Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Aklan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Cebu

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Cebu 2017

Published by UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of Grant-in-Aid Program and is to be cited as:

E.C. Paringit and J.R. Sinogaya (eds.) (2017), LiDAR Surveys and Flood Mapping of Aklan River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-266pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Jonnifer Sinogaya, PhD.

Project Leader, Phil-LiDAR 1 Program University of the Philippines Cebu Cebu City, Cebu, Philippines 6000 E-mail: jrsinogaya@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-095-2

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF FIGURES	V
LIST OF TABLES	viii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND AKLAN RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Aklan River Basin	1
CHAPTER 2: LIDAR DATA ACOUISITION OF THE AKLAN FLOODPLAIN	3
2.1. Flight Plans	3
2.2. Ground Base Station	6
2.3 Flight Missions	12
2.4 Survey Coverage	14
CHAPTER 3: LIDAR DATA PROCESSING OF THE AKLAN FLOODPLAIN	16
3.1 Overview of LiDAR Data Pre-Processing	16
3.2 Transmittal of Acquired LiDAR Data	17
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LIDAR Data Quality Checking	20 25
3.0 LIDAR POINT CIOUU Classification and Arthophotograph Pactification	25 77
3.8 DEM Editing and Hydro-Correction	ر 2 29
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	35
3.12 Feature Extraction	37
3.12.1 Quality Checking of Digitized Features' Boundary	37
3.12.2 Height Extraction	37
3.12.3 Feature Attribution	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey	40 40 40 41 44 44 44 52
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey	
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING	40 40 41 44 44 44 47 52 54 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey 5.1 Data used for Hydrologic Modeling	40 40 40 41 44 44 47 52 52 54 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves	40 40 40 41 44 44 44 52 54 54 60 60 60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities	40 40 41 44 44 44 52 52 54 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey 4.7 Bathymetric Survey 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow	40 40 41 44 44 44 47 52 54 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station	40 40 40 41 44 44 44 52 54 60 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.1 MS Model 5.1 MS Model	40 40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.4 Cross-section Data 5.5 Elo 2D Model 5.5 Elo 2D Model	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 61 62 64 69 70 72
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return performance	40 40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return pe 5.7.1 Hydrograph using the Rainfall Runoff Model	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 61 62 62 70 72 72 riods74
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey. 4.7 Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return pe 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method 	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.6 Results of HMS Calibration 5.7 Calculated outflow hydrographs and discharge values for different rainfall return pe 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method 5.8 River Analysis Model Simulation 	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing 4.4 Network Adjustment 4.5 Cross-section and Bridge As-Built survey and Water Level Marking 4.6 Validation Points Acquisition Survey 4.7 Bathymetric Survey CHAPTER 5: FLOOD MODELING AND MAPPING 5.1 Data used for Hydrologic Modeling 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation 5.1.3 Rating Curves and River Outflow 5.2 RIDF Station 5.3 HMS Model 5.4 Cross-section Data 5.5 Flo 2D Model 5.7 Calculated outflow hydrographs and discharge values for different rainfall return pe 5.7.1 Hydrograph using the Rainfall Runoff Model 5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method 5.8 River Analysis Model Simulation 5.9 Flood Hazard and Flow Depth Map 5.10 Inventory of Areas Exposed to Flooding 	40 40 40 41 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
 CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE AKLAN RIVER BASIN 4.1 Summary of Activities	40 40 41 44 44 44 47 52 54 60 60 60 60 60 60 60 60 60 60 60 60 60

Annex 1. Optech Technical Specification	114
Annex 2. NAMRIA Certificates of Reference Points Used	118
Annex 3. Baseline Processing Report of Reference Points Used	122
Annex 4. The LiDAR Survey Team	123
Annex 5. Data Transfer Sheet for Aklan Floodplain Flights	124
Annex 6. Flight Logs	127
Annex 7. Flight Status Reports	150
Annex 8. Mission Summary Reports	175
Annex 9. Aklan Model Basin Parameters	245
Annex 10. Aklan Model Reach Parameters	247
Annex 11. Aklan Field Validation	248
Annex 12. Educational Institutions Affected in Aklan Floodplain	252
Annex 13. Health Institutions Affected in Aklan Floodplain	256
Annex 14. UPC Phil-LiDAR 1 Team Composition	258

LIST OF FIGURES

Figure 1. Location map of Aklan River Basin (in brown)	2
Figure 2. Flight plan for Aquarius LiDAR System and base stations used for Aklan Floodplain.	4
Figure 3. Flight plan for Gemini LiDAR System and base stations used for Aklan Floodplain	5
Figure 4. GPS set-up over AKN-43 located on the concrete sidewalk in front of the municipal hall	
of Banga, Aklan, and NAMRIA reference point AKN-43 (b) as recovered by the field team	6
Figure 5. GPS set up over AKN-42 at the open court in Barangay Libang, Makato,	
Aklan (a) and NAMRIA reference point AKN-42 (b) as recovered by the field team	7
Figure 6. GPS set up over AKN-32 located at the centerpoint of Batan Multi-purpose Sports	
Center (a) and NAMRIA reference point AKN-32 (b) as recovered by the field team.	8
Figure 7. GPS set up over CPZ-14 located at the centerpoint of Batan Multi-purpose Sports	
Center, (a) and NAMRIA reference point CPZ-14 (b) as recovered by the field team	9
Figure 8. GPS set up over AKN-EST located at the rooftop of an abandoned building in Altavas,	
Aklan, (a) and point AKN-EST (b) as established by the field team	10
Figure 9. Actual LiDAR survey coverage for Aklan Floodplain.	15
Figure 10. Schematic Diagram for Data Pre-Processing Component	16
Figure 11. Smoothed Performance Metric Parameters of Aklan Flight 1232A	17
Figure 12. Solution Status Parameters of Aklan Flight 1232A.	18
Figure 13. Best Estimated Trajectory for Aklan Floodplain	19
Figure 14. Boundary of the processed LiDAR data over Aklan Floodplain	20
Figure 15. Image of data overlap for Aklan Floodplain	22
Figure 16. Density map of merged LiDAR data for Aklan Floodplain	23
Figure 17. Elevation difference map between flight lines for Aklan Floodplain.	24
Figure 18. Quality checking for an Aklan flight 1232A using the Profile Tool of QT Modeler.	24
Figure 19. Tiles for Aklan floodplain (a) and classification results (b) in TerraScan.	25
Figure 20. Point cloud before (a) and after (b) classification	26
Figure 21. The Production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Aklan Floodplain.	27
Figure 22. Aklan floodplain with available orthophotographs	28
Figure 23. Sample orthophotograph tiles for Aklan Floodplain	28
Figure 24. Portions in the DTM of Aklan Floodplain – a paddy field before (a) and after (b) data	
retrieval; bridges before (c) and after (d) manual editing	29
Figure 25. Map of Processed LiDAR Data for Aklan Floodplain.	31
Figure 26. Map of Aklan Floodplain with validation survey points in green	33
Figure 27. Correlation plot between calibration survey points and LiDAR data	34
Figure 28. Correlation plot between validation survey points and LiDAR data.	35
Figure 29. Map of Aklan Floodplain with bathymetric survey points shown in blue	36
Figure 30. QC blocks for Aklan building features	37
Figure 31. Extracted features for Aklan Floodplain.	39
Figure 32. Aklan River survey extent	40
Figure 33. GNSS Network of Aklan Field Survey	41
Figure 34. Trimble® SPS 852 GNSS receiver base station at AKN-43 infront of Banga Municipal Hall,	
Brgy. Poblacoin, Municipality of Banga	42
Figure 35. Trimble [®] SPS 882 GNSS receiver setup at AK-173, Dumga Bridge, Brgy. Dumga,	
Municipality of Makato	42
Figure 36. Trimble [®] SPS 882 GNSS receiver setup at AKN-42 inside a basketball court	
in Brgy. Libang, Municipality of Makato	43

Figure 37. Trimble [®] SPS 985 GNSS receiver occupation at AKN-48 in Kalibo Bridge,	
Brgy. Poblacion, Municipality of Kalibo	43
Figure 38. AWLS elevation acquisition at Guadalupe Bridge, Brgy. Poblacion, Municipality of Mad	alag47
Figure 39. Guadalupe bridge cross-section location map	48
Figure 40. Guadalupe Bridge cross-section diagram	49
Figure 41. Guadalupe Bridge Data Form	50
Figure 42. Water level gauge at one of the pier of Guadalupe Bridge, Brgy. Poblacion,	
Municipality of Madalag	51
Figure 43. Validation points acquisition survey set-up	52
Figure 44. Validation Point Acquisition Survey for Aklan River	53
Figure 45. OHMEX [™] single beam echosounder set up on a boat for Aklan River bathymetric surv	ey54
Figure 46. Manual bathymetry survey of DVBC's personnel with the help of a local hire	55
Figure 47. Bathymetric points gathered in Aklan River	56
Figure 48. Aklan centreline riverbed profile (Upstream)	57
Figure 49. Aklan centreline riverbed profile (Middle)	58
Figure 50. Aklan centreline riverbed profile (Downstream)	59
Figure 51. The location map of Aklan HEC-HMS model used for calibration	60
Figure 52. Cross-Section Plot of Guadalupe Bridge	61
Figure 53. Rating Curve at Guadalupe-Madalag Bridge, Madalag, Aklan	61
Figure 54. Rainfall and outflow data at Aklan used for modeling	62
Figure 55. Location of Roxas RIDF station relative to Aklan River Basin	63
Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods	63
Figure 57. The soil map of the Aklan River Basin	64
Figure 58. The land cover map of the Aklan River Basin	65
Figure 59. Slope map of Aklan River Basin	66
Figure 60. Stream delineation map of Aklan River Basin	67
Figure 61. The Aklan Hydrologic Model generated in HEC-GeoHMS	68
Figure 62. River cross-section of Aklan River generated through Arcmap HEC GeoRAS tool	69
Figure 63. Screenshot of subcatchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	70
Figure 64. Generated 100-year rain return hazard map from FLO-2D Mapper	71
Figure 65. Generated 100-year rain return flow depth map from FLO-2D Mapper	71
Figure 66. Outflow Hydrograph of Aklan produced by the HEC-HMS model	
compared with observed outflow	72
Figure 67. Outflow hydrograph at Aklan Station generated using Iloilo RIDF simulated in HEC-HMS	S74
Figure 68. Aklan river (1) generated discharge using 5-, 25-, and 100-year Roxas	
rainfall intensity-duration-frequency (RIDF) in HEC-HMS	75
Figure 69. Sample output of Aklan RAS Model	76
Figure 70. 100-year Flood Hazard Map for Aklan Floodplain overlaid on Google Earth imagery	77
Figure 71. 100-year Flow Depth Map for Aklan Floodplain overlaid on Google Earth imagery	78
Figure 72. 25-year Flood Hazard Map for Aklan Floodplain overlaid on Google Earth imagery	79
Figure 73. 25-year Flow Depth Map for Aklan Floodplain overlaid on Google Earth imagery	80
Figure 74. 5-year Flood Hazard Map for Aklan Floodplain overlaid on Google Earth imagery	81
Figure 75. 5-year Flood Depth Map for Aklan Floodplain overlaid on Google Earth imagery	82
Figure 76. Affected Areas in Banga, Aklan during 5-Year Rainfall Return Period	83
Figure 77. Affected Areas in Kalibo, Aklan during 5-Year Rainfall Return Period	85
Figure 78. Affected Areas in Lezo, Aklan during 5-Year Rainfall Return Period	87
Figure 79. Affected Areas in Makato, Aklan during 5-Year Rainfall Return Period	88
Figure 80. Affected Areas inNew Washington, Aklan during 5-Year Rainfall Return Period	89

Figure 81. Affected Areas in Numancia, Aklan during 5-Year Rainfall Return Period	91
Figure 82. Affected Areas in Banga, Aklan during 25-Year Rainfall Return Period	92
Figure 83. Affected Areas in Kalibo, Aklan during 25-Year Rainfall Return Period	94
Figure 84. Affected Areas in Lezo, Aklan during 25-Year Rainfall Return Period	96
Figure 85. Affected Areas in Makato, Aklan during 25-Year Rainfall Return Period	97
Figure 86. Affected Areas in New Washington, Aklan during 25-Year Rainfall Return Period	98
Figure 87. Affected Areas in Numancia, Aklan during 25-Year Rainfall Return Period	100
Figure 88. Affected Areas in Banga, Aklan during 100-Year Rainfall Return Period	101
Figure 89. Affected Areas in Kalibo, Aklan during 100-Year Rainfall Return Period	103
Figure 90. Affected Areas in Lezo, Aklan during 100-Year Rainfall Return Period	105
Figure 91. Affected Areas in Makato, Aklan during 100-Year Rainfall Return Period	106
Figure 92. Affected Areas in New Washington, Aklan during 100-Year Rainfall Return Period	107
Figure 93. Affected Areas in Numancia, Aklan during 100-Year Rainfall Return Period	109
Figure 94. Validation points for 25-year Flood Depth Map of Aklan Floodplain	111
Figure 95. Flood map depth vs actual flood depth	112

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR system	3
Table 2. Flight planning parameters for Gemini LiDAR system	3
Table 3. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base station for LiDAR Acquisition.	⁻ the 6
Table 4. Details of the recovered NAMRIA benchmark NS-61 used as base station for the Li	DAR
Table 5. Details of the recovered NAMRIA benchmark AKN-32 used as base station for the Li	DAR 8
Table 6. Details of the established horizontal reference point CPZ-14 used as base station for the Li Acquisition.	DAR
Table 7. Details of the established horizontal reference point AKN-EST used as base station for the Li Acquisition	DAR 10
Table 8. Ground control points used during LiDAR data acquisition	11
Table 9. Flight missions for LiDAR data acquisition in Aklan floodplain	12
Table 10. Actual parameters used during LiDAR data acquisition.	13
Table 11. List of municipalities and cities surveyed during Aklan floodplain LiDAR survey.	14
Table 12. Self-Calibration Results values for Aklan flights.	19
Table 13. List of LiDAR blocks for Aklan floodplain	21
Table 14. Aklan classification results in TerraScan.	25
Table 15. LiDAR blocks with its corresponding area.	29
Table 16. Shift Values of each LiDAR Block of Aklan floodplain	30
Table 17. Calibration Statistical Measures	34
Table 18. Validation Statistical Measures.	35
Table 19. Quality Checking Ratings for Aklan Building Features	37
Table 20. Number of Building Features Extracted for Aklan Floodplain.	38
Table 21. Total Length of Extracted Roads for Aklan Floodplain	39
Table 22. Number of Extracted Water Bodies for Aklan Floodplain.	39
Table 23. List of Reference and Control Points used in Aklan River survey (Source: NAMRIA, UP-TCAGP) 41
Table 24. Baseline Processing Report for Aklan River Basin Static Survey	44
Table 25. Control Point Constraints	45
Table 26. Adjusted Grid Coordinates	45
Table 27. Adjusted Geodetic Coordinates	46
Table 28. Reference and control points and its location (Source: NAMRIA, UP-TCAGP)	46
Table 29. RIDF values for Roxas Rain Gauge computed by PAGASA	62
Table 30. Range of Calibrated Values for Aklan	72
Table 31. Summary of the Efficiency Test of Aklan HMS Model	73
Table 32. Peak values of the Aklan HEC-HMS Model outflow using the Iloilo RIDF	74
Table 33. Summary of Aklan river (1) discharge generated in HEC-HMS	75
Table 34. Table 34. Validation of river discharge estimates	75
Table 35. Municipalities affected in the Bago Floodplain	76
Table 36. Affected Areas in Dapitan City, Zamboanga del Norte during 5-Year Rainfall Return Period	83
Table 37. Affected Areas in Kalibo, Aklan during 5-Year Rainfall Return Period	84
Table 38. Affected Areas in Lezo, Aklan during 5-Year Rainfall Return Period	86
Table 39. Affected Areas in Makato, Aklan during 5-Year Rainfall Return Period	88
Table 40. Affected Areas in New Washington, Aklan during 5-Year Rainfall Return Period	89
Table 41. Affected Areas in Numancia, Aklan during 5-Year Rainfall Return Period	90

Table 42. Affected Areas in Barbaza, Antique during 25-Year Rainfall Return Period	92
Table 43. Affected Areas in Kalibo, Aklan during 25-Year Rainfall Return Period	93
Table 44. Affected Areas in Lezo, Aklan during 25-Year Rainfall Return Period	95
Table 45. Affected Areas in Makato, Aklan during 25-Year Rainfall Return Period	97
Table 46. Affected Areas in New Washington, Aklan during 25-Year Rainfall Return Period	98
Table 47. Affected Areas in Numancia, Aklan during 25-Year Rainfall Return Period	99
Table 48. Affected Areas in Barbaza, Antique during 100-Year Rainfall Return Period	101
Table 49. Affected Areas in Kalibo, Aklan during 100-Year Rainfall Return Period	102
Table 50. Affected Areas in Lezo, Aklan during 100-Year Rainfall Return Period	104
Table 51. Affected Areas in Makato, Aklan during 100-Year Rainfall Return Period	106
Table 52. Affected Areas in New Washington, Aklan during 100-Year Rainfall Return Period	107
Table 53. Affected Areas in Numancia, Aklan during 100-Year Rainfall Return Period	108
Table 54. Area covered by each warning level with respect to the rainfall scenario	110
Table 55. Actual Flood Depth vs Simulated Flood Depth in at different levels in the Aklan River Basir	า112
Table 56. Summary of Accuracy Assessment in the Aklan River Basin Survey	112

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation
Ab	abutment
ALTM	Airborne LiDAR Terrain Mapper
ARG	automatic rain gauge
ATQ	Antique
AWLS	Automated Water Level Sensor
BA	Bridge Approach
BM	benchmark
CAD	Computer-Aided Design
CN	Curve Number
CSRS	Chief Science Research Specialist
DAC	Data Acquisition Component
DEM	Digital Elevation Model
DENR	Department of Environment and Natural Resources
DOST	Department of Science and Technology
DPPC	Data Pre-Processing Component
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]
DRRM	Disaster Risk Reduction and Management
DSM	Digital Surface Model
DTM	Digital Terrain Model
DVBC	Data Validation and Bathymetry Component
FMC	Flood Modeling Component
FOV	Field of View
GiA	Grants-in-Aid
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System
HEC-RAS	Hydrologic Engineering Center - River Analysis System
НС	High Chord
IDW	Inverse Distance Weighted [interpolation method]

IMU	Inertial Measurement Unit
kts	knots
LAS	LiDAR Data Exchange File format
LC	Low Chord
LGU	local government unit
Lidar	Light Detection and Ranging
LMS	LiDAR Mapping Suite
m AGL	meters Above Ground Level
MMS	Mobile Mapping Suite
MSL	mean sea level
NSTC	Northern Subtropical Convergence
PAF	Philippine Air Force
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration
PDOP	Positional Dilution of Precision
РРК	Post-Processed Kinematic [technique]
PRF	Pulse Repetition Frequency
PTM	Philippine Transverse Mercator
QC	Quality Check
QT	Quick Terrain [Modeler]
RA	Research Associate
RIDF	Rainfall-Intensity-Duration-Frequency
RMSE	Root Mean Square Error
SAR	Synthetic Aperture Radar
SCS	Soil Conservation Service
SRTM	Shuttle Radar Topography Mission
SRS	Science Research Specialist
SSG	Special Service Group
ТВС	Thermal Barrier Coatings
UPC	University of the Philippines Cebu
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry
UTM	Universal Transverse Mercator
WGS	World Geodetic System

CHAPTER 1: OVERVIEW OF THE PROGRAM AND AKLAN RIVER

Enrico C. Paringit, Dr. Eng. and Jonnifer Sinogaya, PhD.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Cebu (UPC). UPC is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the twenty-two (22) river basins in the Western Visayas Region. The university is located in Cebu City in the province of Cebu.

1.2 Overview of the Aklan River Basin

Aklan River Basin is located in the province of Aklan located at the north of Panay Island. The Aklan River Basin covers major portions of the Municipalities of Banga, Libacao, and Madalag and covers minor portions of the Municipalities of Tapaz, Jamindan, Malinao, and Culasi. The floodplain is 100% covered with LiDAR data which compromises 14 blocks. The LiDAR data was calibrated then mosaicked with an RMSE of -0.43 and then bathy burned. The bathy survey conducted reached a total length of 2.89 km starting from Tigbawan, Madalag up to the river mouth with 12965 points surveyed. There are 51111 buildings, 628.12 km roads, 1237 waterbodies and 77 bridges digitized based from the LiDAR data. Feature Extraction Attribution was conducted and among the building features, 47782 of them are Residential, 1010 are schools and 78 are Medical Institutions.

The flood hazard map produced covers the 65.50 km2, 71.52 km2, 73.81 km2 for the 5-year, 25-year, and 100 year rainfall return period in Banga which affects 3 barangays as well as in Kalibo which affects 16 barangays, in Lezo which affects 9 barangays, in Makato which affects 1 barangay, in New Washington which affects 7 barangays and in Numancia which affects 17 barangays. A flood depth validation was conducted using 190 randomly generated points which is spread throughout the 6 ranges namely 0m-0.2m, 0.21m-0.5m, 0.51m-1m, 1.01m-2m, 2.10m-5m, 5m+ depth using the 25-yr rainfall flood depth map. It yielded a 0.786 m RMSE.

A rating curve was developed at Guadalupe-Madalag Bridge, Madalag, Aklan, which shows the relationship between the observed water levels at Guadalupe-Madalag Bridge and outflow of the watershed at this location. This rating curve equation, expressed as Q = 66.291e0.5476x, was used to compute the river outflow at Guadalupe-Madalag Bridge for the calibration of the HEC-HMS model. The resulting outflow was used to simulate the flooded areas using HEC-RAS. The simulated model will be an integral part in determining the real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website.

Figure 1. Location map of Aklan River Basin (in brown)

Based on the DENR River Basin Control Office (RBCO, 2015), the Aklan River Basin has a drainage area of 852 km2 and an estimated annual run-off of 353 MCM.

Its main stem, Aklan river is one of the 22 river systems in the Western Visayas region.. The river was named after the Province of Aklan. Quarrying activities is the primary source of livelihoods of communities along the river according to the local government and upon verification during the field survey execution. There are thirty-nine (39) barangays within the immediate vicinity of the river with a total population of 75,846 based on the 2010 NSO Census. Last December 30, 2012, province of Aklan has been placed under a state of calamity due to flooding brought by Tropical Storm "Quinta".

CHAPTER 2: LIDAR ACQUISITION IN AKLAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, and Ms. Kristine Joy P. Andaya

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1. Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Aklan Floodplain in Aklan. Each flight mission has an average of 21 lines that run for at most four and a half (4.5) hours including takeoff, landing and turning time. The parameter used in the LiDAR systems for acquisition is found in Table 1 and 2. Figure 2 shows the flight plans for Aklan Floodplain.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK38F	600	30	36	50	40	130	5
BLK38G	600	30	36	50	40	130	5
BLK38H	600	30/50	36	50	40	130	5
BLK38I	600	30/50	36	50	40	130	5
BLK38J	600	40	50	50	40	130	5
BLK38K	600	40/50	36/50	50	40	130	5
BLK38L	600	40	50	50	40	130	5
BLK38M	600	40	50	50	40	130	5
BLK38N	600	40	50	50	40	130	5
BLK38KS	600	40	50	50	40	130	5

Table 1. Flight planning parameters for Aquarius LiDAR system

Table 2. Flight planning parameters for Gemini LiDAR system

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency	Average Speed	Average Turn Time (Minutes)
BLK38A	800	25	50	125	40	130	5
BLK38B	800	25	50	125	40	130	5
BLK38C	800	30	40	125	50	130	5
BLK38D	600/800/ 1000	30	30/50	100/125/142	40/50	130	5
BLK38E	800/1000	30	40/50	100/125	50	130	5
BLK38F	800	25	50	125	40	130	5
BLK38G	800	30	50	125	50	130	5
BLK38I	800	30	50	125	50	130	5
BLK38J	800	30	50	125	50	130	5

Figure 2. Flight plan for Aquarius LiDAR System and base stations used for Aklan Floodplain.

Figure 3. Flight plan for Gemini LiDAR System and base stations used for Aklan Floodplain.

2.2. Ground Base Station

The project team was able to recover four (4) NAMRIA reference points: AKN-43, AKN-42, AKN-32, and CPZ-14 with second (2nd) order accuracy, and (1) one Established point AKN-EST with second (2nd) order accuracy. The certification for the NAMRIA reference points and benchmarks are found in Annex 2. These were used as base stations during flight operations for the entire duration of the survey (March 15-22, 2014, and September 18-30, 2015). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 985, TRIMBLE SPS 852 and TOPCON GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Aklan floodplain are shown in Figure 2 and Figure 3.

Figure 4 to Figure 8 show the recovered NAMRIA reference points within the area. Table 3 to Table 7 show the details about the following NAMRIA reference stations and established points, while8 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

Figure 4. GPS set-up over AKN-43 located on the concrete sidewalk in front of the municipal hall of Banga, Aklan, and NAMRIA reference point AKN-43 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ZGN-138 used as base station for the LiDAR
Acquisition.

Station Name	AKN-43		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 38' 27.12194" North 122o 19' 53.01891" East 17.74900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	427093.296 meters 1287298.051 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 38' 22.52687" North 122o 19' 58.16083" East 72.44500 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	427118.81 meters 1286847.47 meters	

Figure 5. GPS set up over AKN-42 at the open court in Barangay Libang, Makato, Aklan (a) and NAMRIA reference point AKN-42 (b) as recovered by the field team.

Station Name	AKN-42		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 41' 4.84235" North 122o 15' 49.78166" East 17.77900 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	419737.946 meters 1292162.5 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 41' 0.23066" North 122o 15' 54.92018" East 72.20000 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	419766.04 meters 1291710.22 meters	

Table 4. Details of the recovered NAMRIA benchmark NS-61 used as base station for the LiDAR Acquisition.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 6. GPS set up over AKN-32 located at the centerpoint of Batan Multi-purpose Sports Center, (a) and NAMRIA reference point AKN-32 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA benchmark AKN-32 used as base station for the LiDAR Acquisition.

Station Name	AKN-32			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in	n 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 35' 14.35956" North 122o 29' 42.04171" East 3.89400 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	444924.599 meters 1281338.493 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 35' 9.79172" North 122o 29' 47.18726" East 59.12600 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	444943.88 meters 1280890.00 meters		

(b)

Figure 7. GPS set up over CPZ-14 located at the centerpoint of Batan Multi-purpose Sports Center, (a) and NAMRIA reference point CPZ-14 (b) as recovered by the field team

Table 6. Details of the established horizontal reference point CPZ-14 used as base station for the LiDAR Acquisition.

Station Name	CPZ-14			
Order of Accuracy	2nd			
Relative Error (horizontal positioning)	1 in 50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11°33'24.51899" North 122° 47'34.41876" East 4.91900 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 5 PRS 92)	Easting Northing	477410.249 meters 1277923.165 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11°33' 19.98412" North 122° 47' 39.56494" East 60.96000 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	477418.16 meters 1277475.87 meters		

Figure 8. GPS set up over AKN-EST located at the rooftop of an abandoned building in Altavas, Aklan, (a) and point AKN-EST (b) as established by the field team

Station Name	AKN-EST			
Order of Accuracy (benchmark)	2	nd		
Elevation (horizontal positioning)	1 in 5	50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	11o 30' 4.06"North 122o 28' 37.44"East 52.85 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	224679.042 meters 1272965.306 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	11o 29' 59.42372"North 122o 28' 47.18726"East 108.253 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	443101.888 meters 1271299.528 meters		

Table 7. Details of the established horizontal reference point AKN-EST used as base station for the LiDAR Acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
March 8, 2014	1186A	3BLK38067A	AKN-32, AKN-EST
March 9, 2014	1190A	3BLK38N068A	AKN-32, AKN-EST
March 9, 2014	1192A	3BLK38M068B	AKN-32, AKN-EST
March 10, 2014	1194A	3BLK38J069A	AKN-32
March 10, 2014	1196A	3BLK38KS069B	AKN-32
March 14, 2014	1210A	3BLK38FS073A	AKN-43, AKN 42
March 14, 2014	1212A	3BLK38FS073B	AKN-43, AKN 42
March 15, 2014	1214A	3BLK38G074A	AKN-43, AKN 42
March 17, 2014	1222A	3BLK38I076A	AKN-43, AKN 42
March 17, 2014	1224A	3BLK38FS076B	AKN-43, AKN 42
March 19, 2014	1230A	3BLK3HIS078A	AKN-43, AKN 42
March 19, 2014	1232A	3BLK38G078B	AKN-43, AKN 42
March 12, 2014	1238A	3BLK38GS080A	AKN-43, AKN 42
March 21, 2014	1240A	3BLK38HS080B	AKN-43, AKN 42
September 18, 2015	2742G	2BLK38D261A	AKN-43, AKN 42
September 19, 2015	2746G	2BLK38ADSE262A	AKN-43, AKN 42
September 24, 2015	2766G	2BLK38C267A	AKN-43, AKN 42
September 24, 2015	2768G	2BLKG267B	AKN-43, AKN 42
September 25, 2015	2770G	2BLK38BDVES268A	AKN-43, AKN 42, AKN-32
September 25, 2015	2772G	2BLK38GS268B	AKN-43, AKN 42
September 26, 2015	2774G	2BLK38ES269A	AKN-43, AKN 42, AKN-32
September 30, 2015	2790G	2BLK38BSF273A	AKN-43, AKN 42, AKN-32, CPZ-14
September 30, 2015	2792G	2BLK38IJ273B	AKN-43, AKN 42, AKN-32, CPZ-14

Table 8. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Twenty-three (23) missions were conducted to complete LiDAR data acquisition in Aklan Floodplain, for a total of eighty four hours and twenty (84+20) minutes of flying time for RP-C9322 and RP-C9022. All missions were acquired using the Gemini and Aquarius LiDAR systems. Table 8 and Table 9 show the actual coverage and flying hours per mission and the actual parameters used during the LiDAR data acquisition, respectively.

			Area		Area		Flying Hours	
Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Surveyed within the Floodplain (km2)	Surveyed Outside the Floodplain (km2)	No. of Images (Frames)	Hr	Min
8-Mar-14	1186A	101.25	199.67	29.25	170.42	4	4	35
9-Mar-14	1190A	79	137.87	0	137.87	171	3	59
9-Mar-14	1192A	88.78	130.8	1.75	129.05	1007	3	17
10-Mar-14	1194A	108.82	144.55	0	144.55	1432	4	17
10-Mar-14	1196A	53.99	32.98	15.83	17.15	273	2	41
14-Mar-14	1210A	139.31	136.74	29.34	107.4	-	3	35
14-Mar-14	1212A	139.31	160.02	37.56	122.46	-	2	53
15-Mar-14	1214A	139.3	198.29	1.14	197.15	-	2	29
17-Mar-14	1222A	85.02	107.89	38.50	69.39	1369	4	29
17-Mar-14	1224A	84.17	174.98	43.94	131.04	716	2	23
19-Mar-14	1230A	114.34	232.32	75.26	157.06	1459	4	23
19-Mar-14	1232A	83.78	75.45	0	75.45	-	3	5
12-Mar-14	1238A	112.01	84.75	15.34	69.41	-	4	47
21-Mar-14	1240A	114.34	70.09	3.93	66.16	-	2	41
18-Sep-15	2742G	138.91	121.57	1.16	120.41	-	3	53
19-Sep-15	2746G	142.57	170.8	18.14	152.66	1056	4	6
24-Sep-15	2766G	112.3	162.23	0	162.23	-	4	5
24-Sep-15	2768G	101.25	141.1	9.78	131.32	577	3	17
25-Sep-15	2770G	230.37	198.77	18.55	180.22	898	4	23
25-Sep-15	2772G	109.27	315.47	12.1	303.37	618	3	11
26-Sep-15	2774G	84.17	243.94	47.97	195.97	750	4	17
30-Sep-15	2790G	140.57	157.9	46.52	111.38	953	4	23
30-Sep-15	2792G	180	181.90	0	181.90	602	3	11
TOTA	L	2682.83	3580.08	446.06	3134.02	11885	84	20

Table 9. Flight missions for LiDAR data acquisition in Aklan Floodplain.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
March 8, 2014	1186A	3BLK38067A	AKN-32, AKN-EST
March 9, 2014	1190A	3BLK38N068A	AKN-32, AKN-EST
March 9, 2014	1192A	3BLK38M068B	AKN-32, AKN-EST
March 10, 2014	1194A	3BLK38J069A	AKN-32
March 10, 2014	1196A	3BLK38KS069B	AKN-32
March 14, 2014	1210A	3BLK38FS073A	AKN-43, AKN 42
March 14, 2014	1212A	3BLK38FS073B	AKN-43, AKN 42
March 15, 2014	1214A	3BLK38G074A	AKN-43, AKN 42
March 17, 2014	1222A	3BLK38I076A	AKN-43, AKN 42
March 17, 2014	1224A	3BLK38FS076B	AKN-43, AKN 42
March 19, 2014	1230A	3BLK3HIS078A	AKN-43, AKN 42
March 19, 2014	1232A	3BLK38G078B	AKN-43, AKN 42
March 12, 2014	1238A	3BLK38GS080A	AKN-43, AKN 42
March 21, 2014	1240A	3BLK38HS080B	AKN-43, AKN 42
September 18, 2015	2742G	2BLK38D261A	AKN-43, AKN 42
September 19, 2015	2746G	2BLK38ADSE262A	AKN-43, AKN 42
September 24, 2015	2766G	2BLK38C267A	AKN-43, AKN 42
September 24, 2015	2768G	2BLKG267B	AKN-43, AKN 42
September 25, 2015	2770G	2BLK38BDVES268A	AKN-43, AKN 42, AKN- 32
September 25, 2015	2772G	2BLK38GS268B	AKN-43, AKN 42
September 26, 2015	2774G	2BLK38ES269A	AKN-43, AKN 42, AKN- 32
September 30, 2015	2790G	2BLK38BSF273A	AKN-43, AKN 42, AKN- 32, CPZ-14
September 30, 2015	2792G	2BLK38IJ273B	AKN-43, AKN 42, AKN- 32, CPZ-14

Table 10. Actual parameters used during LiDAR data acquisition.

2.4 Survey Coverage

Aklan floodplain is located in the province of Aklan. Municipalities of Balete, Banga, Kalibo, Lezo, Madalag, Makato, Malinao, New Washington and Numancia were mostly covered by the survey. The list of municipalities surveyed, with at least one (1) square kilometer coverage, is shown in Table 11. The actual coverage of the LiDAR acquisition for Aklan Floodplain is presented in Figure 9.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Altavas	105.30	105.24	100%
	Balete	108.40	108.40	100%
	Banga	66.10	66.10	100%
	Batan	80.55	68.02	84%
	Ibajay	132.35	96.15	73%
	Kalibo	34.09	34.09	100%
	Lezo	20.24	20.24	100%
Aklan	Libacao	173.15	56.15	32%
	Madalag	291.29	33.58	12%
	Makato	63.68	58.81	92%
	Malinao	220.46	78.59	36%
	Nabas	83.38	20.99	25%
	New Washington	48.08	48.08	100%
	Numancia	23.62	23.62	100%
	Tangalan	63.43	53.38	84%
Antique	Pandan	153.32	35.30	23%
	Cuartero	108.18	21.13	20%
	Dao	67.76	23.79	35%
	Dumalag	96.97	13.48	14%
	Dumarao	228.45	6.47	3%
	Ivisan	53.84	21.52	40%
	Jamindan	500.16	182.91	37%
Capiz	Ma-Ayon	192.60	22.89	12%
Capiz	Mambusao	103.26	43.39	42%
	Panay	129.87	17.35	13%
	Panitan	88.95	11.14	13%
	Pontevedra	95.28	16.99	18%
	Roxas City	99.65	64.84	65%
	Sapi-An	67.40	11.45	17%
	Sigma	103.89	44.72	43%
То	tal	3603.7	1408.81	39.09

Table 11. List of municipalities and cities surveyed during Aklan Floodplain LiDAR survey.

Figure 9. Actual LiDAR survey coverage for Aklan Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE AKLAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of LiDAR Data Pre-Processing

Figure 10. Schematic Diagram for Data Pre-Processing Component

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 10.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Aklan floodplain can be found in Annex A-5. Data Transfer Sheets. Missions flown during the first survey conducted on March 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Aquarius system while missions acquired during the second survey on September 2016 were flown using the Gemini system over Madalag, Aklan. The Data Acquisition Component (DAC) transferred a total of 352.76 Gigabytes of Range data, 4.42 Gigabytes of POS data, and 795.74 Megabytes of GPS base station data and 720.59 Gigabytes of raw image data to the data server on April 22, 2014 for the first survey and September 22, 2015 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Aklan was fully transferred on October 5, 2015 as indicated on the Data Transfer Sheets for Aklan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 1232A, one of the Aklan flights, which is the North, East, and Down position RMSE values are shown in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 19, 2014 00:00AM. The y-axis is the RMSE value for that particular position.

Figure 11. Smoothed Performance Metrics of Aklan Flight 1232A.

The time of flight was from 279500 seconds to 287000 seconds, which corresponds to afternoon of March 19, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 0.085 centimeters, the East position RMSE peaks at 0.09 centimeters, and the Down position RMSE peaks at 1.90 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 12. Solution Status Parameters of Aklan Flight 1232A.

The Solution Status parameters of flight 1232A, one of the Aklan flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used are shown in Figure 12. The graphs indicate that majority of the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 and 2 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Aklan flights is shown in Figure 13.

Figure 13. Best Estimated Trajectory for Aklan Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 298 flight lines, with each flight line containing one channel, since the Aquarius system contains one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Aklan floodplain are given in Table 12.

Parameter	Acceptable Value	Value
Boresight Correction stdev	(<0.001degrees)	0.000315
IMU Attitude Correction Roll and Pitch Corrections stdev	(<0.001degrees)	0.000989
GPS Position Z-correction stdev	(<0.01meters)	0.0076

Table 12. Self-Calibration Results values for Aklan flights.

The optimum accuracy is obtained for all Aklan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Aklan Floodplain is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 14. Boundary of the processed LiDAR data over Aklan Floodplain

The total area covered by the Aklan missions is 1,635.81 sq.km that is comprised of nineteen (19) flight acquisitions grouped and merged into fourteen (14) blocks as shown in Table 13.

LiDAR Blocks	Flight Numbers	Area (sq. km)
	1210A	
Aklan_Blk38F	1212A	88.80
	1224A	
	1232A	
Aklan_Blk38G	1238A	141.61
	1214A	
Aklan_Blk38G_additional	1232A	17.61
Aklan_Blk38H	1230A	106.09
Aklan_Blk38I	1222A	90.37
Aklan_Blk38J	1194A	128.90
Aklan_Blk38N	1192A	121.00
Capiz_Aklan_Blk38C	2766G	145.80
	2742G	
Capiz_Aklan_Blk38D	2746G	217.24
	2770G	
	2770G	
Capiz_Aklan_Blk38E_supplement	2746G	94.67
	2774G	
	2270G	
Capiz_Aklan_Blk38E	2746G	223.00
	2774G	
Capiz_Aklan_Blk38F	2790G	48.65
	2768G	150.70
Сарі2_Акіал_Вік386	2772G	158.70
Capiz_Aklan_Blk38I	2792G	53.48
TOTAL		1635.81 sq.km

Table 13. List of LiDAR blocks for Aklan Floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Gemini and Aquarius systems both employ one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 15. Image of data overlap for Aklan Floodplain.

The overlap statistics per block for the Aklan floodplain can be found in Annex 8. Mission Summary Reports. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 26.83% and 68.71% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 16. It was determined that all LiDAR data for Aklan floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.69 points per square meter.

Figure 16. Pulse density map of merged LiDAR data for Aklan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 17. Elevation difference map between flight lines for Aklan Floodplain.

A screen capture of the processed LAS data from an Aklan flight 1232A loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 18. Quality checking for an Aklan flight 1232A using the Profile Tool of QT Modeler.
3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	834,148,364
Low Vegetation	1,039,040,852
Medium Vegetation	2,727,547,695
High Vegetation	1,920,635,609
Building	59,783,400

Table 14. Aklan classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Aklan floodplain is shown in Figure 19. A total of 2098 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 14. The point cloud has a maximum and minimum height of 903.42 meters and 4.71 meters respectively.

Figure 19. Tiles for Aklan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 20. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 21. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 21. The Production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Aklan Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,877 1km by 1km tiles area covered by Aklan floodplain is shown in Figure 22. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Aklan floodplain has a total of 881.90 sq.km orthophotogaph coverage comprised of 11,457 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 23.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 22. Aklan Floodplain with available orthophotographs.

Figure 23. Sample orthophotograph tiles for Aklan Floodplain.

3.8 DEM Editing and Hydro-Correction

Fourteen (14) mission blocks were processed for Aklan flood plain. These blocks are composed of Aklan and Capiz_Aklan blocks with a total area of 1,635.81 square kilometers. Table 15 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
Aklan_Blk38F	88.8
Aklan_Blk38G	141.61
Aklan_Blk38G_additional	16.70
Aklan_Blk38H	106.10
Aklan_Blk38I	90.37
Aklan_Blk38J	128.90
Aklan_Blk38N	121.00
Capiz_Aklan_Blk38C	145.80
Capiz_Aklan_Blk38D	217.70
Capiz_Aklan_Blk38E_supplement	95.00
Capiz_Aklan_Blk38E	223.00
Capiz_Aklan_Blk38F	48.65
Capiz_Aklan_Blk38G	158.70
Capiz_Aklan_Blk38I	53.48
TOTAL	1,635.81 sq. km

Table 15. LiDAR	blocks with its	corresponding area.
100101010101110	provide niteri reo	eorreoponening area

Portions of DTM before and after manual editing are shown in Figure 24. It shows that the paddy field (Figure 24a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 24b). The bridges (Figure 24c) would be an impedance to the flow of water along the river and have to be removed (Figure 24d) in order to hydrologically correct the river.

Figure 24. Portions in the DTM of Aklan Floodplain – a paddy field before (a) and after (b) data retrieval; bridges before (c) and after (d) manual editing

3.9 Mosaicking of Blocks

Capiz_Aklan_Blkl38D was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 16 shows the area of each LiDAR block and the shift values applied during mosaicking.

Mosaicked LiDAR DTM for Aklan floodplain is shown in Figure 25. It can be seen that the entire Aklan floodplain is 100% covered by LiDAR data.

Missien Diesle	Shift Values (meters)				
	х	У	z		
Aklan_Blk38F	-0.48	0.22	-0.04		
Aklan_Blk38G	-0.48	0.22	-0.06		
Aklan_Blk38G_additional	-0.48	0.22	0.07		
Aklan_Blk38H	-0.48	0.22	-0.09		
Aklan_Blk38I	-0.65	0.22	-0.12		
Aklan_Blk38J (upper block)	-0.48	0.22	0.14		
Aklan_Blk38J (lower block)	-0.48	0.22	-0.20		
Aklan_Blk38N	-0.16 0.44		-0.33		
Capiz_Aklan_Blk38C	-0.48	0.22	-0.48		
Capiz_Aklan_Blk38D	-0.48 0.22		-0.59		
Capiz_Aklan_Blk38E_ supplement (right block)	0.37	0.22	-0.34		
Capiz_Aklan_Blk38E_ supplement (left block)	-0.48	0.22	-0.60		
Capiz_Aklan_Blk38E	-0.48	0.22	-0.53		
Capiz_Aklan_Blk38F	-0.49	0.22	-1.10		
Capiz_Aklan_Blk38G	-0.48	0.22	-1.11		
Capiz_Aklan_Blk38I	-0.78	-0.07	-1.95		

Table 16. Shift Values of each LiDAR Block of Aklan Floodplain.

Figure 25. Map of Processed LiDAR Data for Aklan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Aklan to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 3,836 points were gathered for the Aklan floodplain. However, the point dataset was not used for the calibration of the LiDAR data for Aklan because during the mosaicking process, each LiDAR block was referred to the calibrated Jalaur DEM. Therefore, the mosaicked DEM of Aklan can already be considered as a calibrated DEM.

A good correlation between the uncalibrated Jalaur LiDAR DTM and ground survey elevation values is shown in Figure 26. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 1.71 meters with a standard deviation of 0.17 meters. Calibration of Jalaur LiDAR data was done by subtracting the height difference value, 1.71 meters, to Jalaur mosaicked LiDAR data. Table 17 shows the statistical values of the compared elevation values between Jalaur LiDAR data and calibration data. These values were also applicable to the Aklan DEM.

Figure 26. Map of Aklan Floodplain with validation survey points in green.

Figure 27. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	1.71
Standard Deviation	0.17
Average	-1.70
Minimum	-2.13
Maximum	-1.16

Table 17. Calibration Statistical Measures.

A total of 3,836 survey points that are within the Aklan flood plain were used for the validation of the calibrated Aklan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 28. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.15 meters with a standard deviation of 0.12 meters, as shown in Table 18.

Validation Statistical Measures	Value (meters)
RMSE	0.15
Standard Deviation	0.12
Average	0.08
Minimum	-0.27
Maximum	0.40

Table 18. Validation Statistical Measures.

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, a total of 40873 bathymetric survey points in centerline and zigzag was used for Aklan. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.28 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Aklan integrated with the processed LiDAR DEM is shown in Figure 29.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 29. Map of Aklan Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Aklan floodplain, including its 200 m buffer, has a total area of 244.58 sq km. For this area, a total of 7.0 sq km, corresponding to a total of 1880 building features, are considered for QC. Figure 30 shows the QC blocks for Aklan floodplain.

Figure 30. QC blocks for Aklan building features.

Quality checking of Aklan building features resulted in the ratings shown in Table 19.

Table 19. Quality checking ratings for Aklan building features

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Aklan	99.21	100.00	96.60	PASSED

3.12.2 Height Extraction

Height extraction was done for 62,672 building features in Aklan floodplain. Of these building features, 11,561 was filtered out after height extraction, resulting to 51,111 buildings with height attributes. The lowest building height is at 2.0 m, while the highest building is at 14.42 m.

3.12.3 Feature Attribution

The feature attribution survey was conducted through a participatory community-based mapping in coordination with the Local Government Units of the Municipality/City. The research associates of Phil-LiDAR 1 team visited local barangay units and interviewed local key personnel and officials who possessed expert knowledge of their local environments to identify and map out features.

Maps were displayed on a laptop and were presented to the interviewees for identification. The displayed map include the orthophotographs, Digital Surface Models, existing landmarks, and extracted feature shapefiles. Physical surveys of the barangay were also done by the Phil-LiDAR 1 team every after interview for validation. The number of days by which the survey was conducted was dependent on the number of features and number of barangays included in the flood plain of the river basin.

Table 20 summarizes the number of building features per type. On the other hand, Table 21 shows the total length of each road type, while Table 22 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	47782
School	1010
Market	56
Agricultural/Agro-Industrial Facilities	84
Medical Institutions	78
Barangay Hall	82
Military Institution	2
Sports Center/Gymnasium/Covered Court	41
Telecommunication Facilities	20
Transport Terminal	27
Warehouse	70
Power Plant/Substation	21
NGO/CSO Offices	22
Police Station	19
Water Supply/Sewerage	13
Religious Institutions	235
Bank	16
Factory	18
Gas Station	47
Fire Station	3
Other Government Offices	168
Other Commercial Establishments	1205
Others	91
Total	51111

Table 20. Number of building features extracted for Aklan Floodplain.

	Road Network Length (km)					
Floodplain	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	Total
Aklan	424.87	40.52	80.24	33.93	48.56	628.12

Table 21. Total length of extracted roads for Aklan Floodplain.

Table 22. Number of extracted water bodies for Aklan Floodplain.

	Water Body Type						
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Others	Total
Aklan	48	0	0	0	1189	0	1237

A total of 77 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 31 shows the Digital Surface Model (DSM) of Aklan floodplain overlaid with its ground features.

Figure 31. Extracted features for Aklan Floodplain.

CHAPTER 4: DATA VALIDATION SURVEY AND MEASUREMENTS IN THE AKLAN RIVER BASIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Gladys Mae Apat , Engr. Joida F. Prieto , Engr. Ma. Ailyn L. Olanda, Engr. Antonio B. Chua Jr., Eng. Czarina Jean P. Añonuevo , Franklin D. Maraya, and Chester B. de Guzman

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted survey in Aklan River on October 29-November 7, 2015 with the objective of conducting the following activities: cross-section, bridge as-built and water level marking in MSL of Guadalupe Bridge; gathering of validation point along the concrete roads within the Aklan River Basin; and 30.1 km bathymetry survey from the Municipality of Madalag to the Municipality of Numancia. The entire extent of the Aklan river basin survey is shown in Figure 32.

Figure 32. Aklan River Survey Extent

4.2 Control Survey

The GNSS network survey used in Aklan river survey was composed of two loops established on November 1, 2015 occupying the following reference points: AKN-43, in Brgy. Poblacion, Municipality of Banga; and AK-173 in Brgy. Dumga in the Municipality of Makato.

Two NAMRIA established control points namely: AKN-42 in Brgy. Libang, Municipality of Makato; and AKN-48, a second order GCP located in Brgy. Poblacion, Municipality of Kalibo; were also occupied to use as marker during the survey.

The summary of reference and control points and its location is shown in Figure 33 and Table 23.

Figure 33. GNSS Network of Aklan Field Survey

Table 23. List of Reference and Control Points used in Aklan River survey (Source: NAMRIA, UP-TCAGP)

		Geographic Coordinates (WGS 84)						
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established		
AKN-43	2nd Order, GCP	11°38'22.52687"	122°19'58.16083"	72.296	-	2007		
AK-173	1st Order, BM	-	-	66.084	10.516	2007		
AKN-42	Used as Marker	-	-	-	-	2007		
AKN-48	Used as Marker	-	-	-	-	2007		

The GNSS receiver set up and established control points in Aklan survey are shown in Figure 34 to Figure 37.

Figure 34. Trimble® SPS 852 GNSS receiver base station at AKN-43 infront of Banga Municipal Hall, Brgy. Poblacoin, Municipality of Banga

Figure 35. Trimble® SPS 882 GNSS receiver setup at AK-173, Dumga Bridge, Brgy. Dumga, Municipality of Makato

Figure 36. Trimble® SPS 882 GNSS receiver setup at AKN-42 inside a basketball court in Brgy. Libang, Municipality of Makato

Figure 37. Trimble® SPS 985 GNSS receiver occupation at AKN-48 in Kalibo Bridge, Brgy. Poblacion, Municipality of Kalibo

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Aklan River Basin is summarized in Table 24 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	Height (Meter)
AKN-43 AKN-48	11-1-2015	Fixed	0.003	0.017	200°00'42"	8870.089	9.527
AK-173 AKN-48	11-1-2015	Fixed	0.003	0.017	272°44'45"	8610.027	3.313
AKN-43 AK-173	11-1-2015	Fixed	0.003	0.018	327°31′49″	10367.060	-6.198
AKN-43 AKN-42	11-1-2015	Fixed	0.003	0.018	303°20'32"	8818.103	-0.135
AKN-42 AK-173	11-1-2015	Fixed	0.004	0.025	204°46'47"	4295.495	6.081

Table 24. Baseline Processing Report for Aklan River Basin Static Survey

A shown in Table 24, a total of five baselines were processed with reference elevation of point AK-173 and coordinates of AKN-43 held fixed. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, network adjustment is performed using TBC. Looking at the Adjusted Grid Coordinates Table of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \ cm$

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

for each reference point. See the Network Adjustment Report in Table 25 to Table 28 for complete details.

The four (4) control points, AKN-43, AKN-42, AK-173, and AKN-48 were occupied and observed simultaneously to form a GNSS loop. Coordinates of point AKN-43 and elevation value of AK-173 were held fixed during the processing of the control points as presented in Table C-3. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)		
AK-173	Global				Fixed		
AKN-43	Global	Fixed	Fixed	Fixed			
Fixed = 0.000001(Meter)							

Table 25. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 26. The fixed control point AK-173 and AKN-43, has no values for standard elevation and coordinates error, respectively.

Point ID	Easting	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
AK-173	421731.966	0.003	1295542.888	0.003	10.516	?	е
AK-42	419922.257	0.003	1291648.742	0.003	16.382	0.023	
AK-43	427275.083	?	1286786.229	?	16.246	0.018	LL
AK-48	430328.301	0.003	1295111.093	0.003	7.126	0.019	

The network is fixed at reference point AK-173 and AKN-43 for elevation and coordinate values, respectively.

With the mentioned equation $\sqrt{((x_e)^2 + (y_e)^2)} < 20cm \text{ and } z_e < 10 cm$, for horizontal; and z_e<10 cm for the vertical; the computation for the accuracy for the controls are as follows:

a. AKN – 43

Horizontal accuracy Vertical accuracy	= fixed = 1.8 < 10 cm
b. AK-173 Horizontal accuracy	= $((0.3)^2 + (0.3)^2)$ = $\sqrt{(0.9 + 0.9+)}$ = 1.34 cm < 20 cm
Vertical accuracy	= fixed
c. AKN - 42 horizontal accuracy	$= \sqrt{(0.3)^2 + (0.3)^2}$ = $\sqrt{(0.9 + 0.9+)}$ = 1.34 cm < 20 cm
vertical accuracy	= 2.3 < 10 cm
d. AKN - 48 horizontal accuracy	$= \sqrt{(0.3)^2 + (0.3)^2}$ = $\sqrt{(0.9 + 0.9)}$ = 1.34 cm < 20 cm
vertical accuracy	= 1.9 < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required accuracy of the program.

Point ID	Latitude	Longitude	Height (Meter)	Height Error (Meter)	Constraint
AK-173	N11°43'07.15414"	E122°16'54.36766"	66.084	?	е
AK-42	N11°41'00.23163"	E122°15'54.92080"	72.161	0.023	
AK-43	N11°38'22.52687"	E122°19'58.16083"	72.296	0.018	LL
AK-48	N11°42'53.77055"	E122°21'38.37206"	62.769	0.019	

Table 27. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 27. Based on the result of the computation, the equation is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 28.

		Geograph	ic Coordinates (WGS	UTM ZONE 51 N			
Control Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	Northing	Easting	MSL Elevation (m)
AKN-43	2nd Order GCP	11°38'22.52687"	122°19'58.16083"	72.296	1286786.229	427275.083	16.246
AK-173	1st Order BM	11°43'07.15414"	122°16'54.36766"	66.084	1295542.888	421731.966	10.516
AKN-42	UP Established	11°41'00.23163"	122°15'54.92080"	72.161	1291648.742	419922.257	16.382
AKN-48	UP Established	11°42'53.77055"	122°21'38.37206"	62.769	1295111.093	430328.301	7.126

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross section and as-built survey were conducted on November 2, 2015 at the downstream side of Guadalupe Bridge located in Brgy. Poblacion, Municipality of Madalag. using a Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 38.

Figure 38. AWLS elevation acquisition at Guadalupe Bridge, Brgy. Poblacion, Municipality of Madalag

The cross-sectional line of Guadalupe bridge has an estimated lenghth of 220 m with a total of 90 points acquired using AKN-43 as the GNSS base station. The location map, cross section diagram, and the bridge data form are shown in Figure 39 to Figure 41, respectively.

	Station(Distance from BA1)	Elevation		Station(Distance from BA1)	Elevation
BA1	0	10.57	BA3	354.60	9.04
BA2	56.47	9.18	BA4	388.95	9.32

Abutment: Is the abutment sloping? Yes No; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1		
Ab2	230.23	31.11

Pier (Please start your measurement from the left side of the bank facing downstream)

Shape:Circular Number of Piers: Ten (10)

Height of column footing:n/a

	Station (Distance from BA1)	Elevation	Pier Width
Pier 1	72.04	38.81	
Pier 2	111.47	38.70	
Pier 3	151.39	38.83	
Pier 4	191.43	38.75	

NOTE: Use the center of the pier as reference to its station

Figure 41. Guadalupe Bridge Data Form

The water surface elevation of Aklan River in Guadalupe Bridge was acquired using PPK survey technique on November 2, 2015 at 11:46 a.m. The resulting water surface elevation data at Guadalupe Bridge is 37.435 m above MSL. This was translated into a marking on the bridge's pier to serve as a reference for flow data gathering and depth gauge deployment of UP Cebu PHIL-LIDAR 1. The marked water level marking for Guadalupe Bridge is shown in Figure 42.

Figure 42. Water level gauge at one of the pier of Guadalupe Bridge, Brgy. Poblacion, Municipality of Madalag

4.6 Validation Points Acquisition Survey

Validation Points Acquisition Survey was conducted on November 1, 2015 using a survey-grade GNSS Rover receiver mounted on a pole which was attached to the front of vehicle as shown in Figure 43. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height is 2.532 m measured from the ground up to the bottom of notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topo mode and by setting up a base station on AKN-43 in Brgy. Poblacion, Banga which is shown in Figure 42. The ground validation survey covered the major roads running along Aklan West Road and Iloilo-Antique Road from Brgy. Solido, Nagas City to Brgy. Aliputos, Numancia City, Aklan.

Figure 43. Validation points acquisition survey set-up

The Validation Point Acquisition Survey for the Aklan River Basin traversed the Municipalities of Banga, Kalibo, Numancia, and Makato. The gathered validation points was taken across the LiDAR flight strips in the survey area. A total of 4,039 validation points with an approximate length of 21.74 km was accomplished as illustrated in Figure 44.

Figure 44. Validation Point Acquisition Survey for Aklan River

4.7 Bathymetric Survey

Bathymetric survey was conducted from November 3, 2015 using Trimble[®] SPS 882 in GNSS PPK survey technique and an Ohmex[™] single beam echo sounder attached to a boat as shown in Figure 45. The survey started in the middle part of the river in Brgy. Cupang, Municipality of Malinao with coordinates 11°38'14.61781" 122°18'53.19268" an ended at the mouth of the river in Brgy. Pusiw, Municipality of Numancia with coordinates 11°44'10.95240" 122°22'00.21093".

Figure 45. OHMEX[™] single beam echosounder set up on a boat for Aklan River bathymetric survey

Manual bathymetric survey was conducted for shallow portions of the river by traversing it by foot using a Trimble[®] SPS 882 Rover mounted on a pole implementing GNSS PPK survey technique as shown in Figure 46. The survey started from the upstream part of the river in Brgy. Tigbawan, Municipality of Madalag with coordinates 11°30′07.26843″ 122°18′38.10019″, and ended at the starting point of the bathymetric survey using boat. The control point AKN-43 was used as the GNSS base station all throughout the bathymetric survey.

Figure 46. Manual bathymetry survey of DVBC's personnel with the help of a local hire

An estimated length of 30.10 km with 3,020 points were acquired in the bathymetric survey as shown in Figure 47.

Figure 47. Bathymetric points gathered in Aklan River

A CAD drawing was also produced to illustrate the Aklan riverbed profile. As shown in Figure 48 to Figure 50, there is a difference of about 8.5 meters between the starting point in Brgy. Tigbawan, Municipality of Madalag and at Guadalupe Bridge in Brgy. Daguitan, Municipality of Banga. From Guadalupe Bridge to Brgy. Rosario, Municipality of Malinao, there is a change of elevation of about 9.4 meters. Going downstream, difference of about 32.1 meters, 37.1 meters and 39.6 meters were observed from the starting point for the Municipalities of Lezo, Kalibo and Numancia, respectively. A sudden drop in elevation is observed within Brgy. Mina in the Municipality of Lezo. This is most probably due to the numerous quarry sites present in the area. Additionally, the deepest portion or the lowest elevation recorded is about 1.9 meters below MSLwhich is located in Brgy. Pusiw, Numancia.

Aklan Riverbed Profile

Figure 50. Aklan centreline riverbed profile (Downstream)

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Narvin Clyd Tan, and Marvin Arias

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the Aklan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Aklan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the UP Cebu Flood Modeling Component (FMC) team. The ARG was installed at Brgy. Mamba, Madalag, Aklan (Figure 51). The precipitation data collection started from July 20, 2016 from 12:00 AM to 11:50 PM with a recording interval of 5 minutes.

The total precipitation for this event in Brgy Mamba ARG was 41.95 mm with a peak rainfall of 4 mm. on July 20, 2016 at 10:05 in the morning. The lag time between the peak rainfall and discharge is 6 hours and 25 minutes.

Figure 51. The location map of Aklan HEC-HMS model used for calibration
5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 52) at Guadalupe-Madalag Bridge, Madalag, Aklan (11° 31' 47.47"N, 122° 18' 35.7"E). It gives the relationship between the observed water levels at Guadalupe Bridge and outflow of the watershed at this location.

For Guadalupe Bridge, the rating curve is expressed as Q = 66.291e0.5476x [see y formula] as shown in Figure 53.

Figure 52. Cross-Section Plot of Guadalupe Bridge

Figure 53. Rating Curve at Guadalupe-Madalag Bridge, Madalag, Aklan

This rating curve equation was used to compute the river outflow at Guadalupe Bridge for the calibration of the HEC-HMS model shown in Figure 54. The total rainfall for this event is 41.95mm and the peak discharge is 183.6m3/s at 4:30 PM, July 20, 2017.

Figure 54. Rainfall and outflow data at Aklan used for modeling

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Roxas Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station was chosen based on its proximity to the Aklan watershed. The extreme values for this watershed were computed based on a 59-year record.

		COMPU	TED EXTRE		S (in mm)	OF PRECIP	ITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
5	26.6	40.5	51.3	72.1	98	115.5	142.8	165.9	186.2
10	31.3	47.8	60.7	86.2	118	139.4	172.3	200.1	224.6
25	37.4	57	72.5	104	143.1	169.6	209.7	243.4	273
50	41.8	63.8	81.3	117.2	161.8	192	237.4	275.4	308.9
100	46.2	70.5	90	130.2	180.3	214.2	264.9	307.2	344.6

Table 29. RIDF values for Roxas Rain Gauge computed by PAGASA

Figure 55. Location of Roxas RIDF station relative to Aklan River Basin

Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods

5.3 HMS Model

The soil dataset was generated in 2004 by the Bureau of Soil and Water Management (BSWM); this is under the Department of Agriculture. The land cover dataset is from the National Mapping and Resource Information Authority (NAMRIA). The soil and land cover of the Aklan River Basin are shown in Figures 57 and 58, respectively.

Figure 57. The soil map of the Aklan River Basin

Figure 58. The land cover map of the Aklan River Basin

For Aklan, four (4) soil classes were identified. These are sandy loam, clay, clay loam, and undifferentiated soil. Moreover, four (4) land cover classes were identified. These are open and closed forest, shrubland, and forest plantation.

Figure 59. Slope map of Aklan River Basin

Figure 60. Stream delineation map of Aklan River Basin

Using the SAR-based DEM, the Aklan basin was delineated and further subdivided into subbasins. The model consists of 61 sub basins, 30 reaches, and 30 as shown in Figure 60. The main outlet is at Guadalupe Bridge.

Figure 61. The Aklan Hydrologic Model generated in HEC-GeoHMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 62. River cross-section of Aklan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the northeast, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 63. Screenshot of subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 160.85840 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.

Figure 64. Generated 100-year rain return hazard map from FLO-2D Mapper

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 87 293 400.00 m2.

Figure 65. Generated 100-year rain return flow depth map from FLO-2D Mapper

There is a total of 272 752 612.97 m3 of water entering the model. Of this amount, 32 327 358.90 m3 is due to rainfall while 240 425 254.07 m3 is inflow from other areas outside the model. 23 027 724.00 m3 of this water is lost to infiltration and interception, while 74 953 956.17 m3 is stored by the flood plain. The rest, amounting up to 174 770 933.71 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Aklan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 66 shows the comparison between the two discharge data.

Figure 66. Outflow Hydrograph of Aklan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 30 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss		Initial Abstraction (mm)	3-14
	LUSS	SCS Curve number	Curve Number	50-85
Dasia	Transform	Clark Unit	Time of Concentration (hr)	0.06-0.39
Basin	Transform	Hydrograph	Storage Coefficient (hr)	1.09-6.24
	Deseflerry	Decession	Recession Constant	0.09
	Basenow	Recession	Ratio to Peak	0.5
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 30. Range of Calibrated Values for Aklan

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 3 mm to 14 mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 50-85 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Aklan, the basin mostly consists of grasslands, closed and open areas, and the soil consists of clay, clay loam, sandy loam, and undifferentiated lands.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.06 hours to 6.24 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.09 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.5 indicates a gradual receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness of Philippine watersheds. Aklan river basin is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy Measure	Value
RMS Error	6.8229
r2	0.9544
NSE	0.8799
RSR	0.3466
PBIAS	-1.4088

Table 31. Summary of the Efficiency Test of Aklan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 6.82 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.9543.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.88.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.4088.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.3465.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 13) shows the Aklan outflow using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods. from 186.2m3 in a 5-year return period to 344.6m3 for a 100-year return period.

Figure 67. Outflow hydrograph at Aklan Station generated using Iloilo RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Aklan discharge using the Iloilo Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 32.

Table 32.	Peak values of th	e Aklan HEC-HMS	Model outflow u	sing the Iloilo RIDF
-----------	-------------------	-----------------	-----------------	----------------------

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	186.2	26.6	1480.2	3 hours, 50 minutes
10-Year	224.6	31.3	2016.9	3 hours, 30 minutes
25-Year	273	37.4	2741.1	3 hours, 10 minutes
50-Year	308.9	41.8	3298.4	3 hours
100-Year	344.6	46.2	3872.9	2 hours, 50 minutes

5.7.2 Discharge data using Dr. Horritts's recommended hydrologic method

The river discharges entering the floodplain are shown in Figure 67 to . and the peak values are summarized in Table 33.

Figure 68. Aklan river (1) generated discharge using 5-, 25-, and 100-year Roxas rainfall intensity-duration-frequency (RIDF) in HEC-HMS

Table 33. Summary of Aklan river (1) discharge generated in HEC-HMS

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	5902.6	19 hours, 50 minutes
25-Year	4476.4	20 hours
5-Year	2826.8	20 hours

Table 34. Validation of river discharge estimates

Discharge		ODANKELU		VALIDA	ΓΙΟΝ
Point	Cms	Cms	cms	Bankful Discharge	Specific Discharge
Aklan (1)	2487.584	1958.430	815.610	Pass	Fail

The HEC-HMS river discharge estimates were able to satisfy the conditions for validation using the bankful method but did not satisfy the conditions for validation using specific discharge methods and will need further recalculation. The passing values are based on theory but are supported using other discharge computation methods so they were good to use for flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Aklan River using the calibrated HMS event flow is shown in Figure 68.

Figure 69. Sample output of Aklan RAS Model

5.9 Flood Hazard and Flow Depth Map

The resulting hazard and flow depth maps have a 10m resolution. Figure 69 to Figure 74 show the 5-, 25-, and 100-year rain return scenarios of the Aklan floodplain. The floodplain, with an area of 86.92 sq.km., covers six municipalities namely, Banga, Kalibo, Lezo, Makato, New Washington, and Numancia.

City / Municipality	Total Area	Area Flooded	% Flooded
Banga	64.47	2.28	3.53
Kalibo	40.15	33.73	84.01
Lezo	19.81	9.72	49.03
Makato	60.25	0.051	0.085
New Washington	55.12	14.7	26.67
Numancia	24.15	19.64	81.34

Table 35. Municipalities affected in the Aklan Floodplain

79

Figure 73. 25-year Flow Depth Map for Aklan Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in the Aklan river basin, grouped by municipality, are listed below. For the said basin, six municipalities consisting of 53 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 0.017% of the municipality of Banga with an area of 64.47 sq. km. will experience flood levels of less 0.1 meters. 0.1% of the area will experience flood levels of 0.21 to 0.50 meters while 0.7%, 1.19%, 1.32%, and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affected	Area of affected barangays in Banga (in sq. km.)				
depth (in m.)	Jumarap	Linabuan Sur	Palale			
0.03-0.20	0.000054	0.011	0			
0.21-0.50	0.00066	0.062	0			
0.51-1.00	0.006	0.44	0			
1.01-2.00	0.024	0.75	0			
2.01-5.00	0.35	0.49	0.0061			
> 5.00	0.041	0.0061	0.088			

Table 36. Affected Areas in Banga, Aklan during 5-Year Rainfall Return Period

Figure 76. Affected Areas in Banga, Aklan during 5-Year Rainfall Return Period

For the municipality of Kalibo, with an area of 40.15 sq. km., 12.84% will experience flood levels of less 0.20 meters. 17.02% of the area will experience flood levels of 0.21 to 0.50 meters while 25.14%, 21%, 5.2%, and 2.79% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometres by flood depth per barangay.

	Estancia	0.3	6.0	1.39	0.4	0.0067	0.00032
	Caano	0.23	0.28	0.72	0.32	0.0034	0
sq. km.)	Buswang Old	0.46	0.34	0.36	0.14	0.0022	0
n Kalibo (in	Buswang New	0.49	0.58	0.4	0.065	0.0001	0
Barangays i	Briones	0.26	0.19	0.29	0.17	0.018	0
Affected	Bachaw Sur	0.25	0.32	0.44	0.3	0.13	0
	Bachaw Norte	0.4	0.38	0.44	0.2	0.0045	0
	Andagaw	0.8	0.95	0.6	0.19	0.0053	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 37. Affected Areas in Kalibo, Aklan during 5-Year Rainfall Return Period

Affected area			Affected	Barangays i	n Kalibo (in	sq. km.)		
(sq.km.) by flood depth (in m.)	Linabuan Norte	Mabilo	Mobo	Nalook	Poblacion	Pook	Tigayon	Tinigaw
0.03-0.20	0.025	0.33	0.013	0.6	0.1	0.72	0.15	0.018
0.21-0.50	0.021	0.24	0.024	1.07	0.19	1	0.29	0.052
0.51-1.00	0.42	0.53	0.34	0.76	0.38	1.44	1.43	0.16
1.01-2.00	1.02	1.1	1.08	0.21	0.14	0.99	1.68	0.44
2.01-5.00	0.35	0.012	0.68	0.092	0.00064	0.0063	0.6	0.16
> 5.00	0.029	0	0.56	0	0	0	0.41	0.12

For the municipality of Lezo, with an area of 19.81 sq. km., 13.52% will experience flood levels of less 0.20 meters. 11.41% of the area will experience flood levels of 0.21 to 0.50 meters while 5.15%, 3.9%, 9.83%, and 5.2% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometres by flood depth per barangay.

Affected Barangays in Lezo (in sq. km.)	Bugasongan Carugdog Cogon Ibao Mina Poblacion Santa Santa Cruz Bigaa	0.46 0 0.49 0.15 0.44 0.33 0.15 0.064	0.36 1.17 0.18 0.27 0.038 0.055 0.015 0.079	0.22 0.19 0.092 0.21 0.06 0.084 0.031 0.023	0.088 0.0092 0.032 0.27 0.13 0.096 0.081 0.062	0.041 0 0.0003 0.058 0.84 0.19 0.53 0.26	
Affected Bara	ugdog Cogon	0 0.49	0.18	0.092	0092 0.032	0 0.0003	0 0
	Bugasongan	0.46	0.36	0.22 (0.088 0.	0.041	0
	Bagto	0.59	0.16	0.11	0.0083	0.021	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 38. Affected Areas in Lezo, Aklan during 5-Year Rainfall Return Period

For the municipality of Makato, with an area of 60.25 sq. km., 03% will experience flood levels of less 0.20 meters. 0.018% of the area will experience flood levels of 0.21 to 0.50 meters while 0.008% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 39 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq.km.) by flood depth (in m.)	Affected Barangays in Makato (in sq. km.) Alibagon
0.03-0.20	0.018
0.21-0.50	0.011
0.51-1.00	0.018
1.01-2.00	0.0049
2.01-5.00	0
> 5.00	0

Table 39. Affected Areas in Makato, Aklan during 5-Year Rainfall Return Period

Figure 79. Affected Areas in Makato, Aklan during 5-Year Rainfall Return Period

For the municipality of New Washington, with an area of 55.12 sq. km., 5.61% will experience flood levels of less 0.20 meters. 5.51% of the area will experience flood levels of 0.21 to 0.50 meters while 9.6%, 4.7%, and 1.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Affected Barangays in New Washington (in sq. km.)						
flood depth (in m.)	Guinbali- wan	Jalas	Lawa-An	Mabilo	Mataphao	Puis	Tambak
0.03-0.20	0.69	0.47	0.006	1.04	0.21	0.19	0.5
0.21-0.50	0.47	0.6	0.00055	0.65	0.48	0.61	0.23
0.51-1.00	0.48	0.26	0	0.94	1.12	2.26	0.23
1.01-2.00	0.35	0.11	0	0.81	0.22	1.05	0.058
2.01-5.00	0.053	0.12	0	0.25	0	0.25	0.0098
> 5.00	0	0	0	0	0	0	0

Table 40. Affected Areas in New Washington, Aklan during 5-Year Rainfall Return Period

Figure 80. Affected Areas inNew Washington, Aklan during 5-Year Rainfall Return Period

For the municipality of Numancia, with an area of 24.15 sq. km., 10.39% will experience flood levels of less 0.20 meters. 12.43% of the area will experience flood levels of 0.21 to 0.50 meters while 23.45%, 23.77%, 11.12%, and 0.17% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in square kilometres by flood depth per barangay.

		Dongon West	0.12	0.057	0.062	0.0065	0	0
		Dongon East	0.49	0.2	0.18	0.35	0.048	0
(m.	(Camanci Sur	0.17	0.4	0.72	0.3	0.027	0
ncia (in so k	ho III minII	Camanci Norte	0.26	0.29	0.83	0.58	0.079	0
in Niimai	mitine tit of	Bulwang	0.079	0.11	0.14	0.1	0.25	0.039
cted Baranos	Gun ind nois	Bubog	0.019	0.063	0.45	0.55	0.21	0
Affe	ATTT 7	Badio	0.34	0.32	0.35	0.36	0.13	0
		Aliputos	0.053	0.18	0.63	1.58	0.77	0.0004
		Albasan	0.13	0.15	0.36	0.61	0.4	0
Affected area		(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 41. Affected Areas in Numancia, Aklan during 5-Year Rainfall Return Period

	Tabangka	0.04	0.14	0.18	0.089	0.0015	0
	Pusiw	0.25	0.16	0.18	0.08	0.22	0
. km.)	Poblacion	0.18	0.43	0.2	0.32	0.036	0
nancia (in sq	Navitas	0.25	0.059	0.079	0.082	0.0087	0
ıngays in Nur	Marianos	0.024	0.046	0.16	0.16	0.12	0
Affected Bara	Laguinbanua West	0.021	0.11	0.34	0.057	0.0043	0
	Laguinbanua East	0.077	0.24	0.63	0.37	0.32	0.0014
	Joyao-Joyao	0.012	0.04	0.16	0.15	0.077	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

For the 25-year return period, 0.004% of the municipality of Banga with an area of 64.47 sq. km. will experience flood levels of less 0.1 meters. 0.018% of the area will experience flood levels of 0.21 to 0.50 meters while 0.27%, 1.41%, 1.55%, and 0.29% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affected barangays in Banga (in sq. km.)						
depth (in m.)	Jumarap	Linabuan Sur	Palale				
0.03-0.20	0	0.0024	0				
0.21-0.50	0	0.011	0				
0.51-1.00	0.00015	0.17	0				
1.01-2.00	0.023	0.88	0				
2.01-5.00	0.34	0.65	0.005				
> 5.00	0.061	0.039	0.09				

Table 42. Affected Areas in Banga, Aklan during 25-Year Rainfall Return Period

Figure 82. Affected Areas in Banga, Aklan during 25-Year Rainfall Return Period

For the municipality of Kalibo, with an area of 40.15 sq. km., 6.34% will experience flood levels of less 0.20 meters. 11.09% of the area will experience flood levels of 0.21 to 0.50 meters while 24.33%, 30.43%, 8.76%, and 3.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

		Estancia	0.11	0.44	1.54	0.9	0.0071	0.00032
		Caano	0.038	0.067	0.3	1.04	0.1	0
	sq. km.)	Buswang Old	0.32	0.33	0.44	0.21	0.0055	0
	n Kalibo (in	Buswang New	0.27	0.52	0.62	0.13	0.001	0
)	Barangays ii	Briones	0.14	0.11	0.17	0.48	0.026	0
	Affected	Bachaw Sur	0.17	0.29	0.48	0.36	0.14	0
		Bachaw Norte	0.29	0.36	0.5	0.28	0.0054	0
		Andagaw	0.36	0.88	0.97	0.32	0.021	0
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 43. Affected Areas in Kalibo, Aklan during 25-Year Rainfall Return Period

Affected area			Affected	Barangays i	n Kalibo (in	sq. km.)		
(sq.km.) by flood depth (in m.)	Linabuan Norte	Mabilo	Mobo	Nalook	Poblacion	Pook	Tigayon	Tinigaw
0.03-0.20	0.02	0.11	0.0071	0.23	0.062	0.34	0.075	0.0061
0.21-0.50	0.0051	0.14	0.014	0.43	0.14	0.61	0.11	0.021
0.51-1.00	0.085	0.35	0.14	1.36	0.38	1.49	0.82	0.13
1.01-2.00	1.26	1.02	1.13	0.58	0.24	1.63	2.24	0.42
2.01-5.00	0.45	0.6	0.81	0.14	0.0041	0.095	0.86	0.24
> 5.00	0.052	0	0.6	0	0	0	0.45	0.13

Figure 83. Affected Areas in Kalibo, Aklan during 25-Year Rainfall Return Period

For the municipality of Lezo, with an area of 19.81 sq. km., 13.52% will experience flood levels of less 0.20 meters. 11.41% of the area will experience flood levels of 0.21 to 0.50 meters while 5.15%, 3.9%, 9.83%, and 5.2% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in square kilometres by flood depth per barangay.

	Santa Cruz Bigaa	0.057	0.0027	0.0079	0.038	0.31	0.011
	Santa Cruz	0.14	0.014	0.011	0.061	0.51	0.12
(Poblacion	0.26	0.043	0.054	0.14	0.19	0.41
o (in sq. km.	Mina	0.39	0.039	0.054	0.13	0.79	0.74
ngays in Lez	Ibao	0.043	0.13	0.34	0.36	0.089	0.0004
ffected Bara	Cogon	0.32	0.29	0.12	0.067	0.0052	0
Α	Carugdog	1	0.35	0.016	0	0	0
	Bugasongan	0.19	0.34	0.42	0.16	0.061	0
	Bagto	0.49	0.19	0.11	0.071	0.026	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 44. Affected Areas in Lezo, Aklan during 25-Year Rainfall Return Period

For the municipality of Makato, with an area of 60.25 sq. km., 0.024% will experience flood levels of less 0.20 meters. 0.009% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.02%, and 0.00007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq.km.) by flood depth (in m.)	Affected Barangays in Makato (in sq. km.) Alibagon
0.03-0.20	0.014
0.21-0.50	0.0054
0.51-1.00	0.02
1.01-2.00	0.012
2.01-5.00	0.000043
> 5.00	0

Table 45. Affected Areas in Makato, Aklan during 25-Year Rainfall Return Period

Figure 85. Affected Areas in Makato, Aklan during 25-Year Rainfall Return Period

For the municipality of New Washington, with an area of 55.12 sq. km., 2.94% will experience flood levels of less 0.20 meters. 3.75% of the area will experience flood levels of 0.21 to 0.50 meters while 9.33%, 8.46%, and 2.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Affected Barangays in New Washington (in sq. km.)								
flood depth (in m.)	Guinbali- wan	Jalas	Lawa-An	Mabilo	Mataphao	Puis	Tambak		
0.03-0.20	0.47	0.12	0.0027	0.58	0.13	0.042	0.28		
0.21-0.50	0.28	0.52	0.0027	0.55	0.27	0.25	0.17		
0.51-1.00	0.58	0.56	0.0011	1.02	0.97	1.7	0.31		
1.01-2.00	0.55	0.18	0	1.05	0.67	1.97	0.24		
2.01-5.00	0.15	0.17	0	0.48	0	0.38	0.018		
> 5.00	0	0	0	0	0	0	0		

Table 46. Affected Areas in New Washington, Aklan during 25-Year Rainfall Return Period

Figure 86. Affected Areas in New Washington, Aklan during 25-Year Rainfall Return Period

For the municipality of Numancia, with an area of 24.15 sq. km., 6.38% will experience flood levels of less 0.20 meters. 8.46% of the area will experience flood levels of 0.21 to 0.50 meters while 22.35%, 29.24%, 14.68%, and 0.23% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometres by flood depth per barangay.

		Dongon West	0.088	0.063	0.083	0.01	0	0	
		Dongon East	0.37	0.15	0.21	0.39	0.14	0	
	cm.)	Camanci Sur	0.065	0.28	0.75	0.48	0.038	0	
	ncia (in sq. k	Camanci Norte	0.19	0.22	0.71	0.81	0.12	0	
)	ays in Numa	Bulwang	0.053	0.097	0.16	0.12	0.24	0.051	
	cted Barang	Bubog	0.0079	0.017	0.25	0.71	0.3	0.0007	
	Affe	Badio	0.17	0.27	0.43	0.46	0.18	0	
		Aliputos	0.0099	0.088	0.41	1.64	1.06	0.0014	
		Albasan	0.066	0.092	0.3	0.65	0.54	0	
	Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	

Table 47. Affected Areas in Numancia, Aklan during 25-Year Rainfall Return Period

Affected area			Affected Bara	ngays in Nun	nancia (in sq	l. km.)		
(sq.km.) by flood depth (in m.)	Joyao-Joyao	Laguinbanua East	Laguinbanua West	Marianos	Navitas	Poblacion	Pusiw	Tabangka
0.03-0.20	0.0077	0.027	0.0075	0.0095	0.22	0.057	0.19	0.011
0.21-0.50	0.013	0.12	0.041	0.023	0.062	0.26	0.17	0.072
0.51-1.00	0.12	0.6	0.37	0.11	0.072	0.42	0.2	0.2
1.01-2.00	0.21	0.52	0.11	0.22	0.12	0.36	0.1	0.16
2.01-5.00	0.092	0.36	0.0077	0.15	0.012	0.075	0.22	0.0052
> 5.00	0	0.0024	0	0	0	0	0.00018	0

For the 100-year return period, 0.0002% of the municipality of Banga with an area of 64.47 sq. km. will experience flood levels of less 0.1 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 1.19%, 1.74%, and 0.5% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas in square kilometres by flood depth per barangay.

Affected area	Area of affected	l barangays in Banga	a (in sq. km.)
depth (in m.)	Jumarap	Linabuan Sur	Palale
0.03-0.20	0	0.0001	0
0.21-0.50	0	0.0068	0
0.51-1.00	0	0.08	0
1.01-2.00	0.0045	0.76	0
2.01-5.00	0.28	0.84	0.0038
> 5.00	0.15	0.086	0.092

Table 48. Affected Areas in Banga, Aklan during 100-Year Rainfall Return Period

Figure 88. Affected Areas in Banga, Aklan during 100-Year Rainfall Return Period

For the municipality of Kalibo, with an area of 40.15 sq. km., 6.34% will experience flood levels of less 0.20 meters. 11.09% of the area will experience flood levels of 0.21 to 0.50 meters while 24.33%, 30.43%, 8.76%, and 3.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometres by flood depth per barangay.

	Estancia	0.067	0.24	1.47	1.21	0.0083	0.00032
	Caano	0.014	0.032	0.14	0.94	0.43	0
sq. km.)	Buswang Old	0.24	0.3	0.47	0.27	0.018	0
n Kalibo (in	Buswang New	0.17	0.43	0.75	0.19	0.0062	0
Barangays ii	Briones	0.099	0.078	0.15	0.53	0.063	0
Affected	Bachaw Sur	0.13	0.25	0.51	0.4	0.16	0
	Bachaw Norte	0.24	0.31	0.55	0.34	0.0065	0
	Andagaw	0.22	0.65	1.21	0.42	0.047	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 49. Affected Areas in Kalibo, Aklan during 100-Year Rainfall Return Period

	Tinigaw	0.0039	0.0099	0.092	0.39	0.31	0.14
sq. km.)	Tigayon	0.059	0.051	0.43	2.42	1.12	0.47
	Pook	0.2	0.43	1.26	1.96	0.32	0
n Kalibo (in	Poblacion	0.044	0.11	0.36	0.3	0.0068	0
Barangays ii	Nalook	0.12	0.31	0.98	1.15	0.17	0
Affected	Mobo	0.0052	0.0092	0.066	1.07	0.92	0.62
	Mabilo	0.077	0.1	0.28	0.83	0.93	0
	Linabuan Norte	0.018	0.0026	0.019	1.1	0.65	0.079
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Figure 89. Affected Areas in Kalibo, Aklan during 100-Year Rainfall Return Period

For the municipality of Lezo, with an area of 19.81 sq. km., 11.91% will experience flood levels of less 0.20 meters. 7.29% of the area will experience flood levels of 0.21 to 0.50 meters. 7.101 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometres by flood depth per barangay.

	Santa Cruz Bigaa	0.058	0.0022	0.0056	0.033	0.31	0.022
	Santa Cruz	0.15	0.019	0.0037	0.05	0.47	0.19
cm.)	Poblacion	0.24	0.04	0.042	0.13	0.23	0.44
o (in sq. km	Mina	0.37	0.02	0.065	0.12	0.67	0.9
ngays in Lez	Ibao	0.023	0.042	0.34	0.43	0.13	0.0029
ffected Bara	Cogon	0.22	0.32	0.17	0.1	0.007	0
A	Carugdog	0.82	0.53	0.025	0	0	0
	Bugasongan	0.073	0.24	0.52	0.26	0.075	0
	Bagto	0.42	0.23	0.087	0.13	0.03	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 50. Affected Areas in Lezo, Aklan during 100-Year Rainfall Return Period

Figure 90. Affected Areas in Lezo, Aklan during 100-Year Rainfall Return Period

For the municipality of Makato, with an area of 60.25 sq. km., 0.024% will experience flood levels of less 0.20 meters. 0.009% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.02%, and 0.00007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq.km.) by flood depth	Affected Barangays in Makato (in sq. km.)
(in m.)	Alibagon
0.03-0.20	0.015
0.21-0.50	0.0053
0.51-1.00	0.016
1.01-2.00	0.018
2.01-5.00	0.00033
> 5.00	0

Table 51. Affected Areas in Makato, Aklan during 100-Year Rainfall Return Period

Figure 91. Affected Areas in Makato, Aklan during 100-Year Rainfall Return Period

For the municipality of New Washington, with an area of 55.12 sq. km., 2.30% will experience flood levels of less 0.20 meters. 2.71% of the area will experience flood levels of 0.21 to 0.50 meters while 8.18%, 10.81%, and 2.82% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometres by flood depth per barangay.

Affected area		Affected	Barangays i	n New Was	shington (in	sq. km.)	
flood depth (in m.)	Guinbali- wan	Jalas	Lawa-An	Mabilo	Mataphao	Puis	Tambak
0.03-0.20	0.043	0.0021	0.43	0.11	0.014	0.25	0.28
0.21-0.50	0.32	0.0027	0.42	0.19	0.18	0.15	0.17
0.51-1.00	0.73	0.0026	0.99	0.85	1.05	0.31	0.31
1.01-2.00	0.25	0	1.28	0.91	2.6	0.3	0.24
2.01-5.00	0.2	0	0.58	0	0.51	0.025	0.018
> 5.00	0	0	0	0	0	0	0

Table 52. Affected Areas in New Washington, Aklan during 100-Year Rainfall Return Period

Figure 92. Affected Areas in New Washington, Aklan during 100-Year Rainfall Return Period

For the municipality of Numancia, with an area of 24.15 sq. km., 4.98% will experience flood levels of less 0.20 meters. 6.04% of the area will experience flood levels of 0.21 to 0.50 meters while 20.17%, 32.86%, 17.19%, and 0.3% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in square kilometres by flood depth per barangay.

	Dongon West	0.077	0.074	0.086	0.019	0	0
	Dongon East	0.32	0.13	0.2	0.42	0.21	0
m.)	Camanci Sur	0.031	0.17	0.74	0.63	0.046	0
ted Barangays in Numancia (in sq. k	Camanci Norte	0.15	0.18	0.6	0.97	0.15	0
	Bulwang	0.041	0.071	0.18	0.13	0.24	0.061
	Bubog	0.0046	0.0088	0.12	0.79	0.36	0.0047
Affe	Badio	0.1	0.21	0.46	0.53	0.21	0
	Aliputos	0.0042	0.043	0.28	1.59	1.29	0.0026
	Albasan	0.042	0.062	0.25	0.68	0.62	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 53. Affected Areas in Numancia, Aklan during 100-Year Rainfall Return Period

	Tabangka	0.0093	0.037	0.19	0.21	0.0086	0
	Pusiw	0.15	0.17	0.21	0.13	0.23	0.002
. km.)	Poblacion	0.031	0.13	0.52	0.38	0.11	0
nancia (in sq.	Navitas	0.21	0.068	0.054	0.15	0.016	0
ngays in Nur	Marianos	0.0066	0.012	0.077	0.25	0.17	0
Affected Bara	Laguinbanua West	0.004	0.023	0.33	0.17	0.012	0
	Laguinbanua East	0.016	0.063	0.49	0.67	0.39	0.0034
	Joyao-Joyao	0.0054	0.0077	0.087	0.24	0.099	0
Affected area	(sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Among the barangays in the municipality of Banga, Linabuan Sur is projected to have the highest percentage of area that will experience flood levels at 2.73%. Meanwhile, Jumarap posted the second highest percentage of area that may be affected by flood depths at 0.66%.

Among the barangays in the municipality of Kalibo, Tigayon is projected to have the highest percentage of area that will experience flood levels at 11.35%. Meanwhile, Pook posted the second highest percentage of area that may be affected by flood depths at 10.36%.

Among the barangays in the municipality of Lezo, Mina is projected to have the highest percentage of area that will experience flood levels at 10.79%. Meanwhile, Carugdog posted the second highest percentage of area that may be affected by flood depths at 6.90%.

Among the barangays in the municipality of Makato, Alibangon is projected to have the highest percentage of area that will experience flood levels at 0.05%.

Among the barangays in the municipality of New Washington, Puis is projected to have the highest percentage of area that will experience flood levels at 7.91%. Meanwhile, Mabilo posted the second highest percentage of area that may be affected by flood depths at 6.68%.

Among the barangays in the municipality of Numancia, Aliputos is projected to have the highest percentage of area that will experience flood levels at 13.29%. Meanwhile, Albasan posted the second highest percentage of area that may be affected by flood depths at 6.84%.

Moreover, the generated flood hazard maps for the Aklan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Marning Loual	Area Covered in sq. km.				
vvarning Level	5 year	25 year	100 year		
Low	15.14	10.89	8.58		
Medium	36.64	40.42	40.00		
High	18.61	25.50	30.81		
TOTAL	70.39	76.81	79.39		

Table 54. Area covered by each warning level with respect to the rainfall scenario

Of the 116 identified education institutions in the Aklan Floodplain, 33 schools were assessed to be exposed to the Low level flooding during a 5 year scenario while 65 schools were assessed to be exposed to medium level flooding in the same scenario. In the 25 year scenario, 21 schools were assessed to be exposed to the Low level flooding, while 78 schools were assessed to be exposed to medium level flooding and 9 schools were assessed to be exposed to high level flooding. For the 100 year scenario, 15 schools were assessed for Low level flooding and 82 schools for Medium level flooding. In the same scenario, 11 schools were assessed to be exposed to High level flooding. The educational institutions exposed to flooding in the Aklan floodplain are found in Annex 12.

Thirty-eight (38) health institutions were identified in the Aklan Floodplain, 11 were assessed to be exposed to the Low level flooding during a 5 year scenario, while 14 were assessed to be exposed to medium level flooding and 1 was assessed to be exposed to the high level flooding scenario. In the 25 year scenario, 7 were assessed to be exposed to the Low level flooding, while 25 were assessed to be exposed to medium level flooding and 1 was assessed to be exposed to high level flooding. For the 100 year scenario, 5 were assessed for Low level flooding and 26 for Medium level flooding. In the same scenario, 4 were assessed to be exposed to be exposed to the institutions exposed to flooding in the Aklan floodplain are found in Annex 13.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or through interview of some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 93.

The flood validation data were obtained on November 18, 2016. The flood validation consists of 188 points randomly selected all over the Aklan floodplain. Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 1.38m. Figure 94 shows a contingency matrix of the comparison.

Figure 94. Validation points for 25-year Flood Depth Map of Aklan Floodplain

Figure 95. Flood map depth vs actual flood depth

Actual Flood Depth	Modeled Flood Depth (m)								
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total		
0-0.20	11	10	5	2	2	1	31		
0.21-0.50	4	4	8	5	3	1	25		
0.51-1.00	3	7	7	7	2	0	26		
1.01-2.00	4	6	16	14	7	0	47		
2.01-5.00	11	3	6	9	15	11	55		
> 5.00	1	0	1	0	0	4	6		
Total	34	30	43	37	29	17	190		

Table 55. Actual Flood Depth vs Simulated Flood Depth in at different levels in the Aklan River Basin.

The overall accuracy generated by the flood model is estimated at 28.95%, with 55 points correctly matching the actual flood depths. In addition, there were 85 points estimated one level above and below the correct flood depths while there were 106 points and 141 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 64 points were overestimated while a total of 71 points were underestimated in the modelled flood depths of Aklan. Table 56 depicts the summary of the Accuracy Assessment in the Aklan River Basin Survey.

Table 56. Summary of Accuracy Assessment in the Aklan River Basin Survey

	No. of Points	%
Correct	55	28.95
Overestimated	64	33.68
Underestimated	71	37.37
Total	190	100

REFERENCES

Ang M.O, Paringit E.C., et al., 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P, Paringit E.C., et al., 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al., 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C., 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al., 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

ANNEXES

Annex 1. Optech Technical Specification

AQUARIUS SENSOR

Figure A-1.1. The Aquarius Sensor

Parameter	Specification
Operational altitude	300-600 m AGL
Laser pulse repetition rate	33, 50. 70 kHz
Scan rate	0-70 Hz
Scan half-angle	0 to ± 25 °
Laser footprint on water surface	30-60 cm
Depth range	0 to > 10 m (for k < 0.1/m)
Topographic mode	
Operational altitude	300-2500
Range Capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	12-bit dynamic measurement range
Position and orientation system	POS AVTM 510 (OEM) includes embedded 72-channel GNSS receiver (GPS and GLONASS)
Data Storage	Ruggedized removable SSD hard disk (SATA III)
Power	28 V, 900 W, 35 A
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Dimensions and weight	Sensor:250 x 430 x 320 mm; 30 kg; Control rack: 591 x 485 x 578 mm; 53 kg
Operating temperature	0-35°C
Relative humidity	0-95% no-condensing

Table A-1.1. Parameters and Specification of the Aquarius Sensor

GEMINI SENSOR

Control Rack

Laptop

Figure A-1.2. The Gemini Sensor

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Table A-1.2. Parameters and Specification of the Gemini Sensor

Annex 2. NAMRIA Certificates of Reference Points Used

1. AKN-43

AKN-43

Location Description

From Kalibo, travel S to the Mun. of Banga. Station is located on the concrete sidewalk in front of the mun. hall in line with the flagpole, about 20 m. SW of Rosal St. and 7 m. from Sampaguita St. Mark is the head of a 4 in. copper nail centered on a 25 cm. x 25 cm. cement putty, with inscriptions "AKN-43 2007 NAMRIA".

Requesting Party:	UP DREAM
Pupose:	Reference
OR Number:	8795829 A
T.N.:	2014-654

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Bearca 53: San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. AKN-43

2. AKN-42

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

March 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		NU COUTURE STOR	
	Province: AKLAN		
	Station Name: AKN-42		
	Order: 2nd		
Island: VISAYAS Municipality: MAKATO		Barangay: LIBA	NG
	PRS92 Coordinates		
Latitude: 11º 41' 4.84235"	Longitude: 122º 15' 49.78166"	Ellipsoidal Hgt:	17.77900 m.
	WGS84 Coordinates		
Latitude: 11º 41' 0.23066"	Longitude: 122º 15' 54.92018"	Ellipsoidal Hgt:	72.20000 m.
	PTM Coordinates		
Northing: 1292162.5 m.	Easting: 419737.946 m.	Zone: 4	
	UTM Coordinates		
Northing: 1,291,710.22	Easting: 419,766.04	Zone: 51	

Location Description

AKN-42

From Kalibo, travel NW to the Mun. of Makato. From the town proper, travel for about 5.6 km. to Brgy. Libang. Station is located at Brgy. Libang Multi-Purpose Center, beside the basketball court about 14 m. and 5 m. from the road, respectively.

Mark is the head of a 4 in. copper nail centered on a 30 cm. x 30 cm. cement putty, with inscriptions "AKN-42 2007 NAMRIA".

Requesting Party:UP DREAMPupose:ReferenceOR Number:8795829 AT.N.:2014-650

DM. BELEN, MNSA RUÉ Director / pping And Geodesy Branch ତ

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonitacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Banca 55. San Noolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2. AKN-42

3. AKN-32

Figure A-2.3. AKN-32

whom it may			
o whom it may		CERTIFICATION	
,	concern:		
This is to ce	rtify that according to	the records on file in this office, the	he requested survey information is as follows -
		Brovince: CADIZ	
		Station Name: CP7-14	
		Order: 2nd	
Island: VISA Municipality:	YAS PANAY		Barangay: POBLACION ILAWOD
in a noipeing.		PRS92 Coordinates	
Latitude: 11	° 33' 24.51899"	Longitude: 122º 47' 34.418	76" Ellipsoidal Hgt: 4.91900 m.
		WGS84 Coordinates	
Latitude: 11	° 33' 19.98412"	Longitude: 122º 47' 39.564	94" Ellipsoidal Hgt: 60.96000 m.
		PTM Coordinates	
Northing: 12	77923.165 m.	Easting: 477410.249 m.	Zone: 4
Northing: 1,	277,475.87	UTM Coordinates Easting: 477,418.16	Zone: 51
		Location Description	
PZ-14 rom Roxas City	r, travel E to the Mun. is located at Panay P n. copper nail set flus	of Panay. Then proceed directly ark, about 30 m. from the chuch a hed on top of a 30 cm. x 30 cm. c	to the town plaza, where the station is and about 30 m. from the nat'l. road. Mark is concrete monument protruding 20 cm. above
cated. Station le head of a 4 i le ground, with	inscriptions "CPZ-14	2007 NAMRIA".	
cated. Station e head of a 4 i e ground, with equesting Part	inscriptions "CPZ-14	2007 NAMRIA".	M
cated. Station he head of a 4 i he ground, with equesting Part upose: R Number:	v: UP-TCAGP Reference 3943584 B	2007 NAMRIA".	ann.
cated. Station he head of a 4 i he ground, with equesting Part upose: R Number: N.:	y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA".	AAM
cated. Station le head of a 4 i le ground, with equesting Part upose: R Number: N.:	v: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA
cated. Station e head of a 4 i e ground, with equesting Part upose: R Number: N.:	y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA ector, Mapping and Geodesy Department
cated. Station le head of a 4 i le ground, with equesting Part upose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA ector, Mapping and Geodesy Department
cated. Station e head of a 4 i e ground, with equesting Part upose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA ector, Mapping and Geodesy Department
cated. Station e head of a 4 i e ground, with equesting Part upose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA actor, Mapping and Geodesy Department
cated. Station e head of a 4 i e ground, with equesting Part pose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA ector, Mapping and Geodesy Department
cated. Station e head of a 4 i e ground, with equesting Part upose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA actor, Mapping and Geodesy Department
cated. Station le head of a 4 i le ground, with equesting Part upose: R Number: N.:	inscriptions "CPZ-14 y: UP-TCAGP Reference 3943584 B 2013-0364	2007 NAMRIA". Dire	RUEL DM. BELEN, MNSA ector, Mapping and Geodesy Department

Figure A-2.4. CPZ-14

Annex 3. Baseline Processing Report of Reference Points Used

From:	AKN-4	AKN-46 (AKN-32)							
	Grid			L	.ocal			G	obal
Easting	44	14943.877 m	Latitu	ude	N11°35'14	.35957"	Latitude		N11°35'09.79172"
Northing	128	30890.002 m	Long	itude	E122°29'42	2.04171"	Longitude		E122°29'47.18726"
Elevation		2.579 m	Heig	ht	3	3.894 m	Height		59.126 m
TO: AKN-ESTABLISHED									
	Grid		Local			Global		obal	
Easting	44	2945.322 m	Latitu	ıde	N11°30'03	.97140"	Latitude		N11°29'59.42349"
Northing	127	71360.155 m	Long	itude	E122°28'36	6.62615"	2615" Longitude		E122°28'41.77934"
Elevation		51.417 m	Heigh	ht	52	2.842 m	Height		108.242 m
Vector									
∆Easting		-1998.5	55 m NS Fwd Azimuth			191°44'35"	ΔX	620.925 m	
		-9529.8	48 m Ellipsoid Dist.			9740.674 m	ΔΥ	2714.840 m	
<u>ΔElevation</u>		48.8	339 m	∆Height			48.948 m	ΔZ	-9334.230 m

Vector Components (Mark to Mark)

Figure A-3.1 Baseline Processing Report - A

Annex 4. The LiDAR Survey Team

Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUNA	UP TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	UP TCAGP

FIELD TEAM

	Senior Science	JULIE PEARL MARS	UP-TCAGP	
	(SSRS)	PAULINE JOANNE ARCEO	UP-TCAGP	
LiDAR Operation		PATRICIA ALCANTARA		
	Research Associate (RA)	DAN CHRISTOFFER ALDOVINO		
		JONATHAN ALMALVEZ	UP-TCAGP	
		MARY CATHERINE ELIZABETH BALIGUAS		
Ground Survey, Data Download and Transfer		JERIEL PAUL ALAMBAN	UP-TCAGP	
	RA	REGINA AEDRIENNE FELISMINO	UP-TCAGP	
LiDAR Operation		SSG. DAVE GUMBAN	PHILIPPINE AIR	
	Airborne Security	SSG. JAYCO MANZANO	FORCE (PAF)	
		CAPT. ALBERT LIM	ASIAN AEROSPACE CORPORATION (AAC)	
	Pilot	CAPT. JERICO JECIEL	AAC	
		CAPT. JEPH ALAJAR	AAC	
		CAPT. JACKSON JAVIER	AAC	

Annex 5. Data Transfer Sheet for Aklan Floodplain Flights

	Lion	MISSION NAME	SENSOR	8	WLAS	roos	504	NAN	MERICA	PANKK	CHOTTOTIK	T2 32AB	(clones)	CARRATOR LOGS	FUGHT	NAU	SERVER LOCATION
	1			Output	KML (swath)			S DOWN	1001			BASE STATICARS	Base Info (tot)	Incorneri	Actual	KML	
11	18V	38UC38065A	SURANDA	ž	MA	2 CUMB	SIMPC2	85 4 CB	Bareacies	800.81	ž	BAGI	148	103	8%211/892	78248	Z Mithorna Rawl1178
11	3	38UK38O658	AQUARUUS	2	NA	Exces.	BWCZS	32.6GB	128/37/90 KB	7,9808	NA	BWSI	tikB	148	112/3	X36725K	2. Mictionie Rawl 1980
	82A	38LK38C66A	AQUARIUS	2	NA	4 33MB	SME71	3008	ZMUTHE	800.9	905 M	8WZ 01	1kB	1KB	167/48	35848	Z.VArbonne_Rawl1182
1	SSA	38LK38KL067A	AQUARIUS	M	NA	1 SAMB	SIMMULT.	BMSZZ	8.MC9/2	22 168	NA	11 SMB	tixB	1KB	340KB	8.4046	Z Wittoms_Raw(1185
1	1904	381 K38M068A	ADUARIUS	NA	NA	1.75MB	237MB	10.7GB	17/50408	16.208	NA	BWL SI	1KB	148	57/234/61KB	TOBKB	Z'Vurborna Rawl1190
-	AGRI	3BUC38N0688	AQUARIUS	NA	M	SWI	SIME	69 308	Some	14 908	N	15.7MB	1×B	txB	21948	62843	Z Watcome_Rawin 192
-	M	3BUK381069A	AGUARRUS	NA	NA.	1.4MB	8×142	N 208	842102	15,108	NA	7 97MB	8MS	BXI	419KB	853KB	Z Webcine_Rawh1194
-	N	361/(38/(20698	AQUARIUS	M	NA	40648	115MB	17,908	411176B	3 6608	MA	SIM5 2	143	148	60 2KB	164KB	Z Wattorne, Rawri 196
5	NO	38LK38EN070A	AQUARUS	ž	NA	3 35MB	215468	M	ž	11 508	SCHORE I	BMD-1	1×B	1KB	89062	29963	Z Wittoms, Rawi 1200
22	No.	38UK38F071A	ADUARRUS	2	NA	645/8	BM9Z1	N	*	5 3308	68.358	BWS EI	143	148	goards	M	Z Wetbome_Raw/1204
75	N	AETO23853UBE	ACUMPTUS	M	ž	83653	212MB	2	MA	10.1GB	88 1GB	Even B	108	143	8.43MB	86239	Z'Mittoorna_Raw/1210
	1	collined from						Received	F								
		metho m	ol s.	tat	2			and it	Derp	4 5	PRIE	10					
		unanger of	I.S.	•]	1/20	5	+	Signatu		the	1	412	F1/2				

Figure A-5.1. Data Transfer Sheet for Aklan Floodplain - A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

OB MMM (a)/max Marcalian (a)/max Marcalian (a)/max Marcalian (a)/max Marcalian (a)/max 13 23 23 23 23 23 23 23 13 25 23 23 23 23 23 14 25 23 24 23 23 15 15 15 15 23 24 15 15 15 15 23 24 15 15 15 15 23 24
10 30.1 20.6 10.3 10.1 20.6 10.1 20.1 10 10 10.1 10.1 10.1 10.1 10.1 10.1
REMENT REMENT<
Remeri

125

1 10	KORL LOCATION	IN ZUNCHUN DATA	na ZIGAORIAN DATA	IN Z'OACHUM	na ZIGACHININ DATA	IN ZCACYANY	NIN Z-DADRAW	INA ZYDACHANN DATA	na ZYDACHAIN DATA	na ZYDACHAIN DATA	
PLONT PL	Mark	\$	21	25	8	10			8	-	
Contractions	100000	90	163	16B	100	160	1933	100	168	805	
(DAD)	fam bro	848	800	19(1)	19(3)	19(1)	100	19(1)	18/B	1KB	
0.0 BAAR	Sade a'ta'tepupa	70.4	629	828	1.00	88.1	763	74.5	915	98.5	
	DISCUSSION	2	2	2	2	a.		2	2		St le l ol
	SAMPLE .	17.8	181	17.3	287	20.8	28.3	5.00	28.1	21.6	Center
WEALCH LOD	FLEEDAR	311	254	25407	104	214	206/190	30	222	90216	The R.
	NADESCAR	40.4	34.9	24 SAME	642	408	21.7700.0	7.74	57.A	11.422.7	Nacional y
1000	806	243	240	185	348	1001	200	94.2	250	190	
	roosium	909	1,10	700	+	940	0.00	100	1.6	181	
LAS .	KORL (swells)	200	1019	107	101	(111	00000	011/0	8155	105	
NAM	Output LAS	2		8		2	1	1	1	76.0	
	SENSOR	strong	inne	sund	same	genter	stund	perini	inneg	Property	36
	MISSION NAME	2CAU88UC38K266A	28UK38C257A	28UC39G2679	280X388DVES368A	v 280038052680	28LK38ES269A	20UK38J2698	29UK3885F273A	28UK37U2738	tana C . J after Patro EA
	PLUGHT NO.	27625	27666	27686	27705	27726	27746	27765	27905	27926	
	ATE	23-Sep	24-Sep	24-Sep	25-Sep	25-Sep	26-Sep	26-Sep	30-Sep	30-Sep	

Figure A-5.3. Data Transfer Sheet for Aklan Floodplain - C

					[
Operator: D.A. (D.V.) N.U. 2 ALTM Model:	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna 7206H	6 Aircraft Identification:	22
A. Derhar 8 Co-Pilot: ADA/ 1 /5/	9 Route:				
C C C C C C C C C C C C C C C C C C C	re (Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):		
e Go. Mar 201 14 Engine Off: 40%	15 Total Engine Time: サイマン	16 Take off:	17 Landing:	:8 Total Flight Time:	
rks:					Τ
NORMAN. SUNCESS Ful	710617				
ems and Solutions:					
Acquisition Flight Appeaved by Acq	puisition Flight Certified by	Pilot-in-Comm	pue	Udar Opprasto	
Eignadure over Printed Name Sign (End Uner Regressentative) (PAU	Dav What moon nature over Printed Name	J J Bunture over	Printed Name	Mile De Caldon ra	
	Figure A-6.1. Flight Lc	a for Mission 1186	A		

127

Annex 6. Flight Logs

ij.

10.0000 10.0000	1 UD AR Operator P. M.Del	ALTM MADEL: A-DUA	3: Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T200H	6 Aircoaftidentilization: A(2)
1000-9: We show and the service wingor. Caybrance is 12 Amon of Annal (Microt. Giv/Pravine is) 12 Amon of Annal (Microt. Giv/Pravine) 35 FTG 15 fool (F) 13 fool (F) 13 fool (F) 13 fool (F) 36 Mem 4:: 14 fool (F) 15 fool (F) 15 fool (F) 13 fool (F) 37 FTG 15 fool (F) 15 fool (F) 15 fool (F) 13 fool (F) 38 Mem 4:: 15 fool (F) 15 fool (F) 15 fool (F) 13 fool (F) 38 Mem 4:: 15 fool (F) 15 fool (F) 15 fool (F) 14 fool (F) 38 Mem 4:: 16 fool (F) 10 fool (F) 14 fool (F) 14 fool (F) 38 Mem 4:: 16 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 38 Mem 4:: 12 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 38 Mem 4:: 12 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 38 Mem 4:: 12 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 38 Mem 4:: 12 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 38 Mem 4:: 12 fool (F) 16 fool (F) 16 fool (F) 16 fool (F) 11 fool (F) 10 fool (F) 16 fool (F) 16 fool (F) 16 fool (F)	7 filot Those 8	S Ca-Pilot: TAL AT DAVE	9 Route:			5
15 Trait II gat tingere off. 15 Trait II gat tingere off. 13 Trait II gat tinger 39 weather 13 weather 13 Trait II gat tinger 30 weather 245 gat 13 Trait II gat tinger 31 weather 14 model 14 model 31 weather 14 model 14 model 31 weather 11 model 14 model	10 Date: Manuel Date!	12 Airport of Departure	Ai rport, Citty/Provin ce):	12 Airport of Arrival	(Airgort, City/Province):	
Currents: Currents:	13 Engine on.	はfingine off: Younau	15 To'al Englae Time: 3459	16 Take off	17 Landing:	18 Total Filight Time:
I Proble vs and Solutions: I	20 Remarks:	west start				
11 Proble vs and Solutions: 12 Proble vs and Solutions: 14 Proble vs and Solutions: 14 Proble vs and Solutions: 15 Proble vs and Solutions: 16 Proble vs and Solutions: 17 Proble vs and Solutions: 18 Answer of the Answer of	1.200 J. M. 61	in first rights				
Activities figh Approved by Acquistion Figh Contribution Activities figh Approved by Acquistion Figh Contribution Splatter aver hinted Name Signation over Printed Name Signation over Printed Name (104 Representation) (104 Representation						
Actatistics Figle Approved by Approxed by	T From 20 and 20					
Accentition Flight Apprecred by Acquistions Flight Cantillad by Pilet-in-Commands Under Operator Under Operator Talk / Mar Standard Name Standard Name Standard Name Standard Name Standard Name (MA Representations) (MA Representations) (MA Representations)						
	ACTALISTICS FIGH Appear Sparts in over Printed N E ed theor Representative	wed thy Acquist Adma Signate web (PAK Re	tion Flight Cantiliad by Re All Andrean The over Printed Name spresentatives)	Pilet-in-Conum	Perited Name	tidar Operator DC Bignature over Printed Planne

ъ.

DAR One in torDA #DU/11	U D 2 AITM WODEL:	3 Mitsion Marres	4 Trpe: VFR	5 Alirora ft Type: CeswnaT206H	6 Aircraft Iden tification:	Call of
Not in Aleo	8 Co-Pilot: E I MAC I	9 Route:				
Date: Upul P.K.	12 Al rport of De perfore	(Nirport, Dty ⁽² and nee):	12 Airport of Arrival	(Airport, City/Province):		
isginedic 1303 Aeather	14 Engine Off: [6205	15 Total Fing he Time.	16 Take off:	17 Landing:	1£ Tota I Flight, Time:	
Remarks:	Slacersful Fligh	+				
Problems and Solution						
Accuration Flight Apr	rovedby Aquite	Rion Fight Certified by and American	Filotir-Com	and 9 et al	Ida i Cperatar DC 20 ADD 1110	

Figure A-6.3. Flight Log for Mission 1192A

4.

130

Operator: Pot Macharta	2 ALTIM Model: 40,000	C 3 Mission Name: 20 3 KMB	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	54
(JONEV B CO-1	Flot: Majar	§ Route:				
Mar [0/ 2014	12 Airport of Departure	: (Airport, City/Province): II.	2 Airport of Arrival	(Alrport, City/Province):		
14 En 14 En	gine Off. 916	15 Total Engine Time: 11	5 Take off:	17 Landing:	18 Total Flight Time:	
ther	when					
arks:	shirter wort ope	in , tame mission				
	cameral Lang	ked, restart cambra				
	Finished .	S lines				
blems and Solutions:	range m	ucing, refail and	E			
	Camb a	Langed, reboil 3	×			
Acquisition Flight Approved By	v Acqui	isition Flight Cartified by	Plot-in-Comm	- Terres	itar Operation Confrant	
Signature over Printed Name (IIInd User Representative)	Sigrat (PMC 8	ture over Printed Name Representative)	Signature over	Printed Name	ignature over Printed Name:	

Figure A-6.5. Flight Log for Mission 1196A

1 UDAR Operator: Rear Mice	Z ALTM Model: ATDVA 3 Mission Name: 38123	SPSOR36 & Type: VFR	5 Alnraft Type: CesnnaT206H	6 Aircraft Identification:	2716
7 Pilot: Thulder 8 Co-Pile 10 Date:	12 Ainport of Departure (Aignort, City/Province):	12 Airport of Arriva	(Airpor, City/Province):		
13 Engine on: A Arrow (14 Engine on: 250 (14 Engine on: 250) 19 Weather	ne Off: Proxes Call Engine Time: 2255 5335 501L	16Tale off:	17 landing:	:8 Total Flight Time :	
ZO REMARKS: SULLERS FW F	flight				
21 Problems and Sclutions:					
Acquisition Fight Approvec by Data Manual Manue Sapature Over Printed Name (ind User Representative)	Acquisition Flight Centilied by Dour Manufami Signature over Primted Name [PAF Representative]	Pilet-in-Com	nand Ver <i>ul let</i> u Printed Name	tidar Oxfanisa AAAAAA Substance over Primted Name	
2	Figure A-6.6. Fligh	nt Log for Mission 13	10A		

<u>ю</u>

Figure A-6.7. Flight Log for Mission 1212A

7.

Flight log for 1212A mission

ø.

		the last	district .		2 C
ILIDAR Operator() ~ Man3	2 ALTM NODEL KEUTY	3 Mission Name: 30LK 30	OUNATWE: VFR	5 Alircraft Type: CesnniaT206H	6 Aincraft I dentification:
7PELot: JONNEL 84	Co-Pliot: Alaicr	9 Route:			11
1) Date:	12 Airport of Departure	(Airport, Gty/Province):	12 Nirport of Anival	(Ai port, City/Province):	
13 Engine On: 05 Un	Englise: Off: PROJ	15 Total Engine Time: 너 수간적	16 Fake off:	:7Landirg:	18 Total Flight Time:
13 Weather	TOME				
23 Remarks: SUKCESS Ful	titality				
21 Problems and Solutions:					
Acquisition Flight Approve	d by Acquis	sition Flight Cartified by	Matin Comm	and a started	Litar Operator
Sighature over Printed Nau (End Dear Reservation)	me Signet	ture over Printed Mame	Sig natule of	Printed Name	Signature over Princed Name

9.

Flight log for 1222A mission

10. Flight log for 1224A mission

Number Characteristic Anone Mandelis Anone Mission Internet Selecter Internet Tool Editorial Editorial 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 100 10.00 100 100 100 100 100 100 10.00	Son to But a standard barden a standard and and and and and and and and and an						
Printe: Date:	111DAR OPERATOR: ALDOU IN D	2 ALTM Model:	A ALL AND MISSION Name 364 36	CALG & Type: VFR	5 Ancraft Type: Ceanine T206H	6 Aircraft Identification:	9122
Dotte: Number It. Anguiró of Departure (Miren. Giryhonince: 2. Algoni of Arihal (Mirent. Giryhonince): Utennio.c. Utennio.c. It. Engine Off. 5 Teat Off. 12 in ndire; 38 Teat Hight Time: UMAINT Memory Memory 17 in ndire; 38 Teat Hight Time: 38 Teat Hight Time: UMAINT Memory Memory 2433 10 mm 11 in ndire; 38 Teat Hight Time: UMAINT Memory Memory 2433 10 mm 10 mm 11 in ndire; 38 Teat Hight Time: UMAINT Memory Memory 2433 11 in ndire; 11 in ndire; 12 in ndire; 12 in ndire; 12 in ndire;	7Pillot: Varint 8 50-1	Pilot: Maint	9 Route:				
It form It for the off: It for the off: It for the off: It is notice; It is the off: It is notice; It is the off: We alter Power Power Power Power Power Power We alter Power Power Power Power Power We alter Power Power Power Power Power Subscription: It is the notice; It is the notice; It is the notice; It is the notice; It is the notice; It is the notice; It is the notice; It is the notice; It is the notice;	10 Date: North 17	12 Airport of Dep	arcure (Ai rport, Gity/Province):	2 Auport of Arrival	(Airport, Gity/Province):		
All terrorts: SUCBSFull FildIT I Problem: and Solution: I Problem: and Solution: I Problem: All Solution: I Problem:	11 Engine Gu.	the Office office	15 Total Engine Time:	.6 Take off:	17 La ndirg:	18 Total Flight Time:	
1 Problems and folutions: 1 1 Problems and folutions: <td>20 Remarks : SUCLESS Ful</td> <td>flight</td> <td></td> <td></td> <td></td> <td></td> <td></td>	20 Remarks : SUCLESS Ful	flight					
1.1 Problem: and folutions: Iterations: 1.1 Problem: and folutions: Registration (Ippediated) Registration (Ippediated) Registration (Ippediated) Registration (Ippediated) Registration (Ippediated) Bottlet ever Printed Lase (Inc. Uner Registration) Registration (Ippediated) Spatial eventstool Registration (Ippediated)							
Activit light Approved by Acquisition flight Certified by Acqu	21 Problems and Solutions:						
Activit light Algebraic for hight Artified by Acquisition Right Certified by Planin Command Planin Right Artified by Planin Command Planin Command Signature over Printed Name (Int Uner Representative) (Int Uner Representative) (Int Uner Representative) (Int Uner Representative) (Int Command Signature over Printed Name (Int Uner Representative) (Int Uner Representative)							
	Activity Iden 'Byth Algeroved by Performance over Priving Vance [Evel Liver Representatives]		Acquisition flight Certified by Device Activities Separature over Printed Name (MIF Representative)	Pla-in Comm	Printed Name	Litar Operator	

Figure A-6.10. Flight Log for Mission 1224A

Algent Algent <th>Operator: Port Mov</th> <th>a 2 AUTM Mediel: 451014</th> <th>Alistica Brane 28 21</th> <th>CORA at the</th> <th></th> <th>Flight Long No.:</th> <th>DECI</th>	Operator: Port Mov	a 2 AUTM Mediel: 451014	Alistica Brane 28 21	CORA at the		Flight Long No.:	DECI
Nave A. 14 2.014 12.14 12.44 12.14 12.14 0.01 14 14 14 14 14 0.01 14 14 14 14 0.01 14 14 14 14 0.01 14 14 14 14 0.01 14 14 14 14 10 14 14 14 14 10 14 14 14 14 10 14 14 14 14 11 14 14 14 14 11 14 14 14 14 11 14 14 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 15 14 14 14 14 15 14 14 14 14 15 15 14 14 14 16 16 16 16	Alayor + +++++	CO-PRIDE: JAVRY	9 fourte:	Color 4 type: VFR	5 Aliticalit Type: Cestma T206H	6 Aircraft Identification: 9 22	
Mont. Coll 12.100/16/21 12.100/16/21 12.100/16/21 12.100/16/21 12.100/16/21 Mont. 14.11 13.100/16/21 13.100/16/21 13.100/16/21 13.100/16/21 13.100/16/21 Mont. 14.11 14.11 14.11 14.11 14.11 Mont. Mont. 14.11 14.11 14.11 Mont. Mont. 14.11 14.11 14.11 Mont. Mont. Mont. 14.11 14.11 Mont. <td>HONTY 10 2014</td> <td>12 Ai sport of Departure</td> <td>(Migort Cty/Province):</td> <td>II2 Airport of Amival</td> <td>(Arport, Gt/Pravince):</td> <td></td> <td></td>	HONTY 10 2014	12 Ai sport of Departure	(Migort Cty/Province):	II2 Airport of Amival	(Arport, Gt/Pravince):		
International Faith Action Faith Action Faith Action Faith Action Action Action Action <tr< td=""><td>11 11 11 11 11 11 11 11 11 11 11 11 11</td><td>Engine Off: 12:32</td><td>15 Total Engine Time:</td><td>LG Take off:</td><td>17Landing:</td><td>18 Total FlightTime:</td><td></td></tr<>	11 11 11 11 11 11 11 11 11 11 11 11 11	Engine Off: 12:32	15 Total Engine Time:	LG Take off:	17Landing:	18 Total FlightTime:	
Active Full Car Pull Full Car Pull Pull Full Pull	her	194					
Enclose the time and set times and times and time and times and titers and times and times and t	rks:						П
ers and Sol tetors: And And And Sol tetors: And And And And And And And And And And		succes the	A white				
ers and Solitions: Amutision Figh Joprovel by Amutision		-	>				
ens and Sol etions: Amultion figh Joproveloy Amultion figh Joproveloy Amultion figh Joproveloy Separate Name Separate Name (and Gar References Inter Separate over Prised Name Separate over Prised Name Separate over Prised Name Separate over Prised Name							_
Aquitition Righ Joprovel by Acritical By Approvel by Acritical By Approvel by Acritical By Approvel by Acritical By Acriti	lens and Solutions:						
Aquisition fig Lyproved by Aquis tion Hight Cestified by Filot-Command Licar Operator Distribution fig Lypproved by Filot-Ecommand Licar Operator Command Licar Comman							5
Point Direction Direction Direction Direction Stantlyw one Printed Name Stratlue over Printed Name Stratlue over Printed Name Stratlue over Printed Name Stratlue over Printed Name Stratlue over Printed Name Stratlue over Printed Name Stratlue over Printed Name	Aquistion Righ Japroved	by	tions States Constitution				
	Signal per control Political Narva	e Signatu (PALF Re	the over Printed Name	Signature over P	Ic Lic Sale	ar Operation	

Figure A-6.11. Flight Log for Mission 1230A

	4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 9172
1: Halar 8 co-Pilot: Jakier 9 Route:			
te: Mar 19 2014 12 Airport of Departure (Airport, City/Prowince): 12	2 Airport of Arrival (A	Virport, City/Province): (
tine On 1,13 14 Engine Off: 4,16 15 Total Engine Time: 16	5 Take off:	17 Landing:	18 Total Flight Time:
ather Tair			
marks:			
successful flight			
oblems and Solutions:			
		-	
Acquisition Flight Approved by Acquisition Flight Certified by	Pilot-in-Commar	P	Udar Operator
Play White Signalure over Printed Name Signalure over Printed Name (End User Representative) (PAF Representative)	Signatureprete	ninted Name	PAN ALLA DAHNO Signature over Prinjed Name

Figure A-6.12. Flight Log for Mission 1232A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

13. Flight log for 1238A mission

DREAM Data Acquisition Flight Log				Flight L	og No.: /2
1 UDAR Operator: DC MOOVIND 2 ALTM Model:	Maun 3 Mission Nan	1e: 3'BUK3BE079A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: C	2216
7 Pilot: 1. JAVRIC 8 Co-Pilot: J. ALASI	Arr. 9 Route:	AKLAW			
10 Date: MAD. 24, 23 14 12 Airport of Dep	parture (Airport, City/Pro	vince): 12 Airport of Arriva	I (Airport, Gty/Province):		
13 Engine On: 14 Engine Off: 14 5 9	15 Total Engine 2-4	e Time: 16 Take off:	17 Landing:	18 Total Flight Time: 2433	
19 Weather					
20 Remarks: SULCESS FUL FUICHT					
21 Problems and Solutions:					
				.,	
Acquisition Filght Approved by	Acquisition Flight Certifi	ed by Pilot-in-C	ривши	Lidar Operator	
A I In	AP and and	M. MC	Source	Carl And	
Signature over Printed Name (End User Representative)	Signature over Printed N (PAF Representative)	iame Signature	over Printed Name	Signature deer Prinkel Name	

15. Flight log for 2742G mission

	*
	м.
	-
	-
1	
	-
	-
	-
	-
	*
	0
	<u>.</u>
	10
	-96
	э.
	~
	8
	3
	•
	-
	**
	19
	0

Flight Log No.: 27426

1 UDAR Operator: PT ARCE	2 ALTM Model: 6EN/INI	3 Mission Name: 26LK 38026 /	4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 9(22
7 Pilot: A. LIM	8 Co-Pilot: D. CABUDDL	9 Route:			
10 Date: Scpt. 18, 2015	12 Airport of Departure	(Airport, Gty/Province): 1. QD×45	2 Airport of Arrival	(Airport, City/Province):	
13 Engine On: 0717	14 Engine Off:	15 Total Engine Time: 11 3 P53	6 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	Cloudy				
20 Flight Classification			21 Remark	12	
20.a Billable	20.b Non Billable	20.c Others	SANO	MA BLK340	
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	Aircraft Test Flight AAC Admin Flight Others:	O LIDAR System Maintenai Aircraft Maintenance Phil-LIDAR Admin Activit	nce ies		

Figure A-6.15. Flight Log for Mission 2742G

1 UIDAR Operator: 21 Arcu	2 ALTM Model: (Emini	3 Mission Name: 28(H3K)	ACSEZ424A Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 6/1
7 Pilot: A . Lim	8 Co-Pilot: P. CAGEDOL	9 Route:			
10 Date: Sept. 19, 205	12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
13 Engine On: #29	14 Engine Off: 1535	15 Total Engine Time: 04 + blo	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	Cloudy				
20 Flight Classification			21 Remark		
20.a Billable	20.b Non Billable	20.c Others	SANE	fed BUKSSA & BUKSSE and	d voids our Bikien.
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Aircraft Test Flight AAC Admin Flight Others: 	 UIDAR System Main Aircraft Maintenan Phil-UDAR Admin A 	ce ctivities		
22 Problems and Solutions					
O Weather Problem					
 System Problem Aircraft Problem 					
o Pilot Problem o Others:					
			V.		
Acquisition Flight Approved by	Acquisition Flight Cert	ified by Pilot-	in-Command	Lidar Operator	Aircraft Mechanic/ Techni
Lovery Marked New No	No MC Courden And	HERD PAF	4-UNA U	No.12-14-14-14-5 GALE BALLE HAS Stanture over Printed Name	Signature over Printed Na

Figure A-6.16. Flight Log for Mission 2746G

Flight log for 2766G mission 17.

-			
			ĩ
_		3	
-			
-	Ŀ	4	
-			
a	c		
-	c		
		÷	
-			
 u		L	
-			
	L		
-		c	
19	6	2	
	ē	2	
		ï	
1	ï	ñ	
а			
1			
5	-		
		ï	
-	c		
2		s	
e	2	ŗ	
-	٩	٠	
4			
2			
1		z	
4			
ú	ú	ť	
с			

hata Acquisition Flight Log						Flight Log No.: 2744
LUDAR Operator: MCE 6	2419134	2 ALTM Model: 65 m	3 Mission Name: 280F39C2	GPA 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9123
7 Pilot: A. LIM	8 Co-P	ilot: J. JECIEL	9 Route:			
O Date: 24 SEPT IS		12 Airport of Departure	(Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
3 Engine On: 0550	14 Eng	ine Off: D955	15 Total Engine Time: 44405	16 Take off:	17 Landing:	18 Total Flight Time:
9 Weather	Clevi	dy .			-	
0 Flight Classification				21 Remark		
0.a Billable	20.b	Non Billable	20.c Others			
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 		 Aircraft Test Flight AAC Admin Flight Others: 	 UDAR System Mainter Aircraft Maintenance Phil-UDAR Admin Acti 	vities Cari	John Buksec	
2 Problems and Solutions						
 Weather Problem System Problem Alrcraft Problem 						
 Pilot Problem Others: 						

Aircraft Mechanic/ Technician

Lidar Operato Ser

Pilot-in-Comm

Acquisition Flight Certified by

Acquisition Flight Approved by

allogue Thrinted Nam

(PAF Representative)

Signature

LOUENER & ACHNUN

(End User Representative)

Signature over Printed Name

ignature over Printed Name ALLE BAULLING

nted Name

Figure A-6.17. Flight Log for Mission 2766G

Box sugar more inferred and						Flight Log No.: 2748
1 LIDAR Operator: RAL FGuide	ANIM?	2 ALT/A Model: 48M	3 Mission Name: GBLK3@G2	GPB 4 Type: VFR	5 Aircraft Type: Cesmna T206H	6 Aircraft Identification: 9 (22
7 Pilot: A. LIM	8 Co-Pi	וסל: ט. שבמונג	9 Route: ROXAS - ROXAS			
10 Date: 24 50 15		12 Airport of Departure ROXA25	(Airport, Gty/Province):	12 Airport of Arival ROMAS	(Airport, Gity/Province):	
13 Engine On: 134 2	14 Engi	ne: Off: 1559	15 Total Engine Time: 3413-	16 Take off: 12477	17 Landing: 15 명식	18 Total Flight Tirre: 3 + 6子
19 Weather B	Cla	hard -				
20 Flight Classification				21 Remark		
20.a Billabie	20.b h	von Bilable	20.c Others	Sarveye	of B lives over Buck3860 .	shin, thu
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 		o Aircraft Text Flight o AAC Admin Flight o Others:	 UDAR System Mainten Arcraft Mairtenance Phil-UDAR Admin Activ 	ance (t)es		
22 Problems and Solutions						
Vieather Problem System Problem Aircraft Problem O Pilot Problem Others:						
Acquisition Flight Approved by		Acquisition Flight Certs	fied by Martin-C	W Processo	Lidar Operator	Aircraft: Machanic/ Rehnician
LOVELY ASUMICITY	0	The second	Total And And	the -	Receipt PRISENANC	l
Signature over Printed Name [End User Representative]		[FAF Representative	Name Stendorge	over Printed Name	Signature over Printed Vame	Signature over Primed Name

Figure A-6.18. Flight Log for Mission 2768G

Data Acquisition Flight Log

Flight Log No.: 279bG

1 UDAR Operator: PMC PC	CUSMIND	2 ALTM Model: 6KM	3 Mission Name: 28LK3SOV	ES 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 912
7 Pilot: A.LI M	8 Co-P	lot: J. JECIEL	9 Route:			
10 Date: 25 56PT (5	æ	12 Airport of Departure (J	Airport, Gty/Province):	12 Airport of Arrival	Airport, City/Province):	
13 Engine On: 05 \$5	14 Eng	ine Off: [b]&	15 Total Engine Time: 4 J.2 3	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather 8	Cle	- And				
20 Flight Classification				21 Remarks		
0.a Billable	20.b	Non Billable	20.c Others	Contres	1 wids over bux380 2	2 lines acr
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 		Alrcraft Test Flight AAC Admin Flight Others:	 UIDAR System Mainten Aircraft Maintenance Phil-UIDAR Admin Activ 	ance 5-LK Ities	36 E	

Figure A-6.19. Flight Log for Mission 2770G

g for 2772G mission
0
Flight
20.

	5	٩	
	ş	ą	
1		é	l
		1	
1	t	2	
	÷	ē	
	E	2	
٤	ė	,	ſ
	1	L	
	1		
	z	2	
	P	ξ	
i	2	ź	
	ī		
1	5	÷	
	5	2	
1	÷	ī	
	1		Ŀ
	s	2	ľ
	i,	è	
1	ė	t	
	1	1	
	π	ç	
1	L	2	
	-	i	

U. . . .

Data Acquisition Fight Log					Flight Log No.: 23326
1 LIDAR Operator: MUE A4U16	JAS 2 ALTM Model: GENI	3 Mission Name: 2464846	5 20 BB4 Type: VFR	5 Aircraft Type: Ces nna T206H	6 Aircraft Identification: 005
7 Pilot: A. Limi	8 Co-Pilot: J. JE CIEL	9 Route: DovA-C - ROAM			201
10 Date: 25 SETT IS	12 Airport of Departure	e (Airport, City/Province):	12 Ai rport of Arrival boX0-S	(Airport, dty/Province):	
13 Engine On: ነ ኋ ዛፋ	14 Engine Off: IS35	15 Total Engine Time: 24 I)	16 Take off: 124 d	17Landing: 650	18 Total Flight Time: 3 + D1
19 Weather	Cloudy				
20 Fight Classification			21 Remark		
20.a Billable	20.b Nor Billable	20.c Others			
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Alicraft Test Flight AAC Admin Flight Others: 	 UDAR System Maintei Aircraft Maintenance Phil-LiDAR Admin Acti 	nance Cowp	iched hukzela	
22 Problems and Solutions					
O Whather Problem O System Problem					
o Al'craft Problem o Pilot Problem o Others:					
			V		
Avquisition Flight Approved by	Acquisition Flight, Cer	Plot-in-(anmand /	udar Operator	Aircraft Mechanic/ Technictan
LOUELAN ACUNCLER	No to to	hour hour but	stoll.	West-NA	[
Signature over Printed Name [End Uber Representative]	Signature eler Brinke	d Kame Signatury	over Frinted Name	Signature over Printed Name	Signature over Printed Vame

Figure A-6.20. Flight Log for Mission 2772G

7 Pilot: A. Lun	LUK? 2 ALTM Model: GEM	3 Mission Name: 2804396	55269A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: @ h
	8 Co-Pilot: J_JECIEL	9 Route: BUNNYS - ROXA			2711
10 Date: 24 SEPT 15	12 Airport of Departure	Airport, Gty/Province):	12 Airport of Amival POXP3	(Airport, Gty/Province):	
13 Engine On: රුරි රට	14 Engine Off: Jo 2 4	15 Total Engine Time: 4413-	16 Take off: OG12	17 Landing: 1014	18 Total Flight Time: 4+07
19 Weather	PHIK				
20 Flight Classification 0.a. Billable	20.b Non Billable	20.c Others	21 Remark	22	
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	o Aircraft Test Flight o AAC Admin Flight o Others:	 UDAR System Mainte Aircraft Maintenance Phil-UDAR Admin Ac 	enance tivities	Completed But 3 ut	
2 Problems and Solutions					
 Weather Problem System Problem Alrcraft Problem Pilot Problem Others: 					
Acquisition Flight Approved by	Acquisition Flight Certil	ied by Plotin	command /	Udar Operator	Aircraft Mechanic/ Techniciaa
Signature over Printed Name (End User Representative)	Signater Representative	Bigne Signatur	e gefer Bilniad Name	Signature over Philitod Name	Signature over Printed Name

Figure A-6.21. Flight Log for Mission 2774G

21.

Flight log for 2774G mission

7 Pilot: A. LIM	14NP 2 ALTM Model: GDV	3 Mission Name: 264 K380	VES 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9122
	\$ Co-Miot: J. J. Color.	9 Route:			
10 Date: 35 SEPT (5	12 Airport of Departure PLOKAS	(Airport, Ghy/Province):	12 Airport of Arrival	(Airport, Gty/Province):	
13 Engine On: 0% 95	14 Engine Off: Ieie	15 Total Engine Time: 4 J-2.3	16 Take off:	17 Landing:	18 Total Filght Time:
19 Weather	cleudy				
20 Flight Classification			21 Remarks		
20.a Billable	20.b Non Billable	20.c Others	Colure	d wids over buckger &	& lines are
 Acquisition Flight Ferry Flight System Test Flight Calibration Flight 	 Alrcraft Test Flight AAC Admin Flight Othens: 	 UDAR System Mainte Aincraft Maintenance Phil-UDAR Admin Act 	nance 5-LA	5%E	
22 Problems and Solutions					
O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:					
Acquisition (light Approved by Development Approved by Equations over Printed Rune (End User Representative)	Acquisition Flight Con March 1995	the by Place in Place	command 1000 - 1000 Name boost Phaned Name	Lidue Operator publichaneur Reaution Provi Stringen Signature over Printed Name	Alarcaft Mechanie/ Technician Signature over Printed Name

Figure A-6.22. Flight Log for Mission 2790G

Figure A-6.23. Flight Log for Mission 2792G

23.

Flight log for 2792G mission

Annex 7. Flight Status Reports

FLIGHT STATUS REPORT AKLAN AND CAPIZ-AKLAN REFLIGHTS (March 15-22, 2014, and September 18-30, 2015)

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1186A	BLK 38 K AND BLK 38L	3BLK38KL067A	DC ALDOVINO	8 MAR 14	
1190A	BLK 38M	3BLK38M068A	PEARL MARS	9 MAR 14	Mission completed
1192A	BLK 38N	3BLK38N068B	DC ALDOVINO	9 MAR 14	Successful
1194A	BLK 38J	3BLK38J069A	DC ALDOVINO	10 MAR 14	Mission completed
1196A	BLK 38KS	3BLK38KS069B	PAT ALCANTARA	10 MAR 14	Finished 5 lines. Missing Range Data Pop Up. Performed in-air realignment
1210A	BLK 38F	3BLK38FS073A	PEARL MARS	14 MAR 14	Many lines covered half-way due to heavy air traffic over Kalibo Aerodrome
1212A	BLK 38F	3BLK38FS073B	PAT ALCANTARA	14 MAR 14	Supplementary to 1210A. Covered half block of 38F
1214A	BLK 38G, 38H, 38I	3BLK38G074A	PAT ALCANTARA	15 MAR 14	Strips of BLK 38G, H, I. Mission aborted duet to low cloud ceiling and precipitation in the survey area
1222A	BLK 38I	3BLK38I076A	PEARL MARS	17 MAR 14	Successful
1224A	BLK 38F	3BLK38FS076B	DC ALDOVINO	17 MAR 14	Supplementary of BLK 38F
1230A	BLK 38H, BLK 38I	3BLK38HIS078A	PEARL MARS	19 MAR 14	Supplement block of BLK 38I and covered half of BLK 38H
1232A	BLK 38G	3BLK38G078B	DC ALDOVINO	19 MAR 14	Completed 15 lines odf BLK 38G

Table A-7.1. Flight Status Report

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1238A	BLK 38G	3BLK38GS080A	PEARL MARS	21 MAR 14	Completed BLK 38R and completed BLK 38G. Experienced heavy air traffic in Kalibo airport
1240A	BLK 38H	3BLK38HS080B	DC ALDOVINO	21 MAR 14	Supplementary to BLK 38H
2742G	BLK38D	2BLK38D261A	MCE BALIGUAS & PJ ARCEO	SEPT. 18, 2015	Covered several lines of BLK38D. 3 lines wherein the beam divergence became wide and roll compensation was off. Presence of data gap. No digitizer. Partly cloudy and strong winds.
2746G	BLKs38 A, D, & E	2BLK38ADSE262A	MCE BALIGUAS & PJ ARCEO	SEPT. 19, 2015	Continuation of BLK38D, covered BLK38A and few lines from BLK38E. 2 lines wherein beam divergence became wide and roll compensation was off. No digitizer. Partly cloudy
2766G	BLK38C	2BLK38C267A	MCE BALIGUAS	SEPT. 24, 2015	Completed BLK38C. Cloudy in high terrain, hazy and strong gust of winds. Getting dark images from the camera. No digitizer
2768G	BLK38G	2BLK38G267B	RA FELISMINO	SEPT. 24, 2015	Unfinished mission, shutting off of laser due to eye safety.
2770G	BLKs38 B, D & E	2BLK38BDVES268A	RA FELISMINO	SEPT. 25, 2015	Completed BLK38 A, covered voids on D and 3 lines of E. No digitizer
2772G	BLK38G	2BLK38GS268B	MCE BALIGUAS	SEPT. 25, 2015	Supplementary flight for BLK38G, camera not triggering when the laser is firing at the start of the line. No digitizer
2774G	BLK38E	2BLK38ES269A	LR ASUNCION & JM ALMALVEZ	SEPT. 26, 2015	Completed BLK38E, captured images through camera time trigger in some lines. Repeat two lines because of bad swath produced. No digitizer
2790G	BLKs38 B & F	2BLK38BSF273A	RA FELISMINO	SEPT. 30, 2015	Completed BLK38B and few lines of BLK38F.Changed of altitudes because of clouds and high terrain
2792G	BLKs38 I & J	2BLK37IJ273B	MCE BALIGUAS & LR ASUNCION	SEPT. 30, 2015	Completed BLK38I and covered several lines of BLK38J. No images on the first line, restarted the camera. No digitizer.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LAS/SWATH BOUNDARIES PER MISSION FLIGHT

Flight No. :1186AArea:BLK 38 K AND BLK 38LMission Name:3BLK38KL067AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 25

Figure A-7.1. Swath for Flight No. 1186A

1190A BLK 38M 3BLK38M068A Alt: 600m; Scan Fz: 40; Scan ange: 25

Figure A-7.2. Swath for Flight No. 1190A

1192A BLK 38N 3BLK38N068B Alt: 600m; Scan Fz: 40; Scan ange: 25

Figure A-7.3. Swath for Flight No. 1192A

Flight No. :1194AArea:BLK 38JMission Name:3BLK38J069AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 25; Overlap: 40

Figure A-7.4. Swath for Flight No. 1194A

1196A BLK 38K 3BLK38KS069B Alt: 600m; Scan Fz: 40; Scan ange: 25

Figure A-7.5. Swath for Flight No. 1196A

Flight No. :1210AArea:BLK 38FMission Name:3BLK38FS073AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.6. Swath for Flight No. 1210A

1212A BLK 38F 3BLK38FS073B Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.7. Swath for Flight No. 1212A

1214A BLK 38G, H, I 3BLK38G074A Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.8. Swath for Flight No. 1214A

1222A BLK 38I 3BLK38I076A Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.9. Swath for Flight No. 1222A

Flight No. :1224AArea:BLK 38FMission Name:3BLKFS076BParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.10. Swath for Flight No. 1224A

1230A BLK 38H, BLK 38I 3BLK38HIS078A Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 50%

Figure A-7.11. Swath for Flight No. 1230A

Flight No. :1232AArea:BLK 38GMission Name:3BLK38G078BParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.12. Swath for Flight No. 1232A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :1238AArea:BLK 38GMission Name:3BLK38GS080AParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.13. Swath for Flight No. 1238A

Flight No. :1240AArea:BLK 38FMission Name:3BLK38HS080BParameters:Alt: 600m; Scan Fz: 40; Scan ange: 18; Overlap: 30%

Figure A-7.14. Swath for Flight No. 1240A

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Flight No. :	2742G
Area:	BLK38D
Mission Name:	2BLK38D261A
Parameters:	Alt: 1000m; Scan Fz: 50; Scan angLe: 15; Overlap: 30%, PRF:100 Alt: 800m; Scan Fz: 40; Scan angLe: 25; Overlap: 30%, PRF:142 Alt: 600m; Scan Fz: 40; Scan angle: 25; Overlap: 30%, PRF:125
Area surveyed:	113.23 sq km.

Figure A-7.15. Swath for Flight No. 2742G

Area surveyed:

2746G BLKs38 A, D & E 2BLK38ADSE262A For BLK38E: Alt: 800m; Scan Fz: 50; Scan angle: 20; Overlap: 30% For BLK38D: Alt: 800 & 600m; Scan Fz: 50; Scan angle: 20; Overlap: 30% 164.92 sq km.

Figure A-7.16. Swath for Flight No. 2746G

Flight No. : Area: Mission Name: Parameters: Area surveyed:

2766G BLK38C 2BLK38C267A Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 148.14 sq km.

Figure A-7.17. Swath for Flight No. 2766G
2768G BLK38G 2BLK38G267B Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 99.38 sq km.

Figure A-7.18. Swath for Flight No. 2768G

2770G BLKs38 B, D & E 2BLK38BDVES268A Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 188.62 sq km.

Figure A-7.19. Swath for Flight No. 2770G

2772G BLK38G 2BLK38GS268B Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 131.52 sq km.

Figure A-7.20. Swath for Flight No. 2772G

2774G BLK38E 2BLK38ES269A Alt: 800 & 1000m; Scan Fz: 50; Scan angle: 20 & 15; PRF: 125 & 100 167.63 sq km.

Figure A-7.21. Swath for Flight No. 2774G

2790G BLKs38 B & F 2BLK38BSF273A Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 153.45 sq km.

Figure A-7.22. Swath for Flight No. 2790G

Flight No. : Area: Mission Name: Parameters: Area surveyed:

2792G BLKs38 I & J 2BLK38IJ273B Alt: 800m; Scan Fz: 50; Scan angle: 20; PRF: 125 128.96 sq km.

Figure A-7.23. Swath for Flight No. 2792G

Annex 8. Mission Summary Reports

Flight Area	Aklan
Mission Name	Blk38G
Inclusive Flights	1232A, 1238A, 1214A
Mission Name	3BLK38GS080A
Range data size	29.6 GB
POS	599 MB
Base data size	49.8 MB
Image	77.5 GB
Transfer date	April 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.45
RMSE for East Position (<4.0 cm)	3.0
RMSE for Down Position (<8.0 cm)	9.5
Boresight correction stdev (<0.001deg)	0.000422
IMU attitude correction stdev (<0.001deg)	0.0873
GPS position stdev (<0.01m)	0.0419
Minimum % overlap (>25)	48.38%
Ave point cloud density per sq.m. (>2.0)	3.26
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	124
Maximum Height	473.98m
Minimum Height	65.86m
Classification (# of points)	
Ground	65,523,912
Low vegetation	112,670,061
Medium vegetation	125,580,846
High vegetation	52,818,739
Building	10,632,013
Orthophoto	Yes
Processed By	Engr. Kenneth Solidum, Engr. Mark Joshua Salvacion, Engr. Elainne Lopez

Table A-8.1. Mission Summary Report for Mission Blk38G

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metric Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Figure A-8.5. Image of data overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Aklan
Mission Name	Blk38G_additional
Inclusive Flights	1232A
Mission Name	3BLK38GS080A
Range data size	8.34 GB
POS	177 MB
Base data size	17 MB
Image	48.8 GB
Transfer date	April 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	0.8
RMSE for East Position (<4.0 cm)	0.85
RMSE for Down Position (<8.0 cm)	2.0
Boresight correction stdev (<0.001deg)	0.000422
IMU attitude correction stdev (<0.001deg)	0.0873
GPS position stdev (<0.01m)	0.0419
Minimum % overlap (>25)	19.94%
Ave point cloud density per sq.m. (>2.0)	2.20
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	47
Maximum Height	134.62 m
Minimum Height	54.28 m
Classification (# of points)	
Ground	8,055,404
Low vegetation	8,343,333
Medium vegetation	6,562,457
High vegetation	2,670,706
Building	796,451
Orthophoto	Yes
Processed By	Engr. Kenneth Solidum, Engr. Chelou Prado, Engr. Roa Shelmar Redo

Table A-8.2. Mission Summary Report for Mission Blk38G_additional

Figure A-8.8. Solution Status

Figure A-8.9. Smoothed Performance Metric Parameters

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of data overlap

Figure A-8.13. Density map of merged LiDAR data

Figure A-8.14. Elevation difference between flight lines

Flight Area	Aklan
Mission Name	Blk38H
Inclusive Flights	1230A, 1240A
Mission Name	3BLK38HIS078A
Range data size	22.93 GB
POS	405 MB
Image	536 GB
Transfer date	April 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000327
IMU attitude correction stdev (<0.001deg)	0.000854
GPS position stdev (<0.01m)	0.0095
Minimum % overlap (>25)	68.05%
Ave point cloud density per sq.m. (>2.0)	3.80
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	182
Maximum Height	424.79 m
Minimum Height	52.37 m
Classification (# of points)	
Ground	145,519,463
Low vegetation	165,819,430
Medium vegetation	187,679,061
High vegetation	178,946,950
Building	8,616,434
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Charmaine Cruz, Engr. Gladys Mae Apat

Table A-8.3. Mission Summary Report for Mission Blk38H

Figure A-8.15. Solution Status

Figure A-8.16. Smoothed Performance Metric Parameters

Figure A-8.17. Best Estimated Trajectory

Figure A-8.18. Coverage of LiDAR data

Figure A-8.19. Image of data overlap

Figure A-8.20. Density map of merged LiDAR data

Figure A-8.21. Elevation difference between flight lines

Flight Area	Aklan
Mission Name	Blk38N
Inclusive Flights	1192A
Mission Name	3BLK38M068B
Range data size	14.9 GB
POS	189 MB
Base data size	15.7 MB
Image	69.3 GB
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000745
IMU attitude correction stdev (<0.001deg)	0.699159
GPS position stdev (<0.01m)	0.0394
Minimum % overlap (>25)	35.24%
Ave point cloud density per sq.m. (>2.0)	2.77
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	158
Maximum Height	580.79 m
Minimum Height	60.49 m
Classification (# of points)	
Ground	45119614
Low vegetation	30636165
Medium vegetation	149692011
High vegetation	25112119
Building	340269
Orthophoto	Yes
Processed by	Victoria Rejuso, Engr. Merven Matthew Natino, Ailyn Biñas

Table A-8.4. Mission Summary Report for Mission Blk38N

Figure A-8.22. Solution Status

Figure A-8.23. Smoothed Performance Metric Parameters

Figure A-8.24. Best Estimated Trajectory

Figure A-8.25. Coverage of LiDAR data

Figure A-8.26. Image of data overlap

Figure A-8.27. Density map of merged LiDAR data

Figure A-8.28. Elevation difference between flight lines

Flight Area	Aklan
Mission Name	Blk38F
Inclusive Flights	1210A,1212A, 1224A
Mission Name	3BLK38FS073A
Range data size	10.1 GB
POS	212 MB
Base data size	14.4 MB
Image	n/a
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	4.5
Boresight correction stdev (<0.001deg)	0.000585
IMU attitude correction stdev (<0.001deg)	18.358539
GPS position stdev (<0.01m)	0.0037
Minimum % overlap (>25)	59.20%
Ave point cloud density per sq.m. (>2.0)	4.04
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	145
Maximum Height	159.60 m
Minimum Height	44.66 m
Classification (# of points)	
Ground	46,608,155
Low vegetation	62,424,760
Medium vegetation	134,430,834
High vegetation	27,020,290
Building	5,921,882
Orthophoto	Yes
Processed by	Engr. Angelo Carlo Bongat, Engr. Chelou Prado, Ryan James Nicholai Dizon

Table A-8.5. Mission Summary Report for Mission Blk38F

Figure A-8.29. Solution Status

Figure A-8.30. Smoothed Performance Metric Parameters

Figure A-8.31. Best Estimated Trajectory

Figure A-8.32. Coverage of LiDAR data

Figure A-8.33. Image of data overlap

Figure A-8.34. Density map of merged LiDAR data

Figure A-8.35. Elevation difference between flight lines

Flight Area	Aklan
Mission Name	Blk38J
Inclusive Flights	1194A
Mission Name	3BLK38J069A
Range data size	15.1 GB
POS	257 MB
Base data size	7.97 MB
Image	98.2 GB
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	3.0
Boresight correction stdev (<0.001deg)	0.000315
IMU attitude correction stdev (<0.001deg)	0.078676
GPS position stdev (<0.01m)	0.0351
Minimum % overlap (>25)	40.81%
Ave point cloud density per sq.m. (>2.0)	2.93
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	168
Maximum Height	389.57 m
Minimum Height	46.2 m
Classification (# of points)	
Ground	113518291
Low vegetation	229229294
Medium vegetation	321507947
High vegetation	117183209
Building	9796385
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Chelou Prado, Engr. Jeffrey Delica

Table A-8.6. Mission Summary Report for Mission Blk38J

Figure A-8.36. Solution Status

Figure A-8.37. Smoothed Performance Metric Parameters

Figure A-8.38. Best Estimated Trajectory

Figure A-8.39. Coverage of LiDAR data

Figure A-8.40. Image of data overlap

Figure A-8.41. Density map of merged LiDAR data

Figure A-8.42. Elevation difference between flight lines
Flight Area	Aklan
Mission Name	Blk38l
Inclusive Flights	1222A
Mission Name	3BLK38G076A
Range data size	38.93 GB
POS	675 MB
Base data size	
Image	222.4 GB
Transfer date	April 2, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	4.5
Boresight correction stdev (<0.001deg)	0.000406
IMU attitude correction stdev (<0.001deg)	0.001186
GPS position stdev (<0.01m)	0.0109
Minimum % overlap (>25)	68.71%
Ave point cloud density per sq.m. (>2.0)	4.33
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	146
Maximum Height	469.21 m
Minimum Height	53.63 m
Classification (# of points)	
Ground	54457974
Low vegetation	65789993
Medium vegetation	89582887
High vegetation	107260595
Building	3036380
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Melanie Hingpit, John Dill Macapagal

Table A-8.7. Mission Summary Report for Mission Blk38I

Figure A-8.43. Solution Status

Figure A-8.44. Smoothed Performance Metric Parameters

Figure A-8.45. Best Estimated Trajectory

Figure A-8.46. Coverage of LiDAR data

Figure A-8.47. Image of data overlap

Figure A-8.48. Density map of merged LiDAR data

Figure A-8.49. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38C
Inclusive Flights	2766G
Range data size	28.8GB
POS	243MB
Base data size	82.8 MB
Image	34.9MB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.23
RMSE for East Position (<4.0 cm)	1.62
RMSE for Down Position (<8.0 cm)	2.71
Boresight correction stdev (<0.001deg)	0.002175
IMU attitude correction stdev (<0.001deg)	0.007149
GPS position stdev (<0.01m)	0.0022
Minimum % overlap (>25)	35.31
Ave point cloud density per sq.m. (>2.0)	5.81
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	190
Maximum Height	903.42 m
Minimum Height	61.91 m
Classification (# of points)	
Ground	80,815
Low vegetation	53,226,449
Medium vegetation	308,349,339
High vegetation	382,849,454
Building	1,320,671
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Melanie Hingpit, Engr. Krisha Marie Bautista

Table A-8.8. Mission Summary Report for Mission Blk38C

Figure A-8.50. Solution Status

Figure A-8.51. Smoothed Performance Metric Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.52. Best Estimated Trajectory

Figure A-8.53. Coverage of LiDAR data

Figure A-8.54. Image of data overlap

Figure A-8.55. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.56. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38D
Inclusive Flights	2742G, 2746G, 2770G
Range data size	77.4 GB
POS	702 MB
Base data size	267.2 MB
Image	157.4 MB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.17
RMSE for East Position (<4.0 cm)	1.67
RMSE for Down Position (<8.0 cm)	2.24
Boresight correction stdev (<0.001deg)	0.001859
IMU attitude correction stdev (<0.001deg)	0.005610
GPS position stdev (<0.01m)	0.0021
Minimum % overlap (>25)	30.61
Ave point cloud density per sq.m. (>2.0)	4.97
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	296
Maximum Height	881.84 m
Minimum Height	48.68 m
Classification (# of points)	
Ground	83,846,065
Low vegetation	113,989,662
Medium vegetation	438,553,266
High vegetation	345,315,045
Building	7,474,300
Orthophoto	Yes
Processed by	Engr. Sheila-Maye Santillan, Engr. Justine Francisco, Alex John Escobido

Table A-8.9. Mission Summary Report for Mission Blk38D

Figure A-8.57. Solution Status

Figure A-8.58. Smoothed Performance Metric Parameters

Figure A-8.59. Best Estimated Trajectory

Figure A-8.60. Coverage of LiDAR data

Figure A-8.61. Image of data overlap

Figure A-8.62. Density map of merged LiDAR data

Figure A-8.63. Elevation difference between flight lines

Flight Area	Capiz, Aklan
Mission Name	Blk38E_supplement
Inclusive Flights	2746G, 2770G
Range data size	59.1 GB
POS	487 MB
Base data size	194.1 MB
Image	124.3 GB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
-	
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.13
RMSE for East Position (<4.0 cm)	1.53
RMSE for Down Position (<8.0 cm)	2.10
Boresight correction stdev (<0.001deg)	0.000423
IMU attitude correction stdev (<0.001deg)	0.000933
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	18.76
Ave point cloud density per sq.m. (>2.0)	3.85
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	184
Maximum Height	874.11 m
Minimum Height	47.67 m
Classification (# of points)	
Ground	28,446,693
Low vegetation	33,154,263
Medium vegetation	148,126,342
High vegetation	78,509,732
Building	2,022,190
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Aljon Rie Araneta, Alex John Escobido

Table A-8.10. Mission Summary Report for Mission Blk38E_supplement

Figure A-8.64. Solution Status

Figure A-8.65. Smoothed Performance Metric Parameters

Figure A-8.66. Best Estimated Trajectory

Figure A-8.67. Coverage of LiDAR data

Figure A-8.68. Image of data overlap

Figure A-8.69. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.70. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38E
Inclusive Flights	2746G, 2770G, 2774G
Range data size	85.4 GB
POS	742 MB
Base data size	268.4 MB
Image	146 MB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.51
RMSE for East Position (<4.0 cm)	1.44
RMSE for Down Position (<8.0 cm)	2.66
Boresight correction stdev (<0.001deg)	0.000423
IMU attitude correction stdev (<0.001deg)	0.000933
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	9.53
Ave point cloud density per sq.m. (>2.0)	2.56
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	99
Maximum Height	121.95
Minimum Height	54.17
Classification (# of points)	
Ground	28,671,750
Low vegetation	24,294,506
Medium vegetation	79,135,070
High vegetation	46,202,617
Building	2,357,775
Orthophoto	Yes
Processed by	Engr. Irish Cortez, Engr. Merven Matthew Natino, Maria Tamsyn Malabanan,

Table A-8.11. Mission Summary Report for Mission Blk38E

Figure A-8.71. Solution Status

Figure A-8.72. Smoothed Performance Metric Parameters

Figure A-8.73. Best Estimated Trajectory

Figure A-8.74. Coverage of LiDAR data

Figure A-8.75. Image of data overlap

Figure A-8.76. Density map of merged LiDAR data

Figure A-8.77. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38G
Inclusive Flights	2768G, 2772G
Range data size	37.9 GB
POS	371 MB
Base data size	165.9 MB
Image	75.8 MB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.90
RMSE for East Position (<4.0 cm)	1.54
RMSE for Down Position (<8.0 cm)	4.62
Boresight correction stdev (<0.001deg)	NA
IMU attitude correction stdev (<0.001deg)	NA
GPS position stdev (<0.01m)	NA
Minimum % overlap (>25)	24.63
Ave point cloud density per sq.m. (>2.0)	4.97
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	213
Maximum Height	900.62 m
Minimum Height	52.35 m
Classification (# of points)	
Ground	90,030,964
Low vegetation	49,798,910
Medium vegetation	325,134,162
High vegetation	252,978,885
Building	667,556
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Aljon Rie Araneta, Engr. Melissa Fernandez

Table A-8.12. Mission Summary Report for Mission Blk38G

Figure A-8.78. Solution Status

Figure A-8.79. Smoothed Performance Metric Parameters

Figure A-8.80. Best Estimated Trajectory

Figure A-8.81. Coverage of LiDAR data

Figure A-8.82. Image of data overlap

Figure A-8.83. Density map of merged LiDAR data

Figure A-8.84. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38F
Inclusive Flights	2790G
Range data size	28.1 GB
POS	258 MB
Base data size	93.5 MB
Image	57.4 MB
Transfer date	October 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.06
RMSE for East Position (<4.0 cm)	1.16
RMSE for Down Position (<8.0 cm)	2.93
Boresight correction stdev (<0.001deg)	0.000529
IMU attitude correction stdev (<0.001deg)	0.000773
GPS position stdev (<0.01m)	0.0015
Minimum % overlap (>25)	36.03
Ave point cloud density per sq.m. (>2.0)	5.55
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	82
Maximum Height	382.01 m
Minimum Height	68.43 m
Classification (# of points)	
Ground	29,590,492
Low vegetation	20,271,346
Medium vegetation	116,293,552
High vegetation	93,856,437
Building	785,353
Orthophoto	Yes
Processed by	Engr. Regis Guhiting, Aljon Rie Araneta, Maria Tamsyn Malabanan,

Table A-8.13. Mission Summary Report for Mission Blk38F

Figure A-8.85. Solution Status

Figure A-8.86. Smoothed Performance Metric Parameters

Figure A-8.87. Best Estimated Trajectory

Figure A-8.88. Coverage of LiDAR data

Figure A-8.89. Image of data overlap

Figure A-8.90. Density map of merged LiDAR data

Figure A-8.91. Elevation difference between flight lines

Flight Area	Capiz_Aklan
Mission Name	Blk38l
Inclusive Flights	2792G
Range data size	21.6 GB
POS	190 MB
Image	11.4 MB
Transfer date	Ocotber 9, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.46
RMSE for East Position (<4.0 cm)	1.27
RMSE for Down Position (<8.0 cm)	4.79
Boresight correction stdev (<0.001deg)	0.001495
IMU attitude correction stdev (<0.001deg)	0.003061
GPS position stdev (<0.01m)	0.0086
Minimum % overlap (>25)	21.45
Ave point cloud density per sq.m. (>2.0)	4.95
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	88
Maximum Height	460.75 m
Minimum Height	67.83 m
Classification (# of points)	
Ground	25,280,265
Low vegetation	27,311,346
Medium vegetation	128,406,936
High vegetation	101,781,716
Building	376,099
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Chelou Prado, Engr. Harmond Santos

Table A-8.14. Mission Summary Report for Mission Blk38I

Figure A-8.92. Solution Status

Figure A-8.93. Smoothed Performance Metric Parameters

Figure A-8.94. Best Estimated Trajectory

Figure A-8.95. Coverage of LiDAR data

Figure A-8.96. Image of data overlap

Figure A-8.97. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.98. Elevation difference between flight lines

Annex 9. Aklan Model Basin Parameters

Ratio to Peak 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Ratio to Peak Threshold Type **Recession Baseflow** Recession Constant 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 Discharge (M3/S) 0.85536 1.2743 3.5053 2.8903 3.3535 2.6755 5.3813 5.8401 5.5593 3.2533 3.6092 4.6947 4.0565 1.939113.531 Initial Initial Type Discharge Coefficient Storage 2.68905 2.18875 3.3128 2.5865 1.68525 2.87345 1.68495 4.4155 6.2395 1.7452 2.0212 2.8184 5.3164.4055 **Clark Unit Hydrograph** 3.242 (HR) Transform Concentration 0.270555 0.382325 0.134115 0.106935 0.158485 0.269945 0.103265 0.198655 0.103245 0.172695 0.32574 Time of 0.16477 0.20299 0.17607 0.12385 (HR) Impervious (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SCS Curve Number Loss 66.3338 68.2721 70.796 77.2779 57.4812 77.595 52.142 84.9303 57.3731 60.2144 52.8381 Number 73.8581 Curve 83.04 76.65 66.7 Abstraction 7.4029 5.3548 3.3586 7.2924 9.4458 10.543 10.499 12.538 12.874 6.1357 3.0011 4.4853 4.6973 Initial 6.8321 4.556 (mm) Number W340 W350 W360 W370 W380 W390 W400 W410 W420 Basin W280 W290 W310 W320 W330 W300

	Ratio to Peak	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
wo	Threshold Type	Ratio to Peak											
cession Baseflo	Recession Constant	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	60.0
Re	Initial Discharge (M3/S)	4.7464	6.5808	1.7369	4.958	3.4812	3.2511	5.5158	1.7289	5.6361	0.22314	2.5211	10.323
	Initial Type	Discharge											
ydrograph orm	Storage Coefficient (HR)	2.73635	4.96635	1.6428	2.1756	2.12555	2.0975	2.86825	1.47885	3.9136	1.0951	1.7546	4.1263
Clark Unit H Transf	Time of Concentration (HR)	0.16767	0.30431	0.10066	0.13331	0.13024	0.128525	0.17575	0.090615	0.239805	0.0671	0.10751	0.252835
Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0
urve Number L	Curve Number	57.771	53.7558	59.3229	60.0243	57.8403	57.1274	58.2729	55.9692	53.6183	50.8515	57.6471	57.002
SCS (Initial Abstraction (mm)	10.382	12.107	9.7785	9.5159	10.355	10.643	10.184	11.126	12.17	13.523	10.432	10.694
	Basin Number	W430	W440	W450	W460	W470	W480	W490	W500	W510	W520	W530	W540

Annex 10. Aklan Model Reach Parameters

Reach		2	Muskingum Cunge Cha	nnel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side
R10	Automatic Fixed Interval	4375.8	0.0111267	0.04	Trapezoid	199	1
R20	Automatic Fixed Interval	2782.6	0.0001952	0.04	Trapezoid	199	1
R40	Automatic Fixed Interval	2946.8	0.0019267	0.04	Trapezoid	199	1
R60	Automatic Fixed Interval	6218.3	0.0036355	0.04	Trapezoid	199	1
R70	Automatic Fixed Interval	13626	0.0048222	0.04	Trapezoid	199	1
R90	Automatic Fixed Interval	5702.3	0.0011059	0.04	Trapezoid	199	1
R110	Automatic Fixed Interval	5486.5	0.0022875	0.04	Trapezoid	199	1
R120	Automatic Fixed Interval	2789.7	0.0056411	0.04	Trapezoid	199	1
R160	Automatic Fixed Interval	6938.3	0.0082476	0.04	Trapezoid	199	1
R190	Automatic Fixed Interval	2954.7	0.0137997	0.04	Trapezoid	199	1
R210	Automatic Fixed Interval	3438.4	0.0016869	0.04	Trapezoid	199	1
R220	Automatic Fixed Interval	3105.3	0.0121304	0.04	Trapezoid	199	1
R240	Automatic Fixed Interval	974.97	0.0018016	0.04	Trapezoid	199	1

Table A-10.1. Aklan Model Reach Parameters

Annex 11. Aklan Field Validation

Table A-11.1. Aklan Field Validation

Point	Validation C	Coordinates	Model Var	Validation	Бинои	Event/	t/ Rain Return /
Number	Lat	Long	(m)	Points (m)	Error	Date	Scenario
1	11.71302681	122.3661523	0.652999997	1.2	0.299	Frank	100-Year
2	11.65854294	122.3876018	0.363999993	0.0762	0.083	Frank	100-Year
3	11.70917955	122.3758106	0.379000008	0.48	0.010	Frank	100-Year
4	11.6762311	122.3302733	0.037999999	0	0.001	Frank	100-Year
5	11.71771401	122.3772261	0.31099999	3.2	8.346	Frank	100-Year
6	11.70947236	122.3745037	0.298999995	0.8	0.251	Frank	100-Year
7	11.70770967	122.3740095	0.456999987	0.94	0.233	Frank	100-Year
8	11.70905914	122.364171	0.135000005	1.63	2.235	Frank	100-Year
9	11.71836859	122.3727763	0.623000026	1.2	0.333	Frank	100-Year
10	11.64459918	122.3833535	0.029999999	0.9144	0.782	Yolanda	5-Year
11	11.66973854	122.3268198	0.030999999	0	0.001		
12	11.72749082	122.3483079	0.400999993	1.09	0.475	Frank	100-Year
13	11.70986235	122.3755103	0.246999994	0.36	0.013	Frank	100-Year
14	11.69958397	122.3764273	0.476000011	2.32	3.400	Frank	100-Year
15	11.73575338	122.3274665	0.486999989	1.2192	0.536	Frank	100-Year
16	11.67069487	122.3848901	0.048	0	0.002		
17	11.70842748	122.3626398	0.100000001	2	3.610	Frank	100-Year
18	11.71425151	122.3839294	0.488999993	0.5	0.000	Frank	100-Year
19	11.66733514	122.4011443	0.331	0	0.110		
20	11.66243698	122.3996322	0.029999999	0	0.001		
22	11.64377382	122.380309	0.333000004	0	0.111		
25	11.71816394	122.3573602	0.246000007	2.9	7.044	Frank	100-Year
27	11.67270049	122.3849771	0.029999999	0.254	0.050	Yolanda	5-Year
28	11.70831313	122.3632159	0.193000004	0.4	0.043	Yolanda	5-Year
29	11.71525063	122.3872623	0.046999998	2.2	4.635	Frank	100-Year
31	11.69753804	122.3192858	0.029999999	0	0.001	Yolanda	5-Year
32	11.65264813	122.3704763	0.924000025	0.4826	0.195	Frank	100-Year
33	11.64531658	122.3840751	0.112999998	0	0.013		
34	11.73488561	122.3258477	0.421000004	0.83	0.167	Yolanda	5-Year
35	11.64405675	122.3982588	0.029999999	0	0.001		
36	11.66184604	122.398523	0.181999996	0	0.033		
39	11.68058825	122.3299737	0.030999999	0.55	0.269	Frank	100-Year
40	11.71831959	122.3855382	0.029999999	0.5	0.221	Frank	100-Year
41	11.70991487	122.3629758	0.555000007	0.7	0.021	Frank	100-Year
42	11.72450787	122.347391	0.644999981	1.04	0.156	Frank	100-Year
43	11.71010237	122.372815	0.620999992	1.6	0.958	Frank	100-Year
44	11.70125672	122.3330217	1.041000009	1.01	0.001	Frank	100-Year
45	11.72608192	122.3349412	0.499000013	0.54	0.002	Frank	100-Year
47	11.7022515	122.3816426	0.564999998	0.3	0.070	Frank	100-Year

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/	Rain
Number	Lat	Long	(m)	Points (m)	Enor	Date	Scenario
48	11.71634715	122.375548	0.029999999	2.9	8.237	Frank	100-Year
49	11.70924367	122.3671395	1.077000022	0.2	0.769	Frank	100-Year
50	11.69617838	122.3700988	0.546000004	1	0.206	Frank	100-Year
51	11.70642762	122.3711126	0.837000012	1.28	0.196	Frank	100-Year
52	11.68735022	122.3847262	0.382999986	0.1778	0.042	Yolanda	5-Year
55	11.71496266	122.3502307	0.632000029	1.9	1.608	Frank	100-Year
56	11.72124548	122.3597382	0.272000015	0	0.074	Marce	5-Year
57	11.70927113	122.3384952	0.289000005	1.21	0.848	Frank	100-Year
58	11.70278797	122.3779225	0.307000011	1.1	0.629	Frank	100-Year
59	11.70474228	122.3735572	0.312999994	0.9	0.345	Frank	100-Year
60	11.73448904	122.3281332	0.029999999	0	0.001	Yolanda	5-Year
61	11.69270294	122.3689132	0.474999994	0.65	0.031	Yolanda	5-Year
62	11.71553886	122.382098	0.187000006	1.9	2.934	Frank	100-Year
64	11.7038915	122.3281459	0.633000016	0	0.401	Yolanda	5-Year
65	11.70717474	122.3696711	0.957000017	1.4	0.196	Frank	100-Year
66	11.70965238	122.3647856	0.460000008	0	0.212	Frank	100-Year
67	11.70742878	122.3884561	0.229000002	1	0.594	Frank	100-Year
68	11.66808092	122.4098905	0.093999997	0	0.009		
69	11.72110056	122.3348395	0.414000005	1.44	1.053	Frank	100-Year
72	11.70796587	122.3272017	0.54400003	0.52	0.001	Frank	100-Year
74	11.72294994	122.3810331	0.248999998	1.1	0.724	Frank	100-Year
75	11.69791844	122.3850154	0.887000024	0.5	0.150	Frank	100-Year
76	11.64444737	122.3775811	0.324999988	0.4826	0.025	Undang	5-Year
77	11.69590164	122.3182566	0.150000006	0.73	0.336	Yolanda	5-Year
78	11.65235529	122.3807823	0.711000025	0.3048	0.165	Frank	100-Year
79	11.70444962	122.3929046	0.086000003	0.3	0.046	Yolanda	5-Year
80	11.67704374	122.4098115	0.958999991	7	36.494	Frank	100-Year
81	11.7177407	122.358102	0.792999983	2.9	4.439	Frank	100-Year
82	11.71818049	122.3727991	0	1.6	2.560	Yolanda	5-Year
83	11.67798871	122.4073004	1.133999944	0.7112	0.179	Frank	100-Year
84	11.71780239	122.3526344	0.958999991	1.59	0.398	Quinta	5-Year
85	11.68289683	122.3637077	1.236999989	0.4	0.701	Frank	100-Year
87	11.68133169	122.363008	0.938000023	1	0.004	Frank	100-Year
88	11.68498366	122.3616673	1.513000011	1.2	0.098	Frank	100-Year
89	11.71885848	122.3548353	1.014000058	2.01	0.992	Frank	100-Year
90	11.70171388	122.3734329	1.712000012	2.19	0.228	Frank	100-Year
91	11.70778755	122.3736814	0.677999973	1.512	0.696	Frank	100-Year
92	11.72091541	122.3583877	0.331	0	0.110	Marce	5-Year
93	11.71871641	122.3477637	1.212000012	2.33	1.250	Frank	100-Year
94	11.70311555	122.3723166	0.592000008	1.26	0.446	Frank	100-Year
95	11.70926989	122.3460731	0.787999988	3.25	6.061	Frank	100-Year

Point	Validation C	Coordinates	Model Var	Validation	Error	Event/	Rain
Number	Lat	Long	(m)	Points (m)	EIIOI	Date	Scenario
96	11.69613314	122.3666725	0.783999979	2.1	1.732	Frank	100-Year
97	11.73003126	122.3567297	0.966000021	1.86	0.799	Frank	100-Year
98	11.6728981	122.3619963	0.962000012	0.3048	0.432	Frank	100-Year
99	11.68752574	122.3675929	0.514999986	1	0.235	Yolanda	5-Year
101	11.70312371	122.3699608	0.428000003	0	0.183		
102	11.70660288	122.3329935	0.991999984	1.17	0.032	Frank	100-Year
105	11.68726367	122.3833979	0.912999988	0.3048	0.370	Frank	100-Year
106	11.71885497	122.3342177	0.953000009	2.1336	1.394	Frank	100-Year
107	11.71917484	122.3599618	0.624000013	0	0.389	Marce	5-Year
108	11.70654103	122.3439892	0.805999994	0	0.650	Yolanda	5-Year
109	11.67827903	122.3625929	1.220000029	0.37	0.723	Frank	100-Year
110	11.72410027	122.379714	1.585000038	1	0.342	Frank	100-Year
112	11.67337199	122.3817425	0.203999996	0	0.042		
113	11.66228062	122.4154283	0.330000013	0	0.109		
115	11.69183474	122.3751162	1.008000016	1.0668	0.003	Frank	100-Year
116	11.71859872	122.3694414	0.876999974	0.4	0.228	Nina	5-Year
121	11.6681263	122.4021277	0.029999999	0	0.001		
122	11.69765243	122.3660623	1.396999955	1.7	0.092	Frank	100-Year
123	11.72664798	122.3528729	0.879000008	0.6096	0.073	Quinta	5-Year
124	11.66640487	122.3765576	0.75	0	0.563		
125	11.70108349	122.3673355	1.00999999	1.4	0.152	Frank	100-Year
126	11.68351708	122.3633191	1.041000009	0.6	0.194	Frank	100-Year
127	11.66947517	122.3797611	1.695000052	0.4572	1.532	Frank	100-Year
128	11.72249223	122.3502184	1.532999992	2.72	1.409	Frank	100-Year
129	11.71600006	122.3503838	1.366999984	1.9	0.284	Frank	100-Year
130	11.7101072	122.3794297	0.816999972	1.1	0.080	Frank	100-Year
131	11.71718944	122.3563351	0.632000029	2.49	3.452	Frank	100-Year
132	11.6982422	122.3664033	1.476999998	1.8	0.104	Frank	100-Year
133	11.70424161	122.3656773	1.050999999	1.8	0.561	Frank	100-Year
134	11.71670369	122.3428853	1.220999956	1.78	0.312	Frank	100-Year
135	11.72546392	122.3524355	1.32099998	0.6096	0.506	Quinta	5-Year
136	11.69196264	122.3649481	2.177999973	3.5	1.748	Frank	100-Year
137	11.71254497	122.3480141	1.090999961	1.8	0.503	Frank	100-Year
138	11.70456207	122.3345426	1.850999951	2.46	0.371	Frank	100-Year
139	11.67146751	122.3485269	1.621000051	1.2446	0.142	Frank	100-Year
140	11.69026937	122.3614854	1.333999991	0.8	0.285	Yolanda	5-Year
143	11.66976607	122.3800915	1.508000016	0.6096	0.807	Frank	100-Year
144	11.71446862	122.3650029	0.745000005	2.2	2.117	Frank	100-Year
145	11.71868026	122.3453117	1.541000009	2.34	0.638	Frank	100-Year
146	11.72811048	122.3529618	0.558000028	1.88	1.748	Quinta	5-Year
147	11.68844711	122.3364364	1.187000036	2.47	1.646	Frank	100-Year

Point	t Validation Coordinates		Model Var	r Validation	Error	Event/	Rain Return /
Number	Lat	Long	(m)	Points (m)	Error	Date	Scenario
148	11.71739071	122.3530413	0.72299999	1.59	0.752	Quinta	5-Year
149	11.68437206	122.3394573	1.751000047	1.93	0.032	Frank	100-Year
151	11.68177063	122.3654184	0.875	0.85	0.001	Frank	100-Year
152	11.67271191	122.3541494	0.799000025	0	0.638		
156	11.67302458	122.3972902	0.850000024	1.0414	0.037	Yolanda	5-Year
158	11.73154818	122.357996	1.735000014	1.86	0.016	Frank	100-Year
159	11.65760563	122.3629941	0.967000008	0.3048	0.439	Undang	5-Year
160	11.66082294	122.3817434	3.865999937	0.4064	11.969		
161	11.70249138	122.3340557	2.311000109	3.048	0.543	Frank	100-Year
162	11.68694557	122.3594585	2.558000088	1.9	0.433	Frank	100-Year
163	11.71610959	122.3452796	2.822000027	0.88	3.771	Frank	100-Year
164	11.70409476	122.3357832	2.811000109	2.46	0.123	Frank	100-Year
165	11.68314029	122.3590825	2.736999989	2.4	0.114	Frank	100-Year
166	11.69037607	122.3638503	2.210999966	1.8	0.169	Frank	100-Year
167	11.68328245	122.35964	3.315999985	2.2	1.245	Frank	100-Year
168	11.69250347	122.3632556	2.426000118	2.3	0.016	Frank	100-Year
169	11.7190419	122.3492643	2.08100009	2.39	0.095	Frank	100-Year
170	11.70711703	122.3317404	1.046000004	0.4	0.417	Frank	100-Year
171	11.68628444	122.3591644	2.911999941	1.8	1.237	Frank	100-Year
172	11.72156194	122.3316802	1.815000057	1.45	0.133	Frank	100-Year
173	11.66118259	122.3837065	3.226999998	0	10.414		
174	11.70205312	122.3343695	3.562000036	3.048	0.264	Frank	100-Year
177	11.72511024	122.3514567	1.736999989	0.6096	1.271	Quinta	5-Year
179	11.71593158	122.344933	2.940000057	2.4	0.292	Frank	100-Year
180	11.71516459	122.3446275	2.322000027	2.4	0.006	Frank	100-Year
181	11.68352397	122.3610133	1.388000011	3.05	2.762	Frank	100-Year
182	11.68398543	122.3606814	2.651000023	3	0.122	Frank	100-Year
183	11.68316008	122.3601194	3.094000101	2.1	0.988	Frank	100-Year
184	11.71866269	122.3505037	1.578999996	0.25	1.766	Marce	5-Year
185	11.71738283	122.3583184	1.855999947	2.9	1.090	Frank	100-Year
186	11.7097618	122.3376869	2.404000044	1.01	1.943	Frank	100-Year
189	11.68928141	122.3597797	2.957000017	2.5	0.209	Frank	100-Year
191	11.72696843	122.3431167	2.377000093	1.8288	0.301	Frank	100-Year

Annex 12. Educational Institutions Affected in Aklan Floodplain

Table A-12.1. Educational Institutions in Kalibo, Aklan Affected by Flooding in the Aklan Floodplain

AKLAN							
	KALIBO						
Ruilding Namo	Parangay	Rai	infall Scena	ario			
Building Name	Darangay	5-year	25-year	100-year			
Andagaw	Aklan Catholic College	Medium	Medium	Medium			
Andagaw	Aklan Inter Faith Academy	Low	Medium	Medium			
Andagaw	Aklan Learning Center	Medium	Medium	Medium			
Andagaw	Aklan National High School For Arts and Trades	Low	Medium	Medium			
Andagaw	Aklan Polytechnic College	Medium	Medium	Medium			
Andagaw	Aklan State University College of Industrial Technology	Low	Medium	Medium			
Andagaw	Andagaw Elementary School	Low	Low	Medium			
Andagaw	Day Care Center	Medium	Medium	Medium			
Andagaw	Infant Jesus Academy	Low	Low	Medium			
Andagaw	Marian High Kalibo Foundation Inc.	Low	Medium	Medium			
Andagaw	Quix! Mart	Medium	Medium	Medium			
Andagaw	RRM Technical Institute, Inc.		Low	Low			
Andagaw	St. Anne Montessori School Kalibo, Aklan. Inc.	Medium	Medium	Medium			
Andagaw	Villa Salvacin Child Development Center I.II	Low	Medium	Medium			
Andagaw	Wadeford School		Low	Low			
Bachaw Norte	Bachaw Norte Elementary School	Medium	Medium	Medium			
Bachaw Norte	Pigado Day Care Center	Medium	Medium	Medium			
Bachaw Sur	Bachaw Sur Day Care Center	Medium	Medium	Medium			
Bachaw Sur	New Day Care Center	Low	Low	Medium			
Bachaw Sur	StarGlow Private School						
Briones	Briones Elementary School						
Buswang New	Aklan Catholic College	Medium	Medium	Medium			
Buswang New	Care Kids Learning PlayHouse						
Buswang New	New Buswang Elementary School	Low	Low	Low			
Buswang Old	Old Buswang Bachao Sur Elementary School	Medium	Medium	Medium			
Buswang Old	Old Buswang Day Care Center						
Buswang Old	Regional Science High School	Low	Low	Medium			
Buswang Old	Saint Gabriel College						
Caano	Caano Day Care Center	Low	Medium	Medium			
Caano	Caano Elementary School		Medium	Medium			
Estancia	Aklan Polytechnic College	Medium	Medium	Medium			
Estancia	Brilliant Sucerity Training Academy	Medium	Medium	Medium			
Estancia	Central Panal College of Science and Technology Inc	Medium	Medium	Medium			
Estancia	Estancia Elementary School	Medium	Medium	Medium			
Estancia	Garcia College of Technology	Medium	Medium	Medium			
Estancia	Garcia College of Technology - Annex Building	Medium	Medium	Medium			

AKLAN								
	KALIBO							
Building Name	Barangay	Rai	infall Scena	ario				
	Dalangay	5-year	25-year	100-year				
Estancia	Garcia College of Technology Inc	Medium	Medium	Medium				
Estancia	Infant Jesus Academy	Low	Medium	Medium				
Estancia	Infant Jesus School	Medium	Medium	Medium				
Estancia	Maranata Christian Academy	Low	Low	Medium				
Estancia	North Western Visayan College	Medium	Medium	Medium				
Estancia	North Western Visayan College - College of Criminal Justice Education	Medium	Medium	Medium				
Estancia	North Western Visayas College		Low	Low				
Estancia	Quix! Mart	Medium	Medium	Medium				
Estancia	St. Dominic School of Kalibo	Medium	Medium	Medium				
Estancia	STI College - Kalibo		Low	Low				
Linabuan Norte	Barangay Linabuan Norte Day Care Center	Medium	High	High				
Linabuan Norte	Linabuan Norte Elementary School - Linabuan National High School	Medium	High	High				
Mabilo	General F. Castiilo Memorial School	Medium	Medium	High				
Mabilo	Mabilo Day Care Center	Low	Medium	Medium				
Mobo	Barangay Mobo Day Care Center	Medium	Medium	Medium				
Mobo	Mobo Elementary School	Medium	Medium	Medium				
Mobo	St. Gabriel College	Low	Medium	Medium				
Mobo	St. Gabriel English School	Medium	Medium	Medium				
Nalook	Nalook Elementary School	Low	Medium	Medium				
Poblacion	After-School Tutorial Services	Medium	Medium	Medium				
Poblacion	Aklan Catholic College	Low	Low	Low				
Poblacion	Bliss Day Care Center	Medium	Medium	Medium				
Poblacion	Day Care Center Oyo Torong	Medium	Medium	Medium				
Poblacion	Dela Cruz Institute of Business & Industry	Medium	Medium	Medium				
Poblacion	Kalibo Elementary School	Medium	Medium	High				
Poblacion	Kalibo Institute	Medium	Medium	Medium				
Poblacion	Kalibo Integrated Special Education Center	Medium	Medium	Medium				
Poblacion	Kalibo Pilot Elementary School	Medium	Medium	Medium				
Poblacion	Kalibo SunYatsen School	Medium	Medium	Medium				
Poblacion	Office of the District Supervisor	Medium	Medium	Medium				
Poblacion	Panay Teechnological Collage	Medium	Medium	Medium				
Poblacion	Rebesencio Bldg. II (Kidzcare Children's Learning Center, Otto)	Low	Low	Low				
Poblacion	The Holy Nursery and Kindergarten School	Medium	Medium	Medium				
Pook	Pook Day Care center	Low	Low	Low				
Pook	Pook Elementary School	Low	Medium	Medium				
Pook	Verde Grande Culinary School	Medium	Medium	Medium				
Tigayon	Barangay Tigayon Day Care Center	Medium	Medium	Medium				
Tigayon	Mother Nature School	Medium	Medium	Medium				

	AKLAN			
	KALIBO			
Duilding Nomo	Devengen	Rai	infall Scena	ario
Building Name	Darangay	5-year	25-year	100-year
Tigayon	TESDA Security School	Medium	Medium	Medium
Tigayon	Tigayon Elementary School	Medium	Medium	Medium
Tinigaw	Estancia Elementary School	Medium	Medium	Medium
Tinigaw	Tinigaw Elementary School	Medium	High	High

Table A-12.2. Educational Institutions in Lezo, Aklan Affected by Flooding in the Aklan Floodplain

AKLAN								
L	EZO							
Building Name	Barangay	Rai	nfall Scena	rio				
		5-year	25-year	100-year				
Bugasongan Barangay Hall	Bugasongan		Low	Low				
Bugasongan Elementary School	Bugasongan		Medium	Medium				
Barangay Poblacion Day Care Center	Poblacion	Medium	High	High				
Lezo Integrated School	Poblacion	Low	Medium	Medium				
Lezo Technical College	Poblacion	Medium	High	High				

Table A-12.3. Educational Institutions in New Washington, Aklan Affected by Flooding in the Aklan Floodplain

AK	LAN	AKLAN								
NEW WA	SHINGTON									
Dutilities News	Demonstra	Rai	nfall Scena	irio						
Building Name	Barangay	5-year	25-year	100-year						
Barangay Mabilo Day Care Center	Mabilo	Low	Low	Low						
Mabilo Elementary School	Mabilo	Low	Low	Medium						
Prudence Learning Center	Mabilo	Medium	Medium	Medium						
Puis Elementary School	Puis	Medium	Medium	Medium						
Aklan Polytechnic College Maritime Training Center	Tambak	Medium	Medium	Medium						

Table A-12.4. Educational Institutions in Numancia, Aklan Affected by Flooding in the Aklan Floodplain

	AKLAN			
NI	JMANCIA			
Duilding Norma	Demonstra	Ra	infall Scena	ario
Building Name	Barangay	5-year	25-year	100-year
Albasan Elementary School	Albasan	Medium	Medium	Medium
Numancia National School of Fisheries	Albasan	High	High	High
Aliputos Elementary School	Aliputos	Medium	Medium	Medium
Badio Elementary School	Badio	Low	Medium	Medium
Barangay Badio Day Care Center	Badio		Low	Low

AKLAN				
NUMANCIA				
Building Name Barangay	Rainfall Scenario			
	Barangay	5-year	25-year	100-year
Bubog Elementary School	Bubog	Medium	Medium	Medium
Bubog Elementary School Stage	Bubog	Medium	High	High
Bulwang Elementary School	Bulwang	Medium	Medium	Medium
Camanci Norte Barangay Day Care Center	Camanci Norte	Medium	Medium	Medium
Camanci Norte Elementary School	Camanci Norte	Medium	Medium	Medium
Payben's Resort	Camanci Norte	Medium	Medium	Medium
Camanci Sur Barangay Day Care Center	Camanci Sur	Low	Medium	Medium
Camanci Sur Elementary School	Camanci Sur	Low	Medium	Medium
Irao Institute	Camanci Sur	Medium	Medium	Medium
Laguinbanua East Day Care Center	Laguinbanua East	Low	Medium	Medium
Laguinbanua Elementary School	Laguinbanua East	Medium	Medium	Medium
Adolphus International Technical Institute Driving School	Laguinbanua West	High	High	High
Carillo Culinary Arts and Skills Development Center INC.	Laguinbanua West	Low	Low	Low
Laguinbanua West Day Care Center	Laguinbanua West	Low	Medium	Medium
Navitas Barangay Day Care Center	Navitas			
Navitas Elementary School	Navitas			
MADYAAS Institute	Poblacion			
Numancia Integrated School	Poblacion	Medium	Medium	Medium
Poblacion Day Care	Poblacion	Medium	High	High
St. Joseph Formation Center	Poblacion	Low	Low	Low
St. Joseph parochial Learning Center	Poblacion	Low	Medium	Medium
Sto. Nino Seminary	Poblacion	Low	Low	Low

Annex 13. Health Institutions Affected in Aklan Floodplain

	,	0			
AKLAN					
BANGA					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Veterinary Hospital	Linabuan Sur	High	High	High	

Table A-13.1. Health Institutions in Banga, Aklan Affected by Flooding in the Aklan Floodplain

Table A-13.2. Health Institutions in Kalibo, Aklan Affected by Flooding in the Aklan Floodplain

AKLAN					
KALIBO					
Duilding Norro	Deveneeu	Rainfall Scenari		rio	
Building Name	Barangay	5-year	25-year	100-year	
Aklan Animal Rescue and Rehabilitaion Center	Andagaw			Low	
Aklan Cooperative Mission Hospital	Andagaw		Low	Low	
Rebadulla Animal Clinic	Andagaw	Medium	Medium	Medium	
Caano Barangay Health Center	Caano		Low	Medium	
Ismael Medical Clinic	Estancia	Low	Medium	Medium	
Panay Health Care	Estancia				
Rebadulla Animal Clinic	Estancia	Medium	Medium	Medium	
Barangay Mobo Hleath Center	Mobo	Medium	Medium	Medium	
Salazar Medical X-Ray and Ultrasound Clinic	Mobo	Medium	Medium	Medium	
St. Jude Hospital	Mobo			Low	
Nalook Health Center	Nalook		Low	Medium	
Bautista Nutrition Center	Poblacion	Low	Medium	Medium	
Children's Clinic , Tambong Medical Clinic, Ibarreta Jayme Pediatrician	Poblacion				
Kalibo Rural Health Center	Poblacion		Low	Low	
Ma. Eden C. Sealog, M.D. General Physicians	Poblacion	Medium	Medium	High	
Municipal Health Office	Poblacion		Low	Low	
Reyes-EQuina Ortho-Dental Care Clinic	Poblacion	Medium	Medium	Medium	
Saint Martha's Walk-In Medical Clinic	Poblacion	Low	Medium	Medium	
Saratiosa Bldg. (Medicus Diagnostic Center)	Poblacion	Medium	Medium	Medium	
St. Gabriel Medical Center	Poblacion	Low	Medium	Medium	
Tayco Medical Clinic & Drugstore	Poblacion	Low	Low	Medium	
Tirazona-Gomez Dental Clinic	Poblacion	Medium	Medium	Medium	
Torres-Oliva Bldg. (Medway Polyclinic)	Poblacion	Low	Medium	Medium	
UGC Clinics & Laboratories	Poblacion	Medium	Medium	Medium	
Barangay Tigayon Health Center	Tigayon	Low	Medium	Medium	

AKLAN				
LEZO				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Barangay Ibao Health Center	Ibao	Medium	Medium	Medium
Lezo Birthing Facility	Poblacion	Low	Medium	High
Lezo Municipal Health Office	Poblacion	Medium	Medium	High

Table A-13.3. Health Institutions in Lezo, Aklan Affected by Flooding in the Aklan Floodplain

Table A-13.4. Health Institutions in New Washington, Aklan Affected by Flooding in the Aklan Floodplain

AKLAN				
NEW WASHINGTON				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
Barangay Outpost, Health Center	Puis	Low	Medium	Medium

Table A-13.5. Health Institutions in Numancia, Aklan Affected by Flooding in the Aklan Floodplain

AKLAN				
NUMANCIA				
Duilding Name	Devengeur	Rainfall Scenario		
	Darangay	5-year	25-year	100-year
Barangay Bubog Health Center	Bubog	Medium	Medium	Medium
Bulwang Healh Center	Bulwang	Low	Low	Medium
Camanci Sur Barangay Health Center	Camanci Sur	Medium	Medium	Medium
Nutrition & Health Center	Laguinbanua East	Medium	Medium	Medium
Nutrition Center	Laguinbanua West	Medium	Medium	Medium
Navitas Barangay Health Center	Navitas			
Municipal Nutrition Center	Poblacion	Medium	Medium	Medium
Poblacin Health Center	Poblacion	Low	Medium	Medium

Annex 14. UPC Phil-LiDAR 1 Team Composition

Project Leader Jonnifer R. Sinogaya, PhD.

Chief Science Research Specialist Chito Patiño

Senior Science Research Specialists Christine Coca Jared Kislev Vicentillo

Research Associates

Isabella Pauline Quijano Jarlou Valenzuela Rey Sidney Carredo Mary Blaise Obaob Rani Dawn Olavides Sabrina Maluya Naressa Belle Saripada Jao Hallen Bañados Michael Angelo Palomar Glory Ann Jotea