
ASSESSMENT OF THE REAL PROPERTY OF THE LOCAL PROPERTY OF THE LOCAL

LiDAR Surveys and Flood Mapping of Amnay River

and the same of the plant of the same of t

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Los Baños 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and E.R. Abucay (Eds.) (2017), LiDAR Surveys and Flood Mapping of Amnay River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-184pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Asst. Prof. Edwin R. Abucay

Project Leader, Phil-LiDAR 1 Program University of the Philippines Los Baños Los Banos, Laguna, Philippines 4031 E-mail: erabucay@up.edu.ph

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-121-8

i

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	
LIST OF FIGURES.	
LIST OF ACRONYMS AND ABBREVIATIONS)
CHARTER 4 OVERVIEW OF THE BROCKAM AND ANAMAY BIVER	
CHAPTER 1: OVERVIEW OF THE PROGRAM AND AMNAY RIVER.	
1.1 Background of the Phil-LiDAR 1 Program.	
1.2 Overview of the Amnay River Basin.	1
CHARTER 2. LIDAR DATA ACCURCITION OF THE ANAMAY FLOODER AIM	_
CHAPTER 2: LIDAR DATA ACQUISITION OF THE AMNAY FLOODPLAIN	
2.1 Fight Plans	
2.3 Flight Missions	
2.4 Survey Coverage	13
CHAPTER 3: LIDAR DATA PROCESSING OF THE AMNAY FLOODPLAIN	15
3.1 Overview of the LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data.	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization.	
3.7 LiDAR Image Processing and Orthophotograph Rectification.	
3.8 DEM Editing and Hydro-Correction.	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model.	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS	
OF THE AMNAY RIVER BASIN	
4.1 Summary of Activities	
4.2 Control Survey.	
4.3 Baseline Processing.	
4.4 Network Adjustment.	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey.	
4.7 River Bathymetric Survey	6
CHAPTER 5: FLOOD MODELING AND MAPPING.	70
5.1 Data Used for Hydrologic Modeling.	
5.1.1 Hydrometry and Rating Curves.	
5.1.2 Precipitation.	
5.1.3 Rating Curves and River Outflow.	
5.2 RIDF Station	
5.3 HMS Model.	
5.4 Cross-section Data	
5.5 Flo 2D Model.	
5.6 Results of HMS Calibration.	
5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	103
ANNEVEC	40
Annex 1. Ontach Technical Specification of the Aguarius Sensor	
Annex 1. Optech Technical Specification of the Aquarius Sensor	
A THICK AT INTUINING OCI UNCAUGH OF NOTCICE CONTROL OF UNITS OF UNITED AND AND VEY.	±00

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey	112
Annex 4. The LIDAR Survey Team Composition	
Annex 5. Data Transfer Sheet for Silaga Floodplain	117
Annex 6. Flight Logs for the Flight Missions.	
Annex 7. Flight Status Reports	129
Annex 8. Mission Summary Reports	139
Annex 9. Amnay Model Basin Parameters	169
Annex 10. Amnay Model Reach Parameters	171
Annex 11. Amnay Field Validation	
Annex 12. Phil-LiDAR 1 UPLB Team Composition	
·	

LIST OF TABLES

Table 1. Flight planning parameters for the Aquarius LiDAR system	3
Table 2. Flight planning parameters for the Pegasus LiDAR system	3
Table 3. Details of the recovered NAMRIA horizontal reference point MRW-6 used as base station for the LiDAR acquisition	е
Table 4. Details of the recovered NAMRIA horizontal reference point MRW-30 used as base station for the LiDAR acquisition	7
Table 5. Details of the recovered NAMRIA horizontal reference point MRW-32 used as base station for the LiDAR acquisition	8
Table 6. Details of the recovered NAMRIA horizontal reference point MRW-34 used as base station for the LiDAR acquisition	Ç
Table 7. Details of the recovered NAMRIA horizontal reference point MRW-54 used as base station for the LiDAR acquisition	10
Table 8. Details of the recovered NAMRIA vertical reference point MC-121 used as base station for the LiDAR acquisition with established coordinates	11
Table 9. Details of the established MRWDAC-00 used as base station for the LiDAR acquisition	11
Table 10. Ground Control Points used during LiDAR Data Acquisition	11
Table 11. Flight missions for LiDAR data acquisition in Amnay Floodplain	12
Table 12. Actual parameters used during LiDAR data acquisition	12
Table 13. List of municipalities and cities surveyed during the Amnay Floodplain LiDAR survey	13
Table 14. Self-Calibration Results values for Amnay flights	18
Table 15. List of LiDAR blocks for Amnay Floodplain	19
Table 16. Amnay classification results in TerraScan	24
Table 17. LiDAR blocks with its corresponding area	28
Table 18. Shift Values of each LiDAR Block of Amnay Floodplain	30
Table 19. Calibration Statistical Measures	34
Table 20. Validation Statistical Measures	35
Table 25. List of reference and control points used during the survey in Amnay River	41
Table 26. Baseline Processing Report for AMnay River Basin Static Survey	50
Table 27. Control Point Constraints	52
Table 28. Adjusted Grid Coordinates	52
Table 29. Adjusted Geodetic Coordinates	54
Table 30. Reference and control points and its location	55
Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA	69
Table 32. Range of Calibrated Values for Amnay	78
Table 33. Summary of the Efficiency Test of Amnay HMS Model	79
Table 34. Peak values of the Amnay HECHMS Model outflow using the Ambulong RIDF 24-hour values	QΓ
Table 35. Municipalities affected in Amnay Floodplain	
Table 36. Affected Areas in Sablayan, Occidental Mindoro during 5-Year Rainfall Return Period	
, , = = = = = = = = = = = = = = = = = =	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Table 37. Affected Areas in Santa Cruz, Occidental Mindoro during 5-Year Rainfall Return Period	91
Table 38. Affected Areas in Sablayan, Occidental Mindoro during 25-Year Rainfall Return Period	.93
Table 39. Affected Areas in Santa Cruz, Occidental Mindoro during 25-Year Rainfall Return Period	94
Table 40. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period	.95
Table 41. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period	.95
Table 42. Affected Areas in Santa Cruz, Occidental Mindoro during 100-Year Rainfall Return Period	.96
Table 43. Actual flood vs simulated flood depth at different levels in the Amnay River Basin	.99
Table 44. Summary of the Accuracy Assessment in the Amnay River Basin Survey	99

LIST OF FIGURES

Figure 1. Map of the Amnay River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Amnay Floodplain survey	4
Figure 3. NAMRIA reference point MRW-6 (a) as recovered by the field team and GPS set-up	
over MRW-6 as recovered in Patrick Bridge in Brgy. Yabang, municipality of Sablayan,	
Occidental Mindoro (b)	6
Figure 4. NAMRIA reference point MRW-30 (a) as recovered by the field team and GPS set-up	
over MRW-30 as recovered in Amnay Bridge in Brgy. Pinagturilan, municipality	
of Sta. Cruz, Occidental Mindoro (b)	7
Figure 5. NAMRIA reference point MRW-32 (a) as recovered by the field team and GPS set-up	
over MRW-32 as recovered in the corner of a day care center in Brgy. Fatima,	
municipality of Mamburao, Occidental Mindoro (b)	8
Figure 6. NAMRIA reference point MRW-34 (a) as recovered by the field team and GPS set-up	
over MRW-34 as recovered in Balibago Bridge in Brgy. Armado, municipality	
of Abra de Ilog, Occidental Mindoro (b)	9
Figure 7. NAMRIA reference point MRW-54 (a) as recovered by the field team and GPS set-up	
over MRW-54 as recovered in near basketball open court in Brgy. Malisbong,	
municipality of Sablayan, Occidental Mindoro (b)	10
Figure 8. Actual LiDAR survey coverage for Amnay Floodplain.	14
Figure 9. Schematic Diagram for Data Pre-Processing Component	15
Figure 10. Smoothed Performance Metrics of Amnay Flight 1136A.	16
Figure 11. Solution Status Parameters of Amnay Flight 1136A.	17
Figure 12. Best Estimated Trajectory for Amnay Floodplain	18
Figure 13. Boundary of the processed LiDAR data over Amnay Floodplain	19
Figure 14. Image of data overlap for Amnay Floodplain.	20
Figure 15. Pulse density map of merged LiDAR data for Amnay Floodplain	21
Figure 16. Elevation difference map between flight lines for Amnay Floodplain	22
Figure 17. Quality checking for Amnay flight 1136A using the Profile Tool of QT Modeler	23
Figure 18. Tiles for Amnay Floodplain (a) and classification results (b) in TerraScan	24
Figure 19. Point cloud before (a) and after (b) classification.	25
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Amnay Floodplain.	25
Figure 21. Amnay Floodplain with available orthophotographs.	26
Figure 22. Sample orthophotograph tiles for Amnay Floodplain.	27
Figure 23. Portions in the DTM of Amnay Floodplain – a bridge before (a) and after (b) manual	
editing; a mountain (c) and after (d) data retrieval; and a building before (e)	
and after (f) manual editing	29
Figure 24. Correlation plot between calibration survey points and LiDAR data	34
Figure 25. Correlation plot between validation survey points and LiDAR data	35
Figure 27. Correlation plot between validation survey points and LiDAR data	35
Figure 28. Map of Amnay Floodplain with bathymetric survey points shown in blue	36
Figure 29. Amnay River survey Extent of the bathymetric survey (in blue) in Amnay River	
and the LiDAR data validation (in red)	
Figure 30. GNSS Network of Occidental Mindoro Field Survey	40
Figure 31. GNSS base set-up, Trimble® SPS 882, at MRW-24 in front of Iriron Elementary School	
in Brgy. Iriron, Municipality of Calintaan, Occidental Mindoro	42
Figure 32, GNSS receiver setup, Trimble® SPS 882, at MRW- 30 Amnay Bridge approach	

	in Sitio Kabangkalan, Brgy. Pinagturilan, Municipality of Santa Cruz, Occidental Mindoro	43
Figure 33.	GNSS receiver set-up, Trimble® SPS 882, at MC-200, Lumintao Bridge approach	
	in Brgy. Magsikap, Municipality of Rizal, Occidental Mindoro	44
Figure 34.	GNSS receiver set-up, Trimble® SPS 882, at MC-212, Busuanga Bridge approach	
	in Bgry. Sto Niño, Municipality of Rizal, Occidental Mindoro	45
Figure 35.	GNSS base, Trimble® SPS 852, at MC-90, used as marker, located at the Pola Bridge	
	approach in Brgy. Barahan, Municipality of Santa Cruz, Occidental Mindoro	46
Figure 36.	GNSS receiver, Trimble® SPS 882, at GPS-4 on right side of the road abutment	
	after Caguray Bridge going to Bulalacao in Brgy. Poblacion, Municipality of Magsaysay,	
	Occidental Mindoro	47
Figure 37.	GNSS base receiver set-up, Trimble® SPS 882, at UP-PIN Pinamanaan Bridge approach	
	in Brgy. Mapaya, Municipality of San Jose, Occidental Mindoro	48
Figure 38.	GNSS receiver set-up, Trimble® SPS 882, at UP-MOM, Mompong Bridge approach	
	in Brgy. Lumang Bato, Municipality of Sablayan, Occidental Mindoro	49
Figure 39.	GNSS receiver set up, Trimble® SPS 882, at UP-ALI, Alipid Bridge approach	
	in Brgy. Sto. Niño, Municipality of Sablayan, Occidental Mindoro	49
Figure 40.	Bridge cross-section acquisition along the upstream side of Amnay Bridge,	
	Brgy. Pagasa, Municipality of Sablayan	56
Figure 41.	Amnay bridge cross-section location map	57
Figure 42.	Amnay Bridge cross-section diagram	58
Figure 43.	Amnay Bridge Data Form	59
Figure 44.	Water level marking at Amnay Bridge, Brgy. Pagasa, Municipality of Sablayan	60
Figure 45.	Validation points acquisition survey set-up	61
Figure 46.	Validation Point Acquisition Survey for the Amnay River Survey Area	62
Figure 47.	Bathymetry set-up and execution using Hi-Target™ for Amnay River	63
Figure 48.	Bathymetric points gathered from Amnay River	64
Figure 49.	Amnay centerline riverbed profile	. 65
Figure 50.	The location map of Amnay HEC-HMS model used for calibration	66
Figure 51.	Cross-Section Plot of Pagasa (also known as Amnay) Bridge	67
Figure 52.	Rating Curve at Pagasa, Occidental Mindoro	68
Figure 53.	Rainfall and outflow data at Amnay used for modeling	68
Figure 54.	Location of Ambulong RIDF relative to Amnay River Basin	70
Figure 55.	Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods	70
Figure 56.	Soil map of the Amnay River Basin used for the estimation of the CN parameter	71
Figure 57.	Land cover map of the Amnay River Basin used for the estimation of the CN	
	and watershed lag parameters of the rainfall-runoff model	72
Figure 58.	Slope Map of the Amnay River Basin	73
Figure 59.	Stream Delineation Map of the Amnay River Basin	74
Figure 60.	The Amnay River Basin model generated using HEC-HMS	75
Figure 61.	River cross-section of Amnay River generated through Arcmap HEC GeoRAS tool	76
Figure 62.	Screenshot of subcatchment with the computational area to be modeled in FLO-2D	
	GDS Pro	77
Figure 63.	Outflow Hydrograph of Amnay produced by the HEC-HMS model compared	
	with observed outflow	78
Figure 64.	Outflow hydrograph at Amnay Station generated using Ambulong RIDF simulated	
	in HEC-HMS	80
Figure 65.	Amnay HEC-RAS Output	81
Figure 66	100-year Rain Return Flood Hazard Man for Amnay-Ihod-Momnong Floodolain	83

Figure 67. 100-year Rain Return Flood Depth Map for Amnay-Ibod-Mompong Floodplain84
Figure 68. 25-year Rain Return Flood Hazard Map for Amnay-Ibod-Mompong Floodplain85
Figure 69. 25-year Rain Return Flood Depth Map for Amnay-Ibod-Mompng Floodplain86
Figure 70. 5-year Flood Hazard Map for Amnay-Ibod-Mompong Floodplain87
Figure 71. 5-year Rain Return Flood Depth Map for Amnay-Ibod-Mompong Floodplain88
Figure 72. Affected Areas in Sablayan, Occidental Mindoro during 5-Year Rainfall Return Period89
Figure 73. Affected Areas in Santa Cruz, Occidental Mindoro during 5-Year Rainfall Return Period91
Figure 74. Affected Areas in Sablayan, Occidental Mindoro during 25-Year Rainfall Return Period92
Figure 75. Affected Areas in Santa Cruz, Occidental Mindoro during 25-Year Rainfall Return Period94
Figure 76. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period96
Figure 77. Affected Areas in Santa Cruz, Occidental Mindoro during 100-Year Rainfall Return Period.97
Figure 78. Validation points for 25-year Flood Depth Map of Amnay Floodplain98
Figure 79. Flood map depth vs actual flood depth99

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
ВМ	benchmark			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
НС	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			
	<u>'</u>			

IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
LiDAR	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
PPK	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UPLB	University of the Philippines Los Baños			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND AMNAY RIVER

Enrico C. Paringit, Dr. Eng., Asst. Prof. Edwin R. Abucay, Engr. Ariel U. Glorioso

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program also aimed to produce an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Los Baños (UPLB). UPLB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 45 river basins in the Southern Tagalog region. The university is located in Los Baños City in the province of Laguna.

1.2 Overview of the Amnay River Basin

The Amnay River Basin, a 74,700-hectare watershed, covers some parts of Municipalities of Sablayan and Sta. Cruz in Occidental Mindoro. It covers the barangays of San Agustin, Batong Buhay, Claudio Salgad, Ibud, Ilvita, Lagnas, Malisbong, Paetan, Pag-asa, San Francisco, San Vicente, Tagumpay, and Victoria in the municipality of Sablayan; and Casague, Lumangbayan, and Pinagturilan in Santa Cruz. The DENR River Basin Control Office (RCBO) states that the Amnay River Basin has a drainage area of 466 km2 and an estimated 746 million cubic meter (MCM) annual run-off.

The basin area has five geological classifications including Basement Complex/ Pre-Jurassic as the most dominant type while the remaining are Paleocene-Eocene, Oligocene-Miocene, Oligocene and Cretaceous-Paleogene rocks. The river basin is also characterized to have more than 50% slope and elevation as high as 2,200 meters above mean sea level. Five soil types covers Amnay River which includes San Manuel sandy loam, Quingua clay loam, Faraon clay, Umingan loam and Banto clay loam. The river basin is also covered by cultivated areas mixed with brushland/grassland, grasslands, closed canopy with mature trees covering more than 50%, open canopy with mature trees covering less than 50%, mangrove forest, mossy forests, arable land with cereals and sugar as main crops, crop land mixed with coconut plantation and riverbeds.

Its main stem, Amnay river, is under the jurisdiction of the PHIL-LIDAR 1 partner, University of the Philippines, Los Baños. The Amnay river passes through laudio Salgad, Ilvita and Pagasa in Sablayan and Pinagturilan in Santa Cruz. A total of 19,643 people are residing within the immediate vicinity of the river, with Brgy. Pinagturilan being the most populated barangay having 7,168 residents as of 2010 according to National Statistics Office Census of Population and Housing.

As reported by the Mines and Geosciences Bureau, barangays dwelling nearby the Amnay River have a high risk to flooding. On the other hand, landslide susceptibility is none to very low.

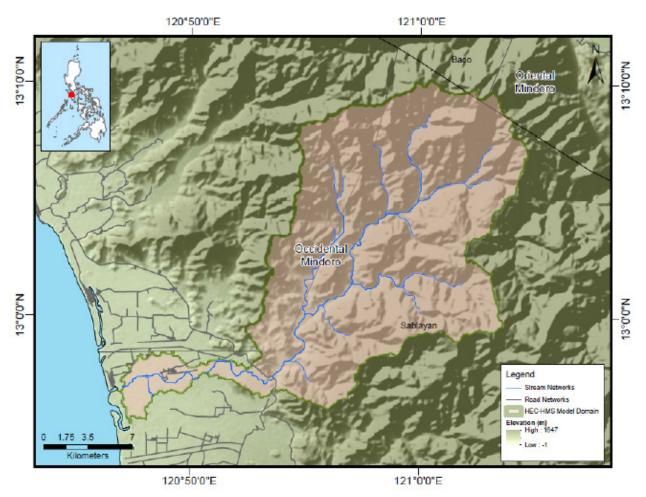


Figure 1. Map of the Amnay River Basin (in brown)

Based on the field surveys conducted by the PHIL-LiDAR 1 validation team, there were eight notable weather disturbance that caused flooding in 2009 (Ondoy), 2011 (Pedring), 2013 (Yolanda), 2014 (Glenda), 2015 (Lando, Nona), and 2016 (Lawin and Nina). The most recent flooding event of the river was due to continuous heavy rain with thunderstorms in August 2011 as per NDRRMC report.

Climate Types I and III prevail in MIMAROPA and Laguna based on the Modified Corona Classification of climate. Type I has two pronounced seasons, dry from November to April, and wet the rest of the year with maximum rain period from June to September. On the other hand, Type III has no very pronounced maximum rain period and with short dry season lasting only from one to three months, during the period from December to February or from March to May.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE AMNAY FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Jasmine T. Alviar, Engr. Brylle Adam G. De Castro.

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Amnay floodplain Floodplain in Occidental Mindoro. These missions were planned for 15 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1 and Table 2. Figure 2 shows the flight plan for Amnay Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK29H	600	30	36	125	40	130	5
BLK29I	600	30	36	125	40	130	5
BLK29J	600	30	36	125	40	130	5
BLK29K	600	30	36	125	40	130	5

Table 1. Flight planning parameters for the Aquarius LiDAR system.

Table 2. Flight planning parameters for the Pegasus LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK29G	1100	30	50	200	30	130	5
BLK29H	1100	30	50	200	30	130	5
BLK29I	1100	30	50	200	30	130	5
BLK29J	1100	30	50	200	30	130	5

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

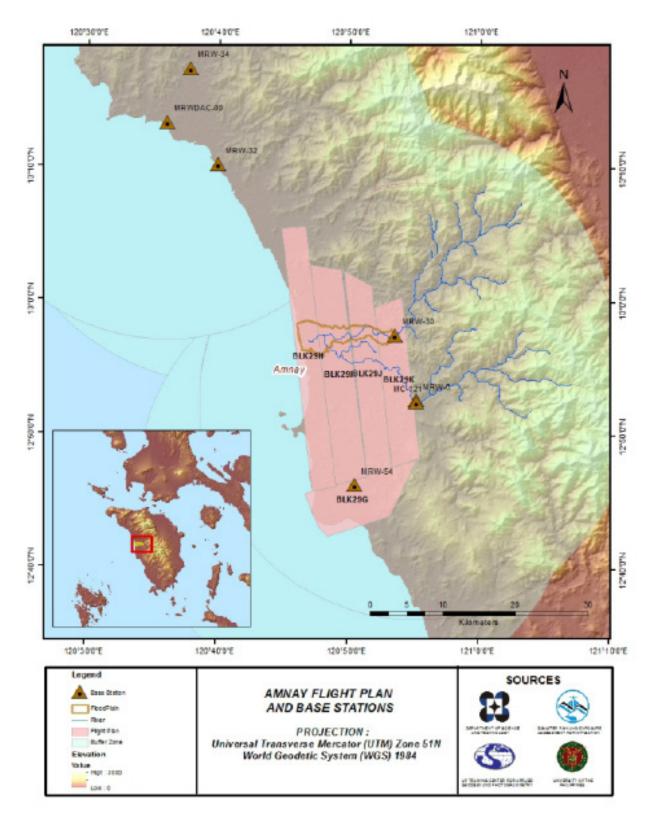


Figure 2. Flight Plan and base stations used for the Amnay Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover six (6) NAMRIA ground control points: MRW-30, MRW-32, MRW-34 and MRW-54 which are of second (2nd) order accuracy and MRW-6 which is of third (3rd) order accuracy. One (1) NAMRIA benchmark, MC-121, which areof first (1st)order accuracy, was also recovered. The benchmark was used as vertical reference points and was established as ground control point. The project team also established one (1) ground control point, MRWDAC-00. The certifications for the NAMRIA reference points are found in Annex A-2 while the baseline processing reports are found in Annex A-3. These were used as base stations during flight operations for the entire duration of the survey (February 16-23, 2014; December 8-9, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Amnay Floodplain floodplain are shown in Figure 2.

Figure 3 to Figure 7 show the recovered NAMRIA reference points within the area, in addition Table 3 to Table 9 show the details about the following NAMRIA control stations and established points, Table 10 shows the list of all ground control points occupied during the acquisition together with corresponding dates of survey.

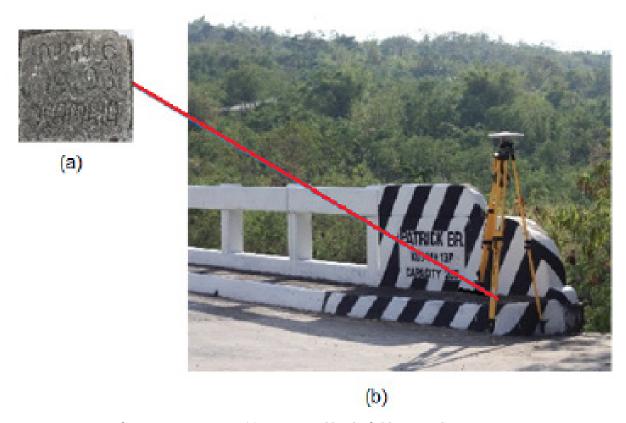


Figure 3. NAMRIA reference point MRW-6 (a) as recovered by the field team and GPS set-up over MRW-6 as recovered in Patrick Bridge in Brgy. Yabang, municipality of Sablayan, Occidental Mindoro (b).

Table 3. Details of the recovered NAMRIA horizontal reference point MRW-6 used as base station for the LiDAR acquisition.

Station Name	MRW-6		
Order of Accuracy	3rd		
Relative Error (Horizontal positioning)	1 in 20,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°52'40.22762" North 120°55'6.44586" East 80.63530 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	491149.868 meters 1424038.201 meters	
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°52'35.21155" North 120°55'11.48810" East 128.69600 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS PRS 92)	Easting Northing	274116.83 meters 1424453.14 meters	

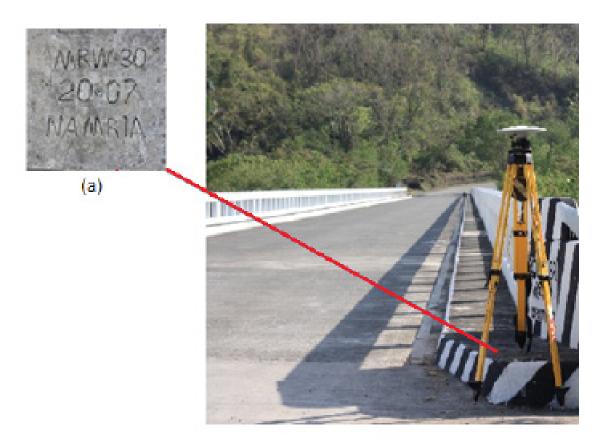


Figure 4. NAMRIA reference point MRW-30 (a) as recovered by the field team and GPS set-up over MRW-30 as recovered in Amnay Bridge in Brgy. Pinagturilan, municipality of Sta. Cruz, Occidental Mindoro (b).

Table 4. Details of the recovered NAMRIA horizontal reference point MRW-30 used as base station for the LiDAR acquisition.

Station Name	MRW-30			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°57'32.22950" North 120°53'28.50896" East 42.01300 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	488201.05 meters 1433011.7 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°57'27.19115" North 120°53'33.54442" East 89.79300 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	271237.33 meters 1433451.97 meters		



Figure 5. NAMRIA reference point MRW-32 (a) as recovered by the field team and GPS set-up over MRW-32 as recovered in the corner of a day care center in Brgy. Fatima, municipality of Mamburao, Occidental Mindoro (b).

Table 5. Details of the recovered NAMRIA horizontal reference point MRW-32 used as base station for the LiDAR acquisition.

Station Name	MRW-32			
Order of Accuracy	21	nd		
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 13°10'14.92094 Longitude 120°39'52.295! Ellipsoidal Height 1.47400 me			
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	463632.46 meters 1456469.064 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13°10'9.81293" North 120°39'57.31386" East 48.13600 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	246845.90 meters 1457111.12 meters		

Figure 6. NAMRIA reference point MRW-34 (a) as recovered by the field team and GPS set-up over MRW-34 as recovered in Balibago Bridge in Brgy. Armado, municipality of Abra de Ilog, Occidental Mindoro (b).

Table 6. Details of the recovered NAMRIA horizontal reference point MRW-34 used as base station for the LiDAR acquisition.

Station Name	MRW-34			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13°17'25.00981" North 120°37'41.53630" East 8.01600 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	459714.493 meters 1469690.588 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13°17'19.87026" North 120°37' 46.54446" East 54.26900 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	243032.08 meters 1470369.33 meters		

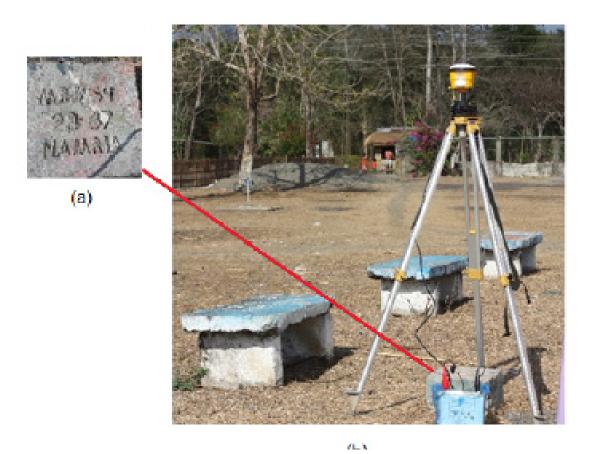


Figure 7. NAMRIA reference point MRW-54 (a) as recovered by the field team and GPS set-up over MRW-54 as recovered in near basketball open court in Brgy. Malisbong, municipality of Sablayan, Occidental Mindoro (b).

Table 7. Details of the recovered NAMRIA horizontal reference point MRW-54 used as base station for the LiDAR acquisition.

Station Name	MRW-54			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 12°46'18.56204 Longitude 120°50'27.4415 Ellipsoidal Height 28.20700 me			
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	482731.146 meters 1412314.677 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°46'13.56455" North 120°50'32.49343" East 76.35500 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	265604.90 meters 1412791.69 meters		

Table~8.~Details~of~the~recovered~NAMRIA~vertical reference~point~MC-121~used~as~base~station~for~the~LiDAR~acquisition~with~established~coordinates.

Station Name	MC-121			
Order of Accuracy	3rd			
Relative Error (horizontal positioning)	1 in 20,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	12°52'32.96110" North 120°55'04.36932" East 79.97100 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	274052.406 meters 1424230.309 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	12°52'27.94499" North 120°55'09.41181" East 128.03500 meters		

 $Table \ 9. \ Details \ of \ the \ established \ MRWDAC-00 \ used \ as \ base \ station \ for \ the \ LiDAR \ acquisition.$

Station Name	MRWDAC-00			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	13°13'23.10541" 120°35'55.10583" 11.60100 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	239755.834 meters 1462963.518 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	13°13'17.97945" North 120°36'00.11991" East 57.96100 meters		

Table 10. Ground Control Points used during LiDAR Data Acquisition

Date Surveyed	Flight Number	Mission Name	Ground Control Points
16-Feb-14	1108A	3BLK29J47A	MRW-30, MRW-6
16-Feb-14	1110A	3BLK29KJS47B	MRW-30, MRW-6
18-Feb-14	1116A	3BLK29KS49A	MRW-30, MRW-6
18-Feb-14	1118A	3BLK29JS49B	MRW-30, MRW-6
21-Feb-14	1128A	3BLK29I52A	MRW-32, MRW-34
22-Feb-14	1132A	3BLK29IS53A	MRW-30, MRW-6, MRW- 34, MRW-32
23-Feb-14	1136A	3BLK29HB54A	MRW-54, MRW-6
8-Dec-15	3068P	1BLK29GJ342B	MRW-30, MRWDAC-00
9-Dec-15	3070P	1BLK29GHI343A	MRW-6, MC-121

2.3 Flight Missions

Nine (9) missions were conducted to complete the LiDAR Data Acquisition in Amnay Floodplainfloodplain, for a total of thirty-three hours and seventeen minutes (33+17) of flying time for RP-C9122. All missions were acquired using the Aquarius and Gemini LiDAR systems. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Table 11. Flight missions for LiDAR data acquisition in Amnay Floodplain

Date	Flight Flight Plan Surveyed Surveyed Outside the		NO. 01	Flying Hours				
Surveyed	Number	Area (km2)	Area (km2)	within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
16-Feb-14	1108A	111.55	35.59	6.88	30.34	10	2	41
16-Feb-14	1110A	202.24	78.12	8.57	60.45	608	4	23
18-Feb-14	1116A	90.69	86.23	4.89	64.65	1056	4	23
18-Feb-14	1118A	111.55	59.60	3.75	48.56	734	3	35
21-Feb-14	1128A	117.38	116.66	12.93	94.61	99	4	35
22-Feb-14	1132A	248.63	120.42	13.37	96.04	610	4	41
23-Feb-14	1136A	131.25	69.06	0	69.06	1241	4	29
8-Dec-15	3068P	182.62	36.42	0	28.64	74	1	55
9-Dec-15	3070P	319.70	98.32	0	72.89	209	2	35
TOTA	AL.	1515.62	700.42	32.12	565.24	4641	33	17

Table 12. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1108A	600	30	36	125	40	130	5
1110A	600	30	36	125	40	110	5
1116A	600	30	36	125	40	130	5
1118A	600	30	36	125	40	110	5
1128A	600	30	36	125	40	130	5
1132A	600	30	36	125	40	130	5
1136A	600	30	36	125	40	130	5
3068P	1100	30	50	200	30	130	5
3070P	1100	30	50	200	30	130	5

2.4 Survey Coverage

Amnay Floodplain floodplain is located in the provinces of Occidental Mindoro, with majority of the floodplain situated within the municipality of Sablayan. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 13. The actual coverage of the LiDAR acquisition for Amnay Floodplain floodplain is presented in Figure 88.

Table 13. List of municipalities and cities surveyed during the Amnay Floodplain LiDAR survey.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Calintaan	282.31	14.04	4.97%
Occidental Mindoro	Sablayan	2350.46	408.35	17.37%
	Santa Cruz	709.53	85.76	12.09%
TOTA	AL.	3342.30	508.15	15.20%

Figure 8. Actual LiDAR survey coverage for Amnay Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE AMNAY FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Engr. Angelo Carlo B. Bongat, Engr. Ma. Ailyn L. Olanda, Aljon Rie V. Araneta, Engr. Marie Denise V. Bueno, Engr. Regis R. Guhiting, Engr. Merven Matthew D. Natino, Gillian Katherine L. Inciong, Gemmalyn E. Magnaye, Leendel Jane D. Punzalan, Sarah Joy A. Acepcion, Ivan Marc H. Escamos, Allen Roy C. Roberto, and Jan Martin C. Magcale

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are were the minimum point density, vertical and horizontal accuracies, are were met. The point clouds are were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are were calibrated. Portions of the river that are barely penetrated by the LiDAR system are were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

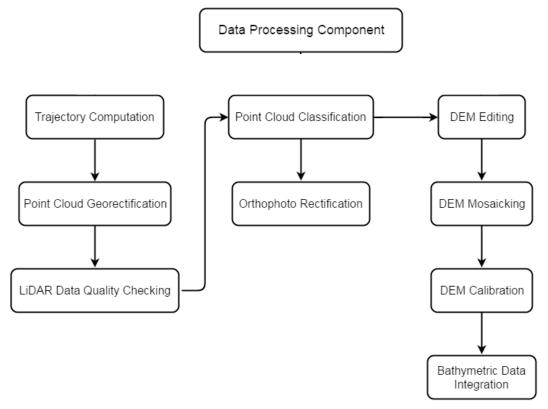


Figure 9. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Amnay Floodplain floodplain can be found in Annex A-5. Missions flown during the first survey conducted on in February 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Aquarius system while missions acquired during the second survey on in December 2016 5 were flown using Pegasus system over Sablayan, Occidental Mindoro. The Data Acquisition Component (DAC) transferred a total of 101.31 Gigabytes of Range data, 1.881 Gigabytes of POS data, 122.06 Megabytes of GPS base station data, and 286.149 Gigabytes of raw image data to the data server on March 19, 2014 for the first survey and January 15, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Amnay was fully transferred on January 15, 2016, as indicated on in the Data Transfer Sheets for Amnay Floodplain-floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1136A, one of the Amnay flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on February 23, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

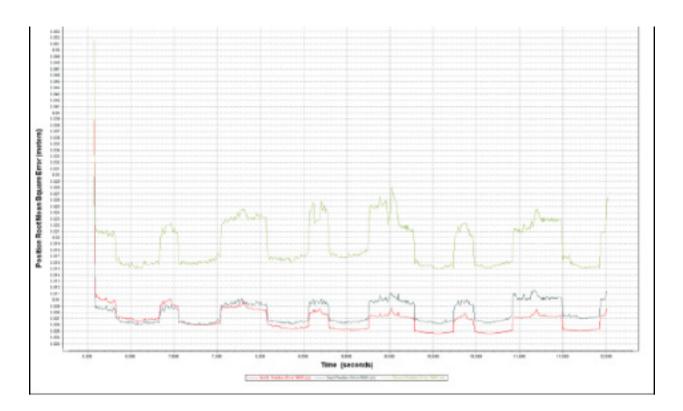


Figure 10. Smoothed Performance Metrics of Amnay Flight 1136A.

The time of flight was from 6100 seconds to 12000 seconds, which corresponds to morning of February 23, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 1.00 centimeters, the East position RMSE peaks at 1.10 centimeters, and the Down position RMSE peaks at 2.80 centimeters, which are within the prescribed accuracies described in the methodology.

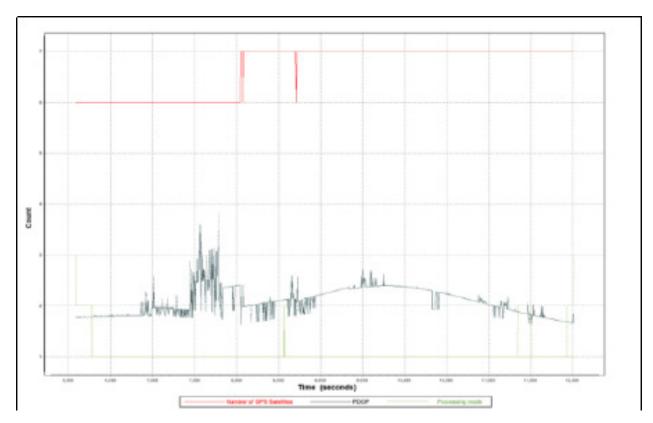


Figure 11. Solution Status Parameters of Amnay Flight 1136A.

The Solution Status parameters of flight 1136A, one of the Amnay flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 11. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 7. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Amnay flights is shown in Figure 12.

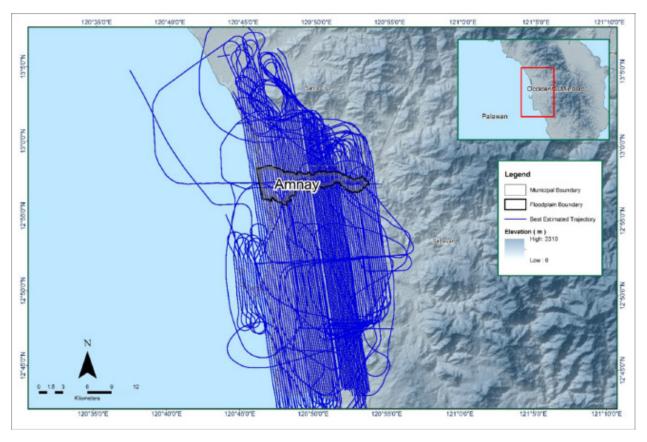


Figure 12. Best Estimated Trajectory for Amnay Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 97 flight lines, with some flight line containing one channel, since the Aquarius system contain one channel only and two channels for the Pegasus sytem. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Amnay Floodplain floodplain are given in Table 14.

Table 14. Self-Calibration	Resu.	lts va	lues	tor 1	Amnay	y flights.
----------------------------	-------	--------	------	-------	-------	------------

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev	<0.001degrees	0.000270
IMU Attitude Correction Roll and Pitch Correction stdev	<0.001degrees	0.000746
GPS Position Z-correction stdev	<0.01meters	0.0093

The optimum accuracy is obtained for all Amnay flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex B-1. Mission Summary Reports8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Amnay Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

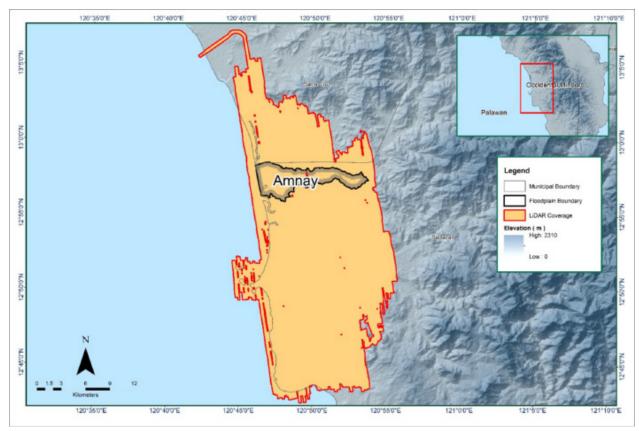


Figure 13. Boundary of the processed LiDAR data over Amnay Floodplain

The total area covered by the Amnay missions is 561.43 sq.km that is comprised of nine (9) flight acquisitions grouped and merged into eight (6) blocks as shown in Table 15.

Table 15. List of LiDAR blocks for Amnay Floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
OccidentalMindoro_Blk29H	1136A	102.41
Occidental Mindoro_Blk29HI_supplement	1132A	80.81
Occidental Mindoro_Blk29I	1128A	101.94
Occidental Mindoro_Blk29JK	1110A	133.64
	1118A	
	1108A	
Occidental Mindoro_Blk29K_supplement	1116A	82.45
Occidental Mindoro_Reflights_Blk29HI	3068P	60.18
	3070P	
TOTAL		561.43 sq.km

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines are expected. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines are expected.

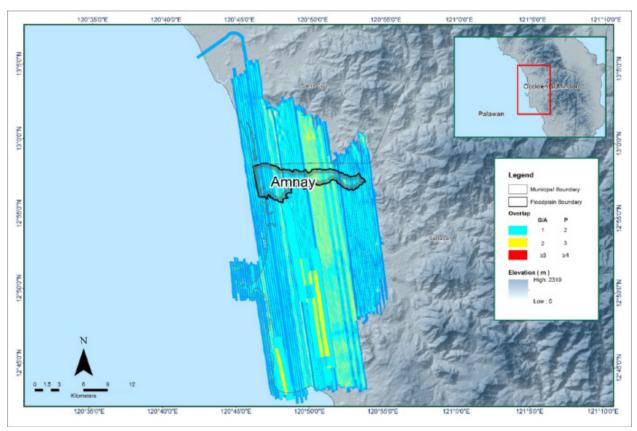


Figure 14. Image of data overlap for Amnay Floodplain.

The overlap statistics per block for the Amnay floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 37.19% and 82.92% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 15. It was determined that all LiDAR data for Amnay Floodplain floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.64 points per square meter.

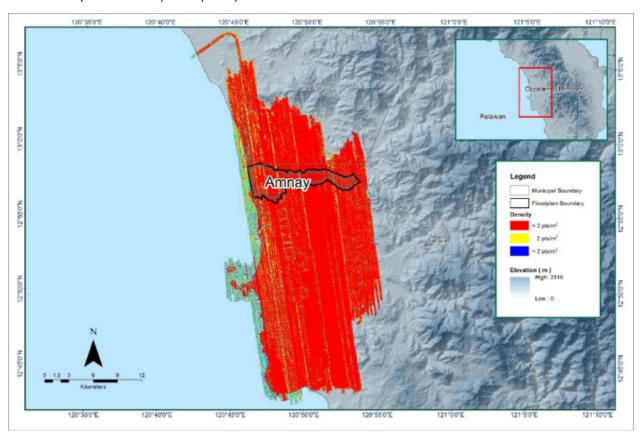


Figure 15. Pulse density map of merged LiDAR data for Amnay Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

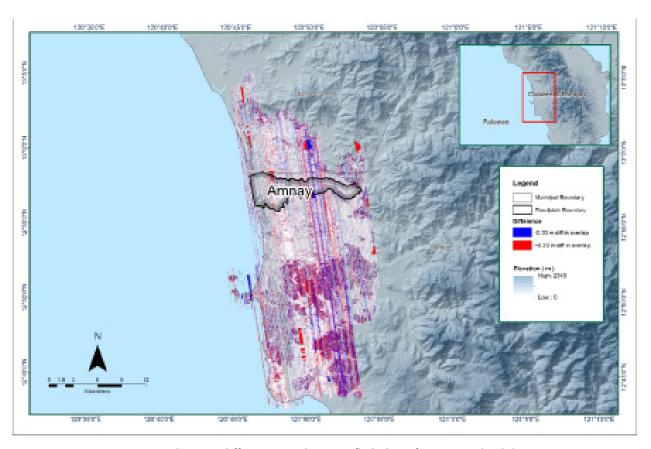


Figure 16. Elevation difference map between flight lines for Amnay Floodplain.

A screen capture of the processed LAS data from an Amnay flight 1136A loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

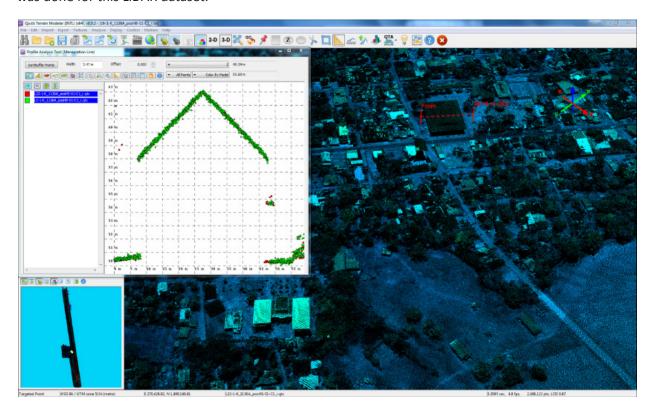


Figure 17. Quality checking for Amnay flight 1136A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Table 16. Amnay classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	427,548,684
Low Vegetation	568,880,578
Medium Vegetation	606,064,647
High Vegetation	368,801,276
Building	12,236,871

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Amnay Floodplain floodplain is shown in Figure 18. A total of 907 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table B-316. The point cloud has a maximum and minimum height of 613.49 meters and 39.16 meters respectively.

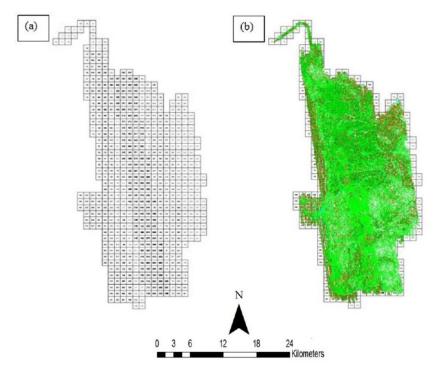


Figure 18. Tiles for Amnay Floodplain (a) and classification results (b) in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

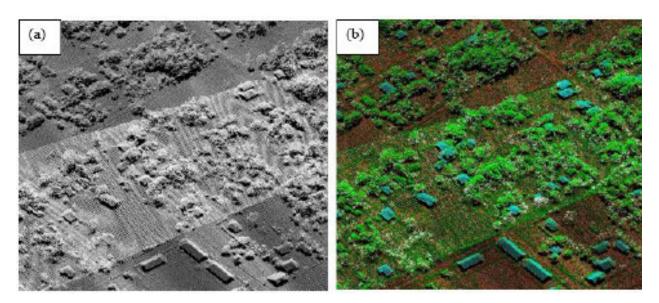


Figure 19. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 16. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

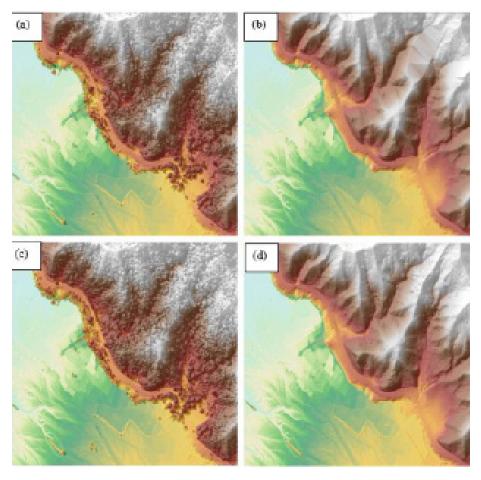


Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Amnay Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 501 1km by 1km tiles area covered by Amnay Floodplain floodplain is shown in Figure B-1321. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Amnay Floodplain floodplain has a total of 300.06 sq.km orthophotogaph coverage comprised of 3,375 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 22.

Figure 21. Amnay Floodplain with available orthophotographs.

Figure 22. Sample orthophotograph tiles for Amnay Floodplain.

3.8 DEM Editing and Hydro-Correction

Six (6) mission blocks were processed for Amnay floodplain. These blocks are composed of Occidental Mindoro and Occidental Mindoro_reflight blocks with a total area of 561.43 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

Table 17. LiDAR blocks with its corresponding area.

LiDAR Blocks	Area (sq.km)	
Occidental Mindoro_Blk29H	102.41	
Occidental Mindoro_Blk 29 HI_supplement	80.81	
OccidentalMindoro_Blk29I	101.94	
OccidentalMindoro_Blk29JK	133.64	
Occidental Mindoro_Blk29K_supplement	82.45	
OccidentalMindoro_reflights_Blk29HI	60.18	
TOTAL	561.43 sq.km	

Portions of DTM before and after manual editing are shown in Figure 23. The bridge (Figure 23a) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 23b) in order to hydrologically correct the river. Also, the mountain (Figure 23c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23d). Another example is a building that is still present in the DTM after classification (Figure 23e) and has to be removed through manual editing (Figure 23f).

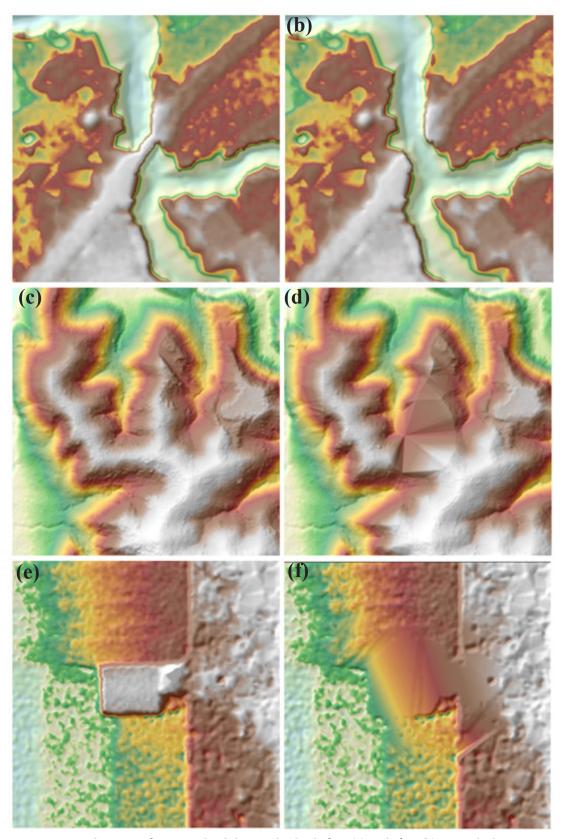


Figure 23. Portions in the DTM of Amnay Floodplain – a bridge before (a) and after (b) manual editing; a mountain (c) and after (d) data retrieval; and a building before (e) and after (f) manual editing

3.9 Mosaicking of Blocks

OccidentalMindoro_Blk29M was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 18 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Amnay Floodplain floodplain is shown in Figure 24. It can be seen that the entire Amnay Floodplain floodplain is 99.13% covered by LiDAR data while portions with no LiDAR data were patched with the available IFSAR data.

Table 18. Shift Values of each LiDAR Block of Amnay Floodplain.

Mississ Disales	Shift Values (meters)			
Mission Blocks	х	У	z	
Occidental Mindoro_Blk29H	0.00	0.00	-0.83	
Occidental Mindoro_Blk29HI_supplement	0.00	0.00	-0.88	
OccidentalMindoro_Blk29I	0.00	0.00	-0.44	
OccidentalMindoro_Blk29JK	0.00	0.00	-1.14	
Occidental Mindoro_Blk 29K_supplement	0.00	0.00	-0.96	
OccidentalMindoro_Reflights_Blk29HI (Left)	0.00	0.00	-1.64	
OccidentalMindoro_Reflights_Blk29HI (Right)	0.00	1.01	-1.64	

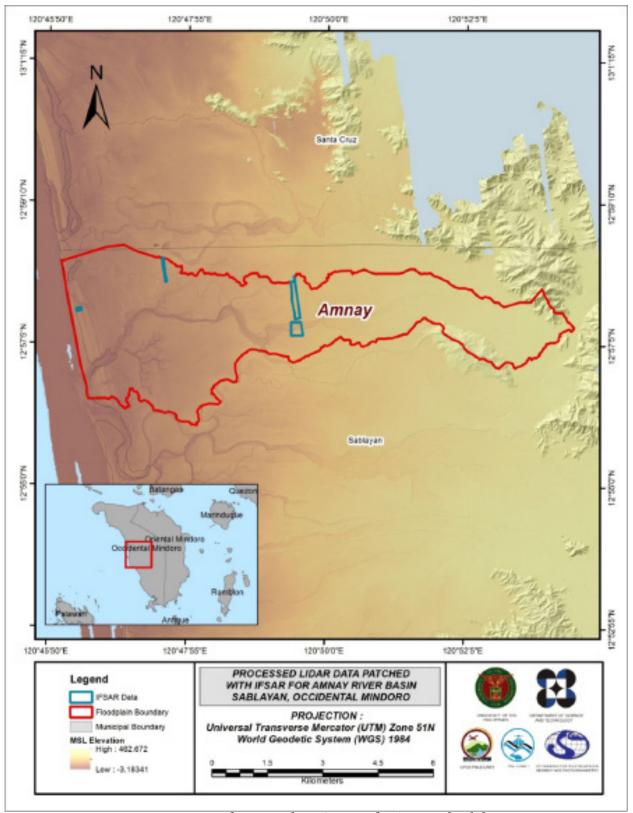


Figure 24. Map of Processed LiDAR Data for Amnay Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Amnay to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 28,494 survey points were gathered for all the flood plains within Occidental Mindoro wherein the Amnay floodplain is located. Random selection of 80% of the survey points, resulting to 22,795 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 0.23 meters with a standard deviation of 0.20 meters. Calibration of Amnay LiDAR data was done by adding the height difference value, 0.23 meters, to Amnay mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

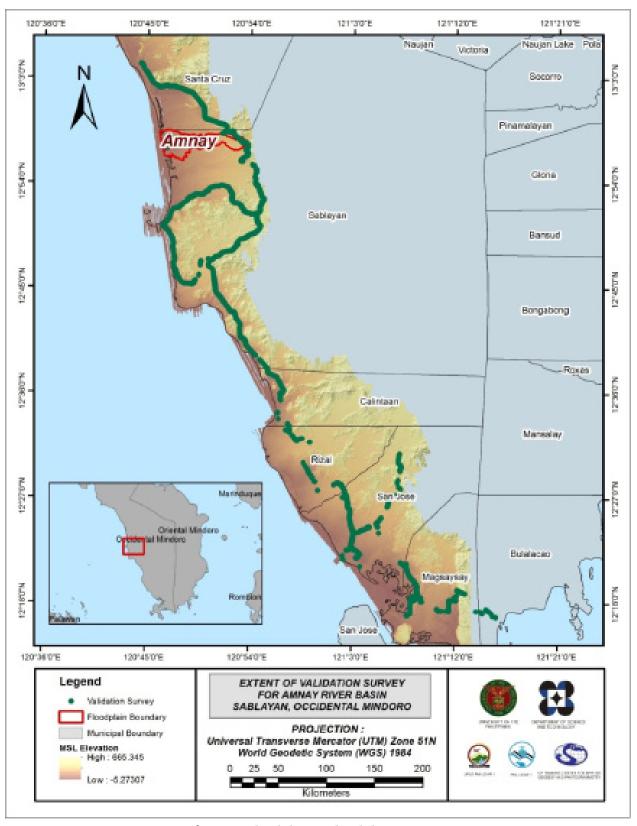


Figure 25. Map of Amnay Floodplain with validation survey points in green.

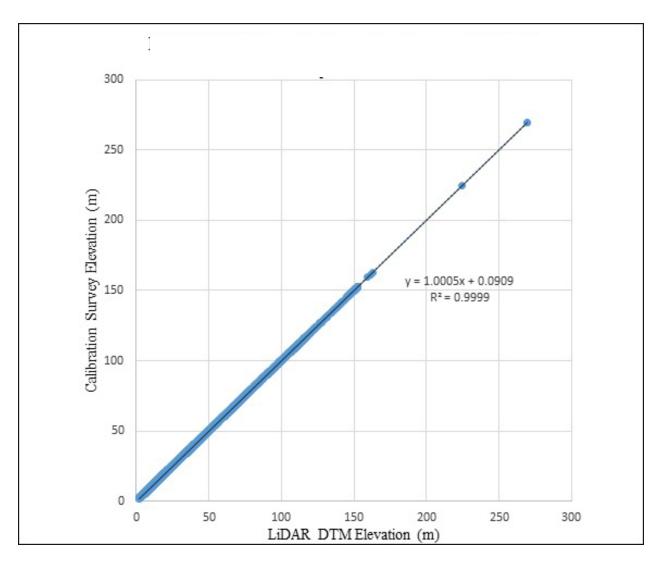


Figure 24. Correlation plot between calibration survey points and LiDAR data.

Figure 26. Correlation plot between calibration survey points and LiDAR data

Table 19. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)	
Height Difference	0.23	
Standard Deviation	0.20	
Average	0.10	
Minimum	-0.33	
Maximum	0.53	

The remaining 20% of the total survey points were intersected to the flood plain, resulting to 16 points. These were used for the validation of calibrated Amnay DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.12 meters, as shown in Table 20.

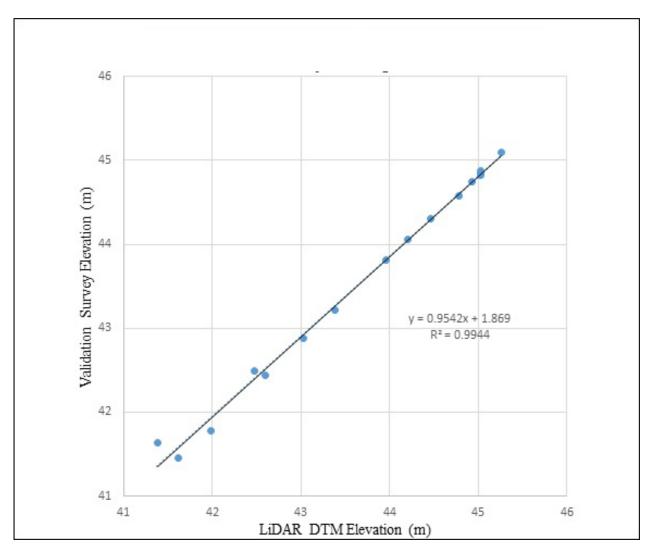


Figure 25. Correlation plot between validation survey points and LiDAR data.

Figure 27. Correlation plot between validation survey points and LiDAR data.

Table 20. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)		
RMSE	0.17		
Standard Deviation	0.12		
Average	-0.12		
Minimum	-0.20		
Maximum	0.25		

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Amnay with 10,537 and 4,831 bathymetric survey points respectively. However, no bathy integration was performed because the geometry of the river is best represented by the acquired LiDAR data. This is applicable for areas flown during dry season where the wetted perimeter of the river corresponds to only 10% of its width.

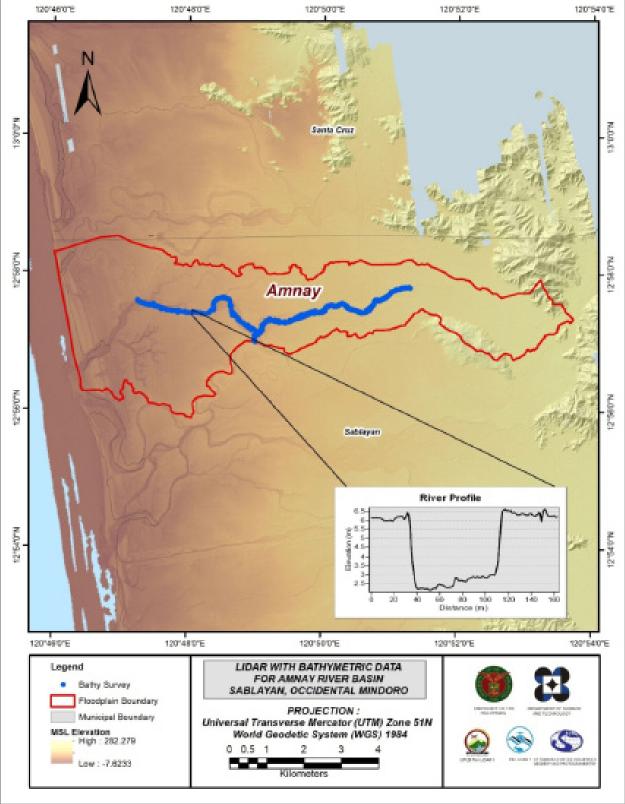


Figure 28. Map of Amnay Floodplain with bathymetric survey points shown in blue.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AMNAY RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, and Engr. Lorenz R. Taguse

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted survey in Amnay River on November 3 to 24, 2015 with the following scope of work: cross-section, bridge as-built and water level marking in MSL of Amnay Bridge; validation point acquisition in the province of Occidental Mindoro which covers Amnay River Basin; and bathymetric survey from the mouth of the river in Brgy. Claudio Salgado to part of Brgy. Pagasa, both in the Municipality of Sablayan using Trimble® GNSS PPK survey technique and a Hi-Target™ Echosounder. The extent of the bathymetric survey is shown in Figure 29.

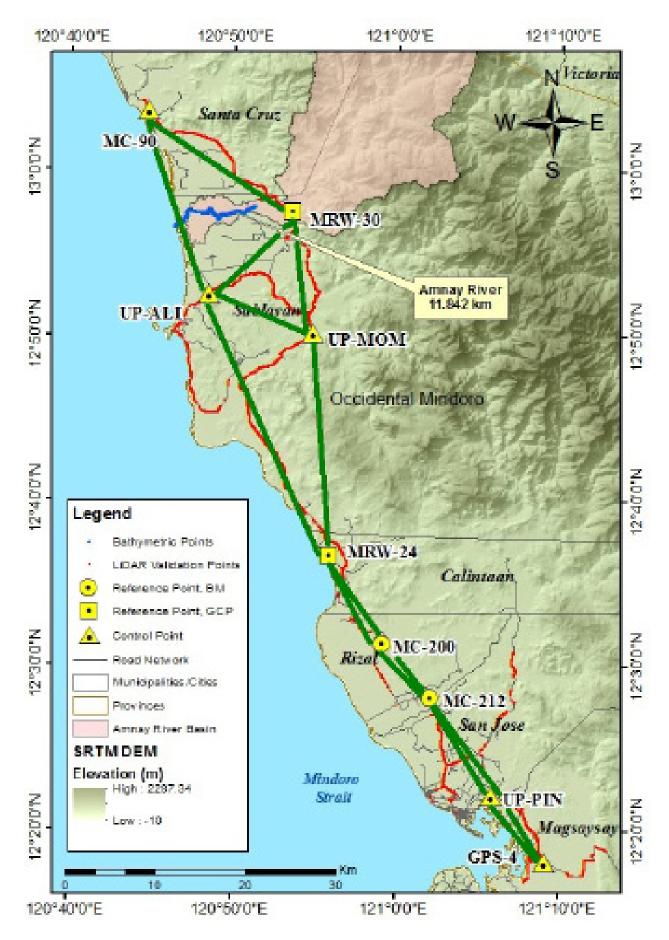


Figure 29. Amnay River survey Extent of the bathymetric survey (in blue) in Amnay River and the LiDAR data validation (in red)

4.2 Control Survey

The GNSS network used for Amnay River Basin is composed of five (5) loops established on November 5, 15 and 17, 2015 occupying the following reference points: MRW-24, a second order GCP in Brgy. Iriron, Municipality of Calintaan; MRW-30, a second order GCP in Bry. Pinagturilan, Municipality of Sta. Cruz; MC-200, a first order BM in Brgy. Magsikap, Municipality of Rizal; and MC-212, also a first order BM in Brgy. Sto. Niño in Rizal.

Three (3) control points were established along the approach of bridges, namely: UP-PIN at Pinamanaan Bridge in Brgy. Mapaya, Municipality of San Jose; UP-ALI at Alipid Bridge in Brgy. Sto. Niño, Municipality of Sablayan; and UP-MOM at Mompong Bridge in Brgy. Lumang Bato, also in Sablayan. The control point established by DPWH, namely GPS-4, in Brgy. Poblacion, Municipality of Magsaysay; and MC-90, established by NAMRIA, in Brgy. Barahan, Municipality of Sta. Cruz were also occupied to use as a marker for the network.

The summary of reference and control points and its location is summarized in Table 25 while the GNSS network established is illustrated in Figure 30.

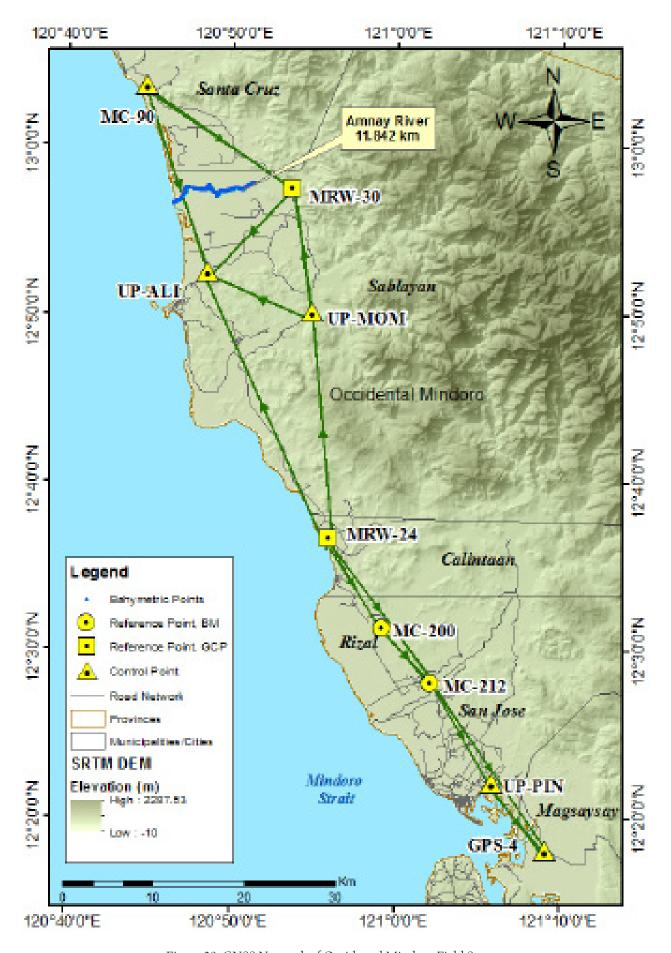


Figure 30. GNSS Network of Occidental Mindoro Field Survey

Table 25. List of reference and control points used during the survey in Amnay River (Source: NAMRIA, UP-TCAGP)

Control	Order of	Geographic Coordinates (WGS 84)				
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
MC-200	1st order, BM	-	-	83.225	-	2007
MC-212	1st order, BM	-	-	74.473	-	2007
MRW- 24	2nd order, GCP	12°36'38.03550"	120°55'54.08297"	53.435	4.746	2007
MRW- 30	2nd order, GCP	12°57'27.19115"	120°53'33.54441"	88.823	41.752	2007
MC-90	UP Established	-	-	-	-	2007
UP-ALI	UP Established	-	-	-	-	2015
UP- MOM	UP Established	-	-	-	-	2015
UP-PIN	UP Established	-	-	-	-	2015
GPS-4	DPWH Established	-	-	-	-	2013

The GNSS set up in reference points and established control points in Occidental Mindoro survey are shown in Figure 31 to Figure 39.

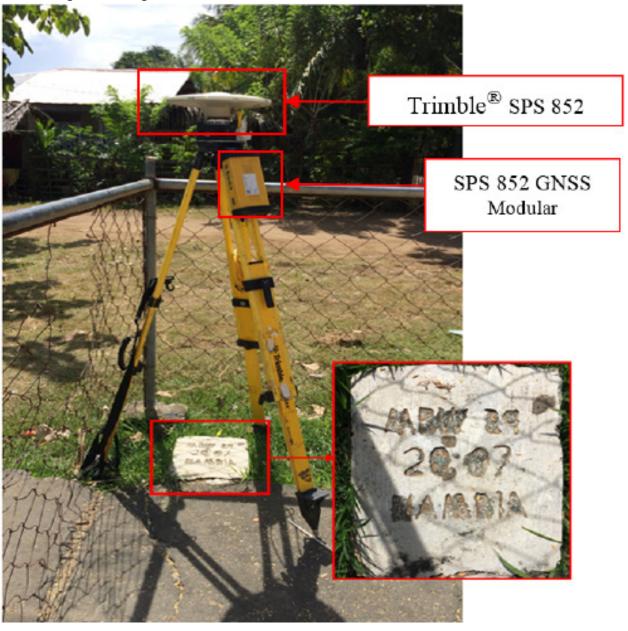


Figure 31. GNSS base set-up, Trimble® SPS 882, at MRW-24 in front of Iriron Elementary School in Brgy. Iriron, Municipality of Calintaan, Occidental Mindoro

Figure 32. GNSS receiver setup, Trimble® SPS 882, at MRW- 30 Amnay Bridge approach in Sitio Kabangkalan, Brgy. Pinagturilan, Municipality of Santa Cruz, Occidental Mindoro

Figure 33.GNSS receiver set-up, Trimble® SPS 882, at MC-200, Lumintao Bridge approach in Brgy. Magsikap, Municipality of Rizal, Occidental Mindoro

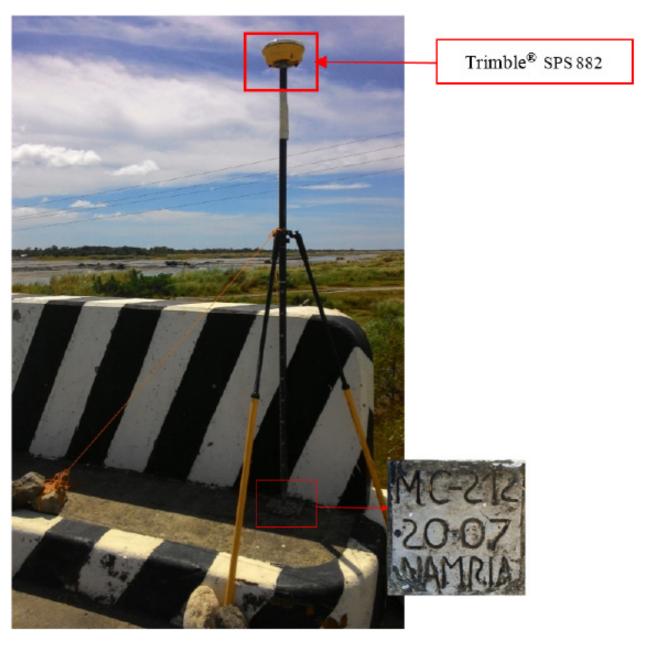


Figure 34. GNSS receiver set-up, Trimble® SPS 882, at MC-212, Busuanga Bridge approach in Bgry. Sto Niño, Municipality of Rizal, Occidental Mindoro

Figure 35. GNSS base, Trimble® SPS 852, at MC-90, used as marker, located at the Pola Bridge approach in Brgy. Barahan, Municipality of Santa Cruz, Occidental Mindoro

Figure 36. GNSS receiver, Trimble® SPS 882, at GPS-4 on right side of the road abutment after Caguray Bridge going to Bulalacao in Brgy. Poblacion, Municipality of Magsaysay, Occidental Mindoro

Figure 37. GNSS base receiver set-up, Trimble® SPS 882, at UP-PIN Pinamanaan Bridge approach in Brgy. Mapaya, Municipality of San Jose, Occidental Mindoro

Figure 38. GNSS receiver set-up, Trimble® SPS 882, at UP-MOM, Mompong Bridge approached in Brgy. Lumang Bato, Municipality of Sablayan, Occidental Mindoro

Figure 39. GNSS receiver set up, Trimble® SPS 882, at UP-ALI, Alipid Bridge approach in Brgy. Sto. Niño, Municipality of Sablayan, Occidental Mindoro

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Amnay River Basin is summarized in Table 26 generated TBC +/-10cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is was performed. Masking is done by removing/ software.

Table 26. Baseline Processing Report for AMnay River Basin Static Survey

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
MC-212 GPS-4	11-05-2015	Fixed	0.003	0.015	145°21'06"	22241.566	-11.807
MRW-30 UP-MOM	11-17-2015	Fixed	0.011	0.017	170°24'13"	13704.513	55.240
MRW-30 UP-MOM	11-17-2015	Fixed	0.003	0.023	170°24'12"	13704.541	55.249
MRW-30 MC-90	11-17-2015	Fixed	0.010	0.018	305°24'12"	19473.086	-35.515
UP-PIN MC-212	11-05-2015	Fixed	0.003	200.0	328°11'40"	12856.399	14.631
UP-PIN GPS-4	11-05-2015	Fixed	0.003	900:0	141°30'11"	9422.221	2.872
MC-200 UP-PIN	11-05-2015	Fixed	0.003	0.022	144°37'57"	20841.368	-23.356
MC-200 UP-MOM	11-05-2015	Fixed	0.009	0.014	346°57'26"	35544.301	60.755

MC-200 UP-MOM	11-05-2015	Fixed	0.004	0.014	346°57'27"	35544.309	60.692
MC-200 MC-212	11-05-2015	Fixed	0.003	0.006	138°58'31"	8048.668	-8.741
UP-ALI UP-MOM	11-15-2015	Fixed	0.008	0.013	110°57'37"	12258.370	88.024
UP-MOM UP-ALI	11-15-2015	Fixed	0.004	0.036	110°57'37"	12258.373	88.139
UP-ALI MRW-30	11-17-2015	Fixed	0.009	0.012	45°05'52"	12929.488	32.865
MRW-30 UP-ALI	11-17-2015	Fixed	0.004	0.017	45°05'52"	12929.476	32.850
MRW-30 UP-ALI	11-17-2015	Fixed	0.004	0.007	45°05'51"	12929.529	32.747
MC-90 UP-ALI	11-17-2015	Fixed	0.004	0.008	341°46'30"	21480.592	-2.784
MRW-24 UP-PIN	11-05-2015	Fixed	0.003	0.006	145°50'52"	32317.096	6.413
MRW-24 MC-200	11-05-2015	Fixed	0.005	0.007	148°04'31"	11489.166	29.777
MRW-24 UP-MOM	11-15-2015	Fixed	0.009	0.015	355°30'36"	24950.818	90.611
MRW-24 UP-MOM	11-15-2015	Fixed	0.003	0.006	355°30'36"	24950.824	90.574
MRW-24 UP-ALI	11-15-2015	Fixed	900:0	0.007	335°24'00"	32186.124	2.579

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and $z_e < 10 \ cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

The nine (9) control points, MRW-24, MRW-30, MC-200, MC-212, MC-90, GPS-4, UP-PIN, UP-MOM, and UP-ALI were occupied and observed simultaneously to form a GNSS loop. All 14 baselines acquired fixed solutions and passed the required ± 20 cm and ± 10 cm for horizontal and vertical precisions, respectively as shown in Table 26.

Point ID East σ North σ Height σ Elevation σ Type (Meter) (Meter) (Meter) (Meter) MC-200 Grid Fixed MC-212 Grid Fixed MRW-24 Global Fixed Fixed MRW-30 Global Fixed Fixed Fixed = 0.000001(Meter)

Table 27. Control Point Constraints

Table 28. Ad	liusted Grid	Coordinates

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
GPS-4	299069.894	0.039	1360649.962	0.032	12.062	0.068	
MC-200	281320.527	0.022	1385155.121	0.016	34.024	?	е
MC-212	286558.124	0.028	1379041.958	0.022	24.884	?	е
MC-90	255607.924	0.039	1444800.407	0.023	8.195	0.095	
MRW-24	275320.607	?	1394955.913	?	4.746	0.045	LL
MRW-30	271390.777	?	1433384.691	?	41.752	0.091	LL
UP-ALI	262152.459	0.020	1424334.041	0.015	9.503	0.071	
UP-MOM	273564.872	0.015	1419850.456	0.012	96.192	0.055	
UP-PIN	293256.669	0.031	1368066.413	0.024	9.659	0.045	

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 28. Below is the computation for accuracy that passed the required precision.

a.GPS-4

Horizontal accuracy = $\sqrt{((3.9)^2 + (3.2)^2}$ = $\sqrt{(15.21 + 10.24)}$

= V(15.21 + 10.24 = 5.0 cm < 20 cm

Vertical accuracy = 6.8 cm < 10 cm

b.MC-200

Horizontal accuracy = $\sqrt{(2.2)^2 + (1.6)^2}$

= $\sqrt{(4.84 + 2.56)}$ = 7.4 cm < 20 cm

Vertical accuracy = Fixed

c.MC-212

Horizontal accuracy = $\sqrt{((2.8)^2 + (2.2)^2}$

= $\sqrt{(7.84 + 4.84)}$ = 3.6 cm < 20 cm

Vertical accuracy = Fixed

d.MC-90

Horizontal accuracy = $\sqrt{((3.9)^2 + (2.3)^2}$

= $\sqrt{(15.21 + 5.29)}$ = 4.5 cm < 20 cm

Vertical accuracy = 9.5 cm < 10 cm

e.MRW-24

Horizontal accuracy = Fixed

Vertical accuracy = 4.5 cm < 10 cm

f.MRW-30

Horizontal accuracy = Fixed

Vertical accuracy = 9.1 cm < 10 cm

g.UP-ALI

Horizontal accuracy = $V((2.0)^2 + (1.5)^2$

= $\sqrt{(4.0 + 2.25)}$

= 2.5 cm < 20 cm

Vertical accuracy = 7.1 cm < 10 cm

h.UP-MOM

Horizontal accuracy = $\sqrt{((1.5)^2 + (1.2)^2}$

√(2.25 + 1.44)

= 1.9 cm < 20 cm

Vertical accuracy = 5.5 cm < 10 cm

i.UP-PIN

Horizontal accuracy = $\sqrt{((3.1)^2 + (2.4)^2}$

= $\sqrt{(9.61 + 5.76)}$

= 3.9 cm < 20 cm

Vertical accuracy = 4.5 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the nine occupied control points are within the required accuracy of the program.

Table 29. Adjusted Geodetic Coordinates

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
GPS-4	N12°18'07.55698"	E121°09'08.74194"	62.705	0.068	
MC-200	N12°31'20.68884"	E120°59'15.31613"	83.225	?	е
MC-212	N12°28'03.07503"	E121°02'10.26310"	74.473	?	е
MC-90	N13°03'34.14427"	E120°44'46.70844"	53.232	0.095	
MRW-24	N12°36'38.03549"	E120°55'54.08296"	53.435	0.045	LL
MRW-30	N12°57'27.19115"	E120°53'33.54442"	88.823	0.091	LL
UP-ALI	N12°52'30.24359"	E120°48'29.69149"	55.998	0.071	
UP-MOM	N12°50'07.47193"	E120°54'49.30855"	144.013	0.055	
UP-PIN	N12°22'07.54999"	E121°05'54.64323"	59.843	0.045	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table C-5Table 29. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table C-6Table 30.

Table 30. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)

Control		Geographi	Geographic Coordinates (WGS 84)		.n	UTM ZONE 51 N	
Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
	1st order, BM	12°31'20.68883"	120°59'15.31614"	83.225	1385155.121	281320.527	34.024
MC-212	1st order, BM	12°28'03.07504"	121°02'10.26310"	74.473	1379041.958	286558.124	24.884
MRW-24	2nd order, GCP	12°36'38.03550"	120°55'54.08297"	53.435	1394955.913	275320.607	4.746
MRW-30	2nd order, GCP	12°57'27.19115"	120°53'33.54441"	88.823	1433384.691	271390.777	41.752
MC-90	UP Established	13°03'34.14426"	120°44'46.70845"	53.232	1444800.407	255607.924	8.195
UP-ALI	UP Established	12°52'30.24358"	120°48'29.69148"	55.998	1424334.041	262152.459	9.503
UP-MOM	UP Established	12°50'07.47192"	120°54'49.30854"	144.013	1419850.456	273564.872	96.192
NIA-PIN	UP Established	12°22'07.55000"	121°05'54.64323"	59.843	1368066.413	293256.669	9.659
GPS-4	DPWH Established	12°18'07.55700"	121°09'08.74194"	62.706	1360649.962	299069.894	12.062

4.5 Cross-section and Bridge As-Built survey, and Water Level Marking

Cross-section and as-built survey were conducted on November 21, 2015 along the upstream side of Amnay Bridge located in Brgy. Pagasa, Municipality of Sablayan using Trimble® SPS 882 GNSS PPK survey technique as shown in Figure 40.

Figure 40. Bridge cross-section acquisition along the upstream side of Amnay Bridge, Brgy. Pagasa, Municipality of Sablayan

A total of nine hundred and fifty-one (951) points with corresponding length of 444.11 meters were gathered from the survey of the bridge using the control point MRW-90 as base station. The location map, cross-section diagram, and the bridge data form are shown in Figure 41 to Figure 43, respectively.

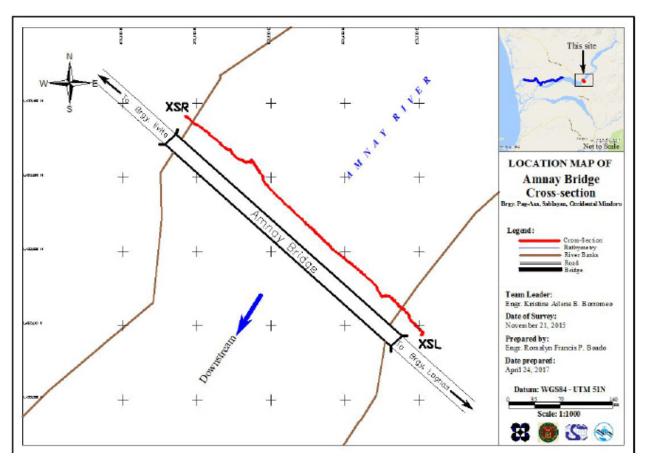
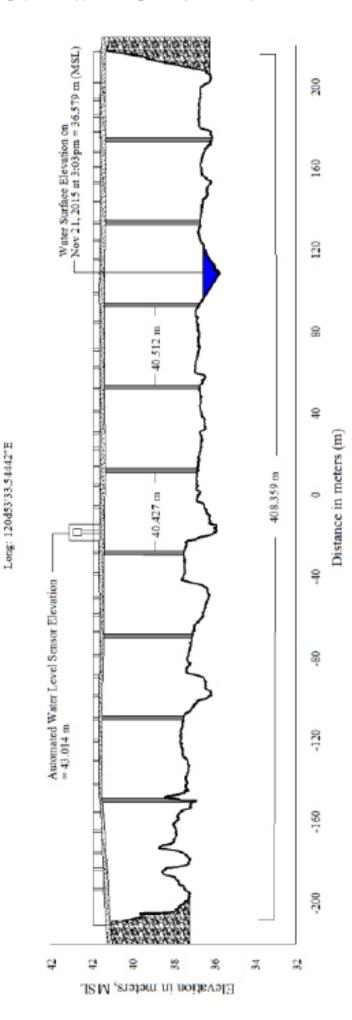



Figure 41. Amnay bridge cross-section location map

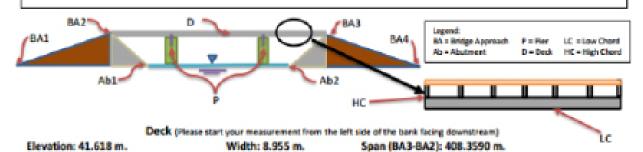
12d57'27.19115"N

Amnay Bridge

Figure 42. Amnay Bridge cross-section diagram

Bridge Data Form

Bridge Name: Amnay Bridge Date: November 21, 2015


River Name: Amnay River Time: 2:30 PM

Location: Brgy. Pagasa, Municipality of Sablayan, Occidental Mindoro

Survey Team: Kristine Ailene Borromeo, Maridel Miras, Precious Annie Lopez, Dona Rina Patricia Tajora, Kim Patrick Tort, Rodel Alberto, Caren Joy Ordoña

Flow condition: low ✓ normal high Weather Condition: ✓ fair rainy

Latitude: 12°57'27.19115"N Longitude: 120°53'33.54442" E

	Station	High Chord Elevation	Low Chord Elevation
1	NA	NA	NA

Bridge Approach (Please start your measurement from the left side of the bank facing downstream)

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	41.237	BA3	437.296	41.552
BA2	29.033	41.618	BA4	444.112	41.443

Abutment: Is the abutment sloping?

√Yes No; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1	NA.	NA.
Ab2	427.773	36.328

Pier (Please start your measurement from the left side of the bank facing downstream)

Shape: Cylindrical Number of Piers: 9 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	71.314	41.587	арргок. 0.9 m.
Pier 2	111.596	41.617	арргок. 0.9 m.
Pier 3	151.842	41.58	approx. 0.9 m.
Pier 4	192.411	41.609	арргох. 0.9 m.
Pier 5	232.839	41.587	approx. 0.9 m.
Pier 6	273.597	41.569	арргок. 0.9 m.
Pier 7	314.108	41.611	арргок. 0.9 m.
Pier 8	354.500	41.557	арргок. 0.9 m.
Pier 9	394.973	41.555	approx. 0.9 m.

NOTE: Use the center of the pier as reference to its station

Figure 43. Amnay Bridge Data Form

The water surface elevation of Amnay River was also acquired using Trimble® 882 GNSS PPK survey technique on November 21, 2015 at 3:03 p.m. The resulting water surface elevation at Amnay Bridge is 36.579 m above MSL. The water level marking for Amnay Bridge, shown in Figure 44, has an EGMOrtho value of 37.828 m which was then translated into a marking on the bridge's pier using digital level. This value shall bewas updated by UPLB PHIL-LiDAR 1 to its respective MSL value of 36.825 m to serve as reference for their flow data gathering and depth gauge deployment.

Figure 44. Water level marking at Amnay Bridge, Brgy. Pagasa, Municipality of Sablayan

4.6 Validation Points Acquisition Survey

Validation Points Acquisition Survey was conducted on November 6, 7, 8 14, 17, 18, and 21, 2015 using a survey-grade GNSS Rover, Trimble® SPS 882, receiver mounted on a pole which was attached either to the front or side of vehicle as shown in Figure 45. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.460 and 1.91 m and is measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with MC-212, GPS-4, MC-90 and MRW-30 occupied as the GNSS base stations all throughout the conduct of the survey.

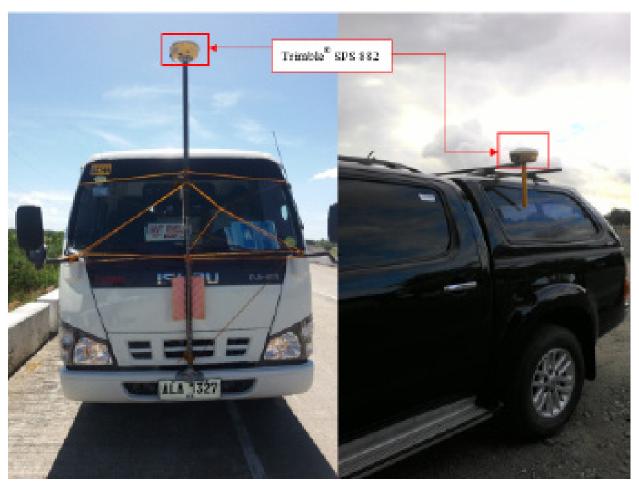


Figure 45. Validation points acquisition survey set-up

The validation points acquisition survey for the Amnay River Basin traversed the municipalities of Sta. Cruz, Sablayan, Calintaan, Rizal, San Jose and Magsaysay. The survey perpendicularly traversed the LiDAR flight strips in the survey area. A total of 26,449 points with an approximate length of 191 km was acquired for the validation point acquisition survey as shown in the map in Figure 46.

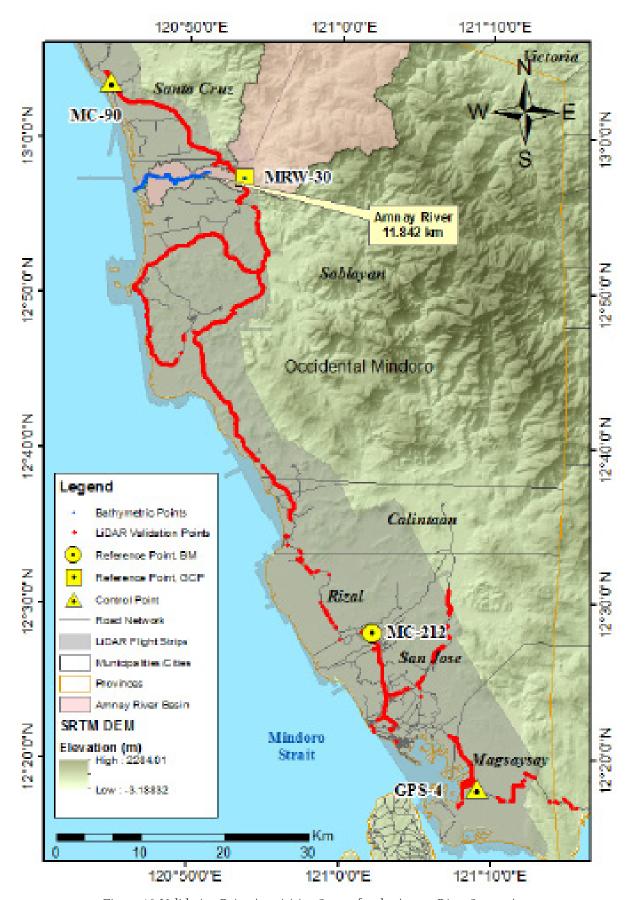


Figure 46. Validation Point Acquisition Survey for the Amnay River Survey Area

4.7 River Bathymetric Survey

Bathymetric survey using Hi-TargetTM echo sounder and a Trimble® SPS 882 attached to a pole secured on the side of the boat was executed on November 16 and 17, 2015 as shown in Figure 47. The survey began from approximately 2 km upstream the mouth of the river in Brgy, Claudio Salgado with coordinates 12 °57′33.85254″120°47′16.89625″, and ended at the mouth of the river. Meanwhile, manual bathymetric survey was conducted on November 21, 2015 using a Trimble® SPS 882 GNSS PPK technique which started from the upstream portion of the river in Brgy. Ilvita with coordinates 12°57′47.74269″120°51′16.92794″ and traversed by foot down to Brgy. Claudio Salgado at the starting point of the bathymetric survey using boat. The control point MRW-30 was used as base station for the whole bathymetric survey of the river.

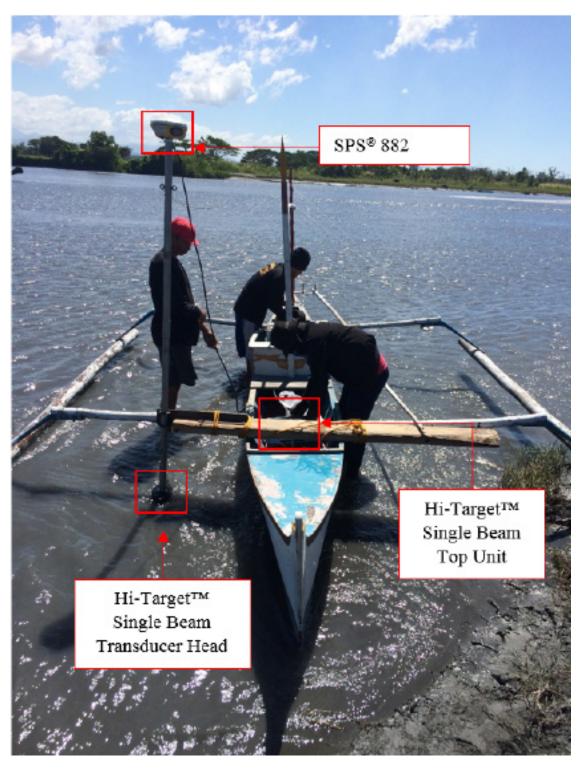


Figure 47. Bathymetry set-up and execution using Hi-Target™ for Amnay River.

The bathymetric survey coverage for Amnay river River is illustrated in Figure 48. Approximately 6 km of the delineated target bathymetric line was not covered due to absence of community in the upstream portion of the river.

Figure 48. Bathymetric points gathered from Amnay River

A CAD drawing was also produced to illustrate the Amnay riverbed centerline profile as shown in Figure 49. There is about a 20-m change in elevation observed within the 11.842-km bathymetric data from its upstream in Brgy. Ilvita down to the mouth of the river in Brgy. Claudio Salgado in Sablayan, Occidental Mindoro.

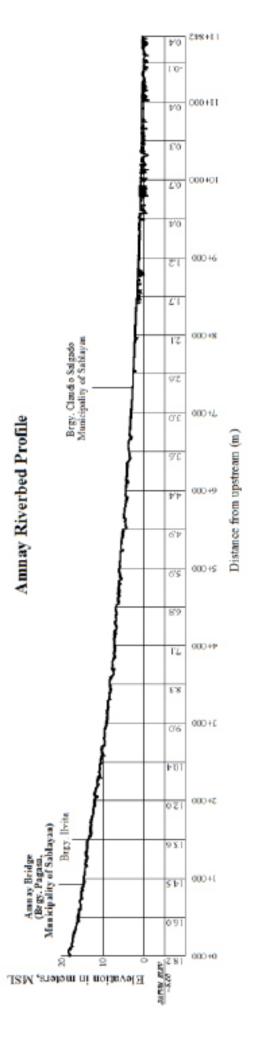


Figure 49. Amnay centerline riverbed profile

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Khristoffer Quinton, John Alvin B. Reyes, Alfi Lorenz B. Cura, Angelica T. Magpantay, Maria Michaela A. Gonzales Paulo Joshua U. Quilao, Jayson L. Arizapa, and Kevin M. Manalo

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the Amnay River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Amnay River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an Automatic Rain Gauge (ARG) Station installed within the river basin (12.956910°N, 120.893270°E). The location of the rain gauge is seen in Figure 50.

The total precipitation for this event is 113.50 mm. It has a peak rainfall of 5.0 mm. on August 7, 2016 at 12:50 am.

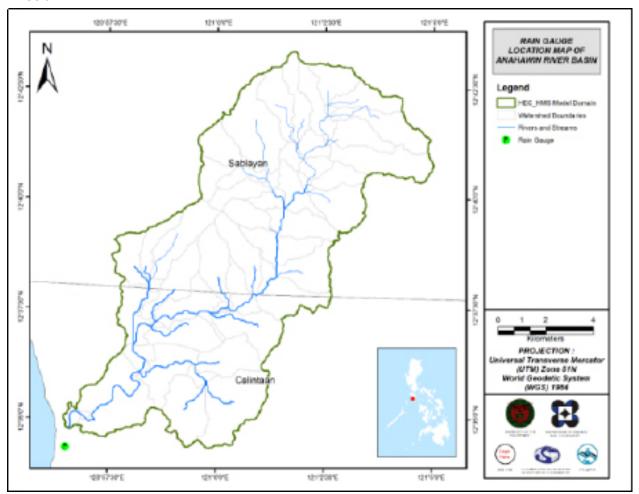


Figure 50. The location map of Amnay HEC-HMS model used for calibration

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Pagasa Bridge (also known as Amnay Bridge), Occidental Mindoro (12.956910°N, 120.893270°E). It gives the relationship between the observed water levels from the Ibod Bridge and outflow of the watershed at this location using Bankfull Method in Manning's Equation.

For Pagasa Bridge, the rating curve is expressed as Q = 9E-20e1.3237x as shown in Figure 53.

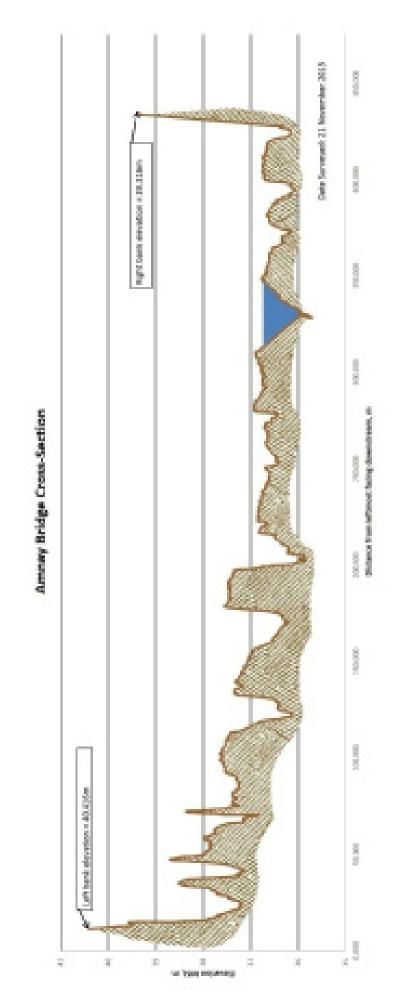


Figure 51. Cross-Section Plot of Pagasa (also known as Amnay) Bridge

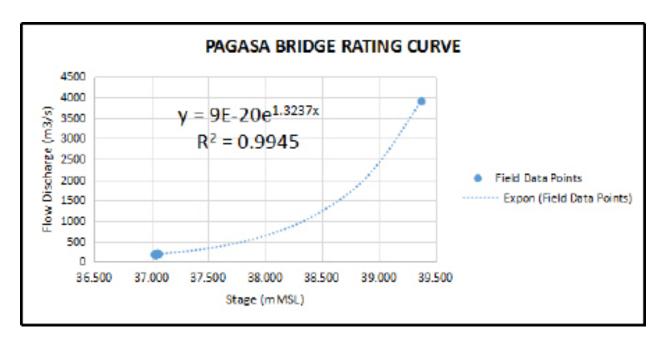


Figure 52. Rating Curve at Pagasa, Occidental Mindoro

For the calibration of the HEC-HMS model, shown in Figure 53, actual flow discharge during a rainfall event was collected in the Pagasa bridge. Peak discharge is 264.50 cu.m/s on August 8, 2016 at 8:30 pm.

Figure 53. Rainfall and outflow data at Amnay used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Ambulong Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Amnay watershed. The extreme values for this watershed were computed based on a 54-year record.

Table 31. RIDF values for Ambulong Rain Gauge computed by PAGASA

		СОМРИТ	ED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.7	35.5	36.3	50.2	68.2	80.1	104.1	125.7	150.8
5	27.9	45.5	53.8	74.2	103.4	122.5	159.7	192.9	226.7
10	34.2	52.1	65.4	90.1	126.7	150.6	196.5	237.3	276.9
15	37.8	57.4	71.9	99	139.8	166.4	217.3	262.4	305.3
20	40.3	61	76.5	105.3	149	177.5	231.9	280	325.1
25	42.2	63.9	80	110.1	156.1	186	243.1	293.5	340.4
50	48.1	72.6	90.9	125	178	212.3	277.6	335.2	387.5
100	54	81.2	101.6	139.8	199.7	238.4	311.8	376.6	434.3

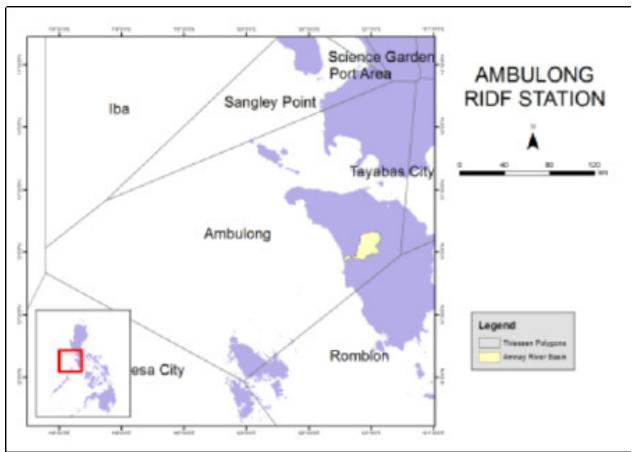


Figure 54. Location of Ambulong RIDF relative to Amnay River Basin

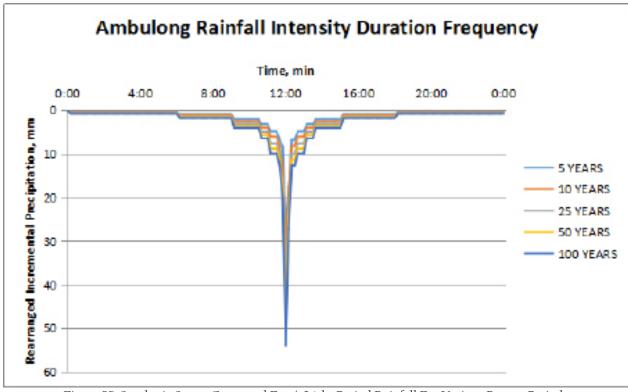


Figure 55. Synthetic Storm Generated For A 24-hr Period Rainfall For Various Return Periods

5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Amnay River Basin are shown in Figure 56 and Figure 57, respectively.

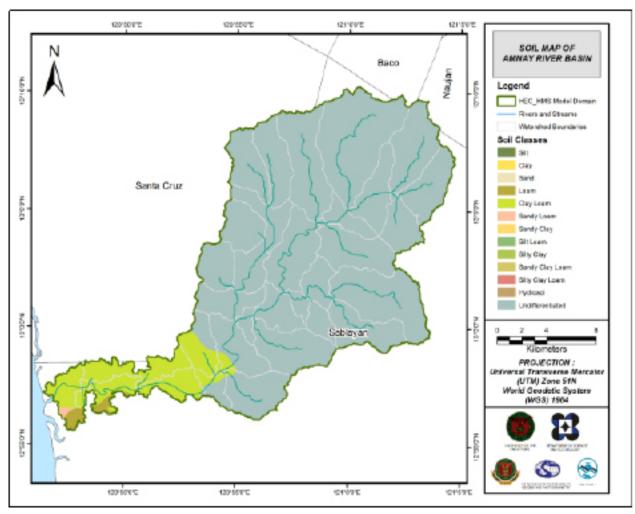


Figure 56. Soil map of the Amnay River Basin used for the estimation of the CN parameter. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

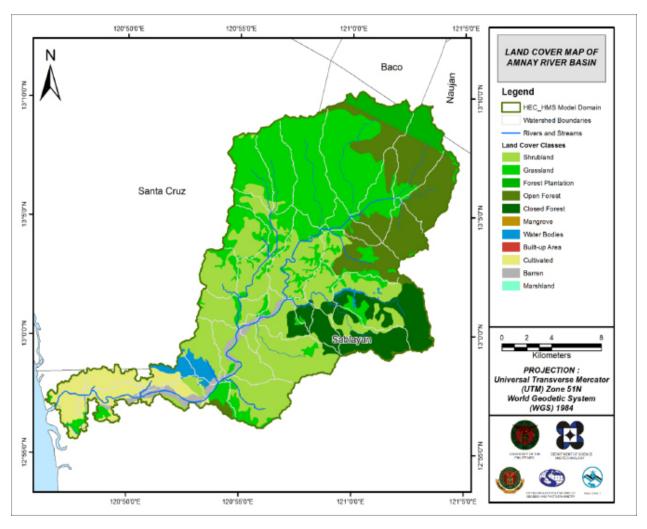


Figure 57. Land cover map of the Amnay River Basin used for the estimation of the CN and watershed lag parameters of the rainfall-runoff model. (Source of data: Digital soil map of the Philippines published by the Bureau of Soil and Water Management – Department of Agriculture)

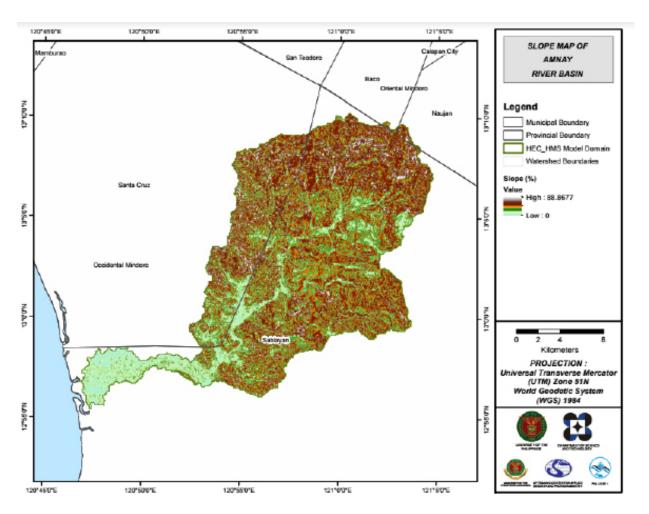


Figure 58. Slope Map of the Amnay River Basin

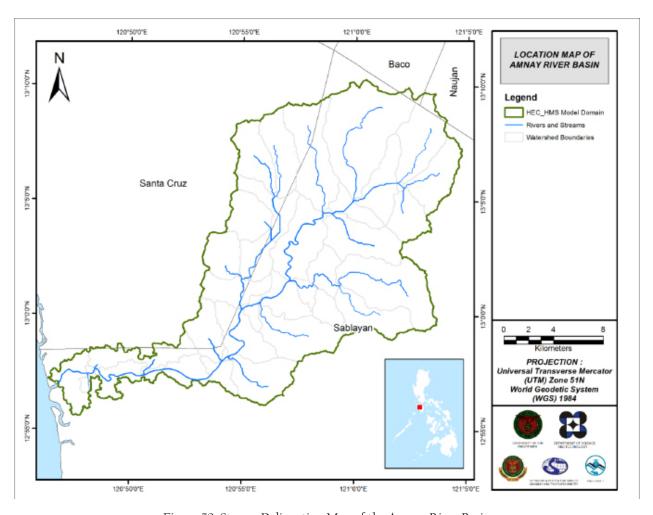


Figure 59. Stream Delineation Map of the Amnay River Basin

Using SAR-based DEM, the Amnay basin was delineated and further subdivided into subbasins. The model consists of 47 sub basins, 15 reaches, and 15 junctions. The Pagasa Bridge serves as the main outlet labelled as 95. This basin model is illustrated in Figure 60. The basins were identified based on soil and land cover characteristics of the area. Precipitation was taken from an Automatic Rain Gauge (ARG) Station installed on the bridge itself. Finally, it was calibrated using the data collected from the Automatic Water Level Sensor (AWLS) Station installed on the bridge itself (12.956910°N, 120.893270°E).

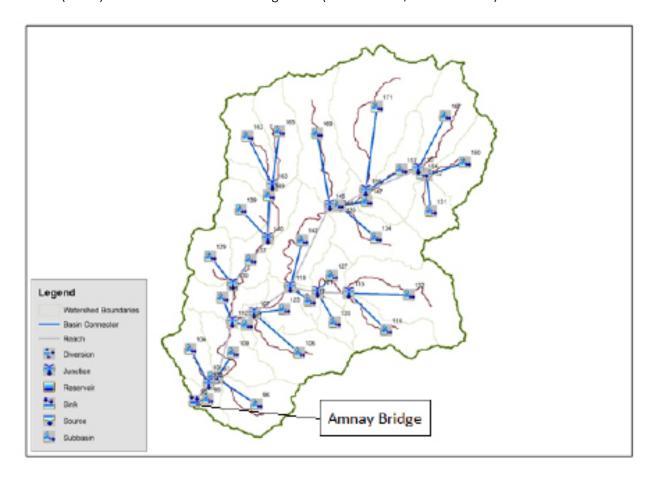


Figure 60. The Amnay River Basin model generated using HEC-HMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

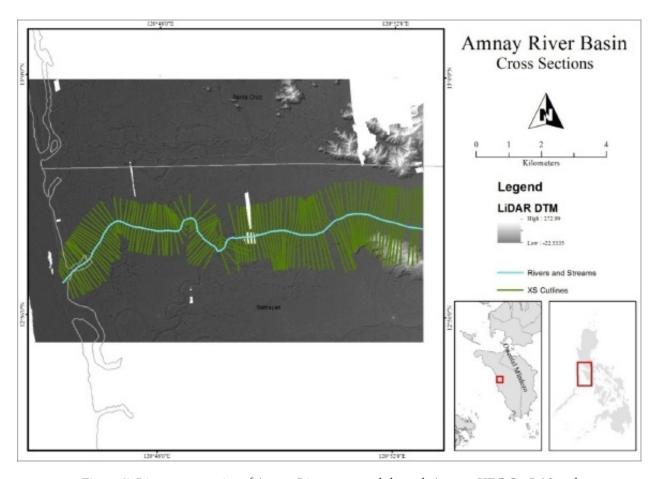


Figure 61. River cross-section of Amnay River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allowed for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area was divided into square grid elements, 10 meter by 10 meter in size. Each element was assigned a unique grid element number which served as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements were arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the east of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model were assigned as inflow and outflow elements respectively.

Figure 62. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is was then run through FLO-2D GDS Pro. This particular model had a computer run time of 56.67261 hours. After the simulation, FLO-2D Mapper Pro is was used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are were used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

The creation of a flood hazard map from the model also automatically createds a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is was used for the layout. In this particular model, the inundated parts cover a maximum land area of 85 377 120.00 m2.

There is a total of 31 901 219.95 m3 of water entering the model. Of this amount, 31 901 219.95 m3 is due to rainfall while 0.00 m3 is inflow from other areas outside the model. 10 046 270.00 m3 of this water is lost to infiltration and interception, while 12 697 027.47 m3 is stored by the flood plain. The rest, amounting up to 9 157 948.76 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Amnay HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 63 shows the comparison between the two discharge data.

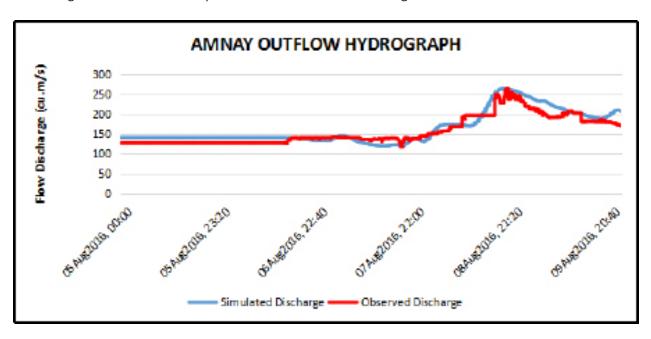


Figure 63. Outflow Hydrograph of Amnay produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 32 are the adjusted ranges of values of the parameters used in calibrating the model

Table 32. Range of Calibrated Values for Amnay

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve	Initial Abstraction (mm)	3 - 13
	Loss	number	Curve Number	58 - 99
Basin	Transform	Clark Unit	Time of Concentration (hr)	0.2 - 9
200		Hydrograph	Storage Coefficient (hr)	0.2 - 4
	Baseflow	Dogossion	Recession Constant	0.4 – 0.5
	Basellow	Recession	Ratio to Peak	0.5 – 0.8
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.6

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 3 to 13mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 58 to 99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.2 to 9 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.4 to 0.5 indicates that the basin is likely to quickly go back to its original. Ratio to peak of 0.5 to 0.8 indicates a milder receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.6 is relatively high compared to the common roughness of watersheds.

Accuracy measure	Value
RMSE	16.732
r2	0.951
NSE	0.765
PBIAS	-2.768
RSR	0.485

Table 33. Summary of the Efficiency Test of Amnay HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 16.732

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. A value of 0.951 was computed for this model.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.765.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is negative -2.768.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable are quantified. The model has an RSR value of 0.485.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 64) shows the Amnay outflow using the Ambulong Rainfail Intensity-Duration-FrequencyRIDF curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

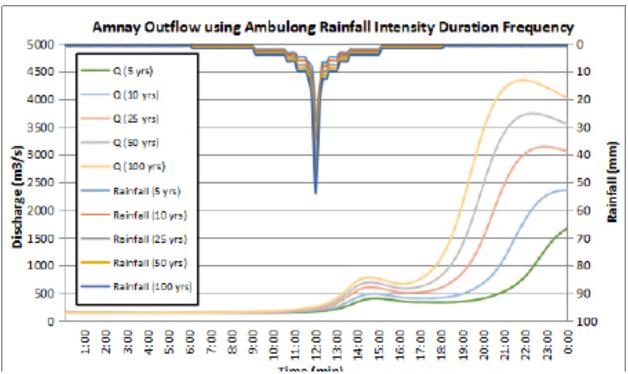


Figure 64. Outflow hydrograph at Amnay Station generated using Ambulong RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, time to peak and lag time of the Amnay discharge using the Ambulong Rainfall Intensity-Duration-Frequency RIDF curves (RIDF) in five different return periods is shown in Table 34.

Table 34. Peak values of the Amnay HECHMS Model outflow using the Ambulong RIDF 24-hour values

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak	Lag Time
5-Year	226.70	27.90	1667.126	24 hours	12 hours
10-Year	276.90	34.20	2353.361	24 hours	12 hours
25-Year	340.40	42.20	3137.214	22 hours 50 minutes	10 hours 50 minutes
50-Year	387.50	48.10	3737.815	22 hours 20 minutes	10 hours 20 minutes
100-Year	434.30	54.0	4338.473	21 hours 50 minutes	9 hours 50 minutes

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will bewas used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample map of Amnay River using the HMS base flow is shown on Figure 65 below.

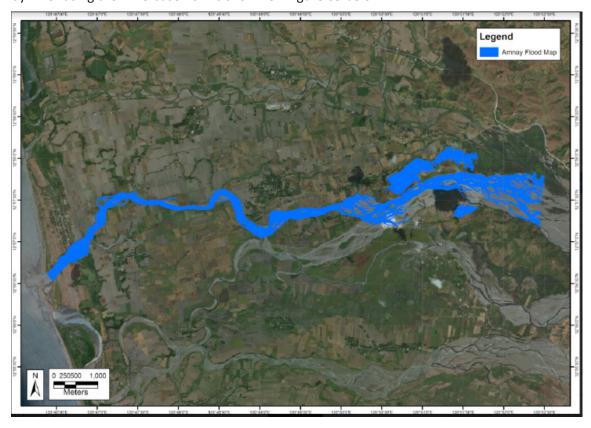


Figure 65. Amnay HEC-RAS Output

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps for 5-, 25-, and 100-year rain return scenarios of the Amnay Floodplain are shown in Figure 66 to Figure 71. The floodplain, with an area of 509.59 sq. km., covers two municipalities namely Sablayan, and Santa Cruz. Table 35 shows the percentage of area affected by flooding per municipality.

Table 35. Municipalities affected in Amnay Floodplain

Municipality	Total Area	Area Flooded	% Flooded	
Sablayan	2350.46	358.08	0.15	
Santa Cruz	709.53	147.95	0.21	

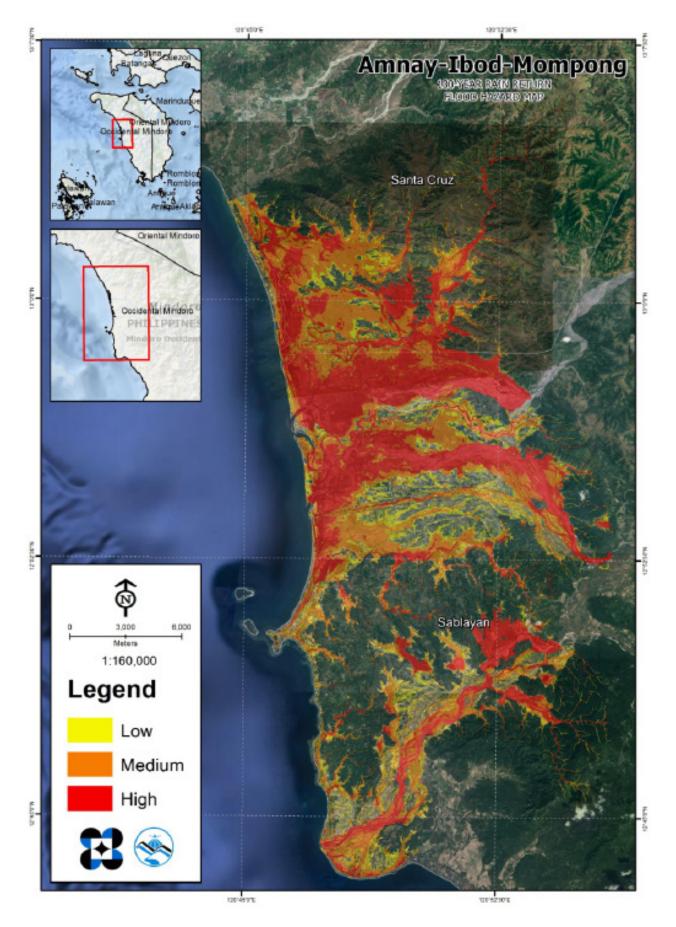


Figure 66. 100-year Rain Return Flood Hazard Map for Amnay-Ibod-Mompong Floodplain

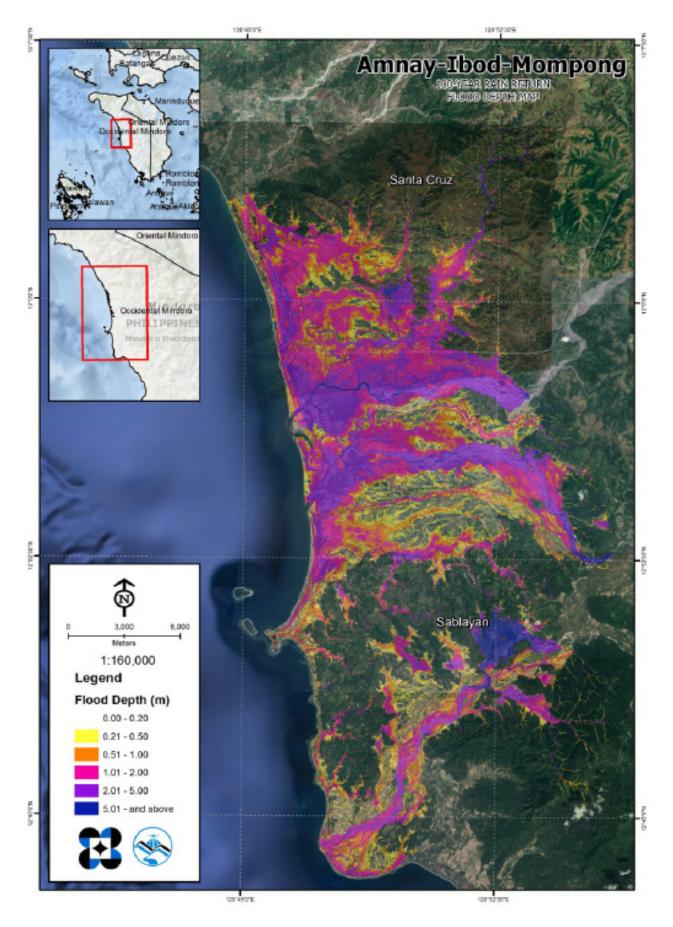


Figure 67. 100-year Rain Return Flood Depth Map for Amnay-Ibod-Mompong Floodplain

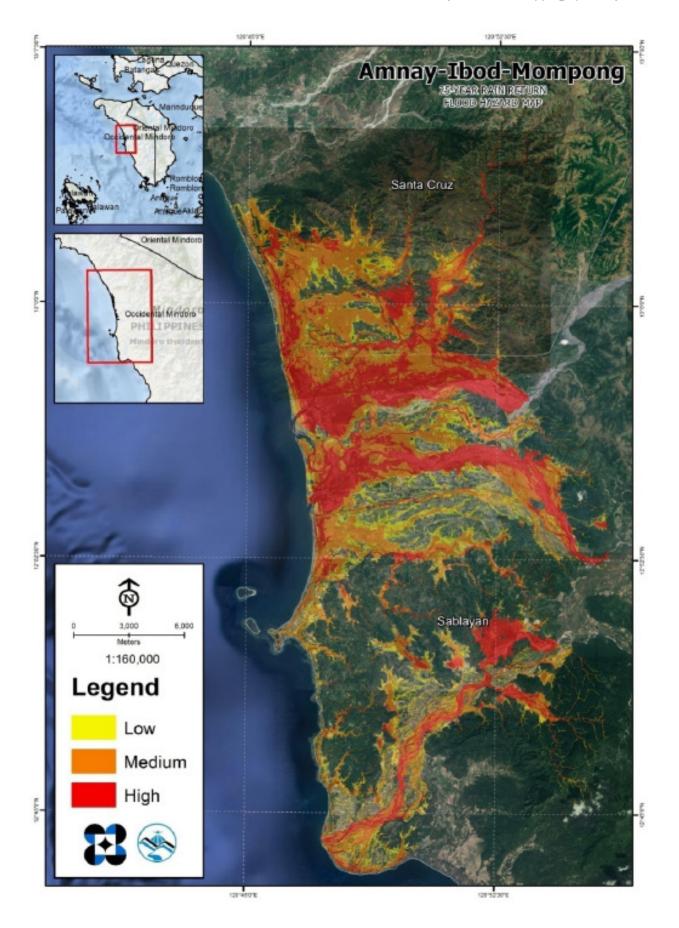


Figure 68. 25-year Rain Return Flood Hazard Map for Amnay-Ibod-Mompong Floodplain

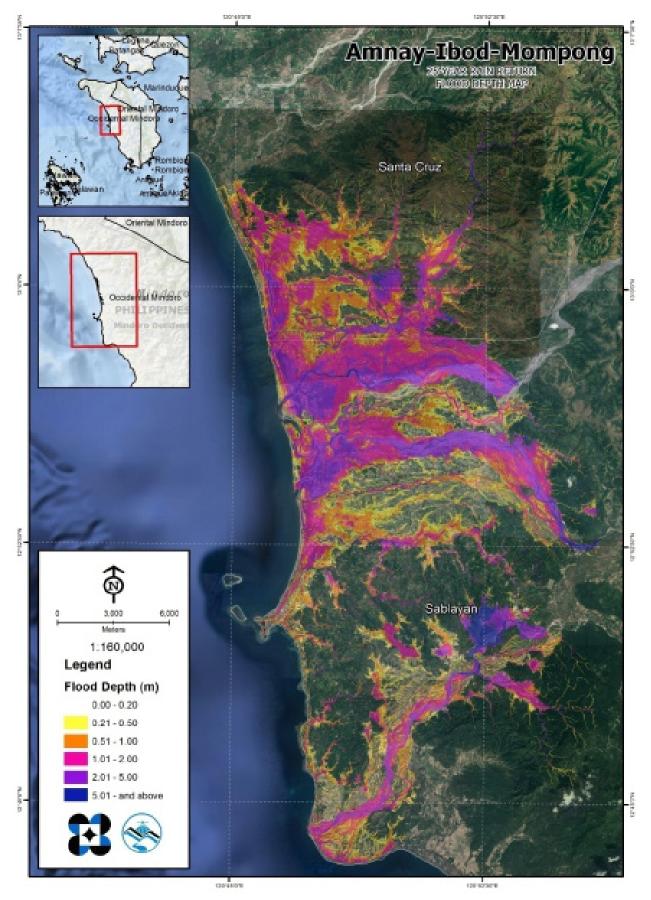


Figure 69. 25-year Rain Return Flood Depth Map for Amnay-Ibod-Mompng Floodplain

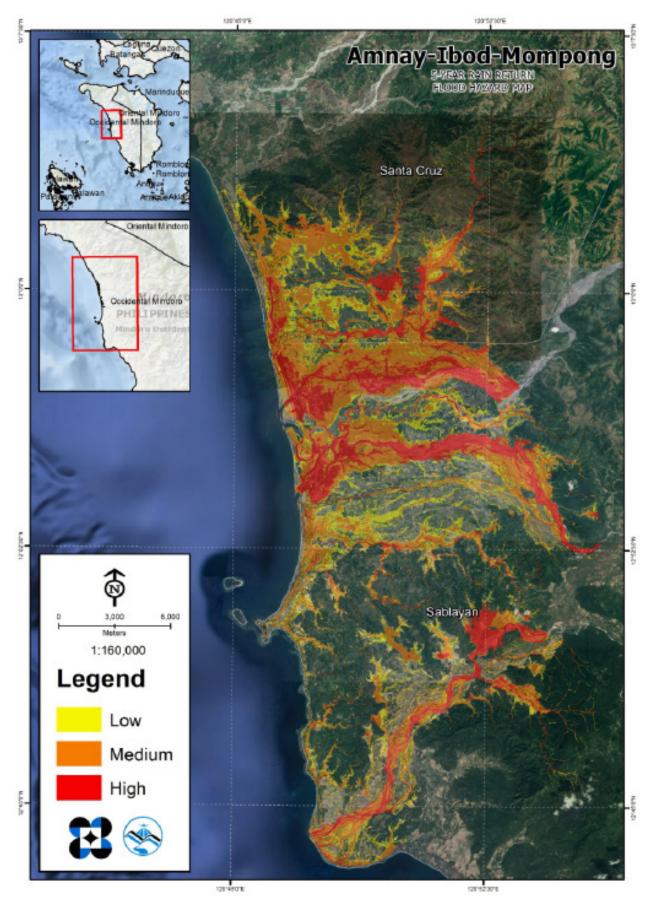


Figure 70. 5-year Flood Hazard Map for Amnay-Ibod-Mompong Floodplain overlaid on Google Earth imagery

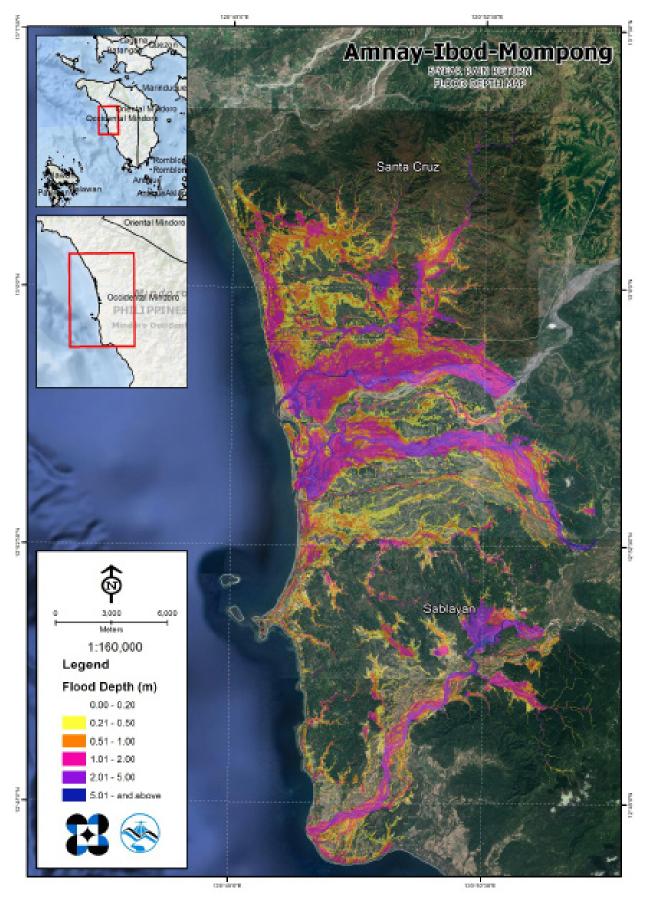


Figure 71. 5-year Rain Return Flood Depth Map for Amnay-Ibod-Mompong Floodplain

5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Amnay River Basin, grouped accordingly by municipality. For the said basin, two (2) municipalities consisting of 20 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 10.1% of the municipality of Sablayan with an area of 2103.82 sq. km. will experience flood levels of less 0.20 meters. 1.78% of the area will experience flood levels of 0.21 to 0.50 meters while 1.79%, 2.25%, 1.06%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 and shown in Figure 72 are the affected areas in Santa Cruz in square kilometres by flood depth per barangay.

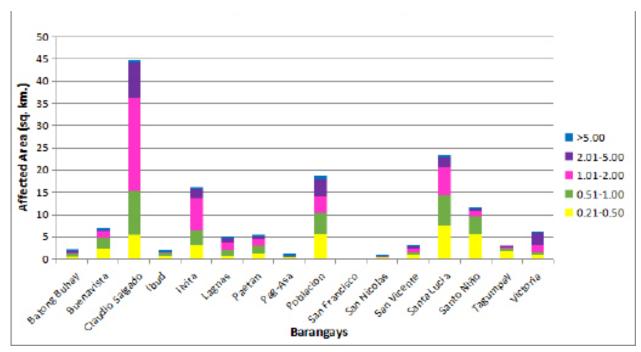


Figure 72. Affected Areas in Sablayan, Occidental Mindoro during 5-Year Rainfall Return Period

Table 36. Affected Areas in Sablayan, Occidental Mindoro during 5-Year Rainfall Return Period

Affected area (sq. km.) by flood			Area of affected barangays in Sablayan (in sq. km.)	ed barangays in ! (in sq. km.)	sablayan			
depth (in m.)	Batong Buhay	Buenavista	Claudio Salgado	pnql	Ilvita	Lagnas	Paetan	Pag-Asa
0.03-0.20	13.02	21.06	11.84	4.8	9.85	6.49	5.41	3.9
0.21-0.50	0.59	2.34	5.57	0.75	3.21	0.77	1.17	0.33
0.51-1.00	0.46	2.55	9.73	0.56	3.36	1.2	1.74	0.2
1.01-2.00	0.39	1.37	21.02	0.28	7.14	1.69	1.53	0.11
2.01-5.00	0.3	0.28	7.91	0.072	2.13	1.08	0.62	0.071
> 5.00	0.15	0.0043	0.14	0.0001	0.0095	0.003	0.043	0.01

Affected area			Area or	Area or affected barangays in Sabrayan (in sq. km.)	ys III Sabiayaii			
(sq. km.) by 1100d depth (in m.)	Poblacion	San Francisco	San Nicolas	San Vicente	Santa Lucia	Santo Niño Tagumpay	Tagumpay	Victoria
0.03-0.20	43.23	0.029	9.32	6.21	50:05	15.25	6.92	4.81
0.21-0.50	5.62	0	0.34	0.88	7.43	5.69	1.71	1
0.51-1.00	4.89	0	0.091	0.77	98'9	3.93	92'0	0.51
1.01-2.00	3.6	0	0.036	0.64	6.51	1.2	0.19	1.68
2.01-5.00	3.99	0	0.035	0.5	2.26	0.49	0.018	2.6
> 5.00	0.71	0	0.0036	0.35	0.043	0.048	0	0.0005

For the municipality of Santa Cruz, with an area of 689.03 sq. km., 14.5% will experience flood levels of less 0.20 meters. 2.22% of the area will experience flood levels of 0.21 to 0.50 meters while 2.57%, 1.64%, 0.55%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 and shown in Figure 73 are the affected areas in square kilometres by flood depth per barangay.

Table 37. Affected Areas in Santa Cruz, Occidental Mindoro during 5-Year Rainfall Return Period

Affected area	Area of a	ffected barang	ays in Santa Cruz	(in sq. km.)	
(sq. km.) by flood depth (in m.)	Barahan Dayap		Lumangbayan	Pinagturilan	
0.03-0.20	11.96	19.27	8.97	59.63	
0.21-0.50	2.67	2.51	0.19	9.95	
0.51-1.00	2.93	4.16	0.058	10.55	
1.01-2.00	2.38	1.4	0.044	7.46	
2.01-5.00	0.088	0.037	0.038	3.59	
> 5.00	0	0	0.0058	0.16	

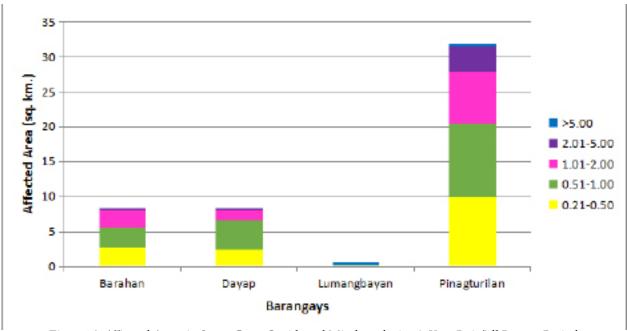


Figure 73. Affected Areas in Santa Cruz, Occidental Mindoro during 5-Year Rainfall Return Period

For the 25-year return period, 9.1% of the municipality of Sablayan with an area of 2103.82 sq. km. will experience flood levels of less 0.20 meters; 1.66% of the area will experience flood levels of 0.21 to 0.50 meters while 1.77%, 2.53%, 1.75%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 and shown in Figure 74 are the affected areas in square kilometres by flood depth per barangay.

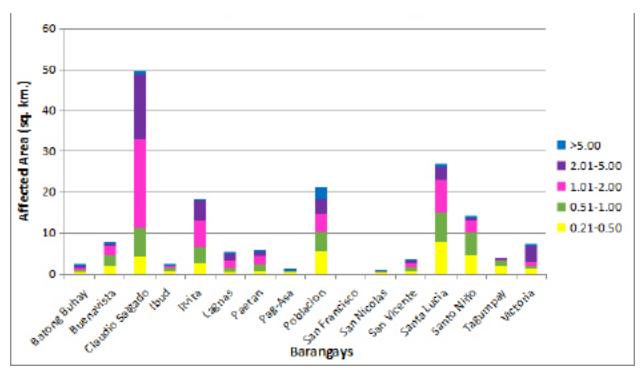


Figure 74. Affected Areas in Sablayan, Occidental Mindoro during 25-Year Rainfall Return Period

Table 38. Affected Areas in Sablayan, Occidental Mindoro during 25-Year Rainfall Return Period

Affected area			Area of affected barangays in Sablayan (in sq. km.)	ed barangays (in sq. km.)	in Sablayan			
(sq. km.) by flood depth (in m.)	Batong Buhay	Buenavista	Claudio Salgado	pnqı	llvita	Lagnas	Paetan	Pag-Asa
0.03-0.20	12.75	20.13	7.11	4.4	7.76	6.17	4.95	3.75
0.21-0.50	0.62	7	4.24	82.0	2.82	0.54	82'0	68.0
0.51-1.00	0.47	2.55	7.07	0.72	3.72	0.82	1.38	0.24
1.01-2.00	0.5	2.43	21.56	0.46	6.56	1.82	2.34	0.13
2.01-5.00	0.37	0.48	15.9	0.1	4.81	1.81	1.01	0.085
> 5.00	0.21	9900:0	0.39	0.0006	0.027	0.064	0.062	0.024

Affected area			Area of	Area of affected barangays in Sablayan (in sq. km.)	າys in Sablaya)	c		
(sq. km.) by flood depth (in m.)	Poblacion	San Francisco	San Nicolas	San Vicente	Santa Lucia	Santo Niño	Tagumpay	Victoria
0.03-0.20	40.64	0.029	9.17	5.57	46.69	12.71	6.02	3.63
0.21-0.50	5.73	0	0.42	0.81	7.92	4.74	2.06	1.16
0.51-1.00	4.69	0	0.14	0.87	7.1	5.45	1.1	0.91
1.01-2.00	4.35	0	0.048	0.92	8.02	2.86	0.39	0.91
2.01-5.00	3.57	0	0.042	0.7	3.34	0.78	0.031	3.86
> 5.00	3.06	0	0.01	0.51	0.095	0.063	0	0.11

For the municipality of Santa Cruz, with an area of 689.03 sq. km., 13.2% will experience flood levels of less 0.20 meters; 1.62% of the area will experience flood levels of 0.21 to 0.50 meters while 2.7%, 2.97%, 0.92%, and 0.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 and Figure 75 are the affected areas in square kilometres by flood depth per barangay.

Table 39. Affected Areas in Santa Cruz, Occidental Mindoro during 25-Year Rainfall Return Period

Affected area (sq. km.) by flood depth	А		arangays in Santa Cru sq. km.)	ız	
(in m.)	Barahan	Dayap	Lumangbayan	Pinagturilan	
0.03-0.20	10.08	17.9	8.87	54.08	
0.21-0.50	1.91	1.95	0.24	7.09	
0.51-1.00	3.23	3.36	0.08	11.93	
1.01-2.00	4.31	4.05	0.052	12.08	
2.01-5.00	0.5	0.12	0.055	5.66	
> 5.00	0	0.0012	0.0097	0.54	

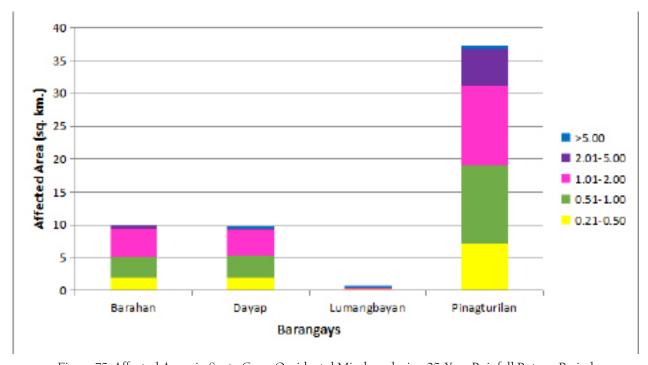


Figure 75. Affected Areas in Santa Cruz, Occidental Mindoro during 25-Year Rainfall Return Period

For the 100-year return period, 8.4% of the municipality of Sablayan with an area of 2103.82 sq. km. will experience flood levels of less 0.20 meters. 1.58% of the area will experience flood levels of 0.21 to 0.50 meters while 1.69%, 2.56%, 2.47%, and 0.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 and Table 41, and shown in Figure 76 are the affected areas in square kilometres by flood depth per barangay.

Table 40. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period

Affected area (sq. km.) by		Arc	ea of affec	ted baraı (in sq. k	•	ablayan		
flood depth (in m.)	Batong Buhay	Buenavista	Claudio Salgado	Ibud	Ilvita	Lagnas	Paetan	Pag-Asa
0.03-0.20	12.5	19.41	4.42	4.04	6.78	5.98	4.69	3.6
0.21-0.50	0.69	1.82	3.3	0.84	2.36	0.5	0.78	0.45
0.51-1.00	0.48	2.4	5.26	0.73	3.31	0.56	1.14	0.27
1.01-2.00	0.52	2.74	18.12	0.72	5.75	1.72	2.52	0.17
2.01-5.00	0.5	1.22	24.44	0.13	7.43	2.35	1.31	0.076
> 5.00	0.24	0.013	0.74	0.0009	0.063	0.12	0.074	0.053

Table 41. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period

Affected area (sq. km.) by flood depth (in m.)	Area of affected barangays in Sablayan (in sq. km.)								
	Poblacion	San Francisco	San Nicolas	San Vicente	Santa Lucia	Santo Niño	Tagumpay	Victoria	
0.03-0.20	38.19	0.029	9.02	5.29	43.4	11.22	5.28	2.8	
0.21-0.50	5.83	0	0.49	0.82	8.05	3.93	2.25	1.18	
0.51-1.00	4.96	0	0.18	0.92	7.64	5.24	1.38	1.06	
1.01-2.00	5.03	0	0.06	1.01	9	4.66	0.63	1.19	
2.01-5.00	3.19	0	0.05	0.79	4.86	1.48	0.048	4.1	
> 5.00	4.85	0	0.017	0.54	0.21	0.084	0	0.27	

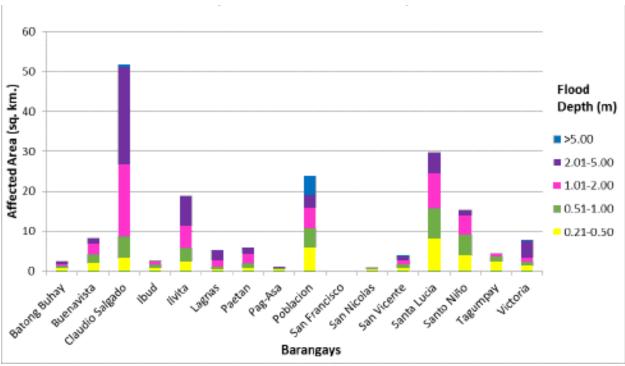


Figure 76. Affected Areas in Sablayan, Occidental Mindoro during 100-Year Rainfall Return Period

For the municipality of Santa Cruz, with an area of 689.03 sq. km., 12.5% will experience flood levels of less 0.20 meters; . 1.37% of the area will experience flood levels of 0.21 to 0.50 meters while 2.04%, 3.94%, 1.58%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 and Figure 76 are the affected areas in square kilometres by flood depth per barangay.

Table 42. Affected Areas in Santa Cruz, Occidental Mindoro during 100-Year Rainfall Return Period

Affected area (sq. km.) by flood depth	Area of affected barangays in Santa Cruz (in sq. km.)							
(in m.)	Barahan	Dayap	Lumangbayan	Pinagturilan				
0.03-0.20	8.86	17.23	8.8	50.95				
0.21-0.50	1.57	1.38	0.26	6.22				
0.51-1.00	2.49	2.64	0.1	8.86				
1.01-2.00	5.42	5.34	0.061	16.3				
2.01-5.00	1.69	0.78	0.066	8.34				
> 5.00	0	0.0066	0.015	0.71				

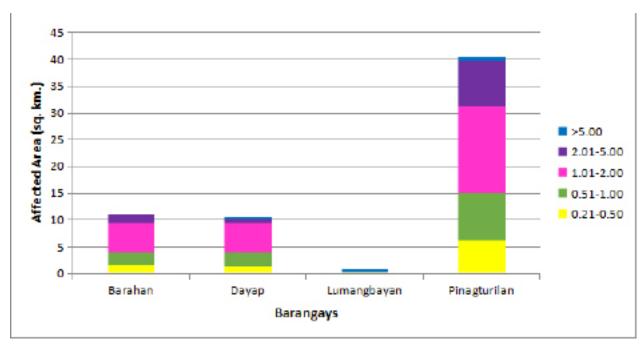


Figure 77. Affected Areas in Santa Cruz, Occidental Mindoro during 100-Year Rainfall Return Period

Among the barangays in the municipality of Sablayan, Santa Lucia is projected to have the highest percentage of area that will experience flood levels at 3.48%. Meanwhile, Poblacion posted the second highest percentage of area that may be affected by flood depths at 2.95%.

Among the barangays in the municipality of Santa Cruz, Pinagturilan is projected to have the highest percentage of area that will experience flood levels at 13.26%. Meanwhile, Dayap posted the second highest percentage of area that may be affected by flood depths at 3.97%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 77.

The flood validation consists of 83 points randomly selected all over the Amnay floodplain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 1.33m. Table 42 shows a contingency matrix of the comparison. The validation points are found in Annex 11.

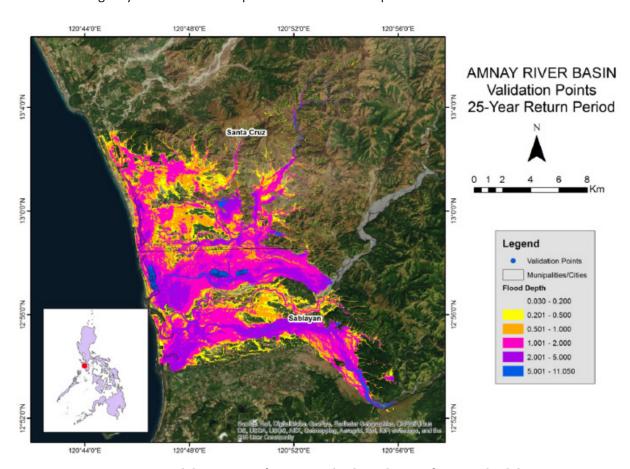


Figure 78. Validation points for 25-year Flood Depth Map of Amnay Floodplain

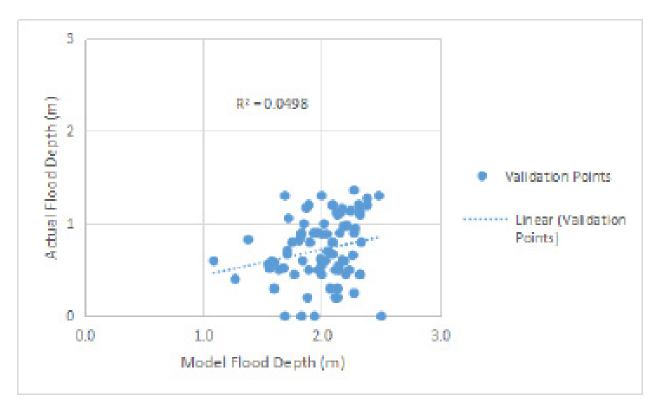


Figure 79. Flood map depth vs actual flood depth

Table 43. Actual flood vs simulated flood depth at different levels in the Amnay River Basin.

Actual	Modeled Flood Depth (m)							
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20	0	0	0	4	3	0	7	
0.21-0.50	0	0	0	9	10	0	19	
0.51-1.00	0	0	0	23	16	0	39	
1.01-2.00	0	0	0	5	13	0	18	
2.01-5.00	0	0	0	0	0	0	0	
> 5.00	0	0	0	0	0	0	0	
Total	0	0	0	41	42	0	83	

The overall accuracy generated by the flood model is estimated at 6.02% with 5 points correctly matching the actual flood depths. In addition, there were 36 points estimated one level above and below the correct flood depths while there were 25 points and 17 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 0 points were underestimated in the modelled flood depths of Amnay. Table 43 depicts shows the summary of the Accuracy Assessment in the Amnay River Basin Survey.

Table 44. Summary of the Accuracy Assessment in the Amnay River Basin Survey

	No. of Points	%
Correct	5	6.02
Overestimated	78	93.98
Underestimated	0	0.00
Total	83	100.00

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Optech Technical Specification of the Aquarius Sensor

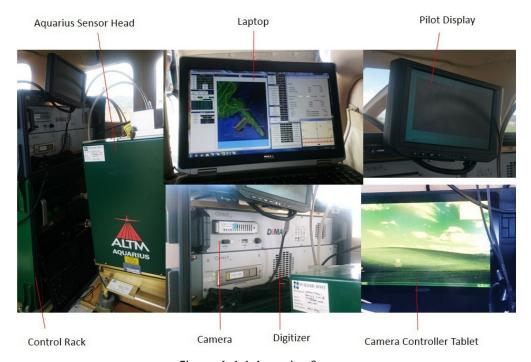


Figure A-1.1 Aquarius Sensor

Table A-1.1. Parameters and Specification of Aquarius Sensor

	eters and specification of Aquanas sensor
Parameter	Specification
Operational envelope (1,2,3,4)	300-600 m AGL
Laser wavelength	33, 50. 70 kHz
Horizontal accuracy (2)	0-70 Hz
Elevation accuracy (2)	0 to ± 25 °
Effective laser repetition rate	30-60 cm
Position and orientation system	0 to > 10 m (for k < 0.1/m)
Scan width (FOV)	
Scan frequency (5)	300-2500
Sensor scan product	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Beam divergence	12-bit dynamic measurement range
Roll compensation	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Vertical target separation distance	Ruggedized removable SSD hard disk (SATA III)
Range capture	28 V, 900 W, 35 A
Intensity capture	5 MP interline camera (standard); 60 MP full frame (optional)
Image capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Full waveform capture	Sensor:250 x 430 x 320 mm; 30 kg;
Data storage	Control rack: 591 x 485 x 578 mm; 53 kg
Power requirements	0-35°C
Dimensions and weight	0-95% no-condensing
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

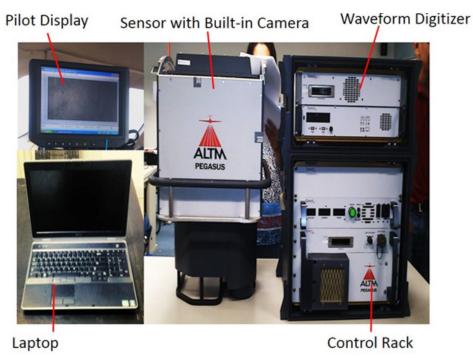


Table A-1.2. Parameters and Specification of Pegasus Sensor

Parameter	Specification				
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal				
Laser wavelength	1064 nm				
Horizontal accuracy (2)	1/5,500 x altitude, 1σ				
Elevation accuracy (2)	< 5-20 cm, 1σ				
Effective laser repetition rate	Programmable, 100-500 kHz				
Position and orientation system	POS AV ™AP50 (OEM)				
Scan width (FOV)	Programmable, 0-75 °				
Scan frequency (5)	Programmable, 0-140 Hz (effective)				
Sensor scan product	800 maximum				
Beam divergence	0.25 mrad (1/e)				
Roll compensation	Programmable, ±37° (FOV dependent)				
Vertical target separation distance	<0.7 m				
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns				
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)				
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)				
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer				
Data storage	Removable solid state disk SSD (SATA II)				
Power requirements	28 V, 800 W, 30 A				
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;				
	Control rack: 650 x 590 x 490 mm; 46 kg				
Operating Temperature	-10°C to +35°C				
Relative humidity	0-95% non-condensing				

¹ Target reflectivity ≥20%

 $^{2\} Dependent\ on\ selected\ operational\ parameters\ using\ nominal\ FOV\ of\ up\ to\ 40°\ in\ standard\ atmospheric\ conditions\ with\ 24-km\ visibility$

³ Angle of incidence ≤20°

⁴ Target size ≥ laser footprint5 Dependent on system configuration

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. MRW-6

February 19, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCC	IDENTAL MINDORO			
	Station Name: I	MRW-6 (PCP-2992A)			
Island: LUZON Municipality: SABLAYAN	Order	:: 3rd	Baranga	y: YAPA	ING
manage of the contract	PRS	92 Coordinates			
Latitude: 12º 52' 40.22762"	Longitude:	120° 55' 6.44586"	Ellipsoid	al Hgt:	80.63530 m.
	WGS	84 Coordinates			
Latitude: 12° 52' 35.21155"	Longitude:	120° 55' 11.48810"	Ellipsoid	al Hgt:	128.69600 m
	PTI	M Coordinates			
Northing: 1424038.201 m.	Easting:	491149.868 m.	Zone:	3	
	UTI	M Coordinates			
Northing: 1,424,453.14	Easting:	274,116.83	Zone:	51	

Location Description

MRW-6 (PCP-2992)

From the Depeartment of Agrarian Reform Office in Yapang, travel north along the national road for about 5 Kms. up to Patrick bridge. The point is permanently marked and located at the NW end of the catwalk of Patrick bridge and about 15 meters southwest of Km. Post 344. Mark is a 4" copper nail drilled in a hole and cement flush to the catwalk with inscription "MRW-6, 1993, NAMRIA".

Requesting Party: UP DREAM

Pupose:

Reference 8795394 A

OR Number: T.N.:

2014-357

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMELA OFFICES: Main: Lawton Avenue, Fort Bonifocia, 1634 Toquig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (622) 241-3494 to 98 www.nemria.gov.ph

2. MRW-30

February 19, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCCI	IDENTAL MINDORO			
	Station Name: I	MRW-6 (PCP-2992A)			
Island: LUZON Municipality: SABLAYAN	Order	: 3rd	Baranga	y: YAPA	ING
municipality. Onder that	PRS	92 Coordinates			
Latitude: 12° 52' 40.22762"	Longitude:	120° 55' 6.44586"	Ellipsoid	al Hgt	80.63530 m.
	WGS	84 Coordinates			
Latitude: 12° 52' 35.21155"	Longitude:	120° 55' 11.48810"	Ellipsoid	al Hgt	128.69600 m
	PTN	d Coordinates			
Northing: 1424038.201 m.	Easting:	491149.868 m.	Zone:	3	
	UTI	M Coordinates			
Northing: 1,424,453.14	Easting:	274,116.83	Zone:	51	

Location Description

MRW-6 (PCP-2992)

From the Depeartment of Agrarian Reform Office in Yapang, travel north along the national road for about 5 Kms. up to Patrick bridge. The point is permanently marked and located at the NW end of the catwalk of Patrick bridge and about 15 meters southwest of Km. Post 344. Mark is a 4" copper nail drilled in a hole and cement flush to the catwalk with inscription "MRW-6, 1993, NAMRIA".

Requesting Party: UP DREAM Pupose: Reference

OR Number: T.N.:

8795394 A 2014-357

RUEL SM. BELEN, MNSA Director, Myoping And Geodesy Branch

NAMED DESIGNA Main : Lowton Amenue, Fort Bonifacio, 1634 Topuig City, Philippines Tel. No.: (622) 810-4621 to 41 Branch : 421 Barroox St. San Kicolas, 1010 Mamfa, Philippines, Tel. No. (822) 351-3414 to 98 www.nemrie.gov.ph

3. MRW-32

February 26, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCC	IDENTAL MINDORO			
	Station N	lame: MRW-32			
Island: LUZON		r. 2nd	Baranga	y: FATII	(IIT) AN
Municipality: MAMBURAO (CAP		92 Coordinates			
Latitude: 13° 10" 14.92094"	Longitude:	120° 39' 52.29557"	Ellipsoid	al Hgt:	1.47400 m.
	WGS	84 Coordinates			
Latitude: 13° 10" 9.81293"	Longitude:	120° 39' 57.31386"	Ellipsoid	al Hgt:	48.13600 m
	PTI	M Coordinates			
Northing: 1456469.064 m.	Easting:	463632.46 m.	Zone:	3	
	UTI	M Coordinates			
Northing: 1,457,111.12	Easting:	246,845.90	Zone:	51	

Location Description

T.N.:

MRW-32
From Abra de llog to San Jose, along Nat'l Road, approx. 11.4 Km. from Mamburao Town Proper, 400 m from Km. post 396, 12.6 Km. before Sta. Cruz Town Proper, right side of road located brgy. hall of Fatima, Mamburao, Occ. Mindoro, beside Fatima Elem. School. Station is located in corner fence of Day Care Center. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-32, 2007, NAMRIA".

Requesting Party: UP DREAM Reference Pupose: OR Number: 8795440 A

2014-397

🗫 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Main : Lewton Avenue, Fort Bonifacia, 1434 Taguig City, Philippines Tel. No.: (427) 810-4521 to 41 Branch: 421 Barrers St. San Nicolas, 1010 Manila, Philippines, Tel. No. (622) 241-3474 to 98 www.nemrie.gov.ph

Figure A-2.3. MRW-32

3. MRW-34

February 26, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCC	IDENTAL MINDORO			
	Station N	lame: MRW-34			
Island: LUZON Municipality: ABRA DE ILOG	Orde	r. 2nd	Baranga	y: ARM	ADO
	PRS	92 Coordinates			
Latitude: 13° 17' 25.00981"	Longitude:	120" 37" 41.53530"	Ellipsoid	al Hgt	8.01600 m.
	WGS	84 Coordinates			
Latitude: 13° 17' 19.87026"	Longitude:	120° 37" 46.54446"	Ellipsoid	al Hgt	54.26900 m
	PTI	M Coordinates			
Northing: 1469690.588 m.	Easting:	459714.493 m.	Zone:	3	
		M Coordinates			
Northing: 1,470,369.33	Easting:	243,032.08	Zone:	51	

Location Description

MRW-34

From Abra de Ilog to San Jose, along Naf'l Road approx. 20.3 Km. from Abra de Ilog Town Proper, 300 m. from Km. post 418, 9.7 Km. before Mamburao Proper, located Balibago Bridge at Brgy. Armado, Sitio Balibago, Abra de Ilog, Occ. Mindoro. Station is located near footpath of Balibago Bridge. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MR/W-34, 2007, NAMRIA".

Requesting Party: UP DREAM Pupose: Reference OR Number: 8795440 A T.M.:

2014-396

FILE RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

Main: Lawton Avenue, from Sonificia, 1634 Taguig City, Philippines . Tel. So.: (622) 810-4621 to 41 Brench - 421 Barraca St. San Kissles, 1010 Manila, Philippines, Tel. No. (622) 340-3494 to 90 www.nomria.gov.ph

4. MRW-54

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: OCC	IDENTAL MINDORO		
	Station N	ame: MRW-54		
Island: LUZON Municipality: SABLAYAN	Order	: 2nd	Barangay: MAL	ISBONG
минорану: эмвектим	PRS	92 Coordinates		
Latitude: 12° 46' 18.56204"	Longitude:	120° 50' 27.44152"	Ellipsoidal Hgt:	28.20700 m.
	wgs	84 Coordinates		
Latitude: 12° 46′ 13.56455"	Longitude:	120° 50' 32.49343"	Ellipsoidal Hgt:	76.35500 m.
	PTI	V Coordinates		
Northing: 1412314.677 m.	Easting:	482731.146 m.	Zone: 3	
		W Coordinates		
Northing: 1,412,791.69	Easting:	265,604.90	Zone: 51	

Location Description

MRW-54

From Abra de llog to San Jose, along Nat'l Road, turn right to Brgy. Road, approx. 1.1 Km. travel, right side of Brgy. Road located brgy, hall boundary of Malisbong, Sablayan, Occ., Mindoro. Station is located at the back of goal post of basketball court. Mark is the head of a 4 in. copper nail flushed in a cement block embedded in the ground with inscriptions, "MRW-54, 2007, NAMRIA".

Requesting Par Pupose:

Requesting Party: UP-DREAM

OR Number:

Reference 8795470 A

T.N.:

2014-445

Director Alapping And Geodesy Branch

NAMES OFFICES

Main : Lawter Avenue, Furt Spallada, 1434 Tagoig Chy, Philippines Tel. No. (527) 110-4211 to 41 Breach : 421 Berney St. Sen Napius, 1010 Munile, Philippines, Tel. No. (525) 241-2414 to 40 server normalia, gave, ph

5. MC-121

February 10, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: OCCIDENTAL MINDORO

Station Name: MC-121

Island: Luzon Municipality: SABLAYAN

Barangay BATONG BUHAY

Elevation: 77.8103 +/- 0.14 m.

Accuracy Class at 95% C.L.

Datum: Mean Sea Level

Latitude:

Longitude:

Location Description

MC-121

Marked is the head of a 4" copper nail flushed in a cement block embedded in the ground with inscription MC-121 2007 NAMRIA". The station is in Sitio Yapang Brgy. Batong Buhay, Sablayan Occidental Mindoro. From Sablayan located along National road in the South end of the Catwalk of Patrick bridge.

Requesting Party:

UP DREAM

Purpose: OR Number:

T.N.:

Reference 8089774 I 2016-0330

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMES OFFICES

Man Laster-Seeme Fertifierbase, 1666 Egyalg-Dig Philippines. Tel. No. (602) 810-803 to 41 Branch: 421 Branc: 421 Branch: 421 Branch: 421 Branch: 421 Branch: 421 Branch: 42

ISO BOY: 2008 CERTIFIED FOR IMPPING AND GEOSPATIAL INFORMATION WANAGEMENT

Figure A-2.6. MC-121

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. MC-121

Project information		Coordinate System	
Name:	I:\Doc\DAC\2015\Fieldwork\2015-12-3_17	Name:	UTM
	Mamburao, Occidental Mindoro\Baseline Processing Reports\2015-dec mamburao.	Datum:	PRS 92
	occ mindero.vce	Zone:	51 North (123E)
Size:	779 KB	Geoid:	EGMPH
Modified:	7/14/2016 3:00:46 PM (UTC:8)	Vertical datum:	
Time zone:	Taipei Standard Time		
Reference number:			
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
MRW-6 MC-121 (B6)	MRW-6	MC-121	Fixed	0.002	0.004	195°39'56"	232.244	-0.011

Acceptance Summary

Processed	Passed	Flag	P	Fail	_
1	1	0		0	

MRW-6 - MC-121 (7:30:43 AM-10:37:36 AM) (S6)

MRW-6 --- MC-121 (B6) Baseline observation: 7/14/2016 2:46:55 PM Processed: Solution type: Fixed Frequency used: Dual Frequency (L1, L2) Horizontal precision: 0.002 m Vertical precision: 0.004 m RMS: 0,000 m Maximum PDOP: 2.183 Ephemeris used: Broadcast Antenna model: NGS Absolute Processing start time: 12/9/2015 7:30:43 AM (Local: UTC+8hr) 12/9/2015 10:37:36 AM (Local: UTC+8hr) Processing stop time: Processing duration: 03:06:53 Processing interval:

1 second

1

Vector Components (Mark to Mark)

From:	MRW-6	IRW-6							
Grid		Local			Global				
Easting	274116.940 m	Latitude	N12"52'40.23826"	Latitude	N12"52'35.22171"				
Northing	1424453.462 m	Longitude	E120"55'06.44928"	Longitude	E120'55'11.49159"				
Elevation	80.387 m	Height	79.981 m	Height	128.042 m				

To:	MC-121	MC-121						
Grid		Local		Global				
Easting	274052.408 m	Latitude	N12"52'32.96110"	Latitude	N12"52'27.94499"			
Northing	1424230.309 m	Longitude	E120"55'04.36932"	Longitude	E120°55'09.41181"			
Elevation	80.376 m	Height	79.971 m	Height	128.035 m			

Vector								
ΔEasting	-84.535 m	NS Fwd Azimuth	195"39"56"	ΔX	28.194 m			
ΔNorthing	-223.163 m	Ellipsoid Dist.	232.244 m	ΔΥ	74.963 m			
ΔElevation	-0.011 m	∆Height	-0.011 m	ΔZ	-218.000 m			

Standard Errors

Vector errors:								
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'01"	σΔX	0.001 m			
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.000 m	σΔΥ	0.002 m			
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σ ΔΖ	0.001 m			

Aposteriori Covariance Matrix (Meter*)

	х	Υ	Z
x	0.0000017736		
Υ	-0.0000014707	0.0000026993	
Z	-0.0000001320	0.0000005128	0.0000003728

2. MRWDAC-00

Project information		Coordinate Syste	em .
Name:		Name:	UTM
Size:		Datum:	PRS 92
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary

Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
MRWDAC-00 MRW-30 (B1)	MRW-30	MRWDAC-00	Fixed	0.003	0.011	312°40'19"	43136.391	-30.412
MRWDAC-00 MRW-30 (B2)	MRW-30	MRWDAC-00	Fixed	0.006	0.016	312°40'19"	43136.383	-30.384

Acceptance Summary

	Processed	Passed	Flag	P	Fail	•
ı	2	2	0		0	

MRWDAC-00 - MRW-30 (7:22:03 AM-9:48:26 AM) (S1)

Baseline observation: MRWDAC-00 --- MRW-30 (B1)

Processed: 12/15/2015 5:32:10 PM

Solution type: Fixed

Frequency used: Dual Frequency (L1, L2)

 Horizontal precision:
 0.003 m

 Vertical precision:
 0.011 m

 RMS:
 0.004 m

 Maximum PDOP:
 2.308

 Ephemeris used:
 Broadcast

 Antenna model:
 NGS Absolute

 Processing start time:
 12/8/2016 7:22:11 AM (Local: UTC+8hr)

 Processing stop time:
 12/8/2015 9:48:26 AM (Local: UTC+8hr)

Processing duration: 02:26:15
Processing interval: 1 second

1

Vector Components (Mark to Mark)

From:	MRW-30	MRW-30							
Grid		Local		Global					
Easting	271237.336 m	Latitude	N12°57'32.22951"	Latitude	N12"57'27.19115"				
Northing	1433451.975 m	Longitude	E120"53'28.50896"	Longitude	E120°53'33.54442"				
Elevation	42.722 m	Height	42.013 m	Height	89.793 m				

To:	MRWDAC-00	MRWDAC-00						
Grid		Local		Global				
Easting	239755.834 m	Latitude	N13"13'23.10541"	Latitude	N13'13'17.97945"			
Northing	1462963.518 m	Longitude	E120*35'55.10683*	Longitude	E120°36'00.11991"			
Elevation	15.198 m	Height	11.601 m	Height	57.961 m			

Vector									
ΔEasting	-31481.502 m	NS Fwd Azimuth	312"40"19"	ΔX	30671.804 m				
ΔNorthing	29511.543 m	Ellipsoid Dist.	43136.391 m	ΔΥ	10509.502 m				
ΔElevation	-27.524 m	∆Height	-30.412 m	ΔZ	28452.496 m				

Standard Errors

Vector errors:								
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0.00,00.	σΔX	0.003 m			
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σ ΔΥ	0.005 m			
σ ΔElevation	0.006 m	σ ΔHeight	0.006 m	σ ΔΖ	0.002 m			

Aposteriori Covariance Matrix (Meter*)

	х	Υ	Z
×	0.0000093026		
Υ	-0.0000128686	0.0000223985	
z	-0.0000041460	0.0000065394	0.0000035059

Annex 4. The LIDAR Survey Team Composition

Table A-4.1. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	UP-TCAGP

FIELD TEAM

	Senior Science Research Specialist	PAULINE JOANNE ARCEO	UP-TACGP
	Research Associate (RA)	PATRICIA YSABEL ALCANTARA	UP-TCAGP
LiDAR Operation	RA	ENGR. LARAH KRISELLE PARAGAS	UP-TCAGP
	RA	ENGR. MILLIE SHANE REYES	UP-TCAGP
	RA	GRACE SINADJAN	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	ENGR. FRANK NICOLAS ILEJAY	UP-TCAGP
Download and transfer	RA	GRACE SINADJAN	UP-TCAGP
	Ainhama Cannitu	SSG. ERIC CACANINDIN	PHILIPPINE AIR FORCE (PAF)
	Airborne Security	SSG. BENJAMIN CARBOLLEDO	PAF
LiDAR Operation		CAPT. JEFFREY JEREMY ALAAR	ASIAN AEROSPACE CORPORATION (AAC)
	Dilet	CAPT. JACKSON JAVIER	AAC
	Pilot	CAPT. SHERWIN ALFONSO III	AAC
		CAPT. JUSTINE JOYA	AAC

Annex 5. Data Transfer Sheet for Amnay Floodplain

	5			R	RAWLAS	9	8	WY	1000 N	BANGE	DOTTES	8ASE STATION(S)	спонсті	OFENATOR LOSS	FLIGHT PLAN	NO.	SERVER
DATE	ź	MISSION NAME	SINSON	Output		0	2	MAGES				BASS STATICUSES	Dass brile (J00)		Actual	KOML	
				1.48	Add growing												X'Mitterna Rawk
18-2-14	1100A	38LK25J47A	SUMMING	¥	355/2	85629	34048	6000MB	SHAMIG	83708	×	14MB	921	188	Bake	×	MICH
182.14	1110A	80000008	ACUMBRUS	2	86013868	1.01MB	2401/8	17.74 17.74	ā	13.338	43,608	14/8	163	44	4690	4	XMstorre Flanki 110A
									100000000000000000000000000000000000000					9111	9000	277	X Management Rawk
18-0-14	11164	38(5296)434	AQUARIUS	ž	E0000	4,09048	345MB	71,708	988	1309	97,429	15.348	TABLE	gui	-	1	WASHINGTON BOOKS
19.3.14	11164	987505000	ADMARIUS	ž	89099	1,0448	Stand	4008	1033318	11368	90208	15,3540	1168	1168	SHKB	MA	1194
I		1000	SHOWING	1 2	401108	1,13448	251MB	75.000	8292S	14.2020	19,908	13,2546	1168	600	26343	MA	XXAMOTIE Parkit 125A
	YOU	MACHINE			and a	UNIO 1	977	85725	3/150908	3.7438	17.308	13.548	98	ā	8000	MIA	Mathema Plant Math
3.60	W221	NECOSCO DE	Management	5				836.54	_		20.000	074.44	60.	160	1016	N/N	XXAbbome_Rps//
7700	11344	38112905534	ACHARRIUS	100	30949	3000	200.00	2000	SAKB	0.000							Etahtoma Navit
30-3-14	188	3800384838	MOUNTING	¥	80008	1,7146	236MB	368	ž	13.908	74.008	17,748	11.0	90	*	S.	TORY
		Received from						Racelved by	h								
		CAPIS JOANNIE	多	1000	4			Numa Position Signatura	9	Tark	PRIETO	d i o					

Figure A-5.1. Transfer Sheet for Amnay Floodplain (A)

ŧ	
畜民	7
ĕ	5
ž	i
DATA	

DATE	ruser	MISSION NAME	SENSOR	24	RAW LAS	5001	ş	RAW	NOSSHOW 1000 Page	RANDE	CHOTOSER	SASE STATIONES		OPERATOR LOGS (OPLOG)	PLICHT PLAN	CAN	SERVER LOCATION	
	i.			Output	KML (sweeth)							BASE STATICINES	Base Into Lixt)		Actual	HOME		
Jan 15, 2014	98	1PAMS015A	PEGASUS	1.001.8	14	5.85MB	165318	2	27	8,208	NUA .	1148	943	113	2	NUA	XVArborra_Fawl069P	
Jan 21, 2014	1004	3PMG1AB021A	AQUARUS	2	2	\$20KB	209148	23,408	1940	90901	47.708	8.244/8	600	29/3	7711411400	эвалаки	XIANTOINE_RevitiONA	
Jan 21, 2014	4900	3PNG1ABS021B	AQUARIS	1	2	SH-12	1264/8	8.78G8	8269	4.0808	15.508	8.2648	909	u/G	16/16/TKB	1246	Kikaboma_Rawi1008A	
Jan 22, 2014	10084	3PNG1A5022A	AQUARIUS	1	NA	482KB	20488	30.308	20808	8.14GB 2	33.5G8	10.6MB	TKB	1103	1,77101115	26115	Xivatome_Rewis DOBA	
Feb 21, 2014	1128A	38LK29IS2A	AQUARIUS	2	NA	1.34MB	2091/10	6.3208	1/67250	16.100	NA 1	12.34/8	11/2	404	6700KB	854KB	X:Airborre_Rewl1128A	
Feb 22, 2014	11324	299453	AQUARIUS	2		1.62548	276MB	84.308	251/1924 KB	16.108	83,758	SALC:	1KB	19/8	43268	363/508/3 20/364KB	(OPEANPOIN) CLOAC Back up/OCC MINDONO FLOHTBITTERA	
Feb 22, 2014	1344	36LK29M5538/38LK29M R538	AQUARBUS	2	154	1.06148	14448	27.838	105/28/1/3 G735/4-8/3	4.99GB	12.608	13.648	1KB	19.88	102908	131108	(DREAMPC30) C.(DAC Back up/OCC MINDORD PLOHTB/1134A	
Feb 23, 2014	1361	38LKZ9HSS4A/3BLKZ9NB \$4A	AQUARRUB	×	124	1,3748	254MB	80.50B	2273376 1KB	1308	***	15.648	1143	1103	26.00(3)	2657855 287865	IDREAMPCSD C:DAC Back vpiOCC MINDORD PLICHTS/1136A	
Feb 23, 2014	1138A	38UC29E548	AGUARRUS	2	7	833KB	19648	50.438	60809	8.89GB	42.008	15,040	1978	11/3	1729/8	90000	(DREAMPON) CADAC Back upiOCC MINDORO FLIGHTSH138A	
Feb 24, 2014	114GA	38LK29ESSSA/38LK29GSS A	AQUARUS	2	***	981168	2411/0	83,308	601109	0.000.0	40.808	12.11/8	SKB	449	3676	244/204K	IDREAMPCO) C-DAC Back up/DCC MINDORO FLIGHTSU140A	
Feb 24, 2014	1142A	36U(29P558	AQUARUS	74	*	2.046	228148	61,738	80000786	12.408	84208	12.148	1KB	11/18	70 G (B)	2475	(DREAMPERO) C-DAC Back up/DCC MINCORO FLIGHTSUNAZA	,

Readen SSRS
Square JOHDA PRIETO

Figure A-5.2. Transfer Sheet for Amnay Floodplain (B)

Figure A-5.3. Transfer Sheet for Amnay Floodplain (C)

Annex 6. Flight Logs for the Flight Missions

1. Flight Log for 3BLK29J47A Mission

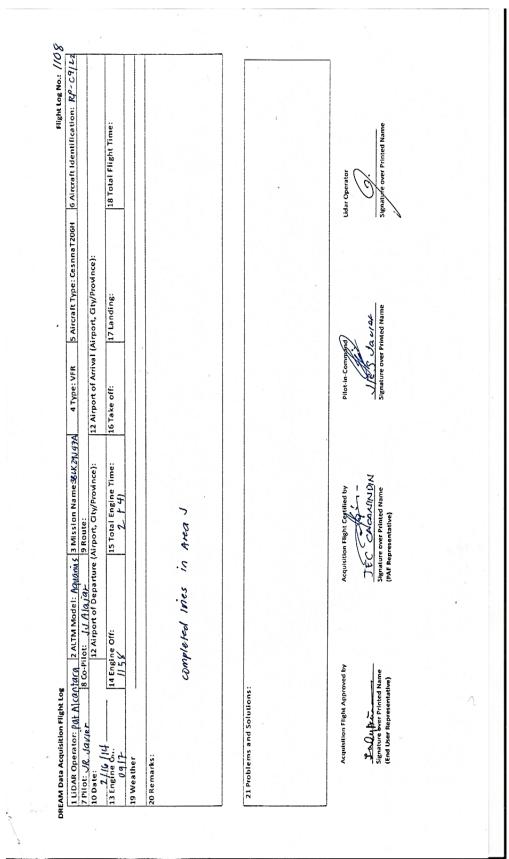


Figure A-6.1 Flight Log for 3BLK29J47A Mission

2. Flight Log for 3BLK29K+JS47B Mission

6 Aircraft Identification: RP. C9122			18 Total Flight Time:			Udar Operator Signature over Printed Name
5 Aircraft Type: CesnnaT206H		12 Airport of Arrival (Airport, City/Province):	17 Landing:			
4 Type: VFR		12 Airport of Arrival	16 Take off:			Pilot in Comparing
3 Mission Name: 38/ K79KH3K	9 Route:	Nirport, City/Province):	15 Total Engine Time: 4 + 23	in J and K		Acquisition Flight Cartified by TC C de de AVINDIN. Signature over Printed Name [PAF Representative]
agas 2 ALTM Model: Agina		12 Airport of Departure (Airport, City/Province):	14 Engine Off:	Completed lines		
1 LIDAR Operator: Loval, Car	da	1/4		20 Remarks:	21 Problems and Solutions:	Acquisition Flight Approved by Logical Control of the Control of

Figure A-6.2 Flight Log for 3BLK29K+JS47B Mission

3. Flight Log for 3BLK29KS49A Mission

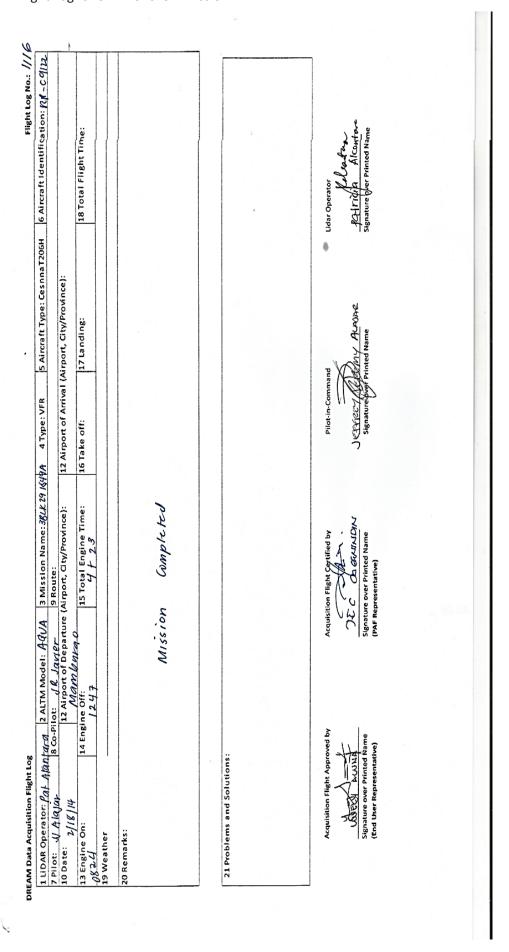


Figure A-6.3. Flight Log for 3BLK29KS49A Mission

4. Flight Log for 3BLK 29JS 49B Mission

6 Aircraft Identification: RP - C4122		18 Total Flight Time:			LK Paragas
5 Aircraft Type: CesnnaT206H 67	12 Airport of Arrival (Airport, City/Province):	17 Landing: 18			
9JSK494 Type: VFR	12 Airport of Arrival (A	16 Take off:			Pilot-in-Command M. J. C. J. J. C. J. J. C. J. Signature over Printed Name
2 ALTM Model: AQVA 3 Mission Name: 38LK29JSK994 Type: VFR	AV 9 Route: parture (Airport, City/Province):	13 Engine On: 14 Engine Off: 15 Total Engine Time: 14 (4) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Completed		Acquisition Fligh, Certified by The Actual Apple Signature over Printed Name (PAF Representative)
503	8 Co-Pilot: JJ Alg'l	14 Engine Off: 13 5	Mi 5510n	ons:	
1 LIDAR Operator: LK PULA	7 Pilot: JR Javier 10 Date:	3) /8 //4 13 Engine On: /4 0 0	20 Remarks:	21 Problems and Solutions:	Acquisition Flight Approved by Control of the Contr

Figure A-6.4 Flight Log for 3BLK 29JS 49B Mission

5. Flight Log for 3BLK 29I52A Mission

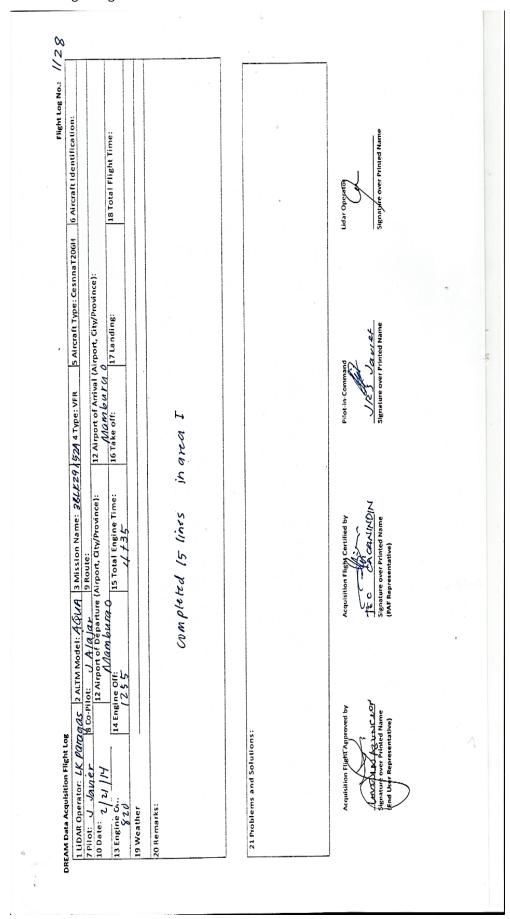


Figure A-6.5 Flight Log for 3BLK 29I52A Mission

6. Flight Log for 3BLK 29IS+H53A Mission

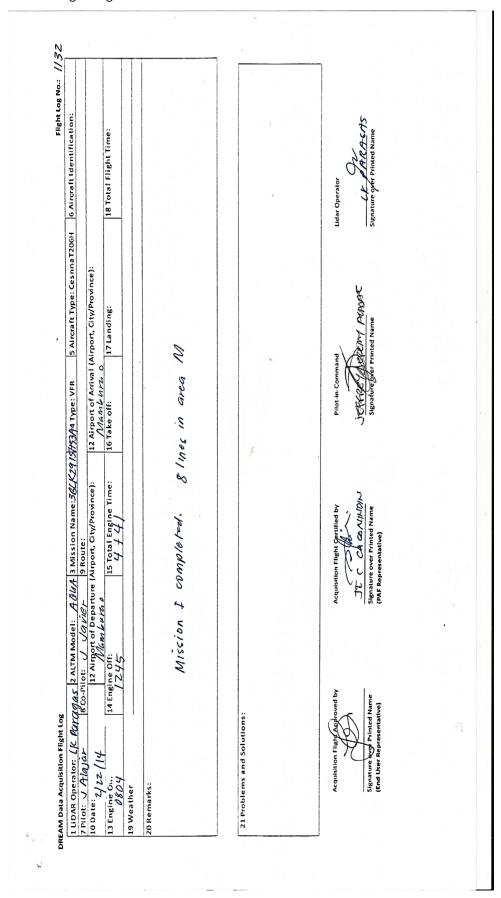


Figure A-6.6. Flight Log for 3BLK 29IS+H53A Mission

7. Flight Log for 3BLK 29HS 54A/3BLK 29HB 54A Mission

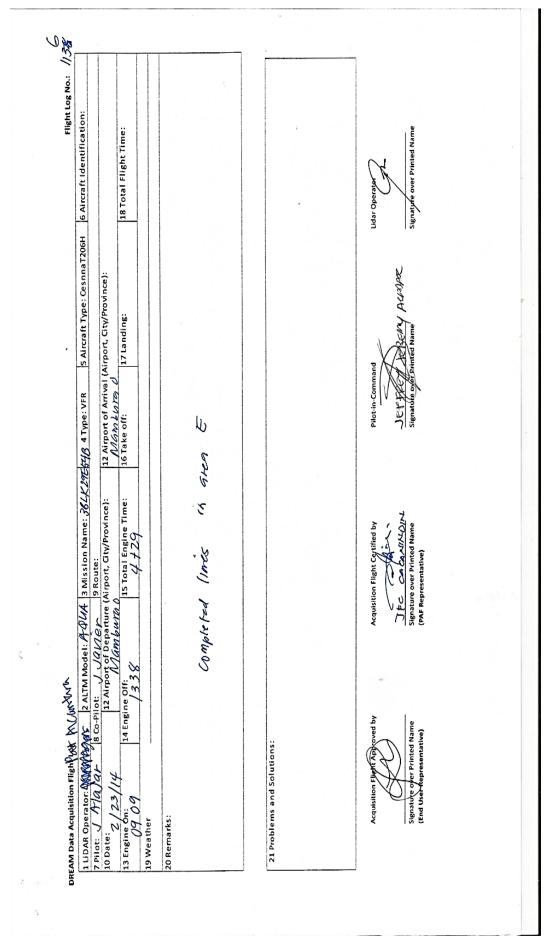


Figure A-6.7. Flight Log for 3BLK 29HS 54A/3BLK 29HB 54A Mission

8. Flight Log for1BLK29GJ342B Mission

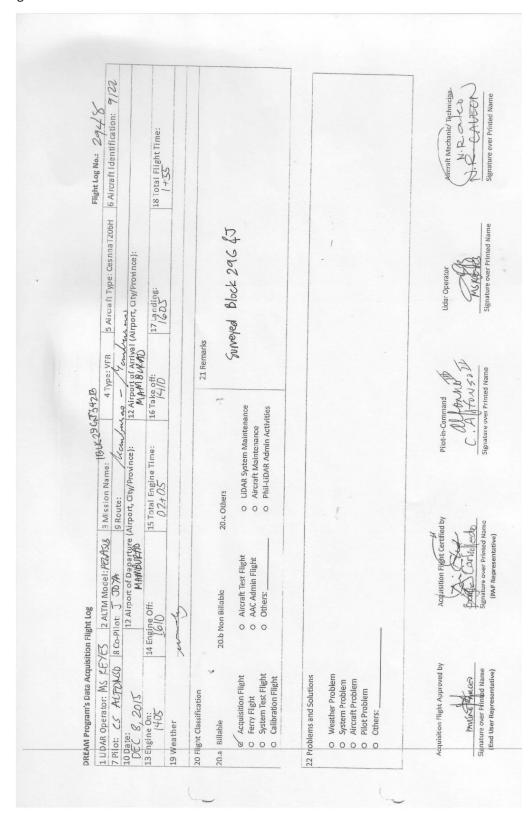


Figure A-6.8 Flight Log for 1BLK 29GJ 342B Mission

9. Flight Log for1BLK29GHI343A Mission

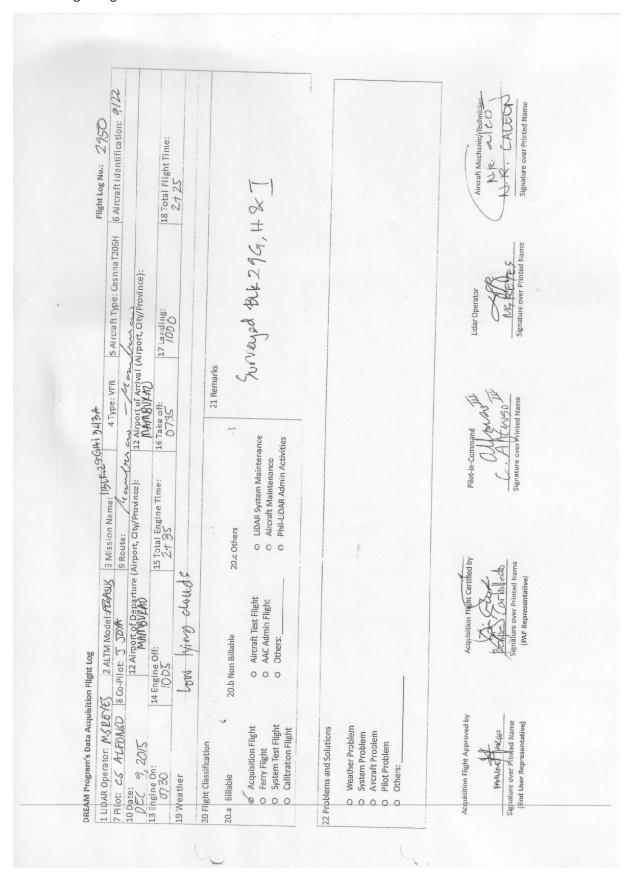


Figure A-6.9 Flight Log for 1BLK 29GHI 343A Mission

Annex 7. Flight Status Reports

Table A-7.1. Flight Status Report

AMNAY FLOODPLAIN February 16-23, 2014; December 8-9, 2015

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1108A	BLK29J	3BLK29J47A	PY ALCANTARA	16-Feb-14	Completed 6 lines of Area J.
1110A	BLK29 K & BLK29J	3BLK29K+JS47B	L ASUNCION/ LK PARAGAS	16-Feb-14	Completed 4 lines of Area K and 10 lines of J.
1116A	BLK29K	3BLK29KS49A	PY ALCANTARA	18-Feb-14	Completed Area K
1118A	BLK29J	3BLK29JS49B	LK PARAGAS	18-Feb-14	Completed Area J.
1128A	BLK29I	3BLK29I52A	LK PARAGAS	21-Feb-14	Completed 15 lines in area I.
1132A	BLK29I & BLK29H	3BLK29IS+H53A	LK PARAGAS	22-Feb-14	Completed area I and 8 lines in area H.
1136A	BLK29H	3BLK29HS54A	PY ALCANTARA	23-Feb-14	Mission completed.
3068P	BLK29G & 29J	1BLK29GJ342B	MS REYES	8-DEC-15	Surveyed BLK29G & J
3070P	BLK29G, 29H & 29I	1BLK29GHI343A	MS REYES	9-DEC-15	Surveyed BLK29G, H & I

FLIGHT NO. 1108A

AREA: BLK29J

MISSION NAME: 3BLK29J47A

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

Figure A-7.1. Swath Coverage of Mission 3BLK29J47A

FLIGHT NO. 1110A

AREA: BLK29K and BLK29J

MISSION NAME: 3BLK29K+JS47B

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

Figure A-7.2. Swath Coverage of Mission 3BLK29K+JS47B

FLIGHT NO. 1116A

AREA: BLK29K

MISSION NAME: 3BLK29KS49A

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

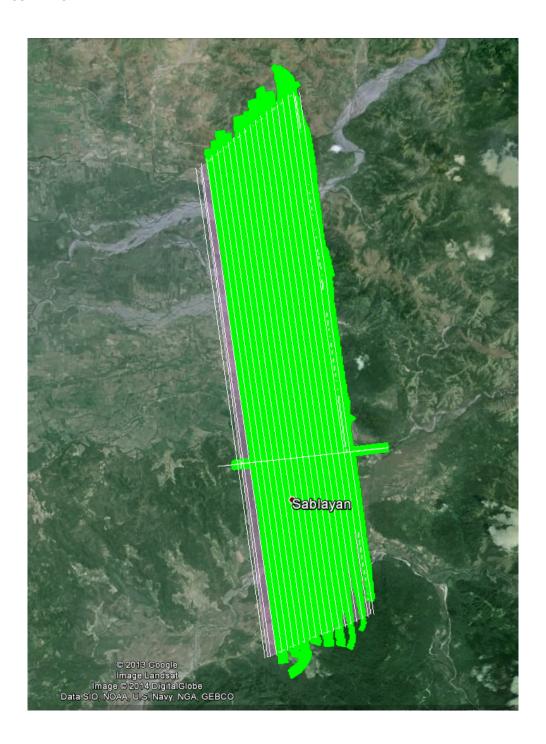


Figure A-7.3. Swath Coverage of Mission 3BLK29KS49A

FLIGHT NO. 1118A

AREA: BLK29J

MISSION NAME: 3BLK29JS49B

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

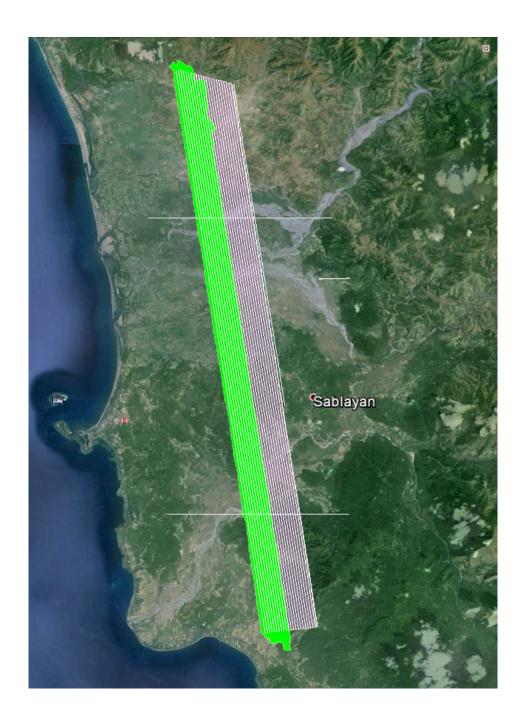


Figure A-7.4. Swath Coverage of Mission 3BLK29JS49B

FLIGHT NO. 1128A AREA: BLK29I

MISSION NAME: 3BLK29I52A

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

Figure A-7.5. Swath Coverage of Mission 3BLK29I52A

FLIGHT NO. 1132A

AREA: BLK29I AND BLK29H

MISSION NAME: 3BLK29IS+H53A

PARAMETERS: Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

SURVEY COVERAGE:

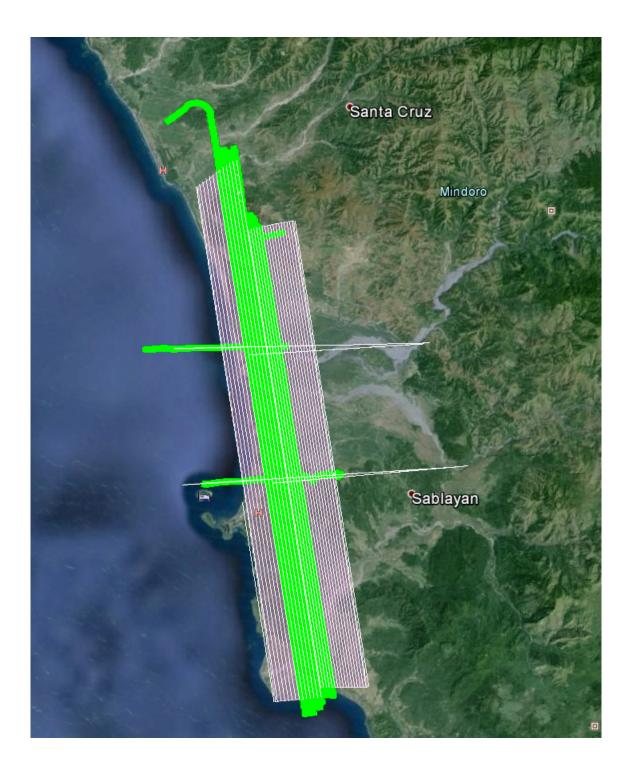


Figure A-7.7. Swath Coverage for 3BLK29IS+H53A

Mission

FLIGHT NO. 1136A AREA: BLK29H

MISSION NAME: 3BLK29HS54A

PARAMETERS Alt: 600 Scan Freq: 40 kHz Scan Angle: 18 deg

SURVEY COVERAGE:



Figure A-7.8. Swath Coverage for 3BLK29HS54A Mission

FLIGHT NO: 3068P

AREA: BLK29G & 29J
MISSION NAME: 1BLK29GJ342B

PARAMETERS: Alt: 1100 m Scan Freq: 30 Hz Scan Angle: 25 deg

SURVEY COVERAGE:

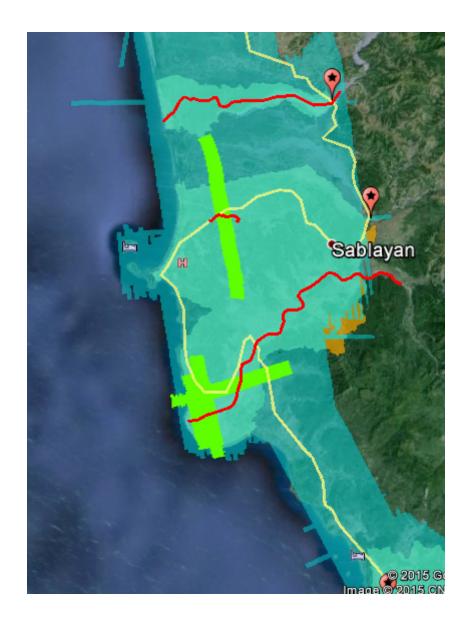


Figure A-7.9. Swath Coverage for 1BLK29GJ342B Mission

FLIGHT NO.: 3070P

AREA: BLK29G, 29H & 29I
MISSION NAME: 1BLK29GHI343A

PARAMETERS: Alt: 1100 m Scan Freq: 30 Hz Scan Angle: 25 deg

SURVEY COVERAGE:

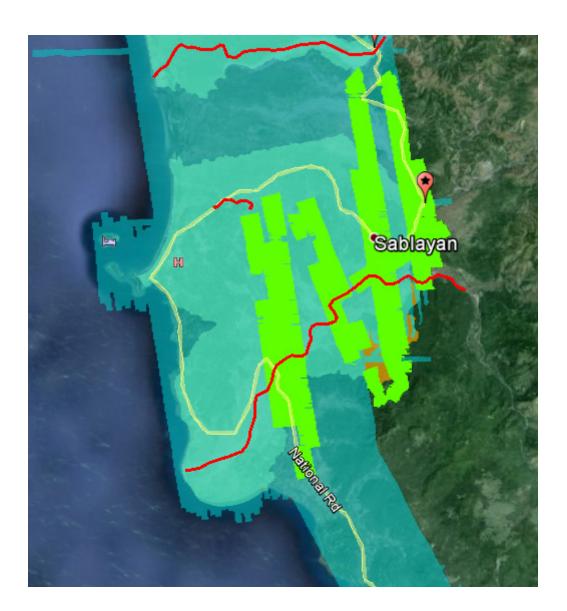


Figure A-7.10. Swath Coverage for 1BLK29GHI343A Mission

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission **Blk29H**

Flight Area	Occidental Mindoro
Mission Name	Blk29H
Inclusive Flights	1136A
Range data size	15 GB
Base data size	15.8 MB
POS	256 MB
Image	86.5 GB
Transfer date	03/19/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.5
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	4.4
Boresight correction stdev (<0.001deg)	0.000355
IMU attitude correction stdev (<0.001deg)	0.074523
GPS position stdev (<0.01m)	0.0409
Minimum % overlap (>25)	37.19%
Ave point cloud density per sq.m. (>2.0)	2.58
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	174
Maximum Height	613.49 m
Minimum Height	39.16 m
Classification (# of points)	
Ground	53,263,528
Low vegetation	57,288,707
Medium vegetation	68,165,762
High vegetation	30,718,677
Building	1,782,193
Orthophoto	Yes
Processed by	Engr. Kenneth Solidum, Celina Rosete, Jovy Narisma

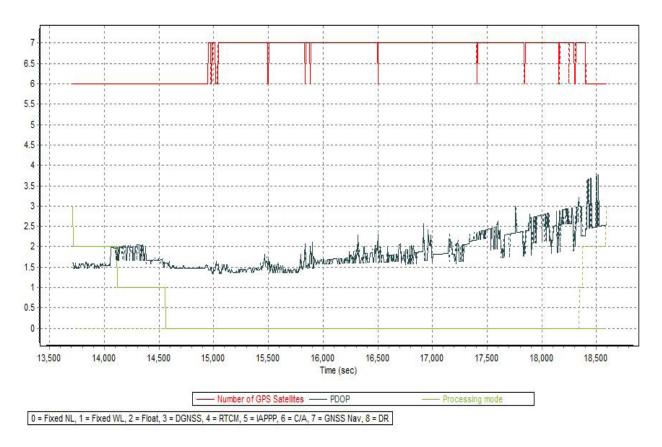


Figure A-8.1 Solution Status

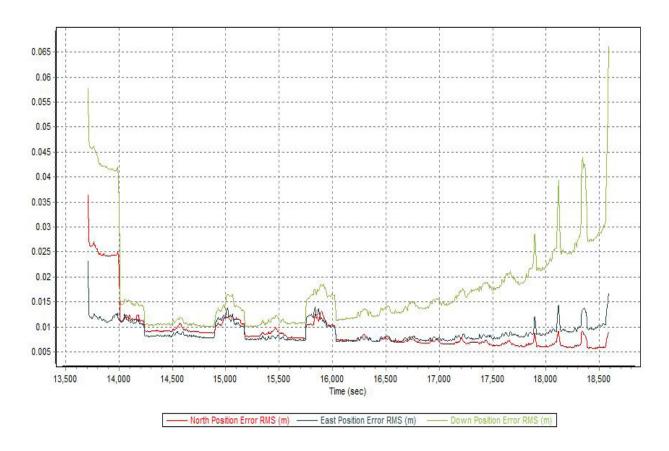


Figure A-8.2 Smoothed Performance Metrics Parameters

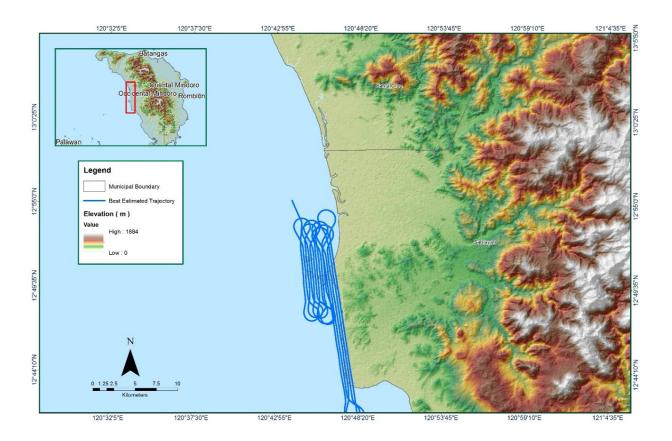


Figure A-8.3 Best Estimated Trajectory

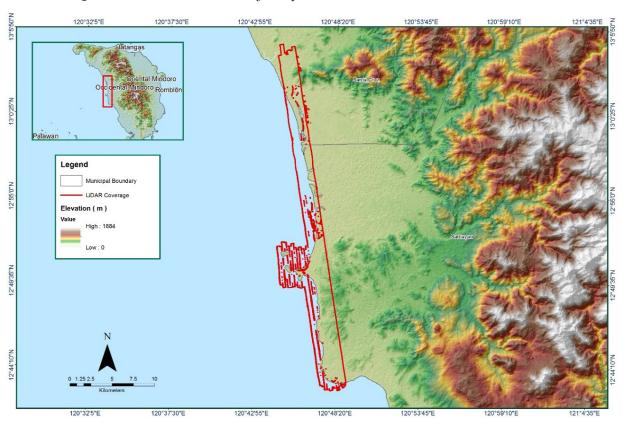


Figure A-8.4 Coverage of LiDAR data

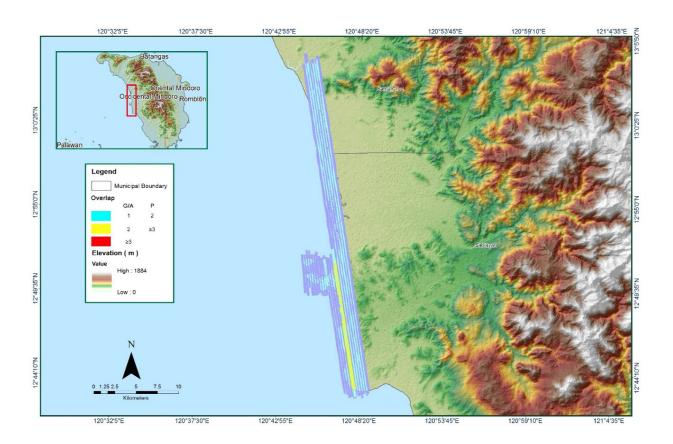


Figure A-8.5 Image of data overlap

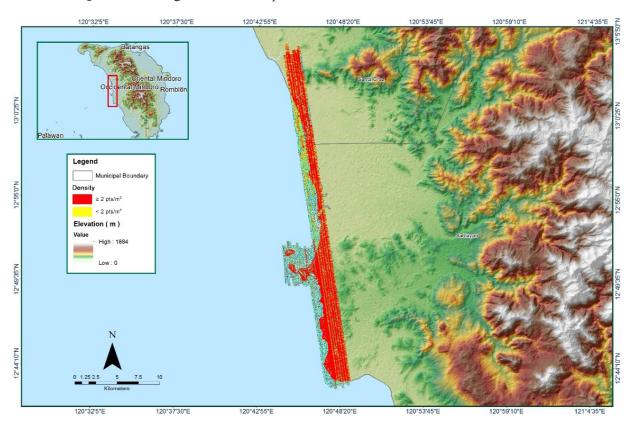


Figure A-8.6 Density map of merged LiDAR data

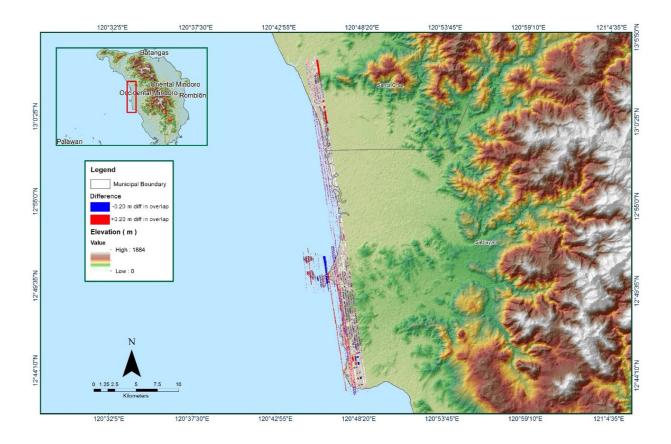


Figure A-8.7 Elevation difference between flight lines

Table A-8.2. Mission Summary Report for Mission **Blk29HI_supplement**

Flight Area	Occidental Mindoro
Mission Name	Blk29HI_supplement
Inclusive Flights	1132A
Range data size	16.1 GB
Base data size	13.4 MB
POS	276 MB
Image	34.3 GB
Transfer date	03/19/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	3.8
` '	
Boresight correction stdev (<0.001deg)	0.000400
IMU attitude correction stdev (<0.001deg)	0.005740
GPS position stdev (<0.01m)	0.0138
Minimum % overlap (>25)	55.11%
Ave point cloud density per sq.m. (>2.0)	3.77
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	175
Maximum Height	308.28 m
Minimum Height	43.14 m
Classification (# of points)	
Ground	75,373,003
Low vegetation	106,983,904
Medium vegetation	125,916,220
High vegetation	46,925,200
Building	1,788,962
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Engr. Jeffrey Delica

Figure A-8.8 Solution Status

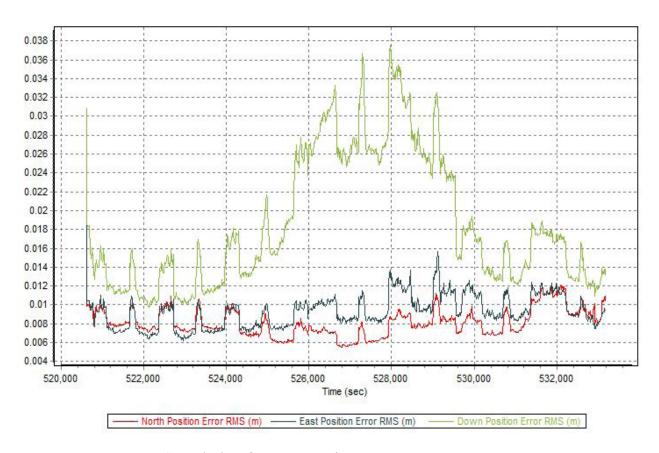


Figure A-8.9 Smoothed Performance Metrics Parameters

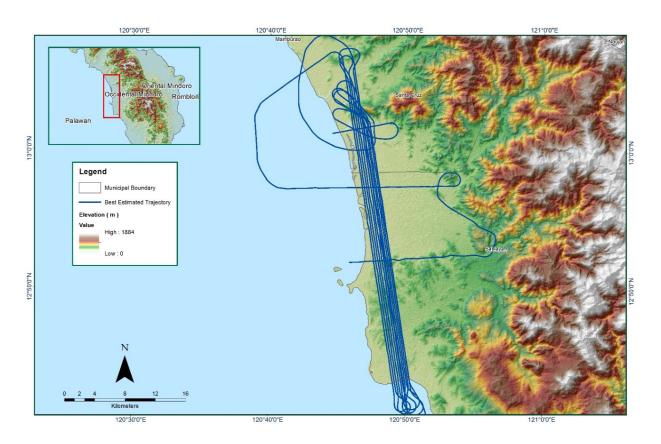


Figure A-8.10 Best Estimated Trajectory

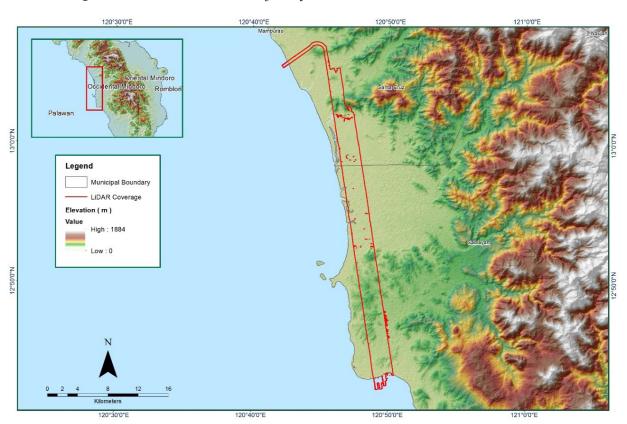


Figure A-8.11 Coverage of LiDAR data



Figure A-8.12 Image of data overlap

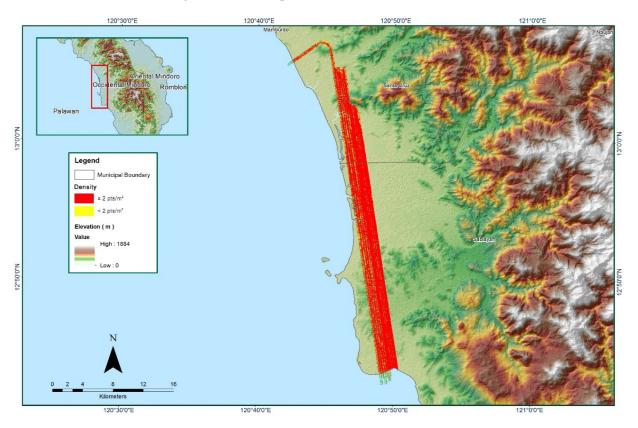


Figure A-8.13 Density map of merged LiDAR data

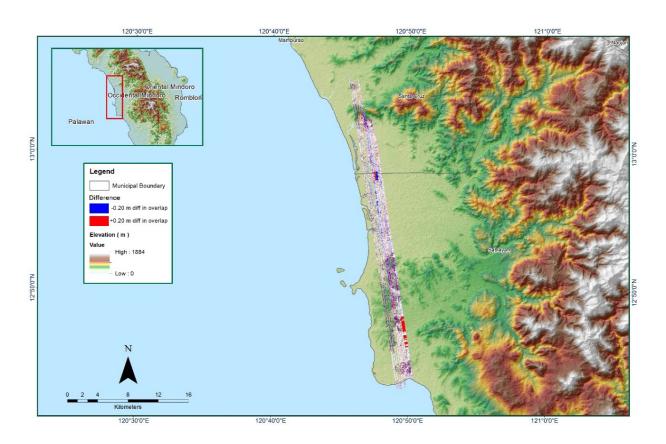


Figure A-8.14 Elevation difference between flight lines

Table A-8.3. Mission Summary Report for Mission Blk29I

Flight Area	Occidental Mindoro
Mission Name	Blk29I
Inclusive Flights	1128A
Range data size	16.1 GB
Base data size	10.1 GB 12.3 MB
POS	269 MB
	6.32 GB
Image Transfer date	03/19/2014
Transfer date	03/13/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
	_
Smoothed Performance Metrics (in cm)	1.0
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000390
IMU attitude correction stdev (<0.001deg)	0.002145
GPS position stdev (<0.01m)	0.0110
Minimum 9/ avaden (>25)	(4.079/
Minimum % overlap (>25)	64.97%
Ave point cloud density per sq.m. (>2.0)	3.83
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	150
Maximum Height	303.6 m
Minimum Height	42.27 m
Classification (# of points)	74.217.010
Ground	74,217,818
Low vegetation	115,333,090
Medium vegetation	94,560,605
High vegetation	27,638,490
Building	1,366,906
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, Engr. Jeffrey Delica

Figure A-8.15 Solution Status

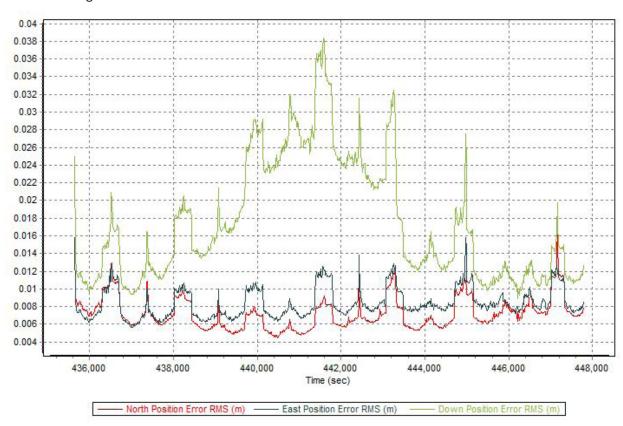


Figure A-8.16 Smoothed Performance Metrics Parameters

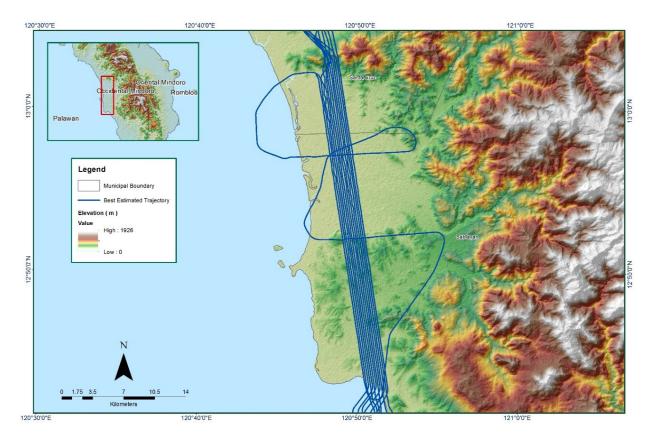


Figure A-8.17 Best Estimated Trajectory

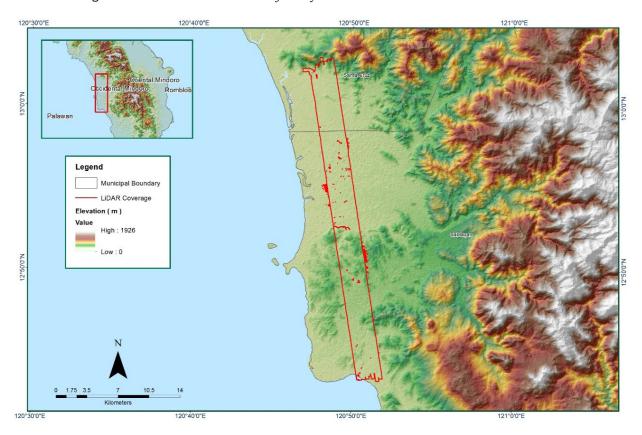


Figure A-8.18 Coverage of LiDAR data

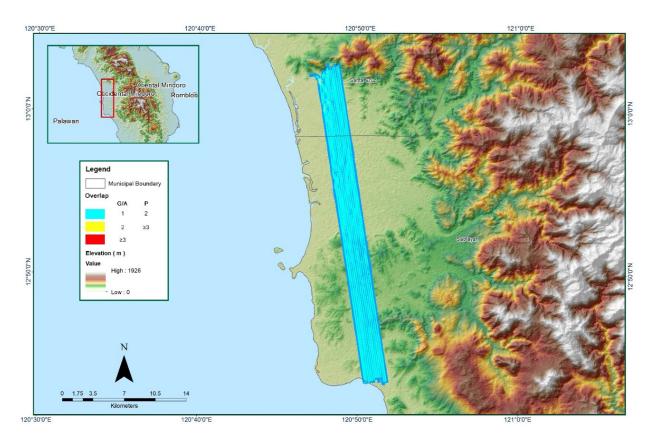


Figure A-8.19 Image of data overlap

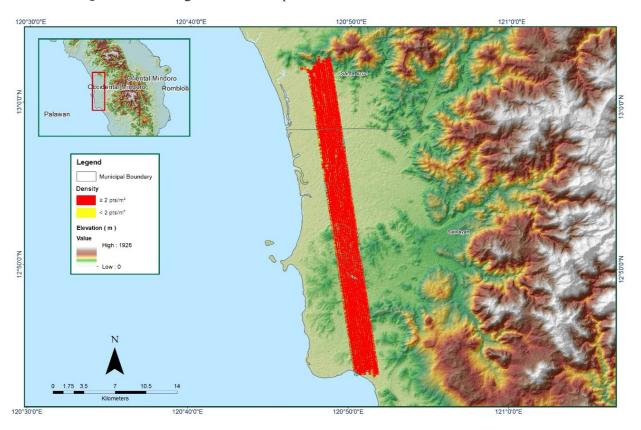


Figure A-8.20 Density map of merged LiDAR data

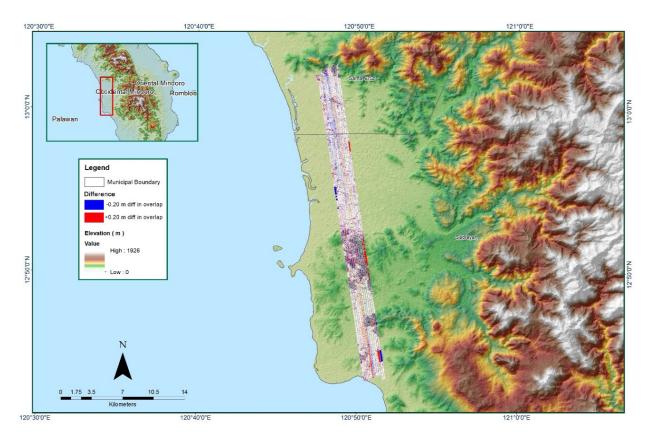


Figure A-8.21 Elevation difference between flight lines

Table A-8.4. Mission Summary Report for Mission ${\bf Blk29JK}$

Flight Area	Occidental Mindoro
Mission Name	Blk29JK
Inclusive Flights	1110A, 1118A, 1108A
Range data size	29.97 GB
Base data size	43.3 MB
POS	578 MB
Image	88.399 GB
Transfer date	03/07/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Survey L. J. D. C. annua and Market and Company	
Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm)	1.2
	1.2
RMSE for East Position (<4.0 cm)	
RMSE for Down Position (<8.0 cm)	2.2
Boresight correction stdev (<0.001deg)	0.000351
IMU attitude correction stdev (<0.001deg)	0.001607
GPS position stdev (<0.01m)	0.0035
Minimum % overlap (>25)	82.92%
Ave point cloud density per sq.m. (>2.0)	5.35
Elevation difference between strips (<0.20 m)	Yes
N 1 611 11 1	101
Number of 1km x 1km blocks	181
Maximum Height Minimum Height	427.61 m 51.93 m
	01.95 III
Classification (# of points)	
Ground	104,888,569
Low vegetation	178,889,703
Medium vegetation	207,266,587
High vegetation	112,361,804
Building	3,147,266
Orthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Carlyn Ann Ibanez, Engr. Christy Lubiano, Engr. Jeffrey Delica

Figure A-8.22 Solution Status

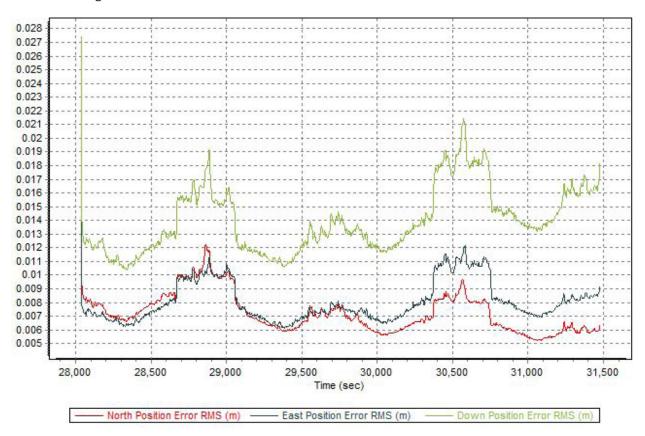


Figure A-8.23 Smoothed Performance Metrics Parameters

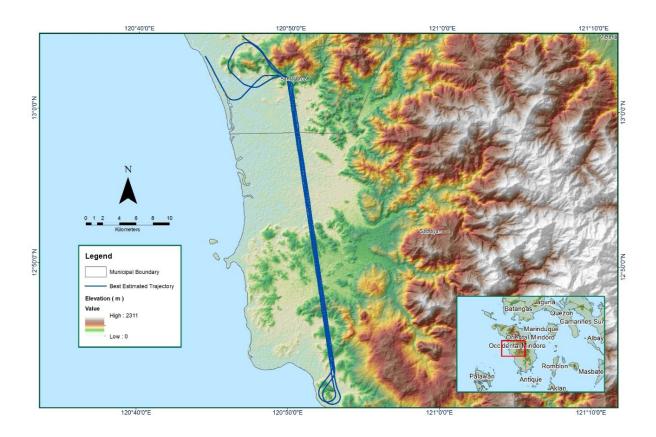


Figure A-8.24 Best Estimated Trajectory

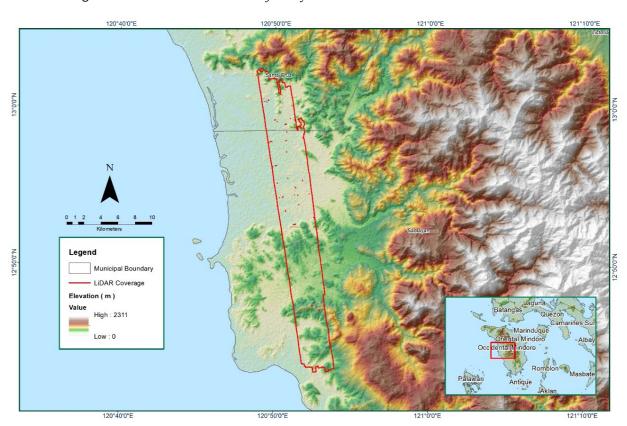


Figure A-8.25 Coverage of LiDAR data

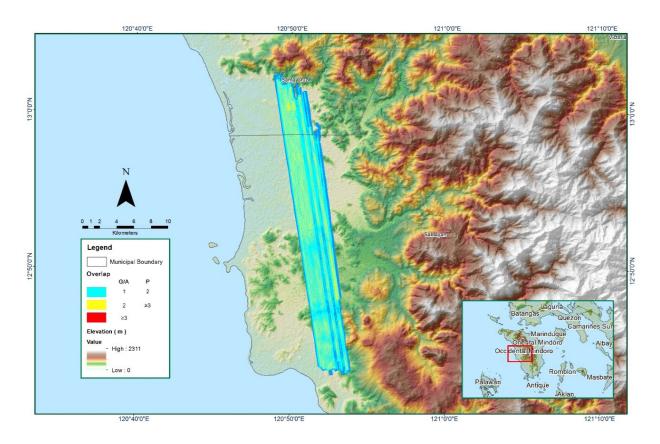


Figure A-8.26 Image of data overlap

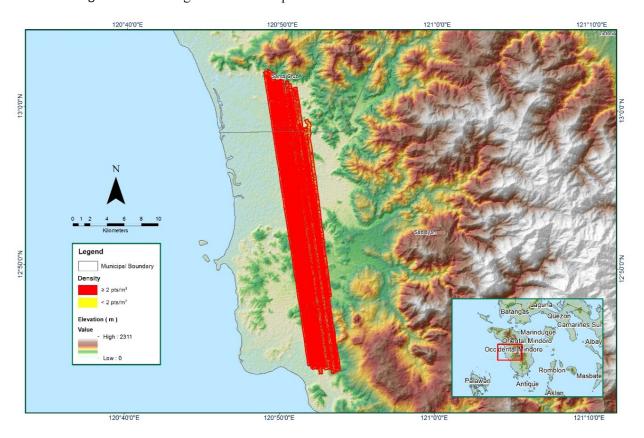


Figure A-8.27 Density map of merged LiDAR data

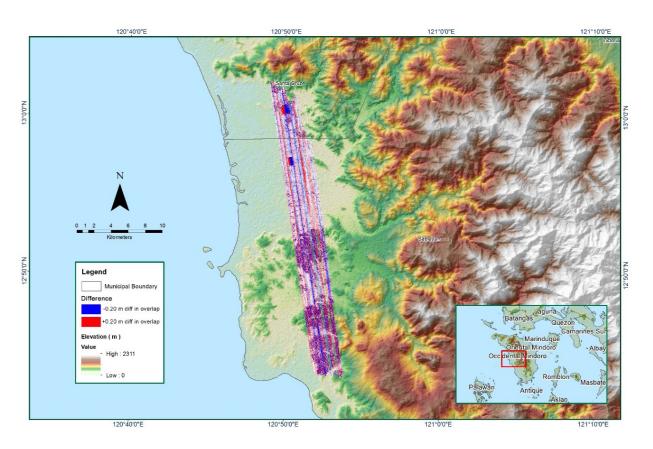


Figure A-8.28 Elevation difference between flight lines

Table A-8.5. Mission Summary Report for Mission $Blk29K_supplement$

Flight Area	Occidental Mindoro
Mission Name	Blk29K_supplement
Inclusive Flights	1116A
Range data size	12 GB
Base data size	15.3 MB
POS	245 MB
Image	71.7 GB
Transfer date	03/07/2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	3.1
Boresight correction stdev (<0.001deg)	0.000270
IMU attitude correction stdev (<0.001deg)	0.000746
GPS position stdev (<0.01m)	0.0093
Minimum % overlap (>25)	50.49%
Ave point cloud density per sq.m. (>2.0)	3.92
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	120
Maximum Height	480.52 m
Minimum Height	40.03 m
William Height	40.03 III
Classification (# of points)	
Ground	70,346,563
Low vegetation	80,229,446
Medium vegetation	59,317,225
High vegetation	53,714,475
Building	2,710,470
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. I Hingpit, Engr. Mary Celine V

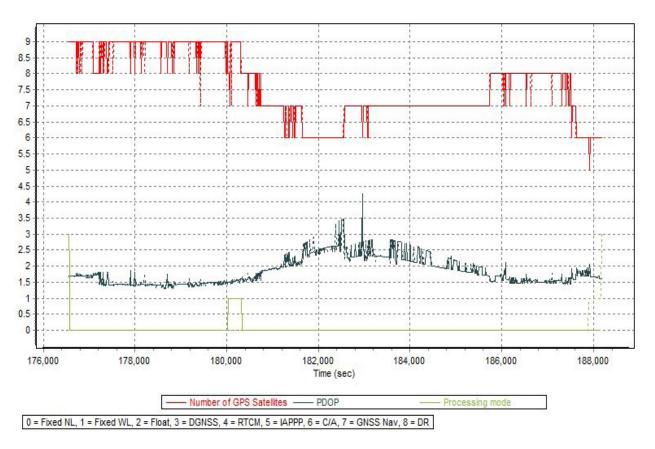


Figure A-8.29 Solution Status

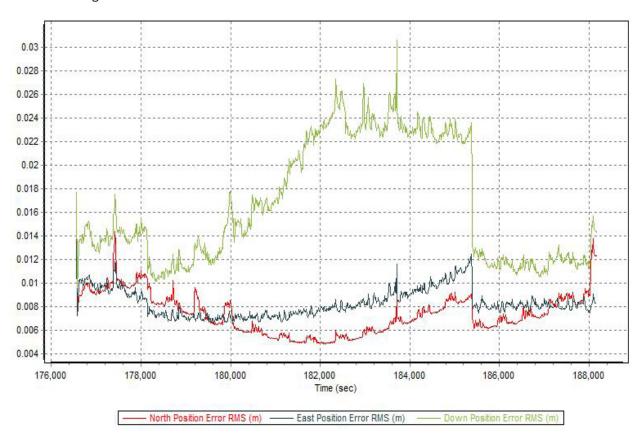


Figure A-8.30 Smoothed Performance Metrics Parameters

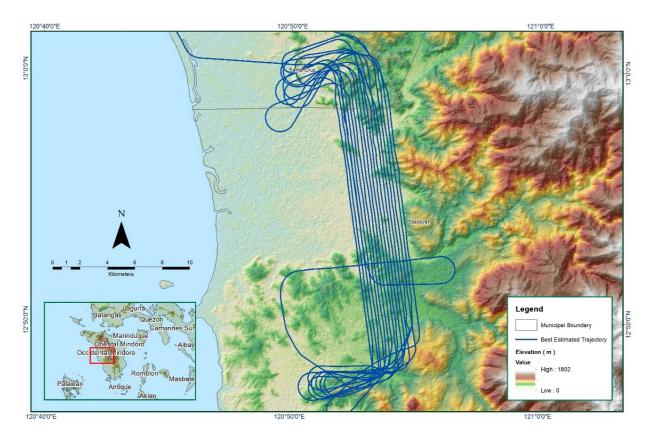


Figure A-8.31 Best Estimated Trajectory

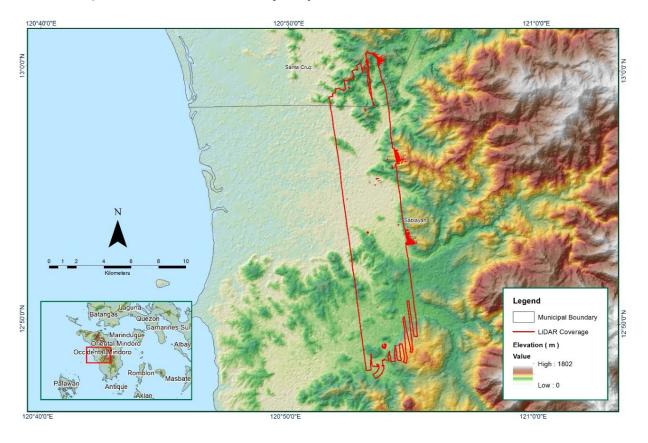


Figure A-8.32 Coverage of LiDAR data

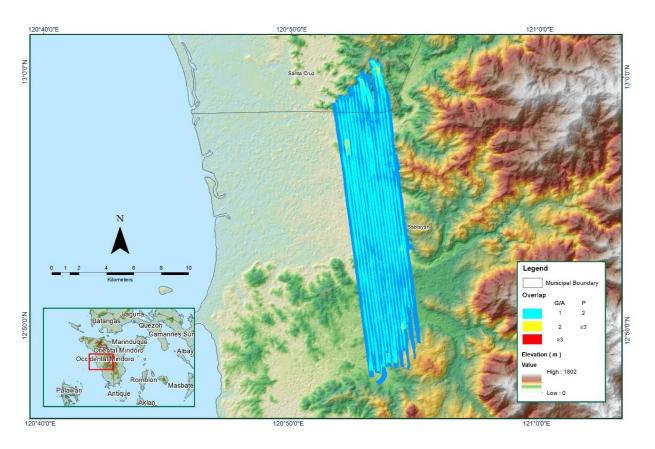


Figure A-8.33 Image of data overlap

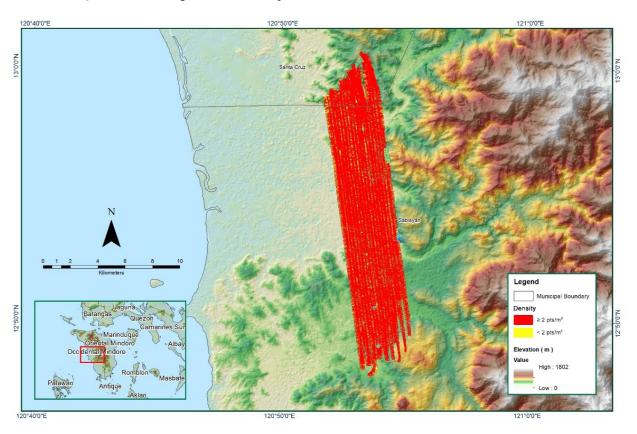


Figure A-8.34 Density map of merged LiDAR data

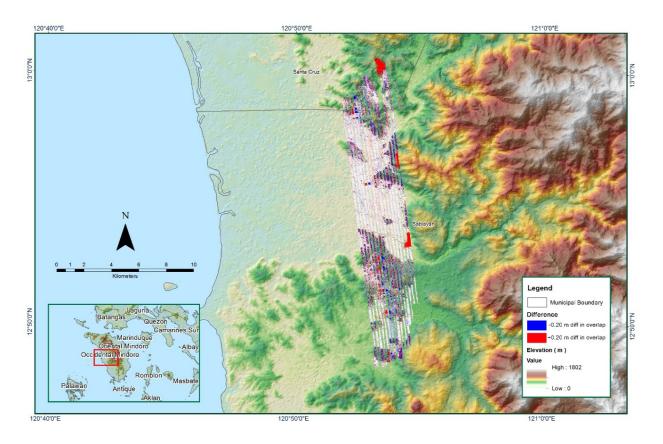


Figure A-8.35 Elevation difference between flight lines

Table A-8.6. Mission Summary Report for Mission **Blk29HI**

Flight Area	Occidental Mindoro Reflights
Mission Name	Blk29HI
Inclusive Flights	3068P, 3070P
Range data size	12.14GB
Base data size POS	21.96 MB
	257MB 18.93MB
Image	January 15, 2016
Transfer date	January 13, 2010
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
	Yes
Baseline Length (<30km) Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.20
RMSE for East Position (<4.0 cm)	1.56
RMSE for Down Position (<8.0 cm)	3.52
KIND IN DOWN TOSHOT (NO. O CIT)	
Boresight correction stdev (<0.001deg)	0.000567
IMU attitude correction stdev (<0.001deg)	0.000448
GPS position stdev (<0.01m)	0.0011
* ` ` '	
Minimum % overlap (>25)	20.41
Ave point cloud density per sq.m. (>2.0)	1.75
Elevation difference between strips (<0.20 m)	Yes
	107
Number of 1km x 1km blocks	270.48 m
Maximum Height	47.62 m
Minimum Height	47.02 III
Classification (# of points)	
Ground	54,972,808
Low vegetation	33,840,636
Medium vegetation	55,240,382
High vegetation	47,256,226
Building	347,251
Orthophoto	Yes
Orthophoto	
Processed by	Engr. Sheila Maye Santillan, Engr. Velina Angela Bemida, Jovy Narisma

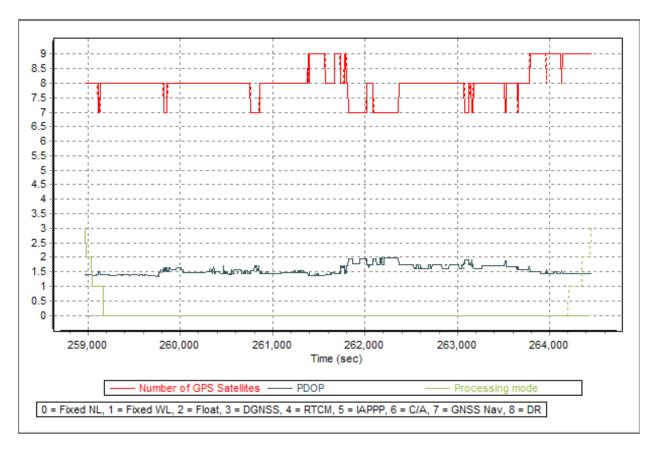


Figure A-8.36 Solution Status

Figure A-8.37 Smoothed Performance Metric Parameters

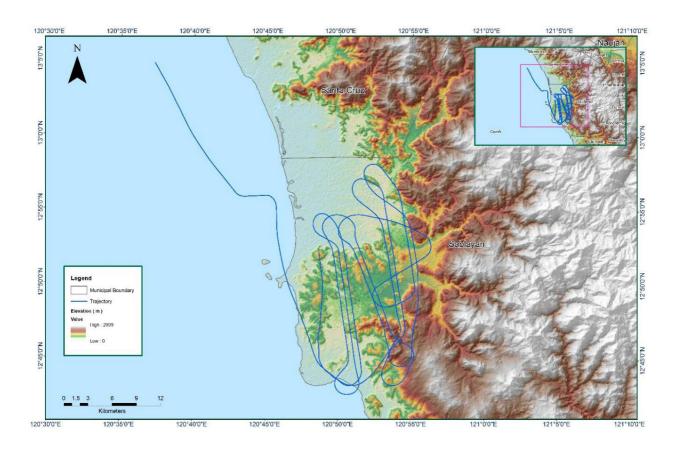


Figure A-8.38 Best Estimated Trajectory

Figure A-8.39 Coverage of LiDAR Data

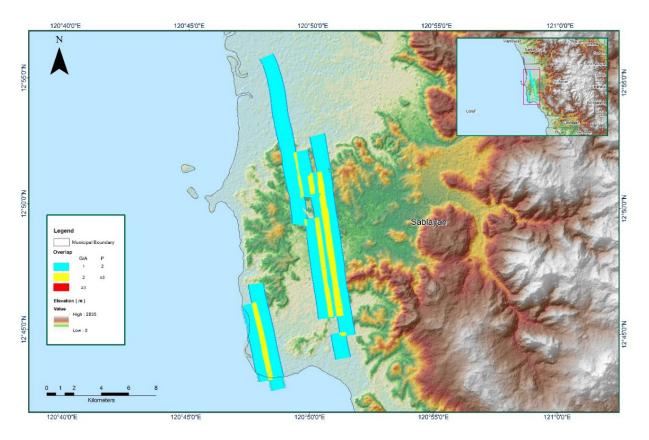


Figure A-8.40 Image of data overlap

Figure A-8.41 Density map of merged LiDAR data

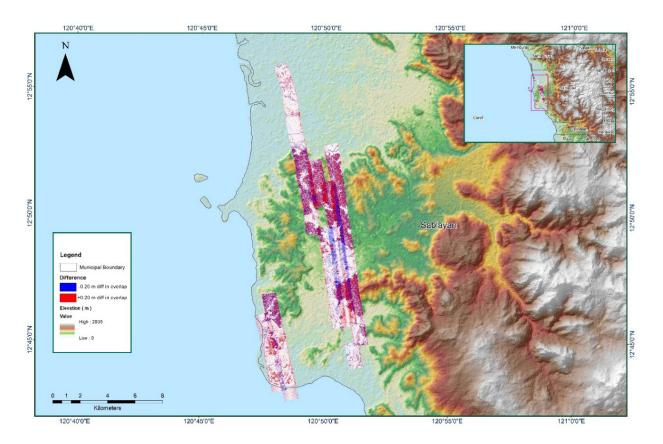


Figure A-8.42 Image of data overlap

Annex 9. Amnay Model Basin Parameters

Table A-9.1. Amnay Model Basin Parameters

	SC	SCS CURVE NUMBER LOSS	ER LOSS	CLARK UNIT HYDROGRAPH TRANSFORM	APH TRANSFORM	RECE	RECESSION BASEFLOW	WC
Subbasin	Initial Ab- straction (MM)	Curve Num- ber	Imperviousness (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Discharge (CU.M/S)	Recession Constant	Ratio to Peak
W320	8.5077	82.64	0.0	3.8689	3.1236	5.7515	0.5	0.4975
W330	9.1976	80.036	0.0	0.80027	0.65348	1.8057	0.5	0.825
W340	7.8048	72.838	0.0	0.21323	0.3832	0.15726	0.5	0.825
W350	9.4493	67.429	0.0	2.5724	1.4131	3.8782	0.5	0.75
W360	9.8636	65.984	0.0	2.5629	1.3956	7.0408	0.5	0.5
W370	8.4682	64.795	0.0	5.5487	2.0219	5.153	0.40194	0.5
W380	8:06:8	70.543	0.0	0.56627	0.45282	1.0564	0.40198	0.575
W390	8.9995	66	0.0	3.3128	1.1974	5.4966	0.5	0.5
W400	8.5464	70.295	0.0	1.6483	0.60983	1.0598	0.5	0.49
W410	10.764	63.65	0.0	2.5724	1.3775	1.9599	0.40199	0.49
W420	8.89	69.236	0.0	3.2171	2.5727	3.513	0.40196	0.5
W430	9.1073	69.166	0.0	3.0468	1.5238	3.887	0.40197	0.5
W440	11.884	61.991	0.0	1.9874	0.71857	2.763	0.40199	0.49
W450	11.045	64.181	0.0	5.75	1.3831	3.7771	0.5	0.5
W460	12.663	60.088	0.0	4.4622	3.6023	10.949	0.5	0.5
W470	9.5186	68.591	0.0	1.4179	1.6668	6.4568	0.40198	0.49
W480	10.427	65.994	0.0	3.8832	2.1092	3.2939	0.40185	0.5
W490	12.606	60.223	0.0	3.6463	4.458	4.2204	0.402	0.49
W500	12.531	60.402	0.0	8.7171	3.0982	7.2008	0.40188	0.5
W510	12.892	59.55	0.0	1.3835	0.73338	0.13544	0.40197	0.5

0.5	0.5	0.5	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.40198	0.5	0.5	0.5
2.3751	3.6603	3.6861	0.14112	4.9275	5.339	4.8655	5.1769	7.0591	9.3162	15.871
1.8126	2.5907	1.1738	0.17934	2.0207	0.76607	3.4432	1.0613	1.3518	2.1179	2.37
3.3321	4.8387	2.1248	0.48462	2.4887	2.0701	3.1411	1.9119	2.4563	5.7087	4.3361
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64.366	65.484	64.342	63.822	66.954	64.585	58.708	85.721	91.687	84.388	61.135
10.977	10.573	10.986	11.179	10.062	10.897	13.259	5.0787	3.5408	5.3595	12.229
W520	W530	W540	W550	W560	W570	W580	W590	W600	W610	W620

Annex 10. Amnay Model Reach Parameters

Table A-10.1. Amnay Model Reach Parameters

	Side Slope (xH:1V)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Width (M)	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
	Shape	Trapezoid														
IANNEL ROUTING	Manning's n	0.57435	0.57624	0.59066	0.58883	0.588	0.588	0.588	0.58967	0.588	0.588	0.588	0.588	0.588	0.588	0.588
MUSKINGUM CUNGE CHANNEL ROUTING	Slope(M/M)	0.0244898	.00018357	0.0120770	0.0225726	0.0081543	0.0333219	0.0200429	0.0650688	0.0096916	0.0097816	0.0035778	0.0039390	0.0094455	0.0094455	0.0208034
M	Length (M)	772.13	2169.4	4195.5	4661.1	9922.0	3734.0	2596.6	757.40	3435.5	2849.7	1732.7	5907.0	733.26	1517.4	4235.8
	Time Step Method	Automatic Fixed Interval														
	REACH	R100	R110	R130	R160	R170	R180	R190	R20	R220	R230	R240	R270	R290	R300	R70

Annex 11. Amnay Field Validation

Table A-11.1. Amnay Field Validation

	Validation Coordinates	oordinates						
Point Number	Latitude	Longitude	Model Var (m)	Validation Points (m)	Error	Event	Date	Rain Return/Scenario
	120.77843000000	12.95053000000	2.18	0.97	-1.21		2007	25-Year
2	120.77696000000	12.95118500000	1.27	0.4	-0.87		1999	25-Year
3	120.77796000000	12.95123700000	2.38	1.2	-1.18		2009	25-Year
4	120.77748000000	12.95155200000	1.83	0.88	-0.95		2007	25-Year
2	120.77691000000	12.95170500000	1.58	9.0	-0.98		2007	25-Year
9	120.77729000000	12.95187300000	1.64	0.5	-1.14		2007	25-Year
7	120.77665000000	12.95240700000	1.09	9.0	-0.49		2007	25-Year
8	120.77714000000	12.95264500000	1.75	0.8	-0.95	Yolanda		25-Year
6	120.77719000000	12.95297300000	1.95	6.0	-1.05		2011	25-Year
10	120.77735000000	12.95343600000	2.28	0.95	-1.33		2011	25-Year
11	120.77626000000	12.95437200000	1.55	0.56	-0.99		2007	25-Year
12	120.77595000000	12.95481400000	1.68	0.52	-1.16		2007	25-Year
13	120.77599580000	12.95581350000	2.26	0.66	-1.6	Nona	Dec. 2015	25-Year
14	120.77585150000	12.95597760000	2	0.45	-1.55	Nona	Dec. 2015	25-Year
15	120.77557510000	12.95600180000	1.38	0.83	-0.55	Ondoy	Sept. 2009	25-Year
16	120.77603080000	12.95601050000	2.32	0.45	-1.87	Nona	Dec. 2015	25-Year
17	120.77569380000	12.95602990000	1.6	0.3	-1.3	Ondoy	Sept. 2009	25-Year

| 25-Year |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 2011 | Sept.
2009 | 2012 | 2007 | 2007 | Nov.
2013 | Nov.
2013 | 2009 | Nov.
2013 | 2007 | Nov.
2013 | Dec.
2016 | Sept.
2009 |
| | Ondoy | | | | Yolanda | Yolanda | | Yolanda | | Yolanda | Nina | Ondoy |
| -1.04 | -1.04 | -1 | -1.1 | -1.35 | -1.25 | -1.23 | -1.64 | -1.37 | -1.48 | -1.18 | -1.83 | -1.59 | -1.59 | -0.89 | -1.93 | -1.02 | -1.47 | -1.61 |
| 1.12 | 0.67 | 1.12 | 1.14 | 0.7 | 0.9 | 0.98 | 0.5 | 6.0 | 0.5 | 1.3 | 0.3 | 0.55 | 0.6 | 1.2 | 0.2 | П | 0.5 | 0.5 |
| 2.16 | 1.71 | 2.12 | 2.24 | 2.05 | 2.15 | 2.21 | 2.14 | 2.27 | 1.98 | 2.48 | 2.13 | 2.14 | 2.19 | 2.09 | 2.13 | 2.02 | 1.97 | 2.11 |
| 12.95646900000 | 12.95656180000 | 12.95673000000 | 12.95673800000 | 12.95721300000 | 12.95728070000 | 12.95734910000 | 12.95749600000 | 12.95773530000 | 12.95793300000 | 12.95812700000 | 12.95864410000 | 12.95867250000 | 12.95868930000 | 12.95873880000 | 12.95879630000 | 12.95888060000 | 12.95888630000 | 12.95892680000 |
| 120.77613000000 | 120.77557540000 | 120.77598000000 | 120.77653000000 | 120.77741000000 | 120.77557630000 | 120.77540870000 | 120.77731000000 | 120.77612990000 | 120.77705000000 | 120.77597970000 | 120.81805260000 | 120.81855220000 | 120.81905540000 | 120.81949900000 | 120.81966660000 | 120.82341670000 | 120.82079600000 | 120.82135130000 |
| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 56 | 27 | 28 | 59 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

Sept. 25-Year	Sept. 25-Year 2009	Sept. 25-Year 25009	Oct. 25-Year	Sept. 25-Year 2009	2007 25-Year	2007 25-Year	Nov. 25-Year 2013	Nov. 25-Year	Dec. 25-Year 2015	25-Year	Dec. 25-Year 2016	Nov. 25-Year 2013	2010 25-Year	2007 25-Year	Dec. 25-Year 2016	2010 25-Year	2010 25-Year	Nov. 25-Year	CT07
Ondoy	Ondoy	Ondoy		Ondoy			Yolanda	Yolanda	Nona	Yolanda	Nina	Yolanda			Nina			Yolanda	
-1.69	-1.94	-1.91	-1.39	-0.69	-1.53	-1.29	-0.7	-0.85	-1.87	-0.99	-1.68	-0.93	-1	-1.24	-1.83	-0.91	-1.11	-1.75	_
0	0	0.2	0.5	1.2	0.8	0.8	1.3	П	0.45	0.82	0.2	6:0	0.71	9.0	0	1.36	1.27	0.45	_
1.69	1.94	2.11	1.89	1.89	2.33	2.09	2	1.85	2.32	1.81	1.88	1.83	1.71	1.84	1.83	2.27	2.38	2.2	
12.95897360000	12.95898850000	12.95899220000	12.95866300000	12.95911670000	12.95883800000	12.95904400000	12.95959040000	12.95965190000	12.95930740000	12.95974400000	12.95978340000	12.95979550000	12.95992900000	12.95950100000	12.95993960000	12.95995500000	12.95997000000	12.95965490000	_
120.82200260000	120.82159790000	120.82005590000	120.77657960000	120.82295700000	120.77701000000	120.77674000000	120.82066000000	120.82002230000	120.77574960000	120.82010000000	120.82243690000	120.82110400000	120.83103000000	120.77640000000	120.81990350000	120.81470000000	120.81602000000	120.77674720000	
37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	

| 25-Year |
|-----------------|
| | 2013 | 2010 | Oct.
2016 | Nov.
2013 | Nov.
2013 | 2010 | Dec.
2016 | 2010 | 2010 | Nov.
2013 | 2010 | 2010 | 2010 | Dec.
2016 | 2010 | 2010 | | 2014 | 2010 | 2013 | Nov.
2013 |
| Pedring | | | Lawin | Yolanda | Yolanda | | Nina | | | Yolanda | | | | Nina | | | Nina | | | | Yolanda |
| -1.01 | -1.19 | -1.11 | -1.02 | -1.56 | -1.04 | -0.7 | -1.77 | -1.02 | -1.15 | -1.32 | -1.22 | -1.47 | -1.11 | -0.39 | -1.07 | -1.42 | -2.5 | -0.66 | -1.37 | -1.64 | -1.73 |
| 1.16 | 1.13 | 1.2 | 0.58 | 0.61 | 0.52 | 1.17 | 0.3 | 0.55 | 0.89 | 0.45 | 1.1 | 0.5 | 0.89 | 1.3 | 0.9 | 0.67 | 0 | 1.06 | 0.62 | 0.5 | 0.5 |
| 2.17 | 2.32 | 2.31 | 1.6 | 2.17 | 1.56 | 1.87 | 2.07 | 1.57 | 2.04 | 1.77 | 2.32 | 1.97 | 2 | 1.69 | 1.97 | 2.09 | 2.5 | 1.72 | 1.99 | 2.14 | 2.23 |
| 12.96006100000 | 12.96020000000 | 12.96019800000 | 12.96036840000 | 12.95989860000 | 12.96046140000 | 12.96033300000 | 12.96007980000 | 12.96061400000 | 12.96050100000 | 12.96071370000 | 12.96062000000 | 12.96094800000 | 12.96084600000 | 12.96110070000 | 12.96101600000 | 12.96102600000 | 12.96122000000 | 12.96114900000 | 12.96122100000 | 12.96125200000 | 12.96108860000 |
| 120.81772000000 | 120.81701000000 | 120.81661000000 | 120.83283310000 | 120.77598270000 | 120.83355520000 | 120.81586000000 | 120.77644410000 | 120.83382000000 | 120.81755000000 | 120.83427880000 | 120.81726000000 | 120.83471000000 | 120.81478000000 | 120.83546640000 | 120.81560000000 | 120.81519000000 | 120.83560000000 | 120.81748000000 | 120.81701000000 | 120.81616000000 | 120.77550310000 |
| 57 | 28 | 59 | 09 | 61 | 62 | 63 | 64 | 9 | 99 | 29 | 89 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 92 | 77 | 78 |

25-Year	25-Year	25-Year	25-Year	25-Year		
July 2014	July 2014	Dec. 2015	Oct. 2016	Nov. 2013		
Glenda	Glenda	Nona	Lawin	Yolanda		
-1.03	-1.45	-1.43	-2.02	-1.1		
6.0	0.55	9.0	0.25	0.8		
1.93	2	2.03	2.27	1.9		
12.96115100000	12.96172760000	12.96210600000	12.96294900000	12.96346720000		
120.77606470000	120.77589980000	120.77559800000	120.77530520000	120.77526300000		
79	80	81	82	83		

Annex 12. Phil-LiDAR 1 UPLB Team Composition

Project Leader

Asst. Prof. Edwin R. Abucay (CHE, UPLB)

Project Staffs/Study Leaders

Asst. Prof. Efraim D. Roxas (CHE, UPLB)
Asst. Prof. Joan Pauline P. Talubo (CHE, UPLB)
Ms. Sandra Samantela (CHE, UPLB)
Dr. Cristino L. Tiburan (CFNR, UPLB)
Engr. Ariel U. Glorioso (CEAT, UPLB)
Ms. Miyah D. Queliste (CAS, UPLB)

Mr. Dante Gideon K. Vergara (SESAM, UPLB)

Sr. Science Research Specialists

Gillian Katherine L. Inciong For. John Alvin B. Reyes

Research Associates

Alfi Lorenz B. Cura
Angelica T. Magpantay
Gemmalyn E. Magnaye
Jayson L. Arizapa
Kevin M. Manalo
Leendel Jane D. Punzalan
Maria Michaela A. Gonzales
Paulo Joshua U. Quilao
Sarah Joy A. Acepcion
Ralphael P. Gonzales

Computer Programmers

Ivan Marc H. Escamos Allen Roy C. Roberto

Information Systems Analyst

Jan Martin C. Magcale

Project Assistants

Daisili Ann V. Pelegrina Athena Mercado Kaye Anne A. Matre Randy P. Porciocula