Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Ibajay River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Cebu

APRIL 2017



© University of the Philippines Diliman and University of the Philippines Cebu 2017

Published by UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of Grant-in-Aid Program and is to be cited as:

E.C. Paringit and J.R. Sinogaya (eds.) (2017), LiDAR Surveys and Flood Mapping of Ibajay River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-180pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Jonnifer Sinogaya, PhD.

Project Leader, Phil-LiDAR 1 Program University of the Philippines Cebu Cebu City, Cebu, Philippines 6000 E-mail: jrsinogaya@yahoo.com

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-106-5

# TABLE OF CONTENTS

| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LIST OF ACRONYMS AND ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND IBAJAY RIVER.       1         1.1 Background of the Phil-LIDAR 1 Program       1         1.2 Overview of the Ibajay River Basin       1         CHAPTER 2: LIDAR DATA ACQUISITION OF THE IBAJAY FLOODPLAIN.       3         2.1 Flight Plans.       3         2.2 Ground Base Stations.       5         2.3 Flight Missions       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                                                                                           |
| 1.1 Background of the Phil-LIDAR 1 Program       1         1.2 Overview of the Ibajay River Basin       1 <b>CHAPTER 2: LIDAR DATA ACQUISITION OF THE IBAJAY FLOODPLAIN</b> 3         2.1 Flight Plans       3         2.2 Ground Base Stations       5         2.3 Flight Missions       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                           |
| 1.2 Overview of the Ibajay River Basin       1         CHAPTER 2: LIDAR DATA ACQUISITION OF THE IBAJAY FLOODPLAIN       3         2.1 Flight Plans       3         2.2 Ground Base Stations       5         2.3 Flight Missions       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| CHAPTER 2: LIDAR DATA ACQUISITION OF THE IBAJAY FLOODPLAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           |
| 2.1 Flight Plans    3      2.2 Ground Base Stations    5      2.3 Flight Missions    10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                           |
| 2.2 Ground Base Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                           |
| 2.3 Flight Missions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                                                           |
| 2.4 Survey Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                           |
| CHAPTER 3: LIDAR DATA PROCESSING OF THE IBAJAY FLOODPLAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ;                                                                                           |
| 3.1 Overview of the LIDAR Data Pre-Processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                           |
| 3.2 Transmittal of Acquired LiDAR Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł                                                                                           |
| 3.3 Trajectory Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ł                                                                                           |
| 3.4 LiDAR Point Cloud Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                           |
| 3.5 LiDAR Quality Checking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                           |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                                                                           |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                           |
| 3.8 DEM Editing and Hydro-Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ł                                                                                           |
| 3.9 Mosaicking of Blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                           |
| 3.10 Calibration and Validation of Mosaicked LiDAR DEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                           |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                                                                                           |
| 3.12 Feature Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                           |
| 3.12.1 Quality Checking of Digitized Features' Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | }                                                                                           |
| 3.12.2 Height Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;                                                                                           |
| 3.12.3 Feature Attribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ł                                                                                           |
| 3.12.4 Final Quality Checking of Extracted Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;                                                                                           |
| CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE IBAJAY RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ;                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;                                                                                           |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                           |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                           |
| 4.1 Summary of Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                           |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,<br>,<br>)                                                                                 |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,<br>,<br>)<br>)                                                                            |
| 4.1 Summary of Activities364.2 Control Survey374.3 Baseline Processing404.4 Network Adjustment404.5 Cross-section and Bridge As-Built survey and Water Level Marking424.6 Validation Points Acquisition Survey46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,<br>,<br>,<br>,<br>,<br>,<br>,                                                             |
| 4.1 Summary of Activities364.2 Control Survey374.3 Baseline Processing404.4 Network Adjustment404.5 Cross-section and Bridge As-Built survey and Water Level Marking424.6 Validation Points Acquisition Survey464.7 River Bathymetric Survey47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                                   |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>,<br>,<br>,<br>,<br>,<br>,                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING         5.1 Data Used for Hydrologic Modeling       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 ) ) ! ; 7 ) ) )                                                                           |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 ) ) ! S ? ) ) ) )                                                                         |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 ))! > 7 <b>)</b> )) .                                                                     |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |
| 4.1 Summary of Activities364.2 Control Survey374.3 Baseline Processing404.4 Network Adjustment404.5 Cross-section and Bridge As-Built survey and Water Level Marking424.6 Validation Points Acquisition Survey464.7 River Bathymetric Survey47CHAPTER 5: FLOOD MODELING AND MAPPING5.1 Data Used for Hydrologic Modeling505.1.1 Hydrometry and Rating Curves505.1.2 Precipitation505.1.3 Rating Curves and River Outflow515.2 RIDF Station525.3 HMS Model54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       60                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       60         5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods       63                                                                                                                                                                                                        |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       47         4.7 River Bathymetric Survey       47 <b>CHAPTER 5: FLOOD MODELING AND MAPPING</b> 50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       60         5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods       63         5.7.1 Hydrograph using the Rainfall Runoff Model       63                                                                                                                                    |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       60         5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods       63         5.7.1 Hydrograph using the Rainfall Runoff Model       63         5.8 River Analysis (RAS) Model Simulation       64                                                                  |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       63         5.7.1 Hydrograph using the Rainfall Runoff Model       63         5.8 River Analysis (RAS) Model Simulation       64         5.9 Flow Depth and Flood Hazard       65                                                                                                                                |                                                                                             |
| 4.1 Summary of Activities       36         4.2 Control Survey       37         4.3 Baseline Processing       40         4.4 Network Adjustment       40         4.5 Cross-section and Bridge As-Built survey and Water Level Marking       42         4.6 Validation Points Acquisition Survey       46         4.7 River Bathymetric Survey       47         CHAPTER 5: FLOOD MODELING AND MAPPING       50         5.1 Data Used for Hydrologic Modeling       50         5.1.1 Hydrometry and Rating Curves       50         5.1.2 Precipitation       50         5.1.3 Rating Curves and River Outflow       51         5.2 RIDF Station       52         5.3 HMS Model       54         5.4 Cross-section Data       59         5.5 Flo 2D Model       59         5.6 Results of HMS Calibration       60         5.7.1 Hydrograph using the Rainfall Runoff Model       63         5.7.1 Hydrograph using the Rainfall Runoff Model       63         5.8 River Analysis (RAS) Model Simulation       64         5.9 Flow Depth and Flood Hazard       65         5.10 Inventory of Areas Exposed to Flooding       72 |                                                                                             |

| REFERENCES                                                                                  | 91  |
|---------------------------------------------------------------------------------------------|-----|
| ANNEX                                                                                       | 92  |
| Annex 1. Technical Specifications of the LIDAR Sensors used in the Ibajay Floodplain Survey | 92  |
| Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey                    | 94  |
| Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey             | 98  |
| Annex 4. The LiDAR Survey Team Composition                                                  | 99  |
| Annex 5. Data Transfer Sheet for Ibajay Floodplain                                          | 100 |
| Annex 6. Flight logs for the flight missions                                                | 103 |
| Annex 7. Flight status reports                                                              | 113 |
| Annex 8. Mission Summary Reports                                                            | 124 |
| Annex 9. Ibajay Model Basin Parameters                                                      | 159 |
| Annex 10. Ibajay Model Reach Parameters                                                     | 160 |
| Annex 11. Ibajay Field Validation Points                                                    | 161 |
| Annex 12. Educational Institutions Affected by flooding in Ibajay Flood Plain               | 167 |
| Annex 13. Health Institutions affected by flooding in Ibajay Floodplain                     | 169 |
| Annex 14. UPC Phil-LiDAR 1 Team Composition                                                 | 170 |

# LIST OF TABLES

| Table 1. Flight planning parameters for the Aquarius LiDAR system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 3                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Table 2. Flight planning parameters for the Gemini LiDAR system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 3                        |
| Table 3. Details of the recovered NAMRIA horizontal control point AKN-43 used as base station for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| LiDAR acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 6                        |
| Table 4. Details of the recovered NAMRIA horizontal control point AKN-42 used as base station for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| LiDAR acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 7                        |
| Table 5. Details of the recovered NAMRIA benchmark AKN-32 used as base station for the LiDAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 8                        |
| Table 6. Details of the recovered NAMRIA horizontall control point CPZ-14 used as base station for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| LiDAR acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 9                        |
| Table 7. Ground control points used during the LiDAR data acquisition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                         |
| Table 8. Flight missions for the LiDAR data acquisition of the Ibajay Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                         |
| Table 9. Actual parameters used during the LiDAR data acquisition of the Ibajay Floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                         |
| Table 10. The list of municipalities and cities surveyed of the Ibajay Floodplain LiDAR acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                         |
| Table 11. Self-calibration Results values for Ibajay flights.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                         |
| Table 12. List of LiDAR blocks for the Ibajay floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                         |
| Table 13. Ibajay classification results in TerraScan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                         |
| Table 14. LiDAR blocks with its corresponding areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                         |
| Table 15. Shift values of each LiDAR block of Ibajay Floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26                         |
| Table 16. Calibration Statistical Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                         |
| Table 17. Validation Statistical Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                         |
| Table 18. Details of the quality checking ratings for the building features extracted for the Ibaiav River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                         |
| Table 19. Building features extracted for Ibajay Floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34                         |
| Table 20. Total length of extracted roads for Ibaiav Floodplain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                         |
| Table 21. Number of extracted water bodies for Ibajay Floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                         |
| Table 22. References used and control points established in the Ibajay River Survey (Source: NAMRIA, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JP-                        |
| TCAGP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                         |
| Table 23. The Baseline processing report for the Ibajay River GNSS static observation survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                         |
| Table 24. Constraints applied to the adjustment of the control points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                         |
| Table 25. Adjusted grid coordinates for the control points used in the Ibajay River flood plain survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41                         |
| Table 26. Adjusted geodetic coordinates for control points used in the Ibajay River Flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| Plain validation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                         |
| Table 27. The reference and control points utilized in the Ibajay River Static Survey, with their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| corresponding locations (Source: NAMRIA, UP-TCAGP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42                         |
| Table 28. RIDF values for the Roxas Rain Gauge, as computed by PAGASA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                         |
| Table 29. Range of calibrated values for the Ibajay River Basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                         |
| Table 30. Summary of the Efficiency Test of the Ibajay HMS Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62                         |
| Table 31. The peak values of the Ibajay HEC-HMS Model outflow at Ibajay Bridge using the Iloilo RIDF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63                         |
| Table 32. Municipalities affected in Ibajay floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                         |
| Table 33. Affected Areas in Ibajay, Aklan during 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73                         |
| Table 34. Affected Areas in Nabas, Aklan during 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76                         |
| Table 35. Affected Areas in Pandan, Antique during 5-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                         |
| Table 36. Affected Areas in Ibajay, Aklan during 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78                         |
| Table 37 Affected Areas in Nabas Aklan during 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81                         |
| Table 57. Allected Aleas in Nabas, Akian during 25-teal Naimain Neturn Feriou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                         |
| Table 38. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Table 39. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83                         |
| Table 39. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period<br>Table 39. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period<br>Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83<br>86                   |
| Table 39. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period<br>Table 39. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period<br>Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period<br>Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period                                                                                                                                                                                                                                                                                                                                                                                                                       | 83<br>86<br>87             |
| Table 37: Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period.         Table 38. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period.         Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period.         Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period.         Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.         Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.         Table 42. Area covered by each warning level with respect to the rainfall scenarios                                                                                                                   | 83<br>86<br>87<br>88       |
| Table 37: Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period.         Table 38. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period.         Table 39. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period.         Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period.         Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.         Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.         Table 42. Area covered by each warning level with respect to the rainfall scenarios         Table 43. Actual Flood Depth versus Simulated Flood Depth at different levels in the Ibajay River Basin. | 83<br>86<br>87<br>88<br>90 |

## **LIST OF FIGURES**

| Figure 1. Map of Ibaiav River Basin (in brown)                                                                                                                                                                                                                                                         | 2          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 2. Flight Plan and base stations used for the Ibajay Floodplain survey using Aquarius and Gemin sensors                                                                                                                                                                                         | <br>ni<br> |
| Figure 3. GPS set-up over AKN-43 located on the concrete sidewalk and recovered in front of the municipal hall of Banga, Aklan and NAMRIA reference point AKN-43 as recovered by the field team<br>Figure 4. GPS set-up over AKN-42 at the open court in Barangay Libang, Makato, Aklan (a) and NAMRIA | 6<br>A     |
| reference point AKN-42 as recovered by the field team.                                                                                                                                                                                                                                                 | 7          |
| Figure 5. GPS set-up over AKN-32 located at the centerpoint of Batan Multi-purpose Sports Center. (a)                                                                                                                                                                                                  |            |
| and NAMRIA reference point AKN-32 as recovered by the field team                                                                                                                                                                                                                                       | 8          |
| Figure 6. GPS set-up over CPZ-14 located at the centerpoint of Batan Multi-purpose Sports Center (a),                                                                                                                                                                                                  |            |
| and NAMRIA reference point CPZ-14 (b) as recovered by the field team.                                                                                                                                                                                                                                  | 9          |
| Figure 7. Actual LiDAR survey coverage of the Ibajay Floodplain                                                                                                                                                                                                                                        | . 12       |
| Figure 8. Schematic diagram for the data pre-processing                                                                                                                                                                                                                                                | 13         |
| Figure 9. Smoothed Performance Metric Parameters of Ibajay Flight 1238A.                                                                                                                                                                                                                               | 14         |
| Figure 10. Solution Status Parameters of Ibajay Flight 1238A                                                                                                                                                                                                                                           | 15         |
| Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Ibajay Floodplain                                                                                                                                                                                                        | . 16       |
| Figure 12. Boundaries of the processed LiDAR data over the Ibajay Floodplain.                                                                                                                                                                                                                          | 17         |
| Figure 13. Image of data overlap for Ibajay floodplain                                                                                                                                                                                                                                                 | 18         |
| Figure 14. Pulse density map of the merged LiDAR data for Ibajay floodplain.                                                                                                                                                                                                                           | 19         |
| Figure 15. Elevation difference Map between flight lines for the Ibajay Floodplain Survey                                                                                                                                                                                                              | 19         |
| Figure 16. Quality checking for Ibajay flight 1238A using the Profile Tool of QT Modeler                                                                                                                                                                                                               | 20         |
| Figure 17. Tiles for Ibajay floodplain (a) and classification results (b) in TerraScan                                                                                                                                                                                                                 | . 21       |
| Figure 18. Point cloud before (a) and after (b) classification.                                                                                                                                                                                                                                        | 21         |
| Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM                                                                                                                                                                                                   | I (d)      |
| in some portion of Ibajay floodplain.                                                                                                                                                                                                                                                                  | 22         |
| Figure 20. Ibajay Floodplain with the available orthophotographs                                                                                                                                                                                                                                       | 23         |
| Figure 21. Sample orthophotograph files for the Ibajay Floodplain                                                                                                                                                                                                                                      | . 23       |
| Figure 22. Portions in the DTW of the ibajay Floodplain – fish pond before (a) and after (b) data retriev<br>a bridge before (c) and after (d) manual editing, and a building before (c) and after (f) manual editing                                                                                  | /al;       |
| Eigure 22. Man of processed LiDAR data for the Ibaiay Eleodolain                                                                                                                                                                                                                                       | 25         |
| Figure 25. Map of Ibajay Eloodolain with validation survey points in green                                                                                                                                                                                                                             | 27         |
| Figure 25. Correlation plot between calibration survey points and LiDAR data                                                                                                                                                                                                                           | 20         |
| Figure 26. Correlation plot between the validation survey points and the LiDAR data                                                                                                                                                                                                                    | 30         |
| Figure 27 Map of Ibajay floodplain with bathymetric survey points in blue                                                                                                                                                                                                                              | 32         |
| Figure 28. Blocks (in blue) of Ibaiav building features that were subjected to OC                                                                                                                                                                                                                      | 33         |
| Figure 29. Extracted features of the Ibajay Floodplain                                                                                                                                                                                                                                                 | 35         |
| Figure 30. Extent of the bathymetric survey (in blue line) in Ibajay River and the LiDAR data validation                                                                                                                                                                                               | 26         |
| Survey (III Teu).                                                                                                                                                                                                                                                                                      | 50<br>27   |
| Figure 31. The GNSS Network established in the Ibajay River Survey.                                                                                                                                                                                                                                    | 57         |
| Makato Municipality, Aklan                                                                                                                                                                                                                                                                             | 20         |
| Figure 33 GNSS base receiver setup Trimble® SDS 852 at AKN-48 on the east approach of Kalibo Bride                                                                                                                                                                                                     | 0C<br>0C   |
| in Broy Bulwang Kalibo City Aklan                                                                                                                                                                                                                                                                      | 28         |
| Figure 34 GNSS base receiver setun Trimble® SPS 852 at LIP-IRA Ibaiav Bridge in Brgy Polo Ibaiav                                                                                                                                                                                                       | 50         |
| Municinality Aklan                                                                                                                                                                                                                                                                                     | 20         |
| Figure 35. Location map of the Ibaiav Bridge cross-section survey                                                                                                                                                                                                                                      | 42         |
| Figure 36. The Ibajay Bridge cross-section survey drawn to scale                                                                                                                                                                                                                                       | 43         |
| Figure 37. The Ibaiav Bridge as-built survey data                                                                                                                                                                                                                                                      | . 44       |
| Figure 38. Painting of water level markings on Ibaiav Bridge                                                                                                                                                                                                                                           | 45         |
| Figure 39. GNSS Receiver Trimble <sup>®</sup> SPS 882 installed on a vehicle for Ground Validation Survey                                                                                                                                                                                              | 46         |
| Figure 40. Extent of the LiDAR ground validation survey (in red) along Aklan West Road and Iloilo-Antic                                                                                                                                                                                                | que        |
| Road                                                                                                                                                                                                                                                                                                   | 47         |

| Figure 41. Photos showing setup for the Bathymetric Survey in Ibajay River - Trimble® SPS 882 Rover in                                                                     | l              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Brgy. Bagcay and Trimble <sup>®</sup> SPS 985 Rover in Brgy. Polo                                                                                                          | 48             |
| Figure 42. The extent of the Ibajay River Bathymetry Survey                                                                                                                | 48             |
| Figure 43. The Ibajay River Bed Profile                                                                                                                                    | 49             |
| Figure 44. Location Map of the Ibajay HEC-HMS model used for calibration                                                                                                   | 50             |
| Figure 45. The cross-section plot of the Buhisan Bridge.                                                                                                                   | 51             |
| Figure 46. The rating curve at San Jose Flow Site, Ibajay, Aklan                                                                                                           | 51             |
| Figure 47. Rainfall and outflow data at the Ibajay River Basin, which was used for modeling                                                                                | 52             |
| Figure 48. The location of the Roxas RIDF station relative to the Ibajay River Basin                                                                                       | 53             |
| Figure 49. The synthetic storm generated for a 24-hour period rainfall for various return periods                                                                          | 53             |
| Figure 50. Soil Map of Ibajay River Basin                                                                                                                                  | 54             |
| Figure 51. Land Cover Map of Ibajay River Basin.                                                                                                                           | 55             |
| Figure 52. Slope Map of the Ibajay River Basin.                                                                                                                            | 56             |
| Figure 53. Stream Delineation Map of Ibajay River Basin                                                                                                                    | 57             |
| Figure 54. Ibajay river basin model generated in HEC-HMS.                                                                                                                  | 58             |
| Figure 55. River cross-section of the Ibajay River through the ArcMap HEC GeoRas tool                                                                                      | 59             |
| Figure 56. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-                                                                       | ·2D            |
| Grid Developer System Pro (FLO-2D GDS Pro)                                                                                                                                 | 60             |
| Figure 57. Outflow Hydrograph of Ibajay Bridge produced by the HEC-HMS model compared with                                                                                 |                |
| observed outflow                                                                                                                                                           | 61             |
| Figure 58. The Outflow hydrograph at the Ibajay Station, generated using the Roxas RIDF simulated in                                                                       |                |
| HEC-HMS                                                                                                                                                                    | 63             |
| Figure 59. Sample output map of the Ibajay RAS Model                                                                                                                       | 64             |
| Figure 60. A 100-year Flood Hazard Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                              | 66             |
| Figure 61. A 100-year Flow Depth Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                                | 67             |
| Figure 62. A 25-year Flood Hazard Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                               | 68             |
| Figure 63. A 25-year Flow Depth Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                                 | 69             |
| Figure 64. A 5-year Flood Hazard Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                                | 70             |
| Figure 65. A 5-year Flood Depth Map for Ibajay Floodplain overlaid on Google Earth imagery                                                                                 | 71             |
| Figure 66. Affected Areas in Ibajay, Akaln during 5-Year Rainfall Return Period                                                                                            | 75             |
| Figure 67. Affected Areas in Nabas, Aklan during 5-Year Rainfall Return Period                                                                                             | 76             |
| Figure 68. Affected Areas in Pandan, Antique during 5-Year Rainfall Return Period                                                                                          | 77             |
| Figure 69. Affected Areas in Ibajay, Aklan during 25-Year Rainfall Return Period                                                                                           | 80             |
| Figure 70. Affected Areas in Nabas, Aklan during 25-Year Rainfall Return Period                                                                                            | 81             |
| Figure 71. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period                                                                                         | 82             |
| Figure 72. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period                                                                                          | 85             |
| Figure 73. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period                                                                                           |                |
|                                                                                                                                                                            | 86             |
| Figure 74. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period                                                                                        | 86<br>87       |
| Figure 74. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period<br>Figure 75. Validation Points for a 25-year Flood Depth Map of the Ibajay Floodplain | 86<br>87<br>89 |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC                                                                                                                           | Asian Aerospace Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ab                                                                                                                            | abutment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ALTM                                                                                                                          | Airborne LiDAR Terrain Mapper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ARG                                                                                                                           | automatic rain gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ATQ                                                                                                                           | Antique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AWLS                                                                                                                          | Automated Water Level Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BA                                                                                                                            | Bridge Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BM                                                                                                                            | benchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAD                                                                                                                           | Computer-Aided Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CN                                                                                                                            | Curve Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CSRS                                                                                                                          | Chief Science Research Specialist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DAC                                                                                                                           | Data Acquisition Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DEM                                                                                                                           | Digital Elevation Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DENR                                                                                                                          | Department of Environment and<br>Natural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DOST                                                                                                                          | Department of Science and<br>Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DPPC                                                                                                                          | Data Pre-Processing Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DREAM                                                                                                                         | Disaster Risk and Exposure<br>Assessment for Mitigation<br>[Program]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DRRM                                                                                                                          | Disaster Risk Reduction and<br>Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DSM                                                                                                                           | Digital Surface Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DTM                                                                                                                           | Digital Terrain Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DVBC                                                                                                                          | Data Validation and Bathymetry<br>Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DVBC<br>FMC                                                                                                                   | Data Validation and Bathymetry<br>Component<br>Flood Modeling Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DVBC<br>FMC<br>FOV                                                                                                            | Data Validation and Bathymetry<br>Component<br>Flood Modeling Component<br>Field of View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DVBC<br>FMC<br>FOV<br>GiA                                                                                                     | Data Validation and Bathymetry<br>Component<br>Flood Modeling Component<br>Field of View<br>Grants-in-Aid                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP                                                                                              | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS                                                                                      | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS                                                                               | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS                                                                | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Modeling System</li> </ul>                                                                                                                                                                                                                                                 |
| DVBC<br>FMC<br>FOV<br>GiA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS                                                 | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Modeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> </ul>                                                                                                                                                                              |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS                                                 | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Knodeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> <li>High Chord</li> </ul>                                                                                                                                                         |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS<br>HEC-<br>RAS                                  | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Knodeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> <li>High Chord</li> <li>Inverse Distance Weighted<br/>[interpolation method]</li> </ul>                                                                                           |
| DVBC<br>FMC<br>FOV<br>GiA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS<br>HC<br>IDW                                    | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Modeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> <li>High Chord</li> <li>Inverse Distance Weighted<br/>[interpolation method]</li> <li>Inertial Measurement Unit</li> </ul>                                                         |
| DVBC<br>FMC<br>FOV<br>GIA<br>GCP<br>GNSS<br>GPS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS<br>HC<br>IDW<br>IMU                      | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Knodeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> <li>High Chord</li> <li>Inverse Distance Weighted<br/>[interpolation method]</li> <li>Inertial Measurement Unit</li> <li>knots</li> </ul>                                         |
| DVBC<br>FMC<br>FOV<br>GiA<br>GCP<br>GNSS<br>GPS<br>HEC-<br>HMS<br>HEC-<br>RAS<br>HC<br>IDW<br>IDW<br>IMU<br>IMU<br>IMU<br>IAS | <ul> <li>Data Validation and Bathymetry<br/>Component</li> <li>Flood Modeling Component</li> <li>Field of View</li> <li>Grants-in-Aid</li> <li>Ground Control Point</li> <li>Global Navigation Satellite System</li> <li>Global Positioning System</li> <li>Hydrologic Engineering Center -<br/>Hydrologic Modeling System</li> <li>Hydrologic Engineering Center -<br/>River Analysis System</li> <li>High Chord</li> <li>Inverse Distance Weighted<br/>[interpolation method]</li> <li>Inertial Measurement Unit</li> <li>knots</li> <li>LiDAR Data Exchange File format</li> </ul> |

| LGU          | local government unit                                                                      |
|--------------|--------------------------------------------------------------------------------------------|
| Lidar        | Light Detection and Ranging                                                                |
| LMS          | LiDAR Mapping Suite                                                                        |
| m AGL        | meters Above Ground Level                                                                  |
| MMS          | Mobile Mapping Suite                                                                       |
| MSL          | mean sea level                                                                             |
| NAM-<br>RIA  | National Mapping and Resource<br>Information Authority                                     |
| NSTC         | Northern Subtropical Convergence                                                           |
| PAF          | Philippine Air Force                                                                       |
| PAGASA       | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration          |
| PDOP         | Positional Dilution of Precision                                                           |
| РРК          | Post-Processed Kinematic<br>[technique]                                                    |
| PRF          | Pulse Repetition Frequency                                                                 |
| PTM          | Philippine Transverse Mercator                                                             |
| QC           | Quality Check                                                                              |
| QT           | Quick Terrain [Modeler]                                                                    |
| RA           | Research Associate                                                                         |
| RIDF         | Rainfall-Intensity-Duration-<br>Frequency                                                  |
| RMSE         | Root Mean Square Error                                                                     |
| SAR          | Synthetic Aperture Radar                                                                   |
| SCS          | Soil Conservation Service                                                                  |
| SRTM         | Shuttle Radar Topography Mission                                                           |
| SRS          | Science Research Specialist                                                                |
| SSG          | Special Service Group                                                                      |
| ТВС          | Thermal Barrier Coatings                                                                   |
| UPC          | University of the Philippines Cebu                                                         |
| UP-          | University of the Philippines –                                                            |
| TCAGP        | Training Center for Applied Geodesy and Photogrammetry                                     |
| TCAGP<br>UTM | Training Center for Applied Geodesy<br>and Photogrammetry<br>Universal Transverse Mercator |

## CHAPTER 1: OVERVIEW OF THE PROGRAM AND IBAJAY RIVER

Enrico C. Paringit, Dr. Eng. and Jonnifer R. Sinogaya, PhD.

#### 1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Cebu (UPC). UPC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 22 river basins in the Western Visayas Region. The university is located in Cebu City in the province of Cebu.

#### 1.2 Overview of the Ibajay River Basin

Ibajay River Basin is located in the Province of Aklan located at the north of Panay Island and covers portions of the barangays of Poblacion, Colongcolong, Polo, Tul-Ang, Laguinbanua, Bagacay, Rizal, Unat, Naligusan, Agdugayan, and Naile in Ibajay, Aklan. The DENR River Basin Control Office identified the basin to have a drainage area of 246 km<sup>2</sup> and an estimated annual run-off of 386 million cubic meter (MCM) (RBCO, 2015).

The floodplain and drainage area of 69 km<sup>2</sup> and 57.189 km<sup>2</sup> respectively covers the municipalities of Ibajay, Pandan, Tangalan, Makato and Malinao. The floodplain is 100% covered with LiDAR data which compromises 7 blocks. The LiDAR data was calibrated then mosaicked with an RMSE of 0.09 and then bathy burned. The bathy survey conducted reached a total length of 9.57 km starting from Agdugayan, Ibajay up to the river mouth with 1543 points surveyed. There are 9320 buildings, 78.85 km roads, 275 waterbodies and 17 bridges digitized based from the LiDAR data. Feature Extraction Attribution was conducted and among the building features, 8858 of them are Residential, 212 are schools and 23 are Medical Institutions.



Figure 1. Map of Ibajay River Basin (in brown)

Its main stem, Ibajay River, is among the twenty-two (22) river system in Visayas Region. According to the 2015 national census of NSO, a total of 17,006 persons are residing within the immediate vicinity of the river which is distributed among eleven (11) barangays in the municipality of Ibajay (NSO, 2015). Aside from the municipality's rich in agricultural resources, handicrafts, pottery and tourism largely play on their economic development. Their local products includes handicrafts made from Nito fern, bricks, vases and jars.Some of the tourist spots in the municipality are Campo Verde, Katunggan It Ibajay Mangrove Park and Ibajay Falls and Ibajay River (http://aklan.gov.ph/tourism/ibajay/, 2017). Last December 30, 2012, province of Aklan has been placed under a state of calamity due to flooding brought by Tropical Storm "Quinta". Eight of the Aklan's 17 towns were affected by flooding which includes Ibajay River (http://newsinfo. inquirer.net/332007/aklan-placed-under-state-of-calamity, 2017).

The flood hazard map produced covers the 16.17 km<sup>2</sup>, 20.64 km<sup>2</sup>, 23.22 km<sup>2</sup> for the 5-year, 25-year, and 100 year rainfall return period in Ibajay which affects 27 barangays as well as in Nabas which affects 2 barangays and in Pandan which affects 4 barangays. A flood depth validation was conducted using 210 randomly generated points which is spread throughout the 6 ranges namely 0m-0.2m, 0.21m-0.5m, 0.51m-1m, 1.01m-2m, 2.10m-5m, 5m+ depth using the 25-yr rainfall flood depth map. It yielded a 0.966 m RMSE.

A rating curve was developed at San Jose Flow Site, Ibajay, Aklan, which shows the relationship between the observed water levels at San Jose Flow Site and outflow of the watershed at this location. This rating curve equation, expressed as Q = 66.291e0.5476x, was used to compute the river outflow at San Jose Flow Site for the calibration of the HEC-HMS model. The resulting outflow was used to simulate the flooded areas using HEC-RAS. The simulated model will be an integral part in determining the real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website.

## CHAPTER 2: LIDAR DATA ACQUISITION OF THE IBAJAY FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Jasmine T. Alviar, and Mr. Darryl M. Austria

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Ibajay floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Ibajay Floodplain in Aklan. These flight missions were planned for an average of 21 lines and ran for at most four and a half hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1 and Table 2. Figure 2 shows the flight plan for Ibajay floodplain survey.

| Block Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
|------------|-----------------------------|----------------|----------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| BLK 38G    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |
| BLK 38I    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |
| BLK 38D    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |
| BLK 38F    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |
| BLK 38C    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |
| BLK 38J    | 600                         | 30             | 36                   | 70                                              | 40                        | 130                    | 5                                 |
| BLK 38H    | 600                         | 30             | 36                   | 50                                              | 40                        | 130                    | 5                                 |

Table 1. Flight planning parameters for the Aquarius LiDAR system.

Table 2. Flight planning parameters for the Gemini LiDAR system.

| Block Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
|------------|-----------------------------|----------------|----------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| BLK 38A    | 800                         | 25             | 50                   | 125                                             | 40                        | 130                    | 5                                 |
| BLK 38B    | 800                         | 25             | 50                   | 125                                             | 40                        | 130                    | 5                                 |
| BLK 38C    | 1000                        | 30             | 50                   | 142                                             | 40                        | 130                    | 5                                 |
| BLK 38D    | 1000                        | 30             | 40                   | 125                                             | 50                        | 130                    | 5                                 |
| BLK 38E    | 1200                        | 30             | 30                   | 100                                             | 50                        | 130                    | 5                                 |



Figure 2. Flight Plan and base stations used for the Ibajay Floodplain survey using Aquarius and Gemini sensors.

#### 2.2 Ground Base Stations

The field team was able to recover four (4) NAMRIA ground control points: AKN-43, AKN-42, AKN-32, and CPZ-14, which are all of second (2nd) order accuracy.

The certifications for the base stations are found in ANNEX 2 while the baseline processing reports for the established control points are found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey from March 15 to 22, 2014 and September 18 to 30, 2015. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985 and TOPCON GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Ibajay floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Ibajay Floodplain LiDAR Survey. Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area of the floodplain, while Table 3 to Table 6 show the details about the following NAMRIA control stations and established points. Table 7, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.



Figure 3. GPS set-up over AKN-43 located on the concrete sidewalk and recovered in front of the municipal hall of Banga, Aklan and NAMRIA reference point AKN-43 as recovered by the field team.

| Table 3. Details of the recovered NAMRIA horizontal control point AKN-43 used as base station for the |
|-------------------------------------------------------------------------------------------------------|
| LiDAR acquisition.                                                                                    |

| Station Name                                                                           | AKN-43                                      |                                                                       |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|--|--|
| Order of Accuracy                                                                      |                                             | 2nd                                                                   |  |  |
| Relative Error (horizontal positioning)                                                | 1 in 50,000                                 |                                                                       |  |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 38' 27.12194" North<br>122° 19' 53.01891" East<br>17.74900 meters |  |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 427093.296 meters<br>1287298.051 meters                               |  |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 38' 22.52687" North<br>122o 19' 58.16083" East<br>72.44500 meters |  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 427118.81 meters<br>1286847.47 meters                                 |  |  |



Figure 4. GPS set-up over AKN-42 at the open court in Barangay Libang, Makato, Aklan (a) and NAMRIA reference point AKN-42 as recovered by the field team.

| Table 4. Details of the recovered NAMRIA horizontal control point AKN-42 used as base station for the LiDAR |
|-------------------------------------------------------------------------------------------------------------|
| acquisition.                                                                                                |

| Station Name                                                                           | AKN-42                                      |                                                                      |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                      |  |  |
| Relative Error (horizontal positioning)                                                | 1 in 50,000                                 |                                                                      |  |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 41' 4.84235" North<br>122° 15' 49.78166" East<br>17.77900 meters |  |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 419737.946 meters<br>1292162.5 meters                                |  |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 41' 0.23066" North<br>122° 15' 54.92018" East<br>72.20000 meters |  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 419766.04 meters<br>1291710.22 meters                                |  |  |



Figure 5. GPS set-up over AKN-32 located at the centerpoint of Batan Multi-purpose Sports Center, (a) and NAMRIA reference point AKN-32 as recovered by the field team.

| Station Name                                                                           | AKN-32                                      |                                                                      |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|--|
| Order of Accuracy                                                                      | 2nd                                         |                                                                      |  |  |
| Relative Error (horizontal positioning)                                                | 1 in 50,000                                 |                                                                      |  |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 35' 14.35956" North<br>122° 29' 42.04171" East<br>3.89400 meters |  |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 444924.599 meters<br>1281338.493 meters                              |  |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 11° 35′ 9.79172″ North<br>122° 29′ 47.18726″ East<br>59.12600 meters |  |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 444943.88 meters<br>1280890.00 meters                                |  |  |



Figure 6. GPS set-up over CPZ-14 located at the centerpoint of Batan Multi-purpose Sports Center (a), and NAMRIA reference point CPZ-14 (b) as recovered by the field team.

| Table 6. Details of the recovered NAMRIA horizontall control point CPZ-14 used as base station for the LiDAR |
|--------------------------------------------------------------------------------------------------------------|
| acquisition.                                                                                                 |

| Station Name                                                                           | CPZ-14                                      |                                                                      |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
| Order of Accuracy                                                                      |                                             | 2nd                                                                  |  |
| Relative Error (horizontal positioning)                                                | 1 ir                                        | ז 50,000                                                             |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 11°33'24.51899" North<br>122° 47'34.41876" East<br>4.91900 meters    |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 477410.249 meters<br>1277923.165 meters                              |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 11°33' 19.98412" North<br>122° 47' 39.56494" East<br>60.96000 meters |  |
| Grid Coordinates, Universal Transverse<br>Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 477418.16 meters<br>1277475.87 meters                                |  |

| Date Surveyed      | Flight Number | Mission Name    | <b>Ground Control Points</b>      |
|--------------------|---------------|-----------------|-----------------------------------|
| March 15, 2014     | 1214A         | 3BLK38G074A     | AKN-43, AKN 42                    |
| March 19, 2014     | 1232A         | 3BLK38G078B     | AKN-43, AKN 42                    |
| March 12, 2014     | 1238A         | 3BLK38GS080A    | AKN-43, AKN 42                    |
| March 21, 2014     | 1240A         | 3BLK38HS080B    | AKN-43, AKN 42                    |
| March 22, 2014     | 1242A         | 3BLK38V081A     | AKN-43, AKN 42                    |
| September 18, 2015 | 2742G         | 2BLK38D261A     | AKN-43, AKN 42                    |
| September 19, 2015 | 2746G         | 2BLK38ADSE262A  | AKN-43, AKN 42                    |
| September 24, 2015 | 2766G         | 2BLK38C267A     | AKN-43, AKN 42                    |
| September 25, 2015 | 2770G         | 2BLK38BDVES268A | AKN-43, AKN 42,<br>AKN-32         |
| September 30, 2015 | 2790G         | 2BLK38BSF273A   | AKN-43, AKN 42,<br>AKN-32, CPZ-14 |

Table 7. Ground control points used during the LiDAR data acquisition.

#### 2.3 Flight Missions

A total of ten (10) missions were conducted to complete the LiDAR data acquisition in Ibajay floodplain, for a total of thirty-six hours and twenty-one minutes (36+21) of flying time for RP-C9322 and RP-C9022 (See ANNEX 6). All missions were acquired using the Gemini and Aquarius LiDAR systems. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 8, while the actual parameters used during the LiDAR data acquisition are presented in Table 9.

| Elight Surveyed  |                  | Area<br>Surveyed   | No. of                              | Flying Hours                                   |                                       |                    |    |     |
|------------------|------------------|--------------------|-------------------------------------|------------------------------------------------|---------------------------------------|--------------------|----|-----|
| Date<br>Surveyed | Flight<br>Number | Plan Area<br>(km²) | Surveyed<br>Area (km <sup>2</sup> ) | within the<br>Floodplain<br>(km <sup>2</sup> ) | outside<br>the<br>Floodplain<br>(km²) | Images<br>(Frames) | Hr | Min |
| 15-Mar-14        | 1214A            | 139.3              | 198.29                              | 1.14                                           | 197.15                                | -                  | 2  | 29  |
| 19-Mar-14        | 1232A            | 83.78              | 75.45                               | 0                                              | 75.45                                 | -                  | 3  | 5   |
| 12-Mar-14        | 1238A            | 112.01             | 84.75                               | 15.34                                          | 69.41                                 | -                  | 4  | 47  |
| 21-Mar-14        | 1240A            | 114.34             | 70.09                               | 3.93                                           | 66.16                                 | -                  | 2  | 41  |
| 22-Mar-14        | 1242A            | 85.02              | 18.21                               | 7.26                                           | 10.95                                 | -                  | 2  | 29  |
| 18-Sep-15        | 2742G            | 138.91             | 121.57                              | 1.16                                           | 120.41                                | -                  | 3  | 53  |
| 19-Sep-15        | 2746G            | 142.57             | 170.8                               | 18.14                                          | 152.66                                | 1056               | 4  | 6   |
| 24-Sep-15        | 2766G            | 112.3              | 162.23                              | 0                                              | 162.23                                | -                  | 4  | 5   |
| 25-Sep-15        | 2770G            | 230.37             | 198.77                              | 18.55                                          | 180.22                                | 898                | 4  | 23  |
| 30-Sep-15        | 2790G            | 140.57             | 157.9                               | 46.52                                          | 111.38                                | 953                | 4  | 23  |
| TOTAL            |                  | 703.53             | 797.35                              | 57.19                                          | 740.16                                | 2907               | 32 | 261 |

Table 8. Flight missions for the LiDAR data acquisition of the Ibajay Floodplain.

| Date Surveyed      | Flight<br>Number | Flying Height<br>(AGL) (m) | Overlap<br>(%) | Field of<br>View | PRF (kHz) | Scan<br>Frequency<br>(Hz) | Speed<br>of Plane<br>(Kts) |
|--------------------|------------------|----------------------------|----------------|------------------|-----------|---------------------------|----------------------------|
| March 15, 2014     | 1214A            | 600                        | 30             | 36               | 50        | 40                        | 130                        |
| March 19, 2014     | 1232A            | 600                        | 30             | 36               | 50        | 40                        | 130                        |
| March 12, 2014     | 1238A            | 600                        | 30             | 36               | 50        | 40                        | 130                        |
| March 21, 2014     | 1240A            | 600                        | 30             | 36               | 50        | 40                        | 130                        |
| March 22, 2014     | 1242A            | 600                        | 30             | 36               | 70        | 40                        | 130                        |
| September 18, 2015 | 2742G            | 800/1000                   | 30             | 40/30            | 125       | 50/40                     | 130                        |
| September 19, 2015 | 2746G            | 800                        | 30             | 40               | 125       | 50                        | 130                        |
| September 24, 2015 | 2766G            | 1000                       | 30             | 40               | 125       | 40                        | 130                        |
| September 25, 2015 | 2770G            | 800                        | 30             | 40               | 125       | 50                        | 130                        |
| September 30, 2015 | 2790G            | 1000/800/600               | 30             | 40/30            | 125/100   | 50                        | 130                        |

Table 9. Actual parameters used during the LiDAR data acquisition of the Ibajay Floodplain.

#### 2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Ibajay floodplain (See ANNEX 7). It is located in the province of Aklan with majority of the floodplain situated within the municipalities of Lezo, Numancia, New Washington, Kalibo, and Banga. The list of municipalities surveyed with at least one (1) square kilometer coverage is shown in Table 10. Figure 7, on the other hand, shows the actual coverage of the LiDAR acquisition for the Ibajay floodplain.

| Table 10. The list of municipalities and cities | surveyed of the I | bajav Floodplain | LiDAR acquisition. |
|-------------------------------------------------|-------------------|------------------|--------------------|
| 1                                               |                   | · J / L          | L                  |

| Province | Municipality/City | Area of Municipality/<br>City (km <sup>2</sup> ) | Total Area<br>Surveyed (km <sup>2</sup> ) | Percentage of Area<br>Surveyed |
|----------|-------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|
|          | Lezo              | 20.24                                            | 20.06                                     | 99.11%                         |
|          | Numancia          | 23.62                                            | 22.72                                     | 96.19%                         |
|          | New Washington    | 48.08                                            | 43.67                                     | 90.82%                         |
|          | Kalibo            | 34.09                                            | 30.52                                     | 89.53%                         |
|          | Banga             | 66.1                                             | 58.69                                     | 88.79%                         |
|          | Tangalan          | 63.43                                            | 48.75                                     | 76.85%                         |
| Aklan    | Makato            | 63.68                                            | 46.73                                     | 73.39%                         |
| Акіал    | Ibajay            | 132.35                                           | 94.48                                     | 71.38%                         |
|          | Batan             | 80.55                                            | 32                                        | 39.73%                         |
|          | Malinao           | 220.46                                           | 78.05                                     | 35.40%                         |
|          | Nabas             | 83.38                                            | 20.99                                     | 25.17%                         |
|          | Balete            | 108.4                                            | 21.12                                     | 19.48%                         |
|          | Libacao           | 173.15                                           | 29.25                                     | 16.89%                         |
|          | Madalag           | 291.29                                           | 32.13                                     | 11.03%                         |
| Capiz    | Jamindan          | 500.16                                           | 37.99                                     | 7.56%                          |
| Antique  | Pandan            | 153.32                                           | 35.3                                      | 23.02%                         |
| TOTAL    |                   | 2062.3                                           | 652.45                                    | 31.64%                         |



Figure 7. Actual LiDAR survey coverage of the Ibajay Floodplain.

## CHAPTER 3: LIDAR DATA PROCESSING OF THE IBAJAY FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Joida F. Prieto , Engr. Ma. Ailyn L. Olanda, Engr. Ma. Joanne I. Balaga, Eng. Czarina Jean P. Añonuevo , Franklin D. Maraya, Chester B. de Guzman

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.





Figure 8. Schematic diagram for the data pre-processing.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Ibajay Floodplain can be found in ANNEX 5. The missions flown during the conduct of the first survey in March 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Aquarius system while missions acquired during the last survey in September 2015 were flown using the Gemini system over Western Visayas.

The Data Acquisition Component (DAC) transferred a total of 174.65 Gigabytes of Range data, 2.06 Gigabytes of POS data, 525 Megabytes of GPS base station data, and 366.70 Gigabytes of raw image data to the data server on March 15, 2014 for the first survey and September 30, 2015 for the last survey, which was verified for accuracy and completeness by the DPPC. The whole dataset for the Ibajay Floodplain was fully transferred on October 9, 2015, as indicated on the Data Transfer Sheets for Ibajay floodplain.

#### 3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 1238A, one of the Ibajay flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of March 21, 2014, 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.



Figure 9. Smoothed Performance Metrics of Ibajay Flight 1238A.

The time of flight was from 432000 seconds to 447000 seconds, which corresponds to morning of March 21, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 9 shows that the North position RMSE peaks at 1.60 centimeters, the East position RMSE peaks at 3.20 centimeters, and the Down position RMSE peaks at 9.60 centimeters, which are within the prescribed accuracies described in the methodology.



Figure 10. Solution Status Parameters of Ibajay Flight 1238A.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Ibajay Flight 1238A are shown in Figure 10. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 6 and 8, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also remained at 0 for the majority of the survey stayed at the value of 0. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Ibajay flights is shown in Figure 11.



Figure 11. Best estimated trajectory of the LiDAR missions conducted over the Ibajay Floodplain.

#### 3.4 LiDAR Point Cloud Computation

The produced LAS contains 12 flight lines, with each flight line containing one channel, since the Gemini and Aquarius system both contains only one channel. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Ibajay floodplain are given in Table 11.

| Parameter                                                                | Computed Value |
|--------------------------------------------------------------------------|----------------|
| Boresight Correction stdev<br>(<0.001degrees)                            | 0.000527       |
| IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees) | 0.000902       |
| GPS Position Z-correction stdev<br>(<0.01meters)                         | 0.0024         |

The optimum accuracy values for all Ibajay flights were also calculated which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (ANNEX 8).

#### 3.5 LiDAR Quality Checking

The boundaries of the processed LiDAR data are shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 12. Boundaries of the processed LiDAR data on top of the SAR Elevation Data over the Ibajay Floodplain..

A total area of 422.23 square kilometers (sq. kms.) were covered by the Ibajay flight missions as a result of ten (10) flight acquisitions, which were grouped and merged into seven (7) blocks accordingly, as portrayed in Table 12.

| LiDAR Blocks            | Flight Numbers | Area (sq. km) |  |
|-------------------------|----------------|---------------|--|
| Aklan Blk38G            | 1232A          | 141.61        |  |
|                         | 1238A          |               |  |
|                         | 1214A          |               |  |
| Aklan Blk38Voids        | 1242A          | 15.66         |  |
| Aklan Blk38I_additional | 1240A          | 5.80          |  |
| Aklan Blk38D            | 2742G          | 35.95         |  |
|                         | 2746G          |               |  |
|                         | 2770G          |               |  |
| Aklan Blk38C            | 2766G          | 31.37         |  |
| Capiz-Aklan Blk38A      | 2746G          | 57.19         |  |
| Capiz-Aklan Blk38B      | 2770G          | 134.65        |  |
|                         | 2790G          |               |  |
| TOTAL                   |                | 422.23 sq.km  |  |

Table 12. List of LiDAR blocks for the Ibajay floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Gemini and Aquarius system both employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 13. Image of data overlap for Ibajay floodplain.

The overlap statistics per block for the Ibajay floodplain can be found in the Mission Summary Reports (ANNEX 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 29.60% and 50.46% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 14. As seen in the figure below, it was determined that all LiDAR data for the Ibajay Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 4.12 points per square meter.



Figure 14. Pulse density map of the merged LiDAR data for Ibajay floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.



Figure 15. Elevation difference Map between flight lines for the Ibajay Floodplain Survey.

A screen-capture of the processed LAS data from Ibajay flight 1238A loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.



Figure 16. Quality checking for Ibajay flight 1238A using the Profile Tool of QT Modeler.

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 175,497,281            |
| Low Vegetation    | 195,609,176            |
| Medium Vegetation | 505,537,454            |
| High Vegetation   | 643,811,711            |
| Building          | 15,501,211             |

Table 13. Ibajay classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Ibajay floodplain is shown in Figure 17. A total of 747 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 13 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 803.61 meters and 37.07 meters respectively.



Figure 17. Tiles for Ibajay floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are highlighted in orange, while the vegetation are in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.



Figure 18. Point cloud before (a) and after (b) classification.

The production of the last return (V\_ASCII) and secondary (T\_ASCII) DTM as well as the first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 19. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present such as buildings and vegetation.



Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Ibajay floodplain.

#### 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 386 1km by 1km tiles area covered by the Ibajay floodplain is shown in Figure 20. After the tie point selection to fix photo misalignments, color points were added to smooth out visual inconsistencies along the seam lines where photos overlap. The Ibajay floodplain attained a total of 365.17 sq. kms. in orthophotograph coverage comprised of 3,326 images. A zoomed-in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.



Figure 20. Ibajay Floodplain with the available orthophotographs.



Figure 21. Sample orthophotograph tiles for the Ibajay Floodplain.

#### 3.8 DEM Editing and Hydro-Correction

Seven (7) mission blocks were processed for the Ibajay Floodplain Survey. These blocks are composed of Aklan and Capiz\_Aklan blocks with a total area of 422.23 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

| LiDAR Blocks            | Area (sq.km) |  |
|-------------------------|--------------|--|
| Aklan_Blk38C            | 31.37        |  |
| Aklan_Blk38D            | 35.95        |  |
| Aklan_Blk38G            | 141.61       |  |
| Aklan_Blk38I_additional | 5.80         |  |
| Aklan_Blk38Voids        | 15.66        |  |
| Capiz_Aklan_Blk38A      | 57.19        |  |
| Capiz_Aklan_Blk38B      | 134.65       |  |
| TOTAL                   | 422.23 sq.km |  |

Table 14. LiDAR blocks with its corresponding areas.

Figure 22 shows portions of a DTM before and after manual editing. As evident in the figure, the fish pond (Figure 22a) was misclassified and removed during the classification process. To complete the surface, the fish pond (Figure 22b) was retrieved and reclassified through data retrieval to allow the correct water flow. Likewise, the bridge (Figure 22c) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 22d). Another example is a mountain that is interpolated in the DTM after classification (Figure 22e) and has to be retrieved through manual editing (Figure 22f).



Figure 22. Portions in the DTM of the Ibajay Floodplain – fish pond before (a) and after (b) data retrieval; a bridge before (c) and after (d) manual editing, and a building before (e) and after (f) manual editing.

#### 3.9 Mosaicking of Blocks

CapizAklan\_Blk38D was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Ibajay Floodplain is shown in Figure 23. It can be seen that the entire Ibajay floodplain is 100% covered by LiDAR data.

| Mission Blocks          | Shift Values (meters) |      |       |
|-------------------------|-----------------------|------|-------|
|                         | x                     | У    | z     |
| Aklan_Blk38C            | NA                    | NA   | NA    |
| Aklan_Blk38D            | -0.48                 | 0.22 | 0.13  |
| Aklan_Blk38G            | -0.48                 | 0.22 | -0.06 |
| Aklan_Blk38I_additional | -0.53                 | 0.22 | 0.07  |
| Aklan_Blk38Voids        | -0.48                 | 0.22 | 0.08  |
| Capiz_Aklan_Blk38A      | -0.48                 | 0.22 | -1.01 |
| Capiz_Aklan_Blk38B      | -0.48                 | 0.22 | -0.56 |

Table 15. Shift values of each LiDAR block of Ibajay Floodplain.



Figure 23. Map of processed LiDAR data for the Ibajay Floodplain.

#### 3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Ibajay to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 3,836 points were gathered for the Ibajay floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Ibajay because during the mosaicking process, each LiDAR block was referred to the calibrated Jalaur DEM. Therefore, the mosaicked DEM of Ibajay can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Jalaur LiDAR DTM and ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.71 meters with a standard deviation of 0.17 meters. Calibration of Jalaur LiDAR data was done by subtracting the height difference value, 1.71 meters, to Jalaur mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between Jalaur LiDAR data and calibration data. These values were also applicable to the Ibajay DEM.


Figure 24. Map of Ibajay Floodplain with validation survey points in green



Figure 25. Correlation plot between calibration survey points and LiDAR data.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 1.71           |
| Standard Deviation               | 0.17           |
| Average                          | -1.70          |
| Minimum                          | -2.13          |
| Maximum                          | -1.16          |

Table 16. Calibration Statistical Measures

A total of 5,421 survey points that are near and within the Ibajay flood plain were used for the validation of the calibrated Ibajay DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.15 meters, as shown in Table 17.



Figure 26. Correlation plot between the validation survey points and the LiDAR data.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| RMSE                             | 0.17           |
| Standard Deviation               | 0.15           |
| Average                          | 0.08           |
| Minimum                          | -0.41          |
| Maximum                          | 0.50           |

Table 17. Validation Statistical Measures

## 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Ibajay with a total of 1,542 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.35 meters. The extent of the bathymetric survey done by the CSU's Field Survey Team (FST) in coordination with Data Validation and Bathymetry Component (DVBC) in Ibajay integrated with the processed LiDAR DEM is shown in Figure 27.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 27. Map of Ibajay floodplain with bathymetric survey points in blue.

## 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

## 3.12.1 Quality Checking of Digitized Features' Boundary

Ibajay floodplain, including its 200-m buffer, has a total area of 65.06 sq km. For this area, a total of 5.0 sq. km., corresponding to a total of 1,410 building features, were considered for QC. Figure 28 shows the QC blocks for the Ibajay floodplain.



Figure 28. Blocks (in blue) of Ibajay building features that were subjected to QC.

#### Quality checking of Ibajay building features resulted in the ratings shown in Table 18.

Table 18. Details of the quality checking ratings for the building features extracted for the Ibajay River Basin

| Floodplain | Completeness | Correctness | Quality | Remarks |
|------------|--------------|-------------|---------|---------|
| Ibajay     | 100.00       | 99.86       | 99.72   | PASSED  |

## 3.12.2 Height Extraction

Height extraction was done for 9,389 building features in Ibajay floodplain. Of these building features, 69 buildings were filtered out after height extraction, resulting to 9,320 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 17.72 meters.

## 3.12.3 Feature Attribution

The feature attribution survey was conducted through a participatory community-based mapping in coordination with the Local Government Units of the Municipality/City. The research associates of Phil-LiDAR 1 team visited local barangay units and interviewed local key personnel and officials who possessed expert knowledge of their local environments to identify and map out features.

Maps were displayed on a laptop and were presented to the interviewees for identification. The displayed map includes the orthophotographs, Digital Surface Models, existing landmarks, and extracted feature shapefiles. Physical surveys of the barangay were also done by the Phil-LiDAR 1 team every after interview for validation. The number of days by which the survey was conducted was dependent on the number of features and number of barangays included in the flood plain of the river basin.

Table 19 summarizes the number of building features per type, while Table 20 shows the total length of each road type. Table 21, on the other hand, shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 8858            |
| School                                  | 212             |
| Market                                  | 15              |
| Agricultural/Agro-Industrial Facilities | 3               |
| Medical Institutions                    | 23              |
| Barangay Hall                           | 24              |
| Military Institution                    | 2               |
| Sports Center/Gymnasium/Covered Court   | 12              |
| Telecommunication Facilities            | 0               |
| Transport Terminal                      | 0               |
| Warehouse                               | 4               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 0               |
| Police Station                          | 1               |
| Water Supply/Sewerage                   | 1               |
| Religious Institutions                  | 43              |
| Bank                                    | 6               |
| Factory                                 | 0               |
| Gas Station                             | 7               |
| Fire Station                            | 0               |
| Other Government Offices                | 19              |
| Other Commercial Establishments         | 61              |
| Others                                  | 29              |
| Total                                   | 9320            |

Table 19. Building features extracted for Ibajay Floodplain.

| Road Network Length (km) |                  |                            |                    |               |        |       |
|--------------------------|------------------|----------------------------|--------------------|---------------|--------|-------|
| Floodplain               | Barangay<br>Road | City/<br>Municipal<br>Road | Provincial<br>Road | National Road | Others | Total |
| Ibajay                   | 24.00            | 14.97                      | 30.02              | 9.12          | 0.74   | 78.85 |

Table 20. Total length of extracted roads for Ibajay Floodplain.

Table 21. Number of extracted water bodies for Ibajay Floodplain.

| Floodplain | Rivers/<br>Streams | Lakes/Ponds | Sea | Dam | Fish Pen | Total |
|------------|--------------------|-------------|-----|-----|----------|-------|
| Lipadas    | 36                 | 0           | 0   | 237 | 2        | 275   |

A total of 7 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

## 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 29 shows the completed Digital Surface Model (DSM) of the Ibajay floodplain overlaid with its ground features.



Figure 29. Extracted features of the Ibajay Floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE IBAJAY RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

## 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Ibajay River on October 29 to November 7, 2015 with the following scope of work: reconnaissance; bathymetric survey, cross-section, bridge as-built and water level marking of Ibajay Bridge abutment in Brgy. Polo, Ibajay; validation point acquisition of about 38.6 km; and bathymetric survey from Brgy. Agdugayan down to the mouth of the river in Brgy. Polo, Ibajay, Aklan, with an approximate length of 8.69 km using GNSS PPK survey technique (Figure 30).



Figure 30. Extent of the bathymetric survey (in blue line) in Ibajay River and the LiDAR data validation survey (in red).

## 4.2 Control Survey

The GNSS network used for Ibajay River survey is composed of a single loop established on October 1, 2014 occupying the following reference points: SRS-53, a second order GCP in Brgy. Poblacion, Municipality of San Agustin, Surigao Del Sur; and SS-202, a first order BM in Brgy. Otieza, Municipality of San Agustin, Surigao Del Sur.

A control point was established along approach of Ibajay Bridge namely, UP-IBA in Brgy. Polo, Ibajay, Aklan.

Table 22 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 31 shows the GNSS network established in the Ibajay River Survey.



Figure 31. The GNSS Network established in the Ibajay River Survey.

Table 22. References used and control points established in the Ibajay River Survey (Source: NAMRIA, UP-TCAGP).

|                  | Geographic Coordinates (WGS UTM Zone 52N) |                 |                  |                            |                           |                               |  |
|------------------|-------------------------------------------|-----------------|------------------|----------------------------|---------------------------|-------------------------------|--|
| Control<br>Point | Order of Accuracy                         | Latitude        | Longitude        | Ellipsoid<br>Height<br>(m) | Elevation<br>(MSL)<br>(m) | Date of<br>Establish-<br>ment |  |
| AK-173           | 1st Order, BM                             | -               | -                | 66.243                     | 10.515                    | 2007                          |  |
| AKN-48           | 2nd Order, GCP                            | 11°42'53.76901" | 122°21'38.37193" | 62.745                     | -                         | 2007                          |  |
| UP-IBA           | UP Established                            | _               | -                | -                          | -                         | 2014                          |  |

Figure 32 to Figure 34 depict the setup of the GNSS on recovered reference points and established control points in the Ibajay River.



Figure 32. The GNSS base receiver setup, Trimble® SPS 882 at AK-173, Dumga Bridge in Brgy. Dumga, Makato Municipality, Aklan



Figure 33. GNSS base receiver setup, Trimble® SPS 852, at AKN-48 on the east approach of Kalibo Bridge in Brgy. Bulwang, Kalibo City, Aklan



Figure 34. GNSS base receiver setup, Trimble® SPS 852 at UP-IBA, Ibajay Bridge in Brgy. Polo, Ibajay Municipality, Aklan

## 4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 23 presents the baseline processing results of control points in the Ibajay River Basin, as generated by the TBC software.

| Observation   | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic Az. | Ellipsoid<br>Dist. (Meter) | ∆ Height<br>(m) |
|---------------|------------------------|------------------|---------------------|---------------------|--------------|----------------------------|-----------------|
| AKN 48 AK173  | 10-1-2014              | Fixed            | 0.003               | 0.011               | 272°44'45"   | 8610.026                   | 3.34            |
| AK173 UP-IBA  | 10-1-2014              | Fixed            | 0.007               | 0.032               | 311°03'45"   | 16723.38                   | -5.928          |
| AKN 48 UP-IBA | 10-1-2014              | Fixed            | 0.007               | 0.028               | 298°15'50"   | 24076.97                   | -2.588          |

Table 23. The Baseline processing report for the Ibajay River GNSS static observation survey.

As shown in Table 23, a total of three (3) baselines were processed with the coordinates of AKN-48, and the elevation value of reference point AK-173 held fixed; it is apparent that all baselines passed the required accuracy.

## 4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$V((x_e)^2 + (y_e)^2) < 20 \ cm \text{ and } z_e < 10 \ cm$$

Where:

 $x_e$  is the Easting Error,  $y_e$  is the Northing Error, and  $z_e$  is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 23 to Table 26.

The three (3) control points: AK-173, AKN-48 and UP-IBA were occupied and observed simultaneously to form a GNSS loop. Coordinates of AKN-48; and elevation value of AK-173 were held fixed during the processing of the control points as presented in Table 24. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

| Point ID                | Туре   | North<br>(Meter) | East<br>(Meter) | Height<br>(Meter) | Elevation<br>(Meter) |  |
|-------------------------|--------|------------------|-----------------|-------------------|----------------------|--|
| AK-173                  | Grid   |                  |                 |                   | Fixed                |  |
| AKN-48                  | Global | Fixed            | Fixed           |                   |                      |  |
| Fixed = 0.000001(Meter) |        |                  |                 |                   |                      |  |

Table 24. Constraints applied to the adjustment of the control points.

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 25. The fixed control points AKN-48 and AK-173 have no values for grid and elevation errors, respectively.

| Table 25. Adjusted grid of  | coordinates for the control | points used in the Ibaiay | v River flood plain survey. |
|-----------------------------|-----------------------------|---------------------------|-----------------------------|
| Tupie 25. The abeed Stild e | coordinates for the control | pointes doca in ene ibula | fuiter mood plant out (e).  |

| Point ID | Easting (Meter) | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|-----------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| AK-173   | 421731.971      | 0.005                    | 1295542.850         | 0.003                        | 10.516               | ?                             | е          |
| AKN-48   | 430328.297      | ?                        | 1295111.046         | ?                            | 7.102                | 0.020                         | LL         |
| UP-IBA   | 409154.704      | 0.007                    | 1306556.921         | 0.005                        | 5.526                | 0.040                         |            |

The results of the computation for accuracy are as follows:

a. AKN-48

| horizontal accuracy<br>Vertical accuracy | = Fixed<br>= 2.0 cm < 10 cm      |                                                                            |  |
|------------------------------------------|----------------------------------|----------------------------------------------------------------------------|--|
| b. AK-173                                |                                  |                                                                            |  |
| horizontal accuracy                      | = √((0.5<br>= √(0.2)<br>= 1.1 cr | 5)² + (0.3)²)<br>5 + 0.90)<br>n < 20 cm                                    |  |
| Vertical accuracy                        | = Fixed                          |                                                                            |  |
| c. UP-IBA                                |                                  |                                                                            |  |
| horizontal accuracy                      | = √((0.7<br>=<br>=               | 7) <sup>2</sup> + (0.5) <sup>2</sup> )<br>√(0.49 + 0.25)<br>0.9 cm < 20 cm |  |
| Vertical accuracy                        | =                                | 4.0 cm < 10 cm                                                             |  |

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required precision.

| Point ID | Latitude         | Longitude         | Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
|----------|------------------|-------------------|-------------------|-------------------------|------------|
| AK-173   | N11°43'07.15289" | E122°16'54.36782" | 66.084            | ?                       | е          |
| AKN-48   | N11°42'53.76901" | E122°21'38.37193" | 62.745            | 0.020                   | LL         |
| UP-IBA   | N11°49'04.57051" | E122°09'57.81862" | 60.152            | 0.040                   |            |

Table 26. Adjusted geodetic coordinates for control points used in the Ibajay River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 26. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Ibajay River GNSS Static Survey are seen in Table 27.

| Table 27. The reference and control points utilized in the Ibajay River Static Survey, with their corresponding |
|-----------------------------------------------------------------------------------------------------------------|
| locations (Source: NAMRIA, UP-TCAGP)                                                                            |

|                  |                      | Geographic      | Coordinates (WGS | 84)                        | UTM ZONE 51 N |                |                    |
|------------------|----------------------|-----------------|------------------|----------------------------|---------------|----------------|--------------------|
| Control<br>Point | Order of<br>Accuracy | Latitude        | Longitude        | Ellipsoid<br>Height<br>(m) | Northing (m)  | Easting<br>(m) | BM<br>Ortho<br>(m) |
| AK-173           | 1st Order, BM        | 11°43'07.15289" | 122°16'54.36782" | 66.084                     | 1295542.85    | 421731.971     | 10.516             |
| AKN-48           | 2nd Order,<br>GCP    | 11°42'53.76901" | 122°21'38.37193" | 62.745                     | 1295111.046   | 430328.297     | 7.102              |
| UP-IBA           | UP<br>Established    | 11°49'04.57051" | 122°09'57.81862" | 60.152                     | 1306556.921   | 409154.704     | 5.526              |

## 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on November 5, 2015 along the downstream portion of Ibajay Bridge in Brgy. Polo, Ibajay, Aklan using the GNSS receiver Trimble<sup>®</sup> SPS 985 utilizing GNSS PPK survey technique.

The cross-sectional line of Ibajay Bridge is about 244 meters with fifty-three (53) points acquired using UP-IBA as GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 35, Figure 36 and Figure 37.



Figure 35. Location map of the Ibajay Bridge cross-section survey.





The water surface elevation of Ibajay Bridge was determined using a survey grade GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique on November 5, 2015 at 1:03:09 PM with a value of -0.045 m (MSL) as shown in Figure 46. This was translated into marking on the bridge's abutment using the same technique as shown in Figure 38. It now serves as the reference for flow data gathering and depth gauge deployment of the University of the Philippines-Cebu (UPC), the partner SUC responsible for the monitoring of Ibajay River.



Figure 38. Painting of water level markings on Ibajay Bridge.

## 4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on October 31, 2015 using a survey-grade GNSS Rover receiver, Trimble<sup>®</sup> SPS 882, mounted on a pole which was attached at the front of the vehicle as shown in Figure 39. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.532m measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-IBA occupied as the GNSS base station. Gathered data were processed using Trimble<sup>®</sup> Business Center Software.



Figure 39. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey

The survey acquired 5,559 ground validation points with an approximate length of 38.64km that covered major roads running along Aklan West Road and Iloilo-Antique Road from Brgy. Solido, Municipality of Nagas Municipality to Brgy. Aliputos, Municipality of Numancia, Aklan as illustrated in the map in Figure 40.



Figure 40. Extent of the LiDAR ground validation survey (in red) along Aklan West Road and Iloilo-Antique Road

## 4.7 River Bathymetric Survey

A manual bathymetric survey was performed on October 30 to 31 and November 5, 2015 by traversing the entire length of the river by foot with a Trimble SPS 882<sup>®</sup> and SPS 985<sup>®</sup> rover receivers as shown in Figure 41. The survey began in the upstream part of the river in Brgy. Agdugayan, municipality of Ibajay with coordinates 11°45′41.34558″N, 122°09′59.18782″E and ended at the mouth of the River in 11°49′23.11511″N, 122°09′59.08247″E in Brgy. Colongcolong, Ibajay, Aklan. The control UP-IBA was used as GNSS base station all throughout the entire survey.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 41. Photos showing setup for the Bathymetric Survey in Ibajay River - Trimble® SPS 882 Rover in Brgy. Bagcay and Trimble® SPS 985 Rover in Brgy. Polo.

The entire bathymetric data coverage for Ibajay River is illustrated in the map in Figure 42. The bathymetric line is approximately 8.69 km in length with 1,637 bathymetric points acquired covering Brgy. Agdugayan, Ibajay downstream to Brgy. Colongcong, Municipality of Ibajay. A CAD diagram was also produced to illustrate the Ibajay riverbed profile as shown in Figure 43. The lowest elevation was recorded at 0.74 m (below MSL), while 8.964 meters change in elevation was observed from the Brgy. Agdugayan to Brgy. Polo and an elevation of 0.07 below MSL on Ibajay Bridge.



Figure 42. The extent of the Ibajay River Bathymetry Survey.



## **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, and Marvin Arias

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

## 5.1 Data Used for Hydrologic Modeling

### 5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Ibajay River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Ibajay River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the University of the Philippines Cebu (UPC) Flood Modelling Component (FMC) Team. The ARG was installed at Brgy. San Jose, Ibajay, Aklan, as illustrated in Figure 44. The precipitation data collection started from August 24, 2016 at 11:15 AM to 2:50 PM with a recording interval of 5 minutes.

The total precipitation for this event in Brgy San Jose ARG was 7.1 mm. It has a peak rainfall of 1.40 mm. on August 24, 2016 at 2:50 in the afternoon. The lag time between the peak rainfall and discharge at Ibajay Bridge is 7 hours and 30 minutes.



Figure 44. Location Map of the Ibajay HEC-HMS model used for calibration

## 5.1.3 Rating Curves and River Outflow

A rating curve was developed at Ibajay Bridge, San Agustin, San Jose Flow Site, Ibajay, Aklan (11°44'32.58"N, 122°10'34.96"E) to establish the relationship between the observed water levels (H) at Ibajay Bridge and outflow (Q) of the watershed at this location.



For San Jose Flow Site, the rating curve is expressed as Q = 66.291e0.5476x as shown in Figure 46.

Figure 45. The cross-section plot of the Ibajay Bridge.



Figure 46. The rating curve at San Jose Flow Site, Ibajay, Aklan.

This rating curve equation was used to compute the river outflow at San Jose Flow Site for the calibration of the HEC-HMS model shown in Figure 46. The total rainfall for this event is 7.1 mm and the peak discharge is 22.665 m<sup>3</sup> at 9:20 PM, August 24, 2016.



Figure 47. Rainfall and outflow data at the Ibajay River Basin, which was used for modeling.

#### 5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Roxas Rain Gauge (Table 28). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 48). This station was selected based on its proximity to the Ibajay watershed. The extreme values for this watershed were computed based on a 59-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 5                                                | 26.6    | 40.5    | 51.3    | 72.1  | 98    | 115.5 | 142.8 | 165.9  | 186.2  |
| 10                                               | 31.3    | 47.8    | 60.7    | 86.2  | 118   | 139.4 | 172.3 | 200.1  | 224.6  |
| 25                                               | 37.4    | 57      | 72.5    | 104   | 143.1 | 169.6 | 209.7 | 243.4  | 273    |
| 50                                               | 41.8    | 63.8    | 81.3    | 117.2 | 161.8 | 192   | 237.4 | 275.4  | 308.9  |
| 100                                              | 46.2    | 70.5    | 90      | 130.2 | 180.3 | 214.2 | 264.9 | 307.2  | 344.6  |

Table 28. RIDF values for the Roxas Rain Gauge, as computed by PAGASA



Figure 48. The location of the Roxas RIDF station relative to the Ibajay River Basin.



Figure 49. The synthetic storm generated for a 24-hour period rainfall for various return periods

## 5.3 HMS Model

These soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Ibajay River Basin are shown in Figure 50 and Figure 51 respectively.



Figure 50. Soil Map of Ibajay River Basin.



Figure 51. Land Cover Map of Ibajay River Basin.

For Ibajay, two soil classes were identified. These are clay loam, and undifferentiated soil. Moreover, four land cover classes were identified. These are closed and open forest, shrubland, and forest plantation.





Figure 52. Slope Map of the Ibajay River Basin.



Figure 53. Stream Delineation Map of Ibajay River Basin

Using the SAR-based DEM, the Ibajay basin was delineated and further subdivided into subbasins. The model consists of 17 sub basins, 8 reaches, and 8 junctions, as shown in Figure 54. The main outlet is at San Jose Flow Site.



Figure 54. Ibajay river basin model generated in HEC-HMS.

## 5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 55).



Figure 55. River cross-section of the Ibajay River through the ArcMap HEC GeoRas tool

## 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.



Figure 56. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 19.16083 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m<sup>2</sup>/s. The generated hazard maps for Ibajay are in Figure 60, 62, 64.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 31450300.00m<sup>2</sup>. The generated flood depth maps for Ibajay are in Figure 61, 63, 65.

There is a total of 10784659.06 m<sup>3</sup> of water entering the model. Of this amount, 10784659.06 m<sup>3</sup> is due to rainfall while 0.00 m<sup>3</sup> is inflow from other areas outside the model. 3368651.00 m<sup>3</sup> of this water is lost to infiltration and interception, while 3289933.82 m<sup>3</sup> is stored by the flood plain. The rest, amounting up to 4126070.49 m<sup>3</sup>, is outflow.

## 5.6 Results of HMS Calibration

After calibrating the Ibajay HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 57 shows the comparison between the two discharge data.



Figure 57. Outflow Hydrograph of Ibajay Bridge produced by the HEC-HMS model compared with observed outflow

Table 29 shows the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation<br>Type | Method                   | Parameter                                              | Range of Calibrated<br>Values |
|-----------------------|---------------------|--------------------------|--------------------------------------------------------|-------------------------------|
|                       | Loss                | CCC Curve Number         | Initial Abstraction (mm)4.15-7.53Curve Number44.9-48.4 |                               |
|                       | LUSS                | SCS Curve Number         |                                                        |                               |
| Desire                | Transform           | Clark Unit<br>Hydrograph | Time of Concentration (hr)                             | 1.3-6.9                       |
| Basin                 |                     |                          | Storage Coefficient (hr)                               | 0.95-4.9                      |
|                       | Deceflow            | Dessesion                | <b>Recession Constant</b>                              | 0.9991                        |
|                       | Basenow             | Recession                | Ratio to Peak                                          | 0.9998                        |
| Reach                 | Routing             | Muskingum-Cunge          | Manning's Coefficient                                  | 0.09                          |

Table 29. Range of calibrated values for the Ibajay River Basin.

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 4.15 mm to 7.53 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 44.9 to 48.4 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Ibajay, the basin mostly consists of closed and open forests, shrublands, and grasslands, and the soil consists of clay loam, and undifferentiated soil.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.95 hours to 6.9 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.9991 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.9998 indicates a gentler receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.09 corresponds to the common roughness in the Ibajay watershed, which is determined to be cultivated with medium to dense brush, shrubland (Brunner, 2010).

| ,                | · · · ·  |
|------------------|----------|
| Accuracy measure | Value    |
| RMSE             | 0.00171  |
| r <sup>2</sup>   | 0.90228  |
| NSE              | 0.77124  |
| PBIAS            | -0.00150 |
| RSR              | 0.47829  |

Table 30. Summary of the Efficiency Test of the Ibajay HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 0.0017 (m<sup>3</sup>/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.90228.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.77124.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -0.0015.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.47.

## 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

## 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 58) shows the Ibajay outflow using the Roxas Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods from 196.2m<sup>3</sup> in a 5-year return period to 344.6m<sup>3</sup> for a 100-year return period.



Figure 58. The Outflow hydrograph at the Ibajay Station, generated using the Roxas RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Ibajay discharge using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

| Table 31. 7 | Гhe peak va | lues of the Ibajay | HEC-HMS M | lodel outflow at | Ibajay Brid | dge using the | Iloilo RIDF. |
|-------------|-------------|--------------------|-----------|------------------|-------------|---------------|--------------|
|             | T           |                    |           |                  | J /         | 0 0           |              |

| <b>RIDF</b> Period | Total Precipitation<br>(mm) | Peak rainfall<br>(mm) | Peak outflow<br>(m³/s) | Time to Peak        |
|--------------------|-----------------------------|-----------------------|------------------------|---------------------|
| 5-Year             | 186.2                       | 26.6                  | 394.29                 | 7 hours             |
| 10-Year            | 224.6                       | 31.3                  | 530.76                 | 6 hours, 50 minutes |
| 25-Year            | 273                         | 37.4                  | 718.27                 | 6 hours, 20 minutes |
| 50-Year            | 308.9                       | 41.8                  | 866.18                 | 6 hours, 20 minutes |
| 100-Year           | 344.6                       | 46.2                  | 1018.9                 | 6 hours, 20 minutes |

## 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 59 shows a generated sample map of the Ibajay River using the calibrated HMS event flow.



Figure 59. Sample output map of the Ibajay RAS Model.
## 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 60 to Figure 65 shows the 5-, 25-, and 100-year rain return scenarios of the Ibajay floodplain. The floodplain, with an area of 56.37 sq. km., covers three municipalities namely Ibajay, Nabas, and Pandan. Table 32 shows the percentage of area affected by flooding per municipality.

| Province | Municipality | Total Area | Area Flooded | % Flooded |
|----------|--------------|------------|--------------|-----------|
| Ibajay   | 148.5        | 52.644     | 35.445       | 1.50%     |
| Nabas    | 87.01        | 0.8885     | 1.0211       | 0.13%     |
| Pandan   | 146.9        | 2.694393   | 1.83468      |           |

Table 32. Municipalities affected in Ibajay floodplain.



66











## 5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Ibajay River Basin, grouped accordingly by municipality. For the said basin three (3) municipalities consisting of 33 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the municipality of Ibajay with an area of 148.52 sq. km., 25.08% will experience flood levels of less 0.20 meters. 4.97% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 1.44%, 0.5%, and 0.32% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33are the affected areas in Ibajay in square kilometers by flood depth per barangay. ANNEX 12 and ANNEX 13 shows the educational and health institutions exposed to flooding, respectively.

| Affected Area          |              |             |          | Affe   | cted Barangays i | n Ibajay (in sq. kr | n.)       |            |           |           |
|------------------------|--------------|-------------|----------|--------|------------------|---------------------|-----------|------------|-----------|-----------|
| flood depth<br>(in m.) | Agbago       | Agdugayan   | Antipolo | Aquino | Aslum            | Bagacay             | Batuan    | Buenavista | Cabugao   | Capilijan |
| 0.03-0.20              | 3.11         | 1.04        | 5.63     | 3.91   | 0.21             | 0.46                | 1.45      | 0.063      | 0.00011   | 0.84      |
| 0.21-0.50              | 1.28         | 0.19        | 0.26     | 1.06   | 0.04             | 0.18                | 0.21      | 0.0013     | 0         | 0.17      |
| 0.51-1.00              | 0.96         | 0.15        | 0.21     | 0.7    | 0.019            | 0.11                | 0.052     | 0.00081    | 0.000093  | 0.015     |
| 1.01-2.00              | 0.31         | 0.096       | 0.16     | 0.24   | 0.0043           | 0.07                | 0.016     | 0.00065    | 0         | 0.0028    |
| 2.01-5.00              | 0.00059      | 0.12        | 0.079    | 0.024  | 0                | 0.046               | 0.003     | 0.0017     | 0         | 0         |
| > 5.00                 | 0            | 0.071       | 0.00043  | 0.0001 | 0                | 0.088               | 0         | 0          | 0         | 0         |
| Affected Area          |              |             |          |        |                  |                     |           |            |           |           |
| flood depth<br>(in m.) | Colongcolong | Laguinbanua | Mabusao  | Maloco | Naile            | Naisud              | Naligusan | Ondoy      | Poblacion | Polo      |
| 0.03-0.20              | 0.54         | 1.26        | 0.68     | 2.22   | 3.5              | 0.05                | 1.3       | 1.47       | 0.82      | 0.33      |
| 0.21-0.50              | 0.082        | 0.28        | 0.048    | 0.29   | 0.7              | 0.0002              | 0.4       | 0.38       | 0.25      | 0.082     |
| 0.51-1.00              | 0.031        | 0.19        | 0.077    | 0.18   | 0.32             | 0.0001              | 0.2       | 0.22       | 0.048     | 0.038     |

Table 33. Affected Areas in Ibajay, Aklan during 5-Year Rainfall Return Period.

0.0066

0.014

0.025

0.13

0.04

0

0.12

0.076

0.1

0.1

0.036

1.01-2.00 2.01-5.00

0.024

0.013

0.087

0.0011

0.066

0 0

0.0008

0.024 0.059

0.00034

0

0

0.055 0.081

0.001

0

0.063

0

> 5.00

|             | Unat                  | 0.74      | 0.27      | 0.059     | 0.023     | 0.037     | 0.09    |
|-------------|-----------------------|-----------|-----------|-----------|-----------|-----------|---------|
|             | Tul-Ang               | 1.23      | 0.15      | 0.12      | 0.045     | 0.035     | 0.0086  |
|             | Tagbaya               | 2.44      | 0.5       | 0.45      | 0.3       | 0.061     | 0.00017 |
|             | Santa Cruz            | 1.76      | 0.22      | 0.22      | 0.083     | 0.03      | 0.0003  |
|             | San Isidro            | 0.27      | 0.0044    | 0.0018    | 0.001     | 0.0004    | 0       |
|             | Rizal                 | 1.63      | 0.3       | 0.26      | 0.12      | 0.026     | 0.034   |
|             | Regador               | 0.3       | 0.0053    | 0.0023    | 0.0015    | 0.0007    | 0       |
| fected Area | lood depth<br>(in m.) | 0.03-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00  |



Figure 66. Affected Areas in Ibajay, Aklan during 5-Year Rainfall Return Period.

For the municipality of Nabas with an area of 87.01 sq. km., 0.81% will experience flood levels of less 0.20 meters. 0.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.01%, and 0.0002%, of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 34 are the affected areas in Nabas in square kilometers by flood depth per barangay.

Table 34. Affected Areas in Nabas, Aklan during 5-Year Rainfall Return Period.

| Affected Area                       | Affected Barangays | in Nabas (in sq. km.) |
|-------------------------------------|--------------------|-----------------------|
| (sq. km.) by flood depth<br>(in m.) | Alimbo-Baybay      | Solido                |
| 0.03-0.20                           | 0.42               | 0.29                  |
| 0.21-0.50                           | 0.11               | 0.03                  |
| 0.51-1.00                           | 0.03               | 0.0042                |
| 1.01-2.00                           | 0.0071             | 0.001                 |
| 2.01-5.00                           | 0                  | 0.0002                |
| > 5.00                              | 0                  | 0                     |



Figure 67. Affected Areas in Nabas, Aklan during 5-Year Rainfall Return Period.

For the municipality of Pandan with an area of 146.86 sq. km., 1.7% will experience flood levels of less 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters while 0.032%, 0.037%, 0.02%, and 0.002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in Pandan in square kilometers by flood depth per barangay.

| Affected Area |        | Affected Barangays i | n Pandan (in sq. km.) |            |
|---------------|--------|----------------------|-----------------------|------------|
| depth (in m.) | Buang  | Fragante             | San Joaquin           | Santa Cruz |
| 0.03-0.20     | 1.67   | 0.46                 | 0.35                  | 0.023      |
| 0.21-0.50     | 0.044  | 0.011                | 0.0071                | 0.00026    |
| 0.51-1.00     | 0.039  | 0.0042               | 0.0042                | 0.00026    |
| 1.01-2.00     | 0.042  | 0.0021               | 0.0096                | 0          |
| 2.01-5.00     | 0.027  | 0.0002               | 0.0039                | 0          |
| > 5.00        | 0.0022 | 0                    | 0                     | 0          |

Table 35. Affected Areas in Pandan, Antique during 5-Year Rainfall Return Period.



Figure 68. Affected Areas in Pandan, Antique during 5-Year Rainfall Return Period.

For the 25-year return period, for the municipality of Ibajay with an area of 148.52 sq. km., 22.15% will experience flood levels of less 0.20 meters. 5.62% of the area will experience flood levels of 0.21 to 0.50 meters while 4.13%, 2.58%, 0.64%, and 0.33% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometers by flood depth per barangay.

|                        |              |             |          | e.     |                  |                    |           |            |           |           |
|------------------------|--------------|-------------|----------|--------|------------------|--------------------|-----------|------------|-----------|-----------|
| Affected Area          |              |             |          | Affe   | cted Barangays i | n Ibajay (in sq. k | m.)       |            |           |           |
| flood depth<br>(in m.) | Agbago       | Agdugayan   | Antipolo | Aquino | Aslum            | Bagacay            | Batuan    | Buenavista | Cabugao   | Capilijan |
| 0.03-0.20              | 2.2          | 0.97        | 5.47     | 3.28   | 0.2              | 0.35               | 1.31      | 0.062      | 0.00011   | 0.74      |
| 0.21-0.50              | 1.21         | 0.23        | 0.3      | 1.19   | 0.05             | 0.2                | 0.32      | 0.0014     | 0         | 0.23      |
| 0.51-1.00              | 1.42         | 0.17        | 0.21     | 0.83   | 0.024            | 0.17               | 0.076     | 0.00072    | 0         | 0.049     |
| 1.01-2.00              | 0.85         | 0.11        | 0.22     | 0.61   | 0.0074           | 0.095              | 0.022     | 0.0011     | 0.000093  | 0.0039    |
| 2.01-5.00              | 0.0045       | 0.12        | 0.14     | 0.033  | 0                | 0.05               | 0.0038    | 0.0024     | 0         | 0.000002  |
| > 5.00                 | 0            | 0.072       | 0.0023   | 0.0001 | 0                | 0.089              | 0         | 0          | 0         | 0         |
| Affected Area          |              |             |          |        |                  |                    |           |            |           |           |
| flood depth<br>(in m.) | Colongcolong | Laguinbanua | Mabusao  | Maloco | Naile            | Naisud             | Naligusan | Ondoy      | Poblacion | Polo      |
| 0.03-0.20              | 0.5          | 1.1         | 0.66     | 2.07   | 3.14             | 0.05               | 1.1       | 1.13       | 0.69      | 0.28      |
| 0.21-0.50              | 0.11         | 0.33        | 0.057    | 0.34   | 0.88             | 0                  | 0.47      | 0.52       | 0.26      | 0.097     |
| 0.51-1.00              | 0.041        | 0.24        | 0.076    | 0.24   | 0.42             | 0.0003             | 0.28      | 0.31       | 0.16      | 0.062     |
| 1.01-2.00              | 0.038        | 0.15        | 0.11     | 0.12   | 0.2              | 0.0001             | 0.083     | 0.24       | 0.033     | 0.018     |
| 2.01-5.00              | 0.0026       | 0.094       | 0.015    | 0.027  | 0.083            | 0.00034            | 0.024     | 0.0035     | 0         | 0.062     |
| > 5.00                 | 0            | 0.067       | 0        | 0.0015 | 0.056            | 0                  | 0.06      | 0          | 0         | 0.012     |

Table 36. Affected Areas in Ibajay, Aklan during 25-Year Rainfall Return Period.

|               | Unat                   | 0.61      | 0.35      | 0.1       | 0.028     | 0.038     | 0.091   |
|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|---------|
|               | Tul-Ang                | 1.15      | 0.18      | 0.15      | 0.066     | 0.039     | 0.0089  |
|               | Tagbaya                | 2.15      | 0.49      | 0.56      | 0.43      | 0.12      | 0.00027 |
|               | Santa Cruz             | 1.65      | 0.21      | 0.22      | 0.19      | 0.046     | 0.0007  |
|               | San Isidro             | 0.26      | 0.0046    | 0.0022    | 0.0016    | 0.0005    | 0       |
|               | Rizal                  | 1.48      | 0.31      | 0.31      | 0.2       | 0.035     | 0.035   |
|               | Regador                | 0.3       | 0.0072    | 0.0023    | 0.0024    | 0.001     | 0       |
| Affected Area | flood depth<br>(in m.) | 0.03-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00  |





Figure 69. Affected Areas in Ibajay, Aklan during 25-Year Rainfall Return Period.

For the municipality of Nabas with an area of 87.01 sq. km., 0.72% will experience flood levels of less 0.20 meters. 0.19% of the area will experience flood levels of 0.21 to 0.50 meters while 0.085%, 0.02%, and 0.0002%, of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

| Table 37. Affected Areas in Nabas, Aklan du | luring 25-Year Rainfall Return Period. |
|---------------------------------------------|----------------------------------------|
|---------------------------------------------|----------------------------------------|

| Affected Area | Affected Barangays | in Nabas (in sq. km.) |
|---------------|--------------------|-----------------------|
| (in m.)       | Alimbo-Baybay      | Solido                |
| 0.03-0.20     | 0.36               | 0.27                  |
| 0.21-0.50     | 0.12               | 0.043                 |
| 0.51-1.00     | 0.067              | 0.0074                |
| 1.01-2.00     | 0.016              | 0.0012                |
| 2.01-5.00     | 0                  | 0.0002                |
| > 5.00        | 0                  | 0                     |



Figure 70. Affected Areas in Nabas, Aklan during 25-Year Rainfall Return Period.

For the municipality of Pandan with an area of 146.86 sq. km., 1.67% will experience flood levels of less 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters while 0.035%, 0.04%, 0.03%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

| Affected Area |        | Affected Barangays in | n Pandan (in sq. km.) |            |
|---------------|--------|-----------------------|-----------------------|------------|
| depth (in m.) | Buang  | Fragante              | San Joaquin           | Santa Cruz |
| 0.03-0.20     | 1.64   | 0.45                  | 0.35                  | 0.022      |
| 0.21-0.50     | 0.047  | 0.012                 | 0.0085                | 0.00033    |
| 0.51-1.00     | 0.04   | 0.0065                | 0.005                 | 0.00026    |
| 1.01-2.00     | 0.046  | 0.003                 | 0.0096                | 0          |
| 2.01-5.00     | 0.042  | 0.00039               | 0.005                 | 0          |
| > 5.00        | 0.0054 | 0                     | 0.00024               | 0          |

Table 38. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period.



Figure 71. Affected Areas in Pandan, Antique during 25-Year Rainfall Return Period.

For the 100-year return period, for the municipality of Ibajay with an area of 148.52 sq. km., 20.9% will experience flood levels of less 0.20 meters. 5.75% of the area will experience flood levels of 0.21 to 0.50 meters while 4.68%, 3.36%, 0.76%, and 0.29% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

|                                        |              |             | 500 TTT 7 |        | · Quinton amount ( / |                    | TANKALLI L VILOW. |            |           |           |
|----------------------------------------|--------------|-------------|-----------|--------|----------------------|--------------------|-------------------|------------|-----------|-----------|
| Affected Area                          |              |             |           | Affe   | cted Barangays i     | n Ibajay (in sq. k | m.)               |            |           |           |
| (sq. km.) by<br>flood depth<br>(in m.) | Agbago       | Agdugayan   | Antipolo  | Aquino | Aslum                | Bagacay            | Batuan            | Buenavista | Cabugao   | Capilijan |
| 0.03-0.20                              | 1.78         | 0.92        | 5.39      | 2.94   | 0.18                 | 0.28               | 1.19              | 0.061      | 0.00011   | 0.68      |
| 0.21-0.50                              | 1.15         | 0.25        | 0.32      | 1.23   | 0.054                | 0.2                | 0.41              | 0.0017     | 0         | 0.25      |
| 0.51-1.00                              | 1.45         | 0.19        | 0.23      | 0.95   | 0.029                | 0.2                | 0.096             | 0.00098    | 0         | 0.092     |
| 1.01-2.00                              | 1.27         | 0.12        | 0.23      | 0.76   | 0.0093               | 0.13               | 0.027             | 0.0012     | 0.000093  | 0.0079    |
| 2.01-5.00                              | 0.017        | 0.12        | 0.19      | 0.057  | 0                    | 0.054              | 0.0043            | 0.0024     | 0         | 0.000002  |
| > 5.00                                 | 0            | 0.073       | 0.0059    | 0.0002 | 0                    | 0.0                | 0                 | 0.0003     | 0         | 0         |
| Affected Area                          |              |             |           |        |                      |                    |                   |            |           |           |
| flood depth<br>(in m.)                 | Colongcolong | Laguinbanua | Mabusao   | Maloco | Naile                | Naisud             | Naligusan         | Ondoy      | Poblacion | Polo      |
| 0.03-0.20                              | 0.48         | 1           | 0.65      | 1.95   | 2.89                 | 0.05               | 0.95              | 0.95       | 0.62      | 0.26      |
| 0.21-0.50                              | 0.12         | 0.36        | 0.063     | 0.39   | 0.97                 | 0.0002             | 0.5               | 0.55       | 0.26      | 0.1       |
| 0.51-1.00                              | 0.047        | 0.27        | 0.072     | 0.27   | 0.51                 | 0.0002             | 0.35              | 0.41       | 0.2       | 0.079     |
| 1.01-2.00                              | 0.038        | 0.18        | 0.12      | 0.16   | 0.26                 | 0.0002             | 0.13              | 0.27       | 0.061     | 0.021     |
| 2.01-5.00                              | 0.0057       | 0.1         | 0.017     | 0.03   | 0.087                | 0.00034            | 0.024             | 0.026      | 0         | 0.056     |
| > 5.00                                 | 0            | 0.07        | 0         | 0.002  | 0.057                | 0                  | 0.06              | 0          | 0         | 0.019     |

Table 39. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period.

|               | Unat                   | 1.09      | 0.19      | 0.18      | 0.087     | 0.041     | 0.0099  |
|---------------|------------------------|-----------|-----------|-----------|-----------|-----------|---------|
|               | Tul-Ang                | 1.09      | 0.19      | 0.18      | 0.087     | 0.041     | 0.0099  |
|               | Tagbaya                | 2.04      | 0.45      | 0.61      | 0.5       | 0.14      | 0.00057 |
|               | Santa Cruz             | 1.59      | 0.2       | 0.2       | 0.26      | 0.064     | 0.0009  |
|               | San Isidro             | 0.26      | 0.0051    | 0.0025    | 0.0017    | 0.0005    | 0       |
|               | Rizal                  | 1.38      | 0.31      | 0.34      | 0.27      | 0.041     | 0.035   |
|               | Regador                | 0.3       | 0.0077    | 0.0034    | 0.0024    | 0.0011    | 0       |
| Affected Area | flood depth<br>(in m.) | 0.03-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00  |



Figure 72. Affected Areas in Ibajay, Aklan during 100-Year Rainfall Return Period.

For the municipality of Nabas with an area of 87.01 sq. km., 0.68% will experience flood levels of less 0.20 meters. 0.24% of the area will experience flood levels of 0.21 to 0.50 meters while 0.065%, 0.037%, and 0.0002%, of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

Table 40. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period.

| Affected Area | Affected Barangays | ו Nabas (in sq. km.) |  |
|---------------|--------------------|----------------------|--|
| (in m.)       | Alimbo-Baybay      | Solido               |  |
| 0.03-0.20     | 0.31               | 0.26                 |  |
| 0.21-0.50     | 0.15               | 0.056                |  |
| 0.51-1.00     | 0.076              | 0.0086               |  |
| 1.01-2.00     | 0.031              | 0.0013               |  |
| 2.01-5.00     | 0                  | 0.0002               |  |
| > 5.00        | 0                  | 0                    |  |



Figure 73. Affected Areas in Nabas, Aklan during 100-Year Rainfall Return Period.

For the municipality of Pandan with an area of 146.86 sq. km., 1.67% will experience flood levels of less 0.20 meters. 0.05% of the area will experience flood levels of 0.21 to 0.50 meters while 0.037%, 0.04%, 0.04%, and 0.006% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41are the affected areas in square kilometers by flood depth per barangay.

| Affected Area | Affected Barangays in Pandan (in sq. km.) |          |             |            |  |
|---------------|-------------------------------------------|----------|-------------|------------|--|
| depth (in m.) | Buang                                     | Fragante | San Joaquin | Santa Cruz |  |
| 0.03-0.20     | 1.63                                      | 0.45     | 0.34        | 0.022      |  |
| 0.21-0.50     | 0.046                                     | 0.014    | 0.009       | 0.00033    |  |
| 0.51-1.00     | 0.041                                     | 0.0075   | 0.006       | 0.00016    |  |
| 1.01-2.00     | 0.045                                     | 0.0035   | 0.0099      | 0.0001     |  |
| 2.01-5.00     | 0.055                                     | 0.0005   | 0.0057      | 0          |  |
| > 5.00        | 0.0081                                    | 0        | 0.00024     | 0          |  |

Table 41. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.



Figure 74. Affected Areas in Pandan, Antique during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Ibajay, Antipolo is projected to have the highest percentage of area that will experience flood levels at 4.28%. Meanwhile, Aquino posted the second highest percentage of area that may be affected by flood depths at 4%.

Among the barangays in the municipality of Nabas, Alimbo-Baybay is projected to have the highest percentage of area that will experience flood levels at 0.57%. Meanwhile, Solido posted the second highest percentage of area that may be affected by flood depths at 0.32%.

Among the barangays in the municipality of Pandan, Buang is projected to have the highest percentage of area that will experience flood levels at 1.24%. Meanwhile, Fragante posted the second.

Moreover, the generated flood hazard maps for the Ibajay Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 100-year).

| Table 42. Area covered b | y each warning l | level with respect to | the rainfall scenarios |
|--------------------------|------------------|-----------------------|------------------------|
|--------------------------|------------------|-----------------------|------------------------|

| Warning Level |        | Area Covered in sq. km |          |  |
|---------------|--------|------------------------|----------|--|
| warning Level | 5 year | 25 year                | 100 year |  |
| Low           | 7.83   | 8.80                   | 9.19     |  |
| Medium        | 6.56   | 9.25                   | 10.73    |  |
| High          | 1.84   | 2.66                   | 3.37     |  |
| Total         | 16.23  | 20.71                  | 23.29    |  |

Of the 40 identified Education Institutions in Ibajay flood plain, six (6) schools were discovered exposed Low-level flooding during a 5-year scenario, while four (4) schools were found exposed to Medium-level flooding in the same scenario.

In the 25-year scenario, twelve (12) schools were found exposed to the Low-level flooding, while five (5) schools were exposed to Medium-level flooding.

For the 100-year scenario, 13 schools were discovered exposed Low-level flooding, while six (6) schools were exposed to Medium-level flooding.

Apart from this, seven (7) Medical Institutions were identified in the Ibajay Floodplain, yet only one (1) was discovered exposed to Low-level flooding in the two (2) different scenarios (25-year and 100-year).

### 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 75.

The flood validation consists of 213 points randomly selected all over the Ibajay flood plain Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.97 m. Table 43 shows a contingency matrix of the comparison. The validation points are found in ANNEX 11.



Figure 75. Validation Points for a 25-year Flood Depth Map of the Ibajay Floodplain.



Figure 76. Flood map depth versus actual flood depth.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

| Actual Flood |        |           | MODE      | LED FLOOD DE | PTH (m)   |        |       |
|--------------|--------|-----------|-----------|--------------|-----------|--------|-------|
| Depth (m)    | 0-0.20 | 0.21-0.50 | 0.51-1.00 | 1.01-2.00    | 2.01-5.00 | > 5.00 | Total |
| 0-0.20       | 35     | 7         | 3         | 7            | 0         | 3      | 55    |
| 0.21-0.50    | 11     | 3         | 0         | 1            | 1         | 3      | 19    |
| 0.51-1.00    | 20     | 1         | 1         | 0            | 3         | 5      | 30    |
| 1.01-2.00    | 30     | 7         | 4         | 1            | 2         | 10     | 54    |
| 2.01-5.00    | 28     | 6         | 1         | 1            | 0         | 2      | 38    |
| > 5.00       | 17     | 0         | 0         | 0            | 0         | 0      | 17    |
| Total        | 141    | 24        | 9         | 10           | 6         | 23     | 213   |

Table 43. Actual Flood Depth versus Simulated Flood Depth at different levels in the Ibajay River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 18.78%, with 40 points correctly matching the actual flood depths. In addition, there were 28 points estimated one level above and below the correct flood depths while there were 42 points and 100 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 47 points were overestimated while a total of 126 points were underestimated in the modelled flood depths of Ibajay. Table 44 depicts the summary of the Accuracy Assessment in the Ibajay River Basin Flood Depth Map.

| Tuble 11. Summary of the needbacy hosessment in the ibalay first basin our ey | Table 44. Summar | y of the Accuracy | Assessment in the | Ibajay River | Basin Survey. |
|-------------------------------------------------------------------------------|------------------|-------------------|-------------------|--------------|---------------|
|-------------------------------------------------------------------------------|------------------|-------------------|-------------------|--------------|---------------|

|                | No. of Points | %      |
|----------------|---------------|--------|
| Correct        | 40            | 18.78  |
| Overestimated  | 47            | 22.07  |
| Underestimated | 126           | 59.15  |
| Total          | 213           | 100.00 |

## **REFERENCES**

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# ANNEX

# ANNEX 1. Technical Specifications of the LiDAR Sensors used in the Ibajay Floodplain Survey

Table A-1.1. Technical Specifications of the LiDAR Sensors used in the Ibajay Floodplain Survey1. AQUARIUS SENSOR



Figure A-1.1. Aquarius Sensor

Table A-1.1. Parameters and Specifications of Aquarius Sensor

| Parameter                        | Specification                                                                                                    |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|
| Operational altitude             | 300-600 m AGL                                                                                                    |
| Laser pulse repetition rate      | 33, 50. 70 kHz                                                                                                   |
| Scan rate                        | 0-70 Hz                                                                                                          |
| Scan half-angle                  | 0 to ± 25 °                                                                                                      |
| Laser footprint on water surface | 30-60 cm                                                                                                         |
| Depth range                      | 0 to > 10 m (for k < 0.1/m)                                                                                      |
| Topographic mode                 |                                                                                                                  |
| Operational altitiude            | 300-2500                                                                                                         |
| Range Capture                    | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns                                            |
| Intensity capture                | 12-bit dynamic measurement range                                                                                 |
| Position and orientation system  | POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)                                  |
| Data Storage                     | Ruggedized removable SSD hard disk (SATA III)                                                                    |
| Power                            | 28 V, 900 W, 35 A                                                                                                |
| Image capture                    | 5 MP interline camera (standard); 60 MP full frame (optional)                                                    |
| Full waveform capture            | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                    |
| Dimensions and weight            | Sensor:250 x 430 x 320 mm; 30 kg;<br>Control rack: 591 x 485 x 578 mm; 53 kg                                     |
| Operating temperature            | 0-35°C                                                                                                           |
| Relative humidity                | 0-95% no-condensing                                                                                              |
| Dimensions and weight            | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg |
| Operating temperature            | -10°C to +35°C (with insulating jacket)                                                                          |
| Relative humidity                | 0-95% no-condensing                                                                                              |

#### 2. GEMINI SENSOR



Figure A-1.2. Gemini Sensor

| Sensor |
|--------|
|        |

| Parameter                       | Specification                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| Operational envelope (1,2,3,4)  | 150-4000 m AGL, nominal                                                                                          |
| Laser wavelength                | 1064 nm                                                                                                          |
| Horizontal accuracy (2)         | 1/5,500 x altitude, (m AGL)                                                                                      |
| Elevation accuracy (2)          | <5-35 cm, 1 σ                                                                                                    |
| Effective laser repetition rate | Programmable, 33-167 kHz                                                                                         |
| Position and orientation system | POS AV <sup>™</sup> AP50 (OEM); 220-channel dual frequency GPS/GNSS/<br>Galileo/L-Band receiver                  |
| Scan width (WOV)                | Programmable, 0-50°                                                                                              |
| Scan frequency (5)              | Programmable, 0-70 Hz (effective)                                                                                |
| Sensor scan product             | 1000 maximum                                                                                                     |
| Beam divergence                 | Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal                                                     |
| Roll compensation               | Programmable, ±5° (FOV dependent)                                                                                |
| Range capture                   | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns                                            |
| Intensity capture               | Up to 4 intensity returns for each pulse, including last (12 bit)                                                |
| Video Camera                    | Internal video camera (NTSC or PAL)                                                                              |
| Image capture                   | Compatible with full Optech camera line (optional)                                                               |
| Full waveform capture           | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                    |
| Data storage                    | Removable solid state disk SSD (SATA II)                                                                         |
| Power requirements              | 28 V; 900 W;35 A(peak)                                                                                           |
| Dimensions and weight           | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack:<br>650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg |
| Operating temperature           | -10°C to +35°C (with insulating jacket)                                                                          |
| Relative humidity               | 0-95% no-condensing                                                                                              |

## ANNEX 2. NAMRIA Certification of Reference Points Used in the LiDAR Survey

1. AKN-43 Table A-2.1. NAMRIA Certification of Reference Points used in the LiDAR Survey



#### 2. AKN-42



Figure A-2.2. AKN-42

#### 3. AKN-32



Figure A-2.3. AKN-32

| e whom it may concern:<br>This is to certify that according t                                                                                                                                                                                                            | CERTIFICATION                                                                                                                                          | d                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e whom it may concern:<br>This is to certify that according t                                                                                                                                                                                                            | and the second second                                                                                                                                  |                                                                                                                                                                                                                                                        |
| This is to certify that according i                                                                                                                                                                                                                                      | a second and the in the second                                                                                                                         |                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                          | o the records on hid in this office.                                                                                                                   | the requested survey information is as follows -                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                          | Frovince CAPIZ                                                                                                                                         |                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                          | Sistier Name: GPZ-14                                                                                                                                   |                                                                                                                                                                                                                                                        |
| Island: VISAYAS                                                                                                                                                                                                                                                          | Ordet 2nd                                                                                                                                              | Fersenant PORLATION & AWOD                                                                                                                                                                                                                             |
| Municipality: PANAY                                                                                                                                                                                                                                                      | PRS82 Coordinates                                                                                                                                      |                                                                                                                                                                                                                                                        |
| Lettude 11° 33' 24.61899"                                                                                                                                                                                                                                                | ongiluce: 122º 47' 34.41                                                                                                                               | ∘<br>1875″ Elipecidsi Hgi. 4.91900 m.                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                          | W3S84 Coordinate                                                                                                                                       | 15                                                                                                                                                                                                                                                     |
| Latitudr: 11' 33' 19.98412"                                                                                                                                                                                                                                              | Longitude: 122' 47' 39.50                                                                                                                              | 6494" Eucseldsi Hoj: 60.96000 m.                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                          | PTIN Coordinates                                                                                                                                       |                                                                                                                                                                                                                                                        |
| Northing: 1277823.156 m.                                                                                                                                                                                                                                                 | Eas.ing. 477418.249 m                                                                                                                                  | r. Zore: 4                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                          | UTM Coordinates                                                                                                                                        |                                                                                                                                                                                                                                                        |
| Northing: 1,277,476.87                                                                                                                                                                                                                                                   | Hasting: 477.418.16                                                                                                                                    |                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                        | Zone. 51                                                                                                                                                                                                                                               |
| F7 14                                                                                                                                                                                                                                                                    | Location Description                                                                                                                                   | Zone. 51                                                                                                                                                                                                                                               |
| FZ-14<br>rom Rotae City, travel E to the Mill<br>cated. Station is located at Panay<br>reflexed of a 4 in coppor has set it<br>reignound will inserptions "CH2-4                                                                                                         | Location Description<br>n of Hanay. Then proceed dinocr<br>Park, about 20 nu from the phuck<br>is ted on top of s 30 cm, wiso cm<br>4 2007 NAM RIA*    | Zone. 51<br>Ty to the town pisza, where the station is<br>thand about 50 cr. from the naft, rese. Mark is<br>t, constate monument protructing 20 cm, above                                                                                             |
| PZ-14<br>rom Rotae City, travel E to the Mil<br>kated. Station & located at Panay<br>is have of a 4 in copport hat set it<br>is ground with inscriptions "C-241<br>sectesting Pany: UP-TCAGP                                                                             | Location Description<br>n of Parky Then proceed direct<br>Park (about 30 in, from the chuck<br>is red on top of s 30 cm, x 30 cm,<br>4 2007 NAM RIA1   | Zone. 51<br>Ty to the town plaza, where the station is<br>trans about 20 m, from the natil reset. Mark is<br>t, concrete monument prohibing 20 cm, above                                                                                               |
| PZ-14<br>rom Rodae City, inevel E to the Mill<br>caced. Station & located st Panay<br>re have of a 4 in copport has set it<br>is ground with inserptions "C-24<br>eccessing Pany: UP-TCAGP<br>U0066: Reference<br>IR Number. 3943584 B                                   | Location Description<br>n. of Panay. Then proceed dinost<br>Park about 20 m. from the chuck<br>is ned on top of a 30 cm. x 30 cm.<br>4 2007 NAM RIA*   | Zone. 51<br>ty to the town pisza, where the station is<br>h and about 20 m, from the natil rese. Mark is<br>t, concrete monument protructing 20 cm, above                                                                                              |
| FZ-14<br>ron Rosse City, travel E to the Mill<br>cated. Station & located at Panay<br>is have of a 4 in copport at set it<br>agreed with inserptions "CH2-1<br>sociesting Party: UP-TCAGP<br>U0066: Reference<br>R Number 3943584 B<br>N.: 2013-0364                     | Location Description<br>n of Parky Then proceed dinom<br>Park, about 30 mu from the chuck<br>is red on top of s 30 cm. x 30 cm.<br>4 2007 NAM RIA1     | Zone. 51<br>Ty to the town plsza, where the station is<br>thand about 50 or, from the naft, rese, Mark is<br>t, constate monument protricting 20 cm, above                                                                                             |
| PZ-14<br>rom Rodae City, travel E to the Mil<br>kaced. Station & located st Panay<br>re have of a 4 in coppor has set it<br>is ground with inserptions "C-24<br>equesting Pany: UP-TCAGP<br>U0098: Reference<br>IR Number 3943584 B<br>INI 2013-0364                     | Location Description<br>n of Parky Then proceed dinom<br>Park about 30 nr. from the chuck<br>is red on top of a 30 cm. × 30 cm.<br>4 2007 NAM RIA*     | Zone. 51<br>ty to the town plaza, where the station is<br>is and about 30 m, from the nath rese. Mark is<br>it, concrete monument protracing 20 cm, above<br>RUEL pm, BELEN, MNEA<br>rector, Mpping and happes? Desagment                              |
| FZ-14<br>ron Robes City, travel E to the Mu<br>kated. Station & located at Panay<br>le have of a 4 in coppor hau set it<br>le ground with inscriptions "C-424<br>souesing Pany: UP-TCAGP<br>U0066: UP-TCAGP<br>U0066: Reference<br>IR Number 3943584 B<br>.N.: 2013-0364 | Location Description<br>n of Parky Then proceed dinger<br>Park, about 30 int, from the ohuch<br>is red on top of s 30 cm, w 30 cm<br>4 2007 NAM RIA*   | Zone. 51<br>Ty to the town plsza, where the station is<br>thand stout 50 or , from the naft, rese, Mark is<br>t, contrate monument producing 20 cm, above<br>RUEL pm, BELEN, MNEA<br>Treater, Mpping and Naccesy Department                            |
| PZ-14<br>rom Rodas City, travel E to the Mil<br>cared. Station & logatel st Penay<br>re head of a 4 in coppor has set it<br>is ground with inscriptions "C-244<br>equesting Party: UP-TCAGP<br>upose: Reference<br>R Number 3943584 B<br>.N.: 2013-0364                  | Location Description<br>n of Parky Then proceed direct<br>Park labor, 30 nr. from the chuck<br>is red on top of s 30 cm. x 30 cm.<br>4 2007 NAM RIA1   | Zone. 51<br>ty to the town plaza, where the station is<br>is and about 30 m, from the nath rese. Mark is<br>it concrete monument protracing 20 cm, above<br>RUEL brit. BELEN, MNEA<br>RUEL brit. BELEN, MNEA<br>Heater. Mapping and headesy Department |
| FZ-14<br>rom Rosse City, travel E to the Mu<br>cated. Station & located at Panay<br>is head of a 4 in copport at set it<br>is ground with inserptions "C-424<br>sociesting Party: UP-TCAGP<br>uppe: Reference<br>R Number 3943584 B<br>N.: 2013-0364                     | Location Description<br>n of Hanay. Then proceed dinom<br>Park, about 30 mu from the phuch<br>is ted on top of s 30 cm. x 30 cm.<br>4 2007 NAM RIA*    | Zone. 51<br>hy to the town plsza, where the station is<br>thand about 20 or, from the naft, resp. Mark is<br>t, constate monument prohibing 20 cm, above<br>RUEL phil. RELEN, MNEA<br>mester. Mapping and habbersy Department                          |
| FZ-16<br>rom Rodas City, Irevel E to the Mil<br>cared. Station & Logatel & Demay<br>reliese of a 4 in coppor has set it<br>is ground with insorptions "C-244<br>sectesting Party: UP-TCAGP<br>U0059: Reference<br>R Number 3943584 B<br>Nu 2013-0364                     | Location Description<br>n of Parky Then proceed direct<br>Park about 30 in, from the chuck<br>is red on top of s 30 cm, x 30 cm,<br>4 2007 NAM RIA1    | Zone. 51<br>ty to the town plaza, where the station is<br>is and about 30 m, from the natil rese. Mark is<br>it, concrete monument protracing 20 cm, above<br>RUEL DM. BELEN, MNEA<br>RUEL DM. BELEN, MNEA<br>Heater. Mpping and headesy Department    |
| FZ-14<br>rom Roxas City, trevel E to the Mil<br>cared. Station & located st Penay<br>relieve of a 4 in coppor has set it<br>e ground with inscriptions "C-244<br>sourcesting Party: UP-TCAGP<br>U00393: Reference<br>R Number 3943584 B<br>N. 2013-0364                  | Location Description<br>n ist Hanay. Then proceed dinoor<br>Park, about 20 nu from the phuch<br>is hed on top of s 30 cm, x so cm<br>4 2007 NAM RIA*   | Zone. 51<br>hydrothon pisza, where the standnish<br>hand stout 20 cm from the naft, rose, Mark s<br>t, concrete monument protrucing 20 cm, showe<br>RUEL brd. RELEK, MNEA<br>rector, Mapping and Naboesy Department                                    |
| FZ-14<br>rom Rodes City, Inevel E to the Mil<br>cared. Station & logated at Penay<br>is head of a 4 in: copport has set it<br>is ground with insorptions "C-2-4<br>squeeting Party: UP-TCAGP<br>(0059) Reference<br>R Kumber 3943584 B<br>N. 2013-0364                   | Location Description<br>n. of Parky, Then proceed dinger<br>Park, abox, 30 nr. from the obuch<br>is red on top of a 30 cm. x 30 cm.<br>4 2007 NAM RIA* | Zone. 51                                                                                                                                                                                                                                               |

Figure A-2.4. CPZ-14

# ANNEX 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

# ANNEX 4. The LiDAR Survey Team Composition

| Data Acquisition<br>Component<br>Sub-Team | Designation                                    | Name                                 | Agency / Affiliation                 |
|-------------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|
| PHIL-LIDAR 1                              | Program Leader                                 | ENRICO PARINGIT, D.ENG               | UP-TCAGP                             |
| Data Acquisition<br>Component Leader      | Data Component<br>Project Leader – I           | ENGR. LOUIE P. BALICANTA             | UP-TCAGP                             |
| Chief<br>Resea<br>(CSRS)                  | Chief Science<br>Research Specialist<br>(CSRS) | ENGR. CHRISTOPHER CRUZ               | UP-TCAGP                             |
| Survey Supervisor                         | Supervising Science                            | ENGR. LOVELYN ASUNCION               | UP-TCAGP                             |
|                                           | Research Specialist<br>(Supervising SRS)       | LOVELY GRACIA ACUNA                  | UP-TCAGP                             |
|                                           |                                                | FIELD TEAM                           |                                      |
| Senior Sc<br>Research<br>(SSRS)           | Senior Science                                 | JULIE PEARL MARS                     | _                                    |
|                                           | Research Specialist<br>(SSRS)                  | PAULINE JOANNE ARCEO                 |                                      |
|                                           | Desservels Associate                           | JONATHAN ALMALVEZ                    |                                      |
| LIDAR Operation                           |                                                | PATRICIA ALCANTARA                   | UP-ICAGP                             |
|                                           | (RA)                                           | DAN CHRISTOFFER ALDOVINO             | _                                    |
|                                           |                                                | MARY CATHERINE ELIZABETH<br>BALIGUAS |                                      |
| Ground Survey                             | Research Associate                             | JERIEL PAUL ALAMBAN                  |                                      |
| Ground Survey                             | (RA)                                           | REGINA AEDRIENNE FELISMINO           | UP-TCAGP                             |
|                                           | Airborno Socurity                              | SSG. DAVE GUMBAN                     | Philippine Air Force                 |
|                                           | And othe Security                              | SSG. JAYCO MANZANO                   | (PAF)                                |
| LiDAR Operation                           |                                                | CAPT. ALBERT LIM                     | Asian Aerospace<br>Corporation (AAC) |
|                                           | Pilot                                          | CAPT. JERICO JECIEL                  | AAC                                  |
|                                           |                                                | CAPT. JEPH ALAJAR                    | AAC                                  |
|                                           |                                                | CAPT. JACKSON JAVIER                 | AAC                                  |

Table A-4.1. The LiDAR Survey Team Composition

| air |
|-----|
| pl  |
| pc  |
| ŏ   |
| Ξ   |
| ay  |
| aj. |
| ſþ  |
| or  |
| t f |
| ee. |
| Sh  |
| L.  |
| sfe |
| IU  |
| L   |
| a]  |
| ati |
| Ω   |
| 5.  |
| X   |
| E   |
| F   |
| A   |
|     |

|      | -    | and the second s | A NUMBER     |        | -               | 1     | 2      | 1   | and the second se | -      | 1000 | I             | PARAMAN IN COLUMN | on other state | -           | -       | NPATH COLOR            |   |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----------------|-------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------|-------------------|----------------|-------------|---------|------------------------|---|
|      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | and it | of Non- America |       |        | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      | Read in Frank | And the second    |                | 1           | 1       |                        |   |
| 1    |      | manifester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            | 1      | 1               | and a | (mont) |     | THE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N NO   | F    | ž             | 1                 | 1              | annoa       | 3       | Lowers, June 14        | * |
| 1    |      | magazie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | North Street | 1      | 1               | 1     | and a  | 1   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | E    | ī             |                   |                | and a       | and a   | Protect States         | _ |
|      |      | MUTCHIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 1      | 1               | -     | -      | 1   | Division in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      | M KO | -             | 1                 | 1              | E.          | į       | Common Asset 142       |   |
|      |      | BLATHORN A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Same of      | 1      | 1               | 11110 | -      | -   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8      | 1    | 1.144         | -                 | 1              | 1           | 1       | Distant, Incides       | _ |
|      |      | PROPERTICAL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ARCANIN.     | 2      | 3               | -     | 100    | 100 | 1 Interior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      | 2    | 1100          | -                 | 100            | Property of | 12      | protection in the      |   |
|      |      | Interesting of the local division of the loc | -            | 3      | 1               | 3     | -      | -   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | 2    | -             | 1                 | *              | T.          | 1       | and some               | - |
| 1.00 | 1    | N-resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 5      | 3               | Ŧ     | Į.     | S.  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | 1    | Table         | 170               |                | -           | -       | Credition, Based the   |   |
|      | 1000 | IN CROSSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All All      | 1      | 1               | -     | 1      | -   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 160  | 1    |               |                   | 1              | -           | and a   | Distance Personal      |   |
| 1.0  |      | Hundrottok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGUARDIN     | 1      | 1               | 1     | -      |     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 Not | -    | 1             | 1                 | -              | -           | Table 1 | Division, Amil 20      |   |
|      |      | Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            | 1      | 1               | -     | -      |     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000  | -    | o ten         | 100               | 8              | -           | 1       | Captions, Start Office | - |
| 1    |      | MUSERCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 5      | 1               | -     | -      |     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2      | -    | Hereit        |                   | -              | -           | -       | Constantine            | - |
|      | 1    | 1 - I - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 I C        | £ .)   | 4 int           | 2     | -      |     | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A. a   | N SY | 1 de          | -1/2±             |                |             |         |                        |   |

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)
| IR Can'tS TATIC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            |         |     | 10000       | MINISTER NO. |        |          |                    |           | - ADDANGTON - |        |     | - Statements       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|------------|---------|-----|-------------|--------------|--------|----------|--------------------|-----------|---------------|--------|-----|--------------------|
| 18-5an-15 77476 | BINAM INCHERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSOR | Output LAS | KNL (muth) | Invisor | POS | MADES/CAM   | FLEXCASI     | RANOG  | BOLTON C | BAGE<br>STATION(0) | date info | 1001140       | Actual | Ξġ. | LOCATION           |
| matin in due no | 28UK38D261A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | permit | 8          | 89         | 111     | 315 | 33.1        | 276          | 18.8   | 8        | 73.1               | Bit       | tix(B         | \$7    | R   | ZYDACRAW<br>DATA   |
| 19-Sep-15 2746G | ZBUK38MDSE262A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nimeo  | g          | 889        | 1.28    | 342 | 67.6        | 527          | 20.5   | 2        | 141                | 103       | 100           | n      | 2   | Z1DACIRAIN<br>DATA |
|                 | Received from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |            |            |         |     | Received by |              |        |          |                    |           |               |        |     |                    |
|                 | North Control of Contr | TE     |            |            |         |     | A IN        | Bong         | r iols | lis      |                    |           |               |        |     |                    |
|                 | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |            |         |     |             |              |        |          |                    |           |               |        |     |                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            |         |     |             |              |        |          |                    |           |               |        |     |                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            | t          |         |     |             |              |        |          |                    |           |               |        |     |                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            |         |     |             |              |        |          |                    |           |               |        |     |                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            |         |     |             |              |        |          |                    |           |               |        |     |                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |            |         |     |             |              |        |          |                    |           |               |        |     |                    |

|              | 200Y000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E-Geochenki<br>Daith | E VENEZVENIV<br>On UN | Provension<br>Onthe | LIGHCANNV<br>Data | L'UNIVER . | L'ENCION .  | Distribution (1997) | Jinosona and | Districtions<br>DATA |                                         |   | - |  |   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------|-------------------|------------|-------------|---------------------|--------------|----------------------|-----------------------------------------|---|---|--|---|
| 10 A.        | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŧ                    | ÷                     |                     | z                 |            | ×           | z                   | e            | 2                    |                                         |   |   |  |   |
| P.DOW        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$                   | 1                     | 8                   |                   |            | -           |                     | *            | 5                    |                                         |   |   |  |   |
|              | Constant of the local division of the local | 10                   | 153                   | 101                 | 101               | 163-       | 108         | tok                 | 8            | 100                  |                                         |   |   |  |   |
| 1.1.1.Marcal | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P                    | 2                     | N.                  | 2                 | 2          | 2           | 8                   | 8            | 12                   |                                         |   |   |  |   |
| 200 0000     | NAUP<br>NAUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i.                   | 8                     | 10.1                | ŝ                 | -          | ñ           | 14.5                | -            | 414                  |                                         |   |   |  |   |
|              | NULLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 3                     |                     | 2                 |            |             |                     |              | 8                    | Jile o                                  |   |   |  | - |
|              | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | -                     | tra                 | 1                 | -          | -           | -                   | 101          | 51.0                 | antos                                   |   |   |  |   |
| -            | Notice and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                  | 2018                  | 2040F               | ę                 | -          | OTAN D      | *                   | E.           | 0.00                 | C & C                                   |   |   |  |   |
| ľ            | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                    | 10                    | NAME:               | ŝ                 | 99         | as Mara     | 111                 | 10.4         | 1.004-11             | And |   |   |  |   |
| t            | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                  | 2                     |                     | X.                | ş          | -           | -                   |              | 1004                 | 255                                     |   |   |  |   |
| -            | limitacon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 980                  | - 16.5                | Æ                   |                   | 2          | 110         | 10                  | 2            | Đ.                   |                                         |   |   |  |   |
| 1            | ML (month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 210                  | 1013                  | 6                   | 8                 | 1          | 14033       | 0.10                | 1010         | 2                    |                                         | 1 |   |  |   |
| PLANE L      | Ordene LAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                       |                     |                   | 1          | 5           | 1                   | 1            | A.S.                 |                                         |   |   |  |   |
|              | SUNCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inter a              | Name                  | Autor               | a stand           | trang.     | stand       | Anna                | iner         |                      | 36                                      |   |   |  |   |
|              | SILVE AVEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2CMU88UCSSCIERA      | 284/KS9C262A          | 281902603182        | 20100000VISSORA   | 2010022010 | ANADRESIDEN | 2NU/C16/26/99       | ARKERBROATEA | 26143742736          | A REAL                                  |   |   |  |   |
|              | PLOST NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19290                | 23665                 | 20002               | 30/12             | 27726      | 11796       | 20112               | 17905        | SERVE                |                                         |   |   |  |   |
|              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23-5sp               | 24-549                | 24-Sep              | 25-Sep            | 28-Sep     | 26-Sep      | 26-Sep              | 3P-Sep       | SPS45                |                                         |   |   |  |   |

Figure A-5.3. Transfer Sheet for Ibajay Floodplain - C



1. Flight Log for 1214A Missio







| Person [. (1) ONS 2 ALTM Model: Pr                                                                                         |                                                                                                              |                       |                                         | a simulational final and the |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------------------|
|                                                                                                                            | upped 3 Mission Name:                                                                                        | 4 Type: VFR.          | 5 Auroral LType: Cesnina 1206H          | PARCENTIGENTING TION: 4122   |
| AL MAY 2.DILL 12 Almort of Depa                                                                                            | rtune (Airport, Gty/Movioce):                                                                                | 12 Airport of Arrivel | (Airport, City/Province):<br>0.Dr. or ( |                              |
| On 7.40 MENDING ON 2.27                                                                                                    | 15 Total Engine Time:<br>L1 2443                                                                             | 16 Take off:          | 17 Landing:                             | 18 Total Flight Time:        |
| ier tot                                                                                                                    |                                                                                                              |                       |                                         |                              |
| SUCC                                                                                                                       | eretul tright                                                                                                |                       |                                         | 2                            |
| iems and Solwtions:                                                                                                        |                                                                                                              |                       |                                         |                              |
| Accession Fight Aspressed by<br>Accession Fight Aspressed by<br>Suplareas over Prined Manue<br>(Inst User Aspressentariae) | Acquisition flight Cartilad by<br>David. (Semiloar)<br>Signature over Princed Raine<br>1944 Presenteristical | Photon Camer          | p Vite                                  | Lide Operator                |

Figure A-6.3. Flight Log for Mission 1238A

| 11. 1. 1. Arventer.     3 Contrained (Section)     1. 2. Anyon of Arrival (Anyon, CityPhrovinue):       10. wow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AR Operator: DC MOOVWD 2.M    | LTM Model: NowA        | 3 Mission Name: 3/0/03/866                                                                 | Post 4 Type: VFR     | 5 Aircraft Type: Cesnma 1205H       | 6 Aircraft Identification: Corta. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-----------------------------------|
| International internationalineactional international international international in                                                                                                                                                                                                                                                                                                                                                                  | of 4: 4Avretik 8 Co-Pillott   | S. ALALAN              | 9 Route: Ast. a.                                                                           |                      |                                     |                                   |
| ution Otto:<br><u>15.6.2.</u> <u>16. Furdient Off.</u> <u>15. Ford Engine Times</u> <u>16. Table off.</u> <u>13 Landing:</u> <u>14. Toola Harter Market Marke</u>                                                                                                                                                                                                                                                                                                                | NE: NAG. 21, 2414 12A         | Airport of Departure ( | Airport, City/Province): 1                                                                 | 2 Airport of Arrival | Airport, Gity/Province):<br>Arctau3 |                                   |
| estier<br>Training grad control productions<br>Subscreection<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applicance<br>Applican | gine On: 14 Engine C          | Off. LEVES &           | 15 Total Engine Time: 1<br>2.4-41                                                          | 6 Take offi          | 17 Landing:                         | 18 Total Flight Time:<br>2-433    |
| The second secon                                                                                                                                                                                                                                                                                                                                                 | eather                        |                        |                                                                                            |                      |                                     |                                   |
| robierros and Solutions:<br>Appendix Approved by Approved by Appendix Approved by Approved by Appendix A                                                                                                                                                                                                                                                                                                                                               | marksi guucuess truu          |                        |                                                                                            |                      |                                     |                                   |
| Acquisition fight devices fight Contracting<br>Acquisition fight Cont                                                                                                                                        | tablems and Solutions:        |                        |                                                                                            |                      |                                     |                                   |
| Acquisition Fight Asymetric for Management and Acquisition Fight Contracting Magnetic for Fight Contracting Management (Management Active Contracting Management Active Contracting Management (Management Active Contracting Management Active Contracting Management Active Contracting Management (Management Active Contracting Management Active Contracting Management Active Contracting Management (Management Active Contracting Management Active Contracting Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                        |                                                                                            |                      |                                     |                                   |
| Acquisition (Light Acquisition (Light Conflication)<br>Acquisition (Light Conflication)<br>Acquisition (Light Conflication)<br>Acquisition (Light Conflication)<br>Acquisition (Light Acquisition)<br>Acquisition (Light Acquisition)<br>Acquisitio                                                                                                                                                                                                                       |                               |                        |                                                                                            |                      |                                     |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acquiblion Flight Approved by | ₹ T&₹                  | anna fuga Cardinadar<br>Par Dina Difatora, ALL<br>Anna cons Franchisana<br>Representatione | Rath-Con             | And have                            | Liter Operator                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                        |                                                                                            |                      |                                     |                                   |

Figure A-6.4. Flight Log for Mission 1240A



#### Fight Log No.: 27-12.6 5 Aircraft Type: Cesnna T206H 5 Aircraft Identification: 9(11) Aircalt Mechanic/ Technician Signature over Printed Marie 18 Total Filght Time: instant over Printed Name 12 Airport of Arrivel (Airport, City/Province): EE BALLING Lider Operate When Surreped BLK300 17 Landing Figure A-6.6. Flight Log for Mission 2742G 21 Remarks inted Marrie 16 Take off: UDAR System Maintenance Aincraft Maintenance Phil-utban Admin Activities Plint-in-Cae CDXAS IS Total Engine Time: 3 493 20.c Others Lie Dun Acquitation Flight Cortified by ģ Alrcraft Test Flight AVC Admin Flight O Others: 20.b Non Billable Others: 14 Engine Off: Eagl Cloudy CARDER ASANCIE Acquisition Right Approved by Data Acquisition Flight Log Signature comPrinted Name (End Uper Representative) 22 Problems and Solutions System Test Flight Weather Problem A Acquisition Flight Celibration Flight Aincraft Problem 6110 System Problem 20 Flight Claudication Pilot Problem Ferry Flight Others: 13 Engine On: 1 19 Weather 20.a Billible 000 00000

| 7 Pilot: A . Live                                                                                                    | 8 CO-PILOT: P. CARUDUL                                                               | 9 Route:                                                                                               |                       |                               | 231                           |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|-------------------------------|
| 10 Dates: South. PR, South                                                                                           | 12 Airport of Departur<br>Roways                                                     | re (Mirport, City/Province):                                                                           | 12 Alrport of Arrival | (Arport, Cty/Province):       |                               |
| 13 Engine On: #12.9                                                                                                  | 14 Engine Off:<br>1535                                                               | 15 Total Engine Time:<br>04 + ob                                                                       | 16 Take off:          | 17 Landing:                   | 18 Total Flight Time:         |
| 19 Weather<br>B                                                                                                      | Clevely                                                                              |                                                                                                        |                       |                               |                               |
| 20 Flight Classification                                                                                             |                                                                                      |                                                                                                        | 21 Rismarks           |                               |                               |
| 20.a Billable                                                                                                        | 20.b Non Billable                                                                    | Ju.c Others                                                                                            | C Love v              | od States                     |                               |
| <ul> <li>Acquisition Flight</li> <li>Ferry Flight</li> <li>System Test Flight</li> <li>Calibration Flight</li> </ul> | <ul> <li>Alricraft Test Flight</li> <li>AAC Admin Flight</li> <li>Others:</li> </ul> | <ul> <li>LIDAR System Mainter</li> <li>Aincritt Maintenance</li> <li>Phil-LIDAR Admin Activ</li> </ul> | once<br>files         | 1997 A 1997 A 1997 5 2 4 444  | voids acce BLEIYO             |
| 22 Problems and Solutions                                                                                            |                                                                                      |                                                                                                        |                       |                               |                               |
| O Wreather Problem                                                                                                   |                                                                                      |                                                                                                        |                       |                               |                               |
| <ul> <li>Alreadt Problem</li> </ul>                                                                                  |                                                                                      |                                                                                                        |                       |                               |                               |
| o Plot Problem<br>o Others:                                                                                          |                                                                                      |                                                                                                        |                       |                               |                               |
|                                                                                                                      |                                                                                      |                                                                                                        |                       |                               |                               |
| Acquisition Hight Approved by                                                                                        | Acquisition Flight Ce                                                                | rtfried by Plant in-C                                                                                  | mand M                | Udar Opgirater                | Alexanti Mechanici Technician |
| Level and the line                                                                                                   | MC MC MARTIN                                                                         | A AND                                                                                                  | My C                  | Marin M.                      |                               |
| (End User Repeterization)                                                                                            | (PAF Reprisentat                                                                     | Maller Stimotury                                                                                       | SuegAritrood Name     | Gignature over Printed Marree | Signature over Printed Marve. |

Figure A-6.7. Flight Log for Mission 2746G

7. Flight log for 2746G Mission

| 10 Date: 3-y Serr rS 12 Nitport of Depar<br>13 Engline On: 0590 14 Engline Off: 0455<br>19 Weather Classification Clavid-y<br>confight classification 20.0 Mon Bibble | rture (Arport, Ctc/Province):<br>15 Total Engine Time:<br>4485   | 12 Ai rport of Arrivel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|
| 13 Engline Om: 0590 14 Engline Off: 0955<br>19 We a ther Clowdy Do 19 We a ther Clowdy Do 20 Flight classification 20 Flight and Blable 20 han Blable                 | 15 Total Engine Time:<br>나추소동                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Airport, Gtg/Province):                     |                              |
| 29 We a ther Cloudy<br>In 20 Fight Classification 20 han Bilable<br>20 a Mildele 20 han Bilable                                                                       | -                                                                | 16 Take off:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 Landing:                                  | 18 Total Flight Time:        |
| 20 Flight Classification<br>20.4 Milde 20.5 Non Bilable                                                                                                               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                            |                              |
| 20.b Non Billable 20.b Non Billable                                                                                                                                   |                                                                  | 21 Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                              |
|                                                                                                                                                                       | 20.c Others                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
| of Acquistion Fight o Aircraft Test Tight<br>o Ferry Fight o AAC Admin Fight<br>o System Test Fight o Others:                                                         | t o LIDAR System Mains<br>Amont Maintenano<br>Phi-LIDAR Admin Ac | enance Cuary<br>Softies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rickul Bukizec                               |                              |
| 22 Problems and Solutions                                                                                                                                             |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
| O Weather Problem<br>O System Problem                                                                                                                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
| <ul> <li>Alteralit Problem</li> <li>Pilot Problem</li> </ul>                                                                                                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
| 0 Others                                                                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
| Acquicition flight Approved by Acquicition Fligh                                                                                                                      | Plibtia                                                          | Counsel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nder Operator                                | Ascall Medunic Technican     |
| Lough Mark Market 10 Are Sort And South And South And                                                                             | There are series and the series                                  | where the second | V(u) And | Signature over Printed Narue |
|                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                              |
|                                                                                                                                                                       | Fimme A.6 8 Flinht                                               | I or for Mission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77660                                        |                              |



#### Flight Log No.: 77706 3 Mission Name: 2614 38DVF4 4 Type: VFR 5 Aircraft Type: Gesnna T206H 5 Aircraft Identification: 9122 Aiscraft Mechanic/ Technician Signature over Printed Name 18 Total Flight Time: Control wide out bueigo 2 & 12cs acr PSHIRA Tel SNING Ignore ever Prind Name whiteman L2 Airport of Amival (Airport, City/Province): Udar Operator 17 Landing: PULICE 21 Remarks 16 Take off: UDMR System Maintenance Aliccelt Maintenance Phil-UDAR Admin Activities Middlin-Com 15 Total Engine Time: 15 23 8 Co-Piled: J. J. Ecigi. 9 Route: 12 Alrport of Departure (Arrport, ChyProvince): 20.c Others Acquinition Right Certified by 1 UIDAR Operator: PAV: 924541,445 2 ALTM Model: 6444 Autrafit Test Flight AAC Admin Flight Others: Strong (PMF Rept i i 20.6 Non Billable 14 Engine Off: cloudy Supature over Primed Name Supature over Primed Name togeld tion Flight Approved by 45 SEPT 15 Data Acquisition Flight Log System Test Flight Calibration Flight Weather Problem or Acquisition Flight **32 Problems and Solutions** 5550 System Problem Aircraft Problem Pilot Problem 20 Fight Classification O Ferry Flight Pilot: A.LIM Others: 13 Engine On: 20.a Billable 19 Weather 10 Date: 0.0 000

Figure A-6.9. Flight Log for Mission 2770G

| Milet A. Li M.     B. Carlinger Li M.     Carlinger Li M.     B. Carlinger Li M.     B. Carlinger Li M.     B. Carlinger Li M.     Carlinger Li M.     B. Carlinger Li M.     Carlinger Li M.     B. Carlinger Li M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ollower     Start is,<br>start is,<br>gewenter     Bio-Miles 4excert     Bionet       Offere     3. start is,<br>gewenter     2. start is,<br>gewenter </th <th>Pillotis     Start     Bit Out     Bit Out</th> <th>1 UDAR Operator: PN- 90.</th> <th>USIN PART 2 ALTM Model: GEW</th> <th>3 Mission Name: 26LR 38DVF</th> <th>4 Type: VFR</th> <th>5 Al rcraft Type: Cesnna T206H</th> <th>6 A straft Identification: 9122</th> | Pillotis     Start     Bit Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 UDAR Operator: PN- 90.                                                                                              | USIN PART 2 ALTM Model: GEW                              | 3 Mission Name: 26LR 38DVF                                                                               | 4 Type: VFR                | 5 Al rcraft Type: Cesnna T206H                                                    | 6 A straft Identification: 9122                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
| Obset:     3:     Sert     Sert     Sert     Sert     Sert     Sert     Sert     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDDUR:     Sport     IDDUR:     Sport     IDDUR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDDUR:     3:     Start     Start <th>7 Pilot: A.LIM</th> <th>8 CO-PHOR: J. JECIEL</th> <th>9 Route:</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 Pilot: A.LIM                                                                                                        | 8 CO-PHOR: J. JECIEL                                     | 9 Route:                                                                                                 |                            |                                                                                   |                                                             |
| Literation Oil:     Description Oiler     Literation Oiler     Distribution Oi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Engine On:     3. Four Chine     3. Four Free Off.     3. Four Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lingtine Ot:     Statistics:     Istration:     Istration:     Istration:     Istration:     Istration:     Istration:       9 Weahter:     Cloud     Cloud     Statistics:     Statistics:     Istration:     Ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 Date: 35 supr 15                                                                                                   | 12 Airport of Departurn<br>pcosh-5                       | a (Airpart, Gtg/Province): 1                                                                             | 2 Airport of Arrival (A    | irport, City/Province):                                                           |                                                             |
| IS Weather     Cloudy       01 Rith CastRation     20 A loss titlets     20 A loss titlets       02 A loss titlets     20 A loss titlets     20 A loss titlets       03 Bible     20 A loss titlets     20 A loss titlets       04 Bible     20 A loss titlets     0 Coloren       05 A gaugition (H)     0 A month test fight     0 Control       05 A standing (H)     0 A month test fight     0 Control       05 A standing (H)     0 A month test fight     0 Control       05 A standing (H)     0 A month test fight     0 Control       05 A standing (H)     0 A month test fight     0 Control       05 A standing (H)     0 A month test fight     0 Control       0 A standing (H)     0 A month test fight     0 Control       0 A standing (H)     0 A month test fight     0 Control       0 A month roution     0 Control     0 Control       10 A month roution     0 Control     0 Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 Weather <u>cloudy</u><br>20 Figh Classification Tight <u>and set statistic</u><br>20 Figh Classification Tight <u>and set statistic</u><br>20 Figh Classification Tight <u>and set statistic</u><br>21 Baseries <u>biologe</u> <u>And statistics</u><br>21 Baseries <u>biologe</u> <u>And statistics</u><br>21 Baseries <u>biologe</u> <u>Biologe</u> <u>And statistics</u><br>21 Baseries <u>Biologe</u> <u>Biologe</u> <u>And statistics</u><br>21 Baseries <u>Biologe</u> <u>Biolo</u>                                                                                                                                                      | Structure     Clearly       Striktion flight     213 Monthula       Striktion flight     313 Monthula       On Bible     313 Monthula       On Structure flight     0       Image: Structure flight <td>13 Engine On:<br/>05 55</td> <td>14 Engine Off: Inte</td> <td>15 Total Engine Time: 1</td> <td>5 Take off:</td> <td>17 Landing:</td> <td>18 Total Flight Time:</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 Engine On:<br>05 55                                                                                                | 14 Engine Off: Inte                                      | 15 Total Engine Time: 1                                                                                  | 5 Take off:                | 17 Landing:                                                                       | 18 Total Flight Time:                                       |
| OF light Classification     2.1 Reamedia     2.1 Reamedia       Cost of Biblie     2.1 Anno Bibliel     2.1 Reamedia       Cost of Biblie     2.1 Anno Bibliel     2.1 Reamedia       Cost of System Maintenance     0. Anno Annin Biblin     0. Control:       0. System Service     0. Anno System Maintenance     6.4 Clique & A. Floricy and                                                                                                                                                                                                    | OFTER/Classification     21 Stransfil     21 Stransfil       00 # Bib/le     Attent bit in the intervention of the interventing of the inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Officient Conflication     21 Brancia       Classifier (R)     2.4 min (R)       6     4 min (R)       6     4 min (R)       6     5 min (R)       7     5 min (R)       6     5 min (R)       6     5 min (R)       6     5 min (R)       7     5 min (R)       6     5 min (R)       7     5 min (R)       6     5 min (R)       7     6 min (R)       7     6 min (R)       7     7 min (R)       7     10 min (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Weather<br>X                                                                                                       | cleudy                                                   |                                                                                                          |                            |                                                                                   |                                                             |
| Rate     Material     Material<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R3 B10k     28 km S18ki     26 km S1     Control wing, ser Bugg 1, 4, 1% s5, ser.       6 km S18ki     0. Mrmt Ther Fight     0. UXAS green Multitations     6 km S1 gg 1, 4, 1% s5, ser.       0. Standing 10, 1%     0. Mrmt Ther Fight     0. UXAS green Multitations     6 km S1 gg 1, 4, 1% s5, ser.       0. Standing 10, 1%     0. Mrmt Ther Fight     0. UXAS green Multitations     6 km S1 gg 1, 4, 1% s5, ser.       0. Standing 10, 1%     0. Mrmt Ther Fight     0. UXAS green Multitations     6 km S1 gg 1, 4, 1% s5, ser.       0. Standing 10, 1%     0. Other:     0. Fight 1, 1%     1% standing 1, 1%       0. Standing 10, 1%     0. Other:     0. Fight 1, 1%     1% standing 1, 1%       0. Standing 1, 1%     0. Other:     0. Fight 1, 1%     1% standing 1, 1%       0. Other:     0. Other:     0. Other:     1% standing 1, 1%       0. Other:     0. Other:     0. Other:     1% standing 1, 1%       0. Other:     0. Other:     1% standing 1, 1%     1% standing 1, 1%       0. Other:     0. Other:     1% standing 1, 1%     1% standing 1, 1%       0. Other:     0. Other:     1% standing 1, 1%     1% standing 1, 1%       0. Other:     0. Other:     1% standing 1, 1%     1% standing 1, 1%       0. Other:     0. Other:     1% standing 1, 1%     1% standing 1, 1%       0. Other:     0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R3 Bible     R4m Bible     R3 Mon B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 Fight Classification                                                                                               |                                                          |                                                                                                          | 21 Romarks                 |                                                                                   |                                                             |
| <ul> <li> <ul></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Austrition (Math. Control Letting)             <ul> <li>Austritution (Math. Control Light)</li> <li>Austritution (Math. Control Light)</li> <li>Austritution (Math. Control Light)</li> <li>Austritution (Math. Control Light)</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Kapation High                 <ul></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.a Billable                                                                                                         | 20.6 Non Billable                                        | 20.4 Others                                                                                              | Conred                     | with over bucigs 2                                                                | & line ar                                                   |
| Checkens and Solutions     • Weather trucken       • Spear Problem       • Other:       • Other       • Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Problem and Solities     • wather Problem       • Steam Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 Problem and Solution: <ul> <li>Wanther Problem:</li> <li>Steam Poble:</li> <li>Analitation Flok Approvality</li> <li>Instribution:</li> <l< td=""><td>er Acquisition Flight<br/>O Ferry Flight<br/>O System Test Flight<br/>O Calibration Flight</td><td>o Antrait Test Flight<br/>o AAC Admin Flight<br/>o Others:</td><td><ul> <li>UDAR System Maintenar</li> <li>Alscraft Maintenance</li> <li>PhiluiDAR Admin Activit</li> </ul></td><td>50 Prici</td><td>8</td><td></td></l<></ul>                                                                                                                                                                                                                         | er Acquisition Flight<br>O Ferry Flight<br>O System Test Flight<br>O Calibration Flight                               | o Antrait Test Flight<br>o AAC Admin Flight<br>o Others: | <ul> <li>UDAR System Maintenar</li> <li>Alscraft Maintenance</li> <li>PhiluiDAR Admin Activit</li> </ul> | 50 Prici                   | 8                                                                                 |                                                             |
| Acaritican Fefra Approved by Acquired ty Accurated by Acarities Federal Accurated by Acarities Federal Acarity Relations Accurated by Acarity Relations A | Acaritican Fefra Approved by Acarited by A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acristican Tele Approved by Acristical Approximation Tele Approximatio |                                                                                                                       |                                                          |                                                                                                          |                            |                                                                                   |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acquisition Fight Approved<br>Acquisition Fight Approved<br>Securities over Fermentative<br>(End User Representative) | Negatition High Ca                                       | The in Contraction                                                                                       | react of the second second | Lidar Operator<br>Juddidaarah<br>Faanda Feru sayne<br>Signature ever Prived Narre | Alecraft NAchaek/ Technician<br>Signature are: Printed Name |

# ANNEX 7. Flight status reports

## Aklan and Capiz-Aklan Reflights

July 3 to August 1, 2014

| Flight<br>No | Area                 | Mission         | Operator                      | Date Flown        | Remarks                                                                                                                                                                                                  |
|--------------|----------------------|-----------------|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1214A        | BLK 38G,<br>38H, 38I | 3BLK38G074A     | PAT<br>ALCANTARA              | 15 MAR 14         | Strips of BLK 38G, H, I.<br>Mission aborted duet<br>to low cloud ceiling and<br>precipitation in the survey<br>area                                                                                      |
| 1232A        | BLK 38G              | 3BLK38G078B     | DC ALDOVINO                   | 19 MAR 14         | Completed 15 lines of BLK<br>38G                                                                                                                                                                         |
| 1238A        | BLK 38G              | 3BLK38GS080A    | PEARL MARS                    | 21 MAR 14         | Completed BLK 38R and<br>completed BLK 38G.<br>Experienced heavy air<br>traffic in Kalibo airport                                                                                                        |
| 1240A        | BLK 38H              | 3BLK38HS080B    | DC ALDOVINO                   | 21 MAR 14         | Supplementary to BLK 38H                                                                                                                                                                                 |
| 1242A        | Voids area           | 3BLK38V081A     | PEARL MARS                    | 22 MAR 14         | Mission completed                                                                                                                                                                                        |
| 2742G        | BLK38D               | 2BLK38D261A     | MCE<br>BALIGUAS &<br>PJ ARCEO | SEPT. 18,<br>2015 | Covered several lines of<br>BLK38D. 3 lines wherein<br>the beam divergence<br>became wide and roll<br>compensation was off.<br>Presence of data gap. No<br>digitizer. Partly cloudy and<br>strong winds. |
| 2746G        | BLKs38 A, D,<br>& E  | 2BLK38ADSE262A  | MCE<br>BALIGUAS &<br>PJ ARCEO | SEPT. 19,<br>2015 | Continuation of BLK38D,<br>covered BLK38A and few<br>lines from BLK38E. 2 lines<br>wherein beam divergence<br>became wide and roll<br>compensation was off. No<br>digitizer. Partly cloudy               |
| 2766G        | BLK38C               | 2BLK38C267A     | MCE<br>BALIGUAS               | SEPT. 24,<br>2015 | Completed BLK38C. Cloudy<br>in high terrain, hazy and<br>strong gust of winds.<br>Getting dark images from<br>the camera. No digitizer                                                                   |
| 2770G        | BLKs38 B, D<br>& E   | 2BLK38BDVES268A | RA FELISMINO                  | SEPT. 25,<br>2015 | Completed BLK38 A,<br>covered voids on D and 3<br>lines of E. No digitizer                                                                                                                               |
| 2790G        | BLKs38 B & F         | 2BLK38BSF273A   | RA FELISMINO                  | SEPT. 30,<br>2015 | Completed BLK38B and<br>few lines of BLK38F.<br>Changed of altitudes<br>because of clouds and<br>high terrain                                                                                            |

## Table A-7.1. Flight Status Report

#### SWATH PER FLIGHT MISSION

Flight No. :1214AArea:BLK 38G, H, IMission Name:3BLK38G074AParameters:Alt: 600m; Scan Fz: 40; Scan angle: 18; Overlap: 30%



Figure A-7.1. Swath for Flight No. 1214A

Flight No. :1232AArea:BLK 38GMission Name:3BLK38G078BParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%



Figure A-7.2. Swath for Flight No. 1232A

Flight No. :1238AArea:BLK 38GMission Name:3BLK38GS080AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%



Figure A-7.3. Swath for Flight No. 1238A

Flight No. :1240AArea:BLK 38FMission Name:3BLK38HS080BParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%



Figure A-7.4. Swath for Flight No. 1240A

Flight No. :1242AArea:VOIDS AREAMission Name:3BLK38V081AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%



Figure A-7.5. Swath for Flight No. 1242A

| Flight No. :  | 2742G                                                          |
|---------------|----------------------------------------------------------------|
| Area:         | BLK38D                                                         |
| Mission Name: | 2BLK38D261A                                                    |
| Parameters:   | Alt: 1000m; Scan Fz: 50; Scan angLe: 15; Overlap: 30%, PRF:100 |
|               | Alt: 800m; Scan FZ: 40; Scan angle: 25; Overlap: 30%, PRF:142  |
|               | Alt: 600m; Scan Fz: 40; Scan angLe: 25; Overlap: 30%, PRF:125  |
|               | Area surveyed: 113.23 sq km.                                   |



Figure A-7.6. Swath for Flight No. 2742G

Flight No. :2746GArea:BLKs38 A, D & EMission Name:2BLK38ADSE262AParameters:For BLK38E: Alt: 800m; Scan Fz: 50; Scan angle: 20; Overlap: 30%Area surveyed:164.92 sq km



Figure A-7.7. Swath for Flight No. 2746G

Flight No. :2766GArea:BLK38CMission Name:2BLK38C267AParameters:Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125Area surveyed:148.14 sq km.



Figure A-7.8. Swath for Flight No. 2766G

 Flight No.:
 2770G

 Area:
 BLKs38 B, D & E

 Mission Name:
 2BLK38BDVES268A

 Parameters:
 Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125

 Area surveyed:
 188.62 sq km.



Figure A-7.9. Swath for Flight No. 2770G

 Flight No.:
 2790G

 Area:
 BLKs38 B & F

 Mission Name:
 2BLK38BSF273A

 Parameters:
 Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125

 Area surveyed:
 153.45 sq km.



Figure A-7.10. Swath for Flight No. 2790G

# ANNEX 8. Mission Summary Reports

| Flight Area                                   | Tandag (Surigao Del Sur)                    |
|-----------------------------------------------|---------------------------------------------|
| Mission Name                                  | Block 65CD                                  |
| Inclusive Flights                             | 1698A & 1702A                               |
| Range data size                               | 22.20 GB                                    |
| Base data size                                | 15.99 MB                                    |
| POS                                           | 377 MB                                      |
| Image                                         | 98.40 MB                                    |
| Transfer date                                 | August 5, 2014 & July 31, 2014              |
|                                               |                                             |
| Solution Status                               |                                             |
| Number of Satellites (>6)                     | Yes                                         |
| PDOP (<3)                                     | Yes                                         |
| Baseline Length (<30km)                       | No                                          |
| Processing Mode (<=1)                         | Yes                                         |
|                                               |                                             |
| Smoothed Performance Metrics (in cm)          |                                             |
| RMSE for North Position (<4.0 cm)             | 1.85                                        |
| RMSE for East Position (<4.0 cm)              | 3.10                                        |
| RMSE for Down Position (<8.0 cm)              | 4.00                                        |
|                                               |                                             |
| Boresight correction stdev (<0.001deg)        | 0.000440                                    |
| IMU attitude correction stdev (<0.001deg)     | 0.004612                                    |
| GPS position stdev (<0.01m)                   | 0.0097                                      |
|                                               |                                             |
| Minimum % overlap (>25)                       | 77.15                                       |
| Ave point cloud density per sq.m. (>2.0)      | 4.52                                        |
| Elevation difference between strips (<0.20 m) | Yes                                         |
|                                               |                                             |
| Number of 1km x 1km blocks                    | 170                                         |
| Maximum Height                                | 371.95 m                                    |
| Minimum Height                                | 47.81 m                                     |
|                                               |                                             |
| Classification (# of points)                  |                                             |
| Ground                                        | 43,795,160                                  |
| Low vegetation                                | 57,597,183                                  |
| Medium vegetation                             | 98,661,251                                  |
| High vegetation                               | 185,453,527                                 |
| Building                                      | 5,549,843                                   |
| Orthophoto                                    | Yes                                         |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Harmond Santos |

Table A-8.1. Mission Summary Report for Mission Blk65CD



Figure A-8.1 Solution Status



Figure A-8.2 Smoothed Performance Metric Parameters



Figure A-8.3 Best Estimated Trajectory



Figure A-8.4 Coverage of LiDAR data



Figure A-8.5 Image of data overlap



Figure A-8.6 Density map of merged LiDAR data



Figure A-8.7 Elevation difference between flight lines

| Flight Area                                   | Tandag (Surigao Del Sur)                                                           |
|-----------------------------------------------|------------------------------------------------------------------------------------|
| Mission Name                                  | Block 65AB                                                                         |
| Inclusive Flights                             | 1706A & 1726A                                                                      |
| Range data size                               | 24.20 GB                                                                           |
| Base data size                                | 25.45 MB                                                                           |
| POS                                           | 491MB                                                                              |
| Image                                         | 136.70 MB                                                                          |
| Transfer date                                 | July 31, 2014                                                                      |
|                                               |                                                                                    |
| Solution Status                               |                                                                                    |
| Number of Satellites (>6)                     | Yes                                                                                |
| PDOP (<3)                                     | Yes                                                                                |
| Baseline Length (<30km)                       | Yes                                                                                |
| Processing Mode (<=1)                         | Yes                                                                                |
|                                               |                                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                                    |
| RMSE for North Position (<4.0 cm)             | 2.10                                                                               |
| RMSE for East Position (<4.0 cm)              | 2.70                                                                               |
| RMSE for Down Position (<8.0 cm)              | 3.50                                                                               |
|                                               |                                                                                    |
| Boresight correction stdev (<0.001deg)        | 0.000728                                                                           |
| IMU attitude correction stdev (<0.001deg)     | 0.010218                                                                           |
| GPS position stdev (<0.01m)                   | 0.0082                                                                             |
|                                               |                                                                                    |
| Minimum % overlap (>25)                       | 42.61                                                                              |
| Ave point cloud density per sq.m. (>2.0)      | 2.54                                                                               |
| Elevation difference between strips (<0.20 m) | Yes                                                                                |
|                                               |                                                                                    |
| Number of 1km x 1km blocks                    | 233                                                                                |
| Maximum Height                                | 357.22 m                                                                           |
| Minimum Height                                | 40.03 m                                                                            |
|                                               |                                                                                    |
| Classification (# of points)                  |                                                                                    |
| Ground                                        | 67,240,480                                                                         |
| Low vegetation                                | 68,127,741                                                                         |
| Medium vegetation                             | 81,511,695                                                                         |
| High vegetation                               | 76,902,555                                                                         |
| Building                                      | 3,337,429                                                                          |
| Orthophoto                                    | Yes                                                                                |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Analyn Naldo<br>Engr. Chelou Prado, Engr. Gladys Apat |

Table A-8.2. Mission Summary Report for Mission Blk65AB



Figure A-8.8 Solution Status



Figure A-8.9 Smoothed Performance Metric Parameters



Figure A-8.10 Best Estimated Trajectory



Figure A-8.11 Coverage of LiDAR data



Figure A-8.12 Image of data overlap



Figure A-8.13 Density map of merged LiDAR data



Figure A-8.14 Elevation difference between flight lines

| Flight Area                                   | Tandag (Surigao Del Sur)                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------|
| Mission Name                                  | Block 65E                                                                |
| Inclusive Flights                             | 1690A & 1694A                                                            |
| Range data size                               | 22.70 GB                                                                 |
| Base data size                                | 20.29 MB                                                                 |
| POS                                           | 506 MB                                                                   |
| Image                                         | 69.70 MB                                                                 |
| Transfer date                                 | August 5, 2014                                                           |
|                                               |                                                                          |
| Solution Status                               |                                                                          |
| Number of Satellites (>6)                     | Yes                                                                      |
| PDOP (<3)                                     | Yes                                                                      |
| Baseline Length (<30km)                       | No                                                                       |
| Processing Mode (<=1)                         | Yes                                                                      |
|                                               |                                                                          |
| Smoothed Performance Metrics (in cm)          |                                                                          |
| RMSE for North Position (<4.0 cm)             | 1.75                                                                     |
| RMSE for East Position (<4.0 cm)              | 2.00                                                                     |
| RMSE for Down Position (<8.0 cm)              | 3.33                                                                     |
|                                               |                                                                          |
| Boresight correction stdev (<0.001deg)        | 0.000428                                                                 |
| IMU attitude correction stdev (<0.001deg)     | 0.002691                                                                 |
| GPS position stdev (<0.01m)                   | 0.0091                                                                   |
|                                               |                                                                          |
| Minimum % overlap (>25)                       | 55.88                                                                    |
| Ave point cloud density per sq.m. (>2.0)      | 4.61                                                                     |
| Elevation difference between strips (<0.20 m) | Yes                                                                      |
|                                               |                                                                          |
| Number of 1km x 1km blocks                    | 142                                                                      |
| Maximum Height                                | 471.84 m                                                                 |
| Minimum Height                                | 53.27 m                                                                  |
|                                               |                                                                          |
| Classification (# of points)                  |                                                                          |
| Ground                                        | 28,059,412                                                               |
| Low vegetation                                | 26,073,517                                                               |
| Medium vegetation                             | 70,629,052                                                               |
| High vegetation                               | 207,464,655                                                              |
| Building                                      | 5,418,951                                                                |
| Orthophoto                                    | Yes                                                                      |
| Processed by                                  | Engr. Kenneth Solidum, Engr. Melanie Hingpit,<br>Engr. Melissa Fernandez |

Table A-8.3. Mission Summary Report for Mission Blk65E



Figure A-8.15 Solution Status



Figure A-8.16 Smoothed Performance Metric Parameters



Figure A-8.17 Best Estimated Trajectory



Figure A-8.18 Coverage of LiDAR data


Figure A-8.19 Image of data overlap



Figure A-8.20 Density map of merged LiDAR data



Figure A-8.21 Elevation difference between flight lines

| Flight Area                                   | Tandag (Surigao Del Sur)                                            |
|-----------------------------------------------|---------------------------------------------------------------------|
| Mission Name                                  | Block 65FG                                                          |
| Inclusive Flights                             | 1714A & 1734A                                                       |
| Range data size                               | 20.08 GB                                                            |
| Base data size                                | 23.09 MB                                                            |
| POS                                           | 440 MB                                                              |
| Image                                         | 114.90 MB                                                           |
| Transfer date                                 | July 31, 2014                                                       |
|                                               |                                                                     |
| Solution Status                               |                                                                     |
| Number of Satellites (>6)                     | Yes                                                                 |
| PDOP (<3)                                     | Yes                                                                 |
| Baseline Length (<30km)                       | Yes                                                                 |
| Processing Mode (<=1)                         | Yes                                                                 |
|                                               |                                                                     |
| Smoothed Performance Metrics (in cm)          |                                                                     |
| RMSE for North Position (<4.0 cm)             | 1.95                                                                |
| RMSE for East Position (<4.0 cm)              | 2.10                                                                |
| RMSE for Down Position (<8.0 cm)              | 3.40                                                                |
|                                               |                                                                     |
| Boresight correction stdev (<0.001deg)        | 0.000467                                                            |
| IMU attitude correction stdev (<0.001deg)     | 0.001135                                                            |
| GPS position stdev (<0.01m)                   | 0.0072                                                              |
|                                               |                                                                     |
| Minimum % overlap (>25)                       | 59.75                                                               |
| Ave point cloud density per sq.m. (>2.0)      | 3.58                                                                |
| Elevation difference between strips (<0.20 m) | Yes                                                                 |
|                                               |                                                                     |
| Number of 1km x 1km blocks                    | 179                                                                 |
| Maximum Height                                | 388.37 m                                                            |
| Minimum Height                                | 45.74 m                                                             |
|                                               |                                                                     |
| Classification (# of points)                  |                                                                     |
| Ground                                        | 35,792,604                                                          |
| Low vegetation                                | 37,451,825                                                          |
| Medium vegetation                             | 74,379,583                                                          |
| High vegetation                               | 155,910,057                                                         |
| Building                                      | 6,109,884                                                           |
| Orthophoto                                    | Yes                                                                 |
| Processed by                                  | Engr. Jennifer Saguran, Engr. Edgar Gubatanga, Jr.,<br>Jovy Narisma |

Table A-8.4. Mission Summary Report for Mission Blk65FG



Figure A-8.22 Solution Status



Figure A-8.23 Smoothed Performance Metric Parameters



Figure A-8.24 Best Estimated Trajectory



Figure A-8.25 Coverage of LiDAR data



Figure A-8.26 Image of data overlap



Figure A-8.27 Density map of merged LiDAR data



Figure A-8.28 Elevation difference between flight lines

| Table A-8.5. | Mission | Summary | Report f | for N | Aission | Blk65E |
|--------------|---------|---------|----------|-------|---------|--------|
|              |         |         |          |       |         |        |

| Flight Area                                   | Tandag          |
|-----------------------------------------------|-----------------|
| Mission Name                                  | Blk65E          |
| Inclusive Flights                             | 23616P          |
| Range data size                               | 6.16 GB         |
| Base data size                                | 354 MB          |
| POS                                           | 142 MB          |
| Image                                         | NA              |
| Transfer date                                 | January 3, 2017 |
|                                               |                 |
| Solution Status                               |                 |
| Number of Satellites (>6)                     | Yes             |
| PDOP (<3)                                     | No              |
| Baseline Length (<30km)                       | No              |
| Processing Mode (<=1)                         | No              |
|                                               |                 |
| Smoothed Performance Metrics (in cm)          |                 |
| RMSE for North Position (<4.0 cm)             | 2.50            |
| RMSE for East Position (<4.0 cm)              | 3.96            |
| RMSE for Down Position (<8.0 cm)              | 7.06            |
|                                               |                 |
| Boresight correction stdev (<0.001deg)        | 0.000429        |
| IMU attitude correction stdev (<0.001deg)     | 0.000528        |
| GPS position stdev (<0.01m)                   | 0.0093          |
|                                               |                 |
| Minimum % overlap (>25)                       | 3.45            |
| Ave point cloud density per sq.m. (>2.0)      | 2.14            |
| Elevation difference between strips (<0.20 m) | YES             |
|                                               |                 |
| Number of 1km x 1km blocks                    | 60              |
| Maximum Height                                | 230.72 m        |
| Minimum Height                                | 64.93 m         |
|                                               |                 |
| Classification (# of points)                  |                 |
| Ground                                        | 22,379,198      |
| Low vegetation                                | 16,075,670      |
| Medium vegetation                             | 21,650,971      |
| High vegetation                               | 61,848,018      |
| Building                                      | 1,405,453       |
| Ortophoto                                     | No              |
| Processed by                                  |                 |



Figure A-8.29. Solution Status



Figure A-8.30. Smoothed Performance Metric Parameters



Figure A-8.31 Best Estimated Trajectory



Figure A-8.32 Coverage of LiDAR data



Figure A-8.33 Image of data overlap



Figure A-8.34 Density Map of merged LiDAR data



Figure A-8.35 Elevation Difference Between flight lines

| Flight Area                                   | Iandag          |
|-----------------------------------------------|-----------------|
|                                               |                 |
|                                               | 23620P          |
| Range data size                               | 15.2 GB         |
| Base data size                                | 315 MB          |
| POS                                           | 202 MB          |
| Image                                         | NA              |
| Transfer date                                 | January 6, 2017 |
|                                               |                 |
| Solution Status                               |                 |
| Number of Satellites (>6)                     | Yes             |
| PDOP (<3)                                     | Yes             |
| Baseline Length (<30km)                       | No              |
| Processing Mode (<=1)                         | No              |
|                                               |                 |
| Smoothed Performance Metrics (in cm)          |                 |
| RMSE for North Position (<4.0 cm)             | 1.80            |
| RMSE for East Position (<4.0 cm)              | 1.95            |
| RMSE for Down Position (<8.0 cm)              | 3.27            |
|                                               |                 |
| Boresight correction stdev (<0.001deg)        | 0.001319        |
| IMU attitude correction stdev (<0.001deg)     | 0.001098        |
| GPS position stdev (<0.01m)                   | 0.0130          |
|                                               |                 |
| Minimum % overlap (>25)                       | 0.55            |
| Ave point cloud density per sq.m. (>2.0)      | 1.82            |
| Elevation difference between strips (<0.20 m) | YES             |
|                                               |                 |
| Number of 1km x 1km blocks                    | 38              |
| Maximum Height                                | 152.61 m        |
| Minimum Height                                | 66.5 m          |
|                                               |                 |
| Classification (# of points)                  |                 |
| Ground                                        | 12,528,426      |
| Low vegetation                                | 11.331.749      |
| Medium vegetation                             | 9.431.920       |
| High vegetation                               | 20.774.167      |
| Building                                      | 587.718         |
| Ortophoto                                     | Νο              |
| Processed by                                  |                 |
|                                               |                 |

### Table A-8.6. Mission Summary Report for Mission Blk65F



Figure A-8.36. Solution Status



Figure A-8.37. Smoothed Performance Metric Parameters



Figure A-8.38 Best Estimated Trajectory



Figure A-8.39 Coverage of LiDAR data



Figure A-8.40 Image of data overlap



Figure A-8.41 Density Map of merged LiDAR data



Figure A-8.42 Elevation Difference Between flight lines

| Flight Area                                   | Tandag            |
|-----------------------------------------------|-------------------|
| Mission Name                                  | Blk65F_additional |
| Inclusive Flights                             | 23640P            |
| Range data size                               | 13.7 GB           |
| Base data size                                | 273 MB            |
| POS                                           | 163 MB            |
| Image                                         | NA                |
| Transfer date                                 | January 6, 2017   |
|                                               |                   |
| Solution Status                               |                   |
| Number of Satellites (>6)                     | Yes               |
| PDOP (<3)                                     | Yes               |
| Baseline Length (<30km)                       | No                |
| Processing Mode (<=1)                         | No                |
|                                               |                   |
| Smoothed Performance Metrics (in cm)          |                   |
| RMSE for North Position (<4.0 cm)             | 1.59              |
| RMSE for East Position (<4.0 cm)              | 1.59              |
| RMSE for Down Position (<8.0 cm)              | 3.50              |
|                                               |                   |
| Boresight correction stdev (<0.001deg)        | 0.000861          |
| IMU attitude correction stdev (<0.001deg)     | 0.010847          |
| GPS position stdev (<0.01m)                   | 0.0220            |
|                                               |                   |
| Minimum % overlap (>25)                       | NA                |
| Ave point cloud density per sq.m. (>2.0)      | 2.68              |
| Elevation difference between strips (<0.20 m) | YES               |
|                                               |                   |
| Number of 1km x 1km blocks                    | 24                |
| Maximum Height                                | 184.49 m          |
| Minimum Height                                | 57.69 m           |
|                                               |                   |
| Classification (# of points)                  |                   |
| Ground                                        | 3,462,027         |
| Low vegetation                                | 1,390,696         |
| Medium vegetation                             | 6,281,842         |
| High vegetation                               | 5,002,447         |
| Building                                      | 99,942            |
| Ortophoto                                     | No                |
| Processed by                                  |                   |

### Table A-8.7. Mission Summary Report for Mission Blk65F\_additional



Figure A-8.43. Solution Status



Figure A-8.44. Smoothed Performance Metric Parameters



Figure A-8.45 Best Estimated Trajectory



Figure A-8.46 Coverage of LiDAR data



Figure A-8.47 Image of data overlap



Figure A-8.48 Density Map of merged LiDAR data



Figure A-8.49 Elevation Difference Between flight lines

ANNEX 9. Ibajay Model Basin Parameters

Table A-9.1. Ibajay Model Basin Parameters

|              | SCS Cu                         | irve Number     | . Loss            | Clark L<br>Hydrograph            | Jnit<br>Transform              |              |                               | Recession Basefl      | MO             |               |
|--------------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|--------------|-------------------------------|-----------------------|----------------|---------------|
| Basin Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | Initial Type | Initial<br>Discharge<br>(cms) | Recession<br>Constant | Threshold Type | Ratio to Peak |
| W180         | 4.1491905                      | 46.705          | 0                 | 6.8679                           | 4.802625                       | Discharge    | 3.580591                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W190         | 6.707064                       | 47.601          | 0                 | 2.02033                          | 1.42845                        | Discharge    | 1.212487                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W200         | 7.418775                       | 45.606          | 0                 | 1.52464                          | 1.0779                         | Discharge    | 0.168023                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W210         | 7.4767875                      | 45.451          | 0                 | 1.688765                         | 1.194                          | Discharge    | 0.916467                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W220         | 7.52934                        | 45.311          | 0                 | 5.400135                         | 3.81795                        | Discharge    | 3.672836                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W230         | 5.767125                       | 46.774          | 0                 | 1.661335                         | 1.7511                         | Discharge    | 0.15328                       | 0.9991                | Ratio to Peak  | 0.9998        |
| W240         | 6.4636                         | 48.326          | 0                 | 1.476215                         | 1.0437                         | Discharge    | 0.309434                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W250         | 6.3857                         | 44.988          | 0                 | 4.00036                          | 2.829075                       | Discharge    | 1.936241                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W260         | 6.406                          | 44.93           | 0                 | 2.326935                         | 3.666075                       | Discharge    | 1.140605                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W270         | 6.4623                         | 48.33           | 0                 | 3.02094                          | 2.13585                        | Discharge    | 2.174619                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W280         | 6.5087295                      | 48.19           | 0                 | 2.426645                         | 1.715625                       | Discharge    | 0.594625                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W290         | 6.9048525                      | 47.028          | 0                 | 3.46437                          | 2.44935                        | Discharge    | 1.779728                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W300         | 6.742554                       | 47.497          | 0                 | 1.348425                         | 0.9534                         | Discharge    | 0.31992                       | 0.9991                | Ratio to Peak  | 0.9998        |
| W310         | 7.0236075                      | 46.692          | 0                 | 1.895595                         | 1.340175                       | Discharge    | 0.990198                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W320         | 7.063875                       | 46.5            | 0                 | 1.97418                          | 1.39575                        | Discharge    | 1.132022                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W330         | 6.889155                       | 47.074          | 0                 | 1.8122                           | 1.281225                       | Discharge    | 1.012519                      | 0.9991                | Ratio to Peak  | 0.9998        |
| W340         | 6.5102                         | 48.186          | 0                 | 4.110405                         | 2.9061                         | Discharge    | 1.56042                       | 0.9991                | Ratio to Peak  | 0.9998        |

ANNEX 10. Ibajay Model Reach Parameters

Table A-10.1. Ibajay Model Reach Parameters

Side Slope --------Width 74.02 74.02 74.02 74.02 74.02 74.02 74.02 74.02 Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Trapezoid Shape **Muskingum Cunge Channel Routing** Manning's n 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0293639 0.0050274 0.0565223 0.0418082 0.0070951 0.0129697 0.0064787 Slope 0.04035 Length (m) 8394.3 1579.5 6116.6 1125.3 1326.3 3146.6 4944.6 2066 Automatic Fixed Interval **Time Step Method** Reach Number R100 R120 R140 R10 R30 R50 R60 R80

# ANNEX 11. Ibajay Field Validation Points

| Point  | Validation C | Coordinates |               | Validation |           |            | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 0      | 11.04404016  | 122.0643791 | 0.09000004    | 0.3        | 0.044     | FRANK      | 100-Year            |
| 1      | 11.04719627  | 122.0663977 | 0.349999994   | 0.4        | 0.003     | FRANK      | 100-Year            |
| 2      | 11.06351053  | 122.0677705 | 0.039999999   | 1.2        | 1.346     | FRANK      | 100-Year            |
| 3      | 11.00539743  | 122.0456257 | 0.129999995   | 0.9        | 0.593     | FRANK      | 100-Year            |
| 4      | 11.02699656  | 122.0551218 | 0.039999999   | 0.35       | 0.096     | FRANK      | 100-Year            |
| 5      | 11.04017385  | 122.0687581 | 0.05000001    | 0.35       | 0.090     | FRANK      | 100-Year            |
| 6      | 10.95677243  | 122.0074533 | 0.129999995   | 0.3        | 0.029     | FRANK      | 100-Year            |
| 7      | 11.06796347  | 122.0646525 | 0.230000004   | 0.4        | 0.029     | FRANK      | 100-Year            |
| 8      | 10.94428104  | 121.9983045 | 0.029999999   | 6          | 35.641    | FRANK      | 100-Year            |
| 9      | 11.00387028  | 122.1306623 | 0.079999998   | 4          | 15.366    | FRANK      | 100-Year            |
| 10     | 11.00514439  | 122.129631  | 1.980000019   | 4          | 4.080     | FRANK      | 100-Year            |
| 11     | 11.00990291  | 122.0634626 | 0.20000003    | 6          | 33.640    | FRANK      | 100-Year            |
| 12     | 11.06532562  | 122.0816394 | 0.029999999   | 5          | 24.701    | FRANK      | 100-Year            |
| 13     | 10.97468923  | 122.0217892 | 0.05000001    | 4          | 15.602    | FRANK      | 100-Year            |
| 14     | 11.04346102  | 122.0638124 | 0.029999999   | 5.57       | 30.692    | FRANK      | 100-Year            |
| 15     | 11.04348437  | 122.0613686 | 0.159999996   | 6          | 34.106    | FRANK      | 100-Year            |
| 16     | 11.00606276  | 122.0470849 | 0.029999999   | 5          | 24.701    | FRANK      | 100-Year            |
| 17     | 11.06772967  | 122.0827564 | 0.029999999   | 1.25       | 1.488     | FRANK      | 100-Year            |
| 18     | 11.04149721  | 122.068553  | 0.029999999   | 1.4        | 1.877     | YOLANDA    | 5-Year              |
| 19     | 10.98812702  | 122.0928609 | 0.029999999   | 0.4        | 0.137     | FRANK      | 100-Year            |
| 20     | 11.01691689  | 122.0528669 | 0.029999999   | 1.5        | 2.161     | YOLANDA    | 5-Year              |
| 21     | 11.06558671  | 122.0813709 | 0.029999999   | 1          | 0.941     | FRANK      | 100-Year            |
| 22     | 11.04670697  | 122.0652931 | 0.029999999   | 1.2        | 1.369     | YOLANDA    | 5-Year              |
| 23     | 11.03026556  | 122.0566565 | 0.029999999   | 1          | 0.941     | FRANK      | 100-Year            |
| 24     | 11.0069148   | 122.0498218 | 0.109999999   | 3.3        | 10.176    | FRANK      | 100-Year            |
| 25     | 11.06059115  | 122.0784158 | 0.430000007   | 2          | 2.465     | FRANK      | 100-Year            |
| 26     | 11.04139844  | 122.0521073 | 0.129999995   | 0.4        | 0.073     | FRANK      | 100-Year            |
| 27     | 11.062625    | 122.0801022 | 0             | 0.9        | 0.810     | FRANK      | 100-Year            |
| 28     | 11.04856519  | 122.0678507 | 0.319999993   | 4          | 13.542    | FRANK      | 100-Year            |
| 29     | 10.9643594   | 122.0148831 | 0.079999998   | 4          | 15.366    | FRANK      | 100-Year            |
| 30     | 10.9472019   | 122.033573  | 0.150000006   | 5          | 23.522    | FRANK      | 100-Year            |
| 31     | 10.95911653  | 122.0094681 | 0.07          | 5          | 24.305    | FRANK      | 100-Year            |
| 32     | 11.047771    | 122.0657988 | 0.230000004   | 1.4        | 1.369     | FRANK      | 100-Year            |
| 33     | 11.0607562   | 122.078375  | 0.07          | 4          | 15.445    | FRANK      | 100-Year            |
| 34     | 11.00725319  | 122.048641  | 0.029999999   | 4          | 15.761    | FRANK      | 100-Year            |

Table A-11.1. Ibajay Field Validation Points

| Point  | Validation 0 | Coordinates |               | Validation |           |            | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 35     | 11.02790262  | 122.0567448 | 0.129999995   | 1.3        | 1.369     | FRANK      | 100-Year            |
| 36     | 11.0186245   | 122.0524383 | 0.40000006    | 0          | 0.160     | YOLANDA    | 5-Year              |
| 37     | 11.02249607  | 122.0490881 | 0.029999999   | 0          | 0.001     | YOLANDA    | 5-Year              |
| 38     | 10.98090202  | 122.0297158 | 0.140000001   | 0          | 0.020     | YOLANDA    | 5-Year              |
| 39     | 11.00986712  | 122.0640066 | 0.140000001   | 0.52       | 0.144     | MARCE      | 5-Year              |
| 40     | 11.04588023  | 122.0511686 | 0.10000001    | 1.7        | 2.560     | FRANK      | 100-Year            |
| 41     | 11.01102341  | 122.0621546 | 0.529999971   | 1.09       | 0.314     | FRANK      | 100-Year            |
| 42     | 11.01053478  | 122.0655382 | 0.10000001    | 0.75       | 0.422     | YOLANDA    | 5-Year              |
| 43     | 11.02196988  | 122.0473721 | 0.029999999   | 0.38       | 0.123     | YOLANDA    | 5-Year              |
| 44     | 11.00339685  | 122.1306646 | 0.140000001   | 0.72       | 0.336     | FRANK      | 100-Year            |
| 45     | 10.98151275  | 122.0302327 | 0.029999999   | 0.08       | 0.003     | MARCE      | 5-Year              |
| 46     | 11.04558119  | 122.0598263 | 0.129999995   | 1.778      | 2.716     | FRANK      | 100-Year            |
| 47     | 10.97746062  | 122.0243589 | 0.170000002   | 0.13       | 0.002     | YOLANDA    | 5-Year              |
| 48     | 11.00458605  | 122.1295053 | 0.029999999   | 1.1        | 1.145     | FRANK      | 100-Year            |
| 49     | 11.05069275  | 122.0495481 | 0.189999998   | 1.0414     | 0.725     | FRANK      | 100-Year            |
| 50     | 11.02284123  | 122.0491835 | 0.029999999   | 1.8542     | 3.328     | FRANK      | 100-Year            |
| 51     | 11.00551415  | 122.1304933 | 0.519999981   | 1.0414     | 0.272     | FRANK      | 100-Year            |
| 52     | 11.00059276  | 122.0839586 | 0.029999999   | 1.4        | 1.877     | FRANK      | 100-Year            |
| 53     | 11.0223437   | 122.0495761 | 0.519999981   | 1.8288     | 1.713     | FRANK      | 100-Year            |
| 54     | 11.0045539   | 122.1300589 | 0.270000011   | 2.032      | 3.105     | FRANK      | 100-Year            |
| 55     | 11.02741051  | 122.055324  | 0.029999999   | 2.159      | 4.533     | YOLANDA    | 5-Year              |
| 56     | 11.00298074  | 122.1308145 | 0.029999999   | 0.9        | 0.757     | FRANK      | 100-Year            |
| 57     | 11.06623469  | 122.0665362 | 0.310000002   | 1.1        | 0.624     | YOLANDA    | 5-Year              |
| 58     | 11.06617004  | 122.0661093 | 0.029999999   | 2.4384     | 5.800     | FRANK      | 100-Year            |
| 59     | 11.04290752  | 122.067271  | 0.029999999   | 3.048      | 9.108     | FRANK      | 100-Year            |
| 60     | 11.0443049   | 122.06588   | 0.140000001   | 2.7432     | 6.777     | FRANK      | 100-Year            |
| 61     | 11.00978012  | 122.0666671 | 0.029999999   | 2.159      | 4.533     | YOLANDA    | 5-Year              |
| 62     | 11.01965115  | 122.051459  | 0             | 2.1336     | 4.552     | FRANK      | 100-Year            |
| 63     | 11.04550668  | 122.0652323 | 0             | 2.1336     | 4.552     | FRANK      | 100-Year            |
| 64     | 11.00056741  | 122.0838646 | 0.40000006    | 1.4        | 1.000     | FRANK      | 100-Year            |
| 65     | 11.01065581  | 122.0651629 | 0.5           | 0.65       | 0.023     | ONDOY      | 5-Year              |
| 66     | 11.04641037  | 122.0592663 | 0             | 0.65       | 0.423     | ONDOY      | 5-Year              |
| 67     | 11.01834642  | 122.0521678 | 0.059999999   | 2.84       | 7.728     | FRANK      | 100-Year            |
| 68     | 11.01912883  | 122.0519958 | 0.419999987   | 2.21       | 3.204     | ONDOY      | 5-Year              |
| 69     | 10.95756417  | 122.0085821 | 0             | 1.02       | 1.040     | FRANK      | 100-Year            |
| 70     | 11.08717759  | 122.0483329 | 0.300000012   | 2.84       | 6.452     | FRANK      | 100-Year            |
| 71     | 10.96952395  | 122.0702749 | 0             | 2.84       | 8.066     | FRANK      | 100-Year            |
| 72     | 10.93302146  | 122.0299397 | 0.519999981   | 1.02       | 0.250     | FRANK      | 100-Year            |

| Point  | Validation C | Coordinates |               | Validation |           |            | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 73     | 11.00447685  | 122.0714727 | 0             | 2.84       | 8.066     | FRANK      | 100-Year            |
| 74     | 11.02724908  | 122.0515141 | 0.75          | 2.21       | 2.132     | ONDOY      | 5-Year              |
| 75     | 11.01931613  | 122.0511899 | 0             | 2.84       | 8.066     | FRANK      | 100-Year            |
| 76     | 11.01081041  | 122.0641007 | 0             | 2.21       | 4.884     | ONDOY      | 5-Year              |
| 77     | 11.0787808   | 122.0864507 | 0             | 2.84       | 8.066     | FRANK      | 100-Year            |
| 78     | 11.06489892  | 122.080985  | 0             | 0          | 0.000     | YOLANDA    | 5-Year              |
| 79     | 11.01820445  | 122.0517452 | 0.239999995   | 0          | 0.058     | YOLANDA    | 5-Year              |
| 80     | 11.01793002  | 122.052489  | 0.670000017   | 0.18       | 0.240     | YOLANDA    | 5-Year              |
| 81     | 11.01766187  | 122.0520374 | 0.360000014   | 0.16       | 0.040     | YOLANDA    | 5-Year              |
| 82     | 10.98374448  | 122.0293631 | 1.480000019   | 0.1        | 1.904     | UNDANG     | 5-Year              |
| 83     | 11.00303965  | 122.1308857 | 0.059999999   | 0.18       | 0.014     | YOLANDA    | 5-Year              |
| 84     | 11.04328321  | 122.0589588 | 0.340000004   | 0.18       | 0.026     | YOLANDA    | 5-Year              |
| 85     | 11.07132661  | 122.0611982 | 0.889999986   | 0.18       | 0.504     | YOLANDA    | 5-Year              |
| 86     | 11.07236273  | 122.0612561 | 1.049999952   | 0.18       | 0.757     | YOLANDA    | 5-Year              |
| 87     | 11.00475658  | 122.1306831 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 88     | 11.01092881  | 122.0640487 | 1.200000048   | 0.18       | 1.040     | YOLANDA    | 5-Year              |
| 89     | 11.00361797  | 122.1313115 | 1.120000005   | 0.18       | 0.884     | YOLANDA    | 5-Year              |
| 90     | 10.9562659   | 122.0072416 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 91     | 11.02647552  | 122.0551956 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 92     | 10.95728511  | 122.0084105 | 0.029999999   | 0.18       | 0.023     | YOLANDA    | 5-Year              |
| 93     | 11.01771548  | 122.0515164 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 94     | 11.04570445  | 122.0595503 | 0.730000019   | 0.18       | 0.303     | YOLANDA    | 5-Year              |
| 95     | 11.04048376  | 122.0698528 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 96     | 11.0058659   | 122.1299482 | 0.029999999   | 0.18       | 0.023     | YOLANDA    | 5-Year              |
| 97     | 11.045929    | 122.0659367 | 0.310000002   | 0.18       | 0.017     | YOLANDA    | 5-Year              |
| 98     | 11.03307078  | 122.0574816 | 0.029999999   | 0.18       | 0.023     | YOLANDA    | 5-Year              |
| 99     | 11.00378924  | 122.1312014 | 0.029999999   | 0.18       | 0.023     | YOLANDA    | 5-Year              |
| 100    | 11.00405804  | 122.1304097 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 101    | 11.02263259  | 122.0475884 | 1.70000048    | 0.18       | 2.310     | YOLANDA    | 5-Year              |
| 102    | 11.0228817   | 122.0481969 | 1.450000048   | 0.18       | 1.613     | YOLANDA    | 5-Year              |
| 103    | 11.02297139  | 122.0475469 | 1.299999952   | 0.18       | 1.254     | YOLANDA    | 5-Year              |
| 104    | 10.93902928  | 122.00096   | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 105    | 11.04839076  | 122.0504137 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 106    | 11.0184566   | 122.0527233 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 107    | 10.96238128  | 122.0129551 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 108    | 11.01683328  | 122.0514692 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 109    | 10.93818813  | 122.0004052 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 110    | 10.95733435  | 122.0089883 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |

| Point  | Validation C | Coordinates |               | Validation |           |            | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 111    | 11.00617698  | 122.0423088 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 112    | 10.99594444  | 122.0376456 | 0             | 0.18       | 0.032     | YOLANDA    | 5-Year              |
| 113    | 11.09183229  | 122.0491072 | 0             | 5          | 25.000    | FRANK      | 100-Year            |
| 114    | 11.00337     | 122.1152199 | 0             | 5          | 25.000    | FRANK      | 100-Year            |
| 115    | 10.95301962  | 122.0467185 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 116    | 11.01227141  | 122.0749224 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 117    | 11.07317951  | 122.0596864 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 118    | 11.06323004  | 122.0803316 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 119    | 11.00741574  | 122.04953   | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 120    | 11.04462489  | 122.0666026 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 121    | 11.04654608  | 122.0510006 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 122    | 11.00747152  | 122.0490977 | 0             | 1.0922     | 1.193     | FRANK      | 100-Year            |
| 123    | 11.07236169  | 122.0599095 | 0             | 0.6858     | 0.470     | FRANK      | 100-Year            |
| 124    | 10.9882584   | 122.0932951 | 0             | 0.762      | 0.581     | FRANK      | 100-Year            |
| 125    | 11.07423165  | 122.0589754 | 0             | 0.508      | 0.258     |            |                     |
| 126    | 11.04099561  | 122.0599162 | 0             | 0.9906     | 0.981     | FRANK      | 100-Year            |
| 127    | 11.04154949  | 122.0598305 | 0             | 0.4318     | 0.186     | UNDANG     | 5-Year              |
| 128    | 10.95831095  | 122.0091025 | 0             | 0.8        | 0.640     | FRANK      | 100-Year            |
| 129    | 11.04110331  | 122.0600576 | 0             | 1.905      | 3.629     | FRANK      | 100-Year            |
| 130    | 10.93912026  | 122.0005094 | 0             | 0.9906     | 0.981     | FRANK      | 100-Year            |
| 131    | 11.0635018   | 122.0804025 | 0             | 0.8001     | 0.640     | FRANK      | 100-Year            |
| 132    | 11.06543641  | 122.0670378 | 0             | 1.016      | 1.032     | FRANK      | 100-Year            |
| 133    | 10.98129457  | 122.0300494 | 0             | 1          | 1.000     | FRANK      | 100-Year            |
| 134    | 11.04590623  | 122.066167  | 1.139999986   | 0.4318     | 0.502     | ONDANG     | 5-Year              |
| 135    | 10.96132227  | 122.0116239 | 4.179999828   | 0.8636     | 10.999    | FRANK      | 100-Year            |
| 136    | 10.98090285  | 122.0272562 | 9.029999733   | 1.3716     | 58.651    | FRANK,     | 100-Year            |
| 137    | 10.9856868   | 122.0304904 | 8.369999886   | 0.7112     | 58.657    | FRANK      | 100-Year            |
| 138    | 10.98839633  | 122.0932863 | 5.980000019   | 1.7272     | 18.086    | FRANK      | 100-Year            |
| 139    | 10.98111316  | 122.0270303 | 3.859999895   | 1.8288     | 4.126     | FRANK      | 100-Year            |
| 140    | 10.98239872  | 122.0281314 | 3.690000057   | 0.9144     | 7.704     | FRANK      | 100-Year            |
| 141    | 11.07910275  | 122.0869321 | 8.149999619   | 0.9144     | 52.354    | FRANK      | 100-Year            |
| 142    | 10.96344521  | 122.013216  | 6.570000172   | 2.032      | 20.593    | FRANK      | 100-Year            |
| 144    | 11.01676874  | 122.0520638 | 6             | 0.9144     | 25.863    | FRANK      | 100-Year            |
| 145    | 11.04401352  | 122.0675853 | 1.679999948   | 1.5748     | 0.011     | FRANK      | 100-Year            |
| 146    | 10.97709184  | 122.023969  | 7.460000038   | 0.9144     | 42.845    | FRANK      | 100-Year            |
| 147    | 10.98109472  | 122.0267944 | 8.489999771   | 2.032      | 41.706    | FRANK      | 100-Year            |
| 148    | 11.05691499  | 122.0747468 | 8.350000381   | 0.8255     | 56.618    | FRANK      | 100-Year            |
| 149    | 10.98080224  | 122.029657  | 0.319999993   | 1.524      | 1.450     | FRANK      | 100-Year            |

| Point  | Validation C | Coordinates |               | Validation |           |            | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 150    | 11.04072998  | 122.0597225 | 6.849999905   | 0.2286     | 43.843    | FRANK      | 100-Year            |
| 151    | 10.97971731  | 122.0264843 | 7.429999828   | 1.8        | 31.697    | FRANK      | 100-Year            |
| 152    | 11.04168683  | 122.0595851 | 6.869999886   | 1.27       | 31.360    | FRANK      | 100-Year            |
| 153    | 11.00440142  | 122.1284697 | 6.429999828   | 0          | 41.345    | FRANK      | 100-Year            |
| 154    | 11.01243081  | 122.0462698 | 7.78000021    | 0.4        | 54.464    | FRANK      | 100-Year            |
| 155    | 11.00646542  | 122.0476812 | 0             | 1.42       | 2.016     | FRANK      | 100-Year            |
| 156    | 10.98157903  | 122.0306475 | 5.96999979    | 0          | 35.641    | FRANK      | 100-Year            |
| 157    | 11.06512587  | 122.0670823 | 3.450000048   | 1.4        | 4.203     | FRANK      | 100-Year            |
| 158    | 10.98146296  | 122.030666  | 7.420000076   | 0.5        | 47.886    | FRANK      | 100-Year            |
| 159    | 11.0794905   | 122.0862415 | 6.150000095   | 1.07       | 25.806    | FRANK      | 100-Year            |
| 160    | 10.98103898  | 122.0268701 | 6.679999828   | 1.04       | 31.810    | FRANK      | 100-Year            |
| 161    | 10.97966006  | 122.0268104 | 3.730000019   | 0.4        | 11.089    | FRANK      | 100-Year            |
| 162    | 10.9804275   | 122.0271406 | 5.710000038   | 1.4        | 18.576    | FRANK      | 100-Year            |
| 163    | 11.08405689  | 122.0699887 | 7.96999979    | 1.8        | 38.069    | FRANK      | 100-Year            |
| 164    | 10.97967395  | 122.0268262 | 6.96000038    | 0          | 48.442    | FRANK      | 100-Year            |
| 165    | 10.98107147  | 122.0275426 | 8.229999542   | 1.07       | 51.266    | FRANK      | 100-Year            |
| 166    | 11.07942484  | 122.0861501 | 3.450000048   | 0.77       | 7.182     | FRANK      | 100-Year            |
| 167    | 11.04593258  | 122.0664922 | 8.390000343   | 1.72       | 44.489    | FRANK      | 100-Year            |
| 168    | 11.08353347  | 122.069716  | 0.029999999   | 1.8        | 3.133     | FRANK      | 100-Year            |
| 169    | 11.08398962  | 122.0701109 | 0             | 1.04       | 1.082     | FRANK      | 100-Year            |
| 170    | 11.06499585  | 122.0671901 | 0.029999999   | 1.8        | 3.133     | FRANK      | 100-Year            |
| 171    | 10.9811327   | 122.0269276 | 0.029999999   | 1.25       | 1.488     | FRANK      | 100-Year            |
| 172    | 11.07497908  | 122.0582821 | 0.05000001    | 1.04       | 0.980     | FRANK      | 100-Year            |
| 173    | 10.97990772  | 122.0270326 | 0.159999996   | 1.8        | 2.690     | FRANK      | 100-Year            |
| 174    | 10.9409221   | 122.0022297 | 0.029999999   | 1.25       | 1.488     | FRANK      | 100-Year            |
| 175    | 10.94080426  | 122.0022703 | 0.319999993   | 1.25       | 0.865     | FRANK      | 100-Year            |
| 176    | 10.98069322  | 122.0272587 | 0.029999999   | 1.4        | 1.877     | FRANK      | 100-Year            |
| 177    | 10.97997077  | 122.0268854 | 0.05000001    | 1.524      | 2.173     | FRANK      | 100-Year            |
| 178    | 10.98099951  | 122.0269326 | 0.029999999   | 1.7526     | 2.967     | YOLANDA    | 5-Year              |
| 179    | 11.06495718  | 122.067188  | 0.09000004    | 0.2286     | 0.019     | FRANK      | 100-Year            |
| 180    | 10.9741688   | 122.0217356 | 0.379999995   | 1.905      | 2.326     | FRANK      | 100-Year            |
| 181    | 10.99081792  | 122.1056756 | 0             | 1.13       | 1.277     | FRANK      | 100-Year            |
| 182    | 10.99565957  | 122.1081703 | 0.30000012    | 2.1        | 3.240     | FRANK      | 100-Year            |
| 183    | 11.01238652  | 122.0539349 | 0.280000001   | 4          | 13.838    | FRANK      | 100-Year            |
| 184    | 11.01233518  | 122.0533474 | 0.029999999   | 4          | 15.761    | FRANK      | 100-Year            |
| 185    | 11.00407644  | 122.1258538 | 0.159999996   | 1.26       | 1.210     | FRANK      | 100-Year            |
| 186    | 10.98852432  | 122.0931485 | 0.029999999   | 0.17       | 0.020     | MARCE      | 5-Year              |
| 187    | 10.98852499  | 122.0931581 | 0             | 0.17       | 0.029     | MARCE      | 5-Year              |

| Point  | Validation ( | Coordinates |               | Validation |           | _          | Rain                |
|--------|--------------|-------------|---------------|------------|-----------|------------|---------------------|
| Number | Lat          | Long        | Model Var (m) | Points (m) | Error (m) | Event/Date | Return/<br>Scenario |
| 188    | 10.98847308  | 122.0927102 | 0.17000002    | 0.17       | 0.000     | MARCE      | 5-Year              |
| 189    | 10.98852445  | 122.0929701 | 0             | 0.17       | 0.029     | MARCE      | 5-Year              |
| 190    | 10.98852613  | 122.0929961 | 0.419999987   | 0.17       | 0.062     | MARCE      | 5-Year              |
| 191    | 10.98843399  | 122.0926764 | 0.30000012    | 0.39       | 0.008     | MARCE      | 5-Year              |
| 192    | 10.94875837  | 122.0123536 | 0             | 0.39       | 0.152     | MARCE      | 5-Year              |
| 193    | 11.04022992  | 122.0654246 | 0             | 0.17       | 0.029     | MARCE      | 5-Year              |
| 194    | 11.04053401  | 122.0655372 | 0             | 0.17       | 0.029     | MARCE      | 5-Year              |
| 195    | 11.04276383  | 122.0633928 | 0.10000001    | 0.17       | 0.005     | MARCE      | 5-Year              |
| 196    | 11.04112576  | 122.065616  | 0.25          | 0.17       | 0.006     | MARCE      | 5-Year              |
| 197    | 11.04111978  | 122.0617529 | 0             | 0.08       | 0.006     | MARCE      | 5-Year              |
| 198    | 11.04089228  | 122.0652058 | 0             | 0.08       | 0.006     | MARCE      | 5-Year              |
| 199    | 11.04090424  | 122.061831  | 0.029999999   | 0.08       | 0.003     | MARCE      | 5-Year              |
| 200    | 11.04144654  | 122.0636882 | 0.850000024   | 0.6        | 0.063     | FRANK      | 100-Year            |
| 201    | 11.04037941  | 122.0656982 | 0             | 0.9        | 0.810     | FRANK      | 100-Year            |
| 202    | 11.03996699  | 122.0612946 | 0             | 0.8        | 0.640     | FRANK      | 100-Year            |
| 203    | 11.04139822  | 122.063124  | 0             | 0.5        | 0.250     | YOLANDA    | 5-Year              |
| 204    | 11.04037019  | 122.0617322 | 0             | 1.9        | 3.610     | FRANK      | 100-Year            |
| 205    | 11.04020404  | 122.0615645 | 0             | 4          | 16.000    | FRANK      | 100-Year            |
| 206    | 11.03989981  | 122.0612067 | 0             | 6          | 36.000    | FRANK      | 100-Year            |
| 207    | 11.04080279  | 122.0617169 | 0             | 2.2        | 4.840     | FRANK      | 100-Year            |
| 208    | 11.03953202  | 122.0608205 | 0             | 0.9        | 0.810     | FRANK      | 100-Year            |
| 209    | 11.04033129  | 122.0616462 | 0             | 0.6        | 0.360     | FRANK      | 100-Year            |

# ANNEX 12. Educational Institutions Affected by flooding in Ibajay Flood Plain

|  | Table A-12.1. Educational Institutions in | San Agustin, Sui | rigao del Sur affected | l by flooding ir | n Ibajay Floodplain |
|--|-------------------------------------------|------------------|------------------------|------------------|---------------------|
|--|-------------------------------------------|------------------|------------------------|------------------|---------------------|

| Aklan                                       |              |                   |         |          |  |
|---------------------------------------------|--------------|-------------------|---------|----------|--|
| Ibajay                                      |              |                   |         |          |  |
| Ruilding Name                               | Barangay     | Rainfall Scenario |         |          |  |
|                                             | Darangay     | 5-year            | 25-year | 100-year |  |
| Agbago Elementary School                    | Agbago       | Low               | Medium  | Medium   |  |
| Barangay Agbago Day Care Center             | Agbago       | Low               | Low     | Low      |  |
| Agdugayan Day Care Center                   | Agdugayan    |                   |         |          |  |
| Agdugayan Elementary School                 | Agdugayan    | Low               | Low     | Low      |  |
| Aslum Day Care Center                       | Aslum        |                   |         |          |  |
| Integrated Learning Center                  | Aslum        |                   | Low     | Low      |  |
| Bacayan Day Care Center                     | Bagacay      |                   |         |          |  |
| Batuan Day Care Center                      | Batuan       | Low               | Low     | Low      |  |
| Batuan Primary School                       | Batuan       |                   |         |          |  |
| Capilijan Day Care Center                   | Capilijan    |                   |         |          |  |
| Capilijan Primary School                    | Capilijan    |                   |         |          |  |
| Aklan State University - Ibajay Campus      | Colongcolong |                   |         |          |  |
| Colong-colong Barangay Day Care Center      | Colongcolong |                   |         |          |  |
| Ibajay National High School                 | Colongcolong |                   | Low     | Low      |  |
| Seventh Day Adventist Multi-grade School    | Colongcolong |                   |         |          |  |
| Laguinbanua Day Care Center                 | Laguinbanua  |                   |         |          |  |
| Laguinbanua Elementary School               | Laguinbanua  |                   |         |          |  |
| Melchor Memorial School, Inc. Main building | Laguinbanua  |                   |         | Low      |  |
| Old Melchor Memorial School                 | Laguinbanua  |                   |         |          |  |
| Maloco Elementary School                    | Maloco       |                   |         |          |  |
| Maloco National High School                 | Maloco       |                   |         |          |  |
| Barangay Naile Daycare Center               | Naile        |                   |         |          |  |
| Naile Elementary School                     | Naile        |                   | Low     | Low      |  |
| Naile National High School                  | Naile        |                   | Low     | Low      |  |
| Naligusan Primary School                    | Naligusan    |                   |         | Low      |  |
| Ondoy Elementary School                     | Ondoy        |                   | Low     | Medium   |  |
| Ondoy National High School                  | Ondoy        | Medium            | Medium  | Medium   |  |
| Ibajay Academy                              | Poblacion    | Low               | Low     | Low      |  |
| Ibajay Central School                       | Poblacion    |                   | Low     | Low      |  |
| St. Peter Parochial School                  | Poblacion    |                   | Low     | Low      |  |
| Polo Day Care Center                        | Polo         |                   |         |          |  |
| Rizal Elementary School                     | Rizal        | Low               | Low     | Low      |  |
| Barangay Santa Cruz Day Care Center         | Santa Cruz   | Medium            | Medium  | Medium   |  |

| Aklan                            |            |                   |         |          |  |
|----------------------------------|------------|-------------------|---------|----------|--|
| Ibajay                           |            |                   |         |          |  |
| Puilding Name                    | Barangay   | Rainfall Scenario |         |          |  |
| buluing Name                     |            | 5-year            | 25-year | 100-year |  |
| Santa Cruz Elementary School     | Santa Cruz |                   |         |          |  |
| Tagbaya Barangay Day Care Center | Tagbaya    | Medium            | Medium  | Medium   |  |
| Tagbaya Elementary School        | Tagbaya    | Medium            | Medium  | Medium   |  |
| Tul-ang Barangay Day Care Center | Tul-Ang    |                   |         |          |  |
| Tul-ang Primary School           | Tul-Ang    |                   |         |          |  |
| Unat-Bagacay Elementary School   | Unat       |                   |         |          |  |
| Unat Day Care Center             | Unat       |                   |         |          |  |

## ANNEX 13. Health Institutions affected by flooding in Ibajay Floodplain

|                          | ,            | 0 , ,             | 1       |          |  |
|--------------------------|--------------|-------------------|---------|----------|--|
| Aklan                    |              |                   |         |          |  |
| Ibajay                   |              |                   |         |          |  |
| Duilding Name            | Deveneration | Rainfall Scenario |         |          |  |
| Building Name            | Barangay     | 5-year            | 25-year | 100-year |  |
| Ibajay District Hospital | Agbago       |                   |         |          |  |
| New Rural Health Center  | Maloco       |                   |         |          |  |
| Old HealthCenter         | Maloco       |                   |         |          |  |
| Rural Health Unit I      | Naile        |                   | Low     | Low      |  |
| Ascaayo Medical Clinic   | Poblacion    |                   |         |          |  |
| Health Unit II           | Poblacion    |                   |         |          |  |
| Unat Health Center       | Unat         |                   |         |          |  |

Table A-13.1. Health Institutions affected by flooding in Ibajay Floodplain

## Annex 14. UPC Phil-LiDAR 1 Team Composition

#### **Project Leader** Jonnifer R. Sinogaya, PhD.

**Chief Science Research Specialist** Chito Patiño

Senior Science Research Specialists Christine Coca Jared Kislev Vicentillo

#### **Research Associates**

Isabella Pauline Quijano Jarlou Valenzuela Rey Sidney Carredo Mary Blaise Obaob Rani Dawn Olavides Sabrina Maluya Naressa Belle Saripada Jao Hallen Bañados Michael Angelo Palomar Glory Ann Jotea