HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Bulalacao River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Los Baños

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, E. Abucay, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Bulalacao River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-129pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay Project Leader Phil-LiDAR 1 Program University of the Philippines, Los Baños Los Banos, Laguna, Philippines 4031 erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LIDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-130-0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BULALACAO RIVER 1.1 Background of the Phil-LIDAR 1 Program	1 1
1.2 Overview of the Bulalacao River Basin	1
	-
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BULALACAO FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Station	5
2.3 Flight Missions	8
2.4. Survey Coverage	9
	11
CHAPTER 3: LIDAR DATA PROCESSING OF THE BULALACAO FLOODPLAIN	11
2.2 Transmittal of Acquired LiDAR Data	11
2.2 Traiscrary Computation	12 12
3.3 Hajectory Computation	1/1
3.4 LIDAR Point Cloud Computation	14
3.6 LiDAR Data Quality Clecking	10
3.7 LiDAR Image Processing and Arthonhotograph Rectification	15
3.8 DEM Editing and Hydro-Correction	21
3.9 Mosaicking of Blocks	2/
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	26
3 11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	20 29
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF BULALACAO RIVER BASIN	31
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built Survey. and Water Level Marking	41
4.6 Validation Points Acquisition Survey	45
4.7 Bathymetric Survey.	47
CHAPTER 5: FLOOD MODELING AND MAPPING	50
5.1 Data used in Hydrologic Modeling	50
5.1.1 Hydrometry and Rating Curves	50
5.1.2 Precipitation	50
5.1.3 Rating Curve and River Outflow	51
5.2 RIDF Station	52
5.3 HMS Model	54
5.4 Cross-section Data	57
5.5 Flo 2D Model	58
5.6 Results of HMS Calibration	59
5.7 Calculated Outflow hydrographs and Discharge Values for different	
Rainfall Return Periods	61
5.7.1 Hydrograph using the Rainfall Runoff Model	61
5.7.2 Discharge data using Dr. Horritt's recommended hydrologic method	62
5.8 River Analysis Model Simulation	64
5.9 Flood Hazard and Flow Depth Map	64
5.10 Inventory of Areas Exposed to Flooding	/1
דד דוססמ Alidation	/4
	77
ANNEXES	97
Annex 1. Optech Technical Specification of the Aquarius and Gemini Sensors	97
Annex 2. NAMRIA Certificates of Reference Points Used	99

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	82
Annex 4. The LiDAR Survey Team Composition	84
Annex 5. Data Transfer Sheets	85
Annex 6. FLIGHT LOGS	
Annex 7. Flight Status Report	90
Annex 8. Mission Summary Report	93
Annex 9. Baroc Model Basin Parameters	113
Annex 10. Baroc Model Reach Parameters	115
Annex 11. Baroc Flood Validation Data	119

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system Table 2. Flight planning parameters for Gemini LiDAR system.	3 3
Table 3. Details of the recovered NAMRIA horizontal control point MRW-22	
used as base station for the LiDAR acquisition.	6
Table 4. Details of the recovered NAMRIA horizontal control point MRE-4203	_
used as base station for the LiDAR acquisition with established coordinates.	7
Table 5. Details of the recovered NAMRIA horizontal control point MRE-56	_
used as base station for the LiDAR acquisition.	7
Table 6. Details of the established ground control point MRE-56A used as base station	_
for the LiDAR acquisition.	/
Table 7. Ground control points used during LiDAR data acquisition	8
Table 8. Flight missions for LIDAR data acquisition in Bulalacao Floodplain	8
Table 9. Actual parameters used during LIDAR data acquisition	8
Table 10. List of municipalities and cities surveyed during	0
the Bulaiacao Floodplain LiDAR survey	9
Table 11. Self-Calibration Results values for Bulalacao filghts.	14
Table 12. List of LiDAR blocks for Bulalacao Floodplain	15
Table 13. Bulaiacao classification results in Terrascan	19
Table 14. LIDAR blocks with its corresponding area	23
Table 15. Sniπ values of each LIDAR Block of Bulaiacao Floodplain	24
Table 16. Calibration Statistical Measures.	28
Table 17. Validation Statistical Measures	29
Table 18. List of reference and control points used during the survey in Bulalacao River	22
(SOURCE: NAIVIKIA, UP-ICAGP)	33
Table 19. Baseline Processing Report for Bulaiacao River Static Survey	20
(SOURCE: NAIVIRIA, UP-ICAGP) Tabla 20. Control Daint Constraints	38
Table 20. Control Point Constraints	39
Table 21. Adjusted Goodatic Coordinates	
Table 22. Adjusted Geodetic Coordinates	40
Table 23. Reference and control points and its location (Source: NAIVIRIA, OP-TCAGP)	41 E2
Table 25. Pange of calibrated values for Pulalacao Piver Pasin	
Table 26. Summary of the Efficiency Test of Pulalacao HMS Model	00
Table 27. Peak values of the Bulalacao HECHMS Model outflow using the	01
Romblon RIDE 24-bour values	62
Table 28 Summary of Bulalacao river (1) discharge generated in HEC-HMS	
Table 29. Summary of Bulalacao river (2) discharge generated in HEC-HMS	05
Table 30. Validation of river discharge estimates	05
Table 31. Municipalities affected in Bulalacao Floodnlain	05
Table 32 Affected Areas in Bulalacao, Oriental Mindoro during 5-Year	
Rainfall Return Period	71
Table 33 Affected Areas in Bulalacao, Oriental Mindoro during 25-Year	
Rainfall Return Period	72
Table 34. Affected Areas in Bulalacao. Oriental Mindoro during 100-Year	
Rainfall Return Period	73
Table 35. Actual flood vs simulated flood depth at different levels in the	
Bulalacao River Basin.	75
Table 36. Summary of the Accuracy Assessment in the Bulalacao River Basin Survey	75
- , ,	-

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system	3
Table 2. Flight planning parameters for Gemini LiDAR system	3
Table 3. Details of the recovered NAMRIA horizontal control point MRW-22	
used as base station for the LiDAR acquisition.	6
Table 4. Details of the recovered NAMRIA horizontal control point MRE-4203	
used as base station for the LiDAR acquisition with established coordinates	7
Table 5. Details of the recovered NAMRIA horizontal control point MRE-56	
used as base station for the LiDAR acquisition.	7
Table 6. Details of the established ground control point MRE-56A used as base station	
for the LiDAR acquisition.	7
Table 7. Ground control points used during LiDAR data acquisition	8
Table 8. Flight missions for LiDAR data acquisition in Bulalacao Floodplain	8
Table 9. Actual parameters used during LiDAR data acquisition	8
Table 10. List of municipalities and cities surveyed during	
the Bulalacao Floodplain LiDAR survey.	9
Table 11. Self-Calibration Results values for Bulalacao flights.	14
Table 12. List of LiDAR blocks for Bulalacao Floodplain.	15
Table 13. Bulalacao classification results in TerraScan	19
Table 14. LiDAR blocks with its corresponding area	23
Table 15. Shift Values of each LiDAR Block of Bulalacao Floodplain.	24
Table 16. Calibration Statistical Measures.	28
Table 17. Validation Statistical Measures	29
Table 18. List of reference and control points used during the survey in Bulalacao River	
(Source: NAMRIA, UP-TCAGP)	33
Table 19. Baseline Processing Report for Bulalacao River Static Survey	
(Source: NAMRIA, UP-TCAGP)	38
Table 20. Control Point Constraints	39
Table 21. Adjusted Grid Coordinates	39
Table 22. Adjusted Geodetic Coordinates	40
Table 23. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)	41
Table 24. RIDF values for Romblon Rain Gauge computed by PAGASA	52
Table 25. Range of calibrated values for Bulalacao River Basin	60
Table 26. Summary of the Efficiency Test of Bulalacao HMS Model	61
Table 27. Peak values of the Bulalacao HECHMS Model outflow using the	
Romblon RIDF 24-hour values	62
Table 28. Summary of Bulalacao river (1) discharge generated in HEC-HMS	63
Table 29. Summary of Bulalacao river (2) discharge generated in HEC-HMS	63
Table 30. Validation of river discharge estimates	63
Table 31. Municipalities affected in Bulalacao Floodplain	64
Table 32. Affected Areas in Bulalacao, Oriental Mindoro during 5-Year	
Rainfall Return Period	71
Table 33. Affected Areas in Bulalacao, Oriental Mindoro during 25-Year	
Rainfall Return Period	72
Table 34. Affected Areas in Bulalacao, Oriental Mindoro during 100-Year	
Rainfall Return Period	73
Table 35. Actual flood vs simulated flood depth at different levels in the	
Bulalacao River Basin	75
Table 36. Summary of the Accuracy Assessment in the Bulalacao River Basin Survey	75

LIST OF FIGURES

Figure 2. Flight plans and base stations used for Bulalacao Floodplain Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag, municipality of
Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag, municipality of
Calintaan, Occidental Mindoro (a) and NAMRIA reference point MRW-22 (b) as recovered by
the field team5
Figure 4. GPS set-up over MRW-4203 as recovered front of the barangay hall of Brgy. Mapaya,
municipality of San Jose, Occidental Mindoro (a) and NAMRIA reference point
MRW-4203 (b) as recovered by the field team
Figure 5. Actual LiDAR survey coverage for Bulalacao Floodplain
Figure 6. Schematic Diagram for Data Pre-Processing Component
Figure 7. Smoothed Performance Metric Parameters of Bulalacao Flight 8308G.
Figure 8. Solution Status Parameters of Bulalacao Flight 8308G13
Figure 9. Best Estimated Trajectory for Bulalacao Floodplain
Figure 10. Boundary of the processed LiDAR data over Bulalacao Floodplain
Figure 11. Image of data overlap for Bulalacao Floodplain
Figure 12. Pulse density map of merged LiDAR data for Bulalacao Floodplain.
Figure 13. Elevation difference map between flight lines for Bulalacao Floodplain
Figure 14. Quality checking for Bulalacao flight 8308G
Figure 15. Tiles for Bulalacao Floodplain (a) and classification results (b) in TerraScan
Figure 16. Point cloud before (a) and after (b) classification
Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c)
and secondary DTM (d) in some portion of Bulalacao floodplain
Figure 18. Bulalacao floodplain with available orthophotographs
Figure 19. Sample orthophotograph tiles for Bulalacao Floodplain
Figure 20. Portions in the DTM of Bulalacao floodplain – a bridge before (a) and after
(b) manual editing; a paddy field before (c) and after (d) data retrieval;
a highland before (e) and after (f) manual editing
Figure 21. Map of Processed LiDAR Data for Bulalacao Floodplain
Figure 22. Map of Bulalacao Floodplain with validation survey points in green
Figure 23. Correlation plot between calibration survey points and LiDAR data
Figure 24. Correlation plot between validation survey points and LiDAR data
Figure 25. Map of Bulalacao Floodplain with bathymetric survey points shown in blue
Figure 26. Bulalacao River Survey Extent
Figure 27. GNSS Network covering Bulalacao River
Figure 28. GPS setup of Trimble [®] SPS 882 at MRE-32, located at the Municipal Park of
Victoria, in Brgy. Poblacion 1, Oriental Mindoro
Figure 29. The GPS setup of Trimble [®] SPS 985 at MRE-4650, an LMS control point located at the
approach of Bansud Bridge, in Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro
Figure 30. GPS setup of Trimble [®] SPS 882 at BAR-1, an established control point located
in Baroc Bridge, Brgy. San Isidro, Mansalay, Oriental Mindoro
Figure 31. GNSS setup of Trimble [®] SPS 882 on BONG-01 in Brgv. San Isidro. Municipality of Bongabong.
Oriental Mindoro
Figure 32. GPS setup of Trimble [®] SPS 852 at MOR-10. located in the approach of the Cawacat Bridge in Bry
Campasaan, Municipality of Bulalacao. Oriental Mindoro
Figure 33. GPS setup of Trimble® SPS 852 at ORM-1. located on Subaan Bridge. Brgv. Subaan, Municipality
of Socorro. Oriental Mindoro
Figure 34. Trimble [®] SPS 985 setup at ORM-3 located at the approach of Balete Bridge, Brgv. Balete.

Figure 1. Map of Bulalacao River Basin	2
Figure 2. Flight plans and base stations used for Bulalacao Floodplain	4
Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag, municip	ality of
Calintaan, Occidental Mindoro (a) and NAMRIA reference point MRW-22 (b) as recover	ered by
the field team	5
Figure 4. GPS set-up over MRW-4203 as recovered front of the barangay hall of Brgy. Mapaya,	
municipality of San Jose, Occidental Mindoro (a) and NAMRIA reference point	
MRW-4203 (b) as recovered by the field team	6
Figure 5. Actual LiDAR survey coverage for Bulalacao Floodplain.	10
Figure 6. Schematic Diagram for Data Pre-Processing Component	
Figure 7. Smoothed Performance Metric Parameters of Bulalacao Elight 8308G	
Figure 8. Solution Status Parameters of Bulalacao Flight 8308G	13
Figure 9 Best Estimated Trajectory for Bulalacao Floodolain	14
Figure 10. Boundary of the processed LiDAR data over Bulalacao Floodplain	17
Figure 11. Image of data overlap for Bulalacao Floodplain	15
Figure 12, Dulse density man of morged LiDAP data for Pulalacao Eloodalain	10
Figure 12. Fuise density map of merged LIDAR data for Bulalacao Floodplain.	1/
Figure 13. Elevation difference map between flight lines for Buildiacao Fioodplain	18
Figure 14. Quality checking for Bulalacao flight 8308G	19
Figure 15. Tiles for Bulalacao Floodplain (a) and classification results (b) in TerraScan.	20
Figure 16. Point cloud before (a) and after (b) classification.	20
Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c)	
and secondary DTM (d) in some portion of Bulalacao floodplain.	21
Figure 18. Bulalacao floodplain with available orthophotographs	22
Figure 19. Sample orthophotograph tiles for Bulalacao Floodplain	22
Figure 20. Portions in the DTM of Bulalacao floodplain – a bridge before (a) and after	
(b) manual editing; a paddy field before (c) and after (d) data retrieval;	
a highland before (e) and after (f) manual editing	23
Figure 21. Map of Processed LiDAR Data for Bulalacao Floodplain	25
Figure 22. Map of Bulalacao Floodplain with validation survey points in green	27
Figure 23. Correlation plot between calibration survey points and LiDAR data	28
Figure 24. Correlation plot between validation survey points and LiDAR data	29
Figure 25. Map of Bulalacao Floodplain with bathymetric survey points shown in blue	30
Figure 26. Bulalacao River Survey Extent	31
Figure 27. GNSS Network covering Bulalacao River	
Figure 28, GPS setup of Trimble [®] SPS 882 at MRE-32, located at the Municipal Park of	_
Victoria, in Brgy, Poblacion 1, Oriental Mindoro	
Figure 29 The GPS setup of Trimble [®] SPS 985 at MRF-4650 an LMS control point located at the	
approach of Bansud Bridge in Brgy Pagasa Municipality of Bansud Oriental Mindoro	34
Figure 20, GPS setup of Trimble® SPS 882 at BAP.1 an established control point located	
in Parce Pridge, Pray San Isidre, Mansalay, Oriental Mindere	24
Figure 21 CNSS setup of Trimble® SDS 882 on DONG 01 in Draw Son Isidro. Municipality of Dong	
Figure 31. GNSS setup of Trimble° SPS 882 on BONG-01 in Brgy. San Islaro, Municipality of Bong	3abong,
Figure 32. GPS setup of Trimble® SPS 852 at MOR-10, located in the approach of the Cawacat Bridge	, in Bry.
Campasaan, Municipality of Bulalacao, Oriental Mindoro	35
Figure 33. GPS setup of Trimble [®] SPS 852 at ORM-1, located on Subaan Bridge, Brgy. Subaan, Mun	icipality
of Socorro, Oriental Mindoro	36
Figure 34. Trimble [®] SPS 985 setup at ORM-3 located at the approach of Balete Bridge, Brgy.	Balete,
Municipality of Gloria, Oriental Mindoro	36
Figure 35. GNSS receiver Trimble [®] SPS 852 setup at ORM-4, located at the right side of the	

	approach of Pola Bridge in Barangay Casiligan, Municipality of Pola, Oriental Mindoro	.37
Figure 36	. GPS setup of Trimble [®] SPS 985 at SUB-1, an established control point located	
	at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro	.37
Figure 37.	. (a) View of Cawacat Bridge from the approach and (b) as-built and cross section	
	survey of Cawacat Bridge	.41
Figure 38	. Location Map of Cawakat Bridge River Cross-Section survey	.42
Figure 39	. Cawacat Bridge cross-section diagram	.42
Figure 40	. Bridge as-built form of Cawacat Bridge	.43
Figure 41	. Water Level marking at the right pier of Cawacat Bridge	.44
Figure 42	. Finished markings	.44
Figure 43	. Validation points acquisition survey setup for Cawacat River Basin	.45
Figure 44.	. Validation point acquisition survey of Bulalacao River Basin	.46
Figure 45.	. Bathymetric survey conducted in Bulalacao River using Trimble SPS 882 and Ohmex Transdu	icer
	Head	47
Figure 46	. Bathymetric survey of Bulalacao River	.48
Figure 47	. Bulalacao (also known as Cawacat) Riverbed Profile	.49
Figure 48	. The location map of Bulalacao HEC-HMS model used for calibration	.50
Figure 49	. Cross-Section Plot of Bulalacao Bridge	.51
Figure 50	. Rating curve at Cawacat Bridge, Bulalacao, Oriental Mindoro	.51
Figure 51	. Rainfall and outflow data at Bulalacao River Basin used for modeling	.52
Figure 52	Location of Romblon RIDF relative to Bulalacao River Basin	.53
Figure 53	. Synthetic storm generated for a 24-hr period rainfall for various return periods	.53
Figure 54.	. Soil map of Bulalacao River Basin used for the estimation	
	of the CN parameter. (Source: DA)	.54
Figure 55	. Land cover map of Bulalacao River Basin used for the estimation of the CN and	
	watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)	.55
Figure 56	. Slope map of Bulalacao River Basin	.56
Figure 57	. Stream delineation map of Bulalacao River Basin	.56
Figure 58	. HEC-HMS generated Bulalacao River Basin Model	.57
Figure 59	. River cross-section of Bulalacao River generated through Arcmap HEC GeoRAS tool	.58
Figure 60	. Screenshot of subcatchment with the computational area to be modeled	
in FLO-2D	GDS Pro	.79
Figure 61	. Outflow Hydrograph of Bulalacao produced by the HEC-HMS model compared	
	with observed outflow	.60
Figure 62	. Outflow hydrograph at Bulalacao Station generated using Romblon RIDF simulated	
	in HEC-HMS	.61
Figure 63	. Bulalacao river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall	
	intensity-duration-frequency (RIDF) in HEC-HMS	.62
Figure 64.	. Bulalacao river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall	
	intensity-duration-frequency (RIDF) in HEC-HMS	.63
Figure 65.	. Sample output of Bulalacao RAS Model	.64
Figure 66.	. 100-year Flood Hazard Map for Bulalacao Floodplain overlaid on Google Earth imagery	.65
Figure 67.	. 100-year Flow Depth Map for Bulalacao Floodplain overlaid on Google Earth imagery	.66
Figure 68.	. 25-year Flood Hazard Map for Bulalacao Floodplain overlaid on Google Earth imagery	.67
Figure 69.	. 25-year Flow Depth Map for Bulalacao Floodplain overlaid on Google Earth imagery	.68
Figure 70.	. 5-year Flood Hazard Map for Bulalacao Floodplain overlaid on Google Earth imagery	.69
Figure 71.	. 5-year Flood Depth Map for Bulalacao Floodplain overlaid on Google Earth imagery	.70
Figure 72.	Affected Areas in Bulalacao, Oriental Mindoro during 5-Year Rainfall Return Period	. /1
Figure 73.	. Aπected Areas in Bulalacao, Oriental Mindoro during 25-Year Rainfall Return Period	.72

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
HC	High Chord
IDW	Inverse Distance Weighted [interpolation method]
IMU	Inertial Measurement Unit
kts	knots

LAS	LiDAR Data Exchange File format					
LC	Low Chord					
LGU	local government unit					
Lidar	Light Detection and Ranging					
LMS	LiDAR Mapping Suite					
m AGL	meters Above Ground Level					
МСМ						
MMS	Mobile Mapping Suite					
MSL	mean sea level					
NSTC	Northern Subtropical Convergence					
PAF	Philippine Air Force					
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration					
PDOP	Positional Dilution of Precision					
РРК	Post-Processed Kinematic [technique]					
PRF	Pulse Repetition Frequency					
PTM	Philippine Transverse Mercator					
QC	Quality Check					
QT	Quick Terrain [Modeler]					
RA	Research Associate					
RCBO	River Basin Control Office					
RIDF	Rainfall-Intensity-Duration-Frequency					
RMSE	Root Mean Square Error					
SAR	Synthetic Aperture Radar					
SCS	Soil Conservation Service					
SRTM	Shuttle Radar Topography Mission					
SRS	Science Research Specialist					
SSG	Special Service Group					
ТВС	Thermal Barrier Coatings					
MSU-IIT	Mindanao State University - Iligan Institute of Technology					
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry					
UTM	Universal Transverse Mercator					
WGS	World Geodetic System					

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BULALACAO RIVER

Enrico C. Paringit, Dr. Eng., and Dr. Edwin R. Abucay, Joan Pauline P. Talubo

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the Southern Luzon region. The university is located in Los Baños in the province of Laguna.

1.2 Overview of the Bulalacao River Basin

The Bulalacao River Basin is a 83,100-hectare watershed located in the Municipality of Bulalacao, Oriental Mindoro. It covers the barangays of Bagong Sikat, Benli, Cambunang, Campaasan, Nasukob, Poblacion and San Juan in Bulalacao municipality. It is situated in the southeastern point of the island of Mindoro, and northwest of Bulalacao Bay and Tablas Strait. It has an approximate land area of 6,461.35 has with the estimated run-off of 120 mcm according to DENR-RBCO.

The basin area has ten geological classifications including Paleocene-Eocene, Basement Complex, Jurrasic, Oligocene, Oligocene-Miocene, Oligocene-Miocene (Sedimentary and Metamorphic rocks), Pliocene-Pleistocene, Pliocene-Quaternary, Recent and some which are still unknown. The river basin is generally characterized by 30-50% slope and elevation of 300-2200 meters above mean sea level. About seven soil types can be found in the area including Alaminos loam, Bolinao clay, Buguay loamy sand, Maranlig gravelly sandy clay loam, San Manuel clay loam, San Manuel sandy loam, and Tagaytay sandy loam. Beach sand, hydrosol and rough mountain land (unclassified) can also be found in the area. The basin area is dominated by cultivated land mixed with brushland/grassland while the rest is occupied by arable land (crops mainly cereals and sugar), closed canopy (mature trees covering >50%), coconut plantations, coral reef, crop land mixed with coconut plantation, fishponds derived from mangrove, grassland (grass covering >70%), open canopy (mature trees covering >70%) and some that are still unclassified.

Its main stem, Bulalacao River, also known as Cawacat River to some locals, is one of the main tributaries of the Bulalacao River Basin and is one of the 45 river systems under the University of the Philippines, Los Baños Phil-LIDAR Project. The river is connected to a larger stream network comprising of two (2) other rivers: the Maujao and Cavillan Rivers.

Bulalacao River passes through Bagong Sikat, Benli, Cambunang, Campaasan, Nasukob, Poblacion and San Juan in Bulalacao municipality.

The Bulalacao River is approximately 2.81 km in length and drains towards Bulalacao Bay. There is a total of 19,926 people living within the immediate vicinity of the river which is distributed among seven (7) barangays, namely: Bagong Sikat, Benli, Cambunang, Campaasan, Nasukob, Poblacion, and San Juan in the Municipality of Bulalacao according to the 2010 census conducted by NSO. Benli is considered to be the most populated barangay per record in the 2010 NSO Census of Population and Housing.

121°20'0"E

Figure 1. Map of Bulalacao River Basin

Most of the areas covered by the basin are cultivated for agricultural products such as coconut, cereal, and sugar. Aside from agriculture, aquaculture is also present along coastal communities. These livelihoods are able to continue to be sources of income for the communities near the river due to the conducive tropical climate in the river basin and the larger area where it is located. Climate Type I and III prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Bulalacao River Basin is not without its threats of disaster. According to the Mines and Geosciences Bureau, the barangays of Bagong Sikat, Benli, Cabugao, Cambunang and San Juan of Bulalacao municipality are at a higher risk to landslides. Also, based on the field surveys conducted by the PHIL-LiDAR 1 validation team, a number of notable weather disturbances have caused flooding in 1995 (Rosing), 2004 (Unding), 2006 (Caloy), 2009 (Ondoy), 2013 (Yolanda), 2014 (Seniang), 2015 (Nona), and 2016 (Butchoy). Heavy rainfalls brought about by south west monsoon rains (habagat) caused flooding in 2013-2015. Flash floods occurred near the riverside last November 2 to 3, 2013 when Typhoon Haiyan hit most of Oriental Mindoro.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BULALACAO FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, Ms. Rowena M. Gabua

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Bulalacao floodplain in Oriental Mindoro. These missions were planned for 16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Bulalacao floodplain.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repeti- tion Frequency (PRF) (kHz)	Scan Fre- quency	Average Speed	Average Turn Time (Minutes)
BLK28N	600	30	36	125	45	130	5
BLK29B	600	30	36	125	45	130	5

Table 1. Flight planning parameters for Aquarius LiDAR system.

Table 2. Flight planning p	rameters for Gemini LiDAR system.
----------------------------	-----------------------------------

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repeti- tion Frequency (PRF) (kHz)	Scan Fre- quency	Average Speed	Average Turn Time (Minutes)
BLK28J	1000	30	50	125	50	130	5

Figure 2. Flight plans and base stations used for Bulalacao Floodplain

2.2 Ground Base Station

The project team was able to recover two (2) NAMRIA ground control points: MRW-22 and MRE-56 which are of second (2nd) order accuracy. The project team also re-established ground control point MRW-4203 which is of third (3rd) order accuracy. The project team also established one (1) ground control point, MRE-56A. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing report is in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (March 3, 2014; October 26 - 28, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bulalacao floodplain are shown in Figure 2.The list of team members are shown in Annex 4.

Figure 3 to Figure 4 show the recovered NAMRIA reference points within the area, in addition Table 3 to Table 6 show the details about the following NAMRIA control stations and established points, Table 7 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over MRW-22 as recovered in Lumintao Bridge in Brgy. Tanyag, municipality of Calintaan, Occidental Mindoro (a) and NAMRIA reference point MRW-22 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point MRW-22 used as base station for the LiDAR acquisition.

Station Name	MRW-22		
Order of Accuracy		2nd	
Relative Error (horizontal positioning)	1 i	in 50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°31'36.76881" North 120°59'13.46492" East 35.12700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	498595.125 meters 1385214.96 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°31'31.84278" North 120°59'18.53734" East 84.27100 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	281265.62 meters 1385563.72 meters	

Figure 4. GPS set-up over MRW-4203 as recovered front of the barangay hall of Brgy. Mapaya, municipality of San Jose, Occidental Mindoro (a) and NAMRIA reference point MRW-4203 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point MRE-4203 used as base station for the LiDAR acquisition with established coordinates.

Station Name	MRW	-4203
Order of Accuracy	21	nd
Relative Error (horizontal positioning)	1:50	,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°21'24.45021" North 121°07'26.92622" East 7.41400 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 5 PRS 92)	Easting Northing	296032.79 meters 1366637.32 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°21′19.57973″ North 121°07′32.01059″ East 57.32000 meters

Table 5. Details of the recovered NAMRIA horizontal control point MRE-56 used as base station for the LiDAR acquisition.

Station Name	MRI	E-56
Order of Accuracy	2r	nd
Relative Error (horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°31'25.76362'' North 121°26'25.21109'' East 7.8700 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 5 PRS 92)	Easting Northing	547857.861 meters 1383916.657 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°31′20.87629′′ North 121°26′30.28143′′ East 58.13600 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRD 1992)	Easting Northing	330530.08 meters 1384892.31 meters

Table 6. Details of the established ground control point MRE-56A used as base station for the LiDAR acquisition.

Station Name	MRE	-56A	
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50	,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°31′20.59653′′ North 121°26′30.40791′′ East 57.601 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 5 PRS 92)	Easting Northing	330688.179 meters 1384818.639 meters	

Date Surveyed	Flight Number	Mission Name	Ground Control Points
03-Mar-14	1164A	3BLK29N61A	MRW-4203, MRW-22
26-Oct-15	8308G	2BLK28J299A	MRE-56, MRE-56A
28-Oct15	8312G	2BLK28JKLS301A	MRE-56, MRE-56A

Table 7. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Three (3) missions were conducted to complete the LiDAR Data Acquisition in Bulalacao floodplain, for a total of twelve hours and two minutes (12+02) of flying time for RP-C9122 and RP-C9322. All missions were acquired using the Aquarius and Gemini LiDAR systems. Table 8 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 9 presents the actual parameters used during the LiDAR data acquisition.

Table 8 Flight missions	for LiDAR data acc	usition in Bulalacad	Floodplain
rupie o. r inglie intoototto		anoicion in Danancae	110000010000

				Area	Area		Flying Hours	
Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Surveyed within the Floodplain (km2)	Surveyed Outside the Floodplain (km2)	No. of Images (Frames)	Hr	Min
03-Mar-14	1164A	128.92	112.10	25.28	86.82	311	4	53
26-Oct-15	8308G	144.96	103.41	25.07	78.34	NA	3	41
28-Oct-15	8312G	69.40	75.52	11.37	64.15	NA	3	28
TOTA	L	343.28	291.03	61.72	229.31	311	12	02

Table 9. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1164A	600	30	36	50	40	130	5
8308G	1000	30	36	100	50	130	5
2117P	1000	30	36	100	50	130	5

2.4 Survey Coverage

Bulalacao floodplain is located in the province of Oriental Mindoro, with majority of the floodplain situated within the municipality of Bulalacao. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 10. The actual coverage of the LiDAR acquisition for Bulalacao floodplain is presented in Figure 5.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Occidental	Magsaysay	256.56	10.12	4%
Mindoro	San Jose	449.82	10.69	2%
	Bulalacao	365.58	161.52	44%
	Mansalay	477.24	30.61	6%
	Bansud	197.00	9.87	5%
Oriental Mindoro	Roxas	90.14	2.67	3%
	Bongabong	493.74	4.13	1%
	Gloria	327.28	1.64	1%
То	tal	2657.36	231.25	8.70%

Table 10. List of municipalities and cities surveyed during the Bulalacao Floodplain LiDAR survey.

Figure 5. Actual LiDAR survey coverage for Bulalacao Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BULALACAO FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Angelo Carlo B. Bongat , Engr. Ma. Ailyn L. Olanda, Aljon Rie V. Araneta, Marie Denise V. Bueno , Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

Figure 6. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bulalacao floodplain can be found in Annex 5. Missions flown during the first survey conducted on March 2014 and second survey conducted on October 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system and Gemini system respectively over Municipality of Bulalacao, Oriental Mindoro.

The Data Acquisition Component (DAC) transferred a total of 38.60 Gigabytes of Range data, 743 Megabytes of POS data, 34.29 Megabytes of GPS base station data, and 22.50 Gigabytes of raw image data to the data server on November 09, 2015. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bulalacao was fully transferred on November 12, 2015, as indicated on the Data Transfer Sheets for Bulalacao floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 8308G, one of the Bulalacao flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on October 25, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 7. Smoothed Performance Metric Parameters of Bulalacao Flight 8308G.

The time of flight was from 87,500 seconds to 94,000 seconds, which corresponds to morning of October 26, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 8 shows that the North position RMSE peaks at 1.44 centimeters, the East position RMSE peaks at 1.15 centimeters, and the Down position RMSE peaks at 3.05 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 8. Solution Status Parameters of Bulalacao Flight 8308G.

The Solution Status parameters of flight 8308G, one of the Bulalacao flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 8. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bulalacao flights is shown in Figure 9.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 9. Best Estimated Trajectory for Bulalacao Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 55 flight lines, with each flight line containing one channel, since the Gemini and Aquarius systems both contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bulalacao floodplain are given in Table 11.

Parameter	Computed Value
Boresight Correction stdev (<0.001degrees)	0.000970
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000762
GPS Position Z-correction stdev (<0.01meters)	0.0019

Table 11. Self-Calibration Results values for Bulalacao fligh	nts.
---	------

The optimum accuracy is obtained for all Bulalacao flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bulalacao Floodplain is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 10. Boundary of the processed LiDAR data over Bulalacao Floodplain

The total area covered by the Bulalacao missions is 231.50 sq.km that is comprised of three (3) flight acquisitions grouped and merged into four (4) blocks as shown in Table 12.

LiDAR Blocks	LiDAR Blocks Flight Numbers	
OccidentalMindoro_Blk29N	1164A	87.14
OccidentalMindoro_Blk29N_additional	1164A	4.91
OrientalMindoro_Reflights_Blk28J	8312G	44.55
OrientelMindere Deflichte DH-2014	8308G	04.00
Orientalivindoro_Rellights_Bik28K	8312G	94.90
	TOTAL	231.50 sq.km

Table 12. List of LiDAR blocks for Bulalacao Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 11. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 11. Image of data overlap for Bulalacao Floodplain.

The overlap statistics per block for the Bulalacao floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 35.59% and 39.98% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 12. It was determined that all LiDAR data for Bulalacao floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.74 points per square meter.

Figure 12. Pulse density map of merged LiDAR data for Bulalacao Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 13. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 13. Elevation difference map between flight lines for Bulalacao Floodplain.

A screen capture of the processed LAS data from a Bulalacao flight 8308G loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 14. Quality checking for Bulalacao flight 8308G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	121,982,525	
Low Vegetation	121,364,908	
Medium Vegetation	256,627,802	
High Vegetation	298,030,073	
Building	4,761,961	

Table 13. Bulalacao classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bulalacao floodplain is shown in Figure 15. A total of 344 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 13. The point cloud has a maximum and minimum height of 687.61 meters and 38.91 meters respectively.

Figure 15. Tiles for Bulalacao Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 16. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 17. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bulalacao floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 63 1km by 1km tiles area covered by Bulalacao floodplain is shown in Figure B-13. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bulalacao floodplain has a total of 23.83 sq.km orthophotogaph coverage comprised of 176 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 18.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 18. Bulalacao floodplain with available orthophotographs

Figure 19. Sample orthophotograph tiles for Bulalacao Floodplain

3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Bulalacao flood plain. These blocks are composed of Mindoro and Oriental Mindoro Reflight blocks with a total area of 231.50 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km)	
OccidentalMindoro_Blk29N	87.14	
OccidentalMindoro_Blk29N_additional	4.91	
OrientalMindoro_Reflights_Blk28J	44.55	
OrientalMindoro_Reflights_Blk28K	94.90	
TOTAL	231.50 sq.km	

Table 14. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 20. The bridge (Figure 20a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 20b) in order to hydrologically correct the river. The paddy field (Figure 20c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 20d) to allow the correct flow of water. Another example is a surface that has been misclassified due to thick vegetation, such as in this case, a highland. The surface appears to have been interpolated in the DTM after classification (Figure 20e) and has to be retrieved back from secondary DTM during manual editing (Figure 20f).

Figure 20. Portions in the DTM of Bulalacao floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval; a highland before (e) and after (f) manual editing.

3.9 Mosaicking of Blocks

Mindoro_Blk29N was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bulalacao floodplain is shown in Figure 21. It can be seen that the entire Bulalacao floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	х	У	z
OccidentalMindoro_Blk29N	0.00	0.00	0.00
OccidentalMindoro_Blk29N_additional	0.00	0.00	0.00
OrientalMindoro_Reflights_Blk28J	0.00	0.00	-0.77
OrientalMindoro_Reflights_Blk28K	0.00	0.00	-0.85

Table 15. Shift Values of each LiDAR Block of Bulalacao Floodplain.

Figure 21. Map of Processed LiDAR Data for Bulalacao Floodplain.
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bulalacao to collect points with which the LiDAR dataset is validated is shown in Figure 22. A total of 1,722 survey points were used for calibration and validation of Bulalacao LiDAR data. Random selection of 80% of the survey points, resulting to 1,377 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 1.54 meters with a standard deviation of 0.20 meters. Calibration of Bulalacao LiDAR data was done by subtracting the height difference value, 1.54 meters, to Bulalacao mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 22. Map of Bulalacao Floodplain with validation survey points in green.

Figure 23. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	1.54
Standard Deviation	0.20
Average	-1.53
Minimum	-1.85
Maximum	-0.03

Table 16. Shift Values of each LiDAR Block of Bulalacao Floodplain.

The remaining 20% of the total survey points, resulting to 345 points, were used for the validation of calibrated Bulalacao DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.19 meters with a standard deviation of 0.19 meters, as shown in Table 17.

Figure 24. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)		
RMSE	0.19		
Standard Deviation	0.19		
Average	0.01		
Minimum	-0.23		
Maximum	1.16		

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Bulalacao with 1,946 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.38 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bulalacao integrated with the processed LiDAR DEM is shown in Figure 25.

Figure 25. Map of Bulalacao Floodplain with bathymetric survey points shown in blue.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF BULALACAO RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Cawacat River starting from October 8 to October 23, 2013 in partnership with the University of The Philippines Los Baños which covered as-built and cross-section surveys in Cawacat Bridge. Another survey was conducted from May 30 to June 11, 2014 for the bathymetry and cross-section of the Cawacat River. Finally, an additional survey was done from October 27 to 31, 2014 for the validation points acquisition survey of Bulalacao River Basin. The bathymetric survey was conducted using an echo sounder to determine the depth of the river while a Trimble[®] SPS 882 rover GPS gathered the coordinates and elevation values of the survey points. The entire survey extent is illustrated in Figure 26.

Figure 26. Bulalacao River Survey Extent

4.2 Control Survey

A GNSS network was established for previous PHIL-LiDAR fieldwork in Mindoro on February 28 – March 11, 2013 occupying MR-178, a first-order BM located at the approach of Panggalaan Bridge in Brgy. Bucayao, Calapan City, Oriental Mindoro; and MRE-32, a second order GCP in Brgy. Poblacion 1, Mun. of Victoria, Oriental Mindoro.

The GNSS network used for Bulalacao River Basin is composed of two (2) loops and four (4) baselines established on May 30 and May 31, 2014 occupying the reference point MRE-32, a second-order GCP fixed from the previous field survey in Mindoro Oriental for Mag Asawang Tubig river.

Seven (7) control points were established namely: BAR-1 located at the approach of Baroc Bridge in Brgy. San Isidro, Municipality of Mansalay; BONG-01 located near Bongabong Bridge in Brgy. San Isidro, Municipality of Luna; MOR-10, located at the approach of Cawacat Bridge in Brgy. Campaasan, Municipality of Bulalacao; ORM-1, located in Subaan Bridge in Barangay Subaan, Municipality of Socorro; ORM-3 located in Balete bridge in Brgy. Balete, Municipality of Gloria; ORM-4 in Pola Bridge, Brgy. Casiligan, Municipality of Pola; and SUB-01, located within the Maramot Residence in Brgy. Subaan, Municipality of Socorro. An LMS-established control point namely MRE-4650, located at Bansud Bridge, Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro was also occupied to use as marker in the survey.

The summary of references and control points and its location is summarized in Table 18 while the GNSS network established is illustrated in Figure 27.

Figure 27. GNSS Network covering Bulalacao River

Table 18. List of reference and control points used during the survey in Bulalacao River (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude Longitude		Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
MRE-32	2nd order, GCP	13°10'23.79251"	121°16′43.46244″	65.638	17.175	2007		
MRE-4650	Used as marker	-	-	-	-	2011		
BAR-1	UP Established	-	-	-	-	June 7, 2015		
BONG-01	UP Established	-	-	-	-	6-1-2014		
MOR-10	UP Established	-	-	-	-	6-1-2014		
ORM-1	UP Established	-	-	-	-	5-31-2014		
ORM-3	UP Established	-	-	-	-	5-30-2014		
ORM-4	UP Established	-	-	-	-	5-31-2014		
SUB-01	UP Established	_	-	-	-	5-31-2014		

The GNSS set ups made in the location of the reference and control points are exhibited in Figure 28 to Figure 32.

Figure 28. GPS setup of Trimble® SPS 882 at MRE-32, located at the Municipal Park of Victoria, in Brgy. Poblacion 1, Oriental Mindoro

Figure 29. The GPS setup of Trimble® SPS 985 at MRE-4650, an LMS control point located at the approach of Bansud Bridge, in Brgy. Pagasa, Municipality of Bansud, Oriental Mindoro

Figure 30. GNSS setup of Trimble® SPS 882 on BONG-01 in Brgy. San Isidro, Municipality of Bongabong, Oriental Mindoro

Figure 31. GNSS setup of Trimble® SPS 882 on BONG-01 in Brgy. San Isidro, Municipality of Bongabong, Oriental Mindoro

Figure 32. GPS setup of Trimble® SPS 852 at MOR-10, located in the approach of the Cawacat Bridge, in Bry. Campasaan, Municipality of Bulalacao, Oriental Mindoro

Figure 33. GPS setup of Trimble® SPS 852 at ORM-1, located on Subaan Bridge, Brgy. Subaan, Municipality of Socorro, Oriental Mindoro

Figure 34. Trimble® SPS 985 setup at ORM-3 located at the approach of Balete Bridge, Brgy. Balete, Municipality of Gloria, Oriental Mindoro

Figure 35. GNSS receiver Trimble® SPS 852 setup at ORM-4, located at the right side of the approach of Pola Bridge in Barangay Casiligan, Municipality of Pola, Oriental Mindoro

Figure 36. GPS setup of Trimble® SPS 985 at SUB-1, an established control point located at Maramot Residence in Brgy. Subaan, Municipality of Socorro, Oriental Mindoro

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Baroc River Basin is summarized in Table 19 generated by TBC software.

Table 19. Baseline Processing Report for Bulalacao River Static Survey (Source: NAMRIA, UP-TCAGP)

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
ORM-1 SUB-01	05-30-2014	Fixed	0.004	0.006	301°40'27"	1466.251	4.823
SUB-01 MRE-32	05-30-2014	Fixed	0.010	0.031	318°11′52″	15342.18	-9.283
SUB-01 MOR-10	05-31-2014	05-31-2014 Fixed 0.014 0.044 182°47′52″		80162.62	-16.502		
SUB-01 MRE-4650	05-31-2014	-31-2014 Fixed 0.006 0.038 158°49'0		158°49'08"	25506.78	-9.971	
SUB-01 ORM-3	5-31-2014	Fixed	0.007	7 0.028 141°48′05″ 17755.		17755.532	-12.886
SUB-01 ORM-4	6-1-2014	5-1-2014 Fixed 0.003 0.022		48°43'17"	7475.934	-19.149	
SUB-01 BAR-1	D1 R-1 6-1-2014 Fixed 0.024 0.107		167°15′17″	57308.832	-16.370		
SUB-01 BONG-01	6-1-2014	Fixed	0.021	0.035	164°45'51"	45313.95	0.212
ORM-1 MRE 32	- 05-30-2014 Fixed 0.010 0.032 319°54'33"		13942.72	-14.146			
MOR-10 MRE 4650	05-31-2014	Fixed	0.012	0.051	13°07'21"	57794.34	6.484

As shown in Table 19, a total of ten (10) baselines were processed and all of them passed the required accuracy set by the project.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation from:

$$\sqrt{((x_{e})^{2} + (y_{e})^{2})}_{< 20 \mathrm{cm} \text{ and }} z_{e} < 10 \ \mathrm{cm}$$

Where:

Xe is the Easting Error, Ye is the Northing Error, and Ze is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 20 to Table 22 for complete details.

The five (5) control points, MRE-32, ORM-1, MOR-10, MRE-4650 and SUB-01 were occupied and observed simultaneously to form a GNSS loop. Coordinates and elevation values of MRE-32 were held fixed during the processing of the control points as presented in Table 20. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Table 20. Control Point Constraints

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
MRE-32	Grid	Fixed	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)								

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 21. All fixed control points have no values for grid and elevation errors.

Table 21. Adjusted Grid Coordinates

Point ID	Easting	ting Easting Error (Meter) (Meter)		Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
MOR-10	319188.891	0.010	1365393.240	0.010	6.868	0.052	
MRE-32	313449.201	?	1456936.499	?	17.175	?	ENe
MRE-4650	332665.789	0.008	1421592.819	0.006	14.627	0.049	
ORM-1	322358.982	0.007	1421592.819	0.003	30.565	0.028	
SUB-01	323601.847	0.007	1445433.872	0.003	25.687	0.028	

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 22. Using the equation $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm$ for horizontal and $z_e < 10 cm$ for the vertical; below is the computation for accuracy that passed the required precision:

а.	MRE-32 Horizontal accuracy Vertical accuracy	= =	Fixed Fixed
b.	MOR-10 Horizontal accuracy Vertical accuracy	= = =	V ((1.0) ² + (1.0) ² V(1.0 + 1.0) 1.1 cm < 20 cm 1.4 cm< 10 cm
с.	MRE-4650 Horizontal accuracy Vertical accuracy	= = =	√ ((0.8) ² + (0.6) ² √(0.64 + 0.36) 1.0 cm < 20 cm 4.9 cm < 10 cm
d.	ORM-1 Horizontal accuracy Vertical accuracy	= = =	√ ((0.7) ² + (0.3) ² √(0.49 + 0.90) 1.2 cm < 20 cm 2.8 cm < 10 cm
e.	SUB-01 Horizontal accuracy Vertical accuracy	= = =	√ ((0.7) ² + (0.3) ² √(0.49 + 0.90) 1.2 cm < 20 cm 2.8 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the five (5) occupied control points are within the required accuracy of the project.

Point ID	Latitude Longitude		Ellipsoidal Height (Meter)	Height Error (Meter)	Constraint
MOR-10	N12°20'46.18547"	E121°20'13.54772"	58.186	0.052	
MRE-32	N13°10'23.79251"	E121°16'43.46244"	65.368	?	ENe
MRE-4650	N12°51'17.70515"	E121°27'28.71020"	64.693	0.049	
ORM-1	N13°04'36.74731"	E121°21′41.63863″	79.500	0.028	
SUB-01	N13°04'11.69491"	E121°22'23.06063"	74.676	0.028	

Table 22. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 22. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 23.

		Geographi	c Coordinates (WGS	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	Eleva- tion in MSL (m)
MRE-32	2nd order, GCP	13°10'23.79251"	121°16'43.46244"	65.368	1456936.499	313449.201	17.175
MRE-4650	Used as Marker	12°51′17.70515″	121°27'28.71020"	64.693	1421592.819	332665.789	14.627
BAR-1	UP Established	12°33'52.65149"	121°29'21.90040"	58.344	1389460.775	335892.131	6.953
BONG-01	UP Established	12°40'28.89755"	121°28′57.71173″	74.917	1401640.553	335232.485	23.974
MOR-10	UP Established	12°20'46.18547"	121°20'13.54772"	58.186	1365393.24	319188.891	6.868
ORM-1	UP Established	13°04'36.74731"	121°21′41.63863″	79.5	1446211.774	322358.982	30.565
ORM-3	UP Established	12°56′37.56304″	121°28'27.33712"	61.799	1431410.893	334491.821	12.031
ORM-4	UP Established	13°06'52.16736"	121°25′29.58456″	55.523	1450329.531	329251.554	6.585
SUB-01	UP Established	13°04'11.69491"	121°22′23.06063″	74.676	1445433.872	323601.847	25.687

Table 23. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)

4.5 Cross-section and Bridge As-Built Survey, and Water Level Marking

Cross-section and as-built survey was done on October 10, 2013 at the downstream side of Cawacat Bridge using a GNSS receiver Trimble[®] SPS 882 in PPK survey technique. Bridge as-built features determination was also performed to get the distance of piers and abutments from the bridge approach as shown on Figure 37. The bridge deck was measured to get the high chord, and meter tapes to get its low chord elevation.

Figure 37. (a) View of Cawacat Bridge from the approach and (b) as-built and cross section survey of Cawacat Bridge

The cross-sectional line for the Cawacat Bridge is about 206.68 m with 30 cross-sectional points gathered using MOR-10 as the GNSS base station. Figure 38 to Figure 40 show the location map, cross-sectional diagram, and as-built bridge data form for Cawacat Bridge.

Figure 38. Location Map of Cawakat Bridge River Cross-Section survey

Figure 39. Cawacat Bridge cross-section diagram

Figure 40. Bridge as-built form of Cawacat Bridge

Water surface elevation of Cawacat River was determined using Trimble[®] SPS 882 in PPK mode technique on October 10, 2013 at 1:33 PM along the banks of Cawacat Bridge. The water surface elevation was translated onto marking the bridge's pier using a Digital Level. The right side of the pier was marked using red and white paints, as shown in Figure 41. The marked pier shall serve as reference for flow data gathering and depth gauge deployment by the accompanying HEI, UPLB, who is responsible for Cawacat River as shown in Figure 42.

Figure 41. Water Level marking at the right pier of Cawacat Bridge

Figure 42. Finished markings

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 31, 2014 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on a pole which was attached in front of the vehicle (Figure 43). It was secured with a cable tie to ensure that it is horizontally and vertically balanced. The antenna height of 1.498 m was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The activity started from Brgy. San Roque to Brgy. Poblacion in the Municipality of Bulalacao.

Figure 43. Validation points acquisition survey setup for Cawacat River Basin

Figure 44. Validation point acquisition survey of Bulalacao River Basin

4.7 Bathymetric Survey

Bathymetric survey of Cawacat River was conducted on June 3, 2014 starting from the upstream Brgy. Campasaan down to the mouth of the river in Brgy. Campasaan. The bathymetric survey utilized a GNSS Rover receiver, Trimble[®] SPS 882 in PPK survey technique mounted on top of a pole with Ohmex[™] Single Beam Echo Sounder. The control point MOR-10 was used as the base station. The setup of instruments is shown in Figure 45 and Figure 46 shows the coverage of the bathymetric survey.

A total of 1,901 bathymetric points were acquired with an approximate length of 2.81 km as illustrated in the map in Figure 46.

Figure 45. Bathymetric survey conducted in Bulalacao River using Trimble SPS 882 and Ohmex Transducer Head

Figure 46. Bathymetric survey of Bulalacao River

A CAD drawing was also produced to illustrate the Bulalacao (also known as Cawacat) riverbed profile from Brgy. Campasaan down to Brgy. Poblacion, as shown in Figure 47. An elevation drop of 1.8 m with respect to MSL was observed within the approximated distance of 2.8 km.

Cawacat Riverbed Profile

Figure 47. Bulalacao (also known as Cawacat) Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data used in Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Bulalacao River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bulalacao River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the rain gauge station installed in Brgy. Nasucob, Bulalacao, Oriental Mindoro (12.335817° N, 121.35000° E). The location of the rain gauge is seen in Figure 48.

The total precipitation for this event in Nasucob ARG was 34.2mm. It has a peak rainfall of 7.2 mm on

Figure 48. The location map of Bulalacao HEC-HMS model used for calibration

5.1.3 Rating Curve and River Outflow

A rating curve was developed at Cawacat Bridge, Bulalacao, Oriental Mindoro (12.346350° N, 121.337133° E). It gives the relationship between the observed water levels from the Cawacat Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

For Cawacat Bridge, the rating curve is expressed as Q = 0.0418e2.0469x as shown in Figure 50.

Cawakat Cross Section

Figure 49. Cross-Section Plot of Bulalacao Bridge

Figure 50. Rating curve at Cawacat Bridge, Bulalacao, Oriental Mindoro

For the calibration of the HEC-HMS model, shown in Figure 51, actual flow discharge during a rainfall event was collected in the Cawacat bridge. Peak discharge is 31.42 cu.m/s at 1100H, December 12, 2013.

Figure 51. Rainfall and outflow data at Bulalacao River Basin used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Romblon Rain Gauge. This station chosen based on its proximity to the Bulalacao watershed. The extreme values for this watershed were computed based on a 48-year record, with the computed extreme values shown in Table 24.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	18.2	27	33.5	44.3	59.5	70.4	89.5	107	119.8	
5	26	37.7	46.5	60.7	82.2	97.6	125.5	152.9	171.6	
10	31.1	44.8	55	71.5	97.3	115.7	149.3	183.4	205.9	
15	34	48.8	59.9	77.7	105.8	125.8	162.8	200.5	225.2	
20	36	51.6	63.3	82	111.8	133	172.2	212.6	238.8	
25	37.6	53.8	65.9	85.3	116.4	138.4	179.4	221.8	249.2	
50	42.4	60.4	74	95.4	130.5	155.3	201.8	250.3	281.4	
100	47.2	67	81.9	105.5	144.5	172.1	223.9	278.6	313.3	

Table 24. RIDF values for Romblon Rain Gauge computed by PAGASA

Figure 52. Location of Romblon RIDF relative to Bulalacao River Basin

Figure 53. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Bulalacao River Basin are shown in Figure 54 and Figure 55, respectively.

Figure 54. Soil map of Bulalacao River Basin used for the estimation of the CN parameter. (Source: DA)

Figure 55. Land cover map of Bulalacao River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source: NAMRIA)

For Bulalacao, the three (3) soil classes identified were mostly sandy loam, with some portions of clay and undifferentiated soil class. The land cover types identified in the Bulalacao river basin was largely shrubland, while the rest is grassland, forest plantation, mangrove, and cultivated areas.

Figure 56. Slope map of Bulalacao River Basin

Figure 57. Stream delineation map of Bulalacao River Basin

Using the SAR-based DEM, the Bulalacao basin was delineated and further subdivided into subbasins. The model consists of 55 sub basins, 32 reaches, and 28 junctions as shown in Figure 58. The main outlet is at Bulalacao Bridge

Figure 58. HEC-HMS generated Bulalacao River Basin Model.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 59. River cross-section of Bulalacao River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the north of the model to the southeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 60. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 9.53955 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 13110100.00 m2.

There is a total of 11856976.87 m3 of water entering the model. Of this amount, 4093604.46 m3 is due to rainfall while 7763372.41 m3 is inflow from other areas outside the model. 2238198.00 m3 of this water is lost to infiltration and interception, while 2318733.48 m3 is stored by the flood plain. The rest, amounting up to 7300045.18 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bulalacao HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 61 shows the comparison between the two discharge data.

Figure 61. Outflow Hydrograph of Bulalacao produced by the HEC-HMS model compared with observed outflow.

Enumerated in Table 25 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	3 - 47
			Curve Number	58 - 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.5 - 12
			Storage Coefficient (hr)	0.8 - 14
	Baseflow	Recession	Recession Constant	0.008 - 1
			Ratio to Peak	0.007 – 0.05
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.03 - 0.14

Table 25. Range of calibrated values for Bulalacao River Basin

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 3mm to 47mm means that there is an average to high amount of infiltration or rainfall interception by vegetation per subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 58 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area. For Bulalacao, the basin mostly consists of brushlan and cultivated areas, and the soil consists mostly of sandy loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.5 to 14 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. For Bulalacao, the range of values of the recession constant and ratio to peak varies wherein we can stay that each subbasin behaves in a different way.

Manning's roughness coefficient of 0.03 to 0.14 indicates that the basin consist of cultivated areas as well as trees and forest plantation which is consistent to its land cover. (Brunner, 2010).

Accuracy measure	Value	
RMSE	6.9878	
r2	0.9543	
NSE	0.7501	
PBIAS	-19.783	
RSR	0.4999	

Table 26. Summary of the Efficiency Test of Bulalacao HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 6.9878.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9543.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.7501.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -19.7829.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.4999.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 62) shows the Bulalacao outflow using the Romblon Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 62. Outflow hydrograph at Bulalacao Station generated using Romblon RIDF simulated in HEC-HMS
A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Bulalacao discharge using the Romblon Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 27.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak	Lag Time
5-Year	152.9	26	229.231	13 hours 50 minutes	1 hours 50 minutes
10-Year	183.4	31.1	279.436	13 hours 50 minutes	1 hours 50 minutes
25-Year	221.8	37.6	342.441	13 hours 40 minutes	1 hours 40 minutes
50-Year	250.3	42.4	389.688	13 hours 40 minutes	1 hours 40 minutes
100-Year	278.6	47.2	436.997	13 hours 40 minutes	1 hours 40 minutes

Table 27. Summary of the Efficiency Test of Bulalacao HMS Model

5.7.2 Discharge data using Dr. Horritt's recommended hydrologic method

The river discharges for the three rivers entering the floodplain are shown in Figure 63 to Figure 64 and the peak values are summarized in Table 28 to Table 29.

Figure 63. Bulalacao river (1) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensity-duration-frequency (RIDF) in HEC-HMS

Figure 64. Bulalacao river (2) generated discharge using 5-, 25-, and 100-year Romblon rainfall intensity-duration-frequency (RIDF) in HEC-HMS

Table 28. Summary of Bulalacao riv	ver (1) discharge generated in HEC-HMS
------------------------------------	--

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	630.0	13 hours, 10 minutes
25-Year	472.9	13 hours, 10 minutes
5-Year	285.6	13 hours, 20 minutes

Table 29. Summary of Bulalacao river (2) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	531.9	12 hours, 40 minutes
25-Year	406.6	12 hours, 40 minutes
5-Year	253.3	12 hours, 40 minutes

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 30.

Table 30. Validation of river discharge estimates

		OBANKELU		VALIDATION		
Point	cms	Cms	cms	Bankful Discharge	Specific Discharge	
Bulalacao (1)	251.328	242.960	340.432	Pass	Pass	
Bulalacao (2)	222.904	267.270	245.794	Pass	Pass	

The two values from the HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful and specific discharge methods. The calculated values are based on theory but are supported using other discharge computation methods so they were good to use flood modeling. However, these values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Bulalacao River using the HMS base flow is shown on Figure 65 below.

Figure 65. Sample output of Bulalacao RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Bulalacao floodplain are shown in Figure 66 to Figure 71. The floodplain, with an area of 53.44 sq. km., covers one municipality namely Bulalacao. Table 31 shown the percentage of area affected by flooding per municipality.

Table 31. Municipalities affected in Bulalacao Floodplain

Municipality	Total Area	Area Flooded	% Flooded	
Bulalacao	365.584	53.24789	14.56516	

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Bulalacao river basin, grouped by municipality, are listed below. For the said basin, one (1) municipality consisting of 10 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 11.37% of the municipality of Bulalacao with an area of 365.58 sq. km. will experience flood levels of less 0.20 meters. 1.18% of the area will experience flood levels of 0.21 to 0.50 meters while 1.36%, 0.58%, 0.09%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 32 and shown in Figure 72 are the affected areas in Bulalacao in square kilometres by flood depth per barangay.

Affected	Area of affected barangays in Bulalacao (in sq. km.)									
area (sq. km.) by flood depth (in m.)	Bagong Sikat	Balatasan	Cab- ugao	Cambu- nang	Cam- paasan	Maujao	Nasukob	Poblacion	San Juan	San Roque
0.03-0.20	5.81	1.18	0.27	5.48	6.2	0.6	8.52	1.08	12.4	0.0037
0.21-0.50	0.3	0.055	0.0081	1.16	0.64	0.031	0.77	0.095	1.24	0.000003
0.51-1.00	0.17	0.034	0.0039	1.1	0.52	0.0076	1.08	0.085	1.97	0
1.01-2.00	0.12	0.00071	0.0021	0.41	0.17	0.0009	0.69	0.012	0.71	0
2.01-5.00	0.045	0.000001	0	0.066	0.041	0.0002	0.12	0.017	0.032	0
> 5.00	0.0002	0	0	0.0001	0.0007	0	0.0006	0.0056	0.0023	0

Table 32. Affected Areas in Bulalacao, Oriental Mindoro during 5-Year Rainfall Return Period

Figure 72. Affected Areas in Bulalacao, Oriental Mindoro during 5-Year Rainfall Return Period

For the 25-year return period, 10.60% of the municipality of Bulalacao with an area of 365.58 sq. km. will experience flood levels of less 0.20 meters. 1.17% of the area will experience flood levels of 0.21 to 0.50 meters while 1.16%, 1.49%, 0.16%, and 0.005% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 and shown in Figure 73 are the affected areas in square kilometres by flood depth per barangay.

Affected	Area of affected barangays in Bulalacao (in sq. km.)									
area (sq. km.) by flood depth (in m.)	Bagong Sikat	Balatasan	Cab- ugao	Cambu- nang	Cam- paasan	Maujao	Nasukob	Poblacion	San Juan	San Roque
0.03-0.20	5.61	1.14	0.26	4.73	5.71	0.58	7.96	0.98	11.77	0.0037
0.21-0.50	0.36	0.052	0.01	1.33	0.71	0.042	0.72	0.099	0.97	0.000003
0.51-1.00	0.24	0.042	0.0055	1.12	0.66	0.01	0.83	0.066	1.26	0
1.01-2.00	0.17	0.046	0.003	0.91	0.45	0.0017	1.45	0.13	2.3	0
2.01-5.00	0.075	0.00042	0.00012	0.13	0.06	0.0003	0.23	0.017	0.063	0
> 5.00	0.0007	0	0	0.0002	0.0013	0	0.0017	0.01	0.0037	0

Table 33. Affected Areas in Bulalacao, Oriental Mindoro during 25-Year Rainfall Return Period

Figure 73. Affected Areas in Bulalacao, Oriental Mindoro during 25-Year Rainfall Return Period

For the 100-year return period, 1.11% of the municipality of Bulalacao with an area of 365.58 sq. km. will experience flood levels of less 0.20 meters. 1.10% of the area will experience flood levels of 0.21 to 0.50 meters while 1.74%, 0.32%, and 0.007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 34 and shown in Figure 74 are the areas affected in Bulalacao in square kilometers by flood depth per barangay.

Affected	Area of affected barangays in Bulalacao (in sq. km.)									
area (sq. km.) by flood depth (in m.)	Bagong Sikat	Ba- latasan	Cabugao	Cambu- nang	Campaas- an	Maujao	Nasukob	Poblacion	San Juan	San Roque
0.03-0.20	0.26	0.05	0.013	1.39	0.62	0.052	0.6	0.091	0.96	0.000003
0.21-0.50	0.2	0.04	0.0059	1.16	0.68	0.014	0.82	0.08	1.02	0
0.51-1.00	0.1	0.015	0.003	1.21	0.7	0.0022	1.53	0.16	2.64	0
1.01-2.00	0.0009	0	0.00062	0.2	0.11	0.0003	0.53	0.023	0.3	0
2.01-5.00	0	0	0	0	0.003	0	0.0028	0.014	0.005	0
> 5.00	0	0	0	0	0	0	0	0	0	0

Table 34. Affected Areas in Bulalacao, Oriental Mindoro during 100-Year Rainfall Return Period

Figure 74. Affected areas in Bulalacao, Oriental Mindoro during the 100-Year Rainfall Return Period

Among the barangays in the municipality of Bulalacao, San Juan is projected to have the highest percentage of area that will experience flood levels at 4.47%. Meanwhile, Nasukob posted the second highest percentage of area that may be affected by flood depths at 3.06%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews with some residents who have knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 75.

The flood validation consisted of 102 points randomly selected all over the Clarin flood plain. It has an RMSE value of 0.40. Table 38 shows a contingency matrix of the comparison.

Figure 75. Validation points for 25-year Flood Depth Map of Bulalacao Floodplain

Figure 76. Flood map depth vs. actual flood depth

Actual Flood		Mode					
Depth (m)	0-0.20 0.21-0.50		1-0.50 0.51-1.00 1.0		01-2.00 2.01-5.00		Total
0-0.20	21	3	1	0	0	0	25
0.21-0.50	16	13	1	0	0	0	30
0.51-1.00	16	17	9	2	0	0	44
1.01-2.00	0	1	1	1	0	0	3
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	53	34	12	3	0	0	102

Table 35. Actual flood vs simulated flood depth at different levels in the Bulalacao River Basin.

The overall accuracy generated by the flood model is estimated at 43.14%, with 44 points correctly matching the actual flood depths. In addition, there were 40 points estimated one level above and below the correct flood depths while there were 18 points estimated two levels above and below the correct flood. A total of 7 points were overestimated while a total of 51 points were underestimated in the modelled flood depths of Bulalacao. Table 39 depicts the summary of the Accuracy Assessment in the Bulalacao River Basin Survey.

Table 36. Summary of the Accuracy Assessment in the Bulalacao River Basin Survey

	No. of Points	%
Correct	44	43.14
Overestimated	7	6.86
Underestimated	51	50.00
Total	102	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM)

ANNEXES

Annex 1. Technical Specifications of the LiDAR Sensors used in the Bulalacao Floodplain Survey

Table A-1.1 Technical Specifications of the LiDAR Sensors used in the Bulalacao Floodplain Survey

Control Rack Camera Digitizer Camera Controller Tablet Figure A-1:1 Aquarius Sensor

Table A-1.1 Parameters and Specifications of the Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including
	1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embed-
	ded 72-channel GNSS receiver (GPS and
	GLONASS)
Data Storage	Ruggedized removable SSD hard disk
	(SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP
	full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Wave-
	form Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Control rack: 591 x 485 x 578 mm; 53 kg	
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Figure A-1.2 Gemini Sensor

Table A-1.2 Parameters and Specifications of the Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
	220-channel dual frequency GPS/GNSS/
	Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and
	0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including
	1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse,
	including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line
	(optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Wave-
	form Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570
	mm (h); 23 kg
	Control rack: 650 mm (w) x 590 mm (l) x
	530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

Table A-2.1. NAMRIA Certification of Reference Points used in the LiDAR Survey

1. MRW-22

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCCIDENTAL MINDORO	
	Station Name: MRW-22	
Island: LUZON	Order: 2nd	Barangay: TANYAG
Municipality. Cheminani	PRS92 Coordinates	
Latitude: 12º 31' 36.76881"	Longitude: 120° 59' 13.46492"	Ellipsoidal Hgt: 35.12700 m.
	WGS84 Coordinates	
Latitude: 12º 31' 31.84278"	Longitude: 120° 59' 18.53734"	Ellipsoidal Hgt: 84.27100 m.
	PTM Coordinates	
Northing: 1385214.96 m.	Easting: 498595.125 m.	Zone: 3
	UTM Coordinates	
Northing: 1,385,563.72	Easting: 281,265.62	Zone: 51

MRW-22

Location Description

From Abra de llog to San Jose, along Nat'l Road, approx. 9 Km. from Calintaan Town Proper, located Lumintao Bridge at Brgy. Tanyag, Sitio Marilao, Calintaan, Occ. Mindoro. Station is located at the N end of the catwalk of Lumintao Bridge. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-22, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: OR Number: T.N.:

Reference 8795470 A 2014-446

RUEL DM. BELEN, MNSA Mapping And Geodesy Branch Director G

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.1. MRW-22

MRE-56

Location Description

From Calapan City to Bulalacao, along Nat'l Road approx. 4 Km. from Roxas Proper is an intersection of Roxas, Mansalay, Bongabong Road, turn left, approx. 14 Km. travel, right side of Nat'l Road located Mun. Hall of Mansalay, Oriental Mindoro, in front of Mansalay Hospital. Station is located in corner wall of Mun. Park in front of Mun. Hall. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscrittons, "MRE-56, 2007, NAMRIA".

Requesting Party:ENGR. CHRISTOPHER CRUZPurpose:ReferenceOR Number:8088472 IT.N.:2015-3523

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch (7

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicoas, 1010 Mania, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. MRE-56

Annex 3. Baseline Processing Reports of Control Points used in the

LiDAR Survey

Table A-3.1. Baseline Processing Reports of Control Points used in the LiDAR Survey 1. MRW-4203

Vector Components (Mark to Mark)

From:	MRW-22						
G	rid	Lo	cal			Glo	bal
Easting	281265.629 m	Latitude	N12°31'36	6.76881"	Latitude		N12°31'31.84278"
Northing	1385563.717 m	Longitude	E120°59'13	3.46492"	Longitude		E120°59'18.53734"
Elevation	35.076 m	Height	3	5.127 m	Height		84.271 m
То:	MRW-4203						
G	rid	Lo	cal			Glo	bal
Easting	296032.858 m	Latitude	N12°21'24	4.45021"	Latitude		N12°21'19.57700"
Northing	1366637.239 m	Longitude	E121°07'26	6.92622"	Longitude		E121°07'32.01274"
Elevation	6.991 m	Height		7.414 m	Height		57.334 m
Vector							
∆Easting	14767.23	0 m NS Fwd Azimuth			141°36'12"	ΔX	-14844.540 m
ΔNorthing	-18926.47	8 m Ellipsoid Dist.			24002.218 m	ΔY	-4238.929 m
∆Elevation	-28.08	5 m ΔHeight			-27.712 m	ΔZ	-18378.800 m

Figure A-3.1. Baseline Processing Report - A

2. MRE-56a

Project information		Coordinate System	
Name:		Name:	UTM
Size:		Datum:	WGS 1984
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGM96 (Global)
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	ΔX (Meter)	ΔY (Meter)	ΔZ (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
MRE56 - 26	MRE 56 -	MRE56a -	Fixed	0.001	0.002	-3.920	-0.909	-8.525	156°03'0	9.407	-0.535
MRE56a - 26 (B1)	26	26							0"		

Acceptance Summary

Processed	Passed	Flag	P	Fail	Þ
1	1	0		0	

Figure A-3.2. Baseline Processing Report - B

3. MRE-56a (continuation)

WINESO - 20 - WINESOA - 2	20 (0.32.03 AW-10.24.32 AW) (31)
Baseline observation:	MRE56 - 26 MRE56a - 26 (B1)
Processed:	11/5/2015 5:05:12 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.001 m
Vertical precision:	0.002 m
RMS:	0.000 m
Maximum PDOP:	12.356
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	10/26/2015 6:52:03 AM (Local: UTC+8hr)
Processing stop time:	10/26/2015 10:24:32 AM (Local: UTC+8hr)
Processing duration:	03:32:29
Processing interval:	1 second

MRE56 - 26 - MRE56a - 26 (6:52:03 AM-10:24:32 AM) (S1)

Vector Components (Mark to Mark)

From:	MRE56 - 26						
G	rid	L	ocal			Glo	bal
Easting	330684.411 m	Latitude	N12°31'2	0.87629"	Latitude		N12°31'20.87629"
Northing	1384827.258 m	Longitude	E121°26'3	0.28143"	Longitude		E121°26'30.28143"
Elevation	7.925 m	Height	6	58.136 m	Height		58.136 m
To:	MRE56a - 26						
G	rid	L	ocal			Glo	bal
Easting	330688.179 m	Latitude	N12°31'2	0.59653"	Latitude		N12°31'20.59653"
Northing	1384818.639 m	Longitude	E121°26'3	0.40791"	Longitude		E121°26'30.40791"
Elevation	7.390 m	Height	ŧ	57.601 m	Height		57.601 m
Vector							
ΔEasting	3.76	8 m NS Fwd Azimuth	I		156°03'00"	ΔX	-3.958 m
ΔNorthing	-8.61	9 m Ellipsoid Dist.			9.407 m	ΔY	-0.847 m
ΔElevation	-0.53	35 m ΔHeight			-0.535 m	ΔZ	-8.509 m

11/5/2015 5:06:23 PM		Business Center - HCE
----------------------	--	-----------------------

Figure A-3.3. Baseline Processing Report – C

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIELD TE	AM	
	Senior Science Research Specialist	ENGR. LOVELYN ASUNCION	UP-TCAGP
LiDAR Operation	Research Associate (RA)	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
	RA	PATRICIA YSABEL ALCANTARA	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	GRACE SINADJAN	UP-TCAGP
	Airborne Security	SSG. ERIC CACANINDIN	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. JEFFREY JEREMY ALAJAR	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. JACKSON JAVIER	AAC

Table A-4.1. The LiDAR Survey Team Composition

Annex 5. Data Transfer Sheets for the Bulalacao Floodplain

Table A-5.1. Data Transfer Sheet for the Bulalacao Floodplain

India the function in the fun																		
Heit No. Meson NAME SENOR Upput LA Kull (evvati) POGS Mace Scale RAVE					RAM	V LAS				MISSION LOG			BASE S1	ATION(S)	OPERATOR	FLIGHT	PLAN	
-22,2015 B300 2BLK28ABC235A Gemin na 400 675 286 286 214 18.2 247 15.6 1KB 1KB 24 :22,2015 8301 2BLK28ABC235B Gemin na 400 675 246 30.110.6 307/87 22.7 na 15.6 1KB 1KB 2274 :23,2015 8301 2BLK26A5EH1296A Gemin na 343 593 228 282 14.5 na 15.6 1KB 2274 :24,2015 6304 2BLK26FH297A Gemin na 345 519 214 248 187 14.5 na 168 178 :24,2015 6304 2BLK26FH297A Gemin na 315 519 248 287 14.5 18.6 1KB 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 <td< th=""><th>L.</th><th>IGHT NO.</th><th>MISSION NAME</th><th>SENSOR</th><th>Output LAS</th><th>KML (swath)</th><th>LOGS(MB)</th><th>POS</th><th>KAW IMAGES/CASI</th><th>FILE/CASI LOGS</th><th>RANGE</th><th>DIGITIZER</th><th>BASE STATION(S)</th><th>Base Info (.txt)</th><th>(opl.cg)</th><th>Actual</th><th>KML</th><th>LOCATION</th></td<>	L.	IGHT NO.	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	POS	KAW IMAGES/CASI	FILE/CASI LOGS	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	(opl.cg)	Actual	KML	LOCATION
.22.2.015 8301 7BLK28CSD35B Gemin na 667 947 240 30.1/10.5 307.67 na 15.6 146 148 2224 .23.2.015 8302 2BLK26ASEHI296A Gemin na 343 593 228 282 223 14.5 na 11.5 146 146 2274 .24.2.015 8304 2BLK26ASEHI296A Gemin na 315 519 214 248 157 14.5 166 146 146 146 148 <td>. 22, 2015</td> <td>8300</td> <td>2BLK28ABC295A</td> <td>Gemini</td> <td>na</td> <td>400</td> <td>675</td> <td>236</td> <td>28.5</td> <td>214</td> <td>18.2</td> <td>247</td> <td>15.6</td> <td>1KB</td> <td>1KB</td> <td>24</td> <td>na</td> <td>Z:/DAC/RAV/ DATA</td>	. 22, 2015	8300	2BLK28ABC295A	Gemini	na	400	675	236	28.5	214	18.2	247	15.6	1KB	1KB	24	na	Z:/DAC/RAV/ DATA
23,2015 6302 2BLK26ASEH1296A Genini na 31.5 18.6 18.5 18.6 18.6 18.6 18.6 2224 24,2015 6304 2BLK26AFH297A Genini na 315 519 214 24.8 187 14.2 221 8.82 18.7 18.8 18.8 517/124141 24,2015 6304 2BLK28FHS297A Genini na 315 519 24.8 187 14.2 221 8.82 18.1 187 14.3 502 567 367	22, 2015	8301	2BLK28CSD295B	Gemini	na	587	947	249	39,1/10.6	28/20E	22.7	* NB	15.6	1KB	1KB	22/24	BU	Z:/DAC/RAW/ DATA
24,2015 6304 2BLK28FHS297A Genini na 315 519 214 248 187 14.2 221 8.82 148 611/24/14/1 25,2015 6306 2CALIBBLK28FSGS298 Genini na 136 220 na na 10.7 4.29 8.28 148 7.8 7.8 7.8 7.8 7.6 2.807 25,2015 6306 2CALIBBLK28FSGS298 Genini na 136 220 na na 10.7 4.29 8.28 148 7.807 26,2015 8308 V 2BLK28J296A Genini na 312 355 na na 14 153 8.38 148 7.62 26,2015 8308 V 2BLK28J296A Genini na 312 235 na na 14 153 8.38 148 7.62 28,2015 8312 2BLK28LK3570A Genini na 40 225 na na 14 153 8.48 148 7.62	. 23, 2015	8302	2BLK26ASEHI296A	Gemini	па	343	593	228	28.2	223	14.5	na	11.5	1KB	1KB	22/24	na	Z:IDACIRAWI DATA
25, 2015 8306 2.CAUBBIK/28FSGS298 Genini na 136 366 220 na 10.7 4.29 8.28 1KB 1KB 28/27 26, 2015 8308 V 2BLK28/295A Genini na 312 336 235 na na 14 153 8.39 1KB 1/62 28, 2015 8308 V 2BLK28/295A Genini na 312 335 na na 14 153 8.39 1KB 1/62 28, 2015 8312 2BLK28/LS01A Genini na 40 282 215 na na 11 427 7.5 1KB 1KB 1/7	. 24, 2015	8304	2BLK28FHS297A	Gemini	na	315	519	214	24.8	187	14.2	221	8.92	1KB	1KB	5/11/24/14/1 3	na	Z:/DAC/RAW/ DATA
26, 2015 8308 2BLK28J295A Cemini na 312 356 235 na na 14 153 8.39 148 148 75 28, 2015 8312 2BLK28J291A Gemini na 40 282 215 na na 11 427 7.5 148 148 75 75 148 75 75	. 25, 2015	8306	2CALIBBLK28FSGS298 A	Gemini	na	136	366	220	па	na	10.7	4.29	8.28	1KB	1KB	28/27	na	ZIDACKAVI DATA
28,2015 8312 2BLK280/KLS301A Gemini na 40 282 215 na na 11 427 7.5 146 148 7	26, 2015	8308	2BLK28J299A	Gemini	B	312	356	235	na	ца	14	153	8 39	1KR	1KB	7/5/2	na	Z:/DAC/RAV/ DATA
	28, 2015	8312	2BLK28JKLS301A	Gemini	na	40	292	215	na	na	11	427	7.5	1KB	1KB	7	270	Z:\DAC\RAVI DATA

85

Annex 6. FLIGHT LOGS

Table A-6.1. Flight Logs for the Flight Missions

1. Flight Log for 3BLK29N+B61A Mission

ght Log No.: // on:					
Fili, 6 Aircraft I dentificatio	18 Total Flight Time:			idar Operator	
S Aircraft Type: Cesnna T206H	(Airport, Giy/Province): 17 Landing:			and Augustan	lA Mission
1614 4 Type: VFR	12 Airport of Arriva 16 Take off:			Pilot-in-Comm	3BLK29N+B6
3 Mission Name: <i>3&LL</i> C29A 9 Route:	Aliport, Gty/Province): 15 Total Engine Time: 4 53	on completed		iton Fight Certified by	e A-6.1. Flight Log for
2 ALTM Model: AQUA	12 Airport of Departure Ine Off: 13 05	Mi\$\$1.		Acquisi TEC	Figur
a Acquisition Flight Log Operator: <i>LK Paragas</i>	14/14/14/14/14/14/14/14/14/14/14/14/14/1	arks:	blems and Solutions:	Acautition Flight Approved by Signature over Printed Name (End User Representative)	^

ata Acquisition Flight Log						Flight Log No.: 23086
1 LiDAR Operator: MS	REYES 2 ALTM Model: Gemil	1, 3 Mission Name: 2B	2K28J299/ 4 TVI	se: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9322
7 Pilot: M Tangonan	8 Co-Pilot: J Mooney	9 Route: Colapo	an- Calapan			
10 Date: Dct. 26, 201	5 12 Airport of Departur	e (Airport, City/Province): 12 Airport	of Arrival (A	Airport, City/Province):	
13 Engine On: し子(2	14 Engine Off: 1103	15 Total Engine Time 3 + 5	e: 16 Takelo 1 07	÷+	17 Landing: 1058	18 Total Flight Time: 3 + 41
19 Weather 1	Claudy					
20 Flight Classification (0.a Billable	20.b Non Billable	20.c Others	-	21 Remarks Syppleme	what flight for BIK.	28F and wrend
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 LiDAR System Aircraft Main Phil-LiDAR Ac 	n Maintenance itenance dmin Activities	argitizen	with voids are in r have a drive writing	endr
2 Problems and Solutions						
O Weather Problem						
O Aircraft Problem						
0 Pilot Problem 0 Others:						
Acquisition Flight Approved I	by Acquisition Flight Ce	rtified by	Pilot-in-Comprand		Lidar Operator	Aircraft Mechanig/ Technician
Representative) Signature over Printed Name (End User Representative)	ANUL CHROSINA Signature over Printe (PAF Representat	NAT (ANDU PAF	Signature over Printed	Name	Signature over Printed Name	Signature over Printed Name
	Figure	: A-6.2. Flight Log	z for 2BLK281	299A Mi	ssion	

2. Flight Log for 2BLK28J299A Mission

3. Flight Log for 2BLK28JKLS301A Mission

Annex 7. Flight Status Report

Table A-7.1. Flight Status Reports BULALACAO FLOODPLAIN March 3, 2014; October 26-28, 2015

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1164A	BLK29B & BLK28N	3BLK29N+B61A	L. PARAGAS	03-Mar- 14	Mission Complete
8308G	BLK28F & 28J	2BLK28J299A	S. REYES	26-Oct- 15	Supplemental flight for BLK28F and covered BLK28J with voids due to clouds.
8312G	BLK28J	2BLK28JKLS301A	C. BALIGUAS	28-Oct- 15	Completed BLK28J and covered additional areas.

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

FLIGHT LOG NO. 1164A AREA: BLK29N AND BLK29B MISSION NAME: 3BLK29N+B61A Scan Freq: 40 kHz Scan Angle: 18 deg Alt: 600

SURVEY COVERAGE:

Figure A-7.1. Swath for Flight No. 1164A

FLIGHT LOG NO. 8308G AREA: BLK28F and BLK28J MISSION NAME: 2BLK28J299A Scan Freq: 50 kHz Scan Angle: 18 deg Alt: 1000

SURVEY COVERAGE:

Figure A-7.2. Swath for Flight No. 8308G

FLIGHT LOG NO. 8312G
AREA: BLK28J
MISSION NAME: 2BLK28JKLS301A

Scan Freq: 30 kHz Scan Angle: 25 deg Alt: 1000

SURVEY COVERAGE:

Figure A-7.3. Swath for Flight No. 8312G

Annex 8. Mission Summary Report

Table A-8.1 Mission Summary Report for Mission Blk29N

Flight Area	Occidental Mindoro
Mission Name	Blk29N
Inclusive Flights	1164A
Range data size	13.6 GB
Base data size	18.4 MB
POS	293 MB
Image	22.5 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	8
RMSE for East Position (<4.0 cm)	4.5
RMSE for Down Position (<8.0 cm)	7.6
Boresight correction stdev (<0.001deg)	0.000267
IMU attitude correction stdev (<0.001deg)	0.024537
GPS position stdev (<0.01m)	0.0335
Minimum % overlap (>25)	35.59%
Ave point cloud density per sq.m. (>2.0)	3.31
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	122
Maximum Height	437.8 m
Minimum Height	42.88 m

Classification (# of points)	
Ground	61887640
Low vegetation	62034376
Medium vegetation	66935608
High vegetation	40368994
Building	1397397
Orthophoto	Yes
Processed by	Engr. Jeffrey Delica, Engr. Charmaine Cruz, Ma. Victoria Rejuso

Figure A-8.1 Solution Status

Figure A-8.2 Smoothed Performance Metrics Parameters

Figure A-8.3 Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6 Density of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Occidental Mindoro
Mission Name	Blk29N_Additional
Inclusive Flights	1164A
Range data size	13.6 GB
Base data size	18.4 MB
POS	293 MB
Image	22.5 GB
Transfer date	04/23/2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	8
RMSE for East Position (<4.0 cm)	4.5
RMSE for Down Position (<8.0 cm)	7.6
Boresight correction stdev (<0.001deg)	0.000267
IMU attitude correction stdev (<0.001deg)	0.024537
GPS position stdev (<0.01m)	0.0335
Minimum % overlap (>25)	0%
Ave point cloud density per sq.m. (>2.0)	2.42
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	30
Maximum Height	335.92 m
Minimum Height	45.5 m

Table A-8.2 Mission Summary	Report for Mission	Blk29N Additional
		_
Classification (# of points)		
------------------------------	---	
Ground	3201396	
Low vegetation	2462935	
Medium vegetation	2699860	
High vegetation	1313234	
Building	39009	
Orthophoto	No	
Processed by	Ma. Victoria Rejuso, Engr. Christy Lubiano, Kathryn Claudyn Zarate	
Processed by	Engr. Jeffrey Delica, Engr. Charmaine Cruz, Ma. Victoria Rejuso	

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metrics Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Table A-8.3 Mission Summary	Report for Mission Blk2	8J
-----------------------------	-------------------------	----

Flight Area	Occidental Mindoro
Mission Name	Blk28J
Inclusive Flights	8312G
Range data size	11 GB
Base data size	7.5 MB
POS	215 MB
Image	NA
Transfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.12
RMSE for East Position (<4.0 cm)	1.45
RMSE for Down Position (<8.0 cm)	3.38
Boresight correction stdev (<0.001deg)	0.00062
IMU attitude correction stdev (<0.001deg)	0.000960
GPS position stdev (<0.01m)	0.0023
Minimum % overlap (>25)	39.08
Ave point cloud density per sq.m. (>2.0)	5.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	69
Maximum Height	687.61
Minimum Height	52.94

Classification (# of points)	
Ground	18,058,835
Low vegetation	15,128,654
Medium vegetation	68,946,595
High vegetation	116,052,339
Building	1,828,719
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Chelou Prado, Kathryn Claudyn Zarate

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metrics Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.20. Density of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Oriental Mindoro Reflights
Mission Name	BIk28K
Inclusive Flights	8308G
Range data size	14 GB
Base data size	8.39 MB
POS	235 MB
Image	NA
Transfer date	November 12, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.45
RMSE for East Position (<4.0 cm)	1.14
RMSE for Down Position (<8.0 cm)	3.04
Boresight correction stdev (<0.001deg)	0.000246
IMU attitude correction stdev (<0.001deg)	0.000970
GPS position stdev (<0.01m)	0.0019
Minimum % overlap (>25)	39.98
Ave point cloud density per sq.m. (>2.0)	4.23
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	123
Maximum Height	547.69
Minimum Height	38.91

Table A-8.4 Mission Summary Report for Mission Blk28K

Classification (# of points)	
Ground	38,834,654
Low vegetation	41,738,943
Medium vegetation	11,8045739
High vegetation	140,295,506
Building	1,496,836
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr., Alex John Escobido

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metrics Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density of merged LiDAR data

Figure A-8.24. Best Estimated Trajectory

Annex 9. Bulalacao Model Basin Parameters

	SCS CURVE NUMBER LOSS			CLARK HYDROO TRANSI	UNIT GRAPH FORM	RECESSION BASEFLOW		w
Subbasin	Initial Abstraction (MM)	Curve Number	Impervi- ousness (%)	Time of Concen- tration (HR)	Storage Coefficient (HR)	Initial Discharge (CU.M/S)	Recession Constant	Ratio to Peak
W1000	14.414	85.572	0	0.58307	0.95157	0.0057448	1	0.05
W1010	12.085	97.807	0	1.5867	0.67984	0.0211495	0.0104563	0.0077073
W1020	14.496	99	0	2.6656	4.3502	0.0123315	1	0.05
W1030	14.181	99	0	2.9922	4.8832	0.0043718	1	0.05
W1040	9.3458	99	0	1.1686	1.9072	0.0219593	1	0.05
W1050	4.4014	99	0	0.10897	0.17785	0.000670988	1	0.05
W1060	9.9585	99	0	2.5048	4.0878	0.0404457	1	0.05
W1070	15.331	96.498	0	1.5525	0.81568	0.0129962	0.0077454	0.0113298
W1080	4.2478	58.741	0	1.2929	0.84921	0.0027133	0.0246035	0.0077073
W1090	7.0084	99	0	0.58051	0.94739	0.0160271	1	0.05
W1100	13.976	58.465	0	0.15897	1.3165	0.0127168	0.016737	0.0166547
W1130	4.4014	99	0	0.24829	0.4052	0.002044	1	0.05
W1140	8.6331	99	0	2.5858	4.22	0.0161192	1	0.05
W1150	13.885	99	0	1.5927	2.5992	0.0117982	1	0.05
W1160	4.4014	99	0	0.13161	0.21478	0.0015211	1	0.05
W1170	4.4014	99	0	0.0473058	0.077203	0.000257833	1	0.05
W1180	4.5337	99	0	0.98789	1.6122	0.0283979	1	0.05
W1190	8.7134	99	0	1.8006	2.9386	0.0062387	1	0.05
W1200	5.5944	99	0	0.6695	1.0926	0.0148466	1	0.05
W1210	5.6004	99	0	0.56183	0.91691	0.0062916	1	0.05
W1220	3.3414	99	0	0.21198	0.34596	0.0021962	1	0.05
W1240	8.2958	99	0	0.85117	1.3891	0.0076056	1	0.05
W1250	17.269	94.966	0	0.15397	1.0763	0.0298059	0.0077454	0.0113298
W1290	4.4014	99	0	0.0695166	0.11345	0.000518773	1	0.05
W1300	4.4014	99	0	0.08003	0.13061	0.000684449	1	0.05
W620	10.209	99	0	3.345	5.459	0.0328401	1	0.05
W630	16.272	99	0	3.3441	5.4576	0.0190341	1	0.05
W640	19.131	99	0	2.0497	3.3451	0.0205304	1	0.05
W650	18.518	99	0	2.2676	3.7007	0.0120374	1	0.05
W660	20.845	99	0	2.7821	4.5403	0.0018784	1	0.05
W670	20.845	99	0	1.5352	2.5054	0.0081544	1	0.05
W680	19.63	99	0	0.97354	0.69034	0.0127141	0.0113857	0.0077073
W690	20.845	99	0	2.0575	3.3579	0.0229886	1	0.05
W700	20.845	99	0	0.81819	1.3353	0.0095357	1	0.05
W710	20.845	99	0	0.17603	0.28728	0.000546731	1	0.05
W720	12.84	99	0	1.194	0.79491	0.0430626	0.0077454	0.0163216

Table A-9.1 Bulalacao Model Basin Parameters

W730	18.109	99	0	1.2353	0.61605	0.007483	0.0113858	0.0166547
W740	20.845	99	0	1.4514	2.3687	0.0075735	1	0.05
W750	46.901	99	0	1.2451	4.6652	0.0129653	0.0246034	0.0390183
W760	20.845	99	0	1.5402	2.5137	0.0153768	1	0.05
W770	32.23	99	0	8.4388	9.188	0.0209795	0.0246034	0.0390183
W780	20.845	99	0	2.6381	4.3054	0.0281204	1	0.05
W790	20.845	99	0	0.0641132	0.10463	6.94E-05	1	0.05
W800	20.845	99	0	0.26195	0.42751	0.0014041	1	0.05
W810	20.845	99	0	0.52593	0.85832	0.0019229	1	0.05
W820	20.845	99	0	1.3141	2.1446	0.0289923	1	0.05
W830	45.857	99	0	1.9307	7.3822	0.0364281	0.0245188	0.0390183
W840	20.845	99	0	0.31585	0.51547	0.0018659	1	0.05
W850	16.643	99	0	2.3895	3.8996	0.0595409	1	0.05
W860	20.845	99	0	0.7206	1.176	0.0095647	1	0.05
W870	22.748	80.54	0	1.4116	0.52634	0.0192352	0.0244825	0.0077073
W880	47.131	99	0	1.2095	6.7658	0.0084828	0.0244825	0.0390183
W890	21.981	96.357	0	1.2954	0.5544	0.0176323	0.0113298	0.0113298
W900	18.627	99	0	1.5135	0.68651	0.0201182	0.0077073	0.0077073
W910	20.473	99	0	1.6813	2.7439	0.0277373	1	0.05
W920	19.96	98.954	0	1.3859	1.2728	0.0179614	0.0113298	0.0077073
W930	19.949	99	0	1.9692	3.2138	0.0324363	1	0.05
W940	20.506	99	0	11.874	6.5058	0.0199155	0.0249821	0.0390183
W950	25.473	58.465	0	1.4962	13.504	0.0173665	0.0249821	0.0390183
W960	15.508	99	0	1.303	2.1265	0.0194959	1	0.05
W970	23.465	37.271	0	1.4948	1.0875	0.0047794	0.0359892	0.0251572
W980	21.62	93.916	0	1.8774	2.2819	0.0078514	0.0244825	0.0260122
W990	35.904	99	0	1.7769	4.3319	0.006562	0.0249821	0.05

Annex 10. Bulalacao Model Reach Parameters

	MUSKINGUM CUNGE CHANNEL ROUTING							
Reach	Time Step Method	Length (M)	Slope (M/M)	Manning's n	Shape	Width (M)	Side Slope (xH:1V)	
R100	Automatic Fixed Interval	1888.9	0.73284	0.04	Trapezoid	7.5	1	
R110	Automatic Fixed Interval	789.83	0.0384867	0.0897015	Trapezoid	7.5	1	
R1270	Automatic Fixed Interval	2886.6	0.0020785	0.045659	Trapezoid	7.5	1	
R1320	Automatic Fixed Interval	413.85	0.0096654	0.04	Trapezoid	7.5	1	
R150	Automatic Fixed Interval	52.426	0.0096654	0.04	Trapezoid	7.5	1	
R160	Automatic Fixed Interval	1319.8	0.0704638	0.04	Trapezoid	7.5	1	
R170	Automatic Fixed Interval	397.99	0.0376894	0.04	Trapezoid	7.5	1	
R190	Automatic Fixed Interval	264.85	0.0037757	0.04	Trapezoid	7.5	1	
R210	Automatic Fixed Interval	530.42	0.0056559	0.04	Trapezoid	7.5	1	
R230	Automatic Fixed Interval	1784.8	0.0168614	0.0304419	Trapezoid	7.5	1	
R270	Automatic Fixed Interval	1394.4	0.75171	0.12956	Trapezoid	7.5	1	
R280	Automatic Fixed Interval	1805.8	0.58963	0.0863772	Trapezoid	7.5	1	
R290	Automatic Fixed Interval	2311.1	0.0125483	0.13295	Trapezoid	7.5	1	
R310	Automatic Fixed Interval	886.69	0.0236504	0.13564	Trapezoid	7.5	1	
R350	Automatic Fixed Interval	612.13	0.0236504	0.12556	Trapezoid	7.5	1	

Table A-10.1 Bulalacao Model Reach Parameters

R360	Automatic Fixed Interval	5059.4	0.0140332	0.04	Trapezoid	7.5	1
R40	Automatic Fixed Interval	169.71	0.0051026	0.04	Trapezoid	7.5	1
R420	Automatic Fixed Interval	1567.8	0.0051026	0.048902	Trapezoid	7.5	1
R430	Automatic Fixed Interval	543.55	0.0036795	0.04	Trapezoid	7.5	1
R440	Automatic Fixed Interval	963.55	0.0010378	0.04	Trapezoid	7.5	1
R450	Automatic Fixed Interval	724.97	0.0010378	0.0274813	Trapezoid	7.5	1
R470	Automatic Fixed Interval	1546.8	0.0010378	0.04	Trapezoid	7.5	1
R480	Automatic Fixed Interval	2127.9	0.0023497	0.04	Trapezoid	7.5	1
R490	Automatic Fixed Interval	347.99	0.0028736	0.04	Trapezoid	7.5	1
R510	Automatic Fixed Interval	820.12	0.007316	0.04	Trapezoid	7.5	1
R530	Automatic Fixed Interval	805.98	0.0012407	0.04	Trapezoid	7.5	1
R540	Automatic Fixed Interval	346.27	0.0012407	0.04	Trapezoid	7.5	1
R550	Automatic Fixed Interval	230.71	0.0031586	0.04	Trapezoid	7.5	1
R570	Automatic Fixed Interval	1266.4	0.0031586	0.04	Trapezoid	7.5	1
R590	Automatic Fixed Interval	968.11	0.0031586	0.04	Trapezoid	7.5	1
R610	Automatic Fixed Interval	678.26	0.15278	0.04	Trapezoid	7.5	1
R90	Automatic Fixed Interval	287.99	0.15278	0.04	Trapezoid	7.5	1
W990	35.904	99	0	1.7769	4.3319	0.006562	0.0249821

Annex 11. Bulalacao Flood Validation Data

Point	Validation	Coordinates	Model	Valida- Model tion Error		Event/Date	Rain Return /
Number	Lat	Long	Var (m)	Points (m)	LIIOI	Lvent/ Date	Scenario
1	12.326383	121.345416	0.06	0.00	-0.06		25-Year
2	12.326747	121.345591	0.05	0.00	-0.05		25-Year
3	12.326857	121.346734	0.13	0.00	-0.13		25-Year
4	12.326867	121.345584	0.25	0.00	-0.25		25-Year
5	12.326891	121.347085	0.22	0.00	-0.22		25-Year
6	12.326908	121.346024	0.32	0.43	0.11	High Tide	25-Year
7	12.326968	121.345647	0.28	0.30	0.02	High Tide	25-Year
8	12.327185	121.346049	0.6	0.00	-0.60		25-Year
9	12.327339	121.34773	0.38	0.30	-0.08	Nona / Dec. 2015	25-Year
10	12.329253	121.344629	0.74	0.66	-0.08	Yolanda / Nov. 8, 2013	25-Year
11	12.329294	121.344348	0.95	0.79	-0.16	Ondoy / Sept. 26, 2009	25-Year
12	12.329825	121.345187	0.31	0.45	0.14	2014	25-Year
13	12.330419	121.344178	0.88	0.65	-0.23	2015	25-Year
14	12.332137	121.343584	0.7	0.90	0.20	Seniang / Dec. 2014	25-Year
15	12.33272	121.342528	0.25	0.33	0.08	Nona / Dec. 15, 2015	25-Year
16	12.332842	121.342979	0.61	0.90	0.29	Habagat / July, 2013	25-Year
17	12.333537	121.341472	0.43	0.20	-0.23	Seniang / Dec. 2014	25-Year
18	12.333583	121.342208	0.32	0.75	0.43	Seniang / Dec. 2014	25-Year
19	12.334724	121.341379	0.14	0.60	0.46	Butchoy / July, 2016	25-Year
20	12.335666	121.340855	0.57	0.27	-0.30	Butchoy / July, 2016	25-Year
21	12.338146	121.339716	0.03	0.33	0.30	Butchoy / July, 2016	25-Year
22	12.338174	121.339346	0.03	0.12	0.09	Butchoy / July, 2016	25-Year
23	12.338781	121.338919	0.03	0.20	0.17	Butchoy / July, 2016	25-Year
24	12.338781	121.338919	0.06	0.20	0.14	Butchoy / July, 2016	25-Year
25	12.339186	121.338036	0.03	0.37	0.34	Butchoy / July, 2016	25-Year
26	12.339635	121.34371	0.21	0.90	0.69		25-Year
27	12.339978	121.336985	0.56	0.55	-0.01	Seniang / Dec. 2014	25-Year
28	12.340331	121.336997	0.41	0.40	-0.01	Caloy / May 2006	25-Year
29	12.340413	121.343806	0.33	0.97	0.64	Seniang / Dec. 2014	25-Year
30	12.340626	121.337884	0.41	0.30	-0.11	Rosing / Nov. 1995	25-Year
31	12.341164	121.33717	0.49	0.39	-0.10	Butchoy / July, 2016	25-Year
32	12.341612	121.336849	0.25	0.22	-0.03	Butchoy / July, 2016	25-Year
33	12.342289	121.337818	0.25	0.30	0.05	Seniang / Dec. 2014	25-Year
34	12.342456	121.339044	0.49	0.82	0.33	Nona / Dec. 15, 2015	25-Year
35	12.343183	121.342644	0.54	0.96	0.42	Ondoy / Sept. 2009	25-Year
36	12.343244	121.338697	0.03	0.45	0.42	Seniang / Dec. 2014	25-Year
37	12.343712	121.342501	0.49	0.96	0.47	Ondoy / Sept. 2009	25-Year

Table A-11.1 Bulalacao Flood Validation Data

Point	Validation	Coordinates	Model	Valida- el tion Error Event/Date		Rain Return /	
Number	Lat	Long	Var (m)	Points (m)	LIIOI		Scenario
38	12.344886	121.342064	0.35	0.52	0.17	Ondoy / Sept. 2009	25-Year
39	12.345209	121.336988	0.03	0.00	-0.03	Butchoy / July, 2016	25-Year
40	12.346384	121.34192	0.46	0.97	0.51		25-Year
41	12.347187	121.340814	0.38	0.68	0.30	Yolanda / Nov. 2013	25-Year
42	12.348186	121.341279	0.39	0.58	0.19		25-Year
43	12.348333	121.341613	1.25	1.33	0.08	October 19,2014	25-Year
44	12.348805	121.341183	1.05	0.74	-0.31	Seniang / Nov. 2013	25-Year
45	12.349074	121.338605	0.44	0.42	-0.02	Yolanda / Nov. 2013	25-Year
46	12.349169	121.341173	1.16	0.83	-0.33	Yolanda / Nov. 2013	25-Year
47	12.349339	121.33834	0.35	1.10	0.75	Habagat / 2014	25-Year
48	12.349493	121.338798	0.36	0.90	0.54	October 19,2014	25-Year
49	12.350134	121.341177	0.07	0.60	0.53	Yolanda / Nov. 2013	25-Year
50	12.350134	121.341177	0.92	0.60	-0.32	Yolanda / Nov. 2013	25-Year
51	12.350235	121.337418	0.52	1.12	0.6	Nov. 2015	25-Year
52	12.350326	121.341288	0.98	0.59	-0.39	Yolanda / Nov. 2013	25-Year
53	12.350975	121.337272	0.49	0.95	0.46	Oct. 22, 2015	25-Year
54	12.35131	121.336409	0.26	1.00	0.74	Habagat / Oct. 2014	25-Year
55	12.352536	121.341793	0.29	0.77	0.48	October 19,2014	25-Year
56	12.353922	121.335114	0.13	0.81	0.68	Habagat / Oct. 2014	25-Year
57	12.355766	121.324339	0.03	0.95	0.92	Nov. 2014	25-Year
58	12.356357	121.338738	0.36	0.79	0.43	Ondoy / Sept. 2009	25-Year
59	12.356644	121.337632	0.22	0.40	0.18		25-Year
60	12.356826	121.337389	0.29	0.67	0.38	Ondoy / Sept. 2009	25-Year
61	12.357586	121.336778	0.12	0.52	0.4		25-Year
62	12.357691	121.32672	0.33	0.95	0.62	Yolanda / Nov. 8, 2013	25-Year
63	12.357801	121.333218	0.1	0.93	0.83	2014	25-Year
64	12.357949	121.332854	0.06	0.81	0.75	Ondoy / Sept. 2009	25-Year
65	12.358374	121.339265	0.06	0.70	0.64		25-Year
66	12.358417	121.326651	0.29	0.96	0.67	Yolanda / Nov. 8, 2013	25-Year
67	12.358543	121.334988	0.04	0.40	0.36	2014	25-Year
68	12.358869	121.334129	0.03	0.74	0.71	2014	25-Year
69	12.359131	121.326494	0.1	0.60	0.5	Caloy / May 2006	25-Year
70	12.359515	121.331775	0.05	0.91	0.86	Yolanda / Nov. 8, 2013	25-Year
71	12.359709	121.321155	0.03	0.33	0.3	Ondoy / Sept. 26, 2009	25-Year
72	12.360043	121.331416	0.03	0.39	0.36		25-Year
73	12.359988	121.321791	0.14	0.30	0.16	Unding / Nov. 2004	25-Year
74	12.360048	121.328402	0.05	0.45	0.4	Ondoy / Sept. 26, 2009	25-Year

Point Number	Validation Coordinates		Model	Valida- tion	-	5	Rain
	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Scenario
75	12.360149	121.322536	0.03	0.95	0.92	Yolanda / Nov. 8, 2013	25-Year
76	12.3602	121.328994	0.05	0.15	0.1	Yolanda / Nov. 8, 2013	25-Year
77	12.360226	121.320581	0.03	0.00	-0.03	Ondoy / Sept. 26, 2009	25-Year
78	12.360443	121.325863	0.03	0.15	0.12	Nov. 2014	25-Year
79	12.360498	121.325637	0.07	0.35	0.28	Habagat / Nov. 2015	25-Year
80	12.360937	121.338897	0.03	0.62	0.59	2015	25-Year
81	12.360926	121.325645	0.03	0.09	0.06	Ondoy / Sept. 26, 2009	25-Year
82	12.361348	121.334352	0.03	0.44	0.41	Nona / Dec. 2015	25-Year
83	12.36131	121.325217	0.03	0.45	0.42	Yolanda / Nov. 8, 2013	25-Year
84	12.361463	121.339459	0.12	0.5	0.38		25-Year
85	12.361507	121.323538	0.03	0	-0.03	Yolanda / Nov. 8, 2013	25-Year
86	12.361554	121.324894	0.04	0.45	0.41	Ondoy / Sept. 26, 2009	25-Year
87	12.361601	121.328731	0.06	0	-0.06		25-Year
88	12.361733	121.338755	0.03	0.58	0.55		25-Year
89	12.361911	121.329745	0.11	0	-0.11		25-Year
90	12.362134	121.324423	0.04	0.15	0.11	Yolanda / Nov. 8, 2013	25-Year
91	12.362307	121.322541	0.06	0.27	0.21	Yolanda / Nov. 8, 2013	25-Year
92	12.362552	121.324478	0.09	0.35	0.26	Ondoy / Sept. 26, 2009	25-Year
93	12.362717	121.329186	0.14	0.05	-0.09	Ondoy / Sept. 2009	25-Year
94	12.362902	121.328168	0.44	0.41	-0.03	Typhoon	25-Year
95	12.36325	121.332536	0.04	0.45	0.41	Oct. 2014	25-Year
96	12.363331	121.337503	0.03	0.2	0.17	Nona / December, 2015	25-Year
97	12.363308	121.329357	0.12	0.14	0.02	October 19,2014	25-Year
98	12.363578	121.330065	0.03	0.74	0.71	October 19,2014	25-Year
99	12.364174	121.330319	0.06	0	-0.06		25-Year
100	12.364248	121.336911	0.1	0.85	0.75	2012	25-Year
101	12.366416	121.329198	0.06	0	-0.06		25-Year
102	12.367108	121.330252	0.04	0	-0.04		25-Year

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula