |  |
| Building Name                  | Barangay         | Rainfall Scenario |              | ario     |  |
|                                |                  | 5-year            | 25-year      | 100-year |  |
| BANAOANG COMM. SCH.            | Dammay           |                   |              | Low      |  |
| BASUG COMM. SCH.               | Dammay           |                   |              |          |  |
| BASUG NHS                      | Dammay           |                   |              |          |  |
| MABILBILA IS                   | Dammay           |                   |              |          |  |
| SACUYYA COMM. SCH.             | Dammay           |                   |              |          |  |
| MABILBILA IS                   | Labut Norte      |                   |              |          |  |
|                                | /igan City       |                   |              |          |  |
| Building Name                  | Barangay         | R                 | ainfall Scen | ario     |  |
|                                |                  | 5-year            | 25-year      | 100-year |  |
| BURGOS EAST MES                | Ayusan Norte     |                   |              |          |  |
| CORINTHIAN MONTESSORI          | Ayusan Norte     |                   |              |          |  |
| DIVINE WORLD COLLEGE OF VIGAN  | Ayusan Norte     |                   | High         | High     |  |
| NATURALES TRAINING INSTITUTE   | Ayusan Norte     |                   | Medium       | High     |  |
| PATER NOSTER LEARNING CENTER   | Ayusan Norte     | Low               | Low          | Low      |  |
| TESDA                          | Ayusan Norte     |                   | Medium       | High     |  |
| VIGAN CS                       | Ayusan Norte     | Low               | Medium       | High     |  |
| CAPANGPANGAN ES                | Barangay I       | High              | High         | High     |  |

| DIVINE WORLD COLLEGE OF VIGAN      | Barangay I     |        | High | High |
|------------------------------------|----------------|--------|------|------|
| PATER NOSTER LEARNING CENTER       | Barangay III   |        | Low  | Low  |
| SALINDEG ES                        | Barraca        | Medium | High | High |
| SALINDEG ES (SPBES)                | Barraca        | Medium | High | High |
| CAMANGGAAN ES                      | Beddeng Laud   | Medium | High | High |
| CABAROAN ES                        | Cabalangegan   | Medium | High | High |
| SAN JULIAN ES                      | Capangpangan   | Medium | High | High |
| NAGSANGALAN ES                     | Nagsangalan    | Medium | High | High |
| VIGAN EAST NHS                     | Nagsangalan    | Medium | High | High |
| UNIVERSITY OF NORTHERN PHILIPPINES | Раоа           | Low    | Low  | Low  |
| RUGSUNGAN-PUROC ES                 | Purok-A-Bassit | Medium | High | High |
| RAOIS ES                           | Raois          | Medium | High | High |
| CAL-LAQUIP ES                      | Salindeg       | Medium | High | High |
| CAOAYAN CS                         | Salindeg       | Medium | High | High |
| CAOAYAN CS                         | Tamag          | Medium | High | High |
| TAMAG ES                           | Tamag          |        |      |      |

# ANNEX 13. Medical Institutions affected by flooding in Tineg Flood Plain

|                            | ,                | 0                 |               |          |
|----------------------------|------------------|-------------------|---------------|----------|
|                            | Abra             |                   |               |          |
|                            | Bangued          |                   |               |          |
| Building Name              | Barangay         | Rainfall Scenario |               |          |
|                            |                  | 5-year            | 25-year       | 100-year |
| DICKSON POLYCLINIC         | Dangdangla       |                   |               |          |
| PALOS CLINIC               | Dangdangla       |                   |               |          |
| ABRA PROVINCIAL HOSPITAL   | Zone 1 Poblacion |                   |               |          |
| BARBADILLO CLINIC          | Zone 4 Poblacion |                   |               |          |
| ABRA MEDICAL CENTER        | Zone 5 Poblacion |                   |               | Low      |
| CASIA CLINIC               | Zone 5 Poblacion |                   |               |          |
| DR. PETRONLO SEARES SR.    | Zone 5 Poblacion |                   |               |          |
| HEALTH CHECK               | Zone 5 Poblacion | Medium            | Medium        | High     |
| MARIBEL MEDICAL CLINIC     | Zone 5 Poblacion |                   |               |          |
| BANEZ CLINIC               | Zone 5 Poblacion |                   | Low           | Low      |
| DICKSON POLYCLINIC         | Zone 7 Poblacion |                   |               |          |
| MAGALA BAUTISTA CLINIC     | Zone 7 Poblacion |                   |               |          |
| MARIBEL MEDICAL CLINIC     | Zone 7 Poblacion |                   |               | Low      |
| ASSUMPTA CLINIC            | Zone 7 Poblacion |                   |               |          |
| BANGUED CHRISTIAN HOSPITAL | Zone 7 Poblacion |                   |               |          |
|                            | Bucay            |                   | -             |          |
| Building Name              | Barangay         | F                 | ainfall Scena | rio      |
|                            |                  | 5-year            | 25-year       | 100-year |
| BUCAY HOSPITAL             | North Poblacion  |                   |               |          |

Table A-13.1. Medical Institutions in Abra affected by flooding in Tineg Flood Plain

Table A-13.2. Medical Institutions in Abra affected by flooding in Tineg Flood Plain

|                       | llocos Sur |                   |         |          |
|-----------------------|------------|-------------------|---------|----------|
| Bantay                |            |                   |         |          |
| Building Name         | Barangay   | Rainfall Scenario |         |          |
|                       |            | 5-year            | 25-year | 100-year |
| PATAO CLINIC          | Aggay      |                   | Medium  | High     |
| NORTHEAST CARE CENTER | Sinabaan   | High              | High    | High     |

| Vigan City                       |              |                   |         |          |  |
|----------------------------------|--------------|-------------------|---------|----------|--|
| Building Name                    | Barangay     | Rainfall Scenario |         |          |  |
|                                  |              | 5-year            | 25-year | 100-year |  |
| DENTIST JOEY DE VERZOSA          | Ayusan Norte |                   |         |          |  |
| LAHOZ CLINIC AND HOSPITAL        | Ayusan Norte |                   | Low     | Medium   |  |
| MERCURY DRUG                     | Ayusan Norte | Low               | Medium  | Medium   |  |
| RABARA CLINIC AND HOSPITAL       | Ayusan Norte |                   |         |          |  |
| RABE DENTAL CLINIC               | Ayusan Norte |                   |         | Low      |  |
| REODIQUE OPTICAL - DENTAL CLINIC | Ayusan Norte | Low               | Low     | Low      |  |
| S. M. AMORES VETERINARY CLINIC   | Ayusan Norte |                   |         |          |  |
| YADAO OPTICAL CLINIC             | Ayusan Norte |                   |         |          |  |
| VIGAN POLYCLINIC                 | Barangay VII |                   |         | Medium   |  |
| GABRIELA SILANG GENERAL HOSPITAL | Tamag        |                   |         |          |  |
| PHARMACY                         | Tamag        |                   |         |          |  |
| SABI NI DOC PHARMACY             | Tamag        |                   |         |          |  |

# Annex 14. Phil-LiDAR 1 UPLB Team Composition

#### **Project Leader**

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

## **Project Staffs/Study Leaders**

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

#### Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

## **Research Associates**

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

#### **Computer Programmers**

Ivan Marc H. Escamos Allen Roy C. Roberto

# Information Systems Analyst

Jan Martin C. Magcale

## **Project Assistants**

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula