

LiDAR Surveys and Flood Mapping of Tineg River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Baguio

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines Diliman and University of the Philippines Baguio 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP)
College of Engineering
University of the Philippines – Diliman
Quezon City
1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E.C. Paringit, and C. Pascua, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Tineg River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LIDAR, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 234pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Chelo Pascua

Project Leader, Phil-LiDAR 1 Program University of the Philippines, Baguio Baguio City, Philippines 2600 pascua.chelo@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines

ISBN: 978-621-430-094-5

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ACRONYMS AND ABBREVIATIONS	
CHAPTER 1: OVERVIEW OF THE PROGRAM AND TINEG RIVER	
1.1 Background of the Phil-LIDAR 1 Program	
1.2 Overview of the Tineg River Basin	
CHAPTER 2: LIDAR DATA ACQUISITION OF THE TINEG FLOODPLAIN	
2.1 Flight Plans	
2.2 Ground Base Stations.	
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE TINEG FLOODPLAIN	_
3.1 Overview of the LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation.	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR DEM	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution.	
3.12.4 Final Quality Checking of Extracted Features	36
CHARTER ALLIDAR VALIDATION CURVEY AND MACACUREMENTS OF THE TIMES RIVER DACING	27
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TINEG RIVER BASIN	
4.1 Summary of Activities	37
4.1 Summary of Activities	37
4.1 Summary of Activities	37 38 41
4.1 Summary of Activities	373841
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking.	37 41 42
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey.	37 41 42 45
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey.	3741424550
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING.	374142455052
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling.	3741455057
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves.	37384145505257
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation.	37384142455057575757
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow.	3738414550575757575757
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station.	3738414550575757575757
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model.	3841425057575757
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data.	384142505757575759
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model.	3738414245505757575759666666
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration.	37384142455057575757596166666768
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods	3738414550575757575966666870
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration.	373841455057575757575759666667687070
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model.	37384142505757575966667071
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER S: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard.	373841455057575757596666707173
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation.	373841455057575757596666707173
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding.	373841455057575757575757575861607071717171
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation.	3738414550575757575758666670717374180182
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES. ANNEXES	373841455057575759666670717481182183
4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation.	373841455057575759666670717374180183183

Annex 3. Baseline Processing Reports of Reference Points Used	190
Annex 4. The LIDAR Survey Team Composition	
Annex 5. Data Transfer Sheet for Tineg Floodplain	
Annex 6. Flight logs for the flight missions	
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	
Annex 9. Tineg Model Basin Parameters	
Annex 10. Tineg Model Reach Parameters	
Annex 11. Tineg Field Validation Points	
Annex 12. Educational Institutions Affected by flooding in Tineg Flood Plain	
Annex 13. Health Institutions affected by flooding in Tineg Floodplain	

LIST OF TABLES

Table 1. Flight planning parameters for Gemini LiDAR system	3
Table 2. Details of the reprocessed NAMRIA horizontal control point ABR-31 used as base station	6
for the LiDAR acquisition.	_
Table 3. Details of the recovered NAMRIA horizontal control point ABR-32 used as base station	/
for the LiDAR acquisition. Table 4. Details of the reprocessed NAMRIA horizontal control point ILS-9 used as base station	c
for the LiDAR Acquisition.	
Table 5. Details of the recovered NAMRIA horizontal control point ILS-13 used as base station	9
for the LiDAR Acquisition.	
Table 6. Details of the recovered NAMRIA horizontal control point ILS-22 used as base station	10
for the LiDAR Acquisition.	
Table 7. Details of the recovered processed reference point ABR-3221 (BLLM 2) used as base station	11
for the LiDAR acquisition.	
Table 8. Details of the established horizontal control point ABR-3071 used as base station	11
for the LiDAR acquisition.	
Table 9. Ground control points used during the LiDAR data acquisition	
Table 10. Flight missions for LiDAR data acquisition in Tineg floodplain	
Table 11. Actual parameters used during LiDAR data acquisition	
Table 12. List of municipalities and cities surveyed during Tineg floodplain LiDAR survey	
Table 13. Self-calibration Results values for Tineg flights	
Table 15. Abra classification results in TerraScan	
Table 16. LiDAR blocks with its corresponding areas	
Table 17. Shift values of each LiDAR block of Tineg Floodplain	
Table 18. Calibration Statistical Measures	31
Table 19. Validation Statistical Measures	
Table 20. Details of the quality checking ratings for the building features extracted	
for the Tineg River Basin	
Table 21. Building features extracted for Tineg Floodplain	35
Table 22. Total length of extracted roads for Tineg Floodplain	
Table 23. Number of extracted water bodies for Tineg Floodplain	
Table 24. List of reference and control points used during the survey in Tineg River	38
(Source: NAMRIA, UP-TCAGP).	
Table 25. The Baseline processing report for the Pambujan River GNSS static observation survey	
Table 26. Constraints applied to the adjustment of the control points	
Table 28. Adjusted geodetic coordinates for control points used in the Tineg River	
Flood Plain validation.	43
Table 29. The reference and control points utilized in the Tineg River Static Survey, with their	44
corresponding locations (Source: NAMRIA, UP-TCAGP)	
Table 30. RIDF values for the Laoag Rain Gauge, as computed by PAGASA	59
Table 31. Range of calibrated values for the Tineg River Basin	
Table 32. Summary of the Efficiency Test of the Tineg HMS Model	69
Table 33. The peak values of the Tineg HEC-HMS Model outflow using the Maasin RIDF	70
Table 34. Summary of Abra-Tineg-Ikmin river (1) discharge generated in HEC-HMS	
Table 35. Summary of Abra-Tineg-Ikmin river (2) discharge generated in HEC-HMS	
Table 36. Summary of Abra-Tineg-Ikmin river (3) discharge generated in HEC-HMS	
Table 37. Validation of river discharge estimates	
Table 38. Municipalities affected in Tineg floodplain	
Table 39. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period	
Table 40. Affected Areas in Langiden, Abra during 5-Year Rainfall Return Period	
Table 42. Affected Areas in Plaigan, Abra during 5-Year Rainfall Return Period	
Table 43. Affected Areas in Nueva Era, Ilocos Norte during 5-Year Rainfall Return Period	
Table 44. Affected Areas in Naeva Era, nocos Norte daring 5-Year Rainfall Return Period	
Table 45. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period	
Table 46. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period	
Table 47. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	

Table48.AffectedAreasinSanIldefonso,IlocosSurduring5-YearRainfallReturnPeriod	98
Table 49. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period	.100
Table 50. Affected Areas in San Vicente, Ilocos Sur during 5-Year Rainfall Return Period	102
Table 51. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period	
Table 52. Affected Areas in Santa Catalina, Ilocos Sur during 5-Year Rainfall Return Period	.106
Table53.AffectedAreasinSantoDomingo,IlocosSurduring5-YearRainfallReturnPeriod	.107
Table 54. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period	
Table 55. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period	.114
Table 56. Affected Areas in Langiden, Abra during 25-Year Rainfall Return Period	
Table 57. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period	
Table 58. Affected Areas in San Quintin, Abra during 25-Year Rainfall Return Period	
Table 59. Affected Areas in Nueva Era, Ilocos Norte during 25-Year Rainfall Return Period	
Table 60. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period	
Table 61. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period	
Table 62. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period	
Table 63. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period	
Table 64. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period	
Table 65. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period	
Table 66. Affected Areas in San Vicente, Ilocos Sur during 25-Year Rainfall Return Period	
Table 67. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period	
Table 68. Affected Areas in Santa Catalina, Ilocos Sur during 25-Year Rainfall Return Period	
Table 69. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period	
Table 70. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period	
Table 71. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period	
Table 72. Affected Areas in Langiden, Abra during 100-Year Rainfall Return Period	
Table 73. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period	
Table 74. Affected Areas in San Quintin, Abra during 100-Year Rainfall Return Period	.151
Table 75. Affected Areas in Nueva Era, Ilocos Norteduring 100-Year Rainfall Return Period	
Table 76. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period	
Table 77. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period	.156
Table 78. Affected Areas in Magsingal, Ilocos Surduring 100-Year Rainfall Return Period	
Table 79. Affected Areas in Narvacan, Ilocos Surduring 100-Year Rainfall Return Period	
Table 80. Affected Areas in San Il defonso, Ilocos Surduring 100-Year Rainfall Return Period	
Table 81. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period	
Table82.AffectedAreasinSanVicente,IlocosSurduring100-YearRainfallReturnPeriod	
Table 83. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period	
Table84. Affected Areas in Santa Catalina, Ilocos Surduring 100-Year Rainfall Return Period	
Table 85. Affected Areas in Santo Domingo, Ilocos Surduring 100-Year Rainfall Return Period	
Table 86. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period	
Table 87. Area covered by each warning level with respect to the rainfall scenarios	
Table 88. Actual Flood Depth versus Simulated Flood Depth at different levels in the Tineg River Basin	
Table 89. Summary of the Accuracy Assessment in the Tineg River Basin Survey	.181

LIST OF FIGURES

Figure 1. Map of Tineg River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Tineg floodplain using the Gemini sensor	
Figure 3. GPS set-up over ABR-31 (a) inside Peñarrubia Central School, Peñarrubia Abra;	
and NAMRIA reference point ABR-31 (b) as recovered by the field team.	
Figure 4. GPS set-up over ABR-32 (a) inside the Barangay Hall Compound of Barangay Suyo,	6
Pidigan Abra; and NAMRIA reference point ABR-32 (b) as recovered by the field team.	
Figure 5. GPS set-up over ILS-9 (a) on the hilly portion of Bacsil National High School in	7
Barangay Bacsil, San Juan Ilocos Sur; and NAMRIA reference point ILS-9 (b) as recovered by	
field team.	
Figure 6. GPS set-up over ILS-13 (a) beside the school oval of Cabugao South Central School	
in Barangay Bonifacio, Cabugao Ilocos Sur; NAMRIA reference point ILS-13 (b) as recovered the field team.	by
Figure 7. GPS set-up over ILS-22 (a) at the science park in North Central Elementary School	9
in the Municipality of Lidlidda, Ilocos Sur; and NAMRIA reference point ILS-22 (b) as recove	red by
the field team.	
Figure 8. GPS set-up over ABR-3221 (BLLM 2) (a) inside the Town Plaza of Bangued, Abra;	10
Processed reference point ABR-3221 (BLLM 2) (b) as recovered by the field team.	
Figure 9. Actual LiDAR survey coverage for Tineg floodplain	
Figure 10. Schematic diagram for the data pre-processing	
Figure 11. Smoothed Performance Metric Parameters of a Tineg Flight 7108GC	
Figure 12. Solution Status Parameters of Tineg Flight 7108GC	
Figure 13. Best Estimated Trajectory of the LiDAR missions conducted over the Tineg Floodplain	
Figure 14. Boundaries of the processed LiDAR data over the Tineg Floodplain	
Figure 15. Image of data overlap for Tineg floodplain	
Figure 16. Pulse density map of the merged LiDAR data for Tineg floodplain	
Figure 17. Elevation difference Map between flight lines for the Tineg Floodplain Survey	
Figure 18. Quality checking for Tineg flight 7108GC using the Profile Tool of QT Modeler	
Figure 19. Tiles for Tineg floodplain (a) and classification results (b) in TerraScan	
Figure 20. Point cloud before (a) and after (b) classification	
Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and	25
secondary DTM (d) in some portion of Tineg floodplain.	27
Figure 22. Portions in the DTM of the Tineg Floodplain – a bridge before (a) and after	27
(b) manual editing. Figure 23. Map of processed LiDAR data for the Tineg Floodplain	20
Figure 24. Map of Tineg Floodplain with validation survey points in green	
Figure 25. Correlation plot between calibration survey points and LiDAR data	
Figure 26. Correlation plot between the validation survey points and the LiDAR data	
Figure 27. Map of Tineg floodplain with bathymetric survey points in blue	
Figure 28. Blocks (in blue) of Tineg building features that was subjected to QC	
Figure 29. Extracted features of the Tineg Floodplain	
Figure 30. Tineg River Survey Extent	
Figure 31. Tineg River Basin Control Survey Extent	
Figure 32. GNSS base set up, Trimble® SPS 852, at ABR-32 located behind the barangay	
basketball court in Brgy. Lagben, Municipality of Lagangilang, Abra.	
Figure 33. GNSS receiver setup, Trimble® SPS 882, at AB-33 located at the approach of	40
Don Mariano Marcos Bridge, Municipality of Dolores, Abra.	
Figure 34. GNSS receiver setup, Trimble® SPS 882, at ILS-3913 located in Brgy. Banaoang,	41
Municipality of Bantay, Ilocos Sur.	
Figure 35. GNSS receiver setup, Trimble® SPS 882, at UP-CER located at the approach of	41
Cervantes Bridge in Brgy. San Isidro, Municipality of Lagangilang, Abra.	
Figure 36. San Juan Bridge facing upstream	45
Figure 37. Bridge As-Built Survey using PPK Technique	
Figure 38. Location map of the San Juan Bridge Cross Section	
Figure 39. The San Juan Bridge cross-section survey drawn to scale	
Figure 40. The San Juan Bridge as-built survey data	
Figure 41. Water level markings on San Juan Bridge	
Figure 42. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey	
Figure 43. The extent of the LiDAR ground validation survey (in red) for Tineg River Basin	51

Figure 44. Set up of the bathymetric survey at Tineg River using Ohmex™ single beam echo sounder	
Figure 45. Set-up for the manual bathymetric survey.	
Figure 46. The extent of the Tineg River Bathymetry Survey	
Figure 47. The Tineg Riverbed Profile from first Cabcaborao upstream.	
Figure 48. Tineg Riverbed Profile from Bag-Ug upstream.	
Figure 49. Location Map of the Tineg HEC-HMS model used for calibration	
Figure 50. Cross-Section Plot of San Juan Bridge.	
Figure 51. The rating curve at San Juan Bridge, San Juan, Abra	
Figure 52. Rainfall and outflow data at San Juan Bridge, which was used for modeling	
Figure 53. Location of Laoag RIDF Station relative to Tineg River Basin	
Figure 54. Synthetic storm generated for a 24-hr period rainfall for various return periods	
Figure 55. Soil Map of Tineg River Basin.	
Figure 56. Land Cover Map of Tineg River Basin.	62
Figure 57. Slope Map of the Tineg River Basin.	
Figure 58. Stream Delineation Map of Tineg River Basin	64
Figure 59. Tineg river basin model generated in HEC-HMS	
Figure 60. River cross-section of the Tineg River through the ArcMap HEC GeoRas tool	
Figure 61. A screenshot of the river sub-catchment with the computational area to be modeled	67
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).	
Figure 62. Outflow Hydrograph of Abra produced by the HEC-HMS model compared	68
with observed outflow.	
Figure 63. The Outflow hydrograph at the Tineg Station, generated using the Laoag RIDF	70
simulated in HEC-HMS.	
Figure 64. Abra-Tineg-Ikmin river (1) generated discharge using 5-, 25-, and 100-year Laoag	71
rainfall intensity-duration-frequency (RIDF) in HEC-HMS.	
Figure 65. Abra-Tineg-Ikmin river (2) generated discharge using 5-, 25-, and 100-year Laoag	71
rainfall intensity-duration-frequency (RIDF) in HEC-HMS.	
Figure 66. Abra-Tineg-Ikmin river (3) generated discharge using 5-, 25-, and 100-year Laoag	72
rainfall intensity-duration-frequency (RIDF) in HEC-HMS.	
Figure 67. Sample output map of the Tineg RAS Model	
Figure 68. A 100-year Flood Hazard Map for Abra-Tineg-Ikmin Floodplain overlaid	75
on Google Earth imagery.	
Figure 69. A 100-year Flow Depth Map for Abra-Tineg-Ikmin Floodplain overlaid	76
on Google Earth imagery.	
Figure 70. A 25-year Flood Hazard Map for Abra-Tineg-Ikmin Floodplain overlaid	77
on Google Earth imagery.	
Figure 71. A 25-year Flow Depth Map for Abra-Tineg-Ikmin Floodplain overlaid	78
on Google Earth imagery.	
Figure 72. A 5-year Flood Hazard Map for Abra-Tineg-Ikmin Floodplain overlaid	79
on Google Earth imagery.	
Figure 73. A 5-year Flood Depth Map for Abra-Tineg-Ikmin Floodplain overlaid	80
on Google Earth imagery.	
Figure 74. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period	
Figure 75. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period	
Figure 76. Affected Areas in Langiden, Abra during 5-Year Rainfall Return Period	
Figure 77. Affected Areas in Pidigan, Abra during 5-Year Rainfall Return Period	
Figure 78. Affected Areas in Pidigan, Abra during 5-Year Rainfall Return Period	
Figure 79. Affected Areas in San Quintin, Abra during 5-Year Rainfall Return Period	
Figure 80. Affected Areas in Nueva Era, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 81. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 82. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 83. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 84. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 85. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 86. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 87. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 88. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 89. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 90. Affected Areas in San Ildefonso, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 91. Affected Areas in San Ildefonso, Ilocos Sur during 5-Year Rainfall Return Period	
EIRDLE 77. AURCIPO AIRAS IO SAU IDAO, NOCOS SUL ODITIN S-YRAL KAMIAN KRITIM PRIMO	. [1]

Figure 93. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return PeriodPriod	101
Figure 94. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period	102
Figure 95. Affected Areas in San Vicente, Ilocos Sur during 5-Year Rainfall Return Period	103
Figure 96. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period	105
Figure 97. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period	105
Figure 98. Affected Areas in Santa Catalina, Ilocos Sur during 5-Year Rainfall Return Period	106
Figure 99. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period	108
Figure 100. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period	108
Figure 101. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period	109
Figure 102. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 103. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 104. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 105. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 106. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period	
Figure 107. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period	
Figure 108. Affected Areas in Langiden, Abra during 25-Year Rainfall Return Period	
Figure 109. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period	
Figure 110. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period	
Figure 111. Affected Areas in San Quintin, Abra during 25-Year Rainfall Return Period	
Figure 112. Affected Areas in Nueva Era, Ilocos Norte during 25-Year Rainfall Return Period	
Figure 113. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 114. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 115. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 116. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 117. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 118. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 119. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 120. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 121. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 122. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 123. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 124. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 125. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 126. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 127. Affected Areas in San Vicente, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 128. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 129. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 130. Affected Areas in Santa Catalina, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 131. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 132. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 133. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 134. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period	
Figure 135. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period	144
Figure 136. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period	145
Figure 137. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period	145
Figure 138. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period	147
Figure 139. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period	147
Figure 140. Affected Areas in Langiden, Abra during 100-Year Rainfall Return Period	148
Figure 141. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period	150
Figure 142. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period	150
Figure 143. Affected Areas in San Quintin, Abra during 100-Year Rainfall Return Period	151
Figure 144. Affected Areas in Nueva Era, Ilocos Norte during 100-Year Rainfall Return Period	152
Figure 145. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 146. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 147. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 148. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 149. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 150. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 151. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 152. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period	
Figure 153, Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period	161

Figure 154. Affected Areas in San Ildefonso, Ilocos Sur during 100-Year Rainfall Return Period	163
Figure 155. Affected Areas in San Ildefonso, Ilocos Sur during 100-Year Rainfall Return Period	163
Figure 156. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period	164
Figure 157. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period	165
Figure 158. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period	166
Figure 159. Affected Areas in San Vicente, Ilocos Sur during 100-Year Rainfall Return Period	167
Figure 160. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period	169
Figure 161. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period	169
Figure 162. Affected Areas in Santa Catalina, Ilocos Sur during 100-Year Rainfall Return Period	170
Figure 163. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period	172
Figure 164. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period	172
Figure 165. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period	173
Figure 166. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period	176
Figure 167. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period	176
Figure 168. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period	177
Figure 169. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period	177
Figure 170. Validation Points for a 5-year Flood Depth Map of the Tineg Floodplain	180
Figure 171. Flood depth map vs actual flood depth.	181

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation				
Ab	abutment				
ALTM	Airborne LiDAR Terrain Mapper				
ARG	automatic rain gauge				
ATQ	Antique				
AWLS	Automated Water Level Sensor				
BA	Bridge Approach				
BM	benchmark				
CAD	Computer-Aided Design				
CN	Curve Number				
CSRS	Chief Science Research Specialist				
DAC	Data Acquisition Component				
DEM	Digital Elevation Model				
DENR	Department of Environment and Natural Resources				
DOST	Department of Science and Technology				
DPPC	Data Pre-Processing Component				
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]				
DRRM	Disaster Risk Reduction and Management				
DSM	Digital Surface Model				
DTM	Digital Terrain Model				
DVBC	Data Validation and Bathymetry Component				
FMC	Flood Modeling Component				
FOV	Field of View				
GiA	Grants-in-Aid				
GCP	Ground Control Point				
GNSS	Global Navigation Satellite System				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System				
HEC-RAS	Hydrologic Engineering Center - River Analysis System				
НС	High Chord				
IDW	Inverse Distance Weighted [interpolation method]				

IMU	Inertial Measurement Unit				
kts	knots				
LAS	LiDAR Data Exchange File format				
LC	Low Chord				
LGU	local government unit				
LiDAR	Light Detection and Ranging				
LMS	LiDAR Mapping Suite				
m AGL	meters Above Ground Level				
MMS	Mobile Mapping Suite				
MSL	mean sea level				
NSTC	Northern Subtropical Convergence				
PAF	Philippine Air Force				
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration				
PDOP	Positional Dilution of Precision				
PPK	Post-Processed Kinematic [technique]				
PRF	Pulse Repetition Frequency				
PTM	Philippine Transverse Mercator				
QC	Quality Check				
QT	Quick Terrain [Modeler]				
RA	Research Associate				
RIDF	Rainfall-Intensity-Duration-Frequency				
RMSE	Root Mean Square Error				
SAR	Synthetic Aperture Radar				
SCS	Soil Conservation Service				
SRTM	Shuttle Radar Topography Mission				
SRS	Science Research Specialist				
SSG	Special Service Group				
TBC	Thermal Barrier Coatings				
UPC	University of the Philippines Cebu				
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry				
UTM	Universal Transverse Mercator				
WGS	World Geodetic System				

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

CHAPTER 1: OVERVIEW OF THE PROGRAM AND TINEG RIVER

Enrico C. Paringit, Dr. Eng., and Dr. Chelo Pascua

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Baguio (UPB). UPB is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 12 river basins in the Ilocos Region and the Cordillera Administrative Region. The university is located in Baguio City in the province of Benguet.

1.2 Overview of the Tineg River Basin

Tineg River Basin covers nine (9) municipalities in Abra namely: San Juan, Tineg, Dolores, La Paz, Lacub, Lagangilang, Lagayan, Licuan-Baay, and Malibcong. The DENR River Basin Control Office identified the basin to have a drainage area of 1550 km2 and an estimated 3,790 million cubic meter (MCM) annual runoff (RBCO, 2015).

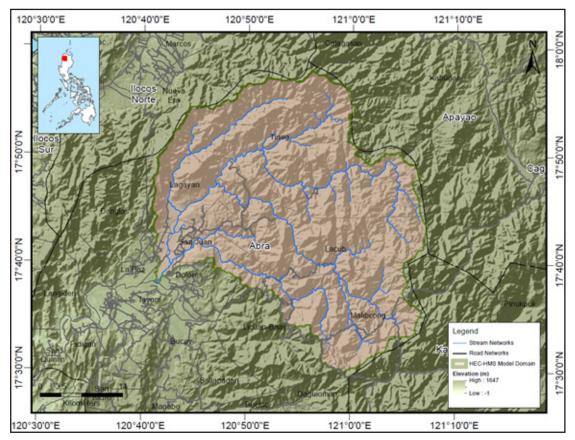
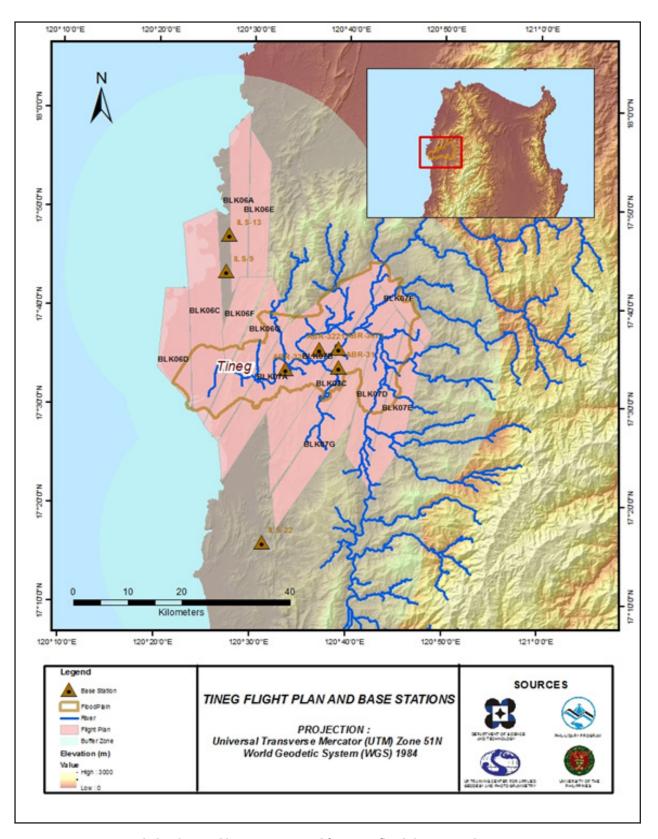


Figure 1. Map of Tineg River Basin (in brown).

Its main stem, Tineg River, is part of the thirteen (13) river systems in Northern Luzon Region. According to the 2015 national census of NSO, a total of 13,771 persons are residing within the immediate vicinity of the river which is distributed among twenty (20) barangays in Municipalities of Dolores, La Paz, and San Juan, in Abra. Agriculture with farming is the basic source of livelihood in the area surrounding the river particularly in Municipality of Dolores. It is said that 30% of the total agricultural land in the area is devoted to farming (http://www.dilgcar.com/index.php/2015-07-10-04-38-51/municipality-of-dolores, 2016). In August 2014, the area has been damaged by Typhoon Ineng which also killed 10 persons (http://www.philstar.com/ headlines/2015/08/23/1491126/ineng-death-toll-rises-10, 2014).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE IKMIN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas


The methods applied in this chapter were based on the DREAM methods manual (Sarmiento et al., 2014) and further enhanced and updated in Paringit et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Tineg floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Tineg Floodplain in Abra. These flight missions were planned for 14 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time using one sensor – the Gemini (see Annex 1 for sensor specifications). The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2, on the other hand, shows the flight plan for Tineg floodplain survey.

Table 1. Flight planning parameters for Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK6A	1200	30	40	100	50	120	5
BLK6C	1000	40	30	100	50	120	5
BLK6D	1000	50	40	100	50	120	5
BLK6DS	1800	50	30	70	50	120	5
BLK6E	1200	40	30	100	50	120	5
BLK6F	1600	40	30	70	50	120	5
BLK6G	1800	55, 40	30, 36	70	50	120	5
BLK7A	1600	40	30	70	50	120	5
BLK7AS	1000	40	30	100	50	120	5
BLK7B	1300	30	30	70	50	120	5
BLK7BS	1000	40	30	100	40	120	5
BLK7CS	1800	55	36	70	50	120	5
BLK7D	1300	50	30	70	50	120	5
BLK7E	1800	40	30	70	50	120	5
BLK7F	1800	35	30	70	50	120	5
BLK7G	1300	50	30	70	50	120	5
BLK7GS	1400	50	30	70	50	120	5

 $Figure\ 2.\ Flight\ plans\ and\ base\ stations\ used\ for\ Tineg\ floodplain\ using\ the\ Gemini\ sensor.$

2.2 Ground Base Stations

The project team was able to recover five (5) NAMRIA ground control points, ABR-31, ABR-32, ILS-9, ILS-13 and ILS-22 which are of second (2nd) order accuracy and ABR-3221 which is of fourth (4th) order accuracy. The project team also established one (1) ground control point ABR-3071.

The certification for the NAMRIA reference points and benchmarks are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey from February 21 to March 12, 2014 and May 28, 2016. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, TRIMBLE SPS 985, and Topcon GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Tineg floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Tineg Floodplain LiDAR Survey. Figure 3 to Figure 8 show the recovered NAMRIA reference points within the area of the floodplain, while Table 2 to Table 8 show the details about the following NAMRIA control stations and established points. Table 9, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

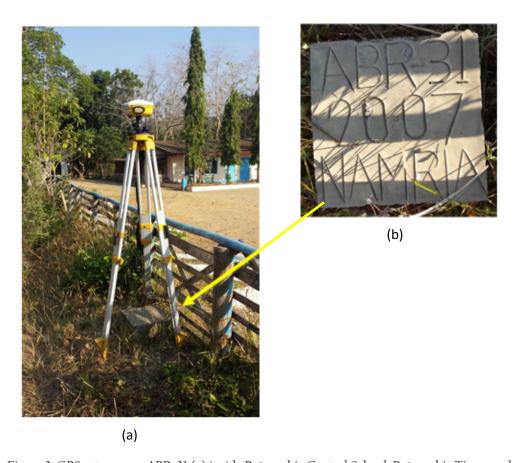


Figure 3. GPS set-up over ABR-31 (a) inside Peñarrubia Central School, Peñarrubia Tineg; and NAMRIA reference point ABR-31 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point ABR-31 used as base station for the LiDAR acquisition.

Station Name	ABR-31		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°34′4.18831″ 120°38′57.99392″ 98.78 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	426,785.996 m 1,942,969.967 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°33′58.07703″ N 120°39′2.63930″ E 132.481 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	250,503.56 m 1,943, 800.89 m	

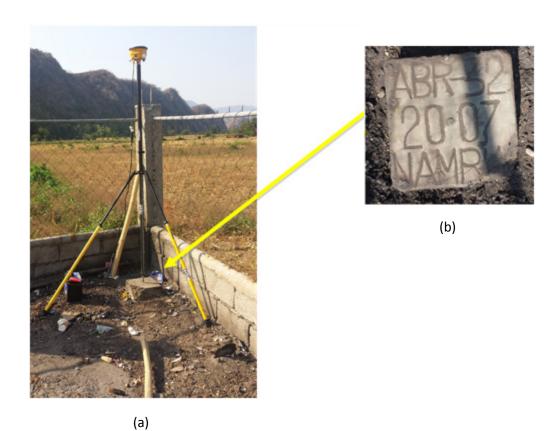


Figure 4. GPS set-up over ABR-32 (a) inside the Barangay Hall Compound of Barangay Suyo, Pidigan Tineg; and NAMRIA reference point ABR-32 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ABR-32 used as base station for the LiDAR acquisition.

Station Name	АВГ	₹-32
Order of Accuracy	21	nd
Relative Error (Horizontal positioning)	1 in 5	0,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°33′49.34656″ N 120°33′25.07659″ E 39.322 m
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	452,967.729 m 1,942,534.242 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°33′43.229″ N 120°33′29.72282″ E 72.814m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	240,677.03 m 1,943,468.54 m

(a)
Figure 5. GPS set-up over ILS-9 (a) on the hilly portion of Bacsil National High School in Barangay Bacsil, San Juan

Ilocos Sur; and NAMRIA reference point ILS-9 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ILS-9 used as base station for the LiDAR acquisition.

Station Name	II	.S-9	
Order of Accuracy	2	nd	
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°43′40.62808" N 120°27′9.37799" E 56.577 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	441,941.245 m 1,960,739.965 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°43′34.46721″ N 120°27′14.01102″ E 89.291 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	229,838.72 m 1,961,798.84 m	

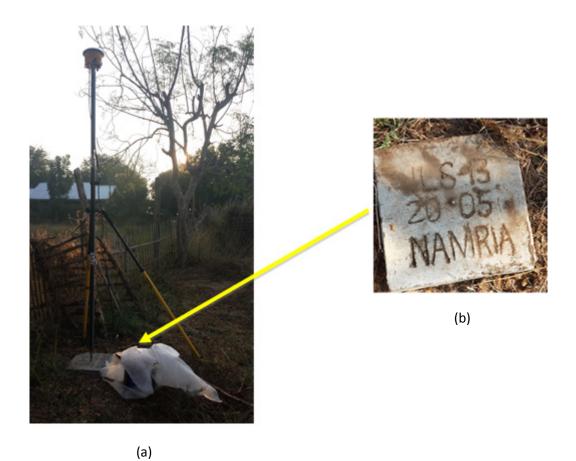


Figure 6. GPS set-up over ILS-13 (a) beside the school oval of Cabugao South Central School in Barangay Bonifacio, Cabugao Ilocos Sur; NAMRIA reference point ILS-13 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point ILS-13 used as base station for the LiDAR acquisition.

Station Name	ILS-13		
Order of Accuracy	2	2nd	
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°47′21.51067″ N 120°27′23.35275″ E 26.741 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	442, 372.629 m 1,967,529.087 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°47′15.33691″ N 120°27′27.98067″ E 59.267 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	230,342.67 m 1,968,586.44 m	

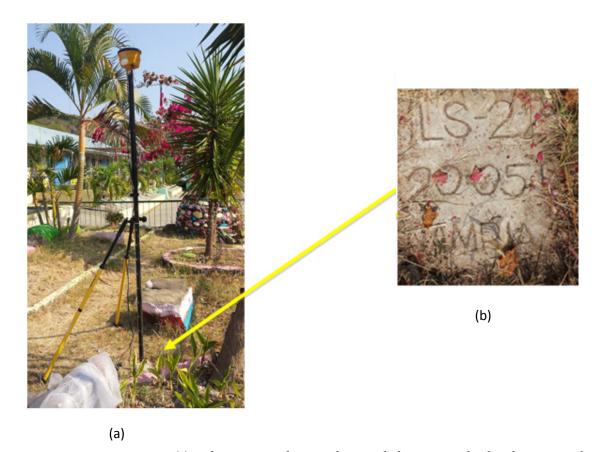


Figure 7. GPS set-up over ILS-22 (a) at the science park in North Central Elementary School in the Municipality of Lidlidda, Ilocos Sur; and NAMRIA reference point ILS-22 (b) as recovered by the field team.

 $\label{thm:control} Table~6.~Details~of~the~recovered~NAMRIA~horizontal~control~point~ILS-22~used~as~base~station~for~the~LiDAR~acquisition.$

Station Name	IL	S-22	
Order of Accuracy	2	2nd	
Relative Error (horizontal positioning)	1 in 50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°16′13.59403″ N 120°31′8.89179″ E 55.312 m	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	448,870.206 m 1,910,089 m	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°16′7.53708″ N 120°31′13.56269″ E 89.647 m	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	236, 238.44 m 1,911,053.54 m	

(b)

(a)

Figure 8. GPS set-up over ABR-3221 (BLLM 2) (a) inside the Town Plaza of Bangued, Tineg; Processed reference point ABR-3221 (BLLM 2) (b) as recovered by the field team.

Table 7. Details of the recovered processed reference point ABR-3221 (BLLM 2) used as base station for the LiDAR acquisition.

Station Name	ABR-322	1 (BLLM 2)
Order of Accuracy	4	1th
Relative Error (horizontal positioning)	1 in	10,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°35′52.68407″ N 120°36′58.62346″ E 56.365 m
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 5 PRS 92)	Easting Northing	459,272.709 m 1,984,6312.003 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°35′46.5637″ N 120°37′3.26652″ E 89.89 m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	247,024.3 m 1,947,181.20 m

Table 8. Details of the established horizontal control point ABR-307l used as base station for the LiDAR acquisition.

Station Name	ABR	R-3071
Order of Accuracy	2	2nd
Relative Error (horizontal positioning)	1 in	50,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°34′00.39935″ 120°38′57.75398″ 98.489 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°33′54.28829″ 120°39′02.39944″ 130.194 m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N WGS 1984)	Easting Northing	250495.042 m 1943684.465 m

Table 9. Ground control points used during LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
March 3,2014	7104GC	2BLK06E062A	ILS-13 & ILS-9
March 5,2014	7108GC	2BLK06C064A	ILS-13 & ILS-9
March 7,2014	7112GC	2BLK06G066A & 2BLK06DS066A	ILS-13 & ILS-9
March 8,2014	7114GC	2BLK07CS067A & 2BLK06G067A	ABR-31 & ILS-22
March 9,2014	7116GC	2BLK07B068A	ABR-31 & ABR-32
March 10,2014	7118GC	2BLK07DG069A	ABR-32 & ILS-22
March 11,2014	7120GC	2BLK06F070A & 2BLK07A070A	ABR-31 & ABR-32
March 11,2014	7121GC	2BLK07GS070B	ABR-31 & ABR-32
March 12,2014	7122GC	2BL07E071A & 2BLK07F071A	ABR-32 &ABR-3221 (BLLM 2)
May 28,2016	4043GC	2BLK7SA149A	ABR-31 & ABR0-3071
May 28,2016	4045GC	2BLK7SB149B	ABR-31 & ABR0-3071

2.3 Flight Missions

A total of eleven (11) missions were conducted to complete the LiDAR data acquisition in Tineg floodplain, for a total of forty-four hours and two minutes (44+2) minutes of flying time for RP-C9322 and RP-C9022 (See Annex 6). All missions were acquired using the Gemini LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 10, while the actual parameters used during the LiDAR data acquisition are presented in Table 11.

Table 10. Flight missions for LiDAR data acquisition in Tineg floodplain.

Date Surveyed	Flight Number	Flight Plan Area (km²)	Surveyed Area (km²)	Area Surveyed	Area Surveyed	rveyed Images		ing urs
				within the Floodplain (km²)	Outside the Floodplain (km²)	(Frames)	Hr	Min
March 3,2014	7104GC	209.533	153.144	NA	153.144	NA	3	19
March 5,2014	7108GC	297.03	300.794	74.402	226.392	NA	4	19
March 7,2014	7112GC	201.442	204.835	80.677	124.158	NA	4	7
March 8,2014	7114GC	314.959	205.573	91.195	114.378	NA	4	13
March 9,2014	7116GC	175.220	207.317	133.497	73.820	NA	4	13
March 10,2014	7118GC	268.487	209.529	107.974	101.555	NA	4	12
March 11,2014	7120GC	229.320	274.265	123.711	150.554	NA	4	1
March 11,2014	7121GC	135.552	166.409	31.191	135.218	NA	3	31
March 12,2014	7122GC	185.058	239.859	67.497	172.362	NA	3	55
May 28,2016	4043GC	240.512	247.573	155.546	92.027	NA	4	16
May 28,2016	4045GC	86.380	123.541	71.113	52.428	NA	3	56
TOTA	\L	2343.493	2332.839	936.803	1396.036	NA	44	2

Table 11. Actual parameters used during LiDAR data acquisition

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7104GC	1200, 1000	40, 30	30, 40	100	50	120	5
7108GC	1000	40	30	100	50	120	5
7112GC	1800	55	30	70	50	120	5
7114GC	1800, 1200	55, 40	30	70	50	120	5
7116GC	1300	30	30	70	50	120	5
7118GC	1300	50	30	70	50	120	5
7120GC	1600	40	30	70	50	120	5
7121GC	1400	50	30	70	50	120	5
7122GC	1800	40, 35	30	70	40	130	5
4043G	1000	40	40	100	50	130	5
4045G	1000	40	40	100	50	130	5

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Tineg floodplain (See Annex 7). It is situated within the provinces of Abra and Ilocos Sur. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 12. Figure 9, on the other hand, shows the actual coverage of the LiDAR acquisition for the Tineg floodplain.

Table 12. List of municipalities and cities surveyed during Tineg floodplain LiDAR survey.

Province	Municipality/ City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
Abra	San Quintin	62.288	62.288	100%
	Tayum	46.123	46.123	100%
	Peñarrubia	36.842	36.842	100%
	Pidigan	58.130	58.130	100%
	Bucay	104.454	104.446	100%
	Dolores	44.894	44.865	100%
	La Paz	55.189	54.939	100%
	San Isidro	41.689	41.457	99%
	Langiden	98.704	97.866	99%
	Manabo	83.344	70.818	85%
	Bangued	123.747	104.904	85%

	Pilar	92.196	72.964	79%
	Lagangilang	91.537	63.883	70%
	San Juan	64.640	40.793	63%
	Sallapadan	111.230	44.267	40%
	Villaviciosa	81.463	22.473	28%
	Lagayan	144.192	21.137	15%
	Danglas	175.704	24.185	14%
	Luba	126.574	8.548	7%
	Licuan-Baay	305.677	13.673	4%
Ilocos Sur	Caoayan	21.195	21.195	100%
	San Ildefonso	13.210	13.210	100%
	San Vicente	12.196	12.196	100%
	Santa	57.197	57.197	100%
	Santo Domingo	50.360	50.357	100%
	Vigan City	24.006	24.004	100%
	Bantay	71.063	71.016	100%
	Santa Catalina	10.832	10.694	99%
	Magsingal	78.898	73.780	94%
	Nagbukel	36.459	33.395	92%
	Narvacan	97.176	76.347	79%
	San Juan	59.878	39.792	66%
	Cabugao	68.933	42.411	62%
	Sinait	73.767	41.272	56%
	Burgos	49.604	13.567	27%
	Santa Maria	52.319	12.287	23%
	Lidlidda	39.476	0.605	2%
Ilocos Norte	Badoc	77.071	25.422	33%
	Pinili	63.184	11.905	19%
	Currimao	32.965	2.649	8%
	Nueva Era	618.996	19.287	3%
TOT	AL	3,557.40	1,687.19	47.43%
				

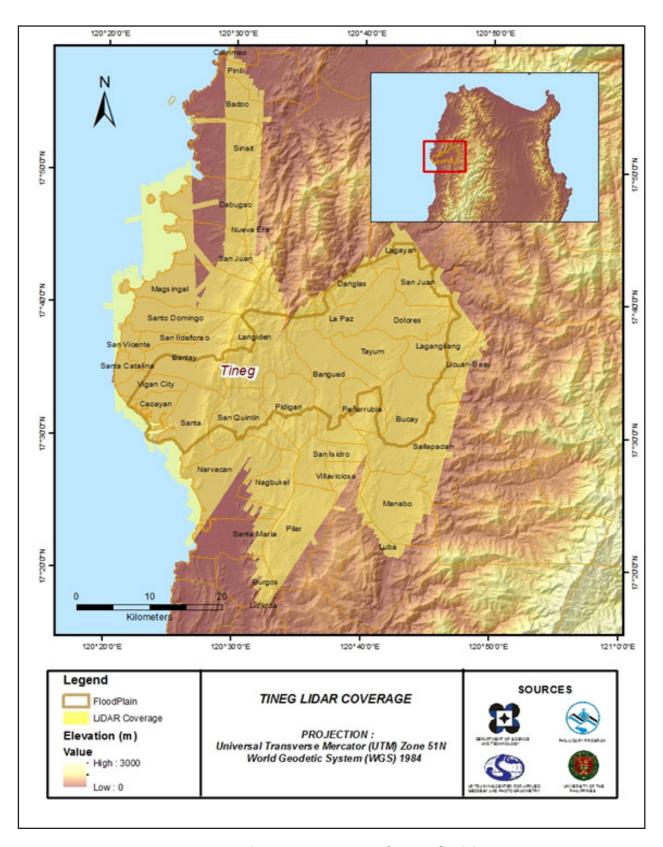


Figure 9. Actual LiDAR survey coverage for Tineg floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE TINEG FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Jovy Anne S. Narisma , Engr. Ma. Ailyn L. Olanda, Engr. Merven Mattew D. Natino, Engr. Kenneth A. Solidum , Engr. Jommer M. Medina, Carl Joshua S. Lacsina

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 10.

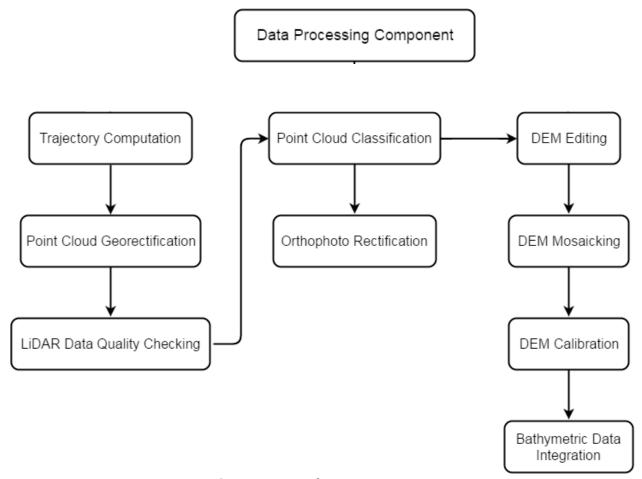


Figure 10. Schematic Diagram for Data Pre-Processing Component

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Tineg floodplain can be found in Annex 5. Missions flown during the first survey conducted on March 2014 used the Airborne LiDAR Terrain Mapper (ALTM™ Optech Inc.) Gemini system while missions acquired during the second survey on May 2016 were flown using the same system over Abra and Ilocos.

The Data Acquisition Component (DAC) transferred a total of 208.8 Gigabytes of Range data, 2.67 Gigabytes of POS data, and 105.49 Megabytes of GPS base station data to the data server on April 22, 2014 for the first survey and July 1, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Tineg was fully transferred on July 1, 2016, as indicated on the Data Transfer Sheets for Tineg floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 7108GC, one of the Tineg flights, which is the North, East, and Down position RMSE values are shown in Figure 11. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on March 5, 2014 00:00 AM. The y-axis is the RMSE value for that particular position.

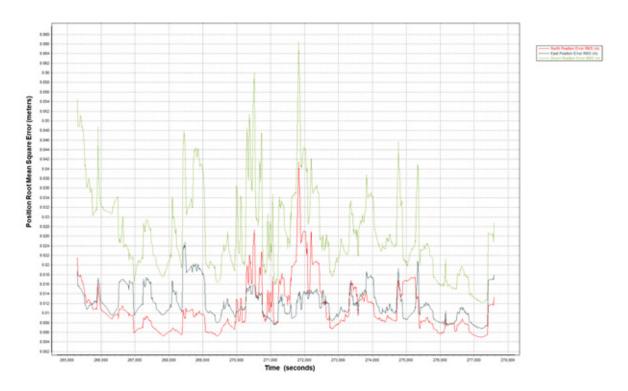


Figure 11. Smoothed Performance Metrics of Tineg Flight 7108GC.

The time of flight was from 265000 seconds to 278000 seconds, which corresponds to afternoon of March 5, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 2.70 centimeters, the East position RMSE peaks at 3.30 centimeters, and the Down position RMSE peaks at 3.30 centimeters, which are within the prescribed accuracies described in the methodology.

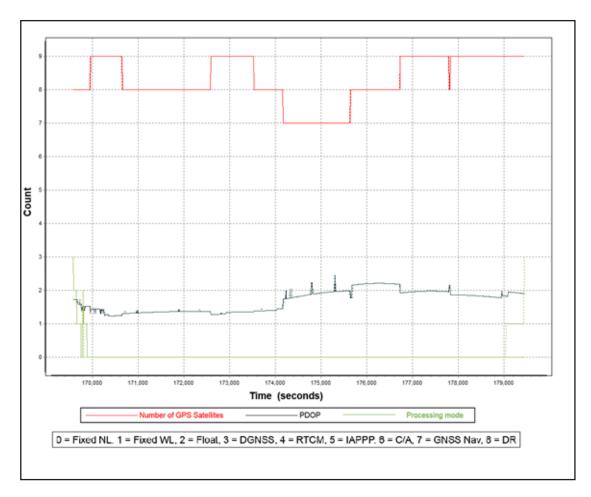


Figure 12. Solution Status Parameters of Tineg Flight 7108GC.

The Solution Status parameters of flight 7108GC one of the Tineg flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 12. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 7 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Tineg flights is shown in Figure 13.

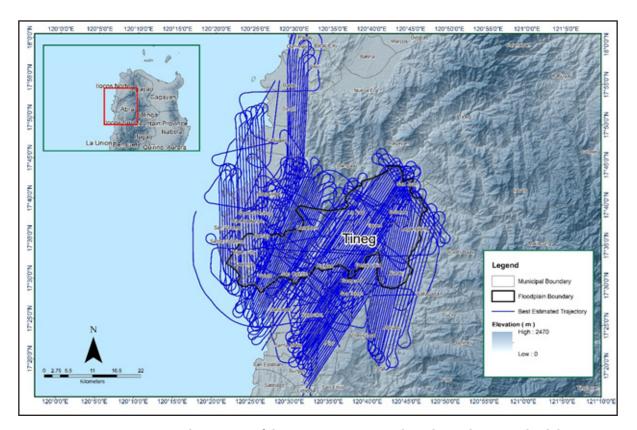


Figure 13. Best Estimated Trajectory of the LiDAR missions conducted over the Tineg Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 173 flight lines, with each flight line containing one channel, since the Gemini system contain one channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over the Tineg floodplain are given in Table 13.

Parameter	Acceptable Value	Value
Boresight Correction stdev)	<0.001degrees	0.000303
IMU Attitude Correction Roll and Pitch Correction stdev)	<0.001degrees	0.000657
GPS Position Z-correction stdev)	<0.01meters	0.0021

Table 13. Self-calibration Results values for Tineg flights.

The optimum accuracy were obtained for all Tineg flights based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are available in the Mission Summary Reports in Annex 8.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Tineg Floodplain is shown in Figure 14. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

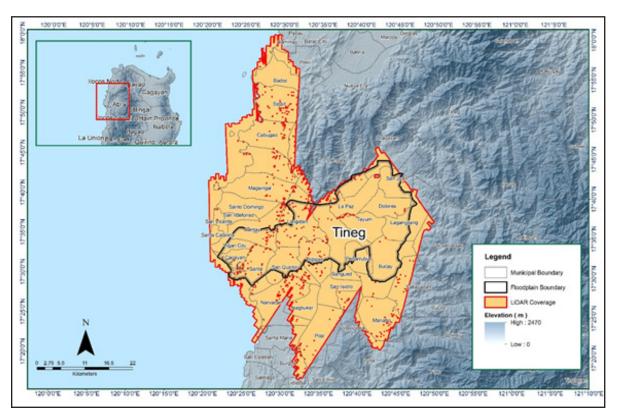


Figure 14. Boundaries of the processed LiDAR data over the Tineg Floodplain.

The total area covered by the Tineg missions is 2439.64 square kilometers (sq. kms.) that is comprised of fifteen (15) flight acquisitions grouped and merged into sixteen (16) blocks as shown in Table 14.

Table 14. List of LiDAR blocks for the Tineg floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Ilocos_Blk07EF	7122G	230.33
Ilocos_Blk07D	7118G	169.74
Ilocos_BIk07G	7121G	143.44
Ilocos_Blk07C_supplement	7114G	202.76
Ilocos_Blk07B	7116G	199.83
Ilocos_Blk07A_additional	7121G	41.2
Ilocos_Blk07A	7120G	169.39
Ilocos_Blk06G	7112G	84.74
Ilocos_Blk06G_supplement	7114G	94.44
Ilocos_Blk06F	7120G	84.74
Ilocos_Blk06A	7104G	337.98
Ilocos_Blk06D	7108GC	287.83
Ilocos_Blk06D_supplement	7112G	51.49
Ilocos_Blk06D_additional	7108GC	24.722
Laoag_Blk07A	4043G	114.25
	4045G	

Laoag_Blk07C	4043G	202.76
	4045G	
TOTAL		2439.64 sq.km

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 15. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

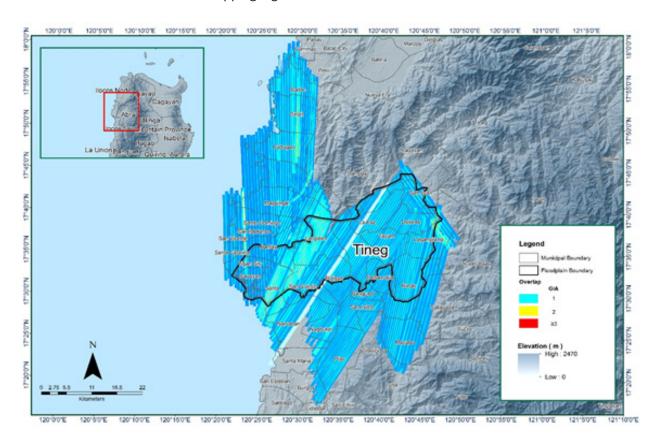


Figure 15. Image of data overlap for Tineg floodplain.

The overlap statistics per block for the Tineg floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.76% and 63.15% which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 16. It was determined that all LiDAR data for the Tineg floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.62 points per square meter.

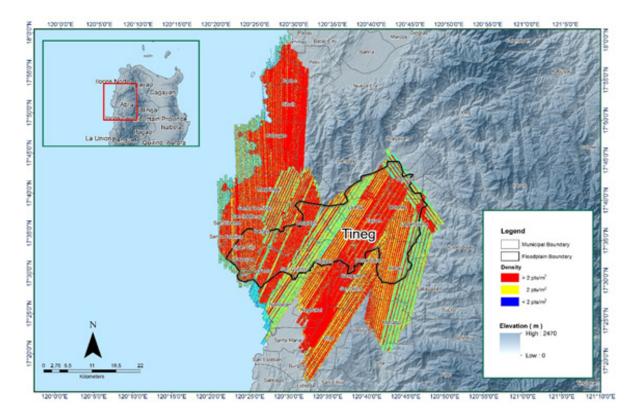


Figure 16. Pulse density map of the merged LiDAR data for Tineg floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 17. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

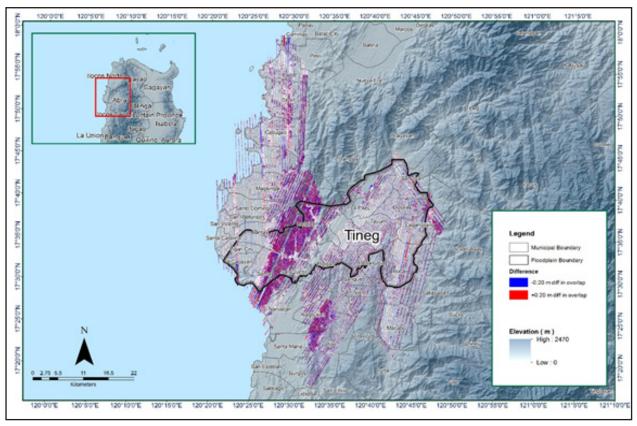


Figure 17. Elevation difference Map between flight lines for the Tineg Floodplain Survey

A screen capture of the processed LAS data from a Tineg flight 7108GC loaded in QT Modeler is shown in Figure 18. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

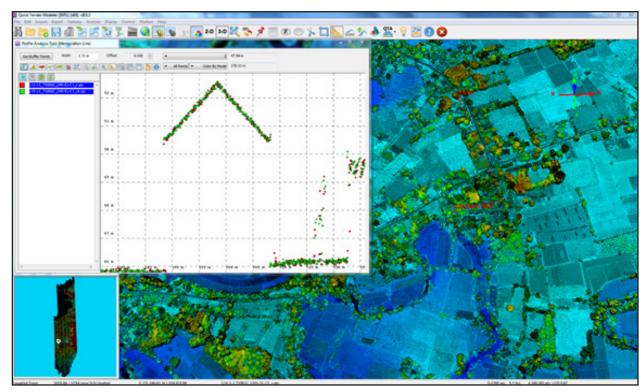


Figure 18. Quality checking for aTineg flight 7108GC using the Profile Tool of QT Modeler

3.6 LiDAR Point Cloud Classification and Rasterization

Table 15. Tineg classification results in TerraScan.

Pertinent Class	Total Number of Points
Ground	1,100,709,129
Low Vegetation	876,806,713
Medium Vegetation	1,373,158,802
High Vegetation	2,258,223,661
Building	254,479,708

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Tineg floodplain is shown in Figure 19. A total of 3,341 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 15. The point cloud has a maximum and minimum height of 1,140 meters and 23 meters, respectively.

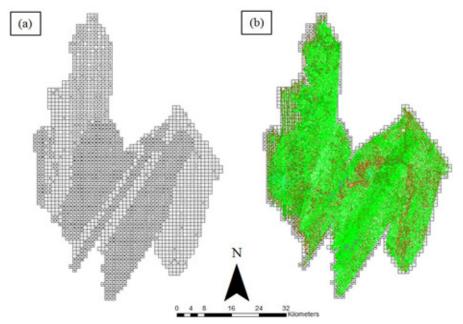


Figure 19. Tiles for Tineg floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 20. The ground points are in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

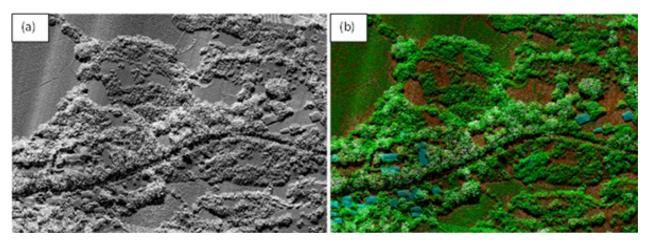


Figure 20. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and the secondary (T_ ASCII) DTM, first (S_ ASCII) and last (D_ ASCII) return DSM of the area in top view display are show in Figure 21. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

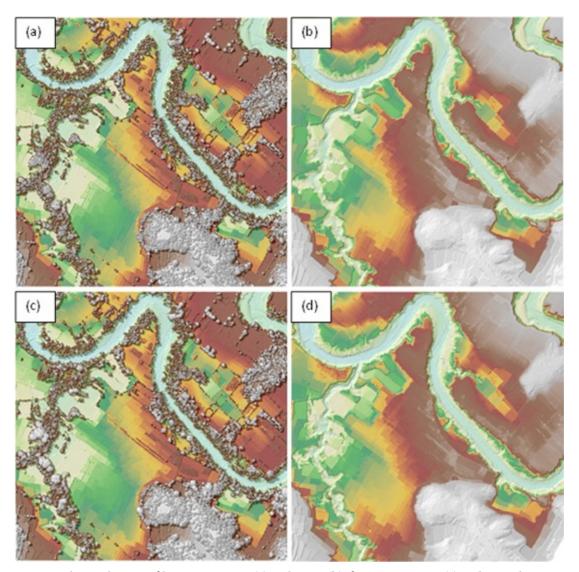


Figure 21. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Tineg floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Tineg floodplain.

3.8 DEM Editing and Hydro-Correction

Sixteen (16) mission blocks were processed for Tineg flood plain. These blocks are composed of Laoag and Ilocos blocks with a total area of 2439.64 square kilometers. Table 16 shows the name and corresponding area of each block in square kilometers.

Table 16. LiDAR blocks with its corresponding area.

LiDAR Blocks	Area (sq.km)		
Ilocos_Blk07EF	230.33		
Ilocos_BIk07D	169.74		
Ilocos_Blk07G	143.44		
Ilocos_Blk07C_supplement	202.76		
Ilocos_BIk07B	199.83		
Ilocos_Blk07A_additional	41.20		
Ilocos_BIk07A	169.39		
Ilocos_BIk06G	84.74		
Ilocos_Blk06G_supplement	94.44		
Ilocos_Blk06F	84.74		
Ilocos_BIk06A	337.98		
Ilocos_BIk06D	287.83		
Ilocos_Blk06D_supplement	51.49		
Laoag_BIk07A	114.25		
Laoag_Blk07C	202.76		
Ilocos_Blk06D_additional	24.72		
TOTAL	2439.64 sq.km		

Figure 22 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 22a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 22b).

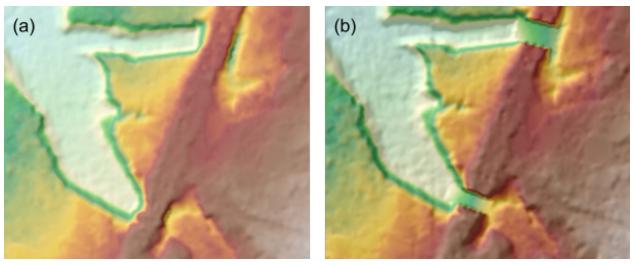


Figure 22. Portions in the DTM of the Tineg Floodplain – a bridge before (a) and after (b) manual editing.

3.9 Mosaicking of Blocks

Ilocos_Blk5A was used as the reference block at the start of mosaicking because this block was referred to a base with an acceptable order of accuracy. Table 17 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Tineg floodplain is shown in Figure 23. It can be seen that the entire Tineg floodplain is 100% covered by LiDAR data.

Table 17. Shift values of each LiDAR block of Tineg Floodplain.

Mission Blocks	Shift Values (meters)		
	х	у	Z
Ilocos_Blk07EF	2.20	0.50	-0.40
Ilocos_Blk07D	2.20	0.50	+2.90
Ilocos_Blk07G	2.20	0.50	+2.90
Ilocos_Blk07C_supplement	2.20	0.50	+2.90
Ilocos_Blk07B	2.20	0.50	+2.90
llocos_Blk07A_additional	0.00	0.00	+2.75
Ilocos_Blk07A	0.00	0.00	+2.90
Ilocos_Blk06G	1.20	-1.90	-0.17
Ilocos_Blk06G_supplement	1.20	-1.90	+3.00
Ilocos_Blk06F	1.20	-1.90	+2.84
Ilocos_Blk06A	1.20	-1.90	0.00
Ilocos_Blk06D	1.20	-1.90	0.00
Ilocos_Blk06D_supplement	1.20	-1.90	0.00
Laoag_Blk7A	0.00	0.00	+2.64
Laoag_Blk7C	0.00	0.00	+2.51
Ilocos_Blk06D_additional	0.51	0.00	-0.08

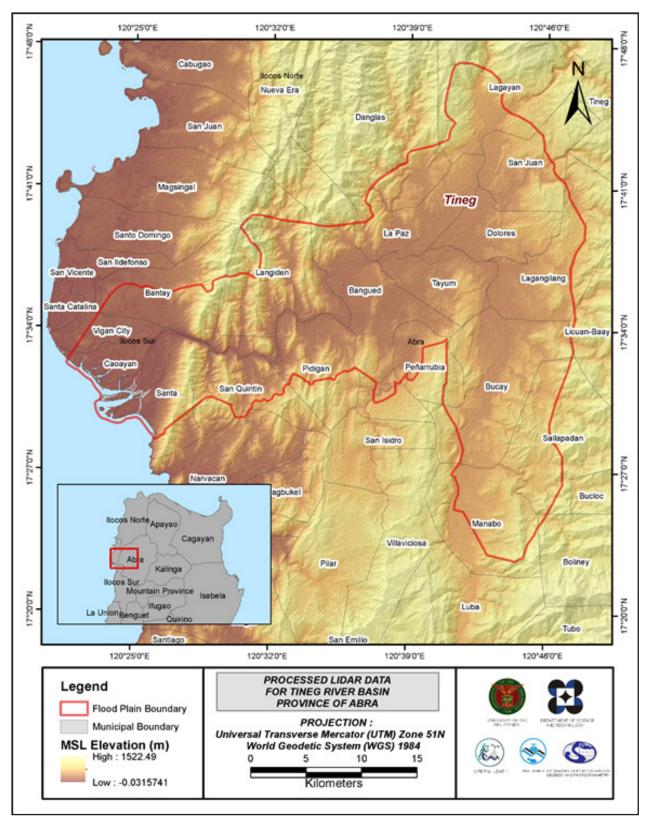


Figure 23. Map of processed LiDAR data for the Tineg Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in the provinces of Ilocos, Launion and Abra to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 31,869 points were gathered for all the floodplains within the provinces of Ilocos, La Union and Abra wherein the Tineg is located. Random selection of 80% of the survey points, resulting to 25,496 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 3.47 meters with a standard deviation of 0.19 meters. Calibration of Tineg LiDAR data was done by subtracting the height difference value, 3.47 meters, to the mosaicked LiDAR data for Tineg. Table 18 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

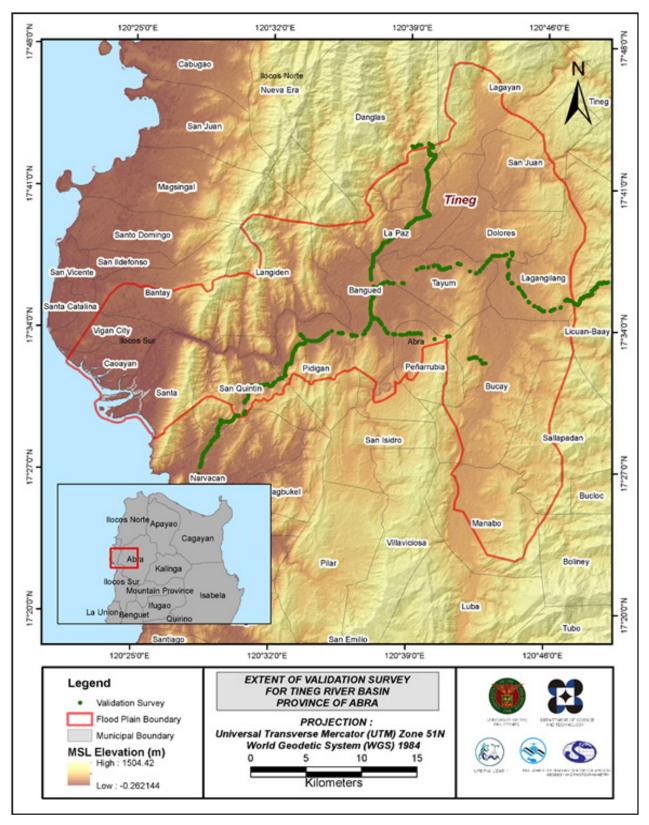


Figure 24. Map of Tineg Floodplain with validation survey points in green.

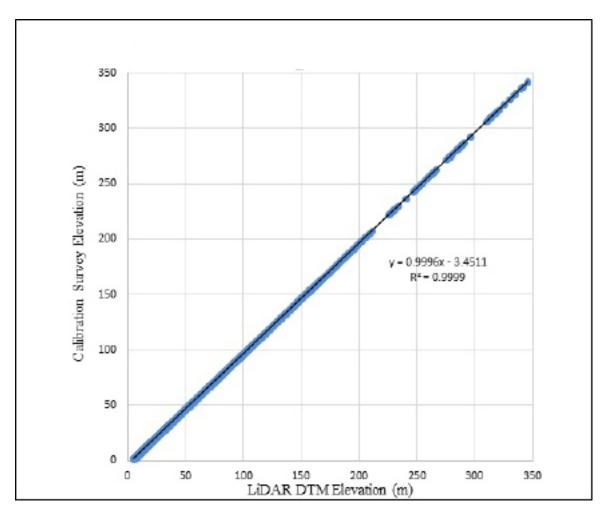


Figure 25. Correlation plot between calibration survey points and LiDAR data.

Table 18. Calibration Statistical Measures.

Calibration Statistical Measures	Value (meters)
Height Difference	3.47
Standard Deviation	0.19
Average	-3.46
Minimum	-4.00
Maximum	-3.00

A total of 970 survey points that are near the Tineg flood plain were used for the validation of the calibrated Tineg DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 26. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.17 meters with a standard deviation of 0.15 meters, as shown in Table 19.

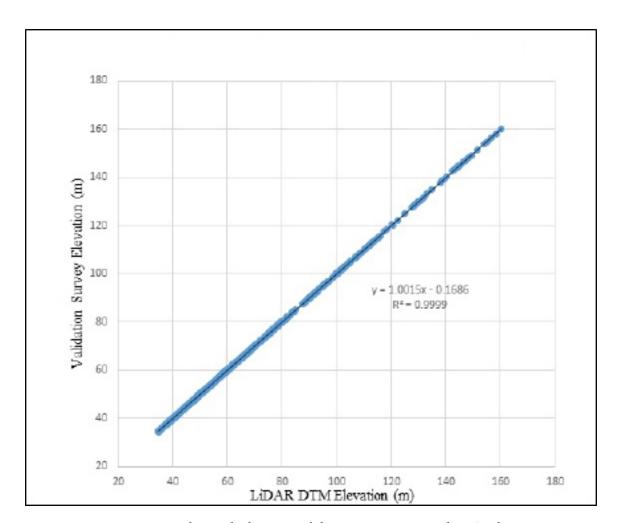


Figure 26. Correlation plot between validation survey points and LiDAR data.

Table 19. Validation Statistical Measures.

Validation Statistical Measures	Value (meters)
RMSE	0.17
Standard Deviation	0.15
Average	-0.07
Minimum	-0.48
Maximum	0.47

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Tineg with 27,359 bathymetric survey points. The resulting raster surface produced was done by Local Polynomial interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.20 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Tineg integrated with the processed LiDAR DEM is shown in Figure 27.

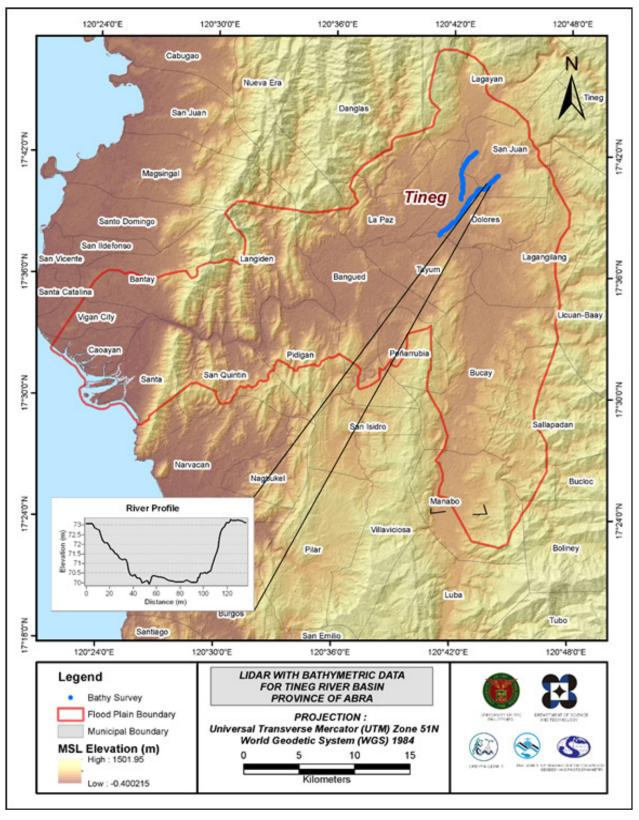


Figure 27. Map of Tineg floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Tineg floodplain, including its 200 m buffer, has a total area of 776.76 sq km. For this area, a total of 24.0 sq km, corresponding to a total of 5,893 building features, are considered for QC. Figure 28 shows the QC blocks for Tineg floodplain.

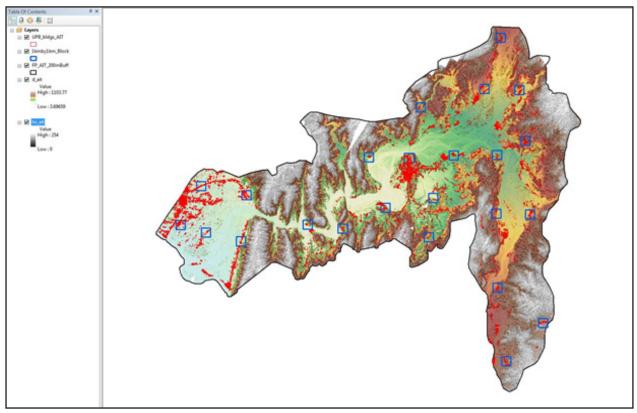


Figure 28. Blocks (in blue) of Tineg building features that was subjected to QC.

Quality checking of Tineg building features resulted in the ratings shown in Table 20.

Table 20. Details of the quality checking ratings for the building features extracted for the Tineg River Basin

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Tineg	99.44	99.98	97.30	PASSED

3.12.2 Height Extraction

Height extraction was done for 51,234 building features in Tineg floodplain. Of these building features, 843 were filtered out after height extraction, resulting to 50,391 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 14.87 meters.

3.12.3 Feature Attribution

Data collected from various sources which includes OpenStreetMap and Google Maps/Earth were used in the attribution of building features. Areas where there is no available data were subjected for field attribution using ESRI's Collector App. The app can be accessed offline and data collected can be synced to ArcGIS Online when WiFi or mobile data is available.

Table 21 summarizes the number of building features per type. On the other hand, Table 22 shows the total length of each road type, while Table 23 shows the number of water features extracted per type.

Table 21. Building features extracted for Tineg Floodplain.

Facility Type	No. of Features
Residential	49,140
School	749
Market	37
Agricultural/Agro-Industrial Facilities	4
Medical Institutions	38
Barangay Hall	6
Military Institution	0
Sports Center/Gymnasium/Covered Court	11
Telecommunication Facilities	2
Transport Terminal	16
Warehouse	3
Power Plant/Substation	0
NGO/CSO Offices	1
Police Station	3
Water Supply/Sewerage	0
Religious Institutions	56
Bank	10
Factory	32
Gas Station	23
Fire Station	2
Other Government Offices	51
Other Commercial Establishments	207
Total	50,391

Table 22. Total length of extracted roads for Tineg Floodplain.

Floodplain	Road Network Length (km)					Total
	Barangay Road	City/Municipal Road	Provincial Road	National Road	Others	
Abra	382.5	225.68	12.17	100.03	0.00	720.38

Table 23. Number of extracted water bodies for Tineg Floodplain.

Floodplain	Water Body Type					
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen					
Abra	147	164	0	0	0	311

A total of 25 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the completed Digital Surface Model (DSM) of the Tineg floodplain overlaid with its ground features.

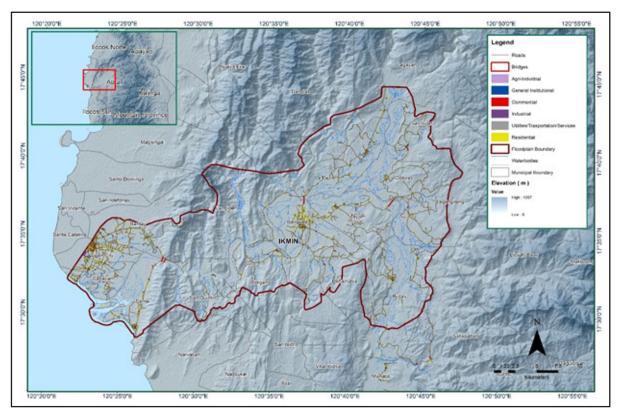


Figure 29. Extracted features of the Tineg Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TINEG RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Tineg River on July 13 to 27, 2016. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point; (iii) the cross section survey and bridge as-built survey, and water level marking in the Mean Sea Level (MSL) of the San Juan Bridge in Brgy. Badas, Municipality of San Juan, Abra; (iv) validation points acquisition of about 82 km covering the Tineg River Basin area; and (v) bathymetric survey from its two upstream in Brgy. Cabcaborao and Brgy. Ba-Ug in Municipality of San Juan; down to the downstream end of the river located in Brgy. Gaddanai, in Municipality of Tayum, with an approximate length of 13.239 km using Ohmex™ single beam echo sounder and Trimble® SPS 882 GNSS PPK survey technique. Figure 30 illustrates the extent of the entire survey in Tineg River.

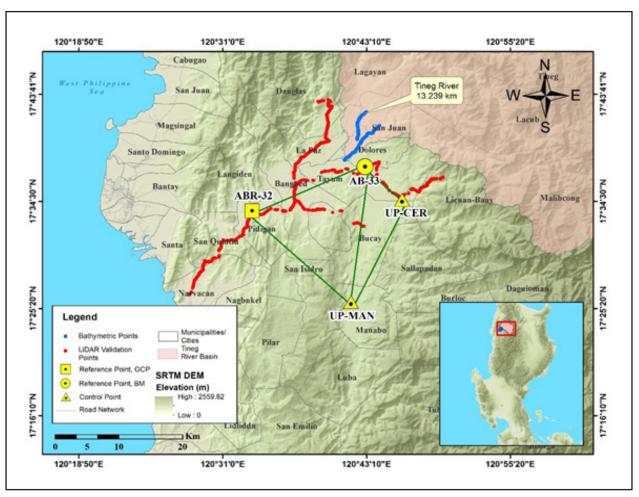


Figure 30. Tineg River Survey Extent

4.2 Control Survey

The GNSS network utilized for the Tineg River Basin is composed of two (2) loops and a baseline that was established on July 16, 2016, which occupied the following reference points: ABR-32, a second-order GCP in Brgy. Lagben, Municipality of Lagangilang; and AB-33, a first order BM, in Brgy. Pamutic, Municipality of Pidigan, both in Abra.

Two (2) control points were established along the approach of bridges, namely: UP-CER, located at Cervantes Bridge in Brgy. San Isidro, Municipality of Lagangilang; and UP-MAN, located at Manabo Bridge, in Brgy. San Juan Norte, Municipality of Manabo, Abra.

Table 24 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 31 shows the GNSS network established in the Tineg River Survey.

Table 24. List of reference and control points used during the survey in Tineg River (Source: NAMRIA, UP-TCAGP).

Control Point	Order of Accuracy	Geographic Coordinates (WGS 84)						
		Latitude	Longitude	Ellipsoidal Height (m)	Elevation in MSL (m)	Date Established		
ABR-32	2nd order, GCP	17°33'43.22900"N	120°33'29.72282"E	71.266	-	2014		
AB-33	1st order, BM	-	-	103.212	64.162	2016		
UP-CER	UP Established	-	-	-	-	Jul 16, 2016 11:16 AM		
UP- MAN	UP Established	-	-	-	-	Jul 16, 2016 11:17 AM		



Figure 31. Tineg River Basin Control Survey Extent.

Figure 32 to Figure 35 depict the setup of the GNSS on recovered reference points and established control points in the Tineg River.

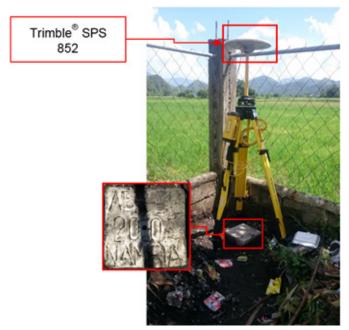


Figure 32. GNSS base set up, Trimble® SPS 852, at ABR-32 located behind the barangay basketball court in Brgy. Lagben, Municipality of Lagangilang, Abra.

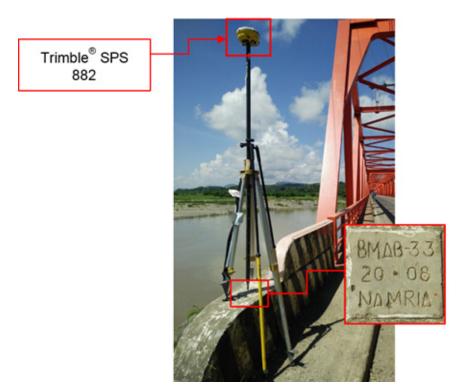


Figure 33. GNSS receiver setup, Trimble® SPS 882, at AB-33 located at the approach of Don Mariano Marcos Bridge, Municipality of Dolores, Abra.

Figure 35. GNSS receiver setup, Trimble® SPS 882, at UP-MAN located at the approach of Manabo Bridge in Brgy. San Juan Norte, Municipality of Manabo, Abra.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 25 presents the baseline processing results of control points in the Tineg River Basin, as generated by the TBC software.

Table 25. The Baseline processing report for the Pambujan River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	ΔHeight (Meter)
ABR-32 AB-33	07-16-16	Fixed	0.005	0.017	67°38′57″	18255.694	31.726
ABR-32 UP-MAN	07-16-16	Fixed	0.004	0.023	134°12′01″	20653.613	-6.683
AB-33 UP- MAN	07-16-16	Fixed	0.006	0.030	185°36′29″	21442.161	-19.151
UP-CER UP-MAN	07-16-16	Fixed	0.005	0.030	205°21′41″	17879.146	38.387
AB-33 UP-CER	07-16-16	Fixed	0.005	0.019	132°59′24″	7598.765	26.762

As shown in Table 25, a total of five (5) baselines were processed with the coordinates of ABR-32 held fixed for coordinate value; and AB-33 fixed for elevation values; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$\sqrt{((x_e)^2 + (y_e)^2)}$$
 <20cm and z_e < 10 cm

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 26 to Table 29.

The four (4) control points, ABR-32, AB-33, UP-CER and UP-MAN were occupied and observed simultaneously to form a GNSS loop. Coordinates of ABR-32; and elevation value of AB-33 were held fixed during the processing of the control points as presented in Table 26. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID East σ North σ Height σ Elevation σ Type (Meter) (Meter) (Meter) (Meter) ABR-32 Local Fixed Fixed **AB-33** Grid Fixed Fixed = 0.000001 (Meter)

Table 26. Constraints applied to the adjustment of the control points.

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 27. The fixed control ABR-32 no value for grid error while AB-33 has no value for elevation error.

V.
,

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ABR-32	240815.386	?	1943396.049	?	33.435	0.047	LL
AB-33	257794.046	0.009	1950122.643	0.007	64.162	?	е
UP-CER	263291.187	0.011	1944873.027	0.009	89.924	0.051	
UP-MAN	255441.893	0.009	1928802.720	0.007	115.268	0.055	

With the mentioned equation, $\sqrt{((x_o)^2+(y_o)^2)}<20cm$ for horizontal and $z_o<10$ cm for the vertical; the computation for the accuracy are as follows:

ABR-32 a.

> Horizontal Accuracy = Fixed

4.7 cm < 10 cm Vertical Accuracy =

b. AB-33

> $V((0.9)^2 + (0.7)^2$ Horizontal Accuracy = =

 $\sqrt{(0.81 + 0.49)}$

1.14< 20 cm

Vertical Accuracy Fixed

UP-CER c.

> **Horizontal Accuracy** $V((1.1)^2 + (0.9)^2$

√ (1.21 + 0.81) =

1.42< 20 cm =

Vertical Accuracy 5.1 cm < 10 cm

d. **UP-MAN**

Horizontal Accuracy $V((0.9)^2 + (0.7)^2$

 $\sqrt{(0.81 + 0.49)}$ =

1.14< 20 cm = Vertical Accuracy 5.5 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

Table 28. Adjusted geodetic coordinates for control points used in the Tineg River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
ABR-32	N17°33'43.22900"	E120°33'29.72282"	71.266	0.047	LL
AB-33	N17°37'28.81122"	E120°43'02.46323"	103.212	?	е
UP-CER	N17°34'40.24943"	E120°46'10.96145"	129.973	0.051	
UP-MAN	N17°25'54.68298"	E120°41'51.46035"	155.794	0.055	

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 28. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Tineg River GNSS Static Survey are seen in Table 29.

Table 29. The reference and control points utilized in the Tineg River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control Point	Order of Accuracy		Geog	raphic Coordi	nates (WGS 84)		
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
ABR-32	2nd order, GCP	17°33'43.22900"	120°33'29.72282"	71.266	1943396.049	240815.386	33.435
AB-33	1st order, GCP	17°37'28.81122"	120°43'02.46323"	103.212	1950122.643	257794.046	64.162
UP-CER	UP Established	17°34'40.24943"	120°46'10.96145"	129.973	1944873.027	263291.187	89.924
UP-MAN	UP Established	17°25'54.68298"	120°41'51.46035"	155.794	1928802.720	255441.893	115.268

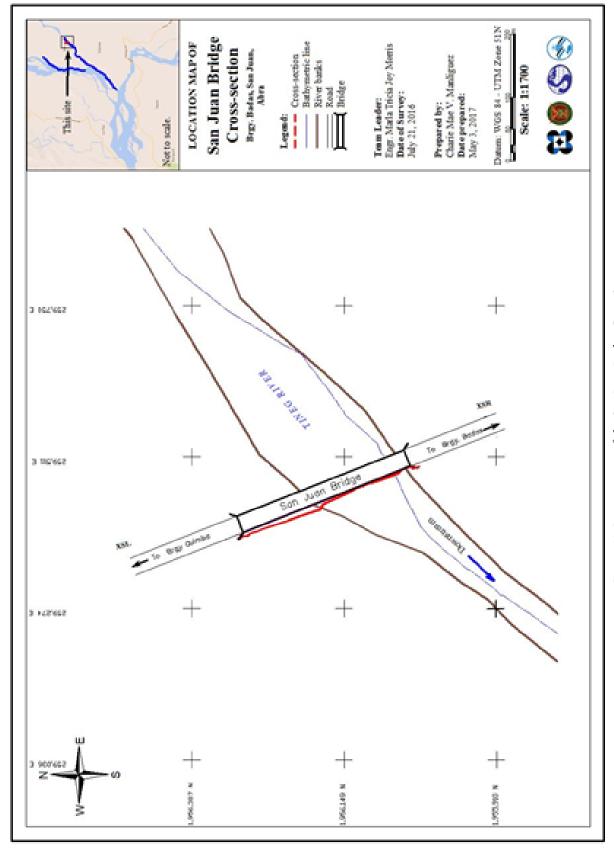
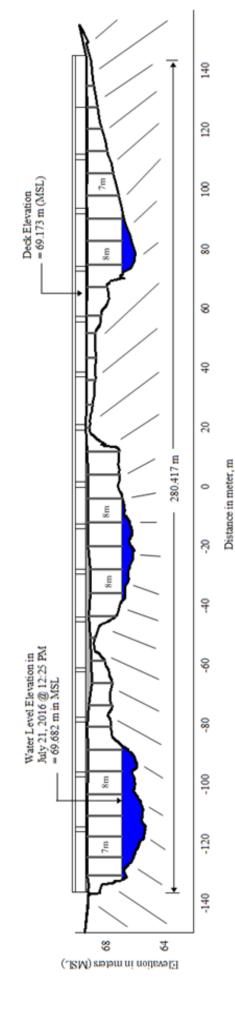
4.5 Cross-section and Bridge As-Built survey and Water Level Marking

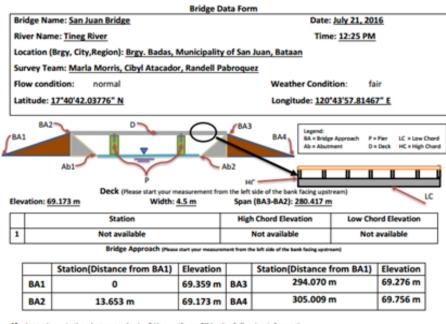
The bridge cross-section and as-built survey were conducted on July 21, 2016 at the downstream side of San Juan Bridge in Brgy. Badas, Municipality of San Juan, Abra using GNSS receiver Trimble® SPS 882 in PPK survey technique (Figure 36 and Figure 37).

Figure 36. San Juan Bridge facing upstream.

Figure 37. Bridge As-Built Survey using PPK Technique.

The length of the cross-sectional line surveyed at San Juan Bridge is about 305.009 m. (Figure 38) with three hundred fifty (350) cross-sectional points using the control point AB-33 as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 38 and Figure 40.


Figure 38. Location map of the San Juan Bridge Cross Section.

Latitude: 17°40'42.03776" N Longitude: 120°43'57.81467"E

San Juan Bridge (Tineg River Basin)

Figure 39. The San Juan Bridge cross-section survey drawn to scale.

Abutment: Is the abutment sloping? Yes; If yes, fill in the following information:

	Station (Distance from BA1)	Elevation
Ab1	17.616 m	66.796 m
Ab2	NA NA	NA NA

Pier (Please start your measurement from the left side of the bank facing upstream)

Shape: Small Cylindrical Number of Piers: 36 Height of column footing: N/A

	Station (Distance from BA1)	Elevation	Pier Diameter
Pier 1	19.314 m	69.199 m	NA
Pier 2	25.435 m	69.219 m	NA
Pier 3	32.357 m	69.215 m	NA
Pier 4	39.397 m	69.209 m	NA
Pier 5	46.548 m	69.204 m	NA
Pier 6	54.241 m	69.180 m	NA
Pier 7	61.660 m	69.170 m	NA
Pier 8	69.310 m	69.199 m	NA
Pier 9	76.402 m	69.129 m	NA
Pier 10	84.073 m	68.914 m	NA
Pier 11	91.401 m	68.951 m	NA
Pier 12	99.195 m	69.021 m	NA
Pier 13	106.522 m	69.096 m	NA
Pier 14	114.158 m	69.023 m	NA
Pier 15	122.208 m	69.004 m	NA
Pier 16	129.992 m	69.154 m	NA
Pier 17	138.088 m	69.193 m	NA
Pier 18	145.875 m	69.190 m	NA
Pier 19	154.064 m	69.178 m	NA
Pier 20	161.740 m	69.216 m	NA
Pier 21	169.857 m	69.306 m	NA
Pier 22	177.663 m	69.274 m	NA
Pier 23	185.761 m	69.258 m	NA
Pier 24	193.267 m	69.257 m	NA
Pier 25	201.655 m	69.268 m	NA
Pier 26	207.427 m	69.261 m	NA
Pier 27	217.194 m	69.234 m	NA
Pier 28	224.695 m	69.243 m	NA
Pier 29	232.698 m	69.224 m	NA
Pier 30	240.181 m	69.216 m	NA
Pier 31	247.909 m	69.272 m	NA
Pier 32	255.396 m	69.244 m	NA
Pier 33	262.924 m	69.236 m	NA
Pier 34	270.252 m	69.210 m	NA
Pier 35	277.602 m	69.233 m	NA
Pier 36	284.783 m	69.250 m	NA

Figure 40. The San Juan Bridge as-built survey data.

Water surface elevation of Ikmin River was determined by a survey grade GNSS receiver Trimble® SPS 882 in PPK survey technique on July 17 for Manabo, Manicbel and New Ikmin Bridges with values 106.475 m, 165.223 m, and 139.214 m, respectively; and on July 20, 2016 for Cervantes Bridge with a value of 84.55 m in MSL as shown in Figure 57 to Figure 60. This was translated into marking on the bridge's deck using the same technique as shown in Figure 57 to Figure 60 and these served as reference for flow data gathering and depth gauge deployment of the partner HEI responsible for Ikmin River, the University of the Philippines Baguio.

Figure 41. Water level markings on San Juan Bridge.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on August 15, 19, 20, 22, 23, and 24, 2016 using a survey-grade GNSS Rover receiver, Trimble® SPS 882, mounted at the side of a vehicle as shown in Figure 42. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 1.588 m and 1.945 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with ABR-32 and AB-33 occupied as the GNSS base stations in the conduct of the survey.

Figure 42. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The survey started from Brgy. Quinarayan, Municipality of Narvacan went north east traversing five municipalities in Abra namely: San Quintin, Pidigan, Bangued, La Paz, and ending in Brgy. Nagaparan, Municipality of Danglas. Another strip started from Brgy. Zone 5 Pobacion, in Municipality of Bangued, went east and traversed the Municipalities of Tayum, Dolores, Lagangilang and ended in Brgy. Bonglo, Municipality of Licuan-Baay. The survey gathered a total of 7,213 points with approximate length of 82 km using ABR-32 and AB-33 as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 43.

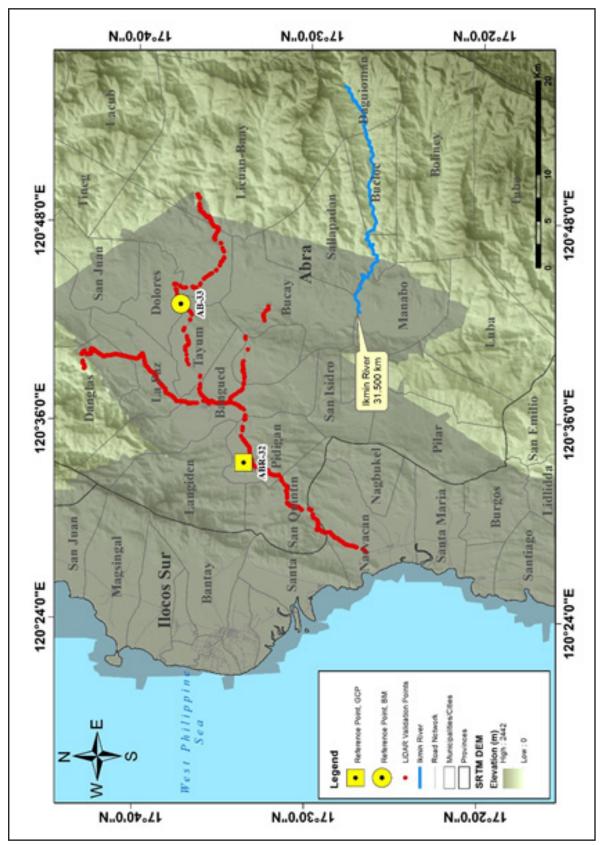


Figure 43. The extent of the LiDAR ground validation survey (in red) for Tineg River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on July 23 and 24, 2016 using a Trimble® SPS 882 in GNSS PPK survey technique in continuous topo mode and Ohmex™ single beam echo sounder, as illustrated in Figure 44. The extent of the survey is from Brgy. Isit, Municipality of Dolores with coordinates 17°38′03.69826″N, 120°41′19.81255″E, and ended in Brgy. Poblacion, also in Dolores with coordinates 17°39′09.74472″N, 120°42′26.27285″E., as shown in the map in Figure 45.

Figure 44. Set up of the bathymetric survey at Tineg River using Ohmex™ single beam echo sounder.

Manual bathymetric survey was done in two tributaries on July 18 and 21, 2016 using a Trimble® SPS 882 GNSS PPK survey technique in continuous topo mode as shown in Figure 45. The survey in first tributary started in the uppermost part of the river in Brgy. Cabcaborao, Municipality of San Juan, with coordinates 17°42′09.75064″N, 120°43′09.78217″E, traversed down by foot and ended in Brgy. Cardona, Municipality of Dolores, with coordinates 17°39′50.17800″N, 120°42′24.29850″E. The second tributary survey started in Brgy. Ba-Ug, Municipality of San Juan with coordinates 17°41′00.40331″N, 120°44′16.40699″E, traversed down by foot and ended at the starting point of Bathymetric survey using boat. The control point AB-33 was occupied as the GNSS base station all throughout the surveys.

Figure 45. Set-up for the manual bathymetric survey.

Overall, the bathymetric survey for Tineg River gathered a total of 27,251 points covering 13.239 km of the river traversing twenty (20) barangays in Municipalities of Dolores, La Paz, and San Juan, in Abra. To further illustrate this, a CAD drawing of the riverbed profile of the Tineg River was produced. As seen in Figure 47 and Figure 48, the highest and lowest elevation has a 33-m difference. The highest elevation observed was 79.5 m above MSL located at Brgy. Cabpcarao, Municipality of San Juan; while the lowest was 46.47 m in MSL located at the downstream portion of the river in Brgy. Gaddani, in Municipality of Tayum. The delineated length of 9 km was no longer surveyed because it already has LiDAR Data; moreover, 8 km from the tributary of Tineg River, Malanas River, was surveyed as instructed by partner HEI, UP Baguio.

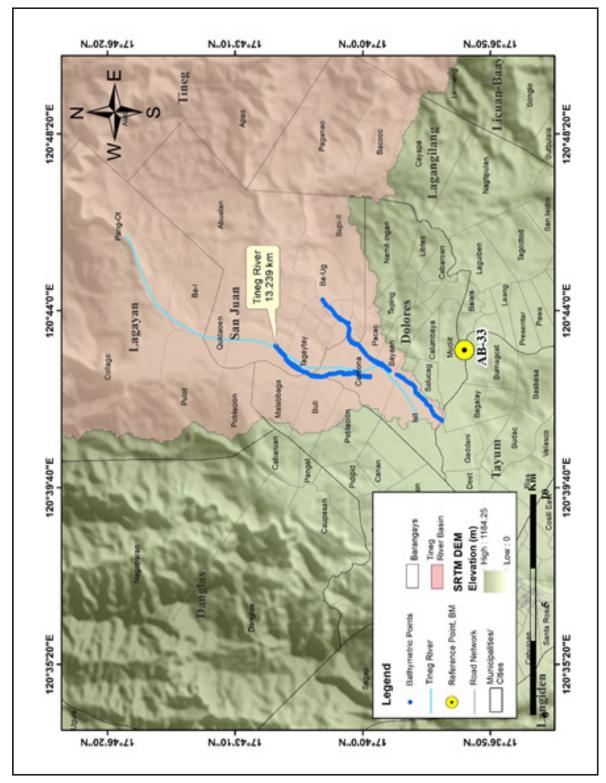


Figure 46. The extent of the Tineg River Bathymetry Survey.

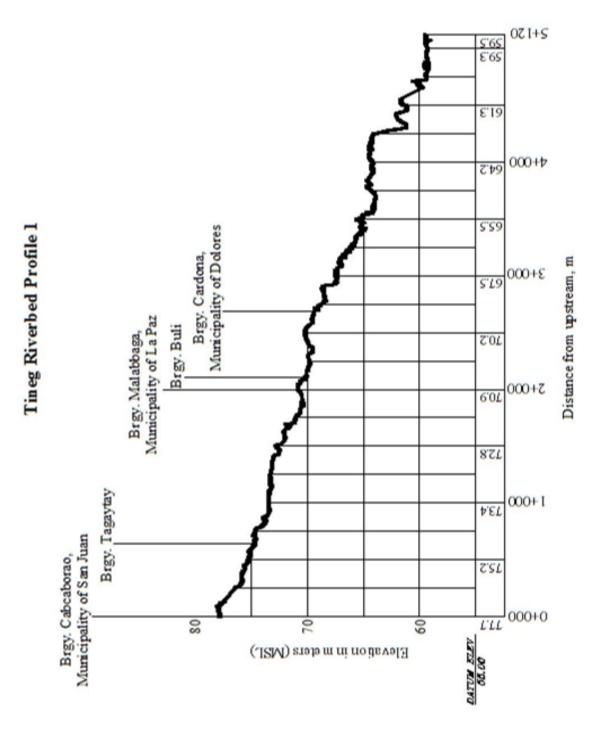


Figure 47. The Tineg Riverbed Profile from first Cabcaborao upstream.

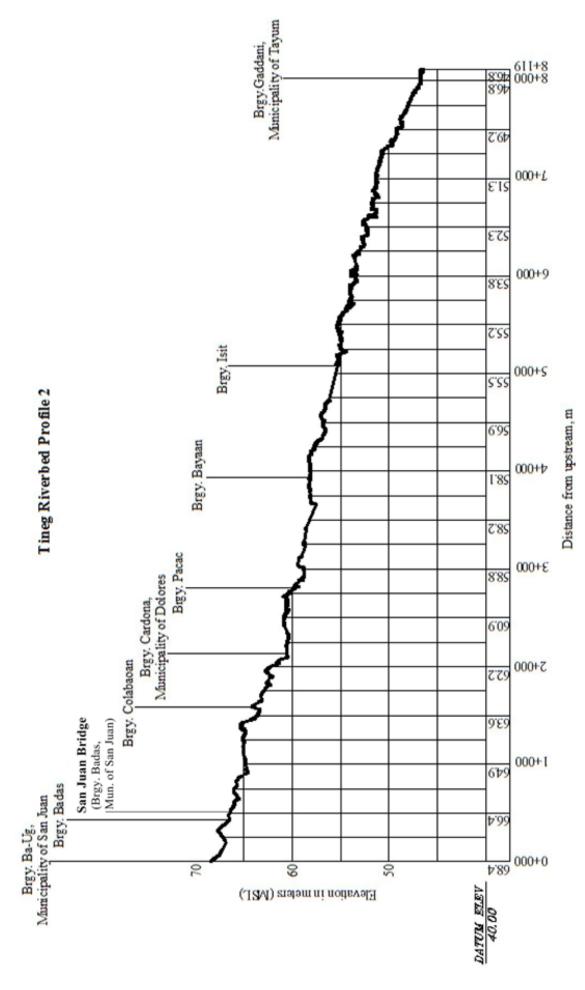


Figure 48. Tineg Riverbed Profile from Bag-Ug upstream.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Hannah Aventurado

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Tineg River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the San Juan ARG (17°40′46.02″ N, 120°43′56.35″ E), located in San Juan, Abra as illustrated in Figure 49. The precipitation data collection started from July 20, 2016 at 12:00 AM to July 23, 2016 at 3:00 PM with a 10-minute recording interval.

The total precipitation for this event in San Juan ARG was 34.29 mm. It has a peak rainfall of 8.128 mm. on July 21, 2016 at 5:30 PM. The lag time between the peak rainfall and discharge is 1 hour and 50 minutes.

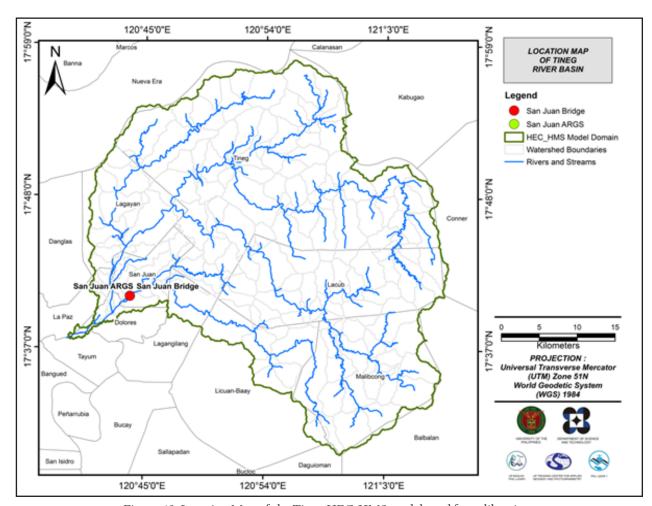


Figure 49. Location Map of the Tineg HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was computed using the prevailing cross-section (Figure 50) at San Juan Bridge, San Juan, Abra (17°40′46.02″ N, 120°43′56.35″ E) to establish the relationship between the observed water levels (H) from San Juan Bridge and the outflow (Q) of the watershed at this location.

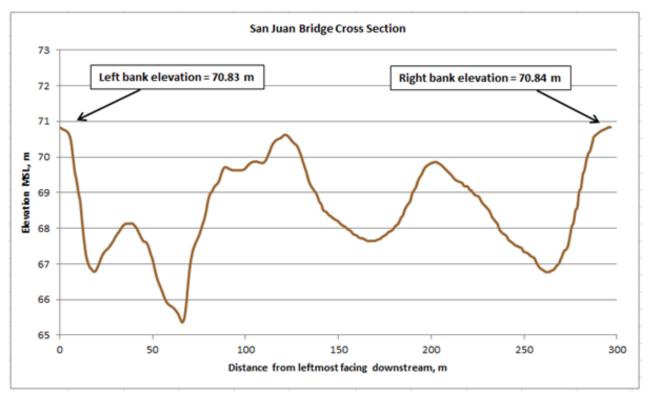


Figure 50. Cross-Section Plot of San Juan Bridge.

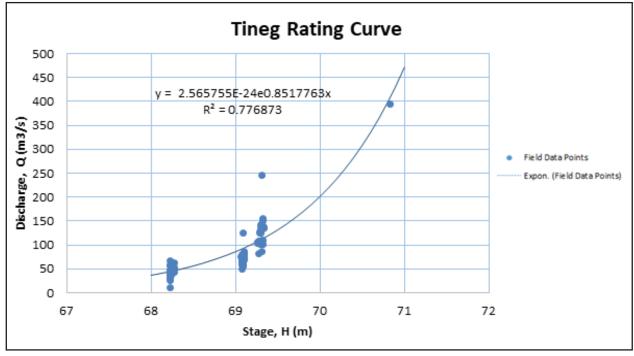


Figure 51. The rating curve at San Juan Bridge, San Juan, Abra.

This rating curve equation was used to compute the river outflow at San Juan Bridge for the calibration of the HEC-HMS model shown in Figure 52. The total rainfall for this event is 34.29 mm and the peak discharge is 301.87 m3/s at 7:40 PM of July 21, 2016.

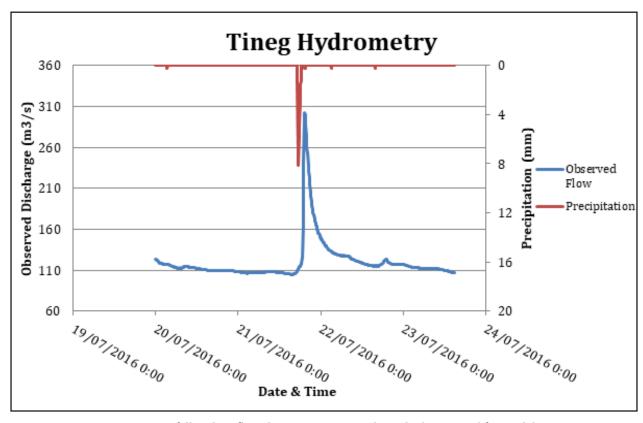


Figure 52. Rainfall and outflow data at San Juan Bridge, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Laoag Rain Gauge (Table 30). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 54). This station was selected based on its proximity to the Tineg watershed. The extreme values for this watershed were computed based on a 59-year record.

	Table 30. RIDF values for the Laoag Rain Gauge, as computed by PAGASA.								
		СОМРИТ	TED EXTRE	ME VALUE	S (in mm)	OF PRECIF	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.7	35.4	45.7	62.5	89	110.9	148.5	187.8	232.8
5	31.4	48	61.5	87.1	124.6	157.8	211.7	266.3	331.7
10	37.2	56.3	71.9	103.5	148.2	189	253.6	318.3	397.1
15	40.5	61	77.8	112.7	161.6	206.5	277.2	347.7	434
20	42.8	64.3	81.9	119.1	170.9	218.8	293.7	368.2	459.9
25	44.5	66.8	85.1	124.1	178.1	228.3	306.4	384.1	479.8
50	50	74.6	94.8	139.4	200.2	257.4	345.7	432.8	541.1
100	55.3	82.4	104.5	154.6	222.2	286.4	384.6	481.2	602

Table 30. RIDF values for the Laoag Rain Gauge, as computed by PAGASA.

Figure 53. Location of Laoag RIDF Station relative to Tineg River Basin.

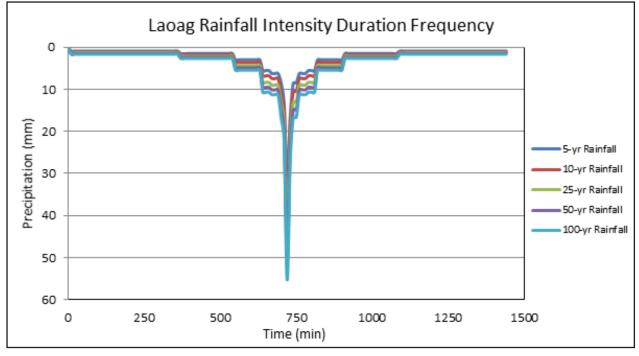


Figure 54. Synthetic storm generated for a 24-hr period rainfall for various return periods.

5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soils under the Department of Environment and Natural Resources Management. The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Tineg River Basin are shown in Figure 55 and Figure 56, respectively.

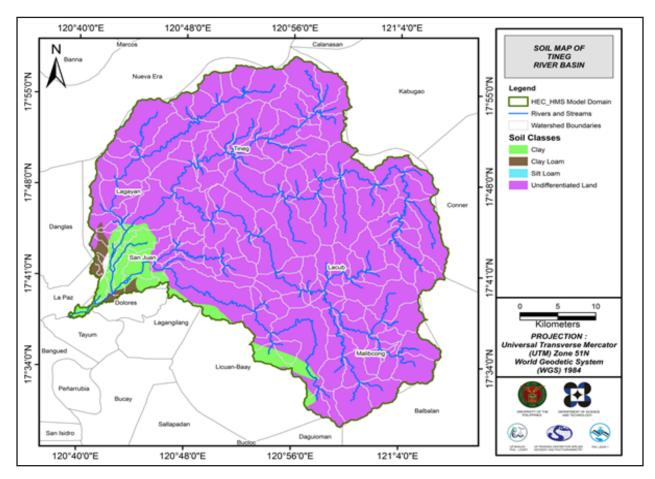


Figure 55. Soil Map of Tineg River Basin.

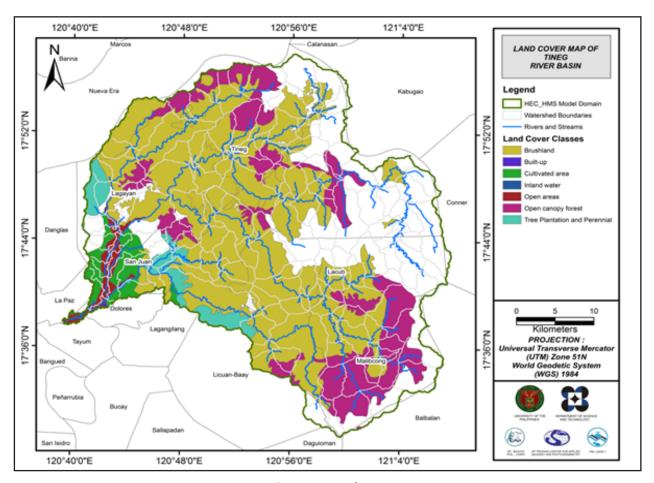


Figure 56. Land Cover Map of Tineg River Basin.

For Tineg, four (4) soil classes were identified. These are clay, clay loam, silt loam and undifferentiated land. Moreover, seven (7) land cover classes were identified. These are brushlands, built-up areas, cultivated areas, inland water, open areas, open canopy forests, and tree plantations.

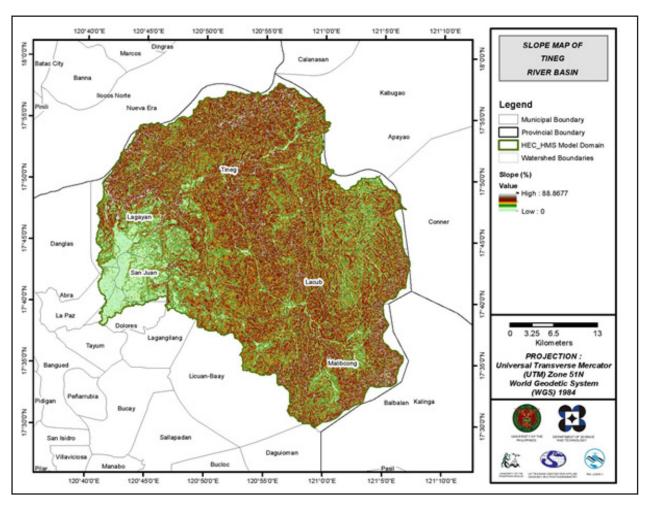


Figure 57. Slope Map of the Tineg River Basin.

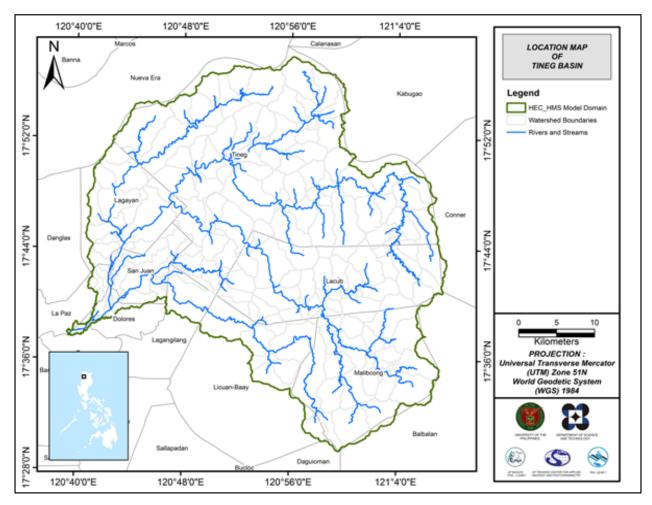


Figure 58. Stream Delineation Map of Tineg River Basin

Using the SAR-based DEM, the Tineg basin was delineated and further subdivided into subbasins. The model consists of 161 sub basins, 82 reaches, and 82 junctions as shown in Figure 59 (See Annex 10). The main outlet is at 504.

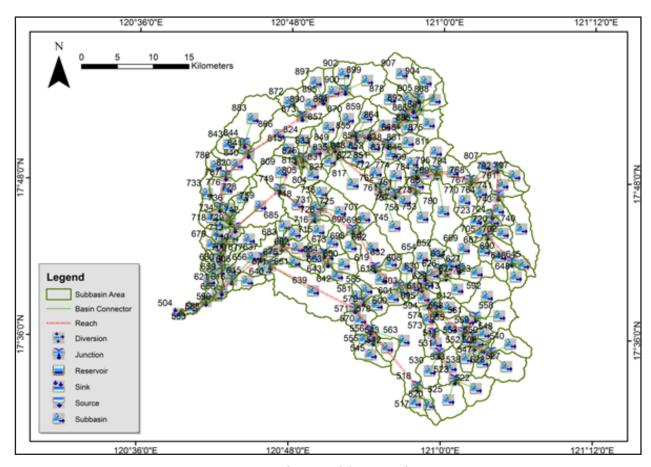


Figure 59. Tineg river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 60).

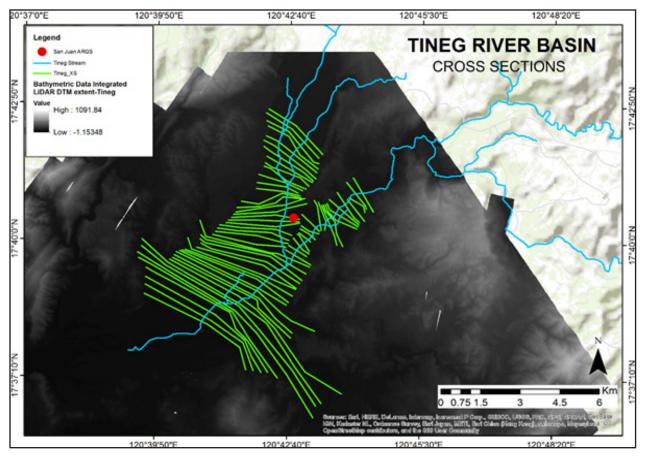


Figure 60. River cross-section of the Tineg River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 61. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 100.06329 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Tineg are in Figure 68, 70, and 72.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63 792 800.00 m2. The generated flood depth maps for Tineg are in Figure 69, 71, and 73.

There is a total of 465 228 177.98 m3 of water entering the model. Of this amount, 25 253 779.51 m3 is due to rainfall while 439 974 398.47 m3 is inflow from other areas outside the model. 11 329 565.00 m3 of this water is lost to infiltration and interception, while 24 641 579.81 m3 is stored by the flood plain. The rest, amounting up to 429 257 024.59 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Tineg HEC-HMS river basin model (See Annex 9), its accuracy was measured against the observed values. Figure 62 shows the comparison between the two discharge data.

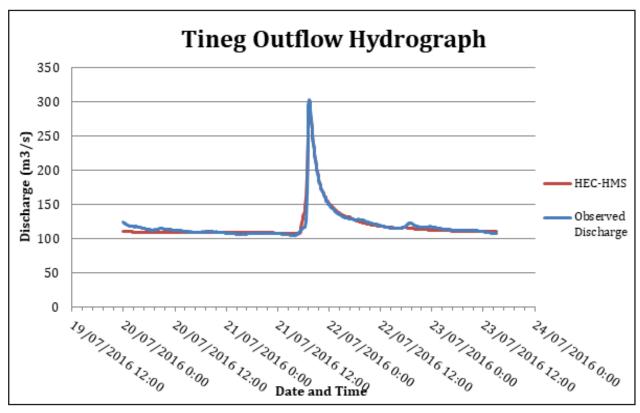


Figure 62. Outflow Hydrograph of Tineg produced by the HEC-HMS model compared with observed outflow.

Table 31 shows the adjusted ranges of values of the parameters used in calibrating the model.

Table 31. Range of calibrated values for the Tineg River Basin.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	0.3 - 7
		Curve Number		35 - 99
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.03 - 1
			Storage Coefficient (hr)	0.4 - 19
	Baseflow	Recession	Recession Constant	0.7 - 1
			Ratio to Peak	0.1
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.0002 – 0.017

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.3mm to 7mm means that there is minimal to average amount of infiltration of rainfall intercepted by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Tineg, the basin consists mainly of brushlands and the soil consists of mostly undifferentiated land and clay.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.03 hours to 1 hour determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.7 - 1 indicate that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.1 indicates a much steeper receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Tineg river basin reaches' Manning's coefficients that range from 0.0002 to 0.017 showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy measure	Value
RMSE	4.3
r ²	0.973
NSE	0.97
PBIAS	0.75
RSR	0.17

Table 32. Summary of the Efficiency Test of the Tineg HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 4.30 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.973

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.97.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is 0.75.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.17.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 63) shows the Tineg outflow using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

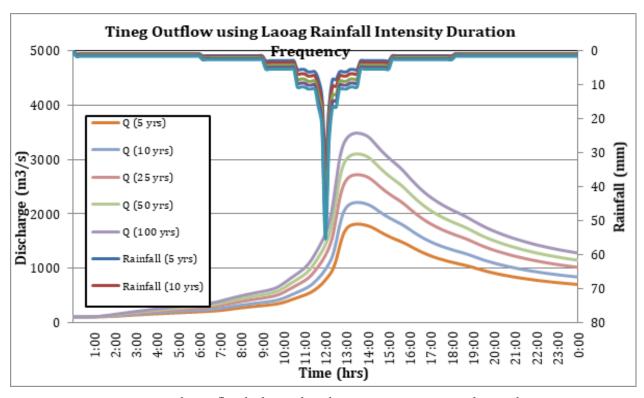


Figure 63. The Outflow hydrograph at the Tineg Station, generated using the Laoag RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Tineg discharge using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 33.

Table 33. The	peak values of the	Tineg HEC-HMS Mc	odel outflow using the Maasin RIDF.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	331.7	31.4	1816.2	1 hour, 30 minutes
10-Year	397.1	37.2	2214	1 hour, 30 minutes
25-Year	479.8	44.5	2724.5	1 hour, 30 minutes
50-Year	541.1	50	3104.2	1 hour, 30 minutes
100-Year	602	55.3	3485.7	1 hour, 30 minutes

5.7.2 Discharge Data Using Dr. Horritt's Recommended Hydrologic Method

The river discharge values for the three rivers entering the floodplain are shown in Figure 64 to Figure 66 and the peak values are summarized in Table 34 to Table 36.

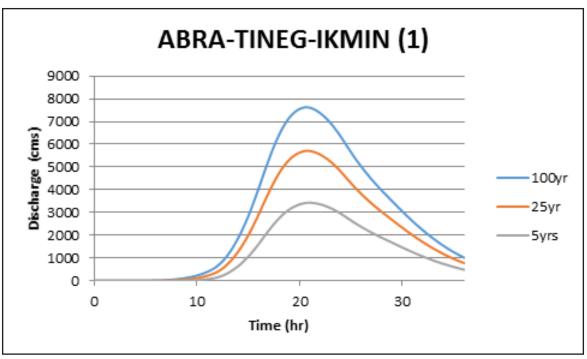


Figure 64. Abra-Tineg-Ikmin river (1) generated discharge using 5-, 25-, and 100-year Laoag rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

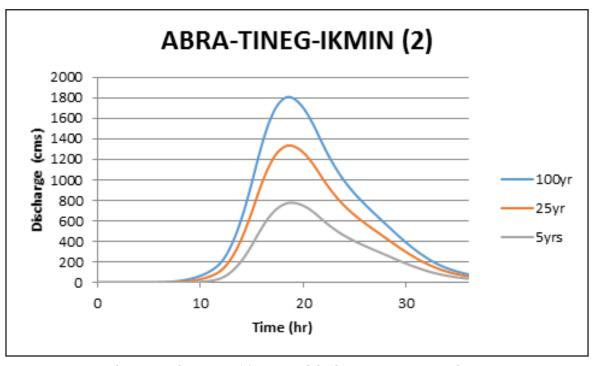


Figure 65. Abra-Tineg-Ikmin river (2) generated discharge using 5-, 25-, and 100-year Laoag rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

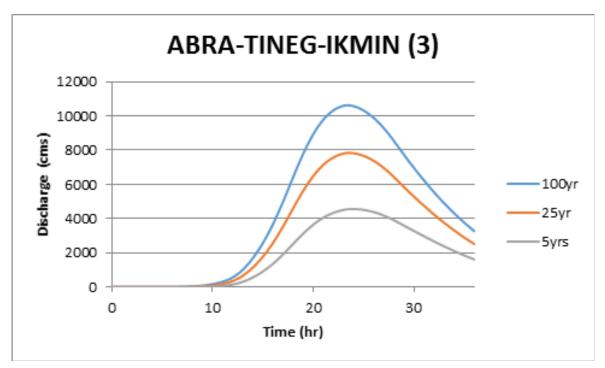


Figure 66. Abra-Tineg-Ikmin river (3) generated discharge using 5-, 25-, and 100-year Laoag rainfall intensity-duration-frequency (RIDF) in HEC-HMS.

Table 34. Summary of Abra-Tineg-Ikmin river (1) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	7629	20 hours, 40 minutes
25-Year	5712.8	20 hours, 40 minutes
5-Year	3429.4	20 hours, 50 minutes

Table 35. Summary of Abra-Tineg-Ikmin river (2) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	1808.6	18 hours, 30 minutes
25-Year	1335.7	18 hours, 40 minutes
5-Year	777.7	18 hours, 50 minutes

Table 36. Summary of Abra-Tineg-Ikmin river (3) discharge generated in HEC-HMS.

RIDF Period	Peak discharge (cms)	Time-to-peak
100-Year	10623.6	23 hours, 20 minutes
25-Year	7840.6	23 hours, 30 minutes
5-Year	4561.3	24 hours

The comparison of the discharge results using Dr. Horritt's recommended hydrological method against the bankful and specific discharge estimates is shown in Table 37.

Discharge Point	QMED(SCS), cms	QBANKFUL, cms	QMED(SPEC), cms	VALID	ATION
				Bankful Discharge	Specific Discharge
Abra-Tineg- Ikmin (1)	3017.872	1614.315	2473.269	Fail	Pass
Abra-Tineg- Ikmin (2)	684.376	26169.898	1093.832	Fail	Pass
Abra-Tineg- Ikmin (3)	4013.944	10866.502	3157.446	Fail	Pass

Table 37. Validation of river discharge estimates.

The results from the HEC-HMS river discharge estimates were not able to satisfy the conditions for validation using the bankful and specific discharge methods. The values are based on theory but are supported using other discharge computation methods so they were good to use for flood modeling. These values will need further investigation for the purpose of validation. It is therefore recommended to obtain actual values of the river discharges for higher-accuracy modeling.

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. Figure 67 shows a generated sample map of the Tineg River using the calibrated HMS base flow.

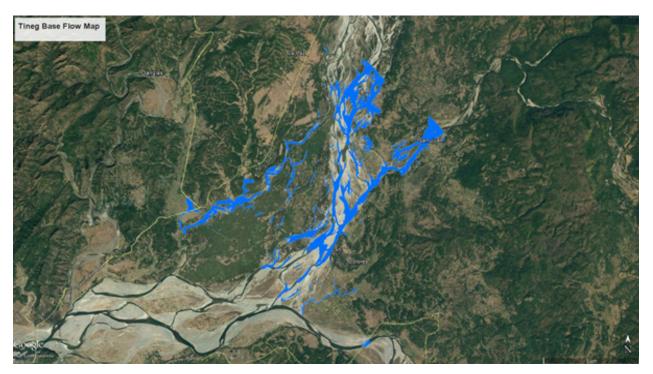


Figure 67. Sample output map of the Tineg RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 68 to Figure 73 show the 5-, 25-, and 100-year rain return scenarios of the Tineg floodplain. The floodplain, with an area of 566.21 sq. km., covers 16 municipalities from three provinces. Table 38 shows the percentage of area affected by flooding per municipality.

Table 38. Municipalities affected in Tineg Floodplain

Province	Municipality	Total Area	Area Flooded	% Flooded
Abra	San Quintin	62.29	44.19	70.94%
Abra	Bangued	123.75	30.88	24.96%
Abra	Langiden	98.70	87.67	88.82%
Abra	Pidigan	58.13	45.00	77.41%
Ilocos Norte	Nueva Era	619.00	3.54	0.57%
Ilocos Sur	Bantay	71.06	71.06	100.00%
Ilocos Sur	Caoayan	21.20	20.08	94.73%
Ilocos Sur	Magsingal	78.90	75.66	95.90%
Ilocos Sur	Narvacan	97.18	0.30	0.31%
Ilocos Sur	San Ildefonso	13.21	13.21	100.00%
Ilocos Sur	San Juan	59.88	42.08	70.28%
Ilocos Sur	San Vicente	12.20	12.20	100.00%
Ilocos Sur	Santa Catalina	10.83	8.09	74.65%
Ilocos Sur	Santa	57.20	35.91	62.78%
Ilocos Sur	Santo Domingo	50.36	50.36	99.99%
Ilocos Sur	Vigan City	24.01	23.44	97.66%

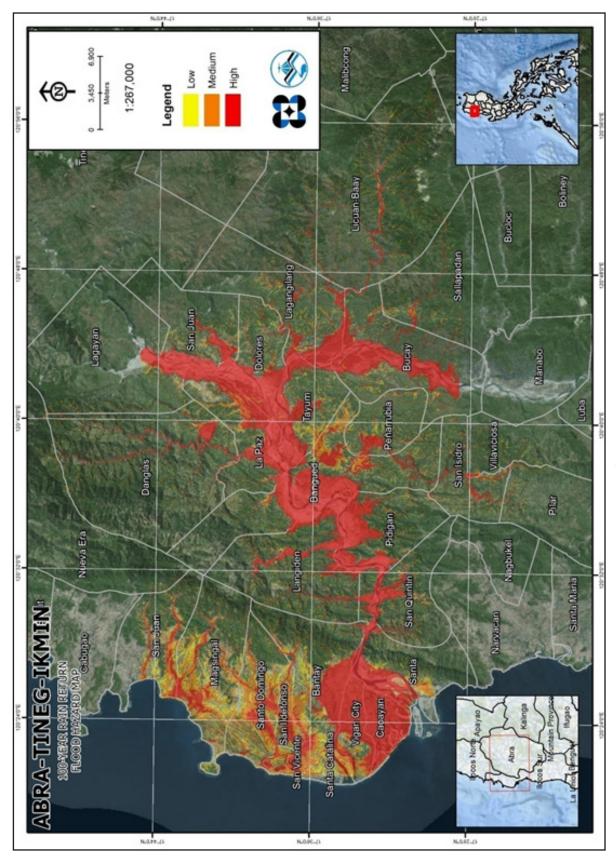


Figure 68. A 100-year Flood Hazard Map for Tineg Floodplain overlaid on Google Earth imagery.

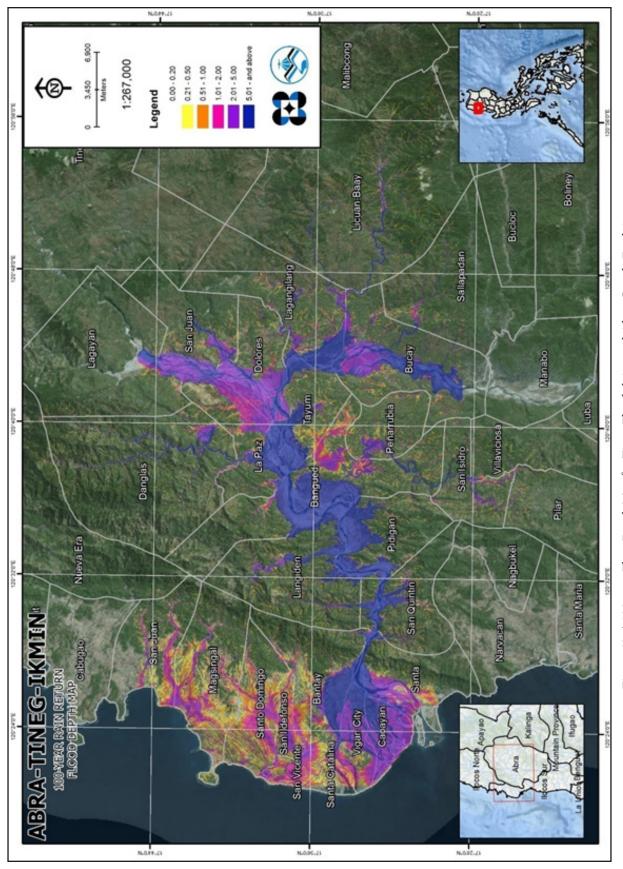


Figure 69. A 100-year Flow Depth Map for Tineg Floodplain overlaid on Google Earth imagery.

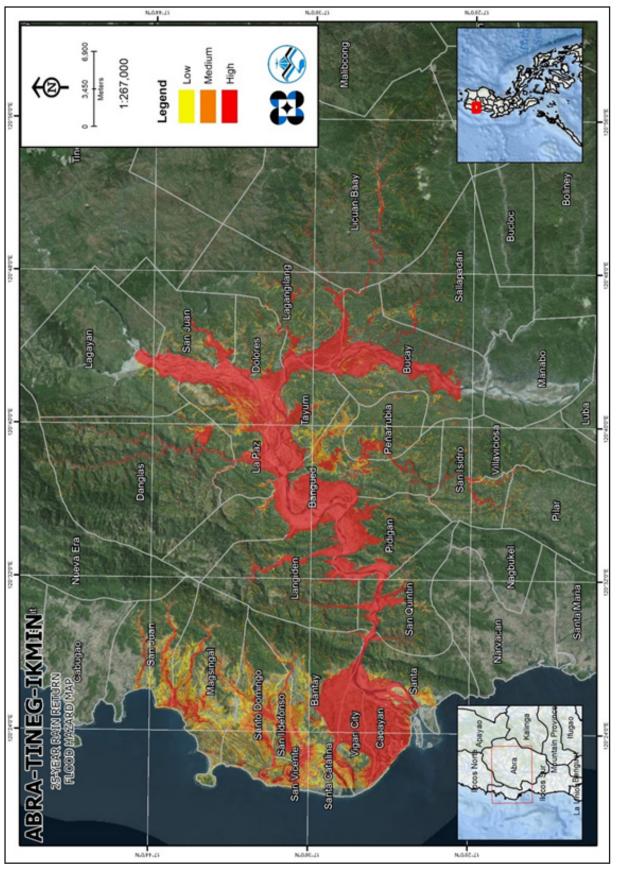


Figure 70. A 25-year Flood Hazard Map for Tineg Floodplain overlaid on Google Earth imagery.

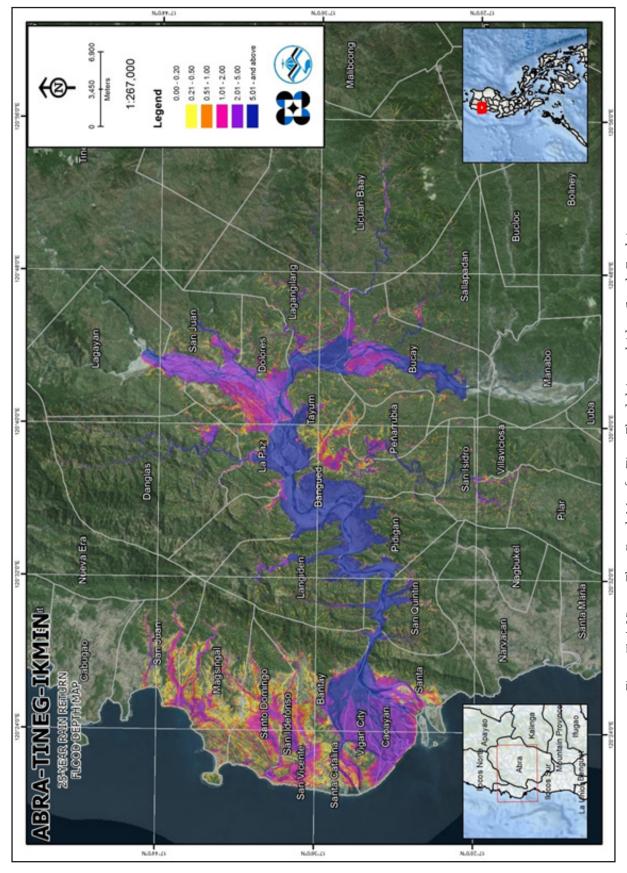


Figure 71. A 25-year Flow Depth Map for Tineg Floodplain overlaid on Google Earth imagery.

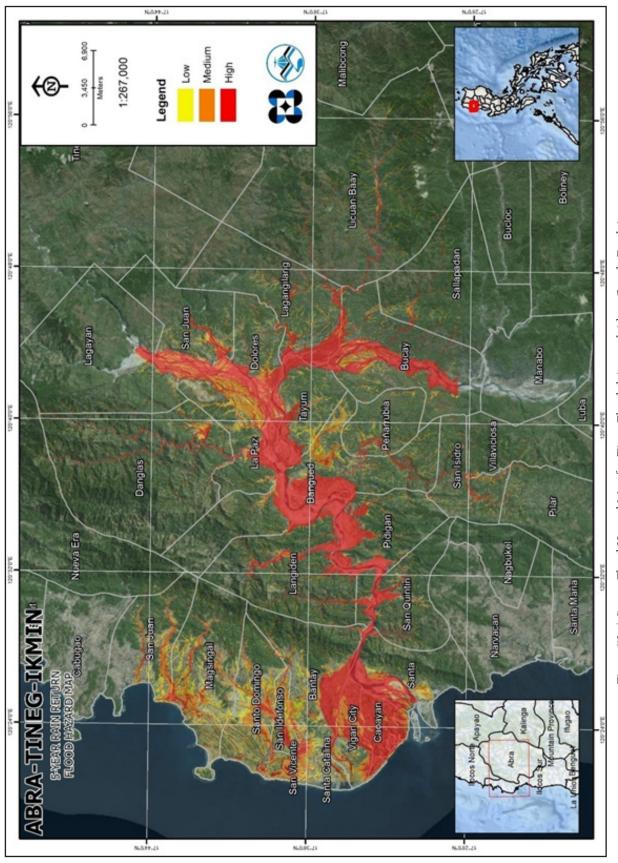


Figure 72. A 5-year Flood Hazard Map for Tineg Floodplain overlaid on Google Earth imagery.

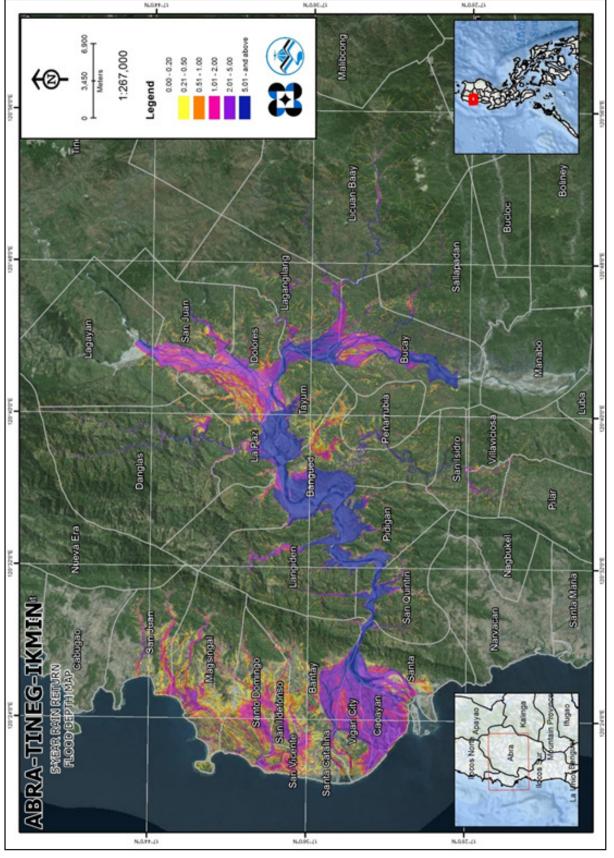


Figure 73. A 5-year Flood Depth Map for Tineg Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Tineg River Basin, grouped accordingly by municipality. For the said basin, three provinces with 16 municipalities consisting of 282 barangays are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 9.13% of the municipality of Bangued with an area of 123.75 sq. km. will experience flood levels of less than 0.20 meters. 0.42% of the area will experience flood levels of 0.21 to 0.50 meters while 0.25%, 0.28%, 1.08%, and 13.71% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in Bangued in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding.

Table 39. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period.

Affected area				Area o	Area of affected barangays in Bangued (in sq. km.)	angays in Bar	igued (in sq.	km.)			
(sq. km.) by flood depth (in m.)	Ваñасао	Bangbangar	Cabuloan	Calaba	Dangdangla	Lingtan	Lipcan	Malita	Palao	Patucannay	Sagap
0.03-0.20	0	0	0	0	0.22	0.61	0.4	2.27	69:0	0.23	2.68
0.21-0.50	0	0	0	0	0.0099	90:0	0.009	0.089	0.016	0.0062	0.054
0.51-1.00	0	0	0	0.0031	0	0.045	0:0036	0.045	0.0073	0	0.038
1.01-2.00	0	0.000091	0	0.028	0	0.061	0.0081	0.012	0.013	0	0.022
2.01-5.00	0	0.018	0	0.39	0	0.057	0.026	0.0027	0.023	0	0.0018
> 5.00	2.67	1.69	2.57	0.3	0	0	0.84	0	1.64	0	0
Affected area			1	Area of affec	if affected barangays in Bangued (in sq. km.)	in Bangued	(in sq. km.)				
(sq. km.) by flood depth (in m.)	San Antonio	Santa Rosa	Sao-Atan	Zone 1 Poblacion	Zone 2 Poblacion	Zone 3 Poblacion	Zone 4 Poblacion	Zone 5 Poblacion	Zone 6 Poblacion	Zone 7 Poblacion	
0.03-0.20	3.71	0	0.19	0.091	0.036	0.041	0	0	0	0.11	
0.21-0.50	0.18	0	0.0031	0.082	0.0022	0.0086	0	0	0	0.00083	
0.51-1.00	0.092	0	0.0031	0.055	0.0027	0.011	0	0	0	0.0082	
1.01-2.00	0.056	0	0.0023	0.022	0.0087	0.11	0	0	0	0.0074	
2.01-5.00	0.15	0	0.0045	0.029	0.2	0.19	0.12	0	0.015	0.1	
> 5.00	1.84	4.55	0.00038	0	0.051	0.32	0.018	0.23	0.18	0.065	

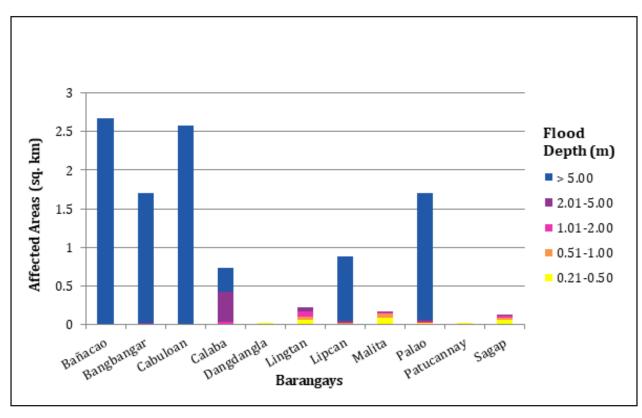


Figure 74. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period.

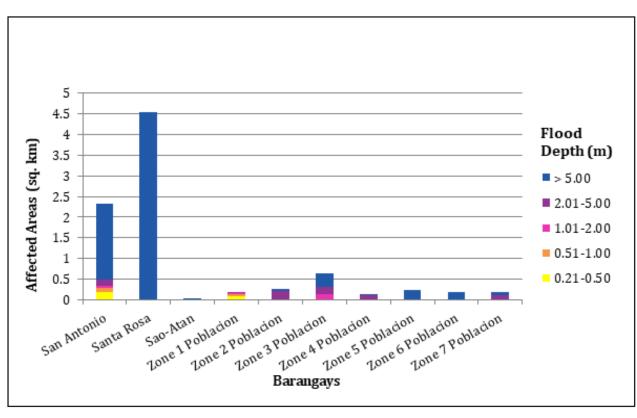


Figure 75. Affected Areas in Bangued, Abra during 5-Year Rainfall Return Period.

For the 5-year return period, 70.48% of the municipality of Langiden with an area of 98.7 sq. km. will experience flood levels of less than 0.20 meters. 2.90% of the area will experience flood levels of 0.21 to 0.50 meters while 1.59%, 1.62%, 3.04%, and 9.20% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas in Langiden in square kilometers by flood depth per barangay.

Table 40. Affected	l Areas in Langi	den Abrad	luring 5-Yea	r Rainfall I	Return Period
Table 40. Milected	i micas ili Laligi	acii, mbia c	iuiiiig 5. i ca.	i Kannan i	cctuiii i ciioa.

Affected area		Area of af	fected barang	gays Langiden	(in sq. km)	
(sq. km.) by flood depth (in m.)	Ваас	Dalayap	Mabungtot	Malapaao	Poblacion	Quillat
0-0.20	1.92	0.14	27.09	37.44	1.39	1.59
0.21-0.50	0.12	0	1.06	1.6	0.031	0.049
0.51-1.00	0.047	0.0019	0.57	0.87	0.039	0.034
1.01-2.00	0.057	0.0072	0.39	1.06	0.043	0.048
2.01-5.00	0.15	0.027	0.91	1.7	0.083	0.13
> 5.00	1.31	0.52	1.98	1.65	0.3	3.32

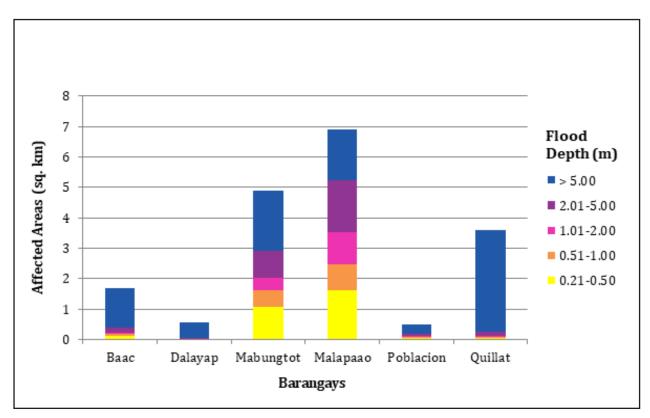


Figure 76. Affected Areas in Langiden, Abra during 5-Year Rainfall Return Period.

For the 5-year return period, 47.77% of the municipality of Pidigan with an area of 58.13 sq. km. will experience flood levels of less than 0.20 meters. 1.95% of the area will experience flood levels of 0.21 to 0.50 meters while 1.18%, 1.15%, 2.01%, and 23.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in Pidigan in square kilometers by flood depth per barangay.

Table 41. Affected Areas in Pidigan, Abra during 5-Year Rainfall Return Period.

Affected area		Area	of affected ba	rangays in Pic	digan (in sq. l	km.)	
(sq. km.) by flood depth (in m.)	Alinaya	Garreta	Immuli	Laskig	Monggoc	Naguirayan	Pamutic
0-0.20	4.79	1.36	1.08	0.73	4.43	0.5	0.64
0.21-0.50	0.17	0.051	0.048	0.025	0.21	0.025	0.0081
0.51-1.00	0.11	0.035	0.014	0.015	0.17	0.013	0.0009
1.01-2.00	0.095	0.019	0.0027	0.019	0.18	0.021	0.0028
2.01-5.00	0.14	0.043	0	0.048	0.26	0.05	0.013
> 5.00	0.23	0.09	0	0.54	0.33	0.82	1.4
Affected area		Area	of affected ba	rangays in Pic	digan (in sq. l	km.)	
(sq. km.) by flood depth (in m.)	Pangtud	Poblacion East	Poblacion West	San Diego	Sulbec	Suyo	Yuyeng
0-0.20	2.85	0	0.31	0.3	3.29	0.76	6.72
0.21-0.50	0.17	0	0.0065	0.042	0.14	0.028	0.21
0.51-1.00	0.12	0	0.0043	0.013	0.077	0.02	0.1
1.01-2.00	0.1	0	0.0057	0.015	0.08	0.025	0.096
2.01-5.00	0.17	0	0.029	0.067	0.16	0.044	0.15
> 5.00	0.77	2.54	1.58	1.89	2.66	0.42	0.29

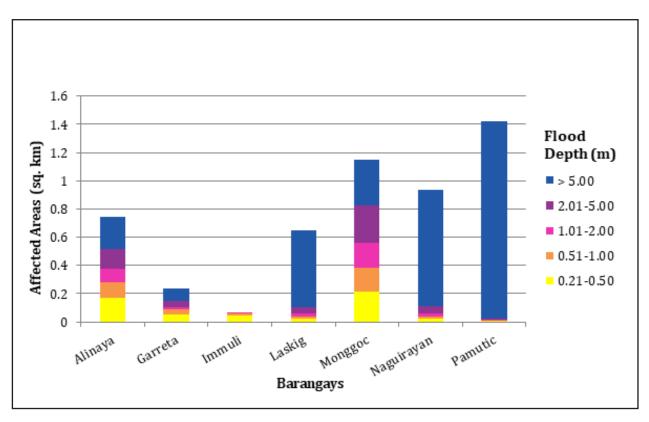


Figure 77. Affected Areas in Pidigan, Abra during 5-Year Rainfall Return Period.

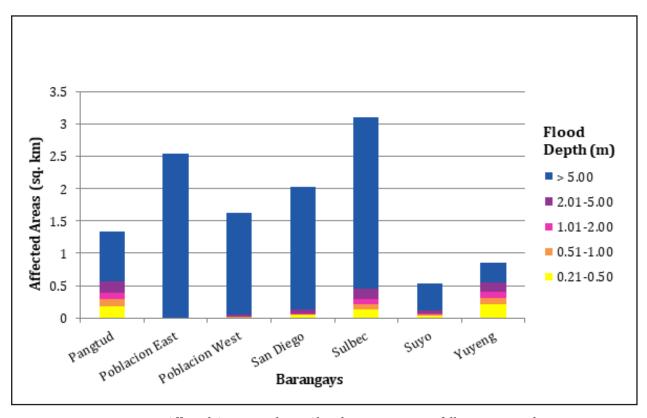


Figure 78. Affected Areas in Pidigan, Abra during 5-Year Rainfall Return Period.

For the 5-year return period, 55.37% of the municipality of San Quintin with an area of 62.29 sq. km. will experience flood levels of less than 0.20 meters. 2.36% of the area will experience flood levels of 0.21 to 0.50 meters while 1.42%, 1.19%, 2.14%, and 8.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 42 are the affected areas in San Quintin in square kilometers by flood depth per barangay.

Table 42. Affected Areas in S	San Ouintin, Abra	during 5-Year Rainfa	ll Return Period.

Affected area		Area of affec	ted barangay	s in San Quin	tin (in sq. km.)
(sq. km.) by flood depth (in m.)	Labaan	Palang	Pantoc	Poblacion	Tangadan	Villa Mercedes
0-0.20	12.09	5.98	3.87	0.4	9.62	2.53
0.21-0.50	0.46	0.17	0.17	0.012	0.49	0.16
0.51-1.00	0.32	0.13	0.068	0.0071	0.26	0.1
1.01-2.00	0.29	0.092	0.056	0.017	0.19	0.093
2.01-5.00	0.66	0.29	0.036	0.12	0.14	0.091
> 5.00	1.06	3.42	0.0026	0.77	0.0027	0.016

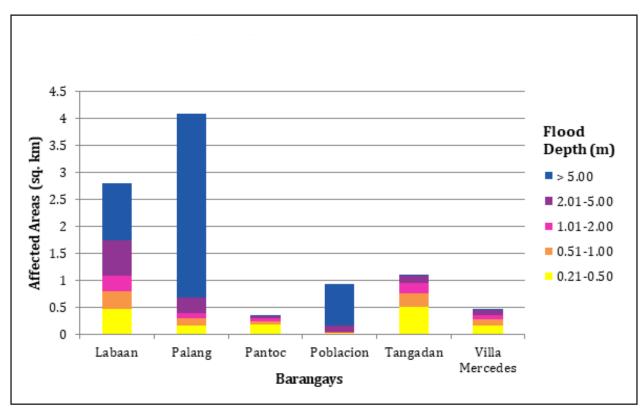


Figure 79. Affected Areas in San Quintin, Abra during 5-Year Rainfall Return Period.

For the 5-year return period, 0.54% of the municipality of Nueva Era with an area of 619 sq. km. will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% and 0.01% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 43 are the affected areas in Nueva Era in square kilometers by flood depth per barangay.

Table 43 Affected Areas in Nueva Fra	, Ilocos Norte during 5-Year Rainfall Return Per	iod
Table 45. Micelea Meas III Nucva Lia.	, Hocos Norte duffing 5° real Ranfian Reculti i en	iou.

Affected area (sq. km.) by flood	Area of affected barangays in San Quintin (in sq. km.)
depth (in m.)	Barangobong
0-0.20	3.31
0.21-0.50	0.11
0.51-1.00	0.069
1.01-2.00	0.033
2.01-5.00	0.013
> 5.00	0.0026

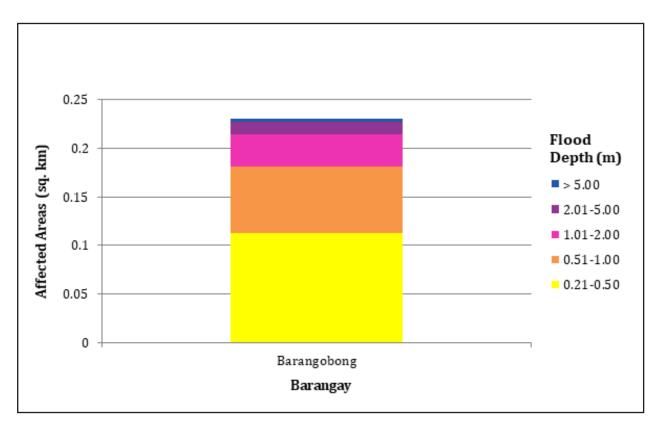


Figure 80. Affected Areas in Nueva Era, Ilocos Norte during 5-Year Rainfall Return Period.

For the 5-year return period, 65.56% of the municipality of Bantay with an area of 71.06 sq. km. will experience flood levels of less than 0.20 meters. 8.61% of the area will experience flood levels of 0.21 to 0.50 meters while 6.00%, 4.82%, 10.99%, and 4.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44 are the affected areas in Bantay, Ilocos Sur in square kilometers by flood depth per barangay.

Table 44. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area				Area	of affected	Area of affected barangays in Bantay (in sq. km.)	antay (in sq.	km.)				
(sq. km.) by flood depth (in m.)	Aggay	An-Annam	Balaleng	Banaoang	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Bulag	Buquig
0.03-0.20	0.35	0.64	69:0	4.04	0.14	0.072	0.11	0.0032	0.11	0.0055	0.75	0.28
0.21-0.50	0.056	0.32	0.43	0.15	0.0067	0.043	0.021	0.0076	0.021	0.0015	0.22	0.023
0.51-1.00	0.027	0.065	0.079	0.075	0.0012	0.0078	0.018	0.036	0.038	0.018	0.19	0.015
1.01-2.00	0.032	0.023	0.017	0.044	0.00076	0.0037	0	0.044	0.023	0.024	0.094	0.023
2.01-5.00	0.04	0.0002	0.0004	0.093	0.00017	0	0	0.019	0.019	0.095	0.64	0.12
> 5.00	0.045	0	0	0.29	0	0	0	0	0	0.025	0.098	0.11
Affected area				Area of af	fected baran	Area of affected barangays in Bantay (in sq. km.)	(in sq. km.)					
(sq. km.) by flood depth (in m.)	Cabalanggan	Cabaroan	Cabusligan	Capangdanan	Guimod	Lingsat	Malingeb	Mira	Naguiddayan	Ora	Paing	
0-0.20	0.14	0.097	0.91	1.13	1.01	14.89	0.83	0.68	0.91	0.92	1.53	
0.21-0.50	0.17	0.024	0.26	0.85	0.33	0.84	0.29	0.06	0.19	0.13	0.19	
0.51-1.00	0.094	0.023	0.18	0.83	0.28	0.47	0.32	0.0086	0.088	0.15	0.13	
1.01-2.00	0.098	0.034	0.072	0.17	0.21	0.47	0.04	0.0007	0.062	0.14	0.42	
2.01-5.00	0.34	0.054	0	0.013	0.15	0.096	0.0005	0	0.35	0.0036	1.83	
> 5.00	0.014	0.05	0	0	0.0002	0.0065	0	0	0.0007	0	0.99	
Affected area				Area of af	fected baran	Area of affected barangays in Bantay (in sq. km.)	(in sq. km.)					
(sq. km.) by flood depth (in m.)	Puspus	Quimmarayan	Sagneb	Sagpat	San Isidro	San Julian	San Mariano	Sinabaan	Taguiporo	Taleb	Тау-Ас	
0-0.20	0.73	0.74	0.49	0.34	0	0	5.22	0.11	0	2.69	6.04	
0.21-0.50	0.22	0.16	0.032	0.11	0	0.00014	0.21	0.06	0	0.23	0.46	
0.51-1.00	0.24	0.04	0	0.16	0	0.0046	0.11	0.16	0.000011	0.2	0.21	
1.01-2.00	0.082	0.025	0	0.4	0.018	0.32	0.089	0.12	0.11	0.14	0.076	
2.01-5.00	0.02	0.0034	0	0.11	0.46	1.67	0.17	0.21	1.14	0.15	0.0023	
> 5.00	0.012	0	0	0	0.1	0.51	0.26	0.011	0.34	0	0	

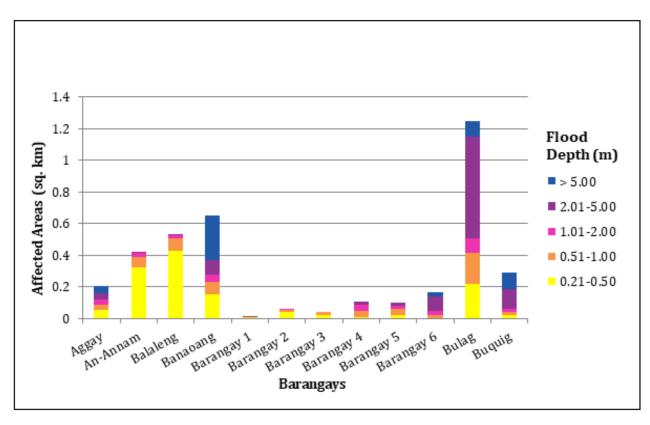


Figure 81. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period.

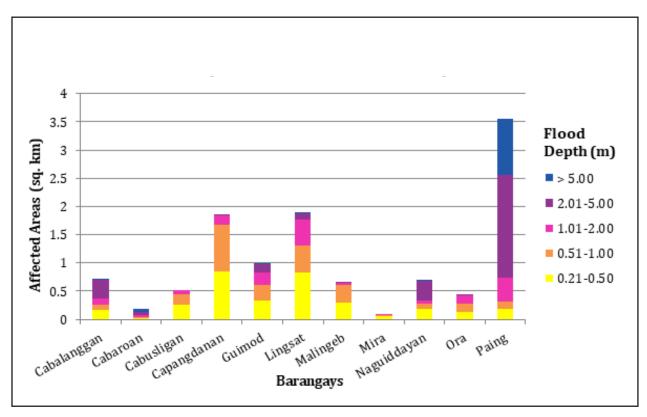


Figure 82. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period.

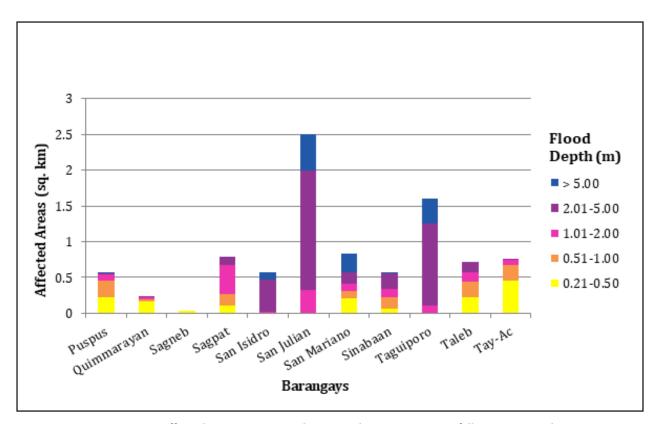


Figure 83. Affected Areas in Bantay, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 1.72% of the municipality of Caoayan with an area of 21.2 sq. km. will experience flood levels of less than 0.20 meters. 0.44% of the area will experience flood levels of 0.21 to 0.50 meters while 1.45%, 14.46%, 72.52%, and 4.12% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the table are the affected areas in Caoayan in square kilometers by flood depth per barangay.

Table 45. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area			Area	of affected ba	Area of affected barangays in Caoayan (in sq. km.)	ıyan (in sq. km.)		
(sq. km.) by flood depth (in m.)	Anonang Mayor	Anonang Menor	Baggoc	Callaguip	Caparacadan	Don Alejandro Quirolgico	Don Dimas Querubin	Don Lorenzo Querubin
0.03-0.20	0	0	0	0	0.24	0	0	0
0.21-0.50	0	0	0.0001	0	0.044	0	0	0
0.51-1.00	0.0058	0	9000:0	0.00011	0.067	0	0	0
1.01-2.00	0.09	0.036	0.0081	0.044	0.16	0	0.0032	0.005
2.01-5.00	0.16	0.31	0.24	0.28	0.61	0.31	0.51	0.34
> 5.00	0.0019	0.027	0.00003	0.0073	0	0.012	0.051	0.026
Affected area			Area	of affected ba	Area of affected barangays in Caoayan (in sq. km.)	ıyan (in sq. km.)		
(sq. km.) by 1100d depth (in m.)	Fuerte	Manangat	Naguilian	Nansuagao	Pandan	Pantay Tamurong	Pantay-Quitiquit	Villamar
0.03-0.20	0.016	0.064	0	0	0.0001	0.042	0	0.0017
0.21-0.50	0.0082	0.0077	0.0001	0	0.0002	0.031	0	0.0015
0.51-1.00	0.017	0.016	0.0066	0.0008	0.0002	0.19	0	0.0044
1.01-2.00	0.065	0.089	0.27	0.19	0.0013	1.95	0.042	0.11
2.01-5.00	0.21	0.19	3.5	1.85	0.24	3.45	0.37	2.81
> 5.00	0	0	0.42	0.15	0	0.17	0	0.016

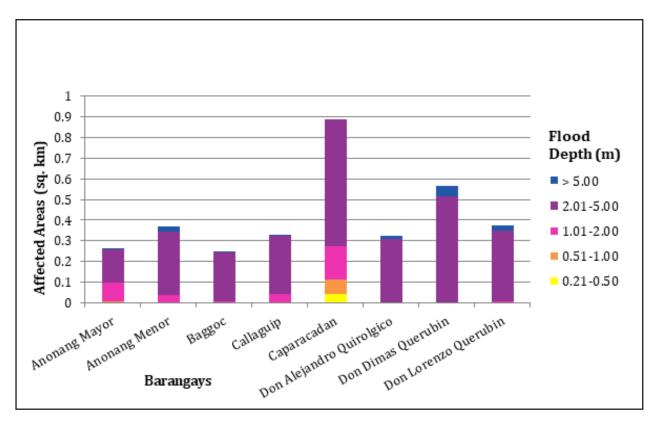


Figure 84. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period.

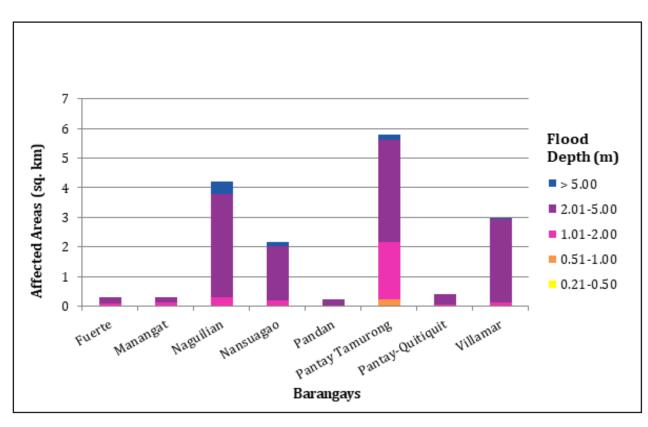


Figure 85. Affected Areas in Caoayan, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 64.77% of the municipality of Magsingal with an area of 78.9 sq. km. will experience flood levels of less than 0.20 meters. 12.46% of the area will experience flood levels of 0.21 to 0.50 meters while 9.02%, 6.87%, 3.60%, and 0.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in Magsingal square kilometers by flood depth per barangay.

Table 46. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	s in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Alangan	Bacar	Barbarit	Bungro	Cabaroan	Cadanglaan	Caraisan	Dacutan	Labut	Maas-Asin
0.03-0.20	0.93	0.17	1.03	0.86	0.45	1.27	1.9	0.097	1.38	5.06
0.21-0.50	0.23	0.24	0.41	0.45	0.3	0.29	0.58	0.19	0.22	0.77
0.51-1.00	0.22	0.22	0.34	0.31	0.33	0.072	0.053	0.28	0.14	0.46
1.01-2.00	0.2	0.27	0.14	0.12	0.16	0.031	0.029	0.23	0.092	0.4
2.01-5.00	0.022	0.17	0.047	0.15	0.21	0.012	0.019	0.19	0.1	0.18
> 5.00	0	0	0	0	0	0	0	0	0.0001	0
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	s in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Macatcatud	Manzante	Maratudo	Miramar	Namalpalan	Napo	Pagsanaan Norte	Pagsanaan Sur	Panay Norte	Panay Sur
0-0.20	4.18	Τ	14.16	0.32	1.59	3.59	0.14	0.23	0.71	1.18
0.21-0.50	82'0	0.37	0.55	0.099	0.32	1.04	0.26	0.094	0.45	0.76
0.51-1.00	0.33	9.0	0.36	0.19	0.29	0.4	0.35	0.14	0.33	0.7
1.01-2.00	0.26	0.62	0.32	0.59	0.21	0.1	0.24	0.37	0.11	0.31
2.01-5.00	0.12	0.32	0.16	0.28	0.059	0.036	0.074	0.38	0.036	0.012
> 5.00	0	0.0016	0.0024	0	0.0007	0	0	0	0	0
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	s in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Patong	Puro	San	San	San Julian	San Lucas	San	San Vicente	Santa Monica	Sarsaracat
0-0 20	611	11	Dasillo 0.11		0.063	0.046	0.29	0.38	0.71	1 99
		1 0	1000	0 0		0 0		0.00	7 0	
0.21-0.50	0.43	0.35	0.024	0.037	0.062	0.053	0.033	0.072	0.17	0.2
0.51-1.00	0.29	0.14	0.035	0.014	0.08	0.046	0.035	0.024	0.094	0.17
1.01-2.00	0.16	0.013	0.044	0.0021	0.16	0.058	0.0083	0.0024	0.063	0.12
2.01-5.00	0.1	0	0	0	0.071	0.013	0	0	0.016	0.049
> 5.00	0.037	0	0	0	0	0	0	0	0	0.002

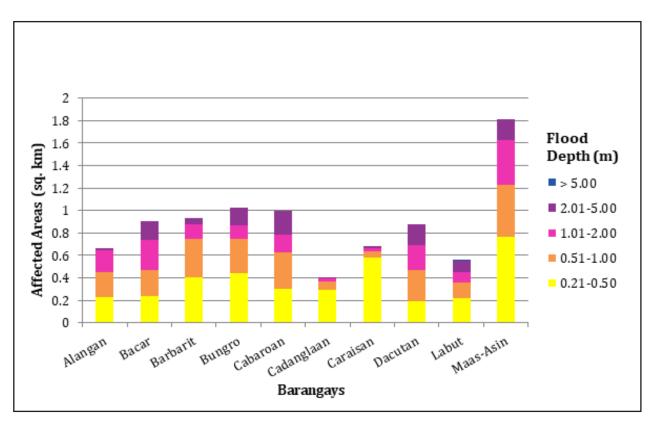


Figure 86. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period.

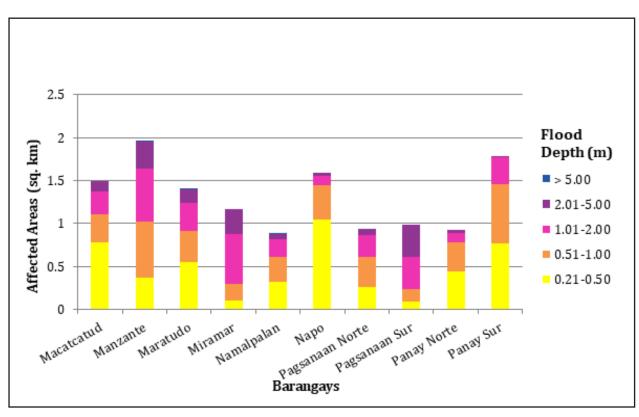


Figure 87. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period.

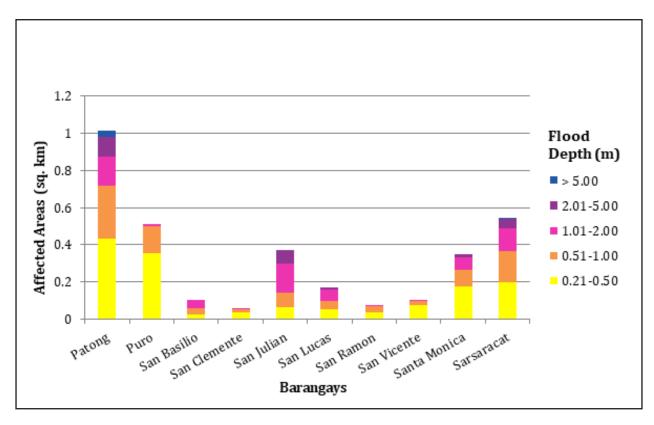


Figure 88. Affected Areas in Magsingal, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 0.30% of the municipality of Narvacan with an area of 97.18 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 47 are the affected areas in Narvacan in square kilometers by flood depth per barangay.

Table 47. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Area of affecte San Quintin	d barangays in (in sq. km.)	
flood depth (in m.)	Ambulogan	Lanipao	
0-0.20	0.15	0.14	
0.21-0.50	0.0081	0	
0.51-1.00	0.0015 0.00086		
1.01-2.00	0.0009	0	
2.01-5.00	0.000025	0	
> 5.00	0	0	

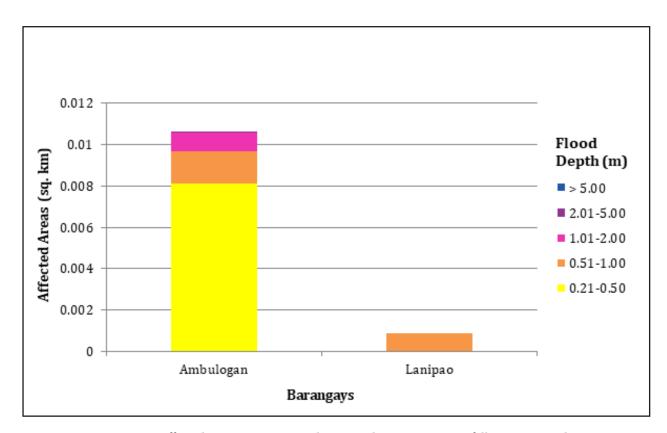


Figure 89. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 32.32% of the municipality of San Ildefonso with an area of 13.21 sq. km. will experience flood levels of less than 0.20 meters. 17.91% of the area will experience flood levels of 0.21 to 0.50 meters while 21.52%, 15.63%, 13.10%, and 0.74% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas in San Ildefonso in square kilometers by flood depth per barangay.

Table 48. Affected Areas in San Ildefonso, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area			Area of	Area of Affected Barangays in San Ildefonso (in sq.km)	s in San Ildefonso	(in sq.km)		
(sq. km.) by flood depth (in m.)	Arnap	Bahet	Belen	Bungro	Busiing Norte	Busiing Sur	Dongalo	Gongogong
0.03-0.20	0.35	0.14	0.47	990:0	0.45	0.19	0.039	0.0061
0.21-0.50	0.084	0.42	0.53	0.15	0.21	0.021	0.017	0.018
0.51-1.00	0.072	0.48	0.45	0.27	0.11	0.019	0.018	0.13
1.01-2.00	0.088	0.14	0.061	0.14	0.067	0.16	0.13	0.51
2.01-5.00	0.018	0.033	9:00	0.0067	0.087	0.16	0.36	0.18
> 5.00	0	0	0	0	0.004	0	0.03	0.021
Affected area		A	Area of Affected	Affected Barangays in San Ildefonso (in sq.km)	lldefonso (in sq.kn	(u		
(sq. km.) by 1100d depth (in m.)	lboy	Kinamantirisan	Otol-Patac	Poblacion East	Poblacion West	Sagneb	Sagsagat	
0.03-0.20	0.36	0.54	0.51	0.21	0.24	0.23	0.49	
0.21-0.50	0.093	0.25	0.11	0.071	0.049	0.2	0.14	
0.51-1.00	0.081	0.2	0.062	0.081	0.045	0.61	0.22	
1.01-2.00	0.082	0.032	0.23	0.11	0.016	0.079	0.23	
2.01-5.00	0.036	0.083	0.28	0.35	0.017	0	0.085	
> 5.00	0.0068	0	0	0.027	0.00075	0	0.0085	

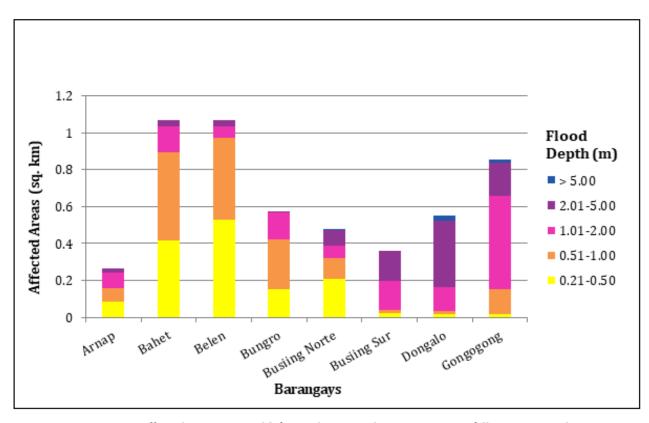


Figure 90. Affected Areas in San Ildefonso, Ilocos Sur during 5-Year Rainfall Return Period.

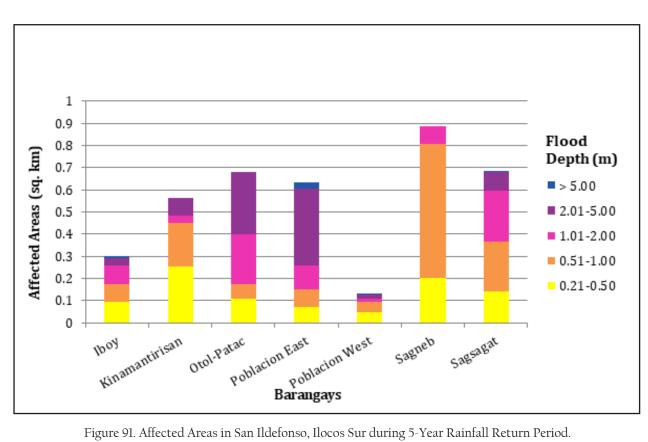


Figure 91. Affected Areas in San Ildefonso, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 51.83% of the municipality of San Juan with an area of 59.88 sq. km. will experience flood levels of less than 0.20 meters. 6.69% of the area will experience flood levels of 0.21 to 0.50 meters while 5.12%, 4.68%, 1.86%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49 are the affected areas in San Juan in square kilometers by flood depth per barangay.

Table 49. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period.

Affection by the second			Are	a of Affected B	arangays in Sai	Area of Affected Barangays in San Juan (in sg.km)	(-		
(sq. km.) by flood depth (in m.)	Asilang	Bacsil	Baliw	Bannuar	Barbar	Cabanglotan	Cacandon- gan	Camang- gaan	Camindoroan
0.03-0.20	1.07	0.46	1.24	0.026	10.93	0.54	1.02	1.41	0.1
0.21-0.50	0.078	0.18	0.34	0	0.5	0.053	0.094	0.11	0.072
0.51-1.00	0.073	0.25	0.078	0	0.32	690'0	0.035	0.11	0.067
1.01-2.00	0.11	0.29	0.084	0	0.28	0.054	0.022	0.068	0.036
2.01-5.00	0.064	0.047	0.13	0	0.21	0.02	0.011	0.015	0.0075
> 5.00	0	0	0.018	0	0.0051	0.0011	0.0004	0	0
Affected area			Area of Affe	ected Barangay	Area of Affected Barangays in San Juan (in sq.km)	n sq.km)			
(sq. km.) by flood depth (in m.)	Caronoan	Darao	Guimod Norte	Guimod Sur	Immayos Norte	Immayos Sur	Lira	Malamin	
0-0.20	0.034	1.29	0.88	0.4	1.14	0.64	0.22	4.18	
0.21-0.50	0.0002	0.11	0.26	0.15	0.15	0.057	0.057	0.19	
0.51-1.00	0.0002	0.046	0.07	0.39	0.094	0.16	0.0025	0.13	
1.01-2.00	0	0.032	0.007	0.49	0.051	0.17	0.003	0.11	
2.01-5.00	0	0.026	0.0023	0.065	0.097	0.034	0.015	0.04	
> 5.00	0	0.000008	0	0	0.015	0	0.00089	0	
Affected area			Area of Affe	ected Barangay	Area of Affected Barangays in San Juan (in sq.km)	n sq.km)			
(sq. km.) by flood depth (in m.)	Muraya	Nagsabaran	Nagsupotan	Pandayan	Resurreccion	Sabangan	San Isidro	Saoang	
0-0.20	1.8	0.52	0.95	0.089	0.38	0.55	0.45	0.74	
0.21-0.50	0.27	0.17	0.31	0.00033	0.044	0.092	0.43	0.3	
0.51-1.00	0.14	0.19	0.25	0.00018	0.0094	0.12	0.42	0.036	
1.01-2.00	0.19	0.15	0.2	0	0.011	0.043	0.42	0.0012	
2.01-5.00	0.16	0.035	0.019	0	0.04	0.015	0.065	0	
> 5.00	0.0083	0	0	0	0.013	0	0	0	

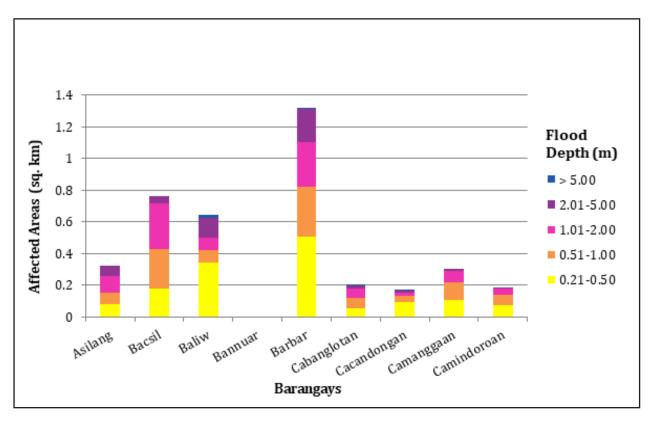


Figure 92. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period.

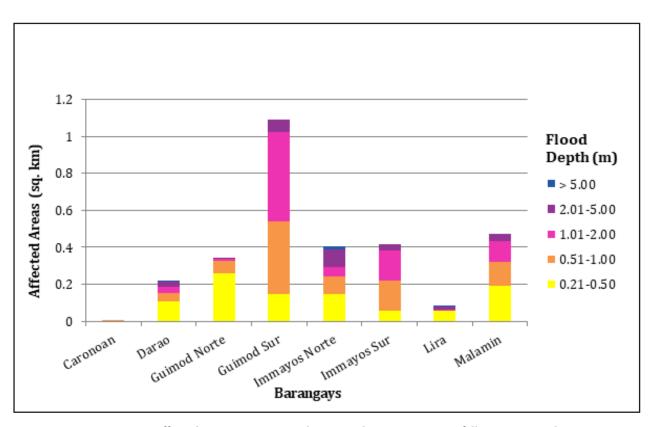


Figure 93. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period.

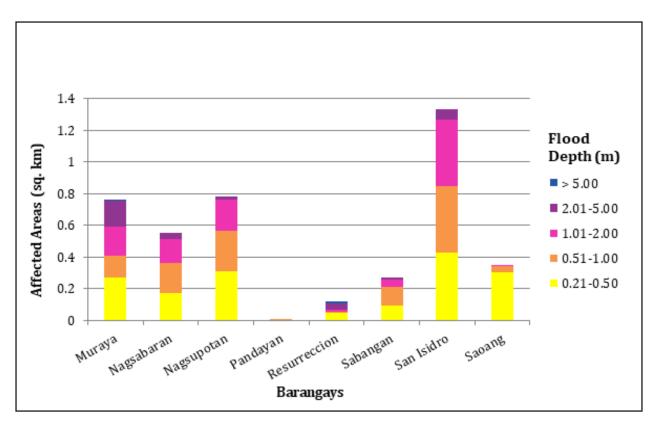


Figure 94. Affected Areas in San Juan, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 26.01% of the municipality of San Vicente with an area of 12.2 sq. km. will experience flood levels of less than 0.20 meters. 12.90% of the area will experience flood levels of 0.21 to 0.50 meters while 21.88%, 33.34%, 8.91%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in San Vicente in square kilometers by flood depth per barangay.

Table 50. Affected Areas in San Vicente, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area		Area of	Affected Ba	rangays in	San Vicente (i	n sq.km)	
(sq. km.) by flood depth (in m.)	Bantaoay	Bayubay Norte	Bayubay Sur	Lubong	Poblacion	Pudoc	San Sebastian
0-0.20	0.0055	0.24	0.35	0.33	0.33	0.18	1.73
0.21-0.50	0.017	0.16	0.1	0.2	0.15	0.26	0.69
0.51-1.00	0.16	0.084	0.046	0.21	0.11	1.02	1.04
1.01-2.00	0.59	0.011	0.024	0.1	0.0097	1.88	1.45
2.01-5.00	0.22	0	0.013	0.0038	0.00032	0.18	0.67
> 5.00	0	0	0	0	0	0	0.0007

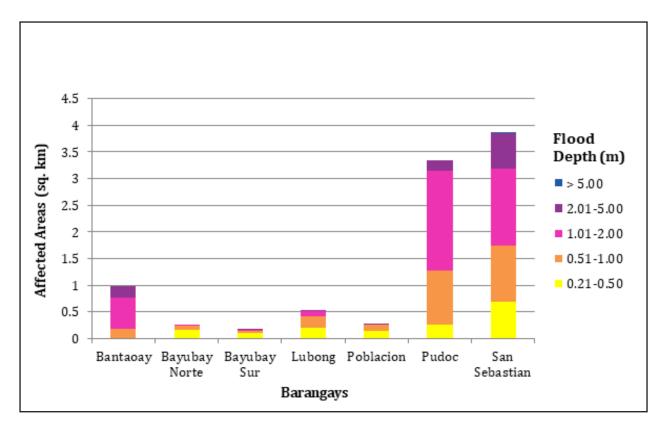


Figure 95. Affected Areas in San Vicente, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 31.91% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 4.28% of the area will experience flood levels of 0.21 to 0.50 meters while 3.87%, 5.47%, 10.30%, and 6.96% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 51 are the affected areas in Santa in square kilometers by flood depth per barangay.

Table 51. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area				Area c	of Affected Bara	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Ampandula	Banaoang	Basug	Bucalag	Cabangaran	Calungboyan	Dammay	Labut	Labut	Mabilbila Norte	Mabilbila Sur
0.03-0.20	1.02	1.02	0.84	0.039	0.7	0.2	5.03	0.52	0.75	0.34	0.55
0.21-0.50	0.031	0.041	0.039	0.1	0.033	0.13	1.26	0.02	0.03	0.0044	0.015
0.51-1.00	0.011	0.021	0.015	0.095	0.012	0.12	1.23	0.013	0.024	0.0005	0.014
1.01-2.00	0.0022	0.023	0.001	0.014	0.0015	0.032	2.36	0.0075	0.022	0.0001	0.0042
2.01-5.00	0	0.082	0	0.003	0.0001	0	2.75	0.0003	0.0027	0	0.0002
> 5.00	0	0.75	0	0	0	0	1.11	0	0	0	0
Affected area				Area c	of Affected Bar	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Manueva	Marcos	Nagpanaoan	Namalangan	Oribi	Pasungol	Quirino	Rizal	Sacuyya Norte	Sacuyya Sur	Tabucolan
0-0.20	0.52	0.055	0.073	1.16	0.04	0.11	1.68	1.25	1.04	1.26	0.061
0.21-0.50	0.012	0.00099	0.056	0.032	0.0086	0.066	0.29	0.047	0.042	0.053	0.14
0.51-1.00	0.0095	0.0012	0.16	0.022	0.0088	0.041	0.15	0.027	0.011	0.017	0.21
1.01-2.00	0.0042	0.0001	0.46	0.0084	0.0078	0.015	0.099	0.015	0	0.003	0.044
2.01-5.00	0	0	2.98	0.035	0	0	0.014	0.012	0.0009	0.00039	0
> 5.00	0	0	2.05	950.0	0	0	0	0.003	0	0	0

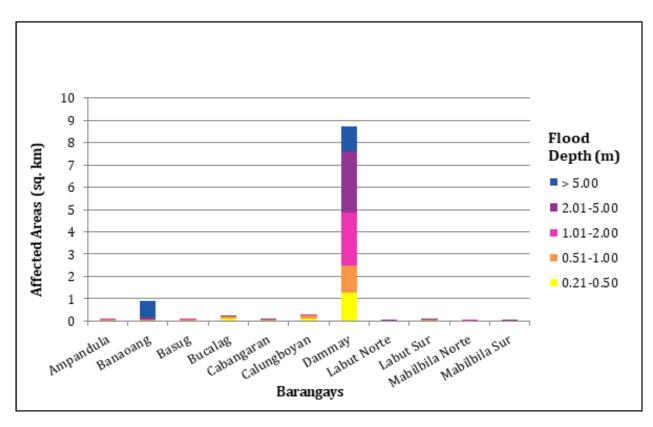


Figure 96. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period.

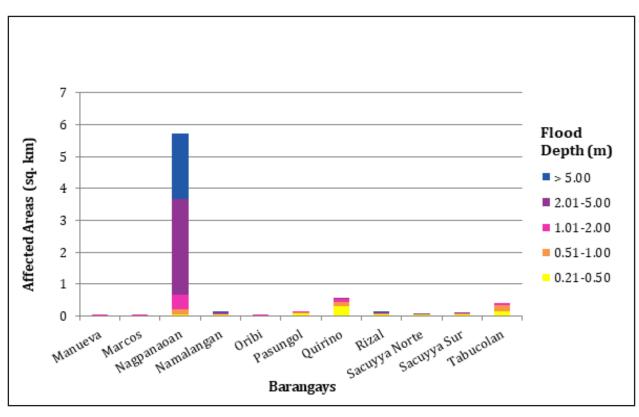


Figure 97. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 42.78% of the municipality of Santa Catalina with an area of 10.83 sq. km. will experience flood levels of less than 0.20 meters. 14.56% of the area will experience flood levels of 0.21 to 0.50 meters while 9.47%, 5.41%, and 2.45% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 52 are the affected areas in Santa Catalina in square kilometers by flood depth per barangay.

Table 52. Affected Areas in Santa	Catalina	. Ilocos Sur during	5-Year Raii	nfall Return Period.
Tuble 32. Threeted Theus in Suntu	Cucumin	, HOUSE CHI GHIIII	o rear rear	man recealli i circa.

Affected area		Area o	f Affected B	arangays i	n Santa Cata	alina (in sq.	km)	
(sq. km.) by flood depth (in m.)	Cabaroan	Cabittaogan	Cabuloan	Pangada	Poblacion	Sinabaan	Subec	Tamorong
0-0.20	0.36	1.45	0.48	0.28	0.24	0.76	0.32	0.74
0.21-0.50	0.079	0.33	0.13	0.063	0.065	0.32	0.065	0.52
0.51-1.00	0.022	0.33	0.11	0.045	0.022	0.067	0.019	0.41
1.01-2.00	0.022	0.3	0.021	0.024	0.025	0.016	0.001	0.18
2.01-5.00	0.0015	0.053	0.078	0.094	0.006	0	0	0.033
> 5.00	0	0	0	0	0	0	0	0

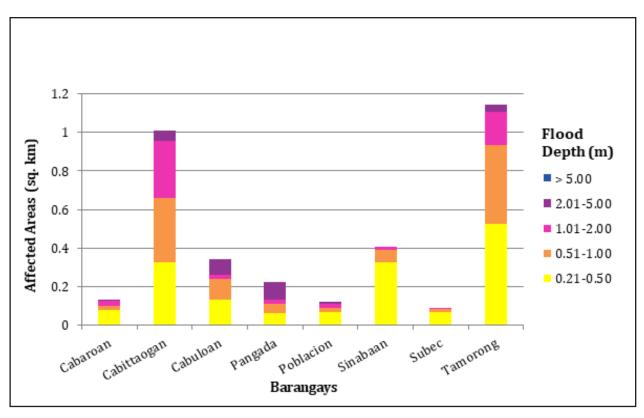


Figure 98. Affected Areas in Santa Catalina, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 50.99% of the municipality of Santo Domingo with an area of 50.36 sq. km. will experience flood levels of less than 0.20 meters. 14.68% of the area will experience flood levels of 0.21 to 0.50 meters while 14.01%, 16.40%, 4.46%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in Santo Domingo in square kilometers by flood depth per barangay.

Table 53. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area				₹	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	to Domingo	(in sq.km)				
(sq. km.) by flood depth (in m.)	Binalayangan	Binongan	Borobor	Cabaritan	Cabigbigaan	Calautit	Calay-Ab	Camestizoan	Casili	Flora	Lagatit	Laoingen
0.03-0.20	0.34	0.73	0.79	0.27	0.2	1.1	0.88	0.021	0.71	0.7	3.88	6.28
0.21-0.50	0.22	0.47	0.43	0.14	0.085	0.17	0.16	0.024	0.12	0.21	0.26	0.54
0.51-1.00	0.18	0.23	0.34	0.32	0.13	0.076	0.16	0.0072	0.12	0.37	0.13	0.37
1.01-2.00	0.0055	0.039	0.08	0.63	0.013	0.053	0.12	0.3	0.055	0.18	0.12	0.29
2.01-5.00	0	0.0008	0.041	0.35	0	0.062	0.15	0.4	0.015	0	0.052	0.093
> 5.00	0	0	0.0001	0.000002	0	0.0036	0	0.021	0	0	0	0.0003
Affected area				A	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	to Domingo	(in sq.km)				
flood depth (in m.)	Lussoc	Nagbettedan	Naglaoa-An	Nalasin	Nambaran	Nanerman	Napo	Padu Chico	Padu Grande	Paguraper	Panay	Pangpangdan
0-0.20	0.63	1.65	0.29	0.04	0.27	0.3	0.51	0.57	0.51	0.53	0.23	0.72
0.21-0.50	0.17	0.24	0.29	0.041	0.19	0.04	0.18	0.14	0.098	0.32	0.1	0.14
0.51-1.00	0.17	0.048	0.47	0.058	0.39	0.026	0.0041	0.18	0.11	0.25	0.14	0.18
1.01-2.00	0.091	0.049	0.74	0.16	99.0	0.062	0.0031	0.22	0.083	0.11	0.0031	0.082
2.01-5.00	0.012	0.02	0.16	0.046	0.021	0.056	0.0007	0.0005	0.0003	0.0014	0	0.0094
> 5.00	0.0009	0	0.01	0	0	0	0	0	0	0	0	0
Affected area				A	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	to Domingo	(in sq.km)				
(sq. km.) by flood depth (in m.)	Parada	Paras	Poblacion	Puerta Real	Pussuac	Quimmarayan	San Pablo	Santa Cruz	Santo Tomas	Sived	Suksukit	Vacunero
0-0.20	0.52	0.34	0.042	98:0	0.31	0.57	0.055	0.53	0.15	0.56	0.1	0.0013
0.21-0.50	0.45	0.53	0.12	0.18	0.16	0.22	0.12	0.32	0.29	0.13	0.079	0.0035
0.51-1.00	0.51	0.11	0.14	0.083	0.22	0.23	0.25	0.64	0.21	0.17	0.038	0.018
1.01-2.00	0.59	0.0088	0.19	0.26	0.41	0.24	0.62	1.01	0.039	0.15	0.066	0.51
2.01-5.00	0.0096	0.00063	0.051	0.071	0.14	0.054	0.056	0.085	0.012	0.17	0.087	0.021
> 5.00	0	0	0	0	0	0	0	0	0	0	0	0

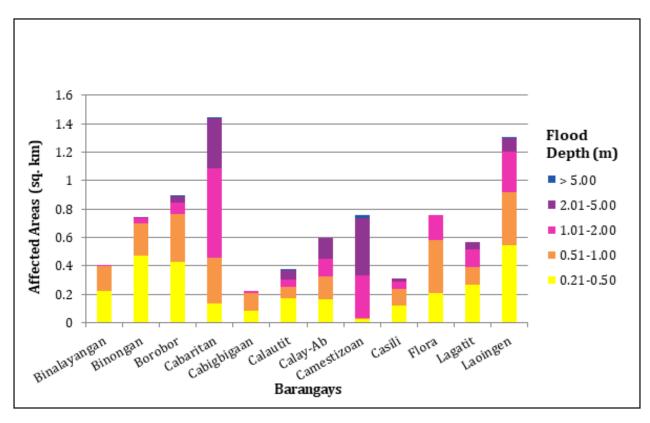


Figure 99. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period.

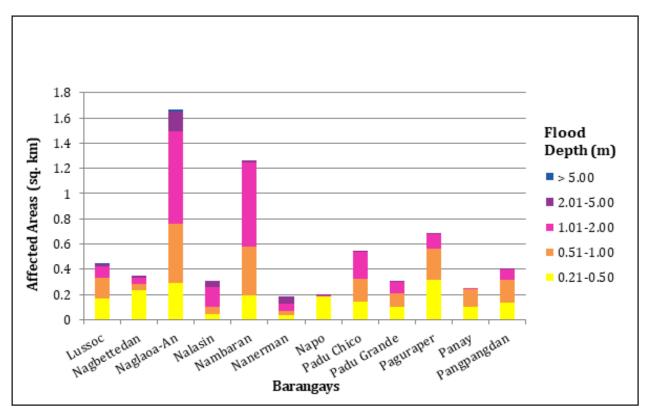


Figure 100. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period.

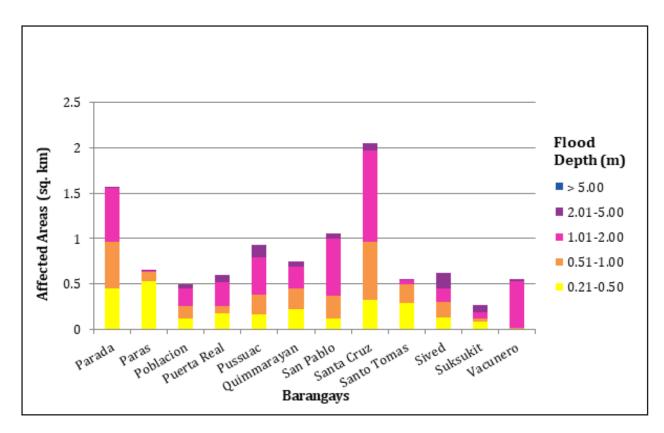


Figure 101. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period.

For the 5-year return period, 22.39% of the municipality of Vigan City with an area of 24.01 sq. km. will experience flood levels of less than 0.20 meters. 5.82% of the area will experience flood levels of 0.21 to 0.50 meters while 8.25%, 22.36%, 34.50%, and 4.35% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 are the affected areas in square kilometers by flood depth per barangay.

Table 54. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period

Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
(sq. km.) by flood depth (in m.)	Ayusan Norte	Ayusan Sur	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay IX	Barangay V	Barangay VI	Barangay VII
0.03-0.20	1.06	0.38	0.019	0	0.1	0	0	0	0	0.079
0.21-0.50	0.15	0.091	0.0022	0.0012	0.0085	0	0	0	0	0.013
0.51-1.00	0.053	0.031	0.0038	0.023	0.003	0.0037	0.0072	0.0057	0	0.014
1.01-2.00	0.054	0.018	0.0047	0.025	0.0065	0.033	0.057	0.054	0.00024	0.03
2.01-5.00	0.068	0.0039	0.035	0.054	6900'0	0.017	0.28	0.068	0.23	0.19
> 5.00	0.055	0	0.027	0.017	0.023	0.012	0	0	0.0017	0.045
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
flood depth (in m.)	Barangay VIII	Barraca	Beddeng Daya	Beddeng Laud	Bongtolan	Bulala	Cabalangegan	Cabaroan Daya	Cabaroan Laud	Camangaan
0-0.20	0	0	0	0	0.0002	0.39	0	0	0	0
0.21-0.50	0	0	0.0005	0	0.0011	0.07	0	0	0.0034	0.0029
0.51-1.00	0	0.04	0.031	0.015	0.029	0.023	0	0.026	0.046	0.03
1.01-2.00	0.022	0.17	0.16	0.24	0.12	0.0068	0.13	0.29	0.17	0.033
2.01-5.00	0.2	0.12	0.029	0.16	0.07	0	0.2	0.34	0.11	0.2
> 5.00	60:0	0	0	0	0.0015	0	0	0.014	0.027	0.033
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
(sq. km.) by flood depth (in m.)	Capangpangan	Mindoro	Nagsan- galan	Pantay Daya	Pantay Fatima	Pantay Laud	Paoa	Paratong	Pong-Ol	Purok-A- Bassit
0-0.20	0	0.35	0	0.41	0.54	0.8	0.26	0.4	0.061	0
0.21-0.50	0	0.19	0.0015	0.21	0.13	0.26	0.064	0.021	0.016	0
0.51-1.00	0.0021	0.24	0.13	0.25	0.12	0.3	0.032	0.05	0.041	90.0
1.01-2.00	0.21	0.11	0.56	0.3	0.15	0.23	0.026	0.11	0.046	0.29
2.01-5.00	0.33	0.012	0.21	0.18	0.098	0.0014	0.034	0.037	0.12	0.043
> 5.00	0.0079	0	0.028	0	0	0	0.0023	0	0	0

Affected area			Area of	Affected Ba	rangays in Vi	Area of Affected Barangays in Vigan City (in sq.km)	km)		
(sq. km.) by flood depth (in m.)	Purok-A-Dackel	Raois	Rugsuanan	Salindeg	San Jose	San Julian Norte	San Julian Sur	San Pedro	Tamag
0.03-0.20	0	0	0	0.085	0	0	0	0.15	0.3
0.21-0.50	0.0005	0.0006	0	0.012	0	0	0	0.11	0.038
0.51-1.00	0.058	0.035	0.0093	0.0084	0.0044	0.0006	0	0.24	0.018
1.01-2.00	0.21	0.13	0.19	0.17	0.13	0.33	0.0097	0.42	0.11
2.01-5.00	0.055	1.89	1.16	0.32	0.18	0.11	0.29	0.34	0.49
> 5.00	0	0.47	0.054	0.071	0	0	0	0	0.068

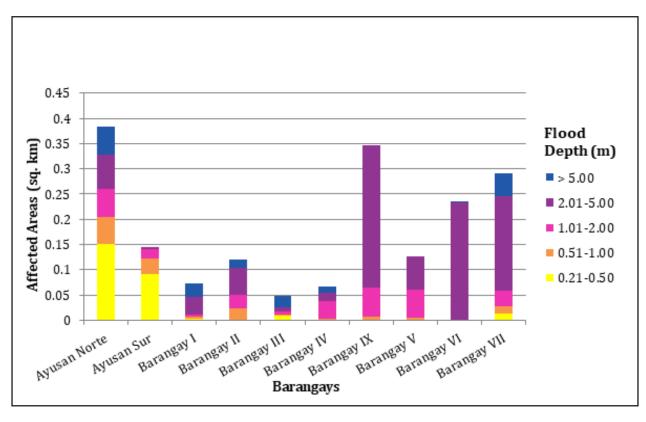


Figure 102. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period.

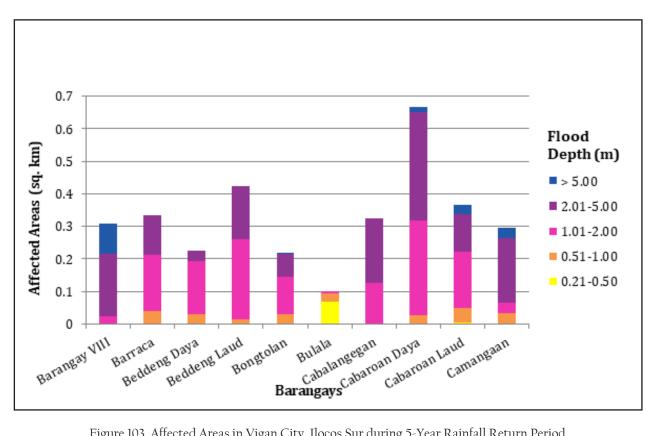


Figure 103. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period.

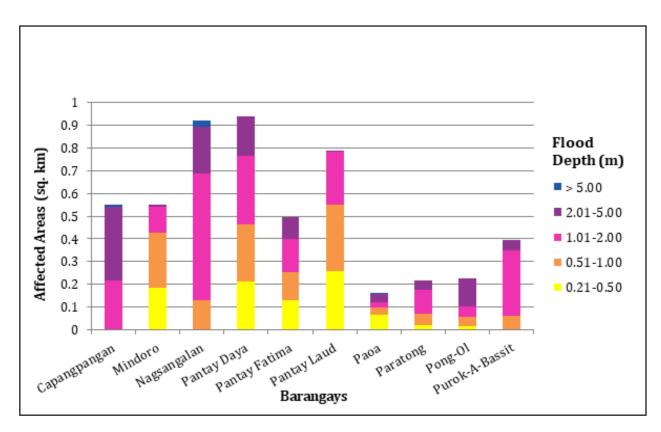


Figure 104. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period.

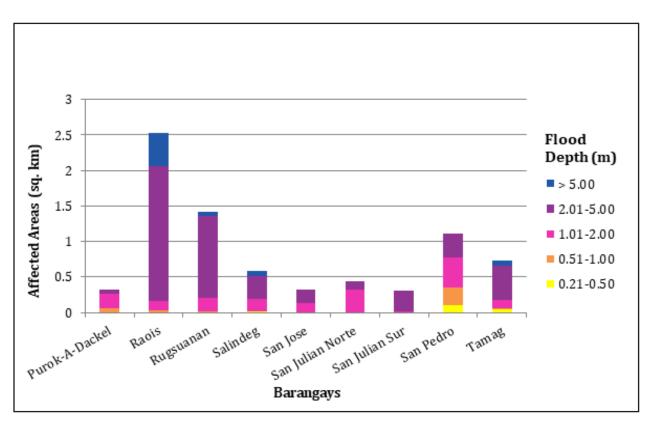


Figure 105. Affected Areas in Vigan City, Ilocos Sur during 5-Year Rainfall Return Period.

For the 25-year return period, 7.72% of the municipality of Bangued with an area of 123.75 sq. km. will experience flood levels of less than 0.20 meters. 0.38% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.12%, 0.24%, and 16.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55 are the affected areas in Bangued in square kilometers by flood depth per barangay.

Table 55. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period.

Affected area				Area o	Area of affected barangays in Bangued (in sq. km.)	ingays in Bar	igued (in sq.	km.)			
(sq. km.) by flood depth (in m.)	Ваñасао	Bangbangar	Cabuloan	Calaba	Dangdangla	Lingtan	Lipcan	Malita	Palao	Patucannay	Sagap
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0.0018	0.0027	0.0075	0.14	0.0081	0.0054	0.091
0.51-1.00	0	0	0	0	0.0045	0.0027	0.0027	0.051	0.012	0.0018	0.046
1.01-2.00	0	0	0	0	0.0018	0.0059	6600:0	0:03	0.011	0.0031	0.027
2.01-5.00	0	0	0	0	0.023	0.077	0.023	0.0045	0.033	0.013	0.0081
> 5.00	2.67	1.71	2.57	0.73	0.11	0.62	0.93	0	1.77	90.0	0.0009
Affected area			7	Area of affec	Area of affected barangays in Bangued (in sq. km.)	in Bangued	(in sq. km.)				
(sq. km.) by flood depth (in m.)	San Antonio	Santa Rosa	Sao-Atan	Zone 1 Poblacion	Zone 2 Poblacion	Zone 3 Poblacion	Zone 4 Poblacion	Zone 5 Poblacion	Zone 6 Poblacion	Zone 7 Poblacion	
0.03-0.20	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.21	0	0.0027	0	0	0	0	0	0	0	
0.51-1.00	0.088	0	0	0	0	0	0	0	0	0	
1.01-2.00	90.0	0	0.0005	0	0	0	0	0	0	0.0027	
2.01-5.00	0.098	0	0.0042	0	0	0	0	0	0	0.0064	
> 5.00	2.31	4.55	0.017	0.28	0.3	0.68	0.14	0.23	0.19	0.24	

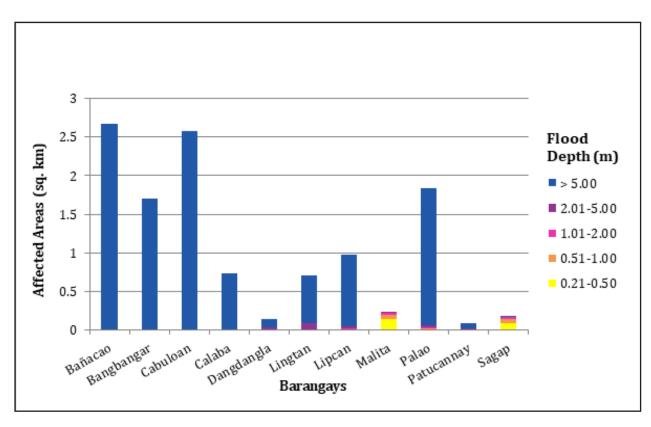


Figure 106. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period.

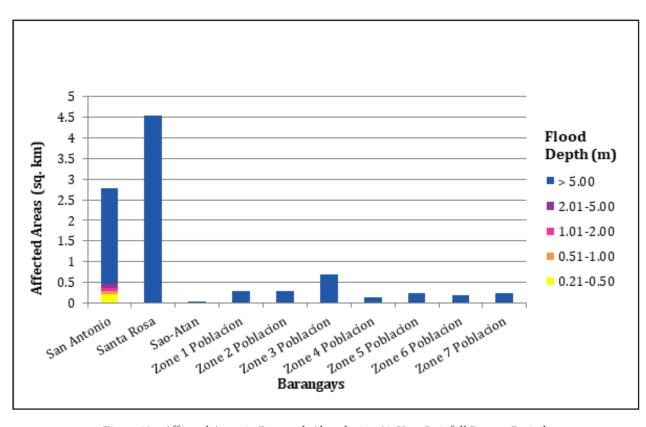


Figure 107. Affected Areas in Bangued, Abra during 25-Year Rainfall Return Period.

For the 25-year return period, 66.16% of the municipality of Langiden with an area of 98.7 sq. km. will experience flood levels of less than 0.20 meters. 3.50% of the area will experience flood levels of 0.21 to 0.50 meters while 1.68%, 1.08%, 2.42%, and 14.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 56 are the affected areas in Langiden in square kilometers by flood depth per barangay.

Table 56. Affected .	Areas in Langiden	, Abra during 25-Y	ear Rainfall Return Period.

Affected area		Area of af	fected barang	gays Langiden	(in sq. km)	
(sq. km.) by flood depth (in m.)	Ваас	Dalayap	Mabungtot	Malapaao	Poblacion	Quillat
0-0.20	0	0	0	0	0	0
0.21-0.50	0.076	0.0054	1.33	1.98	0.025	0.034
0.51-1.00	0.028	0.0036	0.64	0.95	0.019	0.016
1.01-2.00	0.035	0.0081	0.38	0.59	0.03	0.028
2.01-5.00	0.053	0.019	0.8	1.4	0.066	0.05
> 5.00	1.92	0.62	3.37	3.45	0.6	3.86

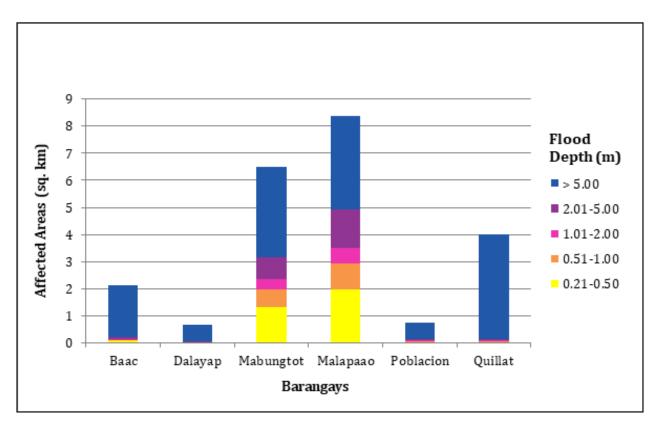


Figure 108. Affected Areas in Langiden, Abra during 25-Year Rainfall Return Period.

For the 25-year return period, 40.94% of the municipality of Pidigan with an area of 58.13 sq. km. will experience flood levels of less than 0.20 meters. 1.93% of the area will experience flood levels of 0.21 to 0.50 meters while 0.91%, 0.89%, 1.37%, and 31.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas in Pidigan in square kilometers by flood depth per barangay.

Table 57. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period.

Affected area		Area	of affected ba	rangays in Pic	digan (in sq. l	cm.)	
(sq. km.) by flood depth (in m.)	Alinaya	Garreta	Immuli	Laskig	Monggoc	Naguirayan	Pamutic
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.18	0.082	0.059	0.016	0.19	0.0009	0.0079
0.51-1.00	0.093	0.014	0.023	0.02	0.094	0.0018	0.0027
1.01-2.00	0.077	0.027	0.0094	0.008	0.12	0.0058	0.0027
2.01-5.00	0.092	0.051	0	0.037	0.19	0.021	0.009
> 5.00	0.69	0.26	0	0.74	1.18	1.26	1.45
Affected area		Area	of affected ba	rangays in Pic	digan (in sq. I	cm.)	
(sq. km.) by flood depth (in m.)	Pangtud	Poblacion East	Poblacion West	San Diego	Sulbec	Suyo	Yuyeng
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.12	0	0	0.0018	0.13	0.031	0.3
0.51-1.00	0.083	0	0	0.0044	0.057	0.016	0.12
1.01-2.00	0.1	0	0	0.01	0.057	0.014	0.085
2.01-5.00	0.089	0	0	0.035	0.13	0.027	0.12
> 5.00	1.71	2.54	1.93	2.09	3.15	0.57	0.68

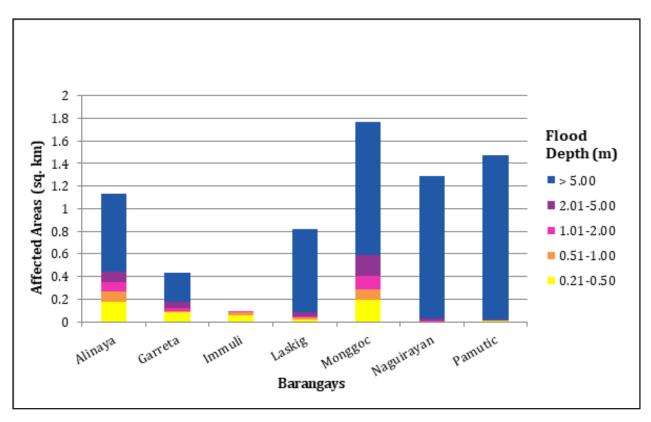


Figure 109. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period.

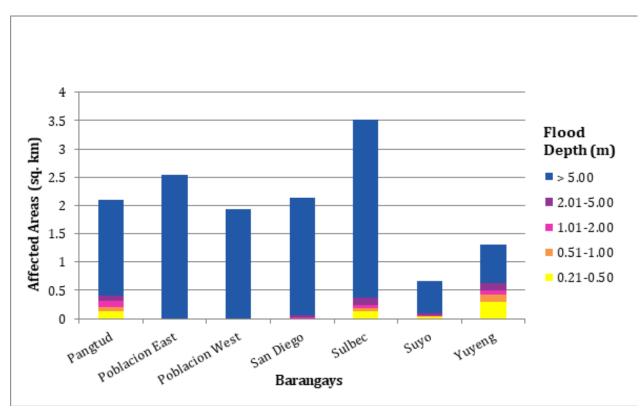


Figure 110. Affected Areas in Pidigan, Abra during 25-Year Rainfall Return Period.

For the 25-year return period, 51.04% of the municipality of San Quintin with an area of 62.29 sq. km. will experience flood levels of less than 0.20 meters. 2.71% of the area will experience flood levels of 0.21 to 0.50 meters while 1.43%, 1.25%, 1.92%, and 12.60% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58 are the affected areas in San Quintin in square kilometers by flood depth per barangay.

Affected area		Area of affec	ted barangay	s in San Quin	tin (in sq. km.)
(sq. km.) by flood depth (in m.)	Labaan	Palang	Pantoc	Poblacion	Tangadan	Villa Mercedes
0-0.20	0	0	0	0	0	0
0.21-0.50	0.48	0.22	0.23	0.013	0.62	0.13
0.51-1.00	0.29	0.081	0.097	0.0036	0.34	0.087
1.01-2.00	0.26	0.095	0.057	0.0076	0.25	0.11
2.01-5.00	0.42	0.2	0.07	0.023	0.25	0.23
> 5.00	2.35	4.2	0.0045	0.98	0.09	0.22

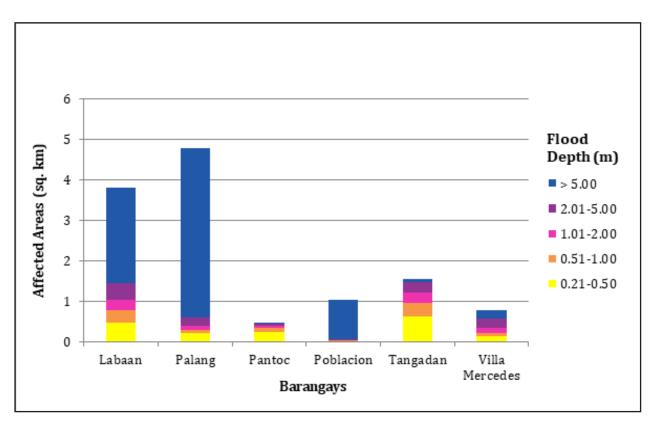


Figure 111. Affected Areas in San Quintin, Abra during 25-Year Rainfall Return Period.

For the 25-year return period, 0.53% of the municipality of Nueva Era with an area of 619 sq. km. will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% and 0.01% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 59 are the affected areas in Nueva Era in square kilometers by flood depth per barangay.

Affected area (sq. km.) by flood	Area of affected barangays in San Quintin (in sq. km.)
depth (in m.)	Barangobong
0-0.20	0
0.21-0.50	0.12
0.51-1.00	0.082
1.01-2.00	0.048
2.01-5.00	0.019
> 5.00	0.0027

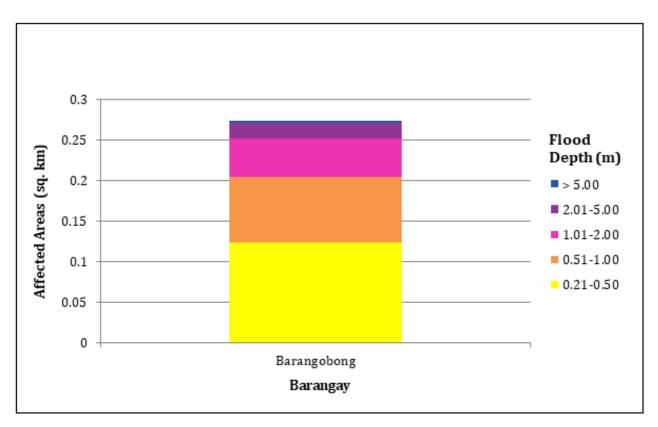


Figure 112. Affected Areas in Nueva Era, Ilocos Norte during 25-Year Rainfall Return Period.

For the 25-year return period, 59.56% of the municipality of Bantay with an area of 71.06 sq. km. will experience flood levels of less than 0.20 meters. 8.37% of the area will experience flood levels of 0.21 to 0.50 meters while 6.53%, 5.34%, 6.85%, and 13.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 60 are the affected areas in Bantay in square kilometers by flood depth per barangay.

Table 60. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area				Area o	of affected ba	Area of affected barangays in Bantay (in sq. km.)	ntay (in sq. k	m.)				
(sq. km.) by flood depth (in m.)	Аввау	An-Annam	Balaleng	Banaoang	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Bulag	Buquig
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.039	0.41	0.47	0.18	0	0	0	0	0	0	0.17	0.028
0.51-1.00	0.03	0.097	0.21	0.085	0	0	0	0	0	0	0.17	0.019
1.01-2.00	0.076	0.038	0.064	0.054	0	0	0	0	0	0	0.17	0.026
2.01-5.00	0.081	0.0008	0.0005	0.063	0	0	0	0	0	0	0.27	0.056
> 5.00	90.0	0	0	0.35	0	0	0	0	0	0	0.7	0.19
Affected area				Area of affe	cted baranga	Area of affected barangays in Bantay (in sq. km.)	in sq. km.)					
(sq. km.) by flood depth (in m.)	Cabalanggan	Cabaroan	Cabusligan	Capangdanan	Guimod	Lingsat	Malingeb	Mira	Naguiddayan	Ora	Paing	
0-0.20	0	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.0035	0.0092	0.25	0.45	0.32	1.03	0.26	0.077	0.19	0.087	0.15	
0.51-1.00	6200.0	0.011	0.26	1.04	0.37	0.53	0.34	0.016	0.14	0.16	0.079	
1.01-2.00	0.043	0.049	0.11	0.54	0.34	0.57	0.18	0.001	0.047	0.19	0.098	
2.01-5.00	0.57	0.082	0	0.047	0.22	0.28	0.0095	0	0.08	0.088	0.4	
> 5.00	0.19	0.072	0	0	0.0005	0.012	0	0	0.35	0	3.15	
Affected area				Area of affe	cted baranga	Area of affected barangays in Bantay (in sq. km.)	in sq. km.)					
(sq. km.) by flood depth (in m.)	Puspus	Quimmarayan	Sagneb	Sagpat	San Isidro	San Julian	San Mariano	Sinabaan	Taguiporo	Taleb	Тау-Ас	
0-0.20	0	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.22	0.28	0.075	0.14	0	0	0.25	0.0081	0	0.18	0.55	
0.51-1.00	0.21	0.051	0	0.13	0	0	0.12	0.0072	0	0.15	0.26	
1.01-2.00	0.25	0.031	0	0.37	0	0	0.097	0.018	0	0.17	0.13	
2.01-5.00	0.035	0.0078	0	0.32	0.087	96.0	0.14	0.4	0.18	0.26	0.0073	
> 5.00	0.028	0	0	0	0.49	1.54	0.51	0.2	1.41	0.14	0	

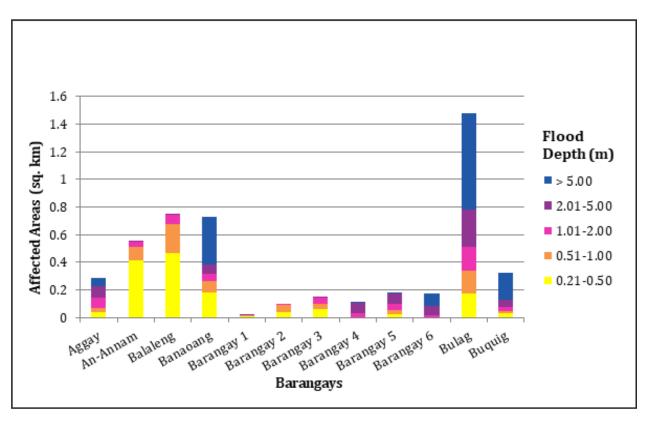


Figure 113. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period.

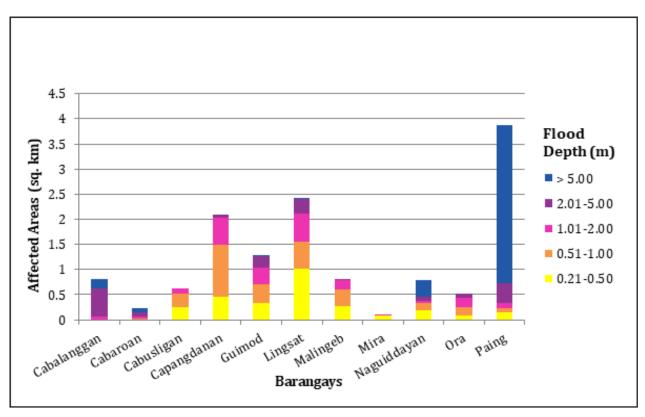


Figure 114. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period.

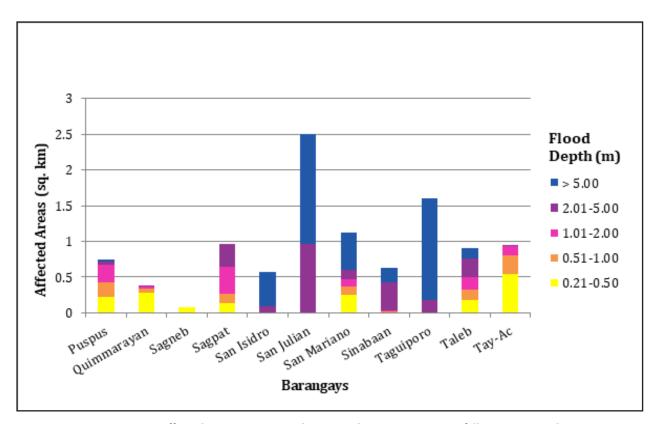


Figure 115. Affected Areas in Bantay, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 1.45% of the municipality of Caoayan with an area of 21.2 sq. km. will experience flood levels of less than 0.20 meters. 0.34% of the area will experience flood levels of 0.21 to 0.50 meters while 0.72%, 4.40%, 72.75%, and 15.06% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 61 are the affected areas in Caoayan in square kilometers by flood depth per barangay.

Table 61. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area			Area	of affected ba	rangays in Caoa	Area of affected barangays in Caoayan (in sq. km.)		
(sq. km.) by flood depth (in m.)	Anonang Mayor	Anonang Menor	Baggoc	Callaguip	Caparacadan	Don Alejandro Quirolgico	Don Dimas Querubin	Don Lorenzo Querubin
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0.042	0	0	0
0.51-1.00	0	0	0.0001	0	0.063	0	0	0
1.01-2.00	0	0	0.0015	0.0015	0.11	0	0	0
2.01-5.00	0.23	0.28	0.2	0.28	69:0	0.29	0.48	0.28
> 5.00	0.033	0.095	0.04	0.052	0	0.036	0.088	0.095
Affected area			Area	of affected ba	rangays in Caoa	Area of affected barangays in Caoayan (in sq. km.)		
depth (in m.)	Fuerte	Manangat	Naguilian	Nansuagao	Pandan	Pantay Tamurong	Pantay-Quitiquit	Villamar
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.0089	0.0068	0	0	0	0.013	0	0.0004
0.51-1.00	0.015	0.012	0	0	0.0003	0.061	0	0.0008
1.01-2.00	0.049	0.028	0.0002	0.0013	0.0006	0.72	0.0003	0.017
2.01-5.00	0.24	0.26	2.45	1.7	0.24	4.68	0.41	2.73
> 5.00	0	0.0024	1.75	0.48	0.00012	0.32	0	0.2

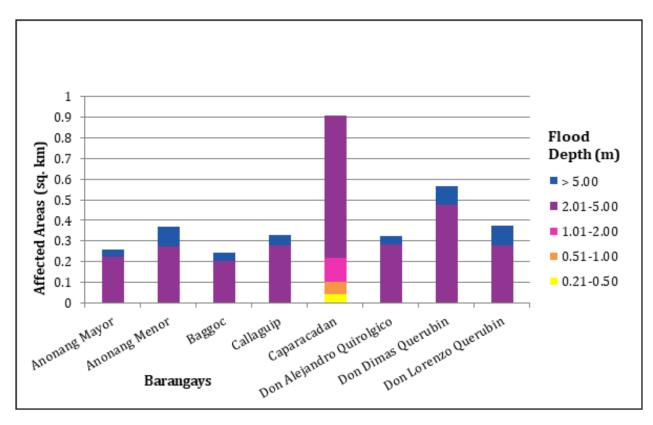


Figure 116. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period.

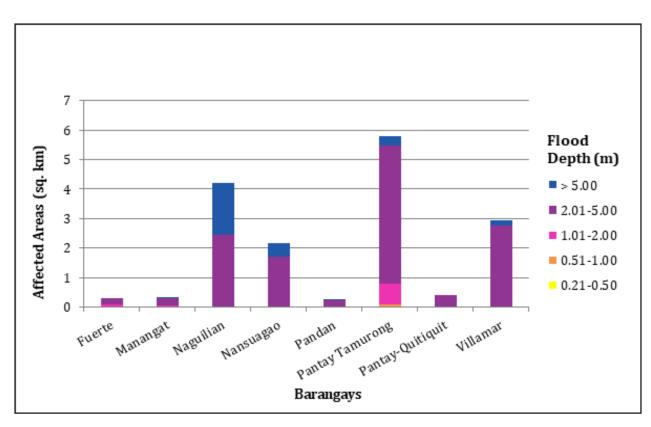


Figure 117. Affected Areas in Caoayan, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 59.72% of the municipality of Magsingal with an area of 78.9 sq. km. will experience flood levels of less than 0.20 meters. 13.68% of the area will experience flood levels of 0.21 to 0.50 meters while 10.50%, 7.70%, 5.01%, and 0.07% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 62 are the affected areas in Magsingal in square kilometers by flood depth per barangay.

Table 62. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	rs in Magsinga	l (in sq.km)			
depth (in m.)	Alangan	Bacar	Barbarit	Bungro	Cabaroan	Cadanglaan	Caraisan	Dacutan	Labut	Maas-Asin
0.03-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.23	0.17	0.37	0.46	0.23	0.35	1.13	0.19	0.26	6.0
0.51-1.00	0.22	0.3	0.48	0.41	98'0	0.12	0.19	0.28	0.22	0.48
1.01-2.00	0.2	0.3	0.33	0.19	0.22	0.041	0.035	0.23	0.15	0.47
2.01-5.00	0.022	0.22	0.11	0.16	0.22	0.022	0.029	0.19	0.13	0.32
> 5.00	0	0	0	0	0	0	0	0	0.0012	0
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	rs in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Macatcatud	Manzante	Maratudo	Miramar	Namalpalan	Napo	Pagsanaan Norte	Pagsanaan Sur	Panay Norte	Panay Sur
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.92	0.37	0.64	0.068	0.32	1.13	0.23	0.099	0.45	0.76
0.51-1.00	0.52	0.65	0.39	0.14	0.29	0.61	0.32	0.17	0.33	0.7
1.01-2.00	0.23	0.62	0.37	0.42	0.21	0.17	0.32	0.37	0.11	0.31
2.01-5.00	0.24	0.32	0.28	0.63	0.059	0.048	0.11	0.44	0.036	0.012
> 5.00	0	0.0016	0.0044	0	0.0007	0.0001	0.0002	0	0	0
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	s in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Patong	Puro	San Basilio	San Clemente	San Julian	San Lucas	San Ramon	San Vicente	Santa Monica	Sarsaracat
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.47	0.35	0.03	0.031	0.047	0.055	0.037	0.08	0.22	0.19
0.51-1.00	0.36	0.14	0.03	0.034	0.091	0.057	0.04	0.033	0.12	0.19
1.01-2.00	0.22	0.013	0.059	0.004	0.14	0.053	0.013	0.0036	0.11	0.17
2.01-5.00	0.13	0	0.0053	0	0.11	0.036	0	0	0.025	0.064
> 5.00	0.043	0	0	0	0	0	0	0	0	0.0039

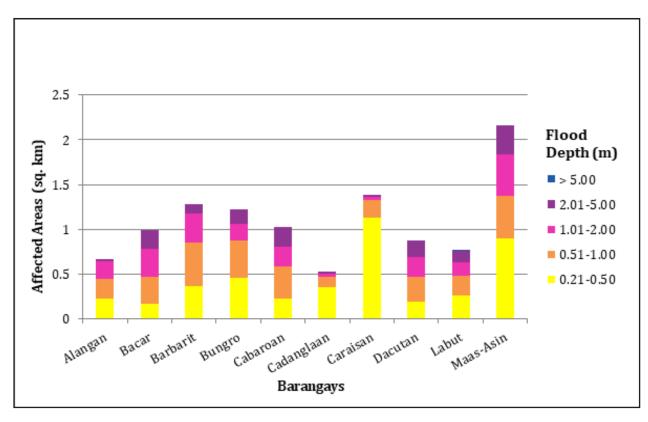


Figure 118. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period.

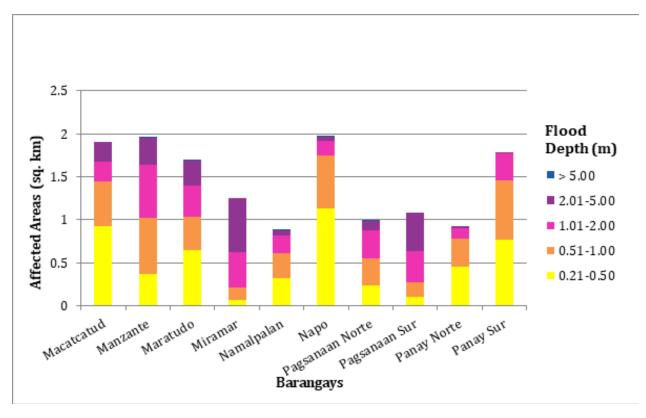


Figure 119. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period.

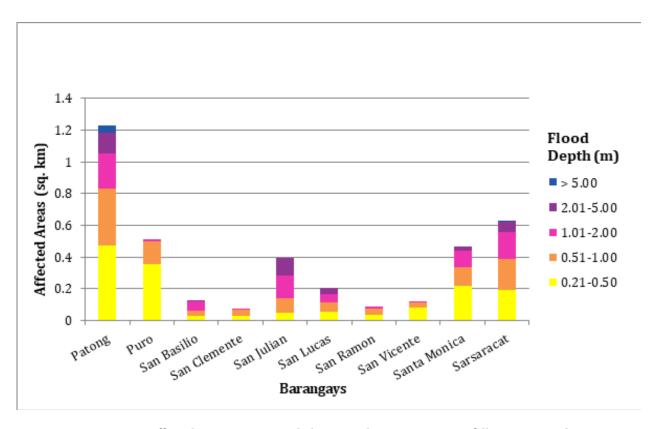


Figure 120. Affected Areas in Magsingal, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 0.30% of the municipality of Narvacan with an area of 97.18 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 63 are the affected areas in Narvacan in square kilometers by flood depth per barangay.

Table 63. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Area of affecte San Quintin	d barangays in (in sq. km.)
flood depth (in m.)	Ambulogan	Lanipao
0-0.20	0	0
0.21-0.50	0.0072	0.0027
0.51-1.00	0.0024	0.00086
1.01-2.00	0.00062	0
2.01-5.00	0.0027	0
> 5.00	0.000025	0

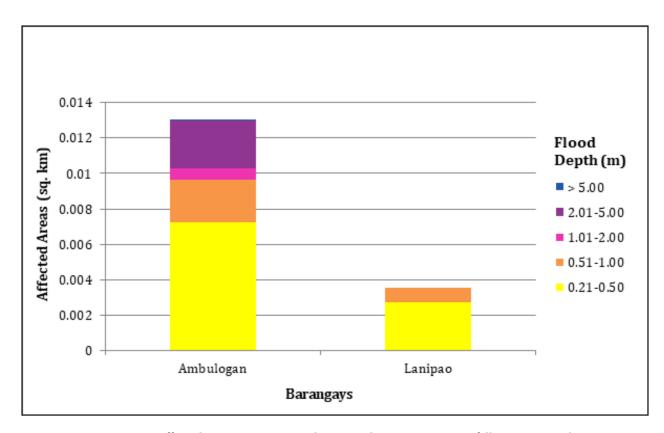


Figure 121. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 24.20% of the municipality of San Ildefonso with an area of 13.21 sq. km. will experience flood levels of less than 0.20 meters. 11.74% of the area will experience flood levels of 0.21 to 0.50 meters while 24.19%, 20.69%, 18.98%, and 1.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 64 are the affected areas in San Ildefonso in square kilometers by flood depth per barangay.

Table 64. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area			Area of	Area of Affected Barangays in San Ildefonso (in sq.km)	s in San Ildefonso	(in sq.km)		
(sq. km.) by flood depth (in m.)	Arnap	Bahet	Belen	Bungro	Busiing Norte	Busiing Sur	Dongalo	Gongogong
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.1	0.049	0.28	0.072	0.16	0.022	0.013	0.011
0.51-1.00	0.067	0.57	0.73	0.25	0.26	0.018	0.026	0.023
1.01-2.00	0.12	0.51	0.14	0.28	0.15	0.057	0.042	0.4
2.01-5.00	0.028	690'0	0.038	0.0079	0.12	0.28	0.45	0.4
> 5.00	0	0.0002	0	0	0.0064	0	0.048	0.031
Affected area		A	Area of Affected	Affected Barangays in San Ildefonso (in sq.km)	Ildefonso (in sq.kn	u)		
(sq. km.) by nood depth (in m.)	KoqI	Kinamantirisan	Otol-Patac	Poblacion East	Poblacion West	Sagneb	Sagsagat	
0.03-0.20	0	0	0	0	0	0	0	
0.21-0.50	660'0	0.28	0.12	0.07	0.049	0.13	0.092	
0.51-1.00	0.07	0.26	0.091	0.082	0.053	0.53	0.17	
1.01-2.00	0.094	0.052	0.12	0.12	0.025	0.3	0.31	
2.01-5.00	0.043	0.086	0.42	0.39	0.023	0.0037	0.14	
> 5.00	0.0068	0	0.01	0.041	0.00085	0	0.0085	

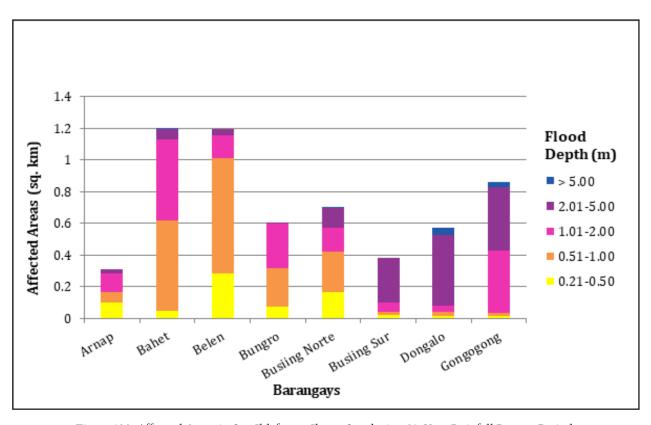


Figure 122. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period.

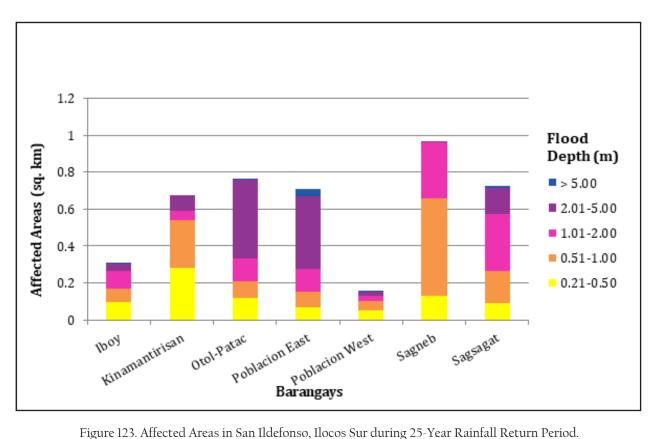


Figure 123. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 48.12% of the municipality of San Juan with an area of 59.88 sq. km. will experience flood levels of less than 0.20 meters. 7.62% of the area will experience flood levels of 0.21 to 0.50 meters while 5.09%, 6.18%, 3.08%, and 0.20% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 65 are the affected areas San Juan in square kilometers by flood depth per barangay.

Table 65. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area			Area	a of Affected B	Area of Affected Barangays in San Juan (in sq.km)	Juan (in sq.km)			
(sq. km.) by flood depth (in m.)	Asilang	Bacsil	Baliw	Bannuar	Barbar	Cabanglotan	Cacandon- gan	Camang- gaan	Camindoroan
0.03-0.20	0	0	0	0	0	0	0	0	0
0.21-0.50	0.095	0.19	0.49	0.0001	0.58	0.087	0.1	0.12	0.056
0.51-1.00	0.051	0.19	0.11	0	0.35	990.0	0.056	0.089	0.099
1.01-2.00	0.11	0.42	0.094	0	0.34	0.084	0.023	0.12	0.047
2.01-5.00	0.1	0.087	0.14	0	0.3	0.03	0.017	0.032	0.011
> 5.00	0	0	0.028	0	0.011	0.002	0.0004	0	0
Affected area			Area of Affe	cted Barangays	Area of Affected Barangays in San Juan (in sq.km)	sq.km)			
(sq. km.) by flood depth (in m.)	Caronoan	Darao	Guimod Norte	Guimod Sur	Immayos Norte	Immayos Sur	Lira	Malamin	
0-0.20	0	0	0	0	0	0	0	0	
0.21-0.50	0.0002	0.12	0.24	0.18	0.19	0.042	60:0	0.22	
0.51-1.00	0.0002	0.063	0.15	0.25	0.11	0.087	0.016	0.13	
1.01-2.00	0	0.036	0.012	0.62	0.066	0.24	0.0031	0.14	
2.01-5.00	0	0.043	0.0023	0.18	0.11	0.065	0.016	0.069	
> 5.00	0	0.0012	0	0	0.029	0	0.0015	0	
Affected area			Area of Affe	cted Barangays	Area of Affected Barangays in San Juan (in sq.km)	sq.km)			
(sq. km.) by flood depth (in m.)	Muraya	Nagsabaran	Nagsupotan	Pandayan	Resurreccion	Sabangan	San Isidro	Saoang	
0-0.20	0	0	0	0	0	0	0	0	
0.21-0.50	0.3	0.17	0.31	0.00053	0.059	0.12	0.38	0.42	
0.51-1.00	0.15	0.21	0.23	0.00016	0.015	0.1	0.41	0.1	
1.01-2.00	0.19	0.2	0.28	0.000017	0.0097	0.087	0.56	0.004	
2.01-5.00	0.25	0.068	0.066	0	0.04	0.02	0.19	0	
> 5.00	0.024	0	0	0	0.023	0	0	0	

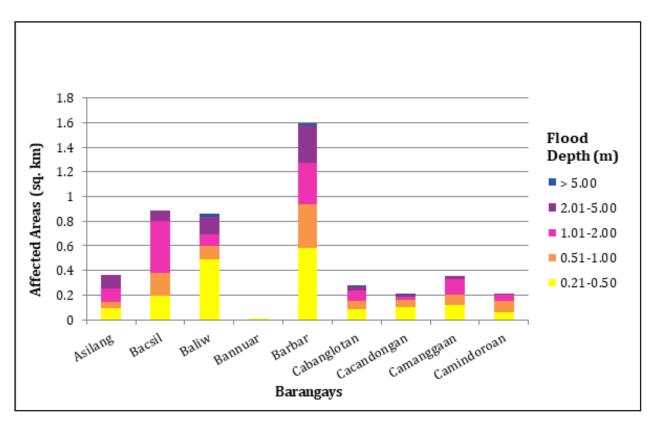


Figure 124. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period.

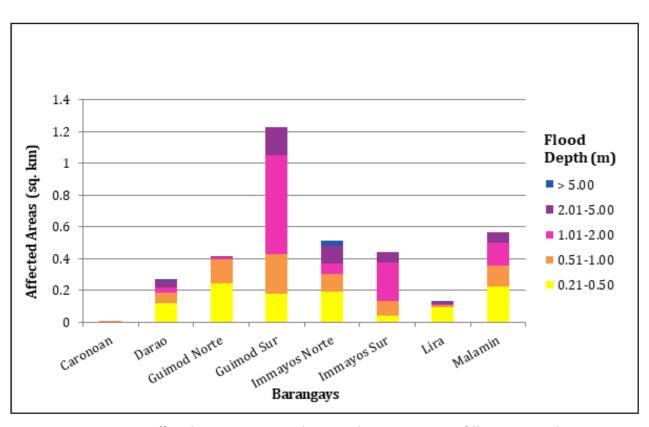


Figure 125. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period.

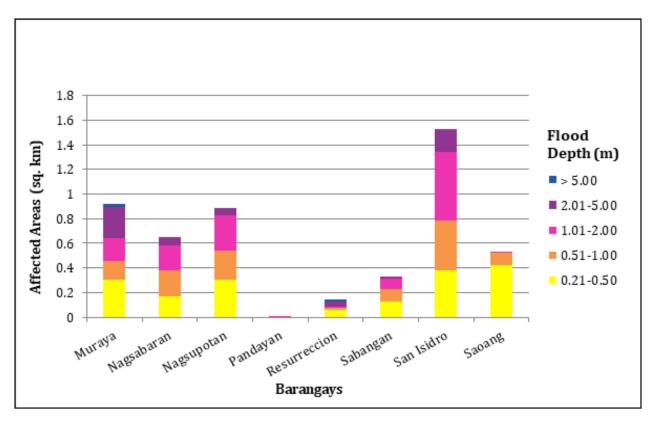


Figure 126. Affected Areas in San Juan, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 16.95% of the municipality of San Vicente with an area of 12.2 sq. km. will experience flood levels of less than 0.20 meters. 12.34% of the area will experience flood levels of 0.21 to 0.50 meters while 17.68%, 39.03%, 16.99%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 66 are the affected areas in San Vicente in quare kilometers by flood depth per barangay.

Table 66. Affected Areas in San Vicente, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area		Area of	Affected Ba	rangays in	San Vicente (i	n sq.km)	
(sq. km.) by flood depth (in m.)	Bantaoay	Bayubay Norte	Bayubay Sur	Lubong	Poblacion	Pudoc	San Sebastian
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.0047	0.17	0.17	0.2	0.16	0.095	0.71
0.51-1.00	0.033	0.13	0.17	0.27	0.18	0.44	0.93
1.01-2.00	0.47	0.087	0.086	0.2	0.095	2.18	1.64
2.01-5.00	0.48	0	0.05	0.019	0.0032	0.73	0.79
> 5.00	0	0	0.00084	0	0	0	0.0007

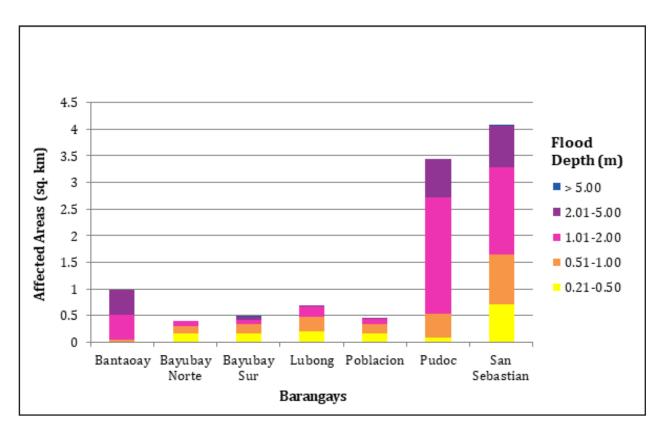


Figure 127. Affected Areas in San Vicente, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 29.84% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 4.10% of the area will experience flood levels of 0.21 to 0.50 meters while 4.21%, 5.85%, 9.62%, and 9.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 67 are the affected areas in Santa in square kilometers by flood depth per barangay.

Table 67. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area				Area	of Affected Bar	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Ampandula	Banaoang	Basug	Bucalag	Cabangaran	Calungboyan	Dammay	Labut Norte	Labut Sur	Mabilbila Norte	Mabilbila Sur
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.046	0.032	0.047	0.08	0.046	0.11	1.16	0.05	0.043	0.0049	0.016
0.51-1.00	0.016	0.02	0.019	0.13	0.015	0.17	1.24	0.016	0.021	0.0013	0.013
1.01-2.00	0.0034	0.011	0.0044	0.019	0.0035	0.047	2.43	0.011	0.029	0.0002	0.0087
2.01-5.00	0.0001	0.041	0	0.0035	0.0002	0	2.95	0.0012	0.0076	0	0.00093
> 5.00	0	6:0	0	0	0	0	1.5	0	0	0	0
Affected area				Area	of Affected Bar	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Manueva	Marcos	Nagpanaoan	Namalangan	Oribi	Pasungol	Quirino	Rizal	Sacuyya Norte	Sacuyya Sur	Tabucolan
0-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.015	0.0013	0.046	0.035	0.01	0.071	0.29	0.065	0.05	0.063	0.1
0.51-1.00	0.0096	0.0013	0.12	0.025	0.0076	0.051	0.23	0.035	0.02	0.026	0.22
1.01-2.00	0.0065	0.0002	0.43	0.018	0.011	0.022	0.13	0.016	0.0014	0.01	0.12
2.01-5.00	0.0004	0	2.45	0.011	0	0	0.018	0.013	0.0009	0.00049	0
> 5.00	0	0	2.7	0.12	0	0	0	0.024	0	0	0

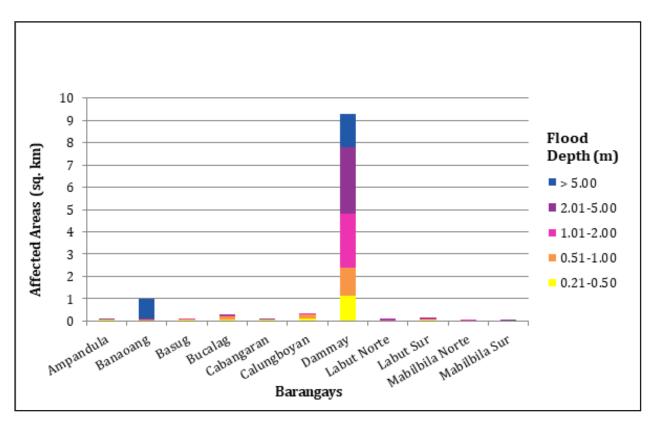


Figure 128. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period.

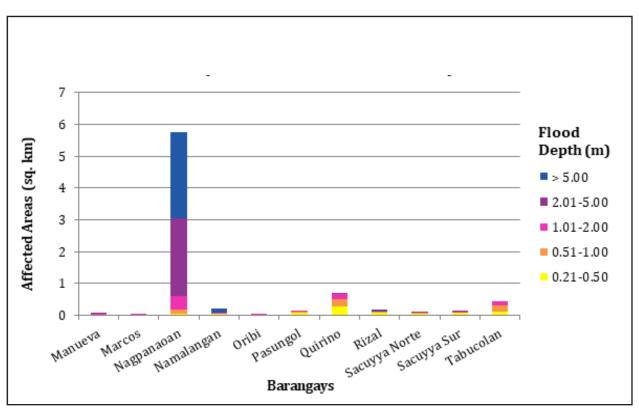


Figure 129. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 24.02% of the municipality of Santa Catalina with an area of 10.83 sq. km. will experience flood levels of less than 0.20 meters. 17.07% of the area will experience flood levels of 0.21 to 0.50 meters while 15.06%, 12.17%, and 6.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 68 are the affected areas in Santa Catalina in square kilometers by flood depth per barangay.

Table 68. Affected Areas in Santa Catalina	, Ilocos Sur during 25-Year Rainfall Return Period.

Affected area		Area o	f Affected B	arangays i	n Santa Cata	alina (in sq.	km)	
(sq. km.) by flood depth (in m.)	Cabaroan	Cabittaogan	Cabuloan	Pangada	Poblacion	Sinabaan	Subec	Tamorong
0-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.21	0.37	0.19	0.049	0.081	0.44	0.1	0.41
0.51-1.00	0.097	0.57	0.12	0.067	0.026	0.1	0.013	0.63
1.01-2.00	0.025	0.63	0.089	0.17	0.025	0.038	0.011	0.34
2.01-5.00	0.036	0.33	0.092	0.16	0.018	0	0	0.05
> 5.00	0	0	0	0	0	0	0	0

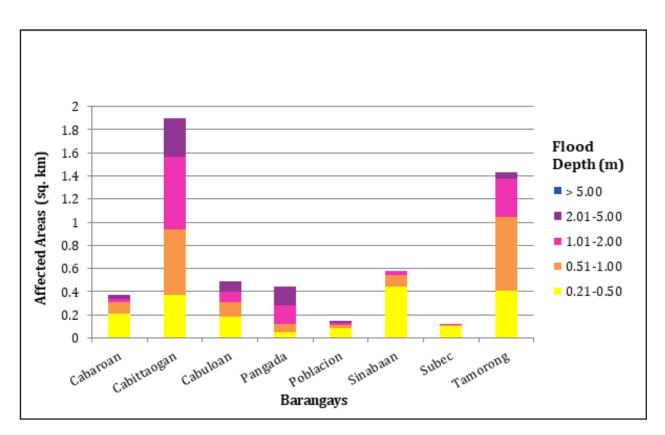


Figure 130. Affected Areas in Santa Catalina, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 46.56% of the municipality of Santo Domingo with an area of 50.36 sq. km. will experience flood levels of less than 0.20 meters. 14.48% of the area will experience flood levels of 0.21 to 0.50 meters while 16.22%, 17.30%, 5.79%, and 0.09% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 69 are the affected areas in Santo Domingo in square kilometers by flood depth per barangay.

Table 53. Affected Areas in Santo Domingo, Ilocos Sur during 5-Year Rainfall Return Period.

Affected area				4	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	ito Domingo	(in sq.km)				
(sq. km.) by flood depth (in m.)	Binalayangan	Binongan	Borobor	Cabaritan	Cabigbigaan	Calautit	Calay-Ab	Camestizoan	Casili	Flora	Lagatit	Laoingen
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.22	0.48	0.43	0.14	0.085	0.21	0.16	0.024	0.12	0.21	0.35	0.58
0.51-1.00	0.18	0.34	0.52	0.32	0.13	0.16	0.16	0.0072	0.12	0.37	0.15	0.47
1.01-2.00	0.0055	0.072	0.16	0.63	0.013	0.096	0.12	0.3	0.055	0.18	0.14	0.37
2.01-5.00	0	0.0033	0.057	0.35	0	0.076	0.15	0.4	0.015	0	0.08	0.16
> 5.00	0	0	0.0003	0.000002	0	0.0087	0	0.021	0	0	0.001	0.0009
Affected area				₹	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	ito Domingo	(in sq.km)				
flood depth (in m.)	Lussoc	Nagbettedan	Naglaoa-An	Nalasin	Nambaran	Nanerman	Napo	Padu Chico	Padu Grande	Paguraper	Panay	Pangpangdan
0-0.20	0	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.19	0.26	0.29	0.033	0.14	0.04	0.22	0.14	0.098	0.32	0.1	0.14
0.51-1.00	0.18	0.088	0.47	0.038	0.3	0.026	0.16	0.18	0.11	0.25	0.14	0.18
1.01-2.00	0.13	0.05	0.74	0.11	0.81	0.062	0.0046	0.22	0.083	0.11	0.0031	0.082
2.01-5.00	0.033	0.038	0.16	0.13	0.098	0.056	0.0007	0.0005	0.0003	0.0014	0	0.0094
> 5.00	0.0027	0	0.01	0	0	0	0	0	0	0	0	0
Affected area				A	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	ito Domingo	(in sq.km)				
(sq. km.) by flood depth (in m.)	Parada	Paras	Poblacion	Puerta Real	Pussuac	Quimmarayan	San Pablo	Santa Cruz	Santo Tomas	Sived	Suksukit	Vacunero
0-0.20	0	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.41	0.4	0.12	0.17	0.16	0.2	0.054	0.32	0.25	0.13	0.079	0.0035
0.51-1.00	0.57	0.49	0.13	0.089	0.2	0.27	0.22	0.64	0.29	0.17	0.038	0.018
1.01-2.00	0.65	0.038	0.19	0.26	0.44	0.22	0.57	1.01	0.058	0.15	0.066	0.51
2.01-5.00	9600.0	0.0014	0.051	0.071	0.21	0.15	0.23	0.085	0.013	0.17	0.087	0.021
> 5.00	0	0	0	0	0	0	0	0	0	0	0	0

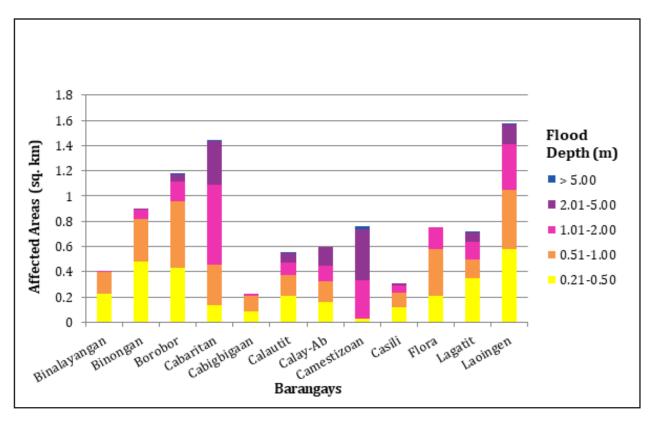


Figure 131. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period.

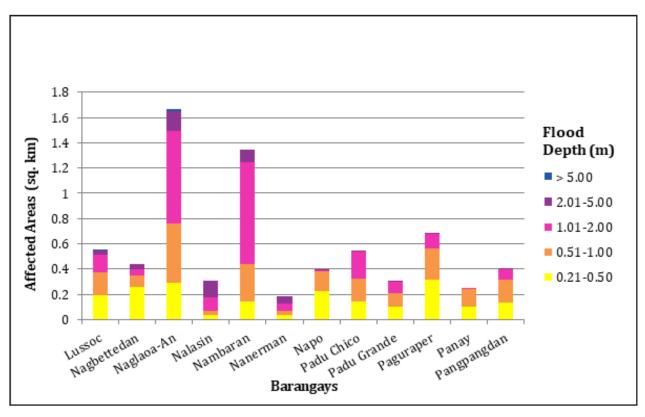


Figure 132. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period.

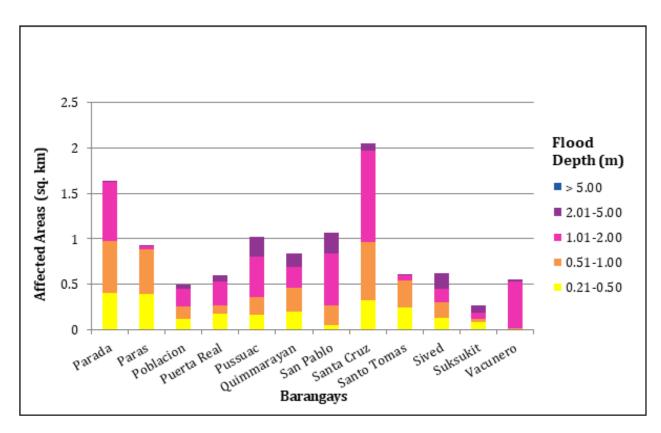


Figure 133. Affected Areas in Santo Domingo, Ilocos Sur during 25-Year Rainfall Return Period.

For the 25-year return period, 14.23% of the municipality of Vigan City with an area of 24.01 sq. km. will experience flood levels of less than 0.20 meters. 4.56% of the area will experience flood levels of 0.21 to 0.50 meters while 6.43%, 11.49%, 43.07%, and 17.91% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 70 are the affected areas in Vigan City in square kilometers by flood depth per barangay.

Table 70. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period

Affected area				A TO SOLV		in Vices City	(in 2 m)			
(so km) hv				Area or Arie	cred baranga	Area of Affected barangays in Vigan City (in Sq.Kiff)	(iii sq.kiii)			
flood depth (in m.)	Ayusan Norte	Ayusan Sur	Barangay I	Barangay II	Barangay III	Barangay IV	Barangay IX	Barangay V	Barangay VI	Barangay VII
0.03-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.14	0.13	0	0	0	0	0	0	0	0
0.51-1.00	0.11	0.052	0	0	0	0	0	0	0	0
1.01-2.00	0.16	0.026	0	0	0	0	0	0	0	0
2.01-5.00	0.089	0.0079	0	0	0	0	0	0	0	0
> 5.00	0.095	0	0	0	0	0	0	0	0	0
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
flood depth (in m.)	Barangay VIII	Barraca	Beddeng Daya	Beddeng Laud	Bongtolan	Bulala	Cabalangegan	Cabaroan Daya	Cabaroan Laud	Camangaan
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0	0.091	0	0	0	0
0.51-1.00	0	0.0002	0	0	0	0.027	0	0	0	0
1.01-2.00	0	0.17	0.0048	0	0.0014	0.016	0	0	0.0036	0.004
2.01-5.00	0	0.17	0.21	0.42	0.2	0.00051	0.32	9.0	0.28	0.15
> 5.00	0	0	0.012	0	0.016	0	0	0.071	0.08	0.14
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
(sq. km.) by flood depth (in m.)	Capangpangan	Mindoro	Nagsan- galan	Pantay Daya	Pantay Fatima	Pantay Laud	Paoa	Paratong	Pong-Ol	Purok-A- Bassit
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0.15	0	690:0	0.077	0.15	0.078	0.023	0.0054	0
0.51-1.00	0	0.24	0	0.23	0.18	0.34	0.048	0.015	0.018	0
1.01-2.00	0	0.22	0	0.48	0.3	0.56	0.027	0.14	0.065	0
2.01-5.00	0.52	0.018	0.83	0.5	0.26	0.28	0.065	0.05	0.15	0.38
> 5.00	0.026	0	960:0	0.049	0	0	0.0041	0	0	0.015

Affected area			Area of	Affected Ba	rangays in Vi	Area of Affected Barangays in Vigan City (in sq.km)	km)		
(sq. km.) by flood depth (in m.)	Purok-A-Dackel	Raois	Rugsuanan	Salindeg	San Jose	San Julian Norte	San Julian Sur	San Pedro	Tamag
0.03-0.20	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0.016	0	0	0	0.078	0.045
0.51-1.00	0	0	0	0.01	0	0	0	0.19	0.024
1.01-2.00	0	0	0	0.022	0	0	0	0.46	0.023
2.01-5.00	0.3	0.4	0.57	0.44	0.31	0.43	0.3	0.44	0.52
> 5.00	0.023	2.13	0.85	0.12	0.0034	0.00019	0.0014	0	0.16

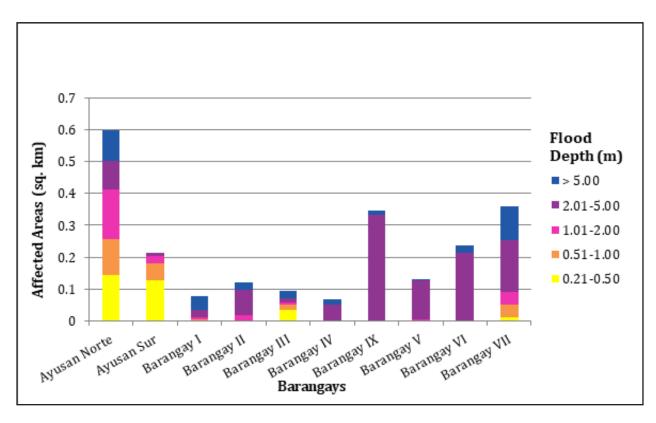


Figure 134. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period.

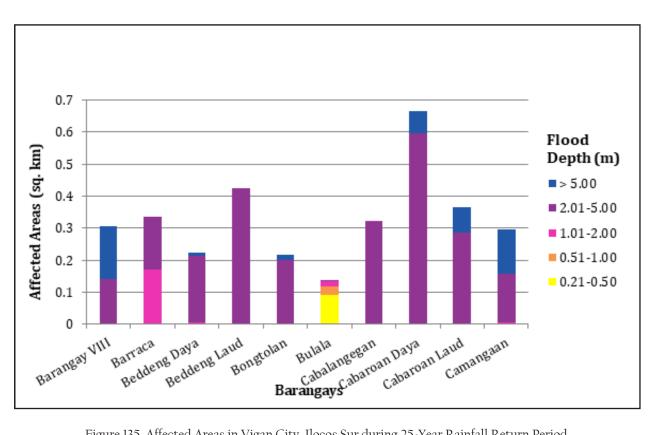


Figure 135. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period.

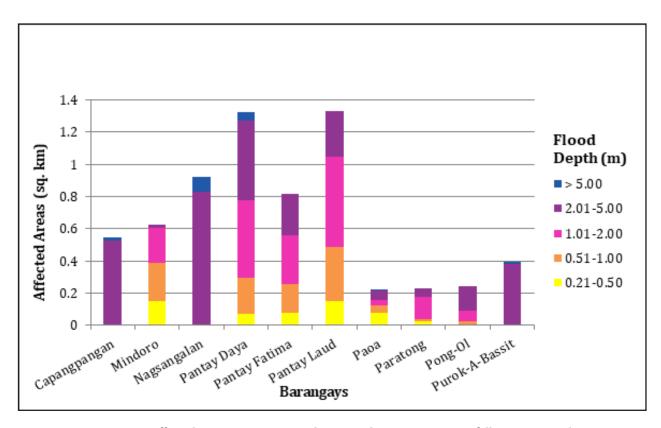


Figure 136. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period.

Figure 137. Affected Areas in Vigan City, Ilocos Sur during 25-Year Rainfall Return Period.

For the 100-year return period, 7.72% of the municipality of Bangued with an area of 123.75 sq. km. will experience flood levels of less than 0.20 meters. 0.38% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.12%, 0.24%, and 16.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 71 are the affected areas in Bangued in square kilometers by flood depth per barangay.

Table 71. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period.

Affected area				Area o	Area of affected barangays in Bangued (in sq. km.)	angays in Bar	ngued (in sq.	km.)			
(sq. km.) by flood depth (in m.)	Ваñасао	Bangbangar	Cabuloan	Calaba	Dangdangla	Lingtan	Lipcan	Malita	Palao	Patucannay	Sagap
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0.0018	0.0027	0.0075	0.14	0.0081	0.0054	0.091
0.51-1.00	0	0	0	0	0.0045	0.0027	0.0027	0.051	0.012	0.0018	0.046
1.01-2.00	0	0	0	0	0.0018	0.0059	0.0099	0.03	0.011	0.0031	0.027
2.01-5.00	0	0	0	0	0.023	0.077	0.023	0.0045	0.033	0.013	0.0081
> 5.00	2.67	1.71	2.57	0.73	0.11	0.62	0.93	0	1.77	90:0	0.0009
Affected area			7	Vrea of affec	Area of affected barangays in Bangued (in sq. km.)	in Bangued	(in sq. km.)				
(sq. km.) by flood depth (in m.)	San Antonio	Santa Rosa	Sao-Atan	Zone 1 Poblacion	Zone 2 Poblacion	Zone 3 Poblacion	Zone 4 Poblacion	Zone 5 Poblacion	Zone 6 Poblacion	Zone 7 Poblacion	
0.03-0.20	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.21	0	0.0027	0	0	0	0	0	0	0	
0.51-1.00	0.088	0	0	0	0	0	0	0	0	0	
1.01-2.00	0.06	0	0.0005	0	0	0	0	0	0	0.0027	
2.01-5.00	0.098	0	0.0042	0	0	0	0	0	0	0.0064	
> 5.00	2.31	4.55	0.017	0.28	0.3	89.0	0.14	0.23	0.19	0.24	

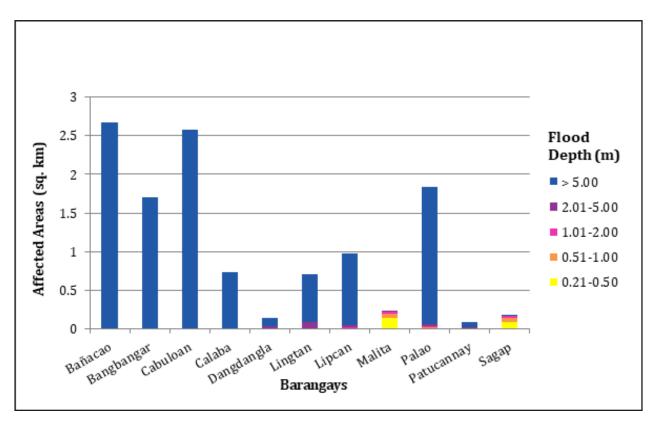


Figure 138. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period.

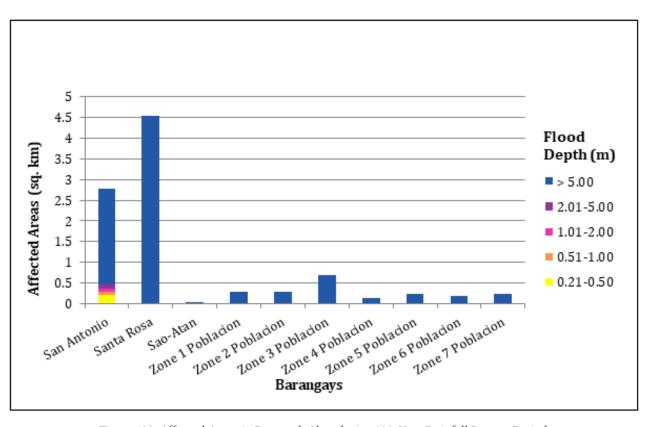


Figure 139. Affected Areas in Bangued, Abra during 100-Year Rainfall Return Period.

For the 100-year return period, 66.16% of the municipality of Langiden with an area of 98.7 sq. km. will experience flood levels of less than 0.20 meters. 3.50% of the area will experience flood levels of 0.21 to 0.50 meters while 1.68%, 1.08%, 2.42%, and 14.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 72 are the affected areas in Langiden in square kilometers by flood depth per barangay.

Table 72. Affected A	Areas in Langiden.	Abra during 100-Y	ear Rainfall Return Pe	riod.

Affected area		Area of af	fected barang	gays Langiden	(in sq. km)	
(sq. km.) by flood depth (in m.)	Ваас	Dalayap	Mabungtot	Malapaao	Poblacion	Quillat
0-0.20	0	0	0	0	0	0
0.21-0.50	0.076	0.0054	1.33	1.98	0.025	0.034
0.51-1.00	0.028	0.0036	0.64	0.95	0.019	0.016
1.01-2.00	0.035	0.0081	0.38	0.59	0.03	0.028
2.01-5.00	0.053	0.019	0.8	1.4	0.066	0.05
> 5.00	1.92	0.62	3.37	3.45	0.6	3.86

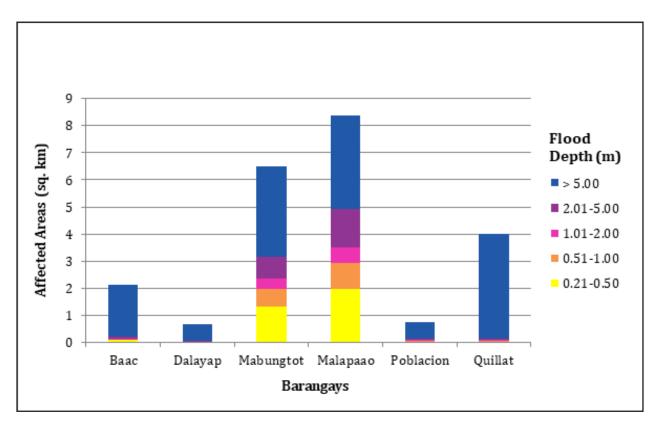


Figure 140. Affected Areas in Langiden, Abra during 100-Year Rainfall Return Period.

For the 100-year return period, 40.94% of the municipality of Pidigan with an area of 58.13 sq. km. will experience flood levels of less than 0.20 meters. 1.93% of the area will experience flood levels of 0.21 to 0.50 meters while 0.91%, 0.89%, 1.37%, and 31.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 73 are the affected areas in Pidigan in square kilometers by flood depth per barangay.

Table 73. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period.

Affected area		Area	of affected ba	rangays in Pic	digan (in sq. l	·m.)	
(sq. km.) by flood depth (in m.)	Alinaya	Garreta	Immuli	Laskig	Monggoc	Naguirayan	Pamutic
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.18	0.082	0.059	0.016	0.19	0.0009	0.0079
0.51-1.00	0.093	0.014	0.023	0.02	0.094	0.0018	0.0027
1.01-2.00	0.077	0.027	0.0094	0.008	0.12	0.0058	0.0027
2.01-5.00	0.092	0.051	0	0.037	0.19	0.021	0.009
> 5.00	0.69	0.26	0	0.74	1.18	1.26	1.45
Affected area		Area	of affected ba	rangays in Pic	digan (in sq. l	km.)	
(sq. km.) by flood depth (in m.)	Pangtud	Poblacion East	Poblacion West	San Diego	Sulbec	Suyo	Yuyeng
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.12	0	0	0.0018	0.13	0.031	0.3
0.51-1.00	0.083	0	0	0.0044	0.057	0.016	0.12
1.01-2.00	0.1	0	0	0.01	0.057	0.014	0.085
2.01-5.00	0.089	0	0	0.035	0.13	0.027	0.12
> 5.00	1.71	2.54	1.93	2.09	3.15	0.57	0.68

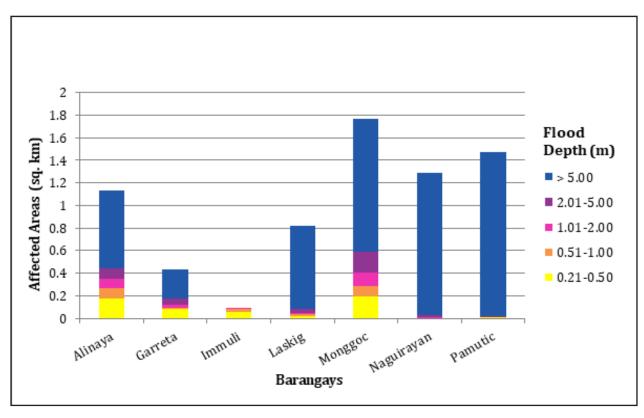


Figure 141. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period.

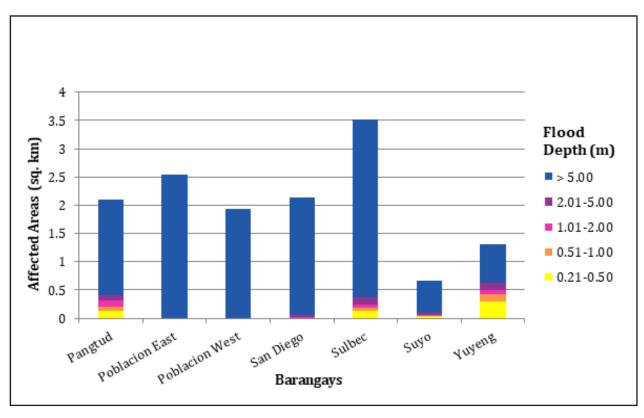


Figure 142. Affected Areas in Pidigan, Abra during 100-Year Rainfall Return Period.

For the 100-year return period, 51.04% of the municipality of San Quintin with an area of 62.29 sq. km. will experience flood levels of less than 0.20 meters. 2.71% of the area will experience flood levels of 0.21 to 0.50 meters while 1.43%, 1.25%, 1.92%, and 12.60% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 74 are the affected areas in San Quintin in square kilometers by flood depth per barangay.

Affected area		Area of affec	ted barangay	s in San Quin	tin (in sq. km.)
(sq. km.) by flood depth (in m.)	Labaan	Palang	Pantoc	Poblacion	Tangadan	Villa Mercedes
0-0.20	0	0	0	0	0	0
0.21-0.50	0.48	0.22	0.23	0.013	0.62	0.13
0.51-1.00	0.29	0.081	0.097	0.0036	0.34	0.087
1.01-2.00	0.26	0.095	0.057	0.0076	0.25	0.11
2.01-5.00	0.42	0.2	0.07	0.023	0.25	0.23
> 5.00	2.35	4.2	0.0045	0.98	0.09	0.22

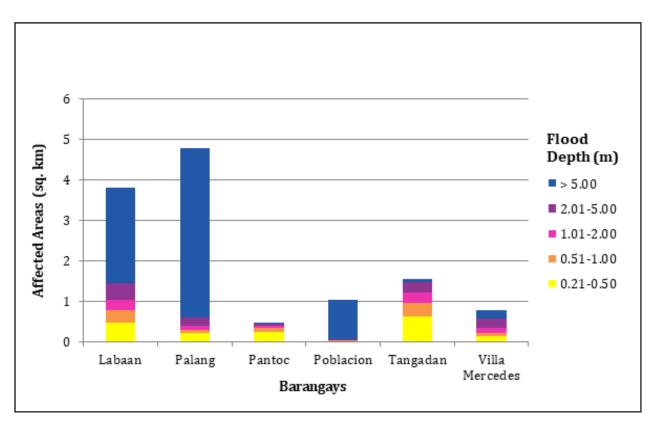


Figure 143. Affected Areas in San Quintin, Abra during 100-Year Rainfall Return Period.

For the 100-year return period, 0.52% of the municipality of Nueva Era with an area of 619 sq. km. will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.01% and 0.01% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 75 are the affected areas in Nueva Era in square kilometers by flood depth per barangay.

Table 75. Affected Areas in Nueva Era	. Ilocos Norte during 100	-Year Rainfall Return Period.

Affected area (sq. km.) by flood	Area of affected barangays in San Quintin (in sq. km.)
depth (in m.)	Barangobong
0-0.20	0
0.21-0.50	0.13
0.51-1.00	0.088
1.01-2.00	0.056
2.01-5.00	0.024
> 5.00	0.003

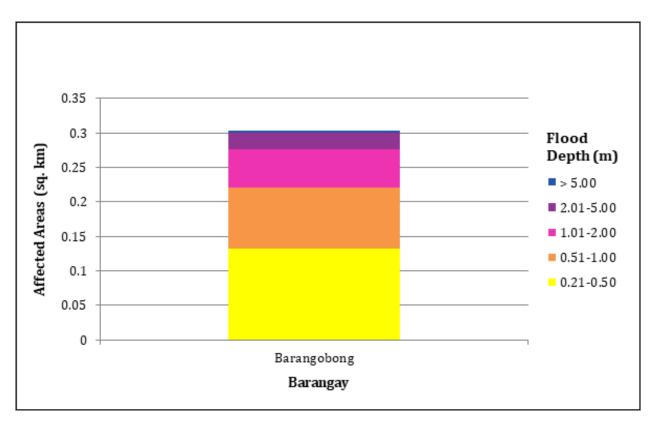


Figure 144. Affected Areas in Nueva Era, Ilocos Norte during 100-Year Rainfall Return Period.

For the 100-year return period, 56.86% of the municipality of Bantay with an area of 71.06 sq. km. will experience flood levels of less than 0.20 meters. 8.39% of the area will experience flood levels of 0.21 to 0.50 meters while 6.81%, 5.95%, 6.08%, and 16.08% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 76 are the affected areas in Bantay in square kilometers by flood depth per barangay.

Table 76. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area				Area o	f affected ba	Area of affected barangays in Bantay (in sq. km.)	ntay (in sq. k	m.)				
(sq. km.) by flood depth (in m.)	Aggay	An-Annam	Balaleng	Banaoang	Barangay 1	Barangay 2	Barangay 3	Barangay 4	Barangay 5	Barangay 6	Bulag	Buquig
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.03	0.43	0.42	0.19	0	0	0	0	0	0	0.16	0.028
0.51-1.00	0.023	0.14	0.25	0.094	0	0	0	0	0	0	0.13	0.02
1.01-2.00	0.053	0.051	0.12	0.063	0	0	0	0	0	0	0.16	0.029
2.01-5.00	0.14	0.0016	0.0024	0.059	0	0	0	0	0	0	0.4	90.0
> 5.00	0.073	0	0	0.37	0	0	0	0	0	0	0.81	0.2
Affected area				Area of affe	cted baranga	Area of affected barangays in Bantay (in sq. km.)	in sq. km.)					
(sq. km.) by flood depth (in m.)	Cabalanggan	Cabaroan	Cabusligan	Capangdanan	Guimod	Lingsat	Malingeb	Mira	Naguiddayan	Ora	Paing	
0-0.20	0	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.0012	0.0074	0.26	0.33	0.31	1.11	0.24	0.088	0.18	0.082	0.15	
0.51-1.00	0.0032	0.01	0.28	1.03	0.39	0.6	0.32	0.023	0.17	0.15	0.071	
1.01-2.00	0.01	0.019	0.13	0.75	0.4	0.59	0.29	0.0013	0.07	0.2	0.091	
2.01-5.00	0.34	0.11	0	0.073	0.24	0.45	0.066	0	0.069	0.12	0.32	
> 5.00	0.47	0.085	0	0	0.0008	0.028	0	0	0.39	0.028	3.49	
Affected area				Area of affe	cted baranga	Area of affected barangays in Bantay (in sq. km.)	in sq. km.)					
(sq. km.) by flood depth (in m.)	Puspus	Quimmarayan	Sagneb	Sagpat	San Isidro	San Julian	San Mariano	Sinabaan	Taguiporo	Taleb	Тау-Ас	
0-0.20	0	0	0	0	0	0	0	0	0	0	0	
0.21-0.50	0.19	0.36	0.11	0.12	0	0	0.25	0.0069	0	0.18	9.0	
0.51-1.00	0.21	0.064	0	0.17	0	0	0.12	0.0067	0	0.14	0.29	
1.01-2.00	0.31	0.037	0	0.31	0	0	0.097	0.0071	0	0.14	0.17	
2.01-5.00	0.073	0.012	0	0.42	0.0086	0.46	0.14	0.31	0	0.2	0.016	
> 5.00	0.031	0	0	0	0.57	2.04	0.51	0.31	1.6	0.33	0	

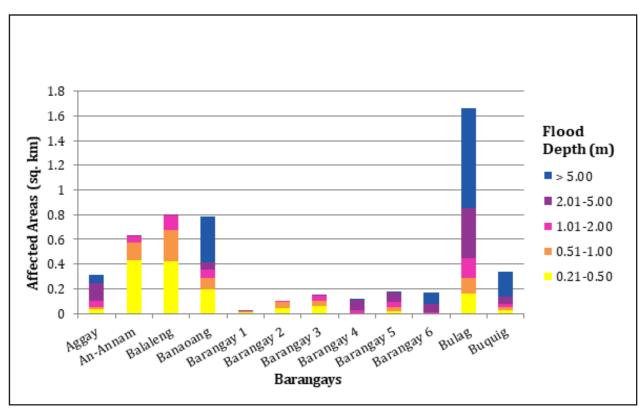


Figure 145. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period.

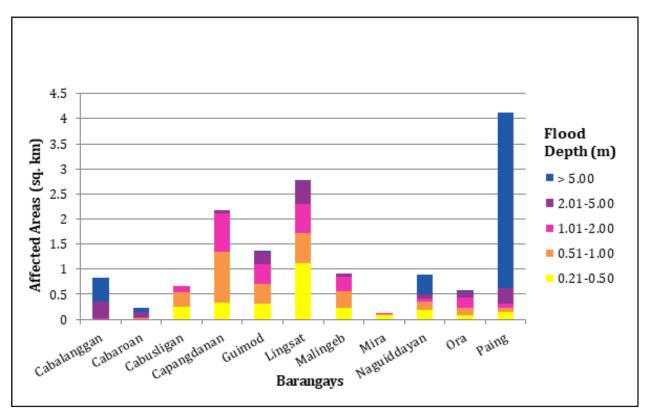


Figure 146. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period.

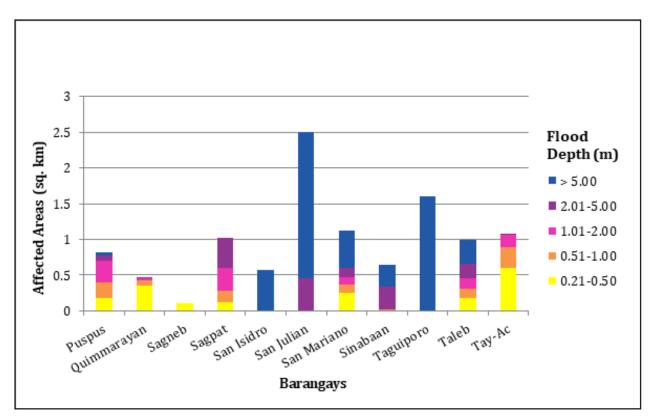


Figure 147. Affected Areas in Bantay, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 1.34% of the municipality of Caoayan with an area of 21.2 sq. km. will experience flood levels of less than 0.20 meters. 0.37% of the area will experience flood levels of 0.21 to 0.50 meters while 0.68%, 2.59%, 62.12%, and 28.49% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 77 are the affected areas in Caoayan in square kilometers by flood depth per barangay.

Table 77. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area			Area	of affected ba	rangays in Cao	Area of affected barangays in Caoayan (in sq. km.)		
(sq. km.) by flood depth (in m.)	Anonang Mayor	Anonang Menor	Baggoc	Callaguip	Caparacadan	Don Alejandro Quirolgico	Don Dimas Querubin	Don Lorenzo Querubin
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0.042	0	0	0
0.51-1.00	0	0	0	0	0.067	0	0	0
1.01-2.00	0	0	2000'0	0	0.11	0	0	0
2.01-5.00	0.21	0.26	0.19	0.26	0.71	0.26	0.42	0.26
> 5.00	0.046	0.11	0.052	0.072	0.0003	90:0	0.14	0.12
Affected area			Area	of affected ba	rangays in Caoa	Area of affected barangays in Caoayan (in sq. km.)		
(sq. km.) by 1100d depth (in m.)	Fuerte	Manangat	Naguilian	Nansuagao	Pandan	Pantay Tamurong	Pantay-Quitiquit	Villamar
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.0089	0.0089	0.0077	0	0	0.011	0	0.0001
0.51-1.00	0.011	0.0091	0.023	0	0.0001	0.033	0	0.0008
1.01-2.00	0.041	0.029	0.029	0	0.0005	0.34	0	0.0047
2.01-5.00	0.25	0.26	0.97	1.19	0.24	4.72	0.41	2.56
> 5.00	0	0.006	3.35	0.99	0.0013	0.71	0	0.38

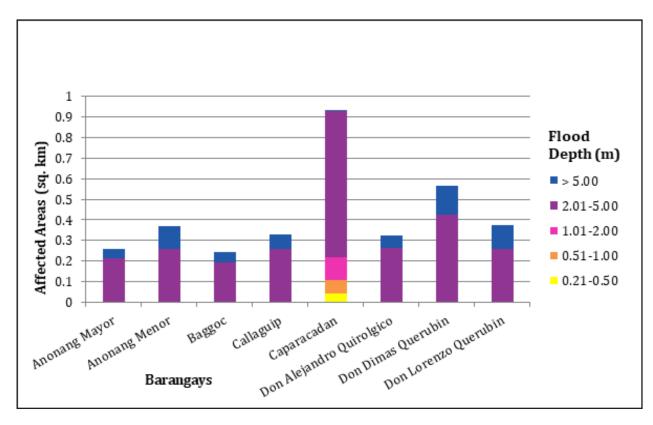


Figure 148. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period.

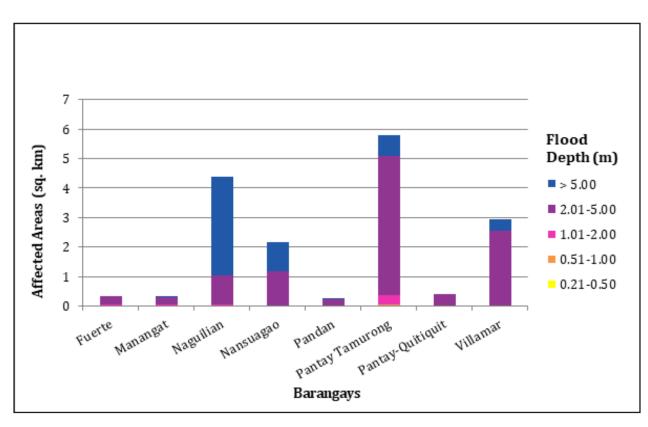


Figure 149. Affected Areas in Caoayan, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 56.80% of the municipality of Magsingal with an area of 78.9 sq. km. will experience flood levels of less than 0.20 meters. 13.67% of the area will experience flood levels of 0.21 to 0.50 meters while 11.67%, 8.45%, 5.92%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 78 are the affected areas in Magsingal in square kilometers by flood depth per barangay.

Table 78. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	rs in Magsinga	(in sq.km)	•		
depth (in m.)	Alangan	Bacar	Barbarit	Bungro	Cabaroan	Cadanglaan	Caraisan	Dacutan	Labut	Maas-Asin
0.03-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.23	0.11	0.38	0.4	0.2	0.36	1.07	0.19	0.27	0.99
0.51-1.00	0.22	0.32	0.51	0.51	0.32	0.16	0.57	0.28	0.24	0.55
1.01-2.00	0.2	0.34	0.46	0.23	0.28	0.057	0.055	0.23	0.22	0.47
2.01-5.00	0.022	0.24	0.15	0.16	0.23	0.03	0.036	0.19	0.15	0.41
> 5.00	0	0	0	0	0	0	0	0	0.0029	0.0021
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	rs in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Macatcatud	Manzante	Maratudo	Miramar	Namalpalan	Napo	Pagsanaan Norte	Pagsanaan Sur	Panay Norte	Panay Sur
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.91	0.37	0.7	0.066	0.32	1.13	0.2	0.083	0.45	0.76
0.51-1.00	99.0	0.65	0.4	0.1	0.29	0.75	0.29	0.18	0.33	0.7
1.01-2.00	0.27	0.62	0.4	0.33	0.21	0.25	0.34	0.38	0.11	0.31
2.01-5.00	0.28	0.32	0.36	0.79	0.059	0.058	0.18	0.47	0.036	0.012
> 5.00	0	0.0016	0.013	0	0.0007	0.0005	0.0009	0	0	0
Affected area				Area of Aff	Area of Affected Barangays in Magsingal (in sq.km)	rs in Magsinga	l (in sq.km)			
(sq. km.) by flood depth (in m.)	Patong	Puro	San Basilio	San Clemente	San Julian	San Lucas	San Ramon	San Vicente	Santa Monica	Sarsaracat
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.51	0.35	0.039	0.026	0.034	0.033	0.037	0.085	0.27	0.2
0.51-1.00	0.39	0.14	0.033	0.045	0.092	0.075	0.041	0.043	0.13	0.19
1.01-2.00	0.28	0.013	90.0	0.0077	0.14	0.05	0.019	0.0046	0.13	0.21
2.01-5.00	0.16	0	0.013	0.0001	0.14	0.052	0	0	0.033	0.074
> 5.00	0.047	0	0	0	0	0	0	0	0	0.0082

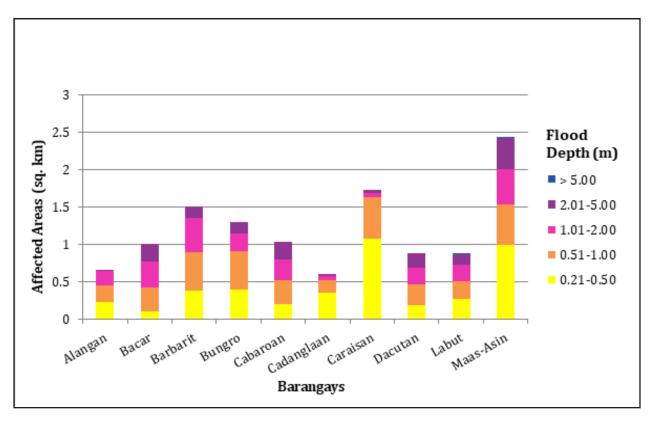


Figure 150. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period.

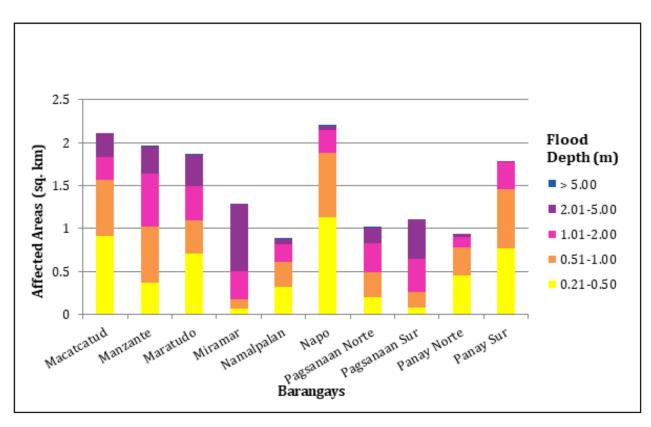


Figure 151. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period.

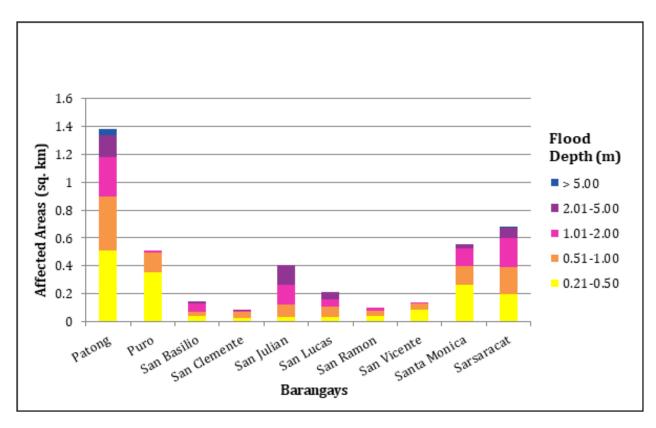


Figure 152. Affected Areas in Magsingal, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 0.30% of the municipality of Narvacan with an area of 97.18 sq. km. will experience flood levels of less than 0.20 meters. 0.01% of the area will experience flood levels of 0.21 to 0.50 meters while 0.00% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 79 are the affected areas in Narvacan in square kilometers by flood depth per barangay.

Table 79. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Area of affecte San Quintin		
flood depth (in m.)	Ambulogan	Lanipao	
0-0.20	0	0	
0.21-0.50	0.0072	0.0027	
0.51-1.00	0.0024	0.00086	
1.01-2.00	0.00062	0	
2.01-5.00	0.0027	0	
> 5.00	0.000025	0	

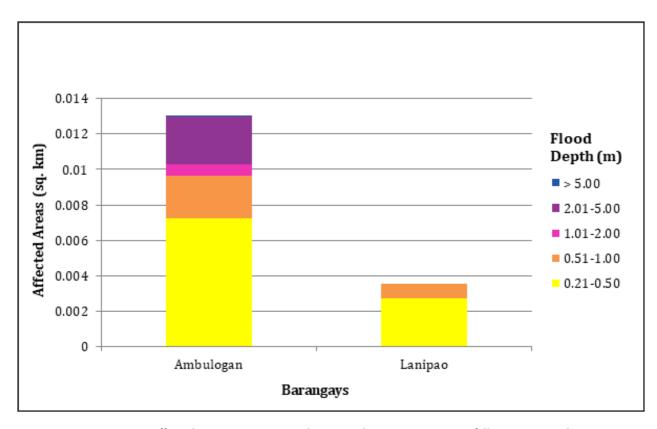


Figure 153. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 20.90% of the municipality of San Ildefonso with an area of 13.21 sq. km. will experience flood levels of less than 0.20 meters. 11.57% of the area will experience flood levels of 0.21 to 0.50 meters while 22.85%, 23.44%, 20.80%, and 1.30% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 80 are the affected areas in San Ildefonso in square kilometers by flood depth per barangay.

Table 64. Affected Areas in San Ildefonso, Ilocos Sur during 25-Year Rainfall Return Period.

Coac potody v			Area of	Affected Barangay	Area of Affected Barangays in San Ildefonso (in sq.km)	(in sq.km)		
(sq. km.) by flood depth (in m.)	Arnap	Bahet	Belen	Bungro	Busiing Norte	Busiing Sur	Dongalo	Gongogong
0.03-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.12	0.022	0.26	0.054	0.14	0.022	0.013	0.009
0.51-1.00	0.071	0.4	0.73	0.21	0.27	0.019	0.024	0.024
1.01-2.00	0.13	69:0	0.21	0.34	0.19	0.043	0.04	0.31
2.01-5.00	0.05	0.089	8:000	0.01	0.14	0.3	0.45	0.48
> 5.00	0	0.0004	0	0	0.0067	0	0.054	0.035
Affected area		A	Area of Affected	Barangays in San	Affected Barangays in San Ildefonso (in sq.km)	(u		
(sq. km.) by 1100d depth (in m.)	lboy	Kinamantirisan	Otol-Patac	Poblacion East	Poblacion West	Sagneb	Sagsagat	
0.03-0.20	0	0	0	0	0	0	0	
0.21-0.50	960:0	0.34	0.11	0.072	0.052	0.14	0.086	
0.51-1.00	0.076	0.3	0.11	0.081	0.056	0.5	0.14	
1.01-2.00	960:0	0.12	0.1	0.13	0.033	0.34	0.32	
2.01-5.00	0.051	0.088	0.46	0.4	0.025	0.0042	0.17	
> 5.00	0.0068	0	0.015	0.044	0.00085	0	0.0085	

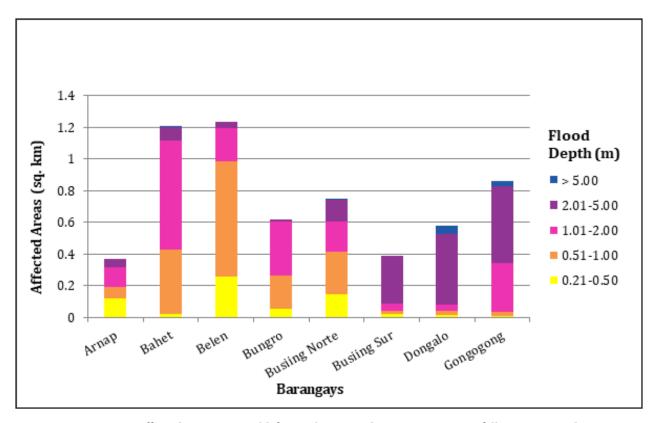


Figure 154. Affected Areas in San Ildefonso, Ilocos Sur during 100-Year Rainfall Return Period.

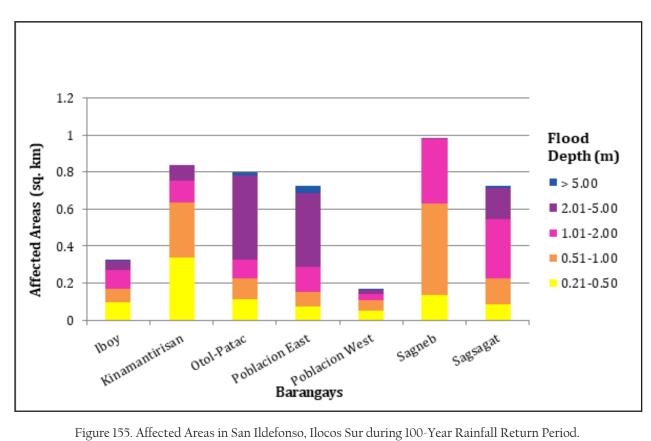


Figure 155. Affected Areas in San Ildefonso, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 45.88% of the municipality of San Juan with an area of 59.88 sq. km. will experience flood levels of less than 0.20 meters. 7.83% of the area will experience flood levels of 0.21 to 0.50 meters while 5.39%, 6.83%, 4.21%, and 0.15% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 81 are the affected areas in San Juan in square kilometers by flood depth per barangay.

Table 81. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area			Area	a of Affected Ba	Area of Affected Barangays in San Juan (in sq.km)	Juan (in sq.km)			
(sq. km.) by flood depth (in m.)	Asilang	Bacsil	Baliw	Bannuar	Barbar	Cabanglotan	Cacandon- gan	Camang- gaan	Camindoroan
0.03-0.20	0	0	0	0	0	0	0	0	0
0.21-0.50	0.11	0.2	0.59	0.00012	0.62	0.1	0.11	0.13	0.026
0.51-1.00	0.052	0.17	0.12	0	0.38	0.058	0.07	0.067	0.083
1.01-2.00	0.084	0.45	0.1	0	0.37	0.1	0.03	0.15	0.11
2.01-5.00	0.15	0.15	0.15	0	0.38	0.034	0.05	0.049	0.024
> 5.00	0.00026	0	0.021	0	0.022	0.0016	0.0004	0.00055	0
Affected area			Area of Affe	cted Barangays	Area of Affected Barangays in San Juan (in sq.km)	sq.km)			
(sq. km.) by flood depth (in m.)	Caronoan	Darao	Guimod Norte	Guimod Sur	Immayos Norte	Immayos Sur	Lira	Malamin	
0-0.20	0	0	0	0	0	0	0	0	
0.21-0.50	0.0002	0.13	0.16	0.19	0.23	0.042	0.1	0.24	
0.51-1.00	0.0003	0.076	0.25	0.23	0.11	0.053	0.021	0.13	
1.01-2.00	0	0.038	0.026	0.63	0.086	0.26	0.0034	0.17	
2.01-5.00	0	0.043	0.0036	0.29	0.13	0.1	0.016	0.093	
> 5.00	0	0.0003	0	0	0.019	0	0.0013	0	
Affected area			Area of Affe	cted Barangays	Area of Affected Barangays in San Juan (in sq.km)	sq.km)			
(sq. km.) by flood depth (in m.)	Muraya	Nagsabaran	Nagsupotan	Pandayan	Resurreccion	Sabangan	San Isidro	Saoang	
0-0.20	0	0	0	0	0	0	0	0	
0.21-0.50	0.31	0.14	0.29	0.00073	0.069	0.15	0.3	0.44	
0.51-1.00	0.18	0.23	0.27	0.00016	0.014	0.069	0.41	0.2	
1.01-2.00	0.19	0.23	0.29	0.000017	0.012	0.14	0.61	0.014	
2.01-5.00	0.28	0.1	0.12	0	0.046	0.03	0.31	0	
> 5.00	0.014	0	0	0	0.013	0	0	0	

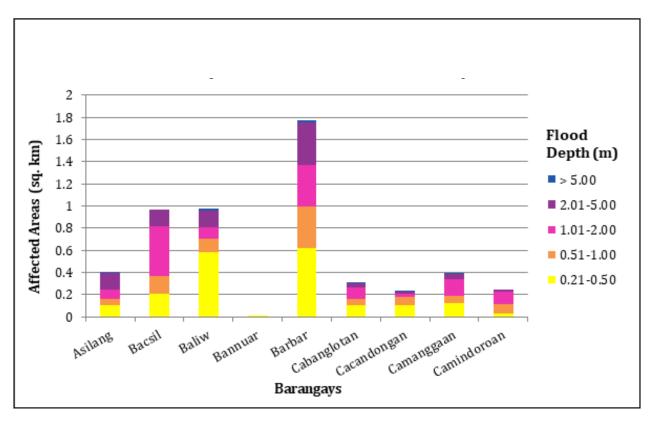


Figure 156. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period.

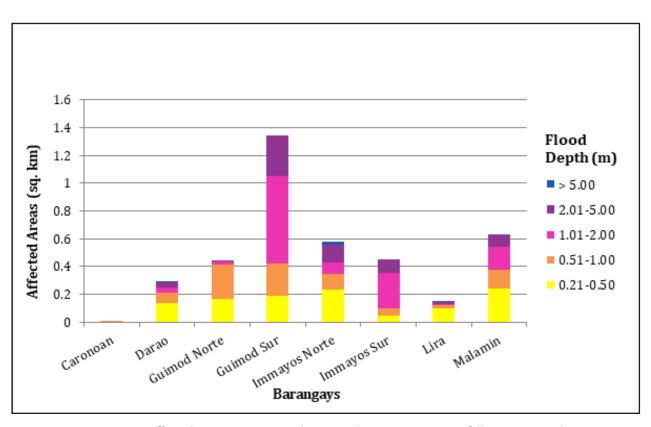


Figure 157. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period.

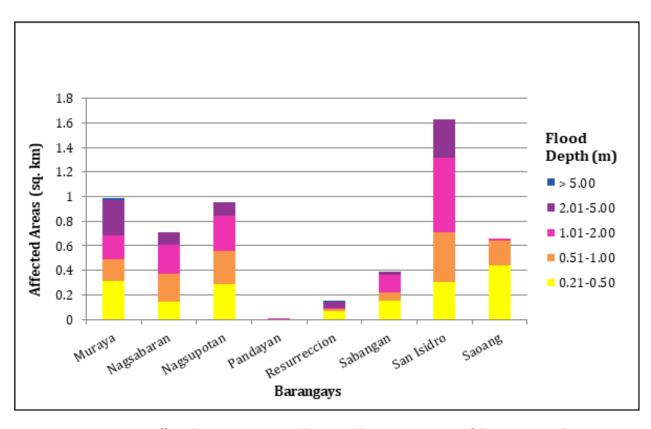


Figure 158. Affected Areas in San Juan, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 15.37% of the municipality of San Vicente with an area of 12.2 sq. km. will experience flood levels of less than 0.20 meters. 11.97% of the area will experience flood levels of 0.21 to 0.50 meters while 16.83%, 38.63%, 20.14%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 82 are the affected areas in San Vicente in square kilometers by flood depth per barangay.

Table 82. Affected Areas in San Vicente, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area		Area of	Affected Ba	rangays in	San Vicente (i	n sq.km)	
(sq. km.) by flood depth (in m.)	Bantaoay	Bayubay Norte	Bayubay Sur	Lubong	Poblacion	Pudoc	San Sebastian
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0.0025	0.16	0.17	0.17	0.15	0.073	0.74
0.51-1.00	0.021	0.13	0.17	0.28	0.19	0.35	0.91
1.01-2.00	0.4	0.13	0.086	0.25	0.14	2.12	1.58
2.01-5.00	0.56	0	0.05	0.019	0.0032	0.92	0.9
> 5.00	0	0	0.00074	0	0	0	0.0007

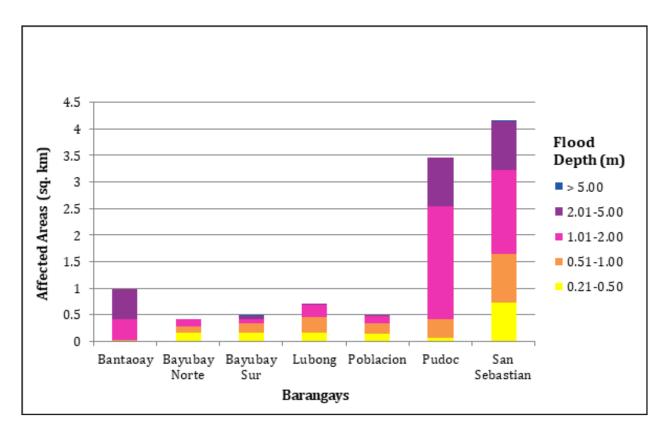


Figure 159. Affected Areas in San Vicente, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 28.98% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 3.93% of the area will experience flood levels of 0.21 to 0.50 meters while 4.14%, 5.73%, 10.53%, and 10.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 83 are the affected areas in Santa in square kilometers by flood depth per barangay.

Table 83. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period.

Affected area				Area	of Affected Bar	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Ampandula	Banaoang	Basug	Bucalag	Cabangaran	Calungboyan	Dammay	Labut Norte	Labut Sur	Mabilbila Norte	Mabilbila Sur
0.03-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.047	0.032	0.049	0.054	0.051	0.083	1.13	0.023	0.049	0.0053	0.018
0.51-1.00	0.017	0.02	0.02	0.15	0.016	0.2	1.1	0.017	0.026	0.0021	0.014
1.01-2.00	0.0047	0.011	0.0064	0.031	0.0059	0.07	2.26	0.011	0.031	0.0002	0.01
2.01-5.00	0.0002	0.041	0	0.0042	0.0004	0	3.59	0.0027	0.012	0	0.0017
> 5.00	0	6.0	0	0	0	0	1.7	0	0	0	0
Affected area				Area	of Affected Bar	Area of Affected Barangays in Santa (in sq.km)	(in sq.km)				
(sq. km.) by flood depth (in m.)	Manueva	Marcos	Nagpanaoan	Namalangan	Oribi	Pasungol	Quirino	Rizal	Sacuyya Norte	Sacuyya Sur	Tabucolan
0-0.20	0	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.015	0.0016	0.057	0.036	0.013	0.073	0.27	990:0	0.051	0.063	0.062
0.51-1.00	0.01	0.0012	0.12	0.025	0.0044	0.058	0.27	0.035	0.021	0.027	0.21
1.01-2.00	0.0086	0.0003	0.39	0.018	0.016	0.028	0.17	0.016	0.0019	0.011	0.17
2.01-5.00	0.00074	0	2:32	0.011	0.00036	0	0.023	0.013	0.0009	0.00099	0.0002
> 5.00	0	0	3.08	0.12	0	0	0	0.024	0	0	0

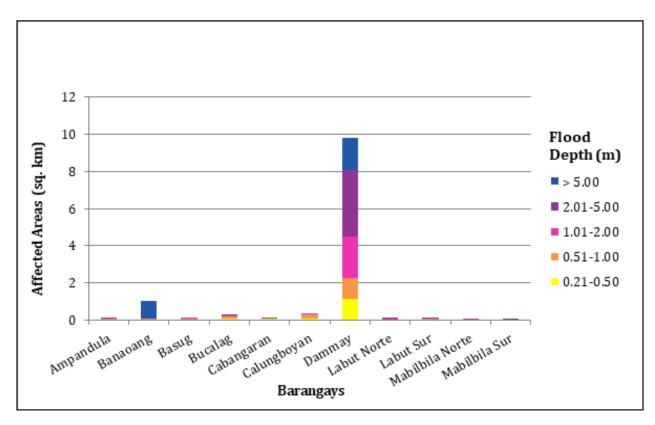


Figure 160. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period.

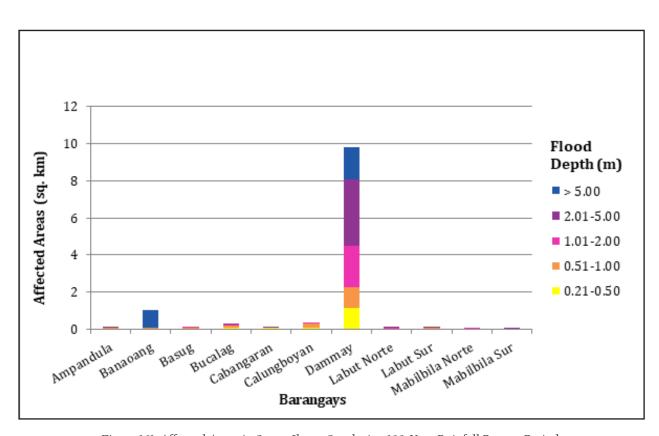


Figure 161. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 20.86% of the municipality of Santa Catalina with an area of 10.83 sq. km. will experience flood levels of less than 0.20 meters. 17.78% of the area will experience flood levels of 0.21 to 0.50 meters while 16.13%, 13.42%, and 6.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 84 are the affected areas in Santa Catalina in square kilometers by flood depth per barangay.

Affected area		Area o	f Affected B	arangays i	n Santa Cata	alina (in sq.	km)	
(sq. km.) by flood depth (in m.)	Cabaroan	Cabittaogan	Cabuloan	Pangada	Poblacion	Sinabaan	Subec	Tamorong
0-0.20	0	0	0	0	0	0	0	0
0.21-0.50	0.21	0.4	0.19	0.05	0.088	0.51	0.11	0.36
0.51-1.00	0.1	0.57	0.14	0.067	0.03	0.14	0.021	0.68
1.01-2.00	0.026	0.63	0.097	0.17	0.028	0.055	0.014	0.44
2.01-5.00	0.036	0.33	0.092	0.16	0.018	0.0003	0	0.061
> 5.00	0	0	0	0	0	0	0	0

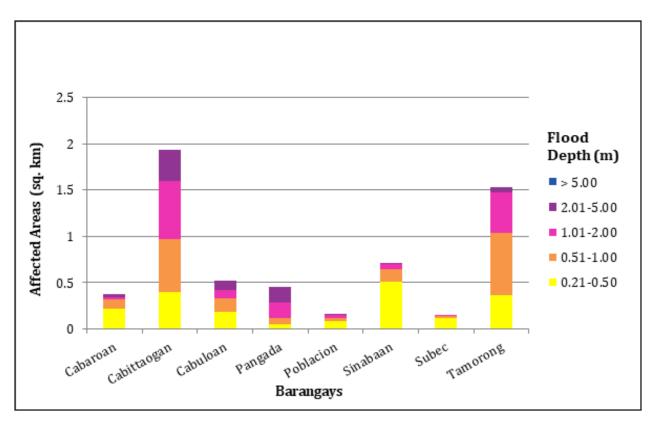


Figure 162. Affected Areas in Santa Catalina, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 44.52% of the municipality of Santo Domingo with an area of 50.36 sq. km. will experience flood levels of less than 0.20 meters. 13.54% of the area will experience flood levels of 0.21 to 0.50 meters while 17.32%, 18.08%, 6.79%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 85 are the affected areas in Santo Domingo in square kilometers by flood depth per barangay.

Table 85. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period.

Binaliayangan Binongan Borobor Cabartian Calabutian	Affected area				A	rea of Affected	Area of Affected Barangays in Santo Domingo (in sq.km)	to Domingo	(in sq.km)					
0 0	(sq. km.) by flood depth (in m.)	Binalayangan	Binongan	Borobor	Cabaritan	Cabigbigaan	Calautit	Calay-Ab	Camestizoan	Casili	Flora	Lagatit	Laoingen	
0.025 0.045 0.045 0.085 0.023 0.104 0.085 0.032 0.104 0.087 0.104 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.033 0.014 0.014 0.014 0.014 0.020 <th< th=""><th>0.03-0.20</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	0.03-0.20	0	0	0	0	0	0	0	0	0	0	0	0	
0.048 0.042 0.042 0.043 0.019 0.19 0.05 0.019 0.05 0.019 0.05 0.019 0.05 0.019 0.05 0.019 0.025 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.0205 0.025 0.015 0.0205 0.015 0.0205 0.015 0.0205 0.015 0.012 0.013 0.014 0.020 0.014 0.020 0.014 0.020 0.014 0.020 0.020 0.014 0.020 0.020 0.014 0.020 0.020 0.014 0.020 0.014 0.021 0.014 0.021 0.014 0.021 0.014 0.022 0.014 0.022 0.022 0	0.21-0.50	0.22	0.45	0.37	0.14	0.085	0.23	0.16	0.024	0.12	0.21	0.38	0.61	
0.0055 0.011 0.027 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.005 0.0056 0.025 0.025 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0005 0.0005 0.0005 0.0005 0.001 0.0005 0.001 0.0005 0.001 0.0005 0.0005 0.001 0.0005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003	0.51-1.00	0.18	0.42	9:0	0.32	0.13	0.19	0.16	0.0072	0.12	0.37	0.17	0.5	
0 0 0.0056 0.056 0.33 0 0.0086 0.135 0.012 0.020	1.01-2.00	0.0055	0.11	0.27	0.63	0.013	0.13	0.12	0.3	0.055	0.18	0.14	0.43	
0 0 0.012 0.012 0.012 0.012 0.021 0.021 0.0010	2.01-5.00	0	0.0056	0.066	0.35	0	0.086	0.15	0.4	0.015	0	0.1	0.22	
Lussoc Naglaoa-An Nalasin Nanerman Pandra Dominton Chira	> 5.00	0	0	0.0017	0.000002	0	0.012	0	0.021	0	0	0.0019	0.0021	
Lussoc Nagbettedan Nalasian Nambaran Nanerman Napo Padu Chico	Affected area				Α	rea of Affected	Barangays in San	to Domingo	(in sq.km)					
00 00<	flood depth (in m.)	Lussoc	Nagbettedan	Naglaoa-An	Nalasin	Nambaran	Nanerman	Napo	Padu Chico	Padu Grande	Paguraper	Panay	Pangpangdan	
0.23 0.27 0.29 0.028 0.11 0.04 0.13 0.14 0.03 0.12 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.003 0.003 0.01 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004	0-0.20	0	0	0	0	0	0	0	0	0	0	0	0	
0.14 0.029 0.26 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.027 0.047 0.029 0.042 0.014 0.022 0.043 0.014 0.052 0.042 0.042 0.002 0.001 0.003 0	0.21-0.50	0.23	0.27	0.29	0.028	0.11	0.04	0.13	0.14	0.098	0.32	0.1	0.14	
0.059 0.052 0.053 0.074 0.095 0.076 0.014 0.022 0.014 0.025 0.014 0.025 0.0035 0.005 0.005 0.0005 <	0.51-1.00	0.2	0.12	0.47	0.029	0.26	0.026	0.3	0.18	0.11	0.25	0.14	0.18	
0.055 0.056 0.055 0.015 0.015 0.025 0.0056 0.0056 0.005 0.001 0.01 0.02 0.026 0.005 0.005 0.001 0.01 0.02<	1.01-2.00	0.14	0.053	0.74	0.097	0.78	0.062	0.011	0.22	0.083	0.11	0.0031	0.082	
0.0035 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 <th cols<="" th=""><th>2.01-5.00</th><th>0.059</th><th>0.052</th><th>0.16</th><th>0.15</th><th>0.23</th><th>0.056</th><th>0.00086</th><th>0.0005</th><th>0.0003</th><th>0.0014</th><th>0</th><th>0.0094</th></th>	<th>2.01-5.00</th> <th>0.059</th> <th>0.052</th> <th>0.16</th> <th>0.15</th> <th>0.23</th> <th>0.056</th> <th>0.00086</th> <th>0.0005</th> <th>0.0003</th> <th>0.0014</th> <th>0</th> <th>0.0094</th>	2.01-5.00	0.059	0.052	0.16	0.15	0.23	0.056	0.00086	0.0005	0.0003	0.0014	0	0.0094
Parada Puerta Parangays in Santa Guimmarayan Santa Cruz Fanta Santa	> 5.00	0.0035	0	0.01	0	0	0	0	0	0	0	0	0	
Parada Parada Poblacion Puerta Real Puerta Puesta Quimmarayan San Pablo Santa Cruz Santa Cruz Tomas Santa Cruz Tomas Sived Tomas Suksukit 0	Affected area				A	rea of Affected	Barangays in San	to Domingo	(in sq.km)					
0 0	(sq. km.) by flood depth (in m.)	Parada	Paras	Poblacion	Puerta Real	Pussuac	Quimmarayan	San Pablo	Santa Cruz	Santo Tomas	Sived	Suksukit	Vacunero	
0.35 0.17 0.15 0.15 0.18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.01 0.05 0.01 0.05 <th< th=""><th>0-0.20</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	0-0.20	0	0	0	0	0	0	0	0	0	0	0	0	
0.56 0.77 0.13 0.095 0.19 0.27 0.16 0.64 0.34 0.17 0.038 0.038 0.75 0.75 0.19 0.26 0.45 0.23 0.53 1.01 0.076 0.15 0.066 0.0096 0.0005 0.051 0.07 0	0.21-0.50	0.35	0.17	0.12	0.17	0.15	0.18	0.033	0.32	0.2	0.13	0.079	0.0035	
0.75 0.19 0.26 0.45 0.23 0.53 1.01 0.076 0.15 0.066 0.0096 0.0025 0.051 0.071 0.25 0.21 0.34 0.085 0.014 0.17 0.087 0	0.51-1.00	0.56	0.7	0.13	0.095	0.19	0.27	0.16	0.64	0.34	0.17	0.038	0.018	
0.0096 0.0025 0.051 0.071 0.25 0.21 0.34 0.085 0.014 0.17 0.087 0 <th>1.01-2.00</th> <th>0.75</th> <th>0.1</th> <th>0.19</th> <th>0.26</th> <th>0.45</th> <th>0.23</th> <th>0.53</th> <th>1.01</th> <th>0.076</th> <th>0.15</th> <th>0.066</th> <th>0.51</th>	1.01-2.00	0.75	0.1	0.19	0.26	0.45	0.23	0.53	1.01	0.076	0.15	0.066	0.51	
	2.01-5.00	0.0096	0.0025	0.051	0.071	0.25	0.21	0.34	0.085	0.014	0.17	0.087	0.021	
	> 5.00	0	0	0	0	0	0	0	0	0	0	0	0	

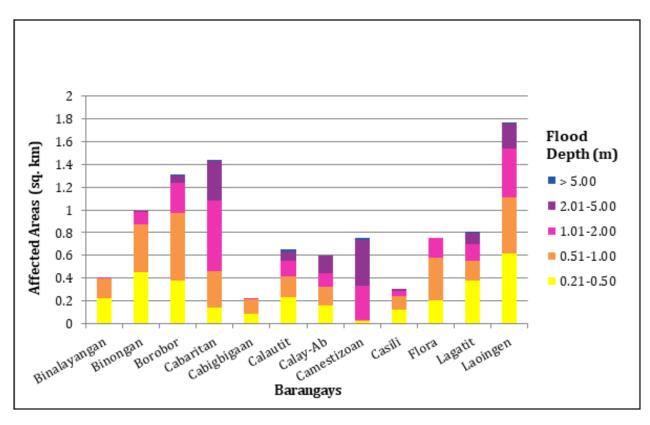


Figure 163. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period.

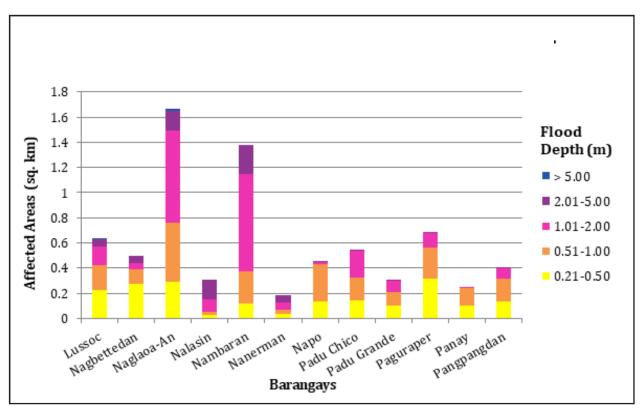


Figure 164. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period.

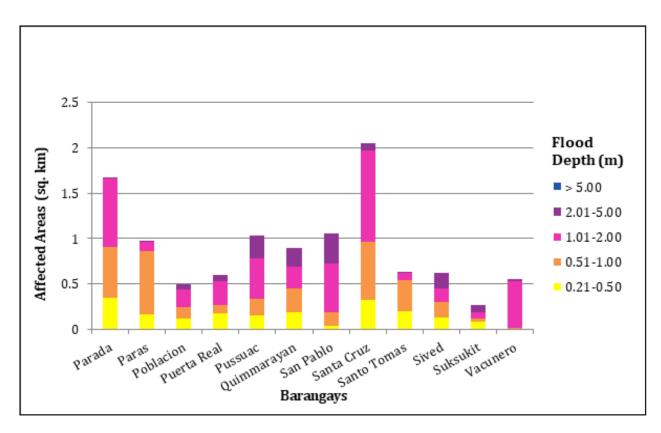


Figure 165. Affected Areas in Santo Domingo, Ilocos Sur during 100-Year Rainfall Return Period.

For the 100-year return period, 12.79% of the municipality of Vigan City with an area of 24.01 sq. km. will experience flood levels of less than 0.20 meters. 4.50% of the area will experience flood levels of 0.21 to 0.50 meters while 6.31%, 11.93%, 37.06%, and 25.52% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 86 are the affected areas in Vigan City in square kilometers by flood depth per barangay.

Table 86. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period

Affected area				Area of Affe	cted Raranga	Area of Affected Barangavs in Vigan City (in so km)	(in sa km)			
(sq. km.) by flood depth (in m.)	Ayusan Norte	Ayusan Sur	Barangay I	Barangay	Barangay	Barangay IV	Barangay IX	Barangay V	Barangay VI	Barangay VII
0.03-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0.14	0.13	0	0	0	0	0	0	0	0
0.51-1.00	0.091	0.073	0	0	0	0	0	0	0	0
1.01-2.00	0.19	0.03	0	0	0	0	0	0	0	0
2.01-5.00	0.14	0.011	0	0	0	0	0	0	0	0
> 5.00	0.097	0.00051	0	0	0	0	0	0	0	0
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
flood depth (in m.)	Barangay VIII	Barraca	Beddeng Daya	Beddeng Laud	Bongtolan	Bulala	Cabalangegan	Cabaroan Daya	Cabaroan Laud	Camangaan
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0	0.099	0	0	0	0
0.51-1.00	0	0	0	0	0	0.036	0	0	0	0
1.01-2.00	0	0.1	0	0	0	0.021	0	0	0	0
2.01-5.00	0	0.23	0.2	0.42	0.18	0.00073	0.32	0.44	0.25	0.1
> 5.00	0	0	0.019	0.0051	0.039	0	0.0078	0.23	0.11	0.2
Affected area				Area of Affe	cted Baranga	Area of Affected Barangays in Vigan City (in sq.km)	(in sq.km)			
(sq. km.) by flood depth (in m.)	Capangpangan	Mindoro	Nagsan- galan	Pantay Daya	Pantay Fatima	Pantay Laud	Paoa	Paratong	Pong-Ol	Purok-A- Bassit
0-0.20	0	0	0	0	0	0	0	0	0	0
0.21-0.50	0	0.14	0	0.07	0.087	0.15	0.099	0.027	0.0042	0
0.51-1.00	0	0.22	0	0.23	0.19	0.35	0.059	0.01	0.008	0
1.01-2.00	0	0.27	0	0.48	0.3	0.55	0.037	0.14	0.065	0
2.01-5.00	0.47	0.026	0.72	0.5	0.27	0.29	0.069	0.057	0.17	0.34
> 5.00	0.077	0	0.2	0.049	0	0	0.012	0	0	0.052

Affected area			Area of	Affected Ba	rangays in Vi	Area of Affected Barangays in Vigan City (in sq.km)	km)		
(sq. km.) by flood depth (in m.)	Purok-A-Dackel	Raois	Rugsuanan	Salindeg	San Jose	San Julian Norte	San Julian Sur	San Pedro	Tamag
0.03-0.20	0	0	0	0	0	0	0	0	0
0.21-0.50	0	6000'0	0	0.016	0	0	0	0.059	0.044
0.51-1.00	0	0.015	0	0.014	0	0	0	0.15	0.025
1.01-2.00	0	0.037	0	0.013	0	0	0	0.48	0.026
2.01-5.00	0.23	0.16	0.21	0.42	0.25	0.41	0.24	0.51	0.42
> 5.00	60.0	2.41	1.21	0.15	0.068	0.026	690'0	0	0.27

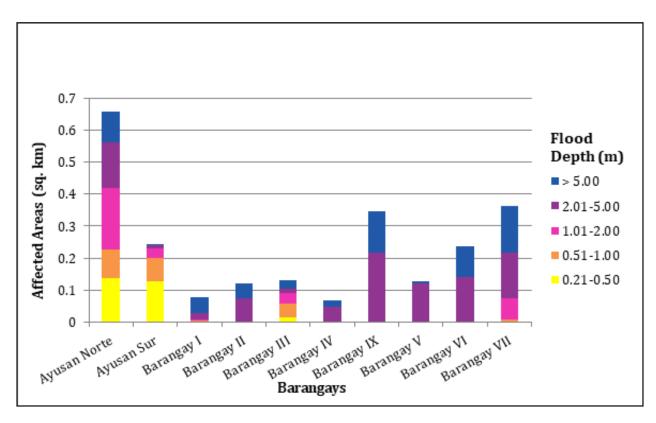


Figure 166. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period.

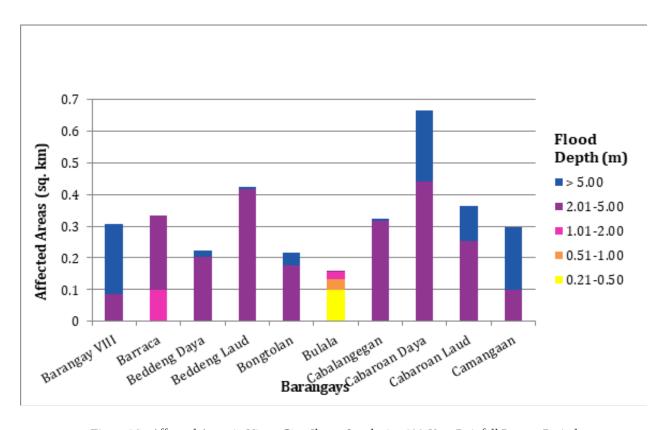


Figure 167. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period.

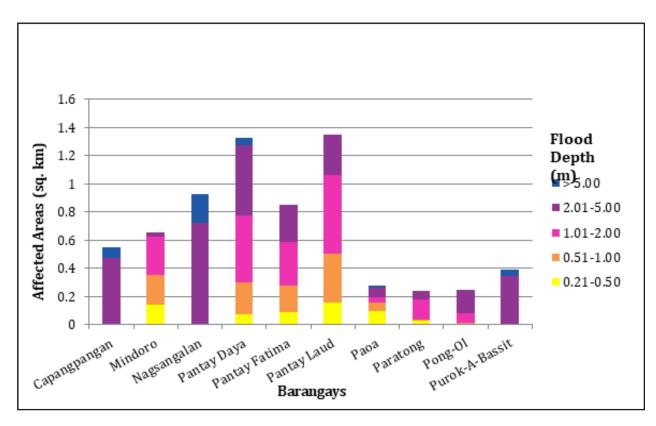


Figure 168. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period.

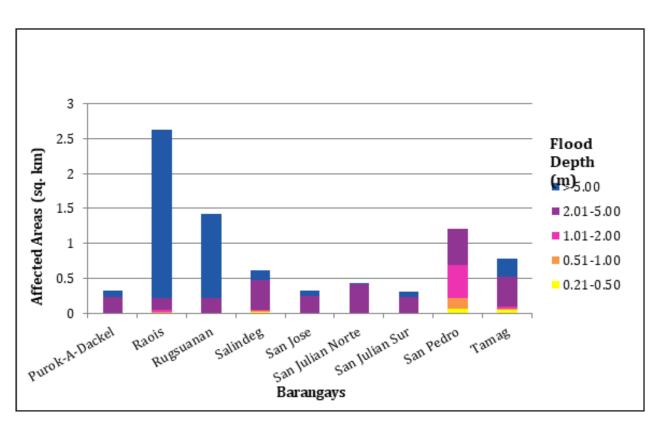


Figure 169. Affected Areas in Vigan City, Ilocos Sur during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Bangued in Abra, San Antonio is projected to have the highest percentage of area that will experience flood levels at 4.88%. Meanwhile, Santa Rosa posted the second highest percentage of area that may be affected by flood depths at 3.68%.

Among the barangays in the municipality of Langiden in Abra, Malapaao is projected to have the highest percentage of area that will experience flood levels at 44.91%. Meanwhile, Mabungtot posted the second highest percentage of area that may be affected by flood depths at 32.41%.

Among the barangays in the municipality of Pidigan in Abra, Yuyeng is projected to have the highest percentage of area that will experience flood levels at 13.03%. Meanwhile, Sulbec posted the second highest percentage of area that may be affected by flood depths at 11.00%.

Among the barangays in the municipality of San Quintin in Abra, Labaan is projected to have the highest percentage of area that will experience flood levels at 23.89%. Meanwhile, Tangadan posted the second highest percentage of area that may be affected by flood depths at 17.20%.

Brgy. Barangobong is the only barangay affected in the municipality of Nueva Era in Ilocos Norte. The barangay is projected to experience flood in 0.57% of the municipality.

Among the barangays in the municipality of Bantay in Ilocos Sur, Lingsat is projected to have the highest percentage of area that will experience flood levels at 23.59%. Meanwhile, Tay-Ac posted the second highest percentage of area that may be affected by flood depths at 9.55%.

Among the barangays in the municipality of Caoayan in Ilocos Sur, Pantay Tamurong is projected to have the highest percentage of area that will experience flood levels at 27.52%. Meanwhile, Naguilian posted the second highest percentage of area that may be affected by flood depths at 20.67%.

Among the barangays in the municipality of Magsingal in Ilocos Sur, Maratudo is projected to have the highest percentage of area that will experience flood levels at 19.72%. Meanwhile, Patong posted the second highest percentage of area that may be affected by flood depths at 9.03%.

Among the barangays in the municipality of Narvacan in Ilocos Sur, Ambulogan is projected to have the highest percentage of area that will experience flood levels at 0.17%. Meanwhile, Lanipao posted the second highest percentage of area that may be affected by flood depths at 0.15%.

Among the barangays in the municipality of San Ildefonso in Ilocos Sur, Belen is projected to have the highest percentage of area that will experience flood levels at 11.63%. Meanwhile, Bahet posted the second highest percentage of area that may be affected by flood depths at 9.14%.

Among the barangays in the municipality of San Juan in Ilocos Sur, Barbar is projected to have the highest percentage of area that will experience flood levels at 20.45%. Meanwhile, Malamin posted the second highest percentage of area that may be affected by flood depths at 7.76%.

Among the barangays in the municipality of San Vicente in Ilocos Sur, San Sebastian is projected to have the highest percentage of area that will experience flood levels at 45.67%. Meanwhile, Pudoc posted the second highest percentage of area that may be affected by flood depths at 28.87%.

Among the barangays in the municipality of Santa in Ilocos Sur, Dammay is projected to have the highest percentage of area that will experience flood levels at 24.32%. Meanwhile, Nagpanaoan posted the second highest percentage of area that may be affected by flood depths at 10.55%.

Among the barangays in the municipality of Santa Catalina in Ilocos Sur, Cabittaogan is projected to have the highest percentage of area that will experience flood levels at 22.77%. Meanwhile, Tamorong posted the second highest percentage of area that may be affected by flood depths at 17.39%.

Among the barangays in the municipality of Santo Domingo in Ilocos Sur, Laoingen is projected to have the highest percentage of area that will experience flood levels at 15.05%. Meanwhile, Lagatit posted the second highest percentage of area that may be affected by flood depths at 8.83%.

Among the barangays in the municipality of Vigan City in Ilocos Sur, Raois is projected to have the highest percentage of area that will experience flood levels at 10.94%. Meanwhile, Pantay Laud posted the second

highest percentage of area that may be affected by flood depths at 6.59%.

Moreover, the generated flood hazard maps for the Abra Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5-year, 25-year, and 100-year).

Table 87. Area covered by each warning level with respect to the rainfall scenarios.

Warning	Area	Covered	in sq. km.
Level	5 year	25 year	100 year
Low	81.42	79.64	79.16
Medium	102.41	99.92	100.51
High	226.15	288.35	317.94
TOTAL	409.99	467.92	497.61

Of the 131 identified Educational Institutions in Abra flood plain, 16 schools were assessed to be exposed to the High level flooding for all three rainfall scenarios. 14 other institutions were found to be susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. See Annex 12 for a detailed enumeration of schools in the Abra floodplain.

Of the 30 identified Medical Institutions in Abra flood plain, Northeast Care Center in Brgy. Sinabaan was found to be highly prone to flooding, having High level flooding in all three rainfall scenarios. See Annex 13 for a detailed enumeration of hospitals and clinics in the Abra floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gather secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel will then go to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 74.

The flood validation survey was conducted in December 2016. The flood validation consists of 135 points randomly selected all over the Tineg flood plain. Comparing it with the flood depth of the nearest storm

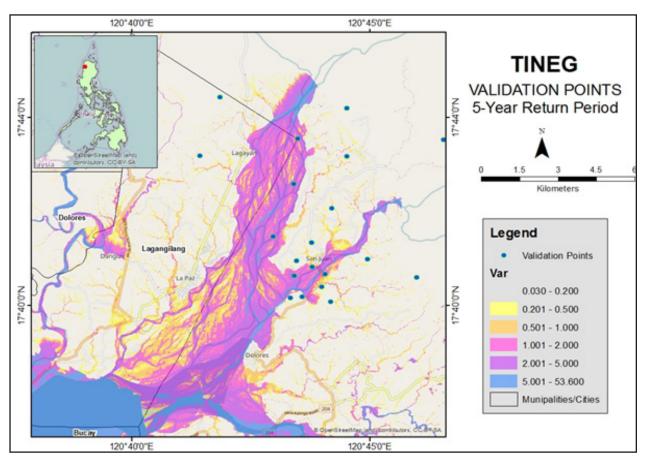


Figure 170. Validation Points for a 5-year Flood Depth Map of the Tineg Floodplain.

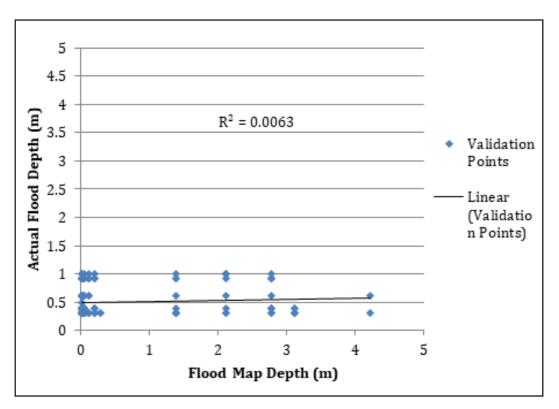


Figure 171. Flood depth map vs actual flood depth.

Table 88. Actual Flood Depth versus Simulated Flood Depth at different levels in the Tineg River Basin.

Actual			Model	ed Flood Dep	th (m)		
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	0	0	0	0	0	0	0
0.21-0.50	56	9	0	6	15	0	86
0.51-1.00	30	3	0	4	12	0	49
1.01-2.00	0	0	0	0	0	0	0
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	86	12	0	10	27	0	135

On the whole, the overall accuracy generated by the flood model is estimated at 6.67%, with 9 points correctly matching the actual flood depths. In addition, there were 63 points estimated one level above and below the correct flood depths while there were 48 points and 15 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 37 points were overestimated while a total of 89 points were underestimated in the modelled flood depths of Tineg. Table 41 depicts the summary of the Accuracy Assessment in the Tineg River Basin Flood Depth Map.

Table 89. Summary of the Accuracy Assessment in the Tineg River Basin Survey.

	No. of Points	%
Correct	9	6.67
Overestimated	37	27.41
Underestimated	89	65.93
Total	135	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

ANNEXES

ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Tineg Floodplain Survey

1. GEMINI SENSOR

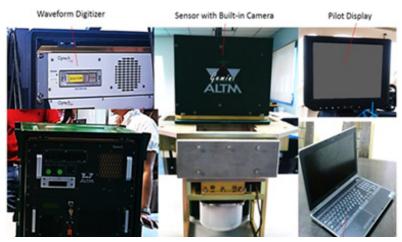


Figure A-1.1. Gemini Sensor

Table A-1.1. Parameters and Specifications of Gemini Sensor

Parameter	Specification		
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)		
Elevation accuracy (2)	<5-35 cm, 1 σ		
Effective laser repetition rate	Programmable, 33-167 kHz		
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver		
Scan width (WOV)	Programmable, 0-50°		
Scan frequency (5)	Programmable, 0-70 Hz (effective)		
Sensor scan product	1000 maximum		
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal		
Roll compensation	Programmable, ±5° (FOV dependent)		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)		
Video camera	Internal video camera (NTSC or PAL)		
Image capture	Compatible with full Optech camera line (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V; 900 W;35 A(peak)		
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg		
Operating temperature	-10°C to +35°C (with insulating jacket)		
Relative humidity	0-95% no-condensing		

ANNEX 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. ABR-31

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ABRA		
	Station Name: ABR-31	ĺ	
Island: LUZON Municipality: PEÑARRUBIA	Order: 2nd	Barangay	POBLACION
Municipality. PENARROBIA	PRS92 Coordinate	es	
Latitude: 17° 34' 4.18831"	Longitude: 120° 38' 57.	99392" Ellipsoida	al Hgt: 98.78000 m.
	WGS84 Coordinat	es	
Latitude: 17° 33' 58.07703"	Longitude: 120° 39' 2.6	3930" Ellipsoida	al Hgt: 132.48100 m.
	PTM Coordinate	s	
Northing: 1942969.967 m.	Easting: 462785.996	m. Zone:	3
	UTM Coordinate	s	
Northing: 1,943,800.89	Easting: 250,503.56	Zone:	51

Location Description

ABR-31

From the town proper of Bangued, travel towards Narvacan, Ilocos Sur. A road intersection will be reached in about 2.5 Km. just before Sinalang Bridge. At the intersection, turn left and continue travelling for about 6.9 Km. towards the access road leading to the compound of Peñarrubia Central School, about 100 m NW of the Mun. Hall. Station is located 150 m N of the main gate of the said school. Mark is the head of a brass rod with cross cut on top flushed at the center of a 30 cm x 30 cm x 120 cm concrete monument with inscriptions, "ABR-31, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795470 A T.N.: 2014-442

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMELA DIFFICES.

Main : Lewton Avenue, Fort Bonitado, 1634 loguig Gry, Philippines — Fel. No.: (632) 810-4831 to 41 Breach : 421 Barroon St. San Nicolan, 1018 Manila, Philippines, Fel. No. (632) 241-3414 to 98 www.nameria.gov.ph

2. ABR-32

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Provi	nce: ABRA			
	Station f	Name: ABR-32			
Island: LUZON	Orde	r: 2nd	Baranga	y: SUY	(MALIDONG)
Municipality: PIDIGAN	PRS	92 Coordinates			
Latitude: 17° 33' 49.34656"	Longitude:	120° 33' 25.07659"	Ellipsoid	al Hgt	39.32200 m.
	WGS	84 Coordinates			
Latitude: 17° 33' 43.22900"	Longitude:	120° 33' 29.72282"	Ellipsoid	al Hgt	72.81400 m.
	PT	M Coordinates			
Northing: 1942534.242 m.	Easting:	452967.729 m.	Zone:	3	
	UT	M Coordinates			
Northing: 1,943,468.54	Easting:	240,677.03	Zone:	51	

Location Description

ABR-32

From Bangued, travel towards liccos Sur for about 8 km. Turn right at the intersection road and continue travel for about 3.6 km, until reaching the Barangay Hall of Suyo. The station is located about 15 m NE of the stage. Mark is the head of a brass rod with cross cut on top flushed at the center of a 30 cm x 30 cm x 120 cm concrete monument with inscriptions, "ABR-32, 2007, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference 8795470 A OR Number:

T.N.: 2014-443

RUEV DM. BELEN, MNSA Director, Mapping And Geodesy Branch

MANETA OFFICES Wain : Lawton Avenue, Fart Sanfocia, 1634 Topsig City, Philippines Tel. No.: (622) E13-4831 to 41 Branch : 421 Farrace St. Son Nicoles, 1010 Monito, Philippines, Tel. No. (632) 241-3494 to 58 www.namria.gov.ph

3. ILS-9

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	: ILOCOS SUR			
	Station	Name: ILS-9			
Island: LUZON Municipality: SAN JUAN	Orde	r: 2nd	Baranga	y: BAC	SIL
municipality. Shirt South	PRS	92 Coordinates			
Latitude: 17° 43' 40.62808"	Longitude	120° 27' 9.37799"	Ellipsoid	lal Hgt	56.57700 m.
	WGS	S84 Coordinates			
Latitude: 17° 43' 34.46721"	Longitude	120° 27' 14.01102"	Ellipsoid	al Hgt:	89.29100 m.
	PT	M Coordinates			
Northing: 1960739.965 m.	Easting:	441941.245 m.	Zone:	3	
	UT	M Coordinates			
Northing: 1,961,798.84	Easting:	229,838.72	Zone:	51	

Location Description

ILS-9

Is located in Bo. Bacsil, San Juan, Ilocos Sur at the hilly portion of Bacsil National High School compound, 10 m. W from the school building.

Station mark is the head of a 4 in. copper nail embedded and centered on a 8 in. x 8 in. cement putty set at the edge of a concrete road with inscribe station name "ILS-9, NAMRIA, 2000".

*Note: Station upgraded to 2nd Order (by: LTSG. Custodio G. Armengol, May 2005).

Requesting Party: UP-DREAM Pupose:

Reference 8795470 A

OR Number. T.N.:

2014-438

RUEL DW BELEN, MNSA Director, Mapping And Geodesy Branch

Nois : Lewien Avenue, Fort Bonitsco, 1634 Tapuig Cry, Philippines : Tel. No.: (632) \$10-4331 to 41 Branch : 421 Borrece St. San Micales, 1810 Manife, Philippines, Tel. No. (622) 241-3454 to 91 www.namria.gov.ph

4. ILS-13

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ILOCOS SUR	
	Station Name: ILS-13	
Island: LUZON Municipality: CABUGAO	Order: 2nd	Barangay: BONIFACIO
	PRS92 Coordinates	
Latitude: 17° 47' 21.51067"	Longitude: 120° 27' 23.352	75" Ellipsoidal Hgt: 26.74100 m.
	WGS84 Coordinates	
Latitude: 17° 47" 15.33691"	Longitude: 120° 27' 27.9806	67" Ellipsoidal Hgt: 59.26700 m.
	PTM Coordinates	
Northing: 1967529.087 m.	Easting: 442372.629 m.	Zone: 3
	UTM Coordinates	
Northing: 1,968,586.44	Easting: 230,342.67	Zone: 51

Location Description

ILS-13

Is located inside the compound of Cabugao South Central School, Brgy. Bonifacio, Cabugao, Ilocos Sur. It is situated on a dike of an uncultivated farm owned by the municipality, It is located about 30 m. SE of the school oval and about 20 m. SE of a concrete shed. It is reached by traveling N coming from Vigan City. The school is on the left side of the highway, opposite Cabugao National High School.

Mark is the head of a 3 in, copper nail embedded and centered on a 30 cm, x 30 cm, concrete monument, about 60 cm, deep, protruding by 5 cm., with inscriptions "ILS-13, 2005, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference

OR Number: 8795470 A T.N.: 2014-439

RUEY DM. BELEN MNSA Director, Mapping And Geodesy Branch

MANUELL OFFICES:

Main : Lewton Avenue, Fort Bonifacia, 1634 Faguig Coy, Philippines — Fel. No.: (622) 816-4851 to 41

Branch : 421 Berners St. See Miceles, 1008 Manuel, Philippines, Tel. No. (622) 241-2494 to 98

www.nameria.gov.ph

5. ILS-22

March 04, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province	LOCOS SUR			
	Station	Name: ILS-22			
Island: LUZON Municipality: LIDLIDDA	Orde	r. 2nd	Baranga	y: POB	LACION NORTE
	PRS	92 Coordinates			
Latitude: 17° 16' 13.59403"	Longitude:	120° 31' 8.89179"	Ellipsoid	al Hgt	55.31200 m.
	WGS	884 Coordinates			
Latitude: 17° 16' 7.53708"	Longitude	120° 31' 13.56269"	Ellipsoid	al Hgt	89.64700 m.
	PT	M Coordinates			
Northing: 1910089.724 m.	Easting:	448870.206 m.	Zone:	3	
	UT	M Coordinates			
Northing: 1,911,053.54	Easting:	236,238.44	Zone:	51	

Location Description

ILS-22

From Candon City, travel N along the national highway for about 6 km, then turn E at the junction and travel for about 8 km, until reaching the Lidlidda Public Market. Turn NW and travel for about 4 km, to reach the North Central School. It is located inside the school compound on the science park near the NE corner of the concrete stage. It is 1.5 m, NNW of the E corner of the concrete stage and 0.8 m. NNE of the NE side of the stage.

Mark is the head of a 4 in. copper nail, centered on a concrete block 30 cm. x 30 cm. and 10 cm. above the ground surface, with inscriptions "ILS-22, 2005, NAMRIA".

Requesting Party: UP-DREAM Pupose: Reference

OR Number; 8795470 A T.N.: 2014-440

RUEL DM. BELEN MNSA
Director, Mapping And Geodesy Branch

NAMETA DEFICES:

Waie: Lawton Avenue, Fort Bonifode, 1624 Topsig City, Philippines - Tel. No. (627) 818-4821 to 41 Brack : 421 Europe St. San Nicolas, 1010 Memilo, Philippines, Tel. No. (627) 241-3494 to 98 www.nameria.gov.ph

6. ABR-3221

March 25, 2014

CERTIFICATION

To whom it may concern:

Island: LUZON

This is to certify that according to the records on file in this office, the requested survey information is as follows -

Province: ABRA

Station Name: ABR-3221 (BLLM-2)

Order: 4th

Municipality: BANGUED (CAPITAL)

PRS92 Coordinates

Latitude: 17° 35' 52.68407"

Longitude: 120° 36' 58.62346"

Ellipsoidal Hgt:

WGS84 Coordinates

Latitude: 17° 35' 46.56370"

Longitude: 120° 37" 3.26652"

Ellipsoidal Hgt

89.89000 m.

56.36500 m.

Barangay: ZONE 5 POB. (BO. BARIKIR)

PTM Coordinates

Northing: 1946312.003 m.

Easting: 459272.709 m.

Zone:

Northing: 1,947,181.20

UTM Coordinates Easting: 247,024.30

Zone:

51

ABR-3221

BLLM No. 2 is located at the town Plaza of Bangued approximately 30m. East from Abra Valley College and 25m North from Bangued Church. Station is marked by a metal bolt on the center of concrete monument 40 x 40 x 100cm., Set 80cm., below the ground 20cm. above the ground, with inscriptions BANGUED, ABRA, BLLM NO.2, CAD-536-D, DENR, 2010.

Location Description

Requesting Party: UP DREAM

Pupose: OR Number: Reference 8795829 A

T.N.:

2014-652

RUEY DM. BEKEN, MNSA Director, Mapping And Geodesy Branch

Mann Literatur Avenue, Fort Bondacks, 1634 Taguig Clay, Philopones - Tol. No.: (622) 610-4831 to 45 Branch: 421 Berrico St. Sen Nicoles, 1016 Manilla, Philippones, Tel. No. (620) 941-3464 to 95

www.namria.gov.ph

ISO 9001: 2008 CERTIF ED FOR WAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. ABR-3071

Table A-3.1. ABR-3071

Vector Components (Mark to Mark)

From:	ABR-31				
G	rid	Lo	cal	Glo	bal
Easting	250503.563 m	Latitude	N17°34'04.18832"	Latitude	N17°33'58.07703"
Northing	1943800.890 m	Longitude	E120°38'57.99392"	Longitude	E120°39'02.63930"
Elevation	93.704 m	Height	98.780 m	Height	132.481 m

To:	ABR-3071				
G	rid	Lo	cal	Glo	bal
Easting	250495.042 m	Latitude	N17°34'00.39935"	Latitude	N17°33'54.28829"
Northing	1943684.465 m	Longitude	E120°38'57.75398"	Longitude	E120°39'02.39944"
Elevation	91.410 m	Height	96.489 m	Height	130.194 m

Vector					
ΔEasting	-8.521 m	NS Fwd Azimuth	183°28'35"	ΔΧ	-10.725 m
ΔNorthing Standard Errors	-116.425 m	Ellipsoid Dist.	116.693 m	ΔΥ	31.972 m

Vector errors:					
σ ΔEasting	0.001 m	σ NS fwd Azimuth	0°00'01"	σ ΔΧ	0.001 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔΥ	0.001 m
σ ΔElevation	0.002 m	σ ΔHeight	0.002 m	σ ΔΖ	0.001 m

Aposteriori Covariance Matrix (Meter²)

	X	Y	z
х	0.0000013627		
Υ	-0.0000010122	0.0000021053	
z	-0.0000004683	0.0000008588	0.0000007466

ANNEX 4. The LIDAR Survey Team Composition

Table A-4.1. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
		ENGR. LOUIE BALICANTA	
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Supervising Science Research Specialist	LOVELY GRACIA ACUÑA	UP-TCAGP
	(Supervising SRS)	LOVELYN ASUNCION	
	FIELD	TEAM	
Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
LiDAR Operation	Senior Science Research Specialist (SSRS)	AUBREY MATIRA	UP-TCAGP
	Senior Science Research Specialist (SSRS) 2016/ RA (2014)	PEARL MARS	UP-TCAGP
	Research Associate (RA)	MA. VERLINA TONGA	UP-TCAGP
	RA	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	RA	REGINA AEDRIANNE FELISMINO	UP-TCAGP
Ground Survey / Data Download and Transfer	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	RA	ENGR. KENNETH QUISADO	UP-TCAGP
LiDAR Operation	Airborne Security	SSG RANDY SISON	PHILIPPINE AIR FORCE (PAF)
		SSG.DIOSCORO SOBERANO	PAF
	Pilot	CAPT. RAUL CZ SAMAR II	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. CEASAR ALFONSO III	AAC
		CAPT. MARK TANGONAN	AAC
		CAPT. JEROME MOONEY	AAC

ANNEX 5. Data Transfer Sheet for Ikmin Floodplain

No. Column No.	11							3719/2014/0	STRESHIELDCOS BATCH Z)	N N							
Colores NA St. 122 Colores NA Colores Colo		MASSION NAME	SENSOR	5	SW US	5003	8	RANN		PANOE		8445.57	(VECONOS)	OPERATOR LOSS		3	SERVER LOCATION
Column NA 20100 20000 NA 15.500 NA 12.500				N S	$\overline{}$			3			- 1	BASE STATIONES	Base into Ling			KML	
COLUMN NA 20028 NA NA 20038 NA NA 10038 NA NA 11048 NA NA 10048 NA NA 10038 NA NA 10038 NA NA 10048 NA N	710400	2BLK06E062A & 2BLK06A062A	DEMIN	5	68.116	42943	SOGNE	ş	10.00	19 308	*	12.348	11/8	1108	en74nosoek 8	94.9	Z'Véhorne_Rest/Tib4GC
GEMNN MA 198765 20806 147849 MA 14509 MA 11849 1184 1184 1184 11876 11870 118706	\perp	28LK06AS062B & 2BLK06C062B	OEMIN	¥	302948	4000	254MB	ž				12.6MB	11/3	11/3	6/206/5/206/67 K/B	111/3	2:Wittome_Raw/7105GC
GEMNN MA 2868-8 6518-8 2618-8 MA MA 18-509 MA 11.448 11.54 11.		2BLK07C063B	DEMIN	×	59.11/29	3000	0M/61	×	*			3,6448	11/8	11/3	1329/8	192918	Z.Vatome_Rav010760
CEMPN NA 25046 45146 NA 14 15 508 NA 11 AMB 158 158 158 159 15		28LX07C0638	OEMIN	\$	10646	83848	200AB	\$				TIMB	113	11/8	9.6962	90100	Z.Watsoma_Raw/710800
CEMINE UK DELATO CONTO CONTO	711290	2BLK06G066A & 2BLK06DS066A	DEMNA	×	2964.6	451KB	247348	ž				11.4MB	11/8	11/3	19776-813	170	2.Witome_Raw(711200
Oceania Inc. 200703 435/03 255/04 Inc. 18-402 Inc. 11-20 Inc. Inc. 11-20 Inc. Inc. 255/04 Inc. 12-20 Inc.	711400 2	BLK07C5067A & 2BLK06G067A	GEMIN	\$	00.413	43643	36AM	2				8.4548	11/3	11/8	7/5/304KB	27513	Z:Weborne_Raw01149C
CEMBRA NA 32519 SEGNE SEGNE NA NA 32709 NA 14509 NA		28LK078068A	DEMINI	ž	306/8	476/8	257148	¥				10,846	1KB	9.6	5/209/51/5/209 HB	98	2:Whome_Raw011600
CEMBRI NA 32162 S2063 25360 NA NA 12703 NA 11260 178 178 178 189 S005221515 NA OCEANNA NA 12703 NA 11260 178 1	711600	28LX07D069A & 28LX07G069A	GEMINA	5	33240	403/03	SSSNB	¥				14.548	11/3	11/3	67228/346/10/5/ 228/43	1043	2:Witome_Rav01180C
OGENERA INA 21000 251409 NA NA 12709 NA 11240 199 199 100007199 1640 OGENERA INA 21000 251409 NA NA 14509 NA 15200 199 199 199 190007199 1640 OGENERA INA 2440 35900 259409 NA 14509 NA 14509 NA 15200 199 1900 199 190007199 199 OFFICE A Separate Strict		28LK27A069B	OEMMI	2	3211/3	52043	20348	2				14,7148	1978	11/8	SvenSzznesk B	5	ZWbome_Raw011900
06 GEMMA NA 21043 11743 NA NA 12703 NA 10846 173 1193 1193 1103 1003 GEMMA NA 7449 3509 22040 NA NA 14508 NA 0.2048 173 1193 1103 3007700000 903 GO POLE LA Section 5 NA 10 10 A F PRIETO FLA CA CANA 1104 500000 1104 1105 1105 1105 1105 11	- 174	28LKOGFO70A & 28LKO7A070A	GEMINE	2	67.41/3	80808	251MB	ž	**		1	11.2146	19/8	11/3	10/26/219/3	1648	ZWinome_Raw012000
74.443 SSP-03 ZZBNUB NA 14.808 NA 6.3848 1143 1143 35697388614 9-3 Received by Name 20.10 A F PKIETO SSP-03 SSP-03 A SSP-04 A	712100	28LK07G50708 & 28LK07A50708	CEMIN	*	21648	31969	217MB	5				10.846	941	84	149/0/39	9049	Z.Waboma_Raw/7121GC
CHANG GONDALING	712260	BLKO7E071A & 2BLK07F071A	GEMINE	2	24.40	29943	220MB	ź		14.508	¥	8.3646	1108	84	399/7/399/64/8	88	Z'Vatome_RawG122GC
+		seeived from						Received	1								
7				•													
	1 1 1	Promos	7 7	3 8	7			Postkon Sprakre	2	A SS	1 P	JETO 4/2	थ्याप				

Figure A-5.1. Transfer Sheet for Tineg Floodplain - A

	-	NON	PONIN	FOATIV		
	SERVICE STATES	LOCATION	ZYDACIPAR	ZIDACHAIN DATA		
	PLAN	HOME.	7.	11		
	PLIGHT PLAN	Actual	663	-		
	OPERATOR	10038	35	164		
	crowps	State bells (Ant)	198	1103		21
	BASE STATION(N)	BASE STATION(S)	338	334		17
		DIGITIZER	ž	Nek	ed by	AC BON
		BANGE	24.7	14.6	Received by	Name Protein
128 41	DOT NORSEM	PLEICASI	ž	NA		
DATA TRANSPER SHEET LAGAG 6292916		MACESICASI	15	N		
DATA		POS	200	231		
		1000	900	403		e G
	LAS .	OML (swad)	302	190	d from	L FIND
	RAINLAS	Output LAS KWL (sw	N/	ž	Roceiwed fi	Name Position Signature
		SENSOR	OEMN	OEMN		
		PLICENT NO. MISSION NAME	28UCSA7349A	28UKS871498		
		PLIQUET NO.	40436	40456		
		DATE	May 28, 2016	May 28, 2016		

ANNEX 6. Flight logs for the Flight Missions

.. Flight Log for 7104GC Mission

DREAM Data Acquisition Flight Log	t Log	20LKOGEOG2A &	18		Flight Log No.: 7/07
1 LIDAR Operator: MVE Tor	LIDAR Operator: NYE TONGA 2 ALTM Model: GEMICAS 3 Mission Name: 284 664 6624 4 Type: VFR	3 Mission Name: 28LF 65A 062	4 4 Type: VFR	5 Aircraft Type: Cesnna T206H	S Aircraft Type: Cesnna T206H 6 Aircraft Identification: 9327
7 Pilot: R. SAMAR !	8 Co-Pliot: C- ALPONSO N	9 Route:			
10 Date: 03 -03 -2014	12 Airport of Departu	re (Airport, City/Province): 12	Airport of Arrival	12 Airport of Arrival (Airport, City/Province): RP Li	
13 Engine On: 0929#	14 Engine Off: IIS 8#	15 Total Engine Time: 16	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	Wirely				
20 Remarks:	Mission completed at BLK	8270			
	BLKOLA (without che)	(1) com surveyed a lines of	the st		

Acquisition Flight Approved by	Activities of the Certified by	pleninghuspid	Lidar Operation	
Clarky Matus C. Sgnature ber Printed Name (End User Representative)	Signature over Printed Name (PAF Representative)	P. Skynture over Printed Name	My E 7	

Figure A-6.1. Flight Log for Mission 7104GC

Flight Log for 7108GC Mission

The same of the sa	6A / 2 ALTM Model: LE	1 UDAR Operator: Mus Tonka / 2 ALTM Model: CEN+CAS) 3 Mission Name: 1844 GOG 44A	44A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9322
7 Pilot:	8 Co-Pi	9 Route:			
10 Date: 03-05-2014	-	12 Airport of Departure (Airport, City/Province):	12 Airport of Arriva	12 Airport of Arrival (Airport, City/Province):	
13 Engine On: OqueH	14 Engine Off: 13344	15 Total Engine Time: 4+29	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	Herzy				
20 Remarks:	Complehed area of BLKUGC and	cook and surryed 3 lines at out 060 (without cA31)	at 04K 06D (wit	Acord (A31)	
21 Problems and Solutions:					
Acquisition Flight Approved by Ask of Markov Signature over Printed Name (End User Representative)	School by Control of Name Cont	Acquipment in Capalled by Signature over Printed Name		Pilotin-Commaried 2-CANAMILI Signature over Printed Name	Lidar Operator My C To Signature of Per Printed Name

Figure A-6.2. Flight Log for Mission 7108GC

5.

Flight Log for 7112GC Mission

DREAM Data Acquisition Flight Log	80	2.BtK0	2BIKOGGOGGA R		Flight Log No.: 7(1)	ガラ
1 UDAR Operator: McE 8AUGVAS	SVAS 2 ALTM Model: LEM + CAS) 3	Mission Name:	DSOKA 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: 9322.	
7 Pilot: R. SAMAR II	-	6				
3		ture (12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province): (APL)		
	14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather						П
20 Remarks:	surreyed 11 Lines	क	9 7 lines of B	BIK 066 9 7 lines of BIC 06 10 (horthout GASI)		
21 Problems and Solutions:					1	
~						
Acquisition Flight Approved by An Dorth Matter. Signature of Printed Name (End User Representative)		Acquestion Night Certified by Acquestion Certified by Signature over Printed Name (PAF Representative)		Pilot-in-Commardd	Lidar Operator M.A Z. A. C.A. 1850 - W. E. D. A. M. A. A. S.	

Figure A-6.3. Flight Log for Mission 7112GC

DREAM Data Acquisition Flight Log	Bot		2BLK 0765007A Q	346		Flight Log No.: 7,	2
1 LIDAR Operator: MVE TONGA		todel: GEM + CAS	2 ALTM Model: CEM LCAST 3 Mission Name: 284 846 8454	A 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 1322	
	둫	LPONSO M	9 Route:				
210	12 Airpor	t of Departure (12 Airport of Departure (Airport, City/Prowince):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
13 Engine On: 0710 H	14 Engine Off:	13334	15 Total Engine Time: 4+23	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	Windy						П
20 Remarks:	Compleked the rest	1	of blocks Bleoge & Bleoge	4076			
21 Problems and Solutions:							
, .				7,			
Acquisition Flight Approved by	on Flight Approved by	3 8	THE CHEST) Burgue	Udar Operator	3
(End User Representative)	(ative)	PA9)	(PAF Representative)	annual c)	all parties and a constant and a con	

Figure A-6.4. Flight Log for Mission 7114GC

Flight Log for 7116GC Mission

1: 4322					
6 Aircraft Identification: 9322	18 Total Flight Time:				Udar Operator
S Aircraft Type: CesnnaT206H	12 Auport of Arriva (Auport, Ary) Province): 16 Take off: 17 Landing:				A Comment
4 4 Type: VFR	16 Take off:				Pilot-in-Comma
07806			F BLK 07 B		March Mark Certified by
10.1	14 Engine Off: 42.1 15 Total Engine Time:		Completed area of		roved by AGA
	13 Engine On: 0824 H	19 Weather	20 Remarks:	21 Problems and Solutions:	Acquisition Flight Approved by

Figure A-6.5. Flight Log for Mission 7116GC

5.

Flight Log for 7118GC Mission

DREAM Data Acquisition right tog		2814 07 06 9A	4		0 14 7 110 POR 110 PU
1 UDAR Operator: MVE TON LA	2 ALTM Model: 6Exx+cq5) 3 Mission Name:	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 954.2
7 Pilot: R- SAMAR 11 8C	Ä	9 Route:			
>	12 Airport of Departure (Airport, City/Province):	irport, Gty/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):	
	14 Engine Off:	15 Total Engine Time: 4+2.2	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather	Windy				
20 Remarks:	Misner	completed at		PIKOTO & surruyed & lines of BIKOT6 (without CAN)	kole (without cay)
21 Problems and Solutions:					
Acquisition Flight Approved by Change of Printed Name Ind Nor Representative	8	Again Plent Certified by Control of Control	Pliot-in-Comr	mand of Printed Name	Lidar Operator MATE Signature giver Pluted Name

Figure A-6.6. Flight Log for Mission 7118GC

DAN OPERATOR MACE AND IN LECT AND		3 MISSION NAME: CIKO IP	A INDE VEN	SAIrcraft Type: Cesnna Izuen	b Aircrait identification: 1572
8 Co-Pi	1 13	9 Route: Land - Bilk OCF	Az Almost of Arrival	LADOR - BIK OVER BILOTA - Lasay	
13 England 14 England Off.	LAD GE PIT	port	Lab og	Airon	18 Total Elloht Time
Hooto	*	(+t)	TO INVESTIGATION	T Continue:	10 10 to 10
19 Weather		plantly classedy			
20 Remarks: Sullessful Flig	July: Complete	ed artus of 30	koef and	Sullessful Flight; Camplered arras of BLKOEF and BUKUTA Cuithour CASI)	CAS1)
21 Problems and Solutions:					
Acquisition Flight Approved by	Acquis	TO ACTION CONTINUE by	Pillot-in-Com	Marke, 1	Lidar Operator
Clar Day 11/1 Clark	88	Senature over Printed Name		Storndrine order Perfected Name	CATHERINE DAILUAS.

Figure A-6.7. Flight Log for Mission 7120GC

9

Flight Log for 7122GC Mission

I UDAR Operator: M. V.C., UTM, I. ALIM Model: LEATCAS 3 MISSION Name: 7 Pilot: A., CAMAR, A. 8 C6-Pilot: C. ALGONO AL	3 Mission Name: 9 Route:	4 Type: VFR	S Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9322
5/2	12 Airport of Departure (Airport, City/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):	
14 Engine Off:	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather (Dody)				
SULCESSFUL Flight; Mission Complexed (without GSI)	COMPRED WITH	(159) know		
21 Problems and Solutions:				
Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Signature over Printed Name	According Flight Conciled by C	A	Pilot-in-Command Pilot-in-Comm	Lidar Operator (1. M. Mullin Signature over Printed Name

Figure A-6.8. Flight Log for Mission 7122GC

Figure A-6.9. Flight Log for Mission 4043GC

 ∞

1 UDAR Operator: Apre 7644	Shance				to at the interesting day 3.9
	2 ALTM Model: 6 cnių	n Name: 28tx75	1998 4 Type: VFR	5 Aircraft Type: Cesnna 1 206H	6 Aucrait toenditication: 70.42
All Tongone 8 Co-P	lot: J' shally	9 Route:	C. Oct. C 4-40-M	COR . Adva & Vigarit - Corde J	
	ort of Departure	diport, digriconince).	77	Casa 3	Na Vanis Chicks Times
13 Engine On: 14 Engine Off:	19:36	15 Total Engine Time:	16 Take off: /3:45	17 Landing: 17: 31	31.04
19 Weather Fine Chudy	710			1.00	
20 Flight Classification			21 Remarks		
20.a Billable 20.b1	20.b Non Billable	20.c Others		Complated BLK73B	ân
Acquisition Flight Ferry Flight System Teet Flight Calibration Flight	Alexaft Test Flight AAC Admin Flight Others:	LIDAR System Maintenance Alecselt Maintenance Phil-LIDAR Admin Activities	nanca		
22 Problems and Solutions					
 Weather Problem 					
System Problem Aircraft Problem					-
O Pilot Problem O Others	1				
Acquisition Fight Approved by	Acquisition Flight Cartiffied by		Pitos in Command	UDAN Operator paddolomanori S.M. Phile philo	Alergit Metherial UDAR Technidan Sepulare over Printed Name
Signature given Printed Name (End Uber Representative)	Ognetice over Present Partie (PMF Representative)				

Figure A-6.10. Flight Log for Mission 4045GC

ANNEX 7. Flight status reports

Abra and Ilocos Missions March 3 -13, 2014 and May 2016

Table A-7.1. Flight Status Report

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7104GC	BLK06	2BLK06E062A & 2BLK06A062A	MVE TONGA	March 5, 2014	Mission completed at BLK06E and surveyed 2 lines at BLK06A (without CASI)
7108GC	BLK06	2BLK06C064A & 2BLK06D064A	MVE TONGA	March 5, 2014	Completed area of BLK06C and surveyed 3 lines BLK06D (without CASI)
7112GC	BLK06	2BLK06G066A & 2BLK06DS066A	MCE BALIGUAS	March 7, 2014	Surveyed 11 lines at BLK06G and 7 lines at BLK06D (without CASI)
7114GC	BLK07 & BLK06	2BLK07CS067A & 2BLK06G067A	MVE TONGA	March 8, 2014	Completed the rest of blocks 07C & 07B (without CASI)
7116GC	BLK07	2BLK07B068A	MCE BALIGUAS	March 9, 2014	Completed area of BLK07B (without CASI)
7118GC	BLK07	2BLK07D069A & 2BLK07G069A	MVE TONGA	March 10, 2014	Mission completed at BLK07D and surveyed 2 lines of BLK07G (without CASI)
7120GC	BLK06 & BLK07	2BLK06F070A & 2BLK07A070A	MCE BALIGUAS	March 11, 2014	Completed areas of BLK06F and BLK07A (without CASI)
7121GC	BLK07	2BLK07GS070B & 2BLK07AS070B	MVE TONGA	March 11, 2014	Mission completed (without CASI)
7122GC	BLK07	2BLK07E071A & 2BLK07F071A	MVE TONGA	March 12, 2014	Mission completed (without CASI)
4043GC	BLK07	2BLK7SA149A	MVE TONGA	May 28, 2016	Surveyed BLK7SA and 4 lines of BLK 7SB
4045GC	BLK07	2BLK7SB149B	RA FELISMINO	May 28, 2016	Completed BLK7SB

LAS BOUNDARIES PER FLIGHT

Flight No.: 7104 GC

Area: BLK06A and BLK06E

Mission Name: 2BLK06E062A & 2BLK06A062A

Total Area:

Altitude: 1200 m / 1000 m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 30 deg / 40 deg Sidelap: 40% / 30%

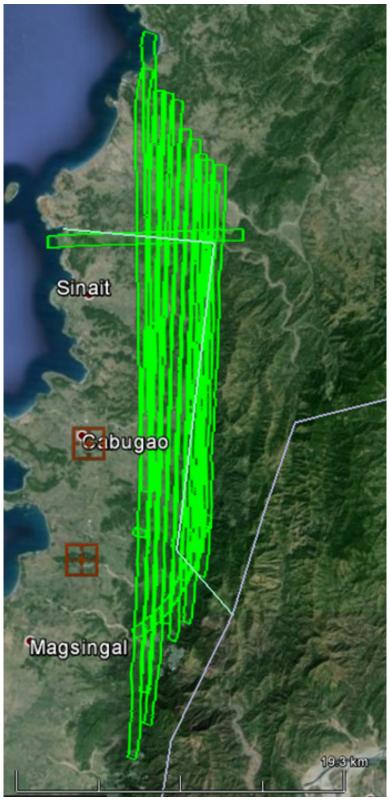


Figure A-7.1. Swath for Flight No. 7104GC

Flight No. : 7108 GC

Area: BLK06C and BLK06D

Mission Name: 2BLK06C064A & 2BLK06D064A

Total Area: sq. km. Altitude: 1000m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 20 deg Sidelap: 30%

Figure A-7.2. Swath for Flight No. 7108GC

Flight No.: 7112 GC

Area: BLK06DS and BLK06G

Total Area: 160.52 sq km

Mission Name: 2BLK06G066A & 2BLK6DS066A

Altitude: 1800m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 55%

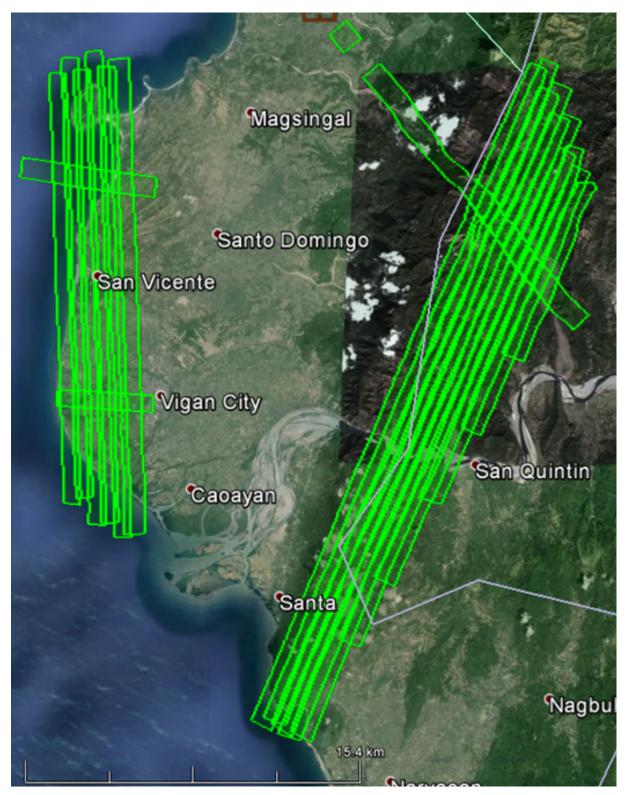


Figure A-7.3. Swath for Flight No. 7112GC

Flight No. : 7114 G

Area: BLK07CS& BLK06G

Total Area: sq km

Mission Name: 2BLK07CS067A & 2BLK06G067A

Altitude: 1800m / 1200m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 18 deg Sidelap: 55% / 40%

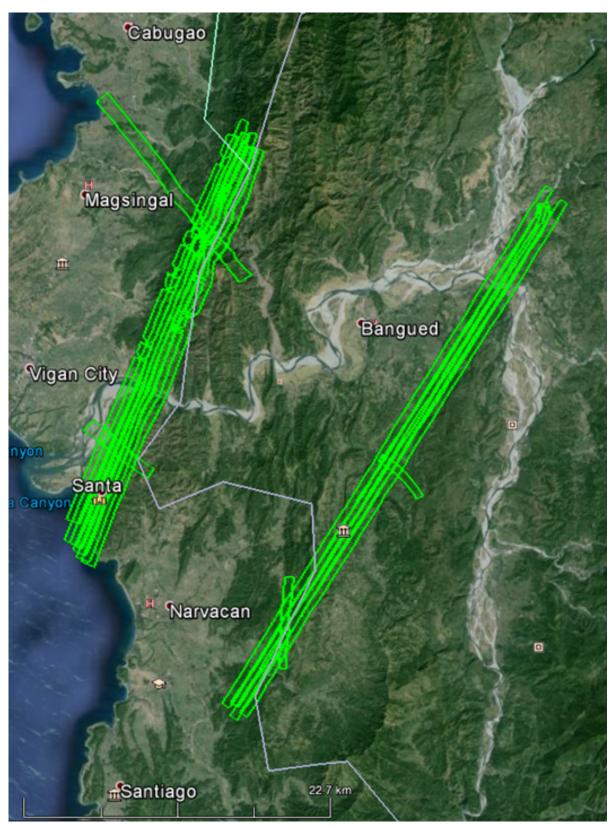


Figure A-7.4. Swath for Flight No. 7114G

Flight No.: 7116 GC
Area: BLK07B
Total Area: sq km
Mission Name: 2BLK07B068A

Altitude: 1300m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 30%

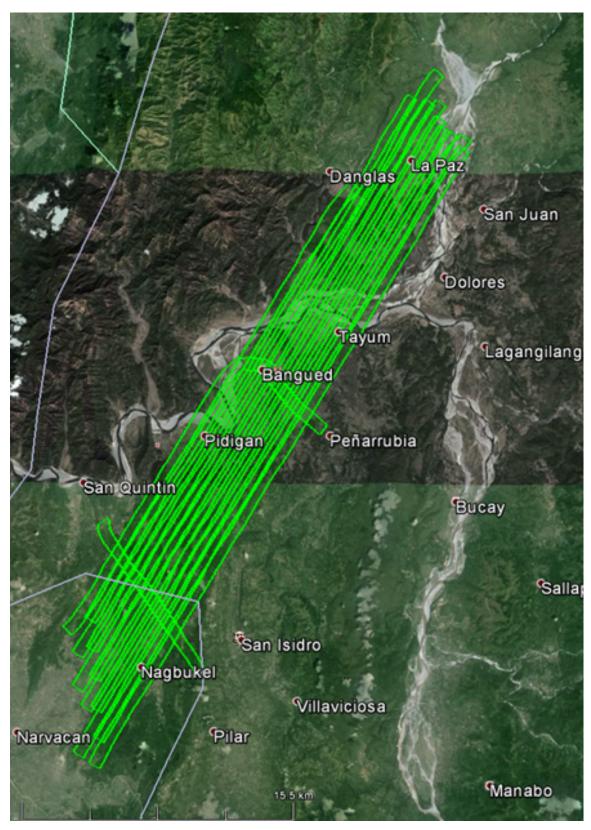


Figure A-7.5. Swath for Flight No. 7l16GC

Flight No.: 7118 GC
Area: BLK07D
Total Area: sq km
Mission Name: 38LK07D

Mission Name: 2BLK07D069A

Altitude: 1300m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 50%

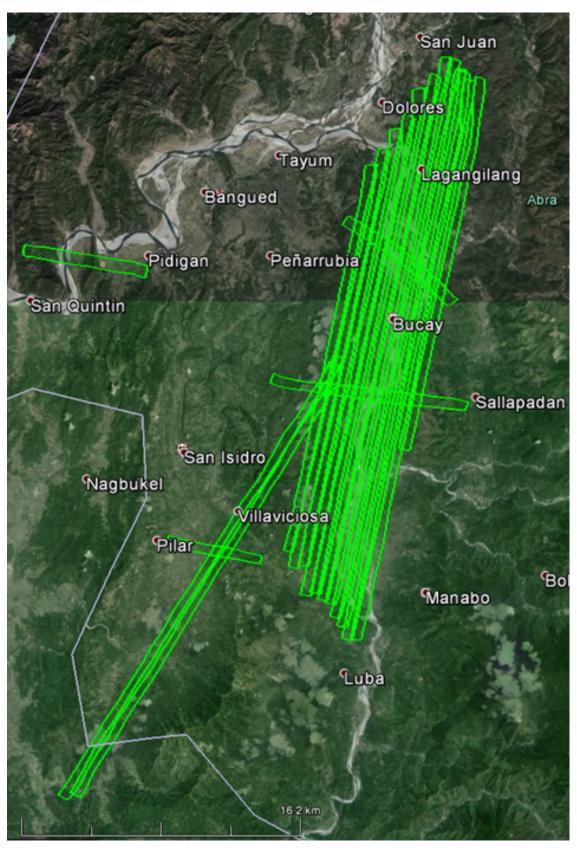


Figure A-7.6. Swath for Flight No. 7118GC

Flight No.: 7120 GC

Area: BLK06F& BLK07A

Total Area: sq. km.

Mission Name: 2BLK06F070A & 2BLK07A070A

Altitude: 1600m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 40%

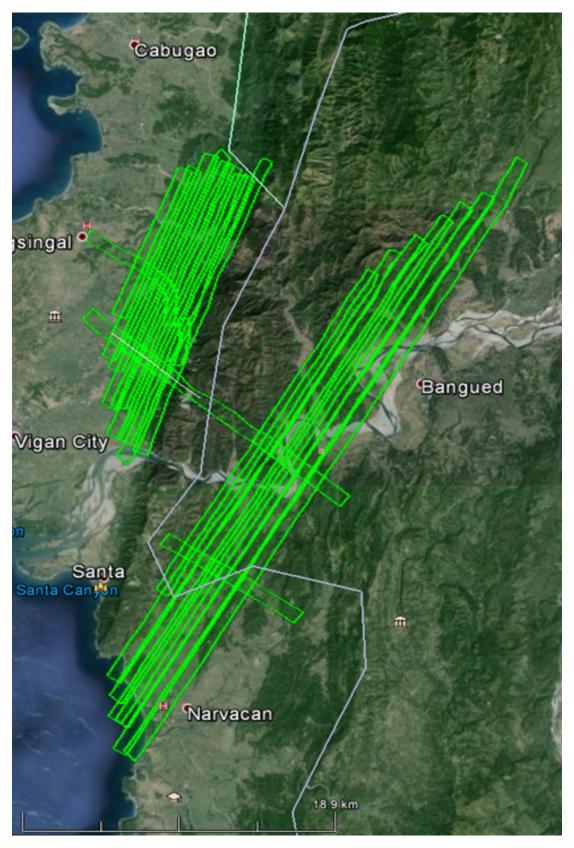


Figure A-7.7. Swath for Flight No. 7120GC

Flight No.: 7121 GC

Area: BLK07GS and BLK07AS

Total Area: sq. km.

Mission Name: 2BLK07GS070B & 2BLK07AS070B

Altitude: 1400m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 50%

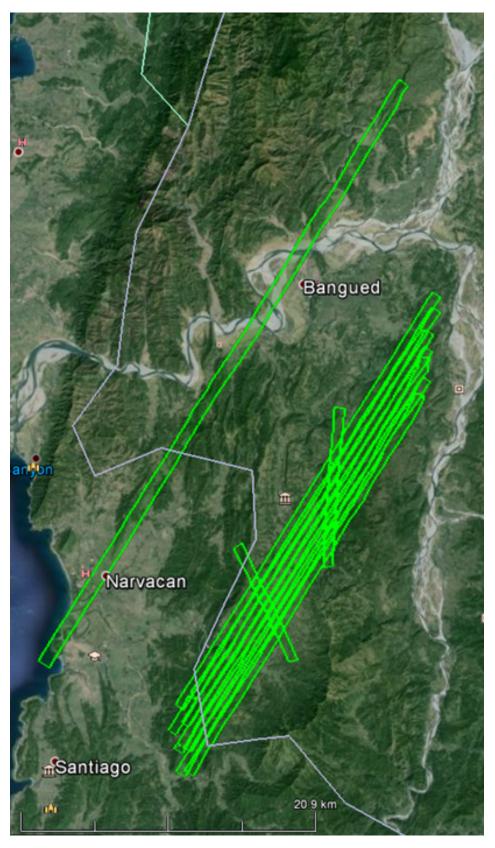


Figure A-7.8. Swath for Flight No. 7121GC

Flight No.: 7122 GC

Area: BLK07E and BLK07F

Total Area: sq. km.

Mission Name: 2BLK07E071A & 2BLK07F071A

Altitude: 1800m

PRF: 50 kHz SCF: 50 Hz Lidar FOV: 15 deg Sidelap: 40% / 35%

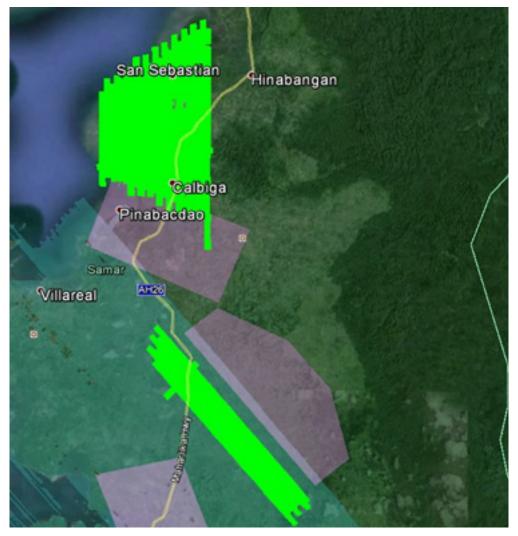


Figure A-7.9. Swath for Flight No. 7122GC

Flight No.: 4043 GC
Area: BLK07AS
Total Area: sq. km.
Mission Name: 2BLK7SA149A
Altitude: 1800m

PRF: kHz SCF: Hz Lidar FOV: deg Sidelap: %

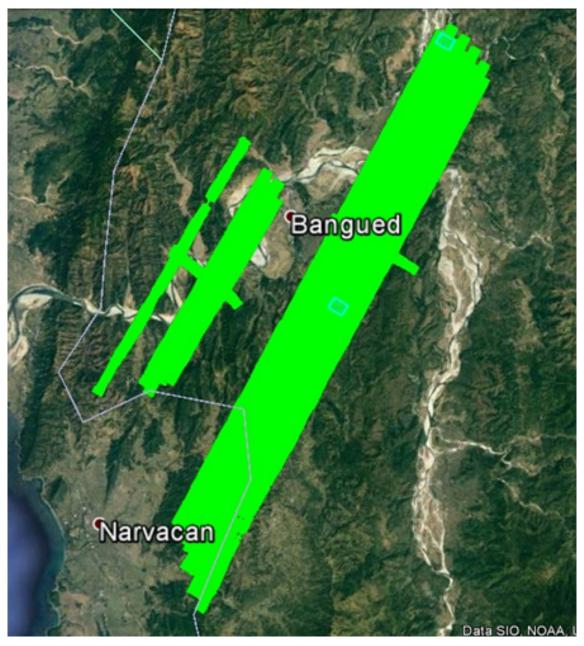


Figure A-7.10. Swath for Flight No. 4043GC

Flight No.: 4045 GC
Area: BLK07BS
Total Area: sq. km.
Mission Name: 2BLK7SB149B

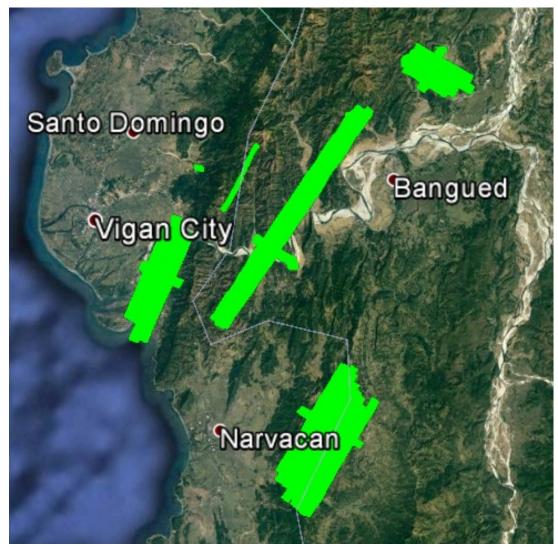


Figure A-7.11. Swath for Flight No. 4045GC

ANNEX 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk06A

Flight Area	llocos	
Mission Name	BIk06_A	
Inclusive Flights	7104GC, 7105GC	
Range data size	42.6GB	
Base data size	24.9 MB	
POS	460MB	
Image	N/A	
Transfer date	April 22, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	No	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	2.7	
RMSE for East Position (<4.0 cm)	3.3	
RMSE for Down Position (<8.0 cm)	3.3	
Boresight correction stdev (<0.001deg)	0.000184	
IMU attitude correction stdev (<0.001deg)	0.000642	
GPS position stdev (<0.01m)	0.0064	
Minimum % overlap (>25)	37.38%	
Ave point cloud density per sq.m. (>2.0)	3.43	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	419	
Maximum Height	614.2m	
Minimum Height	39.17m	
Classification (# of points)		
Ground	167,502,975	
Low vegetation	193,929,105	
Medium vegetation	261,271,939	
High vegetation	401,795,646	
Building	13,519,422	
Orthophoto	NO	
Processed by	Engr. Kenneth Solidum, Engr. Abigail Ching, Engr. Harmond Santos, Engr. Melissa Fernandez	

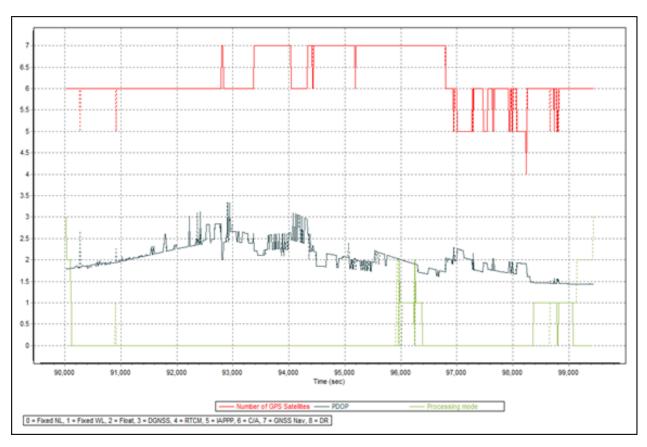


Figure A-8.1. Solution Status

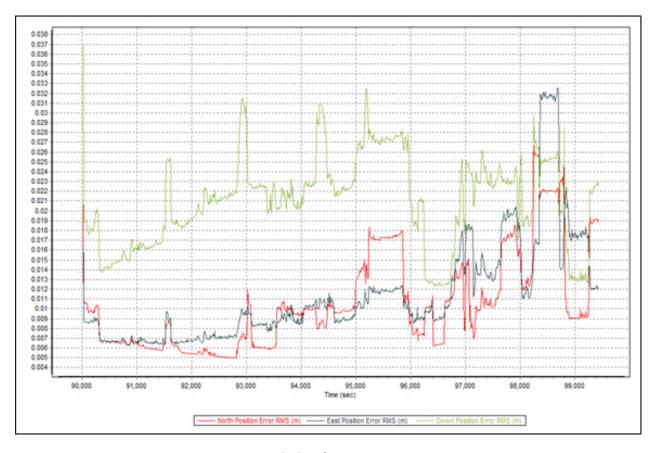


Figure A-8.2. Smoothed Performance Metrics Parameters

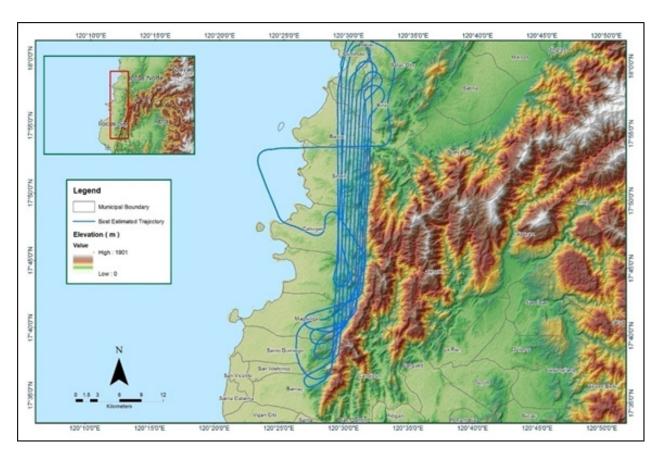


Figure A-8.3. Best Estimated Trajectory

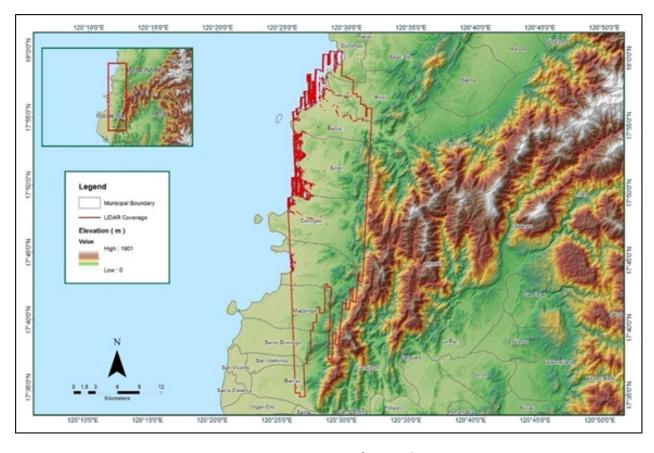


Figure A-8.4. Coverage of LiDAR data

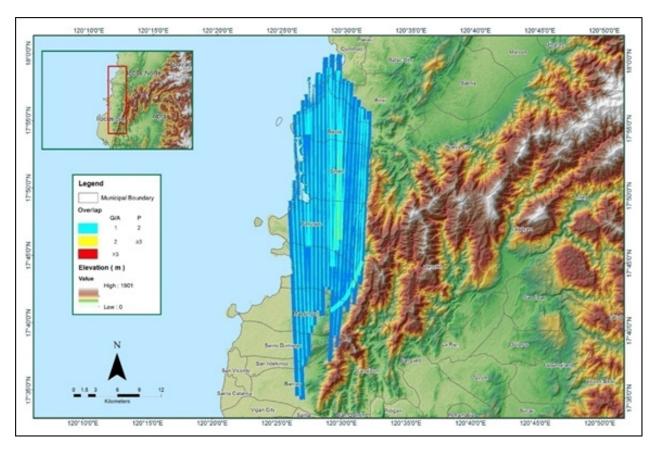


Figure A-8.5. Image of Data Overlap

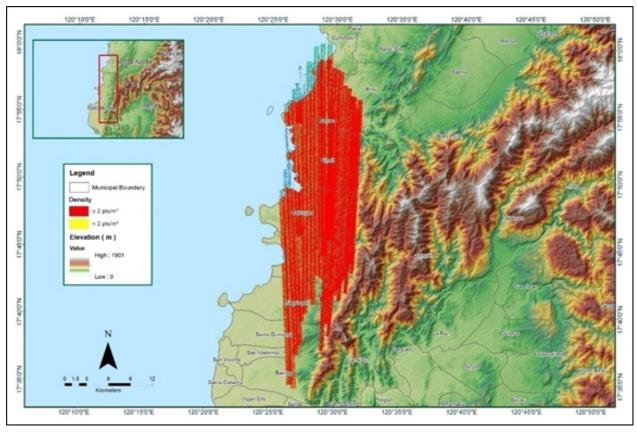


Figure A-8.6.Density map of merged LiDAR data

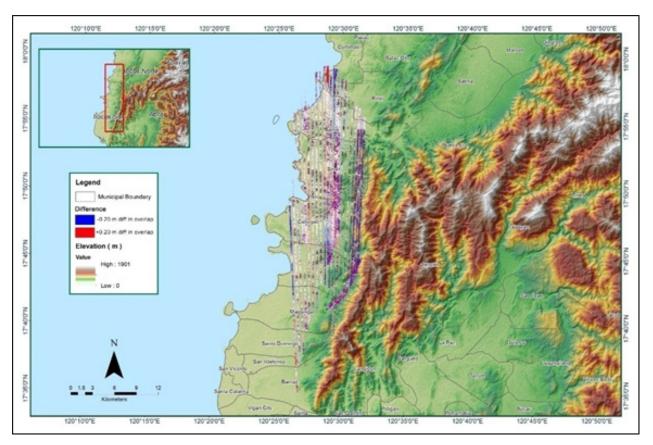


Figure A-8.7. Elevation difference between flight lines

Table A-8.2. Mission Summary Report for Mission Blk06D

Flight Area	llocos	
Mission Name	Blk06 D	
Inclusive Flights	7108GC	
Range data size	29.2GB	
Base data size	11 MB	
POS	268MB	
Image	N/A	
Transfer date	April 22, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	4.1	
RMSE for East Position (<4.0 cm)	2.5	
RMSE for Down Position (<8.0 cm)	6.7	
Boresight correction stdev (<0.001deg)	0.000303	
IMU attitude correction stdev (<0.001deg)	0.000657	
GPS position stdev (<0.01m)	0.0021	
Minimum % overlap (>25)	20.38%	
Ave point cloud density per sq.m. (>2.0)	2.41	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	340	
Maximum Height	205.57m	
Minimum Height	38.73m	
Classification (# of points)		
Ground	153,294,422	
Low vegetation	170,006,121	
Medium vegetation	150,971,074	
High vegetation	110,037,274	
Building	12,262,298	
Orthophoto	NO	
Processed by	Engr. Kenneth Solidum, Engr. Chelou Prado, Ryan James Nicholai Dizon	

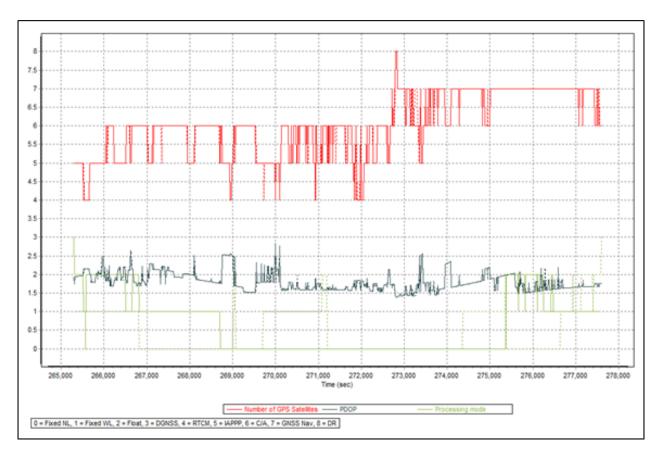


Figure A-8.8. Solution Status Parameters

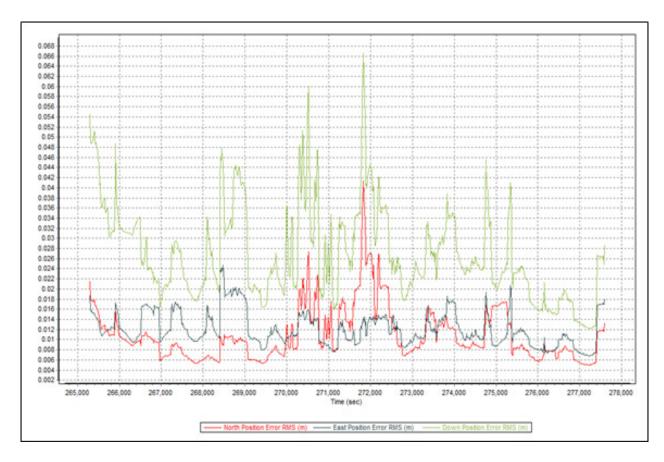


Figure A-8.9. Smoothed Performance Metrics Parameters

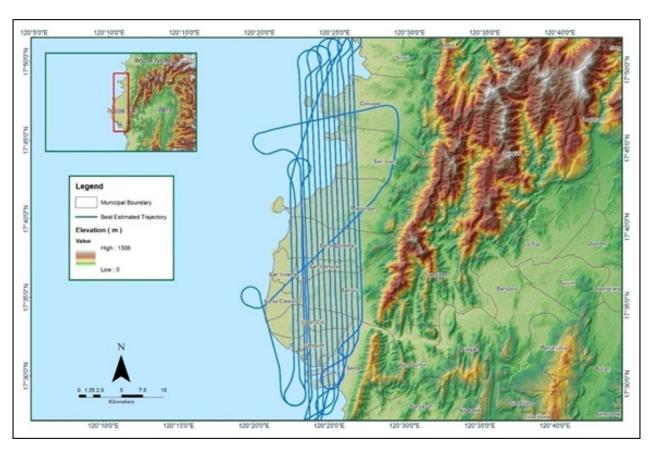


Figure A-8.10. Best Estimated Trajectory

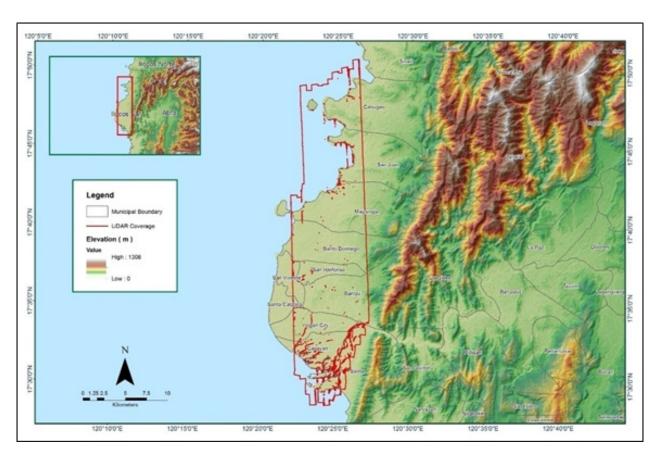


Figure A-8.11. Coverage of LiDAR data

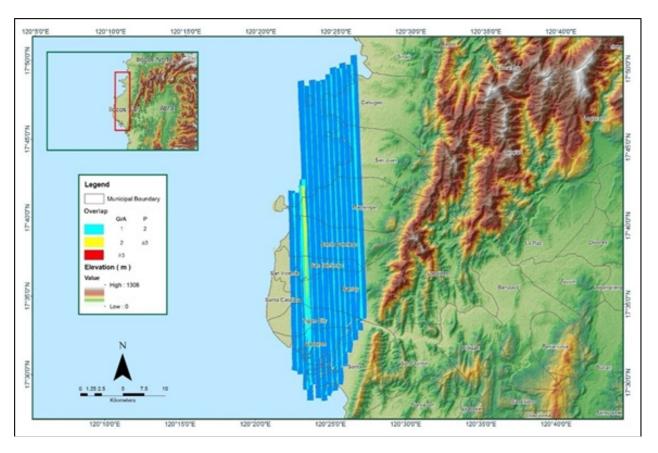


Figure A-8.12. Image of Data Overlap

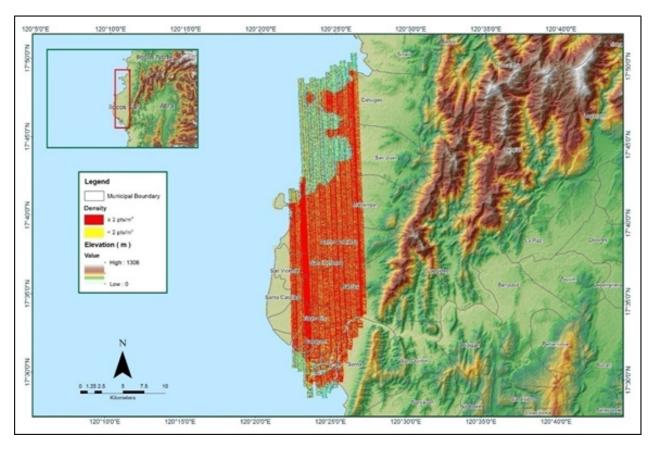


Figure A-8.13. Density map of merged LiDAR data

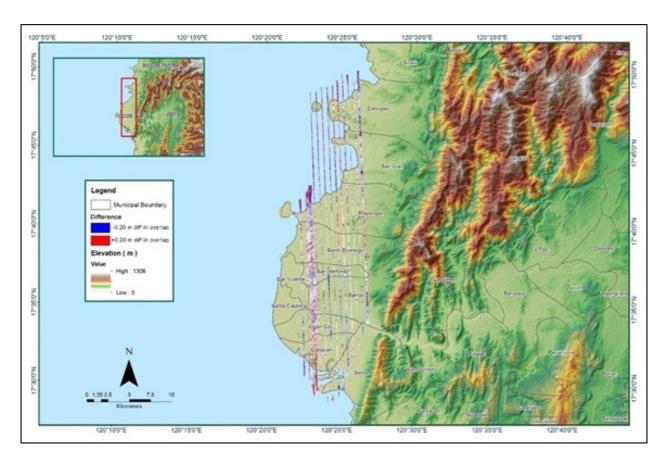


Figure A-8.14. Elevation difference between flight lines

 $Table\ A\text{-}8.3.\ Mission\ Summary\ Report\ for\ Mission\ Blk06D_additional$

Flight Area	llocos	
Mission Name	Blk06_D_additional	
Inclusive Flights	7108GC	
Range data size	29.2GB	
Base data size	11 MB	
POS	268MB	
Image	N/A	
Transfer date	April 22, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	4.1	
RMSE for East Position (<4.0 cm)	2.5	
RMSE for Down Position (<8.0 cm)	6.7	
Boresight correction stdev (<0.001deg)	0.000303	
IMU attitude correction stdev (<0.001deg)	0.000657	
GPS position stdev (<0.01m)	0.0021	
Minimum % overlap (>25)	50.45%	
Ave point cloud density per sq.m. (>2.0)	3.23	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	52	
Maximum Height	97.71m	
Minimum Height	38.92m	
Classification (# of points)		
Ground	13,415,941	
Low vegetation	18,682,343	
Medium vegetation	17,092,601	
High vegetation	16,069,039	
Building	3,155,099	
Orthophoto	NO	
Processed by	Engr. Irish Cortez, Engr. Melissa Fernandez, Engr. Chelou Prado	

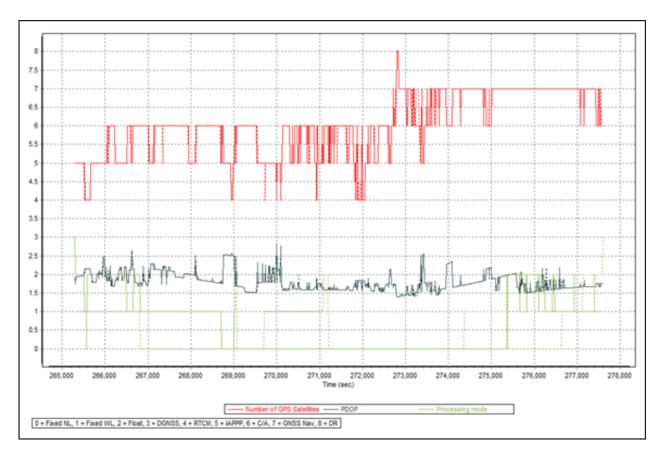


Figure A-8.15. Solution Status Parameters

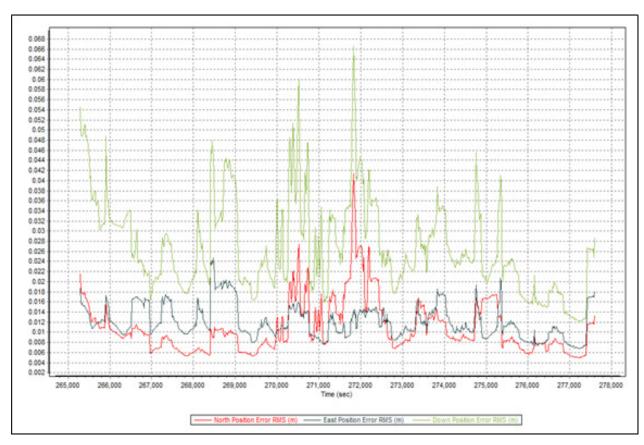


Figure A-8.16. Smoothed Performance Metrics Parameters

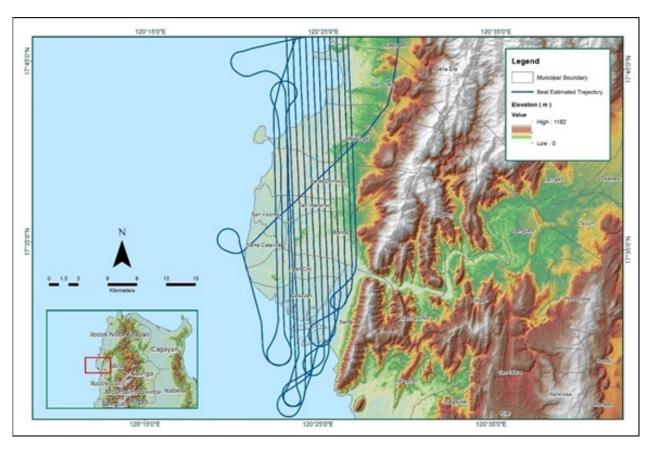


Figure A-8.17. Best Estimated Trajectory

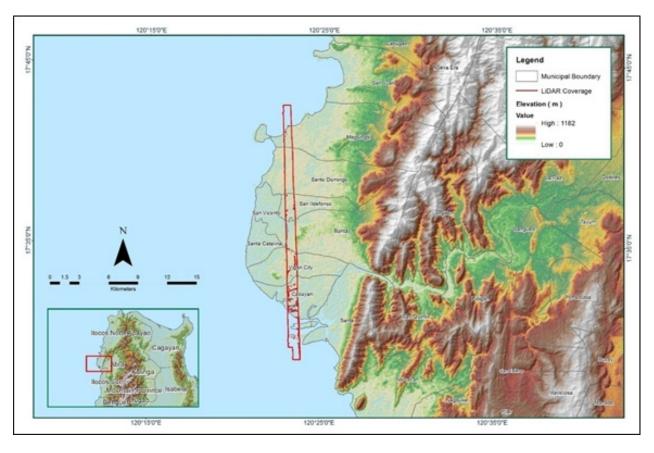


Figure A-8.18. Coverage of LiDAR data

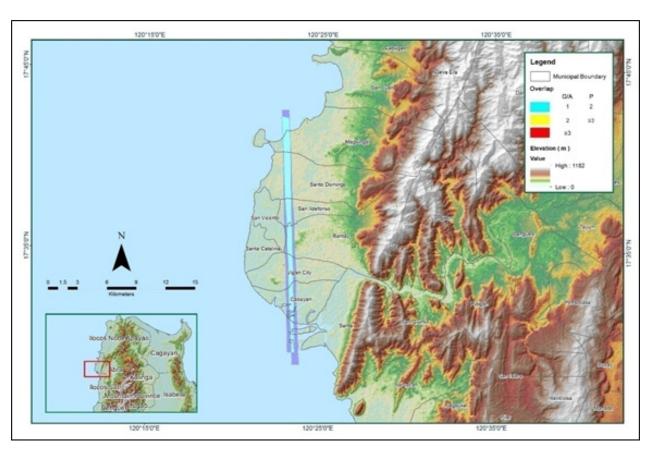


Figure A-8.19. Image of Data Overlap

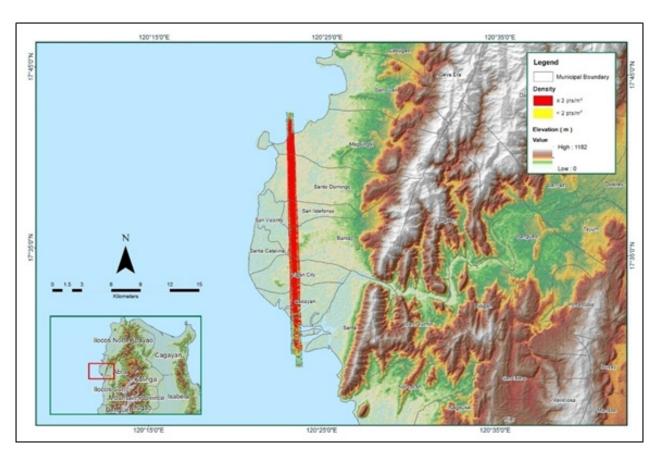


Figure A-8.20. Density map of merged LiDAR data

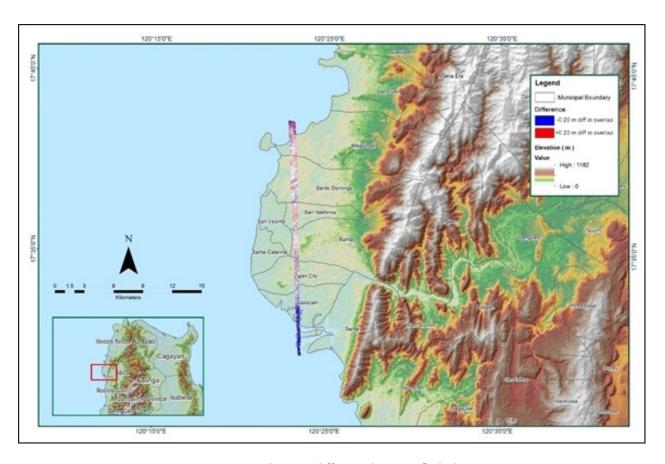


Figure A-8.21. Elevation difference between flight lines

 $Table\ A\text{-}8.4.\ Mission\ Summary\ Report\ for\ Mission\ Blk06D_supplement$

Flight Area	Ilocos	
Mission Name	Blk06D_supplement	
Inclusive Flights	7112GC	
Range data size	18.5GB	
Base data size	11.4 MB	
POS	247MB	
Image	N/A	
Transfer date	April 22, 2014	
Solution Status		
Number of Satellites (>6)	No	
PDOP (<3)	No	
Baseline Length (<30km)	No	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	5.4	
RMSE for East Position (<4.0 cm)	2.6	
RMSE for Down Position (<8.0 cm)	8.3	
Boresight correction stdev (<0.001deg)	0.000189	
IMU attitude correction stdev (<0.001deg)	0.000469	
GPS position stdev (<0.01m)	0.0022	
Minimum % overlap (>25)	23.06%	
Ave point cloud density per sq.m. (>2.0)	2.20	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	69	
Maximum Height	111.0m	
Minimum Height	39.19m	
Classification (# of points)		
Ground	24,643,507	
Low vegetation	26,932,911	
Medium vegetation	21,221,451	
High vegetation	18,057,824	
Building	3,069,085	
Orthophoto	NO	
Processed by	Engr. Irish Cortez, Engr. Elainne Lopez, Engr. Jeffrey Delica	

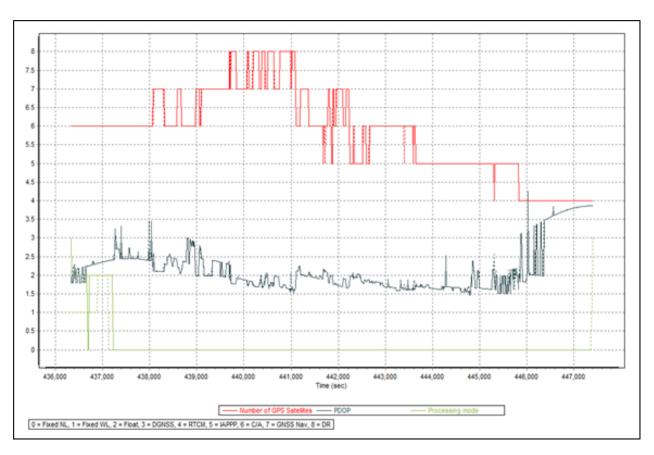


Figure A-8.22. Solution Status Parameters

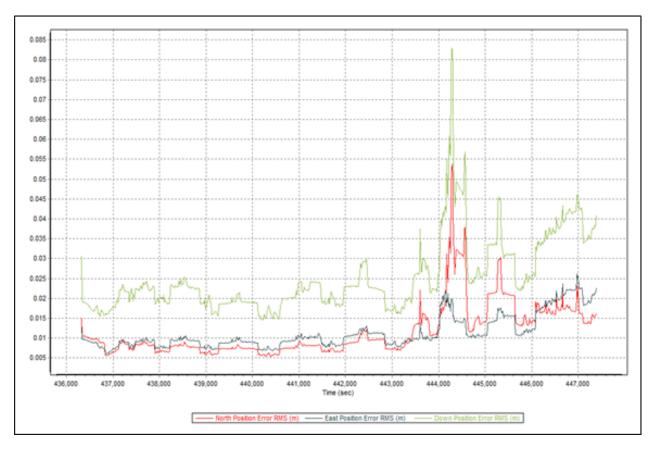


Figure A-8.23. Smoothed Performance Metrics Parameters

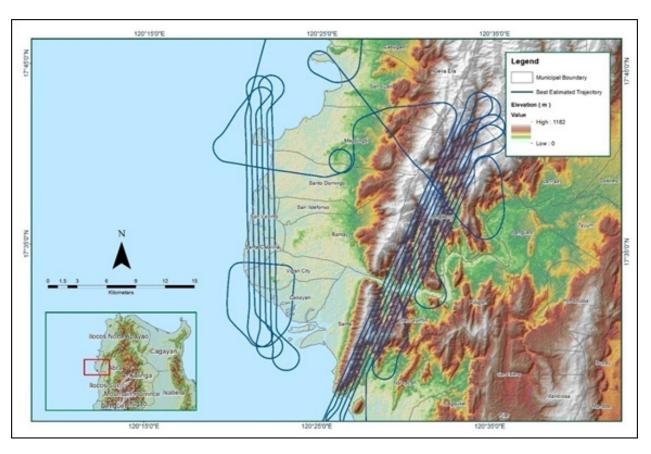


Figure A-8.24. Best Estimated Trajectory

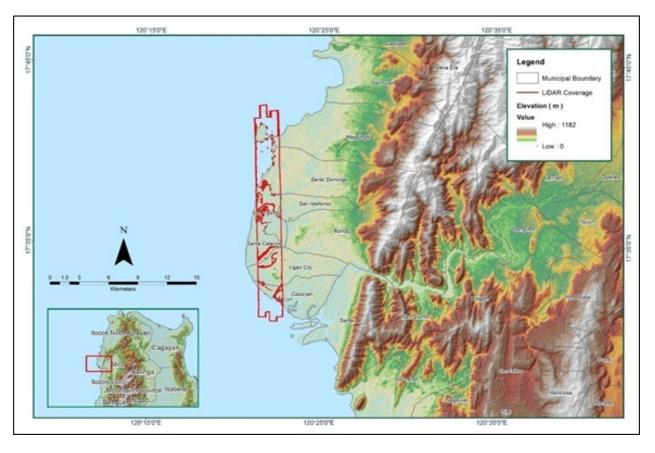


Figure A-8.25. Coverage of LiDAR data

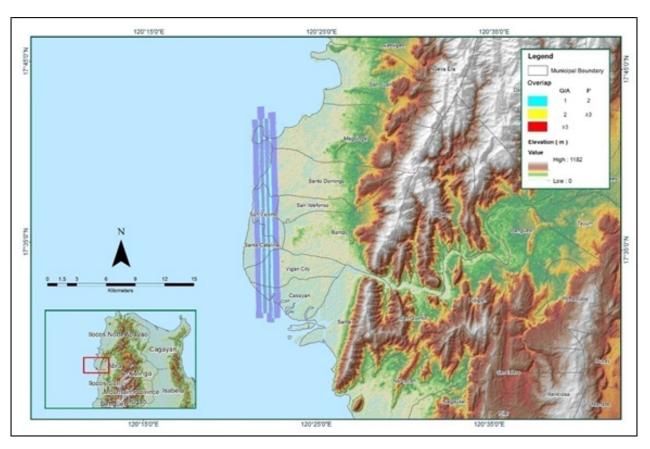


Figure A-8.26. Image of Data Overlap

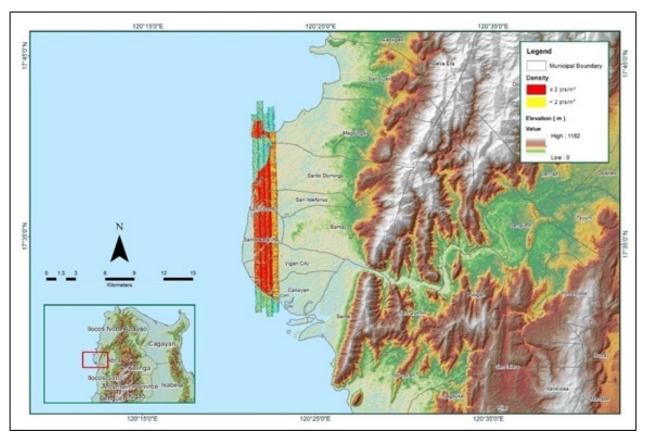


Figure A-8.27. Density map of merged LiDAR data

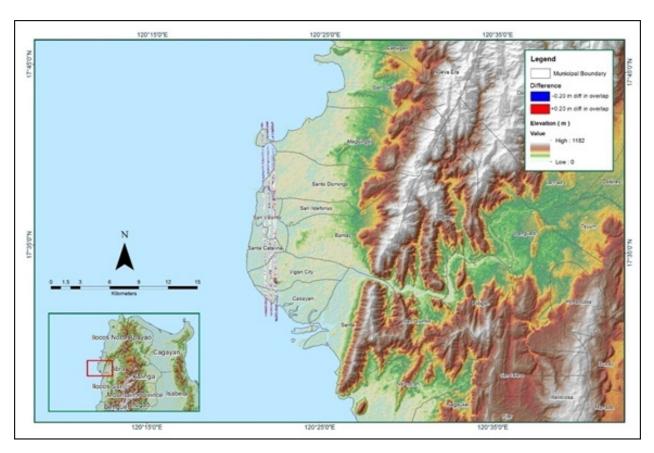


Figure A-8.28. Elevation difference between flight lines

Table A-8.5. Mission Summary Report for Mission Blk06F

Flight Area	Ilocos	
Mission Name	Blk6F	
Inclusive Flights	7120GC	
Range data size	18GB	
Base data size	11.2 MB	
POS	251MB	
Image	N/A	
Transfer date	April 22, 2014	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	Yes	
Processing Mode (<=1)	No	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.8	
RMSE for East Position (<4.0 cm)	1.6	
RMSE for Down Position (<8.0 cm)	3.2	
Boresight correction stdev (<0.001deg)	0.000244	
IMU attitude correction stdev (<0.001deg)	0.003184	
GPS position stdev (<0.01m)	0.0129	
Minimum % overlap (>25)	40.64%	
Ave point cloud density per sq.m. (>2.0)	2.19	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	120	
Maximum Height	824.2m	
Minimum Height	40.64m	
Classification (# of points)		
Ground	26,991,026	
Low vegetation	14,669,095	
Medium vegetation	32,965,049	
High vegetation	84,682,898	
Building	1,196,488	
Orthophoto	No	
Processed by	Engr. Jennifer Saguran, Engr. Edgardo Gubatanga Jr, Engr. Elainne Lopez	



Figure A-8.29. Solution Status Parameters

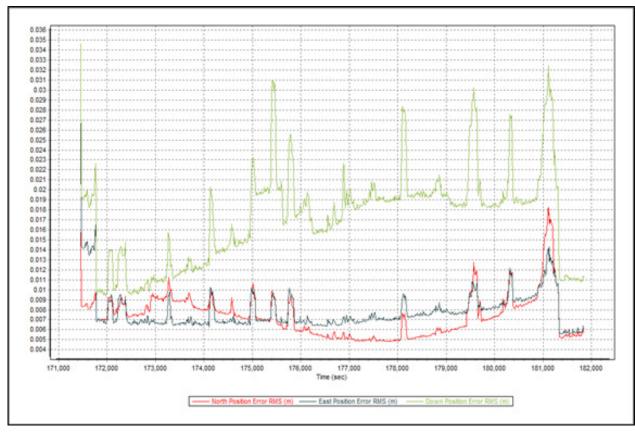


Figure A-8.30. Smoothed Performance Metrics Parameters

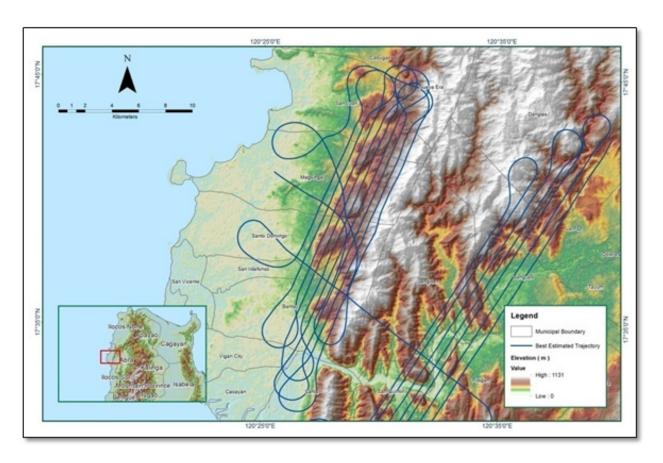


Figure A-8.31. Best Estimated Trajectory

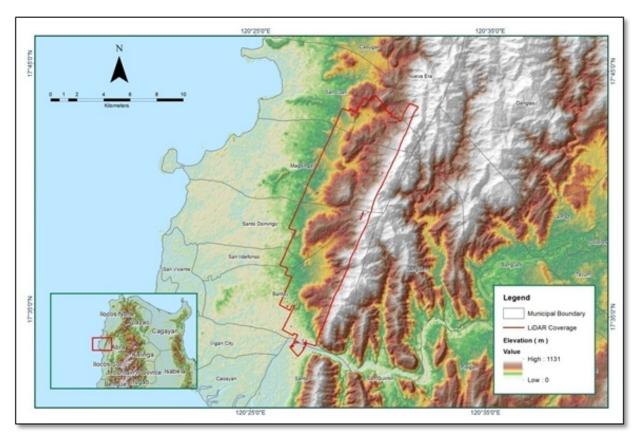


Figure A-8.32. Coverage of LiDAR data

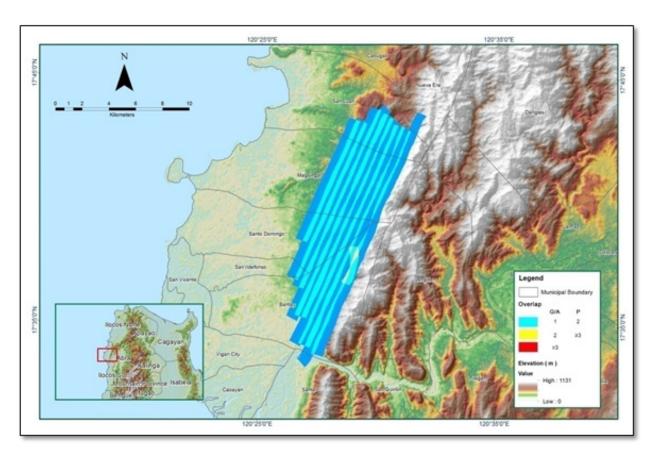


Figure A-8.33. Image of Data Overlap

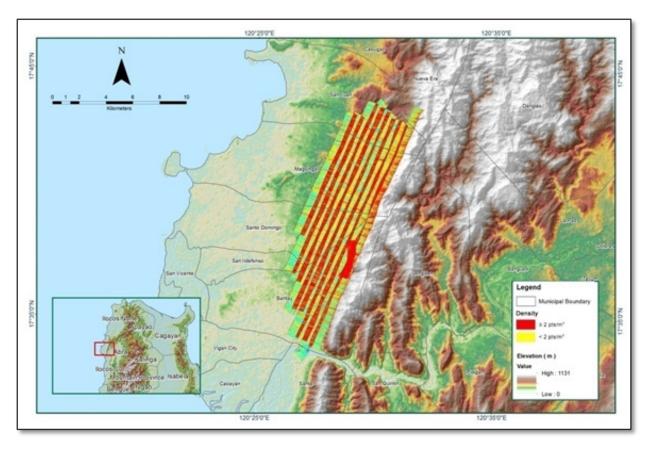


Figure A-8.34. Density map of merged LiDAR data

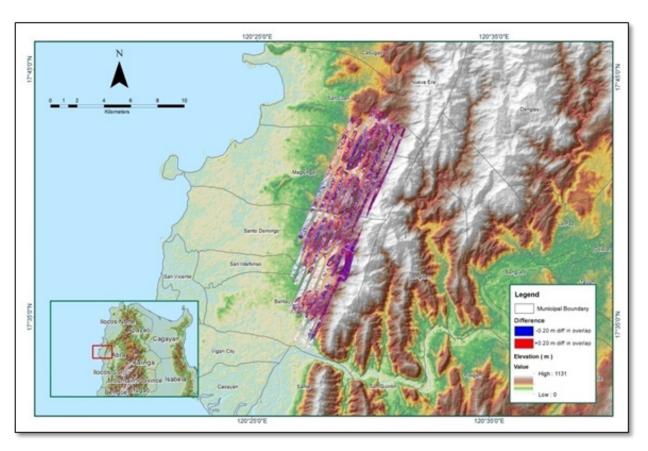


Figure A-8.35. Elevation difference between flight lines

Table A-8.6. Mission Summary Report for Mission Blk06G

Flight Area	Ilocos
Mission Name	Blk6G
Inclusive Flights	7112GC
Range data size	18.5 GB
Base data size	11.4 MB
POS	247 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.3
RMSE for East Position (<4.0 cm)	2.6
RMSE for Down Position (<8.0 cm)	8.3
Boresight correction stdev (<0.001deg)	0.000189
IMU attitude correction stdev (<0.001deg)	0.000469
GPS position stdev (<0.01m)	0.0022
Minimum % overlap (>25)	63.15%
Ave point cloud density per sq.m. (>2.0)	2.38
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	216
Maximum Height	794.29m
Minimum Height	38.75m
Classification (# of points)	
Ground	52,020,781
Low vegetation	29,200,119
Medium vegetation	65,005,667
High vegetation	136,208,210
Building	2,063,864
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Harmond Santos, Engr. Jeffrey Delica

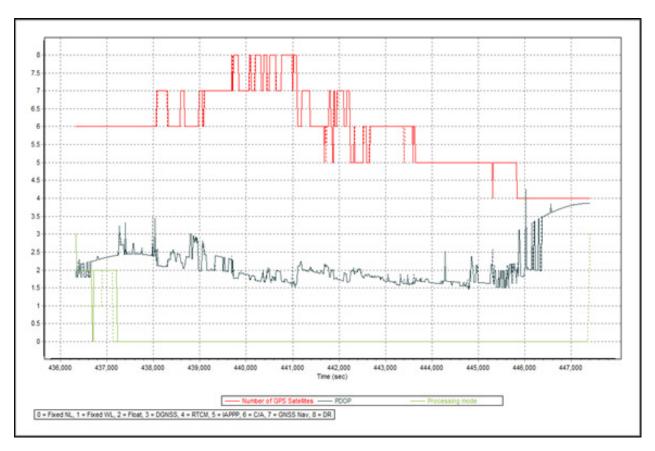


Figure A-8.36 Solution Status Parameters

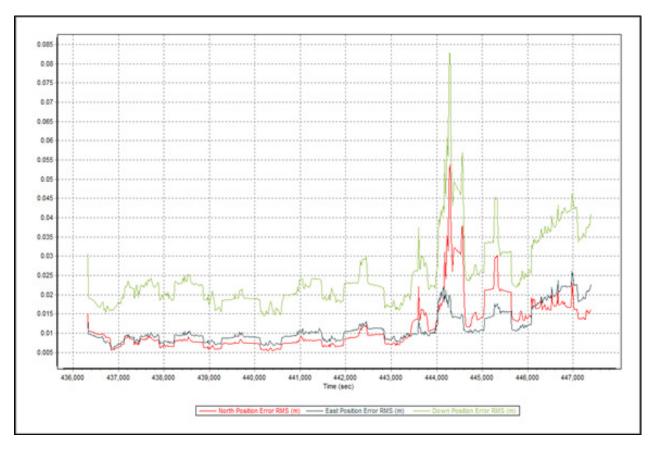


Figure A-8.37. Smoothed Performance Metrics Parameters

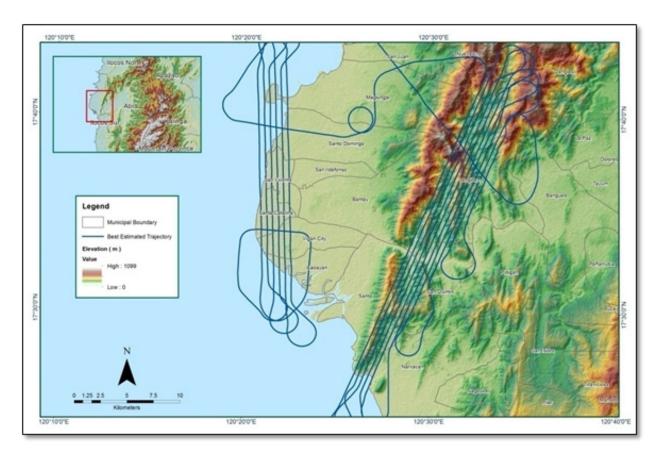


Figure A-8.38. Best Estimated Trajectory

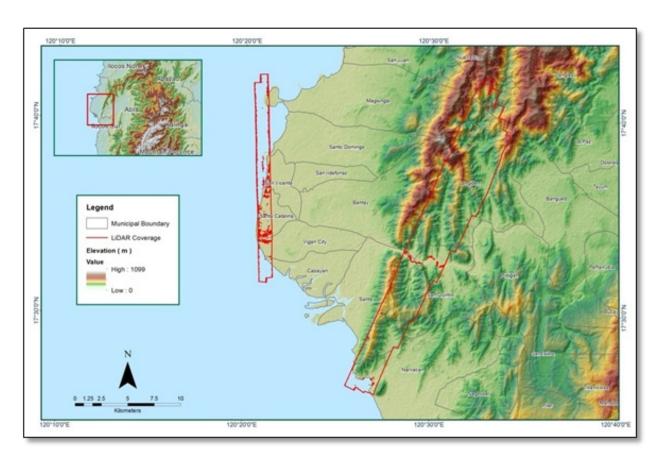


Figure A-8.39 Coverage of LiDAR data

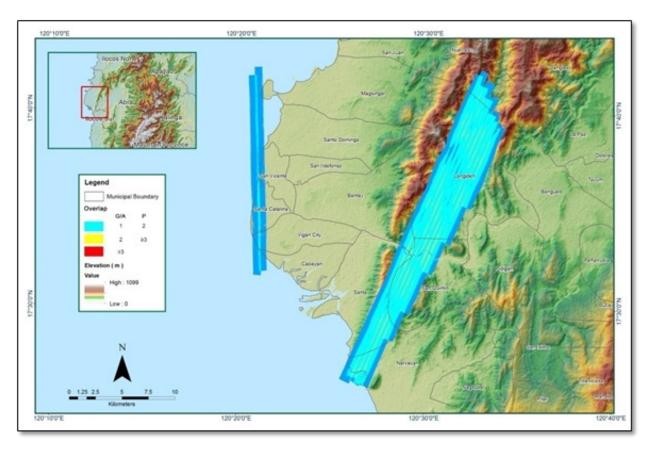


Figure A-8.40. Image of Data Overlap

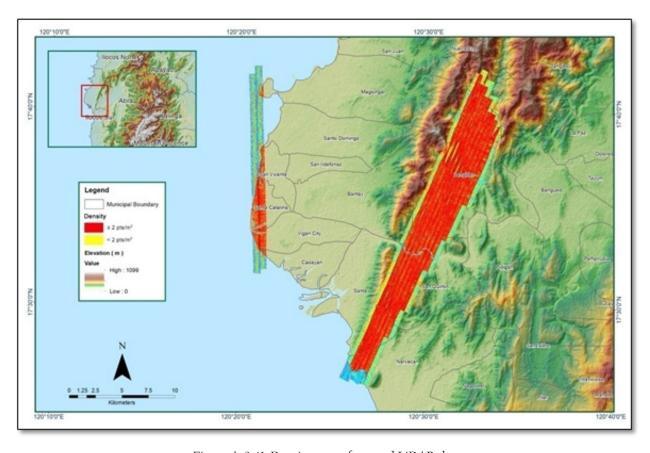


Figure A-8.41. Density map of merged LiDAR data

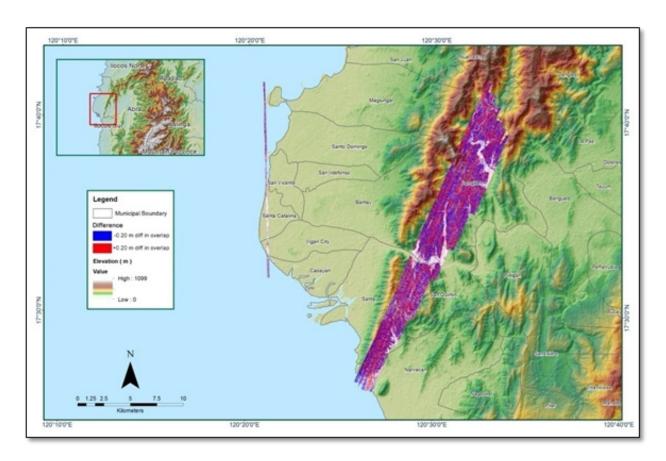


Figure A-8.42. Elevation difference between flight lines

Table A-8.7. Mission Summary Report for Mission Blk06G_supplement

Flight Area	Ilocos
Mission Name	Blk6G_supplement
Inclusive Flights	7114GC
Range data size	19.3 GB
Base data size	8.45 MB
POS	264 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000275
IMU attitude correction stdev (<0.001deg)	0.000712
GPS position stdev (<0.01m)	0.0027
Minimum % overlap (>25)	57.53%
Ave point cloud density per sq.m. (>2.0)	2.57
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	147
Maximum Height	1,139.55m
Minimum Height	22.81m
Classification (# of points)	
Ground	24,231,930
Low vegetation	11,868,541
Medium vegetation	27,741,531
High vegetation	11,6178,031
Building	1,616,209
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, EleynPama, Ryan James Nicholai Dizon

Figure A-8.43Solution Status Parameters

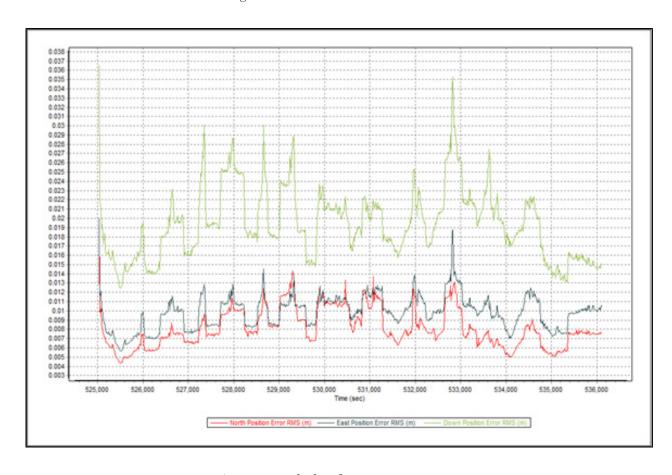


Figure A-8.44. Smoothed Performance Metrics Parameters

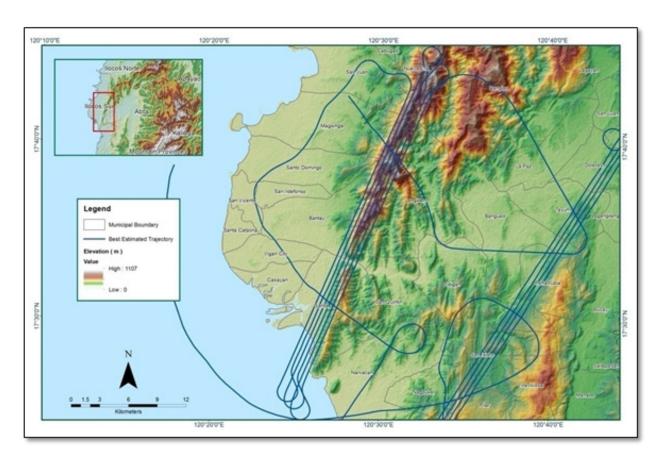


Figure A-8.45. Best Estimated Trajectory

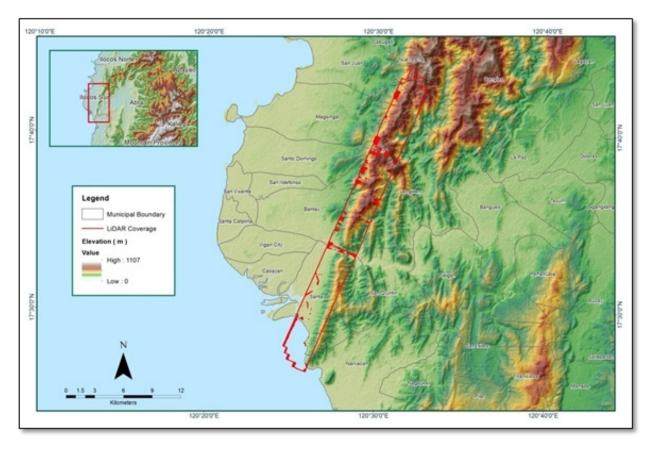


Figure A-8.46 Coverage of LiDAR data

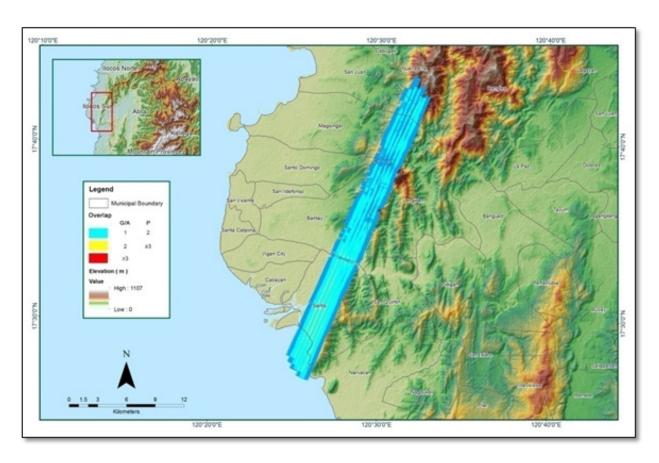


Figure A-8.47. Image of Data Overlap

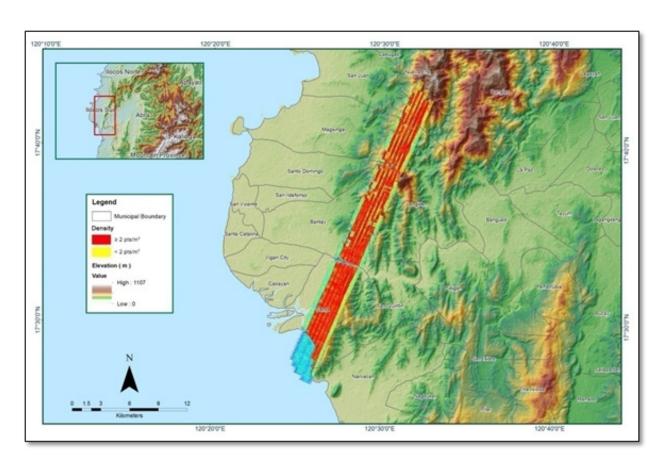
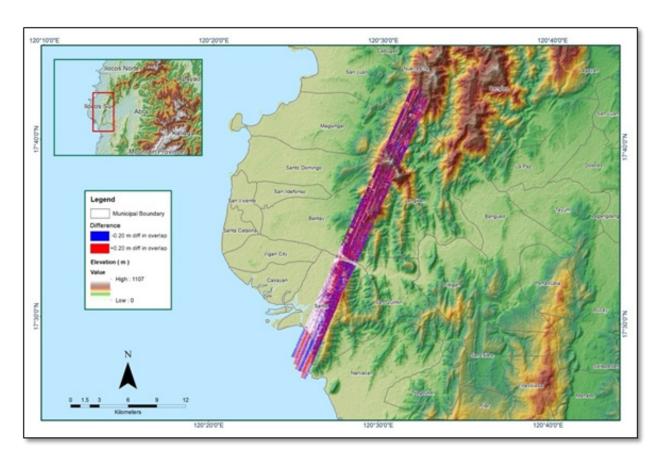



Figure A-8.48. Density map of merged LiDAR data

 $Figure\ A-8.49.\ Elevation\ difference\ between\ flight\ lines$

Table A-8.8. Mission Summary Report for Mission Blk07A

Flight Area	llocos
Mission Name	Blk7A
Inclusive Flights	7120GC
Range data size	18 GB
Base data size	11.2 MB
POS	251 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	3.2
Boresight correction stdev (<0.001deg)	0.000244
IMU attitude correction stdev (<0.001deg)	0.003184
GPS position stdev (<0.01m)	0.0129
Minimum % overlap (>25)	24.10%
Ave point cloud density per sq.m. (>2.0)	1.73
Elevation difference between strips (<0.20 m)	Yes
, ,	
Number of 1km x 1km blocks	234
Maximum Height	863.68m
Minimum Height	37.25m
Classification (# of points)	
Ground	66,515,289
Low vegetation	34,391,072
Medium vegetation	51,772,197
High vegetation	105,129,425
Building	2,192,095
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Mark Joshua Salvacion, Engr. Gladys Mae Apat

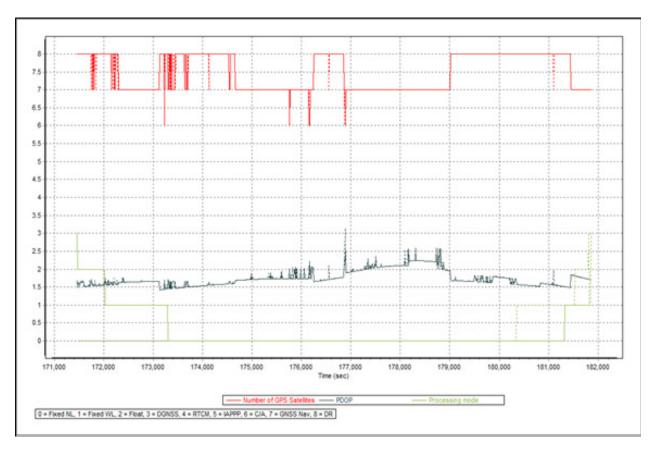


Figure A-8.50. Solution Status Parameters

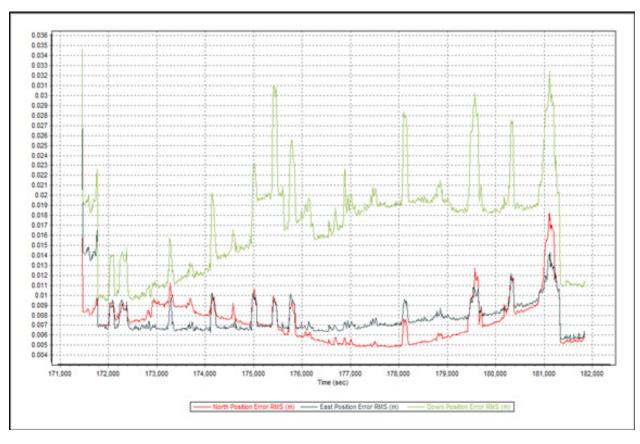


Figure A-8.51. Smoothed Performance Metrics Parameters

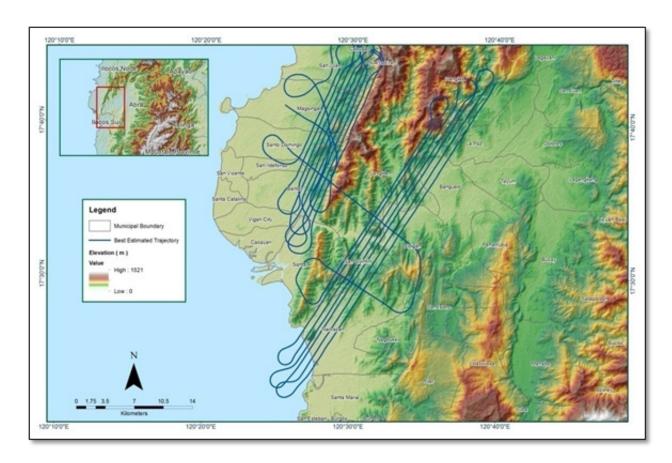


Figure A-8.52. Best Estimated Trajectory

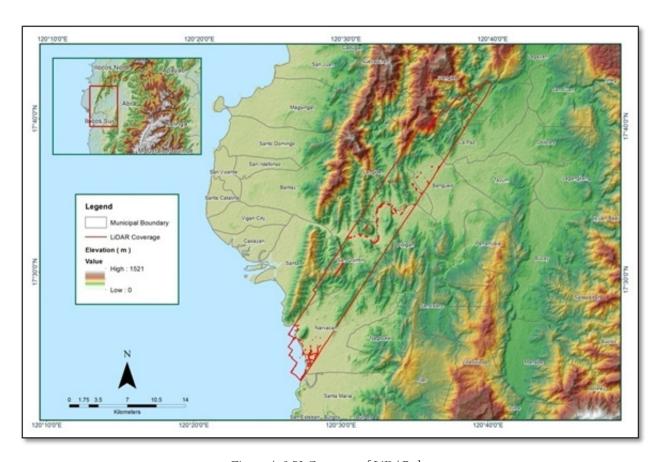


Figure A-8.53 Coverage of LiDAR data

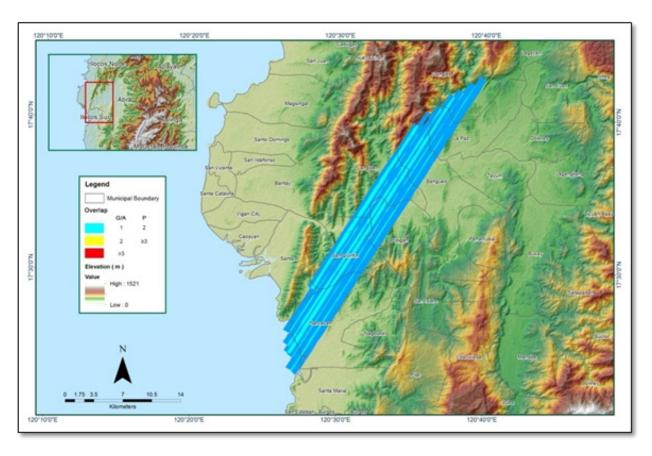


Figure A-8.54. Image of Data Overlap

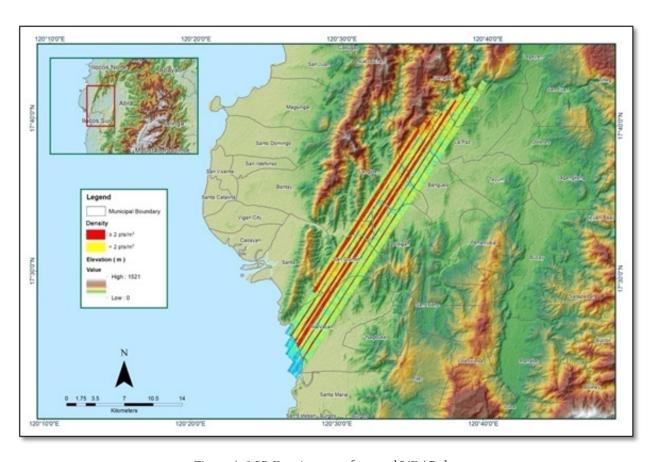


Figure A-8.55. Density map of merged LiDAR data

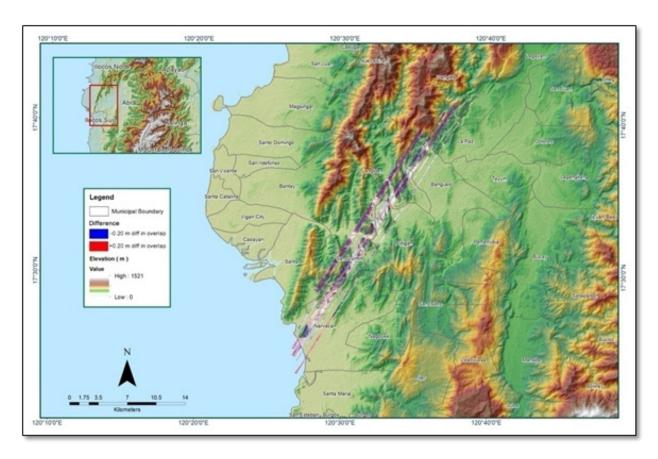


Figure A-8.56. Elevation difference between flight lines

 $Table\ A-8.9.\ Mission\ Summary\ Report\ for\ Mission\ Blk07A_additional$

Flight Area	Ilocos
Mission Name	Blk07A_additional
Inclusive Flights	7121G
Range data size	12.7GB
POS data size	217MB
Base data size	10.8MB
Image	n/a
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics(in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.45
RMSE for Down Position (<8.0 cm)	0.22
Boresight correction stdev (<0.001deg)	0.00284
IMU attitude correction stdev (<0.001deg)	0.000305
GPS position stdev (<0.01m)	0.0109
Minimum % overlap (>25)	NA
Ave point cloud density per sq.m. (>2.0)	
Elevation difference between strips (<0.20m)	
•	
Number of 1km x 1km blocks	112
Maximum Height	485.55 m
Minimum Height	37.71 m
Classification (# of points)	
Ground	17,215,681
Low vegetation	7,167,618
Medium vegetation	8,112,707
High vegetation	17,869,377
Building	674,249
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Merven Matthew Natino, Engr. Jeffrey Delica

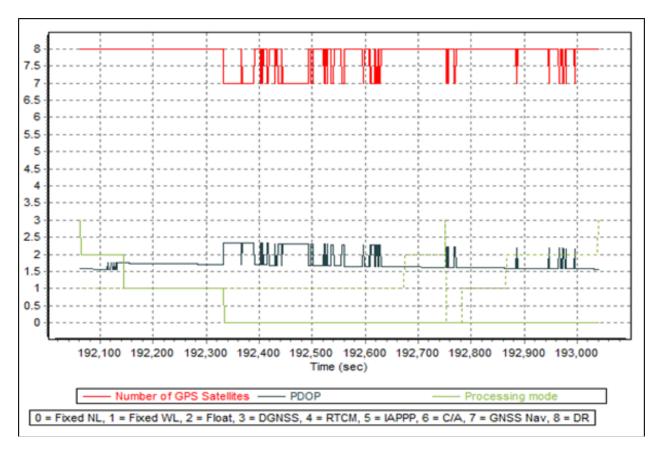


Figure A-8.57. Solution Status Parameters

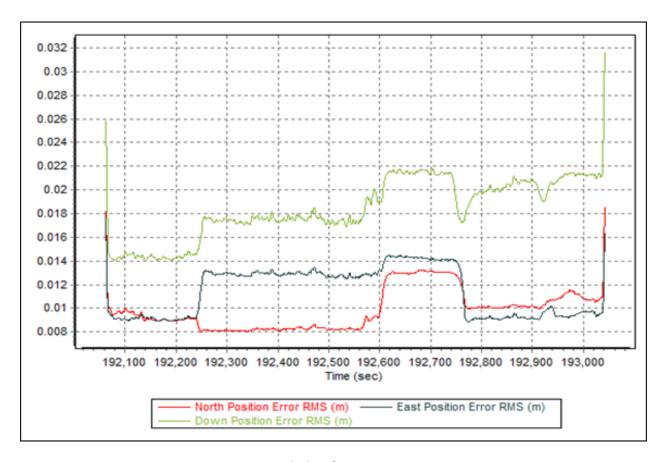


Figure A-8.58. Smoothed Performance Metrics Parameters

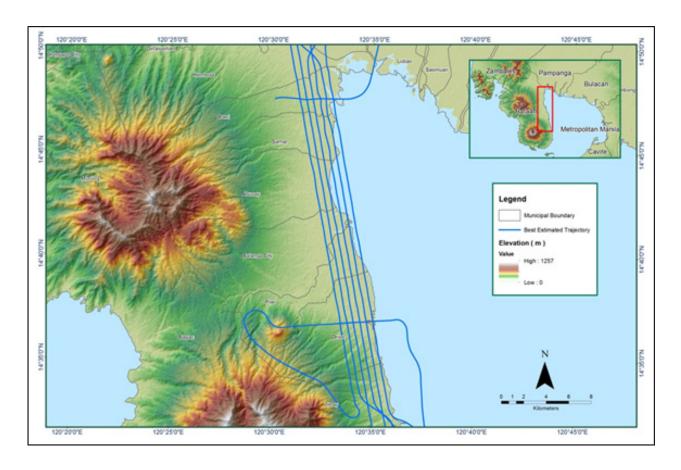


Figure A-8.59. Best Estimated Trajectory

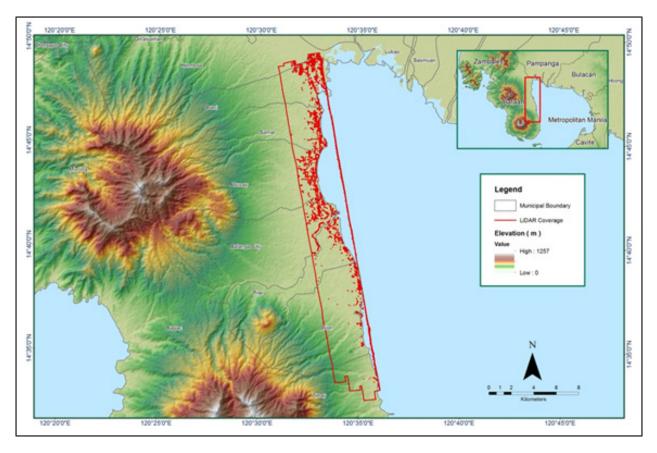


Figure A-8.60. Coverage of LiDAR data

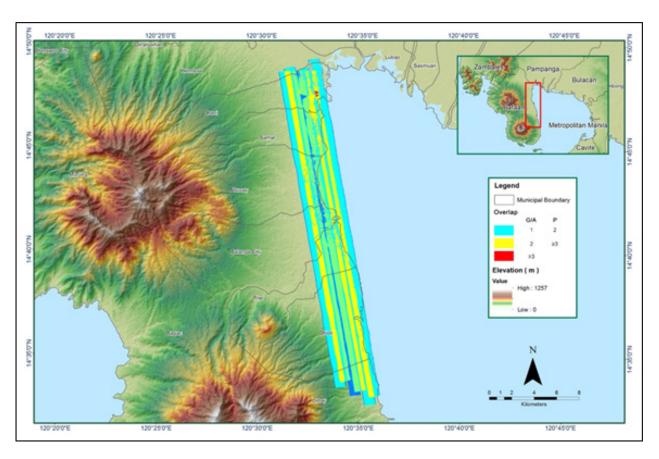


Figure A-8.61. Image of Data Overlap

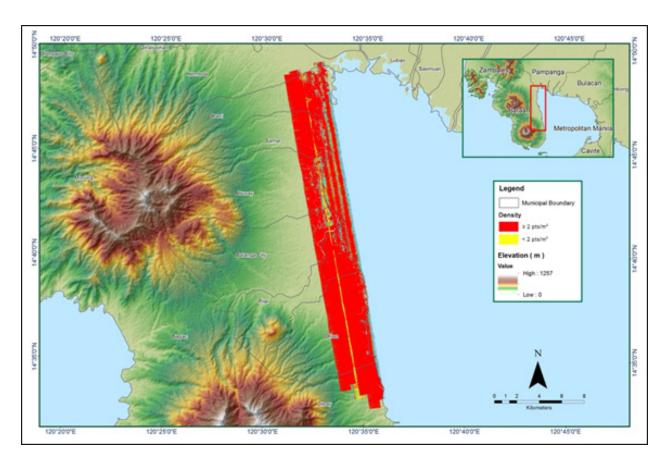


Figure A-8.62. Density map of merged LiDAR data

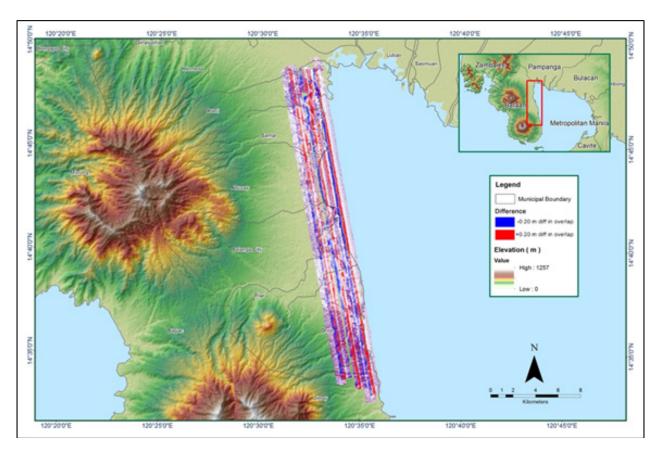


Figure A-8.63. Elevation difference between flight lines

Table A-8.10. Mission Summary Report for Mission Blk07B

Flight Area	llocos
Mission Name	Blk7B
Inclusive Flights	7116GC
Range data size	19. 6 GB
Base data size	10.8 MB
POS	257 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.2
RMSE for East Position (<4.0 cm)	1.7
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000272
IMU attitude correction stdev (<0.001deg)	0.001023
GPS position stdev (<0.01m)	0.0092
Minimum % overlap (>25)	31.75%
Ave point cloud density per sq.m. (>2.0)	2.69
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	272
Maximum Height	565.46 m
Minimum Height	44.47 m
Classification (# of points)	
Ground	99,941,447
Low vegetation	84,663,695
Medium vegetation	89,716,585
High vegetation	194,432,190
Building	5,938,744
Orthophoto	No
Processed by	Engr. Carlyn Ann Ibañez, Engr. Melanie Hingpit, AilynBiñas

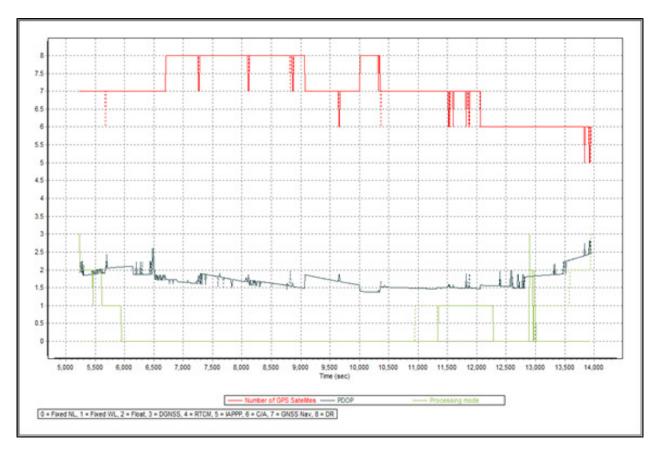


Figure A-8.64. Solution Status Parameters

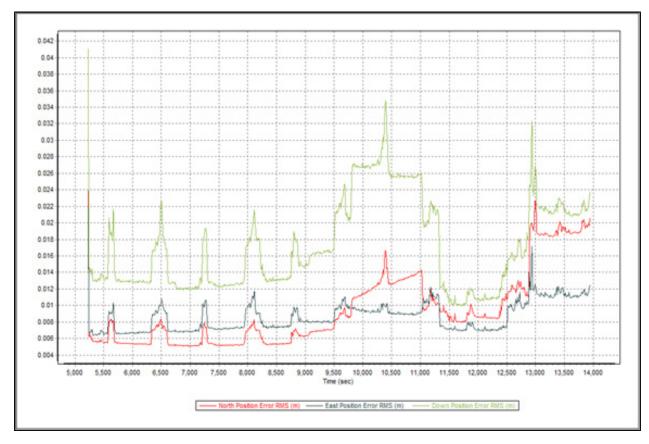


Figure A-8.65. Smoothed Performance Metrics Parameters

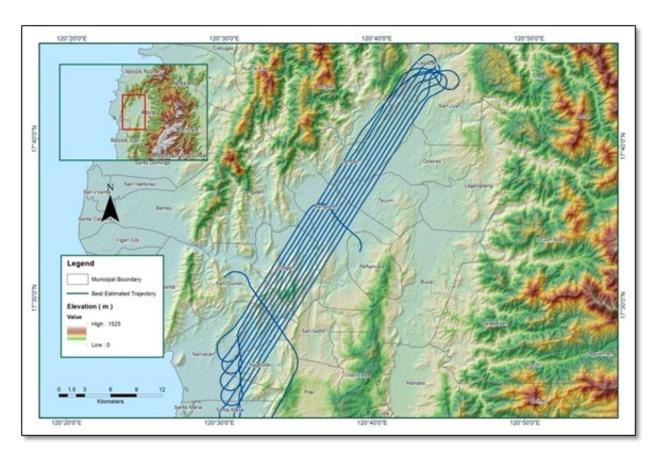


Figure A-8.66. Best Estimated Trajectory

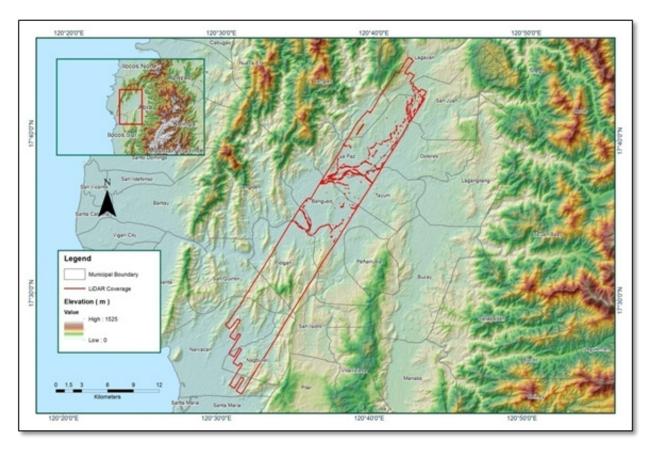


Figure A-8.67. Coverage of LiDAR data

Figure A-8.68. Image of Data Overlap

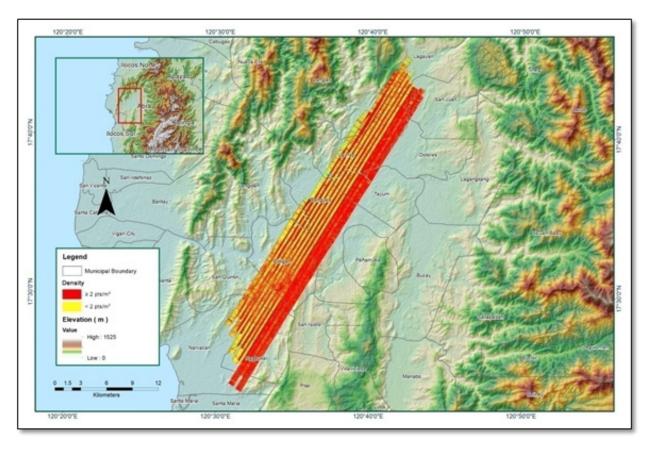
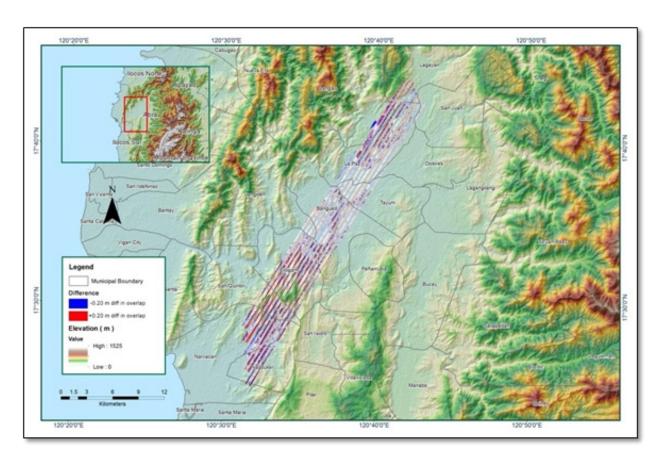



Figure A-8.69. Density map of merged LiDAR data

 $Figure\ A-8.70.\ Elevation\ difference\ between\ flight\ lines$

Table A-8.11. Mission Summary Report for Mission Blk07C_supplement

Flight Area	Ilocos
Mission Name	Blk7C_supplement
Inclusive Flights	7114G
Range data size	19.3 GB
Base data size	8.45 MB
POS	264 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.8
RMSE for Down Position (<8.0 cm)	3.5
Boresight correction stdev (<0.001deg)	0.000275
IMU attitude correction stdev (<0.001deg)	0.000712
GPS position stdev (<0.01m)	0.0027
Minimum % overlap (>25)	18.28%
Ave point cloud density per sq.m. (>2.0)	3.33
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	153
Maximum Height	596.71m
Minimum Height	53.0m
Classification (# of points)	
Ground	41,455,621
Low vegetation	41,107,803
Medium vegetation	55,036,111
High vegetation	123,543,253
Building	2,290,023
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Harmond Santos, Engr. RoaShalemar Redo

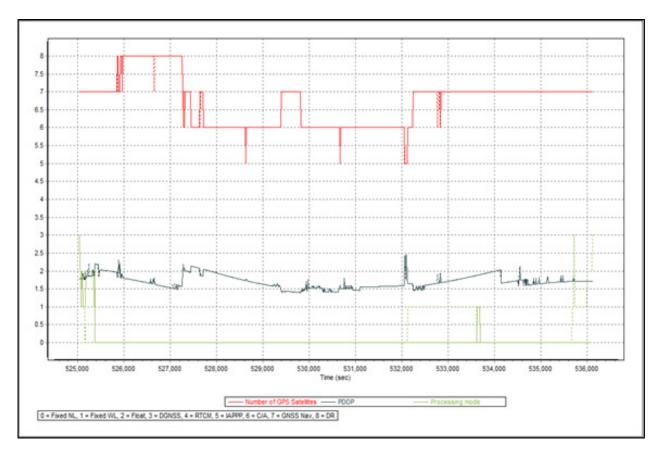


Figure A-8.71. Solution Status Parameters

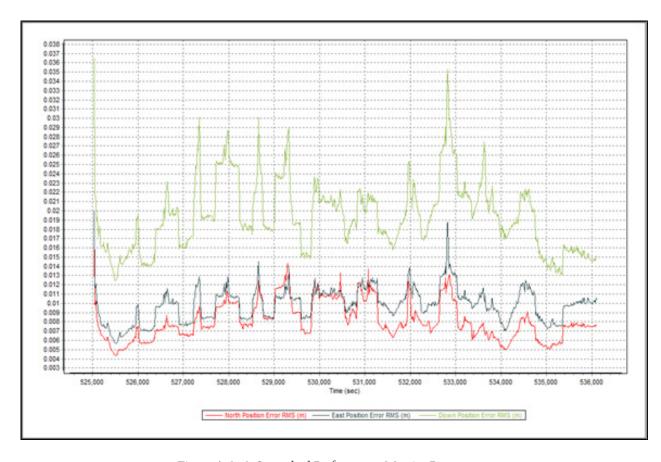


Figure A-8.72. Smoothed Performance Metrics Parameters

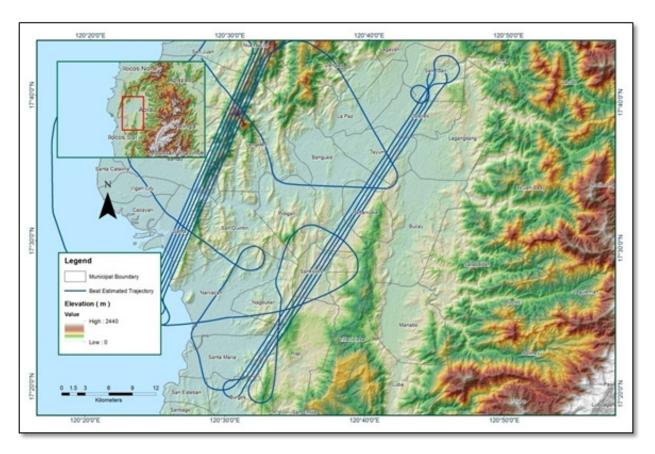


Figure A-8.73. Best Estimated Trajectory

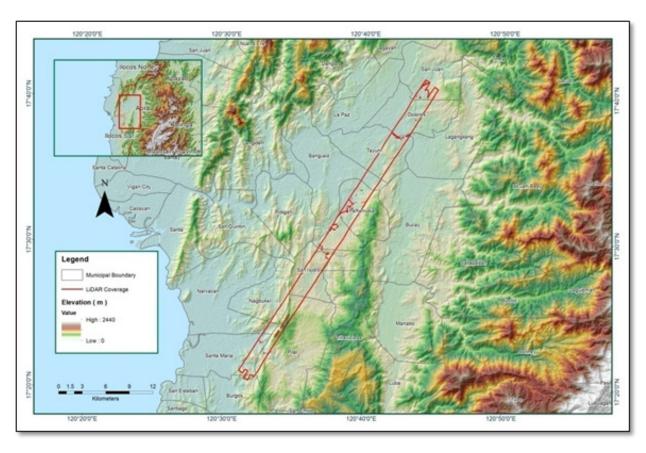


Figure A-8.74. Coverage of LiDAR data

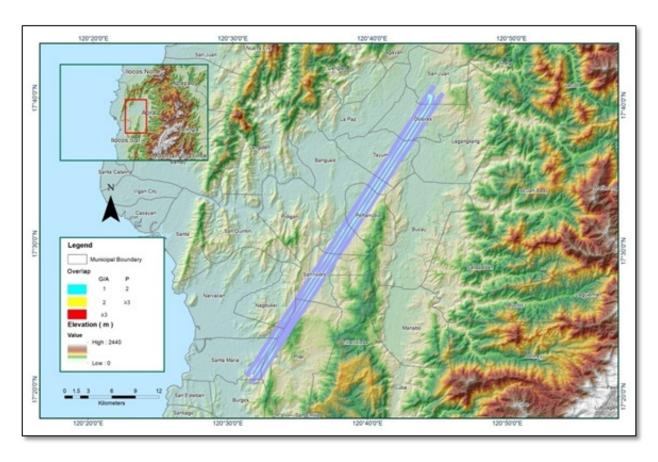


Figure A-8.75. Image of Data Overlap

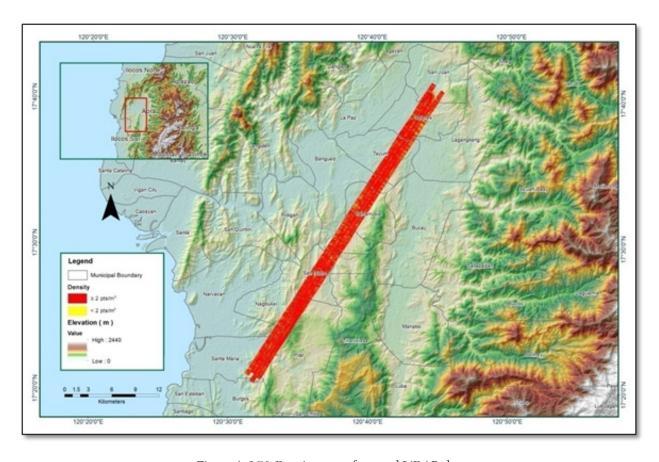


Figure A-8.76. Density map of merged LiDAR data

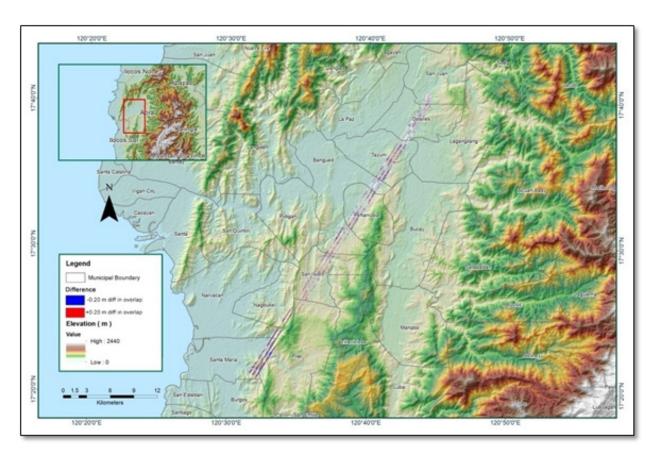


Figure A-8.77. Elevation difference between flight lines

Table A-8.12. Mission Summary Report for Mission Blk07D

Flight Area	Ilocos
Mission Name	Blk7D
Inclusive Flights	7118G
Range data size	18.7 GB
Base data size	14.5 MB
POS	259 MB
Image	N/A
Transfer date	April 22, 2014
Transfer date	p ==, === .
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.2
RMSE for East Position (<4.0 cm)	2.5
RMSE for Down Position (<8.0 cm)	5.7
Boresight correction stdev (<0.001deg)	0.000284
IMU attitude correction stdev (<0.001deg)	0.001635
GPS position stdev (<0.01m)	0.0109
Minimum % overlap (>25)	33.28%
Ave point cloud density per sq.m. (>2.0)	2.56
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	220
Maximum Height	714.89m
Minimum Height	89.59m
Classification (# of points)	
Ground	104,185,627
Low vegetation	72,026,130
Medium vegetation	76,767,455
High vegetation	119,612,686
Building	1,832,149
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, AilynBiñas

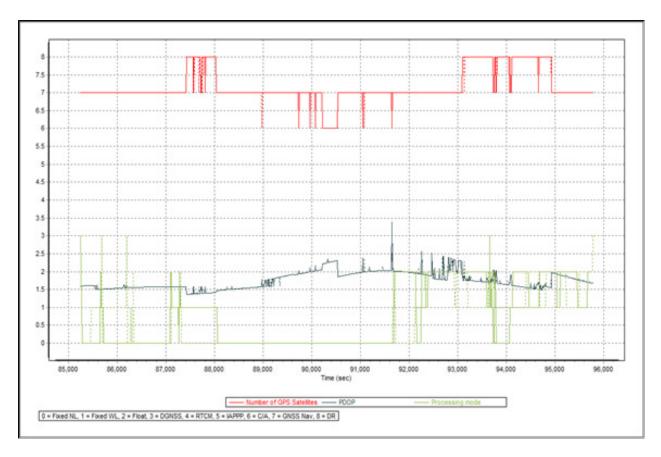


Figure A-8.78. Solution Status Parameters

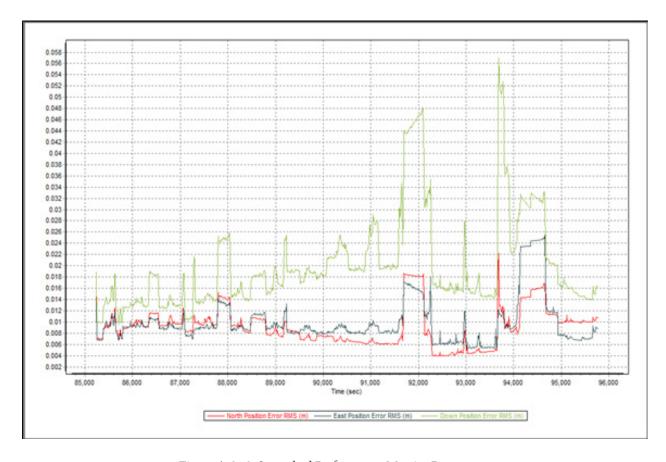


Figure A-8.79. Smoothed Performance Metrics Parameters

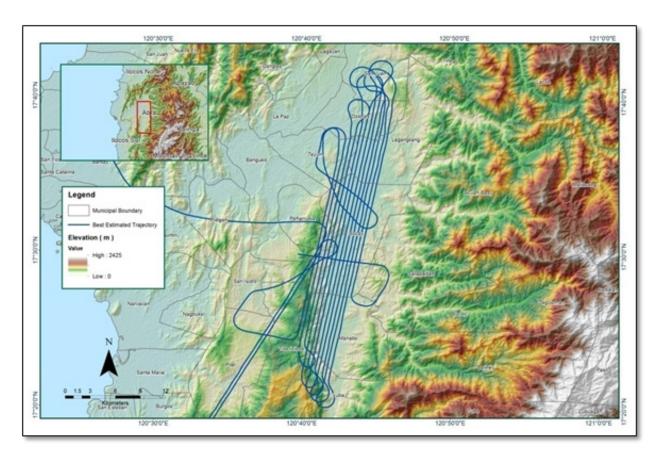


Figure A-8.80. Best Estimated Trajectory

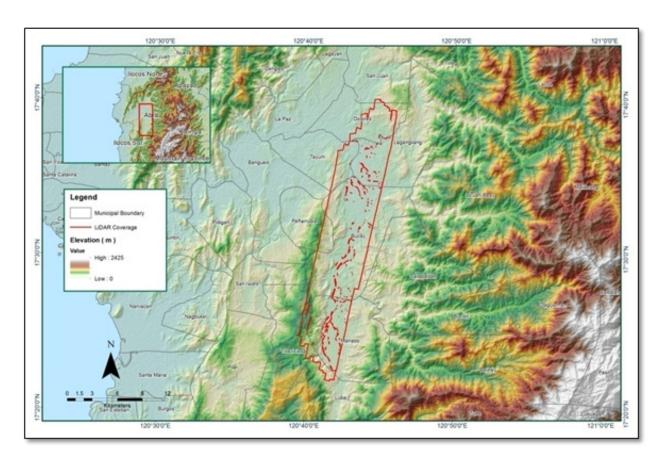


Figure A-8.81. Coverage of LiDAR data

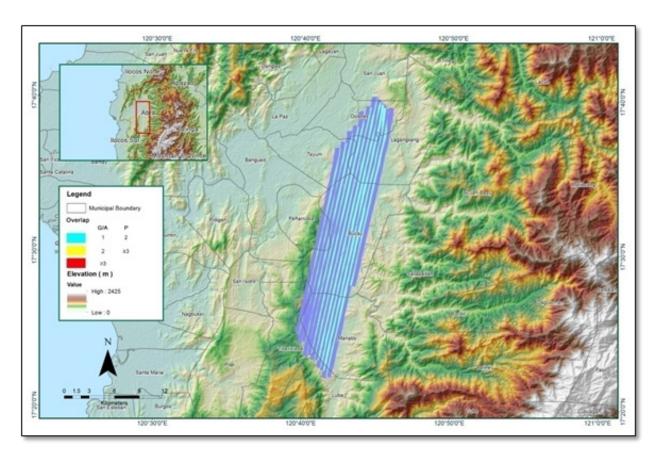


Figure A-8.82. Image of Data Overlap

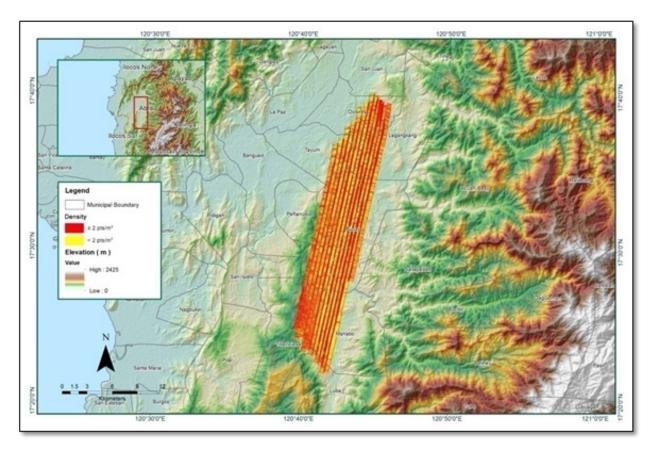


Figure A-8.83.. Density map of merged LiDAR data

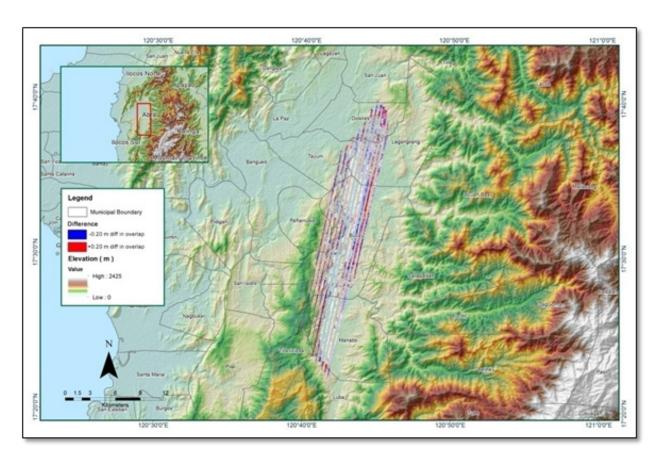


Figure A-8.84. Elevation difference between flight lines

Table A-8.13. Mission Summary Report for Mission Blk07EF

Flight Area	Ilocos
Mission Name	Blk7EF
Inclusive Flights	7122G
Range data size	14.5 GB
Base data size	8.36 MB
POS	228 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	3.4
Boresight correction stdev (<0.001deg)	0.000249
IMU attitude correction stdev (<0.001deg)	0.000540
GPS position stdev (<0.01m)	0.0024
Minimum % overlap (>25)	25.76%
Ave point cloud density per sq.m. (>2.0)	1.70
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	302
Maximum Height	626.57m
Minimum Height	111.57m
Classification (# of points)	
Ground	85,875,896
Low vegetation	42,808,375
Medium vegetation	65,051,921
High vegetation	151,302,414
Building	1,108,857
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Christy Lubiano, Ryan James Nicholai Dizon

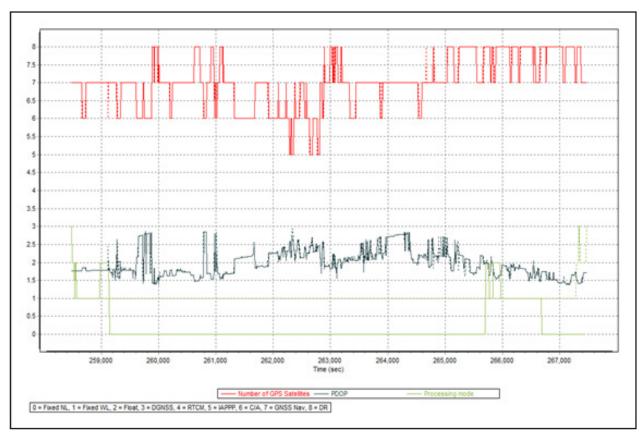


Figure A-8.85 Solution Status

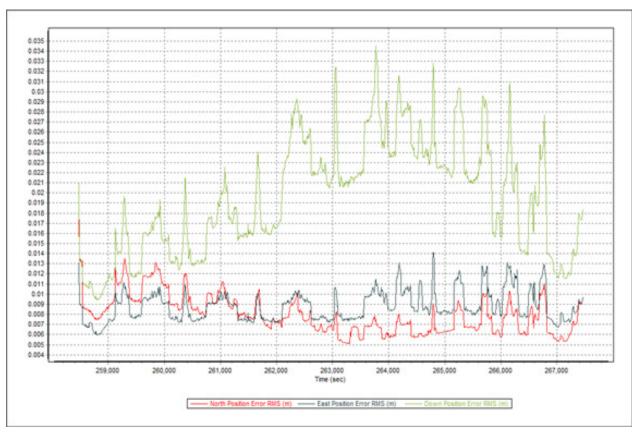


Figure A-8.86 Smoothed Performance Metrics Parameters

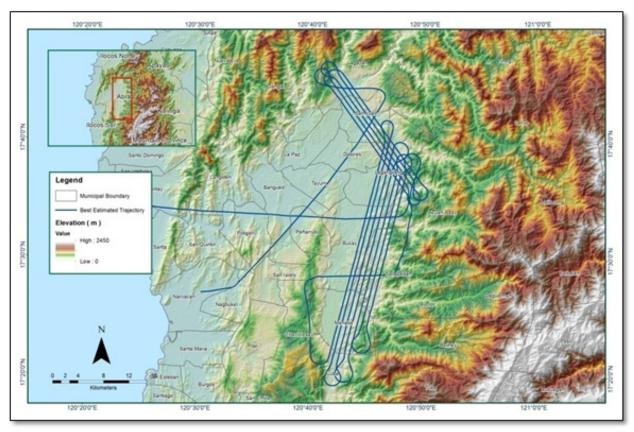


Figure A-8.87 Best Estimated Trajectory

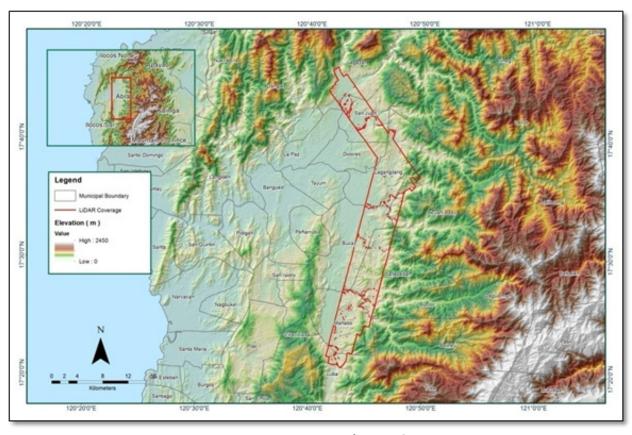


Figure A-8.88 Coverage of LiDAR data

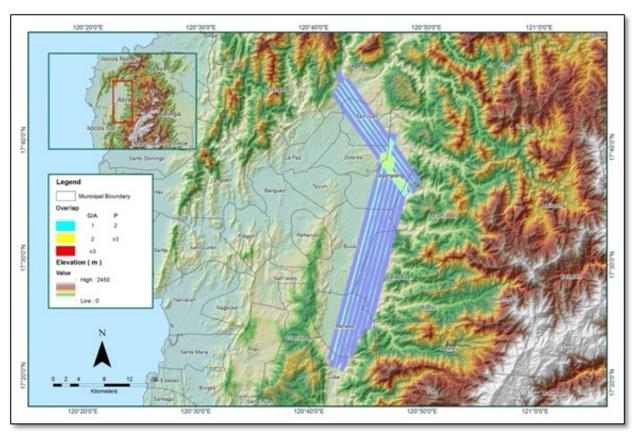


Figure A-8.89 Image of data overlap

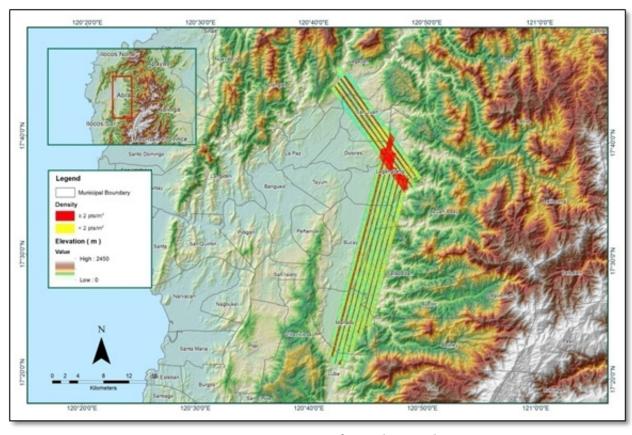


Figure A-8.90 Density map of merged LiDAR data

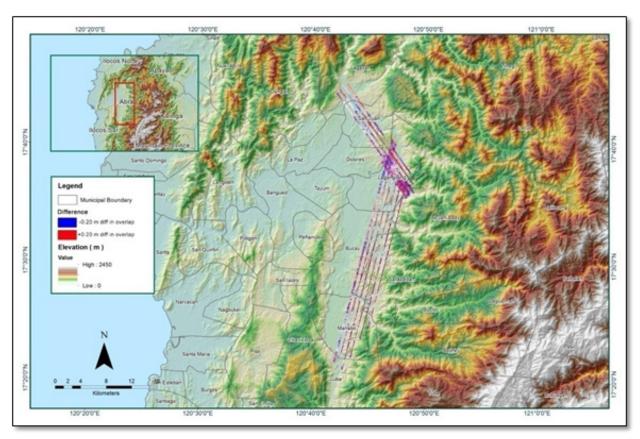


Figure A-8.91 Elevation difference between flight lines

Table A-8.14. Mission Summary Report for Mission Blk07G

Flight Area	Ilocos
Mission Name	Blk7G
Inclusive Flights	7118G, 7121G
Range data size	31.4 GB
POS data size	25.3 MB
Base data size	476 MB
Image	N/A
Transfer date	April 22, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000284
IMU attitude correction stdev (<0.001deg)	0.001635
GPS position stdev (<0.01m)	0.0109
Minimum % overlap (>25)	24.05%
Ave point cloud density per sq.m. (>2.0)	2.53
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	203
Maximum Height	615.92m
Minimum Height	65.4m
Classification (# of points)	
Ground	52,148,632
Low vegetation	23,593,702
Medium vegetation	77,121,015
High vegetation	162,057,781
Building	2,198,672
Orthophoto	No
Processed by	Engr. Jennifer Saguran, Engr. Harmond Santos, Engr. Jeffrey Delica

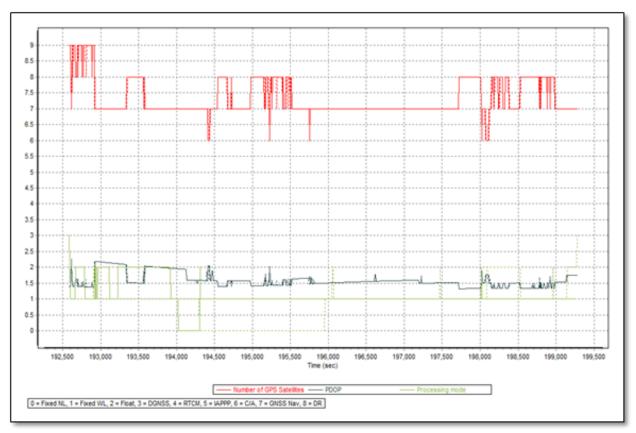


Figure A-8.92 Solution Status

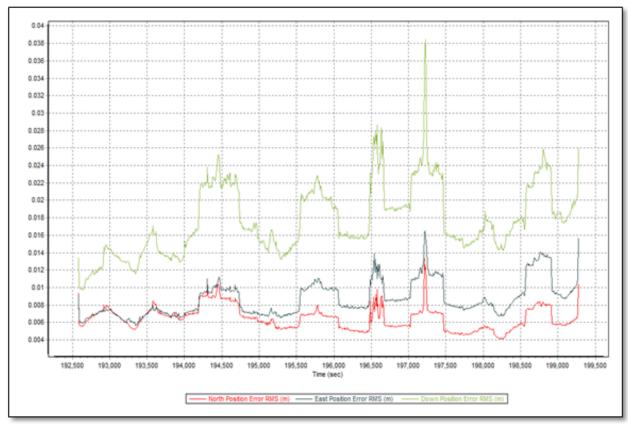


Figure A-8.93 Smoothed Performance Metrics Parameters

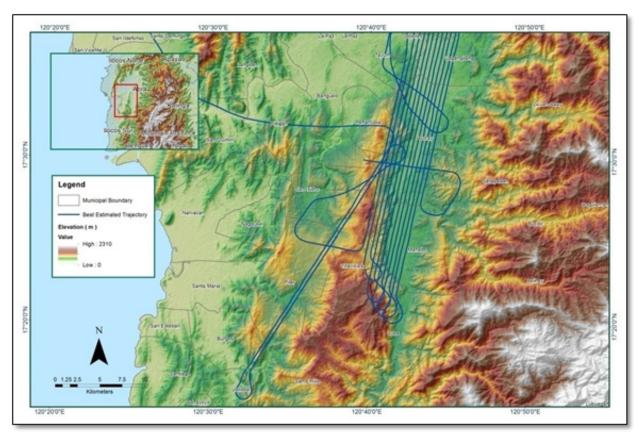


Figure A-8.94 Best Estimated Trajectory

Figure A-8.95 Coverage of LiDAR data

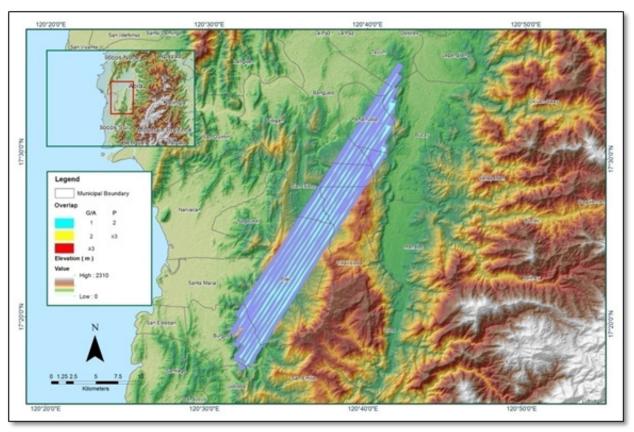


Figure A-8.96 Image of data overlap

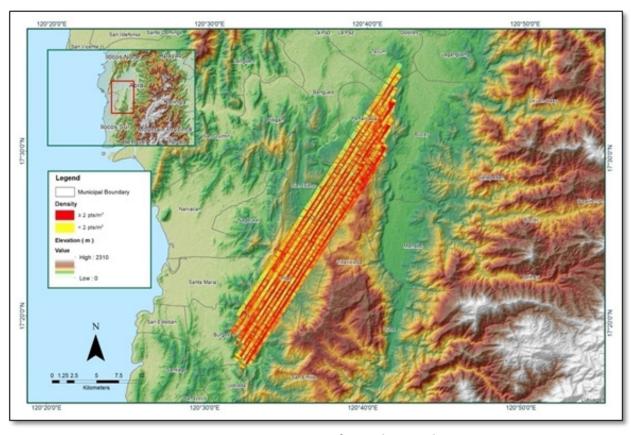


Figure A-8.97 Density map of merged LiDAR data

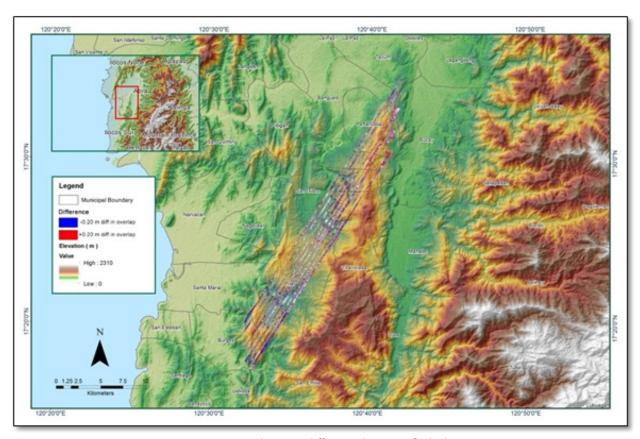


Figure A-8.98 Elevation difference between flight lines

Table A-8.15. Mission Summary Report for Mission Blk07A

Flight Area	Laoag
Mission Name	Blk7A
Inclusive Flights	4045G
Range data size	14.5 GB
POS data size	231MB
Base data size	334 MB
Image	n/a
Transfer date	July 1, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.87
RMSE for East Position (<4.0 cm)	1.65
RMSE for Down Position (<8.0 cm)	2.70
Boresight correction stdev (<0.001deg)	0.000651
IMU attitude correction stdev (<0.001deg)	0.003088
GPS position stdev (<0.01m)	0.0030
Minimum % overlap (>25)	24.95
Ave point cloud density per sq.m. (>2.0)	3.45
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	209
Maximum Height	647.40 m
Minimum Height	36.90 m
Classification (# of points)	
Ground	41,894,399
Low vegetation	29,081,634
Medium vegetation	133,067,728
High vegetation	162,729,291
Building	994,713
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. MervenmatthewNatino, Engr. MonalyneRabino

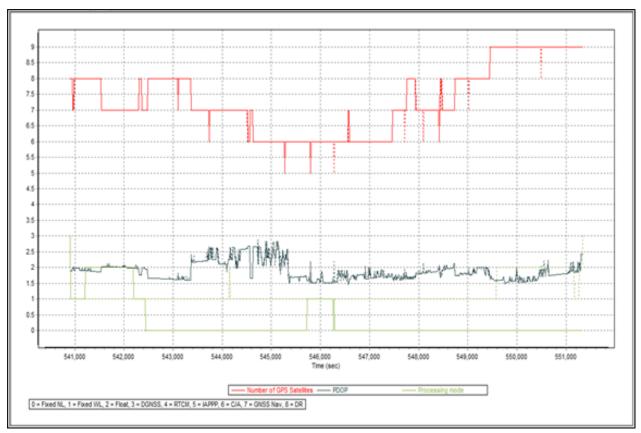


Figure A-8.99 Solution Status

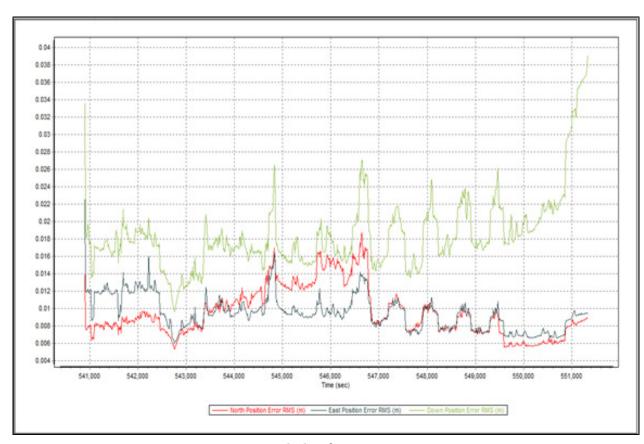


Figure A-8.100 Smoothed Performance Metric Parameters

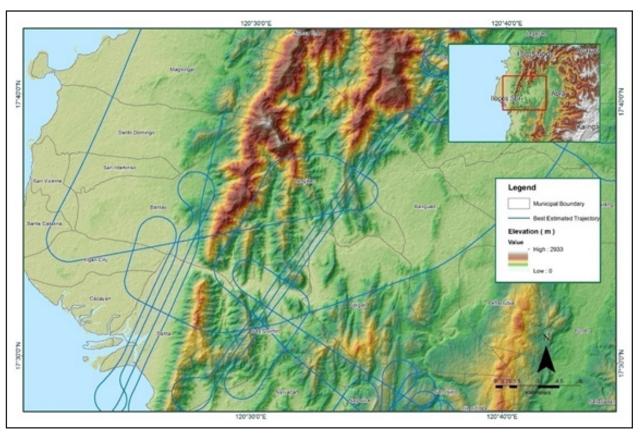


Figure A-8.101 Best Estimated Trajectory

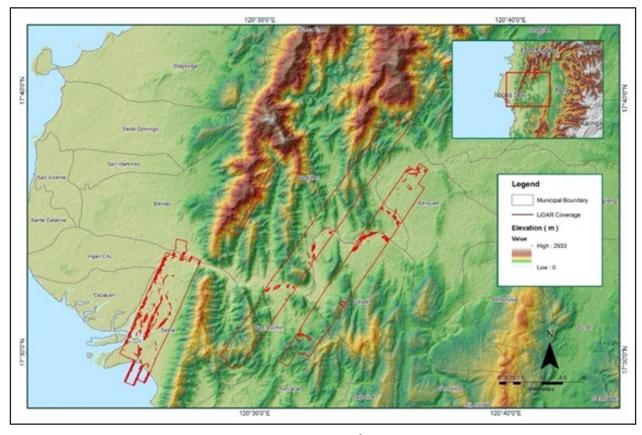


Figure A-8.102 Coverage of LiDAR Data

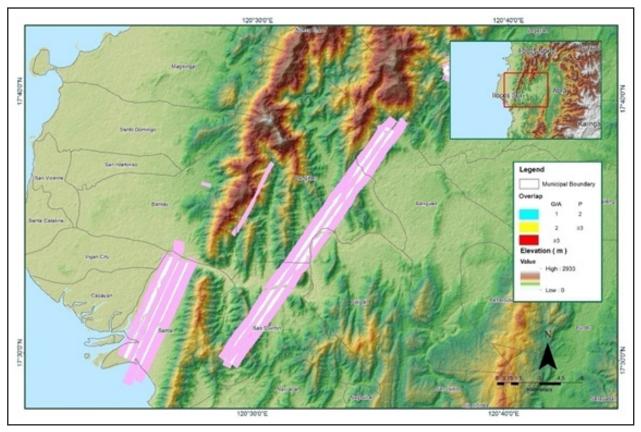


Figure A-8.103 Image of data overlap

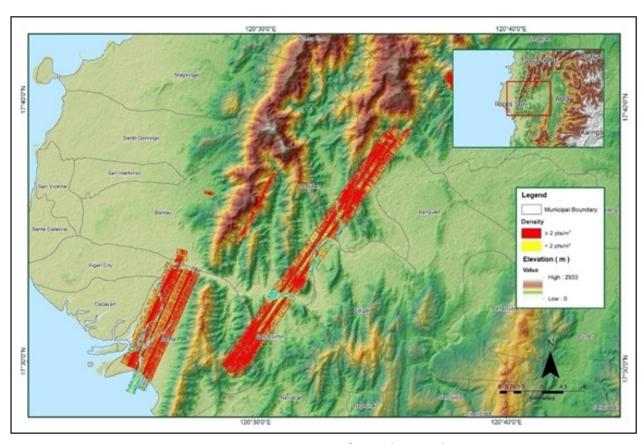


Figure A-8.104 Density map of merged LiDAR data

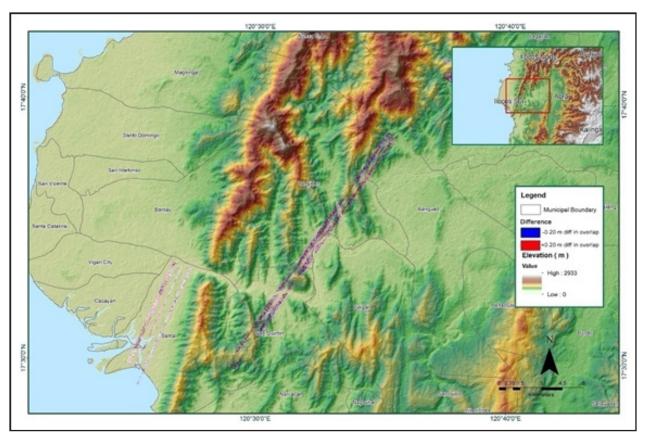


Figure A-8.105 Elevation difference between flight lines

Table A-8.16. Mission Summary Report for Mission Blk07C

Flight Area	Laoag
Mission Name	Blk7C
Inclusive Flights	4043G
Range data size	24.7GB
POS data size	242MB
Base data size	334 MB
Image	n/a
Transfer date	July 1, 2016
Solution Status	
Number of Satellites (>6)	No
PDOP (<3)	No
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.27
RMSE for East Position (<4.0 cm)	1.51
RMSE for Down Position (<8.0 cm)	4.24
Boresight correction stdev (<0.001deg)	0.000764
IMU attitude correction stdev (<0.001deg)	0.006773
GPS position stdev (<0.01m)	0.0160
Minimum % overlap (>25)	38.10
Ave point cloud density per sq.m. (>2.0)	4.08
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	273
Maximum Height	596.60 m
Minimum Height	46.06 m
Classification (# of points)	
Ground	129,375,955
Low vegetation	76,678,449
Medium vegetation	241,188,860
High vegetation	338,518,322
Building	2,319,509
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Edgardo Gubatanga Jr., Engr. Czarina Jean Añonuevo

Figure A-8.106 Solution Status

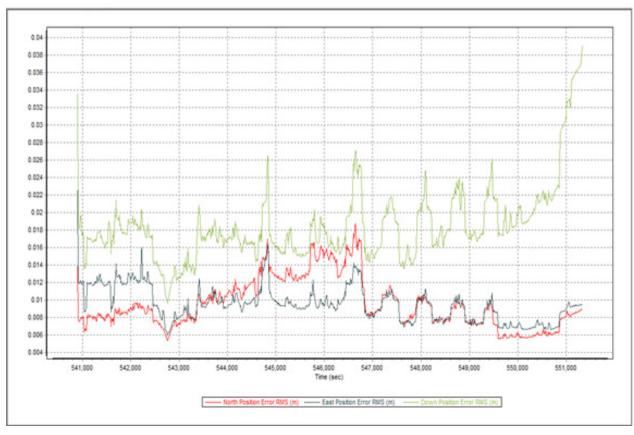


Figure A-8.107 Smoothed Performance Metric Parameters

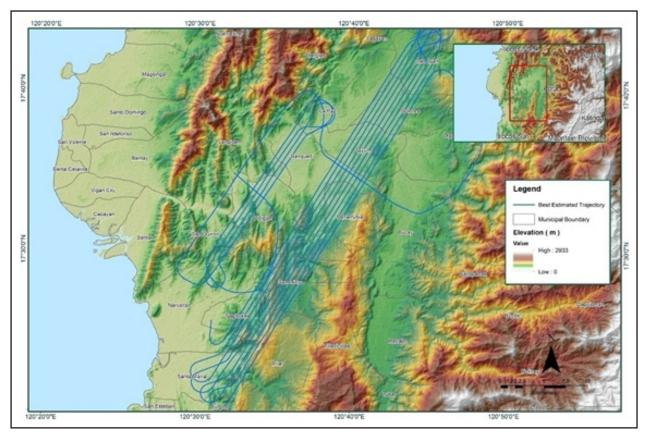


Figure A-8.108 Best Estimated Trajectory

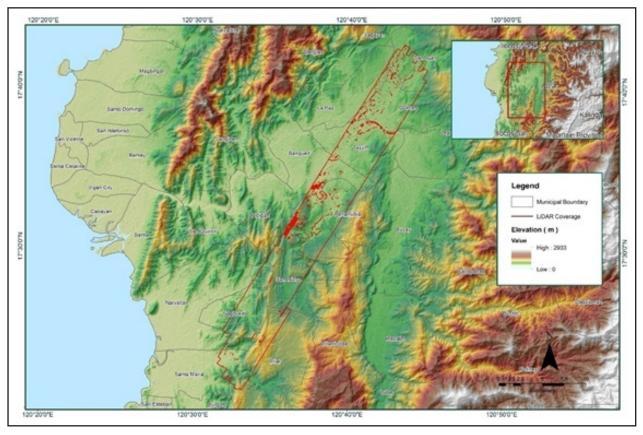


Figure A-8.109 Coverage of LiDAR Data

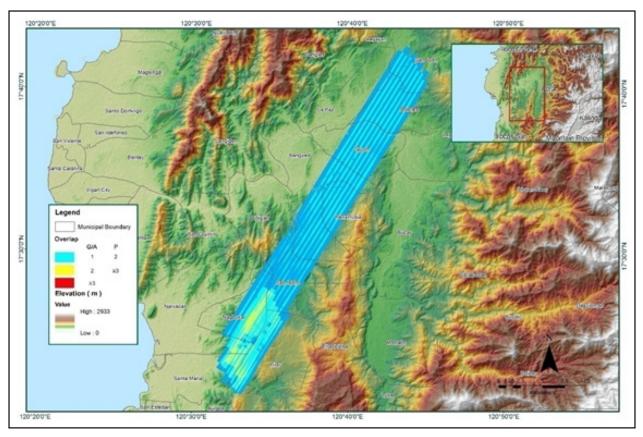


Figure A-8.110 Image of data overlap

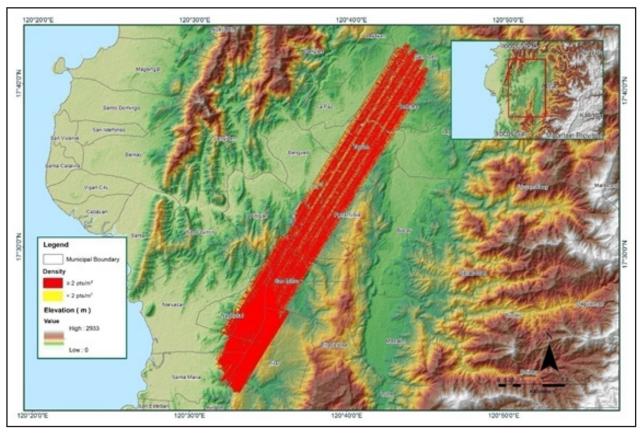


Figure A-8.111 Density map of merged LiDAR data

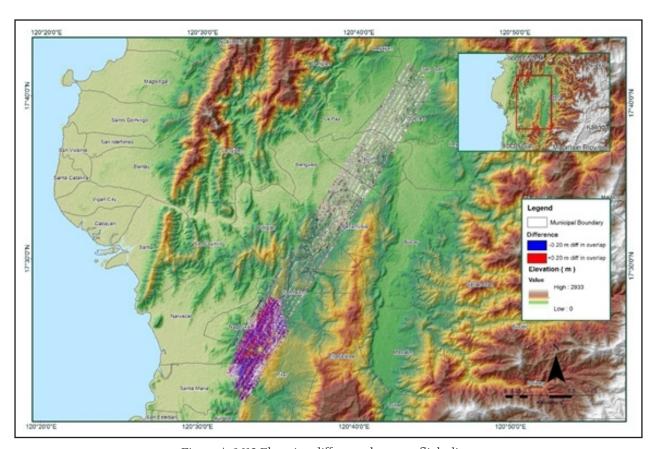


Figure A-8.112 Elevation difference between flight lines

ANNEX 9. Tineg Model Basin Parameters

Table A-9.1. Tineg Model Basin Parameters

Number	SCS C	SCS Curve Number Loss	SSO	Clark Unit Hydrograph Transform	lydrograph form		Rec	Recession Baseflow	MO	
	Initial Abstraction (mm)	Curve	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W1580	2.1154	81.84	0	0.41247	5.38512	Discharge	7.3386	1	Ratio to Peak	0.1
W1590	2.244	79.6395	0	0.29621	3.86728	Discharge	5.0451	1	Ratio to Peak	0.1
W1600	1.87238	86.3475	0	0.22282	2.90912	Discharge	3.5202	1	Ratio to Peak	0.1
W1610	1.92486	85.3335	0	0.34571	4.5136	Discharge	8.1227	1	Ratio to Peak	0.1
W1620	2.0498	83.0085	0	0.20964	2.73704	Discharge	3.5026	1	Ratio to Peak	0.1
W1630	2.4548	76.278	0	0.26965	3.52056	Discharge	5.1758	1	Ratio to Peak	0.1
W1640	2.3326	78.192	0	0.2021	2.63864	Discharge	1.9042	1	Ratio to Peak	0.1
W1650	2.4266	76.713	0	0.37763	4.9304	Discharge	5.5776	1	Ratio to Peak	0.1
W1660	2.18	80.721	0	0.35687	4.65928	Discharge	3.1075	1	Ratio to Peak	0.1
W1670	2.6646	73.203	0	0.15989	2.0876	Discharge	0.28158	1	Ratio to Peak	0.1
W1680	2.565	74.634	0	0.54971	7.17704	Discharge	12.715	1	Ratio to Peak	0.1
W1690	2.4212	76.797	0	0.10955	1.43032	Discharge	0.89063	1	Ratio to Peak	0.1
W1700	2.439	76.521	0	0.25955	3.38872	Discharge	5.5793	1	Ratio to Peak	0.1
W1710	2.1226	81.7155	0	0.3949	5.15576	Discharge	4.9211	1	Ratio to Peak	0.1
W1720	1.91344	85.5525	0	0.24486	3.19696	Discharge	3.3012	1	Ratio to Peak	0.1
W1730	1.99502	84.0135	0	0.41235	5.3836	Discharge	6.5491	1	Ratio to Peak	0.1
W1740	2.7516	72	0	0.14452	1.88688	Discharge	0.53411	1	Ratio to Peak	0.1
W1750	2.6612	73.2525	0	0.94913	12.392	Discharge	12.769	1	Ratio to Peak	0.1
W1760	2.7046	72.6465	0	0.31165	4.06888	Discharge	5.1542	1	Ratio to Peak	0.1
W1770	2.4986	75.615	0	0.21116	2.75688	Discharge	1.9851	1	Ratio to Peak	0.1
W1780	2.0194	83.562	0	0.23919	3.1228	Discharge	3.8787	1	Ratio to Peak	0.1
W1790	2.6672	73.1685	0	0.32455	4.23728	Discharge	4.5978	1	Ratio to Peak	0.1

0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ratio to Peak																											
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1.0899	2.7603	2.5904	4.206	2.9375	0.73359	2.5243	0.069391	4.317	0.23466	1.652	2.3868	3.0891	6.2003	12.19128	2.8777	0.19629	4.4004	8.5052	5.4297	3.3649	0.419378	3.6054	3.4043	5.5143	4.5615	0.18255	2.661
Discharge																											
2.38064	3.84176	3.31496	4.19424	2.899	2.4496	2.4776	0.679848	4.6496	1.09864	3.32688	3.51536	3.53176	4.27384	9.5856	2.8508	1.29144	3.2624	6.53808	8.6472	4.04832	1.7284	2.64656	4.02208	7.11272	7.44872	0.81088	1.88232
0.18234	0.29425	0.25391	0.32125	0.22205	0.18762	0.18977	0.052071	0.35613	0.084149	0.25482	0.26925	0.27051	0.32735	0.73422	0.21835	0.098916	0.24988	0.50077	0.66232	0.31008	0.13238	0.20271	0.30807	0.54478	0.57052	0.062107	0.14417
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
72	80.835	73.977	77.2275	73.872	72	79.1985	72	72	72	72	72	81.6795	75.9645	73.176	72	72	85.1895	72.8265	78.171	72	72	80.718	82.497	84.3495	81.0795	06	90.3105
2.7516	2.1734	2.6102	2.3934	2.6176	2.7516	2.2706	2.7516	2.7516	2.7516	2.7516	2.7516	2.1246	2.4756	2.6666	2.7516	2.7516	1.9324	2.6916	2.3338	2.7516	2.7516	2.1802	2.0784	1.9769	2.159	1.69334	1.67876
W1800	W1810	W1820	W1830	W1840	W1850	W1860	W1870	W1880	W1890	W1900	W1910	W1920	W1930	W1940	W1950	W1960	W1970	W1980	W1990	W2000	W2010	W2020	W2030	W2040	W2050	W2060	W2070

															\neg	_							\neg				\neg
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ratio to Peak																											
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2.106	10.93335	2.058	6.3738	3.6942	3.0863	5.3258	0.07195	2.858	1.0835	13.0017	4.2192	7.2115	0.63381	8.0475	11.62	3.8975	10.531	2.4213	1.2387	3.1343	2.0326	2.4141	7.9861	3.1477	0.89524	2.8127	3.5569
Discharge																											
2.9376	6.7004	2.7568	3.51432	3.3292	2.63568	4.33536	0.626984	3.68984	1.5936	6.40872	3.98368	4.83496	2.22768	9.0768	7.29432	4.37016	7.51504	3.26584	2.67184	2.83416	4.86152	4.03872	6.67728	3.3372	2.204	3.16336	3.4524
0.225	0.51321	0.21115	0.26918	0.25499	0.20188	0.33206	0.048023	0.28262	0.12206	0.49086	0.30513	0.37032	0.17063	0.69524	0.5587	0.33472	0.5756	0.25014	0.20464	0.21708	0.37236	0.30934	0.51144	0.2556	0.16881	0.24229	0.26443
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
78.5805	85.1985	75.2955	87.2775	73.098	77.145	82.5	82.5	82.5	72	83.049	73.224	79.656	72	74.3775	77.4105	82.5	82.5	72	84.504	98.7015	72	83.8245	74.0145	81.4755	82.2885	96.0435	72.0015
2.3084	1.9319	2.52	1.8254	2.6722	2.3988	2.0782	2.0782	2.0782	2.7516	2.0476	2.6632	2.243	2.7516	2.5826	2.3818	2.0782	2.0782	2.7516	1.96866	1.32014	2.7516	2.0052	2.6076	2.1362	2.09	1.42696	2.7516
W2080	W2090	W2100	W2110	W2120	W2130	W2140	W2150	W2160	W2170	W2180	W2190	W2200	W2210	W2220	W2230	W2240	W2250	W2260	W2270	W2280	W2290	W2300	W2310	W2320	W2330	W2340	W2350

									_												—			—			<u></u>
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ratio to Peak																											
1	1	1	1	1	1	1	1	1	1	1	0.99509	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99924
0.015114	1.241	2.661	1.8153	2.2007	1.7206	2.8196	0.4376	9.4265	6.1122	2.316	4.1274	1.9705	5.9646	0.13227	2.3659	1.6494	6.7148	0.84762	4.7729	1.2681	6.9403	3.6325	2.7886	3.4559	2.9763	2.0258	2.9552
Discharge																											
0.411512	2.35376	2.48688	3.56336	2.22936	3.12784	3.73984	1.6156	6.55296	7.23424	3.2864	13.125	14.989	2.4568	9.8316	0.76387	9.4653	2.48456	18.808	12.567	2.54064	6.2954	2.564	4.88992	3.3028	2.62096	3.81408	2.5158
0.031519	0.18028	0.19048	0.27293	0.17075	0.23957	0.28644	0.12374	0.50191	0.55409	0.25172	0.30232	0.23132	0.32976	0.062161	0.32414	0.29105	0.42273	0.29762	0.48229	0.19638	0.16646	0.25999	0.20075	0.29847	0.19565	0.25662	0.302
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
66	66	80.6535	82.5	82.5	66	72	72	73.107	82.5	82.5	84.66	52.261	66	59.911	49.308	88.866	79.554	66.411	75.138	66	66	77.5095	80.34	43.731	82.5	82.5	67.597
0.7587	1.01592	2.1838	2.0782	2.0782	0.33594	2.7516	2.7516	2.6716	2.0782	2.0782	2.4527	3.0975	0.63352	1.4795	2.3901	1.443	2.2492	2.7371	2.18	0.35808	0.7772	2.3756	2.2024	2.7008	2.0782	2.0782	2.7089
W2360	W2370	W2380	W2390	W2400	W2410	W2420	W2430	W2440	W2450	W2460	W2470	W2480	W2500	W2510	W2520	W2530	W2540	W2560	W2570	W2580	W2590	W2600	W2610	W2620	W2630	W2640	W2650

_				_														_						—	—		
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ratio to Peak																											
1	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	0.98662	1	0.99	1	1	1	1
22.565	1.6449	2.7701	2.1612	1.5596	0.68025	3.7746	1.8278	5.6316	3.1499	5.4312	1.9439	3.1813	3.2118	0.95042	2.2604	1.6133	2.57	8.973	1.0076	2.4779	2.0871	1.3437	1.5589	2.5018	0.88992	4.7742	2.8169
Discharge																											
3.2299	8.7632	19.476	2.64712	4.592	2.38312	2.04688	2.02648	3.63912	11.85	4.67592	2.39216	3.4568	2.1176	3.1904	4.894	2.19288	3.07808	3.184	3.76072	5.02624	9.8308	5.88192	1.0881	10.781	2.4772	10.026	1.48336
1.4727	0.31008	0.35172	0.18253	0.15678	0.15521	0.27873	0.3976	0.35814	0.26655	0.26477	0.1622	0.24436	0.37485	0.16796	0.23576	0.24387	0.28805	0.38497	0.22117	0.45051	0.42812	0.36358	0.2902	0.15169	0.11362	0.52979	0.18214
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
76.943	66	75.225	76.0035	72	72	82.2915	66	72.0225	66	79.5195	77.2095	74.7375	66	72	72	72	72.5625	84.8805	66	66	45.177	66	55.808	46.227	73.605	35.095	77.637
1.8796	1.2552	2.5248	2.4728	2.7516	2.7516	2.0898	0.37418	2.75	0.56149	2.2512	2.3946	2.5578	0.34624	2.7516	2.7516	2.7516	2.7106	1.94864	0.36838	0.3484	2.8068	0.2875	2.2865	2.8069	2.6362	2.2324	2.3674
W2660	W2670	W2680	W2690	W2700	W2710	W2720	W2730	W2740	W2750	W2760	W2770	W2780	W2790	W2800	W2810	W2820	W2830	W2840	W2850	W2860	W2870	W2880	W2890	W2900	W2910	W2930	W2940

	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	Ratio to Peak																									
	1	1	1	1	1	1	1	1	0.66667	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	21.233	2.5745	5.8437	1.8402	0.97711	2.0348	0.9035	3.7754	3.3251	5.5083	2.7977	5.5171	4.9487	7.585	7.9326	5.7765	2.8322	3.1533	2.371	2.0606	3.292	2.7359	2.5856	4.1843	0.85395	3.1578
713C11G18C	Discharge																									
0.40308	10.249	2.378	7.33456	16.434	3.34	3.79096	2.53272	1.648	0.79867	2.1232	2.22088	2.12344	3.86872	2.72032	2.33616	4.50792	10.147	0.70912	3.82344	3.612	8.7598	1.7624	2.0728	4.1524	5.45544	2.42336
0.30170	0.88666	0.25582	0.29036	0.28935	0.19896	0.14586	0.16262	0.25765	0.16264	0.29632	0.20836	0.34527	0.34273	0.28081	0.29285	0.27665	0.11525	0.13732	0.18818	0.15876	0.432	0.48639	0.49094	0.41785	0.17893	0.18561
Э	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/2.054	73.072	73.4865	87.6195	61.469	80.505	88.2915	83.616	97.958	93.112	85.9245	81.5985	06	88.2285	85.623	87.8025	85.908	64.052	66	66	66	35.434	68.156	72	77.223	80.3325	86.5545
7.704	5.3498	2.6446	1.80838	2.1827	2.1926	1.77524	2.0166	2.5324	2.7208	1.89414	2.1292	1.69334	1.77832	1.90976	1.7993	1.89496	3.1137	2.536	0.77828	0.79804	2.069	7.0797	2.7516	2.3938	2.2028	1.86188
W 2950	W2960	W2970	W2980	W2990	W3000	W3010	W3020	W3030	W3040	W3050	W3060	W3080	W3090	W3100	W3110	W3120	W3130	W3140	W3160	W3170	W3210	W3220	W3260	W3270	W3310	W3320

ANNEX 10. Tineg Model Reach Parameters

Table A-10.1. Tineg Model Reach Parameters

Slope Manning's n 0.009935 0.005 0.003597 0.005 0.013873 0.005 0.01696 0.005 0.01696 0.005 0.037587 0.005 0.037587 0.005 0.003708 0.005 0.002709 0.005 0.003506 0.005 0.004111 0.005 0.003506 0.005 0.00250 0.005 0.00250 0.005 0.00520 0.005 0.006726 0.005 0.006726 0.005 0.006726 0.005 0.006726 0.0065 0.006726 0.0065 0.006726 0.0065 0.006726 0.0065 0.00656 0.0065 0.0075 0.0065	-			Muskingum Cunge Channel Routing	nel Routing			
8127.3 0.009935 0.005 2293.1 0.003597 0.005 1866.8 0.021393 0.005 4726.6 0.013873 0.005 2034.9 0.01696 0.005 2034.9 0.01696 0.005 2034.9 0.01696 0.005 2033.4 0.037587 0.005 1888.5 0.0037887 0.005 1474.6 0.005791 0.005 1474.6 0.000334 0.005 2385.6 0.000340 0.005 2385.6 0.008172 0.005 2821.6 0.008875 0.005 25294.6 0.0063875 0.005 23082 0.006726 0.005 23082 0.006726 0.005 2370 0.00656 0.005 4864 0.003681 0.0065 5785.6 0.01654 0.005		Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
2293.1 0.003597 0.005 1866.8 0.021393 0.005 4726.6 0.013873 0.005 2034.9 0.01696 0.005 2923.4 0.037587 0.005 7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.0022003 0.005 1474.6 0.0003506 0.005 3309.2 0.003506 0.005 3389.2 0.008172 0.005 2821.6 0.002056 0.005 5294.6 0.006726 0.005 2308.2 0.006726 0.005 2308.2 0.004601 0.005 2308.2 0.0046091 0.005 2138.2 0.0046091 0.005 486.4 0.003681 0.005 887.1 0.010526 0.005	۷	utomatic Fixed Interval	8127.3	0.009935	0.005	Trapezoid	100.9667	1
1866.8 0.021393 0.005 4726.6 0.013873 0.005 2034.9 0.01696 0.005 2923.4 0.037587 0.005 7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.022003 0.005 1474.6 0.003506 0.005 3309.2 0.003506 0.005 2385.6 0.003506 0.005 2821.6 0.002056 0.005 5294.6 0.006726 0.005 5294.6 0.006726 0.005 23082 0.006726 0.005 23082 0.006726 0.005 2070 0.009056 0.005 4864 0.003681 0.005 8871 0.010526 0.005	7	utomatic Fixed Interval	2293.1	0.003597	0.005	Trapezoid	254.6667	1
4726.6 0.013873 0.005 2034.9 0.01696 0.005 2923.4 0.037587 0.005 7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.0022003 0.005 1474.6 0.000934 0.005 3309.2 0.003506 0.005 2385.6 0.004111 0.005 2385.6 0.008172 0.005 2294.6 0.008172 0.005 5294.6 0.006756 0.005 52957.2 0.01671 0.005 23082 0.046091 0.016538 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 8871 0.016526 0.005 6871 0.01656 0.005	7	utomatic Fixed Interval	1866.8	0.021393	0.005	Trapezoid	50.3	1
2034.9 0.01696 0.005 2923.4 0.037587 0.005 7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.0022003 0.005 1474.6 0.000334 0.005 3309.2 0.003506 0.005 3849.2 0.004111 0.005 2821.6 0.008172 0.005 5294.6 0.006756 0.005 5294.6 0.006726 0.005 23082 0.01671 0.005 23082 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 8871 0.01526 0.005	1	Automatic Fixed Interval	4726.6	0.013873	0.005	Trapezoid	31.333	1
2923.4 0.037587 0.005 7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.022003 0.005 1474.6 0.000334 0.005 3309.2 0.003506 0.005 2385.6 0.004111 0.005 2385.6 0.008172 0.005 2221.6 0.002056 0.005 5294.6 0.006726 0.005 23082 0.01671 0.005 23082 0.046091 0.016538 2070 0.0046091 0.016538 4864 0.003681 0.005 8871 0.01543 0.005 8871 0.016526 0.005		Automatic Fixed Interval	2034.9	0.01696	0.005	Trapezoid	27	1
7061 0.003908 0.010766 6802.5 0.005791 0.005 1888.5 0.0022003 0.005 1474.6 0.000334 0.005 2385.6 0.003506 0.005 2385.6 0.004111 0.005 2821.6 0.0008172 0.005 2821.6 0.00556 0.005 5294.6 0.006726 0.005 23082 0.006726 0.005 23082 0.046091 0.016538 2070 0.0046091 0.005 4864 0.003681 0.005 5785.6 0.015443 0.0065 8871 0.016526 0.005		Automatic Fixed Interval	2923.4	0.037587	0.005	Trapezoid	34.433	1
6802.5 0.005791 0.005 1888.5 0.022003 0.005 1474.6 0.000934 0.005 3309.2 0.003506 0.005 2385.6 0.004111 0.005 2385.6 0.008172 0.005 2821.6 0.002056 0.005 2957.2 0.006726 0.005 23082 0.046091 0.016538 2070 0.0046091 0.016538 4864 0.003681 0.005 8871 0.015443 0.004952 8871 0.010526 0.005		Automatic Fixed Interval	7061	0.003908	0.010766	Trapezoid	234.6667	1
1888.5 0.0022003 0.005 1474.6 0.000934 0.005 3309.2 0.003506 0.005 2385.6 0.004111 0.005 3849.2 0.008172 0.005 2821.6 0.008172 0.005 5294.6 0.009875 0.005 23082 0.01671 0.005 23082 0.0046091 0.016538 2070 0.0046091 0.016538 4864 0.003681 0.005 8871 0.015143 0.005 8871 0.010526 0.005		Automatic Fixed Interval	6802.5	0.005791	0.005	Trapezoid	98.733	1
1474.6 0.000934 0.005 3309.2 0.003506 0.005 2385.6 0.004111 0.005 2821.6 0.002056 0.005 5294.6 0.009875 0.005 23082 0.01671 0.005 23082 0.006726 0.003381 2070 0.0046091 0.016538 2070 0.0046091 0.016538 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	1	Automatic Fixed Interval	1888.5	0.022003	0.005	Trapezoid	49.367	1
3309.2 0.003506 0.0055 2385.6 0.004111 0.005 3849.2 0.008172 0.005 2821.6 0.002056 0.005 5294.6 0.009875 0.005 5957.2 0.01671 0.005 23082 0.006726 0.003381 2070 0.046091 0.016538 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	'	Automatic Fixed Interval	1474.6	0.000934	0.005	Trapezoid	108.8333	1
2385.6 0.004111 0.005 3849.2 0.008172 0.005 2821.6 0.002056 0.005 5294.6 0.009875 0.005 23082 0.01671 0.005 2138.2 0.046091 0.016538 2070 0.0046091 0.016538 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	I	Automatic Fixed Interval	3309.2	0.003506	0.005	Trapezoid	387.6667	1
3849.2 0.008172 0.005 2821.6 0.002056 0.005 5294.6 0.009875 0.005 23082 0.01671 0.005 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005		Automatic Fixed Interval	2385.6	0.004111	0.005	Trapezoid	139.4333	1
2821.6 0.002056 0.005 5294.6 0.009875 0.005 23082 0.01671 0.005 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005		Automatic Fixed Interval	3849.2	0.008172	0.005	Trapezoid	121	1
5294.6 0.009875 0.005 5957.2 0.01671 0.005 23082 0.006726 0.00381 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	`	Automatic Fixed Interval	2821.6	0.002056	0.005	Trapezoid	382.6667	1
5957.2 0.01671 0.005 23082 0.006726 0.003381 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	_`	Automatic Fixed Interval	5294.6	0.009875	0.005	Trapezoid	101.6667	1
23082 0.006726 0.003381 2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	`	Automatic Fixed Interval	5957.2	0.01671	0.005	Trapezoid	55.433	1
2138.2 0.046091 0.016538 2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	_`	Automatic Fixed Interval	23082	0.006726	0.003381	Trapezoid	67.433	1
2070 0.009056 0.005 4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	`	Automatic Fixed Interval	2138.2	0.046091	0.016538	Trapezoid	21.4	1
4864 0.003681 0.005 5785.6 0.015143 0.004952 8871 0.010526 0.005	`	Automatic Fixed Interval	2070	0.009056	0.005	Trapezoid	45.733	1
5785.6 0.015143 0.004952 8871 0.010526 0.005	`	Automatic Fixed Interval	4864	0.003681	0.005	Trapezoid	427	1
8871 0.010526 0.005	_`	Automatic Fixed Interval	5785.6	0.015143	0.004952	Trapezoid	52.633	1
	`	Automatic Fixed Interval	8871	0.010526	0.005	Trapezoid	63.9	1
3512.3 0.017841 0.005		Automatic Fixed Interval	3512.3	0.017841	0.005	Trapezoid	47.667	1

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
37.967	63.5	39.5	17.667	25.133	43.567	41.767	36.367	49.3	57.233	19.033	45.6	69.933	66.3	48.633	51.167	6.99	37.533	36.033	26.167	154.7333	137	191.3333	87.833	84.733	75.167	58.5	60.3
Trapezoid																											
0.005	0.016914	0.005	0.005	0.005	0.005	0.005	0.002134	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.016967	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
0.011599	0.022811	0.013234	0.013306	0.019476	0.009272	0.014199	0.025855	0.015864	5.28E-05	0.038635	0.028252	0.00579	0.028118	0.016385	0.014687	0.01417	0.016035	0.013201	0.022312	0.007096	0.001731	0.010108	0.003323	0.007691	0.006998	0.005438	0.051166
2242.8	2244.9	1912.4	8039.4	2032.1	1715.5	9:96:9	26164	6268.9	2860.5	5251.2	4709.5	1020	537.99	2180.7	16955	1972.1	4325.1	6592.5	1808.7	6377.2	816.98	1806.3	760.83	5967.3	4415.7	9061.8	454.14
Automatic Fixed Interval																											
R1410	R1420	R1440	R1480	R1490	R150	R1520	R1530	R170	R190	R220	R260	R280	R290	R300	R310	R320	R3230	R3280	R3330	R340	R370	R380	R420	R450	R460	R470	R480

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
46.233	138.6667	64.967	69.4	64.833	74.567	54.867	76.067	32.133	174.3333	25.867	29.967	76.533	250.3333	32.133	250	35.133	90.333	317.3333	113.3333	27.167	78.3	29.467	40.5	26.1	301.6667	30	43
Trapezoid																											
0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.011362	0.005	0.005	0.010937	0.007575
0.003169	0.007343	0.002511	0.010103	0.017635	0.015574	0.010432	0.010513	0.027109	0.008509	0.009424	0.006891	0.008587	0.011715	0.026434	0.018427	0.003488	0.006475	0.003618	0.006668	0.016579	0.005754	0.021564	0.24914	0.005214	0.004261	0.01505	0.011796
8523.2	7338.1	3061.8	13270	2139.7	2315.3	8737.4	4871.1	5585.3	5409	6146.7	2439.9	11705	2778.4	2467.9	186.57	2850.7	1313.4	11016	8649.4	1789.1	1190	3287	776.98	2098.5	4854.3	7404.5	3968.9
Automatic Fixed Interval																											
R490	R520	R530	R540	R560	R570	R580	R590	R60	R620	R640	R650	R660	R680	R70	R700	R730	R740	R750	R790	R80	R800	R820	R890	R910	R920	R930	R940

0200		11071	0.010651	1000	C: 0 0 0 0 1	21 523	,
٦	Autoillatic rixed liitei vai	110/4	0.010031	0.003	l a bezold	ZT:333	7
	Automatic Fixed Interval	2356.6	0.021065	0.004802	Trapezoid	19.667	П
	Automatic Fixed Interval	2935.9	0.00772	0.004865	Trapezoid	108.6667	1

ANNEX 11. Tineg Field Validation Points

Table A-11.1. Tineg Field Validation Points

Point	Validation	Coordinates	Model	Validation	Error (m)	Event/Date	Rain
Number	Lat	Long	Var (m)	points (m)			Return/ Scenario
1	17.67336	120.7331	0.03	1	0.9409	Feria/ 2005	5-Year
2	17.67336	120.7331	0.03	0.381	0.123201	Lawin/ 2016	5-Year
3	17.67336	120.7331	0.03	0.9144	0.782163	Feria/ 2005	5-Year
4	17.67336	120.7331	0.03	0.3048	0.075515	Mina/ 2007	5-Year
5	17.67336	120.7331	0.03	0.3048	0.075515	Ondoy/ 2009	5-Year
6	17.67336	120.7331	0.03	0.381	0.123201	Feria/ 2005	5-Year
7	17.67336	120.7331	0.03	0.6096	0.335936	Lawin/ 2016	5-Year
8	17.67336	120.7331	0.03	0.9144	0.782163	Feria/ 2005	5-Year
9	17.67336	120.7331	0.03	0.5	0.2209	Mina/ 2007	5-Year
10	17.67336	120.7331	0.03	0.9144	0.782163	Feria/ 2005	5-Year
11	17.67792	120.7342	1.39	0.9144	0.226195	Feria/ 2005	5-Year
12	17.67792	120.7342	1.39	0.381	1.018081	Lawin/ 2016	5-Year
13	17.67792	120.7342	1.39	0.3048	1.177659	Mina/ 2007	5-Year
14	17.67792	120.7342	1.39	1	0.1521	Feria/ 2005	5-Year
15	17.67792	120.7342	1.39	0.3048	1.177659	Ondoy/ 2009	5-Year
16	17.67792	120.7342	1.39	0.3048	1.177659	Pepeng/ 2009	5-Year
17	17.67792	120.7342	1.39	0.9144	0.226195	Feria/ 2005	5-Year
18	17.67792	120.7342	1.39	0.3048	1.177659	Mina/ 2007	5-Year
19	17.67792	120.7342	1.39	0.6096	0.609024	Feria/ 2005	5-Year
20	17.67792	120.7342	1.39	0.3048	1.177659	Lando/ 2015	5-Year
21	17.66976	120.7262	0.06	0.381	0.103041	Feria/ 2005	5-Year
22	17.66976	120.7262	0.06	0.3048	0.059927	Yolanda/ 2013	5-Year
23	17.66976	120.7262	0.06	0.3048	0.059927	Ondoy/ 2009	5-Year
24	17.66976	120.7262	0.06	0.9144	0.729999	Feria/ 2005	5-Year
25	17.66976	120.7262	0.06	0.3048	0.059927	Lando/ 2015	5-Year
26	17.66976	120.7262	0.06	0.3048	0.059927	Pepeng/ 2009	5-Year
27	17.66976	120.7262	0.06	0.381	0.103041	Mina/ 2007	5-Year
28	17.66976	120.7262	0.06	1	0.8836	Feria/ 2005	5-Year
29	17.66976	120.7262	0.06	0.381	0.103041	Lawin/ 2016	5-Year
30	17.66976	120.7262	0.06	0.9144	0.729999	Feria/ 2005	5-Year
31	17.68263	120.7242	0.03	0.381	0.123201	Feria/ 2005	5-Year
32	17.68263	120.7242	0.03	0.3048	0.075515	Mina/ 2007	5-Year
33	17.68263	120.7242	0.03	0.3048	0.075515	Ondoy/ 2009	5-Year
34	17.68263	120.7242	0.03	0.381	0.123201	Lawin/ 2016	5-Year
35	17.68263	120.7242	0.03	0.3048	0.075515	Lando/ 2015	5-Year
36	17.68263	120.7242	0.03	0.3048	0.075515	Lando/ 2015	5-Year
37	17.68263	120.7242	0.03	0.9144	0.782163	Feria/ 2005	5-Year
38	17.68263	120.7242	0.03	0.9144	0.782163	Feria/ 2005	5-Year
39	17.68263	120.7242	0.03	0.381	0.123201	Mina/ 2007	5-Year
40	17.68263	120.7242	0.03	0.3048	0.075515	Yolanda/ 2013	5-Year

		1	1	T	 		
41	17.68037	120.7296	0.12	1	0.7744	Feria/ 2005	5-Year
42	17.68037	120.7296	0.12	0.3048	0.034151	Lando/ 2015	5-Year
43	17.68037	120.7296	0.12	0.6096	0.239708	Mina/ 2007	5-Year
44	17.68037	120.7296	0.12	0.9144	0.631071	Feria/ 2005	5-Year
45	17.68037	120.7296	0.12	0.3048	0.034151	Pepeng/ 2009	5-Year
46	17.68037	120.7296	0.12	0.3048	0.034151	Lando/ 2015	5-Year
47	17.68037	120.7296	0.12	0.9144	0.631071	Feria/ 2005	5-Year
48	17.68037	120.7296	0.12	0.9144	0.631071	Feria/ 2005	5-Year
49	17.68037	120.7296	0.12	0.6096	0.239708	Mina/ 2007	5-Year
50	17.70968	120.7233	2.78	0.9144	3.480463	Feria/ 2005	5-Year
51	17.70968	120.7233	2.78	1	3.1684	Feria/ 2005	5-Year
52	17.70968	120.7233	2.78	0.3048	6.126615	Ondoy/ 2009	5-Year
53	17.70968	120.7233	2.78	0.3048	6.126615	Mina/ 2007	5-Year
54	17.70968	120.7233	2.78	0.381	5.755201	Pepeng/ 2009	5-Year
55	17.70968	120.7233	2.78	0.9144	3.480463	Feria/ 2005	5-Year
56	17.70968	120.7233	2.78	0.6096	4.710636	Mina/ 2007	5-Year
57	17.70968	120.7233	2.78	0.9144	3.480463	Feria/ 2005	5-Year
58	17.70968	120.7233	2.78	0.381	5.755201	Lawin/ 2016	5-Year
59	17.70968	120.7233	2.78	0.381	5.755201	Lawin/ 2016	5-Year
60	17.68316	120.7491	0.21	0.9144	0.496179	Feria/ 2005	5-Year
61	17.68316	120.7491	0.21	0.381	0.029241	Feria/ 2005	5-Year
62	17.68316	120.7491	0.21	1	0.6241	Feria/ 2005	5-Year
63	17.68316	120.7491	0.21	0.381	0.029241	Lawin/ 2016	5-Year
64	17.68316	120.7491	0.21	0.3048	0.008987	Pepeng/ 2009	5-Year
65	17.68316	120.7491	0.21	0.3048	0.008987	Mina/ 2007	5-Year
66	17.68316	120.7491	0.21	0.381	0.029241	Lawin/ 2016	5-Year
67	17.68316	120.7491	0.21	0.9144	0.496179	Feria/ 2005	5-Year
68	17.68316	120.7491	0.21	0.3048	0.008987	Lando/ 2015	5-Year
69	17.68316	120.7491	0.21	0.3048	0.008987	Mina/ 2007	5-Year
70	17.67733	120.7234	2.12	1	1.2544	Lawin/ 2016	5-Year
71	17.67733	120.7234	2.12	1	1.2544	Feria/ 2005	5-Year
72	17.67733	120.7234	2.12	0.3048	3.294951	Mina/ 2007	5-Year
73	17.67733	120.7234	2.12	0.3048	3.294951	Ondoy/ 2009	5-Year
74	17.67733	120.7234	2.12	0.6096	2.281308	Mina/ 2007	5-Year
75	17.67733	120.7234	2.12	0.381	3.024121	Lawin/ 2016	5-Year
76	17.67733	120.7234	2.12	0.9144	1.453471	Feria/ 2005	5-Year
77	17.67733	120.7234	2.12	1	1.2544	Feria/ 2005	5-Year
78	17.67733	120.7234	2.12	1	1.2544	Lawin/ 2016	5-Year
79	17.7196	120.7419	0.03	0.3048	0.075515	Mina/ 2007	5-Year
80	17.7196	120.7419	0.03	0.381	0.123201	Feria/ 2005	5-Year
81	17.7196	120.7419	0.03	0.3048	0.075515	Lawin/ 2016	5-Year
82	17.72582	120.7246	4.21	0.6096	12.96288	Feria/ 2005	5-Year
83	17.72582	120.7246	4.21	0.3048	15.25059	Lawin/ 2016	5-Year
84	17.66809	120.7362	0.03	0.6096	0.335936	Feria/ 2005	5-Year
85	17.66809	120.7362	0.03	0.3048	0.075515	Mina/ 2007	5-Year
84	17.66809	120.7362	0.03	0.6096	0.335936	Feria/ 2005	5-Year

86	17.70109	120.7366	0.3	0.3048	2.3E-05	Feria/ 2005	5-Year
87	17.70109	120.7366	0.3	0.3048	2.3E-05	Ondoy/ 2009	5-Year
88	17.68902	120.7295	0.03	0.381	0.123201	Feria/ 2005	5-Year
89	17.68902	120.7295	0.03	0.3048	0.075515	Mina/ 2007	5-Year
90	17.68902	120.7295	0.03	0.6096	0.335936	Lawin/ 2016	5-Year
91	17.68902	120.7295	0.03	0.381	0.123201	Feria/ 2005	5-Year
92	17.68902	120.7295	0.03	0.381	0.123201	Lawin/ 2016	5-Year
93	17.68902	120.7295	0.03	0.6096	0.335936	Lawin/ 2016	5-Year
94	17.68902	120.7295	0.03	0.6096	0.335936	Feria/ 2005	5-Year
95	17.69118	120.716	3.11	0.3048	7.869147	Lando/ 2015	5-Year
96	17.69118	120.716	3.11	0.3048	7.869147	Lawin/ 2016	5-Year
97	17.69118	120.716	3.11	0.3048	7.869147	Pepeng/ 2009	5-Year
98	17.69118	120.716	3.11	0.3048	7.869147	Ondoy/ 2009	5-Year
99	17.69118	120.716	3.11	0.381	7.447441	Feria/ 2005	5-Year
100	17.69118	120.716	3.11	0.381	7.447441	Feria/ 2005	5-Year
101	17.66949	120.722	0.03	0.6096	0.335936	Feria/ 2005	5-Year
102	17.66949	120.722	0.03	0.3048	0.075515	Lawin/ 2016	5-Year
103	17.66949	120.722	0.03	0.3048	0.075515	Lawin/ 2016	5-Year
104	17.66949	120.722	0.03	0.3048	0.075515	Ondoy/ 2009	5-Year
105	17.66949	120.722	0.03	0.3048	0.075515	Mina/ 2007	5-Year
106	17.74043	120.6974	0.05	0.381	0.109561	Feria/ 2005	5-Year
107	17.74043	120.6974	0.05	0.3048	0.064923	Ondoy/ 2009	5-Year
108	17.74043	120.6974	0.05	0.3048	0.064923	Mina/ 2007	5-Year
109	17.74043	120.6974	0.05	0.381	0.109561	Lawin/ 2016	5-Year
110	17.74043	120.6974	0.05	0.381	0.109561	Lawin/ 2016	5-Year
111	17.74043	120.6974	0.05	0.3048	0.064923	Lando/ 2015	5-Year
112	17.74043	120.6974	0.05	0.3048	0.064923	Ondoy/ 2009	5-Year
113	17.74043	120.6974	0.05	0.381	0.109561	Feria/ 2005	5-Year
114	17.74043	120.6974	0.05	0.6096	0.313152	Feria/ 2005	5-Year
115	17.74043	120.6974	0.05	0.6096	0.313152	Lawin/ 2016	5-Year
116	17.74043	120.6974	0.05	0.3048	0.064923	Mina/ 2007	5-Year
117	17.74043	120.6974	0.05	0.9144	0.747187	Feria/ 2005	5-Year
118	17.74043	120.6974	0.05	0.6096	0.313152	Pepeng/ 2009	5-Year
119	17.74043	120.6974	0.05	0.3048	0.064923	Mina/ 2007	5-Year
120	17.74043	120.6974	0.05	0.381	0.109561	Feria/ 2005	5-Year
121	17.71972	120.6903	0.03	0.3048	0.075515	Ondoy/ 2009	5-Year
122	17.71972	120.6903	0.03	0.3048	0.075515	Mina/ 2007	5-Year
123	17.71972	120.6903	0.03	0.3048	0.075515	Pepeng/ 2009	5-Year
124	17.71972	120.6903	0.03	0.6096	0.335936	Lawin/ 2016	5-Year
125	17.71972	120.6903	0.03	0.9144	0.782163	Lawin/ 2016	5-Year
126	17.71972	120.6903	0.03	1	0.9409	Feria/ 2005	5-Year
127	17.71972	120.6903	0.03	0.381	0.123201	Lawin/ 2016	5-Year
128	17.71972	120.6903	0.03	0.3048	0.075515	Ondoy/ 2009	5-Year
129	17.71972	120.6903	0.03	0.3048	0.075515	Pepeng/ 2009	5-Year
130	17.71972	120.6903	0.03	0.9144	0.782163	Feria/ 2005	5-Year
		l				•	

131	17.71972	120.6903	0.03	0.6096	0.335936	Feria/ 2005	5-Year
132	17.71972	120.6903	0.03	0.3048	0.075515	Mina/ 2007	5-Year
133	17.71972	120.6903	0.03	0.381	0.123201	Lawin/ 2016	5-Year
134	17.71972	120.6903	0.03	0.381	0.123201	Feria/ 2005	5-Year
135	17.71972	120.6903	0.03	0.3048	0.075515	Lando/ 2015	5-Year

ANNEX 12. Educational Institutions affected by flooding Tineg Flood Plain

Table A-12.1. Educational Institutions in Abra affected by flooding in Tineg Flood Plain

	Abra			
	Bangued			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BACSIL ES	Angad			
DANGDANGLA ES	Dangdangla			
ABRA VALLEY COLLEGES	Lingtan			
DATA CENTER COLLEGE	Lipcan			
DIVINE WORD COLLEGE OF BANGUED	Lipcan	Medium	Medium	Medium
MACARCARMAY ES	Macarcarmay			
COSILI WEST PS	Macray			
CALOT ES	Maoay			
SINALANG PILOT ELEMENTARY SCHOOL	Palao			
PATUCANNAY DAY CARE CENTER	Patucannay			High
PATUCANNAY ES	Patucannay		Low	High
STA. ROSA PS	Santa Rosa			Low
ABRA HIGH SCHOOL	Zone 2 Poblacion	Low	Low	Low
ABRA HS	Zone 2 Poblacion			
ABRA STATE INSTITUTE OF SCIENCE AND TECHNOLOGY	Zone 2 Poblacion	Medium	Medium	Medium
BANGUED WEST CENTRAL SCHOOL	Zone 2 Poblacion			
BANGBANGAR ES	Zone 3 Poblacion			
ABRA HIGH SCHOOL	Zone 4 Poblacion			
ABRA HIGH SCHOOL	Zone 4 Poblacion			
ABRA HIGH SCHOOL	Zone 4 Poblacion		Low	Low
BANGUED NORTH ES	Zone 4 Poblacion			
BANGUED WEST CENTRAL SCHOOL	Zone 4 Poblacion			
ABRA VALLEY COLLEGES	Zone 5 Poblacion			
HOLY SPIRIT ACADEMY OF BANGUED	Zone 5 Poblacion			
	Bucay			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BANGBANGCAG PRIMARY SCHOOL	Bangbangcag		Medium	High
PANGTOD NHS	Bangbangcag			

BANGCAGAN PS	Bangcagan			
BANGCAGAN PRIMARY SCHOOL	Bugbog			
PAGALA WEST ELEMENTARY SCHOOL	Bugbog			
BUCAY CS	North Poblacion			
CRISTINA B. GONZALES MHS	North Poblacion	Low	Medium	Medium
OUR LADY OF FATIMA SCHOOL	North Poblacion			
PAGALA EAST PRIMARY SCHOOL	Pagala	Low	High	High
PANGTOD NHS	Palaquio			
BUCAY NORTH ELEMENTARY SCHOOL	San Miguel	Low	High	High
LUBLUBNAC PRIMARY SCHOOL	Tabiog			
TABIOG ES	Tabiog			
	Danglas			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
WESTERN ABRA NHS	Padangitan			
	Dolores			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
MUDIIT ELEMENTARY SCHOOL	Mudiit			
MUDIIT ES	Mudiit			
DOLORES CS	Poblacion			
DON ROSALIO EDUARTE ES	Talogtog			
	La Paz			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
CANAN ES	Canan			
L	agangilang			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
METODIO ES	Laguiben			
PRESENTAR ES	Presentar			
TAGODTOD ES	Tagodtod			
TAGODTOD NHS	Tagodtod			
	1	1		
TAPING PS	Taping			

	Lagayan			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
LAGAYAN CS	Poblacion			
PULOT NHS	Pulot			
	Langiden			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
LANGIDEN NHS	Poblacion			
	Peñarrubia	,		
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
PEÑARRUBIA CS	Dumayco			
PEÑARRUBIA CS	Poblacion			
SAN QUINTIN NHS	Tattawa			
	Pidigan			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
CASILAGAN PS	Alinaya	High	High	High
GARRETA ES	Garreta	Low	Medium	High
BANAY PS	Monggoc	High	High	High
PANGTUD PS	Pangtud		High	High
PIDIGAN CS	Poblacion West		High	High
POBLACION WEST PS	Poblacion West		High	High
SUYO NATIONAL HIGH SCHOOL	Suyo			
SUYO PILOT ES	Suyo	High	High	High
	San Juan			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
NORTHERN ABRA NHS	Lam-Ag		Low	High
NANGOBONGAN PS	Nangobongan			
QUIDAOEN NHS	Quidaoen			

S	an Quintin			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
PALANG PS	Palang	Low	High	High
PANTOC ES	Pantoc			
SAN QUINTIN CS	Poblacion	High	High	High
SAN QUINTIN NHS	Poblacion		High	High
VILLA MERCEDES ES	Villa Mercedes			
	Tayum			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BAGALAY ES	Bagalay			
BASBASA ES	Basbasa			
BUMAGCAT ES	Bumagcat			
DON MARCOS ROSALES ES	Cabaroan		High	High
GADDANI NATIONAL HIGH SCHOOL(G.N.H.S.)	Gaddani	Medium	Medium	Medium
DON MARCOS ROSALES ES	Patucannay		Medium	High
HOLY SPIRIT CONVENT	Poblacion			High
TAYUM CS	Poblacion			

 $Table\ A\text{-}12.2.\ Educational\ Institutions\ affected\ by\ flooding\ in\ the\ Tineg\ Floodplain$

	Ilocos Sur			
	Bantay			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BANAOANG ELEMENTARY SCHOOL	Banaoang			
BANTAY EAST CS	Barangay 5		Medium	Medium
ILOCOS SUR COMMUNITY COLLEGE	Barangay 6	High	High	High
BANTAY NHS	Cabalanggan	Low	High	High
BULAG ES	Cabalanggan	Low	High	High
ORA EAST ES	Ora			
ORA WEST ES	Ora			
PAING ES	Paing		Low	High
SILANG ES	Puspus		Medium	High
SAN JULIAN ES	San Julian	High	High	High
SALLACONG ELEMENTARY SCHOOL	San Mariano			

	Caoayan			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
ANONANG NAGUILIAN COMM. SCHOOL	Anonang Mayor	High	High	High
BAGGOC P. QUITIQUIT ES	Baggoc	High	High	High
BAGGOC P. QUITIQUIT ES	Callaguip	High	High	High
FUERTE ES	Manangat			
PANDAN ES	Manangat	High	High	High
NANSUAGAO PS	Nansuagao	Medium	High	High
PURO NHS CAOAYAN	Nansuagao	High	High	High
PANTAY QUITIQUIT PS	Pantay-Quitiquit	High	High	High
NAGPANAOAN ES	PantayTamurong	High	High	High
PANTAY TAMURONG ES	PantayTamurong	High	High	High
PANTAY TAMURONG NHS	PantayTamurong	Medium	High	High
VILLAMAR ES	Villamar	High	High	High
	Santa			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BANAOANG COMM. SCH.	Dammay			Low
BASUG COMM. SCH.	Dammay			
BASUG NHS	Dammay			
MABILBILA IS	Dammay			
SACUYYA COMM. SCH.	Dammay			
MABILBILA IS	Labut Norte			
,	Vigan City			
Building Name	Barangay	R	ainfall Scen	ario
		5-year	25-year	100-year
BURGOS EAST MES	Ayusan Norte			
CORINTHIAN MONTESSORI	Ayusan Norte			
DIVINE WORLD COLLEGE OF VIGAN	Ayusan Norte		High	High
NATURALES TRAINING INSTITUTE	Ayusan Norte		Medium	High
PATER NOSTER LEARNING CENTER	Ayusan Norte	Low	Low	Low
TESDA	Ayusan Norte		Medium	High
VIGAN CS	Ayusan Norte	Low	Medium	High
CAPANGPANGAN ES	Barangay I	High	High	High

DIVINE WORLD COLLEGE OF VIGAN	Barangay I		High	High
PATER NOSTER LEARNING CENTER	Barangay III		Low	Low
SALINDEG ES	Barraca	Medium	High	High
SALINDEG ES (SPBES)	Barraca	Medium	High	High
CAMANGGAAN ES	Beddeng Laud	Medium	High	High
CABAROAN ES	Cabalangegan	Medium	High	High
SAN JULIAN ES	Capangpangan	Medium	High	High
NAGSANGALAN ES	Nagsangalan	Medium	High	High
VIGAN EAST NHS	Nagsangalan	Medium	High	High
UNIVERSITY OF NORTHERN PHILIPPINES	Paoa	Low	Low	Low
RUGSUNGAN-PUROC ES	Purok-A-Bassit	Medium	High	High
RAOIS ES	Raois	Medium	High	High
CAL-LAQUIP ES	Salindeg	Medium	High	High
CAOAYAN CS	Salindeg	Medium	High	High
CAOAYAN CS	Tamag	Medium	High	High
TAMAG ES	Tamag			

ANNEX 13. Medical Institutions affected by flooding in Tineg Flood Plain

Table A-13.1. Medical Institutions in Abra affected by flooding in Tineg Flood Plain

Abra					
	Bangued				
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
DICKSON POLYCLINIC	Dangdangla				
PALOS CLINIC	Dangdangla				
ABRA PROVINCIAL HOSPITAL	Zone 1 Poblacion				
BARBADILLO CLINIC	Zone 4 Poblacion				
ABRA MEDICAL CENTER	Zone 5 Poblacion			Low	
CASIA CLINIC	Zone 5 Poblacion				
DR. PETRONLO SEARES SR.	Zone 5 Poblacion				
HEALTH CHECK	Zone 5 Poblacion	Medium	Medium	High	
MARIBEL MEDICAL CLINIC	Zone 5 Poblacion				
BANEZ CLINIC	Zone 5 Poblacion		Low	Low	
DICKSON POLYCLINIC	Zone 7 Poblacion				
MAGALA BAUTISTA CLINIC	Zone 7 Poblacion				
MARIBEL MEDICAL CLINIC	Zone 7 Poblacion			Low	
ASSUMPTA CLINIC	Zone 7 Poblacion				
BANGUED CHRISTIAN HOSPITAL	Zone 7 Poblacion				
Bucay					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
BUCAY HOSPITAL	North Poblacion				

Table A-13.2. Medical Institutions in Abra affected by flooding in Tineg Flood Plain

	Ilocos Sur			
Bantay				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
PATAO CLINIC	Aggay		Medium	High
NORTHEAST CARE CENTER	Sinabaan	High	High	High

Vigan City				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
DENTIST JOEY DE VERZOSA	Ayusan Norte			
LAHOZ CLINIC AND HOSPITAL	Ayusan Norte		Low	Medium
MERCURY DRUG	Ayusan Norte	Low	Medium	Medium
RABARA CLINIC AND HOSPITAL	Ayusan Norte			
RABE DENTAL CLINIC	Ayusan Norte			Low
REODIQUE OPTICAL - DENTAL CLINIC	Ayusan Norte	Low	Low	Low
S. M. AMORES VETERINARY CLINIC	Ayusan Norte			
YADAO OPTICAL CLINIC	Ayusan Norte			
VIGAN POLYCLINIC	Barangay VII			Medium
GABRIELA SILANG GENERAL HOSPITAL	Tamag			
PHARMACY	Tamag			
SABI NI DOC PHARMACY	Tamag			