HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR 1)

LiDAR Surveys and Flood Mapping of Bacungan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Los Baños

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and E.R. Abucay (Eds.) (2017), LiDAR Surveys and Flood Mapping of Bacungan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-130 pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines Los Baños Los Baños, Laguna, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-124-9

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST O	FTABLES	v
)F FIGURES	
LIST O	F ACRONYMS AND ABBREVIATIONS	Х
	TER 1: OVERVIEW OF THE PROGRAM AND BACUNGAN RIVER	
	1.1 Background of the Phil-LiDAR 1 Program	
	1.2 Overview of the Bacungan River Basin	1
CHAP.	TER 2: LIDAR DATA ACQUISITION OF THE BACUNGAN FLOODPLAIN	3
	2.1 Flight Plans	
	2.2 Ground Base Stations	
	2.3 Flight Missions	
	2.4 Survey Coverage	.12
	TER 3: LIDAR DATA PROCESSING OF THE BACUNGAN FLOODPLAIN	
	3.1 Overview of the LiDAR Data Pre-Processing	
	3.2 Transmittal of Acquired LiDAR Data	
	3.3 Trajectory Computation	
	3.4 LiDAR Point Cloud Computation	
	3.5 LiDAR Data Quality Checking	.18
	3.6 LiDAR Point Cloud Classification and Rasterization	
	3.7 LiDAR Image Processing and Orthophotograph Rectification	
	3.8 DEM Editing and Hydro-Correction	
	3.9 Mosaicking of Blocks	
	3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	
	3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BACUNGAN RIVER BASIN	.32
CHAP	TER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BACUNGAN RIVER BASIN	.34
	4.1 Summary of Activities	
	4.2 Control Survey	
	4.3 Baseline Processing	
	4.4 Network Adjustment	
	4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
	4.6 Validation Points Acquisition Survey	
	4.7 River Bathymetric Survey	
	TER 5: FLOOD MODELING AND MAPPING	
	5.1 Data Used for Hydrologic Modeling	
	5.1.1 Hydrometry and Rating Curves	
	5.1.2 Precipitation	
	5.1.3 Rating Curves and River Outflow	
	5.2 RIDF Station	
	5.3 HMS Model	
	5.4 Cross-section Data	
	5.5 Flo 2D Model	
	5.6 Results of HMS Calibration	
	5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	
	5.7.1 Hydrograph using the Rainfall Runoff Model	
	5.8 River Analysis (RAS) Model Simulation	
	5.9 Flow Depth and Flood Hazard	
	5.10 Inventory of Areas Exposed to Flooding	
	5.11 Flood Validation	
	XENCESXES	
	Annex 1. Optech Technical Specification of the Pegasus Sensor	
	Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey	
	Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	
	Annex 4. The LIDAR Survey Team Composition	
	Annex 5. Data Transfer Sheet for Bacungan Floodplain	
	Annex 6. Flight Logs for the Flight Missions	
	Annex 7. Flight Status Reports	
	Annex 8. Mission Summary Reports	
	Annex 9. Bacungan Model Basin Parameters	

Annex 10. Bacungan Model Reach Parameters	143
Annex 11. Bacungan Field Validation Points	145
Annex 12. Phil-LiDAR 1 UPLB Team Composition	151

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point PLW-34 used as base station for the LiDAR acquisition	6
Table 3. Details of the recovered NAMRIA horizontal control point PLW-50 used as base station for the LiDAR acquisition	7
Table 4. Details of the recovered NAMRIA horizontal control point PLW-3026 used as base station for the LiDAR acquisition	8
Table 5. Details of the recovered NAMRIA horizontal control point PLW-4011 used as base station for the LiDAR acquisition	9
Table 6. Details of the recovered NAMRIA reference point PL-92 with processed coordinates used as base station for the LiDAR acquisition	10
Table 7. Details of the recovered NAMRIA horizontal control point PPC-1 used as base station for the LiDAR acquisition	10
Table 8. Ground control points used during the LiDAR data acquisition	10
Table 9. Flight missions for the LiDAR data acquisition in Bacungan Floodplain	11
Table 10. Actual parameters used during the LiDAR data acquisition of the Bacungan Floodplain	11
Table 11. List of municipalities and cities surveyed of the Bacungan Floodplain LiDAR acquisition	12
Table 12. Self-calibration Results values for Bacungan flights	17
Table 13. List of LiDAR blocks for Bacungan Floodplain	18
Table 14. Bacungan classification results in TerraScan	22
Table 15. LiDAR blocks with its corresponding areas	26
Table 16. Shift values of each LiDAR block of Bacungan Floodplain	27
Table 17. Calibration Statistical Measures	31
Table 18. Validation Statistical Measures	32
Table 19. List of Reference and Control Points occupied for Bacungan River Survey	36
Table 20. Baseline Processing Summary Report for Bacungan River Survey	41
Table 21. Constraints applied to the adjustment of the control points	42
Table 22. Adjusted grid coordinates for control points used in the Bacungan River Floodplain survey	/42
Table 23. Adjusted geodetic coordinates for control points used in the Bacungan River Floodplainvalidation	43
Table 24. The reference and control points utilized in the Bacungan River Static Survey,with their corresponding locations	44
Table 25. RIDF values for Bacungan Rain Gauge computed by PAGASA	59
Table 26. Range of calibrated values for the Bacungan River Basin	68
Table 27. Summary of the Efficiency Test of the Bacungan HMS Model	69
Table 28. Peak values of the Bacungan HEC-HMS Model outflow using the Puerto Princesa RIDF24-hour values	71
Table 31. Municipalities affected in Bacungan Floodplain	73
Table 30. Affected areas in Puerto Princesa City, Palawan during a 5-Year Rainfall Return Period	80
Table 31. Affected areas in Puerto Princesa City, Palawan during a 25-Year Rainfall Return Period	81
Table 32. Affected areas in Puerto Princesa City, Palawan during 100-Year Rainfall Return Period	82
Table 33. Actual flood vs simulated flood depth at different levels in the Bacungan River Basin	84

Table 34. Summary of the Accurac	y Assessment in the Bacungan River Basin Survey8	5
----------------------------------	--	---

LIST OF FIGURES

Figure 1. Map of Bacungan River Basin (in brown)	2
Figure 2. Flight Plan and base station used for the Bacungan Floodplain survey.	4
Figure 3. a) GPS set-up over PLW-34 located at the roof deck of the old city hall of Puerto Princesa,	
Brgy. Sta. Monica, Puerto Princesa City. b) NAMRIA reference point PLW-34 as recovered	
by the field team	6
Figure 4. a) GPS set-up over PLW-50 located within the vicinity of Iwahig Prison and Penal Farm	
at the fountain in front of the supervisor's quarter (Quarter 1), Brgy. Iwahig, Puerto	
Princesa City. b) NAMRIA reference point PLW-50 as recovered by the field team.	7
Figure 5. GPS set-up over PLW-3026 located at northeast corner of the center island in Salvacion	
junction, Brgy. Salvacion, Puerto Princesa City. b) NAMRIA reference point PLW-3026	
as recovered by the field team	8
Figure 6. a) GPS set-up over PLW-4011 located infront of A. Susan's Store in Sabang Wharf,	
Sitio Sabang, Brgy. Cabacungan, Puerto Princesa City. b) NAMRIA reference point	
PLW-4011 as recovered by the field team	9
Figure 7. Actual LiDAR survey coverage of the Bacungan Floodplain	
Figure 8. Schematic diagram for Data Pre-Processing Component.	
Figure 9. Smoothed Performance Metrics of Bacungan Flight 3023P	
Figure 10. Solution Status Parameters of Bacungan Flight 3023P.	
Figure 11. Best Estimated Trajectory of LiDAR missions conducted over the Bacungan Floodplain	
Figure 12. Boundary of the processed LiDAR data over Bacungan Floodplain	
Figure 13. Image of data overlap for Bacungan Floodplain.	
Figure 14. Pulse density map of merged LiDAR data for Bacungan Floodplain	
Figure 15. Elevation Difference Map between flight lines for Bacungan Floodplain Survey	
Figure 16. Quality checking for Bacungan Flight 3023P using the Profile Tool of QT Modeler	
Figure 17. Tiles for Bacungan Floodplain (a) and classification results (b) in TerraScan	
Figure 18. Point cloud before (a) and after (b) classification	
Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Bacungan Floodplain	24
Figure 20. Bacungan Floodplain with available orthophotographs	
Figure 21. Sample orthophotograph tiles for Bacungan Floodplain	
Figure 22. Portions in the DTM of Bacungan Floodplain – a bridge before (a) and after (b) manual	
editing; and an elevated area in the waterway before (c) and after (d) interpolation	26
Figure 23. Map of Processed LiDAR Data for Bacungan Floodplain	
Figure 24. Map of Bacungan Floodplain with validation survey points in green	
Figure 25. Correlation plot between calibration survey points and LiDAR data	
Figure 26. Correlation plot between validation survey points and LiDAR data	
Figure 27. Map of Bacungan Floodplain with bathymetric survey points shown in blue	
Figure 28. Extent of the bathymetric survey (in blue line) in Bacungan River	
and the LiDAR data validation survey (in red).	
Figure 29. The GNSS Network established in the Bacungan River Survey.	
Figure 30. GNSS receiver set up, Trimble [®] SPS 882, at PL- 129, located along the National	
Highway. It is situated at the top of a concrete canal in Brgy. Sta. Lourdes,	
Puerto Princesa City, Palawan	38
Figure 31. GNSS base set up, Trimble [®] SPS 882, at PLW-48, located at approximately 20 meters	
southwest from the gate of the Crocodile Farm in Brgy. Irawan, Puerto Princes City,	
Palawan. It is situated at approximately 5m west from the centerline of the highway	20
r dawan it is studied at approximately 5m west nom the centerine of the lighway	.55

Figure 32. GNSS receiver set up, Trimble [®] SPS 985, at UP_BAC -1, located at the approach	
of Bacungan Bridge in Brgy. Bacungan, Quezon, Province of Palawan	.39
Figure 33. GNSS receiver set up, Trimble [®] SPS 985, at UP_IWA_P-1, located on the approach	
of Iwahig Penal Bridge in Brgy. Sta. Lucia, Puerto Princesa City, Province of Palawan	.40
Figure 34. Upstream/downstream side of Bacungan Bridge	.45
Figure 35. As-built survey of Bacungan Bridge	.46
Figure 36. Upstream/downstream side of Bacungan Bridge	
Figure 37. Bacungan Bridge cross-section diagram	
Figure 38. As-built survey of Bacungan Bridge	
Figure 39. Water level markings on Bacungan Bridge	
Figure 40. Validation points acquisition survey set-up for Bacungan River	
Figure 41. Validation point acquisition survey of Bacungan River Basin	
Figure 42. Bathymetric survey of ABSD at Bacungan River using Hi-Target [™] Echo Sounder	
Figure 43. Gathering of random bathymetric points along Bacungan River	
Figure 44. Extent of the Bacungan River Bathymetry Survey	
Figure 45. Quality checking points gathered along Bacungan River by DVBC	
Figure 46. Bacungan riverbed profile.	
Figure 47. Location map of the Bacungan HEC-HMS model used for calibration	
Figure 48. Cross-section plot of Bacungan Bridge	
Figure 49. Rating curve at Bacungan Bridge, Puerto Princesa, Palawan	
Figure 50. Rainfall and outflow data at Bacungan Bridge used for modeling	
Figure 51. Location of Puerto Princesa RIDF Station relative to Bacungan River Basin	.60
Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.	.60
Figure 53. Soil Map of Bacungan River Basin used for the estimation of the CN parameter	.61
Figure 54. Land Cover Map of Bacungan River Basin used for the estimation of the Curve	
Number (CN) and the watershed lag parameters of the rainfall-runoff model	.62
Figure 55. Slope Map of Bacungan River Basin	63
Figure 56. Stream Delineation Map of Bacungan River Basin	.64
Figure 57. Bacungan River Basin model generated in HEC-HMS	.65
Figure 58. River cross-section of Bacungan River generated through Arcmap HEC GeoRAS tool	.66
Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	.67
Figure 60. Outflow hydrograph of Balamban produced by the HEC-HMS model	
compared with observed outflow	. 68
Figure 61. Outflow hydrograph at Bacungan Station generated using the Puerto Princesa RIDF	
simulated in HEC-HMS	70
Figure 62. Sample output map of Bacungan RAS Model	
Figure 63. 100-year Flood Hazard Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 64. 100-year Flow Depth Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 65. 25-year Flood Hazard Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 66. 25-year Flow Depth Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 67. 5-year Flood Hazard Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 68. 5-year Flood Depth Map for Bacungan Floodplain overlaid on Google Earth imagery	
Figure 69. Affected Areas in Puerto Princesa City, Palawanl during 5-Year Rainfall Return Period	
Figure 70. Affected Areas in Puerto Princesa City, Palawan during 25-Year Rainfall Return Period	
Figure 71. Affected Areas in Puerto Princesa City, Palawan during 100-Year Rainfall Return Period	
Figure 72. Validation points for 25-year Flood Depth Map of Bacungan Floodplain	
Figure 73. Flood map depth vs. actual flood depth	84

LiDAR Surveys and Flood Mapping of Bacungan River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation	
Ab	abutment	
ALTM	Airborne LiDAR Terrain Mapper	
ARG	automatic rain gauge	
AWLS	Automated Water Level Sensor	
BA	Bridge Approach	
BM	benchmark	
CAD	Computer-Aided Design	
CN	Curve Number	
CSRS	Chief Science Research Specialist	
DA-BSWM	Department of Agriculture - Bureau of Soil and Water Management	
DAC	Data Acquisition Component	
DEM	Digital Elevation Model	
DENR	Department of Environment and Natural Resources	
DOST	Department of Science and Technology	
DPPC	Data Pre-Processing Component	
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]	
DRRM	Disaster Risk Reduction and Manageme	
DSM	Digital Surface Model	
DTM	Digital Terrain Model	
DVBC	Data Validation and Bathymetry Component	
FMC	Flood Modeling Component	
FOV	Field of View	
GiA	Grants-in-Aid	
GCP	Ground Control Point	
GNSS	Global Navigation Satellite System	
GPS	Global Positioning System	
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System	
HEC-RAS	Hydrologic Engineering Center - River Analysis System	
HC	High Chord	
IDW	Inverse Distance Weighted [interpolation method]	

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UPLB	University of the Philippines – Los Baños			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BACUNGAN RIVER

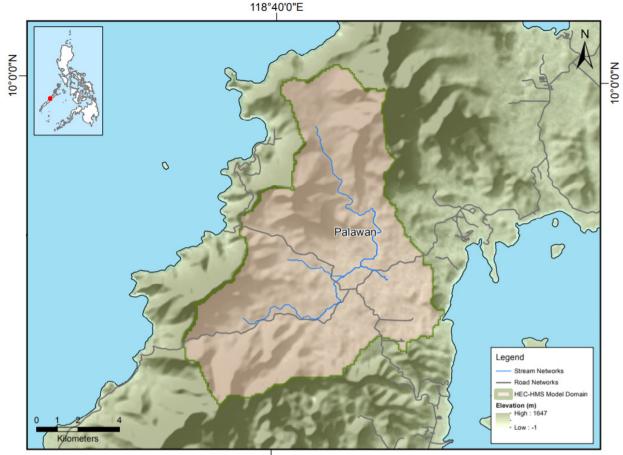
Enrico C. Paringit, Dr. Eng., Asst. Prof.. Edwin R. Abucay, and Asst. Prof. Efraim D. Roxas

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB) is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the forty-five (45) river basins in the Southern Luzon Region. The university is located in Los Baños in the province of Laguna.


1.2 Overview of the Bacungan River Basin

The Bacungan River Basin is a 99,220-hectare watershed traversing the barangays of Bacungan, Bahile, Irawan, Santa Cruz and Santa Lourdes, all of which are in the City of Puerto Princesa in Palawan. The DENR River Basin Control Office (RBCO) states that the Bacungan River Basin has a drainage are of 96 km² and an estimated 154 cubic meter (MCM) annual run-off (RBCO, 2015).

The river basin experiences Climate Type I and III, which prevails in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

Meanwhile, the basin's topography is characterized with >50% slope. Moreover, two soil types (Malalag clay and Tapul clay loam) dominate the river basin. However, rough mountainous land (unclassified area) and hydrosol can also be found in the area. Cultivated area mixed with brushland/grassland, closed canopy (mature trees covering >50%), grassland (grass covering >70%), mossy forest and open canopy (mature trees covering <50%) are the land cover types found in the river basin.

Its main stem, Bacungan River, passes through Bacungan, Bahile, Irawan, Santa Cruz and Santa Lourdes. The river is part of the forty-five (45) river systems under the PHIL-LIDAR 1 Program partner HEI, University of the Philippines Los Baños. According to the 2015 national census of the Philippine Statistics Authority (PSA), a total of 9,726 persons are residing in Brgy. Sta Lourdes and Brgy. Bacungan in the City of Palawan, which is within the immediate vicinity of the river. The economy of the province of Palawan largely rests on agriculture particularly fishing, tourism, trade, commerce, and mineral extraction (Palawan Knowledge Platform for Biodiversity and Sustainable Development, 2007).

118°40'0"E Figure 1. Map of Bacungan River Basin (in brown)

Based on the studies conducted by the Mines and Geosciences Bureau, only Bacungan has a flood susceptibility (low to high) while other barangays have no flood hazard at all. However, the field surveys conducted by the PHIL-LiDAR 1 validation team, showed that there were seven notable weather disturbance that caused flooding in 2008 (Frank), 2009 (Ondoy), 2013 (Yolanda), 2014 (Glenda), and 2016 (Karen, Lawin and Lando). On December 25, 2016, the National Disaster Risk Reduction and Management Council (NDRRMC) issued a flood advisory for Bacungan River and its tributaries due to the moderate to heavy rains brought Typhoon Nina affecting Southern Luzon, Visayas and Mindanao as per NDRRMC report (National Disaster Risk Reduction and Management Council, 2016). As for the landslide susceptibility, only Santa Cruz has a moderate to high risk while others have low to high risk range.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BACUNGAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, and Ms. Jasmin M. Domingo

Ο.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Bacungan floodplain in Palawan. These missions were planned for ten (10) lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1. Figure 2 shows the flight plans and base stations for Bacungan floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK 42A	1000	30	50	200	30	130	5
BLK 42B	1000	30	50	200	30	130	5
BLK 42D	1000	30	50	200	30	130	5
BLK 42E	1100/1000	30	50	200	30	130	5
BLK 42F	1000	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

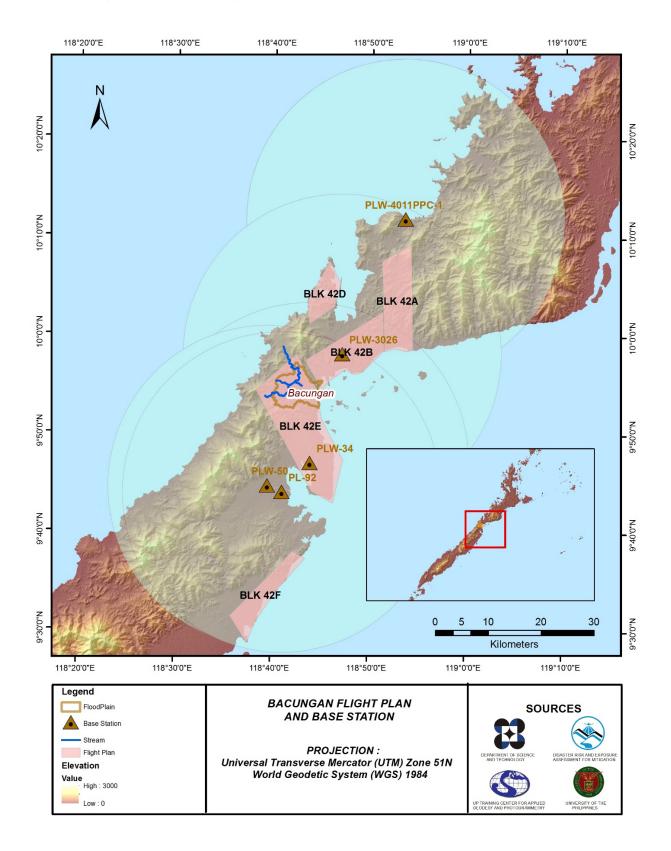
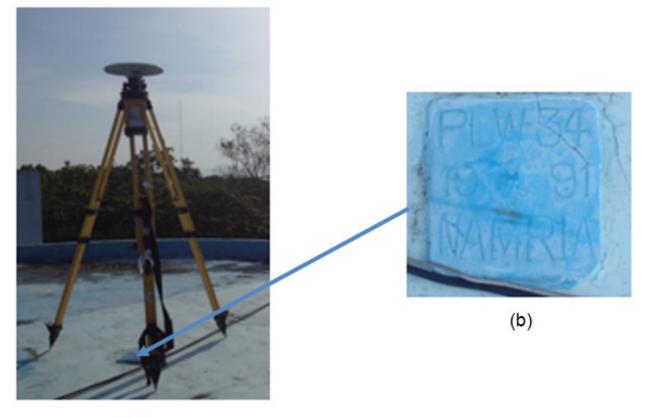
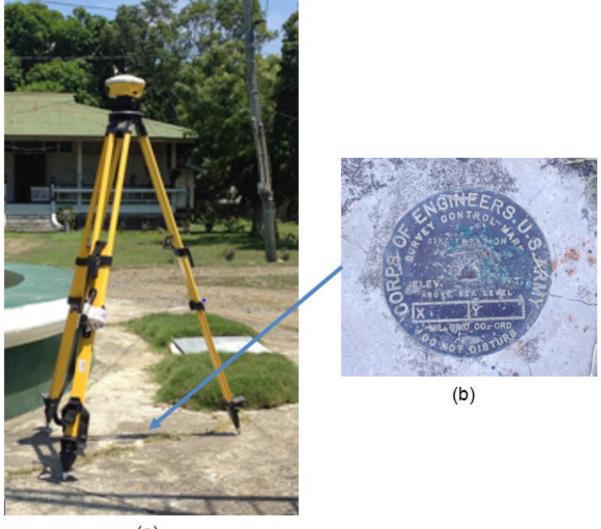



Figure 2. Flight Plan and base station used for the Bacungan Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA horizontal ground control points: PLW-34 and PLW-50 which are of first (1st) and second (2nd) order accuracy, respectively. The project team also reprocessed ground control points: PLW-3026 and PLW-4011; and established (1) ground control point: PPC-1. One (1) NAMRIA benchmark was recovered, PL-92 which is of 2nd order accuracy. This benchmark was used as vertical reference point and was also established as ground control points. The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (May 30-June 20, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 882. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bacungan floodplain are shown in Figure 2. The list of team members are shown in Annex 4.

Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area. Table 2 to Table 7 show the details about the following NAMRIA control stations and established points, while Table 9 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

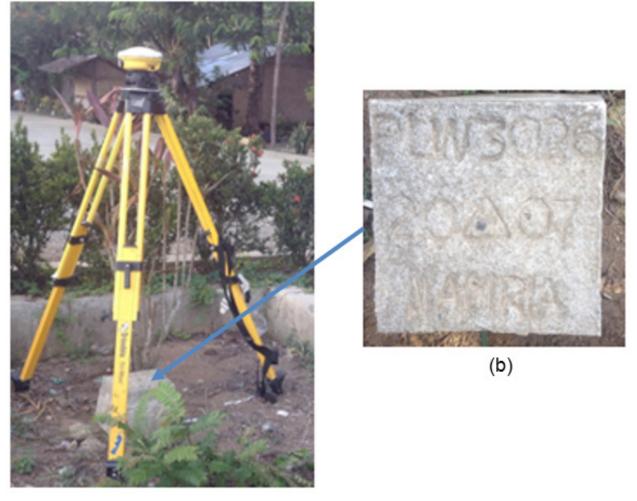


(a)

Figure 3. a) GPS set-up over PLW-34 located at the roof deck of the old city hall of Puerto Princesa, Brgy. Sta. Monica, Puerto Princesa City. b) NAMRIA reference point PLW-34 as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point PLW-34 used as base station for the LiDARacquisition.

Station Name	PLW-34		
Order of Accuracy	1st		
Relative Error (Horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9°47'4.34346″ North 118°43'50.36738″ East 53.76200 m	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	525304.737 m 1081910.004 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 46′59.90069″ North 118° 43′ 55.68915″ East 103.89600 m	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	689825.58 m 1082009.99 m	

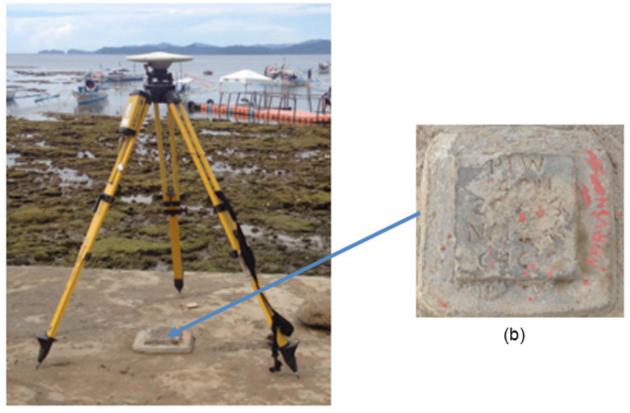


(a)

Figure 4. a) GPS set-up over PLW-50 located within the vicinity of Iwahig Prison and Penal Farm at the fountain in front of the supervisor's quarter (Quarter 1), Brgy. Iwahig, Puerto Princesa City. b) NAMRIA reference point PLW-50 as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point PLW-50 used as base station for the LiDAR acquisition.

Station Name	PLW-50		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9°44'42.16318" North 118°29'28.02050" East 16.81300 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	517311.956 m 1077537.527 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9° 44'37.72390" North 118° 39' 33.34598" East 66.85300 m	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	681851.72 m 1077601.73 m	



(a)

Figure 5. GPS set-up over PLW-3026 located at northeast corner of the center island in Salvacion junction, Brgy. Salvacion, Puerto Princesa City. b) NAMRIA reference point PLW-3026 as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point PLW-3026 used as base station for the LiDAR acquisition.

Station Name	PLW-3026		
Order of Accuracy	1st order		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9°58'03.41442" North 118°47'09.05751" East 57.363 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9°58′07.89863″ North 118°47′03.75221″ East 7.504 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	695610.418 m 1102427.869 m	

(a)

Figure 6. a) GPS set-up over PLW-4011 located infront of A. Susan's Store in Sabang Wharf, Sitio Sabang, Brgy. Cabacungan, Puerto Princesa City. b) NAMRIA reference point PLW-4011 as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point PLW-4011 used as base station for the LiDAR acquisition.

Station Name	PLW-4011		
Order of Accuracy	1st order		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9°58′03.41442″ North 118°47′09.05751″ East 57.363 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9°58'07.89863" North 118°47'03.75221" East 7.504 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	695610.418 m 1102427.869 m	

Table 6. Details of the recovered NAMRIA reference point PL-92 with processed coordinates used as base station for the LiDAR acquisition.

Station Name	PL-92		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	9°44′04.01581″ North 118°40′58.28065″ East 8.218 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	9°43'59.58138" North 118°41'03.60701" East 58.344 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	26049.752 m 1079008.192 m	

Table 7. Details of the recovered NAMRIA horizontal control point PPC-1 used as base station for the LiDAR acquisition.

Station Name	PPC-1		
Order of Accuracy	1st order		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	10°11′54.83823″ North 118°53′26.98215″ East 4.002 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10°11′50.30596″ North 118°53′32.26682″ East 53.609 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 52N PRS 1992)	Easting Northing	707137.228 m 1127901.415 m	

Table 8. Ground control points used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 30, 2015	2898P	1BLK42E150A	PLW-34
June 6, 2015	3017P	1BLK42A157A	PLW-34 and PLW-3026
June 7, 2015	3021P	1BLK42BD158A	PLW-34 and PLW-3026
June 7, 2015	3023P	1BLK42BCAL158B	PLW-34 and PLW-3026
June 13, 2015	3045P	1BLK42BS164A	PLW-4011 and PPC-1
June 14, 2015	3049P	1BLK42S165A	PLW-50 and PL-92
June 20, 2015	3073P	1BLK42S171A	PLW-3026 and PLW-4011

2.3 Flight Missions

Seven (7) missions were conducted to complete LiDAR data acquisition in Bacungan Floodplain, for a total of twenty one hours and fifty six minutes (21+56) of flying time for RP-C9022. All missions were acquired using Pegasus system. Table 9 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 10 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area			Area Surveyed Outside the Images	Images		ying ours
		(km2)	(km2)	within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
May 30, 2015	2989P	213.38	239.59	40.93	198.66	340	4	6
June 6, 2015	3017P	100.65	178.62	18.84	159.78	792	4	23
June 7, 2015	3021P	139.4	114.91	1.79	113.12	384	2	27
June 7, 2015	3023P	313.41	140.67	6.66	134.01	600	3	49
June 12, 2015	3041P	81.86	115.6	0	115.6	254	2	1
June 13, 2015	3045P	100.11	124.01	1.81	122.2	229	2	27
June 14, 2015	3049P	276.39	149.92	15.38	134.54	503	2	50
June 20, 2015	3073P	139.4	60.08	0	60.08	173	1	54
τοτ	AL .	1282.82	1007.8	91.6	916.2	3031	21	56

Table 9. Flight missions for the LiDAR data acquisition in Bacungan Floodplain.

Table 10. Actual parameters used during the LiDAR data acquisition of the Bacungan Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
2989P	1100	30	50	200	30	140	5
3017P	1000	30	50	200	30	140	5
3021P	1000	30	50	200	30	140	5
3023P	1000	30	50	200	30	140	5
3045P	1000	30	50	200	30	140	5
3049P	1000	30	50	200	30	140	5
3073P	1000	30	50	200	30	140	5

2.4 Survey Coverage

Bacungan floodplain is located in the city of Puerto Princesa, Palawan. The survey covered mostly the city of Puerto Princesa, and municipality of Aborlan as shown in Table 11. The actual coverage of the LiDAR acquisition for Bacungan Floodplain is presented in Figure 7.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Palawan	Puerto Princesa	2186.36	577.34	26.41%
	Aborlan	645.11	16.63	2.58%
TOTA	۸L	2831.47	593.97	20.98%

Table 11. List of municipalities and cities surveyed of the Bacungan Floodplain LiDAR acquisition.

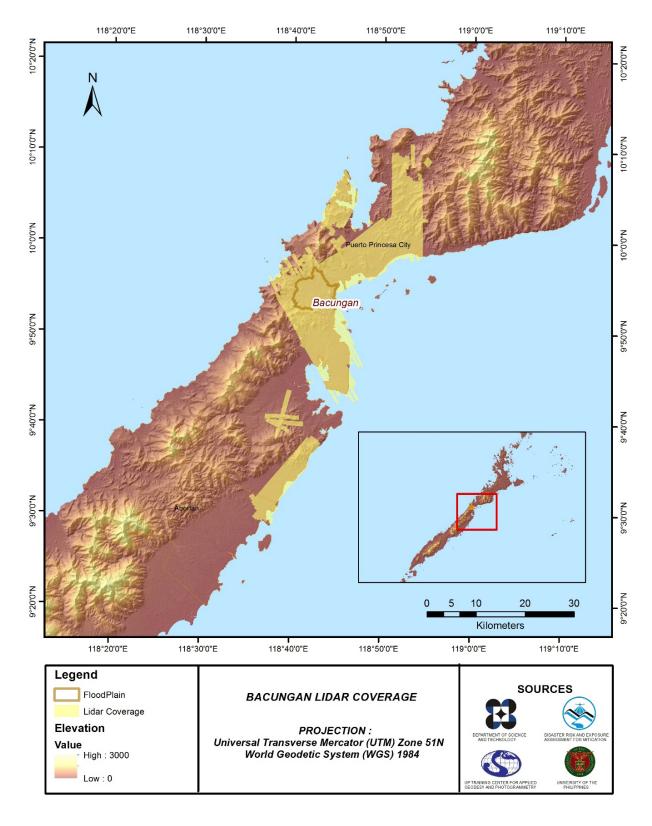


Figure 7. Actual LiDAR survey coverage of the Bacungan Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE BACUNGAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Engr. Angelo Carlo B. Bongat , Engr. Ma. Ailyn L. Olanda, Engr. Chelou P. Prado, Marie Denise V. Bueno , Engr. Regis R. Guhiting, and Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 8.

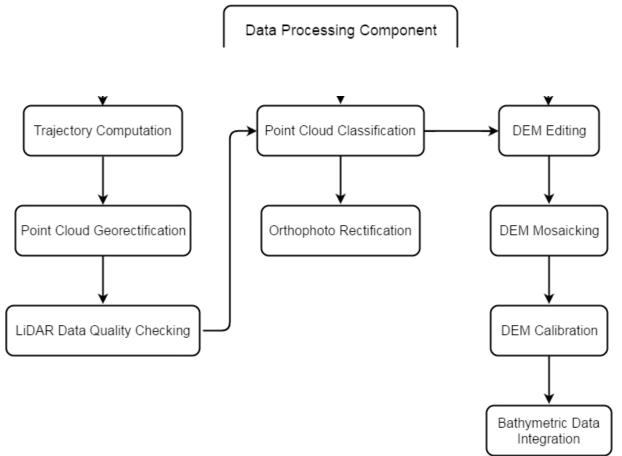


Figure 8. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Bacungan floodplain can be found in Annex 5. Missions flown during the survey conducted on May 2015 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Puerto Princesa City, Palawan.

The Data Acquisition Component (DAC) transferred a total of 124.4 Gigabytes of Range data, 1.289 Gigabytes of POS data, 73.91 Megabytes of GPS base station data, and 231.9 Gigabytes of raw image data to the data server on August 3, 2015 for the survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bacungan was fully transferred on August 5, 2015, as indicated on the Data Transfer Sheets for Bacungan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 3023P, one of the Bacungan flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on June 7, 2015 00:00AM. The y-axis is the RMSE value for that particular position.

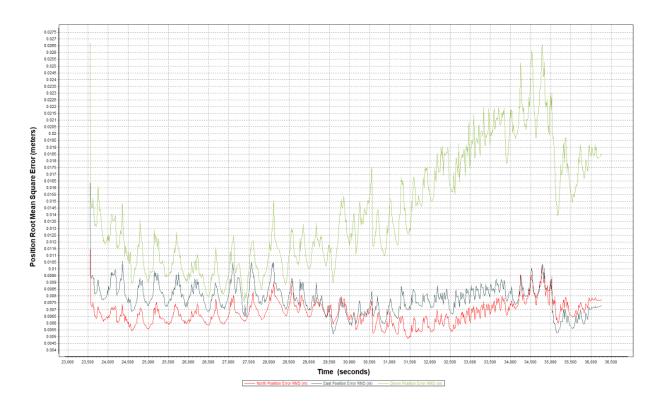


Figure 9. Smoothed Performance Metrics of Bacungan Flight 3023P

The time of flight was from 23500 seconds to 36250 seconds, which corresponds to afternoon of June 7, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 0.94 centimeters, the East position RMSE peaks at 1.05 centimeters, and the Down position RMSE peaks at 1.75 centimeters, which are within the prescribed accuracies described in the methodology.

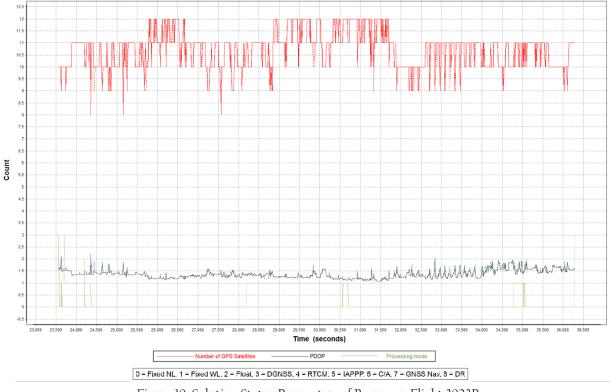


Figure 10. Solution Status Parameters of Bacungan Flight 3023P.

The Solution Status parameters of flight 3023P, one of the Bacungan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bacungan flights is shown in Figure 11.

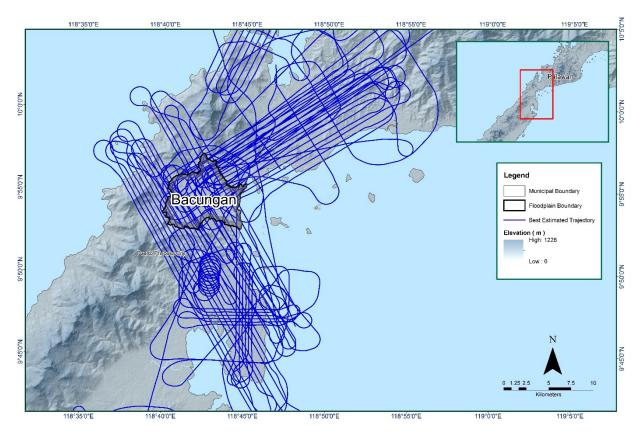


Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Bacungan Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 70 flight lines, with each flight line containing two channels, since the Pegasus system contains two. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Bacungan floodplain are given in Table 12.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000249
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000905
GPS Position Z-correction stdev	<0.01meters	0.0099

Table 12. Self-calibration Results values for	Bacungan flights.
---	-------------------

The optimum accuracy is obtained for all Bacungan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8: Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Bacungan Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

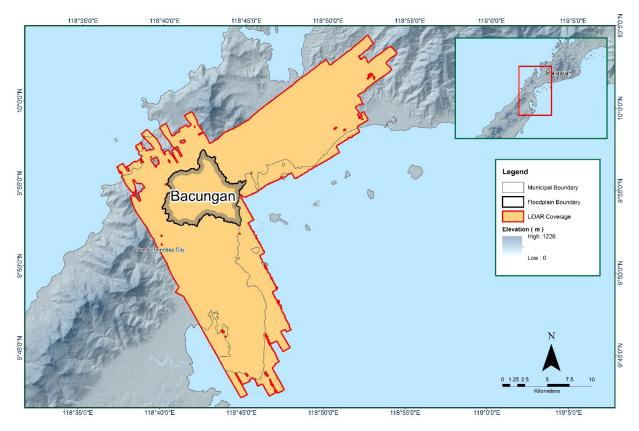


Figure 12. Boundary of the processed LiDAR data over Bacungan Floodplain

The total area covered by the Bacungan missions is 628.83 sq.km that is comprised of seven (7) flight acquisitions grouped and merged into five (5) blocks as shown in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Palawan_Blk42B	3021P	142.16
	3023P	
Palawan_Blk42B_additional	3073P	53.32
Palawan_Blk42B_supplement	3045P	115.88
Palawan_Blk42E	2989P	269.36
	3017P	
Palawan_Blk42E_additional2	3049P	48.11
TOTAL		628.83 sq.km

Table 13. List o	of LiDAR block	ks for Bacungan	Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

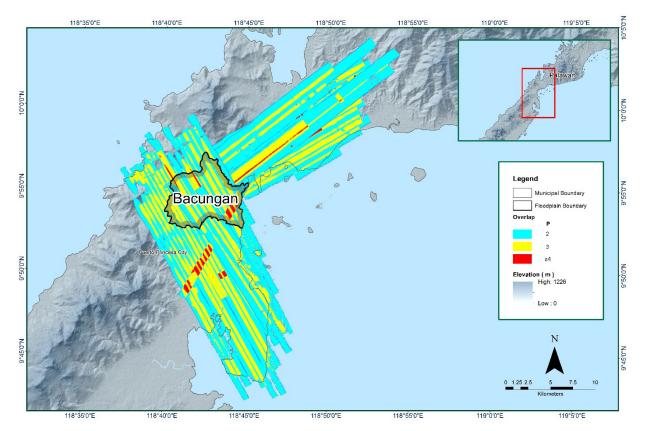


Figure 13. Image of data overlap for Bacungan Floodplain.

The overlap statistics per block for the Bacungan floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.46% and 61.51% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for Bacungan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.76 points per square meter.

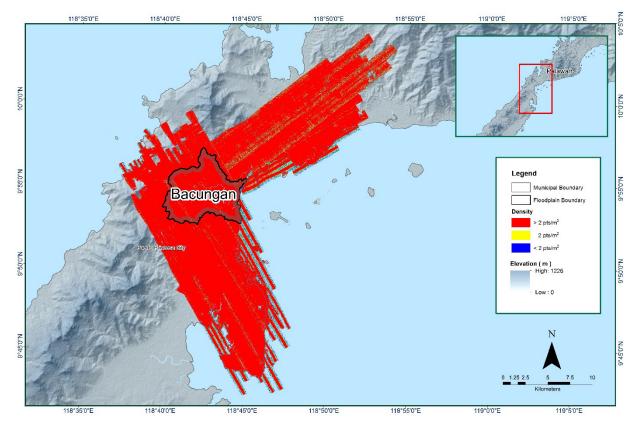


Figure 14. Pulse density map of merged LiDAR data for Bacungan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

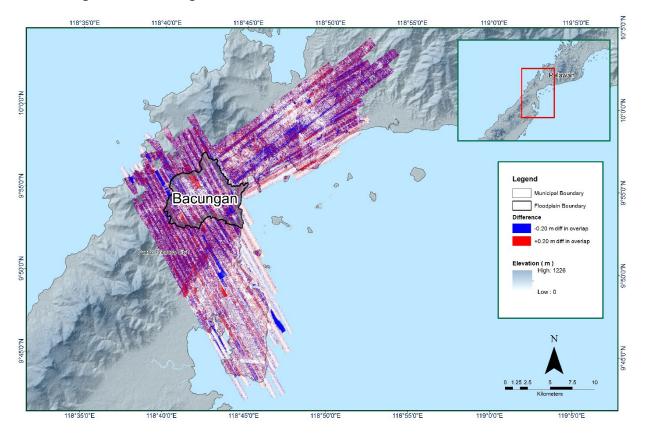


Figure 15. Elevation Difference Map between flight lines for Bacungan Floodplain Survey.

A screen capture of the processed LAS data from a Bacungan flight 3023P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

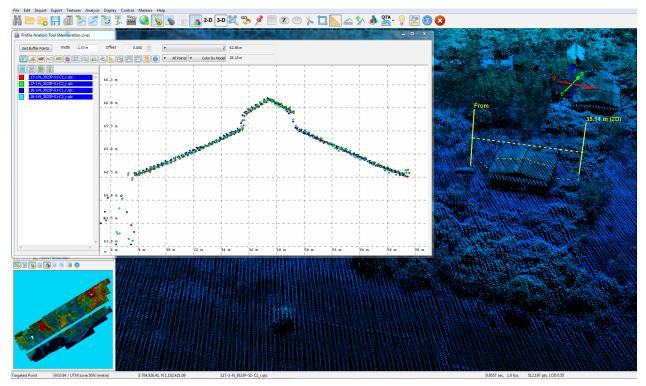


Figure 16. Quality checking for Bacungan Flight 3023P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	671,781,211
Low Vegetation	430,820,563
Medium Vegetation	944,124,406
High Vegetation	2,670,377,734
Building	46,186,598

Table 14. Bacungan classification results in TerraScan

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Bacungan floodplain is shown in Figure 17. A total of 896 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 531.87 meters and 31.32 meters respectively.

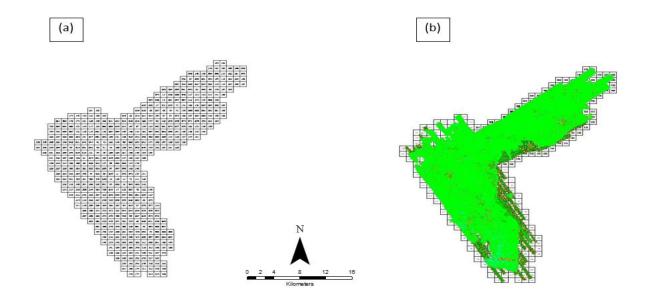


Figure 17. Tiles for Bacungan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

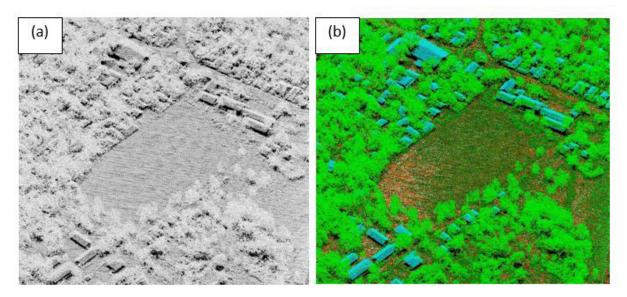


Figure 18. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

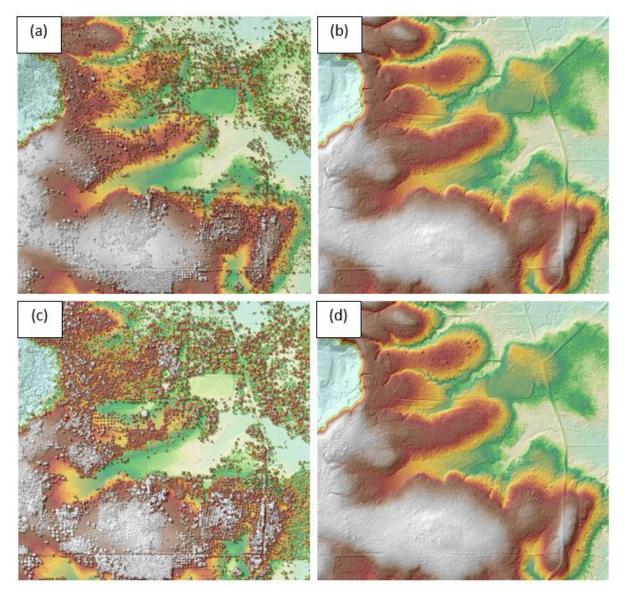


Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bacungan Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 861 1km by 1km tiles area covered by Bacungan floodplain is shown in Figure 20. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Bacungan floodplain has a total of 427 sq.km orthophotogaph coverage comprised of 2,118 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

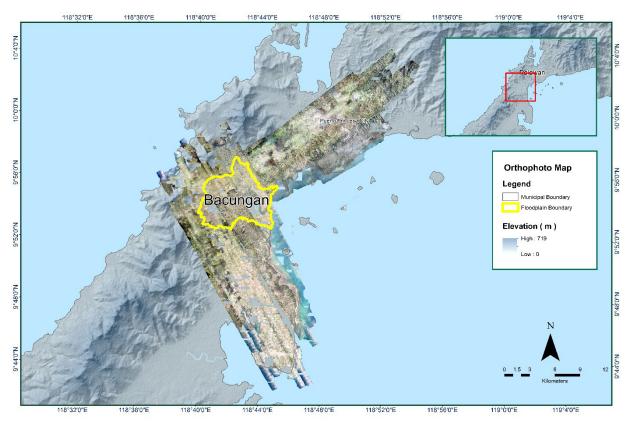


Figure 20. Bacungan Floodplain with available orthophotographs

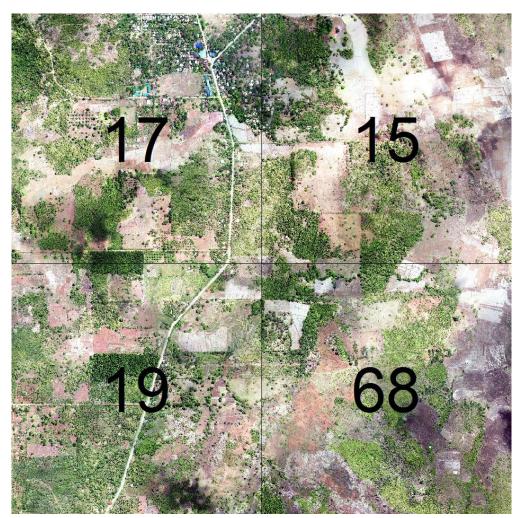


Figure 21. Sample orthophotograph tiles for Bacungan Floodplain

3.8 DEM Editing and Hydro-Correction

Five (5) mission blocks were processed for Bacungan flood plain. These blocks are composed of Palawan blocks with a total area of 628.83 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)			
Palawan_Blk42B	142.16			
Palawan_Blk42B_additional	53.32			
Palawan_Blk42B_supplement	115.88			
Palawan_Blk42E	269.36			
Palawan_Blk42E_additional2	48.11			
TOTAL	628.83 sq.km			

Table 15. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 22. The bridge (Figure 22a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 22b) in order to hydrologically correct the river. A part of the profile of the waterway (Figure 22c) was elevated and has to be interpolated (Figure 22d) to allow the correct flow of water.

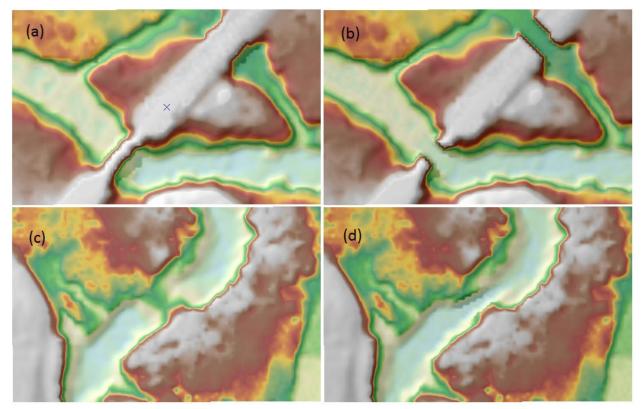


Figure 22. Portions in the DTM of Bacungan Floodplain – a bridge before (a) and after (b) manual editing; and an elevated area in the waterway before (c) and after (d) interpolation.

3.9 Mosaicking of Blocks

Palawan_Blk42Aa was used as the reference block at the start of mosaicking because it was the first block mosaicked to the larger DTM of West Coast Palawan. Upon inspection of the blocks mosaicked for the Bacungan floodplain, it was concluded that the elevation of two blocks are in need to be adjusted before mosaicking the DTM. Table 16 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bacungan floodplain is shown in Figure 23. It can be seen that the entire Bacungan floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		rs)		
	x	У	Z		
Palawan_Blk42B	0.00	0.00	0.00		
Palawan_Blk42B_additional	0.00	0.00	0.00		
Palawan_Blk42B_supplement	0.00	0.00	0.00		
Palawan_Blk42E	0.00	0.00	-0.13		
Palawan_Blk42E_additional2	0.00	0.00	0.27		

Table 16. Shift values of each LiDAR block of Bacungan Floodplain.

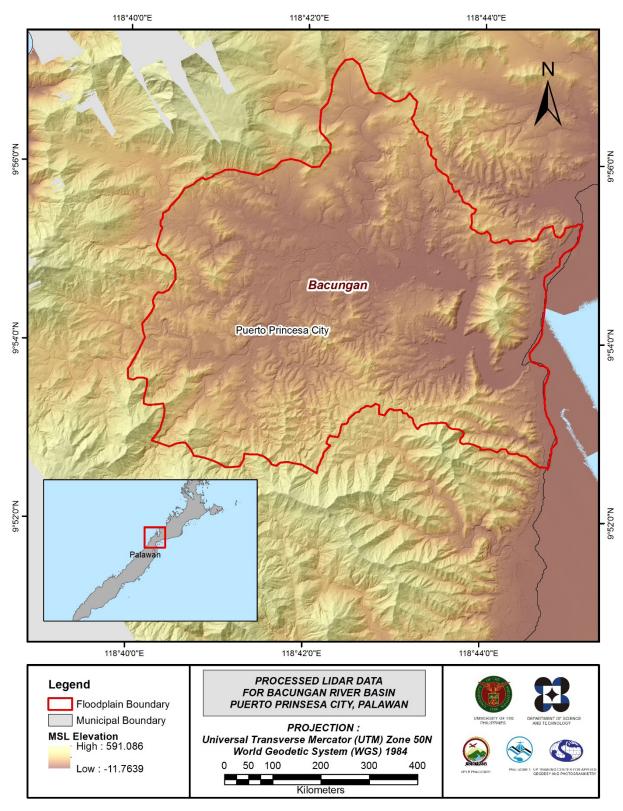


Figure 23. Map of Processed LiDAR Data for Bacungan Floodplain

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bacungan to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 936 survey points were used for calibration and validation of Bacungan LiDAR data. Random selection of 80% of the survey points, resulting to 749 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.20 meters with a standard deviation of 0.20 meters. Calibration of Bacungan LiDAR data was done by subtracting the height difference value, 0.20 meters, to Bacungan mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

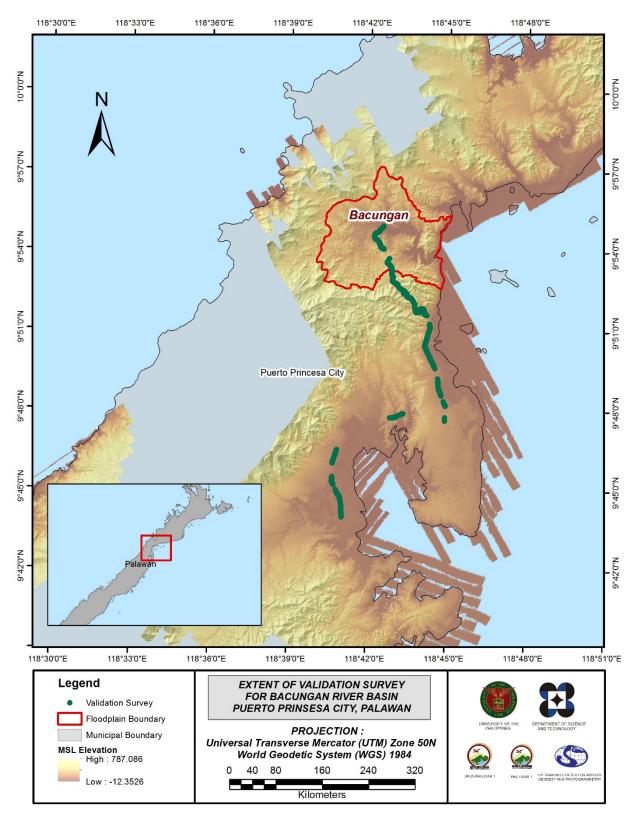


Figure 24. Map of Bacungan Floodplain with validation survey points in green.

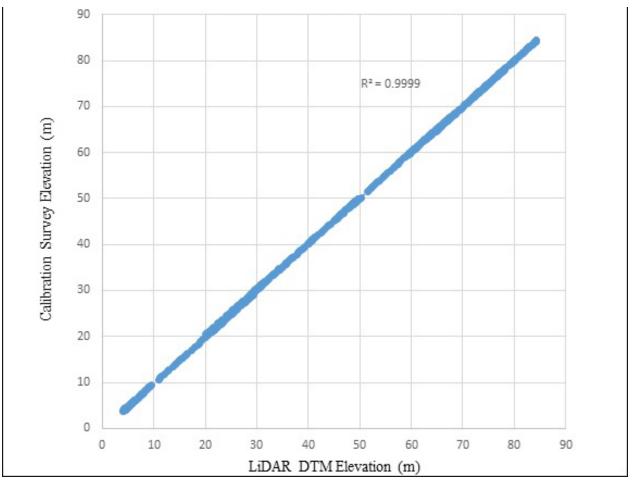


Figure 25. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)		
Height Difference	0.20		
Standard Deviation	0.20		
Average	-0.002		
Minimum	-0.40		
Maximum	0.40		

The remaining 20% of the total survey points, resulting to 187 points, were used for the validation of calibrated Bacungan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.20 meters, as shown in Table 17.

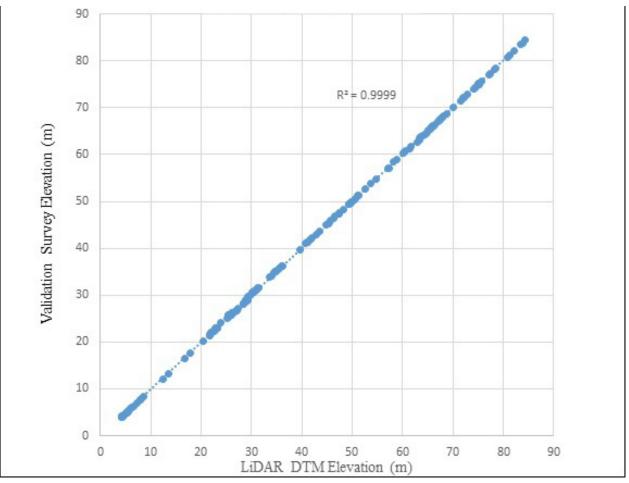


Figure 26. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)			
RMSE	0.20			
Standard Deviation	0.20			
Average	-0.0006			
Minimum	-0.40			
Maximum	0.40			

Table 18. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathymetric data integration, centerline and zigzag data were available for Bacungan with a total of 7,534 survey points and 2,431 points, respectively. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.47 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bacungan integrated with the processed LiDAR DEM is shown in Figure 27.

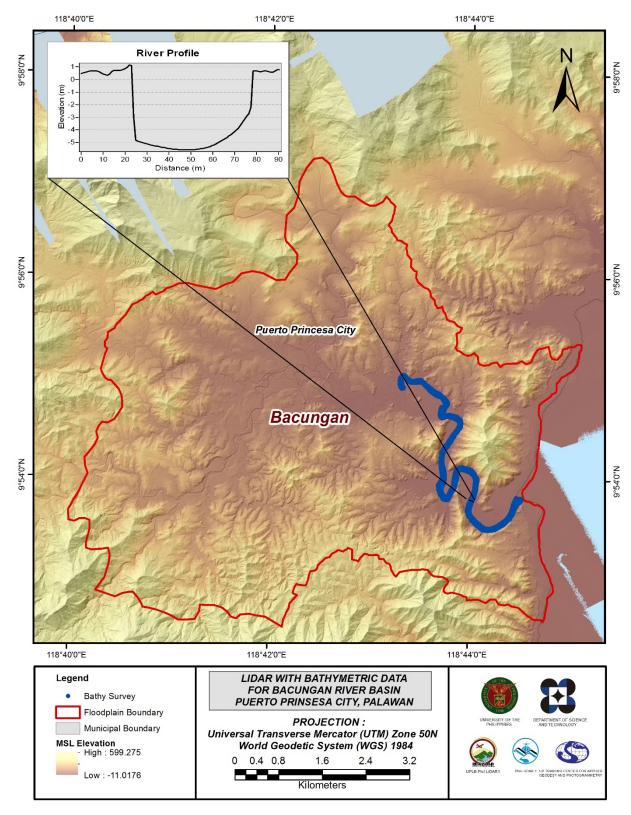


Figure 27. Map of Bacungan Floodplain with bathymetric survey points shown in blue.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BACUNGAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo Ms. Jeline M. Amante, Marie Angelique R. Estipona, Charie Mae V. Manliguez, Engr. Janina Jupiter, and Vie Marie Paola M. Rivera

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

AB Surveying and Development (ABSD) conducted a field survey in Bacungan River on November 26 and 30, 2015 and December 13, 2015 with the following scope: reconnaissance; control survey; and cross-section and as-built survey at Bacungan Bridge in Brgy. Bacungan, City of Puerto Princesa, Palawan. Random checking points for the contractor's cross-section and bathymetry data were gathered by DVBC on August 27, 2016 using an Ohmex[™] Single Beam Echo Sounder and Trimble[®] SPS 882 GNSS PPK survey technique. In addition to this, validation points acquisition survey was conducted covering the Bacungan River Basin area. The entire survey extent is illustrated in Figure 28.

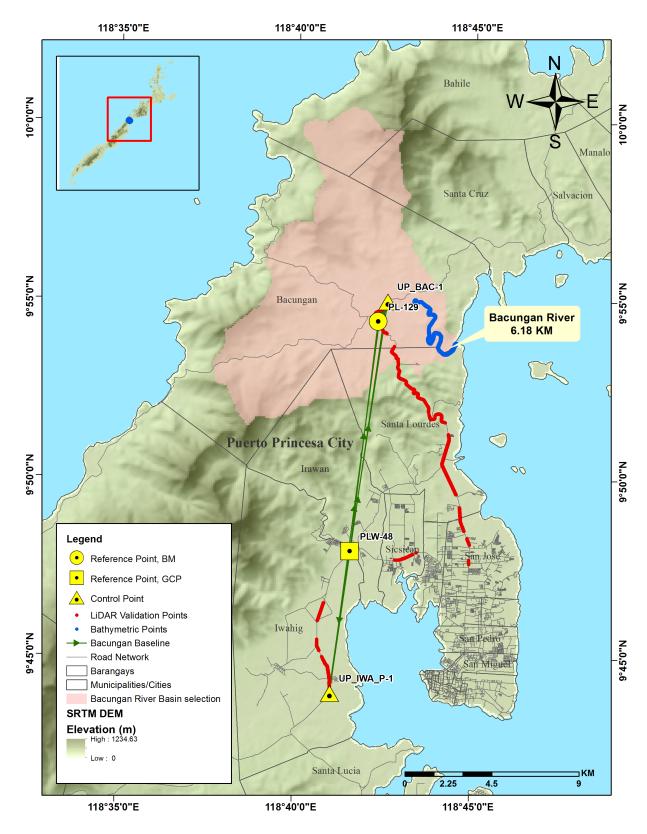


Figure 28. Extent of the bathymetric survey (in blue line) in Bacungan River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Bacungan River is composed of two (2) loops established on August 17, 2016 occupying the following reference points: PL-129, a first-order BM, in Brgy. Bacungan, Puerto Princesa City, Palawan; and PLW-48 a second-order GCP, in Brgy. Irawan, Puerto Princesa City, Palawan.

Two (2) control points established in the area by ABSD were also occupied: UP_BAC-1 at the approach of Bacungan Bridge in Brgy. Bacungan, Puerto Princesa City, Province of Palawan, and UP_IWA_P-1 located at the approach of Iwahig Penal Bridge in Brgy. Sta. Lucia, Puerto Princesa City, Palawan.

The summary of reference and control points and its location is summarized in Table 19 while GNSS network established is illustrated in Figure 29.

Table 19. List of Reference and Control Points occupied for Bacungan River Survey

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)					
		Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established	
PL-129	1st order, BM	9°54'24.25188 "N	118° 42' 18.11271"E	73.514	23.250	2008	
PLW-48	2nd order, GCP	9°47' 58.27463"N	118° 41' 34.71781 "E	60.461	10.020	2004	
UP_BAC- 1	Established	9°16' 52.29568"N	118° 4' 23.41753"E	56.886	6.629	12-13-15	
UP_ IWA_P-1	Established	9°12' 21.10428"N	117° 56' 55.87963"E	55.531	5.046	11-25-15	

(Source: NAMRIA; UP-TCAGP)

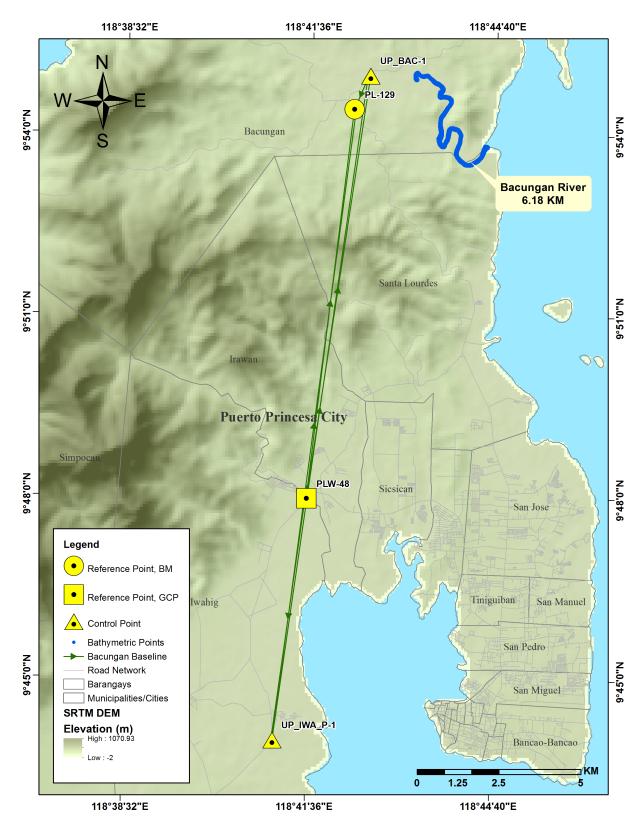


Figure 29. The GNSS Network established in the Bacungan River Survey.

The GNSS set-ups on recovered reference points and established control points in Bacungan River are shown from Figure 30 to Figure 33.

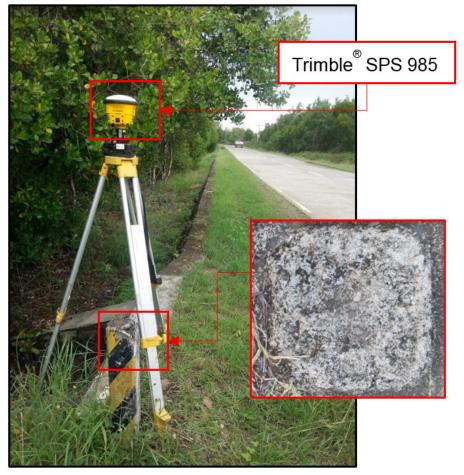


Figure 30. GNSS receiver set up, Trimble® SPS 882, at PL- 129, located along the National Highway. It is situated at the top of a concrete canal in Brgy. Sta. Lourdes, Puerto Princesa City, Palawan

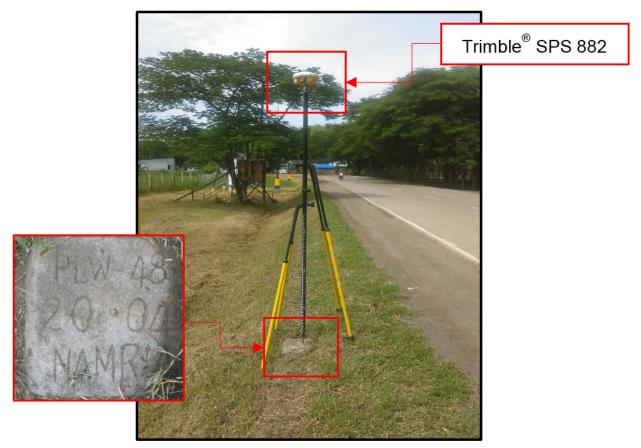


Figure 31. GNSS base set up, Trimble[®] SPS 882, at PLW-48, located at approximately 20 meters southwest from the gate of the Crocodile Farm in Brgy. Irawan, Puerto Princes City, Palawan. It is situated at approximately 5 meters west from the centerline of the highway

Figure 32. GNSS receiver set up, Trimble® SPS 985, at UP_BAC -1, located at the approach of Bacungan Bridge in Brgy. Bacungan, Quezon, Province of Palawan

Figure 33. GNSS receiver set up, Trimble® SPS 985, at UP_IWA_P-1, located on the approach of Iwahig Penal Bridge in Brgy. Sta. Lucia, Puerto Princesa City, Province of Palawan

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Bacungan River Basin is summarized in Table 20 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UP_IWA_P-1 PLW-48	9-16-2016	Fixed	0.004	0.021	187°20'14"	7431.037	-4.940
PLW-48 PL-129	9-16-2016	Fixed	0.004	0.022	6°21'39"	11935.262	13.077
PLW-48 UP_BAC-1	9-16-2016	Fixed	0.007	0.030	7°57'33"	13005.661	-3.587
UP_IWA_P-1 PL-129	9-16-2016	Fixed	0.003	0.024	6°44'03"	19362.644	18.001
UP_IWA_P-1 UP_BAC- 1	8-17-2016	Fixed	0.006	0.040	7°43'53"	20436.423	1.310
UP_BAC-1 PL-129	8-17-2016	Fixed	0.004	0.006	205°07'03"	1128.235	16.626

Table 20. Baseline Processing Summary Report for Bacungan River Survey

As shown Table 20 a total of six (6) baselines were processed with coordinate and ellipsoidal height values of PLW- 48 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the squares of x and y must be less than 20 cm and z less than 10 cm in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 cm$

Where:

 x_e is the Easting Error, y_e is the Northing Error, and z_e is the Elevation Error

for each control point. See the Network Adjustment Report shown in Table 21 to Table 23 for complete details.

The four (4) control points, PLW-48, PL-129, UP-BAC-1, and UP_IWA_P-1 were occupied and observed simultaneously to form a GNSS loop. The coordinates and ellipsoidal height of PLW- 48 were held fixed during the processing of the control points as presented in Table 21. Through this reference point, the coordinates and ellipsoidal height of the unknown control points will be computed.

Table 21. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
PLW-48	Global	Fixed	Fixed	Flxed			
Fixed = 0.000001 (Meter)							

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24. All fixed control points have no values for grid errors and elevation error.

Table 22. Adjusted	grid coordinates for t	he control points used in	the Bacungan River	Floodplain survey.
5	0	1 I	0	

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
PL-129	686942.946	0.005	1095579.647	0.004	24.633	0.033	
PLW-48	685680.922	?	1083713.936	?	11.401	?	LLh
UP_BAC-1	687416.613	0.006	1096603.679	0.004	8.012	0.034	
UP_ IWA_P-1	684768.852	0.005	1076338.886	0.004	6.427	0.036	

With the mentioned equation, $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm \text{ and } z_e < 10 cm$ for horizontal and z_e<10 cm for the vertical; the computation for the accuracy are as follows:

a.	PL- 129		
	horizontal accuracy	=	$\sqrt{((0.5)^2 + (0.4)^2)}$
		=	√ (0.25 + 0.16)
		=	0.41 < 20 cm
	vertical accuracy	=	3.3 < 10 cm
b.	PLW- 48		
	horizontal accuracy	=	Fixed
	vertical accuracy	=	Fixed
с.	UP_BAC-1		
	horizontal accuracy	=	$\sqrt{((0.6)^2 + (0.4)^2)}$
		=	√ (0.36 + 0.16)
		=	0.52 < 20 cm
	vertical accuracy	=	3.4 < 10 cm
d.	UP_IWA_P-1		
	horizontal accuracy	=	$\sqrt{((0.5)^2 + (0.4)^2)}$
	1	=	√ (0.25 + 0.16)
		=	0.41 < 20 cm
	vertical accuracy	=	3.6 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the four (4) occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
PL-129	N9°54'24.25168"	E118°42'18.11269"	74.898	0.033	
PLW-48	N9°47'58.27463"	E118°41'34.71781"	61.842	?	LLh
UP_BAC-1	N9°54'57.50085"	E118°42'33.83304"	58.270	0.034	
UP_IWA_P-1	N9°43'58.38961"	E118°41'03.58218"	56.912	0.036	

Table 23. Adjusted geodetic coordinates for control points used in the Bacungan River Floodplain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference control points used is indicated in Table 24.

The summary of reference control points used is indicated in Table 24.

Table 24. The reference and control points utilized in the Bacungan River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control	Order of Accuracy		Geographic Coor	Geographic Coordinates (WGS UTM Zome 50N)	TM Zome 50N)		
Point		Latitude	Longitude	Ellips-oidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
PL-129	1st order, BM	9°54'24.25168″N	118°42′18.11269″E	60.461	1083713.936	685680.922	10.020
PLW-48	2nd order, GCP	9°47'58.27463″N	118°41′34.71781″E	73.514	1095579.653	686942.946	23.250
UP_BAC-1	Established	9°54′57.50085″N	118°42′33.83304″E	56.886	1096603.686	687416.614	6.629
UP IWA_P-1	Established	9°43′58.38961″N	118°41'03.58218"E	55.531	1076338.882	684768.851	5.046

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys were conducted on November 26, 2015 at the upstream side of Bacungan Bridge in Brgy. Bacungan, City of Puerto Princesa as shown in Figure 34. Horizon[®] Total Station was utilized for this survey as shown in Figure 35.

Figure 34. Upstream/downstream side of Bacungan Bridge

Figure 35. As-built survey of Bacungan Bridge

The cross-sectional line of Bacungan Bridge is about 146.125 m with thirty-eight (38) cross-sectional points using the control points UP_BAC-1 and UP_BAC-2 as the GNSS base stations. The location map, cross-section diagram, and the bridge data form are shown in Figure 36 to Figure 38.

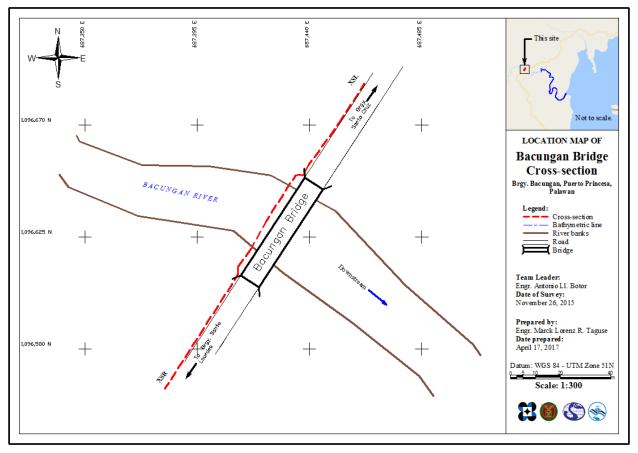
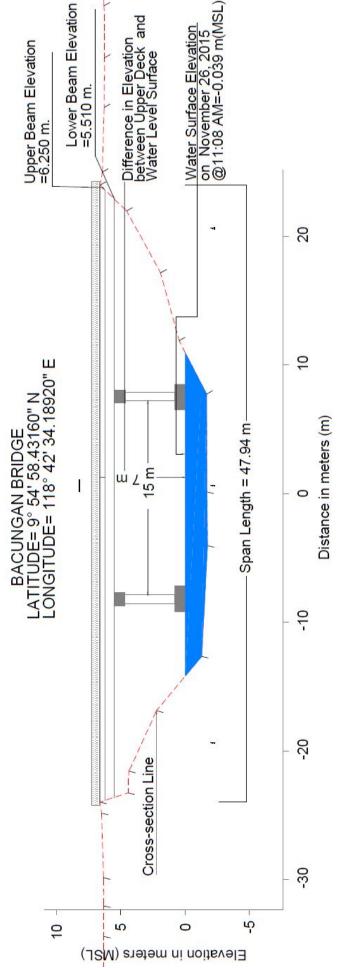
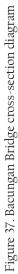
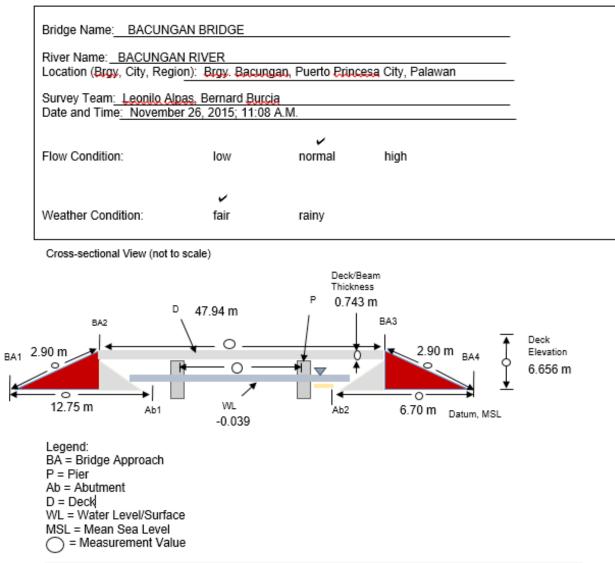





Figure 36. Upstream/downstream side of Bacungan Bridge

Bridge Data Form

Line Segment	Measurement (m)	Remarks
1. BA1-BA2	2.90 m	
2. BA2-BA3	47.94 m	
3. BA3-BA4	2.90 m	
4. BA1-Ab1	12.75 m	
5. Ab2-BA4	6.70 m	
Deck/beam thickness	0.743 m	
7. Deck elevation	6.656 m	

Note: Observer should be facing downstream

Figure 38. As-built survey of Bacungan Bridge

Water surface elevation of Bacungan River was determined by a Horizon[®] Total Station on November 26, 2015 at 11:08 AM at Bacungan Bridge area with a value of -0.039 m in MSL as shown in Figure 37. This was translated into marking on the bridge's pier as shown in Figure 39. The marking will serve as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Bacungan River, the University of the Philippines Los Baños.

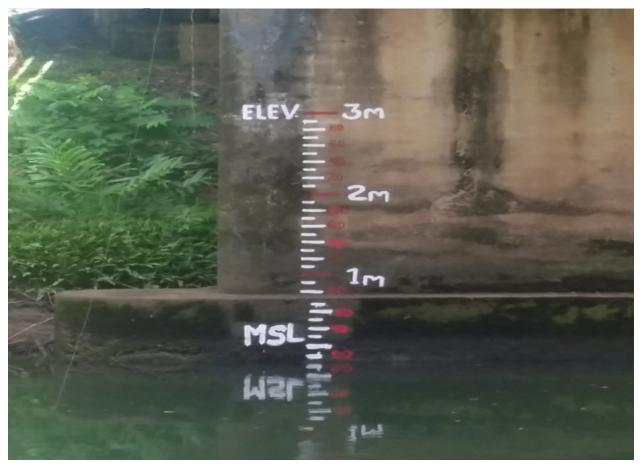


Figure 39. Water level markings on Bacungan Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted by DVBC on August 27, 2016 using a survey grade GNSS Rover receiver, Trimble[®] SPS 985, mounted on a range pole which was attached on the side of the vehicle as shown in Figure 40. It was secured with cable ties and ropes to ensure that it was horizontally and vertically balanced. The antenna height was 2.560 m and measured from the ground up to the bottom of the quick release of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with PLW-48 occupied as the GNSS base station in the conduct of the survey.

Figure 40. Validation points acquisition survey set-up for Bacungan River

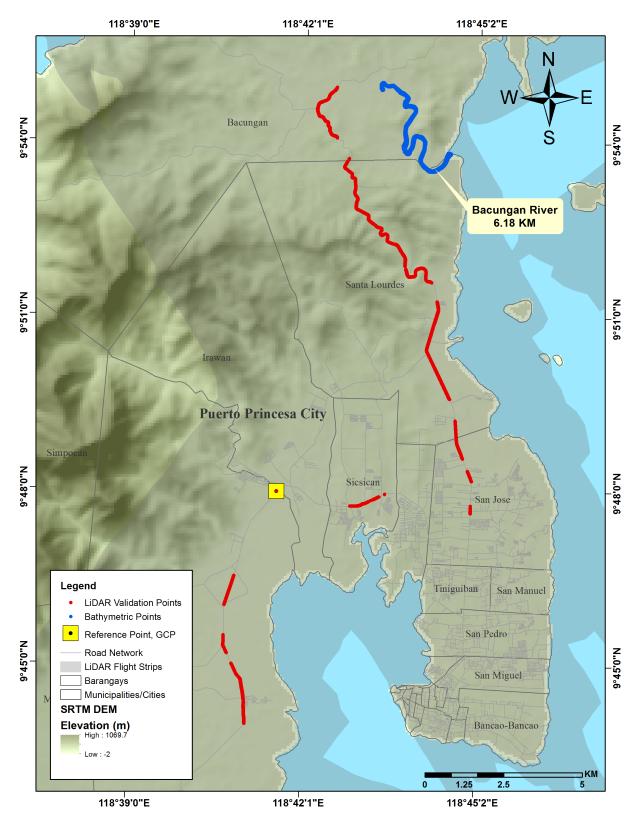


Figure 41. Validation point acquisition survey of Bacungan River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on November 29, 2015 using an echo sounder as illustrated in Figure 42. The survey started in Brgy. Bacungan, City of Puerto Palawan, Palawan with coordinates 9° 53' 48.08750"N, 118° 44' 31.88508"E and ended at the mouth of the river in Brgy. Sta. Lourdes, City of Puerto Princesa as well, with coordinates 9° 54' 54.12490"N, 118° 43' 19.36596"E. The control PLW-4001 was used as GNSS base station all throughout the entire survey.

Gathering of random points for the checking of ABSD's bathymetric data was performed by DVBC on August 27, 2016 using an Ohmex[™] Single Beam Echo Sounder and Trimble[®] SPS 882 GNSS PPK survey technique, see Figure 43. A map showing the DVBC bathymetric checking points is shown in Figure 44.

Linear square correlation (R2) and RMSE analysis were performed on the two (2) datasets. The linear square coefficient range is determined to ensure that the submitted data of the contractor is within the accuracy standard of the project which is ± 20 cm and ± 10 cm for horizontal and vertical, respectively. The R2 value must be within 0.85 to 1. An R2 approaching 1 signifies a strong correlation between the vertical (elevation values) of the two datasets. A computed R2 value of 0.968 was obtained by comparing the data of the contractor and DVBC; signifying a strong correlation between the two (2) datasets.

In addition to the Linear Square correlation, Root Mean Square (RMSE) analysis is also performed in order to assess the difference in elevation between the DVBC checking points and the contractor's. The RMSE value should only have a maximum radial distance of 5m and the difference in elevation within the radius of 5 meters should not be beyond 0.50 m. For the bathymetric data, a computed value of 0.357 was acquired. The computed R2 and RMSE values are within the accuracy requirement of the program.

Figure 42. Bathymetric survey of ABSD at Bacungan River using Hi-Target™ Echo Sounder

Figure 43. Gathering of random bathymetric points along Bacungan River

The bathymetric survey for Bacungan River gathered a total of 2,616 points covering 6.18 km of the river traversing Brgy. Bacungan in the City of Puerto Princesa. A CAD drawing was also produced to illustrate the riverbed profile of Bacungan River. As shown in Figure 46, the highest and lowest elevation has a 10-m difference. The highest elevation observed was -1.037 m below MSL while the lowest was -10.587 m below MSL located in Brgy. Sta. Lucia, City of Puerto Princesa.

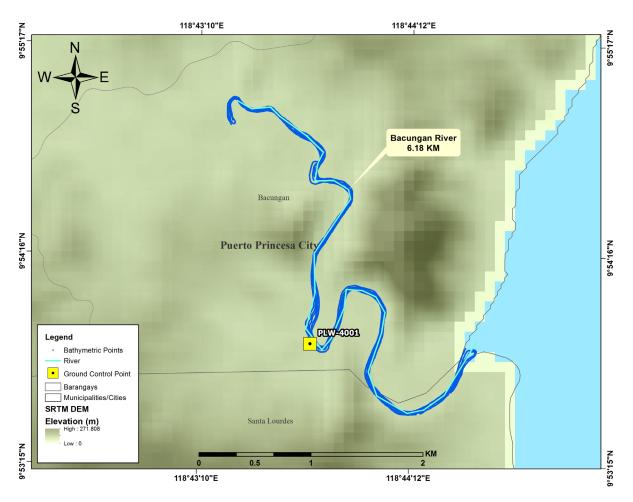


Figure 44. Extent of the Bacungan River Bathymetry Survey

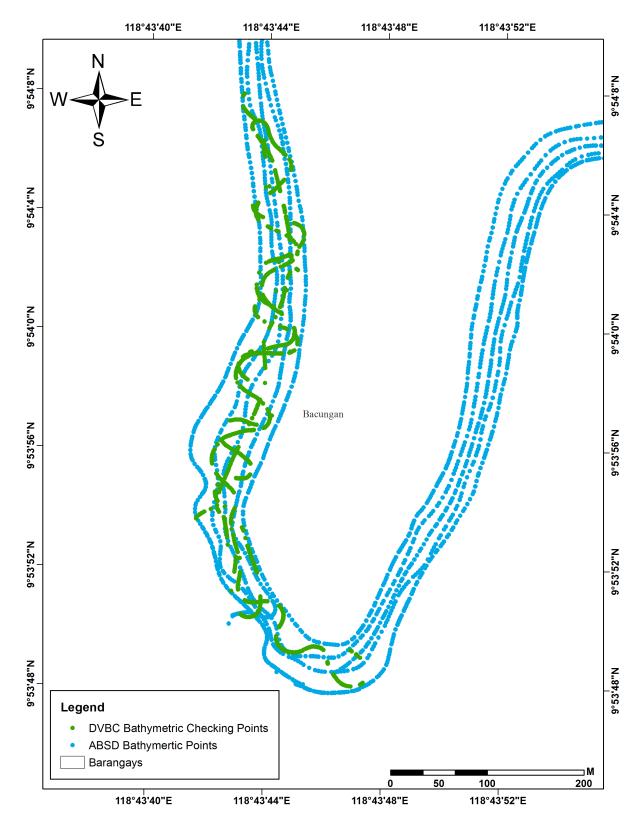
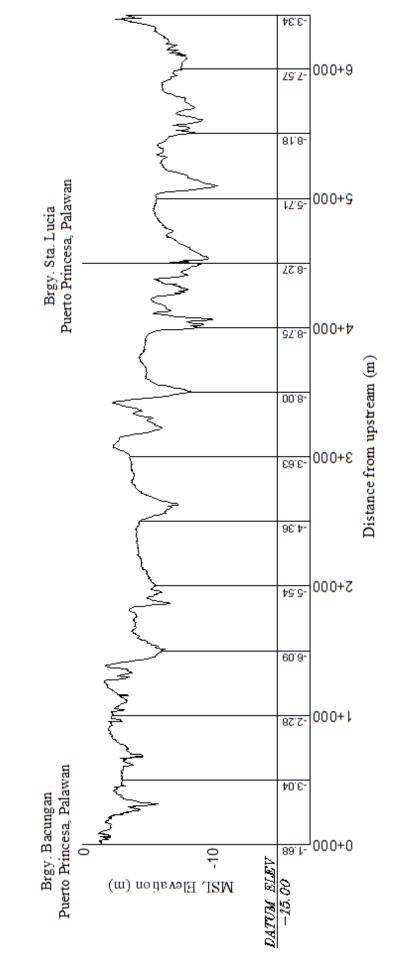



Figure 45. Quality checking points gathered along Bacungan River by DVBC

Bacungan Riverbed Profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Francisco A. Lagmay, Enrico C. Paringit, Dr. Eng., Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil R. Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Bacungan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bacungan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from a portable gauge deployed on a strategic location within the riverbasin (9.913920° N, 118.706500° E). The location of the rain gauge is seen in Figure 47.

The total precipitation for this event is 109.22 mm. It has a peak rainfall of 43.180 mm. on November, 26, 2016 at 1:15 am. The lag time between the peak rainfall and discharge is 2 hours and 45 minutes, as seen in Figure 50.

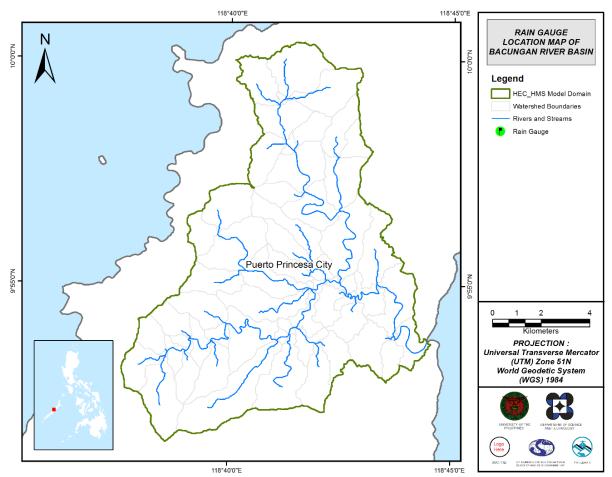


Figure 47. Location map of the Bacungan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Bacungan Bridge, Puerto Princesa, Palawan (9.916260° N, 118.709504° E). It gives the relationship between the observed water levels from the Bacungan Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

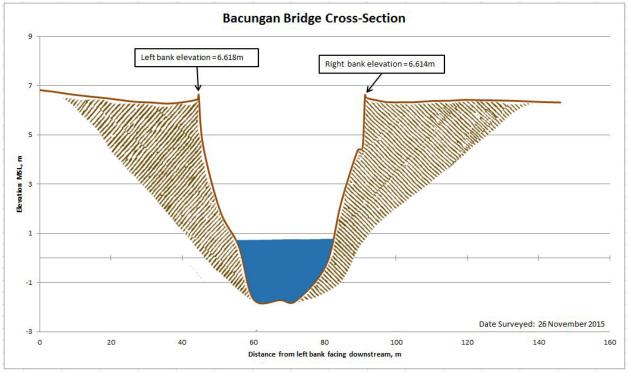


Figure 48. Cross-section plot of Bacungan Bridge

For Bacungan Bridge, the rating curve is expressed as Q = 37.037x2 + 37.508x + 9.2363 as shown in Figure 49.

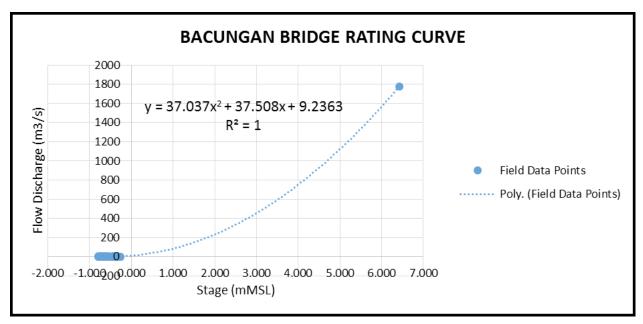
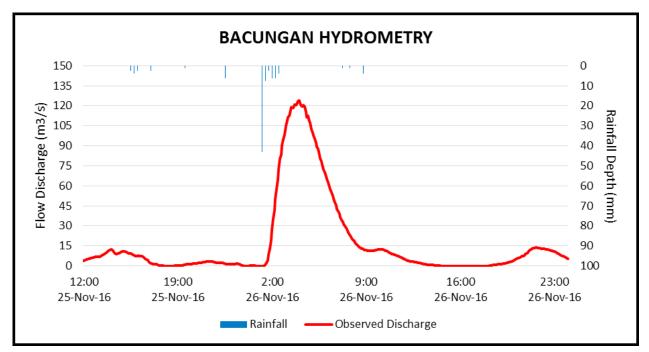



Figure 49. Rating curve at Bacungan Bridge, Puerto Princesa, Palawan

For the calibration of the HEC-HMS model, shown in Figure 50, actual flow discharge during a rainfall event was collected in the Bacungan bridge. Peak discharge is 124.10 cu.m/s on November 26, 2016 at 4:00 am.

Figure 50. Rainfall and outflow data at Bacungan Bridge used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Puerto Princesa Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station chosen based on its proximity to the Bacungan watershed. The extreme values for this watershed were computed based on a 58-year record, with the computed extreme values shown in Table 25.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	14.8	22	27.3	36.2	49.8	58.8	75.1	88	104.1
5	21.3	31.9	39.7	52.3	73	86.9	112.8	135.4	156.4
10	25.6	38.5	48	63	88.4	105.5	137.8	166.8	191.1
15	28.1	42.2	52.6	69	97	116	151.9	184.5	210.6
20	29.8	44.7	55.9	73.3	103.1	123.4	161.7	196.8	224.3
25	31.1	46.7	58.4	76.5	107.8	129.1	169.3	206.4	234.9
50	35.2	52.9	66.1	86.5	122.2	146.5	192.7	235.8	267.3
100	39.2	59	73.7	96.4	136.5	163.8	216	265	299.6

Table 25. RIDF values for Bacungan Rain Gauge computed by PAGASA

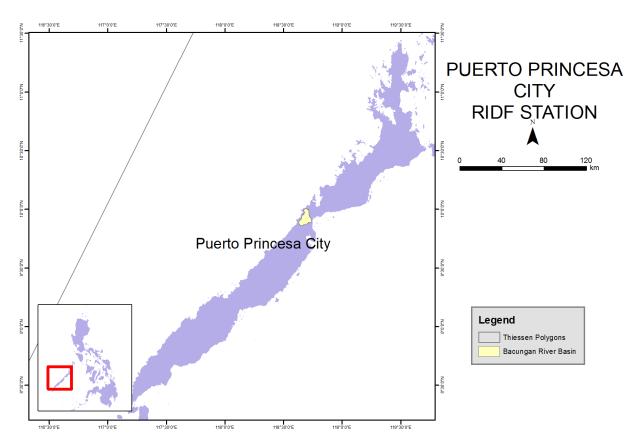


Figure 51. Location of Puerto Princesa RIDF Station relative to Bacungan River Basin

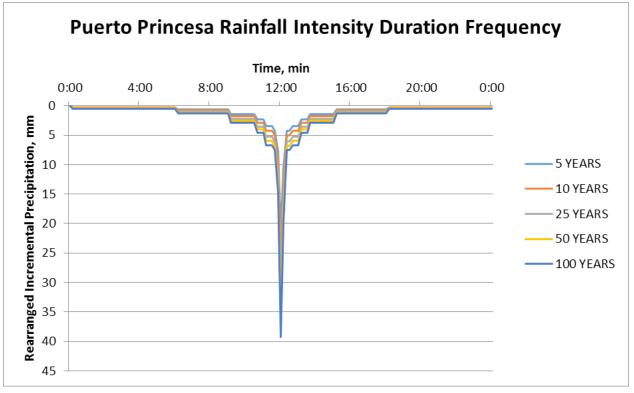


Figure 52. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 by the Bureau of Soils and Water Management under the Department of Agriculture (DA-BSWM). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Bacungan River Basin are shown in Figure 53 and Figure 54, respectively.

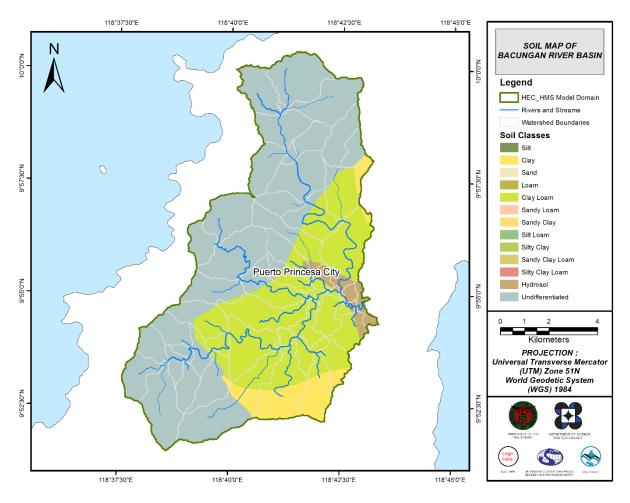


Figure 53. Soil Map of Bacungan River Basin used for the estimation of the CN parameter. (Source: DA)

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

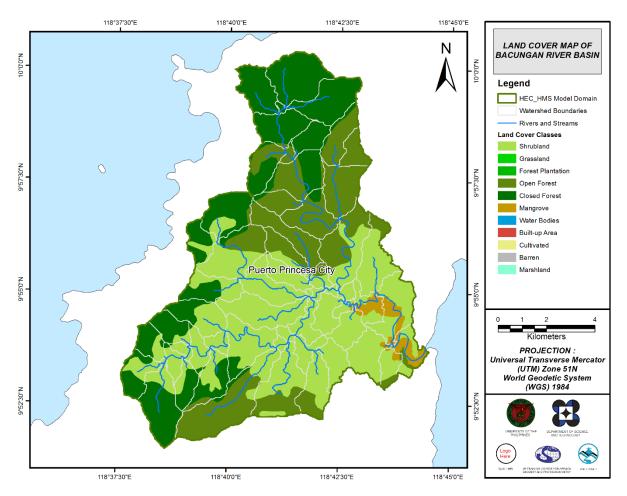


Figure 54. Land Cover Map of Bacungan River Basin used for the estimation of the Curve Number (CN) and the watershed lag parameters of the rainfall-runoff model.

For Bacungan river basin, the four (4) soil classes identified were clay loam, sandy clay and hydrosol, while the rest is undifferentiated. The four (4) land cover types identified were largely shrubland, open forest, closed forest, and mangrove.

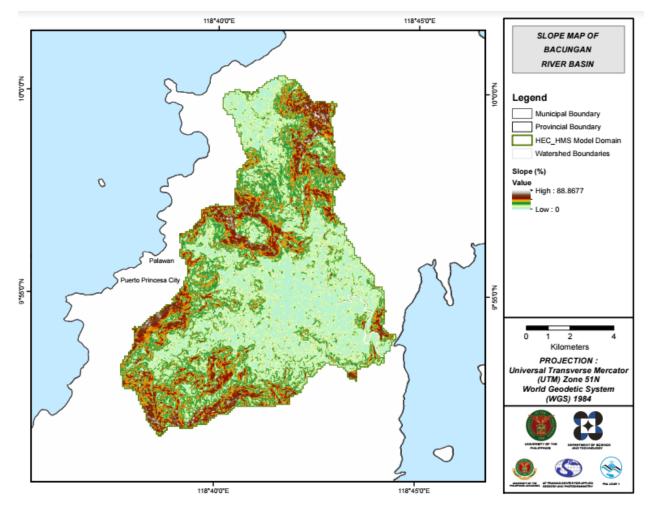


Figure 55. Slope Map of Bacungan River Basin

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

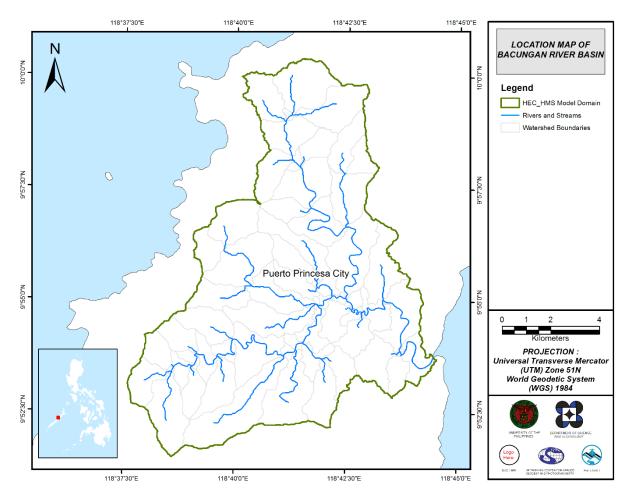


Figure 56. Stream Delineation Map of Bacungan River Basin

Using SAR-based DEM, the Bacungan basin was delineated and further subdivided into subbasins. The model consists of 56 sub basins, 28 reaches, and 28 junctions. The main outlet is labelled as 176. This basin model is illustrated in Figure 57. The basins were identified based on soil and land cover characteristics of the area. Precipitation was taken from the portable rain gauge set up by the Data Validation team of UPLB (DVC-UPLB) on a strategic point within the river basin. Finally, it was calibrated using the flow data collected from the Bacungan Bridge.

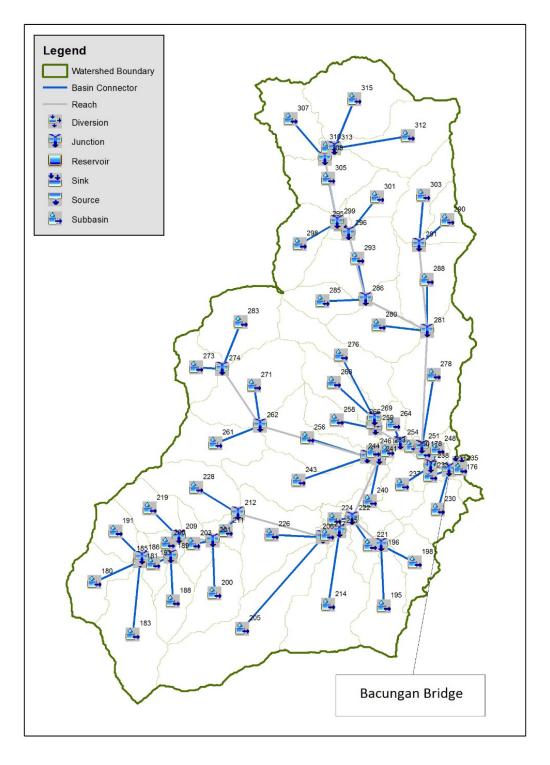


Figure 57. Bacungan River Basin model generated in HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

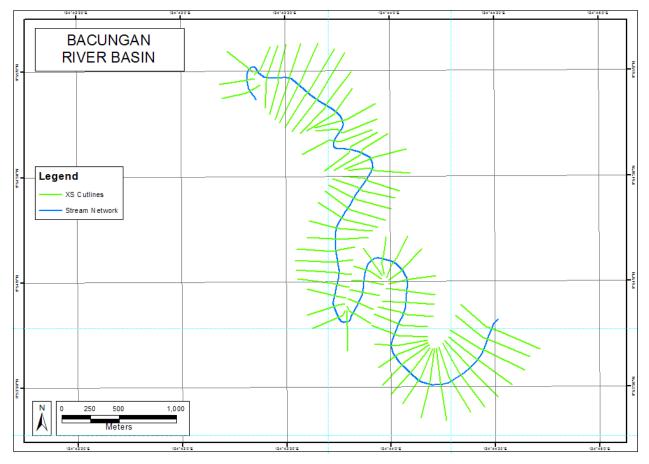


Figure 58. River cross-section of Bacungan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

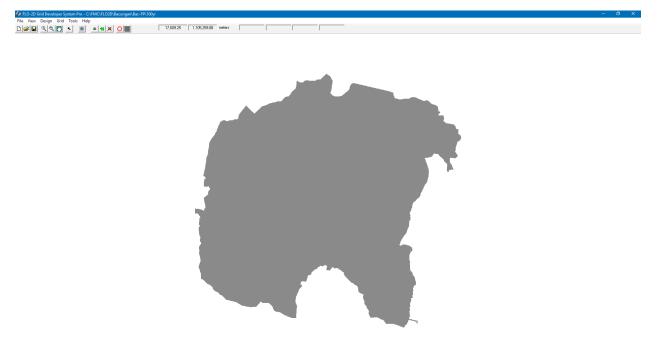


Figure 59. Screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 61.44043 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 73 211 712.00 m2.

There is a total of 36 527 447.05 cu.m. of water entering the model. Of this amount, 22 884 763.27 cu.m. is due to rainfall while 13 642 683.79 cu.m. is inflow from other areas outside the model. 6 566 641.50 m3 of this water is lost to infiltration and interception, while 17 082 008.09 cu.m. is stored by the floodplain. The rest, amounting up to 12 878 798.47 cu.m. is outflow.

5.6 Results of HMS Calibration

After calibrating the Bacungan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.

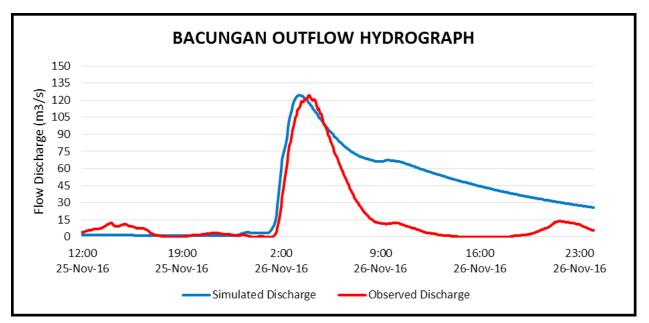


Figure 60. Outflow hydrograph of Balamban produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 26 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	8 - 98
			Curve Number	34 - 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.02 - 1
			Storage Coefficient (hr)	1 - 45
	Baseflow	Recession	Recession Constant	0.1 – 0.5
			Ratio to Peak	0.2 – 0.5
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.02

Table 26. Range of calibrated values for the Bacungan River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 8 to 98mm means that there is a diverse amount of infiltration or rainfall interception by vegetation depending on the subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.02 hours to 45 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.1 to 0.5 indicates that the basin is likely to quickly go back to its original discharge. Ratio to peak of 0.2 to 0.5 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.02 is relatively low compared to the common roughness of watersheds (Brunner, 2010).

Accuracy measure	Value
RMSE	8.769
r2	0.976
NSE	0.924
PBIAS	-5.720
RSR	0.275

Table 27. Summary of the Efficiency Test of the Bacungan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 8.769.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.976.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.924.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -5.720.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.275.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) shows the Bacungan outflow using the Puerto Princesa Rainfail Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

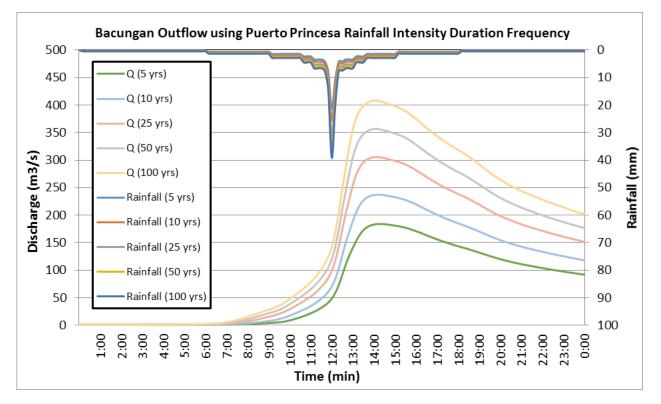


Figure 61. Outflow hydrograph at Bacungan Station generated using the Puerto Princesa RIDF simulated in HEC-HMS.

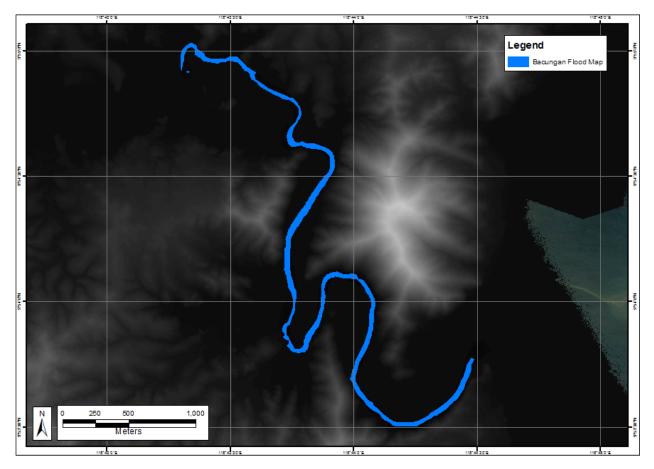
A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Bacungan discharge using the Puerto Princesa Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 28.

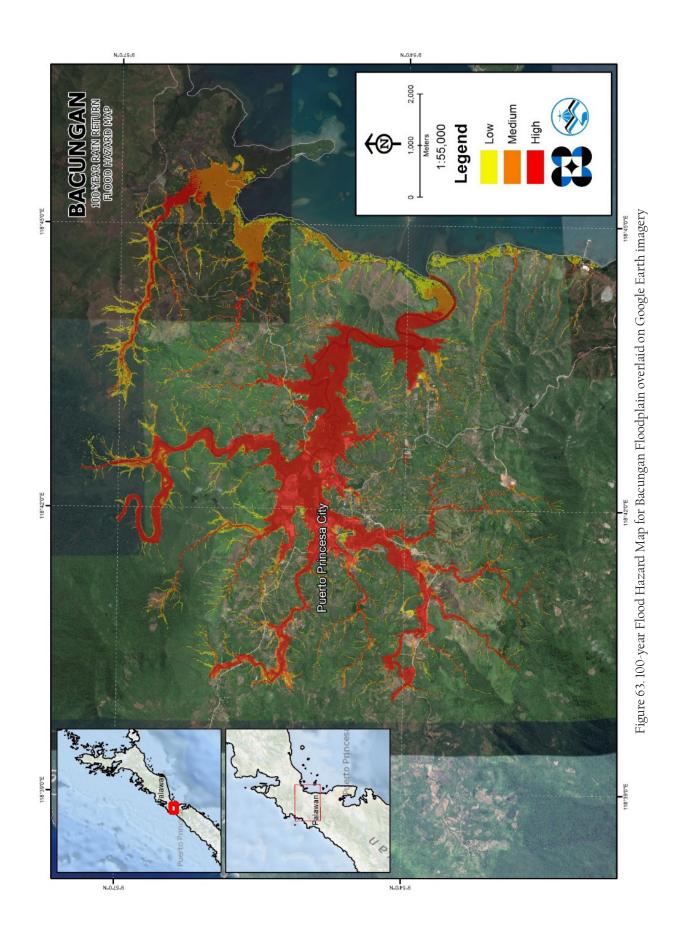
Table 28. Peak values of the Bacungan HEC-HMS Model outflow using the Puerto Princesa RIDF 24-hour values.

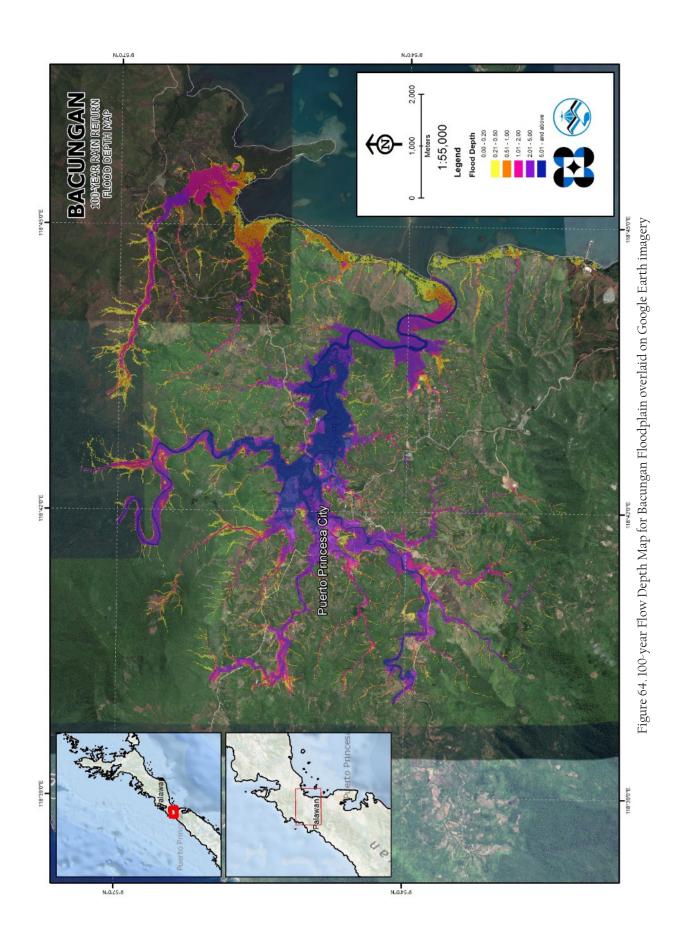
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	156.40	21.30	184.0	2 hours 20 minutes
10-Year	191.10	25.60	237.20	2 hours 10 minutes
25-Year	234.90	31.10	305.50	2 hours 10 minutes
50-Year	267.30	35.20	356.70	2 hours
100-Year	299.60	39.20	408.0	2 hours

5.8 River Analysis (RAS) Model Simulation

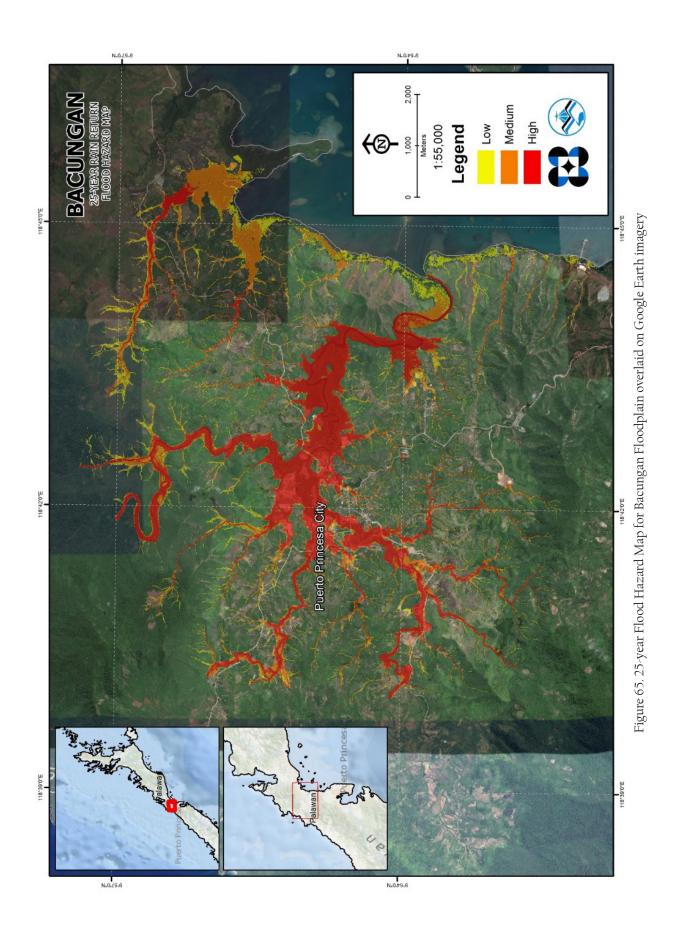
The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Bacungan River using the HMS base flow is shown on Figure 62.

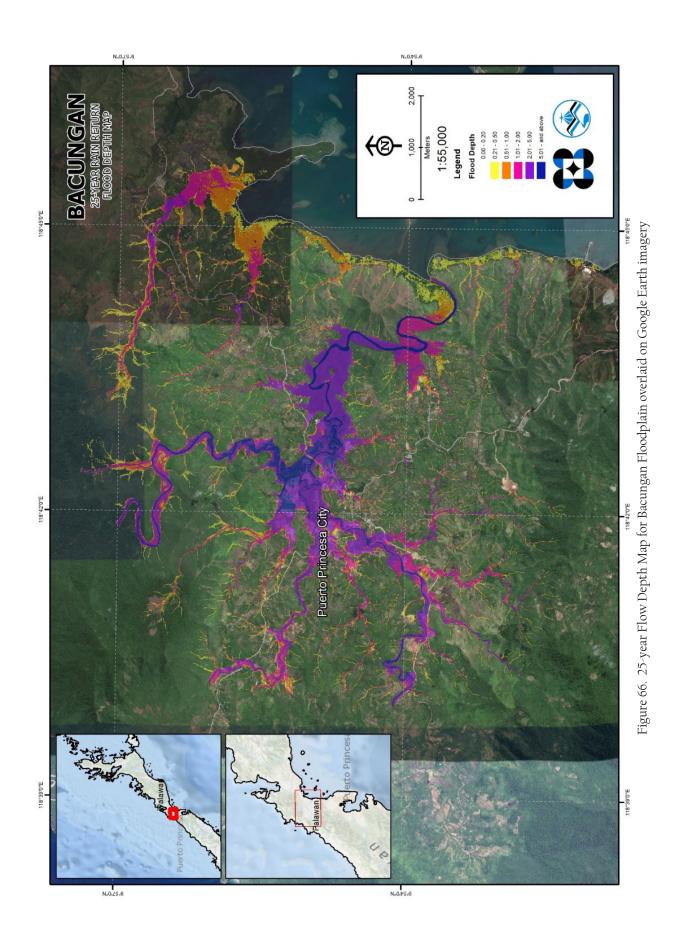


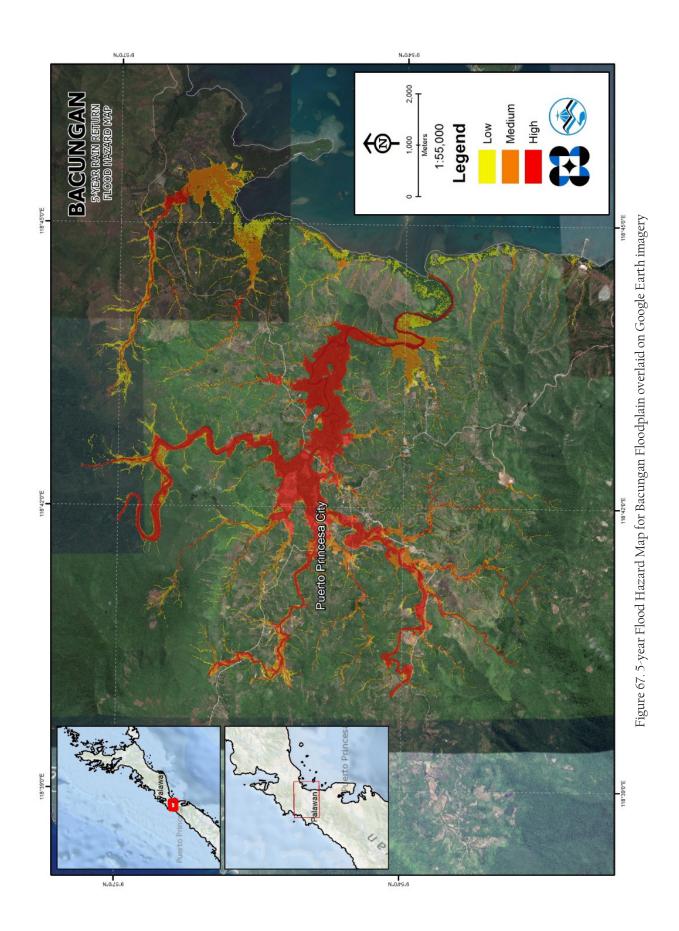

Figure 62. Sample output map of Bacungan RAS Model


5.9 Flow Depth and Flood Hazard

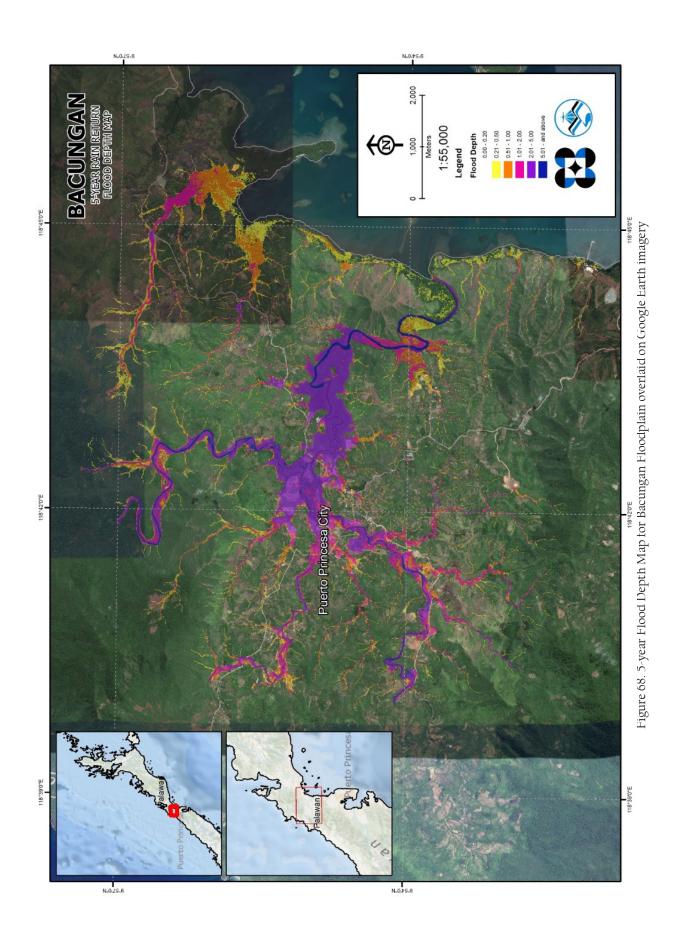
The resulting hazard and flow depth maps have a 10m resolution. The generated flood hazard maps for the Bacungan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr). The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Bacungan floodplain are shown Figure 63 to Figure 68. The floodplain, with an area of 73.16 sq. km., covers one city namely Puerto Princesa City. Table 29 show the percentage of area affected by flooding in Puerto Princesa City.


Province	Municipality	Total Area	Area Flooded	% Flooded
Palawan	Puerto Princesa City	2186.36	73.10	3.34


Table 31. Municij	palities affected i	n Bacungan	Floodplain
Tuble Ji. Muller	Junities uncered i	II Ducungun	1 100 aprain



75



77

79

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Bacungan River Basin, grouped accordingly by municipality. For the said basin, one (1) municipality consisting of 4 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 2.73% of the municipality of Puerto Princesa City with an area of 2186.36 sq. km. will experience flood levels of less 0.20 meters, while 0.14% of the area will experience flood levels of 0.21 to 0.50 meters; 0.13%, 0.14%, 0.18%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 30 and shown in Figure 69 are the affected areas in Puerto Princesa in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Puerto Princesa City (in sq. km.)					
flood depth (in m.)	Bacungan	Bacungan Irawan Santa Cruz Santa L				
0.03-0.20	44.31	2.050	1.73	11.68		
0.21-0.50	2.43	0.052	0.15	0.50		
0.51-1.00	2.23	0.032	0.27	0.29		
1.01-2.00	2.43	0.042	0.23	0.28		
2.01-5.00	3.74	0.030	0.016	0.086		
> 5.00	0.52	0.0002	0	0.0062		

Table 30. Affected areas in Puerto Princesa City, Palawan during a 5-Year Rainfall Return Period

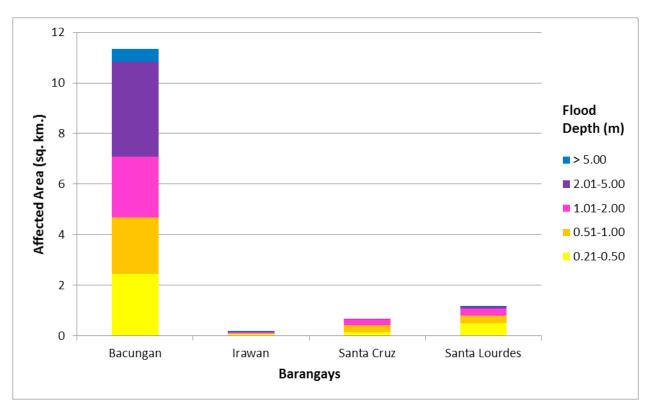


Figure 69. Affected Areas in Puerto Princesa City, Palawanl during 5-Year Rainfall Return Period

For the 25-year return period, 2.64% of the municipality of Puerto Princesa City with an area of 2186.36 sq. km. will experience flood levels of less 0.20 meters, while 0.15% of the area will experience flood levels of 0.21 to 0.50 meters; 0.12%, 0.15%, 0.22%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 31 and shown in Figure 70 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Puerto Princesa City (in sq. km.)					
flood depth (in m.)	Bacungan	Irawan	Santa Cruz	Santa Lourdes		
0.03-0.20	42.67	2.022	1.64	11.44		
0.21-0.50	2.38	0.060	0.15	0.59		
0.51-1.00	2.15	0.031	0.18	0.33		
1.01-2.00	2.66	0.044	0.32	0.33		
2.01-5.00	4.47	0.046	0.095	0.14		
> 5.00	1.32	0.0033	0.0015	0.022		

Table 31. Affected areas in Puerto Princesa City, Palawan during a 25-Year Rainfall Return Period

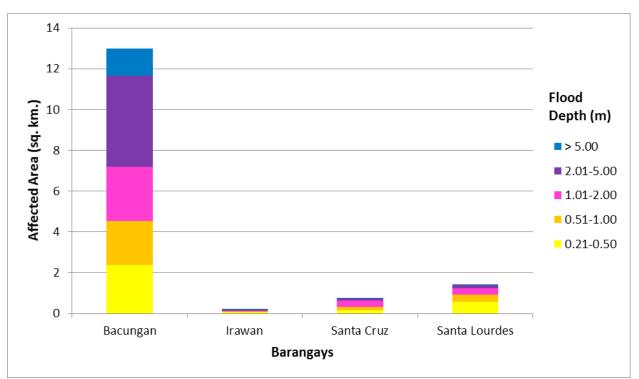


Figure 70. Affected Areas in Puerto Princesa City, Palawan during 25-Year Rainfall Return Period

For the 100-year return period, 2.58% of the municipality of Puerto Princesa City with an area of 2186.36 sq. km. will experience flood levels of less 0.20 meters, while 0.15% of the area will experience flood levels of 0.21 to 0.50 meters; 0.12%, 0.15%, 0.21%, and 0.14% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters respectively. Listed in Table 32 and shown in Figure 71 are the areas affected in Puerto Princesa City in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Puerto Princesa City (in sq. km.)				
flood depth (in m.)	Bacungan Irawan Santa Cruz Santa L				
0.03-0.20	41.48	2.00071	1.59	11.28	
0.21-0.50	2.48	0.068	0.16	0.61	
0.51-1.00	2.13	0.032	0.15	0.38	
1.01-2.00	2.48	0.039	0.34	0.34	
2.01-5.00	4.15	0.062	0.15	0.21	
> 5.00	2.93	0.0048	0.0025	0.029	

Table 32. Affected areas in Puerto Princesa City, Palawan during 100-Year Rainfall Return Period

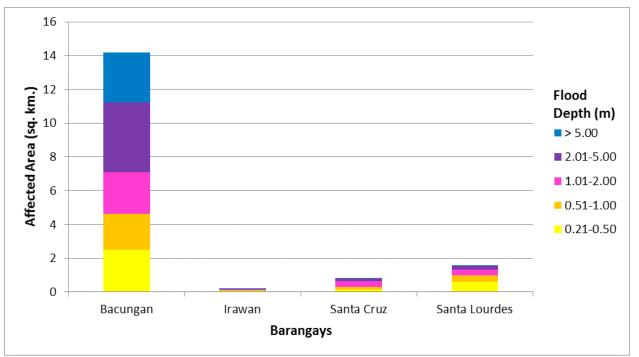


Figure 71. Affected Areas in Puerto Princesa City, Palawan during 100-Year Rainfall Return Period

Among the barangays in the municipality of Puerto Princesa City, Bacungan is projected to have the highest percentage of area that will experience flood levels of at 2.55%. On the other hand, Santa Lourdes posted the percentage of area that may be affected by flood depths of at 0.59%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there was a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events and through interviews with some residents who have knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 72.

The flood validation consisted of 137 points randomly selected all over the Bacungan flood plain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 1.05m (Figure 73). Table 33 shows a contingency matrix of the comparison.

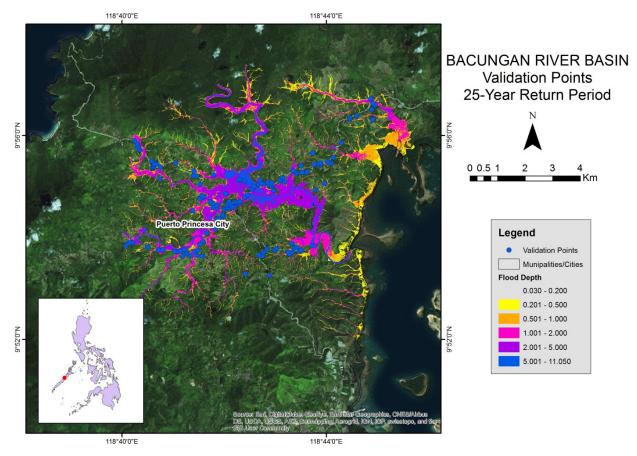


Figure 72. Validation points for 25-year Flood Depth Map of Bacungan Floodplain

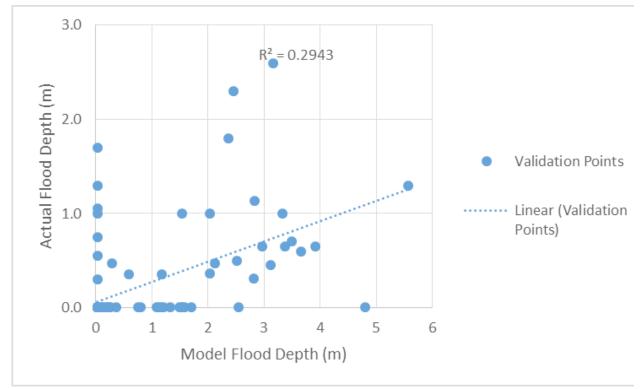


Figure 73. Flood map depth vs. actual flood depth

Actual		Modeled Flood Depth (m)						
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20	91	4	2	10	2	0	109	
0.21-0.50	1	1	1	1	5	0	9	
0.51-1.00	3	0	0	1	7	0	11	
1.01-2.00	3	0	0	0	2	1	6	
2.01-5.00	0	0	0	0	2	0	2	
> 5.00	0	0	0	0	0	0	0	
Total	98	5	3	12	18	1	137	

Table 33. Actual flood vs simulated flood depth at different levels in the Bacungan River Basin.

The overall accuracy generated by the flood model is estimated at 68.61% with 94 points correctly matching the actual flood depths. In addition, there were 9 points estimated one level above and below the correct flood depths while there were 14 points and 20 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 7 points were underestimated in the modelled flood depths of Bacungan. Table 34 depicts the summary of the Accuracy Assessment in the Bacungan River Basin Survey.

	No. of Points	%
Correct	94	68.61
Overestimated	36	26.28
Underestimated	7	5.11
Total	137	100.00

Table 34. Summary of the Accuracy Assessment in the Bacungan River Basin Survey

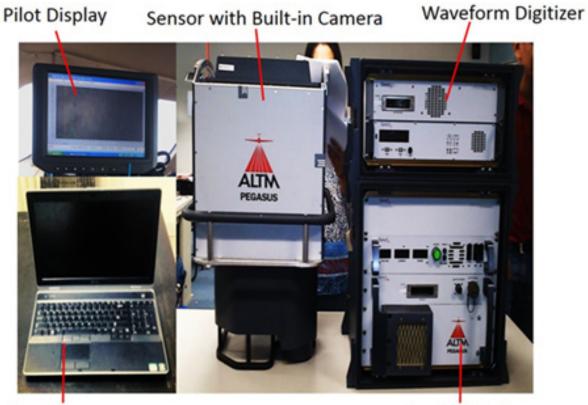
REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry


Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry


ANNEXES

Annex 1. Optech Technical Specification of the Pegasus Sensor

Laptop

Control Rack

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Topographic mode	
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Table A-1.1. Parameters and Specification of the Pegasus Sensor

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint

5 Dependent on system configuration

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. PLW-34

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 15, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	: PALAWAN			
	Station Na	ame: PLW-34			
	Order:	1st			
Island: LUZON Municipality: PUERTO PRINCESA CITY (CAPITAL)	MSL Elevat	STA. MONICA ion: 22 Coordinates			
Latitude: 9º 47' 4.34346"	Longitude:	118° 43' 50.36738"	Ellipsoid	lal Hgt:	53.76200 m.
	WGS	84 Coordinates			
Latitude: 9º 46' 59.90069"	Longitude:	118° 43' 55.68915"	Ellipsoid	al Hgt:	103.89600 m
	PTM/PF	RS92 Coordinates			
Northing: 1081910.004 m.	Easting:	525304.737 m.	Zone:	1A	
	UTM/PR	RS92 Coordinates			
Northing: 1,082,009.99	Easting:	689,825.58	Zone:	50	

PLW-34

Location Description

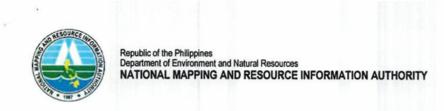
PLW-34 From the wharf of Philippine Ports Authority in Puerto Princesa city, travel eastward on a 2 wheel drive vehicle, along Rizal street up to the National highway for 1.80 kilometers. Turn turn left, travel Northwest along the national highway for 5.50 kilometers up to the cemented road that leads to the City Hall. Turn left and travel alonf the cemented road for 0.75 kilometers up to the station. Station is located on top of the roof deck of the city Mayor's office. Station mark is 4" copper nail with cross cut on top centered in a 30 cm square cement patty, protruding about 1 cm on the semi-circle shaped concrete roofed deck of Puerto Princesa City Hall.

Requesting Party: UP-DREAM Purpose: OR Number: T.N.:

Reference 80840051 2015-1264

NAMRIA OFFICES

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch ଚ



Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manita, Philippines, Tol. No. (632) 241-3404 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. PLW-34

2. **PLW-50**

June 23, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: PALAWAN		
	Station Name: PLW-50		
	Order: 2nd		
Island: LUZON	Barangay: IWAHIG		
Municipality: PUERTO PRINCESA CITY (CAPITAL)	MSL Elevation: PRS92 Coordinates		
Latitude: 9º 44' 42.16318"	Longitude: 118º 39' 28.02050"	Ellipsoidal Hgt:	16.81300 m.
	WGS84 Coordinates		
Latitude: 9º 44' 37.72390"	Longitude: 118º 39' 33.34598"	Ellipsoidal Hgt:	66.85300 m.
	PTM / PRS92 Coordinates		
Northing: 1077537.527 m.	Easting: 517311.956 m.	Zone: 1A	
	UTM / PRS92 Coordinates		
Northing: 1,077,601.73	Easting: 681,851.72	Zone: 50	

Location Description

PLW-50 From Puerto Princesa City Proper, travel along the National Highway S bound, until reaching Iwahig Penal Farm at about 15 km. The station is located inside the vicinity of Iwahig Penal Farm, situated at the base of the fountain 20 m. NW of Administration Building and 50 m W of Iwahig Elem. School. Station mark is a brass plate 10" in diameter with inscription "Corps of Engineers, U.S. Army Survey control mark circle station".

Requesting Party: **UP-DREAM** Purpose: Reference OR Number: 8083538 | T.N.: 2015-1337

RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch

NAMRIA OFFICES: NAVNIN OFFICES. Man : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines. Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. PLW-50

3. PLW-3026

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 23, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: PALAWAN		
	Station Name: PLW-3026		
Island: LUZON	Order: 3rd		
Municipality: PUERTO PRINCESA CITY (CAPITAL)	Barangay: SALVACION MSL Elevation: PRS92 Coordinates		
Latitude: 9° 58' 7.89691"	Longitude: 118º 47' 3.75351"	Ellipsoidal H	gt: 7.58909 m.
	WGS84 Coordinates		
Latitude: 9º 58' 3.41268"	Longitude: 118º 47' 9.05885"	Ellipsoidal H	gt: 57.44800 m
	PTM / PRS92 Coordinates		
Northing: 1102299.607 m.	Easting: 531180.701 m.	Zone: 1	A
	UTM / PRS92 Coordinates		
Northing: 1,102,427.82	Easting: 695,610.46	Zone: 5	0

Location Description

PLW-3026 From Puerto Princesa, travel N via PPC-Roxas National Highway up to Sabang junction in Brgy. Salvacion. Station is located on the N corner of the center island. Mark is the head of 4" copper nail flushed in a cement putty 25cm x 25cm x 120cm embedded 1 m on the ground with inscriptions "PLW-3026 2007 NAMRIA."

Requesting Party: UP-DREAM Purpose: OR Number: T.N.:

Reference 8083538 | 2015-1338

RUEL DM. BELEN, MNSA

Director, Mapping And Geodesy Branch Amil

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. PLW-3026

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. PLW-3026

Vector Components (Mark to Mark)

From:	PLV	2LW-34						
	Grid			Local		Global		
Easting		689825.571 m	Latitude	N9°47'04	4.34346"	Latitude		N9°46'59.90069'
Northing		1082009.987 m	Longitude	E118°43'50	0.36738"	Longitude		E118°43'55.68915"
Elevation		53.466 m	Height	5	53.762 m	Height		103.896 m
To:	PLV	V-3026						
	Grid		Local		Global		lobal	
Easting		695610.418 m	Latitude	N9°58'07	7.89863"	89863" Latitude		N9°58'03.41442'
Northing		1102427.869 m	Longitude	E118°47'03	3.75221"	Longitude		E118°47'09.05751
Elevation		7.024 m	Height		7.504 m	.504 m Height		57.363 m
Vector								
∆Easting		5784.84	7 m NS Fwd Azim	nuth		16°06'56"	ΔX	-3460.453 m
∆Northing		20417.88	2 m Ellipsoid Dist			21220.288 m	ΔY	-5939.795 m
∆Elevation		-46.44	2 m ∆Height			-46.258 m	ΔZ	20076.102 m

Standard Errors

Vector errors:							
σ ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.006 m		
σ ΔElevation	0.007 m	σ ∆Height	0.007 m	σΔZ	0.002 m		

Figure A-3.1. Baseline Processing Report - A

1. PLW-4011

Vector Components (Mark to Mark)

From:	PL	PLW-34						
	Grid		Lo	Local		Global		obal
Easting		689825.571 m	Latitude	N9°47'04	4.34346"	Latitude		N9°46'59.90069"
Northing		1082009.987 m	Longitude	E118°43'50	0.36738"	Longitude		E118°43'55.68915"
Elevation		53.466 m	Height	5	3.762 m	Height		103.896 m
To:	PL	W-4011						
	Grid		Local		Global		obal	
Easting		707163.027 m	Latitude	N10°11'54	4.13011"	13011" Latitude		N10°11'49.59791'
Northing		1127879.807 m	Longitude	E118°53'27	E118°53'27.82551" Longitude			E118°53'33.11019"
Elevation		3.616 m	Height		4.146 m	Height		53.754 m
Vector								
∆Easting		17337.45	6 m NS Fwd Azimuth			21°00'21"	ΔX	-11558.541 m
∆Northing		45869.82	1 m Ellipsoid Dist.			49032.695 m	ΔY	-15476.070 m
∆Elevation		-49.85	i0 m ∆Height			-49.616 m	ΔZ	45067.770 m

Standard Errors

Vector errors:								
σ ∆Easting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.004 m			
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.007 m			
σ ΔElevation	0.008 m	σ ∆Height	0.008 m	σΔZ	0.002 m			

Figure A-3.2. Baseline Processing Report - B

3. PL-92

Vector Components (Mark to Mark)

From:	PLW 50	.W 50					
	Grid		Local		G	ilobal	
Easting	23307.331 m	Latitude	N9°44'42.1631	8" Latitude		N9°44'37.72390"	
Northing	1080218.190 m	Longitude	E118°39'28.0205	0" Longitude		E118°39'33.34598"	
Elevation	16.338 m	Height	16.813	m Height		66.853 m	
To:	PL 92						
	Grid	Local			Global		
Easting	26049.752 m	Latitude	N9°44'04.0158	1" Latitude		N9°43'59.58138"	
Northing	1079008.192 m	Longitude	E118°40'58.2806	5" Longitude		E118°41'03.60701"	
Elevation	7.859 m	Height	8.218	m Height		58.344 m	
Vector							
ΔEasting	2742.4	21 m NS Fwd Azimu	uth	113°04'19"	ΔX	-2504.878 m	
ΔNorthing	-1209.9	98 m Ellipsoid Dist.		2990.326 m	ΔY	-1153.405 m	
∆Elevation	-8.4	79 m ∆Height		-8.595 m	ΔZ	-1156.451 m	

Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.002 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.004 m
σ ΔElevation	0.005 m	σ ΔHeight	0.005 m	σΔΖ	0.001 m

Figure A-3.3. Baseline Processing Report - C

4. PPC-1

Vector Components (Mark to Mark)

From:	PL	PLW-34						
	Grid			Local		Global		obal
Easting		689825.571 m	Latitude	N9°47'0	4.34346"	Latitude		N9°46'59.90069"
Northing		1082009.987 m	Longitude	E118°43'5	0.36738"	Longitude		E118°43'55.68915"
Elevation		53.466 m	Height		53.762 m	Height		103.896 m
To: PPC-1								
	Grid		Local		Global		obal	
Easting		707137.228 m	Latitude	N10°11'5	4.83823"	83823" Latitude		N10°11'50.30596"
Northing		1127901.415 m	Longitude	E118°53'2	6.98215"	Longitude		E118°53'32.26682"
Elevation		3.473 m	Height		4.002 m Height			53.609 m
Vector								
∆Easting		17311.65	7 m NS Fwd Azimu	<i>i</i> th		20°58'07"	ΔX	-11534.136 m
∆Northing		45891.42	9 m Ellipsoid Dist.			49043.798 m	ΔY	-15467.164 m
∆Elevation		-49.99	3 m ∆Height			-49.760 m	ΔZ	45089.156 m

Standard Errors

Vector errors:								
σ∆Easting	0.017 m	σ NS fwd Azimuth	0°00'00"	σΔX	0.024 m			
σ ΔNorthing	0.013 m	σ Ellipsoid Dist.	0.018 m	σΔΥ	0.010 m			
σ ΔElevation	0.022 m	σ ∆Height	0.022 m	σΔZ	0.017 m			

Figure A-3.4. Baseline Processing Report - D

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	PHIL-LIDAR 1 Program Leader		UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

Table A-4.1. The LiDAR Survey Team Composition

	FIELL	TEAIVI	
	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
LiDAR Operation	Research Associate (RA)	ENGR. GRACE SINADJAN	UP-TCAGP
	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	JERIEL PAUL ALAMBAN, GEOL.	UP-TCAGP
	Airborne Security	SSG PRADYUMNA DAS RAMIREZ	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. MARK LAWRENCE TANGONAN	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. JUSTIN JOYA	AAC
		CAPT. RANDY LAGCO	AAC

FIELD TEAM

plain
Flood
heet for Bacungan Floodplain
heet for
Transfer Sheet
Annex 5. Data
'

LOGS(MB) PUX Resident Lods RANGE REVE RANGE RANGE REVE REVE RANGE RANGE REVE REVE	POS RAW RESIGNAL LOG RANDER RANDER STATION(S) OPEDIATOR FLIGHT PLAN 263 55 409 31.5 73.2 4.97 1KB RUB RUAGE Actual KML 263 55 409 31.5 73.2 4.97 1KB 101/74/50/79 na 166 15.3 na 4.66 1KB 1KB 701/74/50/79 na 266 55.8 400 23.2 na 4.66 1KB 14/30/76/51 na 266 55.8 4100 23.2 na 14.2 1KB 11/17/4/50/79 na 266 55.8 11.9 na 14.2 1KB 14/17/160/79 na 266 55.8 11.9 na 14.2 1KB 14/17/24/60/79 na 267 24.9 14.8 14/18 14/17/24/60/79 na 268 37.4 303 21.9 na 15.1 14/18 75/	
POS NAME FLECASI ANNOR DIGITIZER MARE	POS IMAGEBACASIS RELECASIS RANNER RANNES RANNE RELECASIS RANNE RANNE RANNE RANNE 203 55 55 409 31.5 73.2 4.65 1KB 169 70 73 73 166 4.277.02 327154 15.3 73.2 4.65 1KB 164 70 73 73 2666 55.8 15.3 74.2 74.2 1KB 1KB 41/40/76/57 73 73 130 24.7 153 71 142 1KB 1KB 76/80/76 73 75 1319 24.7 153 71 142 1KB 76/80/72 76 76/80/72 76/80/72 76/80/72 76/80/72 76	RAW LAS
263 55 409 31.5 73.2 4.97 1KB 1017.4/56.178 na 166 4.27/20.2 320154 15.3 na 4.05* 1KB 4140.705.51 na 2566 55.8 400 23.2 na 14.2 1KB 1KB 4172.4077651 na 136 256.8 400 23.2 na 14.2 1KB 1KB 61.03761 na 139 24.7 163 11.9 na 12.1 1KB 7689.022 na 249 37.4 303 21.9 na 15.1 1KB 7689.022 na	263 55 409 31.5 73.2 4.97 1KB 1017.4/66/79 na 166 4.27720.2 320154 15.3 na 4.09 1KB 1440.7657 na 256 55.8 400 23.2 na 14.2 1KB 14/407.657 na 256 55.8 400 23.2 na 14.2 1KB 1KB 61/37.017 na 139 24.7 193 11.9 na 15.1 1KB 7569.022 na 249 37.4 303 21.9 na 15.1 1KB 32 na	SENSOR Output LAS KML (swath) LOGS()
166 4.27/20.2 32/154 16.3 na 4.66 1KB 4/140/76/51 na 256 55.8 400 23.2 na 14.2 1KB 1KB 4/172/40/76/51 na 256 55.8 400 23.2 na 14.2 1KB 1KB 5/137/61 na 139 2.4.7 193 11.9 na 12.1 1KB 7569/02 na 249 37.4 303 21.9 na 15.1 1KB 32 na	106 4.21/20.2 32/154 15.3 na 4.65 1KB 4/140/76/51 na 256 55.8 400 23.2 na 14.2 1KB 4/140/76/51 na 139 247 153 11.9 na 12.1 1KB 7/583/751 na 249 37.4 303 21.9 na 15.1 1KB 1KB 7583/32 na	PEGASUS 2.9 NA 9
256 55.8 400 23.2 na 14.2 1KB 4172407fs na 139 24.7 153 11.9 na 12.1 1KB 7568302 na 249 37.4 303 21.9 na 15.1 1KB 1KB 32 na	256 55.8 400 23.2 na 14.2 1KB 417240761 na 139 24.7 193 11.9 na 12.1 1KB 513761 na 249 37.4 303 21.9 na 15.1 1KB 756802 na	PEGASUS 1.63 1236
139 24,7 163 11.9 na 12.1 1KB 7689/32 na 249 37.4 303 21.9 na 15.1 1KB 7589/32 na	139 24.7 193 11.9 na 12.1 1KB 7568302 na 249 37.4 303 21.9 na 15.1 1KB 32 na	PEGASUS 1.17 334
249 37.4 303 21.0 na 15.1 1KB 1KB 32 na	249 37.4 303 21.0 na 16.1 tKB 32 na Received by 1 16.1 1KB 12 na 13 14 </td <td>PEGASUS 580 1082</td>	PEGASUS 580 1082
	Backbook	PEGASUS 1.14 1368
Kanana Kanana		C. Jestantin
Name JorganEX InEDUNA	Name JONNECK MEDNUR	
Name Johnne/K mED/NIR Position CPUIPR SK4	Name JONANEX MEDIUR Position CRUPR SRS	2

Publitive BRNBOK MARE ERNBOK Despire List Description Model Model <t< th=""><th></th><th></th><th></th><th></th><th>RAN</th><th>RAW LAS</th><th></th><th></th><th></th><th>NICE OF A LOCAL</th><th></th><th></th><th>BASE STATION(S)</th><th>ATTOM(S)</th><th>any Lange</th><th>FUGHT PLAN</th><th>PLAN</th><th></th></t<>					RAN	RAW LAS				NICE OF A LOCAL			BASE STATION(S)	ATTOM(S)	any Lange	FUGHT PLAN	PLAN	
13 30329 1BL/xd2dH150A Pagauati 104 105 17 170 160 160 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626 1625 1626	- 1	FUBIT NO.	MISSION NAME	SENSOR	Output LAS	KORL (sweth)	(BM)SDOT	POS	NAGENCAN	PLEICAM	RANDE	-	BASE STATION(S)	Base Info (Inf)	(DOLLOG)	Actual	KML	SERVER
1-15 3027P 10L/AZFS150B Pepaeus 627 131 132 132 131 132 131 133 131 133 131 133 133 131 133 131 133 133 131 133 131 133 131 133 131	I-II	5 3025P	1BLK42GH158A	Propesus	1.04	1396	7.45	187	33.9	245	1.81	NA		EX1		82745		ZYDACIRAIN DATA
3037P 1BL/42J162A Pegenes 1.63 64.3 24.5 36.6 31.6 1.63 3771 7.63 3037P 1BL/42J162B Pegenes 000 na 7.85 140.67 17.6 16.6 16.9 3771 na 3033P 1BL/42J162B Pegenes 000 na 7.85 140.67 17.6 47.5 3.9 140 16.9 37620671 na 3041P 1BL/42J162B Pegenes 000 na 5.69 127 17.6 16.9 16.9 16.9 37620671 na 3041P 1BL/42J162B Pegenes 000 na 5.69 17.6 16.6 16.6 16.0	un-1	5 3027P	1BLK42FS159B	Propasus	662	175	5.26	133	16.8	146	13.6	30.2		1KB	193	24		ZIDACIPAIN DATA
303PP TBL/4x21f62B Pagana 000 na 7.86 10.0 7.16 7.86 7.75	11-Jun	30379	1BLK42U162A	Pegasus	1.63	g	13.1	217	45.3	369	31.8	21.7		1KB	1HB	1-1/126		ZYDAC/RAW DATA
3041P 1B.L/42B163A Pegenus 003 na 123 17 129 11.5 na 133 134	11-Jun	3039P	1BLK42J162B	Pegasus	900	g	7.85	187	20.4	140457	8.77	47.5		1KB		37/62/95/71		Z'OACRAW DATA
3045P 1BL/42B5164A Pegauua 560 na 601 144 151.7 116 0.0.5 na 100 102 103 103 103 103 103 103 103 103 103 103 104 104 105 104 103 103 103 103 103 103 103 103 104 104 103 104	12-Jun	3041P	1BLK42B163A	Baseda	593	an A	5.68	122	23	129	11.5	g		EH4	19(B)	30		ZYDACRAW DATA
3047P 18LK42Aa1648 Pegeesa 14 na 109 221 53.5 434 18.6 73 369 148 154 na 3061P 18LK42Ab168A Pegeesa 1.3 na 10.7 205 39.9 10561534 7.8 7.89 148 154 na 3061P 18LK42Ab168A Pegeesa 1.3 na 10.7 205 39.9 105615354 24.4 na 5.03 105615354 24.4 na 5.03 105615354 24.4 10.8 5.03 105615354 24.4 10.8 <t< td=""><td>13-Jun</td><td>3045P</td><td>K 1BLK42BS164A</td><td>snaetad</td><td>685</td><td>g</td><td>6.01</td><td>144</td><td>15.7</td><td>116</td><td>10.6</td><td>g</td><td></td><td>1KB</td><td>1KB</td><td>32</td><td></td><td>Z'UDACIRAIN DATA</td></t<>	13-Jun	3045P	K 1BLK42BS164A	snaetad	685	g	6.01	144	15.7	116	10.6	g		1KB	1KB	32		Z'UDACIRAIN DATA
3061P 18LK42Abf68A Pegeues 1.3 na 10.7 205 36.9 10.4 2.4 na 6.03 14B 16B 6480655 na 16 649055 na 16.1 16.1 16.1 16.3 16.1 16B 649055 na 16B 16B 16B 16B na 7814AC 38LX331052A Aquete NA 34.5 66.1 8.53 31.172.5 1.68 1.4B 16B 4 NA A NA	13-Jun	3047P	1BLK42Aa164B	Pegasus	1.4	2	10.9	122	63.6	434	19.6	2	3.69	1KB	1HB	114		ZYDACRAIN DATA
7814AC 38U331052A Aquarius NA 34 81.5 56.1 8.53 31.1/72.5 1.68 na 3.66 1/48 19/8 4 NA	17-Jun	3061P	1BLK42Ab166A	Pegasus	1.3	2	10.7	205	39.9	105/152/54	24.4	g		1HB	1KB	00/00/02		ZYDACIRAW DATA
	21-Feb	7814AC	38LK331I052A	Aquartus	NA	34	81.5	66.1	9.53	31.1/72.5	1.68	g		1HB	1KB	4		ZYDACIRAW DATA
			Position En	1110					Name Postion Sionature	JOIDA PLIERD		Silcitz						

Figure A-5.2. Data Transfer Sheet for Bacungan Floodplain - B

	ALL PROPERTY AND			RAW	RAW LAS			BAW	MISSION LOG			BASE 51	BASE STATION(S)	OPERATOR	FLIGHT PLAN	PLAN	
	LUNI MO	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	POS	IMAGESICASI	FILENCASH	RANGE	DIGITIZER	BASE STATION(S)	Base Info (.txt)	(OPLOGS	Actual	KML	LOCATION
un-15	14-Jun-15 3049P	1BLK42S165A	Pegasus	698	na	7	162	31	252	18.3	29.3	16.3	1KB	1KB	70/67	g	Z-IDACIRAW DATA
un-15	20-Jun-15 3073P	1BLK42S171A	Pegasus	361	na	3.65	107	12.3	88	1.1	NA	4.15	1KB	1KB	8	g	Z:/DAC/RAW DATA
Jul-7	3141P	1BLK42QRT188A	Pegasus	1.84	с	11.6	256	2.11	15/20/9/1	35.5	108	8.43	1KB	1KB	96	US .	Z:IDACIRAW DATA
8-Jul	3145P	1BLK42QRT189A	Pegasus	752	R8	5.41	124	184	101	14.8	NA	11.9	1KB	1KB	176/95	g	Z:IDACIRAW DATA
11-Jul	3157P	1BLK42PO192A	Pegasus	2.29	e.	13	279	35.2	369	43.3	113	20.6	1KB	1KB	206	2	Z-IDACIRAW DATA
11-Jul	3159P	1BLK42PO192B	Pegasus	111	g	8.95	199	55.5	1	21.6	25.9	20.6	1KB	1KB	NA	2	Z-IDACIRAW DATA
12-Jul	3161P	4 1BLK42LM193A	Pegasus	1.61	427/407	9.62	214	41.7	358	28.8	67.6	4.29	1KB	1KB	215	2	Z-UDACVRAW DATA
13-Jul	3165P	1BLK42LM194A	Pegasus	1.5	Ca	10.5	255	36.4	296	28.9	na	11.5	1KB	1KB	ua	na	Z:VDAC/RAW DATA
13-Jul	3167P	1BLK42JS194B	Pegasus	329	28	3.65	106	4.93	2	7.36	11	11.5	1KB	1KB	106/123	NA	Z:VDACVRAW DATA
15-Jul	3173P	1BLK42KS196A	Pegasus	160	86/28	2.73	63.2 na		na	3.33	7.6	1.19 ^{1KB}	1KB	1KB	11	NA	Z:UDACIRAW DATA
		Received from						Received by								1	
		Name	TH L			•		Name AC Position	SSRJUT AND	at 8/	5/2018	12					

Figure A-5.3. Data Transfer Sheet for Bacungan Floodplain - C

Sec. 1.

1. Flight Log for Mission 2989P

I Mirport, Gty/Province): Divesce (RPUP) 12 37 12 37 18 10 10 12 37 18 10 18 10	Data	Mission Name: (BUL42E/50A 4 Type: VFR Route: 775 - 775	4 Type: VFR	5 Aircra ft Type: Cesnna T206H	6 Aircraft Identification:	ntification: 9022
16 Take off: 11 Lahding: 237 18 To 8:41 21 Remarks 21 Remarks 12 37 18 To Activities 21 Remarks 0 mplefed 18 K 42 E 10 molecular Intenance 0 mplefed 18 K 42 E 10 molecular 10 molecular Activities 21 Remarks 0 mplefed 18 K 42 E 10 molecular Activities 21 Remarks 0 mplefed 18 K 42 E Activities 21 Remarks 10 mplefed 18 M 42 E Activities 1 molecular 1 molecular 10 molecular Activities 1 molecular 1 molecular 1 molecular	May 30,2015 P. Phinteca (R	-	rport of Arrival	(Ai rport, City/Province):		
21 Remarks 21 Remarks 20.0 Mon Billable 20.0 Others 0. Alrendit Trest Flight 0. ULDAR System Maintenance 0. Alrendit Trest Flight 0. ULDAR System Maintenance 0. Alrendit Trest Flight 0. ULDAR System Maintenance 0. Others: 0. Others: 0. Others: 0. Phil-ULDAR Admin Activities 0. Others: 0. Phile Level 0. Others: 1. Pair Activities	Engine On: 14 Engine Off: 15 Tota <i>8</i> : 3 (6 12 : 42 We ather Fair		ke off: 8:41		18 Total Flight Time: 3 + 56	
20.0. Non Billable 20.c. Others 20.c. Others 20.c. Others O Alreant Test Flight O LDAR System Maintenance O DAR System Maintenance O AGC Admin Flight O LDAR System Maintenance O Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities O Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities O Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities O Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities O Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities Phil-LDAR Admin Activities O Others: O Phil-LDAR Admin Activities Phil-Phile O Others: O Phil-LDAR Admin Activities Phile Phile O Others: O PhileDAR Phile Phile O Others: O PhileDAR Phile Phile O Others: O PhileDAR Phile O Others: O PhileDAR Phile O Others: O PhileDAR Phile O Others: PhileDAR Phile O Others: O PhileDAR O Others Phile	~		21 Remarks			
dor Stratute over Phinted Mir Pierlence, coursed logitap CCD acrea to be pinken, CCD acrea to be pinken, LCD acrea to	20.b Non Billable isition Flight O Ancraft Test Flight em fest Flight O AAC Admin Flight em fest Flight O Others:	thers LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities	-	Completed BIK42E		
Greenthered hicklence, coursed laptop LCD screen to be broken, LCD screen to be broken, Acquisition Flight Cathield In Acquisition Flight Cathield In M.C. That and Bignature over Printed Name Signature over Printed Name	Problems and Solutions					
Acquisition Flight Cartified by Pilot-in-Command are Ten up X. M.L Mark Carton UDAR Operator Signature over Printed Name Signatured Name Signature over Printed Name	Problem Problem bilem	kered tritkulture.	, coursed			
	Acquisition Flight Cettifier	Plot-ip-6	d A A A A A A A A A A A A A A A A A A A	LIDAR Operator LIDAR Operator Signature over Printed Name	Aircraft Mechanic/ LIDAR Technician N/A	divitician ne

Mission	
3017P	
for 3	
Log D	נ
Flight	נ

Phil-HDAR 1 Data Acquisition Flight Log	s Filght Log				Filght Log No.: 30 / 7-P	461
1 UDAR Operator: J A/M	1 UDAR Operator: J A/Mar 2 ALTM Model: Peg	3 Mission Name: /8/ C/2/A/574 4 Type: VFR 9 Route:	A 4 Type: VFR	5 Arcra ft Type: Cesnna T206H	5 A rcraft Type: Cesnna 7206H 6 Alrcraft Identification: 90 22	57
10 Date: $6 - c - 15$	10 Date: $l = C - 1/5$ 12 Airport of Departure (Airport, City/Province):		2 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
13 Engine On: 0/ /L	14 Engine Off: 14	15 Total Engine Time: 1 U + 23	16 Take off: 19	17 Landing: 13 + 32	18 Total Filght Time: LL _L /?	
19 Weather	Fair					Π
20 Flight Classification			21 Remarks			
20.a Bilible	20.b Non Billable	20.c Others	0	Completed Blk42 A		
 Acquisition Flight Ferry flight System Test Flight Calibration Flight 	o Aircraft Test Flight o AAC Admin Flight o Othors:	 LIDAR System Maintenance Aircraft Maintenance Phil-LIDAR Admin Activities 				
12 Brokisme and Columbiane						ſ

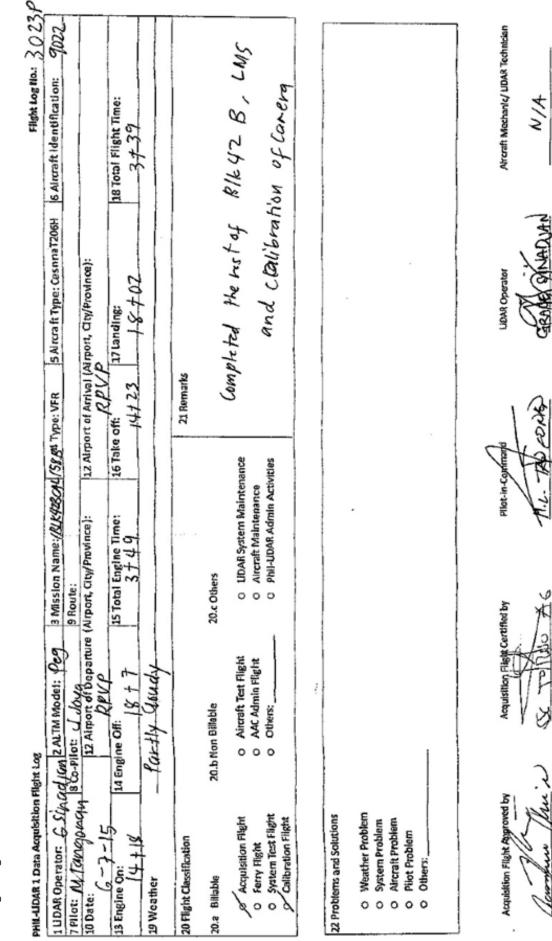

	Aircraft Mechanic/ LDAR Technician N//A Signature over Printed Name
	LEUR Operator Lever Printed Name
	Pilor-in-Command A Contrant
	Acquisition Plight Certified by
22 Problems and Solutions Weather Problem System Problem Aircraft Problem Pilot Problem Others: 	Acquisition Fight Approved by Acquisition Fight Approved by Begnature over Printed Name (End User Representative)

Figure A-6.2. Flight Log for Mission 3017P

5.

and the state of t					Flight Log No .: 3021 P	3021 P
HEL-LEDNI I DETE MARTINESCON FUEDIT OF	Peci 3 Mission	Name: (8/14/280/5	KA 4 Type: VFR	5 Arcraft Type: CosnnaT206H	6 Averaft Identification:	9022
B Co-Blot: 1. The second s	9 Route:	9 Route:				
10 Date: MICANONAN 112 Miport of Dep	parture (Almort, Gty	(/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
13 Engine On: 1-15 14 Engine Off: KP 15 Total Engine Time: 6 + 5 2 34 Engine Off: C 12 2 + 2 3	KP IS Total En		16 Take off:	17 Landing: 5 + 14	18 Total Flight Time: $2 + 1 + 3$	
19 Weather - fair						
20 Flg.ht Classification			21 Remarks	8		
20.8 Bilibble 20.8 Non Bilable	20.c Others			lombleted Elky	low plated Elk428 and BLK42 B	9
Acquisition Flight Acquisition Flight Acquisition Flight Acquisition Flight Action Flight Actio	•••	 UDAR System Maintenance Aircraft Máintenance Phil-UDAR Admin Activities 	anco Attes			
1 1 2						
O Weather Problem O Swatern Problem		*.				
			3			
Acquisition Fight Appropried by Acquisition Acquisition Manuel Manuel Manuel Semantic on S	Acquisition Flight Cortified by	Pilot-In-Corpo	Pilot-In-Corphiand	UDAR Operator	Aircraft Mechanic/ UDAR Technician	Technicdan

Figure A-6.3. Flight Log for Mission 3021P

103

4

Figure A-6.4. Flight Log for Mission 3023P

Signature over Printed Name

Signaburblower Printed Name

1

Signature over Printed Name

Signature over Printed Name (PAF Representative)

> fignature over Printed Name (End User Representative)

3

03

Mission
3045P
.og for
Flight L

1 UDAR Operator: 1/4	1UDAR Operator: 1/7-/v/a+ ZALTM Model: PEC 3 Mission Name: /8/L	3 Mission Name: /B/ L//2.6 5/6449 Type: VFR	SUGUE TYPE: VFR	S Aircra fi Type: Cesnna T206H	H 6 Aircraft Identification: 9022
7 Pilot: M Tenanna	10/8 Co-Pilot: JAVA	9 Route:			
10 Date:	12 Almont of Departure	(Airport, Gty/Province):	12 Nirport of Arrival	12 Niport of Arrival (Airport, City/Province):	
13 Engine On: (): 3 ()	14 Engine Off: 8:57	15 Total Engine Time: 2 + 2 F	16 Take off: 6.35	17 Landing:	18 Total Filght Time: 2 + 1/F
19 Weather	Clondy				
20 Flight Classification			21 Remarks	2	
20.a Bilibhe	20.b Non Billable	20.c Others		Supplementary chart and	act and bli drap
 Acquisition Flight Ferry Flight System Test Flight 	o Alkraft Test Flight o AAC Admin Flight o Others:	 UDAR System Maintenance Aincreft Maintenance Phil-UDAR Admin Activities 		No Digitizer Data	
22 Problems and Solutions					
o Weather Problem		*			
 O System Problem Alrcraft Problem Pilot Problem Others: 		x 7			
Acquisition Flight Approved by	d by Acquisition Filight Certified by	6 /6	Plat-in-Cyrifnand	LEON Operator	Arcraft Machanic/ LIDAR Technictan
Jacomputer aller.	airs at Taple A	110	FT. C. HAS LO NAS	Gamerica Un	Union N/A

Figure A-6.5. Flight Log for Mission 3045P

Biocompletion: 110,000 000000000000000000000000000000000000	IDAR Operator: 6 S Into	diller 2 ALTM Model: PE6	3 Mission Name: / B/K 4	2 S/694 vpe: VFR	5 Aircra ft Type: Cesnna T206H	6 Aircraft Identification: 9/7.2
Ide Engine RPUP RPUP Ide Engine Info 27.001 Engine 137 131 Clavady 20.000 Billable 20.000 20.000 21 20.000 20.0.000 Billable 20.000 20.000 21 20.000 21 20.000 20.0.000 Amount Flight 0 UDARSportum Maintenance 21 Remarks 21 Remarks 20.0.000 Amount Flight 0 UDARSportum Maintenance 21 Remarks 21 Remarks 0 Amount Flight 0 Dibit-LDAR Adminin Activities 10 Remarks 21 0 Others: 0 0 0 0 0 10 10 0 Others: 0 0 0 10 10 10 10 0 Mount Flight 0 0 0 10 10 10 10 0 Mount Flight 0 0 10 10 10 10 0 Mount Flight 0 0 10 10 10 0 Mount Flight 0 0 10 10 10 0 Mount Flight	Pate: M Tangeran	8 Co-Pilot: //0 / 0 / 0	9 Route: Airport, City/Province):	12 Airport of Arrival	(Ai roort, Cltv/Province):	- 01
Ide Regime Off Ide Regime Of	6-14-15	RPVP		RPVP		
Cloredy 20.6 Others 21.8 Remarks 20.0 Non Billible 20.6 Others 20.6 Others 20. Micraft Ter Flight 0. LiDAR System Maintenance 21.8 Remarks 0. Alrcraft Ter Flight 0. LiDAR System Maintenance 9 aps & R 0. Others: 0. Phil-LiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. Phil-LiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. Phil-LiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Others: 0. PhileLiDAR Admin Activities Proc Phile 9 aps & R 0. Phile Phile 9 aps & R Proc Phile 9 aps & R Proc Phile 9 aps & R	Engine On: /tr:05	14 Engine Off 7:55	15 Total Engine Time: 2 F SU	16 Take off:	$\frac{17}{1}$ Landing: $\frac{17}{1}$ $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{5}$	18 Total Flight Time:
20.0 Mon Billable 20.c Others 20.c Others 20.c Others 20. Mon Billable 20.c Others 20.c Others 0 Aircraft Test Flight 0 UDMASpritem Maintenance 0 Aircraft Maintenance 0 Phil-LUDAR Admin Activities 0 Others: 0 Phil-LUDAR Admin Activities Phil-LUDAR Admin Activities 0 Others: 0 Phil-LUDAR Admin Activities Phil-LUDAR Admin Activities 0 Others: 0 Phil-LUDAR Admin Activities Phil-LUDAR Admin Activities 0 Others: 0 Phil-LUDAR Admin Activities Phil-LUDAR Admin Activities	Weather	cloudy				
20.5 Non Billable 20.6 Others IDAR System Maintenance Alrcust Test Flight UDAR System Maintenance Alrcust Test Flight Bihl-UDAR Admin Activities Alrcust Test Flight Bihl-UDAR Admin Activities Alrcust Maintenance Others: Anor Ha of a gaps & hor flight Anor Ha of a flight Anor Ha of a flight 	Flight Classification			21 Remark	5	
 Alrcarit Test Flight Alrcarit Test Flight Alrcarit Maintenance Alrcarit Maintenance Alrcarit Test Flight Alrcarit Maintenance Alrcarit Martinen Alrcarit Martinen<!--</td--><td>a Billable</td><td>20.b Non Billable</td><td>20.c Others</td><td>ł.</td><td>Cumpleted gaps</td><td>l mit</td>	a Billable	20.b Non Billable	20.c Others	ł.	Cumpleted gaps	l mit
Image: State of the state o	A A			enance e tivities	horth of par	uene,
Image: State over Printed Name Mark Rapesenting Image: State over Printed Name Image: State over Printed Name Image: State over Printed Name Image: State over Printed Name	Problems and Solutions					
Acquisition Flight Certified by Control of the Comparison Signature over Printed Name (MF Representative) Signature over Printed Name Signature over Printed Name						
Acquisition Flight Certified by Acquisition Flight Certified by <u>CC_TON_AC</u> Signature over Printed Name (PMF Representative) Signature over Printed Name Signature over Printed Name Signature over Printed Name						
W CLE TOTUD 2 CONTROL AND CARACTER CARACTERIAN Signature over Printed Name Signature over Printed Name Signature over Printed Name Signature over Printed Name	Acquisition Flight Approved t			Comprind	LIDAR Operator	Aircraft Mechanic/ UDAR Technician
	Jamphur Mun Skinaturobver Printed Name (End Uber Representative)	3	V	C-The COND	CH	

Flight Log for 3051P Mission (For Mission 3049P)

ğ
- 3
_
- 14
-
ь;
-
Fleht
8
sition
-
- 10
-
2
Acqu
-
~
Data
0
-
-
-
-
5
0
I WYON
7
Ē
-
-

PHIL-LIDAR 1 Data Acquisition Hight Log	Right Log				C10	
1 UDAR Operator: LK PUN 7 Pliot: AATGIN OPEN	1 UDAR Operator: L/ POrtrofes 2 ALTM Model: DE6 3 Mission Name: 1816 92 V 71A 4 Type: VFR 7 Pilot: Al Tourn Drein 8 Co-Pilot: J/ 4 40 9 Route:	3 Mission Name: /8/242/	AIA 4 Type: VFR	5 Aircra (t Type: CosnnaT206H	6 Arcraft Identification: 6022	2 L
10 Date: 6-20-15	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		T
13 Engine On: /0 : 0 0	14 Engine Off: 11.54	15 Total Engine Time:	16 Take off: DS 1	17 Landing:	18 Total Flight Time: ノナダイ	
Tomes we	Iondy - Murchy					11
20 Filght Classification			21 Remarks			-
20.a Bilibhe	20.b Non Bilbble	20.c Others		Flight Alance		
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	o Alrcraft Text Fight o AvC Admin Flight o Others:	 UDAR System Maintenance Aircraft Maintenance Phil-UDAR Admin Activities 		and strong winds	and strong winds	
22 Problems and Solutions						
Meather Problem		ά¢.				
o Others	}			×		
Acquisition Flight Approved by	Acquisition Hight Certified by	Bed by Pilot-in Continend	mand	robarado Publi	Alrcalt Mechanic/ LIDAR Technician	
Barfore over Printed Hame Signature over Printed Hame (End User Regresemtribue)	Separative over Phylod Name (PME Representative)	170	M. Z. T. A. Marker	LKI Pures over Printed Name	N/A-Signature over Printed Name	

Figure A-6.7. Flight Log for Mission 3073P

Annex 7. Flight Status Reports

PALAWAN May 30, 2015 – June 20, 2015

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
2989P	BLK 42E	1BLK42E150A	G. Sinadjan	May 30, 2015	Data Acquired In Blk 42E
3017P	BLK 42A	1BLK42A157A	J Alviar	June 6, 2015	Data acquired in blk 42a
					175.55 sq.km
3021P	BLK 42BD	1BLK42BD158A	J Alviar	June 7, 2015	Data acquired; too cloudy in survey areas
					118.57 sq.km
3023P	BLK 42BE	1BLK42BCAL158B	G Sinadjan	June 7, 2015	Mission completed; Ims and camera calib also conducted
					143.49 sq.km
3045P	BLK 42BS	1BLK42BS164A	J Alviar	June 13, 2015	Surveyed blk 42b voids, too cloudy
					117.78 sq.km
3049P	BLK 42E, F	1BLK42S165A	G. Sinadjan	June 14, 2015	Covered Voids In Blk 42E And Blk 42F; Surveyed Inagauan Floodplain, East Coast
3073P	BLK 42B, D	1BLK42S171A	L Paragas	June 20, 2015	Surveyed voids in blk 42b and blk 42d; very cloudy 69.08 sq.km

LAS/SWATH PER FLIGHT MISSION

Flight No. :
Area:
Mission Name:
Parameters:

2898P BLK 42E 1BLK42E150A Altitude: 1100 Scan Angle: 50

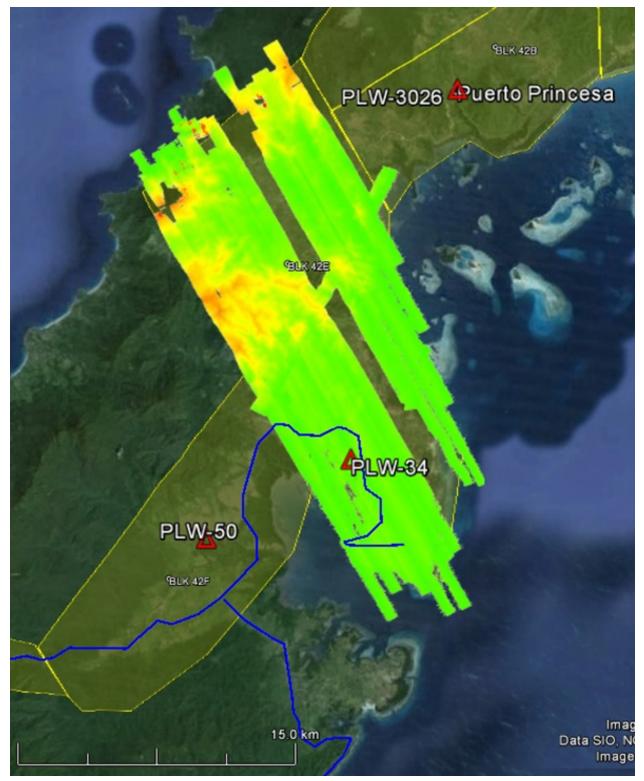


Figure A-7.1. Swath for Flight No. 2898P

3017P BLK 42A 1BLK42A157A Altitude: 1000 Scan Angle: 50

Figure A-7.2. Swath for Flight No. 3017P

3021P BLK 42BD 1BLK42BD158A Altitude: 1000 Scan Angle: 50

Figure A-7.3. Swath for Flight No. 3021P

3023P BLK 42BE 1BLK42BCALIB158B Altitude: 1000 Scan Angle: 50

Figure A-7.4. Swath for Flight No. 3023P

3045P BLK 42BS 1BLK42BS164A Altitude: 1000 Scan Angle: 50

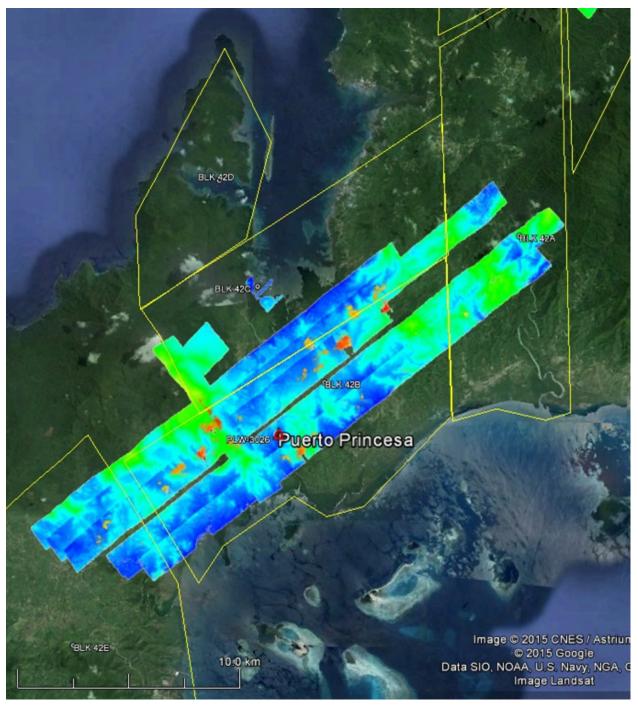


Figure A-7.5. Swath for Flight No. 3045P

3049P BLK 42E and BLK 42F 1BLK42S165A Altitude: 1000 Scan Angle: 50

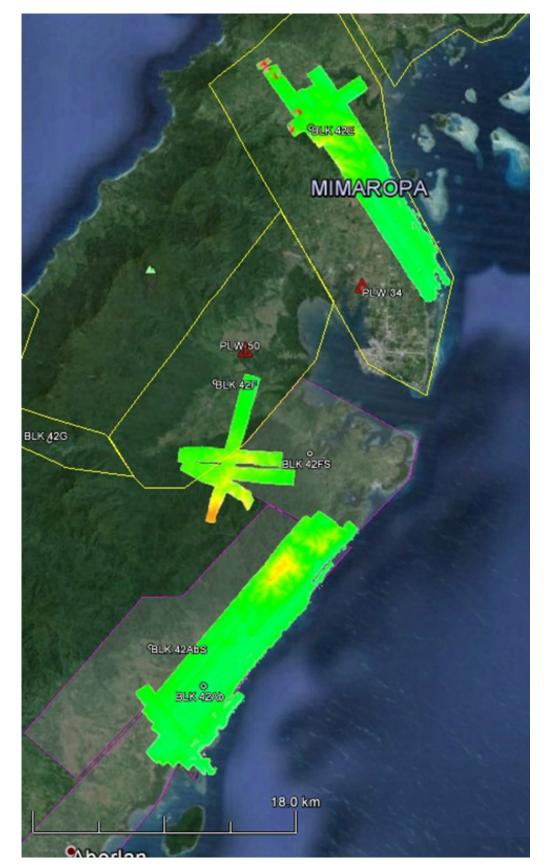


Figure A-7.6. Swath for Flight No. 3049P

3073P BLK 42B, BLK 42D 1BLK42S171A Altitude: 1000 Scan Angle: 50

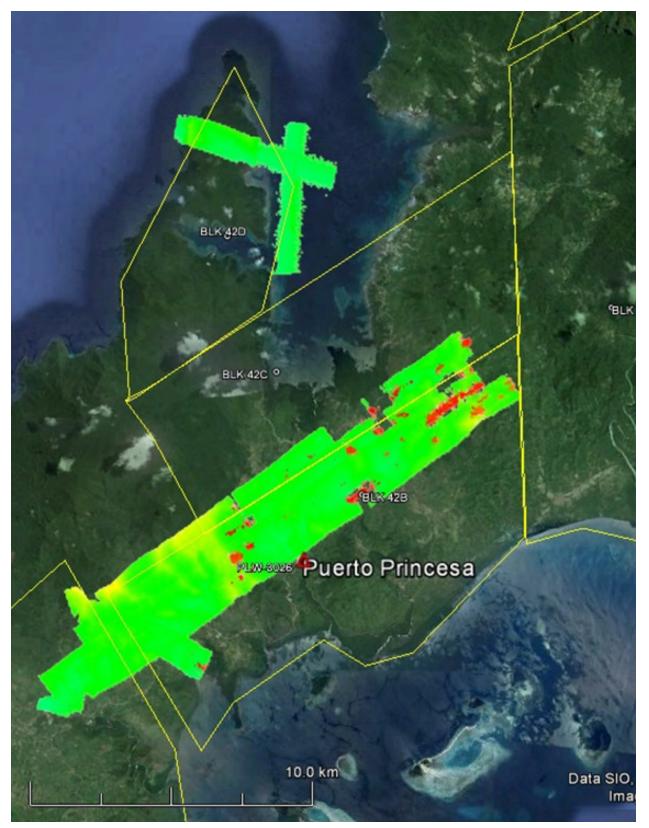


Figure A-7.7. Swath for Flight No. 3073P

Annex 8. Mission Summary Reports

Flight Area	West Palawan	
Mission Name	Blk 42B	
Inclusive Flights	3021P & 3023P	
Range data size	33.80 GB	
POS	388 MB	
Image	62.10 GB	
Transfer date	June 23, 2015	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.15	
RMSE for East Position (<4.0 cm)	1.60	
RMSE for Down Position (<8.0 cm)	2.70	
Boresight correction stdev (<0.001deg)	0.000249	
IMU attitude correction stdev (<0.001deg)	0.0.003542	
GPS position stdev (<0.01m)	0.0099	
Minimum % overlap (>25)	61.51	
Ave point cloud density per sq.m. (>2.0)	4.60	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	187	
Maximum Height	531.87 m	
Minimum Height	51.45 m	
Classification (# of points)		
Ground	127,193,781	
Low vegetation	117,846,397	
Medium vegetation	277,341,672	
High vegetation	665,966,968	
Building	3,365,152	
Orthophoto	Yes	
Processed by	Engr. Analyn Naldo, Engr. Jennifer Saguran, Aljon Rei Araneta, Engr. Mark Sueden Lyle Magtalas	

Table A-8.1. Mission Summary Report for Mission Blk 42B

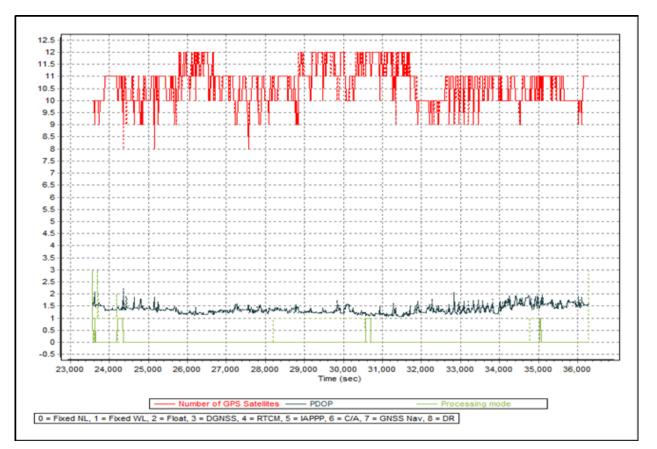


Figure A-8.1. Solution Status

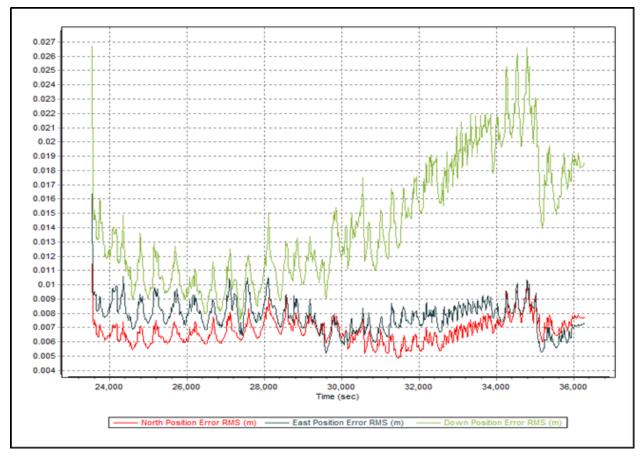


Figure A-8.2. Smoothed Performance Metrics Parameters

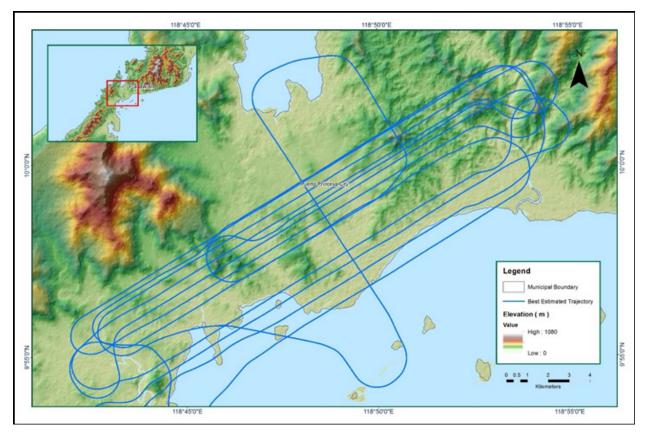


Figure A-8.3. Best Estimated Trajectory

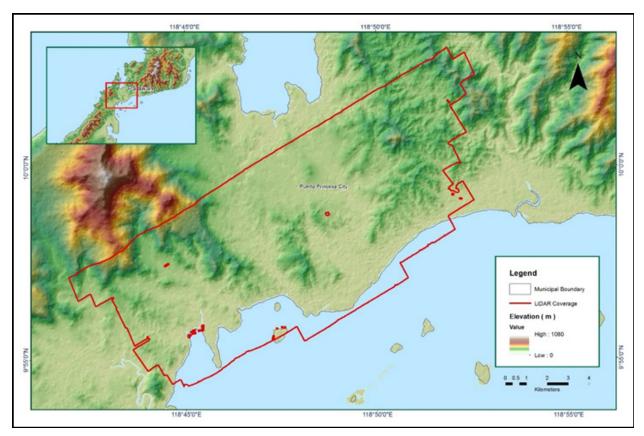


Figure A-8.4. Coverage of LiDAR data

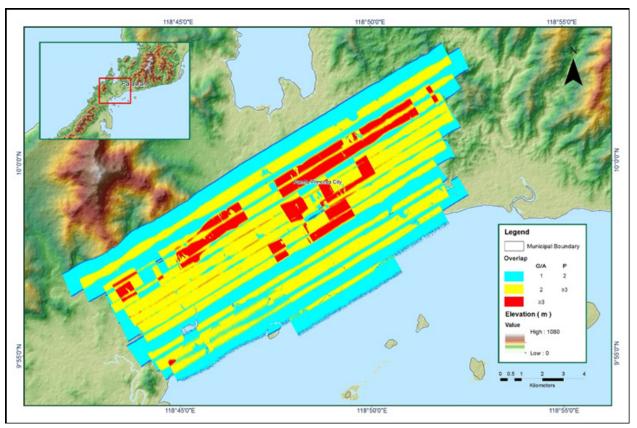


Figure A-8.5. Image of Data Overlap

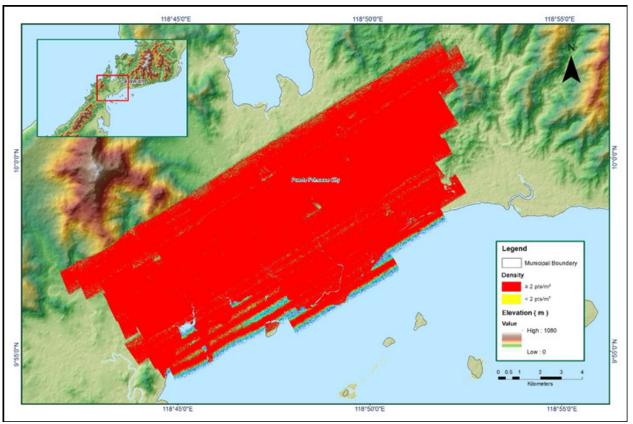


Figure A-8.6. Density map of merged LiDAR data

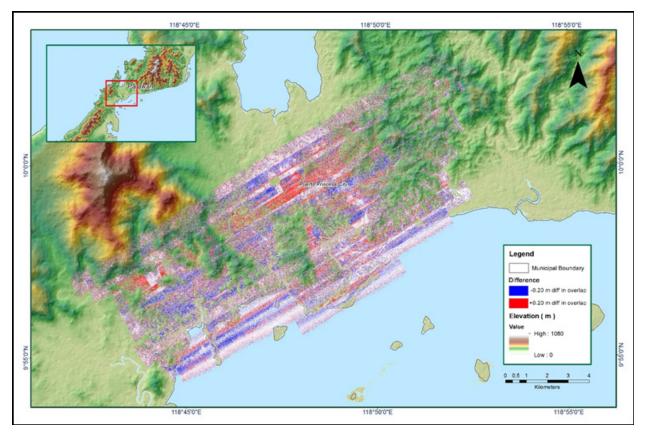


Figure A-8.7. Elevation difference between flight lines

, 	port for Mission Bik 42B Additional
Flight Area	West Palawan
Mission Name	Block 42B Additional
Inclusive Flights	3073P
Range data size	7.10 GB
POS	107 MB
Image	12.30 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	4.00
RMSE for North Position (<4.0 cm)	1.06
RMSE for East Position (<4.0 cm)	1.65
RMSE for Down Position (<8.0 cm)	2.90
Boresight correction stdev (<0.001deg)	0.000070
IMU attitude correction stdev (<0.001deg)	0.0.003542
GPS position stdev (<0.01m)	0.0015
Minimum % overlap (>25)	23.89
Ave point cloud density per sq.m. (>2.0)	3.56
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	92
Maximum Height	440.57 m
Minimum Height	52.38 m
Classification (# of points)	
Ground	41,429,226
Low vegetation	29,503,758
Medium vegetation	83,889,950
High vegetation	177,852,098
Building	1,986,175
Orthophoto	Yes
Processed by	Engr. Abigail Ching, Engr. Velina Angela Bemida, Alex John EScobido

Table A-8.2. Mission Summary Report for Mission Blk 42B Additional

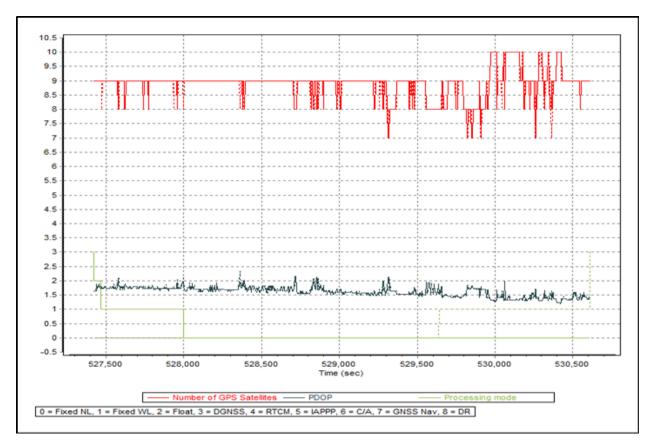


Figure A-8.8. Solution Status

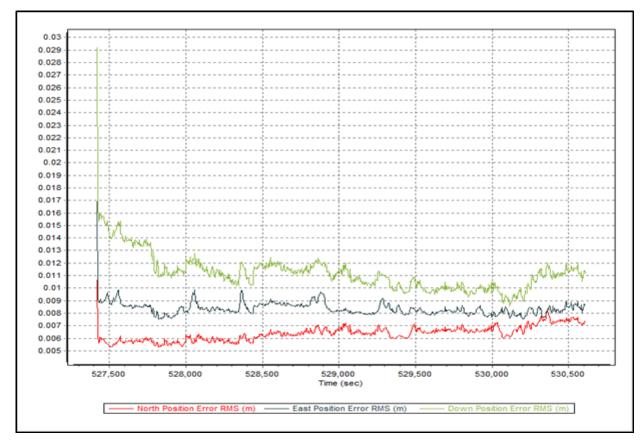


Figure A-8.9. Smoothed Performance Metrics Parameters

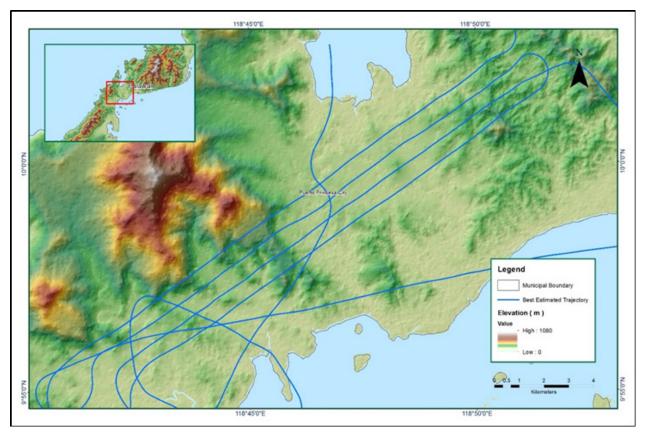


Figure A-8.10. Best Estimated Trajectory

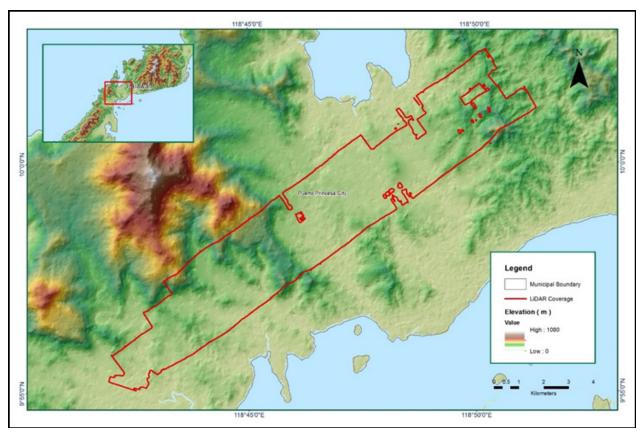


Figure A-8.11. Coverage of LiDAR data

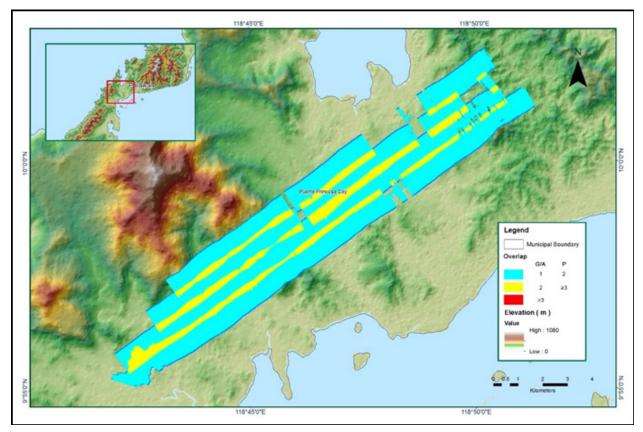


Figure A-8.12. Image of Data Overlap

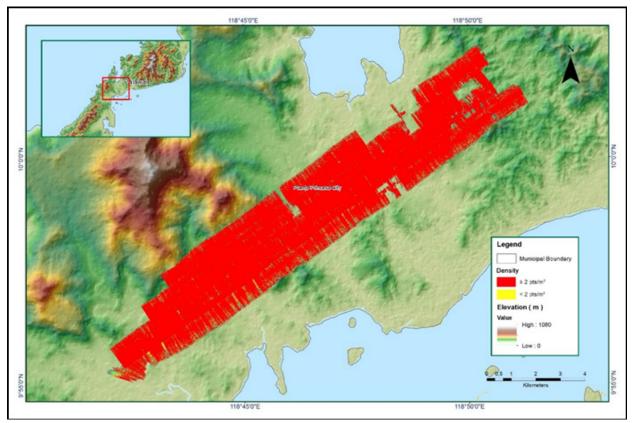


Figure A-8.13. Density map of merged LiDAR data

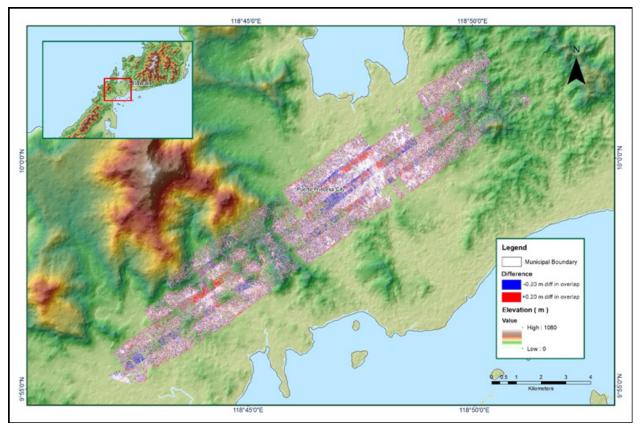


Figure A-8.14. Elevation difference between flight lines

Flight Area	West Palawan	
Mission Name	Block 42B Supplement	
Inclusive Flights	3045P	
Range data size	10.50 GB	
POS	144MB	
Image	15.70 GB	
Transfer date	June 13, 2015	
	Julie 13, 2013	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.95	
RMSE for East Position (<4.0 cm)	2.30	
RMSE for Down Position (<8.0 cm)	3.70	
	5.70	
Boresight correction stdev (<0.001deg)	0.000249	
IMU attitude correction stdev (<0.001deg)	0.0.003542	
GPS position stdev (<0.01m)	0.0099	
Minimum % overlap (>25)	27.46	
Ave point cloud density per sq.m. (>2.0)	2.81	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	177	
Maximum Height	428.28 m	
Minimum Height	42.45 m	
Classification (# of points)	00.070.070	
Ground	92,670,052	
Low vegetation	67,814,293	
Medium vegetation	141,295,150	
High vegetation	319,882,750	
Building	4,546,105	
Orthophoto	Yes	
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Kathryn Claudyn Zarate	

Table A-8.3. Mission Summary Report for Mission Blk 42B supplement

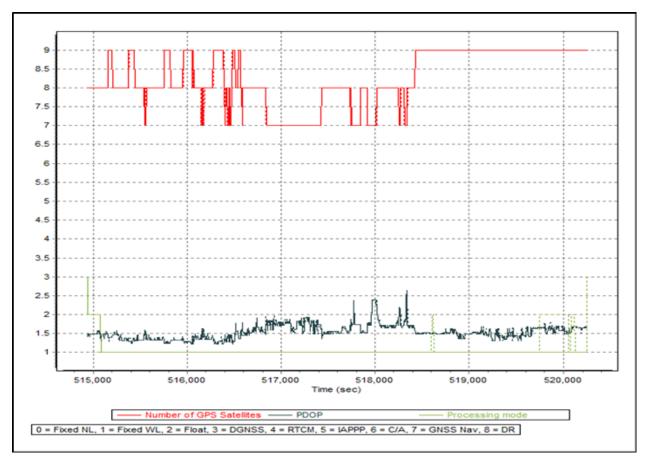


Figure A-8.15. Solution Status



Figure A-8.16. Smoothed Performance Metrics Parameters

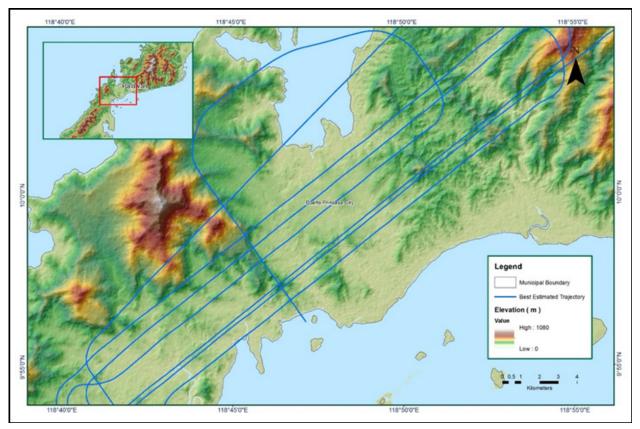


Figure A-8.17. Best Estimated Trajectory

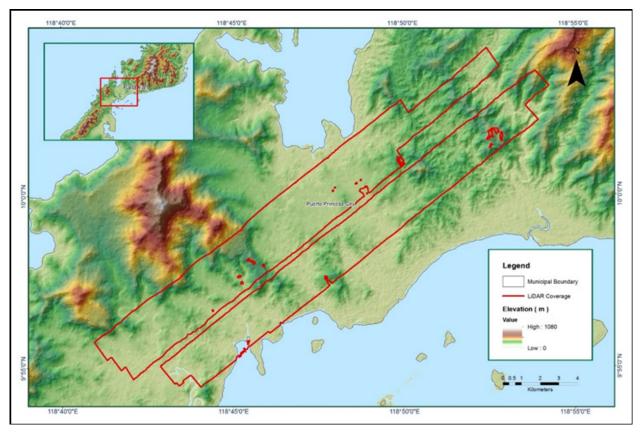


Figure A-8.18. Coverage of LiDAR data

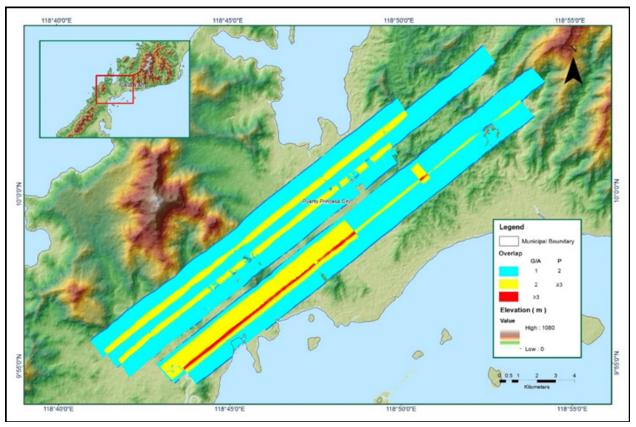


Figure A-8.19. Image of Data Overlap

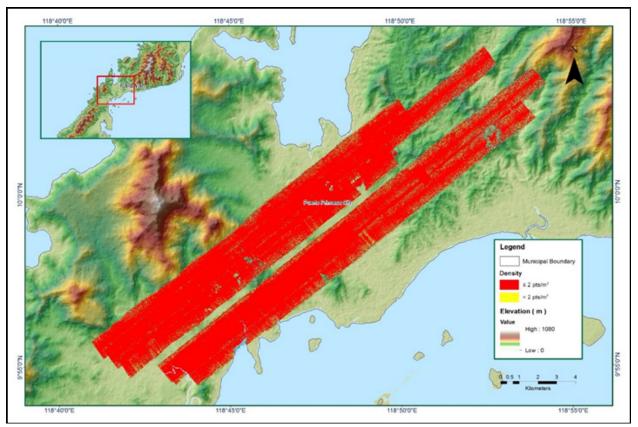


Figure A-8.20. Density map of merged LiDAR data

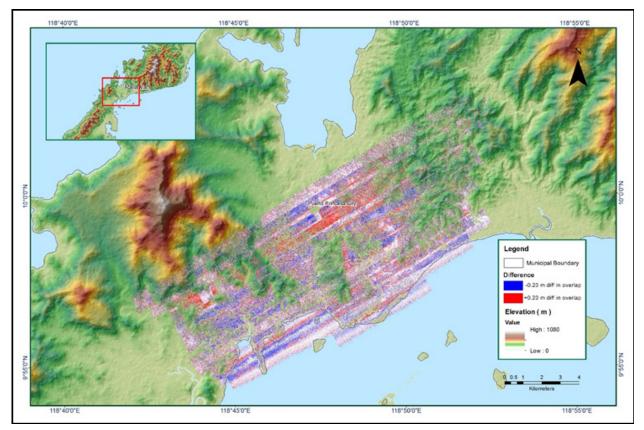


Figure A-8.21. Elevation difference between flight lines

Flight Area	West Palawan
Mission Name	Blk 42E
Inclusive Flights	2989P & 3017P
Range data size	54.70 GB
POS	519 MB
Image	110.80 GB
Transfer date	June 23, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.60
RMSE for East Position (<4.0 cm)	2.60
RMSE for Down Position (<8.0 cm)	4.30
Boresight correction stdev (<0.001deg)	0.000203
IMU attitude correction stdev (<0.001deg)	0.147257
GPS position stdev (<0.01m)	0.0025
Minimum % overlap (>25)	45.87
Ave point cloud density per sq.m. (>2.0)	4.49
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	353
Maximum Height	899.45 m
Minimum Height	49.6 m
Classification (# of points)	
Ground	364,978,265
Low vegetation	181,902,193
Medium vegetation	383,273,014
High vegetation	1,344,953,370
Building	33,880,796
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Abigail Ching, Engr. Chelou Prado, Engr. Ma. Ailyn Olanda, Engr. Krisha Marie Buatista

Table A-8.4. Mission Summary Report for Mission Blk 42E

Figure A-8.22. Solution Status

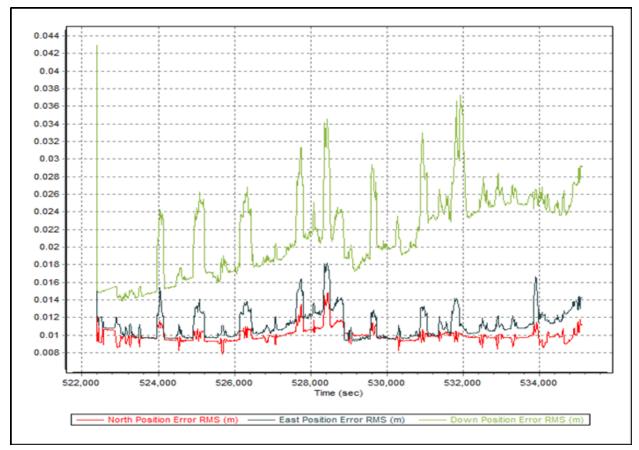


Figure A-8.23. Smoothed Performance Metric Parameters

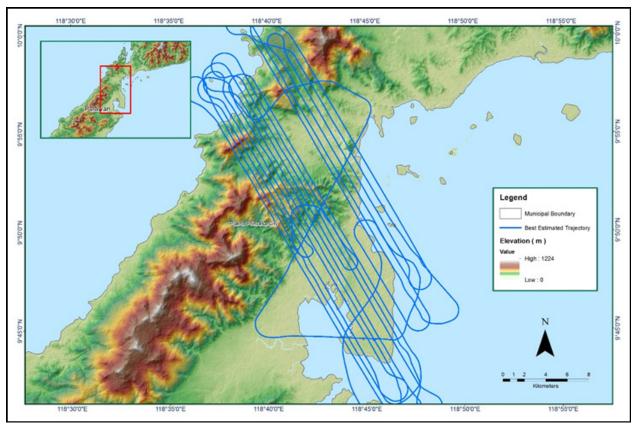


Figure A-8.24. Best Estimated Trajectory

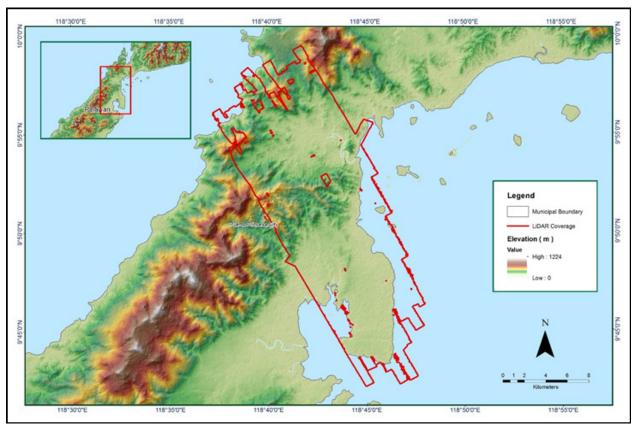


Figure A-8.25. Coverage of LiDAR data

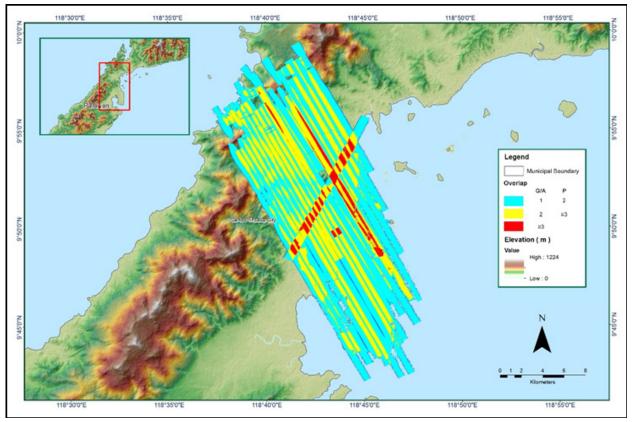


Figure A-8.26. Image of Data Overlap

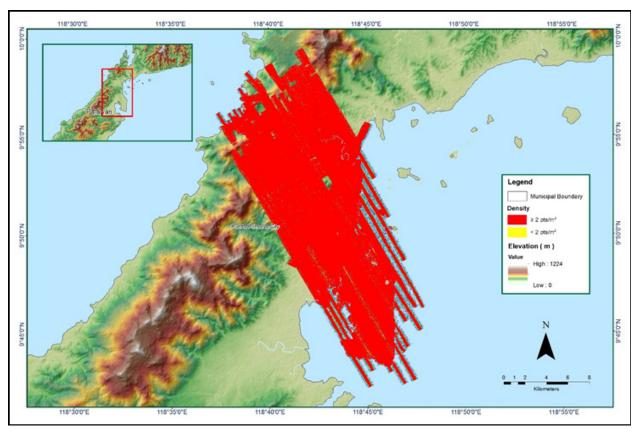


Figure A-8.27. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

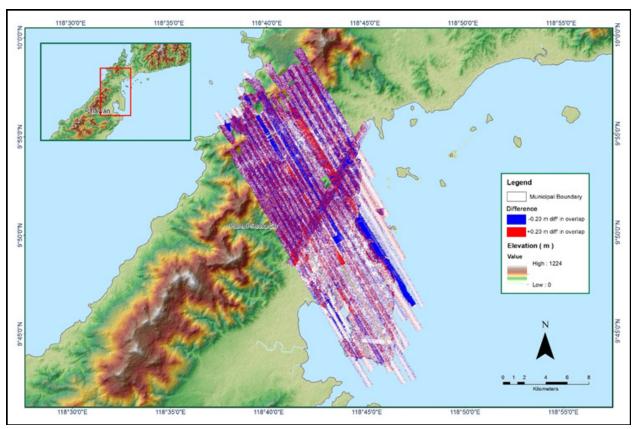


Figure A-8.28. Elevation difference between flight lines

Flight Area	West Palawan
Mission Name	Block 42E additional 2
Inclusive Flights	3049P
Range data size	18.30 GB
POS	162 MB
Image	31 GB
Transfer date	August 5, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.90
RMSE for East Position (<4.0 cm)	2.40
RMSE for Down Position (<8.0 cm)	5.40
Boresight correction stdev (<0.001deg)	0.000310
IMU attitude correction stdev (<0.001deg)	0.0.000769
GPS position stdev (<0.01m)	0.0091
Minimum % overlap (>25)	36.67
Ave point cloud density per sq.m. (>2.0)	3.33
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	87
Maximum Height	437.23 m
Minimum Height	41.08 m
Classification (# of points)	
Ground	45,509,887
Low vegetation	33,753,922
Medium vegetation	58,324,620
High vegetation	161,722,548
Building	2,408,370
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Engr. Antonio Chua Jr., Jovy Narisma

Table A-8.5. Mission Summary Report for Mission Blk 42E additional 2

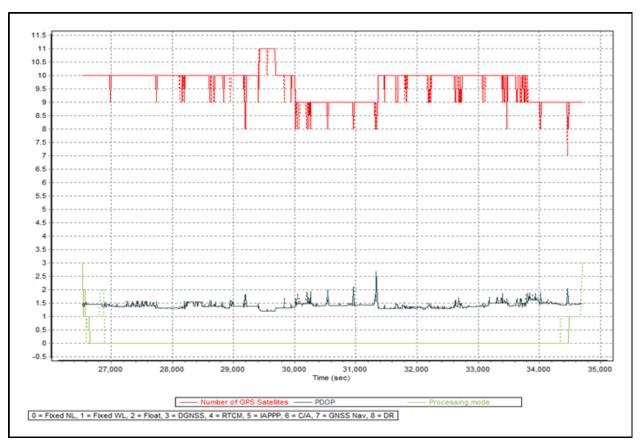


Figure A-8.29. Solution Status

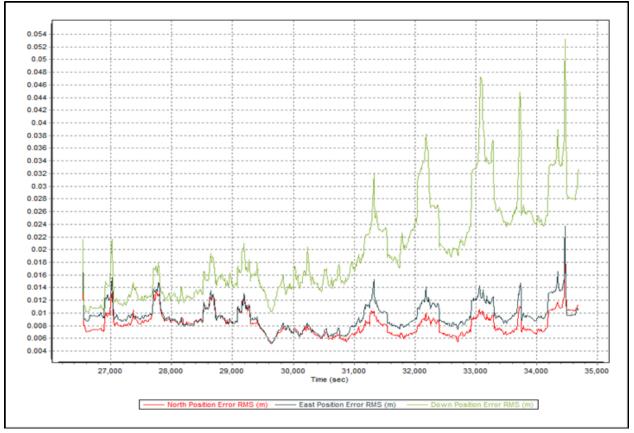


Figure A-8.30. Smoothed Performance Metric Parameters

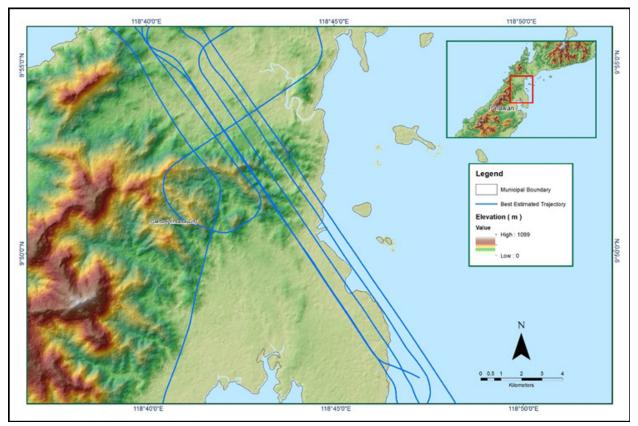


Figure A-8.31. Best Estimated Trajectory

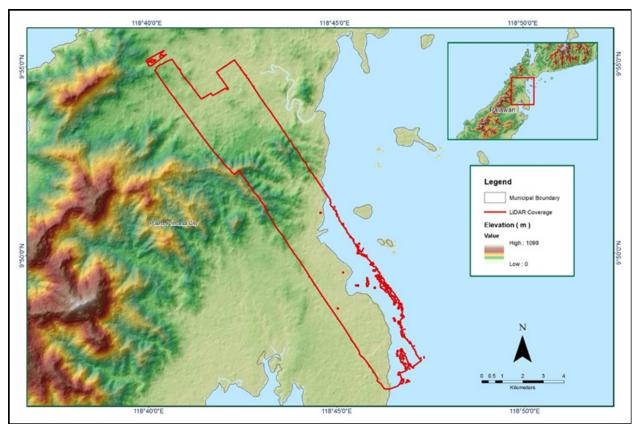


Figure A-8.32. Coverage of LiDAR data

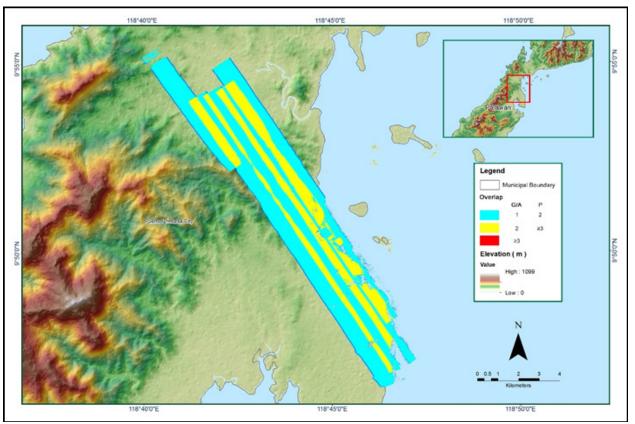


Figure A-8.33. Image of Data Overlap

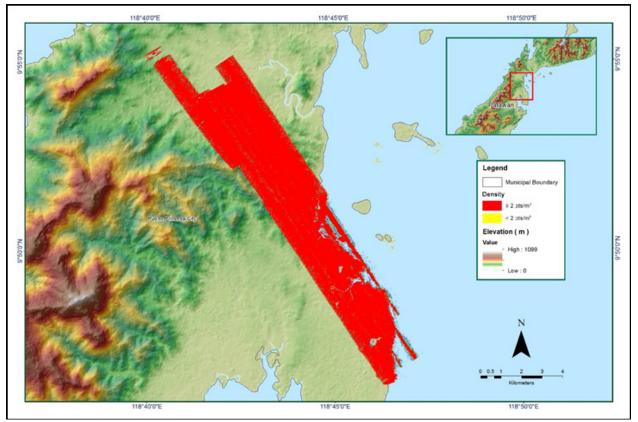


Figure A-8.34. Density map of merged LiDAR data

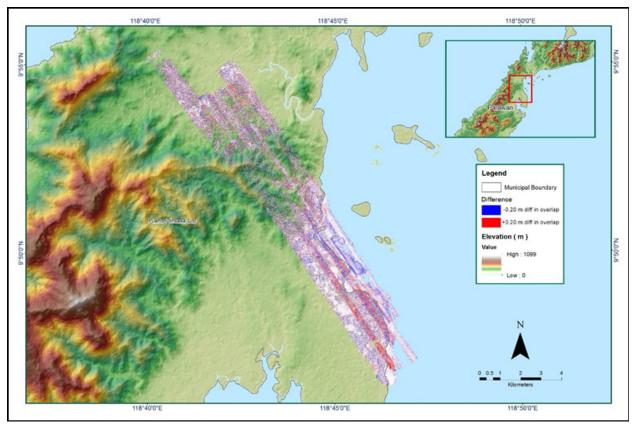


Figure A-8.35. Elevation difference between flight lines

Annex 9. Bacungan Model Basin Parameters

Basin	SCS Curve	urve Number Loss	r Loss	Clark Unit Hydrograph Transform	raph Transform			
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
W1000	18.8570	0000.66	0.0	0.7581	7.6714	0.0909507	0.1489	0.4706
W1010	67.9120	99.0000	0.0	0.1463	16.1910	0.0168014	0.3217	0.4900
W1020	63.2370	99.0000	0.0	0.4035	29.5840	0.0351838	0.3217	0.4802
W1030	19.6940	99.0000	0.0	0.1346	6.7240	0.0217881	0.1489	0.4706
W1040	11.6600	43.1200	0.0	0.1100	3.5895	0.0366851	0.1489	0.4706
W1050	55.4900	50.6000	0.0	0.0812	3.9963	0.0117154	0.1492	0.4706
W1060	43.8870	66.0000	0.0	0.0167	4.0121	0.0203575	0.1489	0.4706
W1070	36.4360	44.1510	0.0	0.1456	23.6350	0.0200627	0.3217	0.4900
W1080	24.4280	99.0000	0.0	0.0550	1.1819	.00027378	0.1452	0.2178
W1090	47.1900	44.0000	0.0	0.2572	12.9910	0.0559369	0.1489	0.4706
W1100	69.8360	99.0000	0.0	0.1608	17.7970	0.0293682	0.2189	0.4802
W1120	49.8865	34.1883	0.0	0.4577	14.9410	0.0055042	0.5000	0.5000
W1130	19.1260	99.0000	0.0	0.0724	2.1557	.000740109	0.1489	0.2178
W560	98.2440	99.0000	0.0	0.2292	25.9630	0.0597909	0.3217	0.4900
W570	29.3720	44.0000	0.0	0.1438	4.6922	0.0495166	0.2189	0.4706
W580	28.5270	99.0000	0.0	0.1352	4.3133	0.0019811	0.1489	0.4706
W590	65.7930	99.0000	0.0	0.4040	45.4120	0.0359434	0.3217	0.5000
W600	19.0910	64.6800	0.0	0.2685	5.8717	0.0369107	0.1489	0.4706
W610	18.0930	99.0000	0.0	0.0899	4.3098	0.0302332	0.1489	0.4706
W620	18.5980	99.0000	0.0	0.1213	2.6240	0.0204628	0.1489	0.4706
W630	61.7030	64.9490	0.0	0.0926	15.3630	0.0316066	0.2189	0.4802
W640	23.5280	99.0000	0.0	0.1274	6.0154	0.0048453	0.1489	0.3201
W650	26.8650	44.0000	0.0	0.3816	19.5470	0.0493105	0.3217	0.4900

Table A-9.1. Bacungan Model Basin Parameters

Basin	SCS Cu	SCS Curve Number Loss	- Loss	Clark Unit Hydrograph Transform	aph Transform			
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
W660	19.2000	99.0000	0.0	0.0795	5.8170	0.0174467	0.1489	0.4706
W670	10.7480	99.0000	0.0	0.0727	5.1270	0.0433084	0.1489	0.4706
W680	24.7530	99.0000	0.0	0.1226	5.0885	0.0193812	0.1489	0.3201
W690	45.7740	64.6800	0.0	0.1074	11.8350	0.0453317	0.2189	0.4802
W700	21.3110	99.0000	0.0	0.1104	18.4010	0.0406609	0.3217	0.4900
W710	26.2620	99.0000	0.0	0.1451	24.2130	0.0661721	0.3217	0.4900
W720	25.1980	99.0000	0.0	0.1641	4.9171	0.0395658	0.1489	0.4706
W730	29.5480	99.0000	0.0	0.1308	4.2697	0.0218588	0.1489	0.4706
W740	47.8140	99.0000	0.0	0.5475	27.6190	0.0594720	0.4729	0.5000
W750	12.6510	99.0000	0.0	0.3139	4.5760	0.0253081	0.1489	0.4706
W760	13.9420	99.0000	0.0	0.1017	3.3168	.000934162	0.1489	0.4706
W770	28.2290	99.0000	0.0	0.1960	5.6690	0.0102352	0.1489	0.4706
W780	31.9650	99.0000	0.0	0.1662	11.7140	0.0348122	0.1489	0.4706
W790	27.1380	99.0000	0.0	0.1826	5.4735	0.0211202	0.1489	0.4706
W800	32.4010	99.0000	0.0	1.0356	35.5110	0.0396380	0.4729	0.5000
W810	18.8400	99.0000	0.0	0.2642	5.1995	0.0032688	0.1489	0.4706
W820	23.7370	99.0000	0.0	0.1349	5.5141	0.0026897	0.1489	0.4706
W840	8.3022	99.0000	0.0	0.0922	2.9919	0.0015930	0.1489	0.3201
W850	13.4800	99.0000	0.0	0.2475	28.5130	0.0504042	0.3217	0.4900
W860	13.2740	99.0000	0.0	0.1555	6.5193	0.0184486	0.1489	0.4706
W870	17.4375	51.1000	0.0	0.3088	10.0790	0.0212074	0.5000	0.5000
W880	27.4610	44.3991	0.0	0.3857	12.5880	0.0096289	0.5000	0.5000
W890	24.8332	46.0093	0.0	0.4799	15.6620	0.0057193	0.5000	0.5000
006M	22.2265	47.7263	0.0	0.3877	12.6540	0.0237677	0.5000	0.5000
W910	18.0990	99.0000	0.0	0.1669	5.5335	0.0372311	0.1489	0.4706

Initial Abstraction (mm) Curve Number (%) Impervious (%) Time of Concentration (HR) Concentration (HR) Concentration (HR) <th< th=""><th>Basin</th><th>SCS Curve I</th><th>rve Number Loss</th><th>Loss</th><th>Clark Unit Hydrograph Transform</th><th>raph Transform</th><th></th><th></th><th></th></th<>	Basin	SCS Curve I	rve Number Loss	Loss	Clark Unit Hydrograph Transform	raph Transform			
13.1080 99.0000 0.0 0.0932 8.3735 99.0000 0.0 0.0829 8.3735 99.0000 0.0 0.0829 18.8400 99.0000 0.0 0.1385 8.7446 99.0000 0.0 0.1385 8.7446 99.0000 0.0 0.1385 8.3735 97.4800 0.0 0.0709 11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0655	Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (M3/S)	Recession Constant	Ratio to Peak
8.3735 99.0000 0.0 0.0829 18.8400 99.0000 0.0 0.2667 8.7446 99.0000 0.0 0.1385 8.7446 99.0000 0.0 0.1385 11.7740 97.4800 0.0 0.0709 11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640	W920	13.1080	99.0000	0.0	0.0932	15.0610	0.0493632	0.2189	0.4802
18.8400 99.0000 0.0 0.2667 8.7446 99.0000 0.0 0.1385 8.3735 97.4800 0.0 0.0709 11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0865	W930	8.3735	99.0000	0.0	0.0829	4.7799	0.0060743	0.1489	0.4706
8.7446 99.0000 0.0 0.1385 8.3735 97.4800 0.0 0.0709 11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0865	W940	18.8400	99.0000	0.0	0.2667	3.8768	0.0157664	0.1489	0.4706
8.3735 97.4800 0.0 0.0709 11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0865	W950	8.7446	99.0000	0.0	0.1385	4.5152	0.0228637	0.1489	0.4706
11.7740 97.2090 0.0 0.1105 13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0865	W960	8.3735	97.4800	0.0	0.0709	3.5766	0.0024129	0.1489	0.4706
13.2690 62.7200 0.0 0.1640 22.9500 99.0000 0.0 0.0865	W970	11.7740	97.2090	0.0	0.1105	5.3041	0.0620022	0.1489	0.4706
22.9500 99.0000 0.0 0.0865	W980	13.2690	62.7200	0.0	0.1640	28.8860	0.0101509	0.2189	0.4802
)))))))))))))))))))	066M	22.9500	0000.66	0.0	0.0865	6.6786	0.0061932	0.1489	0.4706

Reach			Muskingum Cunge Channel Routing	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	2181.4	0.0158397	0.02	Trapezoid	40	1
R1140	Automatic Fixed Interval	237.28	0.0294399	0.02	Trapezoid	40	1
R130	Automatic Fixed Interval	2478.2	0.0696279	0.02	Trapezoid	40	1
R140	Automatic Fixed Interval	4387.6	0.0114757	0.02	Trapezoid	40	1
R190	Automatic Fixed Interval	3682.3	0.0090819	0.02	Trapezoid	40	1
R200	Automatic Fixed Interval	291.42	0.0050308	0.02	Trapezoid	40	1
R220	Automatic Fixed Interval	1069.1	0.0011576	0.02	Trapezoid	40	1
R240	Automatic Fixed Interval	655.98	0.0037033	0.02	Trapezoid	40	1
R250	Automatic Fixed Interval	4864.6	0.0048277	0.02	Trapezoid	40	1
R260	Automatic Fixed Interval	3745.8	0.0058359	0.02	Trapezoid	40	1
R270	Automatic Fixed Interval	509.41	0.0026210	0.02	Trapezoid	40	1
R280	Automatic Fixed Interval	821.84	0.0010244	0.02	Trapezoid	40	1
R290	Automatic Fixed Interval	430.42	0.0078706	0.004	Trapezoid	40	1
R310	Automatic Fixed Interval	973.26	0.0011080	0.004	Trapezoid	40	1
R320	Automatic Fixed Interval	823.05	0.0011080	0.004	Trapezoid	40	1
R360	Automatic Fixed Interval	2297.9	0.0020770	0.02	Trapezoid	40	1
R370	Automatic Fixed Interval	552.13	0.0037127	0.02	Trapezoid	40	1
R390	Automatic Fixed Interval	493.85	0.0153568	0.02	Trapezoid	40	1
R40	Automatic Fixed Interval	404.56	0.0013382	0.02	Trapezoid	40	1
R400	Automatic Fixed Interval	4046.5	0.0051451	0.02	Trapezoid	40	1
R410	Automatic Fixed Interval	1592.3	0.0091357	0.02	Trapezoid	40	1
R420	Automatic Fixed Interval	1130.5	0.0076201	0.02	Trapezoid	40	1

Table A-10.1. Bacungan Model Reach Parameters

Annex 10. Bacungan Model Reach Parameters

Keacn			Muskingum Cunge Channel Routing	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R440	Automatic Fixed Interval	1427.1	0.0099449	0.02	Trapezoid	40	1
R450	Automatic Fixed Interval	760.12	0.0157952	0.02	Trapezoid	40	1
R470	Automatic Fixed Interval	925.69	0.0071733	0.02	Trapezoid	40	1
R480	Automatic Fixed Interval	100.71	0.0704455	0.02	Trapezoid	40	1
R50	Automatic Fixed Interval	1895.1	0.0347359	0.02	Trapezoid	40	1
R70	Automatic Fixed Interval	439.41	0.0301299	0.02	Trapezoid	40	1

ŝ
int
Po
ion
dation
Valid
ld V
ie
In I
nga
ICUI
Ba
c 11. Bacungan F
ex
nnex

◀

1.1.77		• •					•
Valida	Validation Coordinates (in WGS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
Lat	Long						
9.88759159000	118.71482210000	0.03	0	-0.03			25-Year
9.88812233300	118.70701440000	0.03	0	-0.03			25-Year
9.89397781100	118.71259200000	0.03	0	-0.03			25-Year
9.89388885700	118.69287670000	0.03	0	-0.03			25-Year
9.89420310600	118.71141540000	0.03	0	-0.03			25-Year
9.89393705200	118.68648390000	0.03	0	-0.03			25-Year
9.89406860000	118.6891300000	0.25	0	-0.25			25-Year
9.89417786300	118.69115490000	0.03	0	-0.03			25-Year
9.89457372600	118.72137540000	0.03	0	-0.03			25-Year
9.89470376800	118.68779000000	0.03	0	-0.03			25-Year
9.89506284900	118.71286530000	0.03	0	-0.03			25-Year
9.89521046800	118.72212640000	0.03	0	-0.03			25-Year
9.89529796100	118.72087520000	0.03	0	-0.03			25-Year
9.89571406100	118.72454660000	0.03	0	-0.03			25-Year
9.89578970000	118.72511000000	0.03	0	-0.03			25-Year
9.89537830000	118.6850200000	1.49	0	-1.49			25-Year
9.89545930000	118.69033000000	1.18	0.35	-0.83	Lawin	Oct. 2016	25-Year
9.89539050000	118.6838100000	0.03	0	-0.03			25-Year
9.89588576000	118.71654510000	0.03	0	-0.03			25-Year
9.89550802900	118.68573350000	1.53	0	-1.53			25-Year
9.89585810000	118.6914300000	0.03	0	-0.03			25-Year
9.89626160100	118.71395800000	0.03	0	-0.03			25-Year

Table A-11.1. Bacungan Field Validation Points

	(in WGS84)	Var (m)	Points (m)		Event	Date	Raın Return / Scenario
	Long						
9.89633243900	118.71706170000	0.03	0	-0.03			25-Year
9.89648130000	118.72286000000	0.8	0	-0.8			25-Year
9.89592570000	118.67859000000	1.16	0	-1.16			25-Year
9.89604910000	118.6869600000	1.09	0	-1.09			25-Year
9.89598240000	118.68003000000	1.53	0	-1.53			25-Year
9.89691980000	118.72374000000	0.59	0.35	-0.24	Lawin	Oct. 2016	25-Year
9.89734040000	118.72867000000	0.03	0	-0.03			25-Year
9.89694189100	118.67500280000	0.03	0	-0.03			25-Year
9.89719520000	118.66792000000	0.03	0	-0.03			25-Year
9.89810770000	118.7220700000	0.29	0.47	0.18	Karen	Oct. 2016	25-Year
9.89778679800	118.69212830000	0.03	0	-0.03			25-Year
9.89792030000	118.6685000000	0.03	0.3	0.27	Lawin	Oct. 2016	25-Year
9.89830800000	118.67018000000	1.33	0	-1.33			25-Year
9.89830885200	118.66921930000	0.03	0	-0.03			25-Year
9.89881006700	118.69311750000	0.03	0	-0.03			25-Year
9.90140190000	118.6942600000	0.03	0	-0.03			25-Year
9.90281132600	118.69710410000	0.03	0	-0.03			25-Year
9.90368840000	118.69564000000	2.13	0.47	-1.66		2015	25-Year
9.90600160000	118.69765000000	0.03	0	-0.03			25-Year
9.90615934300	118.69828740000	0.03	0	-0.03			25-Year
9.90693802400	118.69994230000	0.13	0	-0.13			25-Year
9.90736882200	118.69942370000	0.03	0	-0.03			25-Year
9.90880920000	118.6897800000	0.03	1	0.97			25-Year
9.90925020400	118.70005790000	0.06	0	-0.06			25-Year
1		ĺ					

Point Number	Validation (in V	Validation Coordinates (in WGS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
48	9.90956719600	118.70104600000	0.05	0	-0.05			25-Year
49	9.90973240000	118.69758000000	2.54	0	-2.54			25-Year
50	9.90981460000	118.70140000000	0.03	0.55	0.52	Yolanda	Nov. 2013	25-Year
51	9.90986343400	118.70336950000	0.03	0	-0.03			25-Year
52	9.90986546800	118.69632020000	0.03	0	-0.03			25-Year
53	9.91007494500	118.70261210000	0.03	0	-0.03			25-Year
54	9.91046108200	118.70104720000	0.03	0	-0.03			25-Year
55	9.91055130000	118.69766000000	2.52	0.5	-2.02	Ondoy	Sept. 2009	25-Year
56	9.91077133700	118.70180510000	0.03	0	-0.03			25-Year
57	9.91110160000	118.70434000000	2.03	0.36	-1.67	Yolanda	Nov. 2013	25-Year
58	9.91106880300	118.70119530000	0.06	0	-0.06			25-Year
59	9.91120293500	118.69636800000	0.03	0	-0.03			25-Year
60	9.91131310000	118.70466000000	3.12	0.45	-2.67	Yolanda	Nov. 2013	25-Year
61	9.91136640000	118.7050300000	2.82	0.31	-2.51			25-Year
62	9.91149980000	118.70347000000	2.04	1	-1.04	Lando	Oct. 2015	25-Year
63	9.91154310000	118.70434000000	3.66	0.6	-3.06	Yolanda	Nov. 2013	25-Year
64	9.91173870000	118.70514000000	3.91	0.65	-3.26	Yolanda	Nov. 2013	25-Year
65	9.91173787500	118.70158530000	0.03	0	-0.03			25-Year
66	9.91171583200	118.69544540000	0.03	0	-0.03			25-Year
67	9.91268858900	118.69218150000	0.03	0	-0.03			25-Year
68	9.91328830000	118.70670000000	3.37	0.65	-2.72	Ondoy	Sept. 2009	25-Year
69	9.91313335700	118.69328620000	0.2	0	-0.2			25-Year
70	9.91356372700	118.69276730000	0.03	0	-0.03			25-Year
71	9.91398470000	118.70768000000	2.96	0.65	-2.31	Ondoy	Sept. 2009	25-Year
72	9.91428590000	118.7006000000	3.33	1	-2.33	Yolanda	Nov. 2013	25-Year

Point Number	Validation (in V	Validation Coordinates (in WGS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
73	9.91539907300	118.71621810000	0.03	0	-0.03			25-Year
74	9.91561564200	118.72979930000	0.03	0	-0.03			25-Year
75	9.91573570000	118.70911000000	2.36	1.8	-0.56	Glenda	July 2014	25-Year
76	9.91663022700	118.71546640000	0.04	0	-0.04			25-Year
77	9.91671060000	118.70974000000	2.46	2.3	-0.16	Frank	June 2008	25-Year
78	9.91713350000	118.71532000000	0.03	1.05	1.02	Yolanda	Nov. 2013	25-Year
79	9.91736157000	118.71132230000	0.36	0	-0.36			25-Year
80	9.91769581400	118.73283300000	0.03	0	-0.03			25-Year
81	9.91745070000	118.71271000000	0.03	1.7	1.67	Glenda	July 2014	25-Year
82	9.91754649100	118.71424270000	0.03	0	-0.03			25-Year
83	9.91735370000	118.69225000000	0.03	1.3	1.27			25-Year
84	9.917729728	118.7121646	1.71	0	-1.71			25-Year
85	9.917811315	118.7155575	0.03	0	-0.03			25-Year
86	9.918076072	118.7141749	0.03	0	-0.03			25-Year
87	9.918303932	118.7198459	0.03	0	-0.03			25-Year
88	9.918571485	118.7183045	0.03	0	-0.03			25-Year
89	9.9184911	118.70672	5.57	1.3	-4.27	Lando	Oct. 2015	25-Year
06	9.918753577	118.7117567	0.03	0	-0.03			25-Year
91	9.918749	118.70529	3.49	0.7	-2.79	Lawin	Oct. 2016	25-Year
92	9.918767	118.70524	3.17	2.6	-0.57	Ondoy	Sept. 2009	25-Year
93	9.9189997	118.7048	2.83	1.13	-1.7	Ondoy	Sept. 2009	25-Year
94	9.919628076	118.7191141	0.26	0	-0.26			25-Year
95	9.91911533	118.6790555	0.03	0	-0.03			25-Year
96	9.920117569	118.6910732	0.05	0	-0.05			25-Year
97	9.920207719	118.6900343	0.03	0	-0.03			25-Year

Point Number	Validation (in V	Validation Coordinates (in WGS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
98	9.92084838	118.7235193	0.03	0	-0.03			25-Year
66	9.920512	118.69659	1.54	1	-0.54	Heavy Rain		25-Year
100	9.921161138	118.7269511	0.06	0	-0.06			25-Year
101	9.921207548	118.7252589	0.24	0	-0.24			25-Year
102	9.921310985	118.7255436	0.76	0	-0.76			25-Year
103	9.921474366	118.7271847	0.03	0	-0.03			25-Year
104	9.92158215	118.7229681	1.12	0	-1.12			25-Year
105	9.921739421	118.7224131	4.8	0	-4.8			25-Year
106	9.9217252	118.69021	0.03	0.75	0.72	Yolanda	Nov. 2013	25-Year
107	9.922825927	118.6766556	0.03	0	-0.03			25-Year
108	9.923488201	118.7251808	0.03	0	-0.03			25-Year
109	9.923721321	118.7315631	0.05	0	-0.05			25-Year
110	9.923109853	118.6792426	1.59	0	-1.59			25-Year
111	9.923124994	118.6770572	0.03	0	-0.03			25-Year
112	9.923825932	118.729335	0.03	0	-0.03			25-Year
113	9.924053844	118.7309005	0.03	0	-0.03			25-Year
114	9.924175722	118.7351195	0.09	0	-0.09			25-Year
115	9.92434317	118.7315014	0.03	0	-0.03			25-Year
116	9.924496835	118.7342663	0.04	0	-0.04			25-Year
117	9.923824285	118.6771636	0.07	0	-0.07			25-Year
118	9.924040121	118.6780673	0.08	0	-0.08			25-Year
119	9.924037245	118.6772645	0.06	0	-0.06			25-Year
120	9.924836621	118.7337616	0.03	0	-0.03			25-Year
121	9.9243403	118.68419	0.03	0	-0.03			25-Year

Point Number	Validation (in V	Validation Coordinates (in WGS84)	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return / Scenario
	Lat	Long						
122	9.925038148	118.6762729	0.06	0	-0.06			25-Year
123	9.926187082	118.7357826	0.03	0	-0.03			25-Year
124	9.927585388	118.7289646	0.03	0	-0.03			25-Year
125	9.9287066	118.67244	0.03	0	-0.03			25-Year
126	9.929511904	118.6718112	0.04	0	-0.04			25-Year
127	9.93095007	118.7383141	0.03	0	-0.03			25-Year
128	9.930508744	118.6716334	0.11	0	-0.11			25-Year
129	9.93168121	118.6706984	0.03	0	-0.03			25-Year
130	9.938630477	118.7485865	0.03	0	-0.03			25-Year
131	9.938675263	118.7410512	0.03	0	-0.03			25-Year
132	9.939114563	118.7412163	0.03	0	-0.03			25-Year
133	9.939876401	118.7433314	0.09	0	-0.09			25-Year
134	9.941810158	118.7482706	0.03	0	-0.03			25-Year
135	9.943288329	118.7493273	0.19	0	-0.19			25-Year
136	9.943862133	118.7486824	0.07	0	-0.07			25-Year
137	9.945339382	118.7478469	1.21	0	-1.21			25-Year

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB) Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB) Ms. Sandra Samantela (CHE, UPLB) Dr. Cristino L. Tiburan (CFNR, UPLB) Engr. Ariel U. Glorioso (CEAT, UPLB) Ms. Miyah D. Queliste (CAS, UPLB) Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura Angelica T. Magpantay Gemmalyn E. Magnaye Jayson L. Arizapa Kevin M. Manalo Leendel Jane D. Punzalan Maria Michaela A. Gonzales Paulo Joshua U. Quilao Sarah Joy A. Acepcion Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula