HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Silay River

University of the Philippines Training Center for Applied Goodesy and Photogrammetry University of the Philippines Bagulo

APRIL 2017

© University of the Philippines Diliman and University of the Philippines Baguio 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and C. Pascua, (Eds.). (2017), LiDAR Surveys and Flood Mapping Report of Aklan River, in Enrico C. Paringit, (Ed.), Flood Hazard Mapping of the Philippines using LiDAR-193pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Chelo Pascua

Project Leader, PHIL-LIDAR 1 Program University of the Philippines, Baguio Baguio City, Philippines 2600 pascua.chelo@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, DREAM Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-093-8

TABLE OF CONTENTS

List of Tables	iv
List of Figures	vi
Chapter 1: Overview of the Program and the Silay River	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Silay River Basin	
Chapter 2: LiDAR Data Acquisition of the Silay Floodplain	
2.1 Flight Plans	
2.2. Ground Base Station	
2.3 Flight Missions	
2.4 Survey Coverage	
Chapter 3: LiDAR Data Processing of the Silay Floodplain	
3.1 Overview of the LiDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEMs Editing and Hydro-Correction 3.9 Mosaicking of Blocks	
0	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking of Digitized Features' Boundary	
3.12.2 Height Extraction	
2.13.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	
Chapter 4: LiDAR Validation Survey Measurements of the Silay River Basin	
4.1 Summary of Activities	
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section, Bridge As-Built Survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	60
4.7 Bathymetric Survey	
Chapter 5: Flood Modeling and Mapping	
5.1 Data used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	66
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	67
5.2 RIDF Station	68
5.3 HMS Model	70
5.4 Cross-Section Data	74
5.5 Flo 2D Model	75
5.6 Results of HMS Calibration	76
5.7 Calculated outflow hydrographs and discharge values for different rainfall return	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis Model Simulation	
5.9 Flow depth and flood Hazard	
5.10 Inventory of areas exposed to flooding	
5.11 Flood Validation	
References	
Annexes	
Annex 1. Optech Technical Specification of the Gemini Sensor	
Annex 2. NAMRIA Certificates of Reference Points Used	
Annex 3. Baseline Processing Reports	
Annex 4. The Survey Team	
	0

Annex 5. Data Transfer Sheet For Silay Floodplain	141
Annex 6. Flight Logs	144
Annex 7. Flight Status	
Annex 8. Mission Summary Reports	170
Annex 9. Silay Model Basin Parameters	
Annex 10. Silay Model Reach Parameters	173
Annex 11. Silay Field Validation Points	174
Annex 12. Educational Institutions Affected in Silay Floodplain	182
Annex 13. Medical Institutions Affected in Silay Floodplain	185

LIST OF TABLES

Table 1. Flight planning parameters for Aquarius LiDAR System. Table 2. Flight planning parameters for Pegasus LiDAR System.	
Table 3.Details of the recovered NAMRIA horizontal control point ABR-31 used as base static	
for the LiDAR acquisition.	
Table 4. Details of the recovered NAMRIA horizontal control point ABR-32 used as base static	
for the LiDAR acquisition.	
Table 5. Details of the recovered NAMRIA horizontal control point ILS-9 used as base station	
the LiDAR acquisition.	
Table 6. Details of the recovered NAMRIA horizontal control point ILS-13 used as base station	
the LiDAR acquisition.	
Table 7. Details of the recovered NAMRIA horizontal control point ILS-22 used as base station	
the LiDAR acquisition.	
Table 8. Details of the recovered NAMRIA horizontal control point ILS-24 used as base static	
for the LiDAR acquisition	
Table 9. Details of the recovered NAMRIA horizontal control point ABR- 3071 used as base st	
for the LiDAR acquisition Table 10. Ground control points used during LiDAR data acquisition	
Table 11. Flight Missions for LiDAR Data Acquisition in Silay Floodplain	
Table 12. Actual parameters used during LiDAR data acquisition Silay floodplain	
Table 13. List of municipalites and cities surveyed during Silay floodplain LiDAR survey	
Table 14. Self-Calibration Results values for Silay flights	
Table 15. List of LiDAR blocks for Silay floodplain.	
Table 16. Silay classification results in TerraScan.	
Table 17. LiDAR blocks with its corresponding area.	
Table 18. Shift Values of each LiDAR Block of Silay floodplain	
Table 19. Calibration Statistical Measures.	
Table 20. Validation Statistical Measures.	
Table 21. Quality Checking Ratings for Silay Building Features.	
Table 22. Building Features Extracted for Silay Floodplain.	
Table 23. Total Length of Extracted Roads for Silay Floodplain.	40
Table 24. Number of Extracted Water Bodies for Silay Floodplain	.41
Table 25. List of Reference and Control Points occupied for Silay River Survey	
Table 26. Baseline Processing Summary Report for Silay River Survey	
Table 27. Control Point Constraints	
Table 28. Adjusted Grid Coordinates	
Table 29. Adjusted Geodetic Coordinates	
Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)	
Table 31. RIDF values for Laoag Rain Gauge computed by PAGASA	
Table 32. Range of Calibrated Values for Silay	77
Table 33. Summary of the Efficiency Test of Silay HMS Model	
Table 34. Peak values of the Silay HEC-HMS Model outflow using the Laoag RIDF	
Table 35. Municipalities affected in Silay floodplain	81
Table 36. Affected Areas in Pilar, Abra during 5-Year Rainfall Return Period	
Table 37. Affected Areas in Burgos, Ilocos Sur during 5-Year Rainfall Return Period	
Table 38. Affected Areas in Nagbukel, Ilocos Sur during 5-Year Rainfall Return Period	
Table 39. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	
Table 40 Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	
Table 41. Affected Areas in San Esteban, Ilocos Sur during 5-Year Rainfall Return Period	
Table 42. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period	
Table 43. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period	
Table 44. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period	
Table 45. Affected Areas in Santiago, Ilocos Sur during 5-Year Rainfall Return Period	
Table 46. Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period	
Table 47. Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period	
Table 48. Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period	
Table 49. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period	
Table 50. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period	
Table 51. Affected Areas in San Esteban, Ilocos Sur during 25-Year Rainfall Return Period	106

and Flood Mapping of Silay River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Bagulo

200

Figure 1. Silay River Survey Extent	
Figure 2. Flight plan and base stations used to cover Silay Floodplain	4
Figure 3. GPS set-up over ABR- 31 located near the bridge at Cabadbaran, Agusan del Norte (a)	
and NAMRIA reference point ABR-31 (b) as recovered by the field team	
Figure 4. GPS set-up over ABR-32 located inside the Barangay Hall Compound of Barangay Suyo,	,
Pidigan Abra (a) and NAMRIA reference point ABR-32 (b) as recovered by the field team7	
Figure 5. GPS set-up over 5. ILS-9 located on the hilly portion of Bacsil National High School in	
Barangay Bacsil, San Juan Ilocos Sur (a) and NAMRIA reference point ILS-9 (b) as recovered by the	е
field team8	
Figure 6. GPS set-up over ILS-13 located beside the school oval of Cabugao South Central School	
in Barangay Bonifacio, Cabugao Ilocos Sur (a) and NAMRIA reference point ILS-13 (b) as recovere	!d
by the field team	
Figure 7. GPS set-up over ILS-22 as recovered inside Lidlidda North Central School in Lidlidda,	
Ilocos Sur (a) and NAMRIA reference point ILS-22 (b) as recovered by the field team10	
Figure 8. ILS-24 (CANDON-1) as recovered beside the University of Northern Philippines Annex in	1
Barangay Darapidap, Ilocos Sur (a) and NAMRIA reference point ILS-24 (b) as recovered by the	
field team	
Municipality of Magallanes, Agusan del Norte (a) and NAMRIA reference point ABR-3071 (b) as	
recovered by the field team	
Figure 10. Actual LiDAR data acquisition for Silay floodplain	
Figure 11. Schematic Diagram for Data Pre-Processing Component	
Figure 12. Smoothed Performance Metric Parameters of a Silay Flight 4043G	
Figure 13. Solution Status Parameters of Silay Flight 4043G20	
Figure 14. Best Estimated Trajectory for Silay floodplain21	
Figure 15. Boundary of the processed LiDAR data over Silay Floodplain	
Figure 16. Image of data overlap for Silay floodplain23	
Figure 17. Density map of merged LiDAR data for Silay floodplain24	
Figure 18. Elevation difference map between flight lines for Silay floodplain25	
Figure 19. Quality checking for a Silay flight 4043G using the Profile Tool of QT Modeler26	
Figure 20. Tiles for Silay floodplain (a) and classification results (b) in TerraScan27	
Figure 21. Point cloud before (a) and after (b) classification27	
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and	
secondary DTM (d) in some portion of Silay floodplain	
Figure 23. Portions in the DTM of Silay floodplain – a bridge before (a) and after (b) manual	
editing; a misclassified hill before (c) and after (d) data retrieval	
Figure 25. Map of Silay Flood Plain with validation survey points in green	
Figure 26. Correlation plot between calibration survey points and LiDAR data	
Figure 27. Correlation plot between validation survey points and LiDAR data	
Figure 28. Map of Silay Flood Plain with bathymetric survey points shown in blue	
Figure 29. QC blocks for Silay building features	
Figure 30. Extracted features for Silay floodplain41	
Figure 31. Silay River survey extent	
Figure 32. GNSS Network covering Slay River	
Figure 33. GNSS base set up, Trimble® SPS 852, at LUN-71, situated beside the irrigation canal at	
the right intersection of barangay roads, in Brgy. General Prim West, Municipality of Sudipen,	
La Union44	
Figure 34. GNSS receiver setup, Trimble [®] SPS 882, at AMB-7, located at the approach of Alilem	
Bridge, in Brgy. Kiat, Municipality of Alilem, Ilocos Sur45	
Figure 35. GNSS receiver setup, Trimble [®] SPS 852, at UP-BUR, located at the approach of	
Burgos Bridge, in Brgy. Poblacion Norte, Municipality of Burgos, Ilocos Sur	
Figure 36. GNSS receiver setup, Trimble [®] SPS 882, at UP-CRU, located at the approach of Santa	
Cruz Bridge, in Brgy. Quinsoriano, Municipality of Santa Cruz, Ilocos Sur	
Figure 37. Burgos Bridge facing upstream51 Figure 38. As-Built Survey of Burgos Bridge	
Figure 39. Sta. Maria Bridge facing upstream	
Figure 40. Cross section Survey of Santa Maria Bridge using Total Station	

Elevine /	dge cross section diagram55	
	14. Sta. Maria bridge cross-section location map	
	15. Bridge as-built form of Burgos Bridge	
	16. Bridge As-built form of Santa Maria Bridge	
Figure 4	17. Water-level markings on the deck of A) Burgos Bridge, and B) Santa Maria Bridge	59
Figure 4	18. Validation points acquisition survey set up along Silay River Basin	60
Figure 4	19. Validation point acquisition survey of Silay River basin	61
Figure 5	50. Bathymetric survey using Ohmex [™] single beam echo sounder in Silay River	62
Figure 5	51. Manual bathymetric survey in Silay River	62
Figure 5	52. Bathymetric survey of Silay River	63
	53. Silay Riverbed Profile	
Figure 5	54. The location map of Silay HEC-HMS model used for calibration	66
Figure 5	55. Cross-Section Plot of Sta. Maria Bridge	67
Figure 5	56. Rating Curve at Santa Maria Bridge, Santa Maria, Ilocos Sur	67
	57. Rainfall and outflow data at Santa Maria Bridge used for modeling	
Figure 5	58. Location of Laoag RIDF Station relative to Silay River Basin	69
Figure 5	59. Synthetic storm generated for a 24-hr period rainfall for various return periods	69
	50. Soil Map of Silay River Basin	
	51. Land Cover Map of Silay River Basin	
Figure 6	52. Slope Map of Silay River Basin	72
	53. Stream Delineation Map of Silay River Basin	
	54. The Silay river basin model generated using HEC-HMS	
	55. River cross-section of River generated through Arcmap HEC GeoRAS tool	
	66. A screenshot of the river subcatchment with the computational area to be	
modele	d inFLO-2D Grid Developer System Pro (FLO-2D GDS Pro)	76
	57. Outflow Hydrograph of Silay produced by the HEC-HMS model compared	
with ob	served outflow	77
Figure 6	58. Outflow hydrograph at Silay Station generated using the Laoag RIDF simulated ir	า
HEC- H	IMS	79
Figure 6	59 Sample output of Silay RAS Model	80
Figure 7	70. 100-year Flood Hazard Map for Silay Floodplain overlaid on Google Earth imager	y82
Figure 7	71. 100-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery.	83
Figure 7	72. 25-year Flood Hazard Map for Silay Floodplain overlaid on Google Earth imagery.	84
	73. 25-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery	
Figure 7	74. 5-year Flow Hazard Map for Silay Floodplain overlaid on Google Earth imagery	86
	75. 5-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery	
	76. Affected Areas in Pilar, Abra during 5-Year Rainfall Return Period	
Figure 7	77. Affected Areas in Burgos, Ilocos Sur during 5-Year Rainfall Return Period	89
	78. Affected Areas in Nagbukel, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 7	79. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	92
Figure 8	30. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	92
	31. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	
Figure 8	32. Affected Areas in San Esteban, Ilocos Sur during 5-Year Rainfall Return Period	95
Figure 8	33. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period	96
Figure 8	34. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period	96
Figure 8	35. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period	98
	36. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period	
	37. Affected Areas in Santiago, Ilocos Sur during 5-Year Rainfall Return Period	100
Figure 8 Figure 8	38. Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period	101
Figure 8 Figure 8 Figure 8	 Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period 	101 102
Figure 8 Figure 8 Figure 8 Figure 9	 Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period 	101 102 103
Figure 8 Figure 8 Figure 8 Figure 9 Figure 9	 Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Narbukel, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Narbukel, Ilocos Sur during 25-Year Rainfall Return Period 	101 102 103 103
Figure 8 Figure 8 Figure 8 Figure 9 Figure 9 Figure 9	 Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period	101 102 103 103 105
Figure 8 Figure 8 Figure 9 Figure 9 Figure 9 Figure 9 Figure 9	 Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Narbukel, Ilocos Sur during 25-Year Rainfall Return Period Affected Areas in Narbukel, Ilocos Sur during 25-Year Rainfall Return Period 	101 102 103 103 105 105

Figure 95. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period......108

Figure 96. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period18 Figure 97. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period110 Figure 98. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period110
Figure 99. Affected Areas in Santiago, Ilocos Sur during 25-Year Rainfall Return Period112
Figure 100. Affected Areas in Pilar, Abra during 100-Year Rainfall Return Period113
Figure 101. Affected Areas in Burgos, Ilocos Sur during 100-Year Rainfall Return Period114
Figure 102. Affected Areas in Nagbukel, Ilocos Sur during 100-Year Rainfall Return Period115
Figure 103. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period115
Figure 104. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period117
Figure 105. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period117
Figure 106. Affected Areas in San Esteban, Ilocos Sur during 100-Year Rainfall Return Period119
Figure 107. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period120
Figure 108. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period120
Figure 109. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period122
Figure 110. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period122
Figure 111. Affected Areas in Santiago, Ilocos Sur during 100-Year Rainfall Return Period124
Figure 112. Flood Validation Points for Silay River Basin126
Figure 113. Flood Map Depth vs Actual Flood Depth for Silay127

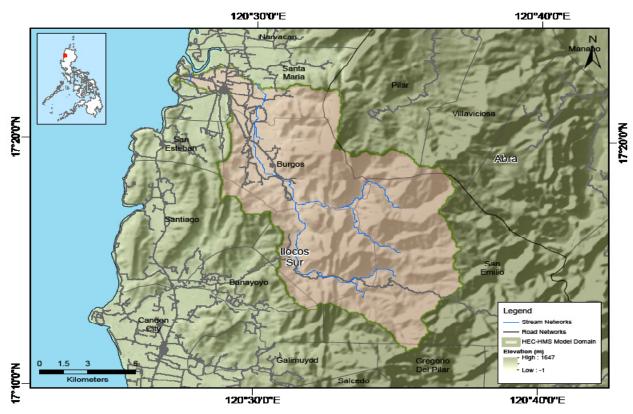
CHAPTER 1: OVERVIEW OF THE PROGRAM AND SILAY RIVER

Dr. Enrico C. Paringit and Dr. Chelo Pascua

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program in 2014 entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GIA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST.


The implementing partner university for the Phil-LiDAR 1 Program is the Visayas State University (VSU). VSU is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 27 river basins in the Easter Visayas Region. The university is located in Baybay City in the province of Leyte.

1.2 Overview of the Silay River Basin

Silay River Basin covers six (6) municipalities of Ilocos Sur namely: Burgos, Lidlidda, San Emilio and Santa Maria, Banayoyo and Santiago; and one (1) Municipality of Pilar in Abra. The DENR River Basin Control Office identified the basin to have a drainage area of 244 km2 and an estimated 517 million cubic meter (MCM) annual run-off (RBCO, 2015).

Its main stem, Silay River, is part of the 13 river systems under the Phil-LiDAR 1 partner HEI, UP Baguo. There is a total of 14,629 persons residing within the immediate vicinity of the river according to the 2010 National Census, which are distributed among the thirteen (13) barangays in Municipality of Santa Maria; and two (2) barangays in Narvacan., both in Ilocos Sur. Most of the land around the area is dedicated to farming. Major products include rice, vegetables and tobacco. Other activities include fishing (http:// www.seemyphilippines.com/2009/santa-maria-ilocos-sur-north-luzon-philippines/, 2016). Ilocos Region suffered major damages from Typhoon "Ineng", internationally known as Goni, on August 2015, reaching P246 million damages in agriculture, multi-million worth of road constructions, and isolated 730 families in the midst of the typhoon (http://www.newsinfo.inquirer.net, 2015).

In line with this, DVBC conducted a field survey in Silay River on June 9 – 23, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Sta. Maria Bridge in Brgy. Quinsoriano, Municipality of Santa Maria and Burgos Bridge in Brgy. Poblacion Norte, Municipality of Burgos; validation points acquisition of about 78.68 km covering the Silay River Basin area; and bathymetric survey from its upstream in Brgy. Cabaroan in the Municipality of Santa Maria to the mouth of the river located in Brgy. Nagsayaoan in the same Municipality, with an approximate length of 8.867 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 1).

CHAPTER 2: LIDAR DATA ACQUISITION OF THE SILAY FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Christopher L. Joaquin, Ms. Mary Catherine Elizabeth M. Baliguas

The methods applied in this Chapter were based on the DREAM methods manual(Sarmiento, et al., 2014) and further enchanced and updated in Paringit, etal. (2017)

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Silay Floodplain in Ilocos Sur. These missions were planned for 19 lines and ran for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system are found in Table 1. Figure 2 shows the flight plans and base stations used for Silay Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK06D	1800	55	30	70	50	130	5
BLK06F	1700	40	30	70	50	130	5
BLK06G	1800	55	30	70	50	130	5
BLK07A	1700	40	30	70	50	130	5
BLK07B	1200	40	30	100	50	130	5
BLK07C	1200	40	30	100	50	130	5
BLK07D	1300	50	30	70	50	130	5
BLK07G	1300,1400	50	30	70	50	130	5
BLK27A	1000,1200	25,30	40,50	100,200	30	130	5
BLK27B	1200	30	50	200	30	130	5

Table 1. Flight planning parameters for the Aquarius LiDAR system.

Table 2. Flight planning parameters for Pegasus LiDAR System.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK27A	1000,1200	25,30	40,50	100,200	30	130	5
BLK27B	1200	30	50	200	30	130	5

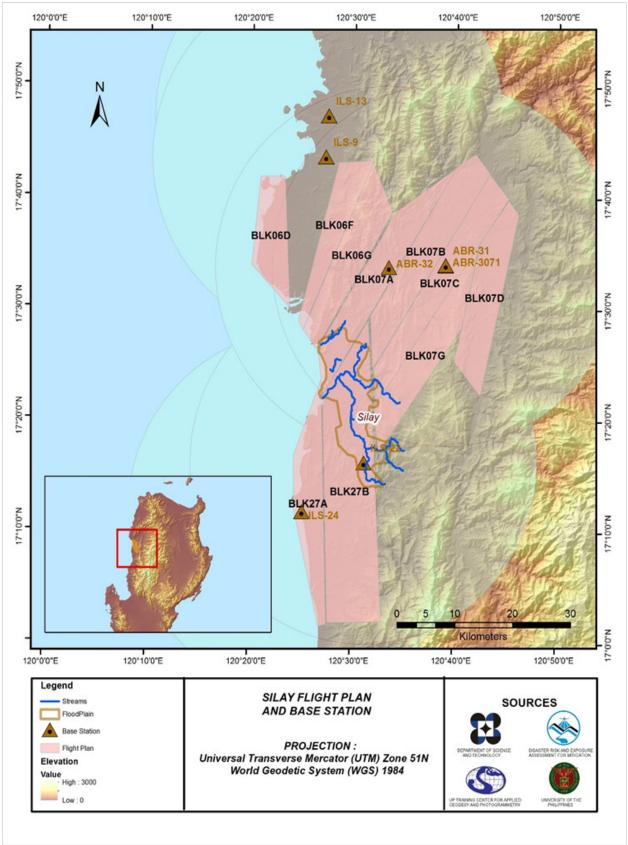


Figure 2. Flight plan and base stations used to cover Silay Floodplain.

2.2 Ground Base Stations

The project team was able to recover seven (7) NAMRIA ground control points: ABR-31, ABR-32, ILS-9, ILS-13, ILS-22, ILS-24 which are of second (2nd) order and ABR-3071 which is of fourth 4th order accuracy. The certifications for the NAMRIA reference points are found in Annex 2 while the baseline processing report for the NAMRIA reference point (ABR-3071) is found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey (February 19-March 12, 2014, February 25-March 9, 2014 and May 23-31, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882, SPS 985 and TOPCON GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Silay floodplain are shown in Figure 2.

Figures 3 to 9 show the recovered NAMRIA reference points within the area. Tables 3 to 9 show the details about the following NAMRIA control stations and establish points, while Table 10 shows the list of all ground control points occupied during the acquisition with the corresponding dates of utilization.

(A)

Figure 3. GPS set-up over ABR- 31 located near the bridge at Cabadbaran, Agusan del Norte (a) and NAMRIA reference point ABR-31 (b) as recovered by the field team.

Table 3.Details of the recovered NAMRIA horizontal control point ABR-31 used as base station for the LiDAR acquisition.

Station Name	ABR- 31		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17° 34' 04.18832" North 120° 38' 57.99393" East 98.78000 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	462,785.996 meters 1,942,969.967 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17° 33′ 58.07703″ North 120° 39′ 02.63930″ East 132.48100 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	250,503.563 meters 1,943,800.890 meters	

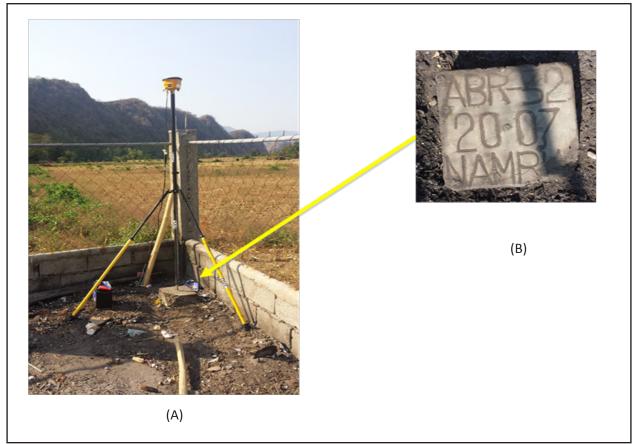


Figure 4. GPS set-up over ABR-32 located inside the Barangay Hall Compound of Barangay Suyo, Pidigan Abra (a) and NAMRIA reference point ABR-32 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ABR-32 used as base station for the LiDAR acquisition.

Station Name	ABR-32		
Order of Accuracy	2nd		
Relative Error (Horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°33'49.34656" North 120°33'25.07659" East 39.32200 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	452,967.729 meters 1,942,534.242 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°33'43.22900" North 120°33'29.72282" East 72.81400 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	240,677.03 meters 1,943,468.54 meters	

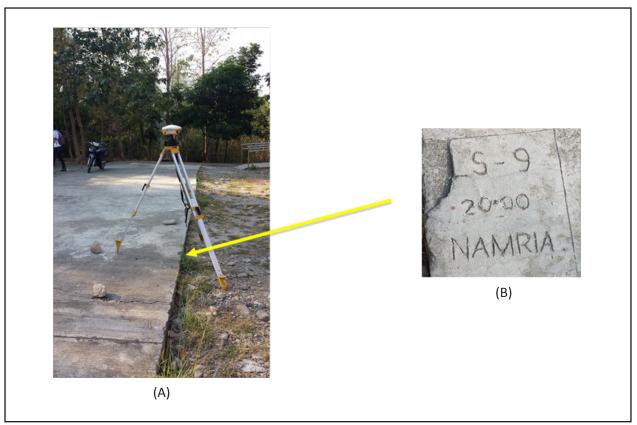


Figure 5. GPS set-up over 5. ILS-9 located on the hilly portion of Bacsil National High School in Barangay Bacsil, San Juan Ilocos Sur (a) and NAMRIA reference point ILS-9 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control pointILS-9 used as base station for the
LiDAR acquisition.

Station Name	ILS-9		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°43'40.62808" North 120°27'9.37799" East 56.57700 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Latitude Longitude Ellipsoidal Height	441,941.245 meters 1,960,739.965 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°43'34.46721" North 120°27'14.01102" East 89.291 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992	Easting Northing	229,838.72 meters 1,961,798.84 meters	

Figure 6. GPS set-up over ILS-13 located beside the school oval of Cabugao South Central School in Barangay Bonifacio, Cabugao Ilocos Sur (a) and NAMRIA reference point ILS-13 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point ILS-13 used as base station for the LiDAR acquisition.

Station Name	ILS-13		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°47′21.51067″ North 120°27′23.35275″ East 26.74100 meters	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Easting Northing	442,372.629 meters 1,967,529.087 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°47′15.33691″ North 120°27′27.98067″ East 59.26700 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	230,342.67 meters 1,968,586.44 meters	

(A)

Figure 7. GPS set-up over ILS-22 as recovered inside Lidlidda North Central School in Lidlidda, Ilocos Sur (a) and NAMRIA reference point ILS-22 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA horizontal control point ILS-22 used as base station for the
LiDAR acquisition.

Station Name	ILS-22	
Order of Accuracy	2nd (order
Relative Error (horizontal positioning)	1:50	,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°16'13.59403" North 120°31'8.89179" East 55.31200 meters
Grid Coordinates, Philippine Transverse Mercator Zone (PTM Zone 3 PRS 92)	Easting Northing	448,870.206 meters 1,910,089 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°16'7.53708" North 120°31'13.56269" East 89.64700 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	236, 238.44 meters 1,911,053.54 meters

(A)

Figure 8. ILS-24 (CANDON-1) as recovered beside the University of Northern Philippines Annex in Barangay Darapidap, Ilocos Sur (a) and NAMRIA reference point ILS-24 (b) as recovered by the field team.

Table 8. Details of the recovered NAMRIA horizontal control pointILS-24 used as base station for the
LiDAR acquisition.

Station Name	ILS-24	
Order of Accuracy	2nd (order
Relative Error (horizontal positioning)	1:50	,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17°11'46.25613" North 120°25'8.83897" East 12.287 m
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	438,210.77 m 1,901,900.937 m
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17°11′40.20757″ North 120°25′13.51659″ East 46.616m
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	225,489.39 m 1,902,971.42 m

(A)

Figure 9. GPS set-up over ABR – 3071 was recovered in front of Buhang National High School, Municipality of Magallanes, Agusan del Norte (a) and NAMRIA reference point ABR-3071 (b) as recovered by the field team.

Table 9. Details of the recovered NAMRIA horizontal control point ABR- 3071 used as base station for the LiDAR acquisition.

Station Name	ABR-3071	
Order of Accuracy	2nd (order
Relative Error (horizontal positioning)	1:50	,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	17° 34′ 00.39935″ 120° 38′ 57.99393″ 96.489 meters
Grid Coordinates, Philippine Transverse Mercator Zone 4 (PTM Zone 3 PRS 92)	Easting Northing	252,863.056 meters 2,173,296.623 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	17° 33' 54.28829" North 120° 39' 02.39944" East 130.194 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	250,495.042 meters 1,943,684.465 meters

Date Surveyed	Flight Number	Mission Name	Ground Control Points
4-Mar-14	1179P	1BLK27B063A	ILS-22 and ILS-24
4-Mar-14	7107G	2BLK07C063B	ABR-31 and ABR-32
7-Mar-14	7112G	2BLK06G066A & 2BLK06DS066A	ILS-13 and ILS-9
8-Mar-14	1195P	1BLK27ABS067A	ILS-22
8-Mar-14	7114G	2BLK07CS067A & 2BLK06G067A	ABR-31 and ILS-22
9-Mar-14	7116G	2BLK07B068A	ABR-31 and ABR-32
10-Mar-14	7118G	2BLK07D069A & 2BLK07G069A	ABR-32 and ILS-22
10-Mar-14	7119G	2BLK27A069B	ABR-32 and ILS-22
11-Mar-14	7120G	2BLK06F070A & 2BLK07A070A	ABR-31 and ABR-32
11-Mar-14	7121G	2BLK07GS070B	ABR-31 and ABR-32
28-May-16	4043G	2BLK7SA7149A	ABR-31 and ABR-3071

Table 10. Ground control points used during LiDAR data acquisition

2.3 Flight Missions

Twelve (12) missions were conducted to complete the LiDAR Data Acquisition in Silay Floodplain, for a total of forty-seven hours and thirty-five minutes (47+35) hours for RP-C9322 and RP-C9022. All missions are acquired using the Pegasus and Gemini LiDAR system. Table 11 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 12 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area (km2)	Surveyed Area (km2)	Area Surveyed	Area Surveyed Outside the	No. of Images		ying ours
				within the Floodplain (km2)	Floodplain (km2)	(Frames)	Hr	Min
4-Mar-14	1179P	386.94	348.32	113.92	43.38	647	4	15
4-Mar-14	7107G	174.12	128.15	2.24	155.06	NA	3	17
7-Mar-14	7112G	243.42	205.04	2.21	155.09	NA	4	17
8-Mar-14	1195P	527.05	139.93	20.62	136.68	257	2	17
8-Mar-14	7114G	317.80	205.75	2.91	154.39	NA	4	23
9-Mar-14	7116G	183.39	205.74	1.25	156.05	NA	4	23
10-Mar-14	7118G	247.81	209.67	2.56	154.74	NA	4	22
10-Mar-14	7119G	140.10	235.53	4.42	152.88	NA	4	17
11-Mar-14	7120G	271.52	274.52	23.45	133.85	NA	4	11
11-Mar-14	7121G	148.07	166.54	11.60	145.70	NA	3	41
28-May-16	4043G	240.00	247.77	0.39	156.91	NA	4	16
28-May-16	4045G	115.00	121.49	2.10	155.20	NA	3	56
TOTAL	2995.22	2488.44	187.66	1699.93	904.00	47		35

Table 11. Flight Missions for LiDAR Data Acquisition in Silay Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time
1410A	600	30	36	70	50	120	5
1414A	600	30	36	70	50	120	5
1438A	600	30	36	70	50	120	5
1440A	600	30	36	70	50	120	5
1442A	600	30	36	70	50	120	5
1444A	600	30	36	70	50	120	5
1450A	600	30	36	70	50	120	5
1452A	600	30	36	70	50	120	5
3727G	800	30	50	125	40	130	5
3729G	650	30	40	125	50	130	5
3753G	850	30	40	125	50	130	5
3757G	850	30	40	125	50	130	5

Table 12. Actual Parameters used during LiDAR data acquisition

2.4 Survey Coverage

Silay floodplain is located in the province of llocos Sur and Abra. Municipalities of San Quintin, Tayum, La Paz, Peñarrubia, Pidigan, Banayoyo, Candon, Nagbukel, Narvacan, San Esteban, Santa Maria and Santiago are mostly covered by the survey (Annex 7). The list of municipalities and cities surveyed with at least (1) square kilometer coverage is shown in Table 13. The actual coverage of the LiDAR acquisition for Silay floodplain is presented in Figure 10.

Province	Municipality/City	Area of Municipality/City	Total Area Surveyed	Percentage of Area Surveyed
	San Quintin	62.29	62.29	100%
	Tayum	46.12	46.12	100%
	La Paz	55.19	54.94	100%
	Peñarrubia	36.84	36.84	100%
	Pidigan	58.13	58.13	100%
	San Isidro	41.69	41.46	99%
	Langiden	98.7	97.87	99%
	Dolores	44.89	40.61	90%
	Bangued	123.75	104.9	85%
	Pilar	92.2	72.96	79%
	Bucay	104.45	77.99	75%
	Manabo	83.34	33.24	40%
	San Juan	64.64	18.06	28%
	Villaviciosa	81.46	22.47	28%
	Lagangilang	91.54	21.22	23%
	Danglas	175.7	24.18	14%
	Lagayan	144.19	10.19	7%
	Luba	126.57	2.97	%

Table 13. List of municipalites and cities surveyed during Silay floodplain LiDAR survey.

llocos Norte	Nueva Era	619.00	4.00	1%
	Banayoyo	23.23	23.23	100%
	Candon City	80.18	80.13	100%
	Nagbukel	36.46	36.46	100%
	Narvacan	97.18	97.18	100%
	San Esteban	17.27	17.27	100%
	Santa Maria	52.32	52.32	100%
	Santiago	65.57	65.48	100%
	Santa Lucia	43.88	43.44	99%
	Santa Catalina	10.83	10.67	98%
	Burgos	49.6	47.29	95%
	Santa	57.2	54.12	95%
	San Vicente	12.2	10.72	88%
	Galimuyod	32.81	27.97	85%
llocos Sur	Santa Cruz	105.95	88.8	84%
	Bantay	71.06	44.2	62%
	Lidlidda	39.48	24.37	62%
	Magsingal	78.9	39.51	50%
	Salcedo	69.23	31.8	46%
	Santo Domingo	50.36	22.5	45%
	Vigan City	24.01	9.49	40%
	San Juan	59.88	19.22	32%
	Caoayan	21.2	3.19	15%
	San Ildefonso	13.21	1.62	12%
	Suyo	148.52	12.18	8%
	San Emilio	138.02	1.85	1%
	Sigay	98.45	1.2	1%

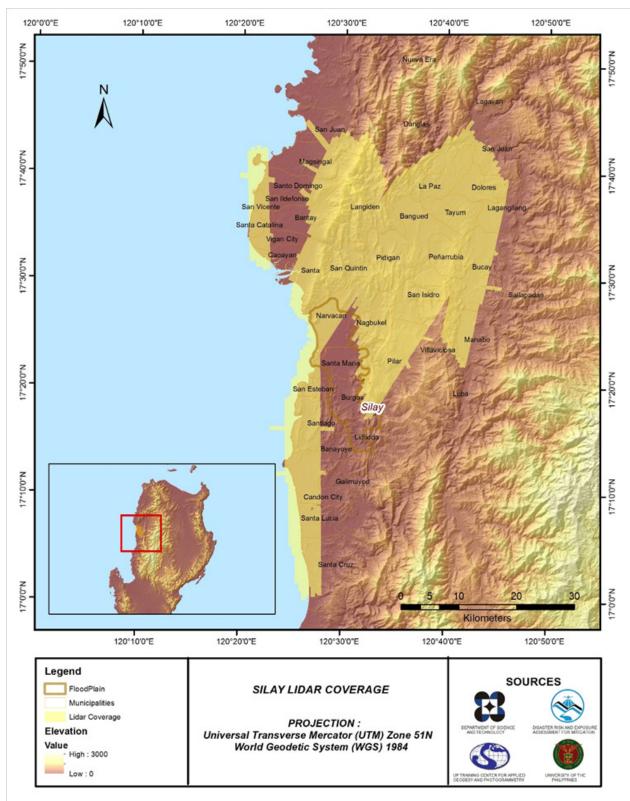


Figure 10. Actual LiDAR data acquisition for Silay floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE SILAY FLOODPLAIN

EEngr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Harmond F. Santos, Jovy Anne S. Narisma , Engr. Ma. Ailyn L. Olanda, Engr. Antonio B. Chua Jr., Engr Kenneth A. Solidum, Engr. Jommer M. Medina, Carl Joshua S. Lacsina

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

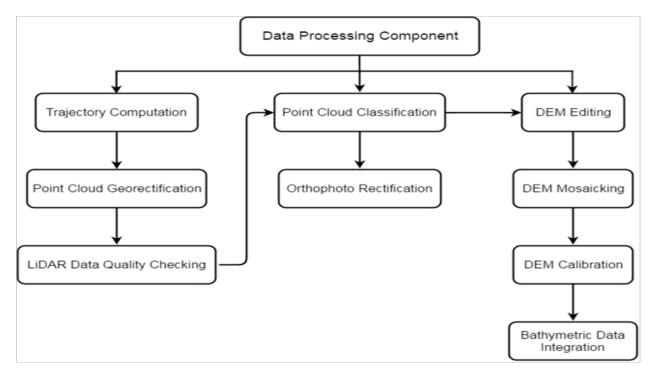


Figure 11. Schematic Diagram for Data Pre-Processing Component

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Silay floodplain can be found in Annex 5. Data Transfer Sheets. Missions flown during the first survey in Ilocos conducted on March 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini-CASI system while missions acquired during the second survey on May 2016 in Laoag were flown using the Gemini system. The Data Acquisition Component (DAC) transferred a total of 211.40 Gigabytes of Range data, 2.52 Gigabytes of POS data, 744.85 Megabytes of GPS base station data, and 55.40 Gigabytes of raw image data to the data server on April 22, 2014 for the first survey and July 1, 2016 for the second survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Silay was fully transferred on July 1, 2016, as indicated on the Data Transfer Sheets for Silay floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for flight 4043G, one of the Silay flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 28, 2016 00:00AM. The y-axis is the RMSE value for that particular position

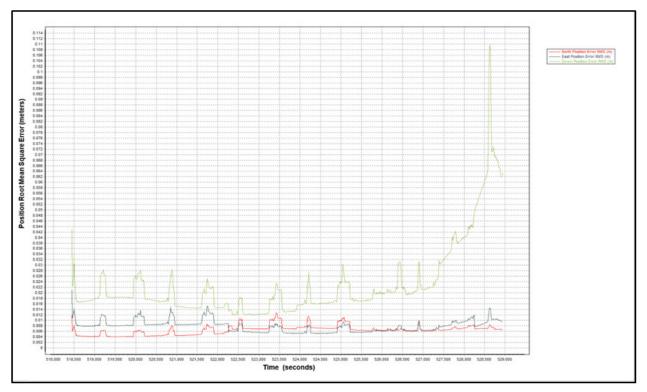


Figure 12. Smoothed Performance Metrics of a Silay Flight 4043G.

The time of flight was from 518400 seconds to 529000 seconds, which corresponds to morning of May 28, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft. Redundant measurements from the POS system quickly minimize the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turn-around period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 1.20 centimeters, the East position RMSE peaks at 1. 60 centimeters, and the Down position RMSE peaks at 4.40 centimeters, which are within the prescribed accuracies described in the methodology.

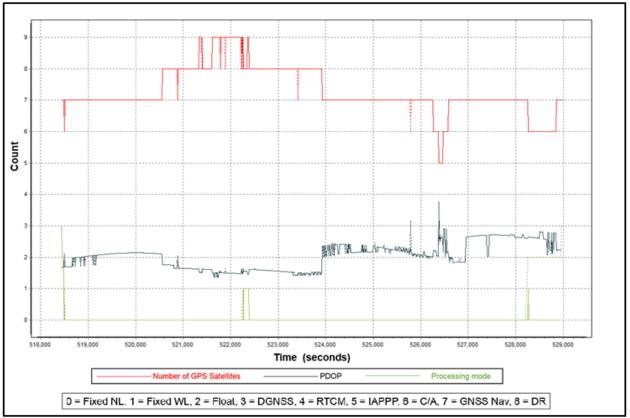


Figure 13. Solution Status Parameters of Silay Flight 4043G.

The Solution Status parameters of flight 4043G, one of the Silay flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Silay flights is shown in Figure 14.

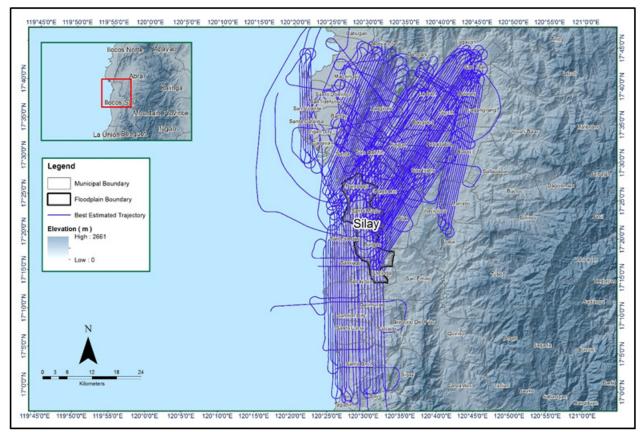


Figure 14. The best estimated trajectory of LiDAR missions conducted over the Silay floodplain.

3.4 LiDAR Point Cloud Computation

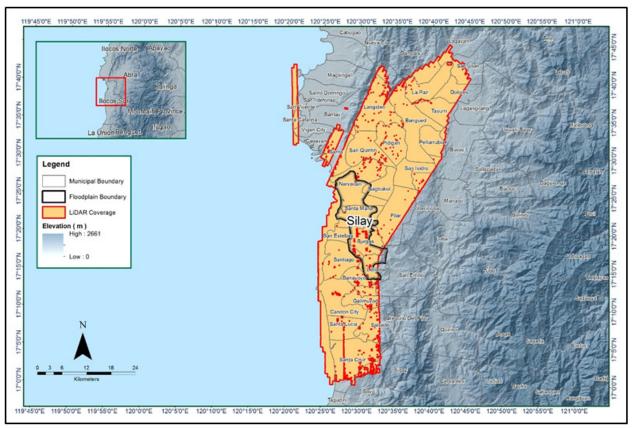
The produced LAS data contains 110 flight lines, with some flight line containing two channels, since the Gemini Casi systems contain one channel only and two channels for Pegasus system. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Silay floodplain are given in Table 14.

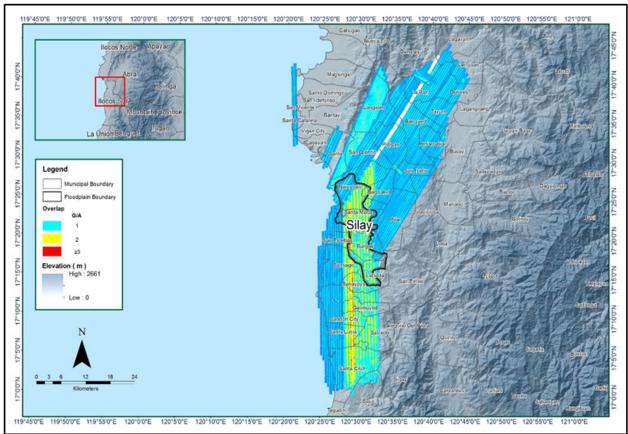
Parameter	Acceptable Value
Boresight Correction stdev (<0.001degrees)	0.000272
IMU Attitude Correction Roll and Pitch Corrections stdev (<0.001degrees)	0.000787
GPS Position Z-correction stdev (<0.01meters)	0.0092

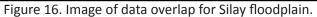
The optimum accuracy is obtained for all Silay flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in the Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Silay Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.




Figure 15. Boundary of the processed LiDAR data over Silay Floodplain


The total area covered by the Silay missions is 1922.38 sq.km that is comprised of eleven (11) flight acquisitions grouped and merged into ten (10) blocks as shown in Table 15

LiDAR Blocks	Flight Numbers	Area (sq. km)
Ilocos_Blk27A	7119GC	227.64
llocos_Blk27BCD	1179G	412.32
	1195G	
llocos_Blk6G	7112G	141.83
llocos_Blk7A	7120G	227.64
llocos_Blk7A_additional	7121G	41.20
llocos_Blk7B	7116G	199.83
llocos_Blk7C_supplement	7114G	87.67
llocos_Blk7G	7121GC	143.45
Laoag_Blk7A	4043G	114.25
	4045G	
Laoag_Blk7C	4043G	202.76
	4045G	
	TOTAL	1922.38 sq.km

Table 15. List of LiDAR blocks for Silay floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Gemini system employ one channel and two channels for Pegasus system, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

The overlap statistics per block for the Silay floodplain can be found in Annex 8. One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 25.68% and 59.21% respectively, which passed the 25% requirement.

The density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Silay floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.73 points per square meter.

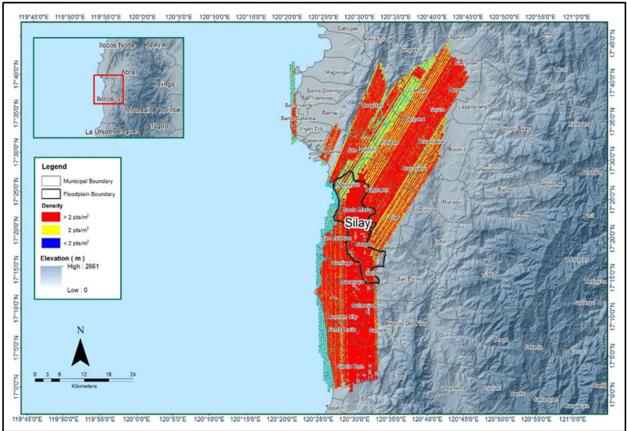


Figure 17. Density map of merged LiDAR data for Silay floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

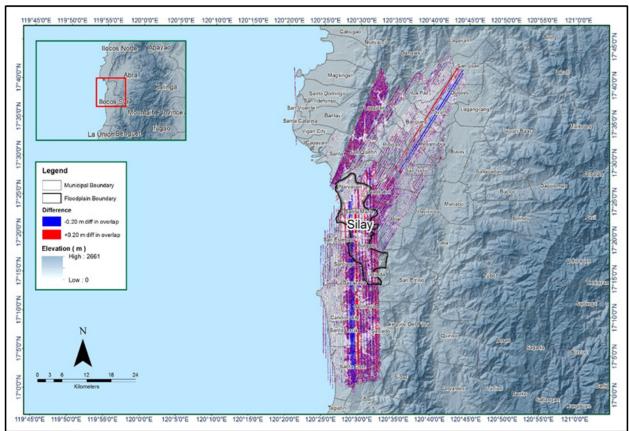


Figure 18. Elevation difference map between flight lines for Silay floodplain.

A screen capture of the processed LAS data from a Silaga flight 1444A loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

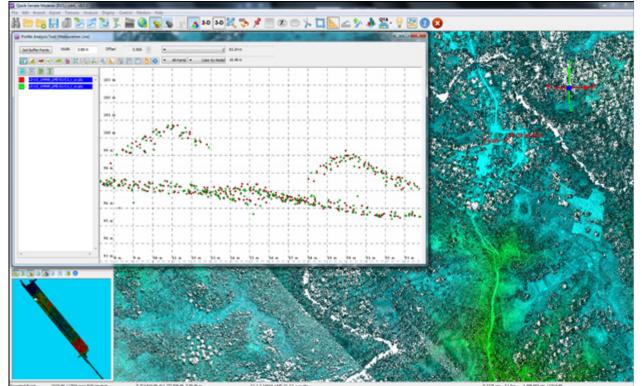


Figure 19. Quality checking for a Silay flight 4043G using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	862,184,993
Low Vegetation	635,995,198
Medium Vegetation	850,718,637
High Vegetation	1,909,826,683
Building	45,778,776

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Silay floodplain is shown in Figure 20. A total of 2,446 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 16. The point cloud has a maximum and minimum height of 863.68 meters and 36.90 meters respectively.

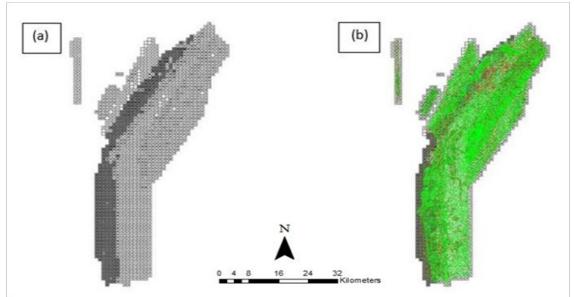


Figure 20. Tiles for Silay floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

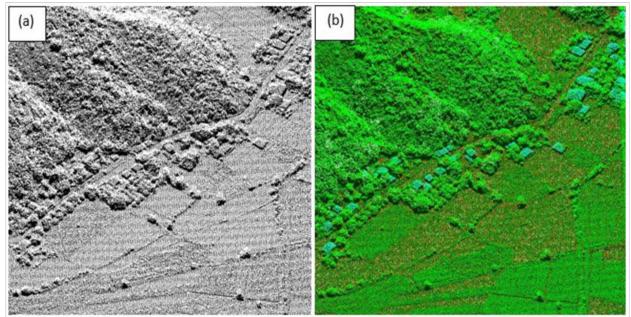


Figure 21. Point cloud before (a) and after (b) classification.

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

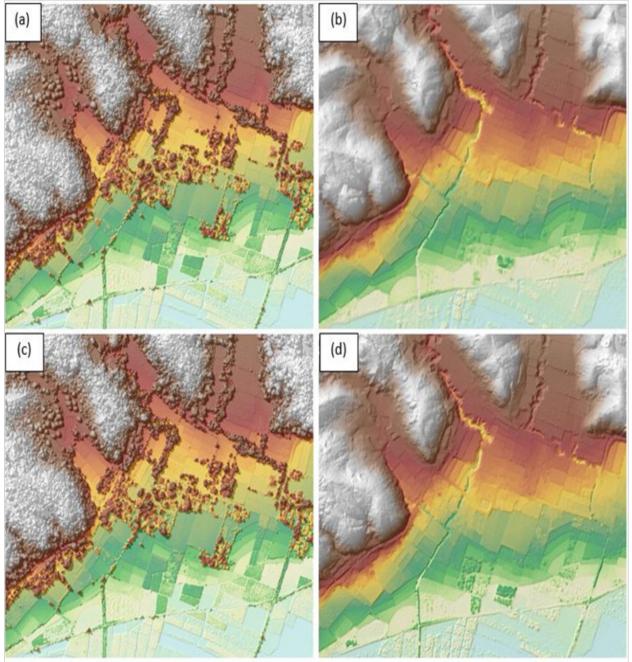


Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Silay floodplain

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Silay floodplain.

3.8 DEMs Editing and Hydro-Correction

Ten (10) mission blocks were processed for Silay flood plain. These blocks are composed of Ilocos and Laoag blocks with a total area of 1,922.38 square kilometers. Table 17 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km)		
llocos_Blk27A	227.64		
llocos_Blk27BCD	412.32		
llocos_Blk6G	141.83		
llocos_Blk7A	227.64		
Ilocos_Blk7A_additional	41.20		
llocos_Blk7B	199.83		
llocos_Blk7C_supplement	87.67		
llocos_Blk7G	143.45		
Laoag_Blk7A	114.25		
Laoag_Blk7C	202.76		
TOTAL	1922.38 sq.km		

Table 17. LiDAR blocks with its corresponding area.

Portions of DTM before and after manual editing are shown in Figure 23. The river embankment (Figure 23a) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 23b) to allow the correct flow of water. The bridge (Figure 23c) is also considered to be an impedance to the flow of water along the river and has to be removed (Figure 23d) in order to hydrologically correct the river.

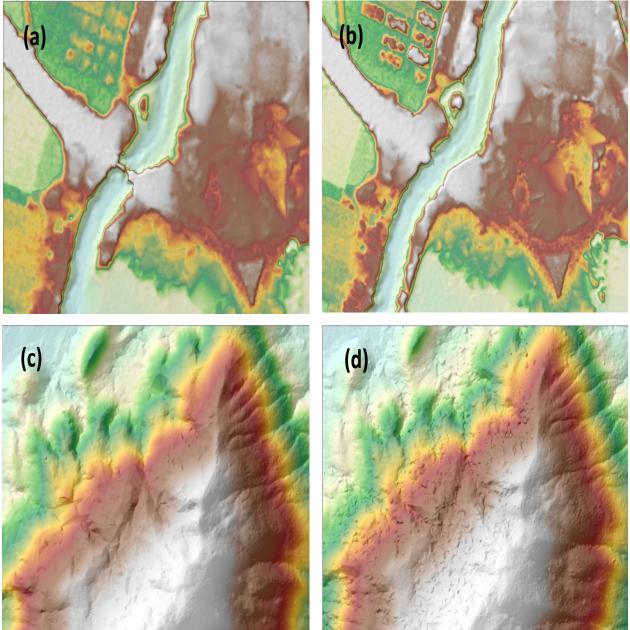


Figure 23. Portions in the DTM of Silay floodplain – a bridge before (a) and after (b) manual editing; a misclassified hill before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

Ilocos_Blk5A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy.

Mosaicked LiDAR DTM for Silay floodplain is shown in Figure 24. It can be seen that the entire Silay floodplain is 100% covered by LiDAR data.

Mission Blocks	Shift Values (meters)		
	х	У	z
llocos_Blk27A	+0.75	+3.17	+2.40
Ilocos_Blk27BCD	+2.00	+2.08	+0.30
llocos_Blk06G	+1.20 -1.90		-0.17
Ilocos_Blk07A	0.00 0.00		+2.90
llocos_Blk07A_additional	0.00	0.00	+2.75
Ilocos_Blk07B	+1.65	1.00	+2.90
Ilocos_Blk07C_supplement	+2.20	+0.50	+2.90
llocos_Blk07G	+2.20 +0.50 +		+2.90
Laoag_Blk07A	0.00	0.00	+2.64
Laoag_Blk07C	0.00	0.00	+2.51

Table 18. Shift Values of each LiDAR Block of Silay floodplain

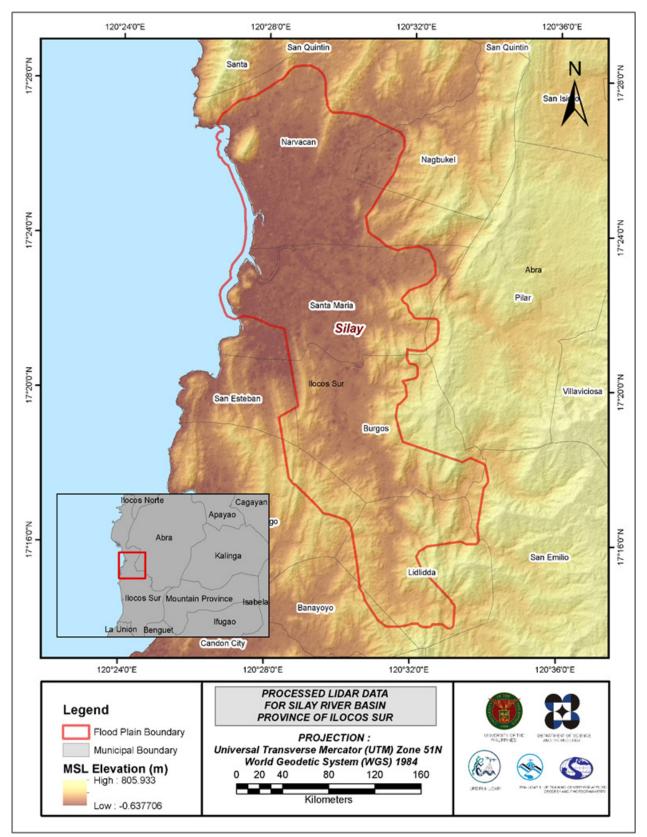


Figure 24. Map of Processed LiDAR Data for Silay Flood Plain

3.10 Calibration and Validation of Mosaicked LiDAR DEMs

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Silay to collect points with which the LiDAR dataset is validated is shown in Figure 25. A total of 6555 survey points were used for calibration and validation of Silay LiDAR data. Random selection of 80% of the survey points, resulting to 6555 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 26 Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 3.48 meters with a standard deviation of 0.13 meters. Calibration of Silay LiDAR data was done by subtracting the height difference value, 3.48 meters, to Silay mosaicked LiDAR data. Table 19 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

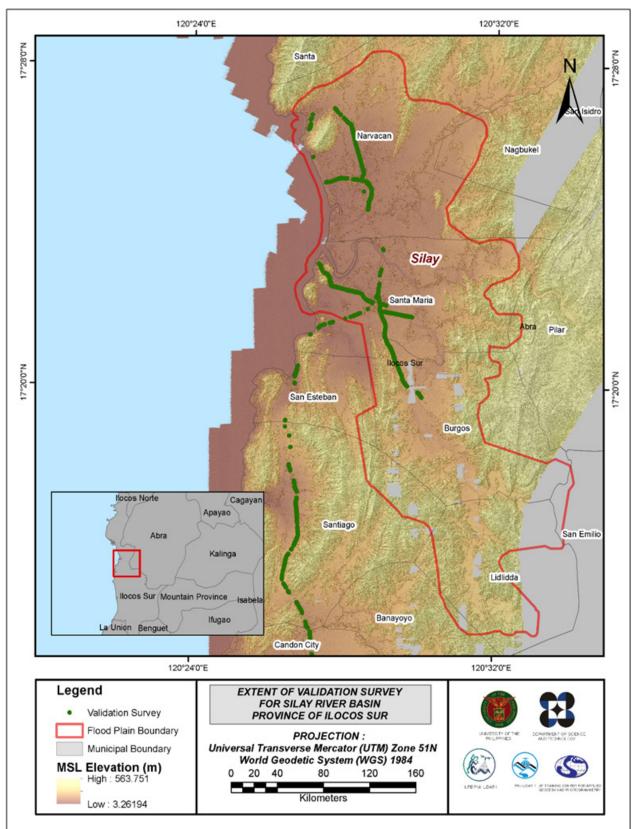


Figure 25. Map of Silay Flood Plain with validation survey points in green.

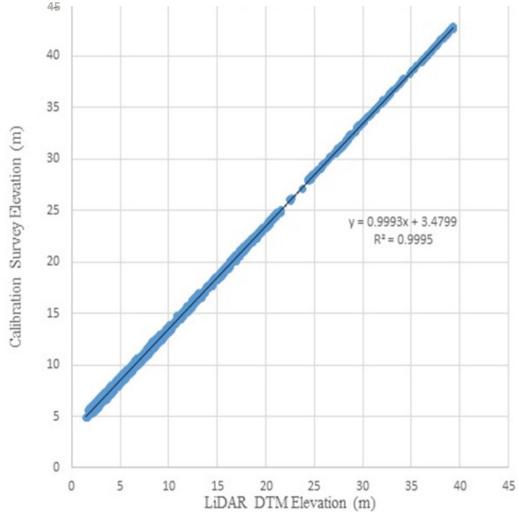


Figure 26. Correlation plot between calibration survey points and LiDAR data

Calibration Statistical Measures	Value (meters)		
Height Difference	3.48		
Standard Deviation	0.13		
Average	-3.47		
Minimum	-3.74		
Maximum	-3.21		

Table 19. Calibration	Statistical	Measures.
-----------------------	-------------	-----------

The remaining 20% of the total survey points, resulting to 1994 points, were used for the validation of calibrated Silay DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.12 meters with a standard deviation of 0.12 meters, as shown in Table 20.

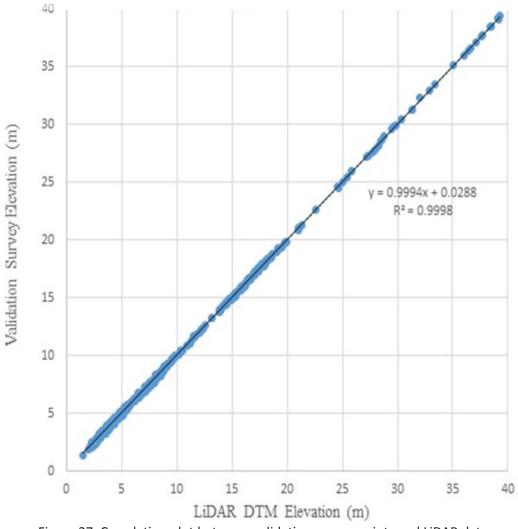


Figure 27. Correlation plot between validation survey points and LiDAR data

Table 20. Validation Statistical Measures	
---	--

Calibration Statistical Measures	Value (meters)		
Height Difference	0.12		
Standard Deviation	0.12		
Average	-0.02		
Minimum	-0.28		
Maximum	0.29		

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Silay with 13,255 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.37 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Silay integrated with the processed LiDAR DEMs is shown in Figure 28.

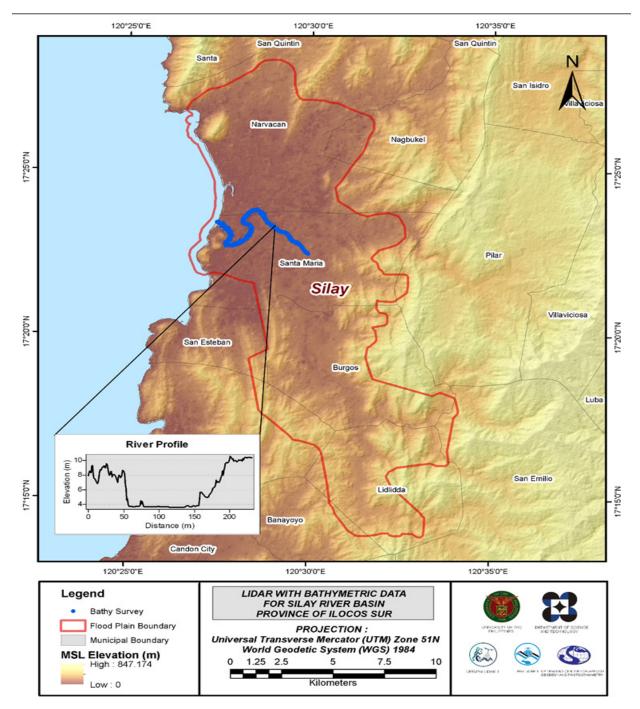


Figure 28. Extent of the bathymetric survey (in blue line) in Silay River and the LiDAR data validation survey (red).

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEMs with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Silay floodplain, including its 200 m buffer, has a total area of 173.94 sq km. For this area, a total of 6.0 sq km, corresponding to a total of 820 building features, are considered for QC. Figure 29 shows the QC blocks for Silay floodplain.

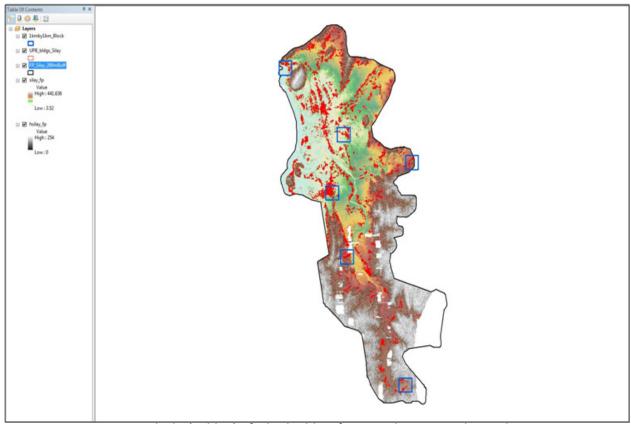


Figure 29. Blocks (in blue) of Silay building features that were subjected to QC.

Quality checking of Silay building features resulted in the ratings shown in Table 21.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Silaga	89.53	99.92	86.89	PASSED

3.12.2 Height Extraction

Height extraction was done for 22,856 building features in Silay floodplain. Of these building features, 392 buildings were filtered out after height extraction, resulting to 22,464 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 10.47 m.

3.12.3 Feature Attribution

Data collected from various sources which includes OpenStreetMap and Google Maps/Earth were used in the attribution of building features. Areas where there is no available data were subjected for field attribution using ESRI's Collector App. The app can be accessed offline and data collected can be synced to ArcGIS Online when WiFi or mobile data is available.

Table 22 summarizes the number of building features per type. On the other hand, Table 23 shows the total length of each road type, while Table 24 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	21,614
School	475
Market	44
Agricultural/Agro-Industrial Facilities	4
Medical Institutions	23
Barangay Hall	15
Military Institution	12
Sports Center/Gymnasium/Covered Court	11
Telecommunication Facilities	0
Transport Terminal	4
Warehouse	6
Power Plant/Substation	9
NGO/CSO Offices	5
Police Station	1
Water Supply/Sewerage	2
Religious Institutions	61
Bank	5
Factory	0
Gas Station	4
Fire Station	0
Other Government Offices	13
Other Commercial Establishments	156
Total	22,464

Table 22. Building Features Extracted for Silay Floodplain.

Table 23. Total Length of Extracted Roads for Silay Floodplain.

Floodplain	Road Network Length (km)					Total
	Barangay RoadCity/Municipal RoadProvincial RoadNational RoadOthers					
Silay	167.45	32.31	13.67	17.27	0	230.70

Floodplain	n Water Body Type					Total
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen					
Silay	27	23	0	0	0	50

Table 24. Number of Extracted Water Bodies for Silay Floodplain

A total of 57 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

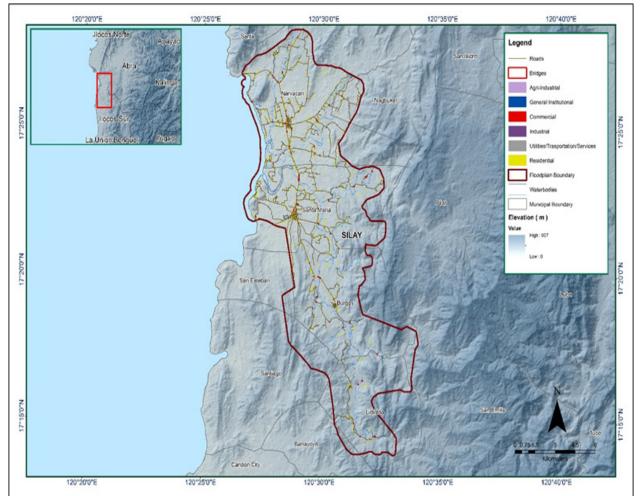


Figure 30 shows the Digital Surface Model (DSM) of Silay floodplain overlaid with its ground features.

Figure 30. Extracted features for Silay floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE SILAY RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

DVBC conducted a field survey in Silay River on June 9 – 23, 2016 with the following scope of work: reconnaissance; control survey; cross-section and as-built survey at Sta. Maria Bridge in Brgy. Quinsoriano, Municipality of Santa Maria and Burgos Bridge in Brgy. Poblacion Norte, Municipality of Burgos; validation points acquisition of about 78.68 km covering the Silay River Basin area; and bathymetric survey from its upstream in Brgy. Cabaroan in the Municipality of Santa Maria to the mouth of the river located in Brgy. Nagsayaoan in the same Municipality, with an approximate length of 8.867 km using Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 GNSS PPK survey technique (Figure 31).

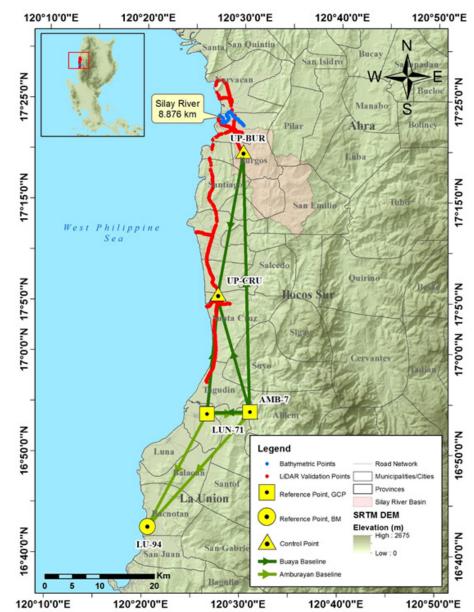


Figure 31. Silay River survey extent

4.2 Control Survey

A GNSS network from Amburayan River Survey was established on May 7, 2016 occupying the control points LUN-71, a second-order GCP, in Brgy. Gen. Prim West, Municipality of Bangar; and LU-94, a first-order BM, in Brgy. Nagsimbaanan, Muncipality of Bacnotan; both in La Union Province.

The GNSS network used for Silay River Basin is composed of two (2) loops established on June 10, 2016 occupying the following reference points: LUN-71, a second-order GCP from Amburayan Survey; and AMB-7, a NAMRIA established reference point with fixed value of elevation, located at the approach of Alilem Bridge, in Brgy. Kiat, Municipality of Alilem, llocos Sur, from Amburayan Survey.

Two (2) control points were established along the approach of bridges namely: UP-BUR, located at Burgos Bridge in Brgy. Poblacion Norte, Municipality of Burgos; and UP-CRU, at Sta. Cruz Bridge, in Brgy Quinsoriano, Municipality of Santa Cruz.

The summary of reference and control points and its location is summarized in Table 25 while the GNSS network established is illustrated in Figure 32.

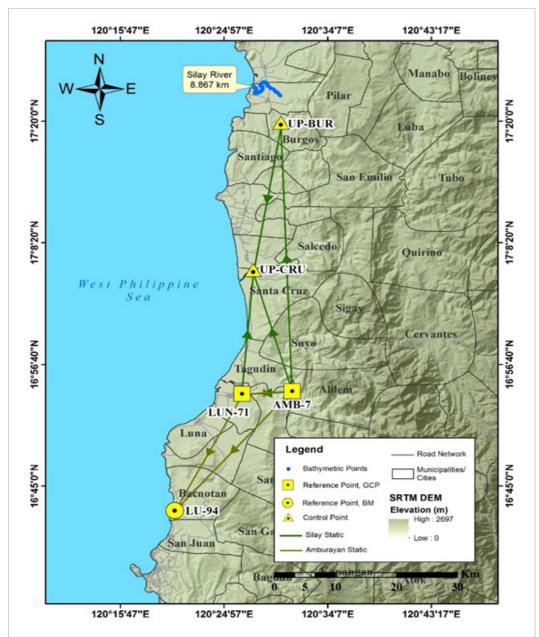


Figure 32. GNSS Network covering Slay River

Control	Order of	Geographic Coordinates (WGS 84)				
Point	Accuracy	Latitude	Longitude	Ellipsoidal Height (m)	MSL Elevation (m)	Date Established
		Control	Survey on May 7, 2016	5		
LUN-71	2nd order, GCP	16°53'51.58283"N	120°26′32.77383″E	52.356	12.794	2007
LU-94	1st order, BM	16°42'38.41914"N	120°20'35.13397"E	46.965	7.349	04-04-2014
AMB-7	Used as Marker	16°54'6.54124"N	120°30'58.32790"E	86.879	46.253	2010
		Control S	urvey on June 10, 201	.6		
LUN-71	2nd order, GCP	16°53'51.58283"N	120°26′32.77383″E	52.356	12.794	2007
AMB-7	Fixed Control	16°54′6.54124″N	120°30′58.32790″E	86.879	46.253	2010
UP-BUR	UP Established	-	-	-	-	06-10-2016
UP-CRU	UP Established	-	-	-	-	06-10-2016

Table 25. List of Reference and Control Points occupied for Silay River Survey (Source: NAMRIA; UP-TCAGP)

The GNSS set-ups on recovered reference points and established control points in Silay River are shown in Figure 33 to Figure 36.

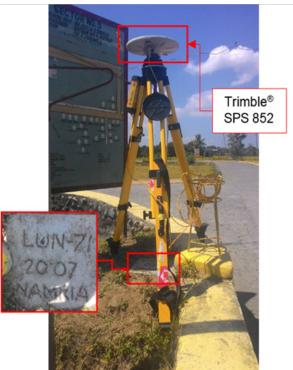


Figure 33. GNSS base set up, Trimble[®] SPS 852, at LUN-71, situated beside the irrigation canal at the right intersection of barangay roads, in Brgy. General Prim West, Municipality of Sudipen, La Union

Figure 34. GNSS receiver setup, Trimble[®] SPS 882, at AMB-7, located at the approach of Alilem Bridge, in Brgy. Kiat, Municipality of Alilem, Ilocos Sur

Figure 35. GNSS receiver setup, Trimble[®] SPS 852, at UP-BUR, located at the approach of Burgos Bridge, in Brgy. Poblacion Norte, Municipality of Burgos, llocos Sur

Figure 36. GNSS receiver setup, Trimble[®] SPS 882, at UP-CRU, located at the approach of Santa Cruz Bridge, in Brgy. Quinsoriano, Municipality of Santa Cruz, Ilocos Sur

4.3 Baseline Processing

GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20 cm and +/-10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Silay River Basin is summarized in Table 26 generated by TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UP-BUR AMB-7	06-10-16	Fixed	0.004	0.013	357°51'02"	47547.951	-33.725
UP-BUR UP-CRU	06-10-16	Fixed	0.004	0.014	189°25'31"	26406.856	-4.843
AMB-7 LUN-71	06-10-16	Fixed	0.004	0.012	266°39'44"	7872.513	-34.551
AMB-7 UP-CRU	06-10-16	Fixed	0.005	0.017	344°06'39"	22317.155	-38.497
LUN-71 UP-CRU	06-10-16	Fixed	0.005	0.018	4°32'26"	21992.529	-3.979

Table 26. Baseline Processing Summary Report for Silay River S	urvev

As shown Table 26 a total of five (5) baselines were processed with reference points LUN-71 and AMB-7 held fixed for grid and elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)}$ <20cm and $z_e < 10 \text{ cm}$ where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 28 to Table 31.

The eight (8) control points: SME-18, SE-85, SME-12, SMR-3322, SE-49, SM-33S, UP-CNG, and UP-CLG were occupied and observed simultaneously to form a GNSS loop. Coordinates of SME-18 and elevation values SE-85 were held fixed during the processing of the control points, as presented in Table 28. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height o (Meter)	Elevation σ (Meter)
LUN-71	Local	Fixed	Fixed	Fixed	
AMB-7	Local	Fixed	Fixed	Fixed	
Fixed = 0.00000	1 (Meter)				

Table 27. Control Point Constraints

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 28. The fixed control point LUN-71 and AMB-7 have no values for grid and elevation errors.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LU-71	227541.709	?	1870002.301	?	12.794	?	LLh
AMB-7	235409.911	?	1870361.711	?	46.253	?	LLh
UP-BUR	234232.833	0.043	1917917.546	0.055	14.873	0.042	
UP-CRU	229569.844	0.021	1891912.463	0.026	9.383	0.041	

Table 28. Adjusted Grid Coordi	nates
--------------------------------	-------

With the mentioned equation, $\sqrt{((Xe)^2+(Ye)^2)} < 20$ cm for horizontal and Ze<10 cm for the vertical; the computation for the accuracy are as follows:

LUN-71 horizontal accuracy vertical accuracy	= =	Fixed Fixed
AMB-7 horizontal accuracy vertical accuracy	= =	Fixed Fixed
UP-BUR horizontal accuracy	= = =	√((4.3) ² + (5.5) ² √ (18.49 + 30.25) 6.98 < 20 cm
vertical accuracy	=	4.2 cm < 10 cm
UP-CRU horizontal accuracy	= = =	$\sqrt{((2.1)^2 + (2.6)^2}$ $\sqrt{(4.41 + 6.76)}$ 3.34 < 20 cm
vertical accuracy	=	4.1 cm < 10 cm

Following the given formula and based on the result of the computations the horizontal and vertical accuracy conditions of the two occupied control points are satisfied.

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
LUN-71	N16°53'51.58283"	E120°26'32.77383"	52.356	?	LLh
AMB-7	N16°54'06.54124"	E120°30'58.32790"	86.879	?	LLh
UP-BUR	N17°19'52.14111"	E120°29'57.93445"	53.174	0.042	
UP-CRU	N17°05'44.74025"	E120°27'31.66275"	48.353	0.041	

Table 29. Adjusted Geodetic Coordinates

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 29. Based on the result of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 30.

Control Point	Order of Accuracy	Geographi	c Coordinates (WGS 84)		UT	M ZONE 51 N	
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
		C	ontrol Survey on May	7, 2016			
LUN- 71	2nd order, GCP	16°53'51.58283"N	120°26′32.77383″E	52.356	1870002.301	227541.709	12.794
LU-94	1st order, BM	16°42'38.41914"N	120°20′35.13397″E	46.965	1849438.439	216674.512	7.349
AMB-7	Used as Marker	16°54'06.54124"N	120°30′58.32790″E	86.879	1870361.711	235409.911	46.253
		Con	trol Survey on June	10, 2016			
LUN-71	2nd order, GCP	16°53'51.58283"N	120°26′32.77383″E	52.356	1870002.301	227541.709	12.794
AMB-7	Fixed Control	16°54'06.54124"N	120°30′58.32790″E	86.879	1870361.711	235409.911	46.253
UP- BUR	UP Established	17°19'52.14111"N	120°29′57.93445″E	53.174	1917917.546	234232.833	14.873
UP- CRU	UP Established	17°05′44.74025″N	120°27′31.66275″E	48.353	1891912.463	229569.844	9.383

Table 30. Reference and control points used and its location (Source: NAMRIA, UP-TCAGP)

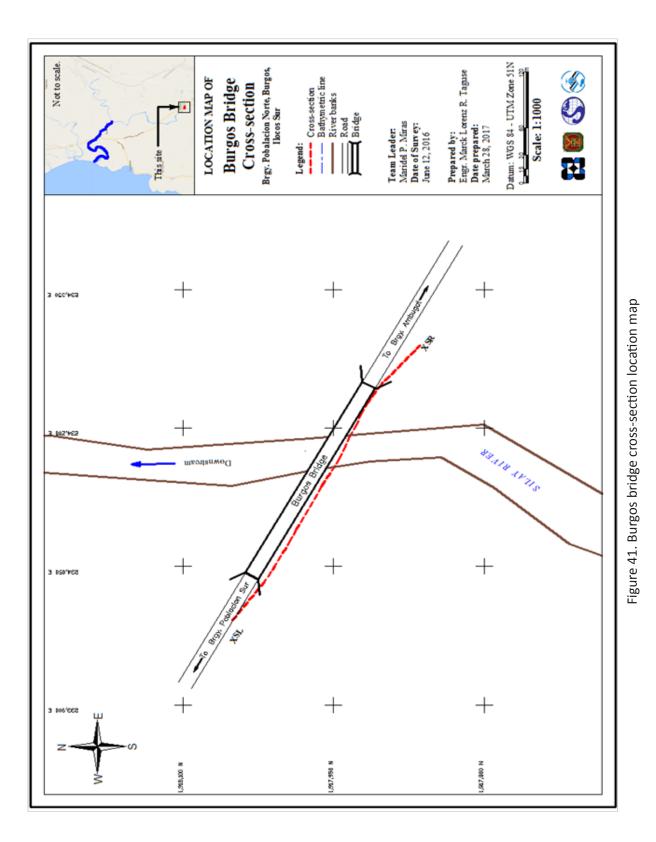
4.5 Cross-section and Bridge As-Built survey and Water Level Marking.

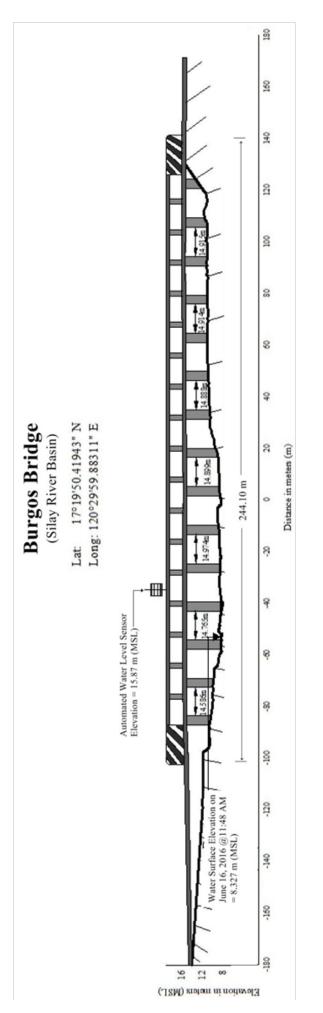
Cross-section and as-built survey were conducted on June 12 and 16, 2016 at the upstream side of Burgos Bridge in Brgy. Poblacion Norte, Municipality of Burgos, as shown in Figure 37. A survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique was utilized for this survey as shown in Figure 38.

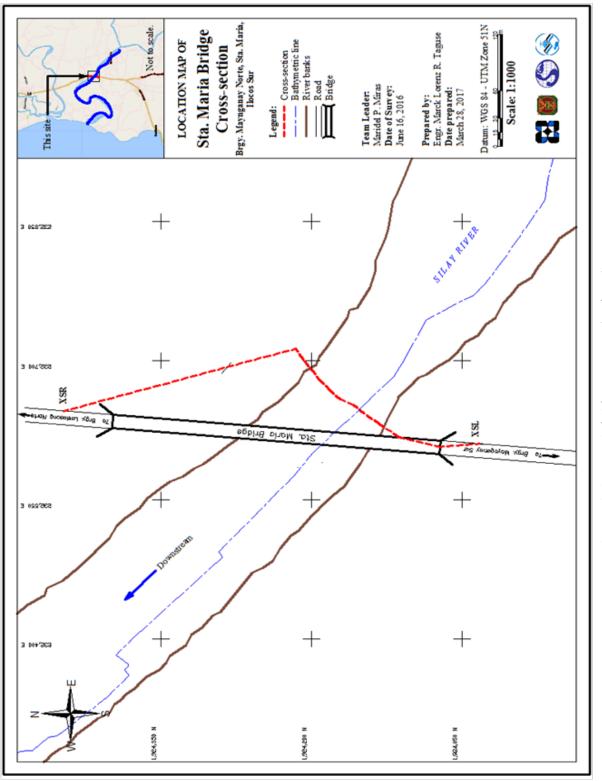
Figure 37. Burgos Bridge facing upstream

Figure 38. As-Built Survey of Burgos Bridge

Another cross-section and as-built survey were conducted on June 16, 2016 at the upstream side of Santa Maria Bridge in Brgy. Maynganay Norte, Municipality of Santa Maria, as shown in Figure 39. A Total Station was used through Open Traverse method for this survey as shown in Figure 40.




Figure 39. Sta. Maria Bridge facing upstream


Figure 40. Cross section Survey of Santa Maria Bridge using Total Station

The cross-sectional line of Burgos Bridge is about 351.490 m with three hundred forty (340) cross-sectional points; while the length of the cross-sectional line for Sta. Maria Bridge is about 414.886 m with ninety-seven (97) cross-sectional points acquired. The control point UP-CRU was used as the GNSS base station for both surveys. The location maps, cross-section diagrams, and the bridge data forms are shown in Figure 41 to Figure 45.

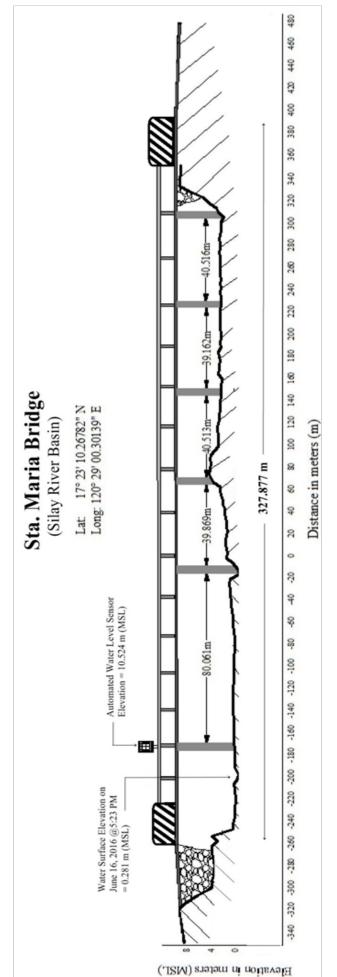
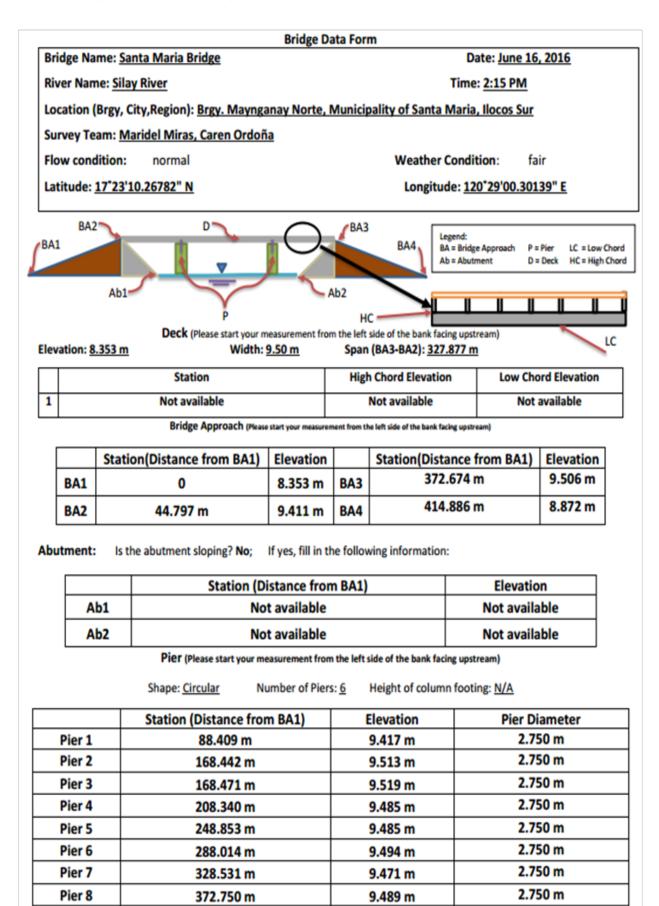



Figure 44. Sta. Maria Bridge cross section diagram

			Deldes	Bridge Da	ata For			12 201/	-
BL	idge Na	me: Br	urgos Bridge			D	ate: <u>J</u>	une 12, 2016	2
Ri	ver Nan	ne: <u>Sila</u>	y River				Time	: <u>2:30 PM</u>	
Lo	cation (Brgy, C	City,Region): Brgy. Poblacio	on Norte, M	unicipa	lity of Burgos,	llocos	Sur	
Su	irvey Te	am: M	aridel Miras, Caren Ordoñ	a					
	ow cond		normal	-		Weather	Condit	tion: fa	ir
La	titude:	17-19'5	50.41943" N			Longitud	de: <u>12</u>	0*29'59.883	<u>11" E</u>
	BA2		D		(BA3				
(BA	1	2			6	DAA	egend: A = Bridge	e Approach P =	Pier LC = Low Chord
							b = Abutn	nent D =	Deck HC = High Chord
		Ab1			b2				
			Y N						
			Deck (Please start your m	easurement from	H n the left		ing upstr	ream)	~
Elev	vation: 1	3.802 m				(BA3-BA2): 244			LC
			Station		High	Chord Elevatio	n	Low Cho	ord Elevation
1	<u> </u>		Not available		-	Not available			available
L									available
			Bridge Approach (Please	start your measuren	nent from th	e left side of the bank fac	cing upstre	tam)	
		Stati	on(Distance from BA1)	Elevation		Station(Dista	ance f	rom BA1)	Elevation
	BA1	Stati	on(Distance from BA1) 0	Elevation 13.802 m	BA3		ance f .652 r		Elevation 14.973 m
	BA1 BA2	Stati	, ,		BA3 BA4	321		n	
Abi			0 77.552 m he abutment sloping? No;	13.802 m 14.507 m If yes, fill in th	BA4	321 351 ving information	.652 r .490 r	n	14.973 m 14.888 m
Abı	BA2 utment:	: Is ti	0 77.552 m he abutment sloping? No; Station (Di	13.802 m 14.507 m If yes, fill in th stance fron	BA4	321 351 ving information	.652 r .490 r	n n Elevatio	14.973 m 14.888 m
Abi	BA2 utment:	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not	13.802 m 14.507 m If yes, fill in th stance from t available	BA4	321 351 ving information	.652 r .490 r	n n Elevatio Not availa	14.973 m 14.888 m n ble
Abu	BA2 utment:	: Is ti	0 77.552 m he abutment sloping? No; Station (Di Not	13.802 m 14.507 m If yes, fill in th stance from t available t available	BA4 ne follov n BA1)	321 351 ving information	.652 r .490 r	n n Elevatio Not availa Not availa	14.973 m 14.888 m n ble
Abı	BA2 utment:	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from	BA4 ne follow n BA1)	321 351 ving information	.652 r .490 r	n n Elevatio Not availa Not availa ream)	14.973 m 14.888 m n ble
Ab	BA2 utment:	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u>	14.973 m 14.888 m n ble
Abı	BA2 utment:	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> Pier Di	14.973 m 14.888 m n ble ble
Abi	BA2 utment:	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> Not Station (Distance from	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank faci Height of colu Elevation	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> <u>Pier Di</u> Not Av	14.973 m 14.888 m on oble oble
Abi	BA2 utment: A A A Pier 1 Pier 2 Pier 3	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> Not Station (Distance from 94.672 m 109.258 m 124.024 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.805 m 14.854 m 14.883 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> <u>Pier Di</u> Not Av Not Av Not Av	14.973 m 14.888 m able able able vailable vailable vailable
Abi	BA2 utment: A A A Pier 1 Pier 2 Pier 3 Pier 4	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.805 m 14.854 m 14.883 m 14.89 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> <u>Pier Di</u> Not Av Not Av Not Av	14.973 m 14.888 m able able able vailable vailable vailable vailable
Abi	BA2 utment: A A A A Pier 1 Pier 2 Pier 3 Pier 4 Pier 5	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.883 m 14.89 m 14.89 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> Pier Di Not Av Not Av Not Av Not Av	14.973 m 14.888 m able able able able vailable vailable vailable vailable vailable vailable
Ab:	BA2 utment: A A A A Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.883 m 14.89 m 14.862 m 14.866 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> Pier Di Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable
Ab	BA2 utment: A A A A A Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information ide of the bank fact Height of colu Elevation 14.805 m 14.883 m 14.883 m 14.89 m 14.866 m 14.866 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> Pier Di Not Av Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m 14.888 m on oble oble oble oble oble oble oble oble
Ab	BA2 utment: A A A A Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7 Pier 8	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> No Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information ide of the bank faci Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.862 m 14.866 m 14.834 m 14.876 m	.652 r .490 r	n n Elevatio Not availa Not availa neam) oting: N/A Pier Di Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable
	BA2 utment: A A A A A Pier 1 Pier 2 Pier 3 Pier 3 Pier 4 Pier 5 Pier 5 Pier 6 Pier 7 Pier 8 Pier 9	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> Not Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m 213.217 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.854 m 14.862 m 14.866 m 14.834 m 14.876 m 14.976 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: N/A Pier Di Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable
	BA2 utment: A A A A A A Pier 1 Pier 2 Pier 3 Pier 3 Pier 3 Pier 4 Pier 5 Pier 5 Pier 5 Pier 6 Pier 7 Pier 7 Pier 8 Pier 9 Pier 10	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> Not Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m 213.217 m 228.105 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.854 m 14.862 m 14.866 m 14.834 m 14.876 m 14.976 m 14.955 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: N/A Pier Di Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable
	BA2 utment: A A A A A Pier 1 Pier 2 Pier 3 Pier 3 Pier 4 Pier 5 Pier 5 Pier 6 Pier 7 Pier 8 Pier 9	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: <u>Cylindrical</u> Not Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m 213.217 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.854 m 14.862 m 14.866 m 14.834 m 14.876 m 14.976 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: <u>N/A</u> <u>Pier Di</u> Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable
	BA2 utment: A A A A Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 3 Pier 4 Pier 5 Pier 7 Pier 7 Pier 7 Pier 7 Pier 7 Pier 10 Pier 11 Pier 11 Pier 12	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: Cylindrical Not Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m 213.217 m 228.105 m 242.799 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information ide of the bank fact Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.852 m 14.866 m 14.866 m 14.876 m 14.976 m 14.976 m 14.955 m 14.964 m 15.029 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: N/A Pier Di Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable
	BA2 utment: A A A A A Pier 1 Pier 2 Pier 3 Pier 3 Pier 3 Pier 4 Pier 5 Pier 5 Pier 6 Pier 7 Pier 7 Pier 7 Pier 7 Pier 1 Pier 1 Pier 1 Pier 1 Pier 1 Pier 1 Pier 3 Pier 1 Pier 3 Pier 4 Pier 5 Pier 6 Pier 7 Pier 7 Pier 1 Pier 5 Pier 1 Pier 1 Pier 5 Pier 1 Pier 5 Pier 1 Pier 5 Pier 1 Pier 5 Pier 1 Pier 5 Pier 1 Pier 5 Pier 1 Pier 1 Pier 5 Pier 1 Pier 1 Pier 5 Pier 1 Pier 1 Pier 1 Pier 1 Pier 5 Pier 1 Pier 1 Pier 1 Pier 1 Pier 5 Pier 1 Pier 1 P	is ti b1	0 77.552 m he abutment sloping? No; Station (Di Not Pier (Please start your me Shape: Cylindrical Not Station (Distance from 94.672 m 109.258 m 124.024 m 138.789 m 153.599 m 168.573 m 183.421 m 198.320 m 213.217 m 228.105 m 242.799 m 257.713 m	13.802 m 14.507 m If yes, fill in th stance from t available t available asurement from umber of Pier	BA4 ne follow n BA1) o the left : s: <u>15</u>	321 351 ving information side of the bank fact Height of colu Elevation 14.854 m 14.854 m 14.854 m 14.862 m 14.866 m 14.834 m 14.876 m 14.976 m 14.955 m 14.964 m	.652 r .490 r	n n Elevatio Not availa Not availa ream) oting: N/A Pier Di Not Av Not Av	14.973 m 14.888 m 14.888 m able able able vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable vailable

Figure 45. Bridge as-built form of Burgos Bridge

NOTE: Use the center of the pier as reference to its station Figure 46. Bridge As-built form of Santa Maria Bridge Water surface elevation of Silay River was determined using a survey grade GNSS receiver Trimble[®] SPS 882 in PPK survey technique on June 16, 2016 at 11:48 AM with a value of 8.327 m in MSL for Burgos Bridge; and on June 16, 2016 at 5:23 PM with a value of 0.281 m in MSL for Santa Maria Bridge as shown in Figure 47 A and B, respectively. This was translated into marking on the bridge's deck using the same technique with a value of 14.890 and 9.473 m in MSL, respectively. This will serve as reference for flow data gathering and depth gauge deployment of UPB for Silay River.



Figure 47. Water-level markings on the deck of A) Burgos Bridge, and B) Santa Maria Bridge

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on June 12 and 16, 2016 using a survey-grade GNSS Rover receiver, Trimble[®] SPS 882, mounted on the roof of a vehicle as shown in Figure 48. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna heights were 2.090 m and 2.025 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with UP-CRU occupied as the GNSS base stations in the conduct of the survey.

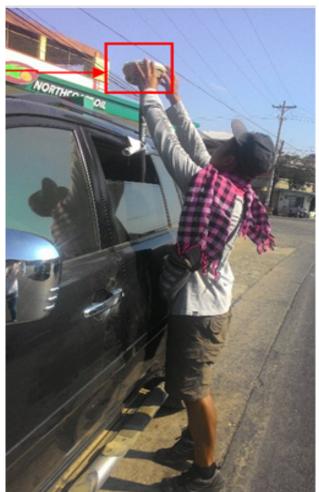


Figure 48. Validation points acquisition survey set up along Silay River Basin

The survey started from Brgy. Borono in the Municipality of Tagudin, going north covering seven (7) Municipalities of Ilocos Sur namely: Santa Lucia, Santiago, San Esteban, Burgos, Santa Maria and Narvacan; and Candon City. The survey gathered a total of 9,969 points with approximate length of 78.68 km using UP-CRU as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 49.

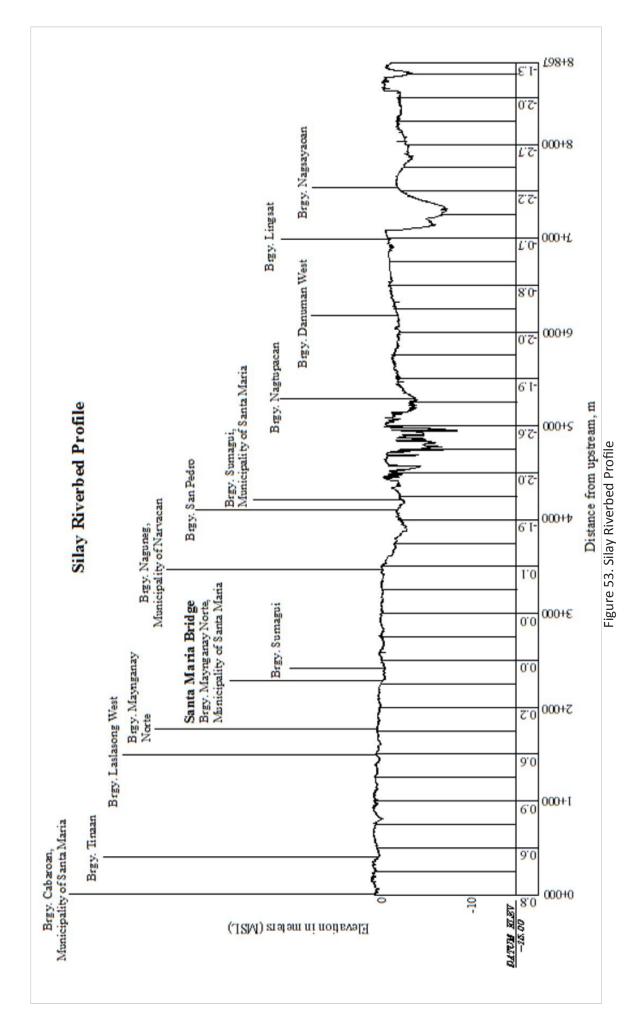
Figure 49. Validation point acquisition survey of Silay River basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on June 17, 2016 using an Ohmex[™] single beam echo sounder and Trimble[®] SPS 882 in GNSS PPK survey technique in continuous topo mode as illustrated in Figure 50. The survey started in Brgy. Naguneg, Municipality of Narvacan, with coordinates 17°23′46.50419″N, 120°28′32.69234″E, and ended in Brgy. Nagsayaoan, Municipality of Santa Maria with coordinates 17°23′24.18436″N, 120°27′26.65629″E.

Figure 50. Bathymetric survey using Ohmex[™] single beam echo sounder in Silay River

Manual bathymetric survey, on the other hand, was conducted simultaneously on the same day using a Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 51. The survey started from the upstream of the river in Brgy. Cabaroan, Municipality of Santa Maria, with coordinates 17°22'27.18389"N, 120°29'56.64312"E, traversed down by foot, and ended at the starting point of bathymetric survey by boat. The control point UP-BUR was used as the GNSS base station all throughout the entire survey.


Figure 51. Manual bathymetric survey in Silay River

The bathymetric survey for Silay River gathered a total of 14,030 points covering 8.867 km of the river traversing thirteen (13) barangays in Municipality of Santa Maria and two (2) barangays in Municipality of Narvacan. A CAD drawing was also produced to illustrate the riverbed profile of Silay River. As shown in Figure 53, the highest and lowest elevation has a 9-m difference. The highest elevation observed was 1.239 m above MSL located in Brgy. Nagsayaoan, while the lowest was -8.469 m below MSL located in Brgy. Lingsat, both in Municipality of Santa Maria. The survey for the remaining 12 km upstream of the river was cut because LiDAR data for its riverbed is already available.

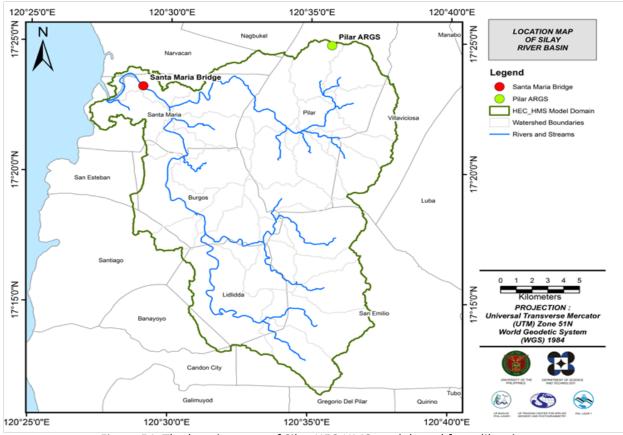
Figure 52. Bathymetric survey of Silay River

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Hannah Aventurado

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling


5.1.1 Hydrometry and Rating Curves

Components and data that affect the hydrologic cycle of the Silay River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Silay River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). This rain gauge is the Pilar ARG (17°24′53.61″ N, 120°35′44.1″ E), located in Pilar, Abra, as shown in Figure 52. The precipitation data collection started from August 24, 2016 at 11:00 AM to August 30, 2016 at 7:30 AM with a 15-minute recording interval.

The total precipitation for this event in Pilar ARG was 112 mm. It has a peak rainfall of 12.6 mm. on August 27, 2016 at 2:00 PM. The lag time between the peak rainfall and discharge is 13 hours.

5.1.3 Rating Curves and Outflow

A rating curve was developed at Santa Maria Bridge or Mayngayngay Norte Bridge, Santa Maria, Ilocos Sur (17°23'16.08" N, 120°29'0.39" E). It gives the relationship between the observed water level from the Santa Maria Bridge and outflow of the watershed at this location.

For Santa Maria or Mayngayngay Norte Bridge, the rating curve is expressed as Q = 2.3211e1.1665x as shown in Figure 56.

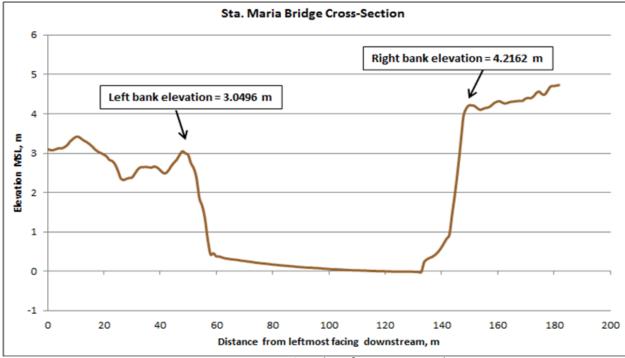


Figure 55. Cross-Section Plot of Sta. Maria Bridge

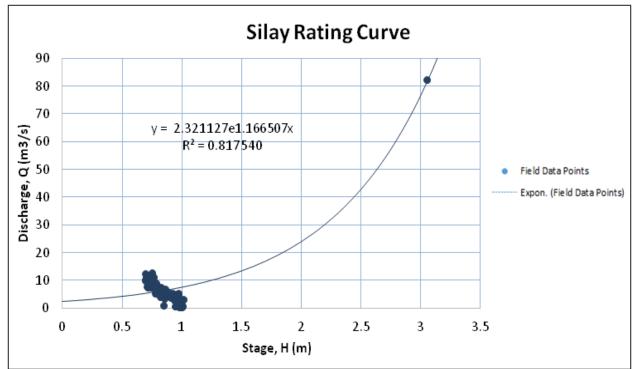


Figure 56. Rating Curve at Santa Maria Bridge, Santa Maria, Ilocos Sur

The rating curve equation was used to compute for the river outflow at Santa Maria Bridge for the calibration of the HEC-HMS model for Silay, as shown in Figure 57. The total rainfall for this event is 112 mm and the peak discharge is 17.28 m3/s at 3:00 AM of August 28, 2016.

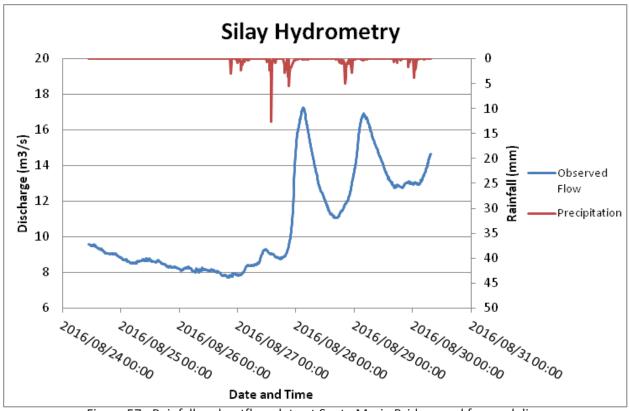


Figure 57. Rainfall and outflow data at Santa Maria Bridge used for modeling

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Laoag Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Silay watershed. The extreme values for this watershed were computed based on a 59-year record

	T	<u>able 31. RI</u>	<u>DF values f</u>	<u>for Laoag R</u>	ain Gauge	<u>computed</u>	by PAGAS	<u>A</u>	
		COMPUT	ED EXTRE	ME VALUE	S (in mm)	OF PRECI	PITATION		
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	22.7	35.4	45.7	62.5	89	110.9	148.5	187.8	232.8
5	31.4	48	61.5	87.1	124.6	157.8	211.7	266.3	331.7
10	37.2	56.3	71.9	103.5	148.2	189	253.6	318.3	397.1
15	40.5	61	77.8	112.7	161.6	206.5	277.2	347.7	434
20	42.8	64.3	81.9	119.1	170.9	218.8	293.7	368.2	459.9
25	44.5	66.8	85.1	124.1	178.1	228.3	306.4	384.1	479.8
50	50	74.6	94.8	139.4	200.2	257.4	345.7	432.8	541.1
100	55.3	82.4	104.5	154.6	222.2	286.4	384.6	481.2	602

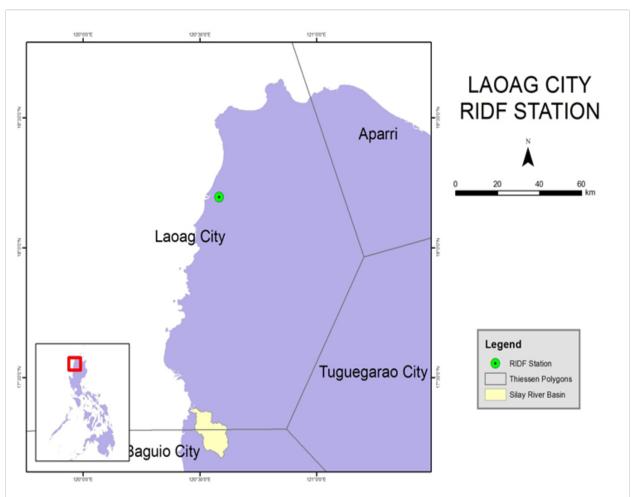
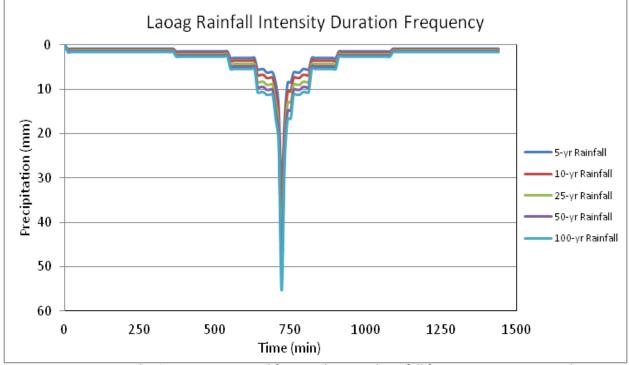
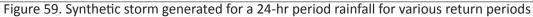




Figure 58. Location of Laoag RIDF Station relative to Silay River Basin

5.3 HMS Model

The soil shapefile was taken on 2004 from the Bureau of Soils; this is under the Department of Environment and Natural Resources Management (DENR). The land cover shape file is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Silay River Basin are shown in Figures 60 and 61, respectively.

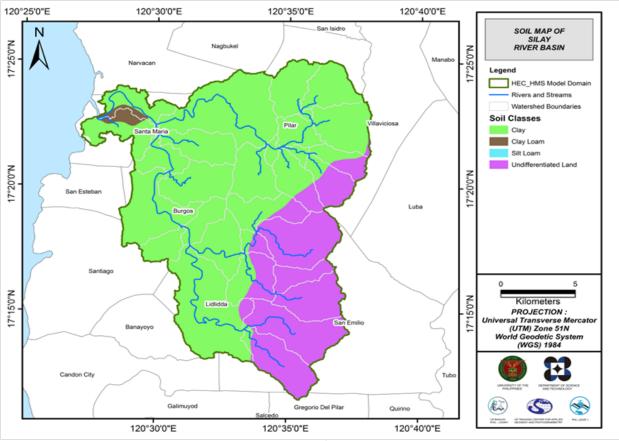


Figure 60. Soil Map of Silay River Basin

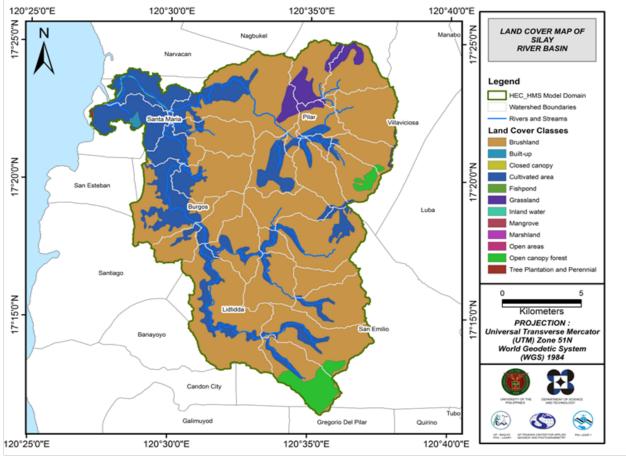


Figure 61. Land Cover Map of Silay River Basin

For Silay, four soil classes were identified. These are clay, clay loam, silt loam and undifferentiated land. Moreover, 12 land cover classes were identified. These are brushlands, built-up areas, closed canopy, cultivated areas, fishponds, grasslands, inland water, mangroves, marshlands, open areas, open canopy forests, and tree plantations.

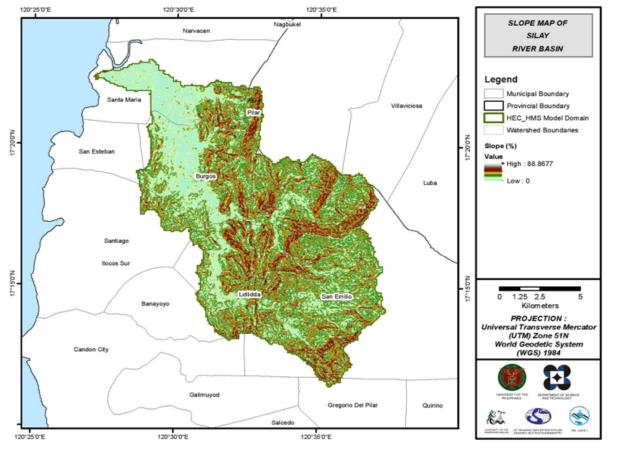


Figure 62. Slope Map of Silay River Basin

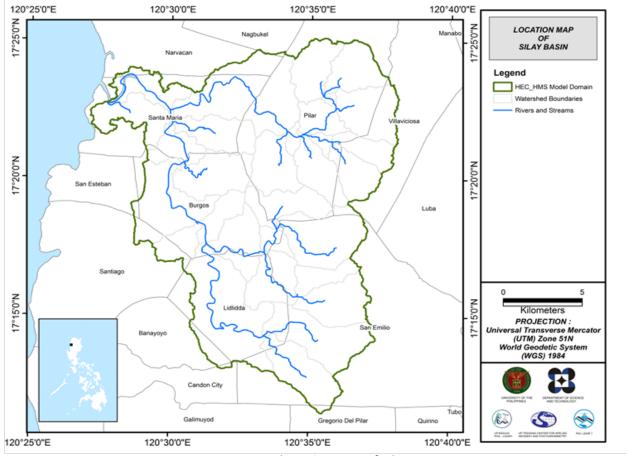


Figure 63. Stream Delineation Map of Silay River Basin

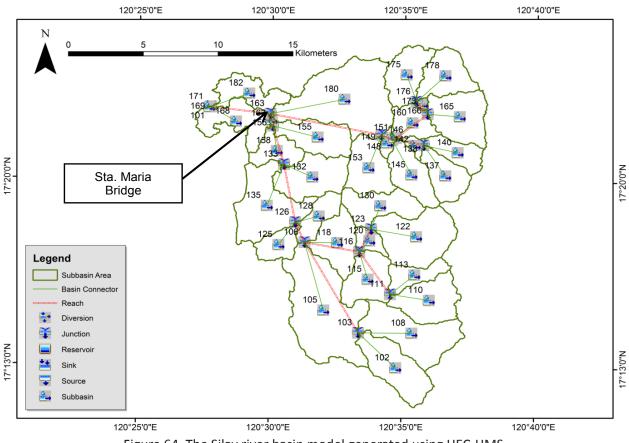


Figure 64. The Silay river basin model generated using HEC-HMS.

Using the SAR-based DEMs, the Silay basin was delineated and further subdivided into subbasins (Annex 10). The model consists of 33 sub basins, 16 reaches, and 16 junctions, as shown in Figure 63. The main outlet is 169.

5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEMs data. It was defined from the Arc GeoRAS tool and was post-processed in ArcGIS.

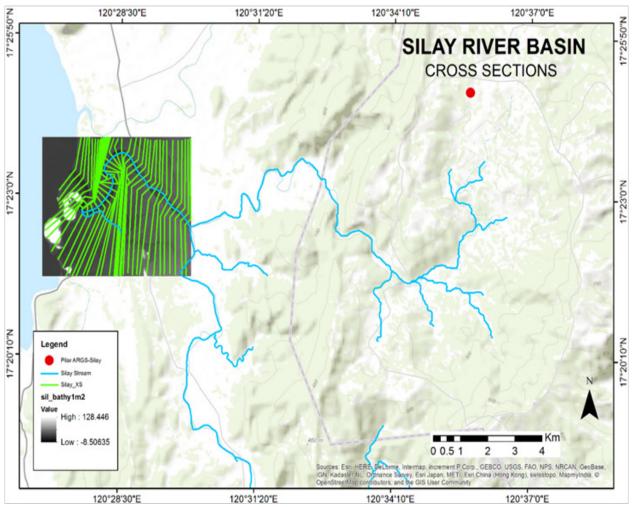


Figure 65. River cross-section of River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the east of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

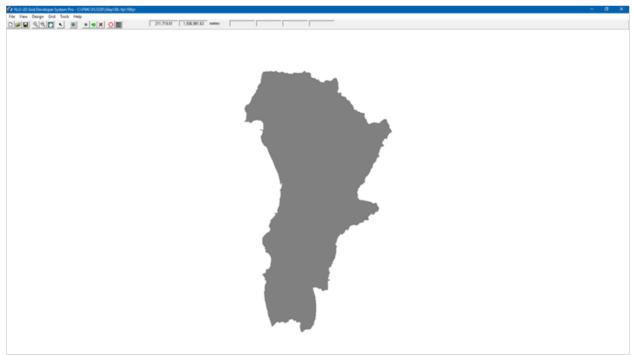


Figure 66. A screenshot of the river subcatchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 185.18750 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Silay are in Figures 70, 72, and 74.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 99 142 272.00 m2. The generated flood depth maps for Silay are in Figures 71, 73, and 75.

There is a total of 266 162 532.84 m3 of water entering the model. Of this amount, 65 907 782.34 m3 is due to rainfall while 200 254 750.50 m3 is inflow from other areas outside the model. 24 037 788.00 m3 of this water is lost to infiltration and interception, while 64 057 088.90 m3 is stored by the flood plain. The rest, amounting up to 178 067 726.38 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Silay HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 67 shows the comparison between the two discharge data.

Figure 67. Outflow Hydrograph of Silay produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 32 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve Number	Initial Abstraction (mm)	7.38 - 137.58
			Curve Number	35 – 52.5
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.207 – 15.77
			Storage Coefficient (hr)	0.0167 – 3.19
	Baseflow	Recession	Recession Constant	0.805 - 1
			Ratio to Peak	0.0001 - 0.00015
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.627 - 1

Table 32. Range of Calibrated V	Values for Silay River Basin
---------------------------------	------------------------------

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 7.38 mm to 137.58 mm means that the amount of infiltration or rainfall interception by vegetation all over the basin varies greatly.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Silay, the basin consists mainly of brushlands and the soil consists of mostly undifferentiated land and clay.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.0167 hours to 15.77 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.805 to 1 indicate that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Values of ratio to peak within the range of 0.0001 to 0.00015 indicate a much steeper receding limb of the outflow hydrograph. Silay model basin parameters are presented in Annex 9.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Quiaoit river basin reaches' Manning's coefficients range from 0.627 to 1, showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy Measure	Value
RMSE	0.8
r2	0.918
NSE	0.92
PBIAS	-0.38
RSR	0.29

Table 33. Summary of the Efficiency Test of Silay HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 0.8 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.918.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.92.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -0.38.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.29.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 68) shows the Silay outflow using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

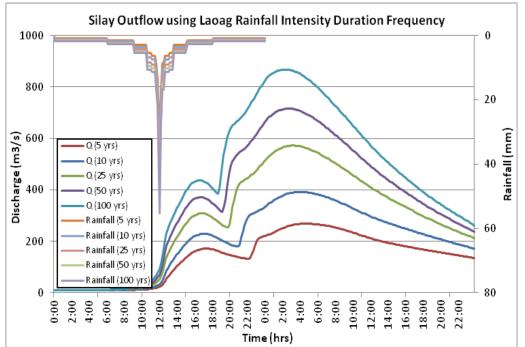


Figure 68. Outflow hydrograph at Silay Station generated using the Laoag RIDF simulated in HEC-HMS.

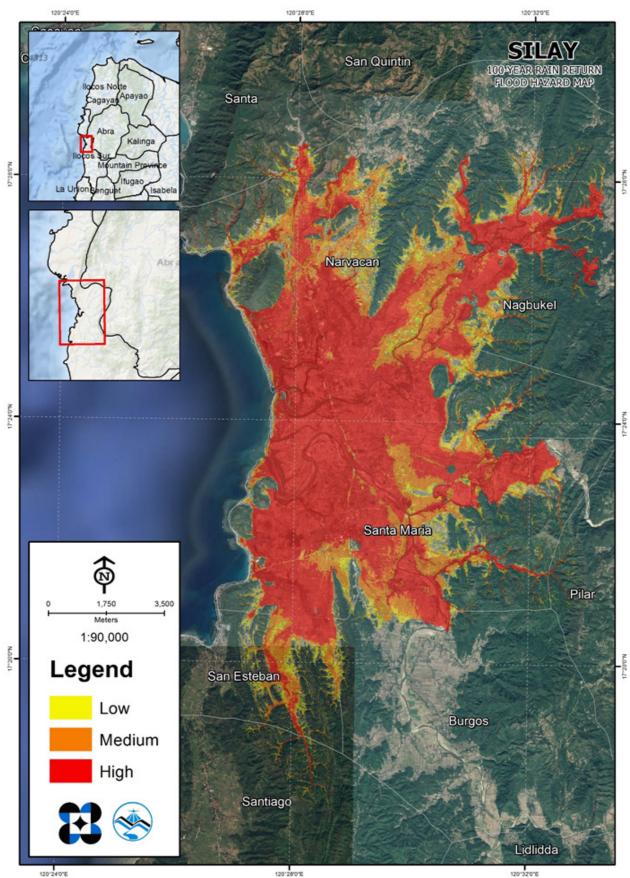
A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Silay discharge using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 34.

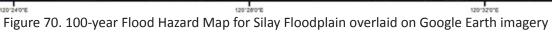
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m3/s)	Time to Peak
5-Year	331.7	31.4	268.4	16 hours,30 minutes
10-Year	397.1	37.2	392.2	16 hours
25-Year	479.8	44.5	572.5	15 hours, 10 minutes
50-Year	541.1	50	715.8	14 hours, 40 minutes
100-Year	602	55.3	867.9	14 hours, 20 minutes

Table 34. Peak values of the Silay HEC-HMS Model outflow using the Laoag RIDF

5.8 River Analysis Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. The sample generated map of Silay River using the calibrated HMS base flow is shown in Figure 69.




Figure 69. Sample output of Silay RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. The 5-, 25-, and 100-year rain return scenarios of the Silay floodplain are shown in Figures 69 to 74. The floodplain, with an area of 158.193 sq. km., covers eight municipalities from two provinces. Table 35 shows the percentage of area affected by flooding per municipality.

Province	Municipality	Total Area	Area Flooded	% Flooded
Abra	Pilar	92.1961	2.47482	2.68%
Ilocos Sur	Burgos	49.604	3.13972	6.33%
Ilocos Sur	Nagbukel	36.4591	12.6393	34.67%
Ilocos Sur	Narvacan	97.1762	72.9262	75.05%
llocos Sur	San Esteban	17.2667	9.97464	57.77%
Ilocos Sur	Santa Maria	52.3193	48.9689	93.60%
Ilocos Sur	Santa	57.1968	3.15538	5.52%
Ilocos Sur	Santiago	65.566	4.13186	6.30%

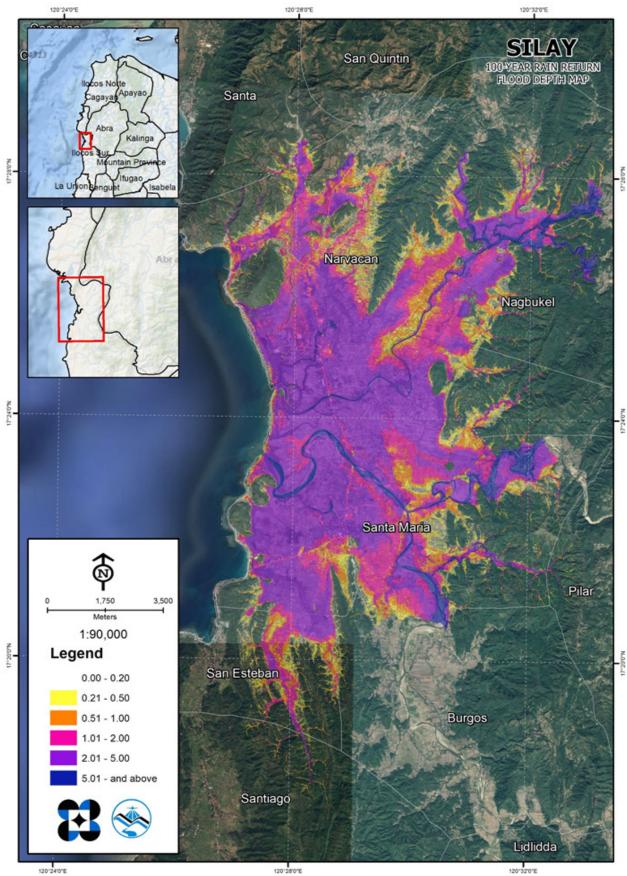


Figure 71. 100-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery

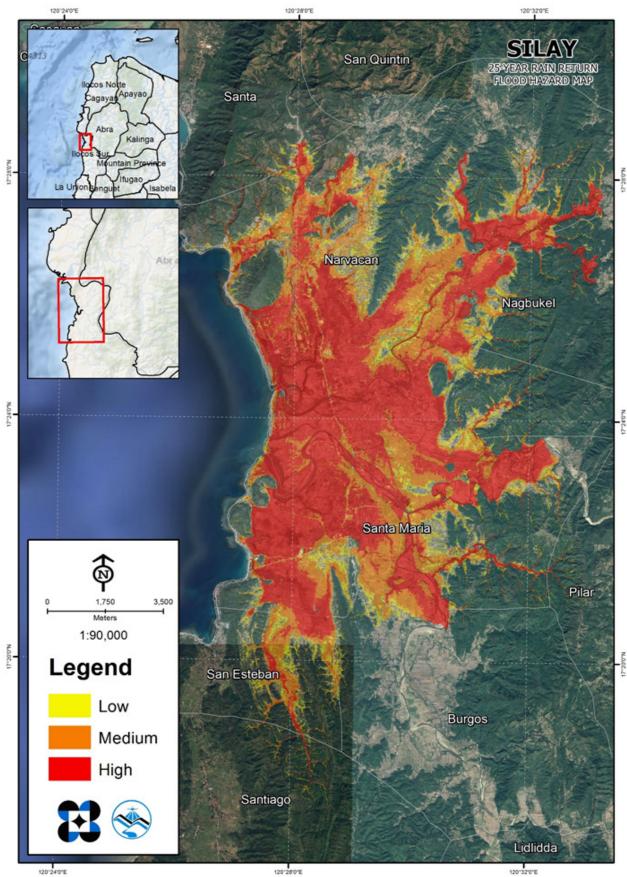


Figure 72. 25-year Flood Hazard Map for Silay Floodplain overlaid on Google Earth imagery

Figure 73. 25-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery

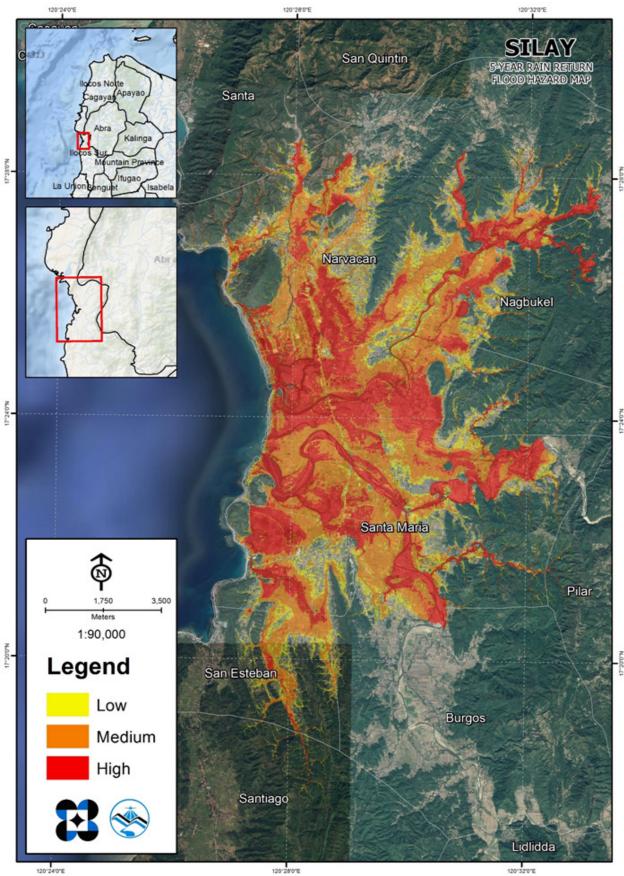


Figure 74. 5-year Flow Hazard Map for Silay Floodplain overlaid on Google Earth imagery

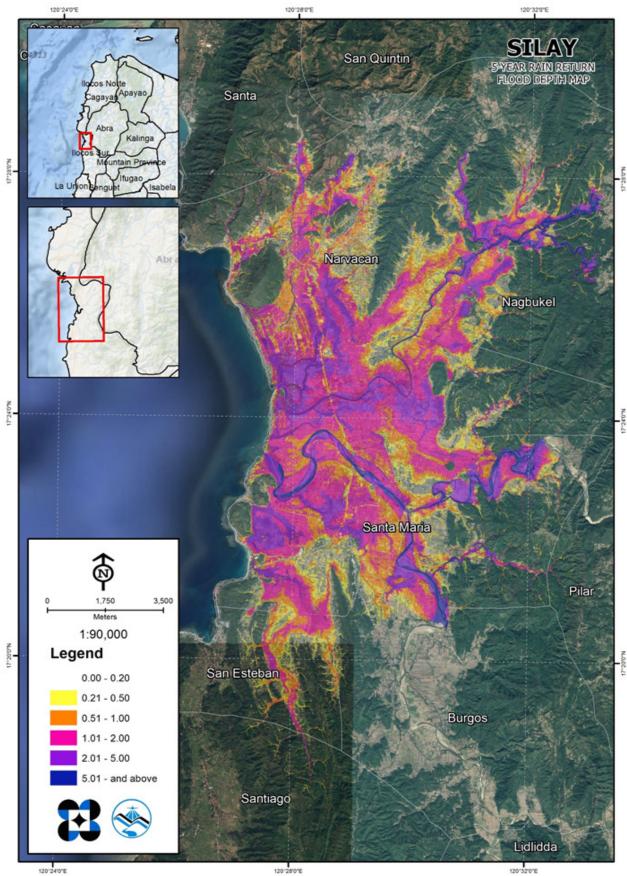


Figure 75. 5-year Flow Depth Map for Silay Floodplain overlaid on Google Earth imagery

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Silay River Basin, grouped by municipality, are listed below. For the said basin, two (2) provinces with eight (8) municipalities consisting of 99 barangays are expected to experience flooding when subjected to 5-yr rainfall return period. Annexes 12 and 13 list the educational and health institutions, respectively, that will be affected by flooding in Silay River Basin.

For the 5-year return period, 2.53% of the municipality of Pilar with an area of 92.196 sq. km. will experience flood levels of less than 0.20 meters. 0.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.03%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometers by flood depth per barangay.

Affected are (sq.	Affected Bar	angay in Pilar
km.) by flood depth (in m.)	Bookside	Nagcanasan
0-0.20	1.59	0.74
0.21-0.50	0.05	0.022
0.51-1.00	0.026	0.0078
1.01-2.00	0.022	0.0036
2.01-5.00	0.0093	0.00085
> 5.00	0.0003	0

Table 36. Affected Areas in Pilar, Abra during 5-Year Rainfall Return Period

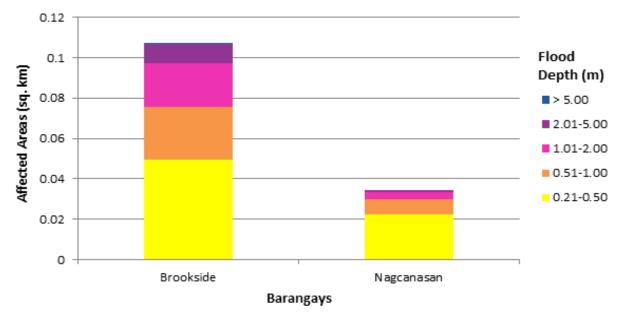
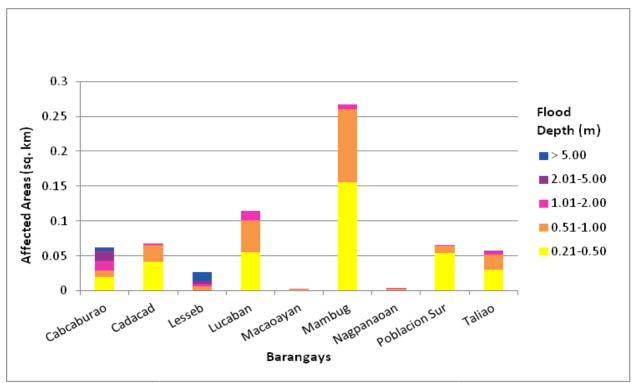



Figure 76. Affected Areas in Pilar, Abra during 5-Year Rainfall Return Period

For the 5-year return period, 5.02% of the municipality of Burgos with an area of 49.604 sq. km. will experience flood levels of less than 0.20 meters. 0.72% of the area will experience flood levels of 0.21 to 0.50 meters while 0.45%, 0.09%, 0.04%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

		-	Af	fected Bar	angays in Bur	gos			
Affected area (sq. km.) By flood depth (in m.)	Cabcab- urao	Cadacad	Lesseb	Lucaban	Macaoayan	Mambug	Nagpa- naoan	Poblacion Sur	Taliao
0-0.20	0.52	0.23	0.014	0.42	0.18	0.47	0.016	0.35	0.29
0.21-0.50	0.02	0.042	0.00078	0.055	0.0014	0.16	0.00026	0.054	0.03
0.51-1.00	0.009	0.024	0.0054	0.046	0.0001	0.1	0.0023	0.01	0.022
1.01-2.00	0.014	0.0019	0.0036	0.013	0.000005	0.0077	0.000001	0.00093	0.0046
2.01-5.00	0.016	0	0.0041	0	0	0	0	0	0.0001
> 5.00	0.0037	0	0.013	0	0	0	0	0	0

Table 37. Affected Areas in Burgos, Ilocos Sur during 5-Year Rainfall Return Period

For the 5-year return period, 22.44% of the municipality of Nagbukel with an area of 36.46 sq. km. will experience flood levels of less than 0.20 meters. 2.37% of the area will experience flood levels of 0.21 to 0.50 meters while 2.83%, 4.21%, 2.20%, and 0.64% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

"Affected		•	Area o	f affected bai	rangays in	Nagbukel	(in sq. km)		
area (sq. km.) By flood depth (in m.)"	Balaweg	Bandril	Bantugo	Casilagan	Mapisi	Mission	Poblacion East	Poblacion West	Taleb
0-0.20	0.14	1.91	0.097	1.01	1.54	1.07	0.65	1.44	0.33
0.21-0.50	0.085	0.24	0.077	0.058	0.069	0.15	0.058	0.12	0.016
0.51-1.00	0.27	0.085	0.29	0.025	0.06	0.13	0.09	0.056	0.017
1.01-2.00	0.39	0.028	0.79	0.023	0.052	0.06	0.16	0.017	0.017
2.01-5.00	0.3	0.024	0.1	0.094	0.12	0.047	0.079	0.0033	0.038
> 5.00	0.0007	0.00093	0	0.13	0.087	0.0001	0	0	0.017

Table 38. Affected Areas in	Nagbukel, Ilocos Sur	during 5-Year	Rainfall Return Period
-----------------------------	----------------------	---------------	------------------------

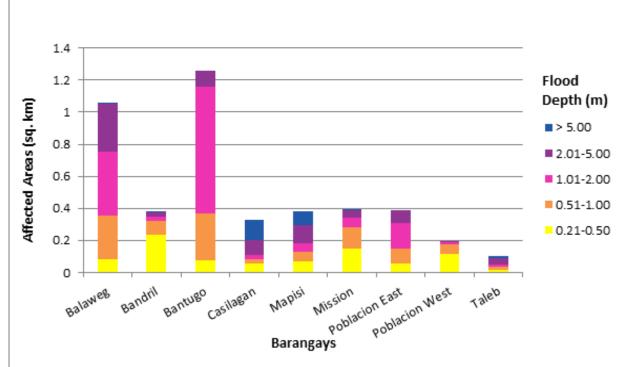


Figure 78. Affected Areas in Nagbukel, Ilocos Sur during 5-Year Rainfall Return Period

For the 5-year return period, 35.12% of the municipality of Narvacan with an area of 97.176 sq. km. will experience flood levels of less than 0.20 meters. 6.74% of the area will experience flood levels of 0.21 to 0.50 meters while 8.50%, 15.10%, 8.82%, and 0.79% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

SII AV RASIN					A	Affected Barangays in Narvacan	ays in Narvaca	c					
		Abuor	Ambulogan	Aquib	Banglayan	Banglayan Bantay Abot	Bulanos	Cadacad	Cagayungan	Camarao Casilagan Codoog	Casilagan	Codoog	Dasay
Affected Area	0-0.20	0.0012	3.41	1.87	3.07	0.79	1.34	0.51	0.0063	2.08	1.5	1.07	2.21
(sq. km.)	0.21-0.50	0.004	0.51	0.57	0.29	0.14	0.17	0.021	0.021	0.42	0.098	0.48	0.48
	0.51-1.00	0.022	0.38	0.39	0.17	0.17	0.46	0.014	0.21	0.53	0.042	0.64	0.63
	1.01-2.00	0.25	0.16	0.21	0.18	0.23	0.5	0.0075	1.38	0.39	0.041	0.41	1.47
	2.01-5.00	0.29	0.0058	0.11	0.39	0.067	0.092	0.0024	0.94	0.17	0.12	0.37	0.53
	> 5.00	0	0	0	0.016	0	0	0.0002	0.017	0	0.12	0.12	0.026

Table 39. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	
9. Affected Areas in Narvacan, Ilocos Sur during	l Return Period
9. Affected Areas in Narvacan, Ilocos Sur during	fal
9. Affected Areas in Narvacan, Ilocos Sur during	in
9. Affected Areas in Narvacan, Ilocos Sur during	R
9. Affected Areas in Narvacan, Ilocos Sur during	5-Year
9. Affected Areas in Narvacan, llocos Sur d	60
9. Affected Areas in Narvacan, llocos Sur d	Ŀ
9. Affected Area	qu
9. Affected Area	Ľ,
9. Affected Area	S
9. Affected Area	llocos
9. Affected Area	<u>`</u>
9. Affected Area	vacal
9. Affected Area	Var
9. Affected Area	ц Ц
Table 39. Affected Area	IS i
Table 39. Affected	Area
Table 39. Affect	b
Table 39. Affe	ct
Table 39.	Affe
Table 3	39.
Tabl	e
	Tabl

SII AY BASIN					Af	fected Barang	Affected Barangays in Narvacan	E				
		Dinalaoan	Estancia	Lanipao	Lungog	Margaay	Marozo	Naguneg	Orence	Pantoc	Paratong Parparia	Parparia
Affected Area 0-0	0-0.20	0.039	0.049	0.64	1.47	0.11	2.27	0.008	0.3	0.12	0.023	0.7
(sq. km.) 0.21	0.21-0.50	0.034	0.0067	0.039	0.27	0.11	0.27	0.018	0.25	0.03	0.053	0.22
0.51	0.51-1.00	0.093	0.047	0.018	0.35	0.29	0.24	0.11	0.18	0.053	0.25	0.27
1.01	1.01-2.00	0.56	0.12	0.0057	0.3	0.63	0.38	0.93	0.29	0.2	0.51	0.56
2.01	2.01-5.00	0.29	0.1	0.01	0.26	0.37	0.19	0.59	0.022	0.58	0.27	0.031
۵ ۸	> 5.00	0	0.08	0.0011	0.022	0	0.0027	0.046	0.018	0	0	0

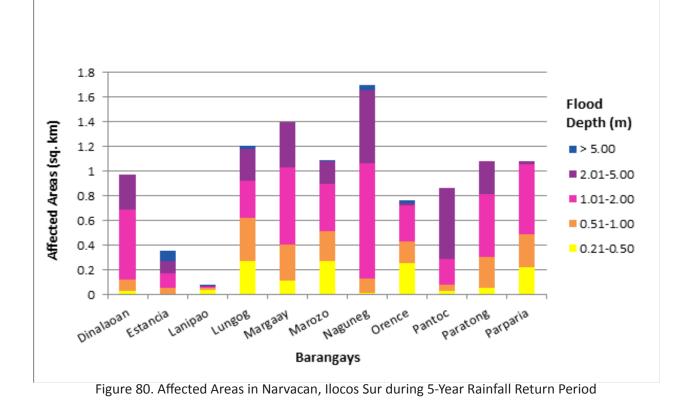
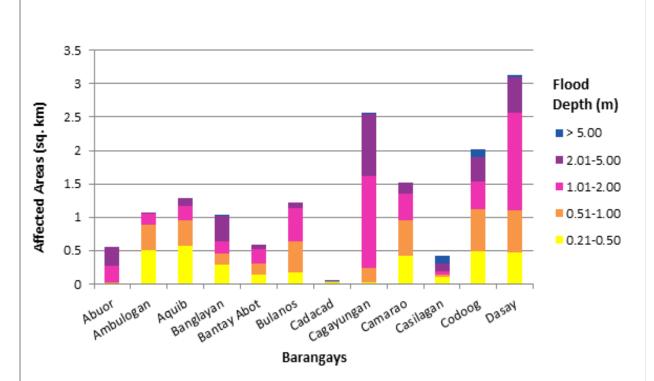



Figure 79. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period

		Table 40 /	Affected Ar	eas in Narv	/acan, llocos	Sur during 5-\	Table 40 Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period	eturn Period	_		
Affected Areas (in sq.m.) by					Affected B	Affected Barangays in Narvacan	larvacan				
flood depth (in m.)	Quinarayan Rivadavia	Rivadavia	San Antonio	San Jose	San Pablo	San Pedro	Santa Lucia	Sarmingan	Sucoc	Sulvec	Turod
0-0.20	1.92	0.21	0.0052	0.027	0.26	0.076	0.019	0.99	4.63	2.29	0.1
0.21-0.50	0.47	0.13	0.014	0.016	0.66	0.024	0.026	0.15	0.42	0.098	0.031
0.51-1.00	0.7	0.36	0.093	0.049	0.76	0.11	0.041	0.22	0.17	0.088	0.098
1.01-2.00	1.06	0.71	1.06	0.19	0.27	0.59	0.19	0.23	0.33	0.07	0.29
2.01-5.00	0.23	0.12	0.81	0.19	0.057	0.44	0.16	0.16	0.41	0.021	0.21
> 5.00	0	0.029	0.000012	0	0.044	0.0027	0	0.22	0.0018	0.0001	0

$\overline{\mathbf{D}}$
Ř
.⊆
5
e e
<u> </u>
–
يد
Ψ
2
=
g
Ŧ
2
9
õ
-
Ľ
≍
1
ഗ
ring 5-Y
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- <u>-</u>
5
0
_
n
S
Ś
õ
- ŭ
ō
lloco
_
Ē
a
Ŭ
ъ
n Narva
2
0
Z
~
_:_
Ś
ö
ີຄັ
<u> </u>
$\triangleleft$
_
0
e
5
ā
Ϋ́
7
4
e 40 A
4
-
q
ъ.
F

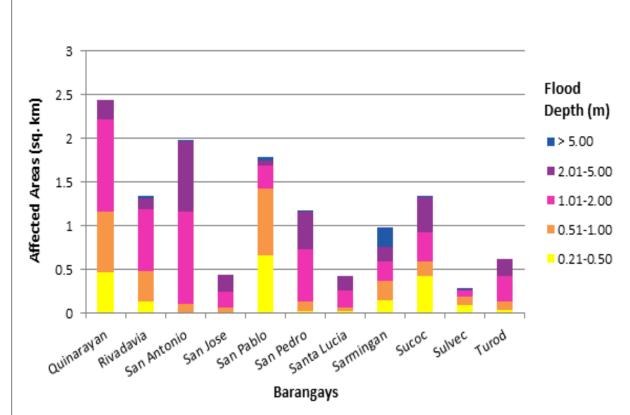



Figure 81. Affected Areas in Narvacan, Ilocos Sur during 5-Year Rainfall Return Period

Silay	Basin		Affec	ted Baranga	ys in San E	steban		
		Ansad	Cabaroan	Сарра-Сарра	Poblacion	San Nicolas	San Pablo	San Rafael
Q	0-0.20	1.41	2	1.25	0.26	0.38	0.79	0.3
Affected Are (sq. km.)	0.21-0.50	0.24	0.17	0.58	0.02	0.02	0.064	0.036
. kr	0.51-1.00	0.4	0.093	0.78	0.0017	0.0051	0.029	0.008
ffec (sq	1.01-2.00	0.32	0.016	0.7	0.00098	0.0015	0.026	0.00039
◄	2.01-5.00	0.038	0.0019	0.034	0.000008	0.00072	0.00011	0
	> 5.00	0	0	0	0	0.000019	0	0

Table 41. Affected Areas in San Esteban, Ilocos Sur during 5-Year Rainfall Return Period

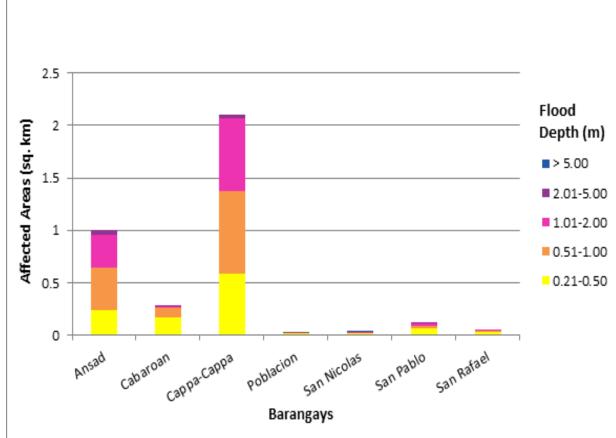



Figure 82. Affected Areas in San Esteban, Ilocos Sur during 5-Year Rainfall Return Period

For the 5-year return period, 4.93% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 0.23% of the area will experience flood levels of 0.21 to 0.50 meters while 0.11%, 0.13%, and 0.11% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and 2.01 to 5 meters, respectively. Listed in Table 42 are the affected areas in square kilometers by flood depth per barangay.

Affected Area	Affected Bara	angays in Santa
(sq. km.)	Magsaysay District	Quezon
0-0.20	1.55	1.27
0.21-0.50	0.1	0.031
0.51-1.00	0.052	0.014
1.01-2.00	0.071	0.0042
2.01-5.00	0.064	0.0006
> 5.00	0.00025	0

Table 42. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

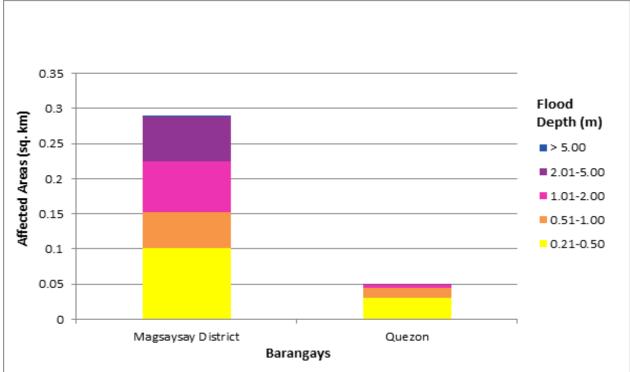



Figure 83. Affected Areas in Santa, Ilocos Sur during 5-Year Rainfall Return Period

For the 5-year return period, 34.83% of the municipality of Santa Maria with an area of 52.32 sq. km. will experience flood levels of less than 0.20 meters. 8.25% of the area will experience flood levels of 0.21 to 0.50 meters while 13.73%, 22.26%, 11.33%, and 3.37% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometers by flood depth per barangay.

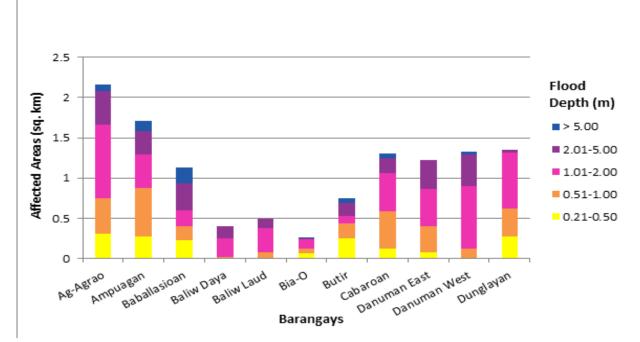



Figure 84. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period

					Affected Ba	Affected Barangays in Santa Maria	a Maria				
Affected Areas (in sq.m.) by flood depth (in m.)	Ag-Agrao	Ampuagan	Babal	Baliw Daya	lasioan Baliw Daya Baliw Laud	Bia-O	Butir	Cabaroan	Danuman East	Danuman West	Dunglayan
0-0.20	0.55	0.22	2.04	0.0002	0.0028	0.42	0.67	0.058	0.049	0.0014	0.75
0.21-0.50	0.31	0.28	0.23	0.0026	0.014	0.065	0.25	0.13	0.075	0.011	0.27
0.51-1.00	0.43	0.6	0.17	0.018	0.064	0.063	0.18	0.46	0.33	0.11	0.35
1.01-2.00	0.92	0.41	0.2	0.23	0.31	0.11	0.092	0.48	0.46	0.77	0.69
2.01-5.00	0.42	0.29	0.33	0.15	0.11	0.006	0.16	0.19	0.35	0.4	0.035
> 5.00	0.079	0.14	0.2	0	0	0.00046	0.06	0.051	0	0.032	0

Nagsayaoan 0.059 0.019 0.028 0.35 0.74 0.14 Maynganay Maynganay Norte Sur 0.0085 0.056 0.058 0.03 0.44 0 0.014 0.074 0.024 0.08 0.31 0.16 Lubong 0.052 1.130.43 0.28 0.34 0 Affected Barangays in Santa Maria Lingsat 0.026 0.019 0.021 0.16 0.18 0.5 Lesseb 0.098 0.062 0.16 0.037 0.19 0.14 Laslasong West 0.052 0.03 0.23 0.51 0.1 0.5 Laslasong 0.000001 0.035 0.28 0.29 0.25 0.52 Sur Laslasong Norte 0.00033 0.016 0.022 0.077 0.13 0.54 Langaoan 0.071 0.091 0.14 0.46 0.33 0.32 Gusing 0.096 1.56 0.33 0.44 0.17 0.27 Affected Areas (in sq.m.) by flood depth (in m.) 1.01-2.00 2.01-5.00 0.21-0.50 0.51-1.00 0-0.20 > 5.00

Table 43. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period

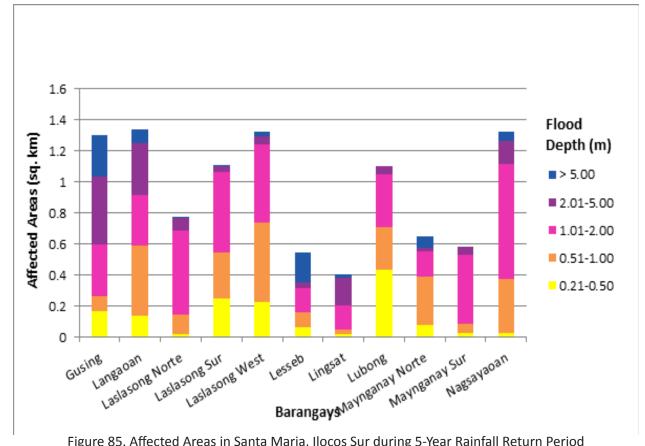



Figure 85. Affected Areas in Santa Maria, Ilocos Sur during 5-Year Rainfall Return Period





		Iable 44. Allected Aleds III	crien Aleas		Id, IIUCUS DUI	auriug o-re	Salila Maria, IIOCOS SUL UUTITIS S-TEAL MAITHAIT RELUTTI PERIOU				
Affected area				Are	a of affected )	d barangays ir (in sq. km.)	Area of affected barangays in Santa Maria (in sq. km.)				
depth (in m.)	Nagtupacan	Nalvo	Pacang	Penned	Poblacion Norte	Poblacion Sur	Silag	Sumagui	Suso	Tangaoan	Tinaan
0-0.20	0.0008	0.45	3.34	0.51	0.069	0.23	3.93	0.0071	0.31	0.76	0.02
0.21-0.50	0.0047	0.031	0.2	0.11	0.054	0.1	0.48	0.03	0.065	0.099	0.034
0.51-1.00	0.13	0.047	0.1	0.24	0.24	0.097	0.37	0.18	0.12	0.11	0.15
1.01-2.00	0.39	0.21	0.055	0.2	0.23	0.093	0.28	0.37	0.33	0.23	0.35
2.01-5.00	0.068	0.77	0.033	0.2	0.14	0.039	0.24	0.24	0.18	0.012	0.13
> 5.00	0.063	0	0.005	0.2	0.025	0	0.038	0.042	0	0	0.09

Table 44. Affected Areas in Santa Maria. Ilocos Sur during 5-Year Bainfall Beturn Period

For the 5-year return period, 5.83% of the municipality of Santiago with an area of 65.57 sq. km. will experience flood levels of less than 0.20 meters. 0.25% of the area will experience flood levels of 0.21 to 0.50 meters while 0.12%, 0.07%, 0.03%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometers by flood depth per barangay.

lable 45. Affected Areas in Santiago, llocos Sur during 5-Year Kainfall Keturn Period	Areas in Santiago	, llocos sur aurin	g 5-Year Kaintall F	teturn Period
	Affected	Affected Barangays in Santiago	tiago	
		Bigbiga	Mambug	Salincub
	0-0.20v	0.083	3.71	0.028
bé (.m ni) (	0.21-0.50	0.00084	0.16	0.00075
	0.51-1.00	0.00025	0.08	0.00043
os)e	1.01-2.00	0.000054	0.045	0.00011
	2.01-5.00	0	0.019	0.000008
E	> 5.00	0	0	0

Table 45. Affected Areas in Santiago. Ilocos Sur during 5-Vear Bainfall Beturn Deriod

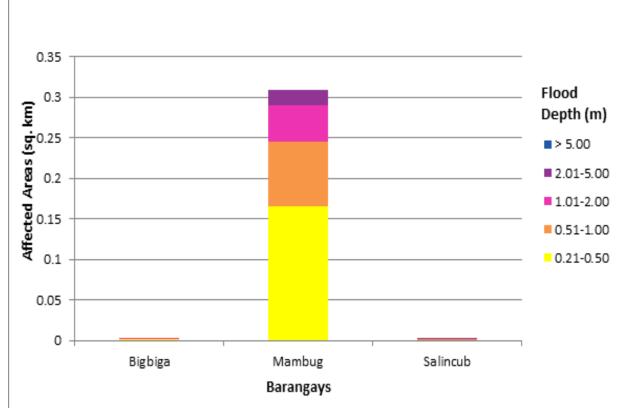



Figure 87. Affected Areas in Santiago, Ilocos Sur during 5-Year Rainfall Return Period

For the 25-year return period, 2.49% of the municipality of Pilar with an area of 92.196 sq. km. will experience flood levels of less than 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.04%, 0.03%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood depth		in Pilar (in sq. km.)
(in m.)	Brookside	Nagcanasan
0-0.20	1.59	0.74
0.21-0.50	0.05	0.022
0.51-1.00	0.026	0.0078
1.01-2.00	0.022	0.0036
2.01-5.00	0.0093	0.00085
> 5.00	0.0003	0

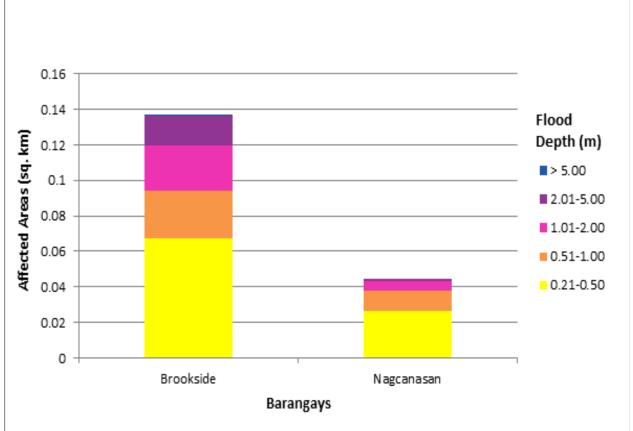



Figure 88. Affected Areas in Pilar, Abra during 25-Year Rainfall Return Period

For the 25-year return period, 4.66% of the municipality of Burgos with an area of 49.604 sq. km. will experience flood levels of less than 0.20 meters. 0.81% of the area will experience flood levels of 0.21 to 0.50 meters while 0.50%, 0.26%, 0.09%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 47 are the affected areas in square kilometers by flood depth per barangay.

Affected area					Area of a	iffected bara (in sq. ki	ngays in B m.)	Surgos		
(sq. km.) by flood depth (in m.)	Cabo bura		Cadacad	Lesseb	Lucaban	Macaoayan	Mambug	Nagpanaoan	Poblacion Sur	Taliao
0-0.20	0.5	2	0.23	0.014	0.42	0.18	0.47	0.016	0.35	0.29
0.21-0.50	0.0	2	0.042	0.00078	0.055	0.0014	0.16	0.00026	0.054	0.03
0.51-1.00	0.00	)9	0.024	0.0054	0.046	0.0001	0.1	0.0023	0.01	0.022
1.01-2.00	0.01	14	0.0019	0.0036	0.013	0.000005	0.0077	0.000001	0.00093	0.0046
2.01-5.00	0.01	16	0	0.0041	0	0	0	0	0	0.0001
> 5.00	0.00	37	0	0.013	0	0	0	0	0	0

Table 47. Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period

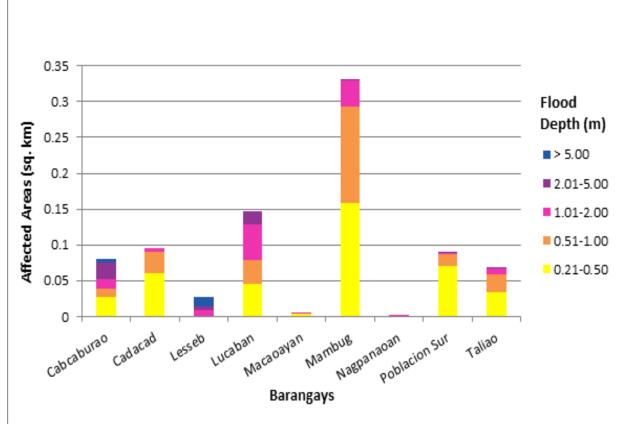



Figure 89. Affected Areas in Burgos, Ilocos Sur during 25-Year Rainfall Return Period

For the 25-year return period, 21.14% of the municipality of Nagbukel with an area of 36.46 sq. km. will experience flood levels of less than 0.20 meters. 2.17% of the area will experience flood levels of 0.21 to 0.50 meters while 2.04%, 4.65%, 3.69%, and 1.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas in square kilometers by flood depth per barangay.

Affected area			Are	a of affecto	ed barang (in sq. km	ays in Nag .)	bukel		
(sq. km.)	Balaweg	Bandril	Bantugo	Casilagan	Mapisi	Mission	Poblacion East	Poblacion West	Taleb
0-0.20	0.14	1.91	0.097	1.01	1.54	1.07	0.65	1.44	0.33
0.21-0.50	0.085	0.24	0.077	0.058	0.069	0.15	0.058	0.12	0.016
0.51-1.00	0.27	0.085	0.29	0.025	0.06	0.13	0.09	0.056	0.017
1.01-2.00	0.39	0.028	0.79	0.023	0.052	0.06	0.16	0.017	0.017
2.01-5.00	0.3	0.024	0.1	0.094	0.12	0.047	0.079	0.0033	0.038
> 5.00	0.0007	0.00093	0	0.13	0.087	0.0001	0	0	0.017

Table 48. Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period

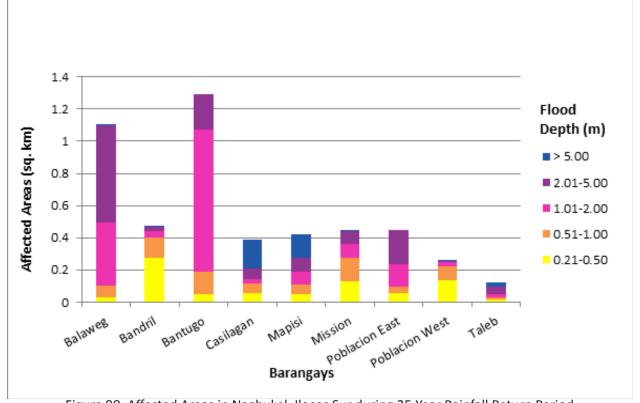



Figure 90. Affected Areas in Nagbukel, Ilocos Sur during 25-Year Rainfall Return Period

For the 25-year return period, 31.39% of the municipality of Narvacan with an area of 97.176 sq. km. will experience flood levels of less than 0.20 meters. 5.52% of the area will experience flood levels of 0.21 to 0.50 meters while 6.58%, 12.69%, 17.68%, and 1.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in the Table 49 are the affected areas in square kilometers by flood depth per barangay.

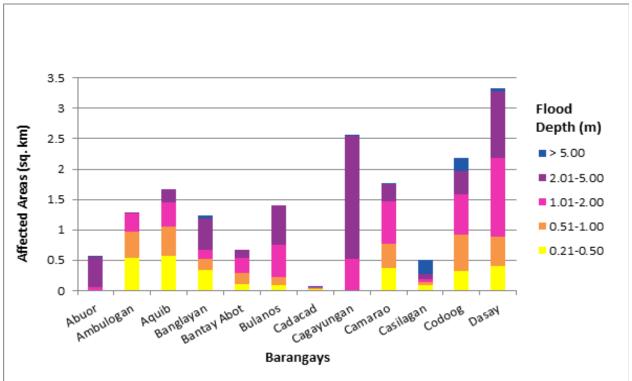



Figure 91. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period

Affected Area (sq. km.)					Affected Ba	arangays in N	Affected Barangays in Narvacan (in sq. km.)	. km.)				
by flood depth (in m.)	Abuor	Ambulogan Aquib	Aquib	Banglayan	Bantay Abot	Bulanos	Cadacad	Cagayungan Camarao	Camarao	Casilagan	Codoog	Dasay
0-0.20	0.0012	3.41	1.87	3.07	0.79	1.34	0.51	0.0063	2.08	1.5	1.07	2.21
0.21-0.50	0.004	0.51	0.57	0.29	0.14	0.17	0.021	0.021	0.42	0.098	0.48	0.48
0.51-1.00	0.022	0.38	0.39	0.17	0.17	0.46	0.014	0.21	0.53	0.042	0.64	0.63
1.01-2.00	0.25	0.16	0.21	0.18	0.23	0.5	0.0075	1.38	0.39	0.041	0.41	1.47
2.01-5.00	0.29	0.0058	0.11	0.39	0.067	0.092	0.0024	0.94	0.17	0.12	0.37	0.53
> 5.00	0	0	0	0.016	0	0	0.0002	0.017	0	0.12	0.12	0.026

Affected Area (sq. km.)				Affec	cted Baranga	ıys in Narvad	Affected Barangays in Narvacan (in sq.km.)				
by flood depth (in m.)	Dinalaoan	Estancia	Lanipao	Lungog	Margaay	Marozo	Naguneg	Orence	Pantoc	Paratong	Parparia
0-0.20	0.039	0.049	0.64	1.47	0.11	2.27	0.008	0.3	0.12	0.023	0.7
0.21-0.50	0.034	0.0067	0.039	0.27	0.11	0.27	0.018	0.25	0.03	0.053	0.22
0.51-1.00	0.093	0.047	0.018	0.35	0.29	0.24	0.11	0.18	0.053	0.25	0.27
1.01-2.00	0.56	0.12	0.0057	0.3	0.63	0.38	0.93	0.29	0.2	0.51	0.56
2.01-5.00	0.29	0.1	0.01	0.26	0.37	0.19	0.59	0.022	0.58	0.27	0.031
> 5.00	0	0.08	0.0011	0.022	0	0.0027	0.046	0.018	0	0	0

Table 49. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period

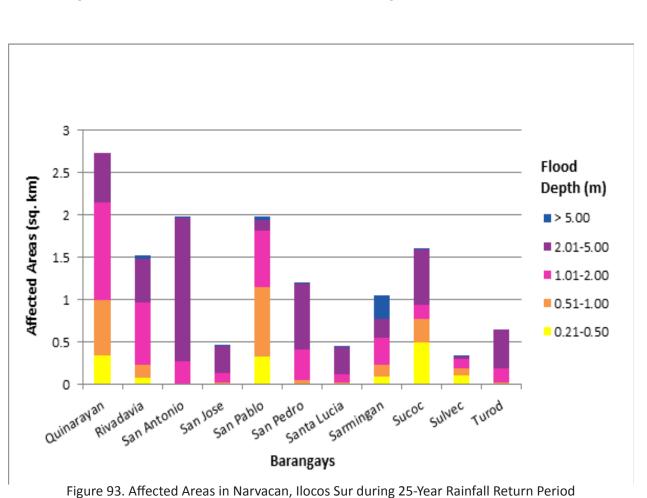
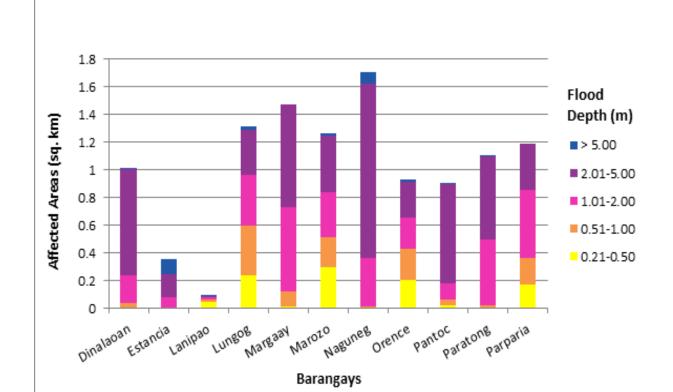




Figure 92. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period



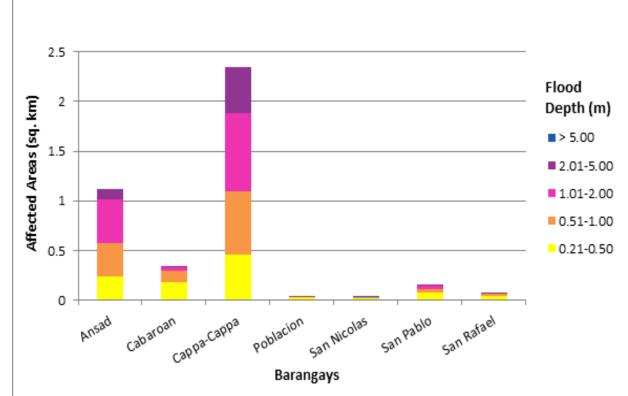
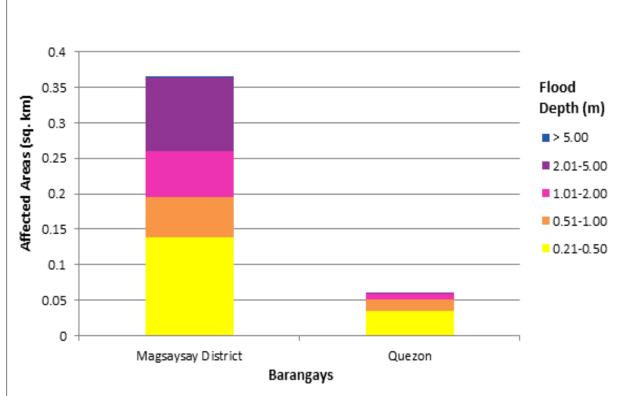
Affected Area (sq. km.) by flood				Affe	cted Baranga	ıys in Narvac	Affected Barangays in Narvacan (in sq.km.)				
depth (in m.)	Quinarayan	Rivadavia	San Antonio	San Jose	San Pablo	San Pablo San Pedro	Santa Lucia	Sarmingan	Sucoc	Sulvec	Turod
0-0.20	1.92	0.21	0.0052	0.027	0.26	0.076	0.019	0.99	4.63	2.29	0.1
0.21-0.50	0.47	0.13	0.014	0.016	0.66	0.024	0.026	0.15	0.42	0.098	0.031
0.51-1.00	0.7	0.36	0.093	0.049	0.76	0.11	0.041	0.22	0.17	0.088	0.098
1.01-2.00	1.06	0.71	1.06	0.19	0.27	0.59	0.19	0.23	0.33	0.07	0.29
2.01-5.00	0.23	0.12	0.81	0.19	0.057	0.44	0.16	0.16	0.41	0.021	0.21
> 5.00	0	0.029	0.000012	0	0.044	0.0027	0	0.22	0.0018	0.0001	0

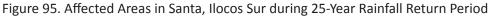
Table 50. Affected Areas in Narvacan, Ilocos Sur during 25-Year Rainfall Return Period

6.12% of the area will experience flood levels of 0.21 to 0.50 meters while 6.70%, 7.53%, and 3.29% of the area will experience flood depths of 0.51 to 1 For the 25-year return period, 34.21% of the municipality of San Esteban with an area of 17.27 sq. km. will experience flood levels of less than 0.20 meters. meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 51 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sɑ. km.) bv flood		A	ffected Barang (in s	Affected Barangays in San Esteban (in sq. km.)	ban		
Čdepth (in m.)	Ansad	Cabaroan	Cappa- Cappa	Poblacion	Poblacion San Nicolas San Pablo San Rafael	San Pablo	San Rafael
0-0.20	1.41	2	1.25	0.26	0.38	0.79	0.3
0.21-0.50	0.24	0.17	0.58	0.02	0.02	0.064	0.036
0.51-1.00	0.4	0.093	0.78	0.0017	0.0051	0.029	0.008
1.01-2.00	0.32	0.016	0.7	0.00098	0.0015	0.026	0.00039
2.01-5.00	0.038	0.0019	0.034	0.000008	0.00072	0.00011	0
> 5.00	0	0	0	0	0.000019	0	0

Table 51. Affected Areas in San Esteban, llocos Sur during 25-Year Rainfall Return Period



Figure 94. Affected Areas in San Esteban, Ilocos Sur during 25-Year Rainfall Return Period

For the 25-year return period, 4.78% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 0.30% of the area will experience flood levels of 0.21 to 0.50 meters while 0.13%, 0.13%, and 0.18% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometers by flood depth per barangay.

Affected Ba	rangays in Santa (in	sq. km.)
Affected Area (sq. km.) by flood depth (in m.)	Magsaysay District	Quezon
0-0.20	1.55	1.27
0.21-0.50	0.1	0.031
0.51-1.00	0.052	0.014
1.01-2.00	0.071	0.0042
2.01-5.00	0.064	0.0006
> 5.00	0.00025	0

Table 52. Affected Areas in Santa, Ilocos Sur during 25-Year Rainfall Return Period





For the 25-year return period, 29.07% of the municipality of Santa Maria with an area of 52.32 sq. km. will experience flood levels of less than 0.20 meters. 5.67% of the area will experience flood levels of 0.21 to 0.50 meters while 8.70%, 20.86%, 25.02%, and 4.45% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in square kilometers by flood depth per barangay.

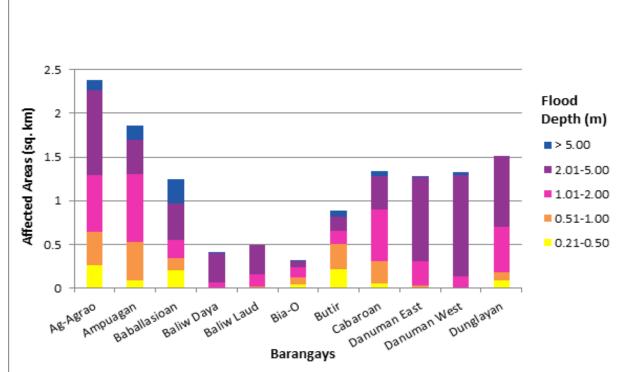
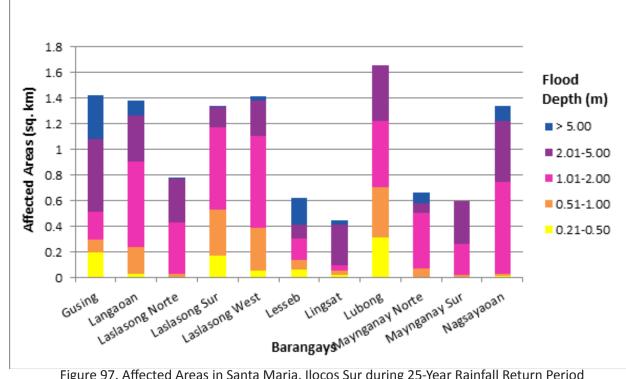




Figure 96. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period

Table 53. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period

Ag-Agrao         Ampuagan         Baballasioan         Baliw Daya         Baliw Laud         Bia-O         Buttir         Cabaroan         Danuman         Danuman           0.55         0.22         2.04         0.0002         0.0028         0.42         0.67         0.058         0.049         0.0014           0.55         0.22         2.04         0.0026         0.0144         0.065         0.13         0.075         0.014           0.31         0.28         0.23         0.018         0.064         0.065         0.13         0.075         0.014           0.43         0.6         0.17         0.018         0.0643         0.065         0.13         0.13         0.11           0.43         0.5         0.11         0.065         0.11         0.052         0.13         0.11           0.43         0.5         0.11         0.063         0.14         0.16         0.13         0.11           0.42         0.29         0.31         0.11         0.006         0.16         0.16         0.14         0.75           0.042         0.14         0.29         0.14         0.16         0.16         0.17           0.142         0.29         0.	Affected Area (sq. km.)				Affected	Barangays ii	ר Santa Mar	Affected Barangays in Santa Maria (in sq. km.)				
0.55         0.22         2.04         0.0002         0.0028         0.42         0.67         0.058         0.049         0.0014           0.31         0.28         0.23         0.0026         0.014         0.055         0.13         0.075         0.011           0.43         0.56         0.17         0.018         0.064         0.063         0.13         0.075         0.011           0.43         0.6         0.17         0.018         0.064         0.063         0.18         0.33         0.11           0.92         0.41         0.2         0.11         0.063         0.18         0.14         0.74         0.33         0.11           0.92         0.41         0.2         0.23         0.31         0.11         0.092         0.46         0.74         0.74           0.42         0.33         0.11         0.016         0.16         0.16         0.75         0.74           0.079         0.33         0.11         0.0066         0.16         0.16         0.75         0.74           0.079         0.14         0.2         0.11         0.0066         0.16         0.75         0.46         0.74           0.079 <t< th=""><th>by flood depth (in m.)</th><th>Ag-Agrao</th><th>Ampuagan</th><th></th><th>Baliw Daya</th><th>Baliw Laud</th><th>Bia-O</th><th>Butir</th><th>Cabaroan</th><th>Danuman East</th><th>Danuman West</th><th>Dunglayan</th></t<>	by flood depth (in m.)	Ag-Agrao	Ampuagan		Baliw Daya	Baliw Laud	Bia-O	Butir	Cabaroan	Danuman East	Danuman West	Dunglayan
0.31         0.28         0.23         0.0026         0.014         0.065         0.13         0.075         0.011           0.043         0.6         0.17         0.018         0.064         0.063         0.18         0.33         0.11           0.022         0.41         0.2         0.23         0.31         0.11         0.025         0.34         0.11           0.92         0.41         0.2         0.23         0.31         0.11         0.092         0.46         0.77           0.042         0.33         0.11         0.092         0.48         0.46         0.77           0.042         0.33         0.11         0.006         0.16         0.19         0.76         0.77           0.042         0.33         0.11         0.006         0.16         0.19         0.35         0.46           0.079         0.14         0.2         0.11         0.006         0.16         0.35         0.46	0-0.20	0.55	0.22	2.04	0.0002	0.0028	0.42	0.67	0.058	0.049	0.0014	0.75
0.43         0.6         0.17         0.018         0.064         0.063         0.18         0.46         0.33         0.11           0.92         0.41         0.2         0.23         0.31         0.11         0.092         0.46         0.36         0.77           0.042         0.29         0.33         0.11         0.006         0.16         0.46         0.77           0.042         0.33         0.11         0.006         0.16         0.35         0.77           0.070         0.33         0.11         0.006         0.16         0.35         0.47           0.079         0.33         0.11         0.006         0.16         0.19         0.35         0.4	0.21-0.50	0.31	0.28	0.23	0.0026	0.014	0.065	0.25	0.13	0.075	0.011	0.27
0.92         0.41         0.2         0.23         0.31         0.11         0.092         0.46         0.77           0.42         0.29         0.33         0.15         0.11         0.006         0.16         0.35         0.4           0.079         0.14         0.2         0         0         0.0046         0.06         0.13         0.3	0.51-1.00	0.43	0.6	0.17	0.018	0.064	0.063	0.18	0.46	0.33	0.11	0.35
0.42         0.29         0.33         0.15         0.11         0.006         0.16         0.19         0.35         0.4           0.079         0.14         0.2         0         0         0.0046         0.06         0.051         0         0.032	1.01-2.00	0.92	0.41	0.2	0.23	0.31	0.11	0.092	0.48	0.46	0.77	0.69
0.079 0.14 0.2 0 0.00046 0.06 0.051 0	2.01-5.00	0.42	0.29	0.33	0.15	0.11	0.006	0.16	0.19	0.35	0.4	0.035
	> 5.00	0.079	0.14	0.2	0	0	0.00046	0.06	0.051	0	0.032	0

Affected Area (sq. km.) by flood				Affect	ed Baranga)	/s in Santa N	Affected Barangays in Santa Maria (in sq. km.)	(:-			
depth (in m.)	Gusing	Langaoan	Laslasong Las	Laslasong Sur	Laslasong West	Lesseb	Lingsat	Lubong	Maynganay Norte	Maynganay Sur	Nagsayaoan
0-0.20	1.56	0.071	0.016	0.28	0.1	0.14	0.5	1.13	0.014	0.0085	0.019
0.21-0.50	0.17	0.14	0.022	0.25	0.23	0.062	0.021	0.43	0.08	0.03	0.028
0.51-1.00	0.096	0.46	0.13	0.29	0.51	0.098	0.026	0.28	0.31	0.056	0.35
1.01-2.00	0.33	0.32	0.54	0.52	0.5	0.16	0.16	0.34	0.16	0.44	0.74
2.01-5.00	0.44	0.33	0.077	0.035	0.052	0.037	0.18	0.052	0.024	0.058	0.14
> 5.00	0.27	0.091	0.00033	0.000001	0.03	0.19	0.019	0	0.074	0	0.059





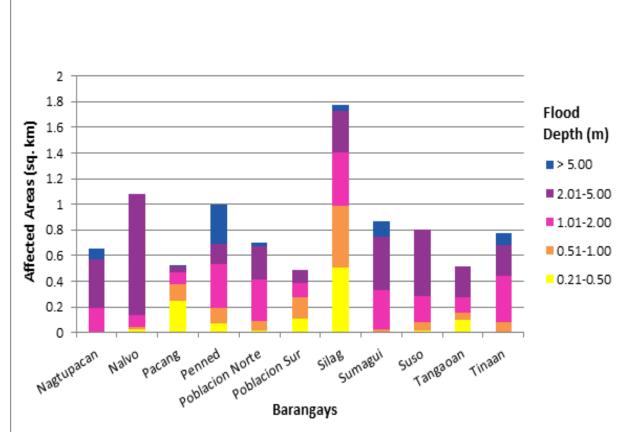



Figure 98. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period

						)					
Affected Area (sq. km.) by flood				Affect	ed Barangays	in Santa M	Affected Barangays in Santa Maria (in sq. km.)				
depth (in m.)	Nagtupacan	Nalvo	Pacang	Penned	Poblacion Norte	Poblacion Sur	Silag	Sumagui	Suso	Tangaoan	Tinaan
0-0.20	0.0008	0.45	3.34	0.51	0.069	0.23	3.93	0.0071	0.31	0.76	0.02
0.21-0.50	0.0047	0.031	0.2	0.11	0.054	0.1	0.48	0.03	0.065	0.099	0.034
0.51-1.00	0.13	0.047	0.1	0.24	0.24	0.097	0.37	0.18	0.12	0.11	0.15
1.01-2.00	0.39	0.21	0.055	0.2	0.23	0.093	0.28	0.37	0.33	0.23	0.35
2.01-5.00	0.068	0.77	0.033	0.2	0.14	0.039	0.24	0.24	0.18	0.012	0.13
> 5.00	0.063	0	0.005	0.2	0.025	0	0.038	0.042	0	0	0.09

Table 54. Affected Areas in Santa Maria, Ilocos Sur during 25-Year Rainfall Return Period

0.29% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.08%, and 0.06% of the area will experience flood depths of 0.51 to 1 For the 25-year return period, 5.72% of the municipality of Santiago with an area of 65.57 sq. km. will experience flood levels of less than 0.20 meters. meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 55 are the affected areas in square kilometers by flood depth per barangay.

inta							
e 55. Affected Areas in Santiago, Ilocos Sur during 25-Year Rainta	l Santiago	Salincub	0.028	0.00075	0.00043	0.00011	0.00008
o, llocos Sur du	Affected Barangays in Santiago (in sq. km.)	Mambug	3.71	0.16	0.08	0.045	0.019
as in Santiag	Affecte	Bigbiga	0.083	0.00084	0.00025	0.000054	0
o. Attected Are	Affected Area	(sq. km.) by flood depth (in m.)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00
е 5.							

Table 55. Affected Areas in Santiago, Ilocos Sur during 25-Year Rainfall Return Period

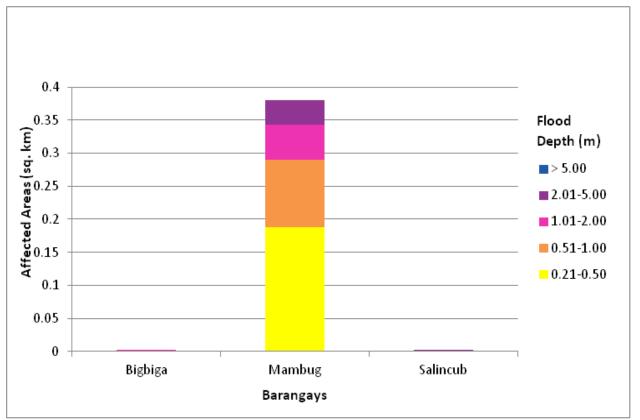



Figure 99. Affected Areas in Santiago, Ilocos Sur during 25-Year Rainfall Return Period

For the 100-year return period, 2.45% of the municipality of Pilar with an area of 92.196 sq. km. will experience flood levels of less than 0.20 meters. 0.12% of the area will experience flood levels of 0.21 to 0.50 meters while 0.05%, 0.04%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 56 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sg. km.) by flood		angays in Pilar q. m.)
(sq. km.) by flood depth (in m.)	Brookside	Nagcanasan
0-0.20	1.59	0.74
0.21-0.50	0.05	0.022
0.51-1.00	0.026	0.0078
1.01-2.00	0.022	0.0036
2.01-5.00	0.0093	0.00085
> 5.00	0.0003	0

Table 56. Affected Areas in Pilar, Abra during 100-Year Rainfall Return Period

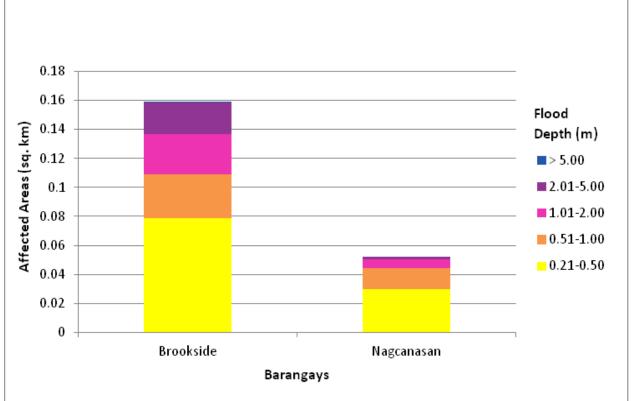



Figure 100. Affected Areas in Pilar, Abra during 100-Year Rainfall Return Period

For the 100-year return period, 4.36% of the municipality of Burgos with an area of 49.604 sq. km. will experience flood levels of less than 0.20 meters. 0.87% of the area will experience flood levels of 0.21 to 0.50 meters while 0.59%, 0.30%, 0.20%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas in square kilometers by flood depth per barangay.

Affected area			Affect	ed Barar	ngays in Burg	os (in sq.	m.)		
(sq. km.) by flood depth (in m.)	Cabca- burao	Cadacad	Lesseb	Lucaban	Macaoayan	Mambug	Nagpanaoan	Poblacion Sur	Taliao
0-0.20	0.52	0.23	0.014	0.42	0.18	0.47	0.016	0.35	0.29
0.21-0.50	0.02	0.042	0.00078	0.055	0.0014	0.16	0.00026	0.054	0.03
0.51-1.00	0.009	0.024	0.0054	0.046	0.0001	0.1	0.0023	0.01	0.022
1.01-2.00	0.014	0.0019	0.0036	0.013	0.000005	0.0077	0.000001	0.00093	0.0046
2.01-5.00	0.016	0	0.0041	0	0	0	0	0	0.0001
> 5.00	0.0037	0	0.013	0	0	0	0	0	0

 Table 57. Affected Areas in Burgos, Ilocos Sur during 100-Year Rainfall Return Period

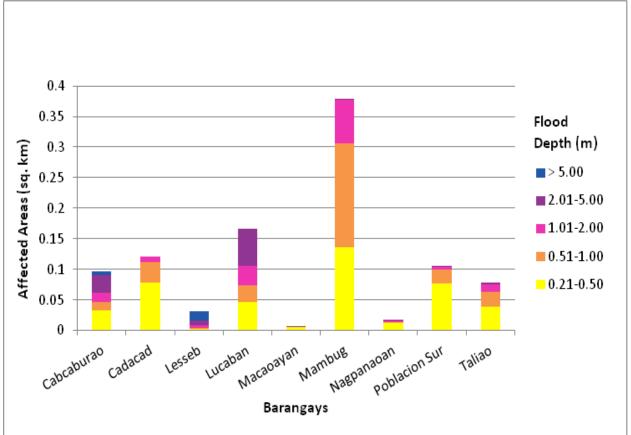



Figure 101. Affected Areas in Burgos, Ilocos Sur during 100-Year Rainfall Return Period

For the 100-year return period, 20.44% of the municipality of Nagbukel with an area of 36.46 sq. km. will experience flood levels of less than 0.20 meters. 2.10% of the area will experience flood levels of 0.21 to 0.50 meters while 1.94%, 4.31%, 4.71%, and 1.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 58 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sg. km.) by			Affected I	Barangays i	in Nagbul	kel (in sq.	km.)		
flood depth (in m.)	Balaweg	Bandril	Bantugo	Casilagan	Mapisi	Mission	Poblacion East	Poblacion West	Taleb
0-0.20	0.14	1.91	0.097	1.01	1.54	1.07	0.65	1.44	0.33
0.21-0.50	0.085	0.24	0.077	0.058	0.069	0.15	0.058	0.12	0.016
0.51-1.00	0.27	0.085	0.29	0.025	0.06	0.13	0.09	0.056	0.017
1.01-2.00	0.39	0.028	0.79	0.023	0.052	0.06	0.16	0.017	0.017
2.01-5.00	0.3	0.024	0.1	0.094	0.12	0.047	0.079	0.0033	0.038
> 5.00	0.0007	0.00093	0	0.13	0.087	0.0001	0	0	0.017

Table 58. Affected Areas in Nagbukel, Ilocos Sur during 100-Year Rainfall Return Period

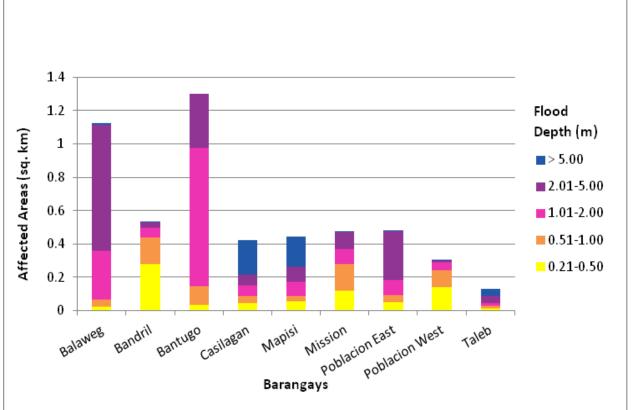



Figure 102. Affected Areas in Nagbukel, Ilocos Sur during 100-Year Rainfall Return Period

For the 100-year return period, 29.58% of the municipality of Narvacan with an area of 97.176 sq. km. will experience flood levels of less than 0.20 meters. 4.94% of the area will experience flood levels of 0.21 to 0.50 meters while 5.78%, 10.24%, 22.96%, and 1.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 59 are the affected areas in square kilometers by flood depth per barangay.

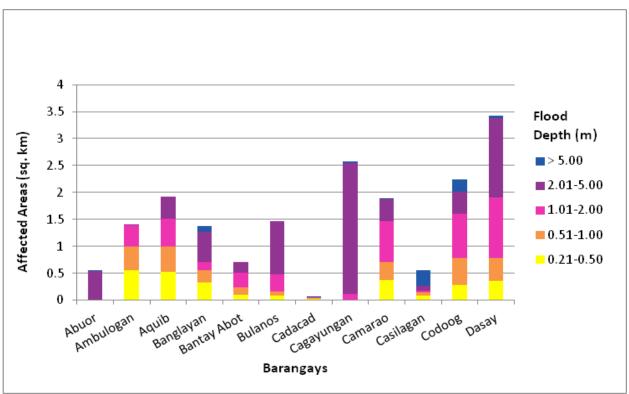



Figure 103. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period

Affected Area (sq. km.)					Affected E	3arangays in	Affected Barangays in Narvacan (in sq. km.)	sq. km.)				
by flood depth (in m.)	Abuor	Ambulogan Aquib	Aquib	Banglayan	Bantay Abot	Bulanos	Cadacad	Cagayungan	Camarao	Casilagan	Codoog	Dasay
0-0.20	0.0012	3.41	1.87	3.07	0.79	1.34	0.51	0.0063	2.08	1.5	1.07	2.21
0.21-0.50	0.004	0.51	0.57	0.29	0.14	0.17	0.021	0.021	0.42	0.098	0.48	0.48
0.51-1.00	0.022	0.38	0.39	0.17	0.17	0.46	0.014	0.21	0.53	0.042	0.64	0.63
1.01-2.00	0.25	0.16	0.21	0.18	0.23	0.5	0.0075	1.38	0.39	0.041	0.41	1.47
2.01-5.00	0.29	0.0058	0.11	0.39	0.067	0.092	0.0024	0.94	0.17	0.12	0.37	0.53
> 5.00	0	0	0	0.016	0	0	0.0002	0.017	0	0.12	0.12	0.026

Table 59. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period

Affected area			Affec	ted Bara	ngays in l	Varvacan	Affected Barangays in Narvacan (in sq. km.)	-			
(sq. km.) by 11000 deptn (in m.)	Dinalaoan	Estancia	Lanipao	Lungog	Margaay	Marozo	Seungen	Orence	Pantoc	Paratong	Parparia
0-0.20	0.039	0.049	0.64	1.47	0.11	2.27	0.008	0.3	0.12	0.023	0.7
0.21-0.50	0.034	0.0067	0.039	0.27	0.11	0.27	0.018	0.25	0.03	0.053	0.22
0.51-1.00	0.093	0.047	0.018	0.35	0.29	0.24	0.11	0.18	0.053	0.25	0.27
1.01-2.00	0.56	0.12	0.0057	0.3	0.63	0.38	0.93	0.29	0.2	0.51	0.56
2.01-5.00	0.29	0.1	0.01	0.26	0.37	0.19	0.59	0.022	0.58	0.27	0.031
> 5.00	0	0.08	0.0011	0.022	0	0.0027	0.046	0.018	0	0	0

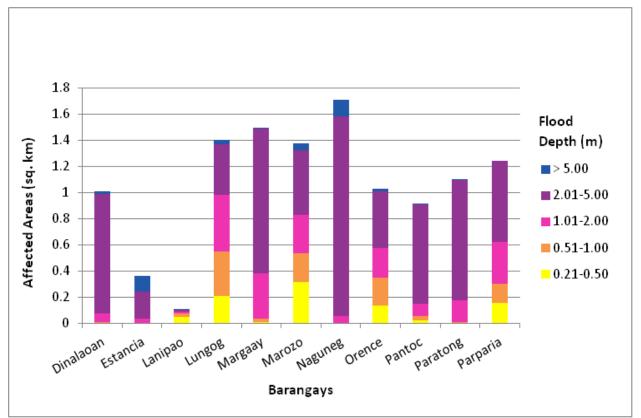



Figure 104. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period

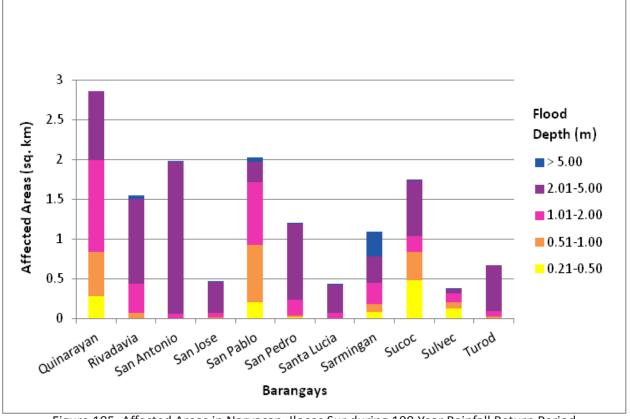



Figure 105. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period

Table 60. Affected Areas in Narvacan, Ilocos Sur during 100-Year Rainfall Return Period

			A	ffected F	<b>3arangay</b>	s in Narva	Affected Barangays in Narvacan (in sq. km.)	km.)			
(sq. km.) by flood depth											
(in m.) Qui	inarayan	Rivadavia	Quinarayan Rivadavia San Antonio San Jose	San Jose	San Pablo	San Pablo San Pedro	Santa Lucia	Sarmingan	Sucoc	Sulvec	Turod
0-0.20	1.92	0.21	0.0052	0.027	0.26	0.076	0.019	0.99	4.63	2.29	0.1
0.21-0.50	0.47	0.13	0.014	0.016	0.66	0.024	0.026	0.15	0.42	0.098	0.031
0.51-1.00	0.7	0.36	0.093	0.049	0.76	0.11	0.041	0.22	0.17	0.088	0.098
1.01-2.00	1.06	0.71	1.06	0.19	0.27	0.59	0.19	0.23	0.33	0.07	0.29
2.01-5.00	0.23	0.12	0.81	0.19	0.057	0.44	0.16	0.16	0.41	0.021	0.21
> 5.00	0	0.029	0.000012	0	0.044	0.0027	0	0.22	0.0018	0.0001	0

For the 100-year return period, 32.64% of the municipality of San Esteban with an area of 17.27 sq. km. will experience flood levels of less than 0.20 meters. 5.83% of the area will experience flood levels of 0.21 to 0.50 meters while 5.95%, 7.86%, and 5.57% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 61 are the affected areas in square kilometers by flood depth per barangay.

				)			
Affected Area		Affected	l Barangays	Affected Barangays in San Esteban (in sq. km.)	eban (in sq.	km.)	
(sq. km.) by 1100d depth (in m.)	Ansad	Cabaroan	Cappa- Cappa	Poblacion	Poblacion San Nicolas San Pablo San Rafael	San Pablo	San Rafael
0-0.20	1.41	2	1.25	0.26	0.38	0.79	0.3
0.21-0.50	0.24	0.17	0.58	0.02	0.02	0.064	0.036
0.51-1.00	0.4	0.093	0.78	0.0017	0.0051	0.029	0.008
1.01-2.00	0.32	0.016	0.7	0.00098	0.0015	0.026	0.00039
2.01-5.00	0.038	0.0019	0.034	0.000008	0.00072	0.00011	0
> 5.00	0	0	0	0	0.000019	0	0

Table 61. Affected Areas in San Esteban, llocos Sur during 100-Year Rainfall Return Period

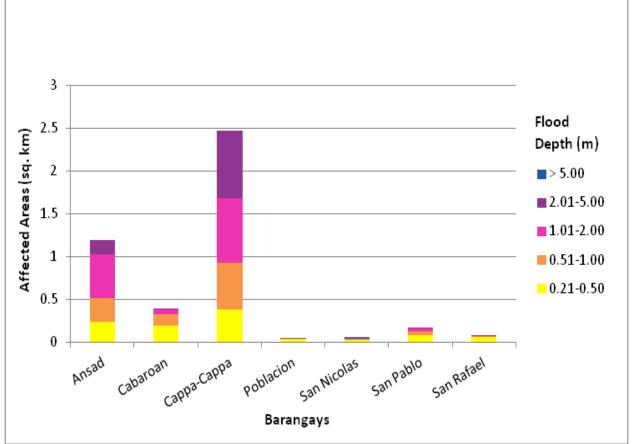



Figure 106. Affected Areas in San Esteban, Ilocos Sur during 100-Year Rainfall Return Period

For the 100-year return period, 4.68% of the municipality of Santa with an area of 57.2 sq. km. will experience flood levels of less than 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.16%, 0.13%, and 0.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 62 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (sq. km.) by flood		ngays in Santa q. km.)
depth (in m.)	Magsaysay District	Quezon
0-0.20	1.55	1.27
0.21-0.50	0.1	0.031
0.51-1.00	0.052	0.014
1.01-2.00	0.071	0.0042
2.01-5.00	0.064	0.0006
> 5.00	0.00025	0

Table 62. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period

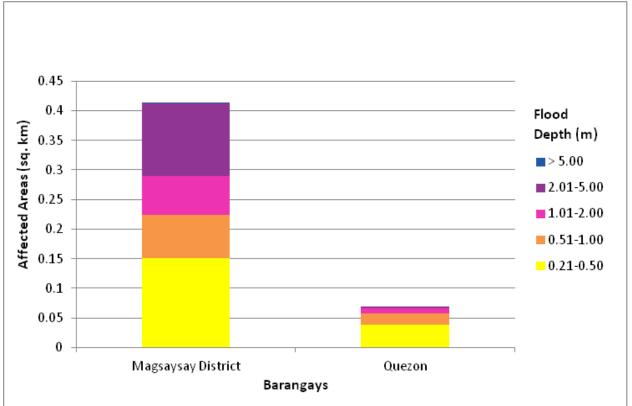



Figure 107. Affected Areas in Santa, Ilocos Sur during 100-Year Rainfall Return Period

For the 100-year return period, 26.92% of the municipality of Santa Maria with an area of 52.32 sq. km. will experience flood levels of less than 0.20 meters. 4.42% of the area will experience flood levels of 0.21 to 0.50 meters while 6.41%, 16.22%, 34.84%, and 4.96% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 63 are the affected areas in square kilometers by flood depth per barangay

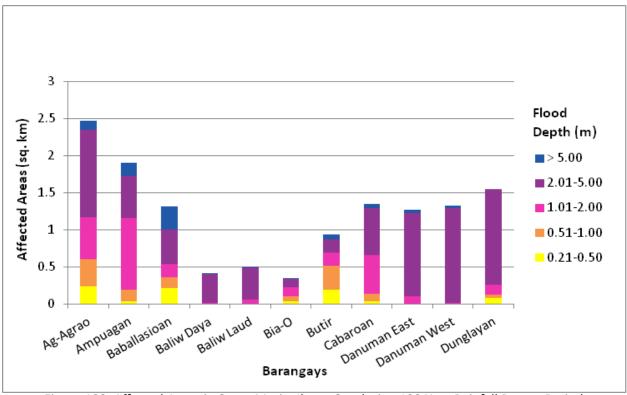



Figure 108. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period

Maria, llocos Sur during 100-Year Rainfall
Aaria, llocos Sur du
Maria, Il
Areas in Santa N
Table 63. Affected Are

Affected Area					Affected E	arangays in	Santa Mar	Affected Barangays in Santa Maria (in sq. km.)	-		
(sq. km.) by 11000 depth (in m.) A	g-Agrao	Ampuagan	Ag-Agrao Ampuagan Baballasioan Bal	Baliw Daya	Baliw Laud	Bia-O	Butir	Cabaroan	Danuman East	Danuman West	Cabaroan Danuman Danuman Dunglayan
0-0.20	0.55	0.22	2.04	0.0002	0.0028	0.42	0.67	0.058	0.049	0.0014	0.75
0.21-0.50	0.31	0.28	0.23	0.0026	0.014	0.065	0.25	0.13	0.075	0.011	0.27
0.51-1.00	0.43	0.6	0.17	0.018	0.064	0.063	0.18	0.46	0.33	0.11	0.35
1.01-2.00	0.92	0.41	0.2	0.23	0.31	0.11	0.092	0.48	0.46	0.77	0.69
2.01-5.00	0.42	0.29	0.33	0.15	0.11	0.006	0.16	0.19	0.35	0.4	0.035
> 5.00	0.079	0.14	0.2	0	0	0.00046	0.06	0.051	0	0.032	0

Affected Area					Affected B	arangays in	Affected Barangays in Santa Maria (in sq. km.)	ia (in sq. km	(1		
(sq. km.) (by 1100d depth (in m.)		Gusing Langaoan	Laslasong Norte	Laslasong Laslasong Sur West	Laslasong West	Lesseb	Lingsat	Lubong	Maynganay Norte	Maynganay Sur	Maynganay Maynganay Nagsayaoan Norte
0-0.20	1.56	0.071	0.016	0.28	0.1	0.14	0.5	1.13	0.014	0.0085	0.019
0.21-0.50	0.17	0.14	0.022	0.25	0.23	0.062	0.021	0.43	0.08	0.03	0.028
0.51-1.00	0.096	0.46	0.13	0.29	0.51	0.098	0.026	0.28	0.31	0.056	0.35
1.01-2.00	0.33	0.32	0.54	0.52	0.5	0.16	0.16	0.34	0.16	0.44	0.74
2.01-5.00	0.44	0.33	0.077	0.035	0.052	0.037	0.18	0.052	0.024	0.058	0.14
> 5.00	0.27	0.091	0.00033	0.000001	0.03	0.19	0.019	0	0.074	0	0.059

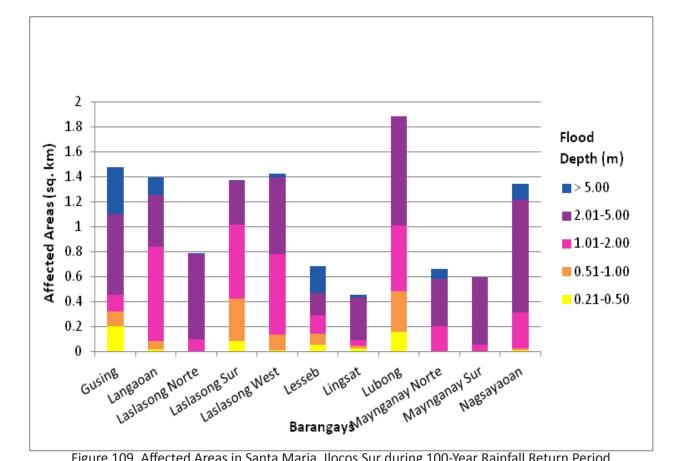



Figure 109. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period

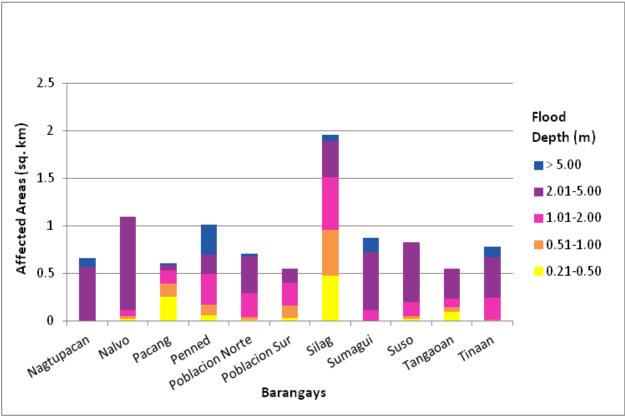



Figure 110. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period

Affected Area				Af	Affected Barangays in Santa Maria (in sq. km.)	igays in Sant	ta Maria (ir	ר sq. km.)			
(sq. km.)	Nagtupacan	Nalvo	Pacang	Penned	Poblacion Poblacion Norte Sur	Poblacion Sur	Silag	Sumagui	Suso	Tangaoan	Tinaan
0-0.20	0.0008	0.45	3.34	0.51	0.069	0.23	3.93	0.0071	0.31	0.76	0.02
0.21-0.50	0.0047	0.031	0.2	0.11	0.054	0.1	0.48	0.03	0.065	0.099	0.034
0.51-1.00	0.13	0.047	0.1	0.24	0.24	0.097	0.37	0.18	0.12	0.11	0.15
1.01-2.00	0.39	0.21	0.055	0.2	0.23	0.093	0.28	0.37	0.33	0.23	0.35
2.01-5.00	0.068	0.77	0.033	0.2	0.14	0.039	0.24	0.24	0.18	0.012	0.13
> 5.00	0.063	0	0.005	0.2	0.025	0	0.038	0.042	0	0	0.09

Table 64. Affected Areas in Santa Maria, Ilocos Sur during 100-Year Rainfall Return Period

For the 100-year return period, 5.64% of the municipality of Santiago with an area of 65.57 sq. km. will experience flood levels of less than 0.20 meters. 0.32% of the area will experience flood levels of 0.21 to 0.50 meters while 0.17%, 0.10%, and 0.07% the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, respectively. Listed in Table 65 are the affected areas in square kilometers by flood depth per barangay.

σ
0
Ξ.
٩
Δ.
1
2
Ъ
Ř
_
a
ΨĽ
.⊆.
Rai
2
r during 100-Year Ra
σ
ě
7
100-Y€
0
-
pD
Ξ.
σ
<u>_</u>
S
S
Ö
000
locos
, lloco
=
=
=
=
=
o, II
=
າ Santiago, Il
=
າ Santiago, Il
d Areas in Santiago, Il
ted Areas in Santiago, Il
ted Areas in Santiago, Il
d Areas in Santiago, Il
Affected Areas in Santiago, Il
Affected Areas in Santiago, Il
Affected Areas in Santiago, Il
55. Affected Areas in Santiago, Il
55. Affected Areas in Santiago, Il
55. Affected Areas in Santiago, Il
55. Affected Areas in Santiago, Il
Affected Areas in Santiago, Il

Affected Area	Affected Ba	Affected Barangays in Santiago (in sq. km.)	ago (in sq. km.)
(sq. km.) (by flood depth (in m.)	Bigbiga	Mambug	Salincub
0-0.20	0.083	3.71	0.028
0.21-0.50	0.00084	0.16	0.00075
0.51-1.00	0.00025	0.08	0.00043
1.01-2.00	0.000054	0.045	0.00011
2.01-5.00	0	0.019	0.000008
> 5.00	0	0	0

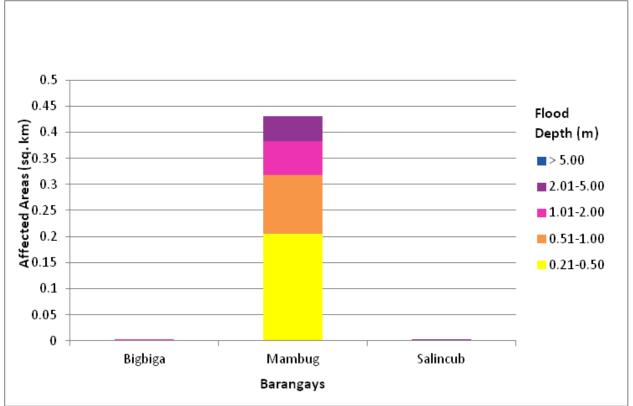



Figure 111. Affected Areas in Santiago, Ilocos Sur during 100-Year Rainfall Return Period

Among the barangays in the municipality of Pilar in Abra, Brookside is projected to have the highest percentage of area that will experience flood levels at 1.84%. Meanwhile, Nagcanasan posted the second highest percentage of area that may be affected by flood depths at 0.84%.

Among the barangays in the municipality of Burgos in Ilocos Sur, Mambug is projected to have the highest percentage of area that will experience flood levels at 1.50%. Meanwhile, Cabcaburao posted the second highest percentage of area that may be affected by flood depths at 1.17%.

Among the barangays in the municipality of Nagbukel in Ilocos Sur, Bandril is projected to have the highest percentage of area that will experience flood levels at 6.26%. Meanwhile, Mapisi posted the second highest percentage of area that may be affected by flood depths at 5.29%.

Among the barangays in the municipality of Narvacan in Ilocos Sur, Sucoc is projected to have the highest percentage of area that will experience flood levels at 6.14%. Meanwhile, Dasay posted the second highest percentage of area that may be affected by flood depths at 5.49%.

Among the barangays in the municipality of San Esteban in Ilocos Sur, Cappa-Cappa is projected to have the highest percentage of area that will experience flood levels at 19.41%. Meanwhile, Ansad posted the second highest percentage of area that may be affected by flood depths at 13.95%.

Among the barangays in the municipality of Santa in Ilocos Sur, Magsaysay District is projected to have the highest percentage of area that will experience flood levels at 3.22%. Meanwhile, Quezon posted the second highest percentage of area that may be affected by flood depths at 2.30%.

Among the barangays in the municipality of Santa Maria in Ilocos Sur, Silag is projected to have the highest percentage of area that will experience flood levels at 10.20%. Meanwhile, Pacang posted the second highest percentage of area that may be affected by flood depths at 7.15%.

Among the barangays in the municipality of Santiago in Ilocos Sur, Mambug is projected to have the highest percentage of area that will experience flood levels at 6.13%. Meanwhile, Bigbiga posted the second highest percentage of area that may be affected by flood depths at 0.13%.

Of the 69 identified educational institutions in the Silay floodplain, Brgy. Poblacion Norte Day Care Center in Brgy. Poblacion Sur was assessed to be exposed to the High level flooding for all three rainfall scenarios. Meanwhile, 20 other institutions were found to be susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios.

13 medical institutions were identified in the Silay floodplain. Cadacio's Clinic in Brgy. Santa Lucia and Dolores-Idica Dental Clinic in Brgy. Baliw Daya were found to be highly prone to flooding, having High level flooding in all three rainfall scenarios.

Moreover, the generated flood hazard maps for the Silay Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area Covered in sq. km.				
Level	5 year	25 year	100 year		
Low	13.56	10.96	9.72		
Medium	34.46	26.32	21.60		
High	32.39	51.04	60.68		
Total	80.41	88.32	92.00		

Table 66. Area covered by each warning level with respect to the rainfall scenario

Of the 69 identified educational institutions in the Silay floodplain, one school was assessed to be exposed to the High level flooding for all three rainfall scenarios. This is the Brgy. Poblacion Norte Day Care Center in Brgy. Poblacion Sur. 21 other institutions were found to be susceptible to flooding, experiencing Medium level flooding in the 5-year return period, and High level flooding in the 25- and 100-year rainfall scenarios. See Annex 12.

13 medical institutions were identified in the Silay floodplain. Cadacio's Clinic in Brgy. Santa Lucia and Dolores-Idica Dental Clinic in Brgy. Baliw Daya were found to be highly prone to flooding, having High level flooding in all three rainfall scenarios. See Annex 13.

## 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The flood validation data were obtained on January 2017.

The flood validation consisted of 339 points randomly selected all over the Silay floodplain. It has an RMSE value of 0.85.

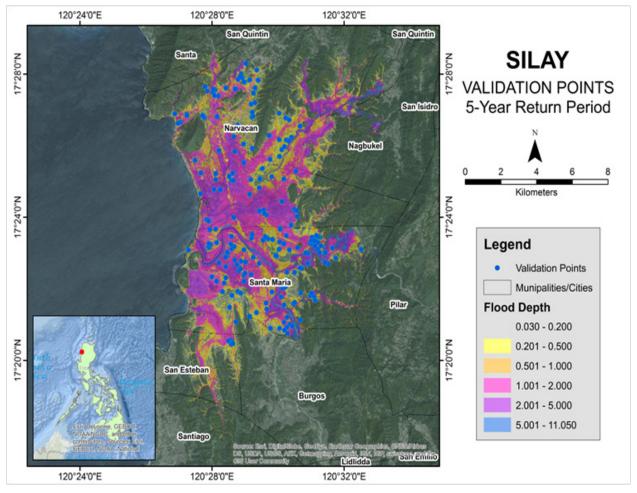



Figure 112. Flood Validation Points for Silay River Basin

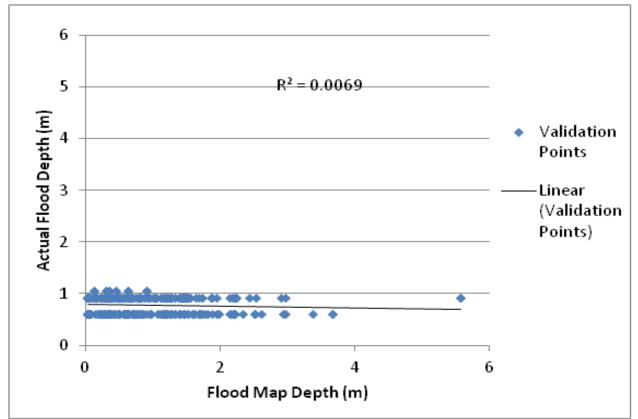



Figure 113. Flood Map Depth vs Actual Flood Depth for Silay

Actual Flood		Modeled Flood Depth (m)					
Actual Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	0	0	0	0	0	0	0
0.21-0.50	0	0	0	0	0	0	0
0.51-1.00	47	66	78	107	27	2	327
1.01-2.00	2	6	4	0	0	0	12
2.01-5.00	0	0	0	0	0	0	0
> 5.00	0	0	0	0	0	0	0
Total	49	72	82	107	27	2	339

Table 67. Actual Flood Depth vs Simulated Flood Depth in Silay

The overall accuracy generated by the flood model is estimated at 23.01%, with 78 points correctly matching the actual flood depths. In addition, there were 177 points estimated one level above and below the correct flood depths while there were 80 points and 4 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 136 points were overestimated while a total of 125 points were underestimated in the modelled flood depths of Silay.

Table 68. Summary of Accu	uracy Assessment in Sila	y River Basin Survey
---------------------------	--------------------------	----------------------

	No. of Points	%
Correct	78	23.01
Overestimated	136	40.12
Underestimated	125	36.87
Total	339	100

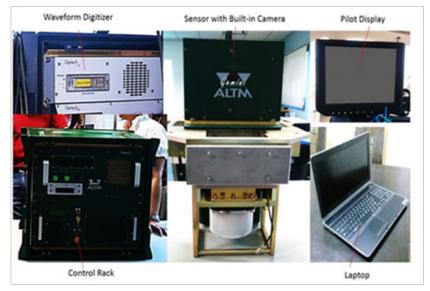
## REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.


Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

## ANNEXES

# Annex 1. OPTECH TECHNICAL SPECIFICATION OF THE GEMINI SENSOR GEMINI



Parameter	Specification	
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal	
Laser wavelength	1064 nm	
Horizontal accuracy A(2)	1/5,500 x altitude, (m AGL)	
Elevation accuracy (2)	<5-35 cm, 1 σ	
Effective laser repetition rate	Programmable, 33-167 kHz	
Position and orientation system	POS AV™ AP50 (OEM); 220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver	
Scan width (WOV)	Programmable, 0-50°	
Scan frequency (5)	Programmable, 0-70 Hz (effective)	
Sensor scan product	1000 maximum	
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal	
Roll compensation	Programmable, ±5° (FOV dependent)	
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns	
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)	
Video Camera	Internal video camera (NTSC or PAL)	
Image capture	Compatible with full Optech camera line (optional)	
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)	
Data storage	Removable solid state disk SSD (SATA II)	
Power requirements	28 V; 900 W;35 A(peak)	
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg	
Operating temperature	-10°C to +35°C (with insulating jacket)	
Relative humidity	0-95% no-condensing	

#### PEGASUS



1 Target reflectivity ≥20%

Intensity capture

Image capture

Full waveform capture Data storage

Power requirements Dimensions and weight

**Operating Temperature** 

**Relative humidity** 

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

Up to 4 intensity returns for each pulse, including last (12 bit)

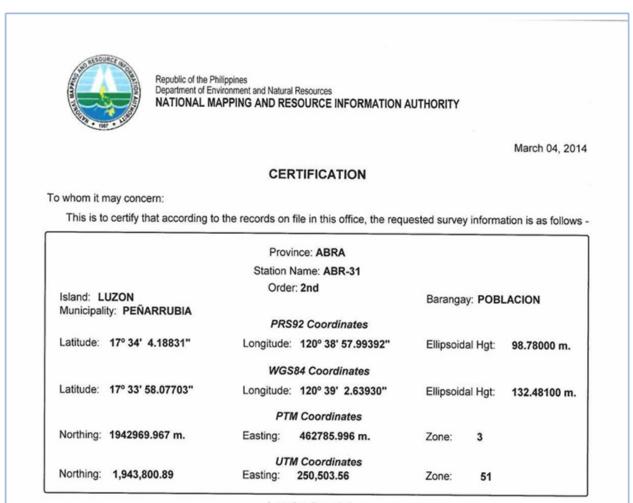
5 MP interline camera (standard); 60 MP full frame (optional) 12-bit Optech IWD-2 Intelligent Waveform Digitizer

> Removable solid state disk SSD (SATA II) 28 V, 800 W, 30 A

> Sensor: 630 x 540 x 450 mm; 65 kg; Control rack: 650 x 590 x 490 mm; 46 kg

> > -10°C to +35°C

0-95% non-condensing


3 Angle of incidence ≤20°

4 Target size  $\geq$  laser footprint5 Dependent on system configuration

Parameter	Specification			
Camer	a Head			
Sensor type	60 Mpix full frame CCD, RGB			
Sensor format (H x V)	8, 984 x 6, 732 pixels			
Pixel size	6µm x 6 µm			
Frame rate	1 frame/2 sec.			
FMC	Electro-mechanical, driven by piezo technology (patented)			
Shutter	Electro-mechanical iris mechanism 1/125 to 1/500++ sec. f-stops: 5.6, 8, 11, 16			
Lenses	50 mm/70 mm/120 mm/210 mm			
Filter Color and near-infrared removable f				
Dimensions (H x W x D)	200 x 150 x 120 mm (70 mm lens)			
Weight	~4.5 kg (70 mm lens)			
Controller Unit				
Computer Mini-ITX RoHS-compliant small-former embedded				
computers with AMD TurionTM 64 X2 CPU				
4 GB RAM, 4 GB flash disk local storage				
IEEE 1394 Firewire interface				
Removable storage unit	~500 GB solid state drives, 8,000 images			
Power consumption	~8 A, 168 W			
Dimensions	2U full rack; 88 x 448 x 493 mm			
Weight	~15 kg			
Image Pre-Proc	essing Software			
Capture One	Radiometric control and format conversion, TIFF or JPEG			
Image output	8,984 x 6,732 pixels			

### Annex 2. NAMRIA CERTIFICATES OF REFERENCE POINTS USED

ABR - 31

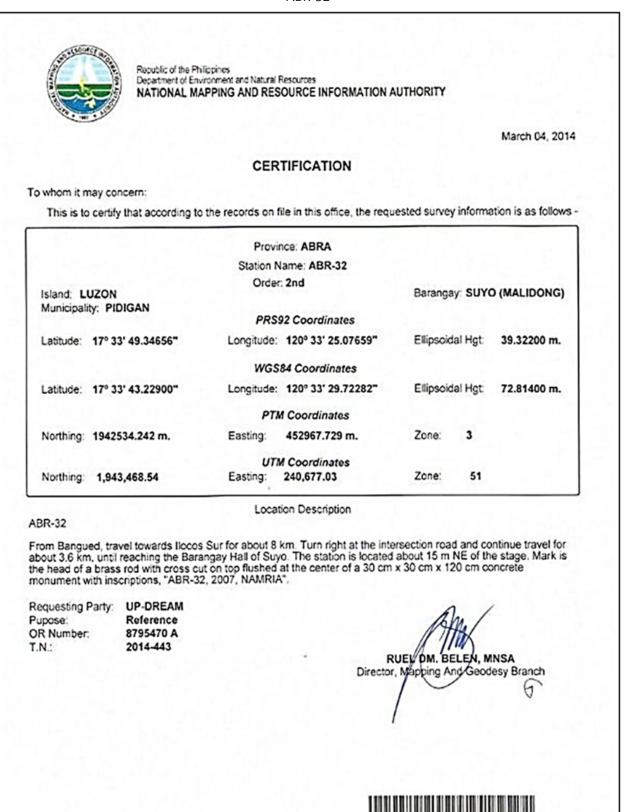


#### ABR-31

Location Description

From the town proper of Bangued, travel towards Narvacan, Ilocos Sur. A road intersection will be reached in about 2.5 Km. just before Sinalang Bridge. At the intersection, turn left and continue travelling for about 6.9 Km. towards the access road leading to the compound of Peñarrubia Central School, about 100 m NW of the Mun. Hall. Station is located 150 m N of the main gate of the said school. Mark is the head of a brass rod with cross cut on top flushed at the center of a 30 cm x 30 cm x 120 cm concrete monument with inscriptions, "ABR-31, 2007, NAMRIA".

Requesting Party:	<b>UP-DREAM</b>
Pupose:	Reference
OR Number:	8795470 A
T.N.:	2014-442


RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6





NAMRIA OFFICES:

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manilo, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph ABR-32







#### SAMUA OFFICES

Vale : Lavise Avenue, Fert Senfacie, 1624 Tapiig City, Philippines – Tel. No.: (522) 813-4821 to 41 Branch : 421 Barraco St. San Nicoles, 1010 Manto, Philippines, Tel. No. (522) 241-3494 to 58 www.namria.gov.ph

	ironment and Natural F	Resources OURCE INFORMATION A	UTHORITY		
					March 04, 201
	CER	TIFICATION			
whom it may concern:					
This is to certify that according to	the records on fi	ile in this office, the requ	ested survey i	nforma	ation is as follows
	Drouinaa	11 0000 CUID			
		ILOCOS SUR			
		Name: ILS-9			
Island: LUZON Municipality: SAN JUAN	Station I Order	Name: ILS-9	Barangay:	BACS	SIL
	Station   Order: PRSS	Name: ILS-9 : 2nd	Barangay: Ellipsoidal		SIL 56.57700 m.
Municipality: SAN JUAN	Station I Order PRS9 Longitude:	Name: ILS-9 : 2nd 92 Coordinates			
Municipality: SAN JUAN	Station I Order PRSS Longitude: WGSS	Name: ILS-9 : 2nd 92 <i>Coordinates</i> 120° 27' 9.37799"		Hgt	
Municipality: SAN JUAN Latitude: 17° 43' 40.62808"	Station I Order PRSS Longitude: WGSS Longitude:	Name: ILS-9 2 Coordinates 120° 27' 9.37799" 84 Coordinates 120° 27' 14.01102"	Ellipsoidal	Hgt	56.57700 m.
Municipality: SAN JUAN Latitude: 17° 43' 40.62808" Latitude: 17° 43' 34.46721"	Station I Order PRSS Longitude: WGSS Longitude:	Name: ILS-9 2 Coordinates 120° 27' 9.37799" 84 Coordinates 120° 27' 14.01102" 6 Coordinates	Ellipsoidal	Hgt	56.57700 m.
Municipality: SAN JUAN Latitude: 17° 43' 40.62808"	Station I Order: PRSS Longitude: WGSU Longitude: PTM Easting:	Name: ILS-9 2 Coordinates 120° 27' 9.37799" 84 Coordinates 120° 27' 14.01102" 1 Coordinates	Ellipsoidal	l Hgt I Hgt	56.57700 m.

#### ILS-9

Is located in Bo. Bacsil, San Juan, Ilocos Sur at the hilly portion of Bacsil National High School compound, 10 m. W from the school building.

Station mark is the head of a 4 in. copper nail embedded and centered on a 8 in. x 8 in. cement putty set at the edge of a concrete road with inscribe station name "ILS-9, NAMRIA, 2000".

*Note: Station upgraded to 2nd Order (by: LTSG. Custodio G. Armengol, May 2005).

Requesting Party:	UP-DREAM
Pupose:	Reference
OR Number:	8795470 A
T.N.:	2014-438

RUEL DM BELEN, MNSA Director, Mapping And Geodesy Branch 6





NAMRIA OFFICES: Nois : Lewton Avenue, Fort Kondisco, 1634 Taguig City, Philippines Tel. No.: (632) 810-4131 to 41 Branch : 421 Borrece St. San Niceles, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 93 www.nemrie.gov.ph



ILS-13

Is located inside the compound of Cabugao South Central School, Brgy. Bonifacio, Cabugao, Ilocos Sur. It is situated on a dike of an uncultivated farm owned by the municipality. It is located about 30 m. SE of the school oval and about 20 m. SE of a concrete shed. It is reached by traveling N coming from Vigan City. The school is on the left side of the highway, opposite Cabugao National High School.

Mark is the head of a 3 in. copper nail embedded and centered on a 30 cm. x 30 cm. concrete monument, about 60 cm. deep, protruding by 5 cm., with inscriptions "ILS-13, 2005, NAMRIA".

Requesting Party:	UP-DREAM
Pupose:	Reference
OR Number:	8795470 A
T.N.:	2014-439

RUEL DM. BELEN MNSA Director, Mapping And G odesy Branch d





#### NAMELA OFFICES-

Mein : Lewton Avenue, Fort Benifacie, 1634 Taguig Cay, Philippines Tel. No.: (632) 816-4851 to 41 Branch : 421 Barraca St. See Miceles, 1010 Manila, Palippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

	Philippines Environment and Natural Resources MAPPING AND RESOURCE INFOR	MATION AUTHORI	ſY	
the state				March 04, 201
	CERTIFICATION			
o whom it may concern:				
State of the second	to the records on file in this office	the second state	over inform	ation is as follows
		TTTP FORUSETOR CU		0.00113 03 101013
This is to certify that according		, the requested su		
This is to beinly that according	Province: ILOCOS SUF			
This is to certify that according				
	Province: ILOCOS SUF			
Island: LUZON Municipality: LIDLIDDA	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd	Bara		LACION NORTE
Island: LUZON Municipality: LIDLIDDA	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd PRS92 Coordinate	Bara S	ngay: POB	LACION NORTE
Island: LUZON	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd	Bara S		LACION NORTE
Island: LUZON Municipality: LIDLIDDA	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd PRS92 Coordinate	Bara s 9179" Eilip	ngay: POB	LACION NORTE
Island: LUZON Municipality: LIDLIDDA	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd PRS92 Coordinate Longitude: 120° 31' 8.8	Bara s 9179" Eilip es	ngay: POB	LACION NORTE
Island: LUZON Municipality: LIDLIDDA Latitude: 17º 16' 13.59403"	Province: ILOCOS SUF Station Name: ILS-22 Order: 2nd PRS92 Coordinate Longitude: 120° 31' 8.8 WGS84 Coordinate	Bara S 9179" Ellip es 6269" Ellip	ngay: POB soidal Hgt:	LACION NORTE

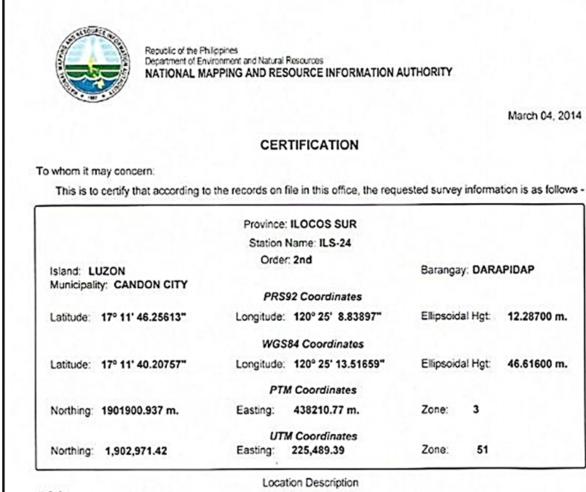
#### ILS-22

#### **ILS-22**

Location Description

From Candon City, travel N along the national highway for about 6 km, then turn E at the junction and travel for about 8 km, until reaching the Lidlidda Public Market. Turn NW and travel for about 4 km, to reach the North Central School. It is located inside the school compound on the science park near the NE corner of the concrete stage. It is 1.5 m, NNW of the E corner of the concrete stage and 0.8 m. NNE of the NE side of the stage.

Mark is the head of a 4 in. copper nail, centered on a concrete block 30 cm. x 30 cm. and 10 cm. above the ground surface, with inscriptions "ILS-22, 2005, NAMRIA".


Requesting Party:	UP-DREAM
Pupose:	Reference
OR Number:	8795470 A
T.N.:	2014-440

RUEL DM. BELEN MNSA Director, Mapping And Geodesy Branch 6





KANETA OFFICES: Vaie : Lawtee Avenue, Fort Bunifacio, 1634 Toppig (ity, Philippines – Tol. No.: (632) 810-4831 to 41 Brack : 421 Tarraca St. San Nicoles, 1010 Monilo, Philippines, Tol. No. (632) 241-3494 to 98 www.namria.gov.ph



#### ILS-24

From the national highway of Candon City proper going to Vigan City, turn left on the road fronted by Jollibee. Continue traveling this road passing through the City Wet Market and University of Northern Philippines (UNP) Annex on the left side until reaching its end, which is a "T" intersection. Take the road to the left passing through Darapidap Beach Resort until reaching the E gate of Ilocos Sur Polytechnic State College (ISPSC). It is located on the right side of the concrete road, approx. 10 m. SSE of the campus' E gate, about 75 m. S of the main entrance. It is also about 15 m. ESE of the campus' concrete water tank.

Mark is the head of an umbrella type G.I. roofing nail embedded and centered on a 30 cm. x 30 cm. concrete monument protruding by about 5 cm., with inscriptions "CANDON-1, 2004, PRS-92, FNSP-LMS-DENR".

Requesting Party: UP-DREAM Pupose: Reference OR Number: 8795470 A T.N.: 2014-441

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G





KLNEIL OFFICES: Nain : Lowton Avenue, Fort Bonikacie, 1434 loguig City, Philippines – Tel. No.: (632) 818-4831 to 41 Brach : 421 Barroto St. San Nicolas, 1018 Manilo, Philippines, Tel. No. (632) 241-3454 to 98 www.namria.gov.ph

## Annex 3. BASELINE PROCESSING REPORTS

ABR-3070

Project information	1	Coordinate Syste	m
Name:		Name:	UTM
Size:		Datum:	PRS 92
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number		Vertical datum:	
Description:			

## Baseline Processing Report

1.4

_____

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipeoid Dist. (Meter)	ΔHeight (Meter)
ABR-31 ABR- 3071 (B1)	ABR-31	ABR-3071	Fixed	0.002	0.003	183°28'35"	116.693	-2.290

#### Acceptance Summary

Processed	Passed	Flag	P	Fall	Þ
1	1	0		0	

### ABR-31 - ABR-3071 (6:36:50 AM-5:29:43 PM) (S1)

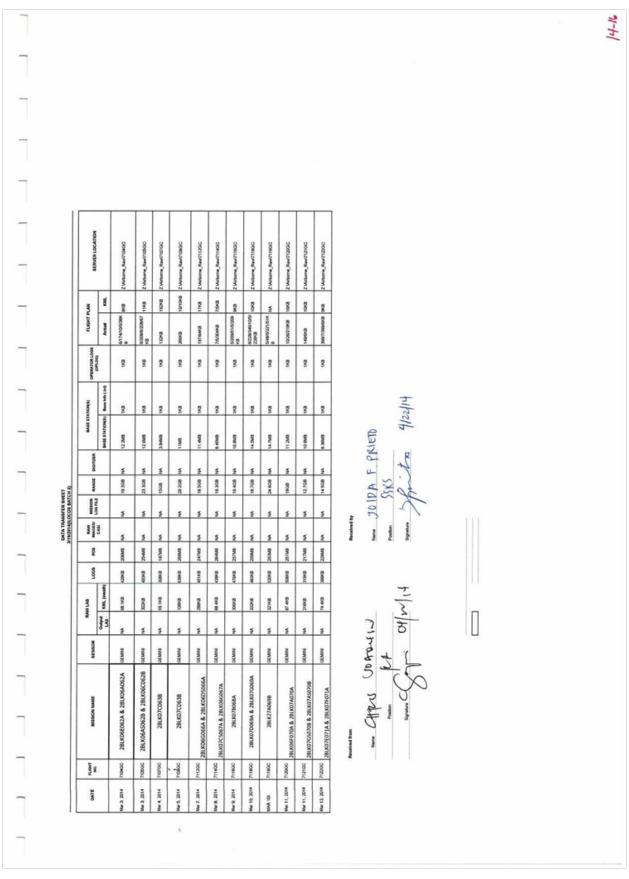
Baseline observation:	ABR-31 ABR-3071 (B1)	
Processed:	5/30/2016 3:44:18 PM	
Solution type:	Fixed	
Frequency used:	Dual Frequency (L1, L2)	
Horizontal precision:	0.002 m	
Vertical precision:	0.003 m	
RMS:	0.001 m	
Maximum PDOP:	6.905	
Ephemeria used:	Broadcast	
Antenna model:	NGS Absolute	
Processing start time:	5/28/2016 6:36:58 AM (Local: UTC+8hr)	
Processing stop time:	5/28/2016 5:29:43 PM (Local: UTC+8hr)	
Processing duration:	10:52:45	
Processing Interval:	1 second	

From:	ABR-31					
	Grid		Local		G	ladal
Easting	250503.563 m	Latitude	N17*34'04.18832*	Latitude		N17°33'58.07703'
Northing	1943800.890 m	Longitude	E120°38'57.99392*	Longitude		E120°39'02.63930'
Elevation	93.704 m	Height	98.780 m	Height		132.481 m
To:	ABR-3071					
	Grid		Local		G	lobel
Easting	250495.042 m	Latitude	N17°34'00.39935*	Latitude		N17°33'54.28829
Northing	1943684.465 m	Longitude	E120°38'57.75398*	Longitude		E120°39'02.39944'
Elevation	91.410 m	Height	96.489 m	Height		130.194 m
Vector						
ΔEasting	-8.52	1 m NS Fwd Azl	muth	183°28'35*	ΔX	-10.725 m
ΔNorthing	-116.42	25 m Ellipsold Dis	t	116.693 m	ΔY	31.972 m
ΔElevation	-22	5 m AHeight		-2.290 m	AZ	-111.739 m

#### Standard Errors

Vector errors:					
σ ΔEasting	0.001 m	or NS fwd Azimuth	0°00'01*	σΔΧ	0.001 m
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.001 m
σ ΔElevation	0.002 m	σΔHeight	0.002 m	σΔZ	0.001 m

## Aposteriori Covariance Matrix (Meter*)


	x	Y	Z
x	0.0000013627		
Y	-0.0000010122	0.0000021053	
z	-0.0000004683	0.0000008588	0.0000007466

### Occupations

	From	То	
Point ID:	ABR-31	ABR-3071	
Data filo:	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed(3)\ABR- 31 05-28-2016 (1.373, Bottom of Antenna Mount).16O	C:\Users\Windows User\Documents \Business Center - HCE\Unnamed(3)\AB 3071 05-28-2016 (1.509, Bottom of Antenna Mount).16O	
Receiver type:	Unknown	Unknown	
Receiver serial number:	U06AIR0WLC8	U01KKH3S8AW	
Antenna type:	CR.G5	CR.G5	
Antenna serial number:	-Unknown-	-Unknown-	
Antenna height (measured):	1.373 m	1.509 m	
Antenna method:	Bottom of antenna mount	Bottom of antenna mount	

# Annex 4. THE SURVEY TEAM

Data Acquisition Component Sub-team	Designation	Name	Agency/Affiliation
	Sub-	Team	
Phil-LiDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader –I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
	Data Component Project Leader –I	ENGR. LOUIE BALICANTA	UP-TCAGP
Survey Supervisor	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
	Supervising Science Research Specialist (Supervising SRS)	LOVELY GRACIA ACUÑA	UP-TCAGP
		ENGR. LOVELYN ASUNCION	UP-TCAGP
	Field-	Team	
	Senior Science Research Specialist (SSRS)	JULIE PEARL MARS	UP-TCAGP
	SSRS	AUBREY MATIRA	UP-TCAGP
	Research Associate (RA)	MA. VERLINA TONGA	UP-TCAGP
LiDAR Operation	RA	REGINA AEDRIANNE FELISMINO	UP-TCAGP
	RA	MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
	RA	ENGR. RENAN PUNTO	UP-TCAGP
	RA	FAITH JOY SABLE	UP-TCAGP
Ground Survey	RA	ENGR. KENNETH QUISADO	UP-TCAGP
	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	Airborne Security	DIOSCORO SOBERANO	PHILIPPINE AIR FORCE (PAF)
		OLIVER SACLOT	PAF
		CAPT. MARK TANGONAN	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. RAUL CZ SAMAR II	AAC
		CAPT. NEIL AGAWIN	AAC
LiDAR Operation	Pilot	CAPT JEROME MOONEY	AAC
		CAPT. CEASAR ALFONSO III	AAC
		CAPT. JEROME MOONEY	AAC



## Annex 5. DATA TRANSFER SHEET FOR SILAY FLOODPLAIN

7 --7 1 LLA' WHICHTY -1 ------

-

-

ь	
⊒	
퓺	L
er.	3
문	ł
혖	1
2	1
Ĕ	÷
<	ſ
5	
2	

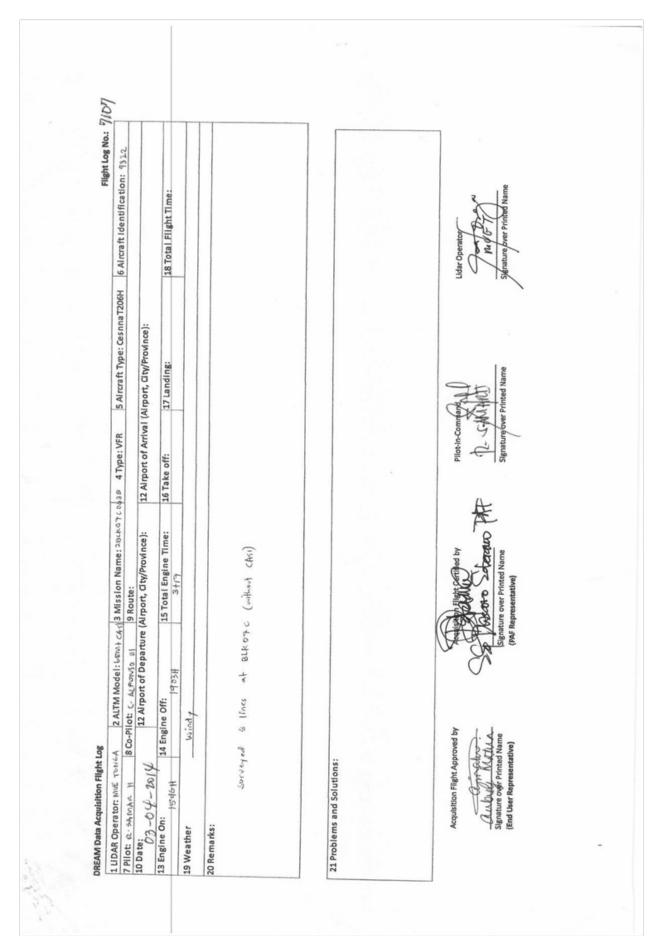
m         model         model <thmodel< th="">         model         mod</thmodel<>	RANGE DIGITLER			OPERATOR LOOS		SERVER
1131P         IEUKIOAGGA         FEGAGUS         3.03GB         M         12.3MB         XIA         NA         11           1132P         IEUKIOAGGAB         FEGAGUS         3.03GB         M         3.57MB         MIA         NA         16           14         1132P         IEUKIOAGGAB         FEGAGUS         2.64GB         M         11MB         220MB         33.1GB         280KB         23           14         1192P         IEUKIOGOSTA         FEGAGUS         2.64GB         M         11MB         220MB         33.1GB         280KB         23           14         1192P         IEUKIOBOSTB         FEGASUS         2.56GB         M         11MB         220MB         231GB         23           14         1192P         IEUKIOBOSTB         FEGASUS         2.76GB         M         7.08MB         17.08         23         28         16         23           14         1192P         IEUKIOBOSTB         FEGASUS         2.76GB         M         7.08MB         27.06B         27.06B         27         28         28         26         28         28         28         28         28         28         28         28         28         28         28		BASE STATION(S) Base Info (.bd)		-	Actual KML	
1133         FEGASUS         SEGASUS         SEGASUS <thsegasus< th=""> <thsegasus< th=""> <thsega< td=""><td>19.8 N/A</td><td>6.5 ^{1KB}</td><td></td><td>4508</td><td>35 MA</td><td>X'Mittome_Rawl1 151P</td></thsega<></thsegasus<></thsegasus<>	19.8 N/A	6.5 ^{1KB}		4508	35 MA	X'Mittome_Rawl1 151P
1         1156 ⁶ 1166 ⁶ PEGANGUS         2.64G8         M         1146 ⁸ 33.1G8         23.1G8         2396 ⁶ 23           14         1157 ⁶ 18LK1000057A         PEGANGUS         1.85G8         M         6.62M8         25.6G8         23048         11           14         1156 ⁶ 18LK1000058A         PEGANGUS         2.76G8         M         1.14M8         25.0G8         23048         11           14         1156 ¹ 18LK1005058A         PEGANGUS         2.76G8         M         1.04M8         12.7G8         148K8         23           14         1156 ¹ 18LK1005058B         PEGANGUS         2.76G8         M         1.1AM8         27.0M8         168K8         23           14         1156 ¹ 18LK1005058B         PEGANGUS         2.14G8         M         1.17M8         2.76G8         24668         1           14         116 ¹ 18LK1005058B         PEGANGUS         2.05G8         M         1.17M8         1.17M8         2.26G8         20468         1           14         116 ¹⁰ 18LK100505051         PEGANGUS         2.15G8         M         1.17M8         2.3468         2.4468 <td>8.02 N/A</td> <td>1K 6.51</td> <td>IKB 2</td> <td>2448</td> <td>38 38</td> <td>X'Mirbome_Rawl1 153P</td>	8.02 N/A	1K 6.51	IKB 2	2448	38 38	X'Mirbome_Rawl1 153P
1         1157P         IBLK10B057B         PEGASUS         1.85GB         M         (.62MB         2.56GB         2.56GB         2.36KB         1.1           14         1156P         IBLK10G0058A         PEGASUS         2.76GB         M         11.4MB         27.0MB         146KB         23           14         1156P         IBLK10G0058A         PEGASUS         2.76GB         M         11.4MB         23.0MB         146KB         14           14         1161P         IBLK10F059A         PEGASUS         3.42GB         M         1.0AB         23.0GB         16KB         1           14         1162P         IBLK10F059A         PEGASUS         3.43GB         M         1.1AB         25.0GB         208KB         1           14         1162P         IBLK10F050A         PEGASUS         3.43GB         M         1.1AB         25.0GB         26.0GB         26.0GB         3           14         1162P         M         1.42MB         17.4MB         17.4MB         17.4MB         26.4GB         26.4GB         46         47           14         1166P         PEGASUS         2.056B         M         1.74MB         17.4MB         21.4HB         27.4KB         17.4KB	26.4 N/A	6.95 ^{1KB}		6108	44 MA	X'Mirbome_Rawl1 155P
1         11566         PEGANGUS         2.7666         M         11.4MB         271MB         4.768         148MG         2.7           14         1161F         IBLK10050586         PEGANGUS         1.2866         M         1.08MB         5.2.768         168KB         7.8           14         1161F         IBLK10050586         PEGANGUS         1.2866         M         1.08MB         5.2.068         168KB         7.8           14         1167F         IBLK10050506         PEGANGUS         1.4168         M         1.7.2MB         15.2.068         2.8668         2.84KB         1.8           14         1167F         IBLK10050506         PEGANGUS         2.1.7.268         M         1.42.MB         17.9.MB         17.9.KB         1.46.KB         3.1           14         1167F         IBLK100505061         PEGANGUS         2.0568         M         1.47.MB         12.9.KB         2.3.6.KB         1.46.KB         3.1           14         1177         IBLK100505061         PEGANGUS         1.7.058         M         1.1.8.KB         2.3.6.6B         2.9.4KB         1.1           14         1177         IBLK100505061         PEGANGUS         1.5.26B         M         1.8.1.8.MB	17.4 N/A	6.95 ^{1KB}		4858	45 MA	X'Mirbome_Rawl1 157P
1         1161P         1BLK10DS058B         PEGASUS         1.266B         M         7.08MB         152MB         2.305B         166MG         31           14         1163P         1BLK10D5058B         PEGASUS         3.426B         M         7.2MB         152MB         5.305B         166KB         31           14         1163P         1BLK10F059B         PEGASUS         3.416B         M         7.12MB         1.37MB         2.366B         208KB         11           14         1167P         1BLK10F050B         PEGASUS         3.1416B         M         7.42MB         1.70MB         2.366B         208KB         11           14         1176P         1BLK10F0506B         PEGASUS         2.056B         M         7.42MB         1.70MB         2.34KB         1           14         1176P         1BLK10C5060B         PEGASUS         2.056B         M         7.42MB         2.056B         2.44KB         1         1           14         1177P         1BLK10C5060B         PEGASUS         2.146B         M         2.34KB         2.146B         2.44KB         2.44KB         2.44KB         2.44KB         2.44KB         2.44KB         2.44KB         2.44KB         2.44KB         2.	27.9 N/A	6.55 ^{1KB}		6698	29 NA	X'Mirbome_Rawl1 159P
14         116.P         18LK10F059A         PEGASUS         3.42GB         M         12MB         5.16MB         5.3CGB         416KB         1           14         116.P         18LK10F059B         PEGASUS         1.41GB         M         1.12MB         143MB         25.6GB         208KB         11           14         116.P         18LK10F059B         PEGASUS         831MB         M         1.17MB         143MB         25.6GB         208KB         11           14         116.P         18LK10F0506B         PEGASUS         831MB         M         1.17MB         17.5GB         146KB         8           14         11%         18LK10C05061A         PEGASUS         2.05GB         M         1.17MB         2.3GB         2.34KB         1           14         11%         18LK10C05061B         PEGASUS         1.5GB         M         4.17MB         2.3GB         169KB         1         1           14         11%         18LK10C05061B         PEGASUS         1.5GB         M         4.31MB         2.3GB         169KB         1         1         1           111%         18LK10C05061B         PEGASUS         1.5GB         M         1.18MB         2.34KB	15.6 N/A	6.55 148		474B	S0 NA	X'Mirbome_Raw(1 161P
Intere         IbLK10E059B         FreeAsus         1.41GB         M         1.12MB         1.43MB         2.66GB         2084GB         1.1           14 ¹¹⁶⁷⁹ IbLK10H060A         PEGASUS         831MB         M         1.42MB         175GB         145KB         8           14 ¹¹⁶⁹⁶ IbLK10H060A         PEGASUS         205GB         M         1.47MB         175MB         175GB         145KB         8           14 ¹¹⁷⁹⁶ IbLK10C05061B         PEGASUS         2.05GB         M         1.17MB         133MB         28.6GB         24KB         1           14 ¹¹⁷⁹⁶ IbLK10C05061B         PEGASUS         1.52GB         M         5.95MB         11.8MB         20.3GB         169KB         1           14 ¹¹⁷⁹⁶ IBLK10C05061B         PEGASUS         1.52GB         M         1.84MB         2.14GB         1         2         2         1         2         2         1         2         2         1         2         2         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2	31.7 N/A	6.05 1KB		3288	31 NA	X'Mittome_Rawl1 163P
1         1167P         1BLK10H060A         PEGASUS         831MB         M         1.42MB         170MB         17.5GB         145KB         8           14         1108F         1BLK10ES060B         PEGASUS         2.05GB         M         1.17MB         28.6GB         2.4KB         1           14         1171P         1BLK10ES060B         PEGASUS         2.05GB         M         1.17MB         28.6GB         2.4KB         1           14         1173P         1BLK10DS061B         PEGASUS         1.52GB         M         5.69MB         116MB         20.3GB         106MG         1           14         1179         1BLK10DS061B         PEGASUS         1.52GB         M         5.69MB         116MB         20.76B         1170G           14         1179         1BLK10DS061B         PEGASUS         3.14GB         M         1.8MB         21.4MB         20.76B         214GB         1           14         1177         1BLK10DS061B         PEGASUS         3.14GB         M         3.14MB         21.4MB         20.7GB         244GB         1         22.5G           11759         1BLK10DS061B         PEGASUS         1.6GB         M         3.34MB         57.MB	16.7 N/A	6.05 1KB		502B n	ria NA	X'Mirtome_Rawl1 165P
11         1100         IBLK10ES060B         PEGASUS         2.05GB         N         1.17MB         133MB         28.6GB         2.4KB         11           11         1111         IBLK10CDS061A         PEGASUS         1.72GB         N         3.73MB         28.6GB         24KB         11           11         1117         IBLK10CDS061A         PEGASUS         1.52GB         N         3.90MB         21GB         11         11           11         1177         IBLK10DS061B         PEGASUS         3.14GB         N         11.8MB         20.3GB         169KB         1           11         1177         IBLK10DS061B         PEGASUS         3.14GB         N         11.8MB         21.4MB         2	8.66 N/A	6.64 ^{1KB}		3188	20 MA	X:Mirbome_Rawl1 167P
1         1171P         1BLK10CD5061A         PEGASUS         1.72GB         M         3.73MB         206MB         21GB         170KB         10KB           14         1172*         1BLK10D5061B         PEGASUS         1.52GB         M         5.65MB         116MB         20.3GB         169KB         1           14         1172*         1BLK10D5061B         PEGASUS         1.52GB         M         5.65MB         116MB         20.3GB         169KB         1           14         1177*         1BLK10D5061B         PEGASUS         1.16GB         M         1.15MB         20.3GB         30.4KB         23.4KB         1           11177*         1BLK1005062B         PEGASUS         1.16GB         M         1.15MB         21.4KB         30.6B         24.4KB         22.5G           11178*         1BLK100064B         PEGASUS         1.16GB         M         0.3MB         212.4G         21.7G         22.5G           1118*         1BLK1200064A         PEGASUS         1.16GB         M         0.3MB         212.4G         21.7G         21.7G           1118*         1BLK1200064A         PEGASUS         1.16GB         M         0.3MB         212.4G         21.7G         21.7G	19.1 N/A	6.64 ^{1KB}		304B	45 NA	X'Mirbome_Rawl1 169P
11 ¹⁷³⁹ IBLK10DS061B         PEGASUS         1.52GB         NA         5,95MB         116MB         20.3GB         169KB           14         11 ¹⁷²⁹ IBLK10DS061B         PEGASUS         1.52GB         M         5,95MB         116MB         20.3GB         169KB           14         11 ¹⁷⁷⁹ IBLK10DS062B         PEGASUS         1.180G         M         11.3MB         211ABB         21.1GB         341KB           11 ¹¹⁷⁷⁹ IBLK10CS062B         PEGASUS         1.180G         M         3.1MB         157MB         30.GB         254KB           11 ¹¹⁷⁷⁹ IBLK10CS062B         PEGASUS         1.180G         M         3.1MB         157MB         30.GB         254KB           11 ¹¹⁷⁷⁹ IBLK10C064A         PEGASUS         1.180G         M         9.00B         36.60B         30.4           11 ¹¹⁷⁸⁹ IBLK120C064A         PEGASUS         1.50B         M         9.00B         36.60B         30.4           11 ¹¹⁸⁹⁹ IBLK120C064A         PEGASUS         1.50B         M         9.00B         36.60B         30.4           11897         IBLK12DS065A         PEGASUS         2.34GB         M         9.00B         30.50B	17 NIA	7.08		3108	32 NA	X:Mittome_Rawl1 171P
1175P         IBLK10BS062A         PEGASUS         3.14GB         NA         11.8MB         2.14MB         4.1GB         3.14GB         3.14GB         NA         11.8MB         2.1GB         3.14GB         3.14GB         3.14GB         3.14GB         3.14GB         3.14GB         3.14GB         3.14MB         3.1GB	14.5 N/A	7.08 ^{1KB}		481B	50 MA	X'Airtome_Rawl1 173P
1177b         18LK10CS002B         PEGASUS         1.16GB         NA         3.11MB         157MB         3.0GB         2.54KB           11176         18LK10CS002A         PEGASUS         3.54GB         MA         3.11MB         157MB         3.0GB         2.54KB           11176         18LK12C006AA         PEGASUS         3.54GB         MA         10.34B         2006MB         36.7B         34.5           11859         18LK12AC006AB         PEGASUS         1.5GB         MA         10.34B         20.04MB         22.5         22.5           11859         18LK12D0064B         PEGASUS         1.16GB         MA         19.84MB         16.42GB         142.02         22.1           11859         18LK12DS065A         PEGASUS         2.34GB         MA         11.84MB         21.2MB         36.30B         30.43	29.5 N/A	6.74 1KB		3058	38 NA	X'Mittome_Rawl1 175P
1173P         1BL/X7B063A         PEGASUS         3.54G8         NA         MAR         260MB         39.3G8         361MB           1183P         1BL/X12AC064A         PEGASUS         1.5G8         NA         10.3MB         260MB         39.3G8         361MB           1183P         1BL/X12AC064A         PEGASUS         1.5G8         NA         10.3MB         266MB         36.4G8         36.4GB	11.3 N/A	6.74 1KB		7418	42 NA	X'Mittome_Rawl1 177P
1183P         TBLK12AC064A         PEGASUS         1.5GB         NA         0.3MB         206MB         35.6GB         364MB           1183P         TBLK12D064B         PEGASUS         1.16GB         NA         568MB         151MB         16.4GB         142KB           1183P         TBLK12D064B         PEGASUS         1.16GB         NA         568MB         151MB         16.4GB         142KB           1183P         TBLK12D0665A         PEGASUS         2.3KGB         NA         11MB         2.12MB         35.3GB         3623KB	IS NIA	5.86 1HCB		1KB 3	36 NIA	X'Mirbome_Rawl1 179P
1185P         1BLK100064B         PEGASUS         1160B         NA         5884B         15.4GB         16.4GB         16.4GB           1187P         1BLK120S065A         PEGASUS         2.3GB         NA         118.4B         212.4B         35.3GB         36.3GB	AN BOST	5.94 1KB	8	163	42/38/30/4234 N/A	X:Mittome_Rawl1 183P
1187P 1BLK12DS085A PEGASUS 2:34G8 NA 11MB 212MB 35:308 36:308	TGB NIA	5.94 TK	1KB	1KB n	n/a NIA	X'Airborne_Rawl1 185P
	AGB NIA	6.62 1K	1KB	1KB 3	36 NIA	X:/Airborne_Rawl1 187P
Mar.6.2014 1189P 1BLK12CS065B PEGASUS 2.06G8 NA 108M8 151M8 37.7G8 332KB 19.7G8	LTGB NIA	6.62 1K	1KB	1KB 4	42 NIA	X:/Airtome_Rawl1 189P
Mar 8, 2014 1156P 1BLK27ABS067A PEGASUS 91548 NA 161148 11048 16.1G8 13048 10.208	IZGB NIA	From llocos 1KB	8	1KB 3	36 NIA	X:/Airborne_Rawl1 196P
Mar.8, 2014 1157P 1BLK10CGS067B PEGASUS 714AB NA 159AB 112AB 14.5GB 131KB 8,16GB	16GB NIA	1,44MB 1K	1KB	1KB 27	7 NIA	X:/Airborne_Rawi/1 197P

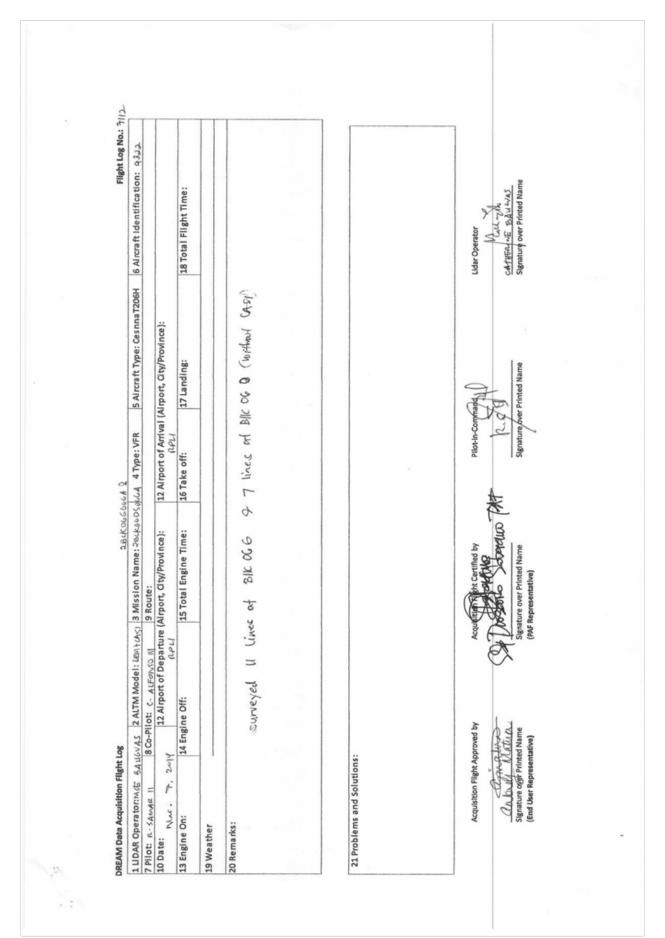
142

14-13

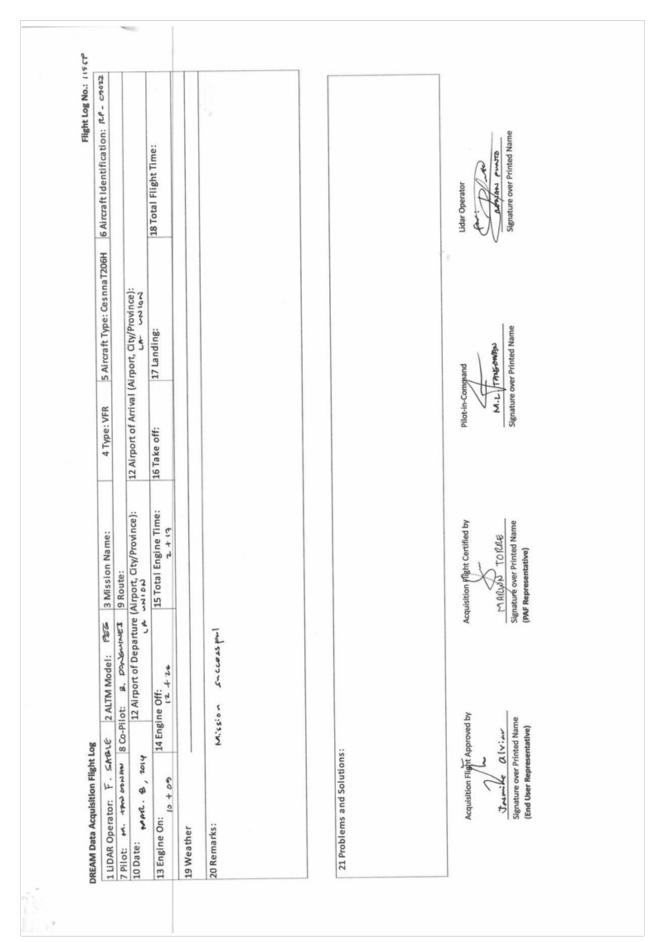
Poston JOIDA 5 Signature

CHPUS JOAQUIN

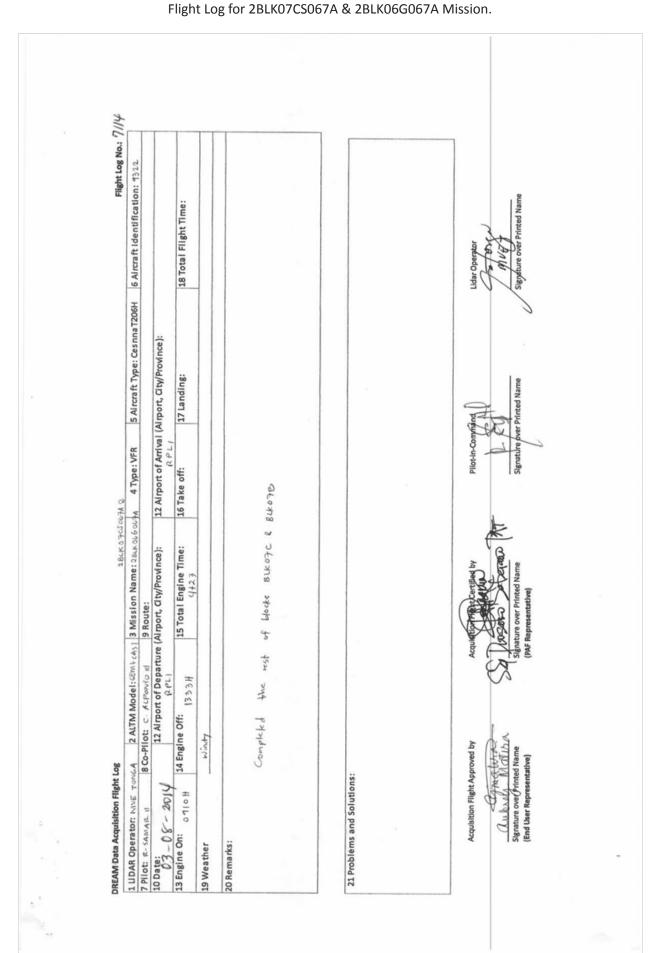

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)


SERVER	CIDACIRAW	Z:IDACIRAW DATA					
	14	17					
FLIGHT PLAN Actual KM	6408	8					
OPERATOR LOGS (OPLOG)	VN	NA					
		1KB		110			
BASE STATION(S) BASE STATIONUS) Base Info (txt)	334	334		7/1			5
DIGITIZER	NA	NA	1 by	the Borget			Uk guila
RANGE	24.7	14.5	Received by	Name A Position Signature			
MISSION LOG FILEICASI LOGS	VN	NA		2 6 18			
RAW MAGES/CASI	VN	NA					
Pos	242	231					
rogs	604	402		e A			
AS ML (swath)	325	190	from	R. FUNTO			
RAW LAS Output LAS KML (swath)	NA	NA	Received from	Name Position Signature			
SENSOR	GEMINI	GEMINI					
MISSION NAME	2BLKSA7149A	2BLKSB7149B					
FLIGHT NO.	4043G 2	4045G					
DATE	May 28, 2016	May 28, 2016					

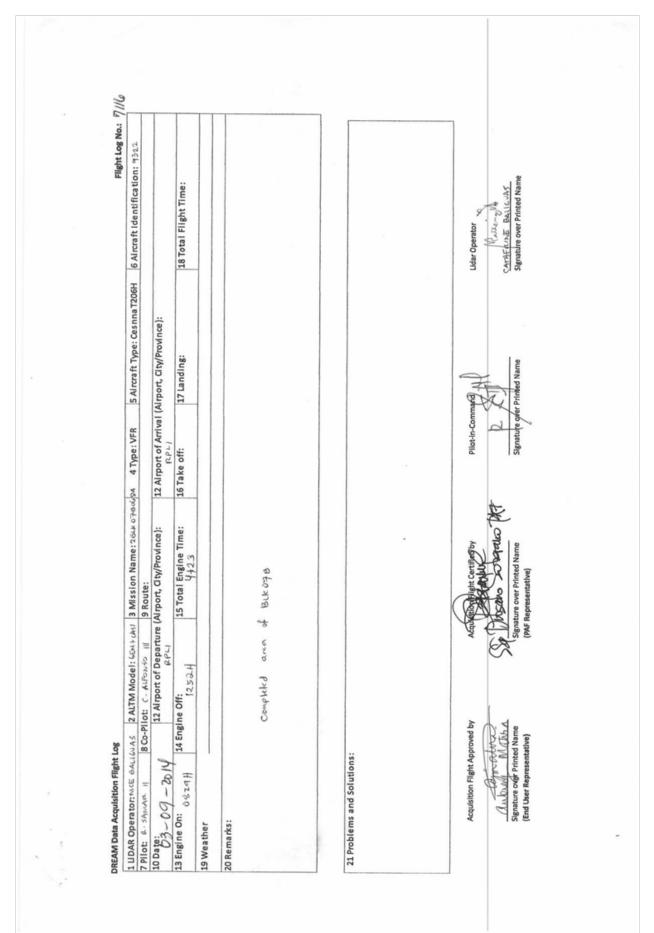
# Annex 6. FLIGHT LOGS


## Flight Log for 1BLK27B063A Mission.

Flight Log No.: 1179,P	ation: 9022			e:				~	. e	+
	6 Aircraft Identification:			18 Total Flight Time:	20+ h				Lidar Operator	DEAM
	5 Aircraft Type: Cesnna T206H		12 Airport of Arrival (Airport, City/Province): ביויי דבינא איי אים איי ג'די נייינאט						€.	
	to 43 h 4 Type: VFR	20	12 Airport of Arrival (	16 Take off:					Pilot-in-command M. I. Har Hor	
	3 Mission Name: (BUL2248 43b. 4 Type: VFR	9 Route: LA WN 10 N	Airport, City/Province):	l m	4+12				Acquisition Flight Certified by	
	2 ALTM Model: PE6	lot: B. DONGNINET	12 Airport of Departure (Airport, Gty/Province):		\$306		Fuldart		Acquisiti Admini Signatur (PAF Rep	
MAM Data Acquisition Flight Log	Operator: R. Punta	7 Pilot: M. TANGONANS CO-Pilot:	10 Date: MNR. 4, 2014		0851	19 Weather	20 Remarks: رمددر کرم س	21 Problems and Solutions:	Acquisition Flight Approved by 9 9 J	

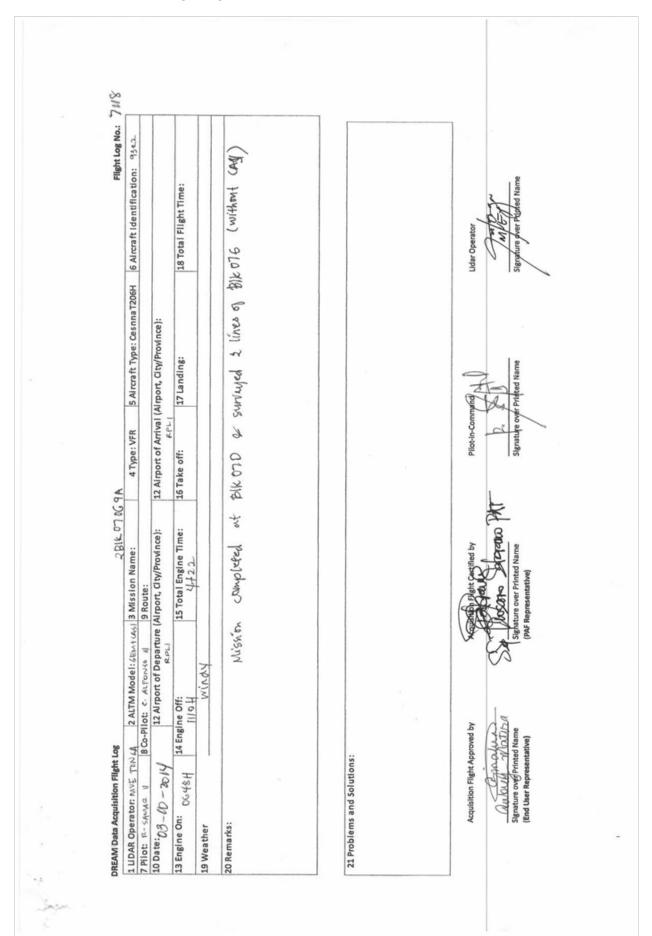






Flight Log for 2BLK06G066A & 2BLK06DS066A Mission.

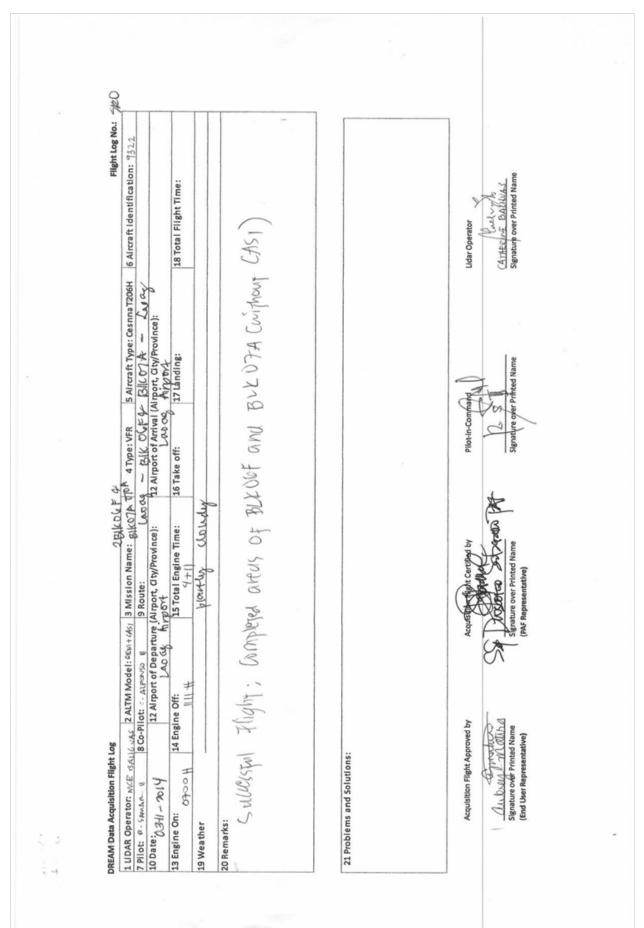


#### Flight Log for 1BLK27ABS067A Mission.

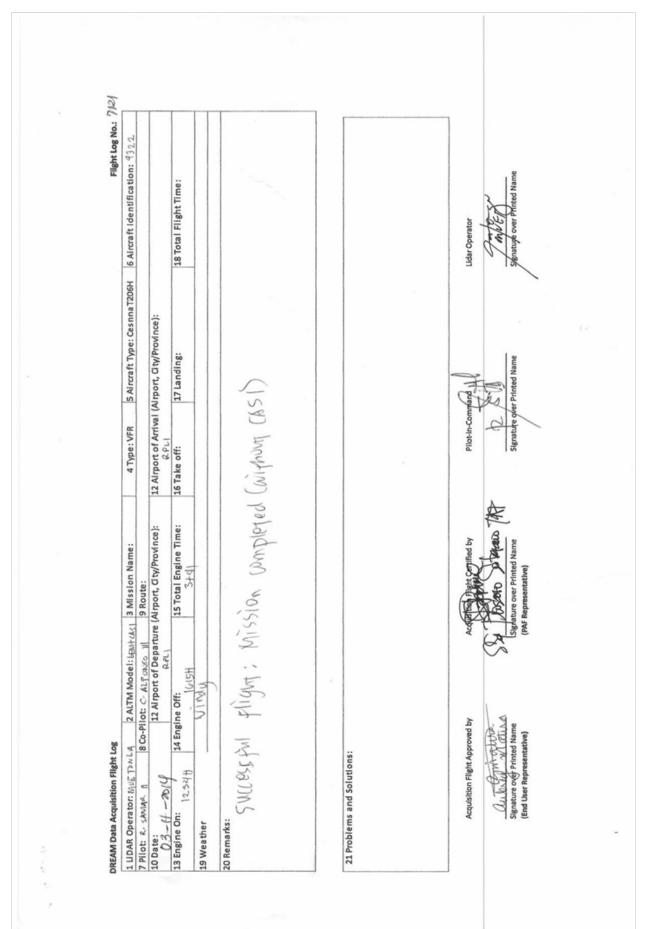


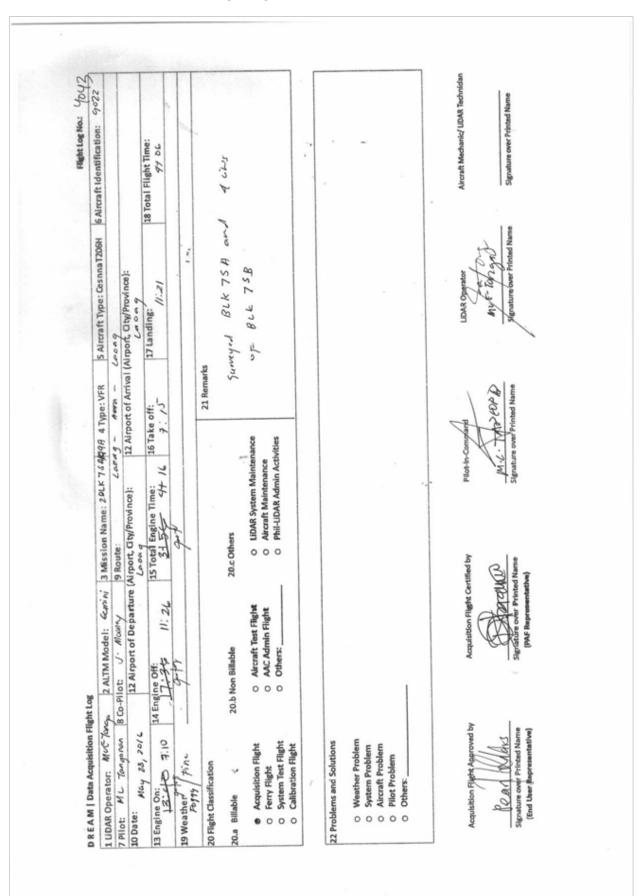

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)




LiDAR Surveys and Flood Mapping of Silay River

Flight Log for 2BLK07B068A Mission.





Flight Log for 2BLK07D069A & 2BLK07G069A Mission.





Flight Log for 2BLK06F070A & 2BLK07A070A Mission.





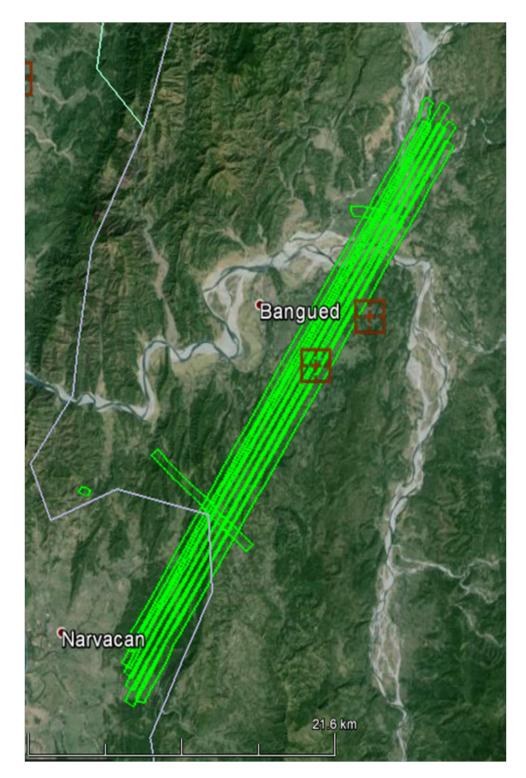
Flight Log for 2BLKSA7149A Mission.

Flight Log No .: 4046 Aircraft Mechanic/ UDAR Technician 6 Aircraft Identification: 9022 Signature over Printed Name 18 Total Flight Time: 3146 COMPLAR BLK7 JB Signature over Printed Name 5 Aircraft Type: Cesnna T206H RAC. PERSMINO 1 Case 13: 31 12 Airport of Arrival (Airport, City/Province): LIDAR Operator Vigan -17 Landing: 62027 21 Remarks 6-065 - 44ra 2 ALTM Model: 6cmin 3 Mission Name: 2 BUK7 5 BI 49 & 4 Type: VFR 202 Signature over Printed Name 13:45 16 Take off: O LIDAR System Maintenance O Aircraft Maintenance O Phil-LiDAR Admin Activities Pliot-In-Con ÷. STE 15 Total Engine Time: 12 Airport of Departure (Airport, Gty/Province): 20.c Others 9 Route: Ċ Acquisition Flight Certified by ature over Printed Name Aprentin (PAF Representative) Cach 9 Aircraft Test Flight
 AAC Admin Flight
 Others: 8 Co-Pilot: J. Noury 17:36 20.b Non Billable 14 Engine Off: D R E A M | Data Acquisition Flight Log 1 UDAR Operator: MUG Tongs Acquisition Flight Approved by Fine / chudy Signature over Printed Name (End User Representative) 13 Engine On: 13:40 1/22 ' 32 hold Weather Problem System Test Flight 22 Problems and Solutions Acquisition Flight Calibration Flight Aircraft Problem System Problem 7 Pilot: ML Tangara Pilot Problem 2017 20 Hight Classification Ferry Flight v Others: Pearl 20.a Billable 19 Weather 10 Date: 0 0 000 000 .

	I	LOCOS NORTE, IL	OCOS SUR and A	ABRA	
FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7107	BLK07	2BLK07C063B	MVE TONGA	04 MAR 14	Surveyed 8 lines at BLK07C (without CASI)
7112	BLK06	2BLK06G066A & 2BLK06DS066A	MCE BALIGUAS	07 MAR 14	Surveyed 11 lines at BLK06G and 7 lines at BLK06D (without CASI)
7114	BLK07 & BLK06	2BLK07CS067A & 2BLK06G067A	MVE TONGA	May 10, 2014	Completed the rest of blocks 07C & 07B (without CASI)
7116	BLK07	2BLK07B068A	08 MAR 14	May 10, 2014	Completed 15 lines over BLK33G.
7118	BLK07	2BLK07D069A & 2BLK07G069A	MCE BALIGUAS	May 11, 2014	. Mission completed at BLK07D and surveyed 2 lines of BLK07G (without CASI)
7119	BLK21	2BLK27A069B	MVE TONGA	Completed area of BLK07B (without CASI)	Mission completed with voids due to clouds (without CASI)
7120	BLK06 & BLK07	2BLK06F070A & 2BLK07A070A	MCE BALIGUAS	11 MAR 14	Completed areas of BLK06F and BLK07A (without CASI)
7121	BLK07	2BLK07GS070B & 2BLK07AS070B	MVE TONGA	11 MAR 14	Mission completed (without CASI)

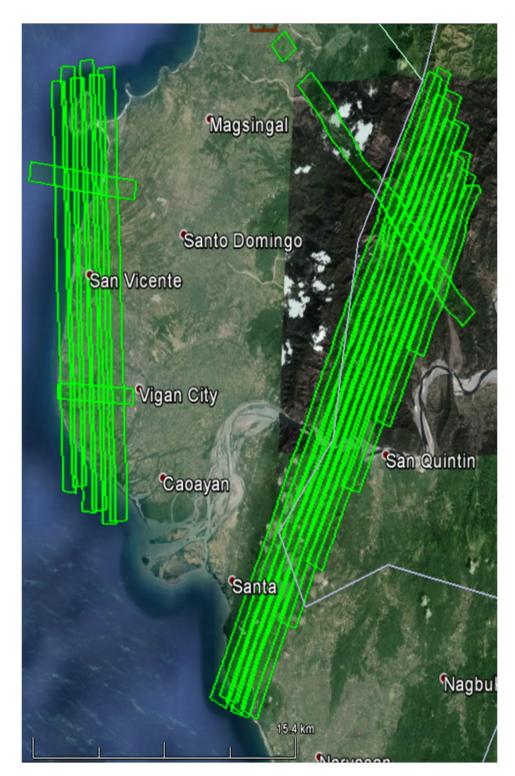
## Annex 7. FLIGHT STATUS

		FLIGHT	STATUS REPORT		
4043 G	BLKSA7	2BLKSA7149A	V. TONGA	MAY 28	SURVEYED BLKSA7 227.908 SQ.KM
4045 G	BLKSB7	2BLKSB7149B	R. FELISMINO	MAY 28	SURVEYED BLKSB7 87.9 SQ.KM


### La Union Flight Status Report (2015)

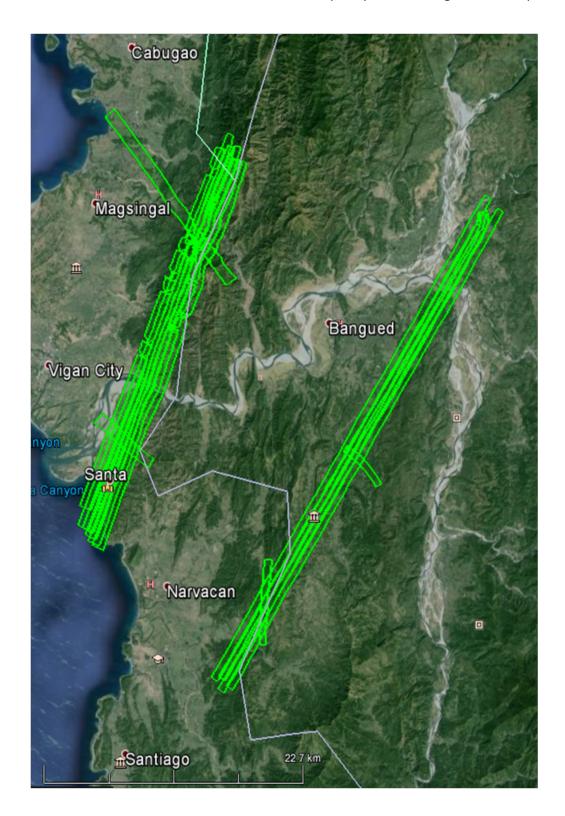
## Laoag Flight Status Report (2016)

Flight No.	Area	Mission	Operator	Date Flown	Remarks
1179P	BLOCK 27B	1BLK27B063A	R. PUNTO	March 4, 2014	Survey of Ilocos Sur Block (Narvacan-Candon City; not finish ; renamed from 1177P
1195P	BLOCK 27A,27B	1BLK27ABS067A	F. SABLE	March 8, 2015	Mission Complete


### 1. Swath Coverage for Mission 2BLK07C063B

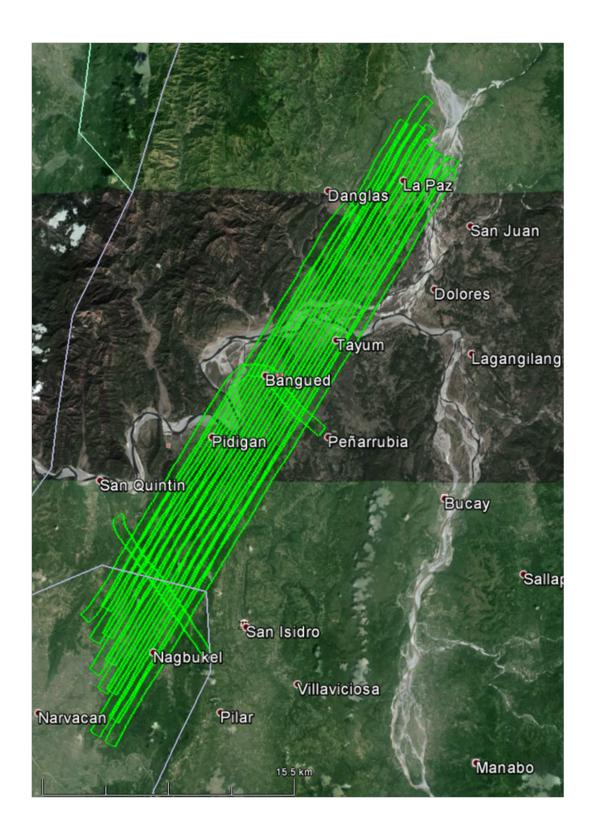
Flight No. :71077 GArea:BLK07Mission Name:2BLK07C063BParameters:Altitude: 1200m; Scan Frequency: 50; Scan angle: 15; Overlap: 40%




#### 2. Swath Coverage for Mission 2BLK06G066A & 2BLK6DS066A

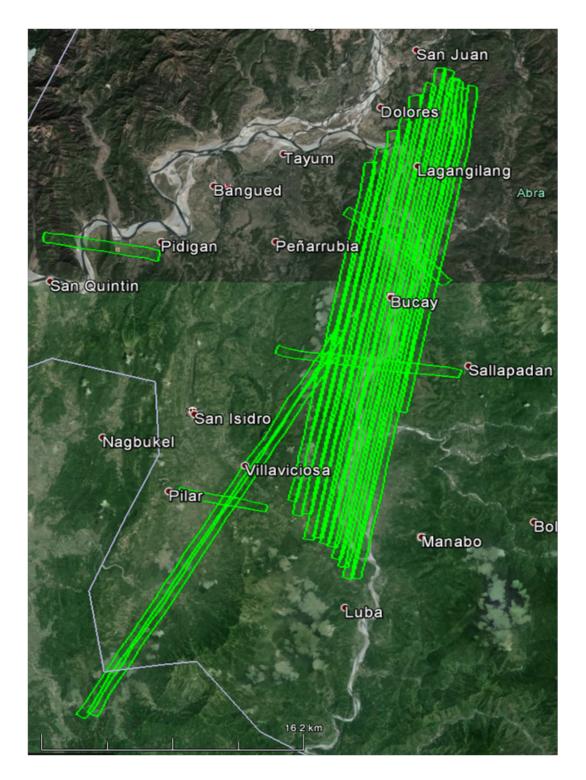
Flight No. :71122 GArea:BLK06Mission Name:2BLK06G066A & 2BLK6DS066AParameters:Altitude: 1800; Scan Frequency: 50 ; Scan angle: 15; Overlap: 55%




#### 3. Swath Coverage for Mission 2BLK07CS067A & 2BLK06G067A

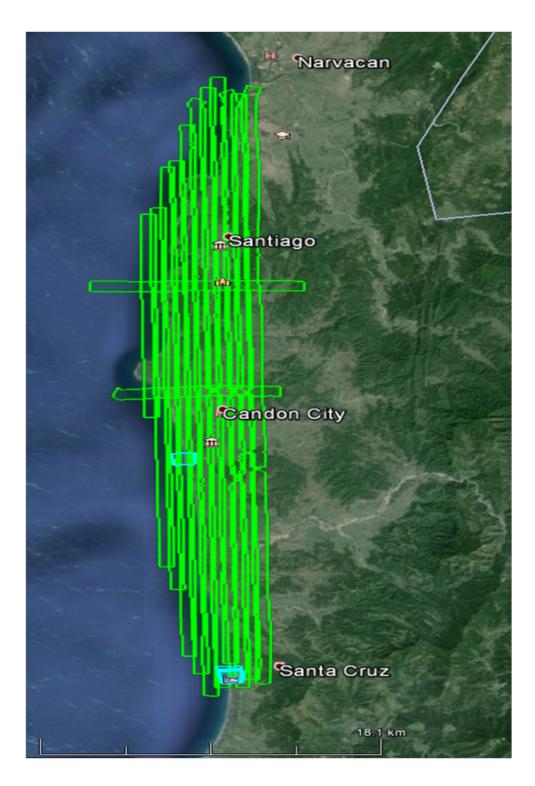
Flight No. : Area: Mission Name: Parameters: 71142 G BLK07 & BLK06 2BLK07CS067A & 2BLK06G067A BLK07G - Altitude: 1800m; Scan Frequency: 50; Scan angle: 15; Overlap: 55 % BLK07C - Altitude: 1200 m; Scan Frequency: 50; Scan angle: 15;Overlap: 40%




4. Swath Coverage for Mission 2BLK07B068A

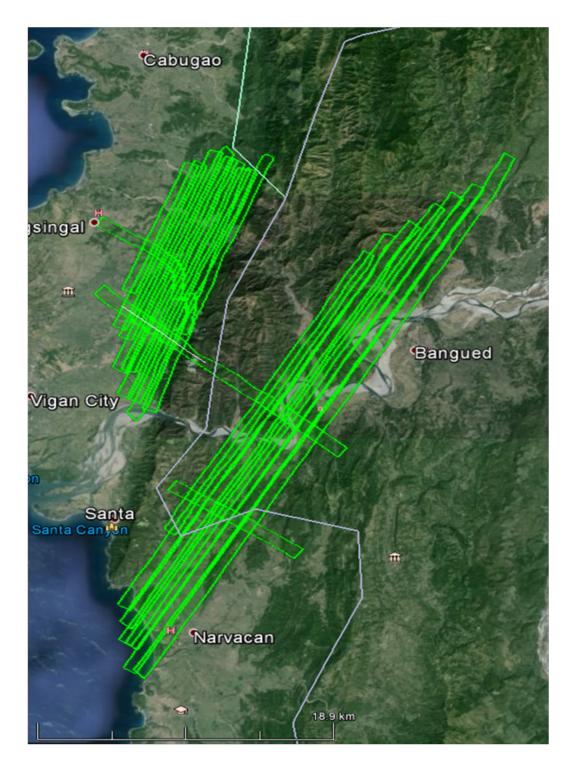
Flight No. :71162 GArea:BLK07Mission Name:2BLK07B068AParameters:Altitude: 1300m; Scan Frequency: 50 ; Scan angle: 15; Overlap: 30 %




### 5. Swath Coverage for Mission 2BLK07D069A

Flight No. :71182 GArea:BLK07Mission Name:2BLK07D069AParameters:Altitude: 1300; Scan Frequency:50 ; Scan angle:15 ; Overlap:50 %




6.Swath Coverage for Mission 2BLK27A069B

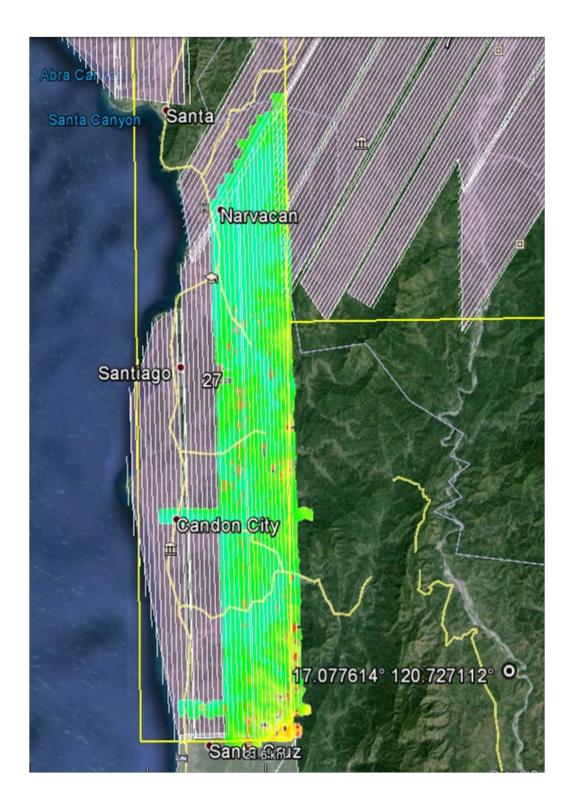
Flight No. :71192 GArea:BLK27Mission Name:2BLK27A069BParameters:Altitude:1000m;Scan Frequency:50;Scan angle:20;Overlap:25%



### 7. Swath Coverage for Mission 2BLK06F070A & 2BLK07A070A

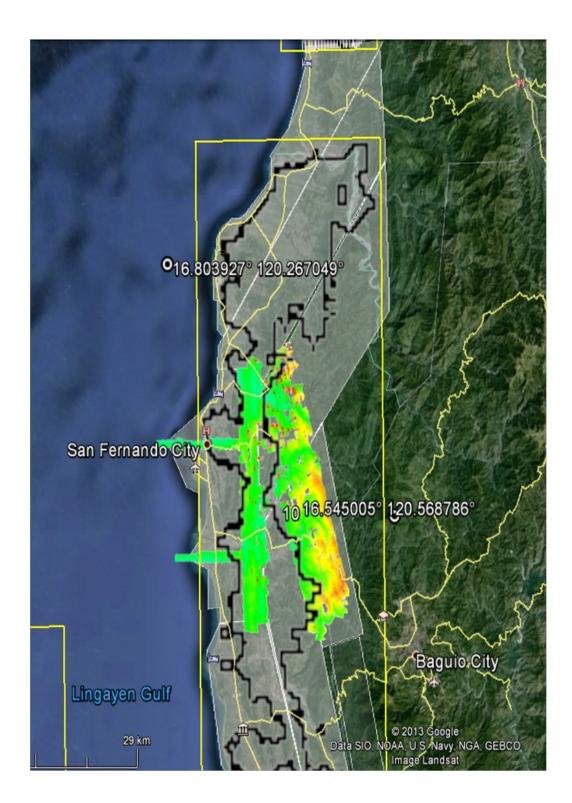
Flight No. : Area: Mission Name: Parameters: 71202 G BLK06 & BLK07 2BLK06F070A & 2BLK07A070A Altitude: 1600m; Scan Frequency: 50; Scan angle: 15; Overlap: 40 %




#### 8. Swath Coverage for Mission 2BLK07GS070B & 2BLK07AS070B

Flight No. :71212 GArea:BLK07Mission Name:2BLK07GS070B & 2BLK07AS070BParameters:Altitude: 1400m; Scan Frequency: 50; Scan angle: 15; Overlap: 50%




### 9. Swath Coverage of Mission 1BLK27B063A

Flight No.:1179PArea:27BMission Name:1BLK27B063AParameters:Altitude: 1200m; Scan Frequency: 30; Scan Angle: 50

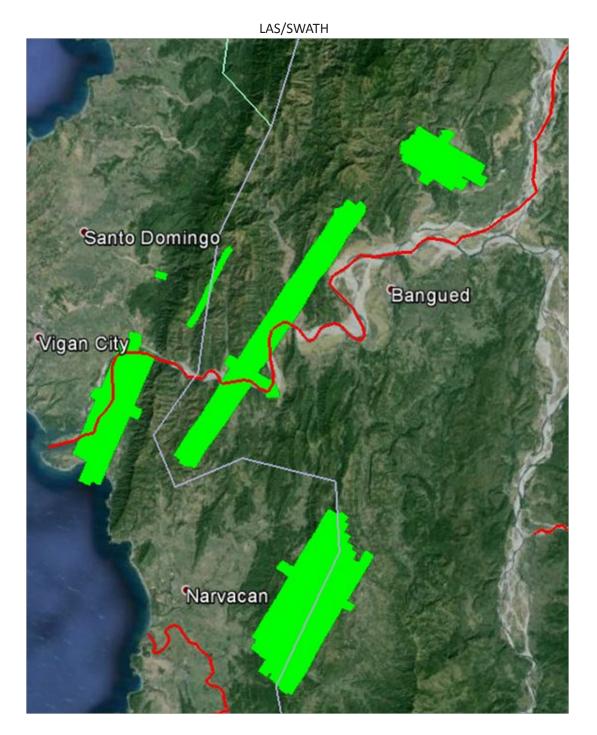


10. .Swath Coverage of Mission 1BLK27ABS067A

Flight No.:1195PArea:27A & 27BMission Name:1BLK27ABS067AParameters:Altitude:1200m;Scan Frequency:30;Scan Angle:50



## Swath Coverage of Mission 2BLKSA7149A


Flight No. :	4043 G			
Area:	BLKSA7			
Mission Name:	2BLKSA7149A			
Parameters:	PRF 100	SF	50	SCAN ANGLE 20
Flying Height:	1000 M			

LAS/SWATH anto Domingo Bangued City Narvacan

Swath Coverage of Mission 2BLKSB7149B

Flight No. :	4045 G		
Area:	BLKSB		
Mission Name:	2BLKSB7149B		
Parameters:	PRF 100	SF	50
Flying Height:	1000 M		

SCAN ANGLE 20



# Annex 8. Mission Summary Reports

Flight Area	Samar-Leyte
Mission Name	BIk33H
Inclusive Flights	1444A, 1450A, 1452A
Range data size	30.84 GB
POS data size	619 MB
Base data size	36 MB
Image	160.5 GB
Transfer date	May 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.8
RMSE for East Position (<4.0 cm)	1.6
RMSE for Down Position (<8.0 cm)	2.9
	2.5
Boresight correction stdev (<0.001deg)	0.000310
IMU attitude correction stdev (<0.001deg)	0.000915
GPS position stdev (<0.01m)	0.0030
Minimum % overlap (>25)	46.76%
Ave point cloud density per sq.m. (>2.0)	3.36
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	261
Maximum Height	328.04 m
Minimum Height	56.94 m
Classification (# of points)	
Ground	120,058,822
Low vegetation	54,325,156
Medium vegetation	230,234,006
High vegetation	163,298,807
Building	1,762,420
Orthophoto	Yes
Processed by	Aljon Araneta

Annex 9. Silay Model Basin Parameters

Basin Number	SCS C	SCS Curve Number Loss	SSO	Clark Unit Hydrograph Transform	lydrograph form		Rec	Recession Baseflow	low	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W340	7.3785	44.795	0	14.399	2.35	Discharge	0.24797	0.95	Ratio to Peak	0.0001
W350	23.39	39.309	0	22.224	2.6441	Discharge	0.86249	0.91549	Ratio to Peak	0.00015
W360	28.442	35.046	0	9.1786	1.4945	Discharge	0.2815	0.97957	Ratio to Peak	0.00015
W370	42.548	35.867	0	10.692	0.78097	Discharge	0.28295	0.93914	Ratio to Peak	0.00015
W380	44.869	35.309	0	3.2808	0.2408	Discharge	0.027045	0.9	Ratio to Peak	0.00015
W390	7.8485	44.5	0	0.20734	0.033836	Discharge	0.000491	0.95	Ratio to Peak	0.0001
W400	8.131	44.3245	0	9.6188	1.5698	Discharge	0.30857	0.95	Ratio to Peak	0.0001
W410	49.161	35.283	0	7.2581	0.79103	Discharge	0.56683	0.95705	Ratio to Peak	0.00015
W420	12.423	66	0	3.7861	0.17317	Discharge	0.007303	1	Ratio to Peak	0.00015
W430	41.434	35.468	0	0.89004	0.065875	Discharge	0.30485	0.96244	Ratio to Peak	0.00015
W440	19.152	65.366	0	7.2786	1.7851	Discharge	0.18877	0.92131	Ratio to Peak	0.00015
W450	16.584	36.817	0	6.039	0.40722	Discharge	0.30608	0.93381	Ratio to Peak	0.00015
W460	51.993	37.093	0	2.6198	0.13191	Discharge	0.31304	0.96286	Ratio to Peak	0.00015
W470	103.74	35.948	0	0.44245	0.072209	Discharge	0.002877	1	Ratio to Peak	0.00015
W480	54.146	37.851	0	0.76945	0.016667	Discharge	0.040961	1	Ratio to Peak	0.00015
W490	90.928	35	0	4.6705	0.74341	Discharge	0.27215	0.96075	Ratio to Peak	0.00015

Basin Number	SCS C	SCS Curve Number Loss	SSO	Clark Unit Hydrograph Transform	lydrograph form		Rec	Recession Baseflow	ow	
	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W500	37.979	35.398	0	1.4493	0.071512	Discharge	0.043563	0.96048	Ratio to Peak	0.00015
W510	81.394	35	0	13.13	0.64501	Discharge	0.17223	0.96047	Ratio to Peak	0.00015
W520	93.772	37.12	0	10.203	2.5127	Discharge	0.24031	0.96005	Ratio to Peak	0.00015
W530	19.531	39.879	0	5.6157	0.40732	Discharge	0.53464	0.93132	Ratio to Peak	0.00015
W540	10.765	38.47	0	1.2467	0.20038	Discharge	0.38075	0.9507	Ratio to Peak	0.00015
W550	64.738	40.432	0	9.0036	1.5017	Discharge	0.29902	0.80472	Ratio to Peak	0.00015
W560	40.508	35.109	0	2.6258	0.12785	Discharge	0.11532	0.9352	Ratio to Peak	0.00015
W570	63.083	35.302	0	12.605	0.40493	Discharge	0.23757	0.93467	Ratio to Peak	0.00015
W580	62.706	50.927	0	9.0571	0.016667	Discharge	0.5207	0.87625	Ratio to Peak	0.00015
W590	62.815	35	0	8.6633	0.65636	Discharge	0.085951	0.8974	Ratio to Peak	0.00015
W600	40.375	35.157	0	6.1869	1.509	Discharge	0.34303	0.93681	Ratio to Peak	0.00015
W610	78.088	50.421	0	11.619	1.8974	Discharge	0.29971	0.89666	Ratio to Peak	0.00015
W620	137.58	52.5	0	9.2508	1.0065	Discharge	0.16367	0.87625	Ratio to Peak	0.00015
W630	119.7	52.5	0	11.23	1.2218	Discharge	0.24406	0.87625	Ratio to Peak	0.00015
W640	113.68	52.5	0	15.771	1.7159	Discharge	0.61864	0.59609	Ratio to Peak	0.00015
W650	43.626	35.197	0	43.626	3.1888	Discharge	0.90482	0.961	Ratio to Peak	0.00015
W660	94.359	52.5	0	10.589	1.1521	Discharge	0.41756	0.59609	Ratio to Peak	0.00015

Reach			Muskingum Cunge Channel Routing	nel Routing			
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	3502.2	0.022108	1	Trapezoid	49	1
R120	Automatic Fixed Interval	299.71	0.006394	0.75184	Trapezoid	52	1
R130	Automatic Fixed Interval	923.97	0.025665	1	Trapezoid	48	1
R140	Automatic Fixed Interval	2376.1	0.020154	1	Trapezoid	39	1
R170	Automatic Fixed Interval	4010.3	0.00062	0.62746	Trapezoid	55	1
R210	Automatic Fixed Interval	6336	0.002125	1	Trapezoid	85	1
R240	Automatic Fixed Interval	1861.5	0.002322	1	Trapezoid	115	1
R250	Automatic Fixed Interval	2585.9	0.010753	1	Trapezoid	44.2	1
R270	Automatic Fixed Interval	5174.6	0.008589	1	Trapezoid	57	1
R290	Automatic Fixed Interval	4980	0.022495	1t	Trapezoid	45.5	1
R30	Automatic Fixed Interval	29.142	0.0001	1	Trapezoid	116	1
R310	Automatic Fixed Interval	13412	0.006359	1	Trapezoid	46	1
R40	Automatic Fixed Interval	7039.3	0.000513	1	Trapezoid	109	1
R50	Automatic Fixed Interval	1455.7	0.027961	1	Trapezoid	24	1
R80	Automatic Fixed Interval	906.27	0.003584	0.89966	Trapezoid	47	1
R90	Automatic Fixed Interval	13294	900600.0	0.86436	Trapezoid	60	1

Annex 10. Silay Model Reach Parameters

Annex 11.	Silay F	ield Val	lidation	Points
-----------	---------	----------	----------	--------

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
1	17.430687	120.47807	1.940	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
2	17.383178	120.515133	0.500	0.610	0.372	Mario/ September 18-22, 2014	5-Year
3	17.371899	120.473629	0.590	0.610	0.372	Mario/ September 18-22, 2014	5-Year
4	17.369451	120.472776	0.860	0.610	0.372	Mario/ September 18-22, 2014	5-Year
5	17.365444	120.471885	0.810	0.610	0.372	Mario/ September 18-22, 2014	5-Year
6	17.370317	120.468934	1.590	0.610	0.372	Mario/ September 18-22, 2014	5-Year
7	17.372391	120.466593	1.680	0.610	0.372	Mario/ September 18-22, 2014	5-Year
8	17.378748	120.470219	1.460	0.610	0.372	Mario/ September 18-22, 2014	5-Year
9	17.370317	120.468934	1.590	0.610	0.372	Mario/ September 18-22, 2014	5-Year
10	17.372391	120.466593	1.680	0.610	0.372	Mario/ September 18-22, 2014	5-Year
11	17.378748	120.470219	1.460	0.610	0.372	Mario/ September 18-22, 2014	5-Year
12	17.417878	120.502906	0.780	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
13	17.383178	120.515133	0.500	0.610	0.372	Mario/ September 18-22, 2014	5-Year
14	17.41899	120.496799	0.350	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
15	17.42161	120.509013	1.560	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
16	17.407423	120.501956	1.860	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
17	17.41899	120.496799	0.350	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
18	17.41899	120.496799	0.350	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
19	17.41899	120.496799	0.350	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
20	17.425485	120.482788	2.220	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
21	17.425485	120.482788	2.220	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
22	17.358169	120.475534	0.170	0.610	0.372	Mario/ September 18-22, 2014	5-Year
23	17.35137	120.478708	0.070	0.610	0.372	Mario/ September 18-22, 2014	5-Year
24	17.383415	120.513875	2.510	0.610	0.372	Mario/ September 18-22, 2014	5-Year
25	17.358169	120.475534	0.170	0.914	0.836	Mario/ September 18-22, 2014	5-Year
26	17.442499	120.511114	0.270	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
27	17.442499	120.511114	0.270	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
28	17.388029	120.516141	1.980	0.610	0.372	Mario/ September 18-22, 2014	5-Year
29	17.37616	120.512033	0.340	0.610	0.372	Mario/ September 18-22, 2014	5-Year
30	17.3907	120.517187	1.700	0.610	0.372	Mario/ September 18-22, 2014	5-Year
31	17.378693	120.514885	3.670	0.610	0.372	Mario/ September 18-22, 2014	5-Year
32	17.39118	120.476435	1.320	0.610	0.372	Mario/ September 18-22, 2014	5-Year
33	17.385731	120.527384	1.270	0.610	0.372	Mario/ September 18-22, 2014	5-Year
34	17.380973	120.52914	0.320	0.610	0.372	Mario/ September 18-22, 2014	5-Year
35	17.452735	120.486426	0.380	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
36	17.374472	120.504528	0.560	0.610	0.372	Mario/ September 18-22, 2014	5-Year
37	17.378218	120.525332	0.200	0.610	0.372	Mario/ September 18-22, 2014	5-Year
38	17.362939	120.501533	0.560	0.610	0.372	Mario/ September 18-22, 2014	5-Year
39	17.388029	120.516141	1.980	0.610	0.372	Mario/ September 18-22, 2014	5-Year
40	17.37616	120.512033	0.340	0.610	0.372	Mario/ September 18-22, 2014	5-Year
41	17.3907	120.517187	1.700	0.610	0.372	Mario/ September 18-22, 2014	5-Year
42	17.378693	120.514885	3.670	0.610	0.372	Mario/ September 18-22, 2014	5-Year
43	17.39118	120.476435	1.320	0.610	0.372	Mario/ September 18-22, 2014	5-Year

Point Number		Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
44	17.385731	120.527384	1.270	0.610	0.372	Mario/ September 18-22, 2014	5-Year
45	17.380973	120.52914	0.320	0.610	0.372	Mario/ September 18-22, 2014	5-Year
46	17.457892	120.48757	0.320	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
47	17.374472	120.504528	0.560	0.610	0.372	Mario/ September 18-22, 2014	5-Year
48	17.378218	120.525332	0.200	0.610	0.372	Mario/ September 18-22, 2014	5-Year
49	17.362939	120.501533	0.560	0.610	0.372	Mario/ September 18-22, 2014	5-Year
50	17.340964	120.476389	0.650	0.610	0.372	Mario/ September 18-22, 2014	5-Year
51	17.390336	120.486597	0.830	0.914	0.836	Mario/ September 18-22, 2014	5-Year
52	17.392185	120.486892	1.000	0.914	0.836	Mario/ September 18-22, 2014	5-Year
53	17.381466	120.487495	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
54	17.390884	120.493755	0.060	0.914	0.836	Mario/ September 18-22, 2014	5-Year
55	17.390336	120.486597	0.830	0.914	0.836	Mario/ September 18-22, 2014	5-Year
56	17.392185	120.486892	1.000	0.914	0.836	Mario/ September 18-22, 2014	5-Year
57	17.4686	120.489196	0.470	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
58	17.381466	120.487495	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
59	17.390884	120.493755	0.060	0.914	0.836	Mario/ September 18-22, 2014	5-Year
60	17.388623	120.500759	1.170	0.610	0.372	Mario/ September 18-22, 2014	5-Year
61	17.391534	120.504224	1.400	0.610	0.372	Mario/ September 18-22, 2014	5-Year
62	17.385201	120.500559	0.630	0.610	0.372	Mario/ September 18-22, 2014	5-Year
63	17.384861	120.505648	0.760	0.610	0.372	Mario/ September 18-22, 2014	5-Year
64	17.382269	120.498635	0.040	0.610	0.372	Mario/ September 18-22, 2014	5-Year
65	17.385201	120.500559	0.630	0.914	0.836	Mario/ September 18-22, 2014	5-Year
66	17.387725	120.502933	1.510	0.914	0.836	Mario/ September 18-22, 2014	5-Year
67	17.382087	120.499201	0.050	0.914	0.836	Mario/ September 18-22, 2014	5-Year
68	17.46381	120.489899	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
69	17.389322	120.492407	1.450	0.610	0.372	Mario/ September 18-22, 2014	5-Year
70	17.395033	120.50115	1.330	0.610	0.372	Mario/ September 18-22, 2014	5-Year
71	17.390053	120.494916	0.480	0.610	0.372	Mario/ September 18-22, 2014	5-Year
72	17.38961	120.49742	0.810	0.610	0.372	Mario/ September 18-22, 2014	5-Year
73	17.390053	120.494916	0.480	0.914	0.836	Mario/ September 18-22, 2014	5-Year
74	17.394512	120.501024	1.450	0.914	0.836	Mario/ September 18-22, 2014	5-Year
75	17.38978	120.497205	0.800	0.914	0.836	Mario/ September 18-22, 2014	5-Year
76	17.390953	120.493555	0.330	0.914	0.836	Mario/ September 18-22, 2014	5-Year
77	17.346026	120.504732	1.180	0.914	0.836	Mario/ September 18-22, 2014	5-Year
78	17.460307	120.488413	0.220	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
79	17.348865	120.504546	1.630	0.914	0.836	Mario/ September 18-22, 2014	5-Year
80	17.347491	120.503171	0.520	0.914	0.836	Mario/ September 18-22, 2014	5-Year
81	17.348359	120.50077	0.290	0.914	0.836	Mario/ September 18-22, 2014	5-Year
82	17.34832	120.496132	0.240	0.914	0.836	Mario/ September 18-22, 2014	5-Year
83	17.385122	120.541973	0.220	0.914	0.836	Mario/ September 18-22, 2014	5-Year
84	17.374404	120.508279	0.030	0.914	0.836	Mario/ September 18-22, 2014	5-Year
85	17.465639	120.480797	0.600	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
86	17.459746	120.478422	2.900	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
87	17.460259	120.473694	0.330	0.914	0.836	Lawin/ October 18-22, 2016	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
88	17.464933	120.481916	0.310	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
89	17.453433	120.488337	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
90	17.471667	120.483795	0.480	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
91	17.463128	120.482857	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
92	17.46437	120.479816	0.570	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
93	17.466767	120.481359	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
94	17.465639	120.480797	0.600	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
95	17.431082	120.470121	2.190	0.914	0.836	Mario/ September 18-22, 2014	5-Year
96	17.431082	120.470121	2.190	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
97	17.431082	120.470121	2.190	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
98	17.44627	120.503861	0.140	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
99	17.44627	120.503861	0.140	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
100	17.46403	120.485686	0.060	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
101	17.379545	120.481362	0.740	0.610	0.372	Mario/ September 18-22, 2014	5-Year
102	17.380138	120.47809	1.480	0.914	0.836	Mario/ September 18-22, 2014	5-Year
103	17.379262	120.483656	1.490	0.914	0.836	Mario/ September 18-22, 2014	5-Year
104	17.379545	120.481362	0.740	0.914	0.836	Mario/ September 18-22, 2014	5-Year
105	17.360155	120.493954	0.650	0.914	0.836	Mario/ September 18-22, 2014	5-Year
106	17.385983	120.465237	1.230	0.914	0.836	Mario/ September 18-22, 2014	5-Year
107	17.386549	120.464973	1.210	0.914	0.836	Mario/ September 18-22, 2014	5-Year
108	17.349315	120.507251	1.480	0.914	0.836	Mario/ September 18-22, 2014	5-Year
109	17.388243	120.469052	0.810	0.914	0.836	Mario/ September 18-22, 2014	5-Year
110	17.382227	120.474234	1.440	0.914	0.836	Mario/ September 18-22, 2014	5-Year
111	17.430687	120.47807	1.940	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
112	17.452735	120.486426	0.380	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
113	17.381472	120.473468	1.390	0.914	0.836	Mario/ September 18-22, 2014	5-Year
114	17.387324	120.466049	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
115	17.38538	120.476539	1.450	0.914	0.836	Mario/ September 18-22, 2014	5-Year
116	17.386415	120.477869	1.050	0.914	0.836	Mario/ September 18-22, 2014	5-Year
117	17.387512	120.476196	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
118	17.384908	120.482754	0.500	0.914	0.836	Mario/ September 18-22, 2014	5-Year
119	17.382227	120.474234	1.440	0.914	0.836	Mario/ September 18-22, 2014	5-Year
120	17.381472	120.473468	1.390	0.914	0.836	Mario/ September 18-22, 2014	5-Year
121	17.387324	120.466049	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
122	17.38538	120.476539	1.450	0.914	0.836	Mario/ September 18-22, 2014	5-Year
123	17.457892	120.48757	0.320	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
124	17.386415	120.477869	1.050	0.914	0.836	Mario/ September 18-22, 2014	5-Year
125	17.387512	120.476196	0.680	0.914	0.836	Mario/ September 18-22, 2014	5-Year
126	17.384908	120.482754	0.500	0.914	0.836	Mario/ September 18-22, 2014	5-Year
127	17.387863	120.465063	1.270	0.914	0.836	Mario/ September 18-22, 2014	5-Year
128	17.383738	120.474402	1.400	0.914	0.836	Mario/ September 18-22, 2014	5-Year
128	17.400025	120.474402	1.520	0.914	0.836	Mario/ September 18-22, 2014 Mario/ September 18-22, 2014	5-Year
							ļ
130	17.422781	120.492114	0.050	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
131	17.422781	120.492114	0.050	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
132	17.363538	120.51626	1.150	0.610	0.372	Mario/ September 18-22, 2014	5-Year
133	17.363538	120.51626	1.150	0.914	0.836	Mario/ September 18-22, 2014	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
134	17.4686	120.489196	0.470	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
135	17.365597	120.479646	0.530	0.914	0.836	Mario/ September 18-22, 2014	5-Year
136	17.359793	120.507722	0.470	0.914	0.836	Mario/ September 18-22, 2014	5-Year
137	17.352204	120.511351	0.030	0.914	0.836	Mario/ September 18-22, 2014	5-Year
138	17.359267	120.502988	0.340	0.914	0.836	Mario/ September 18-22, 2014	5-Year
139	17.363538	120.51626	1.150	0.914	0.836	Mario/ September 18-22, 2014	5-Year
140	17.417593	120.468532	1.180	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
141	17.417593	120.468532	1.180	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
142	17.413079	120.467714	2.610	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
143	17.411051	120.460928	1.100	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
144	17.420424	120.468545	0.830	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
145	17.46381	120.489899	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
146	17.420424	120.468545	0.830	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
147	17.438235	120.495497	1.260	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
148	17.438235	120.495497	1.260	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
149	17.389835	120.519499	0.160	0.914	0.836	Mario/ September 18-22, 2014	5-Year
150	17.387667	120.517174	2.230	0.914	0.836	Mario/ September 18-22, 2014	5-Year
151	17.385203	120.520101	1.040	0.914	0.836	Mario/ September 18-22, 2014	5-Year
152	17.38918	120.516855	1.520	0.914	0.836	Mario/ September 18-22, 2014	5-Year
153	17.389661	120.519421	1.420	0.914	0.836	Mario/ September 18-22, 2014	5-Year
154	17.383628	120.523911	5.570	0.914	0.836	Mario/ September 18-22, 2014	5-Year
155	17.388173	120.518258	1.430	0.914	0.836	Mario/ September 18-22, 2014	5-Year
156	17.460307	120.488413	0.220	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
157	17.376495	120.511091	0.600	0.914	0.836	Mario/ September 18-22, 2014	5-Year
158	17.383651	120.520949	1.260	0.914	0.836	Mario/ September 18-22, 2014	5-Year
159	17.390814	120.521388	1.480	0.914	0.836	Mario/ September 18-22, 2014	5-Year
160	17.390865	120.520653	1.260	0.914	0.836	Mario/ September 18-22, 2014	5-Year
161	17.386719	120.521704	0.700	0.914	0.836	Mario/ September 18-22, 2014	5-Year
162	17.39108	120.520189	0.690	0.914	0.836	Mario/ September 18-22, 2014	5-Year
163	17.388407	120.519989	1.390	0.914	0.836	Mario/ September 18-22, 2014	5-Year
164	17.389198	120.518324	1.110	0.914	0.836	Mario/ September 18-22, 2014	5-Year
165	17.389835	120.519499	0.160	0.914	0.836	Mario/ September 18-22, 2014	5-Year
166	17.387667	120.517174	2.230	0.914	0.836	Mario/ September 18-22, 2014	5-Year
167	17.453433	120.488337	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
168	17.385203	120.520101	1.040	0.914	0.836	Mario/ September 18-22, 2014	5-Year
169	17.38918	120.516855	1.520	0.914	0.836	Mario/ September 18-22, 2014	5-Year
170	17.389661	120.519421	1.420	0.914	0.836	Mario/ September 18-22, 2014	5-Year
171	17.383628	120.523911	5.570	0.914	0.836	Mario/ September 18-22, 2014	5-Year
172	17.388173	120.518258	1.430	0.914	0.836	Mario/ September 18-22, 2014	5-Year
173	17.376495	120.511091	0.600	0.914	0.836	Mario/ September 18-22, 2014	5-Year
174	17.383651	120.520949	1.260	0.914	0.836	Mario/ September 18-22, 2014	5-Year
175	17.390814	120.521388	1.480	0.914	0.836	Mario/ September 18-22, 2014	5-Year
176	17.390865	120.520653	1.260	0.914	0.836	Mario/ September 18-22, 2014	5-Year
177	17.386719	120.521704	0.700	0.914	0.836	Mario/ September 18-22, 2014	5-Year
							<u> </u>
178	17.46403	120.485686	0.060	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
179	17.39108	120.520189	0.690	0.914	0.836	Mario/ September 18-22, 2014	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
180	17.388407	120.519989	1.390	0.914	0.836	Mario/ September 18-22, 2014	5-Year
181	17.389198	120.518324	1.110	0.914	0.836	Mario/ September 18-22, 2014	5-Year
182	17.342835	120.476354	1.330	0.610	0.372	Mario/ September 18-22, 2014	5-Year
183	17.342835	120.476354	1.330	0.914	0.836	Mario/ September 18-22, 2014	5-Year
184	17.365289	120.496931	0.290	0.914	0.836	Mario/ September 18-22, 2014	5-Year
185	17.39118	120.476435	1.320	0.914	0.836	Mario/ September 18-22, 2014	5-Year
186	17.364722	120.481125	0.370	0.610	0.372	Mario/ September 18-22, 2014	5-Year
187	17.364722	120.481125	0.370	0.914	0.836	Mario/ September 18-22, 2014	5-Year
188	17.447016	120.46919	1.730	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
189	17.385122	120.541973	0.220	0.610	0.372	Mario/ September 18-22, 2014	5-Year
190	17.447016	120.46919	1.730	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
191	17.413782	120.49055	1.280	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
192	17.417645	120.486259	0.910	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
193	17.417942	120.49086	0.130	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
194	17.413782	120.49055	1.280	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
195	17.412911	120.47089	2.430	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
196	17.417274	120.476372	0.440	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
197	17.410682	120.485626	0.680	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
198	17.417274	120.476372	0.440	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
199	17.420561	120.477086	2.970	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
200	17.350297	120.506116	0.970	0.610	0.372	Mario/ September 18-22, 2014	5-Year
201	17.420561	120.477086	2.970	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
202	17.34197	120.475759	1.060	0.610	0.372	Mario/ September 18-22, 2014	5-Year
203	17.437309	120.506758	0.360	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
204	17.428371	120.500712	0.120	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
205	17.436245	120.500582	0.900	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
206	17.426992	120.496008	0.630	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
207	17.436061	120.50419	0.300	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
208	17.431547	120.501876	0.450	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
209	17.437309	120.506758	0.360	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
210	17.353536	120.504567	0.850	0.610	0.372	Mario/ September 18-22, 2014	5-Year
211	17.428371	120.500712	0.120	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
212	17.436245	120.500582	0.900	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
213	17.426992	120.496008	0.630	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
214	17.436061	120.50419	0.300	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
215	17.431547	120.501876	0.450	1.067	1.138	Lawin/ October 18-22, 2016	5-Year
216	17.398974	120.463894	1.130	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
217	17.398335	120.464941	1.730	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
218	17.394539	120.468467	1.210	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
219	17.394323	120.465546	0.720	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
220	17.398974	120.463894	1.130	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
221	17.3859	120.509855	1.620	0.610	0.372	Mario/ September 18-22, 2014	5-Year
222	17.351159	120.503021	1.400	0.610	0.372	Mario/ September 18-22, 2014	5-Year
223	17.398335	120.464941	1.730	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
224	17.394539	120.468467	1.210	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
225	17.394323	120.465546	0.720	0.610	0.372	Lawin/ October 18-22, 2016	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
226	17.342562	120.474954	1.190	0.610	0.372	Mario/ September 18-22, 2014	5-Year
227	17.342562	120.474954	1.190	0.914	0.836	Mario/ September 18-22, 2014	5-Year
228	17.417216	120.477437	0.230	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
229	17.417216	120.477437	0.230	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
230	17.432948	120.503222	0.580	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
231	17.432948	120.503222	0.580	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
232	17.360414	120.508355	0.030	0.610	0.372	Mario/ September 18-22, 2014	5-Year
233	17.357291	120.494331	0.420	0.610	0.372	Mario/ September 18-22, 2014	5-Year
234	17.366989	120.502274	1.200	0.610	0.372	Mario/ September 18-22, 2014	5-Year
235	17.363078	120.518205	0.260	0.610	0.372	Mario/ September 18-22, 2014	5-Year
236	17.36758	120.503635	0.390	0.610	0.372	Mario/ September 18-22, 2014	5-Year
237	17.361412	120.518762	0.030	0.610	0.372	Mario/ September 18-22, 2014	5-Year
238	17.364836	120.51149	0.030	0.610	0.372	Mario/ September 18-22, 2014	5-Year
239	17.364687	120.51697	2.140	0.610	0.372	Mario/ September 18-22, 2014	5-Year
240	17.364687	120.51697	2.140	0.914	0.836	Mario/ September 18-22, 2014	5-Year
241	17.403704	120.508324	2.160	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
242	17.396466	120.50663	1.810	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
243	17.402952	120.490602	1.160	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
244	17.355708	120.489124	0.630	0.610	0.372	Mario/ September 18-22, 2014	5-Year
245	17.401253	120.494204	0.830	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
246	17.403101	120.509468	0.080	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
247	17.403504	120.492838	1.210	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
248	17.419112	120.475285	0.230	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
249	17.400434	120.509649	1.690	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
250	17.400434	120.509649	1.690	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
251	17.44801	120.453918	0.290	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
252	17.447344	120.453992	0.030	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
253	17.444238	120.4506	0.360	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
254	17.448257	120.447874	0.230	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
255	17.353962	120.485604	0.040	0.610	0.372	Mario/ September 18-22, 2014	5-Year
256	17.44801	120.453918	0.290	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
257	17.447344	120.453992	0.030	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
258	17.444238	120.4506	0.360	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
259	17.448257	120.447874	0.230	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
260	17.378585	120.490456	0.940	0.914	0.836	Mario/ September 18-22, 2014	5-Year
261	17.340964	120.476389	0.650	0.914	0.836	Mario/ September 18-22, 2014	5-Year
262	17.363694	120.476716	0.030	0.610	0.372	Mario/ September 18-22, 2014	5-Year
263	17.363694	120.476716	0.030	0.914	0.836	Mario/ September 18-22, 2014	5-Year
264	17.400025	120.477699	1.520	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
265	17.400025	120.477699	1.520	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
266	17.385122	120.541973	0.220	0.610	0.372	Mario/ September 18-22, 2014	5-Year
267	17.420744	120.461067	0.690	0.610	0.372	Lawin/ October 18-22, 2014	5-Year
268	17.420744	120.461067	0.690	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
269	17.350297	120.506116	0.970	0.610	0.372	Mario/ September 18-22, 2014	5-Year
270	17.353536	120.504567	0.850	0.610	0.372	Mario/ September 18-22, 2014	5-Year
271	17.351159	120.503021	1.400	0.610	0.372	Mario/ September 18-22, 2014	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long	1				
272	17.357291	120.494331	0.420	0.610	0.372	Mario/ September 18-22, 2014	5-Year
273	17.355708	120.489124	0.630	0.610	0.372	Mario/ September 18-22, 2014	5-Year
274	17.383415	120.513875	2.510	0.610	0.372	Mario/ September 18-22, 2014	5-Year
275	17.353962	120.485604	0.040	0.610	0.372	Mario/ September 18-22, 2014	5-Year
276	17.341334	120.477238	0.570	0.610	0.372	Mario/ September 18-22, 2014	5-Year
277	17.341334	120.477238	0.570	0.914	0.836	Mario/ September 18-22, 2014	5-Year
278	17.437609	120.477626	2.530	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
279	17.434173	120.482552	0.870	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
280	17.446749	120.486782	0.290	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
281	17.443025	120.479543	0.320	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
282	17.432127	120.487022	0.400	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
283	17.447196	120.487353	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
284	17.448919	120.487	0.090	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
285	17.383178	120.515133	0.500	0.610	0.372	Mario/ September 18-22, 2014	5-Year
286	17.440785	120.484802	0.170	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
287	17.440785	120.484802	0.170	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
288	17.386699	120.518636	0.620	0.610	0.372	Mario/ September 18-22, 2014	5-Year
289	17.391565	120.519384	0.710	0.610	0.372	Mario/ September 18-22, 2014	5-Year
290	17.378985	120.523771	3.370	0.610	0.372	Mario/ September 18-22, 2014	5-Year
291	17.370305	120.482812	1.880	0.610	0.372	Mario/ September 18-22, 2014	5-Year
292	17.370305	120.482812	1.880	0.914	0.836	Mario/ September 18-22, 2014	5-Year
293	17.375262	120.480292	2.930	0.610	0.372	Mario/ September 18-22, 2014	5-Year
294	17.373342	120.48644	1.790	0.610	0.372	Mario/ September 18-22, 2014	5-Year
295	17.374	120.483277	1.690	0.610	0.372	Mario/ September 18-22, 2014	5-Year
296	17.383178	120.515133	0.500	0.610	0.372	Mario/ September 18-22, 2014	5-Year
297	17.373094	120.48269	0.620	0.610	0.372	Mario/ September 18-22, 2014	5-Year
298	17.374	120.483277	1.690	0.914	0.836	Mario/ September 18-22, 2014	5-Year
299	17.448547	120.500541	0.060	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
300	17.448547	120.500541	0.060	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
301	17.443861	120.449472	0.700	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
302	17.443861	120.449472	0.700	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
303	17.384771	120.454816	0.030	0.610	0.372	Mario/ September 18-22, 2014	5-Year
304	17.384771	120.454816	0.030	0.914	0.836	Mario/ September 18-22, 2014	5-Year
305	17.420744	120.461067	0.690	0.610	0.372	Mario/ September 18-22, 2014	5-Year
306	17.426577	120.45811	0.350	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
307	17.383415	120.513875	2.510	0.610	0.372	Mario/ September 18-22, 2014	5-Year
308	17.426577	120.45811	0.350	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
309	17.360155	120.493954	0.650	0.610	0.372	Mario/ September 18-22, 2014	5-Year
310	17.349315	120.507251	1.480	0.610	0.372	Mario/ September 18-22, 2014	5-Year
311	17.376081	120.48109	2.340	0.610	0.372	Mario/ September 18-22, 2014	5-Year
312	17.384908	120.482754	0.500	0.610	0.372	Mario/ September 18-22, 2014	5-Year
313	17.387863	120.465063	1.270	0.610	0.372	Mario/ September 18-22, 2014	5-Year
314	17.383738	120.474402	1.400	0.610	0.372	Mario/ September 18-22, 2014	5-Year
315	17.401914	120.493133	0.950	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
316	17.401914	120.493133	0.950	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
317	17.461012	120.46315	0.030	0.914	0.836	Lawin/ October 18-22, 2016	5-Year

Point Number		Coordinates VGS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long	]				
318	17.3859	120.509855	1.620	0.610	0.372	Mario/ September 18-22, 2014	5-Year
319	17.459366	120.468249	0.970	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
320	17.458067	120.467148	0.460	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
321	17.456534	120.469827	1.410	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
322	17.459794	120.467389	0.590	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
323	17.456719	120.467926	0.900	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
324	17.446557	120.462777	0.850	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
325	17.458818	120.464237	0.780	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
326	17.447387	120.461953	0.030	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
327	17.461012	120.46315	0.030	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
328	17.445395	120.505636	0.280	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
329	17.383415	120.513875	2.510	0.610	0.372	Mario/ September 18-22, 2014	5-Year
330	17.445395	120.505636	0.280	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
331	17.435538	120.505445	0.360	0.914	0.836	Lawin/ October 18-22, 2016	5-Year
332	17.435538	120.505445	0.360	0.610	0.372	Lawin/ October 18-22, 2016	5-Year
333	17.377966	120.479249	2.210	0.610	0.372	Mario/ September 18-22, 2014	5-Year
334	17.377042	120.473637	1.530	0.610	0.372	Mario/ September 18-22, 2014	5-Year
335	17.371899	120.473629	0.590	0.610	0.372	Mario/ September 18-22, 2014	5-Year
336	17.369451	120.472776	0.860	0.610	0.372	Mario/ September 18-22, 2014	5-Year
337	17.365444	120.471885	0.810	0.610	0.372	Mario/ September 18-22, 2014	5-Year
338	17.377966	120.479249	2.210	0.610	0.372	Mario/ September 18-22, 2014	5-Year
339	17.377042	120.473637	1.530	0.610	0.372	Mario/ September 18-22, 2014	5-Year

Annex 12	Educational	Institutions	Affected in	Silay Floodpl	ain
----------	-------------	--------------	-------------	---------------	-----

	Ilocos Sur				
Burgos					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
TANGAOAN ES	Lucaban	Low	Low	Low	
MAMBUG PS	Mambug				
	Nagbukel				
Building Name	Barangay	Rainfall Scenario		rio	
		5-year	25-year	100-year	
BANTUGO-MISSION ES	Bantugo	Low	Medium	Medium	
NAGBUKEL CS	Poblacion East				
Narvacant					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
NARVACAN NORTH	Aquib				
ILOCOS SUR POLYTECHNIC STATE COLLEGE - COLLEGE OF FISHERIES AND MARINE SCIENCES-NARVACAN	Bantay Abot	Medium	Medium	Medium	
SULVEC IS	Bantay Abot	Medium	High	High	
BULANOS PS	Bulanos	Medium	High	High	
CABAROAN ES	Bulanos	Medium	High	High	
CAGAYUNGAN ES	Cagayungan	Medium	High	High	
CAMARAO ES	Camarao				
CODOOG ES	Codoog				
NAGBUKEL CS	Codoog				
SAN PABLO ES	Codoog	Low	Medium	Medium	
DASAY ES	Dasay	Medium	Medium	Medium	
DINALAOAN PS	Dinalaoan		Medium	Medium	
LUNGOG IS	Lungog	Medium	Medium	Medium	
ORENCE ES	Orence		Medium	High	
PANTOC ELEMENTARY SCHOOL	Pantoc	Medium	High	High	
NARVACAN NAT'L. CENTRAL HS	Paratong	Medium	High	High	
NARVACAN NORTH CS	Paratong	Medium	High	High	
PARATONG ES	Paratong	Medium	High	High	
PARPARIA ES	Parparia			Low	
QUINARAYAN ES	Quinarayan	Medium	Medium	Medium	

		Ï	1	
ST. GREGORY E/S	Quinarayan			
RIVADAVIA ES	Rivadavia		Low	Medium
DAY CARE CENTER	San Antonio	Medium	High	High
SAN ANTONIO ES	San Antonio	Medium	High	High
NARVACAN CATHOLIC SCHOOL	San Jose		Low	Medium
NARVACAN CS	San Jose			Medium
NARVACAN SOUTH CENTRAL SCHOOL	San Jose	Medium	High	High
NANGUNEG WEST PS	San Pedro	Medium	High	High
SAN PEDRO ES	San Pedro	Medium	High	High
SAN PEDRO NHS	San Pedro	Medium	Medium	High
NARVACAN CATHOLIC SCHOOL	Santa Lucia		Medium	Medium
NARVACAN CS	Santa Lucia		Medium	Medium
NARVACAN SOUTH CENTRAL SCHOOL	Santa Lucia	Medium	Medium	High
SAN JOSE DAY CARE	Santa Lucia		Medium	Medium
SUCOC ES	Sucoc		Low	Medium
TUROD ELEMENTARY SCHOOL	Turod	Medium	High	High
TUROD ES	Turod	Medium	High	High

Santa Maria				
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
AG-AGRAO NHS	Ag-Agrao	Medium	High	High
AMPUAGAN ES	Ampuagan	Medium	High	High
BABAL-LASIOAN ES	Baballasioan	Low	Medium	Medium
GUSING ES	Baballasioan			Medium
BIA-O DAY CARE CENTER	Bia-O		Medium	Medium
BIA-O ES	Bia-O		Medium	Medium
BUTIR ES	Butir			
CABAROAN ES	Cabaroan	Low	Medium	Medium
ILOCOS SUR POLYTECHNIC STATE COLLEGE	Danuman East	Low	High	High
DANUMAN ES	Danuman West	Medium	High	High
GUSING ES	Gusing		Medium	Medium
IMELDA NHS	Laslasong Norte	Medium	High	High
NANGUNEG EAST ELEMENTARY SCHOOL	Laslasong Norte	Medium	Medium	High
LASLASONG ES	Laslasong West	Low	Medium	Medium
ILOCOS SUR POLYTECHNIC STATE COLLEGE	Lubong		Medium	High
SANTA MARIA NHS	Lubong		Low	Medium
MAYNGANAY ES	Maynganay Sur	Medium	High	High
DAYCARE CENTER	Nagsayaoan	Medium	High	High
NAGSAYAOAN ES	Nagsayaoan	Medium	Medium	High
NALVO ES	Nalvo	Medium	Medium	High
BRGY. POBLACION NORTE DAY CARE CENTER	Poblacion Sur	High	High	High
ILOCOS SUR POLYTECHNIC STATE COLLEGE	Poblacion Sur		Low	Medium
SAINT MARY'S COLLEGE	Poblacion Sur		Low	Medium
SANTA MARIA NHS	Poblacion Sur	Low	Medium	Medium
STA. MARIA EAST CS	Poblacion Sur	Low	Medium	Medium
STA. MARIA WEST CS	Poblacion Sur	Medium	Medium	Medium
SILAG-PACANG ES	Silag	Low	Medium	Medium
TINAAN ES	Tinaan	Medium	Medium	High

	Ilocos Sur				
Narvacan					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
NARVACAN PROVINCIAL HOSPITAL	Paratong	Medium	High	High	
SAN ANTONIO HEALTH CENTER	San Antonio	Medium	High	High	
CATOLICO FAMILY CLINIC	San Jose	Medium	High	High	
RURAL HEALTH UNIT	San Jose	Medium	High	High	
CADACIO'S CLINIC	Santa Lucia	High	High	High	
	•				
Santa Rita					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
DOLORES-IDICA DENTAL CLINIC	Baliw Daya	High	High	High	
M.R GRANADA OPTICAL	Baliw Laud	Medium	High	High	
STO NINO HOSPITAL	Baliw Laud	Medium	High	High	
BIA-O HEALTH CENTER	Bia-O	Low	Medium	Medium	
LINGSAT HEALTH CENTER	Lingsat				
MUNICIPAL HEALTH CENTER	Poblacion Norte	Low	Medium	Medium	
JUDGE CELESTINO GUERRERO MORIAL HOSPITAL	Poblacion Sur	Low	Medium	Medium	
REYES-ULEP CLINIC & HOSPITAL	Poblacion Sur			Medium	

## Annex 13. Medical Institutions Affected in Silay Floodplain