Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Sibalom 2 River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Cebu

Patnongon

Belison

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

 $\ensuremath{\mathbb{C}}$ University of the Philippines and University of the Philippines Cebu 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman, Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit, and J.R. Sinogaya, (Eds). (2017), LiDAR Surveys and Flood Mapping of Sibalom 2 River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry -210pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Jonnifer R. Sinogaya, Ph.D. Project Leader, PHIL-LiDAR 1 Program University of the Philippines, Cebu Cebu City, Philippines 6000 jrsinogaya1@up.edu.ph

Enrico C. Paringit, Dr. Eng. Program Leader, Phil LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-113-3

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	ix
CHAPTER 1: OVERVIEW OF THE PROGRAM AND Sibalom 2RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Sibalom 2River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE Sibalom 2FLOODPLAIN	
2.1 Flight Plans	3
2.2 Ground Base Stations	7
2.3 Flight Missions	17
2.4 Survey Coverage	20
CHAPTER 3: LIDAR DATA PROCESSING OF THE Sibalom 2FLOODPLAIN	22
3.1 Overview of the LIDAR Data Pre-Processing	22
3.2 Transmittal of Acquired LiDAR Data	23
3.3 Trajectory Computation	23
3.4 LiDAR Point Cloud Computation	25
3.5 LiDAR Quality Checking	26
3.6 LiDAR Point Cloud Classification and Rasterization	30
3.7 LiDAR Image Processing and Orthophotograph Rectification	32
3.8 DEM Editing and Hydro-Correction	33
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR DeM	
3.12 Feature Extraction	
3.12.1 Quality Checking (OC) of Digitized Features' Boundary	42 42
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE	
Sibalom 2RIVER BASIN	45
4.1 Summary of Activities	45
4.2 Control Survey	47
4.3 Baseline Processing	50
4.4 Network Adjustment	52
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	
CHAPTER 5: FLOOD MODELING AND MAPPING	65
5.1 Data Used for Hydrologic Modeling	65
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Kating Curves and Kiver Outtiow	
5.2 MMS Model	80 17
	/ 1

	5.4 Cross-section Data	75
	5.5 Flo 2D Model	75
	5.6 Results of HMS Calibration	76
	5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return	
	Periods	80
	5.7.1 Hydrograph using the Rainfall Runoff Model	80
	5.8 River Analysis (RAS) Model Simulation	81
	5.9 Flow Depth and Flood Hazard	82
	5.10 Inventory of Areas Exposed to Flooding	88
	5.11 Flood Validation	115
R	EFERENCES	117
A	NNEXES	118
	ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Sibalom 2Floodplain	
	Survey	118
	ANNEX 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey	121
	ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	128
	ANNEX 4. The LiDAR Survey Team Composition	130
	ANNEX 5. Data Transfer Sheet for Sibalom 2Floodplain	131
	ANNEX 6. Flight logs for the flight missions	138
	ANNEX 7. Flight status reports	145
	ANNEX 8. Mission Summary Reports	157
	ANNEX 9. Sibalom 2Model Basin Parameters	184
	ANNEX 10. Sibalom 2Model Reach Parameters	185
	ANNEX 11. Sibalom 2Field Validation Points	186
	ANNEX 12. Educational Institutions Affected by flooding in Sibalom 2Flood Plain	193
	ANNEX 13. Health Institutions affected by flooding in Sibalom 2Floodplain	197
	· · ·	

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system.	3
Table 2. Flight planning parameters for the Pegasus LiDAR system.	3
Table 3. Flight planning parameters for the Aquarius LiDAR system.	3
Table 4. Details of the recovered NAMRIA horizontal control point ATQ-18 used as base station for the L sition.	.iDAR acqui- 8
Table 5. Details of the recovered NAMRIA horizontal control point ATQ-20 used as base station for the L sition.	.iDAR acqui- 9
Table 6. Details of the recovered NAMRIA horizontal control point ATQ-22 used as base station for the L sition.	.iDAR acqui- . 10
Table 7. Details of the recovered NAMRIA horizontal control point AQ-10 used as base station for the Lil tion	DAR acquisi- . 11
Table 8. Details of the recovered NAMRIA vertical control point ILO-1 used as base station for the LiDAR tion	Acquisi- . 12
Table 9. Details of the recovered NAMRIA vertical control point ILO-85 used as base station for the LiDA tion	R acquisi- . 13
Table 10. Details of the recovered NAMRIA vertical control point ILO-86 used as base station for the LiD. tion	AR acquisi- . 14
Table 11. Details of the recovered NAMRIA vertical control point IL-533 used as base station for the LiD/ tion	AR acquisi- . 15
Table 12. Details of IIAP-01 GCP used as base station for the LiDAR acquisition	. 16
Table 13. Ground control points used during LiDAR data acquisition	.16-17
Table 14. Flight missions for the LiDAR data acquisition of the Sibalom 2Floodplain	. 18
Table 15. Actual parameters used during the LiDAR data acquisition of the Sibalom 2Floodplain	. 19
Table 16. The list of municipalities and cities surveyed of the Sibalom 2Floodplain LiDAR acquisition	. 20
Table 17. Self-calibration values for all Sibalom 2flood plain flights	. 25
Table 18. List of LiDAR blocks for the Sibalom 2floodplain.	. 27
Table 19. Sibalom 2classification results in TerraScan.	. 30
Table 20. LiDAR blocks with its corresponding areas.	. 33
Table 21. Shift values of each LiDAR block of Sibalom 2Floodplain.	. 35
Table 22. Calibration statistical measures	. 39
Table 23. Statistical measures for the Sibalom 2River Basin DTM validation.	. 40
Table 24. Quality checking ratings for Sibalom 2building features	. 42
Table 25. Building features extracted for Sibalom 2floodplain.	. 43
Table 26. Total length of extracted roads for Sibalom 2floodplain	. 44
Table 27. Number of extracted water bodies for Sibalom 2floodplain	. 44
Table 28. References used and control points established in the Sibalom 2River Survey (Source: NAMRIA TCAGP).	A, UP- . 48
Table 29. The Baseline processing report for the Sibalom 2River GNSS static observation survey.	.51
Table 30. Constraints applied to the adjustment of the control points.	. 52
Table 31. Adjusted grid coordinates for the control points used in the Sibalom 2River flood plain survey.	52-53
Table 32. Adjusted geodetic coordinates for control points used in the Sibalom 2River Flood Plain valida	tion.

Table 33. The reference and control points utilized in the Sibalom 2River Static Survey, with their corres locations (Source: NAMRIA, UP-TCAGP)	sponding 54
Table 34. RIDF values for the Iloilo Rain Gauge, as computed by PAGASA	69
Table 35. Range of calibrated values for the Sibalom 2River Basin.	78
Table 36. Summary of the Efficiency Test of the Sibalom 2HMS Model	79
Table 37. The peak values of the Sibalom 2HEC-HMS Model outflow using the Romblon RIDF	87
Table 38. Municipalities affected in Sibalom 2floodplain	88
Table 39. Affected Areas in Belison, Antique during 5-Year Rainfall Return Period	89
Table 40. Affected Areas in Patnongon, Antique during 5-Year Rainfall Return Period	90
Table 41. Affected Areas in San Jose, Antique during 5-Year Rainfall Return Period	92
Table 42. Affected Areas in San Remigio, Antique during 5-Year Rainfall Return Period.	93
Table 43. Affected Areas in Sibalom, Antique during 5-Year Rainfall Return Period.	95
Table 44. Affected Areas in Belison, Antique during 25-Year Rainfall Return Period	98
Table 4.5 Affected Areas in Patnongon, Antique during 25-Year Rainfall Return Period	99
Table 46. Affected Areas in San Jose, Antique during 25-Year Rainfall Return Period	100
Table 47. Affected Areas in San Remigio, Antique during 25-Year Rainfall Return Period	101
Table 48. Affected Areas in Sibalom, Antique during 25-Year Rainfall Return Period.	103
Table 49. Affected Areas in Belison, Antique during 100-Year Rainfall Return Period	106
Table 50. Affected Areas in Patnongon, Antique during 100-Year Rainfall Return Period	107
Table 51. Affected Areas in San Jose, Antique during 100-Year Rainfall Return Period	108
Table 52. Affected Areas in San Remigio, Antique during 100-Year Rainfall Return Period	109
Table 53. Affected Areas in Sibalom, Antique during 100-Year Rainfall Return Period	111
Table 54. Areas covered by each warning level with respect to the rainfall scenario	114
Table 55. Actual flood versus simulated flood depth at different levels in the Sibalom 2River Basin	116
Table 56. Summary of the Accuracy Assessment in the Sibalom 2River Basin Survey	116

LIST OF FIGURES

Figure 1. Map of Sibalom 2River Basin	2
Figure 2. Flight Plan and base stations using Gemini system for the Sibalom 2Floodplain survey	4
Figure 3. Flight Plan and base stations using Pegasus system for the Sibalom 2Floodplain survey	5
Figure 4. Flight Plan and base stations using Aquarius system for the Sibalom 2Floodplain survey	6
Figure 5. GPS set-up over ATQ-18 as recovered in Barangay Cubay, Barbaza, Province of Antique (a) NAM ence point ATQ-18 (b) as recovered by the field team	IRIA refer- 7
Figure 6. GPS set-up over ATQ-20 as recovered in Brgy. Zaragoza of Bugasong (a) NAMRIA reference poir (b) as recovered by the field team	nt ATQ-20 8
Figure 7. (a) ATQ-22 as recovered in Barangay Concepcion, Belison, Province of Antique. (b) NAMRIA references point ILO-3134 as recovered by the field team.	erence 9
Figure 8. GPS set-up over AQ-10 as recoverd in Brgy. Zaragoza (a) NAMRIA benchmark AQ-10 (b) as reco the field team.	vered by 10
Figure 9. GPS set-up over ILO-1 as recovered on the roof top of St. Clemente Church Bell Tower in La Paz (a) NAMRIA reference point ILO-1 (b) as recovered by the field team	, lloilo City 11
Figure 10. GPS set-up over ILO-85 as recovered at the Town Plaza in Miag-ao, Iloilo (a) NAMRIA reference 85 (b) as recovered by the field team	e point ILO- 12
Figure 11. GPS set-up over ILO-86 as recovered in Barangay Poblacion, Igbaras, Iloilo (a) NAMRIA referen ILO-86 (b) as recovered by the field team.	nce point 13
Figure 12. GPS set-up over IL-533 as recovered in Barangay Amboyu-an, San Joaquin, Province of Iloilo (a reference point IL-533 (b) as recovered by the field team.	a) NAMRIA 14
Figure 13. Actual LiDAR survey coverage of the Sibalom 2Floodplain.	21
Figure 14. Schematic diagram for the data pre-processing	22
Figure 15. Smoothed Performance Metric Parameters of a Sibalom 2Flight 2569P	23
Figure 16. Solution Status Parameters of Sibalom 2Flight 2569P.	24
Figure 17. Best Estimated Trajectory of the LiDAR missions conducted over the Sibalom 2floodplain	25
Figure 18. Boundary of the processed LiDAR data over Sibalom 2Floodplain.	26
Figure 19. Image of data overlap for the Sibalom 2Floodplain.	27
Figure 20. Pulse density map of the merged LiDAR data for the Sibalom 2Floodplain	28
Figure 21. Elevation Difference Map between flight lines for the Sibalom 2Floodplain Survey.	29
Figure 22. Quality checking for a Sibalom 2flight 2569P using the Profile Tool of QT Modeler	29
Figure 23Tiles for Sibalom 2floodplain (a) and classification results (b) in TerraScan.	30
Figure 24. Point cloud before (a) and after (b) classification.	31
Figure 25. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary DTM (d portion of Sibalom 2floodplain.) in some 31
Figure 26. The Sibalom 2Floodplain with the available orthophotographs.	32
Figure 27. Sample orthophotograph tiles for the Sibalom 2Floodplain.	33
Figure 28. Portions in the DTM of Sibalom 2floodplain – bridge before (a) and after (b) manual editing; ro (c) and after (d) data retrieval; mountain before (e) and after (f) data retrieval.	oad before 34
Figure 29. Map of processed LiDAR data for the Sibalom 2Floodplain.	36
Figure 30. Map of Sibalom 2Flood Plain with validation survey points in green	38
Figure 31. The correlation plot between calibration survey points and LiDAR data	39

Figure 32. Correlation plot between validation survey points and LiDAR data.	40
Figure 33. Map of Sibalom 2Flood Plain with bathymetric survey points shown in blue	41
Figure 34. Blocks (in blue) of Sibalom 2building features that were subjected to QC	42
Figure 35. Extracted features of the Sibalom 2Floodplain.	44
Figure 36. Extent of the bathymetric survey (in blue line) in Sibalom 2River and the LiDAR data validation red).	survey (in 46
Figure 37. The GNSS Network established in the Sibalom 2River Survey	47
Figure 38. GNSS base receiver setup, Trimble® SPS 852 at ATQ-20 in Brgy. Zaragoza, Municipality of Bugas tique	song, An- 49
Figure 39. Benchmark, AQ-72, with Trimble® SPS 852 in Brgy. Delima, Municipality of Belison, Antique	49
Figure 40. UP-TCAGP established control point, TPN-1, with Trimble® SPS 882 on Tipuluan Bridge in Brgy. Municipality of Sibalom, Antique	Pasong, 50
Figure 41. (A)Cross section survey and (B)As-built survey in Tipuluan Bridge, Municipality of Sibalom2	54
Figure 42. Location map of the Tipulan Bridge cross section survey	55
Figure 43. Location map of the Tipulan Bridge cross section survey	55
Figure 44. Location map of the Bugo Bridge cross section survey	56
Figure 45. Location map of the Bugo Bridge cross section survey	56
Figure 46. The Tipuluan Bridge as-built survey data.	57
Figure 47. The Bugo Bridge as-built survey data.	58
Figure 48. (A) Trimble™ SPS 882 attached to a vehicle and (B) Setting up of GNSS base station at ATQ-20.	59
Figure 49. The extent of the LiDAR ground validation survey along Antique	60
Figure 50. The setup for the manual Bathymetric Survey in Sibalom 2River	61
Figure 51. The extent of the Sibalom 2River Bathymetry Survey	62
Figure 52. Sibalom Riverbed Profile from Brgy.Magdalena, Municipality of San Remigio down to Brgy. Dis Municipality of Sibalom	trict IV, 63
Figure 53. Continuation of Sibalom Riverbed Profile from Brgy. District II, Municipality of Sibalom down t Pedro, Municipality of San Jose	o Brgy. San 64
Figure 54. The location map of Sibalom 2HEC-HMS model used for calibration	66
Figure 55. Cross-Section plot of Bugo Bridge.	67
Figure 56. The rating curve at Bugo Bridge, San Remegio, Antique.	67
Figure 57. Rainfall and outflow data of the Sibalom 2River Basin, which was used for modeling	68
Figure 58. The location of the Iloilo RIDF station relative to the Sibalom 2River Basin	70
Figure 59. Synthetic storm generated for a 24-hour period rainfall for various return periods.	70
Figure 60. Soil map of the Sibalom 2River Basin.	71
Figure 61. Land Cover Map of Sibalom 2River Basin.	72
Figure 62. Slope Map of the Sibalom 2River Basin	73
Figure 63. The Sibalom 2river basin model generated using HEC-HMS.	74
Figure 64. River cross-section of the Sibalom 2River through the ArcMap HEC GeoRas tool.	75
Figure 65. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-21 veloper System Pro (FLO-2D GDS Pro).	D Grid De- 76
Figure 66. Outflow Hydrograph of Sibalom 2produced by the HEC-HMS model compared with obser flow	rved out- 77

AAC	Asian Aerospace Corporation	IMU	Inertial Measurement Unit
Ab	abutment	kts	knots
ALTM	Airborne LiDAR Terrain Mapper	LAS	LiDAR Data Exchange File format
ARG	automatic rain gauge	LC	Low Chord
ATQ	Antique	LGU	local government unit
AWLS	Automated Water Level Sensor	Lidar	Light Detection and Ranging
BA	Bridge Approach	LMS	LiDAR Mapping Suite
BM	benchmark	m AGL	meters Above Ground Level
CAD	Computer-Aided Design	MMS	Mobile Mapping Suite
CN	Curve Number	MSL	mean sea level
CSRS	Chief Science Research Specialist	NSTC	Northern Subtropical Convergence
DAC	Data Acquisition Component		
DEM	Digital Elevation Model	PAF	Philippine Air Force
DENR	DENR Department of Environment and Natural		Philippine Atmospheric Geophysical and Astronomical Services Administration
DOST	DOST Department of Science and Technology		Positional Dilution of Precision
		РРК	Post-Processed Kinematic [technique]
DPPC	DPPC Data Pre-Processing Component		Pulse Repetition Frequency
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management	PTM	Philippine Transverse Mercator
DSM	Digital Surface Model		Quality Check
	Digital Surface Model		Quick Terrain [Modeler]
DTM	Digital Terrain Model	RA	Research Associate
DVBC	Data Validation and Bathymetry Component	RIDF	Rainfall-Intensity-Duration-Frequency
FMC	Flood Modeling Component	RMSE	Root Mean Square Error
FOV	Field of View	SAR	Synthetic Aperture Radar
GiA	Grants-in-Aid	SCS	Soil Conservation Service
GCP	Ground Control Point	SRTM	Shuttle Radar Topography Mission
GNSS	Global Navigation Satellite System	SRS	Science Research Specialist
GPS	Global Positioning System	SSG	Special Service Group
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System	ТВС	Thermal Barrier Coatings
HEC-RAS	Hydrologic Engineering Center - River Analysis System	UPC	University of the Philippines Cebu
HC	High Chord	UP-TCAGP	University of the Philippines – Training
IDW	Inverse Distance Weighted [interpolation method]		Center for Applied Geodesy and Photogrammetry

LIST OF ACRONYMS AND ABBREVIATIONS

CHAPTER 1: OVERVIEW OF THE PROGRAM AND SIBALOM 2RIVER

Dr. Jonnifer R. Sinogaya and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Cebu (UPC). UPC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 22 river basins in the Western Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Sibalom 2River Basin

The Sibalom 2(Antique) River Basin is located in the province of Antique located at the southwest of Panay Island. The floodplain and drainage area of 153.78 km2 and 130.473 km2 respectively covers the municipalities of San Remigio and Sibalom. The floodplain is 99.83% covered with LiDAR data which compromises 8 blocks. Bathy burning was not conducted since the water was shallow when the LiDAR data was gathered. However, bathy survey was still done, the bathy survey conducted reached a total length of 17.64 km starting from Magdalena San Remigio up to the river mouth with 537 points surveyed. There are 21297 buildings, 166.52 km roads, 17 waterbodies and 7 bridges digitized based from the LiDAR data. Feature Extraction Attribution was conducted and among the building features, 20073 of them are Residential, 456 are schools and 35 are Medical Institutions.

Figure 1. Map of Sibalom 2River Basin.

The flood hazard map produced covers the 61.70 km2, 72.34 km2, 80.17 km2 for the 5-year, 25-year, and 100 year rainfall return period in Patnongon which affects 13 barangays. A flood depth validation was conducted using 180 randomly generated points which is spread throughout the 6 ranges namely 0m-0.2m, 0.21m-0.5m, 0.51m-1m, 1.01m-2m, 2.10m-5m, 5m+ depth using the 25-yr rainfall flood depth map. It yielded a 0.782m RMSE.

A rating curve was developed at Bogo Bridge, San Remegio, Antique, which shows the relationship between the observed water levels at Bogo Bridge and outflow of the watershed at this location. This rating curve equation, expressed as Q = 66.291e0.5476x, was used to compute the river outflow at Bogo Bridge for the calibration of the HEC-HMS model. The resulting outflow was used to simulate the flooded areas using HEC-RAS. The simulated model will be an integral part in determining the real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SIBALOM 2FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, For. Regina Aedrianne C. Felismino

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Sibalom 2floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Sibalom 2Floodplain in Antique, Guimaras and Iloilo. Each flight mission has an average of 12 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1 to Table 4. Figure 2 to Figure 4 show the flight plan for Sibalom 2floodplain survey.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43 F	1200	30	50	100	50	120	5
BLK43 G	1200	30	50	100	50	120	5
BLK43 H	1200	30	50	100	50	120	5
BLK43 I	1200	30	50	100	50	120	5

Table 1. Flight planning parameters for the Gemini LiDAR system.

Table 2. Flight planning parameters for the Pegasus LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43 D	1000	30	50	200	30	130	5
BLK43 E	1000	30	50	200	30	130	5
BLK43 F	1000	30	50	200	30	130	5
BLK43 G	1000	30	50	200	30	130	5

Table 3. Flight planning parameters for the Aquarius LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK43K	600	30	36	50	45	130	5

Figure 2. Flight Plan and base stations using Gemini system for the Sibalom 2Floodplain survey.

Figure 3. Flight Plan and base stations using Pegasus system for the Sibalom2 Floodplain survey

Figure 4. Flight Plan and base stations using Aquiarius system for the Sibalom 2 Floodplain survey

2.2 Ground Base Station

The project team was able to recover six (6) NAMRIA reference points: ILO-01 which is of first (1st) order accuracy; ATQ-18, ATQ-20, ATQ-22, ILO-85, and ILO-86 which are of second (2nd) order accuracy. One (1) established reference point: IIAP-01; two (2) benchmark reference point: IL-533 and AQ-10.

The certification for the base station is found in Annex D. These were used as base stations during flight operations for the entire duration of the survey (February 2015 and October 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and TRIMBLE SPS 985. Flight plans and location of base stations used during the aerial LiDAR Acquisition in Sibalom 2floodplain are shown in Figure 2 to Figure 4.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Sibalom 2Floodplain LiDAR Survey. Figure 5 to Figure 12 shows the recovered NAMRIA control station within the area, in addition Table 4 to Table 12 show the details about the following NAMRIA control stations and established points, Table 13 shows the list of all ground control points occupied during the acquisition together with the dates they are utilized during the survey.

(b)

Figure 5. GPS set-up over ATQ-18 as recovered in Barangay Cubay, Barbaza, Province of Antique (a) NAMRIA reference point ATQ-18 (b) as recovered by the field team.

Station Name	ATQ-18			
Order of Accuracy	2 nd			
Relative Error (horizontal positioning)	1 in 50,000			
	Latitude	11° 11′ 58.67081″		
Geographic Coordinates, Philippine Refer-	Longitude	122° 2′ 22.83300″		
ence of 1992 Datum (PRS 92)	Ellipsoidal Height	10.902 meters		
Grid Coordinates, Philippine Transverse Mer-	Easting	395155.157 meters		
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1238579.674 meters		
	Latitude	11° 11′ 54.16068″ North		
Geographic Coordinates, World Geodetic	Longitude	122° 2' 28.01549" East		
System 1984 Datum (WGS 84)	Ellipsoidal Height	65.961 meters		
Grid Coordinates, Universal Transverse Mer-	Easting	395155.87 meters		
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1238146.15 meters		

Table 4. Details of the recovered NAMRIA horizontal control point ATQ-18 used as base station for the LiDAR acquisition.

Figure 6. GPS set-up over ATQ-20 as recovered in Brgy. Zaragoza of Bugasong (a) NAMRIA reference point ATQ-20 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point ATQ-20 used as base station for the LiDAR acquisition.

Station Name	ATQ-20		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	11° 0′ 42.90484″	
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	122° 2′ 54.07144″	
	Ellipsoidal Height	10.56200 meters	
Grid Coordinates, Philippine Transverse Mer- cator Zone 5 (PTM Zone 5 PRS 92)	Easting	396000.488 meters	
	Northing	1217812.272 meters	
	Latitude	11° 0' 38.44240" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 2' 59.27039" East	
	Ellipsoidal Height	66.09400 meters	
Grid Coordinates, Universal Transverse Mer-	Easting	396036.89 meters	
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1217386.02 meters	

Figure 7. (a) ATQ-22 as recovered in Barangay Concepcion, Belison, Province of Antique. (b) NAMRIA reference point ILO-3134 as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point ATQ-22 used as base static	on
for the LiDAR acquisition.	

Station Name	ATQ-22		
Order of Accuracy	2 nd		
Relative Error (horizontal positioning)	1 in 50,000		
	Latitude	10° 49' 46.66618"	
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	121° 58′ 11.90221″	
	Ellipsoidal Height	12.250 meters	
Grid Coordinates, Philippine Transverse Mer-	Easting	387365.279 meters	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1197676.056 meters	
	Latitude	10° 49' 42.24271" North	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	121° 58' 17.11770" East	
	Ellipsoidal Height	68.022 meters	
Grid Coordinates, Universal Transverse Mer-	Easting	387404.70 meters	
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1197256.85 meters	

Figure 8. GPS set-up over AQ-10 as recoverd in Brgy. Zaragoza (a) NAMRIA benchmark AQ-10 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point AQ-10 used as base station for the LiDAR acquisition.

Station Name	AQ-10	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	11° 01′ 03.59755″
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	122° 03′ 00.53639″
	Ellipsoidal Height	11.054 meters
Grid Coordinates, Philippine Transverse Mer-	Easting	396235.105 meters
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1218020.995 meters
	Latitude	11° 00′ 59.12282″ North
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 03' 05.73482" East
	Ellipsoidal Height	66.576 meters

(b)

Figure 9. GPS set-up over ILO-1 as recovered on the roof top of St. Clemente Church Bell Tower in La Paz, Iloilo City (a) NAMRIA reference point ILO-1 (b) as recovered by the field team.

Table 8. Details of the recovered NAMRIA vertical control point ILO-1 used as base station for the LiDAR Acquisition.

Station Name	ILO-1	
Order of Accuracy	1 st	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	10°42′40.74251″
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	122° 33′ 48.38302″
	Ellipsoidal Height	28.93600 meters
Grid Coordinates, Philippine Transverse Mer- cator Zone 5 (PTM Zone 5 PRS 92)	Easting	452244.945 meters
	Northing	1184434.202 meters
	Latitude	10° 42′ 36.40006″
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 33′ 53.60515″
	Ellipsoidal Height	86.45300 meters
Grid Coordinates, Universal Transverse Mer-	Easting	452261.66 meters
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1184019.63 meters

Figure 10. GPS set-up over ILO-85 as recovered at the Town Plaza in Miag-ao, Iloilo (a) NAM-RIA reference point ILO-85 (b) as recovered by the field team. Table 9. Details of the recovered NAMRIA vertical control point ILO-85 used as base station for the LiDAR acquisition.

Station Name	ILO-85		
Order of Accuracy	2 nd Order		
Relative Error (horizontal positioning)	1:20000		
	Latitude	10° 38′ 33.11352″	
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	122° 14' 3.70560″	
	Ellipsoidal Height	21.96200 m	
Grid Coordinates, Philippine Transverse Mer-	Easting	416226.997m	
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1176896.034m	
	Latitude	10 o38' 28.75996"	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122 014' 8.93597"	
	Ellipsoidal Height	78.82800 m	

(a)

Table 10. Details of the recovered NAMRIA vertical control point ILO-86 used as base station for
the LiDAR acquisition.

	•	
Station Name	ILO-86	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
	Latitude	10° 43' 04.36044"
Geographic Coordinates, Philippine Refer- ence of 1992 Datum (PRS 92)	Longitude	122° 15′ 48.62123″
	Ellipsoidal Height	47.315 meters
Grid Coordinates, Philippine Transverse Mer-	Easting	419306.197 meters
cator Zone 5 (PTM Zone 5 PRS 92)	Northing	1185284.087 meters
	Latitude	10° 42′ 59.99043″
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Longitude	122° 15′ 53.84473″
	Ellipsoidal Height	104.076 meters
Grid Coordinates, Universal Transverse Mer-	Easting	419463.955 meters
cator Zone 51 North (UTM 51N PRS 1992)	Northing	1184807.437 meters

Figure 12. GPS set-up over IL-533 as recovered in Barangay Amboyu-an, San Joaquin, Province of Iloilo (a) NAMRIA reference point IL-533 (b) as recovered by the field team.

Table 11. Details of the recovered NAMRIA vertical control point IL-533 used as base station for the LiDAR acquisition.

Station Name	IL-533	
Order of Accuracy	2 nd	
Relative Error (horizontal positioning)	1 in 50,000	
Coographic Coordinates	Latitude	10° 32′ 49.29908″
Philippine Reference of	Longitude	122° 04′
1992 Datum (PRS 92)	Ellipsoidal	37.25566"
	Height	51.412 meters
Grid Coordinates, Philippine	Easting	398848.891 meters
Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Northing	1166439.919 meters
	Latitude	10° 32′ 44.95602″
World Geodetic System	Longitude	122° 04′
1984 Datum (WGS 84)	Ellipsoidal	42.49544"
	Height	64.135 meters
Grid Coordinates. Universal		399013.479
Transverse Mercator Zone	Easting	meters
51 North (UTM 51N WGS 1984)	Northing	1165970.645 meters

Table 12. Details of IIAP-01 GCP used as base station for the LiDAR acquisition.

Station Name Order of Accuracy Relative Error (horizontal posi- tioning)	IIAP-01 2 ^{№D} 1:50,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS92)	Latitude Longitude Ellipsoidal Height	10° 50′ 08.21923″ 122° 29′ 48.82359″ 43.390 m
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone PRS92)	Easting Northing	445007.365 m 1197773.97 m
Grid Coordinates, World Geo- detic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	10° 50' 03.83971" 122° 29' 54.03518" 100.449 m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	445007.365 m 1197773.97 m

Date Surveyed	Flight Number	Mission Name	Ground Control Points
7-Feb-15	2532G	2BLK43IV038B	ILO-1 and ILO-85
14-Feb-15	2558G	2BLK43G045A	IIAP-1 and ILO-85
14-Feb-15	2569P	1BLK43D045A	IIAP-1 and ILO-85
17-Feb-15	2570G	2BLK43H048A	ILO-85 and IL-533
19-Feb-15	2580G	2BLK43F050B	ILO-85 and ILO-86
17-Feb-15	2583P	1BLK43D048B	ILO-85 and IL-533
18-Feb-15	2585P	1BLK43EF049A	ILO-85 and ILO-86
18-Feb-15	2587P	1BLK43ED049B	ILO-85 and ILO-86
19-Feb-15	2589P	1BLK43EFD050A	ILO-85 and ILO-86
20-Feb-15	2593P	1BLK43BDG051A	ATQ-18 and ATQ-22
25-Oct-16	8511AC	3BLK43KJ299A	ATQ-20 and AQ-10

Table 13. Ground control poi	nts used during	g LiDAR data	acquisition.
------------------------------	-----------------	--------------	--------------

2.3 Flight Missions

A total of Eleven (11) missions were conducted to complete the LiDAR Data Acquisition in Sibalom 2Floodplain, for a total of forty-two hours and twelve minutes (42+12) of flying time for RP-C9122, RP-C9022 and RP-C9322. All missions were acquired using the Gemini, Pegasus and Aquarius LiDAR system. As shown below, the total area of actual coverage per mission and the flying length for each mission are depicted in Table 14, while the actual parameters used during the LiDAR data acquisition are presented in Table 15.

Date	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	Area Surveyed within the Floodplain (km ²)	Area Surveyed	No. of Images (Frames)	Flying Hours	
Surveyed					Floodplain (km ²)		Hr	Min
7-Feb-15	2532G	132.16	198.85	0	198.85	603	4	35
14-Feb-15	2558G	188.42	477.14	0	477.14	668	4	11
14-Feb-15	2569P	121.47	78.21	27.04	51.17	163	3	29
17-Feb-15	2570G	129.45	172.98	0	172.98	698	4	35
19-Feb-15	2580G	106.64	131.7	2.4	129.3	414	3	41
17-Feb-15	2583P	150.51	114.05	30.96	83.09	253	2	53
18-Feb-15	2585P	308.66	263.14	66.12	197.02	621	4	11
18-Feb-15	2587P	352.53	153.07	26.8	126.27	332	3	47
19-Feb-15	2589P	497.08	132.26	27.28	104.98	261	3	41
20-Feb-15	2593P	587.2	20.02	0	20.02	427	3	29
25-Oct-16	8511AC	29.89	25.58	0	25.58	0	3	35
	TOTAL	2604.01	1767	180.6	1586.4	4440	42	12

Table 14. Flight missions for the LiDAR data acquisition of the Sibalom 2Floodplain.

Table 15. Actual parameters used during the LiDAR data acquisition of the Sibalom 2Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
2532G	1200	30	50	125	40	120	5
2558G	1200	30	40	200	50	120	5
2569P	1800	40	40	100	50	120	5
2570G	1000	40	40	100	50	120	5
2580G	1200	40	40	200	50	120	5
2583P	1800	40	40	200	50	120	5
2585P	1800	40	40	200	50	120	5
2587P	1800	40	40	200	50	120	5
2589P	1800	40	40	200	50	120	5
2593P	1800	40	50	125	40	120	5
8511AC	600	30	36	50	45	130	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Sibalom 2floodplain (See ANNEX 7). It is located in the provinces of Antique, Guimaras and Iloilo with majority of the floodplain situated within the municipality of Sibalom. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage is shown in Figure 16. The actual coverage of the LiDAR acquisition for Sibalom 2floodplain is presented in Figure 13.

Table 16. The list of municipalities and cities surveyed of the Sibalom 2Floodplain LiDAR acquisition.

Province	Municipality/City	Area of Municipality/City	Total Area Surveyed	Percentage of Area Surveyed =(Total Area covered/ Area of Municipality)*100
	Belison	36.80	36.77	100
	San Jose	44.26	39.68	90
	Anini-Y	55.15	44.48	81
	Patnongon	135.69	105.25	78
Antique	Sibalom	240.55	185.10	77
Antique	Hamtic	139.85	65.55	47
	Tobias Fornier	102.18	24.05	24
	San Remigio	370.90	49.32	13
	Laua-An	165.65	13.58	8
	Bugasong	178.80	7.26	4
	San Lorenzo	118.69	59.73	50
Guimaras	Sibunag	152.77	54.64	36
	Buenavista	109.72	14.89	14
	Nueva Valencia	122.76	16.64	14
	San Joaquin	200.06	190.50	95
	Miagao	170.53	127.39	75
	Igbaras	132.37	80.74	61
	Tubungan	87.73	52.02	59
	Leon	147.46	67.55	46
lloilo	Guimbal	40.69	10.98	27
	Alimodian	118.19	30.00	25
	Oton	85.38	17.36	20
	Iloilo City	70.78	8.48	12
	Maasin	137.81	7.38	5
	Tigbauan	90.20	3.63	4
	Pavia	27.89	1.06	4
Total		3282.86	1314.03	40.03%

Figure 13. Actual LiDAR survey coverage of the Sibalom 2Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE SIBALOM 2FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Joida F. Prieto , Engr. Ma. Ailyn L. Olanda, Engr. Melanie C. Hingpit, Eng. Czarina Jean P. Añonuevo , Franklin D. Maraya, Chester B. de Guzman

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured. These processes are summarized in the flowchart shown in Figure 14.

Figure 14. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Sibalom 2Floodplain can be found in ANNEX 5. The missions flown during the conduct of the first survey in April 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system. Missions acquired during the second survey on February 2015 were flown using the Gemini and Pegasus system while the third survey on October 2016 were also flown using the Aquarius system over San Remegio, Antique.

The Data Acquisition Component (DAC) transferred a total of 210.41 Gigabytes of Range data, 2.79 Gigabytes of POS data, 212.87 Megabytes of GPS base station data, and 363.3 Gigabytes of raw image data to the data server on April 2, 2015 for the first survey and and October 25, 2016 for the last survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Sibalom 2was fully transferred on November 22, 2016, as indicated on the Data Transfer Sheets for the Sibalom 2Floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 2569P, one of the Sibalom 2flights, which is the North, East, and Down position RMSE values are shown in Figure 15. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of February 14, 2015 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

Figure 15. Smoothed Performance Metrics of a Sibalom 2Flight 2569P.

The time of flight was from 531,000 seconds to 537,400 seconds, which corresponds to morning of February 14, 2015. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 15 shows that the North position RMSE peaks at 1.60 centimeters, the East position RMSE peaks at 1.50 centimeters, and the Down position RMSE peaks at 5.40 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 16. Solution Status Parameters of Sibalom 2Flight 2569P.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Sibalom 2Flight 2569P are shown in Figure 16. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 6 and 9, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also remained at 1 for the majority of the survey, with some observed peaks of up to 2, which were attributed to the turns performed by the aircraft. The value of 1 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Sibalom 2flights is shown in Figure 17.

Figure 17. Best estimated trajectory for Sibalom 2Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 37 flight lines, with each flight line containing one channel for both the Gemini and Aquarius systems and two channels for the Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Sibalom 2floodplain are given in Table 17.

Parameter	Acceptable Value	Computed Value	
Boresight Correction stdev)	<0.001degrees	0.000286	
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000294	
GPS Position Z-correction stdev)	<0.01meters	0.0011	

Table 17. Self-calibration values for all Sibalom 2flood plain flights.

The optimum accuracy values were obtained for all Sibalom 2flights based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are available in the Mission Summary Reports (ANNEX 8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data is shown in Figure 18. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 18. Boundary of the processed LiDAR data on top of SAR Elevation Data over Sibalom 2Floodplain.

The total area covered by the Sibalom 2missions is 1,184.80 sq.km. that is comprised of thirteen (13) flight acquisitions grouped and merged into eight (8) blocks as shown in Table 18.

LiDAR Blocks	Flight Numbers	Area (sq. km)	
Iloilo_Blk43B	2593P	136.14	
	2569P		
	2583P		
Iloilo_Blk43D	2587P	211.92	
	2589P		
	2593P		
	2585P		
Iloilo_Blk43E	2587P	340.92	
	2589P		
Iloilo_Blk43F	2580G	125.29	
lloilo_Antique_Blk43H	2570G	98.83	
lloilo_Antique_Blk43I	2532G	89.92	
lloilo_Antique_Blk43G	2558G	167.60	
Iloilo_Antique_E_Bathy_Surface	1286A	5.69	
Iloilo_reflights_Blk43D	8511AC	8.49	
	1,184.80 sq.km		

Table 18. List of LiDAR blocks for the Sibalom 2floodplain.
The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 19. Since the Gemini and Aquarius systems employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines. While for the Pegasus system which employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 19. Image of data overlap for the Sibalom 2Floodplain.

The overlap statistics per block for the Sibalom 2Floodplain Survey can be found in the Mission Summary Reports (ANNEX 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.93% and 49.01% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 20. As seen in the figure below, it was determined that all LiDAR data for the Sibalom 2Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 3.37 points per square meter.

Figure 20. Pulse density map of the merged LiDAR data for the Sibalom 2Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 21. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which are relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

Figure 21. Elevation Difference Map between flight lines for the Sibalom 2Floodplain Survey.

A screen-capture of the processed LAS data from Sibalom 2flight 2569P loaded in QT Modeler is shown in Figure 22. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

Figure 22. Quality checking for a Sibalom 2flight 2569P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,143,897,564
Low Vegetation	804,125,329
Medium Vegetation	1,240,912,055
High Vegetation	2,287,446,399
Building	43,868,281

Table 19. Sibalom 2classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Sibalom 2floodplain is shown in Figure 23. A total of 1,574 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. The number of points classified to the pertinent categories is illustrated in Table 19. The point cloud has a maximum and minimum height of 1,093.82 meters and 39.01 meters respectively.

Figure 23Tiles for Sibalom 2floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 24. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

Figure 24. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM, first (S_ASCII) and last (D_AS-CII) return DSM of the area in top view display are shown in Figure 25. It shows that DTMs are the representation of the bare earth while on the DSMs all features are present, such as buildings and vegetation.

Figure 25. The production of last return DSM (a) and DTM (b) first return DSM (c) and secondary DTM (d) in some portion of Sibalom 2floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,163 1km by 1km tiles area covered by the Sibalom 2floodplain is shown in Figure 26. After the tie point selection to fix photo misalignments, color points were added to smooth out visual inconsistencies along the seam lines where photos overlap. The Sibalom 2floodplain attained a total of 1,029.47 sq. kms. in orthophotograph coverage comprised of 5,709 images. A zoomed-in version of sample orthophotographs named in reference to its tile number is shown in Figure 27.

Figure 26. The Sibalom 2Floodplain with the available orthophotographs.

Figure 27. Sample orthophotograph tiles for the Sibalom 2Floodplain

3.8 DEM Editing and Hydro-Correction

Nine (9) mission blocks were processed for the Sibalom 2Floodplain Survey. Essentially, these blocks are composed of 'lloilo_Antique' blocks, which arrive at a total area of 1,184.80 sq. kms. As listed in Table 20, the name and corresponding area of each block are measured out in square kilometers.

LiDAR Blocks	Area (sq. km.)
lloilo_Blk43B	136.14
lloilo_Blk43D	211.92
lloilo_Blk43E	340.92
Iloilo_Blk43F	125.29
Iloilo_Antique_Blk43H	98.83
lloilo_Antique_Blk43I	89.92
lloilo_Antique_Blk43G	167.60
Iloilo_Antique_E_Bathy_Surface	5.69
lloilo_reflights_Blk43D	8.49
TOTAL	1,184.80 sq.km

Table 20. LiDAR blocks with its corresponding areas.

Figure 28 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 28a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 28b). Likewise, the paddy field (Figure 28c) was misclassified and removed during the classification process. To complete the surface, the paddy field (Figure 28d) was retrieved and reclassified through manual editing to allow the correct water flow. Also, the mountain (Figure 28e) was misclassified and removed during classification process and was retrieved to complete the surface (Figure 28f).

Figure 28. Portions in the DTM of Sibalom 2floodplain – bridge before (a) and after (b) manual editing; road before (c) and after (d) data retrieval; mountain before (e) and after (f) data retrieval.

3.9 Mosaicking of Blocks

Iloilo_Blk43B was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Correspondingly, Table 21 shows the shifts in values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Tanao Floodplain is shown in Figure 29. It can be seen that the entire Sibalom 2floodplain is 99.83% covered by LiDAR data.

Mission Blocks	Shift Values (meters)			
	X	У	z	
lloilo_Blk43B	0.00	0.00	-1.29	
Iloilo_Blk43D	0.00	0.00	-1.23	
lloilo_Blk43E	0.00	0.00	-1.38	
lloilo_Blk43F	1.00	0.00	-1.85	
Iloilo_Antique_Blk43H	-1.00	0.00	-0.34	
Iloilo_Antique_Blk43I	-0.68	0.22	-0.38	
Iloilo_Antique_Blk43G	-1.00	0.00	4.91	
Iloilo_Antique_E_Bathy_Surface	0.00	0.00	7.60	
Iloilo_reflights_Blk43D	-1.00	0.00	-0.63	

Table 21. Shift values of each LiDAR block of Sibalom 2Floodplain.

Figure 29. Map of processed LiDAR data for the Sibalom 2Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Sibalom 2 to collect points with which the LiDAR dataset is validated is shown in Figure 30. A total of 7511 points were gathered for all the floodplains within the Province of Antique wherein the Sibalom 2 is located. However, the point dataset was not used for the calibration of the LiDAR data for Sibalom 2 because during the mosaicking process, each LiDAR block was referred to the calibrated Jalaur DEM. Therefore, the mosaicked DEM of Sibalom 2 can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Jalaur LiDAR DTM and ground survey elevation values is shown in Figure 31. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.71 meters with a standard deviation of 0.17 meters. Calibration of Jalaur LiDAR data was done by subtracting the height difference value, 1.71 meters, to Jalaur mosaicked LiDAR data. Table 22 shows the statistical values of the compared elevation values between Jalaur LiDAR data and calibration data. These values were also applicable to the Sibalom 2 DEM.

Figure 30. Map of Sibalom 2Flood Plain with validation survey points in green.

Figure 31. The correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)
Height Difference	1.71
Standard Deviation	0.17
Average	-1.70
Minimum	-2.13
Maximum	-1.16

Table 22. Calibration statistical measures

A total of 949 survey points that are within the Sibalom 2flood plain were used for the validation of the calibrated Sibalom 2DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 32. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.09 meters with a standard deviation of 0.08 meters, as shown in Table 23.

Figure 32. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.09
Standard Deviation	0.08
Average	0.04
Minimum	-0.17
Maximum	0.04

Table 23 Statistical	measures for the	Sibalom 2River	Basin DTM v	alidation
Table 25. Statistical	incasures for the			anuation.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Sibalom 2with 487 bathymetric survey points. However, due to elevation properties of the LiDAR Digital Terrain Model (DTM) of Sibalom 2River which was found to be shallow, bathymetric data burning was not implemented. The LiDAR DTM data served as the source of information for the elevation of Sibalom 2river. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Sibalom 2is shown in Figure 33.

Figure 33. Map of Sibalom 2Flood Plain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Sibalom 2floodplain, including its 200-m buffer, has a total area of 144.55 sq km. For this area, a total of 5.0 sq. km., corresponding to a total of 1,416 building features, were considered for QC. Figure 34 shows the QC blocks for the Sibalom 2floodplain.

Figure 34. Blocks (in blue) of Sibalom 2building features that were subjected to QC.

Quality checking of Sibalom 2building features resulted in the ratings shown in Table 24.

Table 24. Quality	v checking ratings	for Sibalom 2buil	ding features
-------------------	--------------------	-------------------	---------------

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Sibalom2	99.65	99.29	95.06	PASSED

3.12.2 Height Extraction

Height extraction was done for 22,670 building features in the Sibalom 2floodplain. Of these building features, 1,373 was filtered out after height extraction, resulting to 21,297 building features with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 13.58 meters.

3.12.3 Feature Attribution

The feature attribution survey was conducted through a participatory community-based mapping in coordination with the Local Government Units of the Municipality/City. The research associates of Phil-Li-DAR 1 team visited local barangay units and interviewed local key personnel and officials who possessed expert knowledge of their local environments to identify and map out features.

Maps were displayed on a laptop and were presented to the interviewees for identification. The displayed map include the orthophotographs, Digital Surface Models, existing landmarks, and extracted feature shapefiles. Physical surveys of the barangay were also done by the Phil-LiDAR 1 team every after interview for validation. The number of days by which the survey was conducted was dependent on the number of features and number of barangays included in the flood plain of the river basin.

Table 25 summarizes the number of building features per type. On the other hand, Table 26 shows the total length of each road type, while Table 27 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	20,073
School	456
Market	38
Agricultural/Agro-Industrial Facilities	56
Medical Institutions	35
Barangay Hall	63
Military Institution	0
Sports Center/Gymnasium/Covered Court	41
Telecommunication Facilities	1
Transport Terminal	0
Warehouse	22
Power Plant/Substation	13
NGO/CSO Offices	6
Police Station	5
Water Supply/Sewerage	8
Religious Institutions	181
Bank	2
Factory	0
Gas Station	12
Fire Station	1
Other Government Offices	66
Other Commercial Establishments	179
Others	39
Total	21, 297

Table 25. Building	features extracted for	r Sibalom	2floodplain.
0			L

Table 26. Total length of extracted roads for Sibalom 2floodplain.

	Road Network Length (km)					
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Sibalom2	103.85	0.00	5.71	48.15	8.81	166.52

Table 27. Number of extracted water bodies for Sibalom 2floodplain.

	Water Body Type					
Floodplain	Rivers/	Lakes/			Fish	Total
	Streams	Ponds	Sea	Dam	Pen	
Sibalom2	17	0	0	0	17	17

A total of 5 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 35 shows the completed Digital Surface Model (DSM) of the Sibalom 2Floodplain, with all its ground features.

Figure 35. Extracted features of the Sibalom 2Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SIBALOM 2RIVER BASIN

Louie P. Balicanta, Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Dexter T. Lozano, Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, Rodel C. Alberto, Marck Lorenz R. Taguse, and Mary Cibyl J. Atacador

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

DVBC conducted field survey in Sibalom River on September 25 – October 9, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point; cross-section, bridge as-built of Bugo Bridge and Tipuluan Bridge piers; ground validation data acquisition of about 82.264 km for the whole province of Antique; and bathymetric survey from Brgy. Magdalena, Municipality of San Remigio, Antique down to Brgy. Bari, Municipality of Sibalom, Antique with an estimated length of 24.48 km using GNSS PPK survey technique.

Figure 36. Extent of the bathymetric survey (in blue line) in Sibalom 2River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used in Sibalom River Survey is composed of a single loop established on September 26, 2014 occupying the following reference points: ATQ-20, a second-order GCP, located in Brgy. Zaragoza, Municipality of Bugasong, Antique; and AQ-72, a first-order BM, located in Brgy. Delima, Municipality of Belison, Antique.

A control point was established on the approach of Tipuluan Bridge, namely: TPN-1, in Brgy. Pasong, Brgy. Sibalom, Antique, to use as marker during the survey.

Table 28 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 37 shows the GNSS network established in the Sibalom 2River Survey.

Figure 37. The GNSS Network established in the Sibalom 2River Survey.

			Geot	graphic Coordinates (WG	S 84)	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
ATQ-20	2nd	11°00'38.44240" N	122°02'59.27039" E	66.094	1	2009
AQ-72	1st	1	1	61.541	5.5842	2007
TPN-1	-	1	I	-	I	September 26, 2014

Table 28. References used and control points established in the Sibalom 2River Survey (Source: NAMRIA, UP-TCAGP).

Figure 38 to Figure 40 depict the setup of the GNSS on recovered reference points and established control points in the Sibalom 2River.

Figure 38. GNSS base receiver setup, Trimble® SPS 852 at ATQ-20 in Brgy. Zaragoza, Municipality of Bugasong, Antique.

Figure 39. Benchmark, AQ-72, with Trimble® SPS 852 in Brgy. Delima, Municipality of Belison, Antique

Figure 40. UP-TCAGP established control point, TPN-1, with Trimble® SPS 882 on Tipuluan Bridge in Brgy. Pasong, Municipality of Sibalom, Antique.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 29 presents the baseline processing results of control points in the Sibalom 2River Basin, as generated by the TBC software.

Table 29. The Baseline processing report for the Sibalom 2River GNSS static observation survey.

) t]
ΔHeigh (Meter	-4.554	22.496	27.074
Ellipsoid Dist. (Meter)	19743.041	24723.786	10438.795
Geodetic Az.	208°43'33"	184°45′37″	134°32'57"
V. Prec. (Meter)	0.022	0.021	0.014
H. Prec. (Meter)	0.007	0.006	0.005
Solution Type	Fixed	Fixed	Fixed
Date of Observation	09-26-2014	09-26-2014	09-26-2014
Observation	ATQ-20 AQ-72 (B4775)	ATQ-20 TPN-1 (B4775)	AQ-72 TPN-1 (B4776)

As shown in Table 29, a total of three (3) baselines were processed with the coordinates of ATQ-20 and AQ-72 held fixed, it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

<20cm and where:

x is the Easting Error,

y is the Northing Error, and

z is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 30 to Table 32.

The control point in which the coordinates were fixed during the network adjustment is shown in Table 30. Through this reference point, the coordinates of the unknown control points were computed. A difference in elevation of 0.9288 m between geoid (EGM2008) and MSL values of the reference point AQ-72 was applied for referring the elevation of the control points to MSL.

Table 30. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)
ATQ-20	Global	Fixed	Fixed	Fixed	
Fixed = 0.000001(Me- ter)					

Likewise, the list of adjusted grid coordinates (i.e. Northing, Easting, Elevation, and computed standard errors of the control points in the network) is indicated in Table 31. All fixed control points have no values for grid and elevation errors.

Table 31. Adjusted grid coordinates for the control points used in the Sibalom 2River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
AQ-72	386654.679	0.063	1200045.589	0.033	6.513	0.256	
		AT	Q-20				
396195.506							
?						2	LLb
1217324.5 63						. i	LLII
?							
	10.798						
TPN-1	394067.041	0.058	1192699.1 27	0.031	33.065	0.259	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

The results of the computation for accuracy are as follows:

a. AQ-72

horizontal accuracy = $\sqrt{(6.3)^2 + (3.3)^2}$

 $= \sqrt{39.69 + 10.89}$

= 7.11 cm < 20 cm

b. TPN-1

horizontal accuracy = $V((5.8)^2 + (3.1)^2)$

= v(33.64 + 9.61)

= 6.58 cm < 20 cm

Following the given formula, the horizontal and vertical accuracy result of the two occupied control points are within the required precision

Table 32. Adjusted geodetic coordinates for control points used in the Sibalom	2River	Flood
Plain validation.		

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
AQ-72	N10°51′14.92748″	E121°57′46.85471″	61.541	0.256	
ATQ-20	N11°00'38.44240"	E122°02'59.27039"	66.094	?	LLh
TPN-1	N10°47′16.56550″	E122°01′51.73167″	88.644	0.259	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 32. Based on the results of the computation, the equation is satisfied; hence, the required accuracy for the program was met. As seen in Table 33, the computed coordinates of the reference and control points utilized in the Sibalom 2River GNSS Static Survey.

Table 33. The reference and control points utilized in the Sibalom 2River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)

		Geographic Coc	ordinates (WGS 84)		UTM ZON	E 51 N	
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
ATQ-20	2 nd Order GCP	11°00'38.44240"	122°02'59.27039"	66.094	1217324.563	396195.506	9.8692
AQ-72	1 st Order BM	10°51′14.92748″	121°57'46.85471"	61.541	1200045.589	386654.679	5.5842
TPN-1	UP Estab- lished	10°47′16.56550″	122°01'51.73167"	88.644	1192699.127	394067.041	32.1362

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The cross-section and as-built survey were conducted on September 26, 2016 on the upstream side of Tipuluan Bridge in Brgy. Tipuluan, Municipality of Sibalom2, and downstream side of Bugo Bridge in Municipality of San Remegio; using GNSS receiver, Trimble® SPS 882, in PPK survey technique (Figure 41).

Figure 41. (A)Cross section survey and (B)As-built survey in Tipuluan Bridge, Municipality of Sibalom2.

The cross-sectional line of Tinupulan Bridge is about 240 meters with one hundred sixty-two (162) cross-sectional points; while the Bugo Bridge is about 505 m with one hundred twenty-three (123) cross-sectional points. The cross-section diagrams, the location maps, and the accomplished bridge data forms are shown in Figure 42 to Figure 45.

Figure 42. Location map of Tipuluan Bridge cross section

Figure 44. Tipuluan Bridge cross-section diagram.

Figure 43. Location map of Bugo bridge cross section

Figure 45. Bugo Bridge cross-section diagram.

Bridge Approach (Please start your measurement from the left side of the bank facing upstr
--

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	38.0472	BA3	280.8278	38.7412
BA2	23.4425	38.8152	BA4	300.8396	38.2122

Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information:

		Station (Distance from BA1)	Elevation
A	b1	n/a	n/a
A	b2	n/a	n/a

Pier (Please start your measurement from the left side of the bank facing upstream)

Shape:	Number of Piers:	Height of co	f column footing:	
	Station (Distance from BA1)	Elevation	Pier Width	
Pier 1	38.2156	38.9252	n/a	
Pier 2	53.1053	38.9282	n/a	
Pier 3	68.0259	38.8522	n/a	
Pier 4	82.9987	38.8622	n/a	
Pier 5	97.9220	38.8462	n/a	
Pier 6	113.0293	38.8132	n/a	
Pier 7	128.0455	38.8002	n/a	
Pier 8	142.9736	38.8112	n/a	

Pier 9	158.0288	38.7892	n/a
Pier 10	172.9185	38.8442	n/a
Pier 11	187.9039	38.7782	n/a
Pier 12	202.8502	38.8382	n/a
Pier 13	217.7706	38.8262	n/a
Pier 14	232.7856	38.7652	n/a
Pier 15	247.7471	38.8302	n/a
Pier 16	262.8069	38.8182	n/a
Pier 17	277.7965	38.7412	n/a

NOTE: Use the center of the pier as reference to its station

Figure 46. The Tipuluan Bridge as-built survey data.

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	86.813	BA3	489.881	81.7732
BA2	116.031	77.8442	BA4	504.5387677	83.015

Abutment	Is the abutment sloping?	Voc	No	If yes, fill in the following information:	
Abutment:	is the abutment sloping:	res	NO;	If yes, fill in the following information:	

	Station (Distance from BA1)	Elevation
Ab1	n/a	n/a
Δh2	n/a	n/a

Pier (Please start your measurement from the left side of the bank facing upstream)

Shape:	<u>rectangul</u>	ar
--------	------------------	----

Number of Piers: <u>6</u> Height of column footing:

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	87.36552	85.029	n/a
Pier 2	147.3857	79.069	n/a
Pier 3	209.3047	80.55	n/a
Pier 4	339.2011	79.049	n/a
Pier 5	394.218	80.001	n/a
Pier 6	451.2956	81.009	n/a

NOTE: Use the center of the pier as reference to its station

Figure 47. The Bugo Bridge as-built survey data.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on October 3, 5, and 6, 2014, using a survey grade GNSS rover receiver, Trimble[®] SPS 882 mounted on a pole which was attached in front of the vehicle. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced as shown in Figure 48.

Figure 48. (A) Trimble™ SPS 882 attached to a vehicle and (B) Setting up of GNSS base station at ATQ-20

The survey acquired 9,787 ground validation points with an approximate length of 82.264 km as shown in Figure 49.

Figure 49. The extent of the LiDAR ground validation survey along Antique

4.7 River Bathymetric Survey

The bathymetric survey line has an estimated length of 24.48 km with a total of 630 points gathered using ATQ-20 and TPN-1 as GNSS base stations. The processed data was generated into map using GIS software and processed further using CAD for plotting the riverbed. The generated map, shown in Figure 51, exhibits the bathymetry survey coverage, while Figure 52 and Figure 53 illustrate the Sibalom 2riverbed profile. There was an abrupt change in elevation of about 20m within the 20 km. The highest elevation was 66.86 m in MSL in Brgy. Madalena, while the lowest elevation was -0.77 m below MSL in Brgy. San Pedro.

A manual bathymetric survey was executed on October 4, 5, and 8, 2014 using Trimble[®] SPS 882 in GNS PPK survey technique as shown in Figure 50. The survey began in the upstream part of the river in Brgy. Magdalena, Municipality of San Remigio, with coordinates 10°52′01.78720″ 122°06′22.16921″, traversed downstream by foot and ended at the mouth of the river in Brgy. San Pedro, Municipality of San Jose, Antique with coordinates 10°48′34.06230″ 121°57′02.63833″

Figure 50. The setup for the manual Bathymetric Survey in Sibalom 2River

Figure 51. The extent of the Sibalom 2River Bathymetry Survey

Figure 52. Sibalom Riverbed Profile from Brgy.Magdalena, Municipality of San Remigio down to Brgy. District IV, Municipality of Sibalom

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd, Marvin Arias

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Sibalom 2River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Sibalom 2River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the UP Cebu Flood Modeling Component (FMC) team. The ARG was installed Bugo Bridge, San Remegio, Antique. The precipitation data collection started from November 25, 2016 at 4:00 AM at 6:20 PM with a recording interval of 10 minutes.

The total precipitation for this event in Bugo Bridge ARG was 223 mm with a peak rainfall of 17 mm. on November 25, 2016 at 9:20 in the morning. The lag time between the peak rainfall and discharge is 1 hour and 30 minutes.

Figure 54. The location map of Sibalom 2HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section at Bugo Bridge, San Remegio, Antique (10°52'29.59"N, 122° 7'29.20"E). It gives the relationship between the observed water levels at Bogo Bridge and outflow of the watershed at this location.

For Bugo Bridge, the rating curve is expressed as $Q = 7E-09e^{0..3182x}$ as shown in Figure 56.

Figure 55. Cross-Section plot of Bugo Bridge.

Figure 56. The rating curve at Bugo Bridge, San Remegio, Antique.

This rating curve equation was used to compute the river outflow at Bugo Bridge for the calibration of the HEC-HMS model shown in Figure 57. The total rainfall for this event is 223mm and the peak discharge is 14090.2 m³ at 10:50 AM, November 25, 2016.

Figure 57. Rainfall and outflow data of the Sibalom 2River Basin, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Iloilo Rain Gauge (Table 34). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 59). This station was selected based on its proximity to the Sibalom 2watershed (Figure 58). The extreme values for this watershed were computed based on a 59-year record.

		COMPUTE	EXTREME VI	ALUES (in I	nm) OF PF	RECIPITATIC	NO		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
ß	28.7	39.4	48	59.4	74.9	06	114.7	131.7	165.2
10	33.9	45.6	55.6	68.1	85	103.6	133.6	155.4	198.9
25	40.5	53.5	65.3	79.2	97.6	120.8	157.6	185.3	241.5
50	45.4	59.4	72.4	87.3	107	133.5	175.3	207.4	273.1
100	50.3	65.2	79.5	95.4	116.4	146.2	193	229.4	304.5

Table 34. RIDF values for the Iloilo Rain Gauge, as computed by PAGASA

Figure 58. The location of the Iloilo RIDF station relative to the Sibalom 2River Basin.

Figure 59. Synthetic storm generated for a 24-hour period rainfall for various return periods.

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management. The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil, land cover, and slope map of the Sibalom 2River Basin are shown in Figure 60 and Figure 61, respectively.

Figure 60. Soil map of the Sibalom 2River Basin.

Figure 61. Land Cover Map of Sibalom 2River Basin.

For Sibalom2, two soil classes were identified. These are clay and undifferentiated soil. Moreover, four land cover classes were identified. These are open and closed forest, shubland, and forest plantation.

Figure 62. Slope Map of the Sibalom 2River Basin

Using the SAR-based DEM, the Sibalom 2basin was delineated and further subdivided into subbasins. The model consists of 21 sub basins, 10 reaches, and 10 junctions as shown in Figure 63. The main outlet is at Bugo Bridge.

Figure 63. The Sibalom 2river basin model generated using HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 64).

Figure 64. River cross-section of the Sibalom 2River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 65. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 39.55225 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m²/s. The generated hazard maps for Sibalom 2are in Figure 69, 71, and 73.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 82,261,728 m². The generated flood depth maps for Sibalom 2are in Figure 70, 72, and 74.

There is a total of 18,419,757.72 m³ of water entering the model. Of this amount, 10,725,727.85 m³ is due to rainfall while 7,694,029.87 m³ is inflow from other areas outside the model 3,960,626.75 m³ of this water is lost to infiltration and interception, while 12,447,417.07 m³ is stored by the flood plain. The rest, amounting up to 2,011,714.06 m³, is outflow.

5.6 Results of HMS Calibration

After calibrating the Sibalom 2HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 66 shows the comparison between the two discharge data.

Figure 66. Outflow Hydrograph of Sibalom 2produced by the HEC-HMS model compared with observed outflow.

Table 35 shows adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Cali- brated Values
			Initial Abstraction (mm)	0.03-0.195
	LUSS		Curve Number	82.1-99
2000 2000	Trancform		Time of Concentration (hr)	0.016-0.19
DISDO			Storage Coefficient (hr)	0.016-0.29
	Dacaflour		Recession Constant	0.02
	MOILASPA		Ratio to Peak	0.2
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0075

Table 35. Range of calibrated values for the Sibalom 2River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.03 mm to 0.195 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 82.1-99 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Sibalom2, the basin mostly consists of closed and open forests, shurblands, and forest plantations, and the soil consists of clay, and undifferentiated soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.016 hours to 0.29 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.02 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.2 indicates a smoother receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.0075 for the Sibalom 2river basin is lower than thei usual Manning's n value in the Philippines (Brunner, 2010).

Accuracy measure	Value
RMSE	1.5
r ²	0.9163
NSE	0.84
PBIAS	0.40
RSR	1.85

Table 36. Summary of the Efficiency Test of the Sibalom 2HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.5 (m3/s).

The Pearson correlation coefficient (r^2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9163. The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.84.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.40.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 1.85.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 67) shows the Sibalom 2outflow using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 165.2m³ in a 5-year return period to 304.5m³ for a 100-year return period.

Figure 67. The Outflow hydrograph at the Simbalon2 Station generated using Iloilo RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Sibalom 2discharge using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 37.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m ³ /s)	Time to Peak
5-Year	165.2	28.7	7465.2	20 minutes
10-Year	198.9	33.9	8800.6	10 minutes
25-Year	241.5	40.5	10762.4	10 minutes
50-Year	273.1	45.4	12281.4	10 minutes
100-Year	304.5	50.3	13721.9	10 minutes

Table 37. The peak values of the Sibalom 2HEC-HMS Model outflow using the Romblon RIDF.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 68 shows a generated sample map of the Sibalom 2River using the calibrated HMS base flow.

Figure 68. The sample output map of the Sibalom 2RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 15 to Figure 20 shows the 5-, 25-, and 100-year rain return scenarios of the Sibalom 2floodplain. The floodplain, with an area of 183.06 sq.km., covers five municipalities namely, Belison, Patnongon, San Jose, San Remigio, and Sibalom. Table 38 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
Belison	29.81	35.22	118.15%
Patnongon	133.22	2.016	1.51%
San Jose	44.71	34.16	76.42%
San Remigio	394.42	19.14	4.85%
Sibalom	234.52	92.21	39.32%

Table 38. Municipalities affected in Sibalom 2floodplain

83

Figure 73. 5-year Flood Hazard Map for Sibalom 2Floodplain overlaid on Google Earth imagery.

87

5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Sibalom 2River Basin, grouped accordingly by municipality. For the said basin, five (5) municipalities consisting of ninety-six (96) barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 89.12% of the municipality of Belison with an area of 29.81 sq. km. will experience flood levels of less 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters while 7.46%, 7.12%, 3.98%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Table 39 depicts the areas affected in Sibalom 2in square kilometers by flood depth per barangay. ANNEX 12 and ANNEX 13 show the educational and health institutions exposed to flooding, respectively.

	eriod
	Keturn I
Ξ	
	ರ
<u>ر</u>	-
	F.
•	1
	3
6	× 1
	ے
	ੱ ਤਾਂ
	٤ċ
h	ž.
۲	`
	ò
	a)
	ы
	Ľ
	Ξ.
	Ľ.
	コ
-	; ; ;
	~
	U
	5
	Ы.
,	·ن
	7
	4
	<u>_</u>
	F.
	0
	õ
•	Ĥ.
-	~
,	~
F	4
	~
	2
	22
	2
	2
	4
-	7
	2
	Ц.
	$\overline{\mathbf{O}}$
	a)
ç	Ĕ.
<u> </u>	-
۲	
(2
	5
	J
	_
5	5
-	g
,	abl
-	I abl

			Affected Bara	ngays in Belis	uo		
	Sibalom 2BASIN	Borocboroc	Buenavista	Concepcio	n Delima	Ipil	Maradiona
	0.03-0.20	0.71	18.71	0.29	1.01	0.57	0.65
رده (.	0.21-0.50	0.36	1.11	0.13	0.51	0.23	0.19
my A ba	0.51-1.00	0.29	0.76	0.11	0.32	0.18	0.099
·ps)	1.01-2.00	0.083	0.46	0.18	0.14	0.25	0.18
ĤΑ	2.01-5.00	0.0024	0.68	0.31	0.013	0.18	0.0078
	> 5.00	0	0.15	0.0019	0	0	0.000051
		Mojon	Poblacion	Rombang	Salvacion	Sinaja	
	0.03-0.20	0.9	0.95	0.17	0.0098	0.29	
геа/ (.	0.21-0.50	0.27	0.25	0.02	0.028	0.097	
a ba Ma	0.51-1.00	0.22	0.25	0.054	0.089	0.19	
·ps)	1.01-2.00	0.22	0.4	0.092	0.41	0.45	
ĤΑ	2.01-5.00	0.22	0.24	0.12	0.11	0.27	
	> 5.00	0.002	0.0006	0	0	0.00069	

Figure 75. Affected Areas in Belison, Antique during 5-Year Rainfall Return Period.

For the municipality of Patnongon, with an area of 133.22 sq. km., 1.33% will experience flood levels of less 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.029%, 0.023%, 0.032%, and 0.023% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Patnongon, Antique during 5-Year Rainfall Return Perio	od.
--	-----

Ciholom		Affect	ed Barangays in P	atnongon
Sibaiom	ZBASIN	Aureliana	Magsaysay	Tobias Fornier
	0.03-0.20	0.49	0.84	0.43
rea (0.21-0.50	0.02	0.06	0.02
km.	0.51-1.00	0.01	0.02	0.01
ecte sq.	1.01-2.00	0.01	0.01	0.01
Affe (2.01-5.00	0.01	0.03	0
	> 5.00	0.01	0.02	0

Figure 76. Affected Areas in Patnongon, Antique during 5-Year Rainfall Return Period.

For the municipality of San Jose, with an area of 44.71 sq. km., 46.12% will experience flood levels of less 0.20 meters. 12.59% of the area will experience flood levels of 0.21 to 0.50 meters while 6.86%, 7.33%, 3.49%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in square kilometers by flood depth per barangay.

C.1-1-					A	ffected Barangay:	s in San Jose				
SIDAIO		Atabay	Badiang	Barangay 2	Bariri	Bugarot	Cansadan	Durog	Funda-Dalipe	Igbonglo	Inabasan
	0.03-0.20	0.88	0.9	0.085	0.023	0.021	0.26	0.0086	1.91	1.23	0.85
) LGg	0.21-0.50	0.38	0.31	0.053	0.02	0.17	0.14	0.023	0.87	1.01	0.32
A b: .my	0.51-1.00	0.17	0.086	0.0016	0	0.38	0.12	0.21	0.15	0.3	0.12
.ps	1.01-2.00	0.088	0	0	0	0.49	0.24	1.78	0.016	0.13	0.37
) ЭНА Э	2.01-5.00	0.018	0	0	0	0.25	0.85	1.4	0.0011	0.0026	0.29
	> 5.00	0	0	0	0	0.0003	0.054	0.00077	0	0	0
		Madrang- ca	Magcalon	Mojon	Pantao	San Fernando	San Pedro	Supa			
	0.03-0.20	0.77	1.89	1.21	0.97	1.28	2.47	0.76			
) LGB	0.21-0.50	0.28	0.66	0.35	0.098	0.77	0.59	1			
A b: .my	0.51-1.00	0.044	0.22	0.15	0.11	0.15	0.4	0.75			
ecte sq.	1.01-2.00	0.0003	0.064	0.05	0.02	0.015	0.36	0.78			
))	2.01-5.00	0	0.0034	0.002	0.24	0.00045	0.36	0.31			
	> 5.00	0	0	0	0.057	0	0.0068	0.0017			
		0	0	0	0.057	0	0.0068	0.0017			

;
0
eri
Р
E1
Ę
Re
ıfa
air
2
ar
Ye
Ń
50
ц
h
e
nb
Iti
Ar
ر. ک
OS
Γ
Sal
ц Д
si
ea
Ar
g
Ste
fec
Af
Γ.
4
ble
[a]
1 '

Figure 77. Affected Areas in San Jose, Antique during 5-Year Rainfall Return Period.

For the municipality of San Remigio, with an area of 394.42 sq. km., 3.68% will experience flood levels of less 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters while 0.19%, 0.27%, 0.46%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometers by flood depth per barangay.

Cibala		Affected Barangays in San Remigio				
Sibalo	I ZBASIN	Barangbang	Cadolonan	Carawisan I	Carawisan II	
	0.03-0.20	0.75	1.06	6.39	1.83	
rea (0.21-0.50	0.12	0.19	0.24	0.07	
d A	0.51-1.00	0.15	0.079	0.12	0.053	
sq. l	1.01-2.00	0.2	0.15	0.11	0.16	
Affe (2.01-5.00	0.66	0.28	0.29	0.87	
	> 5.00	0.2	0.1	0.037	0.25	
		Carmelo I	Carmelo II	General Luna	Ramon Magsaysay	
	0.03-0.20	1.66	1.34	0.022	0.87	
rea	0.21-0.50	0.094	0.09	0.0002	0.1	
d Al	0.51-1.00	0.081	0.073	0.0003	0.069	
sq. l	1.01-2.00	0.099	0.052	0.0001	0.019	
Affe (s	2.01-5.00	0.13	0.035	0	0.013	
	> 5.00	0.013	0.0028	0	0	

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 78. Affected Areas in San Remigio, Antique during 5-Year Rainfall Return Period.

For the municipality of Sibalom, with an area of 234.52 sq. km., 25.08% will experience flood levels of less 0.20 meters. 4.81% of the area will experience flood levels of 0.21 to 0.50 meters while 2.95%, 3.26%, 2.87%, and 0.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometers by flood depth per barangay.

Sibalo	m 2BASIN				-		ngays in sibalom				
		Alangan	bari	biga-A	Bongbongan I	Bongbongan II	pongsoa	PONTOI	Capariuan	Lagolgolan	
	0.03-0.20	0.11	0.4	0.54	1.88	1.32	0.074	0.43	1.55	0.7	
) LG9	0.21-0.50	0.026	0.11	0.19	0.072	0.2	0.022	0.072	0.17	0.097	
A b .my	0.51-1.00	0.079	0.17	0.13	0.038	0.14	0.085	0.018	0.085	0.053	
ecte sd.	1.01-2.00	0.36	0.15	0.026	0.057	0.096	0.52	0.002	0.0089	0.016	
))	2.01-5.00	0.85	0.26	0	0.058	0.044	0.3	0	0.004	0.0068	
	> 5.00	0.017	0.089	0	0.0029	0.0002	0.04	0	0.0003	0	
											-
		Catmon	Catungan I	Catungan II	Catungan III	Catungan IV	Cubay-Napultan	Cubay-Sermon	District I	District II	
	0.03-0.20	0.71	1.73	1.05	1.82	0.67	1.25	0.72	0.66	0.028	
) LG3	0.21-0.50	0.24	0.73	0.61	0.64	0.4	0.3	0.17	0.11	0.0017	
A b M	0.51-1.00	0.14	0.36	0.18	0.2	0.17	0.37	0.073	0.008	0.0038	
ecte .ps	1.01-2.00	0.012	0.12	0.15	0.11	0.12	0.43	0.044	0.04	0.076	
) ЭНА Э	2.01-5.00	0.007	0.0001	0.0074	0.032	0.035	0.049	0.071	0.061	0.31	
	> 5.00	0	0	0	0	0	0	0.0013	0	0.13	
											1
		District IV	Egaña	Esperanza I	Esperanza II	Esperanza III	Igdagmay	Igdalaquit	Iglanot	lgsuming	
	0.03-0.20	0.4	1.19	1.31	0.081	0.53	0.97	2.87	0.58	0.021	
) LGg	0.21-0.50	0.099	0.11	0.31	0.073	0.15	0.2	0.43	0.41	0.00096	
A b ۳.	0.51-1.00	0.06	0.064	0.17	0.22	0.17	0.11	0.17	0.53	0.00065	
ecte .ps	1.01-2.00	0.11	0.054	0.023	0.49	0.18	0.0082	0.058	0.42	0.0003	
₩A)	2.01-5.00	0.39	0.0003	0.00077	0.13	0.14	0.0003	0.012	0.15	0.0001	
	> 5.00	0.32	0	0	0	0.017	0	0	0.017	0	

Table 43. Affected Areas in Sibalom, Antique during 5-Year Rainfall Return Period.

	ng Maasin Mabini Millamena	4 1.97 3.28 3.29	44 0.099 0.16 0.32	21 0.031 0.098 0.18	0.014 0.14 0.1	03 0.0043 0.058 0.041	0 0.0014 0	ao Pasong Pis-Anan Rombang	5 0.94 2.04 0.38	28 0.11 0.5 0.17	36 0.049 0.34 0.074	8 0.068 0.37 0.064	1 0.11 0.34 0.025	99 0 0.0077 0	a	9	8	4	6	39 39	
Sibalom	Luya	0.1	0.00	0.00	00.00	0.00	0	ng Pant	0.4	0.0.	0.0	0.1	0.3	0.00	osa Vill	0.2	0.2	0.3	0.1	0.0	0
arangays in S	Lagdo	1.02	0.03	0.016	0.013	0.011	0.0006	Pangpar	0.32	0.15	0.19	0.38	0.36	0.018	Villaherm	0.94	0.17	0.11	0.33	0.39	0.052
Affected E	Lacaron	1.29	0.42	0.21	0.048	0.015	0	Olaga	0.53	0.12	0.019	0.067	0.21	0.0012	Tigbalua II	0.96	0.064	0.02	0.0097	0.0045	0
	Insarayan	1.58	0.11	0.062	0.024	0.005	0	Odiong	0.64	0.095	0.041	0.024	0.0007	0	Tigbalua I	0.49	0.17	0.059	0.031	0.0027	0
	Initan	0.25	0.011	0.004	0.0062	0.0003	0	Nazareth	1.54	0.3	0.21	0.085	0.029	0.0003	Solong	2.11	0.17	0.23	0.38	0.51	0.0008
	Indag-An	0.77	0.091	0.044	0.019	0.001	0.0001	Nagdayao	1.89	0.15	0.26	0.39	0.21	0	Sido	0.59	0.38	0.14	0.75	0.78	0.084
	Inabasan	0.17	0.052	0.018	0.0004	0	0	Mojon	0.36	0.058	0.079	0.054	0.065	0.0012	San Juan	0.92	0.18	0.11	0.14	0.26	0.0065
		0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00		0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00		0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00
SIBALON		Affected Area (.ms, pz)							Affected Area (.mx) (.mx)							eə.	A b: .my	ecte.	₩A)		

For the 25-year return period, 84.47% of the municipality of Belison with an area of 29.81 sq. km. will experience flood levels of less 0.20 meters. 10.77% of the area will experience flood levels of 0.21 to 0.50 meters while 8.36%, 8.65%, 5.53%, and 0.37% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay.

Figure 79. Affected Areas in Belison, Antique during 25-Year Rainfall Return Period
Table 44. Affected Areas in Beison, Antique during 25Year Rainfall Return Period

			Affected Bara	ngays in Belise	5		
	SIBALOM2 BASIN	Borocboroc	Buenavista	Concepcion	Delima	liql	Maradiona
	0.03-0.20	0.77	19.02	0.34	1.15	0.66	0.71
.) /rea	0.21-0.50	0.37	1.08	0.16	0.49	0.23	0.15
my ≜d A	0.51-1.00	0.25	0.64	0.13	0.24	0.2	0.11
.ps) bs)	1.01-2.00	0.053	0.42	0.19	0.11	0.22	0.15
ĤΑ	2.01-5.00	0.0023	0.6	0.21	0.0023	0.11	0.0037
	> 5.00	0	0.11	0	0	0	0
		Mojon	Poblacion	Rombang	Salvacion	Sinaja	
	0.03-0.20	0.9	1.09	0.19	0.02	0.33	
,rea (.	0.21-0.50	0.27	0.25	0.036	0.034	0.14	
A be my	0.51-1.00	0.22	0.24	0.048	0.18	0.24	
·bs)	1.01-2.00	0.22	0.37	0.1	0.33	0.4	
ĤΑ	2.01-5.00	0.22	0.15	0.078	0.084	0.2	
	> 5.00	0.002	0	0	0	0.0001	

For the municipality of Patnongon, with an area of 133.22 sq. km., 1.29% will experience flood levels of less 0.20 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.025%, 0.036%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

SIRALON		Affect	ed Barangays in P	atnongon
SIDALUIV	IZ DASIN	Aureliana	Magsaysay	Tobias Fornier
	0.03-0.20	0.49	0.8	0.43
rea (0.21-0.50	0.02	0.09	0.02
km.	0.51-1.00	0.01	0.02	0.01
ecte sq.	1.01-2.00	0.01	0.02	0.01
Affe (:	2.01-5.00	0.02	0.03	0
	> 5.00	0.01	0.03	0

Table 45. Affected Areas in Patnongon, Antique during 25-Year Rainfall Return Period

Figure 80. Affected Areas in Patnongon, Antique during 25-Year Rainfall Return Period

For the municipality of San Jose, with an area of 44.71 sq. km., 39.57% will experience flood levels of less 0.20 meters. 14.58% of the area will experience flood levels of 0.21 to 0.50 meters while 7.37%, 9.08%, 5.77%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

ъd.	
eric	
'nP	
stur	
l Re	
nfal	
Raiı	
car]	
j-Y6	
32	
Irin	
e dr	
iqu	
Ant	
se, '	
oſu	
Sai	
s in	
vrea	
kd ∧	
ecte	
Aff	
46.	
ble	
Ta	

					A	ffected Barangay.	s in San Jose				
SIBAL	UIVIZ BASIN	Atabay	Badiang	Barangay 2	Bariri	Bugarot	Cansadan	Durog	Funda-Dalipe	Igbonglo	Inabasan
	0.03-0.20	0.88	0.9	0.085	0.023	0.021	0.26	0.0086	1.91	1.23	0.85
) LGg	0.21-0.50	0.38	0.31	0.053	0.02	0.17	0.14	0.023	0.87	1.01	0.32
km. الاس	0.51-1.00	0.17	0.086	0.0016	0	0.38	0.12	0.21	0.15	0.3	0.12
.ps sq.	1.01-2.00	0.088	0	0	0	0.49	0.24	1.78	0.016	0.13	0.37
) ЭНА Э	2.01-5.00	0.018	0	0	0	0.25	0.85	1.4	0.0011	0.0026	0.29
	> 5.00	0	0	0	0	0.0003	0.054	0.00077	0	0	0
	_		-								
		Madrang- ca	Magcalon	Mojon	Pantao	San Fernando	San Pedro	Supa			
	0.03-0.20	0.77	1.89	1.21	0.97	1.28	2.47	0.76			
) LGg	0.21-0.50	0.28	0.66	0.35	0.098	0.77	0.59	1			
A b: km.	0.51-1.00	0.044	0.22	0.15	0.11	0.15	0.4	0.75			
ecte. sq.	1.01-2.00	0.0003	0.064	0.05	0.02	0.015	0.36	0.78			
) ЭНА	2.01-5.00	0	0.0034	0.002	0.24	0.00045	0.36	0.31			
	> 5.00	0	0	0	0.057	0	0.0068	0.0017			
		0	0	0	0.057	0	0.0068	0.0017			

For the municipality of San Remigio, with an area of 394.42 sq. km., 3.60% will experience flood levels of less 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.26%, 0.54%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

CIDALC			Affected Baran	ngays in San R	emigio
SIBALC	NVIZ DASIN	Barangbang	Cadolonan	Carawisan I	Carawisan II
	0.03-0.20	0.75	1.06	6.39	1.83
rea (0.21-0.50	0.12	0.19	0.24	0.07
km.	0.51-1.00	0.15	0.079	0.12	0.053
ecte sq.	1.01-2.00	0.2	0.15	0.11	0.16
Aff()	2.01-5.00	0.66	0.28	0.29	0.87
	> 5.00	0.2	0.1	0.037	0.25
		Carmelo I	Carmelo II	General Luna	Ramon Magsaysay
	0.03-0.20	1 66	1 34	0.022	0.87

Table 47. Affected Areas in San Remigio, Antique during 25-Year Rainfall Return Period

		Carmelo I	Carmelo II	General Luna	Ramon Magsaysay
	0.03-0.20	1.66	1.34	0.022	0.87
rea)	0.21-0.50	0.094	0.09	0.0002	0.1
d A km.	0.51-1.00	0.081	0.073	0.0003	0.069
ecte sq.	1.01-2.00	0.099	0.052	0.0001	0.019
)	2.01-5.00	0.13	0.035	0	0.013
	> 5.00	0.013	0.0028	0	0

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

For the municipality of Sibalom, with an area of 234.52 sq. km., 25.08% will experience flood levels of less 0.20 meters. 4.81% of the area will experience flood levels of 0.21 to 0.50 meters while 2.95%, 3.26%, 2.87%, and 0.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

Figure 83. Affected Areas in San Remigio, Antique during 5-Year Rainfall Return Period.

		Τ	able 48. Aff	ected Areas	in Sibalom, ∕	Antique durir	ıg 25-Year Rainf	all Return Peric	.pd		
SIBALON	A 2 BASIN					Affected Bai	angays in Sibalor	E			
		Alangan	Bari	Biga-A	Bongbongan I	Bongbongan II	Bongsod	Bontol	Cabariuan	Cadoldolan	Calog
	0.03-0.20	0.024	0.35	0.41	1.85	1.26	0.05	0.4	1.5	0.68	1.06
	0.21-0.50	0.076	0.059	0.23	0.077	0.16	0.021	0.089	0.18	0.095	0.032
Affected	0.51-1.00	0.029	0.13	0.21	0.045	0.17	0.026	0.027	0.11	0.076	0.016
Area (sɑ. km.)	1.01-2.00	0.23	0.22	0.052	0.045	0.13	0.31	0.0027	0.014	0.023	0.012
	2.01-5.00	0.99	0.29	0.0003	0.071	0.067	0.57	0	0.0049	0.008	0.01
	> 5.00	0.093	0.15	0	0.018	0.00092	0.069	0	0.0008	0.0003	0.0017
		Catungan I	Catungan II	Catungan III	Catungan III	Catungan IV	Cubay-Napultan	Cubay-Sermon	District I	District II	District III
	0.03-0.20	0.63	1.51	0.77	1.46	0.42	1.09	0.57	0.56	0.025	3.27
	0.21-0.50	0.23	0.74	0.71	0.85	0.5	0.26	0.19	0.2	0.0011	1.26
Affected	0.51-1.00	0.21	0.53	0.29	0.33	0.28	0.27	0.15	0.014	0.0017	0.11
(so, km.)	1.01-2.00	0.02	0.16	0.2	0.13	0.15	0.53	0.092	0.0042	0.0056	0.042
former sheet	2.01-5.00	0.01	0.0002	0.018	0.042	0.044	0.25	0.073	0.1	0.35	0.000005
	> 5.00	0	0	0	0	0	0	0.013	0	0.16	0
		Egaña	Esperanza l	Esperanza II	Esperanza II	Esperanza III	Igdagmay	Igdalaquit	Iglanot	lgsuming	Ilabas
	0.03-0.20	0.29	1.15	1.24	0.031	0.46	0.92	2.73	0.43	0.021	1.12
	0.21-0.50	0.095	0.13	0.31	0.046	0.14	0.2	0.46	0.29	0.00096	0.18
Affected	0.51-1.00	0.097	0.068	0.21	0.093	0.17	0.15	0.25	0.56	0.00065	0.12
(sn km)	1.01-2.00	0.097	0.07	0.059	0.4	0.12	0.013	0.089	0.53	0.0005	0.077
······			0.0016	L 100 0	11	100		1,000		10000	

0.033 0

0.0001 0

0.017 0

0.0005 0

0.41

0.0017

0.0016 0

0.35 0.44

2.01-5.00 > 5.00

0.025 0.27

0

0

0.034 0.26

SIBALON	1 2 BASIN					Affected	Barangays in Sibal	om	-		
		Inabasan	Indag-An	Initan	Insarayan	Lacaron	Lagdo	Luyang	Maasin	Mabini	Millamena
	0.03-0.20	0.16	0.74	0.24	1.55	1.13	1.01	0.14	1.94	3.2	3.18
	0.21-0.50	0.057	0.11	0.015	0.12	0.45	0.037	0.0045	0.12	0.19	0.35
Affected	0.51-1.00	0.026	0.05	0.0055	0.075	0.31	0.016	0.0032	0.041	0.11	0.21
Area (sa. km.)	1.01-2.00	0.0003	0.026	0.0066	0.028	0.069	0.015	0.00095	0.017	0.14	0.12
	2.01-5.00	0.0001	0.0015	0.0006	0.0083	0.019	0.014	0.00039	0.0056	0.088	0.059
	> 5.00	0	0.0001	0	0.0001	0	0.0011	0	0	0.0027	0
		Mojon	Nagdayao	Nazareth	Odiong	Olaga	Pangpang	Pantao	Pasong	Pis-Anan	Rombang
	0.03-0.20	0.25	1.81	1.42	0.6	0.13	0.11	0.43	0.91	1.82	0.29
	0.21-0.50	0.1	0.17	0.34	0.12	0.33	0.12	0.027	0.11	0.48	0.11
Affected	0.51-1.00	0.089	0.18	0.27	0.052	0.19	0.23	0.024	0.066	0.36	0.096
area (sa. km.)	1.01-2.00	0.087	0.43	0.1	0.03	0.024	0.48	0.12	0.046	0.45	0.15
	2.01-5.00	0.085	0.31	0.033	0.0015	0.26	0.41	0.38	0.14	0.48	0.067
	> 5.00	0.0025	0	0.0004	0	0.0059	0.061	0.026	0.0037	0.012	0
		San Juan	Sido	Solong	Tigbalua I	Tigbalua II	Villahermosa	Villar			
	0.03-0.20	0.82	0.41	2.05	0.43	0.94	0.86	0.18			
Affected	0.21-0.50	0.11	0.32	0.15	0.2	0.084	0.2	0.16			
Area	0.51-1.00	0.18	0.29	0.14	0.077	0.023	0.12	0.39			
(sq. km.)	1.01-2.00	0.16	0.53	0.39	0.044	0.013	0.23	0.29			
	2.01-5.00	0.33	1.04	0.66	0.0034	0.0055	0.49	0.071			

For the 100-year return period, 81.38% of the municipality of Belison with an area of 29.81 sq. km. will experience flood levels of less 0.20 meters. 10.77% of the area will experience flood levels of 0.21 to 0.50 meters while 8.63%, 9.57%, 7.27%, and 0.53% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay.

Figure 84. Affected Areas in Belison, Antique during 100-Year Rainfall Return Period

Table 49 . Affected Areas in Beison, Antique during 100Year Rainfall Return Period

			Affected Bara	ngays in Belis	uo		
	SIBALOM2 BASIN	Borocboroc	Buenavista	Concepcior	Delima	iq	Maradiona
	0.03-0.20	0.71	18.71	0.29	1.01	0.57	0.65
,) (.	0.21-0.50	0.36	1.11	0.13	0.51	0.23	0.19
A be Ma	0.51-1.00	0.29	0.76	0.11	0.32	0.18	0.099
.ps) ecte	1.01-2.00	0.083	0.46	0.18	0.14	0.25	0.18
ĤΑ	2.01-5.00	0.0024	0.68	0.31	0.013	0.18	0.0078
	> 5.00	0	0.15	0.0019	0	0	0.000051
		Mojon	Poblacion	Rombang	Salvacion	Sinaja	
	0.03-0.20	0.9	0.95	0.17	0.0098	0.29	
ردوم (.	0.21-0.50	0.27	0.25	0.02	0.028	0.097	
my ≜be	0.51-1.00	0.22	0.25	0.054	0.089	0.19	
·bs)	1.01-2.00	0.22	0.4	0.092	0.41	0.45	
ĤΑ	2.01-5.00	0.22	0.24	0.12	0.11	0.27	
	> 5.00	0.002	0.0006	0	0	0.00069	

For the municipality of Patnongon, with an area of 133.22 sq. km., 1.25% will experience flood levels of less 0.20 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.024%, 0.04%, and 0.05% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

		Affect	ed Barangays in P	atnongon
SIBALUIV	IZ BASIN	Aureliana	Magsaysay	Tobias Fornier
	0.03-0.20	0.48	0.76	0.43
) ,	0.21-0.50	0.017	0.11	0.022
km.	0.51-1.00	0.01	0.026	0.014
ecte sq.	1.01-2.00	0.0084	0.015	0.0086
Aff(2.01-5.00	0.017	0.036	0.0031
	> 5.00	0.02	0.046	0

Table 50. Affected Areas in Patnongon, Antique during 100-Year Rainfall Return Period

Figure 85. Affected Areas in Patnongon, Antique during 100-Year Rainfall Return Period

For the municipality of San Jose, with an area of 44.71 sq. km., 34.71% will experience flood levels of less 0.20 meters. 15.76% of the area will experience flood levels of 0.21 to 0.50 meters while 7.53%, 9.86%, 8.37%, and 0.27% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

SIBALC	OM2 BASIN				A	ffected Barangay	s in San Jose		L		
		Атарау	badiang	barangay z	Bariri	bugarot	Cansadan	Durog		Funda-Dalipe	Funda-Dalipe Igbonglo
	0.03-0.20	0.88	0.9	0.085	0.023	0.021	0.26	0.0086		1.91	1.91 1.23
) LGg	0.21-0.50	0.38	0.31	0.053	0.02	0.17	0.14	0.023		0.87	0.87 1.01
A b .my	0.51-1.00	0.17	0.086	0.0016	0	0.38	0.12	0.21		0.15	0.15 0.3
ecte. sd.	1.01-2.00	0.088	0	0	0	0.49	0.24	1.78		0.016	0.016 0.13
о П А)	2.01-5.00	0.018	0	0	0	0.25	0.85	1.4	0.	0011	0011 0.0026
	> 5.00	0	0	0	0	0.0003	0.054	0.00077		0	0
											-
		Madrang- ca	Magcalon	Mojon	Pantao	San Fernando	San Pedro	Supa			
	0.03-0.20	0.77	1.89	1.21	0.97	1.28	2.47	0.76			
) LG9	0.21-0.50	0.28	0.66	0.35	0.098	0.77	0.59	1			
A b .my	0.51-1.00	0.044	0.22	0.15	0.11	0.15	0.4	0.75			
ecte .ps	1.01-2.00	0.0003	0.064	0.05	0.02	0.015	0.36	0.78			
) ЭНА)	2.01-5.00	0	0.0034	0.002	0.24	0.00045	0.36	0.31			
	> 5.00	0	0	0	0.057	0	0.0068	0.0017			
		0	0	0	0.057	0	0.0068	0.0017			

.pc
eric
n P.
tur
Rei
fall
ainl
r R
l ea
V-0
g lC
rin
du
due
nti
č, A
Jose
an
n S
as i
Are
sd /
ecti
Aff
51.
ble
Tal

Figure 86. Affected Areas in San Jose, Antique during 100-Year Rainfall Return Period

For the municipality of San Remigio, with an area of 394.42 sq. km., 3.53% will experience flood levels of less 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.20%, 0.58%, and 0.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

CIDALON					
SIBALON	AZ BASIN	Barangbang	Cadolonan	Carawisan I	Carawisan II
	0.03-0.20	0.75	1.06	6.39	1.83
Affected	0.21-0.50	0.12	0.19	0.24	0.07
(sq. km.)	0.51-1.00	0.15	0.079	0.12	0.053
	1.01-2.00	0.2	0.15	0.11	0.16
	2.01-5.00	0.66	0.28	0.29	0.87
	> 5.00	0.2	0.1	0.037	0.25
		Carmelo I	Carmelo II	General Luna	Ramon Magsaysay
0.03-0.20		1.66	1.34	0.022	0.87
0.21-0.50		0.094	0.09	0.0002	0.1
0.51-1.00		0.081	0.073	0.0003	0.069
Affected	1.01-2.00	0.099	0.052	0.0001	0.019
Area	2.01-5.00	0.13	0.035	0	0.013
(sq. km.)	> 5.00	0.013	0.0028	0	0

Table 52. Affected Areas in San Remigio, Antique during 100-Year Rainfall Return Period.

For the municipality of Sibalom, with an area of 234.52 sq. km., 20.79% will experience flood levels of less 0.20 meters. 5.04% of the area will experience flood levels of 0.21 to 0.50 meters while 4.06%, 3.57%, 4.98%, and 0.90% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table are the affected areas in square kilometres by flood depth per barangay

Period	
Return	
Rainfall	
00-Year	
during l(
Antique	
Sibalom,	
Areas in 9	
Affected .	
Table 53.	

SIBALON	1 2 BASIN					Affected Bar	angays in Sibalon	L			
		Alangan	Bari	Biga-A	Bongbongan I	Bongbongan II	Bongsod	Bontol	Cabariuan	Cadoldolan	Calog
	0.03-0.20	0.0026	0.3	0.051	1.83	1.23	0.031	0.39	1.47	0.65	1.05
	0.21-0.50	0.013	0.056	0.052	0.081	0.14	0.014	0.096	0.19	0.088	0.038
Affected	0.51-1.00	0.092	0.053	0.46	0.051	0.16	0.028	0.031	0.13	0.097	0.017
(sa. km.)	1.01-2.00	0.07	0.27	0.31	0.034	0.15	0.092	0.0047	0.02	0.031	0.013
	2.01-5.00	1.06	0.33	0.024	0.078	0.11	0.76	0	0.0057	0.0089	0.012
	> 5.00	0.2	0.18	0	0.038	0.0024	0.11	0	0.0011	0.0007	0.0021
		Catungan I	Catungan II	Catungan III	Catungan III	Catungan IV	Cubay-Napultan	Cubay-Sermon	District I	District II	District III
	0.03-0.20	0.57	1.35	0.59	1.09	0.28	0.95	0.52	0.48	0.023	2.79
	0.21-0.50	0.22	0.71	0.71	1.05	0.44	0.32	0.14	0.23	0.00092	1.67
Affected	0.51-1.00	0.27	0.66	0.4	0.46	0.42	0.18	0.15	0.048	0.0014	0.17
(so, km.)	1.01-2.00	0.046	0.22	0.24	0.16	0.2	0.35	0.17	0.015	0.0032	0.06
	2.01-5.00	0.012	0.0004	0.037	0.052	0.054	0.61	0.082	0.1	0.28	0.000029
	> 5.00	0	0	0	0	0	0	0.022	0.00056	0.24	0
		Egaña	Esperanza I	Esperanza II	Esperanza II	Esperanza III	Igdagmay	Igdalaquit	Iglanot	Igsuming	Ilabas
	0.03-0.20	0.23	1.11	1.19	0.0042	0.42	0.88	2.64	0.27	0.021	1.03
	0.21-0.50	0.082	0.15	0.27	0.013	0.13	0.2	0.43	0.26	0.00066	0.24
Affected	0.51-1.00	0.089	0.07	0.26	0.08	0.16	0.19	0.34	0.51	0.00085	0.071
(sa. km.)	1.01-2.00	0.13	0.084	0.085	0.21	0.13	0.022	0.11	0.62	0.0007	0.14
	2.01-5.00	0.34	0.0063	0.0037	0.68	0.3	0.0007	0.024	0.39	0.0001	0.048
	> 5.00	0.5	0	0.0001	0.00086	0.048	0	0.0001	0.053	0	0

SIBALON	1 2 BASIN					Affected	Barangays in Sibal	mo			
		Inabasan	Indag-An	Initan	Insarayan	Lacaron	Lagdo	Luyang	Maasin	Mabini	Millamena
	0.03-0.20	0.15	0.71	0.24	1.53	0.98	1	0.14	1.91	3.15	3.1
	0.21-0.50	0.06	0.13	0.02	0.13	0.15	0.04	0.0043	0.13	0.21	0.38
Affected	0.51-1.00	0.033	0.057	0.0061	0.088	0.36	0.019	0.0037	0.046	0.12	0.23
Area (sg. km.)	1.01-2.00	0.0003	0.031	0.0068	0.031	0.39	0.016	0.0011	0.02	0.13	0.15
	2.01-5.00	0.0001	0.0018	0.0012	0.011	0.095	0.016	0.00029	0.0073	0.12	0.076
	> 5.00	0	0.0001	0	0.0001	0	0.0014	0.0001	0	0.0032	0
		Mojon	Nagdayao	Nazareth	Odiong	Olaga	Pangpang	Pantao	Pasong	Pis-Anan	Rombang
	0.03-0.20	0.18	1.72	1.31	0.55	0.012	0.059	0.42	0.9	1.65	0.22
	0.21-0.50	0.028	0.21	0.36	0.15	0.044	0.048	0.028	0.095	0.52	0.058
Affected	0.51-1.00	0.11	0.15	0.33	0.06	0.55	0.14	0.02	0.088	0.32	0.1
(sa. km.)	1.01-2.00	0.16	0.43	0.12	0.035	0.059	0.48	0.067	0.024	0.48	0.18
	2.01-5.00	0.13	0.39	0.042	0.0025	0.25	0.56	0.4	0.16	0.61	0.14
	> 5.00	0.004	0	0.0004	0	0.021	0.13	0.071	0.012	0.019	0
		San Juan	Sido	Solong	Tigbalua I	Tigbalua II	Villahermosa	Villar			
	0.03-0.20	0.78	0.35	2.01	0.39	0.92	0.79	0.12			
Affected	0.21-0.50	0.074	0.19	0.15	0.21	0.093	0.22	0.067			
Area	0.51-1.00	0.098	0.3	0.12	0.1	0.029	0.14	0.26			
(sq. km.)	1.01-2.00	0.25	0.35	0.25	0.052	0.015	0.1	0.55			
	2.01-5.00	0.38	1.34	0.83	0.0037	0.0063	0.6	0.098			

Figure 88. Affected Areas in Sibalom, Antique during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Belison, Buenavista is projected to have the highest percentage of area that will experience flood levels at 73.37%. Meanwhile, Borocboroc posted the second highest percentage of area that may be affected by flood depths at 4.84%.

Among the barangays in the municipality of Patnongon, Magsaysay is projected to have the highest percentage of area that will experience flood levels at 0.74%. Meanwhile, Aureliana posted the second highest percentage of area that may be affected by flood depths at 0.41%.

Among the barangays in the municipality of San Jose, San Pedro is projected to have the highest percentage of area that will experience flood levels at 9.36%. Meanwhile, Supa posted the second highest percentage of area that may be affected by flood depths at 8.02%.

(m)

-5.00

-2.00

-1.00

-0.50

n

Among the barangays in the municipality of San Remigio, Carawisan I is projected to have the highest percentage of area that will experience flood levels at 1.82%. Meanwhile, Barangbang posted the second highest percentage of area that may be affected by flood depths at 0.53%.

Among the barangays in the municipality of Sibalom, District III is projected to have the highest percentage of area that will experience flood levels at 2.002%. Meanwhile, Millamena posted the second highest percentage of area that may be affected by flood depths at 1.68%.

Moreover, the generated flood hazard maps for the Dalanas Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area	Covered in	sq. km.
Level	5 year	25 year	100 year
Low	21.70	23.95	23.71
Medium	21.44	23.73	25.47
High	18.74	.74 24.84 31.1	
TOTAL	61.88	72.52	80.36

Table 54. Areas covered by each warning level with respect to the rainfall scenario.

Of the one hundred (100) identified Education Institutions in the Sibalom 2 Flood plain, 13 schools were assessed to be exposed to the low level flooding during a 5 year scenario, 9 schools were assessed to be exposed to medium level flooding, while 1 school was assessed to be exposed to high level flooding in the same scenario. In the 25 year scenario, 20 schools were assessed to be exposed to the low level flooding scenario, 10 schools were assessed to be exposed to medium level flooding, while 2 schools were assessed to be exposed to high level flooding in the same scenario. In the 100 year scenario, 20 schools were assessed to be exposed to the low level flooding scenario, 15 schools were assessed to be exposed to medium level flooding, while 5 schools were assessed to be exposed to high level flooding in the same scenario. See Appendix D for a detailed enumeration of schools in the Sibalom 2 floodplain. Twenty-nine (29) Medical Institutions were identified in the Sibalom 2 Floodplain. In the 5 year scenario, 4 were assessed to be exposed to the low level flooding scenario, while 1 was assessed to be exposed to medium level flooding. In the 25 year scenario, 6 were assessed to be exposed to the low level flooding scenario, 4 were assessed to be exposed to medium level flooding, while 1 was assessed to be exposed to high level flooding in the same scenario. In the 100 year scenario, 5 were assessed to be exposed to the low level flooding scenario, 6 were assessed to be exposed to medium level flooding, while 1 was assessed to be exposed to high level flooding in the same scenario. See Appendix E for a detailed enumeration of hospitals and clinics in the Sibalom 2 floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, performing validation survey work was needed. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interviewing some residents with knowledge of or have experienced flooding in a particular area.

After which, the actual data from the field was compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 87.

The flood validation consists of 180 points randomly selected all over the Sibalom2 flood plain (Figure 86). Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.99m. Table 50 shows a contingency matrix of the comparison. The validation points are found in ANNEX 11.

The validation pointe were obtained on February 8, 2017.

Figure 89. The Validation Points for a 5-year Flood Depth Map of the Sibalom2 Floodplain

Figure 89. Flood map depth versus actual flood depth.

				Modeleo	d Flood Depth	n (m)		
SI	BALOM2	0.21- 0.50	0.51-1.00	1.01-2.00	2.01-5.00		> 5.00	Total
Ê	0-0.20	44	10	8	7	0	0	69
ţ)	0.21-0.50	2	2	4	3	2	0	13
Dep	0.51-1.00	3	6	4	5	1	0	19
po	1.01-2.00	6	5	5	5	12	0	33
Нo	2.01-5.00	10	0	2	4	9	3	28
tual	> 5.00	2	0	0	1	1	14	18
Ac	Total	67	23	23	25	25	17	180

On the whole, the overall accuracy generated by the flood model is estimated at 43.33%, with 78 points correctly matching the actual flood depths. In addition, there were 121 points estimated one level above and below the correct flood depths while there were 150 points and 21 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 55 points were overestimated while a total of 47 points were underestimated in the modelled flood depths of Sibalom2. Table 51 depicts the summary of the Accuracy

Assessment in the Sibalom2 River Basin Flood Depth Map.

Table 56. Summary of the Accuracy Assessment in the Sibalom2 River Basin Survey.

	No. of Points	%
Correct	78	43.33
Overestimated	55	30.56
Underestimated	47	26.11
Total	180	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Sibalom 2Floodplain Survey 1. GEMINI SENSOR

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galile- o/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

2. PEGASUS SENSOR

Parameter	Specification	
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal	
Laser wavelength	1064 nm	
Horizontal accuracy (2)	1/5,500 x altitude, 1Ó	
Elevation accuracy (2)	< 5-20 cm, 1Ó	
Effective laser repetition rate	Programmable, 100-500 kHz	
Position and orientation system	POS AV ™AP50 (OEM)	
Scan width (FOV)	Programmable, 0-75 °	
Scan frequency (5)	Programmable, 0-140 Hz (effective)	
Sensor scan product	800 maximum	
Beam divergence	0.25 mrad (1/e)	
Roll compensation	Programmable, ±37° (FOV dependent)	
Vertical target separation distance	<0.7 m	
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns	
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)	
Image capture	5 MP interline camera (standard); 60 MP full frame (op- tional)	
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (op- tional)	
Data storage	Removable solid state disk SSD (SATA II)	
Power requirements	28 V, 800 W, 30 A	
Dimonsions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;	
	Control rack: 650 x 590 x 490 mm; 46 kg	

3. AQUARIUS SENSOR

Control Rack

Camera

Digitizer

Camera Controller Tablet

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33 <i>,</i> 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (op- tional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (op- tional)
Dimensione and weight	Sensor:250 x 430 x 320 mm; 30 kg;
Dimensions and weight	Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

ANNEX 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey 1. ATQ-18

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ANTIQUE					
	Station Name: ATQ-18					
	Order: 2nd					
Island: VISAYAS Municipality: BARBAZA	Barangay: CUBAY MSL Elevation: PRS92 Coordinates					
Latitude: 11º 11' 58.67081"	Longitude: 122° 2' 22.83300"	Ellipsoidal Hgt:	10.90200 m.			
	WGS84 Coordinates					
Latitude: 11º 11' 54.16068"	Longitude: 122° 2' 28.01549"	Ellipsoidal Hgt:	65.96100 m.			
PTM / PRS92 Coordinates						
Northing: 1238579.674 m.	Easting: 395119.157 m.	Zone: 4				
Northina: 1,238,146,15	UTM / PRS92 Coordinates Easting: 395.155.87	Zone: 51				
		201101 01				

Location Description

ATQ-18 From San Jose, travel N to the Mun. of Barbaza. Then from the town proper, proceed to Brgy. Cubay. Station is located on the NE approach of Binangbang Bridge, about 600 m. NE of Barbaza Town Hall, 4 m. from the road centerline, 50 m. SE of Barbaza Multi-Purpose Coop./Natco Network and 25 m. SE of a funeral service outlet. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ATQ-18 2007 NAMEIA"

Requesting Party: PHIL-LIDAR 1 Purpose: Reference OR Number: 80777541 T.N.: 2015-0504

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 5

NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

2. ATQ-20

Republic of the Philippings Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

November 14, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ANTIQUE		
	Station Name: ATQ-20		
	Order: 2nd		
Island: VISAYAS Municipality: BUGASONG	Barangay: ZARAGOZA MSL Elevation:		
	PRS92 Coordinates		
Latitude: 11º 0' 42.90484"	Longitude: 122º 2' 54.07144"	Ellipsoidal Hgt	10.56200 m
	WGS84 Coordinates		
.atitude: 11º 0' 38.44240"	Longitude: 122° 2' 59.27039"	Ellipsoidal Hgt	66.09400 m
	PTM / PRS92 Coordinates		
Northing: 1217812.272 m.	Easting: 396000.488 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 1,217,386.02	Easting: 396,036.89	Zone: 51	

Location Description

ATQ-20 From San Jose, travel N for about 45 km. to Brgy. Zaragoza, Mun. of Bugasong. Station is located on the left side of the first approach of Cangaranan Bridge. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ATQ-20 2007 NAMRIA".

Requesting Party: Phil Lidar 1 Purpose: OR Number: T.N.:

Reference FREE ISSUE 2016-2057

RUEL DM. BELEN, MNSA ctor, Mapping And Geodesy Branch Die 6

AMRIA OFFICES: Main : Lawton Avenue, Port Bonilacio, 1634 Taguig Clip, Philippines Tel. No.: (932) 815-4821 to 47 Bunch : 421 Baneon Br. San Noclas, 1316 Marda, Philippines, Tal. No. (822) 241-3494 to 48 www.namria.gov.ph

3. ATQ-22

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ANTIQUE		
	Station Name: ATQ-22		
	Order: 2nd		
Island: VISAYAS Municipality: BELISON	Barangay: CONCEPCION MSL Elevation:		
	PRS92 Coordinates		
Latitude: 10º 49' 46.66618"	Longitude: 121° 58' 11.90221"	Ellipsoidal Hgt:	12.25000 m.
	WGS84 Coordinates		
Latitude: 10º 49' 42.24271"	Longitude: 121º 58' 17.11770"	Ellipsoidal Hgt:	68.02200 m.
	PTM / PRS92 Coordinates		
Northing: 1197676.056 m.	Easting: 387365.279 m.	Zone: 4	
	UTM / PRS92 Coordinates		
Northing: 1,197,256.85	Easting: 387,404.70	Zone: 51	

Location Description

ATQ-22

From San Jose, travel N to Belison for about 20 km. Station is located on top of the N edge of the NW draft on an irrigation canal, 60 m. NE to the nat'l. highway centerline, 120 m. N of the road going to the brgy. proper and about 300 m. E of Km. Post No. 110. Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "ATQ-22 2007 NAMRIA".

 Requesting Party:
 PHIL-LIDAR 1

 Purpose:
 Reference

 OR Number:
 8077754 I

 T.N.:
 2015-0503

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Baraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3484 to 98 www.namria.gov.ph

4. ILO-1

						April 10, 2
		CER	TIFICATION			
To whom it	may concern:					
This is t	o certify that according	to the records on	file in this office, the requ	lested surve	y inform	ation is as follo
		Provin	ce: ILOILO			
		Station	Name: ILO-1			
Island: V	ISAYAS	Order	: 1st	Baranga		47
Municipal	ity: ILOILO CITY	DDS	2 Constitution	Durungu	. LA I	~~
Latitude:	10° 42' 40.74251"	Longitude:	1220 33' 49 29202"	Ellinesid		
20.00	10 12 10111201	Longitude.	122" 33 48.38302"	Ellipsoid	al Hgt:	28.93600 m
Lotitudor	400 401 00 400000	WGS	84 Coordinates			
Latitude:	10° 42' 36.40006"	Longitude:	122° 33' 53.60515"	Ellipsoid	al Hgt:	86.45300 m
		PTN	Coordinates			
Northing:	1184434.202 m.	Easting:	452244.945 m.	Zone:	4	
Northing:	1,184,019.63	UTM Easting:	Coordinates 452,261.66	Zone:	51	
3.03.51 574		Locati	on Description			
From Iloilo C op of St. Cle op of a 0.15 with 0.30 cm nark numbe edge. ecomputed 3	apitol Bldg., travel W t mente Church bell tov m. x 0.01 m. dia. bras . x 0.30 cm. cement p. rs 1, 3 and 4 are 0.05 3/19/2014	towards Jaro for 2.2 ver which is across as rod drilled on cen atty, 0.01 m. above m. dia. holes on top	t km. along Luna St. in L Western Institute of Teo ter top of concrete floor surface and inscribed or o of ledge, reference nur	a Paz, Iloilo. chnology. Sta of St. Cleme n top with sta nber 2 is 0.01	The sta tion ma nte Chu ition nar 7 m. dia	ition is located rk; cross cut of irch bell tower ne. Reference . hole on top o
From Iloilo C op of St. Cle op of a 0.15 vith 0.30 cm nark numbe edge. ecomputed 3	apitol Bidg., travel W t mente Church bell tow m. x 0.01 m. dia. bras x 0.30 cm. cement p. rs 1, 3 and 4 are 0.05 3/19/2014	towards Jaro for 2.2 ver which is across is rod drilled on cen atty, 0.01 m. above m. dia. holes on top	km. along Luna St. in L Western Institute of Tec ter top of concrete floor surface and inscribed or o of ledge, reference nur	a Paz, Iloilo. chnology. Sta of St. Cleme n top with sta nber 2 is 0.0	The sta tion ma nte Chu tion nar 7 m. dia	ition is located rk; cross cut o irch bell tower ne. Reference . hole on top o
From Iloito C op of St. Cle op of a 0.15 vith 0.30 cm hark numbe adge. ecomputed : equesting F upose: IR Number: .N.	apitol Bidg., travel W t mente Church bell tow m. x 0.01 m. dia. bras x 0.30 cm. cement p. rs 1, 3 and 4 are 0.05 3/19/2014 Party: UP-DREAM Reference 8795949 A 2014-834	towards Jaro for 2.2 ver which is across is rod drilled on cen atty, 0.01 m. above m. dia. holes on top	t km. along Luna St. in L Western Institute of Teo ter top of concrete floor surface and inscribed on o of ledge, reference nur	a Paz, Iloilo. hnology. Sta of St. Cleme n top with sta nber 2 is 0.01	The sta tion ma nte Chu ition nar 7 m. dia	ition is located rk; cross cut o rch bell tower ne. Reference . hole on top o
From Iloilo C op of St. Cle op of a 0.15 with 0.30 cm nark numbe adge. ecomputed : equesting F upose: IR Number: .N.:	apitol Bidg., travel W t mente Church bell tov m. x 0.01 m. dia. bras x 0.30 cm. cement p. rs 1, 3 and 4 are 0.05 3/19/2014 Party: UP-DREAM Reference 8795949 A 2014-834	towards Jaro for 2.2 ver which is across is rod drilled on cen atty, 0.01 m. above m. dia. holes on top	t km. along Luna St. in L Western Institute of Tec ter top of concrete floor surface and inscribed on o of ledge, reference nur o of ledge, reference nur RL Director,	a Paz, Iloilo. hnology. Sta of St. Cleme nbor 2 is 0.07 JEF DM. BEI Mapping And	The sta tion ma nte Chu tion nar 7 m. dia 2 m. dia	NSA Sy Branch

5. ILO-85

6. ILO-86

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

April 10, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Provi	nce: ILOILO			
	Station	Name: ILO-86			
	Orde	r: 2nd			
Island: VISAYAS Municipality: IGBARAS			Baranga	y: BAR	ANGAY 3 POBLA
1	PRS	92 Coordinates			
Latitude: 10º 43' 4.36044"	Longitude:	122º 15' 48.62123"	Ellipsoid	al Hgt:	47.31500 m.
	WGS	84 Coordinates			
Latitude: 10º 42' 59.99043"	Longitude:	122° 15' 53.84473"	Ellipsoid	al Hgt:	104.07600 m.
	PT	M Coordinates			
Northing: 1185222.285 m.	Easting:	419435.758 m.	Zone:	4	
	UT	M Coordinates			
Northing: 1,184,807.44	Easting:	419,463.96	Zone:	51	

Location Description

ILO-86 From Iloilo City, travel W to the Mun. of Igbaras. Then proceed directly to the Town Plaza, where the station is located. Station is located about 12 m. from the circular fountain at the center of the said plaza.

Mark is the head of a 4 in. copper nail set flushed on top of a 30 cm. x 30 cm. concrete monument protruding 20 cm. above the ground, with inscriptions "ILO-86 2007 NAMRIA".

Requesting Party: Pupose: OR Number: T.N.:

UP-DREAM Reference 8795949 A 2014-837

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 9

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Baranch : 421 Baraca St. San Nicolas, 1010 Manils, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

7. IL-533

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 02, 2015

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ILOILO Station Name: IL-533	
Island: PANAY	Municipality: SAN JOAQUIN	Barangay: AMBOYU-AN
Elevation: 8.0971 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude: 10° 32' 45.00000"	Longitude: 122° 4' 42.48000"	

Location Description

BM IL-533

Station is located at the sidewalk of Ambuyuan bridge 0.30m. from thr edge. Mark is the head of a 4in. copper nail set flush on a cement putty with inscriptions " IL-533, 2007, NAMRIA."

Requesting Party: PHIL-LIDAR 1 Purpose: Reference OR Number: 8077754 | T.N.: 2015-0505

RVEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

www.namria.gov.ph

ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. AQ-10

Vector Components (Mark to Mark)

From:	ATQ-20	ATQ-20						
Grid			Local	Giobal				
Easting	396036.890 m	Lattu	ude N	11°00'42.90484"	Latitude		N11°00'38.44240"	
Northing	1217386.017 m	Long	Itude E1	22°02'54.07144"	Longitude		E122°02'59.27039"	
Elevation	10.798 m	Helgi	ht	10.563 m	Height		66.094 m	
To:	AQ-							
	Grid		Local	Local		Giobal		
Easting	396235.105 m	Lattu	ude N	11°01'03.59755"	Latitude		N11°00'59.13382"	
Northing	1218020.995 m	Long	Itude E1	22°03'00.53639"	Longitude		E122°03'05.73482"	
Elevation	11.276 m	Helg	ht	11.054 m	Height		66.576 m	
Vector								
∆Easting	198.21	5 m	NS Fwd Azimuth		17°09'16"	ΔX	-102.123 m	
∆Northing	634.97	'8 m	Ellipsoid Dist.		665.374 m	ΔY	-206.684 m	
∆Elevation	0.47	/8 m /	ΔHeight		0.491 m	ΔZ	624.160 m	

Standard Errors

Vector errors:									
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.001 m				
σ ΔNorthing	0.000 m	σ Ellipsold Dist.	0.000 m	σΔΥ	0.001 m				
σ ΔElevation	0.001 m	σΔHeight	0.001 m	σΔΖ	0.000 m				

Aposteriori Covariance Matrix (Meter^a)

	x	Y	Z
x	0.000003727		
Y	-0.000004068	0.0000012949	
Z	-0.0000001072	0.000002886	0.000002405

Baseline Processing Report

Processing Summary									
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)	
IIAP-01 ILO-85 (B1)	ILO-85	IIAP-01	Fixed	0.005	0.021	53°20'16"	35787.597	21.428	
IIAP-01 ILO-85 (B2)	ILO-85	IIAP-01	Fixed	0.004	0.019	53°20'16"	35787.597	21.398	

Acceptance Summary

Processed	Passed	Flag	P	Fail	•
2	2	0		0	

Vector Components (Mark to Mark)

From:	ILO-85	ILO-85						
Grid			Local		Global			
Easting	416256.319 m	Latitude	N10°38'33.11352"	Latitude		N10°38'28.75996"		
Northing	1176484.099 m	Longitude	E122°14'03.70561"	Longitude		E122°14'08.93597"		
Elevation	22.539 m	Height	21.962 m	Height		78.828 m		
To:	IIAP-01							
	Grid	Local		Global		ilobal		
Easting	445007.365 m	Latitude	N10°50'08.21923"	Latitude		N10°50'03.83971"		
Northing	1197773.997 m	Longitude	E122°29'48.82359"	" Longitude		E122°29'54.03518"		
Elevation	42.806 m	Height	43.390 m	m Height		100.449 m		
Vector								
∆Easting	28751.04	6 m NS Fwd Azir	muth	53°20'16"	ΔX	-22136.041 m		
ΔNorthing	21289.89	8 m Ellipsoid Dis	it.	35787.597 m	ΔY	-18716.081 m		
∆Elevation	20.26	8 m ∆Height		21.428 m	ΔZ	20987.226 m		

Standard Errors

Vector errors:								
σ ΔEasting	0.002 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.006 m			
σ ΔNorthing	0.002 m	σ Ellipsoid Dist.	0.002 m	σΔΥ	0.009 m			
σ ΔElevation	0.011 m	σΔHeight	0.011 m	σ ΔΖ	0.003 m			

ANNEX 4. The LiDAR Survey Team Composition

Data Acquisition								
Component	Designation	Name	Agency/Affiliation					
Sub-team								
Data Acquisition	Data Component							
Component Leader	Program Leader	ENRICO C. PARINGIT	UP-ICAGP					
Data Acquisition	Data Component	ENGR. CZAR JAKIRI S. SARMIENTO						
Component Leader	Project Leader -I	ENGR. LOUIE P. BALICANTA	UP-ICAGP					
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP TCAGP					
	Conjor Cojongo	ENGR. LOVELYN ASUNCION						
LiDAR Operation	Senior Science	ENGR. GEROME HIPOLITO	UP TCAGP					
	Research Specialist	ENGR. IRO NIEL ROXAS						
		PAULINE JOANNE ARCEO						
		VERLINA TONGA						
	Research Associate	REGINA FELISMINO	UP TCAGP					
LiDAR Operation		MARY CATHERINE ELIZABETH BALIGUAS						
		RENAN PUNTO						
	Research Associate	Research Associate MA. REMEDIOS VILLANUEVA						
		KRISTINE ANDAYA						
		JERIEL PAUL ALAMBAN						
Consumed Community	Research Associate	KENNETH QUISADO	UP TCAGP					
Ground Survey		IRO NIEL ROXAS						
		SANDRA POBLETE						
		RENAN PUNTO						
Data Download and Transfer	Senior Science Re- search Specialist	VERLINA TONGA	UP TCAGP					
industre i		MA. REMEDIOS VILLANUEVA						
		SSG. LEE JAY PUNZALAN	PILIPPINE AIR					
LIDAR Operation	Airborne Security	SSG. DAVE GUMBAN	FORCE (PAF)					
		CAPT. JACKSON JAVIER						
LiDAR Operation	Pilot	CAPT. JEFFREY ALAJAR	CORPORATION					
		CAPT. BRYAN						
		CAPT. NEIL ACHILLES AGAWIN						
LiDAR Operation	Co-Pilot	CAPT. ALBERT LIM	AAC					
		CAPT. HOYA						

ANNEX 5. Data Transfer Sheet for Sibalom 2Floodplain

LiDAR Surveys and Flood Mapping of Sibalom 2 River

	JERVER	ZICHORAW	ZICINCIANN	Z:ONCRAM	ZIGNORAW	Z DACHAW	ZIONCRAW	ZIDNORWIN DATA	2 CAUPAN	Z-BACHRAN	ZIDNCISAW	ZIEMCIEMII DATA							
NO 14	KUL	TI I	2	W	2	ž	2	1	1	2	:	2							
PI ICHN	Actual	26	91/44	1677/21	96/70	11108	1.NGB/ITT	11102002	3	116	8	101/76							
	foor road	KB	ŋ	KB.	BX	82	æ	KIR .	KB	8	9	Ð							
1 1280	tes to					2		n 11	8	1 1	-			SIS					
NAME STATE	Unoversity	941 5-01	12.2	20.2	20.2	MI3 EIN	7.48 JIN	15.7 110	9.75	11 116	31. 611	17.7		123/2					
	ALS NOT			2							2	2		619					
	10	4		R	R.	N		6	5	2	-	5		PRI-					
	00 IS	4	e.	24		a	21.	13	8	16	~	8		Sass S					
	AND STORY	35/26	122	245	121	314	1011	133	ENE	218	274	266	*	3.1					
	RAW BUDGECA	30.6	26.4	515	14	5	19.0	5.72	49.64	12	6.75	22	Received b	Nerve Poskon Signature					
	2	195	223	102	545	363	190	417	101	213	152	122							
	(BMISDOT	6.05	10.4	40.0	6.35	683	305	178	9.47	7.62	609	305							
	(average)	440	121	1,35	240	121	1.02	41.1	1.62	1.01	671	1.27							
A 100 K	NH SVIS	20	5	900	5	16.	17	22	683	114	00	13							
	non not													1 L					
	3	neated	runeEnsi	reatest	num Crist	teletin	reated	nsetas V	netes	restord V	testaan	risofad		gab					
	THEY NO 525	1BLKM3D045A	154K43M047B	15UK43N/N043A	1848350435	15UK43EF0494	1BUK43ED0498	1BLK43EFD060V	1BLK371050B	1BLK438DG051	18UK43N052A	19U/G7IPV053A	included from	arre C.J.					
	NOTE NO. N	25650	2579P	25610	25832	25859	25879	16852	25910	2593P	22979	26019	α	2 G W					
	AIC N	14-feb-15	16-feb-15	17-feb-15	17-Feb-15	18-feb-15	18-Feb-15	19-feb-15	29-Feb-15	20-6eb-15	21-feb-15	22-feb-15							

	SERVER	Z'IDACIRAW DATA	Z'IDACIRAW DATA	Z:UDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:UDACIRAW DATA	Z'IDACIRAW DATA	Z'IDACIRAW DATA	Z:IDACIRAW DATA	Z:IDACIRAW DATA	Z:UDACIRAW DATA	Z'UDACIRAW DATA	DATA	Z:\DAC\RAW DATA	
IAN	KML	17	18	NA	13	18	21	NA	NA	NA	NA	NA	NA	NA	NA	
FLIGHT	Actual	12	12	NA	89	80	13	101/76	196	160	21/107	172	185/188	238/154	231/210	
	OPLOG)		8	8	8	8	8	8	8	В	B	8	8	B	9	
N(S)	ase info (.txt)	1K	3 1K	3 1K	1K	1K	3 1K	3 1K	1K	8 1K	a 1k	14	14	11	4	
BASE STATIC	BASE B	9.49 1KE	9.26 1KE	8.94 1KE	22.7 1KE	22.7 1KE	20.1 1KE	16.6 1KE	18.7 1KB	15.6 1KI	10.7 1KI	10.7 1KI	22.7 1KI	22.7 1KI	20.1 1K	a state
	ST/	NA	1.65	53.5	NA	50.4	Jat									
	NGE DIG	.95	2.6	.95	5.2	50.	2.5	10	4.5	7.3	8.3	603	8.3	7.8	6'2	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ICASI RA	5	2	5 2	200	1 1 0 0	200	34	57 3	14 2	37 1	8 68	64 1	4	05	Carl
	W FILE	4	5	88	6 1	2 1	.5	.6	4	4	8 2	94	.8 2	5	5	and by
/3/2014(Iloilo	S IMAGE	8.	8	3 21	14	5 23	4 27	1 17	0 55	5 46	32	4 9.	3	5 7	2 15	Recei
-	(B)	16	201	11	171	20	23	15	26	3 24	24	11	1 26	2 23	2 20	1955 - 19 - 19 - 19 - 19 - 19 - 19 - 19
	(l)	402	932	190	532	770	894	6.14	12.3	12.8	9.81	4.93	10.	9.6	5.9	
00110	KML (swa	278	739	100	298	468	581	652	2.14	1.93	1.15	510	66	1.16	505	
	Output LAS	NA	NA	NA	NA	NA	NA	1.94	7.28	3.11	1.82	858	2.74	NA	582	
	SENSOR	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	GEMINI	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	PEGASUS	II
	MISSION NAME	2BLK43B056A	2BLK43BV057A	2BLK43BV058A	28LK37FV064A	2BLK43OS064B	2BLK43OS065A	1BLK37IFV056A	1BLK370P057A	1BLK37P058A	1BLK43N0062A	1BLK37M062B	1BLK37Q064A	1BLK37MQ064B	1BLK37Q065A	Received from Name C - J POS J Poston Segnature
	FLIGHT NO.	2602G	2606G	2610G	2634G	2636G	2638G	2613P	2617P	2621P	2637P	2639P	2645P	2647P	2649P	
	ATE	25-Feb-15	26-Feb-15	27-Feb-15	5-Mar-15	5-Mar-15	6-Mar-15	25-Feb-15	26-Feb-15	27-Feb-15	3-Mar-15	3-Mar-15	5-Mar-15	S-Mar-15	6-Mar-15	
, Z:\DAC\RAW DATA Z:\DAC\RAW DATA Z:IDACIRAW DATA Z:\DAC\RAW DATA SERVER Z:\DAC\RAW DATA Z:\DAC\RAW DATA Z:\DAC\RAW DATA KML NA NA NA 20 NA NA NA FLIGHT PLAN Actual 99 16 23 6 9 5 00 OPERATOR LOGS (OPLOG) 1KB 1KB 1KB 1KB 1KB 1KB 1KB BASE STATION(S) BASE STATION(S) Base info (.txt) 1KB 1KB 1KB 1KB 1KB 1KB 1KB KBugy 11/22/16 7.1.7 208 104 134 127 127 208 Name AC Bonjert Position SSRS Jert DIGITIZER AN NA NA NA NA NA NA Received by RANGE 3.35 5.11 4.91 13.2 2.7 8.18 5.27 MISSION LOG FILE/CASI LOGS NA NA NA NA NA NA NA DATA TRANSFER SHEET ILOILO 11/14/2016 RAW NA NA NA NA NA NA NA 142 189 POS 160 217 244 206 204 LOGS 642 337 127 273 686 311 664 R runs Output LAS KML (swath 156 198 105 116 92 316 41 R Received from RAW LAS NA NA AN NA NA NA NA Vame AQUA CASI SENSOR 98B 38LK43KJ2 99A 38LK43D3 90A 00A 38LK43G3 00A 00A 00B 3BLK43K3 01A 3BLK37C2 97A 3BLK37A2 98A 3BLK37B2 MISSION 8511AC 8514AC 8513AC 8515AC FLIGHT NO. 8507AC 8509AC 8510AC October 27, 2016 October 24, 2016 October 24, 2016 October 25, 2016 October 26, 2016 October 23, 2016 October 26, 2016 DATE

ANNEX 6. Flight logs for the flight missions 1. Flight Log for 2532G Mission

)		
6 Aircraft Identification: 9,02 18 Total Flight Time: 37 9/3	BLK43	Lidar Operator
36.8 4 Type: VFR 5 Aircraft Type: Cesima 7206H 60 12 Airport, of Arrival (Airport, City/Province): 12 Airport, of Arrival (Airport, City/Province): 10 Airport, City/Province): 16 Take off: 17 Landing: 16 Take off: 17 Landing:	the voids of BLK 431 and	Pilot-in-Seyfirand ton: The Ann J. Housen Signature over Printed Name
مع <i>ان العالم الحالي الحالي العالم الحالي على الحالي ال حالي الحالي ا حالي الحالي ا حالي الحالي ا</i>	c BLK431 and cour	Acquisition Fliphic Certified by L.J. P.M. P.M. Signatum Signatumover Printed Name (PAF Representative)
perator: NUE Tolder 2 ALTM Model: 6 U Alg) ar 8 Co-Pilot: A UmT FEB $JS12 Airport of Dep01: A/L14 Engine Off. R_2 \delta8er \mathcal{F}_3 i$	ks: Mission completed P ems and Solutions:	Acquisition filtity and oved by Angeloff Signature over Printed Name (End User Representative)

2. Flight Log for 2558G Mission

6 Alrecalt Identification: $\gamma_{1,2}$		tidar Operator purgetizione
Airport of Arrival (Airport, City/Province): Airport of Arrival (Airport, City/Province): (12 Landing: 3: 0) (12 Landing: 3: 0)	H2 07 BLK 73M	Pilor In-CMInand
: $\mathcal{L}_{\text{Phi}(n)}$ 3 Mission Name: $\mathcal{L}_{\text{L}}\mathcal{L}_{\text{A3}} \mathcal{L}_{\text{A3}} \mathcal{L}_{\text{A3}}$ 9 Route: $\mathcal{L}_{\text{A1}} \mathcal{L}_{\text{A1}}$ 0 Eparture (Airport, City/Province): 12 $\mathcal{L}_{\text{D1}} \mathcal{L}_{\text{D1}}$ 15 Total Engine Time: 16 $\mathcal{A} \mathcal{H} \mathcal{H}$: $\mathcal{B} \mathcal{L}$	BLK A3 D ond careed	Acquisition Flight Certified by LA PART
erator: RA FELSWIND 2 ALTM Model R Co-Pilot: 12 Altport of D 0n: \$:54 14 Engine Off: 13. r Cloudy	s: Comple KA test of	Acquisition / Italy prived by C H A A A A

10.e C. Alfands Schorlor Biologianue (argon, GuyProvince): 12. Airport of Arrival (Airport, GuyProvince): 0.22 14 - 2.015 12. Augort of Data ture (argon, GuyProvince): 0.22 14 - 2.015 12. Augort of Data ture (argon, GuyProvince): 0.22 14 - 2.015 12. Augort of Data ture (argon, GuyProvince): 0.21 10: 35.01 12.510 al Equiliero 0.22 14 - 2.015 12.510 al Equiliero 0.23 10: 3.1250 al Equiliero 12.510 al Equiliero 0.21 10: 0.10 13.510 al Equiliero 0.22 14 - 2.015 13.510 al Equiliero 0.23 10 3.1.20 0.24 Data 0.25 13.510 al Equiliero 10.21 13.510 al Equiliero 10.21 13.510 al Equiliero 10.21 13.510 al Equiliero 11.11 13.510 al Equiliero 12.100 and Subutions: 12.500 al Equiliero 12.100 and Subutions: 11.510 al Equiliero 12.100 and Subutions: 12.500 al Equiliero 13.100 and Subutions: 12.500 al Equiliero 13.100 and Subutions: 12.500 al Equiliero 13.100 and Subutions: 12.500 al	IDAR Operator: V. TONOO	2 ALTM Model: Pegasty	K 3 Mission Name: 181843	DO45A Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: RP-9022
0.2. 14 - 2015 14 - 2015 14 - 2015 14 - 2015 15 Total Engine Otti 15 Total Engine	ilot: C. Alfonso 8 co	Pilot: B. Donguines	9 Route:	Internet of Arrivel	Airnort Citu/Drovince).	
Total Engine officiential 13 Engine officiential 13 Engine officiential 13 Engine officiential Weather Jondy Weather Jondy 13 Cotal Flight Time: Remarks: Moved to and Surveyed BLK43.0. 13 Cotal Flight Time: 13 Cotal Flight Time: Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed BLK43.0. 10 Cotal 10 Cotal 10 Cotal Remarks: Moved to and Surveyed to and Surv	07 - 14 - 2015		(Airport, Lity/Province):	TZ AILPOIL OI AILIVAL	Milboir' or Milonite).	
Weather Dordy Remarks: Moved to and Surveyed BLK430. 1 Problems and Solutions: 1 Problems and Solut	Engine On: 14 E	ngine Off: 1356	15 Total Engine Time: 34 29	16 Take off:	17 Landing:	18 Total Flight Time:
Remarks: Moved to and Surveyed BLK430. I Problems and Solutions: I Pro	Weather	londy				
1 Problems and Solutions: 1 Problems and Solutions: Acquisition flight Approved by Acquisition flight Certified by Acquisition f	Remarks: Moved +	and survey.	ed BLK430.			
1 Problems and Solutions: Acquisition Flight Approved by Acquisition Flight Approved Paperover Printed Name Acquisition Flight Approved Paperover Paperover Paperover Printed Name Acquisition Flight Approved Paperover P						
Acquisition flight Approved by Acquisition Flight Certified by Pilot-in-Command Lidar Operator Command Lidar Operator Lidar Operator Lidar Operator Signature over Printed Name Signature over Printed Name Signature over Printed Name (End User Representative) (Par Representative) Signature over Printed Name	1 Problems and Solutions:					
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-In-Command Lidar Operator How Acquisition Flight Certified by Pilot-In-Command Lidar Operator C. Alfouso III C. Alfouso III Signature over Printed Name Signature over Printed Name (PAF Representative) (PAF Representative)						
	Acquisition Flight Approv Acquisition Flight Approv Signature over Printed Ni (End User Representativ	ed by Acimenter (1997)	quisition Flight Certified by EE JAYPUNPALAM instance Printed Name AF Representative)	Pilot-In-Cor C. Al- Signature o	mand I ma	Lidar Operator

4. Flight Log for 2570G Mission

Filight Log No.: 2570	18 Total Flight Time:		- Idar Oyfstor Signature over Printed Name
5 Aircraft Type: CesnnaT206H	(Airport AttuProvince): Lo (Lo 17 Landing:		Duradd Deroch Inn Po prer Printed Hame
Nama: 26uk 43A 048 A 4 Type: VFR	Ibolt 0 /Province): 12 Airport of Arrival igine Trima: 16 Take off- 4 + 3 S 16 Take off-	onepleted	Certified by Pilor-in-C ANAN Pilor-in-C Signature vel
2 ALTM Model: 6 min 3 Mission	ot: A. Lim 9 Route: 12 Airport of Departure (Airport, Gh ne Off: 13 : 39 15 Total Er	Mitsian	by Acquisition Fight CS Pant Signature over Pri FAAF Representat
AHIL-LiDAR I Data Acquisition Flight Log	7 Pilot: J. <u>Alájar</u> 8 Co-Pil 10 Date: <u>II Felo</u> 17 13 Engine On: <u>8</u> : sy 14 Engi	20 Remarks: 20 Remarks: 21 Problems and Solutions: 21 Problems and Solutions:	Acquisition Flight Approved Proved 1 Prove 11 Signature for Printed Name (End User Representative)

2016		
6 Aircraft Identification: 18 Total Flight Time: 3 J 3 J	ts to be	tidar Josephi MVF TOUCK Signafare over Printed Rame
5 Aircraft Type: Cesnna T206H Airport, City/Province): 17 Landing: 77 ; 50	know at low at	maand About About
4 Type: VFR 12 Airport of Arrival (16 Take off: 9, 9	e to high	Plactin Co
15 Total Engine Time: 15 Total Engine Time: 15 Total Engine Time:	led with voids dru	Acquisition Flight Carities by LJ DUMBAHAM Signature for Framed Name (206 Representatione)
or: ANE TONER 2 ALTM Model: 2004 Deoguines 8 Co-Pilot: A bin PEB / 12 Altport of Depart 4: 14 14 Engine Off: 55	for the BLK 43t	quisition Hely Approved by

6. Flight Log for 2583P Mission

Type: VFR S Aircraft Type: Cesnna T206H 6 Aircraft Identification: $RP - QD2$ ort of Arrival (Airport, City/Province):	e off: 17 Landing: 18 Total Flight Time:		Pilotin-Command II Pilotin-Command II C. Alfonso II C. Alfonso II Signature over Printed Name Signature over Printed Name
Pegerur 3 Mission Name: 1B1K43D04884 T 4 A Source: 20 Antrure (Airport, Gity/Province): 12 Airpor	15 Total Engine Time: 16 Take	vreyed BLK 43D	Acquisition Fight Certified by LU PUMARUM Signature over Printed Name (PAF Representative)
NAR Operator: M/K //1/L/I/I/L/4/2 ALTM Model: ot: A. A\Lovyso 8 co-Pilot: J. Joy are:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	emarks: Muved to and sur	Acquisition Flight Approved by Acquisition Flight Approved by Signature over Printed Name (End User Representative)

C. AI Burgo 8 Co-Pilot: J. J.	ever 9 Route:			
12 Airport	f beparture (Airport, City/Province):	12 Airport of Arrival (Airport, City/Province):	
00:10 14 Engine Off: 08/16 14 Engine Off: 12.77	$\frac{15 \text{ Total Engine Time:}}{4 + 11}$	16 Take off:	17 Landing:	18 Total Flight Time:
narks: Surveyed	BLK 43 E and so	me voids.		
Acquisition Flight, Approved by	Acquisition Flight Cartified by	Pilot-in-Com	II or puedu	Lidar Operator
Je N POTT Signature over Printed Name (End User Representative)	LJ VUNTTUH Signature over Printed Name (PAF Representative)	Signature or	ver Printed Name	Signature over Printed Name

8. Flight Log for 2589P Mission

AK OPERATOR: MIK VI 1.10 MUK 1. (・人) (もいちん) 8 Co-Pi 1 10- 2015 1.4 Eng 18 ine On:	SALINI INIUUSI . YEGU	Mission Name. 12/12/12	Char Manne: VFR	5 Aircraft Tvoe: Cesnna T206H	6 AIRCRATT IDENTITICATION: 1/ 1/ -
ate: 19- 1015 14 Eng	of: 1 1	9 Route:			
را 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	12 Airport of Departur	e (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
08 18 1 1	ne Off: 59 four	15 Total Engine Time: スト イ	16 Take off:	17 Landing:	18 Total Flight Time:
emarks: Su	rveyed BLK	43EF and voids	over BLK	430	
				•	
Problems and Solutions:					
Acquisition Flight Approved <i>Heref</i> <i>Signature over Printed</i> Nam (End User Representative)	ă .	Acquisition Flight Certified by	Pilot-in-Ca	Honso II Honso II Duer Printed Name	Lidar Operator

	LOXAL 2 ALINI WIUWELL 14	PLASH MISSION Name: 15LK45B	UGOSATYPE: VFR	5 Aircraft Type: Cesnna i 2001	6 Aircraft idenuitication: 1CP - VIU
piloté. Al fanso Date:	8 Co-Pilot: J. Joy/	1 [9 Route: rture (Airport, City/Province):	12 Airport of Arrival (Airport, City/Province):	
07 - 20 - Engine On: (34) Weather	2015 Iloilo 14 Engine off: fair	15 Total Engine Time: 3 ± 2.9	16 Take off:	17 Landing:	18 Total Flight Time:
Remarks:	furveyed BLK	43B and Voids	over BLK	43D and 436.	
1 Problems and Sol	utions :				
Acquisition	Flight Approved by	Acquisition Flight Certified by L. P.	Pilot-in-Cor C . M Signature o	Mand I I	Lidar Operator

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

	SIBALOM (February 2015 and October 2016)						
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS		
2532G	BLK 43I	2BLK43IV038B	MVE TONGA & RA FELIS- MINO	7-Feb-15	Mission completed for BLK43I and covered voids of BLK43L and BLK43J		
2558G	BLK 43G	2BLK43G045A	RA FELISMINO	14-Feb-15	2 lines in BLK43N, with voids		
2569P	BLK 43D	1BLK43D045A	MVE TONGA	14-Feb-15	Moved to and surveyed BLK 43D		
2570G	BLK 43H	2BLK43H048A	MVE TONGA	17-Feb-15	Mission complete at 1000m AGL		
2580G	BLK 43F	2BLK43F050B	MVE TONGA	19-Feb-15	Completed BLK43F but w/ voids due to high terrain with low altitude		
2583P	BLK 43D	1BLK43D048B	MR VILLAN- UEVA	17-Feb-15	Moved to and surveyed BLK43D		
2585P	BLK 43E, 43F	1BLK43EF049A	IRO ROXAS	18-Feb-15	Surveyed BLK43E w/ some voids due to high terrain w/ low altitude		
2587P	BLK 43E, 43D	1BLK43ED049B	kj an- Daya	18- Feb-15	Surveyed voids on BLK43E and gaps on BLK43D		
2589P	BLK 43E, 43F, 43D	1BLK43EFD050A	MR VIL- LANUE- VA	19- Feb- 15	Surveyed BLK 43E to 43F and voids on BLK43D		
2593P	BLK 43B, 43D, 43G	1BLK43BDG051A	IRO ROXAS	20-Feb-15	Surveyed BLK43B and voids on BLK 43D and 43G		
8511AC	BLK43K, Sibalom 2FP	3BLK43KJ299A	MS REYES	25-Oct-16	Covered voids over Cairawan, Paliwan, and Sibalom 2Floodplains		

ANNEX 7. Flight status reports

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

SWATH BOUNDARIES PER MISSION FLIGHT

Flight No. : 2532G Area: BLK 43I Base: ILO-1 & ILO-85 Mission Name: 2BLK43IV038B Total Area Surveyed: 198.854 sq km

Flight No. : 2558G Area: BLK 43G Base: ILO Mission Name: 2BLK43G045A Total Area Surveyed: 249.685 sq km

Flight No. : 2569P Area: BLK 43D Mission Name: 1BLK43D045A Total Area Surveyed: 79.3627 sq km

Flight No. : 2570G Area: BLK 43H Mission Name: 2BLK43H048A Total Area Surveyed: 175.41 sq km

Flight No. : 2580G Area: BLK 43F Mission Name: 2BLK43F050B Total Area Surveyed: 131.702 sq km

Flight No. : 2583P Area: BLK 43D Mission Name: 1BLK43D048B Total Area Surveyed: 114.061 sq km

Flight No. : 2585P Area: BLK 43E, 43F Mission Name: 1BLK43EF049A Total Area Surveyed: 261.892 sq km

Flight No. : 2587P Area: BLK 43E, 43D Mission Name: 1BLK43EF049B Total Area Surveyed: 153.076 sq km

Flight No. : 2589P Area: BLK 43E, 43F, 43D Mission Name: 1BLK43EF050A Total Area Surveyed: 132.258 sq km

Flight No. 2593P Area: BLK 43B, 43D, 43G Mission Name: 1BLK43BC051A Total Area Surveyed: 181.2 sq km

Flight No: 8511AC Mission Name: 3BLK43J299A Area: BLK43K, Sibalom 2FP Total Area Surveyed: 18.2km2

Flight Area Iloilo Mission Name Blk43B Inclusive Flights 2593P Range data size 16.3 GB POS 213 MB Base data size 11 MB Image 27 GB Transfer date March 23, 2015 Solution Status Number of Satellites (>6) Yes PDOP (\leq 3) Yes Baseline Length (<30km) No Processing Mode (<=1) No Smoothed Performance Metrics (in cm) RMSE for North Position (<4.0 cm) 1.01 RMSE for East Position (<4.0 cm) 1.56 RMSE for Down Position (<8.0 cm) 3.33 Boresight correction stdev (<0.001deg) 0.000371 IMU attitude correction stdev (<0.001deg) 0.000661 GPS position stdev (<0.01m) 0.0091 Minimum % overlap (>25) 25.93% Ave point cloud density per sq.m. (>2.0)2.57 Elevation difference between strips (<0.20 m) Yes Number of 1km x 1km blocks 200 Maximum Height 594.49 m Minimum Height 54.70 m *Classification (# of points)* Ground 152,186,273 Low vegetation 75,056,947 Medium vegetation 152,053,797 High vegetation 281,227,721 Building 4,634,683 Orthophoto Yes Engr. Analyn Naldo, Engr. Harmond Santos, Processed by Engr. Melissa Fernandez

ANNEX 8. Mission Summary Reports

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Iloilo
Mission Name	Blk43D
Inclusive Flights	2569P, 2583P, 2587P, 2589P, 2593P
Range data size	71.8 GB
POS	999 MB
Base data size	65.86 MB
Image	88.8 GB
Transfer date	March 23, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.26
RMSE for East Position (<4.0 cm)	2.44
RMSE for Down Position (<8.0 cm)	5.4
Boresight correction stdev (<0.001deg)	0.000352
IMU attitude correction stdev (<0.001deg)	0.001171
GPS position stdev (<0.01m)	0.0021
Minimum % overlap (>25)	42.59%
Ave point cloud density per sq.m. (>2.0)	3.67
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	280
Maximum Height	545.37 m
Minimum Height	52.12 m
Classification (# of points)	
Ground	301,021,823
Low vegetation	227,535,345
Medium vegetation	270,806,989
High vegetation	177,871,908
Building	13,231,101
Orthophoto	Yes
Processed by	Engr. Sheila-Maye Santillan, Engr. Melissa Fernandez, Engr. Edgardo Gubatanga, Jr., Engr. Krisha Marie Bautista

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Iloilo
Mission Name	Blk43E
Inclusive Flights	2585P, 2587P, 2589P
Range data size	57.5 GB
Base data size	38.46 MB
POS	683 MB
Image	79.2 GB
Transfer date	March 23, 2015
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.36
RMSE for East Position (<4.0 cm)	1.91
RMSE for Down Position (<8.0 cm)	4.79
Boresight correction stdev (<0.001deg)	0.000211
IMU attitude correction stdev (<0.001deg)	0.000782

GPS position stdev (<0.01m)	0.002
Minimum % overlap (>25)	49.01%
Ave point cloud density per sq.m. (>2.0)	3.91
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	407
Maximum Height	662.37 m
Minimum Height	55.71 m
Classification (# of points)	
Ground	353,975,824
Low vegetation	224,279,530
Medium vegetation	517,674,786
High vegetation	1,254,044,800
Building	13,013,616
Orthophoto	Yes
Processed by	Engr. Sheila-Maye Santillan, Engr. Antonio Chua, Jr., Ryan James Nicholai Dizon

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Flight Area	Iloilo
Mission Name	Blk43F
Inclusive Flights	2580G
Range data size	16.2 GB
Base data size	4.11 MB
POS	163 MB
Image	25.6 GB
Transfer date	March 23, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.03
RMSE for East Position (<4.0 cm)	1.36
RMSE for Down Position (<8.0 cm)	3.05
Boresight correction stdev (<0.001deg)	0.000214
IMU attitude correction stdev (<0.001deg)	0.000657
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	33.03%
Ave point cloud density per sq.m. (>2.0)	4.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	174
Maximum Height	1093.82 m
Minimum Height	77.00 m
Classification (# of points)	
Ground	82,299,457
Low vegetation	47,811,205
Medium vegetation	112,917,636
High vegetation	314,579,068
Building	1,966,389
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Velina Angela Bemi- da, Engr. Melissa Fernandez

Solution Status

Smoothed Performance Metric Parameters

Best Estimated Trajectory

Coverage of LiDAR data

Image of data overlap

Density map of merged LiDAR data

Elevation difference between flight lines

Flight Area	Iloilo
Mission Name	Blk43H
Inclusive Flights	2570G
Range data size	21.7 GB
POS	222 MB
Image	48.5 GB
Transfer date	March 23, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.31
RMSE for East Position (<4.0 cm)	1.71
RMSE for Down Position (<8.0 cm)	3
Boresight correction stdev (<0.001deg)	0.000267
IMU attitude correction stdev (<0.001deg)	0.000681
GPS position stdev (<0.01m)	0.0021
Minimum % overlap (>25)	32.57%
Ave point cloud density per sq.m. (>2.0)	4.43
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	212
Maximum Height	613.99 m
Minimum Height	54.29 m
Classification (# of points)	
Ground	108,534,543
Low vegetation	79,766,900
Medium vegetation	153,063,695
High vegetation	333,632,882
Building	2,427,463
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Aljon Rei Araneta, Engr.Melissa T. Fernandez

LiDAR Surveys and Flood Mapping of Sibalom 2 River

Solution Status

Coverage of LiDAR data

ANNEX 9. Sibalom2 Model Basin Parameters

	no sos	Irve Number Loss		Clark Unit Hydrograph	า Transform		Recessi	on Basefle	MO	
Basin Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Reces- sion Con- stant	Threshold Type	Ratio to Peak
W220	0.10576	90.611	0	0.0410528	0.1303	Discharge	63.173	0.02	Ratio to Peak	0.2
W230	0.13372	66	0	0.0997	0.072	Discharge	73.681	0.02	Ratio to Peak	0.2
W240	0.0956507	66	0	0.18139	0.28308	Discharge		0.02	Ratio to Peak	0.2
W250	0.17223	66	0	0.0476056	0.23598	Discharge	79.127	0.02	Ratio to Peak	0.2
W260	0.11321	66	0	0.0478139	0.074615	Discharge	54.588	0.02	Ratio to Peak	0.2
W270	0.19496	82.198	0	0.0462	0.0166667	Discharge	0.69611	0.02	Ratio to Peak	0.2
W280	0.12709	66	0	0.0404028	0.0908283	Discharge	15.21	0.02	Ratio to Peak	0.2
W290	0.19496	66	0	0.0970861	0.10307	Discharge	23.552	0.02	Ratio to Peak	0.2
W300	0.17781	86.173	0	0.0604556	0.0399067	Discharge	11.919	0.02	Ratio to Peak	0.2
W310	0.18623	66	0	0.0410861	0.13855	Discharge	62.989	0.02	Ratio to Peak	0.2
W320	0.0921387	66	0	0.0523778	0.111615	Discharge	47.313	0.02	Ratio to Peak	0.2
W330	0.10393	92.643	0	0.0534417	0.0797233	Discharge	32.394	0.02	Ratio to Peak	0.2
W340	0.0369493	94.891	0	0.0324778	0.0448967	Discharge	6.2302	0.02	Ratio to Peak	0.2
W350	0.0407733	94.848	0	0.0166667	0.0420833	Discharge	3.581	0.02	Ratio to Peak	0.2
W360	0.0659213	66	0	0.0461472	0.10586	Discharge	44.877	0.02	Ratio to Peak	0.2

Deach		Mus	kingumCunge	Channel Routi	ng		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R40	Automatic Fixed Interval	317.99	0.001474	0.0075	Trapezoid	200	1
R60	Automatic Fixed Interval	2716.6	0.015689	0.0075	Trapezoid	200	1
R70	Automatic Fixed Interval	5032.7	2.23E-02	0.0075	Trapezoid	200	1
R90	Automatic Fixed Interval	6017.4	0.0112129	0.0075	Trapezoid	200	1
R100	Automatic Fixed Interval	20703	0.0165748	0.0075	Trapezoid	200	1
R130	Automatic Fixed Interval		0.000763	0.0075	Trapezoid	200	1
R140	Automatic Fixed Interval	1854.1	0.0011607	0.0075	Trapezoid	200	1
R160	Automatic Fixed Interval	2726.5	0.0099608	0.0075	Trapezoid	200	1
R170	Automatic Fixed Interval	239.85	0.029791	0.0075	Trapezoid	200	1
R190	Automatic Fixed Interval	2946.1	0.0326135	0.0075	Trapezoid	200	1
R290	Automatic Fixed Interval	1624.1	0.0369025	0.025	Trapezoid	30.928	0.3517
R30	Automatic Fixed Interval	113.14	0.001	0.025	Trapezoid	30.928	0.3517
R310	Automatic Fixed Interval	878.11	0.0657445	0.025	Trapezoid	30.928	0.3517
R40	Automatic Fixed Interval	2482.5	0.0078475	0.025	Trapezoid	30.928	0.3517
R50	Automatic Fixed Interval	1242.0	0.0058146	0.025	Trapezoid	30.928	0.3517
R70	Automatic Fixed Interval	2064.1	0.0096041	0.025	Trapezoid	30.928	0.3517

ANNEX 10. Sibalom2 Model Reach Parameters

ANNEX 11. Sibalom2 Field Va	lidation Points
-----------------------------	-----------------

Point No.	Validation Lat	Coordinates Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
0	10.79598	121.94714	0.13	0	0.017	NA	
1	10.74984	121.93567	0.14	0	0.020	NA	
2	10.78712	122.01522	0.26	1.2	0.884	Frank	100-Year
3	10.79027	122.02372	0.03	0	0.001	NA	
4	10.78857	122.01875	0.08	1	0.846	Frank	100-Year
5	10.75845	121.94031	0.03	0	0.001	NA	
6	10.75507	121.93656	0.04	0	0.002	NA	
7	10.74942	121.93839	0.15	0	0.023	NA	
8	10.80902	122.0448	0.03	0	0.001	NA	
9	10.82343	122.05631	0.06	0	0.004	NA	
10	10.76136	121.92494	0.22	0	0.048	NA	
11	10.77681	122.04619	0.03	0	0.001	NA	
12	10.76503	121.94322	0.09	0.2	0.012	Yolanda	5-Year
13	10.75803	121.93646	0.12	0	0.014	NA	
14	10.77758	121.94606	0.21	0	0.044	NA	
15	10.7746	121.93939	0.29	0	0.084	NA	
16	10.75477	121.94039	0.03	0	0.001	NA	
17	10.7642	121.93176	0.2	0	0.040	NA	
18	10.75124	121.93612	0.03	0	0.001	NA	
19	10.78597	121.9491	0.03	0.1	0.005	Yolanda	5-Year
20	10.78793	121.95723	0.03	0	0.001	NA	
21	10.80664	122.07615	0.03	0	0.001	NA	
22	10.77943	121.9371	0.03	0	0.001	NA	
23	10.79047	122.0203	0.03	1.1	1.145	Frank	100-Year
24	10.75144	121.96296	0.04	0	0.002	NA	
25	10.79114	122.03584	0.25	1.1	0.723	Frank	100-Year
26	10.79027	122.02372	0	0	0.000	NA	
27	10.76424	122.00419	0.11	0	0.012	NA	
28	10.76518	122.00473	0.03	0	0.001	NA	
29	10.7663	122.00483	0.07	0	0.005	NA	
30	10.76188	121.93052	0.16	0.2	0.002	Yolanda	5-Year
31	10.78472	122.01891	0.07	0.5	0.185	Frank	100-Year
32	10.75968	121.93424	0.03	0.1	0.005	Yolanda	5-Year
33	10.7921	122.04269	0.12	0	0.014	NA	
34	10.76353	121.93256	0.27	0	0.073	NA	

Point	Validation	Coordinates	Model	Validation	Frror	Event/Date	Rain Return/
No.	Lat	Long	Var (m)	Points (m)	2.1.0.		Scenario
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
35	10.75687	121.93416	0.19	0	0.036	NA	
36	10.79738	121.94615	0.9	0.4	0.250	Auring	5-Year
37	10.7796	121.94354	0.04	0	0.002	NA	
38	10.78987	122.01934	0.12	1.5	1.904	Frank	100-Year
39	10.76058	121.93363	0.14	0.1	0.002	Yolanda	5-Year
40	10.75876	121.94395	0.05	0	0.003	NA	
41	10.76414	121.92471	0.23	0	0.053	NA	
42	10.75221	121.93607	0.04	0	0.002	NA	
43	10.77817	121.94627	0.03	0	0.001	NA	
44	10.7531	121.9391	0.19	0	0.036	NA	
45	10.75977	121.93766	0.26	0	0.068	NA	
46	10.79002	122.01763	0.16	1	0.706	Frank	100-Year
47	10.76888	121.93133	0.37	0	0.137	NA	
48	10.76812	121.94379	0.21	0	0.044	NA	
49	10.75364	122.07754	0.03	0	0.001	NA	
50	10.82127	122.06586	0.21	0	0.044	NA	
51	10.7741	122.06113	0.46	0.9	0.194	Frank	100-Year
52	10.77714	121.96717	0.47	1.3	0.689	Frank	100-Year
53	10.77739	121.96703	0.03	1.3	1.613	Frank	100-Year
54	10.77553	121.96669	0.3	1	0.490	Frank	100-Year
55	10.77427	121.96783	0.52	0.9	0.144	Frank	100-Year
56	10.77603	121.96689	0.28	1	0.518	Frank	100-Year
57	10.77695	121.96655	0.58	1.3	0.518	Frank	100-Year
58	10.77667	121.96657	0	1.3	1.690	Frank	100-Year
59	10.79208	122.03524	0.86	1.6	0.548	Frank	100-Year
60	10.78572	121.9468	0.66	0.9	0.058	Frank	100-Year
61	10.78962	121.94617	0.43	0	0.185	NA	
62	10.79834	121.9494	0.78	0.2	0.336	Frank	100-Year
63	10.77982	121.94545	0.46	1.2	0.548	Yolanda	5-Year
64	10.79121	122.02038	0.1	1.1	1.000	Frank	100-Year
65	10.78675	121.9474	0.03	0.1	0.005	Yolanda	5-Year
66	10.78701	122.04839	0.38	1.8	2.016	Undang	5-Year
67	10.77913	121.94532	0.56	0.3	0.068	Yolanda	5-Year
68	10.77906	122.0482	0.22	0.9	0.462	Ruping	5-Year
34	10.76353	121.93256	0.27	0	0.073	NA	

Point	Validation	Coordinates	Model	Validation	Бинои	Event/Date	Rain
No.	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return/
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
64	10.79121	122.02038	0.1	1.1	1.000	Frank	100-Year
65	10.78675	121.9474	0.03	0.1	0.005	Yolanda	5-Year
66	10.78701	122.04839	0.38	1.8	2.016	Undang	5-Year
67	10.77913	121.94532	0.56	0.3	0.068	Yolanda	5-Year
68	10.77906	122.0482	0.22	0.9	0.462	Ruping	5-Year
69	10.80393	121.94731	0.59	0	0.348	NA	
70	10.77691	121.93486	0.09	0	0.008	NA	
71	10.77682	121.93615	0.04	0	0.002	NA	
72	10.79142	122.03277	0.82	1.5	0.462	Frank	100-Year
73	10.79737	122.00794	0.03	0	0.001	NA	
74	10.79847	121.94955	0	0.2	0.040	Frank	100-Year
75	10.8112	122.07157	0.03	0	0.001	NA	
76	10.76424	121.94597	0.47	0.9	0.185	Yolanda	5-Year
77	10.80553	122.04883	1.09	2	0.828	Frank	100-Year
78	10.77993	122.04888	0.76	1.8	1.082	Yolanda	5-Year
79	10.77089	122.01513	0.52	0.4	0.014	Frank	100-Year
80	10.79229	122.03426	1.09	0	1.188	NA	
81	10.81303	122.00802	1.27	0.3	0.941	Frank	100-Year
82	10.76332	122.01381	0.35	0.9	0.303	Frank	100-Year
83	10.75213	121.96439	1.01	0	1.020	NA	
84	10.81429	122.00618	0.44	0.3	0.020	Frank	100-Year
85	10.81349	122.00366	1.29	1	0.084	Frank	100-Year
86	10.76468	121.95805	1.1	1.2	0.010	Frank	100-Year
87	10.75084	121.9637	1.4	2.5	1.210	Frank	100-Year
88	10.75238	121.96412	0	0	0.000	NA	
89	10.77093	122.01369	0.97	0.2	0.593	Frank	100-Year
90	10.7984	121.99604	2.24	2.5	0.068	Frank	100-Year
91	10.78754	121.94728	0.96	0.4	0.314	Yolanda	5-Year
93	10.85148	121.95906	1.17	0.9	0.073	Frank	100-Year
94	10.85188	121.95902	1.27	0.9	0.137	Frank	100-Year
95	10.79266	122.01044	1.83	0	3.349	NA	
31	10.78472	122.01891	0.07	0.5	0.185	Frank	100-Year
32	10.75968	121.93424	0.03	0.1	0.005	Yolanda	5-Year
33	10.7921	122.04269	0.12	0	0.014	NA	
34	10.76353	121.93256	0.27	0	0.073	NA	

Point	Validation	Coordinates	Model	Validation			Rain
No.	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return/ Scenario
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
94	10.85188	121.95902	1.27	0.9	0.137	Frank	100-Year
95	10.79266	122.01044	1.83	0	3.349	NA	
96	10.85487	121.95927	1.51	0.2	1.716	Frank	100-Year
97	10.78768	122.04783	0.54	0	0.292	NA	
98	10.80462	121.95137	1.04	0	1.082	NA	
99	10.78053	122.05341	0.82	0	0.672	NA	
100	10.77675	121.93496	0.13	0	0.017	NA	
101	10.80446	121.95152	0.67	0	0.449	NA	
102	10.82517	122.05955	0.03	0	0.001	NA	
103	10.85586	121.96096	0.74	0	0.548	NA	
104	10.76952	121.93063	0.03	0	0.001	NA	
105	10.85355	121.96029	0.71	0	0.504	NA	
106	10.78784	121.94699	1.02	0.4	0.384	Yolanda	5-Year
107	10.78759	121.94675	0	0.4	0.160	Yolanda	5-Year
108	10.75794	121.9835	1.14	0.75	0.152	Yolanda	5-Year
109	10.80264	121.98945	0.9	0.8	0.010	Yolanda	5-Year
110	10.79835	121.99513	2.15	1.75	0.160	Frank	100-Year
111	10.79174	122.03207	1.61	3.5	3.572	Frank	100-Year
112	10.75072	121.96381	0	2.5	6.250	Frank	100-Year
113	10.81335	122.00226	1.89	3	1.232	Frank	100-Year
114	10.81257	122.00439	2.89	1	3.572	Frank	100-Year
115	10.81353	122.00273	2.19	2	0.036	Frank	100-Year
116	10.76275	122.01316	0.92	0.9	0.000	Frank	100-Year
117	10.77244	122.01627	1.17	1.1	0.005	Frank	100-Year
118	10.8121	122.00638	1.67	0.9	0.593	Frank	100-Year
119	10.79164	122.03179	1.58	2	0.176	Frank	100-Year
120	10.79263	122.01744	3.32	2	1.742	Frank	100-Year
121	10.79863	121.995	2.88	1.75	1.277	Frank	100-Year
122	10.79401	122.01653	4.64	2	6.970	Frank	100-Year
123	10.79424	122.01337	3.69	3	0.476	Frank	100-Year
124	10.79892	121.99194	2.77	3	0.053	Frank	100-Year
125	10.79412	122.01334	0	3	9.000	Frank	100-Year
126	10.81246	121.99547	0.85	3.5	7.023	Frank	100-Year
127	10.79127	122.01549	3.98	2	3.920	Frank	100-Year
128	10.79868	121.99229	0	3	9.000	Frank	100-Year
129	10.79194	122.01693	4.34	2.2	4.580	Frank	100-Year
130	10.79829	121.99165	2.38	3	0.384	Frank	100-Year
131	10.82438	122.05874	1.88	0	3.534	NA	

Point No.	Validation Lat	Coordinates Long	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return/ Scenario
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
122	10.79401	122.01653	4.64	2	6.970	Frank	100-Year
123	10.79424	122.01337	3.69	3	0.476	Frank	100-Year
124	10.79892	121.99194	2.77	3	0.053	Frank	100-Year
125	10.79412	122.01334	0	3	9.000	Frank	100-Year
126	10.81246	121.99547	0.85	3.5	7.023	Frank	100-Year
127	10.79127	122.01549	3.98	2	3.920	Frank	100-Year
128	10.79868	121.99229	0	3	9.000	Frank	100-Year
129	10.79194	122.01693	4.34	2.2	4.580	Frank	100-Year
130	10.79829	121.99165	2.38	3	0.384	Frank	100-Year
131	10.82438	122.05874	1.88	0	3.534	NA	
132	10.80296	122.0413	3.24	1.3	3.764	Frank	100-Year
133	10.80173	122.01461	3.01	2.5	0.260	Frank	100-Year
134	10.81524	121.99874	3.52	1.3	4.928	Frank	100-Year
135	10.79929	122.04263	0.39	0.45	0.004	Frank	100-Year
136	10.81393	122.00038	2.67	2	0.449	Frank	100-Year
137	10.80148	122.0143	3.88	0.3	12.816	Frank	100-Year
138	10.76698	121.98829	0.53	1.5	0.941	Frank	100-Year
139	10.81503	121.99996	1.93	0.5	2.045	Undang	5-Year
140	10.76832	121.98529	2.32	1.1	1.488	Frank	100-Year
141	10.81522	121.99735	2.98	2.5	0.230	Frank	100-Year
142	10.81541	121.99996	2.85	0.5	5.523	Undang	5-Year
143	10.80217	122.01497	0	2	4.000	Frank	100-Year
144	10.7755	121.98176	1.35	0.2	1.323	Frank	100-Year
145	10.79841	121.9954	0	1	1.000	Frank	100-Year
146	10.79224	122.01084	3.35	2	1.823	Frank	100-Year
147	10.79149	122.01427	3.3	2.5	0.640	Frank	100-Year
148	10.79441	122.01369	4.88	3	3.534	Frank	100-Year
149	10.7944	122.0176	2.38	1.8	0.336	Yolanda	5-Year
150	10.79249	122.0342	5.92	2.5	11.696	Frank	100-Year
151	10.79258	122.03498	1.45	2.5	1.103	Frank	100-Year
152	10.79258	122.03451	0	2.5	6.250	Frank	100-Year
153	10.79255	122.03434	0	2.5	6.250	Frank	100-Year
154	10.79282	122.03523	0.76	2.5	3.028	Frank	100-Year
155	10.79272	122.03502	0	2.5	6.250	Frank	100-Year
156	10.79248	122.03419	0	2.5	6.250	Frank	100-Year
157	10.79279	122.03508	0	2.5	6.250	Frank	100-Year
158	10.79272	122.03489	0	2.5	6.250	Frank	100-Year

Point	Validation	Coordinates	Model	Validation			Rain
No.	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return/ Scenario
Point Number	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
147	10.79149	122.01427	3.3	2.5	0.640	Frank	100-Year
148	10.79441	122.01369	4.88	3	3.534	Frank	100-Year
149	10.7944	122.0176	2.38	1.8	0.336	Yolanda	5-Year
150	10.79249	122.0342	5.92	2.5	11.696	Frank	100-Year
151	10.79258	122.03498	1.45	2.5	1.103	Frank	100-Year
152	10.79258	122.03451	0	2.5	6.250	Frank	100-Year
153	10.79255	122.03434	0	2.5	6.250	Frank	100-Year
154	10.79282	122.03523	0.76	2.5	3.028	Frank	100-Year
155	10.79272	122.03502	0	2.5	6.250	Frank	100-Year
156	10.79248	122.03419	0	2.5	6.250	Frank	100-Year
157	10.79279	122.03508	0	2.5	6.250	Frank	100-Year
158	10.79272	122.03489	0	2.5	6.250	Frank	100-Year
159	10.79248	122.03431	0	2.5	6.250	Frank	100-Year
160	10.79543	122.02074	5.4	5.2	0.040	Frank	100-Year
161	10.79916	122.0159	7.86	6	3.460	Frank	100-Year
163	10.81117	122.03797	7.32	6	1.742	Frank	100-Year
164	10.80649	121.98841	6.22	5.5	0.518	Frank	100-Year
165	10.81097	122.03785	6.89	6	0.792	Frank	100-Year
166	10.79339	122.0377	1.73	2	0.073	Frank	100-Year
167	10.79477	122.02438	5.37	5.2	0.029	Frank	100-Year
168	10.81249	122.03911	4.63	6	1.877	Frank	100-Year
169	10.82682	122.05433	6.76	6	0.578	Frank	100-Year
170	10.7967	122.01114	6.21	4	4.884	Frank	100-Year
171	10.79538	122.01863	6.05	5.2	0.722	Frank	100-Year
172	10.79709	122.01031	6.4	4	5.760	Frank	100-Year
173	10.80757	121.989	5.35	5.5	0.023	Frank	100-Year
174	10.82698	122.05526	5.81	6	0.036	Frank	100-Year
175	10.80431	121.99022	7.23	5.5	2.993	Frank	100-Year
176	10.81276	122.03764	8.1	6	4.410	Frank	100-Year
177	10.80554	121.98922	6.7	5.5	1.440	Frank	100-Year
152	10.79258	122.03451	0	2.5	6.250	Frank	100-Year
153	10.79255	122.03434	0	2.5	6.250	Frank	100-Year
154	10.79282	122.03523	0.76	2.5	3.028	Frank	100-Year
155	10.79272	122.03502	0	2.5	6.250	Frank	100-Year
156	10.79248	122.03419	0	2.5	6.250	Frank	100-Year
157	10.79279	122.03508	0	2.5	6.250	Frank	100-Year
158	10.79272	122.03489	0	2.5	6.250	Frank	100-Year

Point	Validation	Coordinates	Model	Validation	Бикон	Event/Data	Rain
No.	Lat	Long	Var (m)	Points (m)	Error	Event/Date	Return/
Point Num- ber	Validation Coordinates	Model var (m)	Vali- dation Points (m)	Error	Event/ Date		5 Yr
	Lat	Long					
171	10.79538	122.01863	6.05	5.2	0.722	Frank	100-Year
172	10.79709	122.01031	6.4	4	5.760	Frank	100-Year
173	10.80757	121.989	5.35	5.5	0.023	Frank	100-Year
174	10.82698	122.05526	5.81	6	0.036	Frank	100-Year
175	10.80431	121.99022	7.23	5.5	2.993	Frank	100-Year
176	10.81276	122.03764	8.1	6	4.410	Frank	100-Year
177	10.80554	121.98922	6.7	5.5	1.440	Frank	100-Year
178	10.80773	121.98724	6.19	5.5	0.476	Frank	100-Year

ANNEX 12. Educational Institutions Affected by flooding in Sibalom2 Flood Plain

Antique				
	Belison			
Building Name	Derengev	Ra	infall Scena	rio
	Darangay	5-year	25-year	100-year
Bongbongan I Elementary School	Buenavista			
Lagdo Daycare Center	Buenavista			
Lagdo Elementary School	Buenavista			
Concepcion Elementary School	Concepcion			
Mojon Barangay Stage	Mojon			
Mojon Day Care Center	Mojon			
Mojon Elementary School	Mojon			
Belison Central School	Poblacion			Low
Belison National High School	Poblacion			
School	Poblacion			
Rombang Elementary School	Rombang			
Sinaja-Salvacion Elementary School	Sinaja	Medium	Medium	High

San Jose					
Puilding Name	Barangay -	Rainfall Scenario			
		5-year	25-year	100-year	
Durog Elementary School	Durog	Low	Medium	Medium	
Durog Elementary School Stage	Durog	Medium	Medium	Medium	
Lugutan Elementary School	Igbonglo				
Lugutan Elementary School Stage	Igbonglo				
Sitio Lugutan Day Care Center	Igbonglo		Low	Low	
Magcalon Day Care Center	Magcalon				
Rosario Javier Moscoso Memorial Ele- memtary School	Magcalon		Low	Low	
Eufrosino Q. Moscoso Elementary School	Mojon				
Mojon Day Care Center	Mojon				
Sitio Su-ong Day Care Center	Pantao				
San Fernando Elementary School	San Fernando	Low	Low	Low	
Assemblyman Segundo Moscoso Memo- rial School	San Pedro	Low	Low	Low	
San Pedro Day Care Center	San Pedro	Low	Low	Low	
San Pedro National High School	San Pedro	Medium	Medium	Medium	

San Remigio				
Puilding Name	Barangay	Ra	infall Scena	rio
		5-year	25-year	100-year
Barangbang Elementary School	Barangbang			
Barangbang Elementary School	Cadolonan			
Barangbang National High School	Cadolonan			
Cadolonan Elementary School	Cadolonan			
Bongbongan I Day Care Center	Carmelo I			
Carmelo II Elementary School	Carmelo II			

Sibalom				
Building Name	Barangay	Ra	infall Scena	rio
	Barangay	5-year	25-year	100-year
University of Antique	Bari			
Bongbongan Elementary School	Bongbongan II			
Bongbongan II Day Care Center	Bongbongan II			
Pangpang Elementary School	Bongsod		Low	Medium
Pangpang National High School	Bongsod			Low
Catungan I Day Care Center	Catungan I	Low	Low	Medium
Lotilla Elementary School	Catungan I	Low	Low	Medium
Odiong Elementary School	Catungan IV		Low	Low
Alangan-Bungsod-Cubay Elementary School	Cubay-Napultan	Medium	High	High
Alangan Daycare Center	Cubay-Napultan	Medium	Medium	High
Barangay Cubay Napultan Day Care Center	Cubay-Napultan			Low
Bungsod Day Care Center	Cubay-Napultan			
Fornier Elementary School	Cubay-Sermon			
Sitio Tunnel Child Development Center	Cubay-Sermon	Low	Medium	Medium
University of Antique	District I	Low	Low	Low
District II Day Care Center	District III	Low	Low	Low
District III Day Care Center	District III		Low	Low
Sibalom Central Elementary School	District III	Low	Low	Low
Sibalom National Highschool	District III			Low
Barangay Igbonglo Day Care Center	Egaña			
Igbonglo Elementary School	Egaña			
Igbonglo Elementary School Stage	Egaña			
Nahum Christian Center	Egaña			
New Barangay Pantao Day Care Center	Egaña			
Pantao - Igbonglo Elementary School	Egaña			
Pantao Day Care Center	Egaña			
Villar Day Care Center	Esperanza II		Low	Medium

Sibalom				
Duilding Nome	Derengev	Rainfall Scena		rio
	Barangay	5-year	25-year	100-year
Pantao - Igbonglo Elementary School	Bari			
Pantao Day Care Center	Bongbongan II			
Villar Day Care Center	Bongbongan II			
Villar Elementary School	Bongsod		Low	Medium
Esperanza Daycare Center	Esperanza III			
Esperanza Elementary School	Esperanza III			
Esperanza I Day Care Center	Esperanza III	High	High	High
Cadoldolan-Igdagmay Elementary School	Igdagmay			
Cadoldolan Day Care Center	Igdagmay			
Igdagmay Daycare Center	Igdagmay			
Iglanot Child Friendly School	Igdalaquit		Low	Low
Maasin Elementary School	Igdalaquit			
Maasin Elementary School Stage	Igdalaquit			
Barangay Iglanot Day Care Center	Iglanot	Medium	Medium	Medium
Iglanot Child Friendly School	Iglanot		Low	Medium
Ilabas Daycare Center	Ilabas			Low
Ilabas Elementary School	Ilabas	Medium	Medium	Medium
Lacaron Integrated School	Lacaron			
Barangay Maasin Day Care Center	Maasin			
Barangay Mabini Day Care Center	Mabini			
Mabini Elementary School	Mabini			
Barangay Pis-anan Day Care Center 2 - Sitio Ambayanan	Millamena			
Mojon Barangay Stage	Mojon			
Mojon Day Care Center	Mojon			
Barangay Nagdayao Day Care Center	Nagdayao	Medium	Medium	High
Nagdayao Elementary School	Nagdayao			Low
Pangpang Day Care Center	Pangpang			
Pangpang National High School	Pangpang	Low	Low	Medium
Bartolomi Bertolano Child Development Center	Pasong			
Catmon Elementary School	Pasong			
Miguel BePaegas Day Care Center	Pasong			
Barangay Pis-anan Day Care Center	Pis-Anan	Low	Low	Low
Igdalaguit Day Care Center	Pis-Anan			
Panlagangan Day Care Center	Pis-Anan			
Panlagangan Elementary School	Pis-Anan			
Pis-anan Central School	Pis-Anan			
Pis-anan Central School Stage	Pis-Anan			
Pis-anan National High School	Pis-Anan	Low	Low	Low
Sido-San Juan National High School	San Juan	Medium	Medium	Medium

Sibalom				
Duilding Name	Derengey	Ra	infall Scena	rio
	Barangay	5-year	25-year	100-year
Sido Day Care Center	Sido		Low	Medium
Juan Vego Elementary School	Solong			
Solong Day Care Center	Solong			
San Juan Day Care Center	Villahermosa			Low
Cabariuan Elementary School	Villar			

ANNEX 13. Health Institutions affected by flooding in Sibalom2 Floodplain

Antique					
Belison					
Puilding Name	Barangov	Rainfall Scenario			
	Barangay	5-year	25-year	100-year	
Bongbongan Health Center New	Belison				
Bongbongan Health Center Old	Belison				
Belison Rural Health Unit	Belison				
Residential	Paradise	Low	Low	Low	
Gonzaga Municipal Health Office	Smart				
Medical Institution	Smart	Low	Low	Low	

San Jose						
Puilding Namo	Barangay	Ra	infall Scena	rio		
	Barangay	5-year	25-year	100-year		
San Fernando Barangay Health Center	San Fernan- do					
San Fernando Day Care Center	San Fernan- do					
San Pedro Rural Health Unit	San Pedro	Low	Medium	Medium		

San Remigio				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Barangbang Health Center	Barangbang	Low	Medium	Medium

Sibalom					
Duilding Name	Damage	Rainfall Scenario			
	Barangay	5-year	25-year	100-year	
Bongbongan II Health Center	Bongbon- gan II				
Alangan Health Center	Cubay-Na- pultan	Medium	High	High	
District IV Health Center	Cubay-Ser- mon				
Ramon Masa Senior Memorial District Hospital	District III	Low	Low	Low	
Rural Health Unit	District III		Low	Low	
Barangay Igbonglo Health Center	Egaña				
Pantao Barangay Health Center	Egaña				
Villar Health Center	Esperanza II		Medium	Medium	
Birthing Clinic	Esperanza III		Medium	Medium	
Barangay Iglanot Health Center and Birth- ing Clinic	Iglanot				
Lacaraon Day Care Center	Lacaron				
Lacaron Health Center	Lacaron				
Barangay Mabini Health Center	Mabini				

LiDAR Surveys and Flood Mapping of Sibalom 2 River

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)