Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LiDAR Surveys and Flood Mapping of Bacarra River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry University of the Philippines Baguio

Bacarra

APRIL 2017

Laoag City

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

© University of the Philippines and University of the Philippines Baguio 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and C. Pascua, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Bacarra River. Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry – 250pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Dr. Chelo Pascua Project Leader, PHIL-LiDAR 1 Program University of the Philippines Baguio Baguio City, Philippines 2600 pascua.chelo@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, PHIL-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-086-0

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	vi
CHAPTER 1: OVERVIEW OF THE PROGRAM AND BACARRA RIVER	1
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Bacarra River Basin	
CHAPTER 2: LIDAR DATA ACQUISITION OF THE BACARRA FLOODPLAIN	
2.1 Flight Plans	
2.2 Ground Base Stations	
2.3 Flight Missions	
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE BACARRA FLOODPLAIN	
3.1 Overview of the LIDAR Data Pre-Processing.	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Quality Checking	
3.6 LiDAR Point Cloud Classification and Rasterization	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR DEM	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	
3.12.4 Final Quality Checking of Extracted Features	36
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BACARRA RIVER BASIN	
4.1 Summary of Activities	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	4
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	
CHAPTER 5: FLOOD MODELING AND MAPPING	
5.1 Data Used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	67
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	68
5.2 RIDF Station	70
5.3 HMS Model	72
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis (RAS) Model Simulation	
5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding	
5.11 Flood Validation	
REFERENCES	
ANNEXES Annex 1. Technical Specifications of the LIDAR Sensors used in the Bacarra Floodplain Survey	
Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey	
Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey	
Annex 4. The LiDAR Survey Team Composition	
Annex 5. Data Transfer Sheet for Bacarra Floodplain	122

Annex 6. Flight logs for the flight missions	125
Annex 7. Flight status reports	
Annex 8. Mission Summary Reports	
Annex 9. Bacarra Model Basin Parameters	
Annex 10. Bacarra Model Reach Parameters	213
Annex 11. Bacarra Field Validation Points	215
Annex 12. Educational Institutions affected by flooding in Bacarra Flood Plain	229
Annex 13. Medical Institutions affected by flooding in Bacarra Flood Plain	
, 6	

LIST OF TABLES

Table 1. Flight planning parameters for the Gemini LiDAR system Table 2. Details of the recovered NAMRIA horizontal control point ILN-11 used as base Statistics for the LiDAR data control point ILN-11 used as base	
station for the LiDAR data acquisition Table 3. Details of the recovered NAMRIA horizontal control point ILN-16 used as base	6
station for the LiDAR data acquisition.	7
Table 4. Details of the recovered NAMRIA horizontal control point ILN-17 used as base	,
station for the LiDAR data acquisition.	8
Table 5. Details of the recovered NAMRIA horizontal control point ILN-3234 used as base	
station for the LiDAR data acquisition.	9
Table 6. Details of the recovered NAMRIA horizontal control point ILN-3302 used as base	
station for the LiDAR data acquisition.	.10
Table 7. Ground control points used during the LiDAR data acquisition.	
Table 8. Flight missions for LiDAR data acquisition in Bacarra floodplain	.11
Table 9. Actual parameters used during LiDAR data acquisition.	.12
Table 10. List of municipalities and cities surveyed during Bacarra floodplain LiDAR survey	.12
Table 11. Self-calibration Results values for Bacarra flights	.18
Table 12. List of LiDAR blocks for the Bacarra floodplain	.19
Table 13. Bacarra classification results in TerraScan	23
Table 14. LiDAR blocks with its corresponding areas	
Table 15. Shift values of each LiDAR block of Bacarra Floodplain	.27
Table 16. Calibration Statistical Measures.	31
Table 17. Validation Statistical Measures	32
Table 18. Details of the quality checking ratings for the building features extracted for the	
Bacarra River Basin	
Table 19. Building features extracted for Bacarra Floodplain	.35
Table 20. Total length of extracted roads for Bacarra Floodplain.	36
Table 21. Number of extracted water bodies for Bacarra Floodplain	
Table 22. List of Reference and Control points used in Bacarra River Basin Survey (Source: NAMR	IA,
UP-TCAGP)	
Table 23. The Baseline processing report for the Bacarra River GNSS static observation survey	12
	42
Table 24. Constraints applied to the adjustment of the control points.	
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.	.43
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood	.43
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.	.43 .43
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their	.43 .43 .44
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)	.43 .43 .44
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan	.43 .43 .44 .45
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.	.43 .43 .44 .45
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP).Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.	.43 .43 .44 .45 .58 .67
 Table 24. Constraints applied to the adjustment of the control points. Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey. Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation. Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA. Table 29. Range of calibrated values for the Bacarra River Basin. Table 30. Summary of the Efficiency Test of the Bacarra HMS Model. 	.43 .43 .44 .45 .58 .67 .68
 Table 24. Constraints applied to the adjustment of the control points. Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey. Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation. Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA. Table 29. Range of calibrated values for the Bacarra River Basin. Table 30. Summary of the Efficiency Test of the Bacarra HMS Model. Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF. 	.43 .43 .44 .45 .58 .67 .68 .70
 Table 24. Constraints applied to the adjustment of the control points. Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey. Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation. Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA. Table 29. Range of calibrated values for the Bacarra River Basin. Table 30. Summary of the Efficiency Test of the Bacarra HMS Model. Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF. Table 32. Municipalities affected in Bacarra floodplain. 	.43 .43 .44 .45 .58 .67 .68 .70 .71
 Table 24. Constraints applied to the adjustment of the control points. Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey. Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation. Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA. Table 29. Range of calibrated values for the Bacarra River Basin. Table 30. Summary of the Efficiency Test of the Bacarra HMS Model. Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF. 	.43 .43 .44 .45 .58 .67 .68 .70 .71
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodTable 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78
Table 24. Constraints applied to the adjustment of the control points. Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey. Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation. Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP). Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA. Table 29. Range of calibrated values for the Bacarra River Basin. Table 30. Summary of the Efficiency Test of the Bacarra HMS Model. Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF. Table 32. Municipalities affected in Bacarra floodplain. Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period. Table 37. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period. Table 37. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period. Table 37. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period.	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79
Table 24. Constraints applied to the adjustment of the control points Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP) Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA Table 29. Range of calibrated values for the Bacarra River Basin Table 30. Summary of the Efficiency Test of the Bacarra HMS Model Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF Table 32. Municipalities affected in Bacarra floodplain Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 38. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period Table 38. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period Table 38. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .80 .81
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP).Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF.Table 32. Municipalities affected in Bacarra floodplain.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pa	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .80 .81 .82
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP).Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80 .81 .82 .83
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra HMS ModelTable 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River FloodTable 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra River Basin.Table 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 37. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period. </td <td>.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85</td>	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra River Basin.Table 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Nitar, Ilocos Norte during 5-Year Rainfall Return Period.Table 30. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Vintar, Ilocos Norte during 5-Year R	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .80 .81 .82 .83 .84 .85 .86
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodPlain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra River Basin.Table 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 38. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 40. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 41. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 42. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 42. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 43. Affected Areas in Vintar, Ilocos Norte during 5-Year Ra	.43 .43 .44 .45 .58 .67 .70 .71 .75 .76 .77 .78 .80 .81 .82 .83 .84 .85 .86 .87
Table 24. Constraints applied to the adjustment of the control points.Table 25. Adjusted grid coordinates for the control points used in the Bacarra River floodplain survey.Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plainvalidation.Table 27. The reference and control points utilized in the Bacarra River Static Survey, with theircorresponding locations (Source: NAMRIA, UP-TCAGP)Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Boronganstation, as computed by PAGASA.Table 29. Range of calibrated values for the Bacarra River Basin.Table 30. Summary of the Efficiency Test of the Bacarra River Basin.Table 31. The peak values of the Bacarra floodplain.Table 32. Municipalities affected in Bacarra floodplain.Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.Table 39. Affected Areas in Nitar, Ilocos Norte during 5-Year Rainfall Return Period.Table 30. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.Table 34. Affected Areas in Vintar, Ilocos Norte during 5-Year R	.43 .43 .44 .45 .58 .67 .68 .70 .71 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85 .86 .87 .88

Table 49. Affected Areas in Lessa Newto during 25 Year Deinfall Deturn Derind	
Table 48. Affected Areas in Laoag, Ilocos Norte during 25-Year Rainfall Return Period. 90	
Table 49. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period. 91	
Table 50. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period. 92	
Table 51. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period. 93	
Table 52. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period	
Table 53. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period	
Table 54. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period	
Table 55. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period	
Table 56. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period	
Table 57. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period	
Table 58. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period	
Table 59. Affected Areas in Laoag, Ilocos Norte during 100-Year Rainfall Return Period	
Table 60. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Table 61. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Table 62. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Table 63. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period	
Table 64. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period	
Table 65. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period	
Table 66. Area covered by each warning level with respect to the rainfall scenarios	
Table 67. Actual Flood Depth versus Simulated Flood Depth at different levels in the Bacarra	
River Basin	
Table 68. Summary of the Accuracy Assessment in the Bacarra River Basin Survey	

LIST OF FIGURES

Figure 1. Map of Bacarra River Basin (in brown)	2
Figure 2. Flight plans and base stations used for Bacarra floodplain using Gemini LiDAR system	4
Figure 3. GPS set-up over ILN-11 located on the rooftop of Batac Municipal Hall Building in Batac	
Ilocos Norte (a) and NAMRIA reference point ILN-11 (b) as recovered by the field team	6
Figure 4. GPS set-up over ILN-16 located inside Bacarra Central Elementary School in Bacarra, Ilo	cos
Norte (a) and NAMRIA reference point ILN-16 (b) as recovered by the field team	7
Figure 5. GPS set-up over ILN-17 located inside the park in front of Pasuquin Municipal Hall in	
Pasuquin Ilocos Norte (a) and NAMRIA reference point ILN-17 (b) as recovered by the field team.	8
Figure 6. GPS set-up over ILN-3234 located in front of the Administration Building of Mariano	
Marcos Memorial University in Batac Ilocos Norte (a) and NAMRIA reference point ILN-3234	
(b) as recovered by the field team	9
Figure 7. GPS set-up over ILN-3302 located near the public market of Barangay San Nicolas in Vin	
Ilocos Norte (a) and NAMRIA reference point ILN-3302 (b) as recovered by the field team	
Figure 8. Actual LiDAR survey coverage for Bacarra floodplain.	
Figure 9. Schematic diagram for the data pre-processing.	
Figure 10. Smoothed Performance Metric Parameters of Bacarra Flight 7095G.	
Figure 11. Solution Status Parameters of Bacarra Flight 7095G.	
Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Bacarra	
Floodplain	18
Figure 13. Boundaries of the processed LiDAR data over the Bacarra Floodplain	
Figure 14. Image of data overlap for Bacarra floodplain.	
Figure 15. Pulse density map of the merged LiDAR data for Bacarra floodplain	
Figure 16. Elevation difference Map between flight lines for the Bacarra Floodplain Survey.	
Figure 17. Quality checking for Bacarra flight 1560A using the Profile Tool of QT Modeler.	
Figure 18. Tiles for Bacarra floodplain (a) and classification results (b) in TerraScan	
Figure 19. Point cloud before (a) and after (b) classification	24
Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Bacarra floodplain	25
Figure 21. Portions in the DTM of the Bacarra Floodplain – a bridge before (a) and after (b)	25
manual editing; a mountain before (c) and after (d) data retrieval	27
Figure 22. Map of processed LiDAR data for the Bacarra Floodplain.	
Figure 23. Map of Bacarra Floodplain with validation survey points in green.	
Figure 24. Correlation plot between calibration survey points and LiDAR data	
Figure 25. Correlation plot between the validation survey points and the LiDAR data	
Figure 26. Map of Bacarra floodplain with bathymetric survey points in blue	
Figure 27. Block (in blue) of Bacarra building features that was subjected to QC	
Figure 28. Extracted features of the Bacarra Floodplain.	
o	
Figure 29. Bacarra River Survey Extent.	
Figure 30. Bacarra River Basin Control Survey Extent.	39
Figure 31. Base setup, Trimble [®] SPS 852, at ILN-11 located on the rooftop of the Batac City Hall	40
in Brgy. Ricarte Poblacion, Batac City, Ilocos Norte.	
Figure 32. GNSS receiver setup, Trimble® SPS 882 at BM LN-184 on the approach of Gilbert Bridg	
in Brgy. No. 51-A, Nangalisan East, Laog City, Ilocos Norte.	40
Figure 33. GNSS receiver setup, Trimble® SPS 985 at UP-SRT at Sarrat Bridge in Brgy. San Marcos,	
Municipality of Sarrat, Ilocos Norte	41
Figure 34. GNSS receiver setup, Trimble® SPS 852 at UP-BAC, Bacarra Bridge in Brgy. Buyon,	
Municipality of Bacarra, Ilocos Norte	
Figure 35. Bacarra Bridge facing upstream	
Figure 36. As-built survey conducted at Bacarra Bridge	
Figure 37. Location map of the Bacarra Bridge Cross Section.	
Figure 38. The Bacarra Bridge cross-section diagram	
Figure 39. The Bacarra Bridge as-built survey data.	
Figure 40. Water-level markings on Bacarra Bridge.	
Figure 41. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey	
Figure 42. The extent of the LiDAR ground validation survey (in red) for Bacarra River Basin	51
Figure 43. Set up of the bathymetric survey at Bacarra River using Trimble® SPS 852 in GNSS	
PPK survey technique	
Figure 44. The extent of the Bacarra River Bathymetry Survey.	53

Figure 45. The Bacarra Riverbed Profile.	
Figure 46. Location Map of the Bacarra HEC-HMS model used for calibration.	
Figure 47. Cross-Section Plot of Bacarra Bridge.	
Figure 48. The rating curve at Bacarra Bridge, Bacarra, Ilocos Norte.	
Figure 49. Rainfall and outflow data at Bacarra Bridge, which was used for modeling	
Figure 50. The location of the Borongan RIDF station relative to the Bacarra River Basin	.59
Figure 51. The synthetic storm generated for a 24-hour period rainfall for various return	
periods	
Figure 52. Soil Map of Bacarra River Basin.	.60
Figure 53. Land Cover Map of Bacarra River Basin.	
Figure 54. Slope Map of the Bacarra River Basin	.62
Figure 55. Stream Delineation Map of Bacarra River Basin.	.63
Figure 56. Bacarra river basin model generated in HEC-HMS	.64
Figure 57. River cross-section of the Bacarra River through the ArcMap HEC GeoRas tool	.65
Figure 58. A screenshot of the river sub-catchment with the computational area to be modeled	
in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).	.66
Figure 59. Outflow Hydrograph of Bacarra produced by the HEC-HMS model compared with	
observed outflow	.67
Figure 60. The Outflow hydrograph at the Bacarra Station, generated using the Laoag RIDF	
simulated in HEC-HMS.	.69
Figure 61. Sample output map of the Bacarra RAS Model.	
Figure 62. A 100-year Flood Hazard Map for Bacarra Floodplain overlaid on Google	
Earth imagery.	.72
Figure 63. A 100-year Flow Depth Map for Bacarra Floodplain overlaid on Google Earth imagery.	
Figure 64. Figure 64. A 25-year Flood Hazard Map for Bacarra Floodplain overlaid on Google	-
Earth imagery.	73
Figure 65. A 25-year Flow Depth Map for Bacarra Floodplain overlaid on Google Earth imagery.	
Figure 66. A 5-year Flood Hazard Map for Bacarra Floodplain overlaid on Google Earth imagery.	
Figure 67. A 5-year Flood Depth Map for Bacarra Floodplain overlaid on Google Earth imagery	
Figure 68. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.	
Figure 69. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 70. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 71. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 72. Affected Areas in Laoag City, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 73. Affected Areas in Pasuquin, Ilocos Norte during 5 Year Rainfall Return Period	
Figure 74. Affected Areas in Pasuquin, llocos Norte during 5-Year Rainfall Return Period	
Figure 75. Affected Areas in Pasuquin, llocos Norte during 5-Year Rainfall Return Period	
Figure 76. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period	
Figure 77. Affected Areas in Vintar, llocos Norte during 5-Year Rainfall Return Period	
Figure 77. Affected Areas in Vintar, llocos Norte during 5-Year Rainfall Return Period	
Figure 79. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 80. Affected Areas in Bacarra, llocos Norte during 25-Year Rainfall Return Period.	
Figure 81. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 82. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 83. Affected Areas in Lacag City, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 84. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period	
Figure 85. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period	
Figure 86. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period	
Figure 87. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 88. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.	
Figure 89. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period	
Figure 90. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.	
Figure 91. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.	
Figure 92. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.	
Figure 93. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.	
Figure 94. Affected Areas in Laoag City, Ilocos Norte during 100-Year Rainfall Return Period	
Figure 95. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Figure 96. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Figure 97. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period	
Figure 98. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.	
Figure 99. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period	107

Figure 100. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period	
Figure 101. Validation Points for a 5-year Flood Depth Map of the Bacarra Floodplain	110
Figure 102. Flood Map depth versus Actual Flood Depth.	110

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation			
Ab	abutment			
ALTM	Airborne LiDAR Terrain Mapper			
ARG	automatic rain gauge			
ATQ	Antique			
AWLS	Automated Water Level Sensor			
BA	Bridge Approach			
BM	benchmark			
CAD	Computer-Aided Design			
CN	Curve Number			
CSRS	Chief Science Research Specialist			
DAC	Data Acquisition Component			
DEM	Digital Elevation Model			
DENR	Department of Environment and Natural Resources			
DOST	Department of Science and Technology			
DPPC	Data Pre-Processing Component			
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]			
DRRM	Disaster Risk Reduction and Management			
DSM	Digital Surface Model			
DTM	Digital Terrain Model			
DVBC	Data Validation and Bathymetry Component			
FMC	Flood Modeling Component			
FOV	Field of View			
GiA	Grants-in-Aid			
GCP	Ground Control Point			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System			
HEC-RAS	Hydrologic Engineering Center - River Analysis System			
HC	High Chord			
IDW	Inverse Distance Weighted [interpolation method]			

	1			
IMU	Inertial Measurement Unit			
kts	knots			
LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
TBC	Thermal Barrier Coatings			
UPC	University of the Philippines Cebu			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND BACARRA RIVER

Dr. Chelo Pascua and Enrico C. Paringit, Dr. Eng.

1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the University of the Philippines Mindanao (UPMin). UPMin is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 13 river basins in the Davao Region. The university is located in Davao City in the province of Davao del Sur.

1.2 Overview of the Bacarra River Basin

Bacarra River Basin covers the municipality of Vintar, located in the province of Bacarra. The DENR River Basin Control Office identified the basin to have a drainage area of 72 km2 and an estimated 1,888 million cubic meter (MCM) annual run-off (RBCO, 2015).

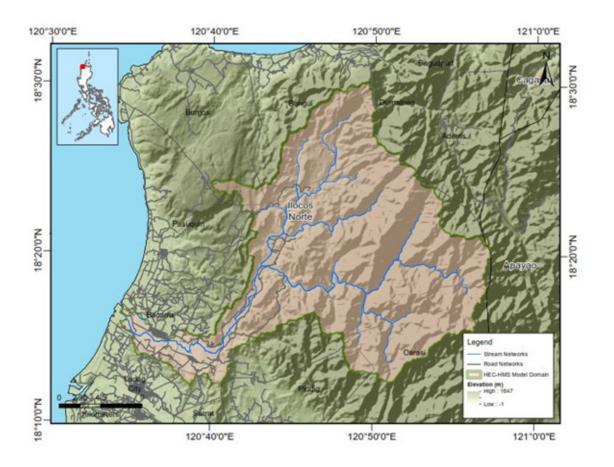


Figure I. Map of Bacarra River Basin (in brown).

Bacarra River Basin is located in the province of Ilocos Norte. This river passes through the Municipality of Vintar which would drain to Bacarra to the West Philippine Sea. According to the DENR-RBCO, the catchment basin has an approximate area of 72 km2 and an estimated annual run off of 1,888 million cubic meter (MCM).

Its main stream, Bacarra River, is one of the river systems in Ilocos Region. A total of 30,762 people are residing in the immediate vicinity of the Bacarra River flood plain according to the 2010 census conducted by NSO. This population is distributed among the 14 barangays and 21 barangays of the Municipalities of Vintar and Bacarra, respectively.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE BACARRA FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Jasmine T. Alviar, Engr. Brylle Adam G. De Castro

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Bacarra floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Bacarra Floodplain in Ilocos Norte. These flight missions were planned for 14 lines and ran for at most four and a half hours (4.5) including take-off, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Bacarra floodplain survey.

Table 1. Flight planning parameters for the Gemini LiDAR system.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of View (θ)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK04A	1000	25	30	100	50	120	5
BLK05A	1000	25	40	70	50	120	5
BLK05B	1000	25	30	100	50	120	5
DLKUSD	1000	30	40	50	50	120	5
	1200	30	40	50	50	120	5
BLK05C	1000	25	40	70	50	120	5
	850	30	40	70	50	120	5
BLK05D	1300, 1400,1500	30	40	100,70,50	50	120	5
BLK05E	1000	25	40	100	50	120	5
BLK05F	1000	25,30	40	100	50	120	5
BLK05G	1000	25,30	40	100	40	120	5
BLK04C	1000	45	40	100	50	120	5
BLK04B	1000	45	40	100	50	120	5
BLK05K	1500	30	30	100	50	120	5
BLK04D	1300, 1400, 1500	30	40	100, 70, 50	50	120	5
BLK04E	1350	30	40	100, 70	50	120	5

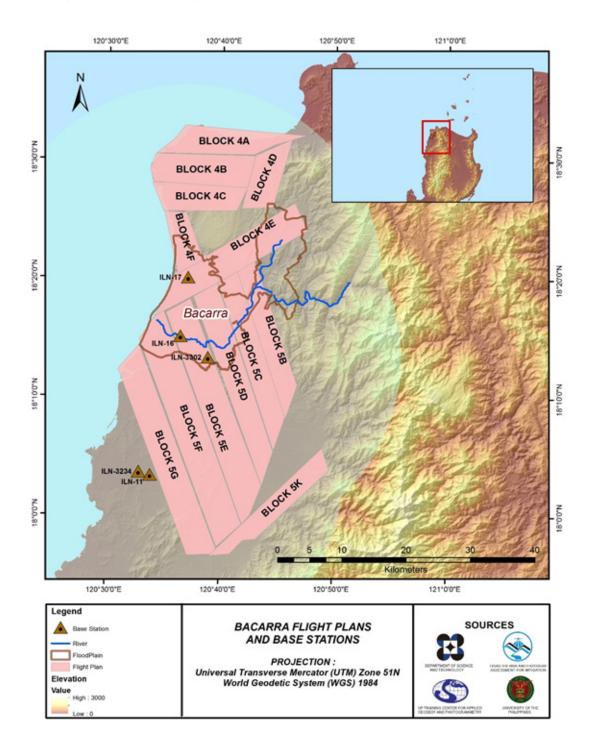


Figure 2. Flight plans and base stations used for Bacarra floodplain using Gemini LiDAR system.

2.2 Ground Base Stations

The project team was able to recover five (5) NAMRIA ground control points: ILN-11, ILN-16, ILN-17 which are of second (2nd) order accuracy and ILN-3234 AND ILN-3302, which are of fourth (4th) order accuracy.

The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established control points are found in Annex 3. These were used as base stations during flight operations for the entire duration of the survey from February 21, 2014 to March 2, 2014. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and SPS 985. Flight plans and location of base stations used during the aerial LiDAR acquisition in Bacarra floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Bacarra Floodplain LiDAR Survey. Figure 3 to Figure 6 show the recovered NAMRIA reference points within the area of the floodplain, while Table 2 to Table 6 show the details about the following NAMRIA control stations and established points. Table 7, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

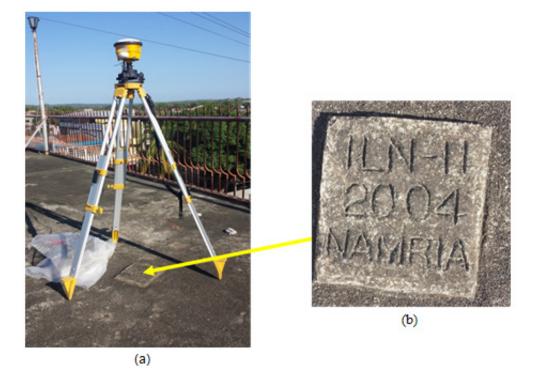


Figure 3. GPS set-up over ILN-11 located on the rooftop of Batac Municipal Hall Building in Batac Ilocos Norte (a) and NAMRIA reference point ILN-11 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point ILN-II used as base station for
the LiDAR data acquisition

Station Name	ILN-11			
Order of Accuracy	2nd Order			
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	18°3′26.86785″ North 120°33′49.91547″ East 42.96000 meters		
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	453,827.436 meters 1,998,122.81 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7°12′52.33155″ North 126°32′25.86780″ East 69.522 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	242,121.13 meters 1,998,122.81 meters		

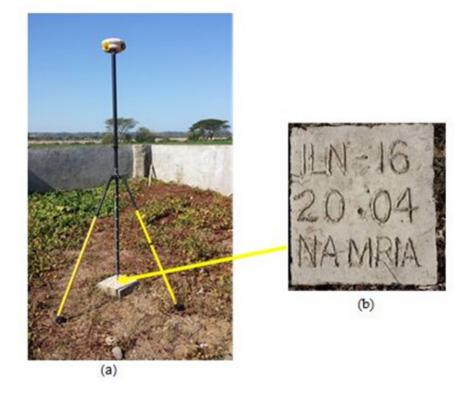


Figure 4. GPS set-up over ILN-16 located inside Bacarra Central Elementary School in Bacarra, Ilocos Norte (a) and NAMRIA reference point ILN-16 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ILN-16 used as base station for
the LiDAR data acquisition.

Station Name	ILN-16			
Order of Accuracy	2nd Or	der		
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 18°15'10.11635" No Longitude 120°36'24.06955" F Ellipsoidal Height 22.50000 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	458,407.057 meters 2,018,785.646 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	18°15'3.85580" North 120°36'28.65812" East 53.87800 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	246,937.75 meters 2,019,690.45 meters		

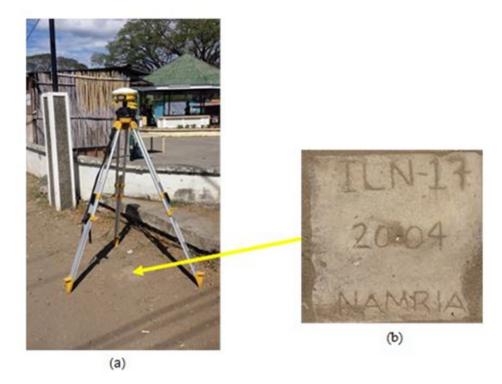


Figure 5. GPS set-up over ILN-17 located inside the park in front of Pasuquin Municipal Hall in Pasuquin Ilocos Norte (a) and NAMRIA reference point ILN-17 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA horizontal control point ILN-17 used as base station for
the LiDAR data acquisition.

Station Name	ILN-17			
Order of Accuracy	2nd Or	der		
Relative Error (horizontal positioning)	1:50,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude 18°20'6.62958" Nortl Longitude 120°37'1.30945" Eas Ellipsoidal Height 16.73900 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	459,520.118 meters 2,027,898.996 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	18°20′0.3524″ North 120°37′5.89113″ East 47.87100 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	248,151.17 meters 2,028,794.85 meters		

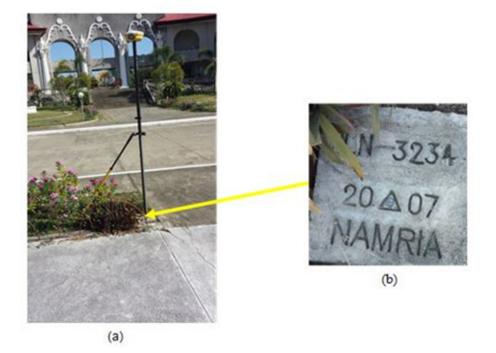


Figure 6. GPS set-up over ILN-3234 located in front of the Administration Building of Mariano Marcos Memorial University in Batac Ilocos Norte (a) and NAMRIA reference point ILN-3234 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point	ILN-3234 used as base station
for the LiDAR data acquisition.	

Station Name	ILN-3234			
Order of Accuracy	4th Or	der		
Relative Error (horizontal positioning)	1:10,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude18°3'41.82025" NorthLongitude120°32'3.1072" EastEllipsoidal Height22.632 meters			
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	452,075.694 meters 1,997,640.111 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	18°3'35.59528" North 120°32'54.91553" East 54.492 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	240,373.73 meters 1,998,605.86 meters		

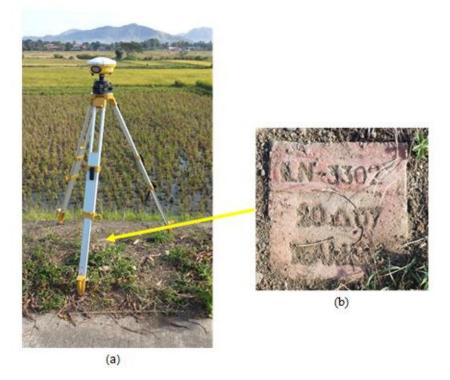


Figure 7. GPS set-up over ILN-3302 located near the public market of Barangay San Nicolas in Vintar Ilocos Norte (a) and NAMRIA reference point ILN-3302 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control pointILN-3302 used as base stationfor the LiDAR data acquisition.

Station Name	ILN-3302		
Order of Accuracy	4th O	rder	
Relative Error (horizontal positioning)	1:10,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	18°13'22.82114" North 120°38'50.91391" East 37.535 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	462,714.303 meters 2,015,478.316 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude 18°13'16.56953" Nor Longitude 120°38'55.50479" Ea Ellipsoidal Height 69.108 meters		
Grid Coordinates, Universal Transverse Mercator Zone 52 North (UTM 52N PRS 92)	Easting Northing	251, 210.34 meters 2,016,334.86 meters	

Data Survayad	Flight Number	Mission Name	Ground Control Points
Date Surveyed	Flight Number		Ground Control Points
21-Feb-14	7085G	2BLK05G052A	ILN-11, ILN-3234
22-Feb-14	7087G	2BLK05GS053B & 2BLK05F053B	ILN-11, ILN-3234
23-Feb-14	7088G	2BLKFS054A & 2BLKE054A	ILN-11, ILN-3234
24-Feb-14	7091G	2BLK05ES055B & 2BLK05D055B	ILN-11, ILN-16
25-Feb-14	7092G	2BLK05DS056A & 2BLK05K056A	ILN-11, ILN-16
25-Feb-14	7093G	2BLK05C&A056B	ILN-11, ILN-16
26-Feb-14	7094G	2BLK05B057A & 2BLK05AS05B & 2BLK04F057A	ILN-16, ILN-3302
26-Feb-14	7095G	2BLK04C057B	ILN-16, ILN-3302
27-Feb-14	7097G	2BLK04A058B & 2BLK04B059B	ILN-16, ILN-17, ILN-3302
2-Mar-14	7102GC	2BLK04E061A & 2BLK04D061A	ILN-3234
2-Mar-14	7103GC	2CASITEST061B	ILN-3234

Table 7. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

A total of eleven (11) missions were conducted to complete the LiDAR data acquisition in Bacarra floodplain, for a total of thirty-eight hours and twenty-five minutes (38+25) of flying time for RP-C9322 (See Annex 6). All missions were acquired using Gemini LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 8, while the actual parameters used during the LiDAR data acquisition are presented in Table 9.

Table 8. Flight missions for LiDAR data acquisition in Bacarra floodplain.

Date	Flight	Flight	ght Surveyed Sur Area Area with m2) (km2) Floo	Area Surveyed	Area Surveyed	Flyi Hou	-
Surveyed	Number	(km2)		within the Floodplain (km2)	Outside the Floodplain (km2)	Hr	Min
21-Feb-14	7085G	146.90	129.54	1.03	128.51	2	59
22-Feb-14	7087G	321.92	253.85	21.19	232.66	4	17
23-Feb-14	7088G	328.82	170.84	44.54	126.30	3	41
24-Feb-14	7091G	110.91	169.13	69.53	99.61	3	47
25-Feb-14	7092G	175.00	209.11	37.01	172.10	3	41
25-Feb-14	7093G	125.95	201.70	69.88	131.82	3	23
26-Feb-14	7094G	143.84	176.14	45.80	130.34	3	59
26-Feb-14	7095G	55.73	77.98	0.00	77.98	2	41
27-Feb-14	7097G	138.95	157.33	0.00	157.33	3	41
2-Mar-14	7102GC	119.87	193.18	50.48	142.70	3	47
2-Mar-14	7103GC	153.80	73.01	33.53	128.51	2	29
TOTA	L	1821.69	1811.80	372.97	1438.83	38	25

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (KHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
7085G	1000	25	40	100	40	120	5
7087G	1000	30	40	100	50	120	5
7088G	1000	25	40	100	50	120	5
7091G	1000, 1400	25, 30	40	100, 70	50	120	5
7092G	1500	30	40	70	50	120	5
7093G	1500	25,30	40	100, 70	50	120	5
7094G	1200,1400, 1600	25,30	30,40	100, 70	50	120	5
7095G	1500	30	30	70	50	120	5
7097G	1200	40	30	100	50	120	5
7102G	1800	40	30	70	50	120	5
7103GC	1000	30	40	100	50	120	5

Table 9. Actual parameters used during LiDAR data acquisition

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Bacarra floodplain (See Annex 7). It is located in the province of llocos Norte with majority of the floodplain situated within the municipality of Bacarra. The list of municipalities and cities surveyed, with at least one (1) square kilometer coverage, is shown in Table 10. Figure 5, on the other hand, shows the actual coverage of the LiDAR acquisition for the Bacarra floodplain.

Table 10. List of municipalities and cities surveyed during Bacarra floodplain LiDAR survey

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	San Nicolas	40.23	40.23	100%
	Bacarra	47.10	47.10	100%
	Sarrat	92.25	92.25	100%
	Marcos	73.57	73.33	100%
	Banna	89.62	87.15	97%
	Laoag City	114.36	108.63	95%
	Dingras	90.65	84.86	94%
	Burgos	170.90	154.44	90%
llocos	Pasuquin	154.16	133.38	87%
Norte	Bangui	142.86	101.50	71%
	Piddig	128.57	83.34	65%
	Batac City	134.62	73.91	55%
	Vintar	497.40	189.27	38%
	Solsona	153.14	51.50	34%
	Paoay Lake	3.64	0.30	8%
	Раоау	71.62	3.92	5%
	Nueva Era	619.00	14.43	2%
	Dumalneg	82.95	1.51	2%
То	tal	2706.6	1341.04	49.55%

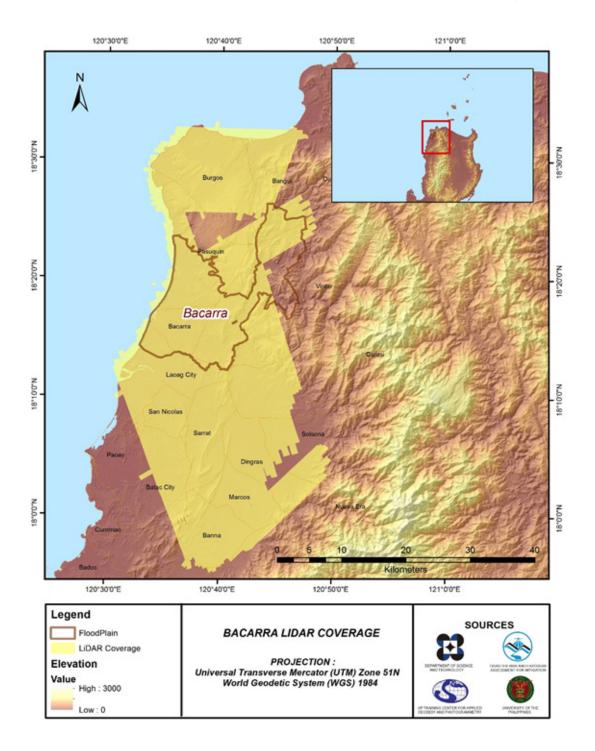


Figure 8. Actual LiDAR survey coverage for Bacarra floodplain

CHAPTER 3: LIDAR DATA PROCESSING OF THE BACARRA FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Harmond F. Santos , Jovy Anne S. Narisma , Engr. Ma. Ailyn L. Olanda, Engr. Justine Y. Francisco, Engr. Kenneth A. Solidum , Engr. Jommer M. Medina, Carl Joshua S. Lacsina

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 9.

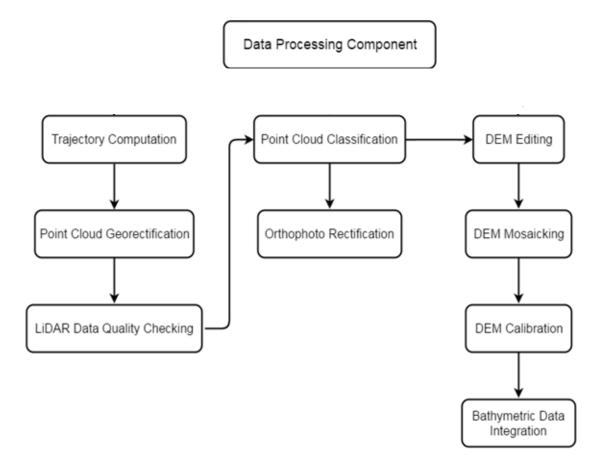


Figure 9. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Bacarra Floodplain can be found in Annex 5. The missions flown during the conduct of the survey in February 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Gemini system over Bacarra, Ilocos Norte.

The Data Acquisition Component (DAC) transferred a total of 165.25 Gigabytes of Range data, 1.95 Gigabytes of POS data, 798.02 Megabytes of GPS base station data, and 28.5 Gigabytes of raw image data to the data server on March 19, 2014 for the survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Bacarra was fully transferred on July 28, 2015, as indicated on the Data Transfer Sheets for Bacarra floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for Flight 7095G, one of the Bacarra flights, which is the North, East, and Down position RMSE values are shown in Figure 10. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of February 26, 2014, 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

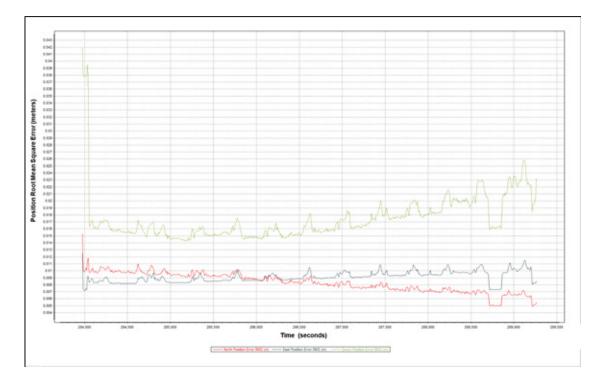


Figure 10. Smoothed Performance Metric Parameters of Bacarra Flight 7095G.

The time of flight was from 284,000 seconds to 289,500 seconds, which corresponds to afternoon of February 26, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 11 shows that the North position RMSE peaks at 1.50 centimeters, the East position RMSE peaks at 1. 20 centimeters, and the Down position RMSE peaks at 4.20 centimeters, which are within the prescribed accuracies described in the methodology.

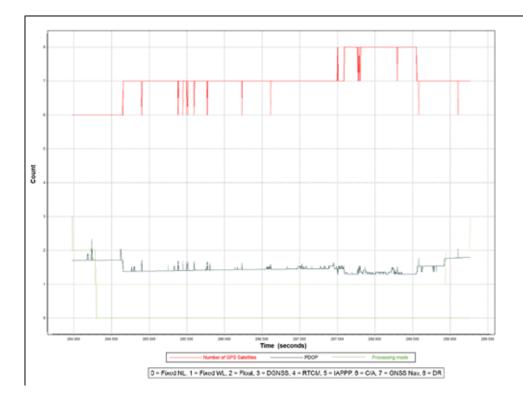


Figure 11. Solution Status Parameters of Bacarra Flight 7095G.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Bacarra Flight 7095G are shown in Figure 11. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 6 and 8, not going lower than 6. Similarly, the PDOP value did not go above the value of 2.5, which indicates optimal GPS geometry. The processing mode also stayed at the value of 0 for the majority of the survey stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Bacarra flights is shown in Figure 12.

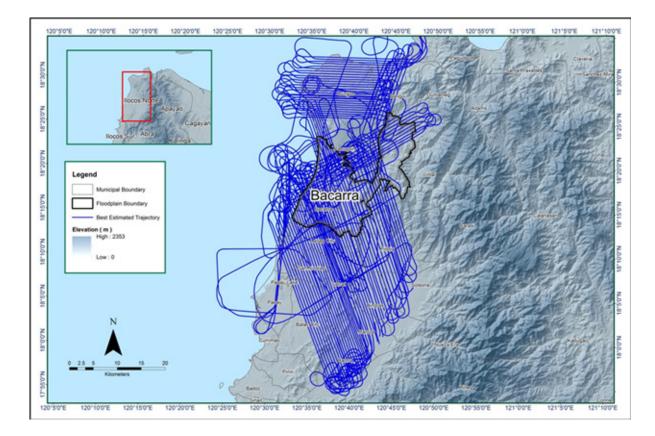


Figure 12. Best Estimated Trajectory of the LiDAR missions conducted over the Bacarra Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS contains 154 flight lines, with each flight line contains one channel, since the Gemini system contains only one channel. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Bacarra floodplain are given in Table 11.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000261
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.000865
GPS Position Z-correction stdev)	<0.01meters	0.0111

The optimum accuracy values for all Bacarra flights were also calculated, which are based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are presented in the Mission Summary Reports (Annex 8).

3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Bacarra Floodplain is shown in Figure 13. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

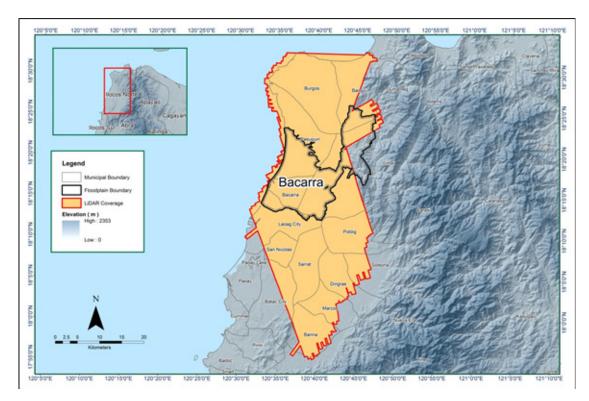


Figure 13. Boundaries of the processed LiDAR data over the Bacarra Floodplain.

A total area of 1,663.40 square kilometers (sq. kms.) were covered by the Bacarra flight missions as a result of eleven (11) flight acquisitions, which were grouped and merged into thirteen (13) block accordingly, as portrayed in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq.km)
Ilocos_Blk04AB	7097G	159.58
Ilocos_Blk04C	7095G	75.99
Ilocos_Blk04DE	7102G	186.82
Ilocos_Blk04F	7094G	40.34
llocos_Blk05A	7093G	174.75
	7094G	
Ilocos_Blk05B	7094G	112.07
Ilocos_Blk05C	7093G	155.84
llocos_Blk05D	7092G	91.81
llocos_Blk05D_supplement_E_supplement	7091G	146.47
llocos_Blk05E_supplement	7103GC	71.30
Ilocos_Blk05EF	7088G	164.15
Ilocos_Blk05EF_additional	7087GC	163.33
llocos_Blk05G	7085G	120.95
TOTAL		1663.40 sq.km

Table 12. List of LiDAR blocks for the Bacarra floodplain.

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 14. Since the Gemini system employs one channel, we would expect an average value of 1 (blue) for areas where there is limited overlap, and a value of 2 (yellow) or more (red) for areas with three or more overlapping flight lines.

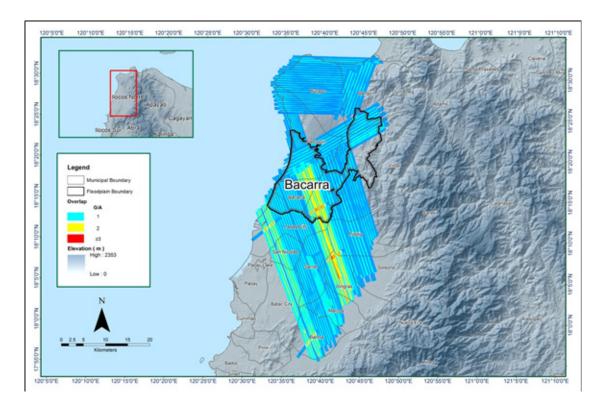


Figure 14. Image of data overlap for Bacarra floodplain.

The overlap statistics per block for the Bacarra floodplain can be found in the Mission Summary Reports (Annex 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the percent overlap is 25.42%, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 15. As seen in the figure below, it was determined that all LiDAR data for the Bacarra Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 2.85 points per square meter.

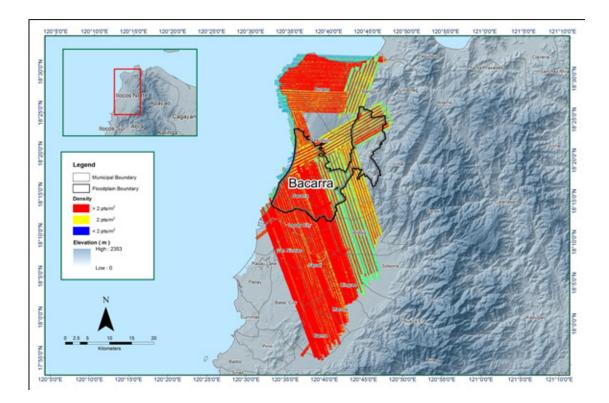


Figure 15. Pulse density map of the merged LiDAR data for Bacarra floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 16. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

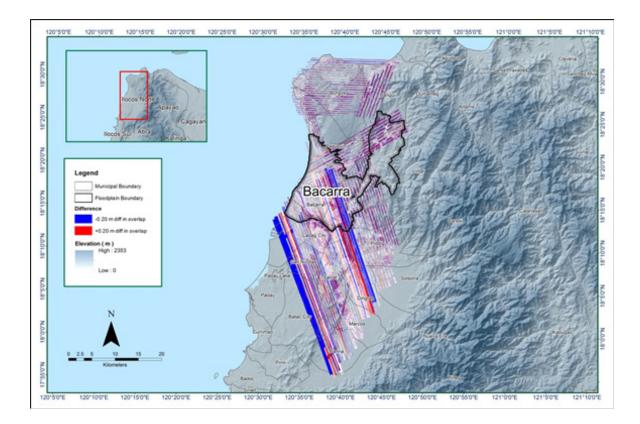


Figure 16. Elevation difference Map between flight lines for the Bacarra Floodplain Survey.

A screen-capture of the processed LAS data from Bacarra flight 7095G loaded in QT Modeler is shown in Figure 17. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

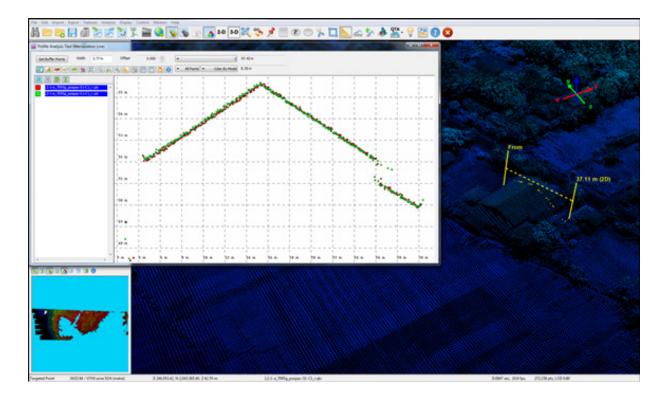


Figure 17. Quality checking for Bacarra flight 1560A using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points	
Ground	769,386,371	
Low Vegetation	963,612,197	
Medium Vegetation	1,077,575,615	
High Vegetation	1,784,370,510	
Building	67,989,087	

Table 13. Bacarra classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Bacarra floodplain is shown in Figure 18. A total of 2,384 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 13 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 629.52 meters and 37.83 meters respectively.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

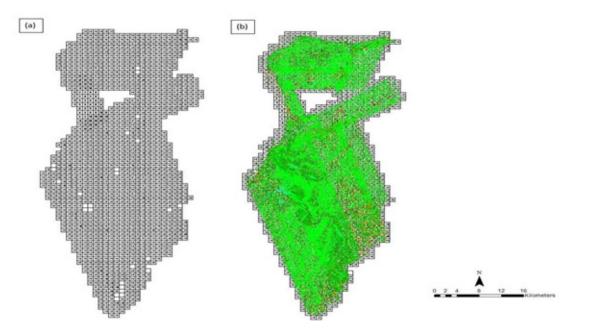


Figure 18. Tiles for Bacarra floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 19. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

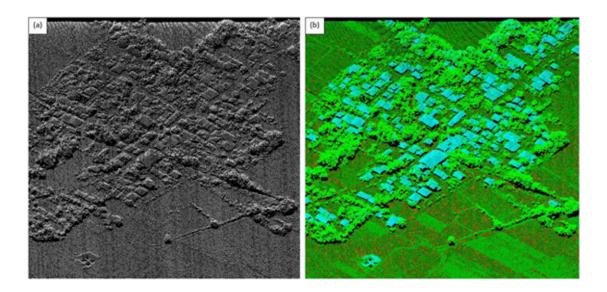


Figure 19. Point cloud before (a) and after (b) classification.

The production of the last return (V_ASCII) and secondary (T_ASCII) DTM as well as the first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are show in Figure 20. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

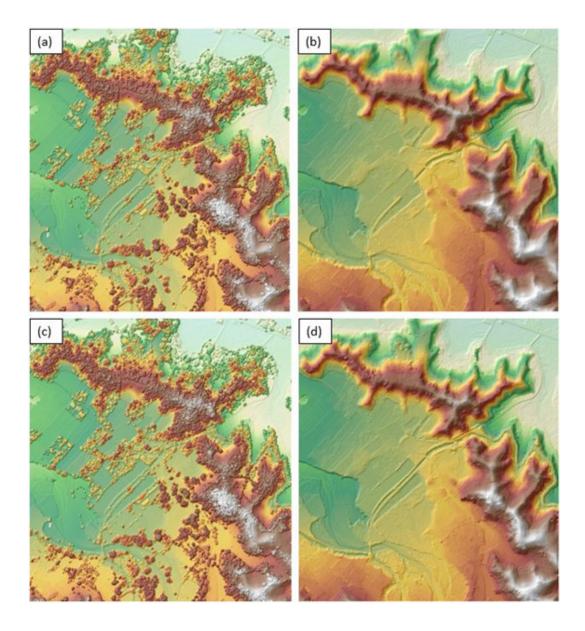


Figure 20. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Bacarra floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

There are no available orthophotographs for the Bacarra floodplain.

3.8 DEM Editing and Hydro-Correction

Thirteen (13) mission blocks were processed for the Bacarra Floodplain Survey. The blocks is composed of llocos blocks with a total area of 1,663.40 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq. km.)		
LiDAR Blocks	Area (sq. km.)		
llocos_Blk04AB	159.58		
llocos_Blk04C	75.99		
llocos_Blk04DE	186.82		
llocos_Blk04F	40.34		
llocos_Blk05A	174.75		
llocos_Blk05B	112.07		
Ilocos_Blk05C	155.84		
llocos_Blk05D	91.81		
<pre>Ilocos_Blk05D_supplement_E_supplement</pre>	146.47		
Ilocos_Blk05E_supplement	71.30		
llocos_Blk05EF	164.15		
Ilocos_Blk05EF_additional	163.33		
llocos_Blk05G	120.95		
TOTAL	1663.40 sq.km		

Table 14. LiDAR blocks with its corresponding areas.

Figure 21 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 21a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 21b). The mountain (Figure 21c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 21d).

Figure 21. Portions in the DTM of the Bacarra Floodplain – a bridge before (a) and after (b) manual editing; a mountain before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

Ilocos_Blk5A was used as the reference block at the start of mosaicking because it was referred to a base station with an acceptable order of accuracy. Table 15 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Bacarra Floodplain is shown in Figure 22. Map of processed LiDAR data for the Bacarra Floodplain. It can be seen that the entire Bacarra floodplain is 87.04% covered by LiDAR data.

Mission Blocks	Shift	Shift Values (meters)			
	х	у	z		
llocos_Blk04AB	0.00	0.00	0.00		
llocos_Blk04C	-4.00	0.70	-0.65		
llocos_Blk04DE	0.00	0.00	0.00		
llocos_Blk04F	0.40	-0.70	-0.72		
llocos_Blk05A	0.00	0.00	0.00		
llocos_Blk05B	0.00	0.00	-0.18		
llocos_Blk05C	0.00	0.00	-0.07		
llocos_Blk05D	0.00	0.00	-0.14		
Ilocos_Blk05D_supplement_E_ supplement	0.00	0.00	0.36		
Ilocos_Blk05EF	0.00	0.00	0.17		
Ilocos_Blk05EF_additional	-1.20	1.40	-0.30		
llocos_Blk05G	-1.00	1.50	-0.25		

Table 15. Shift values of each LiDAR block of Bacarra Floodplain.

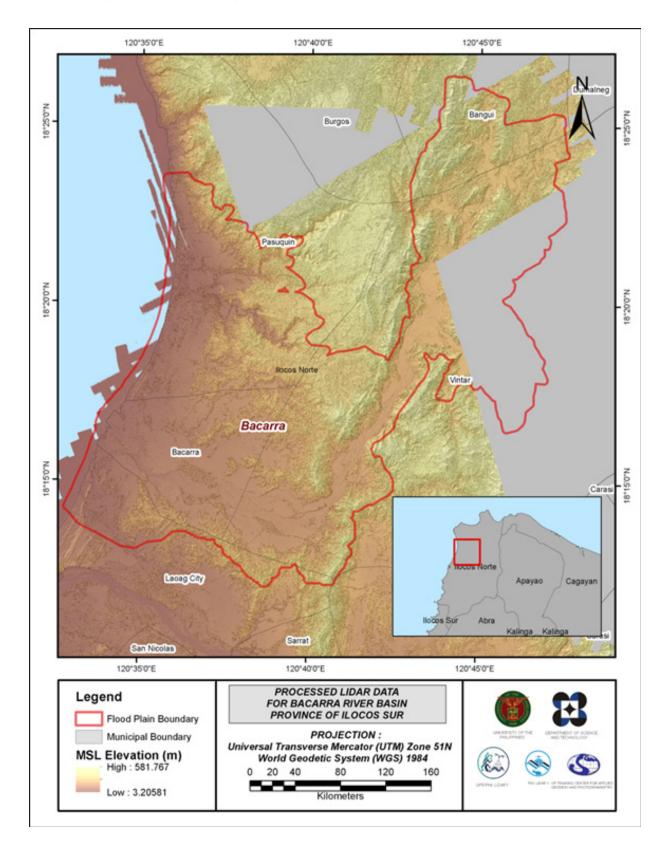


Figure 22. Map of processed LiDAR data for the Bacarra Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Bacarra to collect points with which the LiDAR dataset is validated is shown in Figure 23, with the validation survey points highlighted in green. A total of 1,427 survey points were gathered for the Bacarra floodplain and were used for calibration. Random selection of 80% of the survey points, resulting to 1427 points, was used for calibration.

A good correlation between the uncalibrated LiDAR DTM and the ground survey elevation values is shown in Figure 24. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of the data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 5.2 meters, with a standard deviation of 1.54 meters. The calibration of the LiDAR data was accomplished by subtracting the height difference value of 5.2 meters to the mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between the Bacarra LiDAR data and the calibration data.

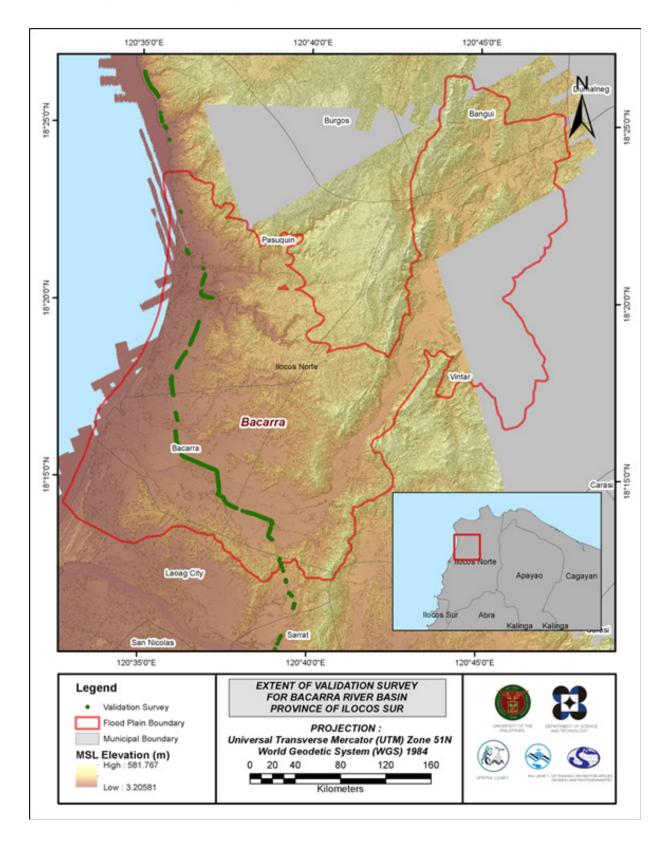


Figure 23. Map of Bacarra Floodplain with validation survey points in green.

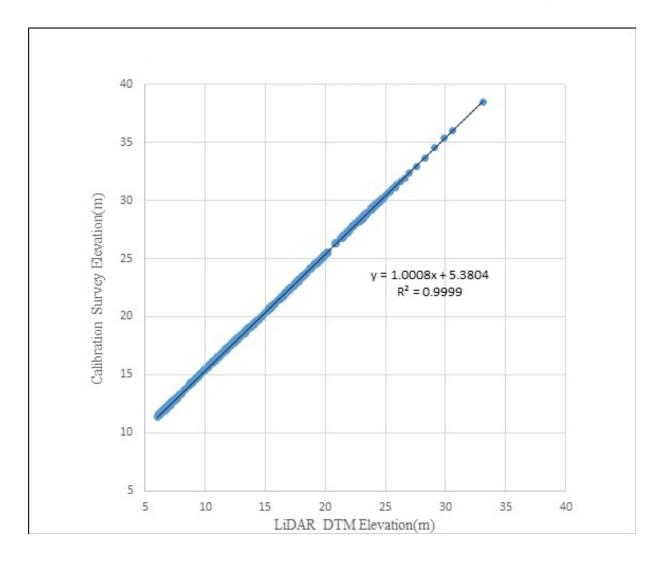


Figure 24. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	5.20
Standard Deviation	1.54
Average	-4.96
Minimum	8.05
Maximum	-1.88

All survey points were used to validate the calibrated Bacarra DTM. A good correlation between the calibrated mosaicked LiDAR elevation and the ground survey elevation values, which point toward the quality of the LiDAR DTM is shown in Figure 25. The computed RMSE value between the calibrated LiDAR DTM and the validation elevation values is at 0.10 meters with a standard deviation of 0.09 meters, as shown in Table 17.

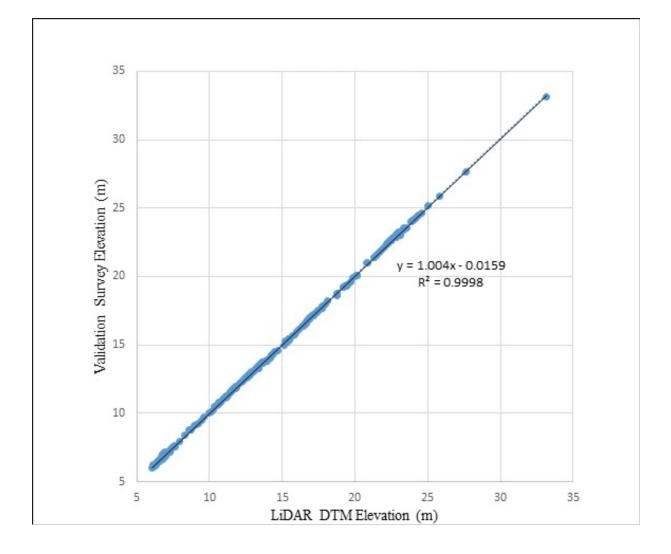


Figure 25. Correlation plot between the validation survey points and the LiDAR data.

Validation Statistical Measures	Value (meters)
RMSE	0.10
Standard Deviation	0.09
Average	-0.04
Minimum	-0.23
Maximum	0.16

Table 17. Validation	Statistical N	Measures
----------------------	---------------	----------

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and zigzag data were available for Bacarra with a total of 947 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.07 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Bacarra integrated with the processed LiDAR DEM is shown in Figure 26.

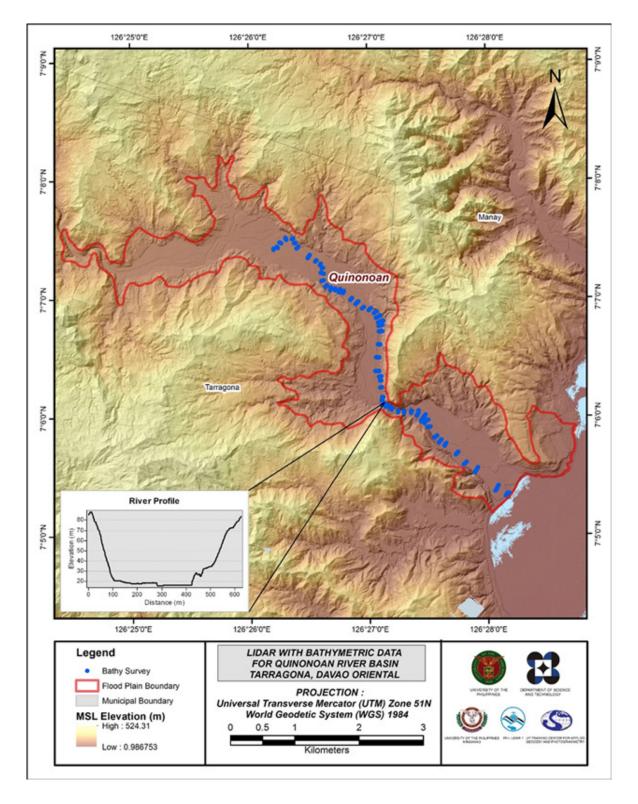


Figure 26. Map of Bacarra floodplain with bathymetric survey points in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Bacarra floodplain, including its 200-m buffer, has a total area of 317.30 sq km. For this area, a total of 10.0 sq. km., corresponding to a total of 1,754 building features, were considered for QC. Figure 27 shows the QC block for the Bacarra floodplain.

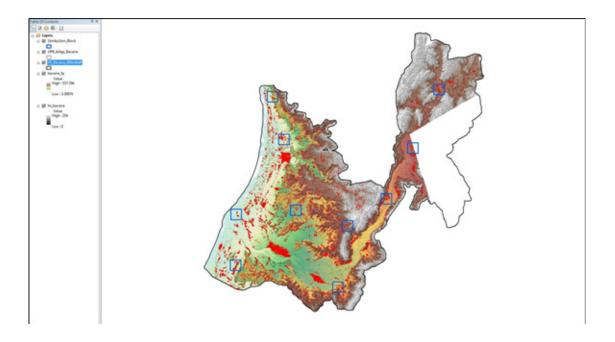


Figure 27. Block (in blue) of Bacarra building features that was subjected to QC.

Quality checking of Bacarra building features resulted in the ratings shown in Table 18.

Table 18. Details of the quality checking ratings for the building features extracted for the Bacarra River Basin.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Bacarra	98.37	100.00	96.10	PASSED

3.12.2 Height Extraction

Height extraction was done for 24,400 building features in Bacarra floodplain. Of these building features, 647 were filtered out after height extraction, resulting to 23,793 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 12.56 meters.

3.12.3 Feature Attribution

The digitized features were marked and coded in the field using handheld GPS receivers. The attributes of non-residential buildings were first identified; all other buildings were then coded as residential. A DSM was generated using the LiDAR DEMs to extract the heights of the buildings. A minimum height of 2 meters was used to filter out the terrain features that were digitized as buildings. Buildings that were not yet constructed during the time of LiDAR acquisition were noted as new buildings in the attribute table.

Table 19 summarizes the number of building features per type, while Table 20 shows the total length of each road type. Table 21, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	12,046
School	141
Market	2
Agricultural/Agro-Industrial Facilities	1
Medical Institutions	0
Barangay Hall	2
Military Institution	0
Sports Center/Gymnasium/Covered Court	23
Telecommunication Facilities	0
Transport Terminal	0
Warehouse	160
Power Plant/Substation	0
NGO/CSO Offices	0
Police Station	2
Water Supply/Sewerage	0
Religious Institutions	12
Bank	1
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	15
Other Commercial Establishments	10
Total	12,415

Table 19. Building features extracted for Bacarra Floodplain.

Road Network Length (km)						
Floodplain	Barangay Road	Barangay Road City/ Municipal Road Road City/ Provincial Road Road Road				Total
Bacarra	42.83	26.05	61.91	19.01	0.00	149.80

Table 20. Total length of extracted roads for Bacarra Floodplain.

Table 21. Number of extracted water bodies for Bacarra Floodplain.

Water Body Type							
Floodplain	Rivers/ Streams	I Jakes/Ponds Sea Dam Fish Pen					
Bacarra	24	0	0	1	0	25	

A total of 36 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 28 shows the completed Digital Surface Model (DSM) of the Bacarra floodplain overlaid with its ground features.

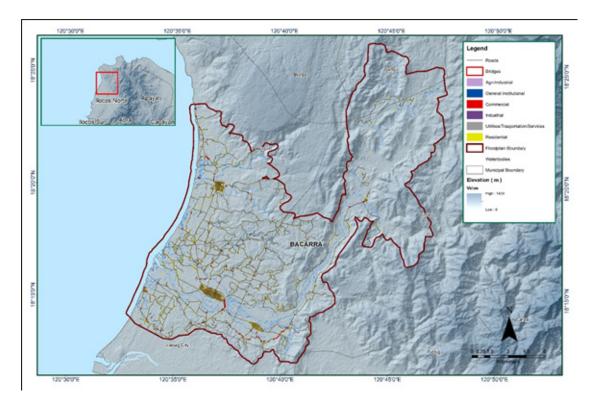


Figure 28. Extracted features of the Bacarra Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE BACARRA RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Bacarra River on January 28, 2015 to February 11, 2015 with the following scope: reconnaissance; control survey; cross-section and as-built survey at Bacarra Bridge in Brgy. Buyo, Municipality of Bacarra; validation points data acquisition of about 20 km; and bathymetric survey from Brgy. Tamdagan, Vintar, Ilocos Norte to the mouth of the river in Casilian, Bacarra, Ilocos Norte, with an estimated length of 26.9 km by GNSS PPK survey technique. The entire survey extent is illustrated in Figure 29.

Figure 29. Bacarra River Survey Extent.

4.2 Control Survey

The GNSS network used for Bacarra River survey is composed of two (2) loops established on February 4 and February 10, 2015 occupying the following reference points: ILN-11, a 1st order NAMRIA GCP in in Brgy. Ricarte Poblacion, Batac City; and UP-184, a 1st order NAMRIA GCP in Brgy. No. 51-A, Nangalisan East, Laog City, all in Ilocos Norte.

Two (2) control points were established in the area: UP-SRT located Sarrat Bridge, Brgy. San Marcos, Municipality of Sarrat, Ilocos Norte; and UP-BAC located at Bacarra Bridge, Brgy. Buyon, Municipality of Bacarra, all in Ilocos Norte.

Table 22 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 30 shows the GNSS network established in the Bacarra River Survey.

Table 22. List of Reference and Control points used in Bacarra River Basin Survey (Source: NAMRIA, UP-TCAGP).

		Geographic Coordinates (WGS 84)					
Control Point	Order of Accuracy	Latitude	Longitude	Ellipsoid Height (m)	Elevation (MSL) (m)	Date of Establishment	
		Control Su	urvey on December 1	0, 2016			
LN-184	1st order, BM	-	-	49.22	12.678	2007	
ILN-11	1st order, GCP	18°03'20.64552"	120°33'54.52048"	69.613	-	2004	
UP-BAC	UP Established	-	-	-	-	2015	
UP-SRT	UP Established	_	_	-	-	2015	
UP_QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	6.305	2-20-16	

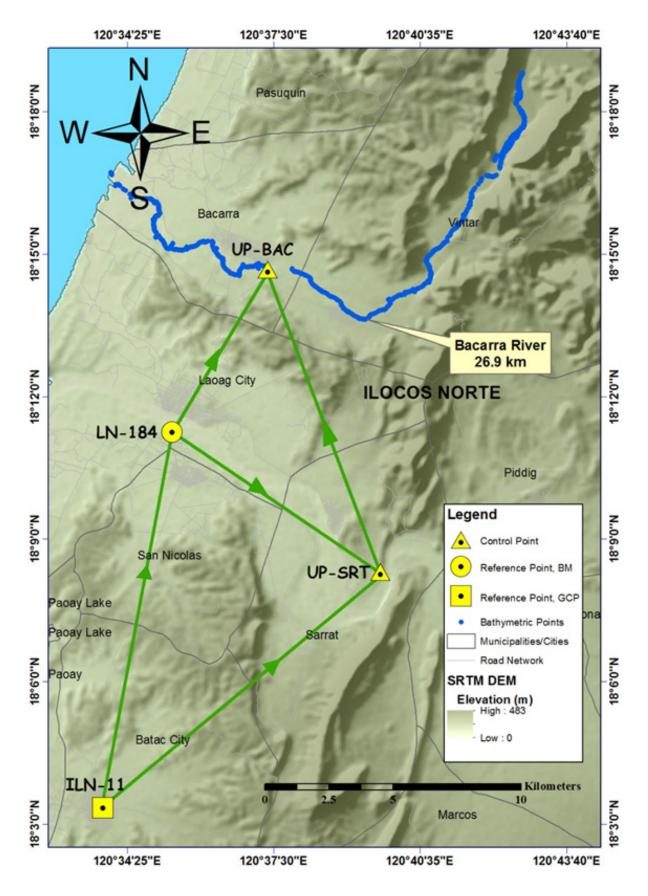


Figure 30. Bacarra River Basin Control Survey Extent.

Figure 31 to Figure 34 depict the setup of the GNSS on recovered reference points and established control points in the Bacarra River.

Figure 31. Base setup, Trimble® SPS 852, at ILN-11 located on the rooftop of the Batac City Hall in Brgy. Ricarte Poblacion, Batac City, Ilocos Norte.

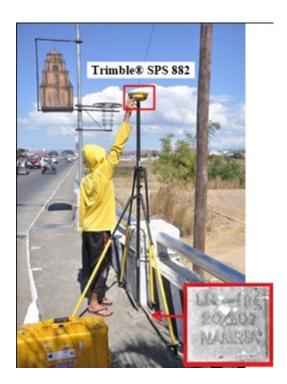


Figure 32. GNSS receiver setup, Trimble® SPS 882 at BM LN-184 on the approach of Gilbert Bridge in Brgy. No. 51-A, Nangalisan East, Laog City, Ilocos Norte.

Figure 33. GNSS receiver setup, Trimble® SPS 985 at UP-SRT at Sarrat Bridge in Brgy. San Marcos, Municipality of Sarrat, Ilocos Norte.

Figure 34. GNSS receiver setup, Trimble® SPS 852 at UP-BAC, Bacarra Bridge in Brgy. Buyon, Municipality of Bacarra, Ilocos Norte.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 23 presents the baseline processing results of control points in the Bacarra River Basin, as generated by the TBC software.

Table 23. The Baseline processing report for the Bacarra River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
UPSRT LN184	02-04-2015	Fixed	0.003	0.015	305°08'44"	9465.918	-19.930
UPBAC UPSRT	02-10-2015	Fixed	0.008	0.030	340°24'15"	12475.784	-12.150
LN184 UPBAC	02-10-2015	Fixed	0.003	0.016	29°24'15"	7237.867	7.791
LN184 UPSRT	02-04-2015	Fixed	0.006	0.021	125°07'21"	9465.916	19.975
ILN11 UPSRT	02-04-2015	Fixed	0.004	0.016	48°22'30"	13790.462	-0.448
ILN11 LN184	02-04-2015	Fixed	0.008	0.025	9°57'44"	14828.958	-20.388

As shown in Table 20, a total of six (6) baselines were processed and all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{((x_e)^2 + (y_e)^2)} < 20 \text{ cm} \text{ and } z_e < 10 \text{ cm}$

where:

 $V((x_e) + (y_e)) < 20$ cm and 2

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 24 to Table 27.

The four (4) control points, ILN-11, LN-184, UP-BAC, and UP-SRT were occupied and observed simultaneously to form a GNSS loop. The coordinate values of ILN-11 and elevation value of LN-184 were held fixed during the processing of the control points as presented in Table 24. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

Table 24. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
ILN-11	Global	Fixed	Fixed					
LN-184 Grid					Fixed			
Fixed = 0.000001(Meter)								

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 25.

Table 25. Adjusted grid coordinates for the control points used in the Bacarra River flood plain survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
ILN-11	242257.819	?	1998049.985	?	32.761	0.097	LL
LN-184	245017.255	0.019	2012626.167	0.013	12.678	?	е
UP-BAC	248654.887	0.024	2018886.801	0.017	20.421	0.092	
UP-SRT	252690.427	0.017	2007076.912	0.012	31.954	0.068	

The results of the computation for accuracy are as follows:

a.	ILN-11 Horizontal accuracy Vertical accuracy	= =	Fixed 9.7 cm < 10 cm
b.	LN-184 Horizontal accuracy Vertical accuracy	= = =	√ ((1.9) ² + (1.3) ² √(3.61+ 1.69) 2.3 cm < 20 cm Fixed
c.	UP-BAC Horizontal accuracy Vertical accuracy	= = =	√ ((2.4) ² + (1.7) ² √(5.76 + 2.89) 2.9 cm < 20 cm 9.2 cm < 10 cm
d.	UP-SRT Horizontal accuracy Vertical accuracy	= = =	√ ((1.7) ² + (1.2) ² √(2.89 + 1.44) 2.1 cm < 20 cm 6.8 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the four (4) occupied control points are within the required precision.

Table 26. Adjusted geodetic coordinates for control points used in the Bacarra River Flood Plain validation.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
ILN11	N18°03'20.64552"	E120°33'54.52048"	69.613	0.097	LL
LN184	N18°11'15.68970"	E120°35'21.81725"	49.220	?	е
UPBAC	N18°14'40.76723"	E120°37'22.77972"	57.009	0.092	
UPSRT	N18°08'18.50472"	E120°39'45.20843"	69.166	0.068	
UP_QUI-1	N7°05'25.95862"	E126°27'58.08622"	70.854	0.034	
DE-160	N6°59'41.20398"	E126°19'30.03464"	71.754	?	е

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 26. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Bacarra River GNSS Static Survey are seen in Table 27.

Table 27. The reference and control points utilized in the Bacarra River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

	Order of Accuracy	Geograph	ic Coordinates (WGS	UTM ZONE 51 N			
Control Point		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LN-184	1st order, BM	18°11'15.68970"	120°35'21.81725"	49.22	2012626.167	245017.255	2012626
ILN-11	1st order, GCP	18°03'20.64552"	120°33'54.52048"	69.613	1998049.985	242257.819	1998050
UP-BAC	UP Established	18°14'40.76723"	120°37'22.77972"	57.009	2018886.801	248654.887	2018887
UP-SRT	UP Established	18°08'18.50472"	120°39'45.20843"	69.166	2007076.912	252690.427	2007077
UP_ QUI-1	Established	7°05'25.95862"N	126°27'58.08622"E	70.854	784522.58	220097.24	6.305

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on January 30, 2015 at the downstream side of Bacarra Bridge in Brgy. Buyon, Municipality of Bacarra, Ilocos Norte as shown in Figure 35. GNSS receiver Trimble[®] SPS 985 in PPK survey technique was utilized for this survey (Figure 36).

Figure 35. Quinonoan Bridge facing downstream

Figure 36. As-built survey conducted at Bacarra Bridge.

The length of the cross-sectional line surveyed at Bacarra Bridge is about 433 meters (Figure 35) with fifty-six (56) cross-sectional points acquired using the control point UP-BAC as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 37, 38 and 39 respectively.

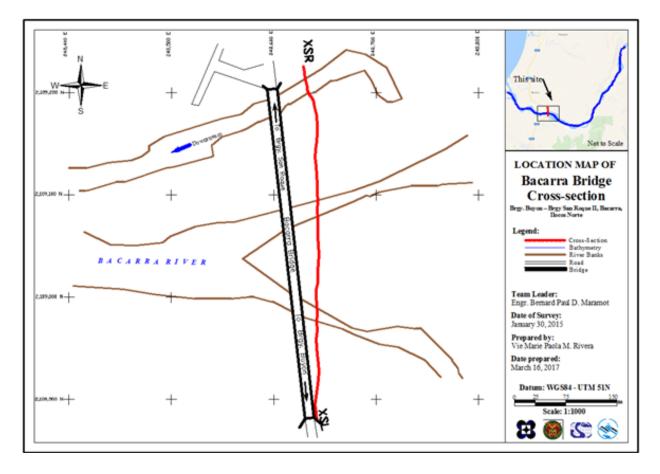
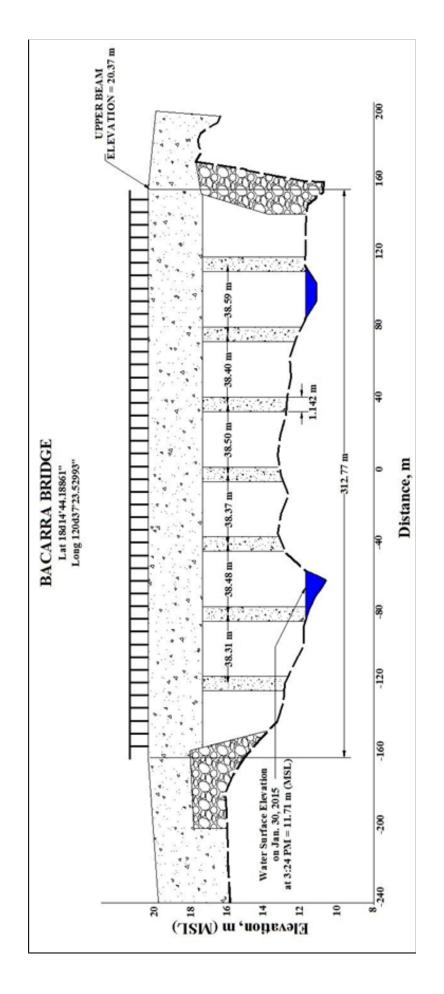
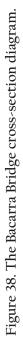




Figure 37. Location map of the Bacarra Bridge Cross Section.

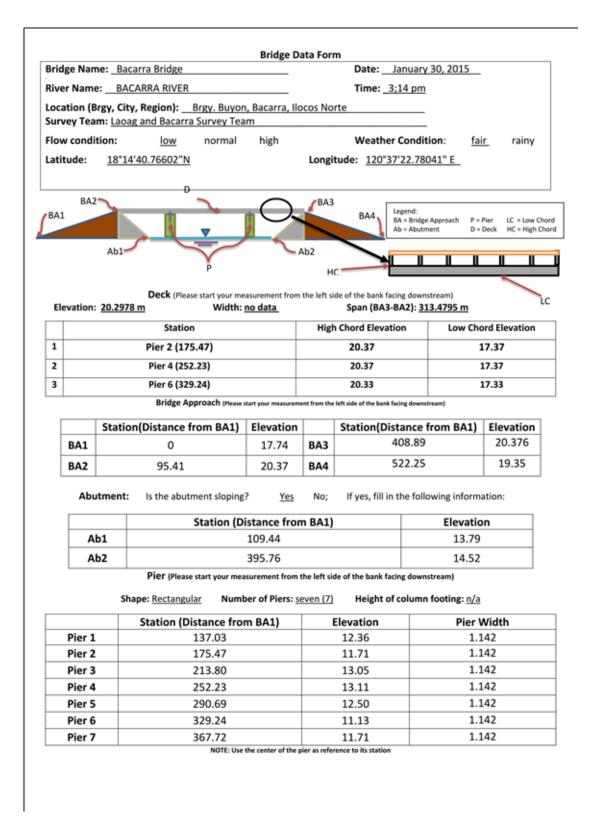


Figure 39. The Bacarra Bridge as-built survey data.

The water surface elevation of Bacarra River was determined by PPK survey technique on January 30, 2015 at 3:24 PM at Bacarra Bridge with a value of 13 m in MSL. This was translated into marking on the bridge's deck as shown in Figure 40b. It now serves as the reference for flow data gathering and depth gauge deployment of the UP Baguio, the partner HEI responsible for the monitoring of the Bacarra River.

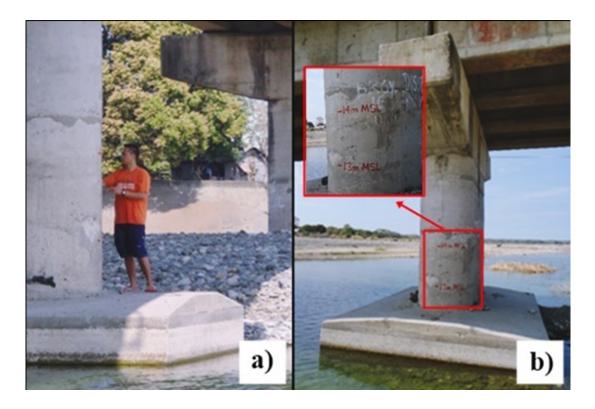


Figure 40. Water-level markings on Bacarra Bridge.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on February 3, 2014 using a survey GNSS rover receiver Trimble[®] SPS 882 mounted on a range pole, which was attached in front of the vehicle as shown in Figure 41. The antenna height was 1.53 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode in the conduct of the survey.

Figure 41. GNSS Receiver Trimble[®] SPS 882 installed on a vehicle for Ground Validation Survey.

The survey acquired a total one thousand six hundred ninety-seven (1,697) with approximate length of 28 km using UP-BAC as GNSS base station for the entire extent validation points acquisition survey as illustrated in the map in Figure 42.

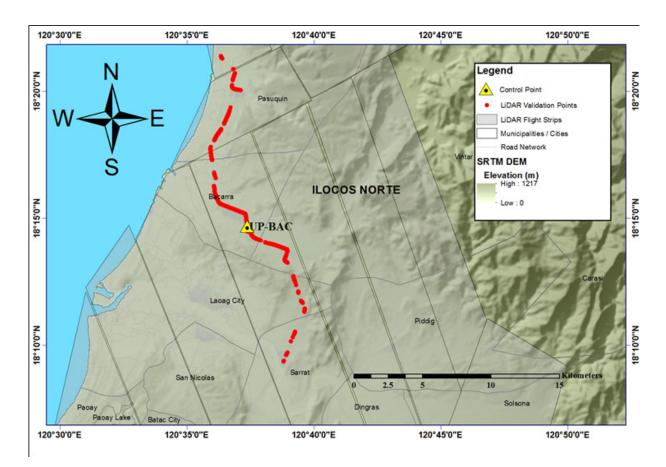


Figure 42. The extent of the LiDAR ground validation survey (in red) for Bacarra River Basin.

4.7 River Bathymetric Survey

Manual bathymetric survey was conducted on January 31 to February 3, 2015 using a GPS receiver, Trimble[®] SPS 852 in GNSS PPK technique as shown in Figure 43. The survey started in the upstream part of the river in Brgy. Tamdagan, Municipality of Vintar with coordinates 18°18'49.21447" 120°42'44.63259", traversed down by foot to the mouth of the river and ended in Brgy. Casilian, Municipality of Bacarra with coordinates 18°16'41.90157" 120°34'05.80297". The UP established control point UP-BAC was used to serve as the GNSS base all throughout the survey.

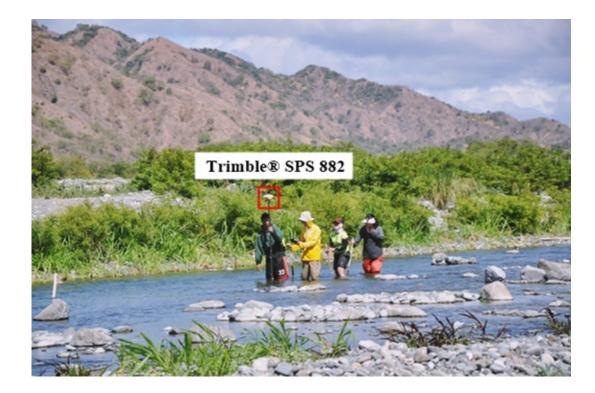


Figure 43. Set up of the bathymetric survey at Bacarra River using Trimble® SPS 852 in GNSS PPK survey technique.

Overall, the bathymetric survey for Bacarra River, with an estimated length of 26.9 km, gathered a total of 1,459 points of the river traversing 28 barangays in Bacarra and Vintar. The extent of the bathymetric survey for the Bacarra River is shown in Figure 44. To further illustrate this, a CAD drawing of the riverbed profile of the Bacarra River was produced. As seen in Figure 45, an elevation drop of 10 meters in MSL was observed within the approximate distance of 25 kilometers. The highest elevation observed was 52.56 m below MSL located at the upstream part of the river; while the lowest was -1.793 m below MSL located at the mouth of the river.

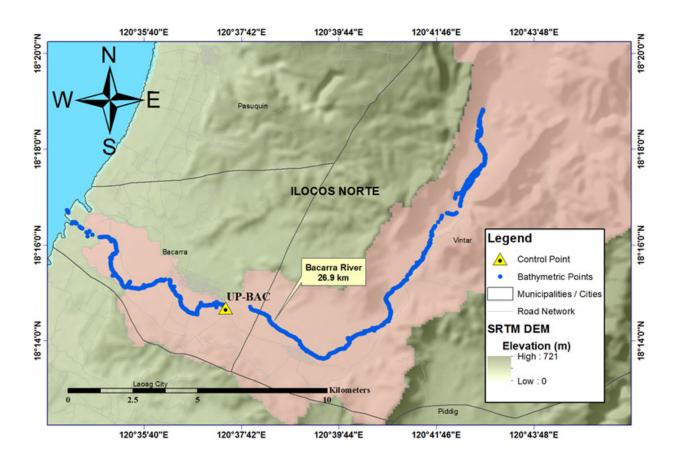


Figure 44. The extent of the Bacarra River Bathymetry Survey.

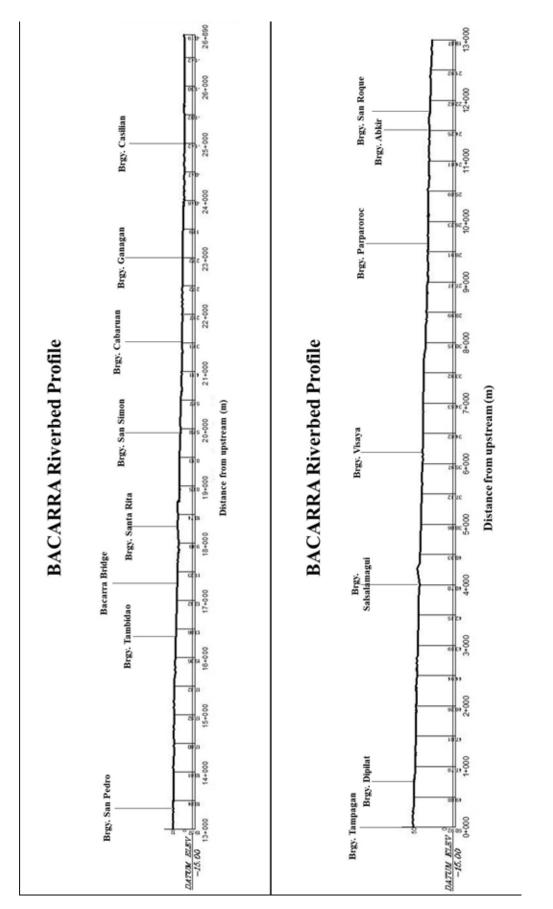


Figure 45. The Bacarra Riverbed Profile.

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, Hannah Aventurado

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Bacarra River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the interpolation of rain data from automatic rain gauges (ARG) installed by the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI). These rain gauges are the LGU Carasi ARG (18°8'23.2″ N, 120°49'14.74″ E), located in Carasi, Ilocos Norte and Mariano Marcos State University ARG (18°3'4.48″ N, 120°32'12.55″ E), located in Batac City, Ilocos Norte as shown in Figure 46. The location of the interpolated rainfall (18°13'58.14″ N, 120°38'57.92″ E) situated in Vintar, Ilocos Norte. The precipitation data collection started from July 31, 2016 at 6:30 AM to August 2, 2016 at 8:00 AM with a 15-minute recording interval.

The total precipitation for this event in the installed rain gauge was 30.27 mm. It has a peak rainfall of 3.07 mm. on July 31, 2016 at 2:45 PM. The lag time between the peak rainfall and discharge is 9 hours and 45 minutes.

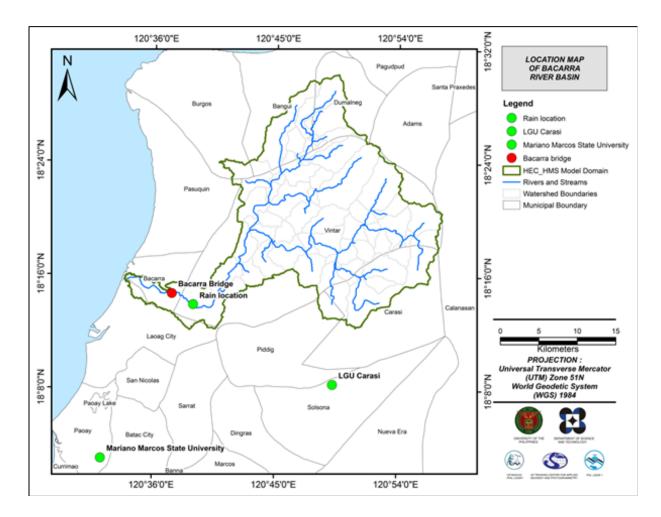


Figure 46. Location Map of the Bacarra HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Bacarra Bridge, Bacarra, Ilocos Norte (18°14'42" N, 120°37'22.8" E). It gives the relationship between the observed water level from the Bacarra Bridge and outflow of the watershed at this location.

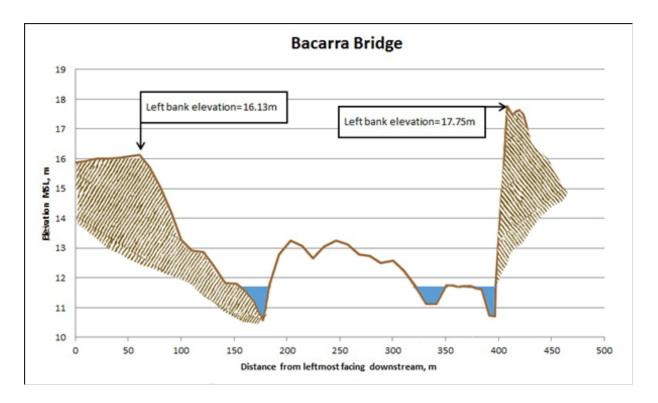


Figure 47. Cross-Section Plot of Bacarra Bridge.

For Bacarra Bridge, the rating curve is expressed as Q = 0.094e0.3989h as shown in Figure 48.

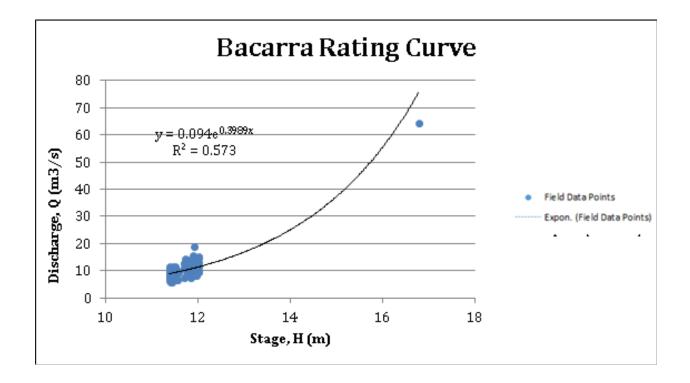


Figure 48. The rating curve at Bacarra Bridge, Bacarra, Ilocos Norte.

This rating curve equation was used to compute the river outflow at Bacarra Bridge for the calibration of the HEC-HMS model for Bacarra shown in Figure 49. The total rainfall for this event in rain gauge is 30.27 mm and the peak discharge is 21.18 m3 at 4:30 AM of August 1, 2016.

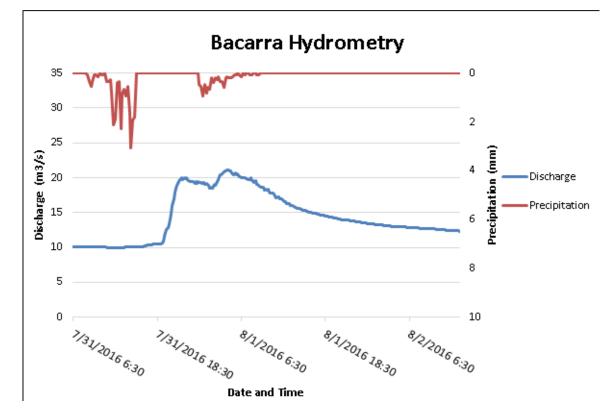


Figure 49. Rainfall and outflow data at Bacarra Bridge, which was used for modeling.

5.2 RIDF Station

The Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed for Rainfall Intensity Duration Frequency (RIDF) values for the Laoag Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the values in such a way a certain peak value will be attained at a certain time (Table 28). This station is chosen based on its proximity to the Bacarra watershed. The extreme values for this watershed were computed based on a 59-year record.

Table 28. RIDF values for the Bacarra River Basin based on average RIDF data of Borongan station, as computed by PAGASA.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs	
2	22.7	35.4	45.7	62.5	89	110.9	148.5	187.8	232.8	
5	31.4	48	61.5	87.1	124.6	157.8	211.7	266.3	331.7	
10	37.2	56.3	71.9	103.5	148.2	189	253.6	318.3	397.1	
15	40.5	61	77.8	112.7	161.6	206.5	277.2	347.7	434	
20	42.8	64.3	81.9	119.1	170.9	218.8	293.7	368.2	459.9	
25	44.5	66.8	85.1	124.1	178.1	228.3	306.4	384.1	479.8	
50	50	74.6	94.8	139.4	200.2	257.4	345.7	432.8	541.1	
100	55.3	82.4	104.5	154.6	222.2	286.4	384.6	481.2	602	

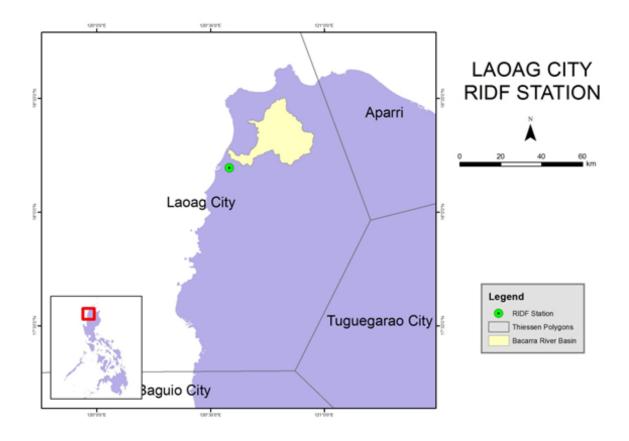


Figure 50. The location of the Borongan RIDF station relative to the Bacarra River Basin.

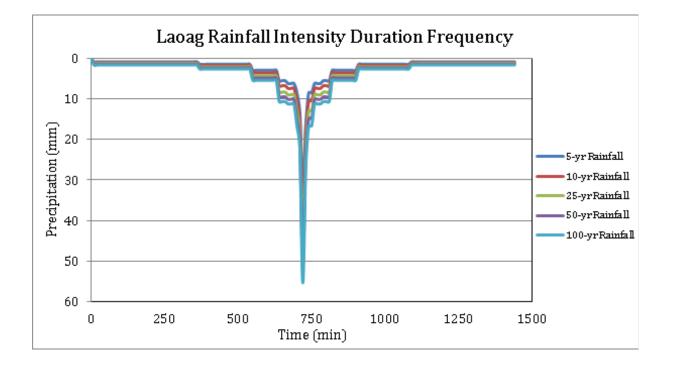


Figure 51. The synthetic storm generated for a 24-hour period rainfall for various return periods.

5.3 HMS Model

These soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Bacarra River Basin are shown in Figure 52 and Figure 53, respectively.

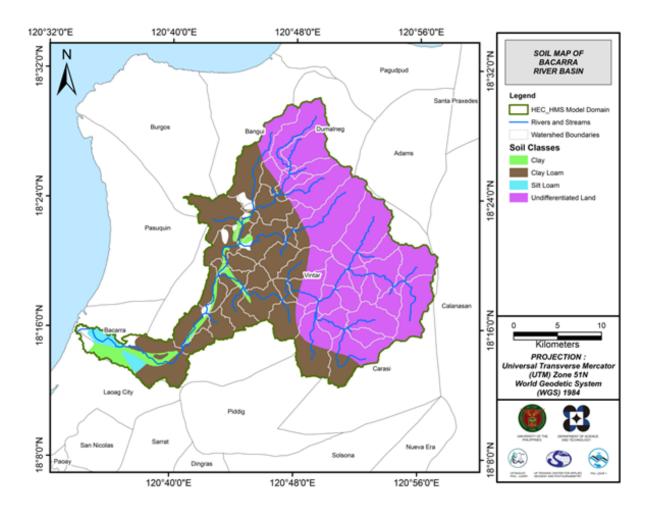


Figure 52. Soil Map of Bacarra River Basin.

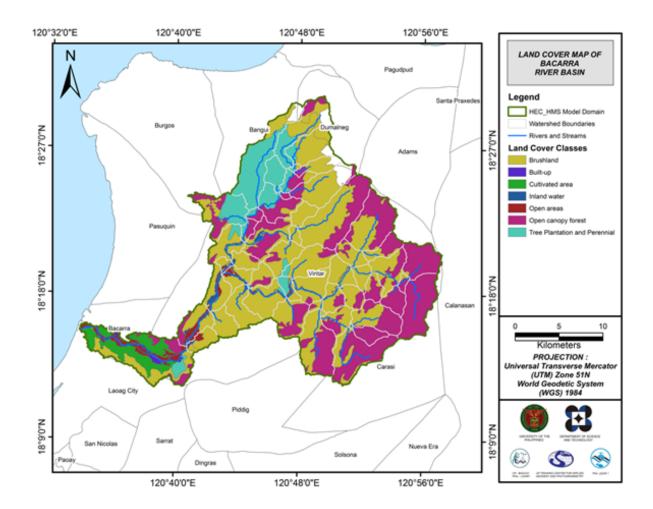


Figure 53. Land Cover Map of Bacarra River Basin.

For Bacarra, four (4) soil classes were identified. These are clay, clay loam, silt loam and undifferentiated land. Moreover, seven (7) land cover classes were identified. These are brushlands, built-up areas, cultivated areas, inland water, open areas, open canopy forests, and tree plantations.

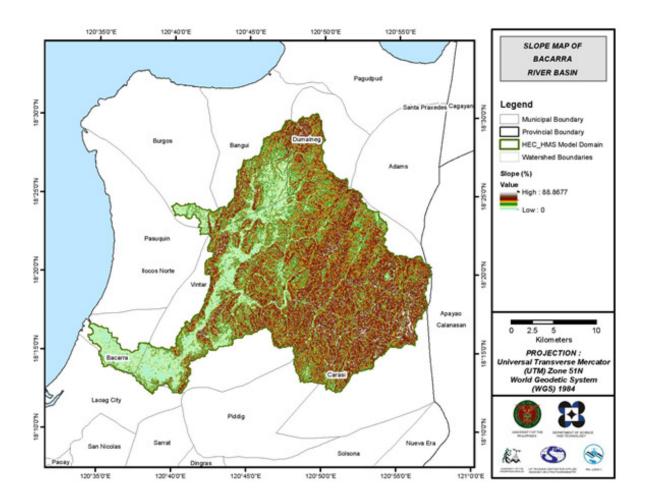


Figure 54. Slope Map of the Bacarra River Basin

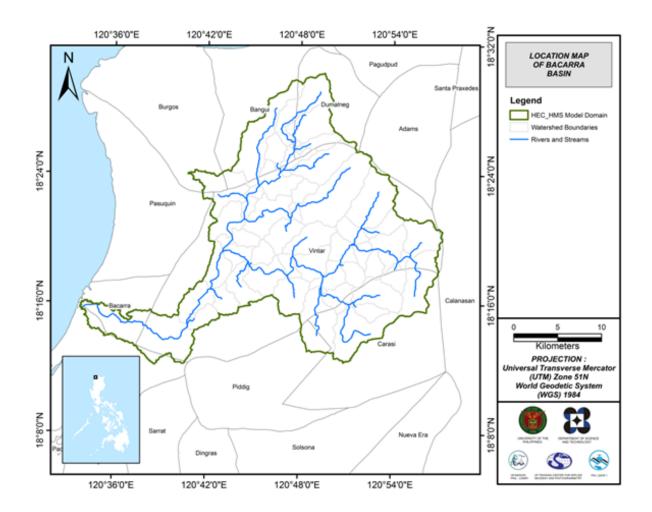


Figure 55. Stream Delineation Map of Bacarra River Basin.

Using the SAR-based DEM, the Bacarra basin was delineated and further subdivided into subbasins. The model consists of 55 sub basins, 27 reaches, and 27 junctions as shown in Figure 56. The main outlet is Outlet 170.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

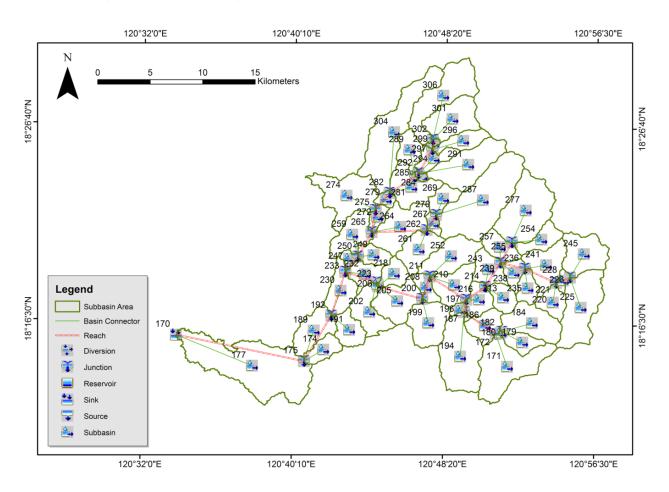


Figure 56. Bacarra river basin model generated in HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 57).

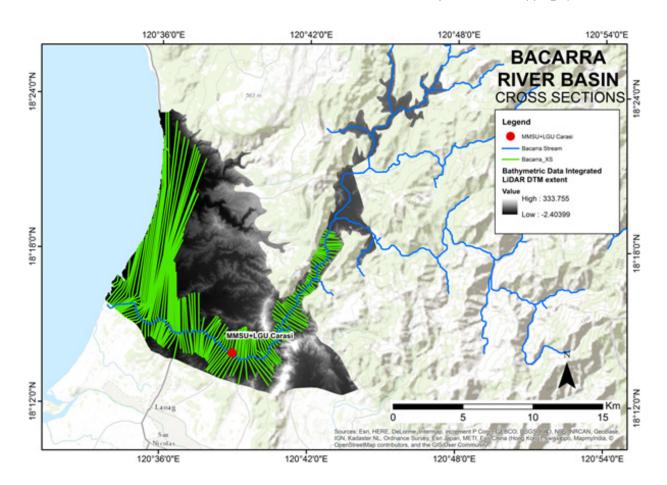


Figure 57. River cross-section of the Bacarra River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the southeast t of the model to the northwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

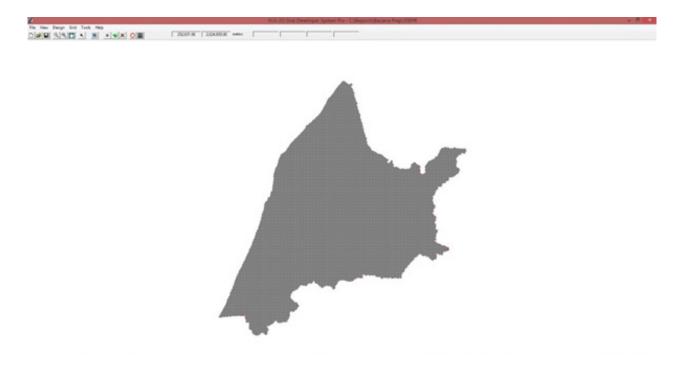


Figure 58. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 20.09155 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Bacarra are in Figure 62, 64, and 66.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 20804000.00 m2. The generated flood depth maps for Bacarra are in Figure 63, 65, and 67.

There is a total of 46214352.05 m3 of water entering the model. Of this amount, 12449823.05 m3 is due to rainfall while 33764529.00 m3 is inflow from other areas outside the model. 3953909.25 m3 of this water is lost to infiltration and interception, while 8477063.60 m3 is stored by the flood plain. The rest, amounting up to 33783378.54 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Bacarra HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 59 shows the comparison between the two discharge data.

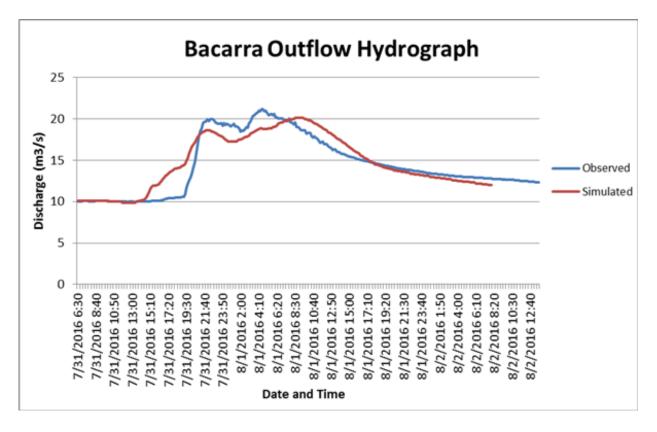


Figure 59. Outflow Hydrograph of Bacarra produced by the HEC-HMS model compared with observed outflow.

Table 29 shows the adjusted ranges of values of the parameters used in calibrating the model.

Table 29. Range of calibrated values for the Bacarra River Basin.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loca	SCS Curve Number	Initial Abstraction (mm)	1.033 - 37.45
	Loss SCS Curve Number	SCS Curve Number	Curve Number	35 - 81.7
Desir	Transformer	Clark Unit Hydrograph	Time of Concentration (hr)	0.147 – 11.028
Basin	Transform		Storage Coefficient (hr)	0.75 – 22.6
	Deseflerin	Dessesion	Recession Constant	0.432 - 1
	Baseflow	Recession	Ratio to Peak	0.24 – 1
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.0067 - 0.015

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 1.033 mm to 37.45 mm means that there is a small initial fraction of the storm depth after which runoff begins, increasing the river outflow.

The curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 65 to 90 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012). For Bacarra, the basin consists mainly of brushlands and open canopy forests and the soil consists of mostly undifferentiated land and clay loam.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.147 hours to 22.6 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant values within the range of 0.432 to 1 indicate that the discharge leaving every subbasin within Bacarra recede differ significantly. Values of ratio to peak within the range of 0.24 to 1 indicate an average receding limb of the outflow hydrograph.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Bacarra river basin reaches' Manning's coefficients range from 0.0067 to 0.015, showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

Accuracy measure	Value
RMSE	1.4
r2	0.8879
NSE	0.86
PBIAS	-0.98
RSR	0.38

Table 30. Summary of the Efficiency Test of the Bacarra HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.4 m3/s.

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.8879.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.86.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -0.98.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -8.82.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 60) shows the Bacarra outflow using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) data. The simulation results reveal increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

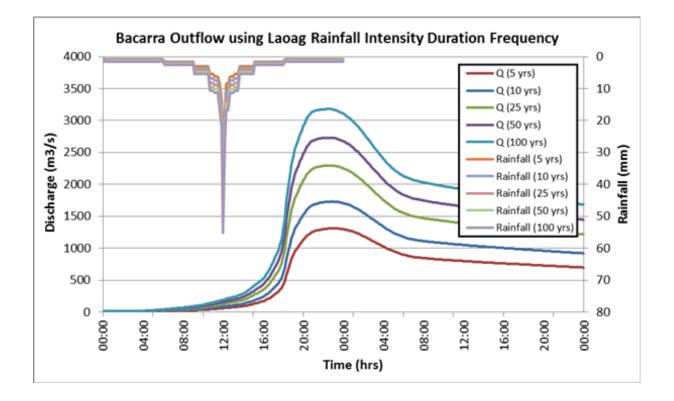


Figure 60. The Outflow hydrograph at the Bacarra Station, generated using the Laoag RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Bacarra discharge using the Laoag Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	331.7	31.4	1309.8	11 hours
10-Year	397.1	37.2	1729.3	10 hours 50 minutes
25-Year	479.8	44.5	2294.6	10 hours 50 minutes
50-Year	541.1	50	2730.5	10 hours minutes
100-Year	602	55.3	3178	10 hours 40 minutes

Table 31. The peak values of the Bacarra HEC-HMS Model outflow using the Laoag RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 61 shows a generated sample map of the Bacarra River using the calibrated HMS base flow.

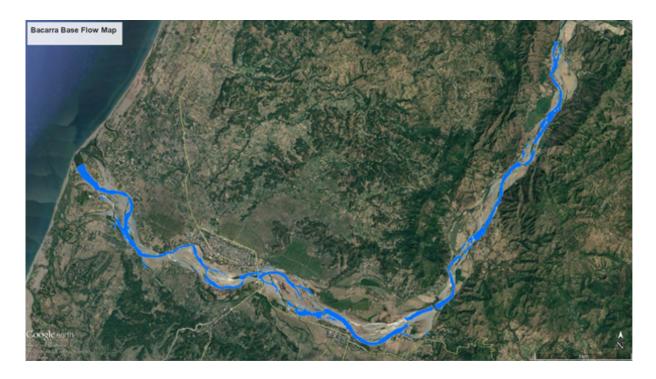


Figure 61. Sample output map of the Bacarra RAS Model.

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 62 to Figure 67 shows the 5-, 25-, and 100-year rain return scenarios of the Bacarra floodplain. The floodplain, with an area of 175.11 sq. km., covers four municipalites. Table 32 shows the percentage of area affected by flooding per municipality.

Municipality	Total Area	Area Flooded	% Flooded
llocos Norte	Bacarra	47.1	46.9
llocos Norte	Laoag City	114.36	0.43
llocos Norte	Pasuquin	154.16	63.22
llocos Norte	Vintar	497.39	63.5

Table 32. Municipalities affected in Bacarra floodplain.

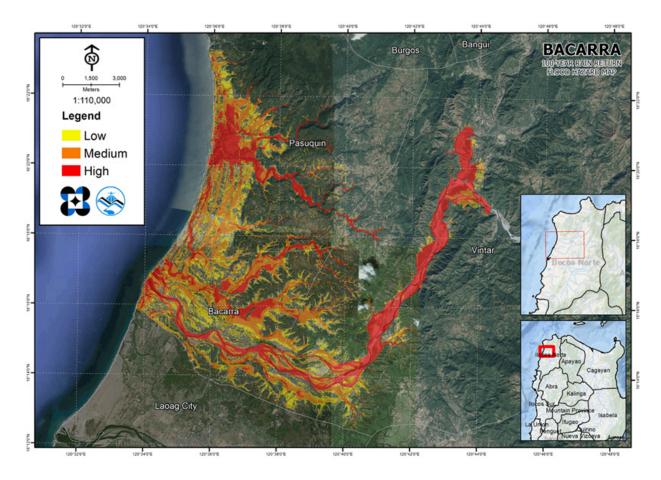


Figure 62. A 100-year Flood Hazard Map for Bacarra Floodplain overlaid on Google Earth imagery.

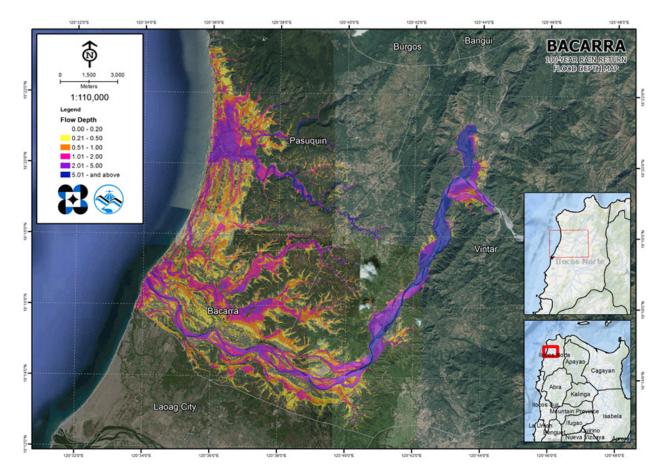


Figure 63. A 100-year Flow Depth Map for Bacarra Floodplain overlaid on Google Earth imagery.

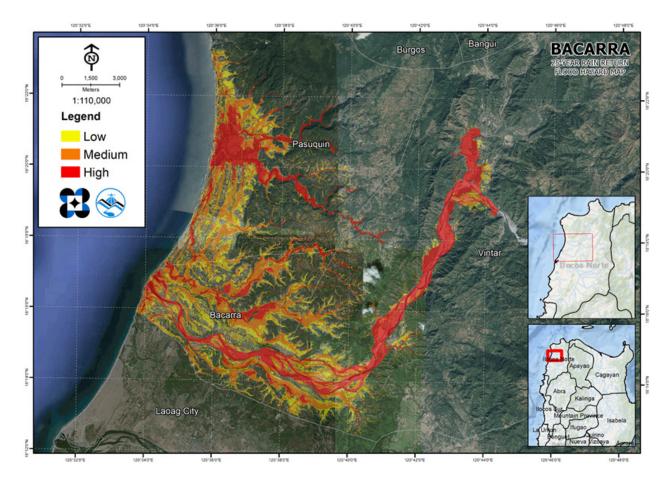


Figure 64. A 25-year Flood Hazard Map for Bacarra Floodplain overlaid on Google Earth imagery.

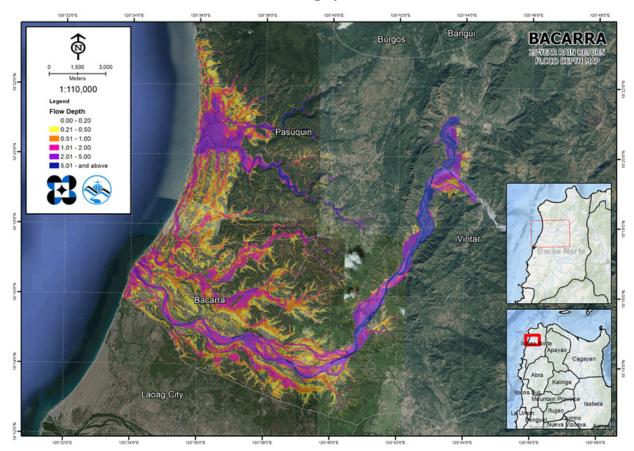


Figure 65. A 25-year Flow Depth Map for Bacarra Floodplain overlaid on Google Earth imagery.

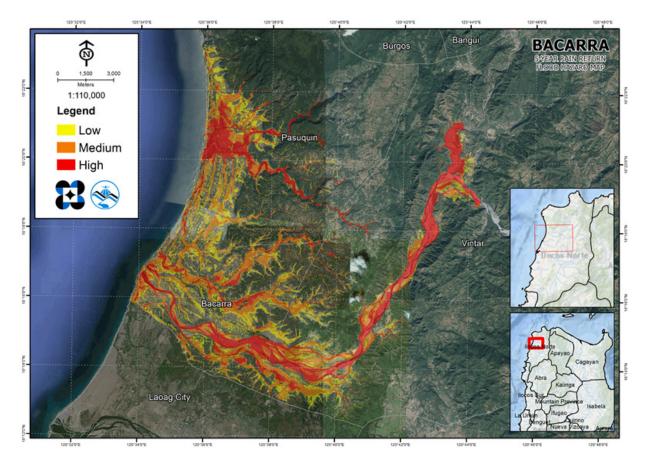


Figure 66. A 5-year Flood Hazard Map for Bacarra Floodplain overlaid on Google Earth imagery.

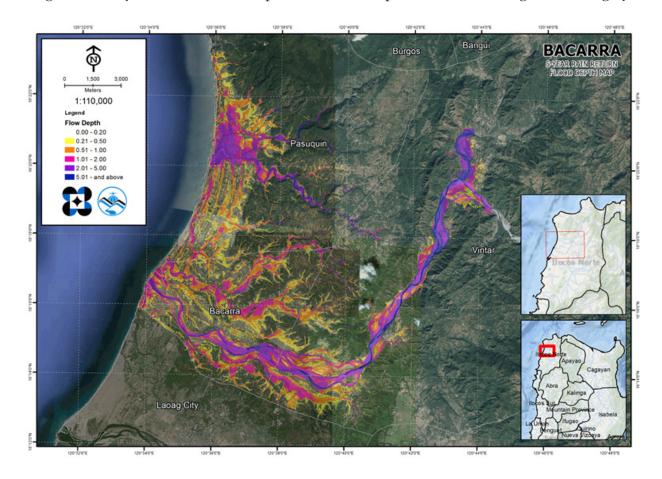


Figure 67. A 5-year Flood Depth Map for Bacarra Floodplain overlaid on Google Earth imagery.

5.10 Inventory of Areas Exposed to Flooding

Listed below are the affected barangays in the Bacarra River Basin, grouped accordingly by municipality. For the said basin, three municipalities are expected to experience flooding when subjected to 5-yr rainfall return period.

For the 5-year return period, 52.58% of the municipality of Bacarra with an area of 47.1 sq. km. will experience flood levels of less than 0.20 meters. 14.73% of the area will experience flood levels of 0.21 to 0.50 meters while 13.40%, 11.93%, 6.54%, and 0.46% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33, 34, 35 and 36 are the affected areas in square kilometers by flood depth per barangay. Annex 12 and Annex 13 show the educational and health institutions exposed to flooding.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)							
flood depth (in m.)	Bani	Buyon	Cabaruan	Cabulalaan	Cabusligan	Cadaratan		
0.03-0.20	0.74	1.93	2.38	0.16	0.47	0.5		
0.21-0.50	0.35	0.36	0.72	0.11	0.11	0.24		
0.51-1.00	0.41	0.58	0.32	0.19	0.057	0.15		
1.01-2.00	0.39	0.88	0.18	0.14	0.069	0.036		
2.01-5.00	0.17	0.63	0.18	0.05	0.011	0		

Table 33. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)							
flood depth (in m.)	Calioet-Libong	Casilian	Corocor	Duripes	Ganagan	Libtong		
0.03-0.20	0.27	0.9	0.69	0.97	1	1.55		
0.21-0.50	0.14	0.31	0.19	0.16	0.33	0.35		
0.51-1.00	0.28	0.42	0.29	0.14	0.22	0.34		
1.01-2.00	0.22	0.55	0.18	0.082	0.22	0.46		
2.01-5.00	0.084	0.4	0.042	0.022	0.12	0.068		

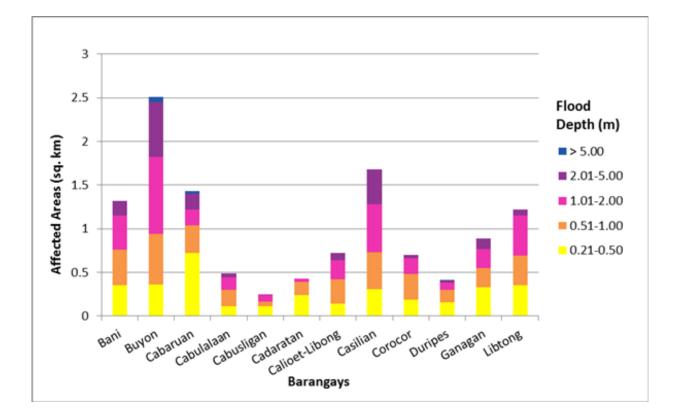


Figure 68. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Table 34. Affected Areas in Bacarra,	Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)							
flood depth (in m.)	Macupit	Nambaran	Natba	Paninaan	Pasiocan	Pasngal		
0.03-0.20	0.63	2.34	0.044	1.05	1.34	0.72		
0.21-0.50	0.079	0.62	0.045	0.082	0.34	0.12		
0.51-1.00	0.075	0.47	0.051	0.045	0.31	0.044		
1.01-2.00	0.095	0.19	0.04	0.056	0.29	0.015		
2.01-5.00	0.026	0.0035	0.0022	0.068	0.13	0		

Affected area (sq. km.) by		Areas of aff	gays in Bacarra ((in sq.km.)		
flood depth (in m.)	Pipias	Pulangi	Pungto	San Agustin I	San Agustin II	San Andres I
0.03-0.20	0.12	1.35	0.46	0.014	0.019	0.1
0.21-0.50	0.14	0.28	0.19	0.0007	0.0047	0.045
0.51-1.00	0.16	0.28	0.064	0.0011	0.0087	0.0073
1.01-2.00	0.039	0.35	0.0066	0.0095	0.0066	0
2.01-5.00	0.0064	0.025	0	0.015	0.005	0

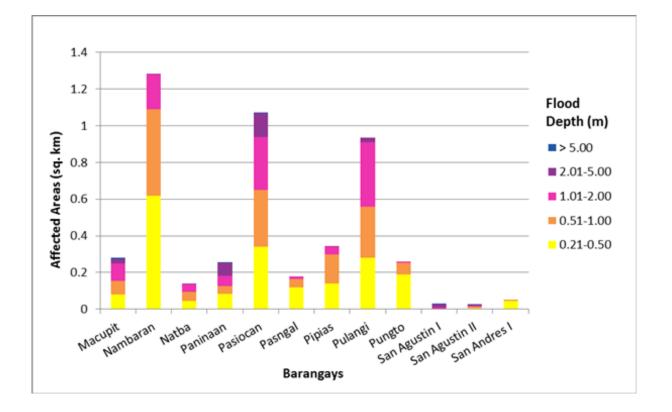


Figure 69. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	ļ					
flood depth (in m.)	San Andres II	San Gabriel I	San Gabriel II	San Pedro I	San Pedro II	San Roque I
0.03-0.20	0.091	0.025	0.026	0.054	0.064	0.068
0.21-0.50	0.051	0.013	0.019	0.022	0.025	0.0092
0.51-1.00	0.027	0.0022	0.0036	0.0055	0.0087	0.0033
1.01-2.00	0.0003	0	0	0	0	0.0081
2.01-5.00	0	0	0	0	0	0.03

Table 35. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	San Roque II	San Simon I	San Simon II	San Vicente	Sangil	Santa Filomena I	
0.03-0.20	0.058	0.051	0.059	0.058	0.9	0.027	
0.21-0.50	0.0071	0.023	0.0099	0.014	0.23	0.013	
0.51-1.00	0.001	0.031	0.0014	0.0034	0.25	0.016	
1.01-2.00	0.0011	0.052	0.0039	0	0.28	0.011	
2.01-5.00	0.008	0.11	0.0002	0	0.085	0.03	

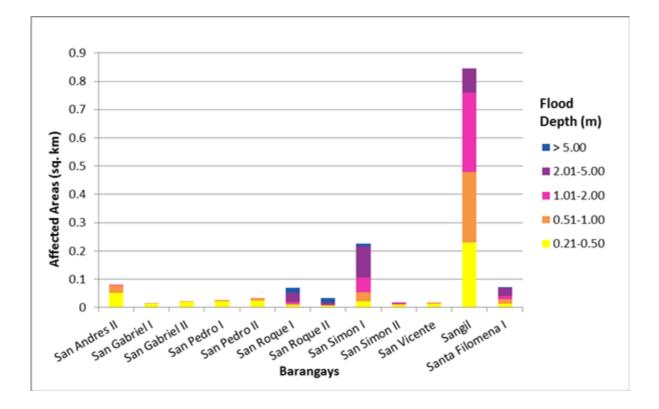


Figure 70. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Santa Filomena II	Santa Rita	Santo Cristo I	Santo Cristo II	Tambidao		
0.03-0.20	0.055	0.33	0.087	0.045	1.81		
0.21-0.50	0.013	0.22	0.043	0.021	0.55		
0.51-1.00	0.016	0.17	0.018	0.0035	0.22		
1.01-2.00	0.016	0.29	0.0015	0	0.15		
2.01-5.00	0.023	0.42	0	0	0.27		

Table 36. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Teppang	Tubburan					
0.03-0.20	0.57	0.64					
0.21-0.50	0.14	0.2					
0.51-1.00	0.35	0.27					
1.01-2.00	0.2	0.1					
2.01-5.00	0.047	0					

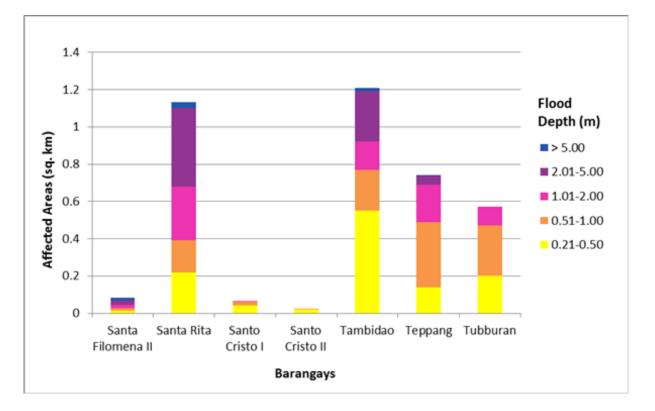


Figure 71. Affected Areas in Bacarra, Ilocos Norte during 5-Year Rainfall Return Period.

For the municipality of Laoag City with an area of 114.355 sq. km., 0.31% will experience flood levels of less than 0.20 meters. 0.03% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03% and 0.01% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

Table 37. Affected Areas in Laoag, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Laoag City (in sq.km.)							
flood depth (in m.)	Bgy. No. 55-A, Barit-Pandan	Bgy. No. 55-B, Salet-Bulangon	Bgy. No. 59-B, Dibua North	Bgy. No. 60-B, Madiladig				
0.03-0.20	0.0079	0.094	0.16	0.097				
0.21-0.50	0	0.00015	0.011	0.019				
0.51-1.00	0	0	0.0052	0.024				
1.01-2.00	0	0	0.00036	0.012				
2.01-5.00	0	0	0.000033	0.00029				

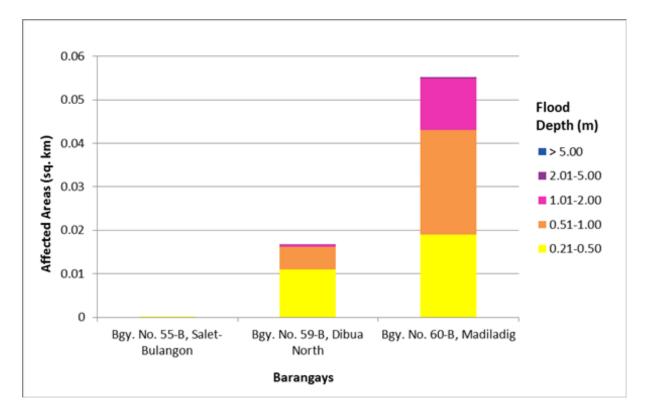


Figure 72. Affected Areas in Laoag City, Ilocos Norte during 5-Year Rainfall Return Period.

For the municipality of Pasuquin with an area of 154.156 sq. km., 26.77% will experience flood levels of less than 0.20 meters. 4.60% of the area will experience flood levels of 0.21 to 0.50 meters while 3.92%, 2.93%, 2.45%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38, 39, and 40 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Batuli	Binsang	Caruan	Carusipan	Dadaeman	Darupidip	
0.03-0.20	1.39	2.46	0.00018	0.45	0.93	1.38	
0.21-0.50	0.43	0.76	0	0.2	0.13	0.13	
0.51-1.00	0.28	0.63	0	0.068	0.14	0.054	
1.01-2.00	0.088	0.5	0	0.003	0.055	0.0043	
2.01-5.00	0.025	0.031	0	0	0.0053	0	

Table 38. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)					
flood depth (in m.)	Dilanis	Estancia	Naglicuan	Nagsanga	Nalvo	Ngabangab
0.03-0.20	2.89	1.64	1.07	0.069	0.12	1.01
0.21-0.50	0.13	0.52	0.57	0.1	0.085	0.53
0.51-1.00	0.056	0.25	0.53	0.13	0.13	0.5
1.01-2.00	0.047	0.12	0.19	0.23	0.31	0.11
2.01-5.00	0.013	0.0045	0.018	0.049	0.26	0

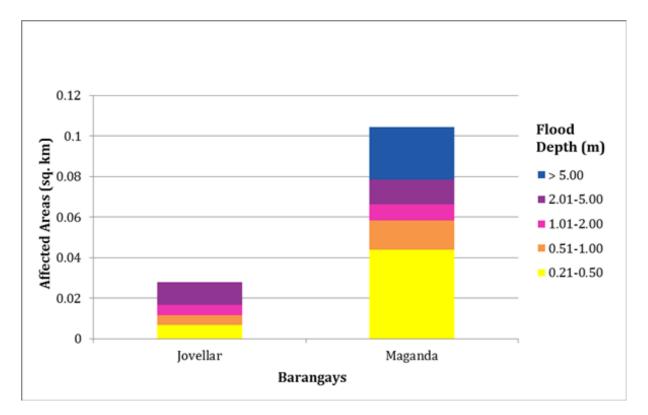


Figure 73. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)					
flood depth (in m.)	Pangil	Poblacion 1	Poblacion 2	Poblacion 3	Poblacion 4	Pragata
0.03-0.20	0.96	0.034	0.13	0.12	0.031	0.13
0.21-0.50	0.077	0.0081	0.043	0.051	0.015	0.074
0.51-1.00	0.049	0.012	0.039	0.00033	0.016	0.2
1.01-2.00	0.02	0.058	0.086	0	0.041	0.68
2.01-5.00	0.0052	0.14	0.053	0	0.041	1.58

Table 39. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Puyupuyan	Salpad	San Juan	Santa Catalina	Santa Matilde	Sapat	
0.03-0.20	1.58	0.44	10.14	1.69	3.27	4.38	
0.21-0.50	0.48	0.44	0.67	0.14	0.18	0.22	
0.51-1.00	0.61	0.31	0.47	0.23	0.061	0.16	
1.01-2.00	0.44	0.026	0.41	0.22	0.043	0.11	
2.01-5.00	0.29	0.0031	0.56	0.084	0.074	0.1	

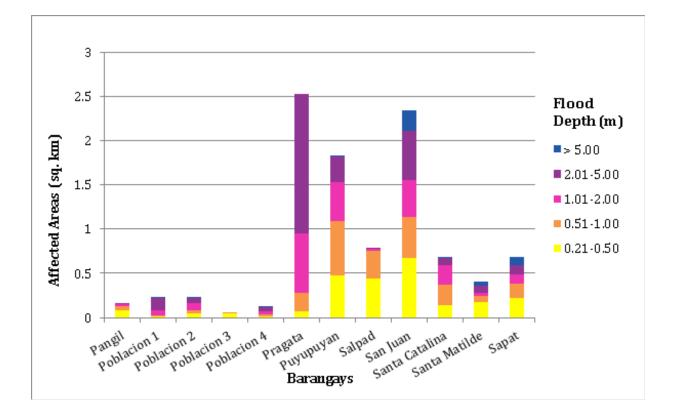


Figure 74. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	by Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)			Surong	Susugaen	Tabungao		
0.03-0.20	0.66	1.36	0.98	0.48	1.48		
0.21-0.50	0.37	0.28	0.056	0.31	0.09		
0.51-1.00	0.37	0.17	0.034	0.47	0.066		
1.01-2.00	0.38	0.035	0.055	0.2	0.063		
2.01-5.00	0.26	0.0027	0.12	0.035	0.019		

Table 40. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

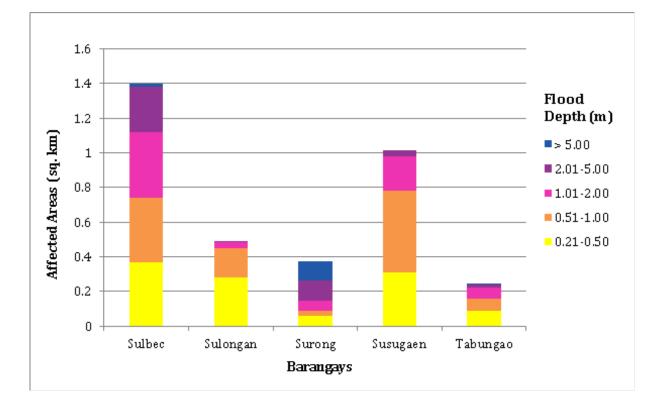


Figure 75. Affected Areas in Pasuquin, Ilocos Norte during 5-Year Rainfall Return Period.

For the municipality of Vintar with an area of 497.395 sq. km., 7.71% will experience flood levels of less than 0.20 meters. 1.17% of the area will experience flood levels of 0.21 to 0.50 meters while 1.04%, 1.05%, 1.21%, and 0.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41, 42, and 43 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)						
flood depth (in m.)	Abkir	Alejo Malasig	Alsem	Bago	Bulbulala	Cabayo	
0.03-0.20	4.29	0.81	0.16	0.7	0.32	0.32	
0.21-0.50	1.3	0.31	0.0044	0.029	0.0064	0.017	
0.51-1.00	1.26	0.29	0.01	0.025	0.0018	0.01	
1.01-2.00	1.28	0.15	0.021	0.028	0.0008	0.017	
2.01-5.00	0.94	0.017	0.014	0.11	0.000054	0.071	

Table 41. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)					
flood depth (in m.)	Cabisocolan	Columbia	Dagupan	Dipilat	Esperanza	Ester
0.03-0.20	2.44	2.93	0.015	2	0.51	1.27
0.21-0.50	0.19	0.58	0.014	0.21	0.17	0.13
0.51-1.00	0.09	0.45	0.01	0.21	0.095	0.05
1.01-2.00	0.052	0.1	0.0059	0.32	0.18	0.031
2.01-5.00	0.018	0.0048	0	0.83	0.39	0.018

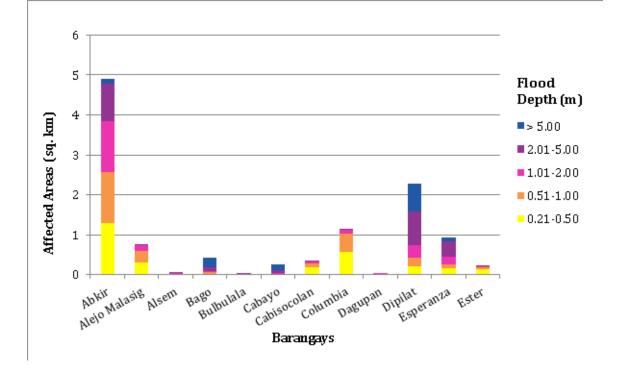


Figure 76. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)					
flood depth (in m.)	Lubnac	Malampa	Manarang	Margaay	Parparoroc	Parut
0.03-0.20	1.72	2	1.47	1.4	2.98	0.8
0.21-0.50	0.12	0.075	0.074	0.47	0.32	0.27
0.51-1.00	0.042	0.041	0.051	0.29	0.3	0.25
1.01-2.00	0.045	0.049	0.068	0.025	0.3	0.4
2.01-5.00	0.032	0.075	0.12	0.0015	0.49	0.067

Table 42. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)					
flood depth (in m.)	Pedro F. Alviar	Salsalamagui	San Jose	San Nicolas	San Pedro	San Ramon
0.03-0.20	1.05	4.67	1.09	0.11	0.1	0.14
0.21-0.50	0.035	0.41	0.088	0.057	0.038	0.065
0.51-1.00	0.011	0.51	0.053	0.083	0.016	0.12
1.01-2.00	0.0031	0.65	0.091	0.11	0.066	0.17
2.01-5.00	0.0026	0.58	0.73	0.05	0.0026	0.058

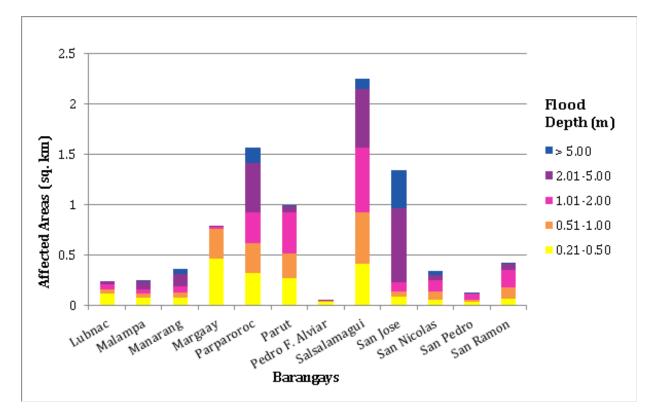


Figure 77. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.)	San Roque	Santa Maria	Tamdagan	Visaya				
0.03-0.20	0.11	0.061	2.09	2.81				
0.21-0.50	0.16	0.051	0.38	0.25				
0.51-1.00	0.29	0.034	0.36	0.24				
1.01-2.00	0.17	0.099	0.52	0.27				
2.01-5.00	0.18	0.019	0.73	0.49				

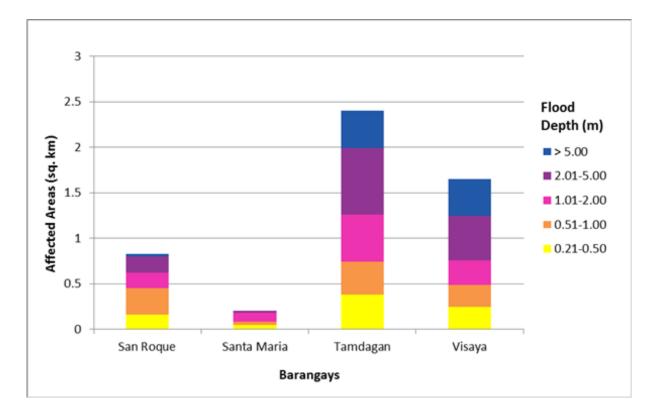


Figure 78. Affected Areas in Vintar, Ilocos Norte during 5-Year Rainfall Return Period.

For the 25-year return period, 47.32% of the municipality of Bacarra with an area of 47.1 sq. km. will experience flood levels of less than 0.20 meters. 15.40% of the area will experience flood levels of 0.21 to 0.50 meters while 14.26%, 14.30%, 8.00%, and 0.41% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 44, 45, 46, and 47 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)								
flood depth (in m.)	Bani	Buyon	Cabaruan	Cabulalaan	Cabusligan	Cadaratan			
0.03-0.20	0.54	2.04	1.97	0.1	0.41	0.37			
0.21-0.50	0.24	0.42	0.98	0.095	0.14	0.29			
0.51-1.00	0.47	0.64	0.38	0.2	0.059	0.2			
1.01-2.00	0.56	0.79	0.19	0.2	0.071	0.069			
2.01-5.00	0.25	0.51	0.22	0.057	0.036	0			

Table 44. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)								
flood depth (in m.)	Calioet-Libong	Casilian	Corocor	Duripes	Ganagan	Libtong			
0.03-0.20	0.23	0.64	0.55	0.85	0.86	1.28			
0.21-0.50	0.12	0.33	0.24	0.22	0.34	0.36			
0.51-1.00	0.27	0.42	0.28	0.15	0.27	0.33			
1.01-2.00	0.27	0.65	0.28	0.13	0.21	0.52			
2.01-5.00	0.11	0.54	0.054	0.029	0.2	0.28			

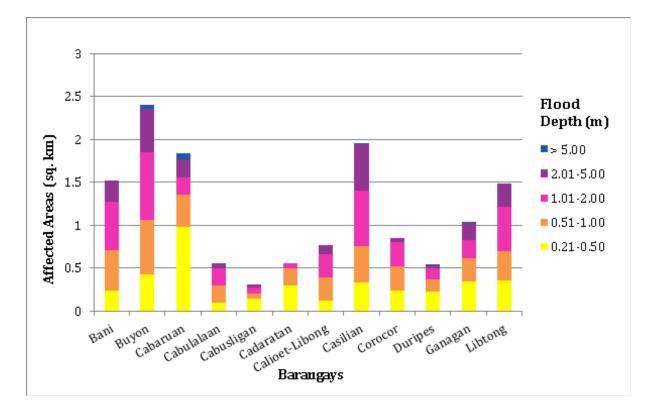


Figure 79. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)								
flood depth (in m.)	Macupit	Nambaran	Natba	Paninaan	Pasiocan	Pasngal			
0.03-0.20	0.59	2.09	0.029	1.01	1.45	0.65			
0.21-0.50	0.084	0.6	0.032	0.085	0.34	0.17			
0.51-1.00	0.057	0.56	0.057	0.056	0.26	0.066			
1.01-2.00	0.13	0.35	0.055	0.061	0.25	0.017			
2.01-5.00	0.038	0.017	0.0099	0.092	0.11	0.0012			

Table 45. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)								
flood depth (in m.)	Pipias	Pulangi	Pungto	San Agustin I	San Agustin II	San Andres I			
0.03-0.20	0.079	1.2	0.4	0.014	0.021	0.1			
0.21-0.50	0.12	0.24	0.19	0.0011	0.0074	0.044			
0.51-1.00	0.21	0.27	0.11	0.0027	0.006	0.0083			
1.01-2.00	0.049	0.4	0.012	0.0093	0.0049	0			
2.01-5.00	0.01	0.17	0	0.015	0.0045	0			

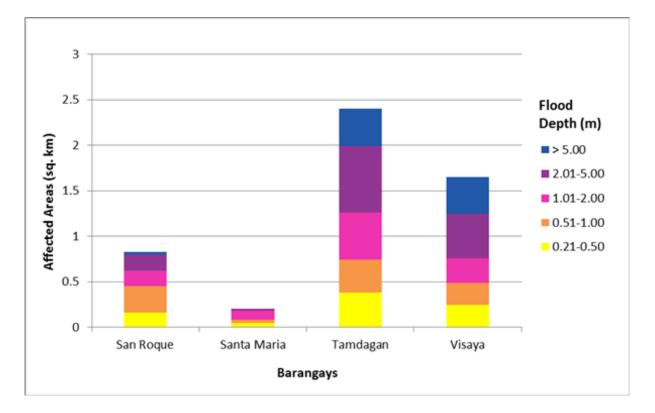


Figure 80. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

	Affected area (sq. km.) by flood depth (in m.)		Areas of affect	ed Barangay	s in Bacarra (i	n sq.km.)	
		San Andres II	San Gabriel I	San Gabriel II	San Pedro I	San Pedro II	San Roque I
	0.03-0.20	0.091	0.025	0.024	0.05	0.054	0.068
	0.21-0.50	0.055	0.012	0.019	0.025	0.028	0.011
	0.51-1.00	0.022	0.0033	0.0053	0.0066	0.015	0.0041
	1.01-2.00	0.0003	0	0	0	0.0002	0.0071
	2.01-5.00	0	0	0	0	0	0.03

Table 46. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)								
flood depth (in m.)	San Roque II	San Simon I	San Simon II	San Vicente	Sangil	Santa Filomena I			
0.03-0.20	0.058	0.062	0.06	0.052	0.96	0.035			
0.21-0.50	0.0078	0.027	0.0092	0.019	0.22	0.015			
0.51-1.00	0.0009	0.028	0.0029	0.0048	0.25	0.013			
1.01-2.00	0.0011	0.051	0.002	0	0.21	0.0049			
2.01-5.00	0.012	0.11	0	0	0.11	0.031			

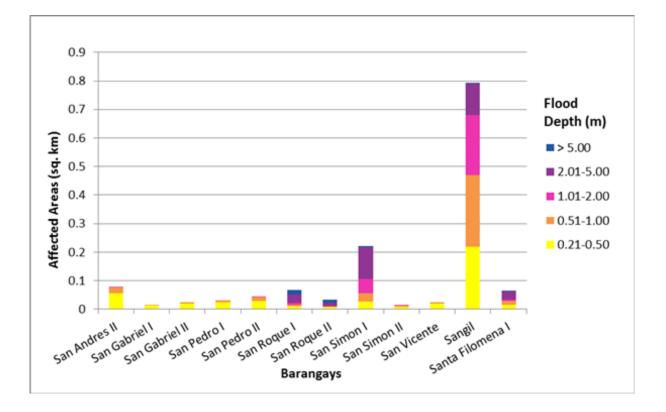


Figure 81. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)							
flood depth (in m.)	Santa Filomena II	Santa Rita	Santo Cristo I	Santo Cristo II	Tambidao	Teppang	Tubburan	
0.03-0.20	0.061	0.42	0.07	0.043	1.61	0.5	0.57	
0.21-0.50	0.017	0.2	0.056	0.022	0.55	0.11	0.16	
0.51-1.00	0.012	0.16	0.021	0.0059	0.39	0.2	0.24	
1.01-2.00	0.0096	0.31	0.0025	0.0002	0.21	0.41	0.24	
2.01-5.00	0.025	0.35	0	0	0.25	0.096	0.0016	

Table 47. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

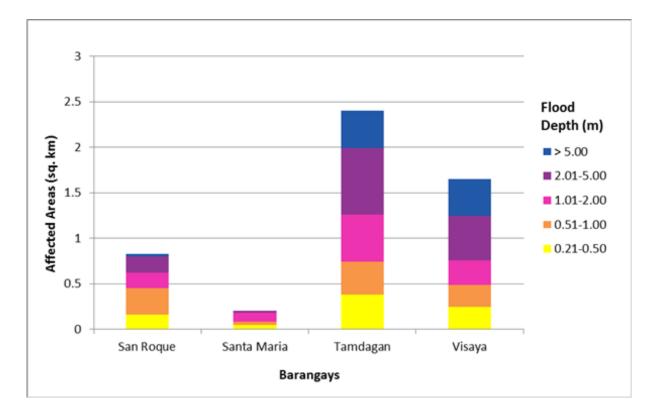


Figure 82. Affected Areas in Bacarra, Ilocos Norte during 25-Year Rainfall Return Period.

For the municipality of Laoag City with an area of 114.355 sq. km., 0.31% will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03% and 0.02% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 48 are the affected areas in square kilometers by flood depth per barangay.

Table 48. Affected Areas in L	aoag, Ilocos Norte duri	ing 25-Year Rainfall Return Period.
	0,	0

Affected area (sq. km.) by flood depth (in m.)	Areas of affected Barangays in Laoag City (in sq.km.)							
	Bgy. No. 55-A, Barit-Pandan	Bgy. No. 55-B, Salet- Bulangon	Bgy. No. 59-B, Dibua North	Bgy. No. 60-B, Madiladig				
0.03-0.20	0.0079	0.094	0.16	0.09				
0.21-0.50	0	0.00015	0.0097	0.014				
0.51-1.00	0	0	0.0039	0.027				
1.01-2.00	0	0	0.000079	0.021				

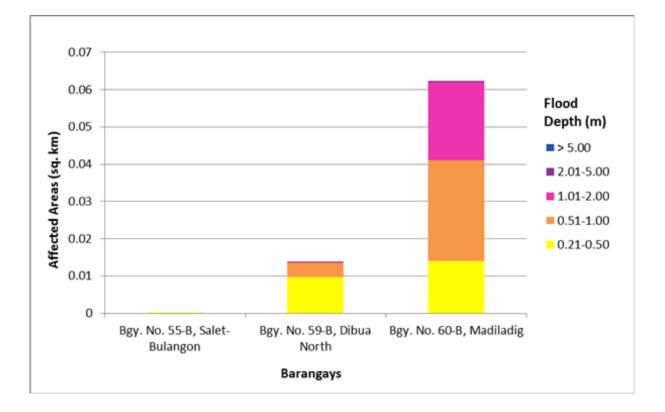


Figure 83. Affected Areas in Laoag City, Ilocos Norte during 25-Year Rainfall Return Period.

For the municipality of Pasuquin with an area of 154.156 sq. km., 24.58% will experience flood levels of less than 0.20 meters. 4.45% of the area will experience flood levels of 0.21 to 0.50 meters while 4.43%, 3.55%, 3.43%, and 0.60% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 49, 50, and 51 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)							
flood depth (in m.)	Batuli	Binsang	Caruan	Carusipan	Dadaeman	Darupidip	Dilanis	
0.03-0.20	1.21	2.06	0.00018	0.4	0.87	1.33	2.85	
0.21-0.50	0.52	0.75	0	0.19	0.13	0.16	0.14	
0.51-1.00	0.32	0.77	0	0.12	0.16	0.077	0.067	
1.01-2.00	0.12	0.7	0	0.01	0.093	0.0096	0.052	
2.01-5.00	0.036	0.1	0	0	0.011	0	0.028	

Table 49. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)							
flood depth (in m.)	Estancia	Naglicuan	Nagsanga	Nalvo	Ngabangab			
0.03-0.20	1.44	0.84	0.035	0.076	0.87			
0.21-0.50	0.61	0.48	0.07	0.067	0.45			
0.51-1.00	0.3	0.74	0.12	0.13	0.58			
1.01-2.00	0.18	0.27	0.2	0.29	0.25			
2.01-5.00	0.01	0.057	0.15	0.35	0.0005			

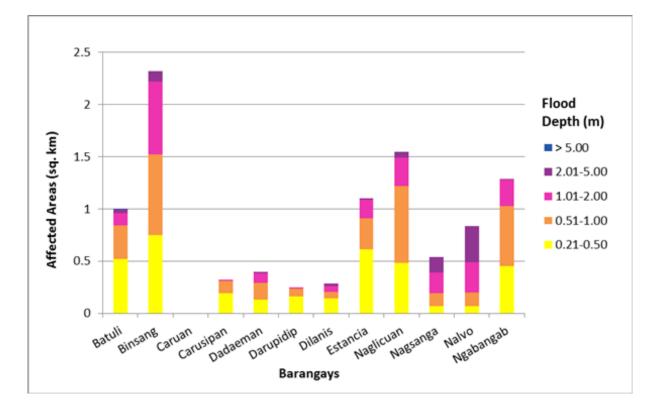


Figure 84. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by		Areas of affected Barangays in Pasuquin (in sq.km.)							
flood depth (in m.)	Pangil	Poblacion 1	Poblacion 2	Poblacion 3	Poblacion 4	Pragata	Puyupuyan		
0.03-0.20	0.93	0.016	0.058	0.026	0.0094	0.086	1.16		
0.21-0.50	0.085	0.0061	0.052	0.089	0.0094	0.033	0.52		
0.51-1.00	0.061	0.015	0.07	0.055	0.023	0.1	0.6		
1.01-2.00	0.029	0.025	0.054	0.00026	0.036	0.42	0.65		
2.01-5.00	0.009	0.18	0.11	0	0.065	2.01	0.48		

Table 50. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Salpad	San Juan	Santa Catalina	Santa Matilde	Sapat	Pragata	Tubburan
0.03-0.20	0.34	9.69	1.61	3.18	4.26	0.086	0.57
0.21-0.50	0.37	0.68	0.13	0.21	0.23	0.033	0.16
0.51-1.00	0.43	0.45	0.17	0.081	0.17	0.1	0.24
1.01-2.00	0.06	0.57	0.31	0.042	0.14	0.42	0.24
2.01-5.00	0.0045	0.68	0.14	0.092	0.11	2.01	0.0016

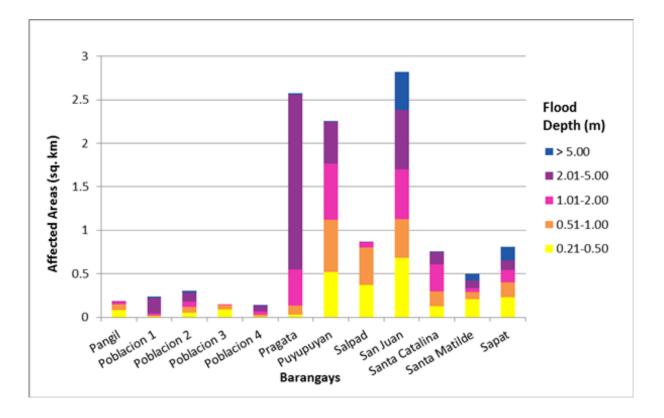


Figure 85. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

Table 51. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)							
flood depth (in m.)	Sulbec	Sulongan	Surong	Susugaen	Tabungao			
0.03-0.20	0.5	1.29	0.92	0.4	1.44			
0.21-0.50	0.26	0.24	0.06	0.23	0.095			
0.51-1.00	0.41	0.26	0.029	0.46	0.064			
1.01-2.00	0.46	0.054	0.044	0.33	0.078			
2.01-5.00	0.42	0.007	0.14	0.062	0.038			

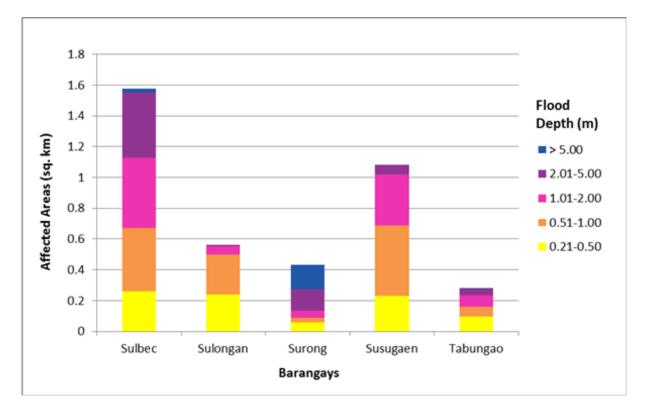


Figure 86. Affected Areas in Pasuquin, Ilocos Norte during 25-Year Rainfall Return Period.

For the municipality of Vintar with an area of 497.395 sq. km., 7.34% will experience flood levels of less than 0.20 meters. 1.19% of the area will experience flood levels of 0.21 to 0.50 meters while 0.99%, 0.93%, 1.35%, and 0.98% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52, 53, and 54 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.) Abkir		Alejo Malasig	Alsem	Bago	Bulbulala	Cabayo	Cabisocolan	
0.03-0.20	4.02	0.87	0.15	0.68	0.32	0.3	2.36	
0.21-0.50	1.44	0.33	0.005	0.029	0.0071	0.016	0.22	
0.51-1.00	1.34	0.24	0.0077	0.025	0.0024	0.0099	0.11	
1.01-2.00	1.26	0.12	0.016	0.031	0.0009	0.013	0.073	
2.01-5.00	1.02	0.011	0.03	0.058	0.00025	0.039	0.024	

Table 52. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.)	Columbia	Dagupan	Dipilat	Esperanza	Ester			
0.03-0.20	2.76	0.01	1.81	0.42	1.22			
0.21-0.50	0.53	0.014	0.2	0.17	0.16			
0.51-1.00	0.57	0.01	0.078	0.096	0.06			
1.01-2.00	0.2	0.011	0.13	0.13	0.035			
2.01-5.00	0.0097	0.00025	0.65	0.47	0.025			

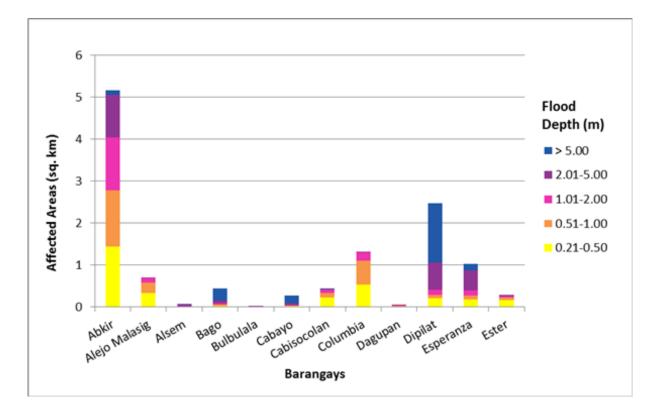


Figure 87. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by		Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.)	Lubnac	Malampa	Manarang	Margaay	Parparoroc	Parut	Cabisocolan		
0.03-0.20	1.65	1.93	1.41	1.38	2.75	0.86	2.36		
0.21-0.50	0.15	0.099	0.085	0.45	0.36	0.29	0.22		
0.51-1.00	0.054	0.051	0.05	0.31	0.22	0.28	0.11		
1.01-2.00	0.051	0.053	0.06	0.048	0.28	0.31	0.073		
2.01-5.00	0.042	0.099	0.14	0.0036	0.72	0.038	0.024		

Table 53. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)						
flood depth (in m.)	Pedro F. Alviar	Salsalamagui	San Jose	San Nicolas	San Pedro	San Ramon	
0.03-0.20	1.04	4.43	1.01	0.13	0.11	0.18	
0.21-0.50	0.039	0.34	0.094	0.052	0.031	0.088	
0.51-1.00	0.016	0.25	0.053	0.095	0.017	0.12	
1.01-2.00	0.0037	0.44	0.063	0.083	0.061	0.11	
2.01-5.00	0.0036	1.27	0.46	0.05	0.0027	0.053	

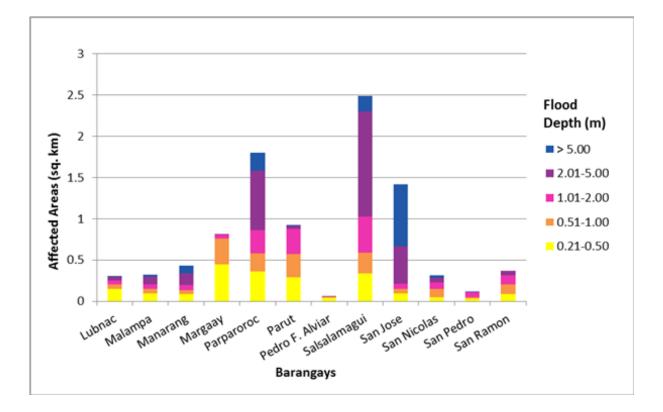


Figure 88. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.)	San Roque	Santa Maria	Tamdagan	Visaya				
0.03-0.20	0.14	0.075	1.84	2.64				
0.21-0.50	0.15	0.048	0.26	0.28				
0.51-1.00	0.29	0.038	0.37	0.17				
1.01-2.00	0.17	0.092	0.51	0.25				
2.01-5.00	0.16	0.011	0.75	0.56				

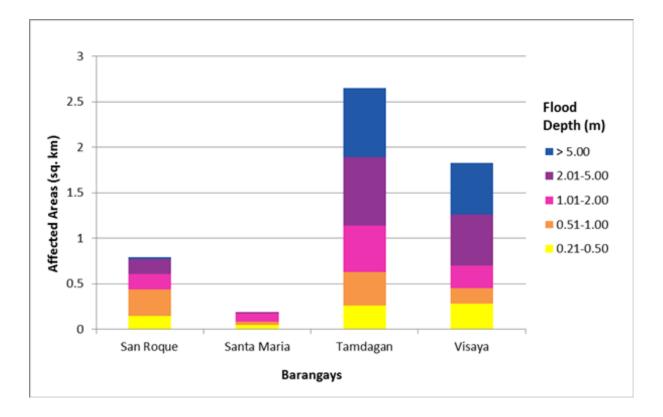


Figure 89. Affected Areas in Vintar, Ilocos Norte during 25-Year Rainfall Return Period

For the 100-year return period, 45.62% of the municipality of Bacarra with an area of 47.1 sq. km. will experience flood levels of less than 0.20 meters. 15.04% of the area will experience flood levels of 0.21 to 0.50 meters while 14.48%, 15.61%, 8.62%, and 0.25% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55, 56, 57, and 58 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Bani	Buyon	Cabaruan	Cabulalaan	Cabusligan	Cadaratan	
0.03-0.20	0.43	2.34	1.67	0.062	0.37	0.28	
0.21-0.50	0.17	0.49	1.17	0.1	0.16	0.3	
0.51-1.00	0.43	0.6	0.45	0.2	0.062	0.24	
1.01-2.00	0.7	0.63	0.21	0.22	0.07	0.11	
2.01-5.00	0.32	0.38	0.23	0.068	0.055	0	

Table 55. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Calioet-Libong	Casilian	Corocor	Duripes	Ganagan	Libtong	
0.03-0.20	0.21	0.56	0.42	0.78	0.79	1.17	
0.21-0.50	0.093	0.31	0.26	0.22	0.33	0.3	
0.51-1.00	0.24	0.41	0.23	0.18	0.33	0.35	
1.01-2.00	0.32	0.69	0.43	0.16	0.22	0.52	
2.01-5.00	0.14	0.6	0.07	0.037	0.22	0.43	

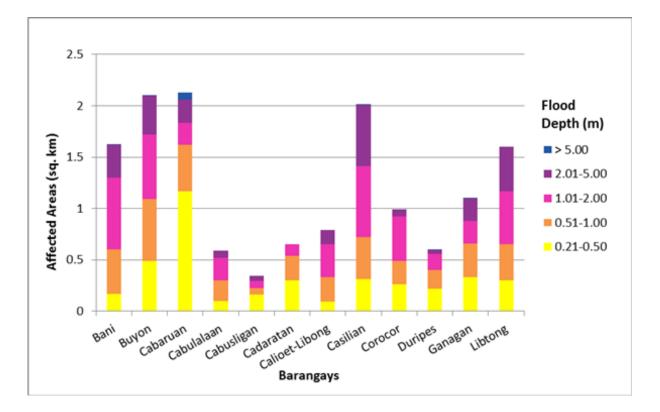


Figure 90. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Macupit Nambaran Natba Paninaan Pasiocan Pas						
0.03-0.20	0.57	1.93	0.022	0.98	1.64	0.58	
0.21-0.50	0.072	0.57	0.015	0.091	0.3	0.22	
0.51-1.00	0.072	0.6	0.054	0.059	0.21	0.079	
1.01-2.00	0.13	0.49	0.075	0.058	0.18	0.027	
2.01-5.00	0.056	0.031	0.015	0.11	0.073	0.0028	

Table 56. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by		Areas of affected Barangays in Bacarra (in sq.km.)							
flood depth (in m.)	Pipias	Pipias Pulangi Pungto San Agustin I San Agustin II San Andre							
0.03-0.20	0.056	1.17	0.37	0.015	0.031	0.11			
0.21-0.50	0.093	0.17	0.17	0.0025	0.0048	0.04			
0.51-1.00	0.24	0.27	0.15	0.0049	0.0027	0.0074			
1.01-2.00	0.064	0.38	0.021	0.0082	0.0014	0.0004			
2.01-5.00	0.014	0.3	0	0.012	0.0044	0			

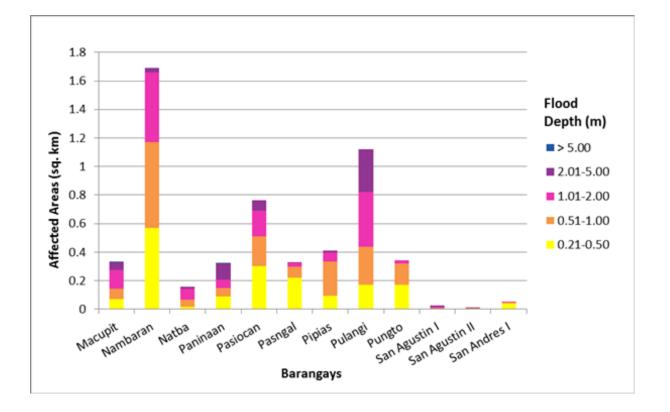


Figure 91. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	San Andres II San Gabriel I San Gabriel II San Pedro I San Pedro I San Pedro I						
0.03-0.20	0.097	0.027	0.024	0.05	0.044	0.071	
0.21-0.50	0.051	0.0099	0.019	0.025	0.031	0.011	
0.51-1.00	0.019	0.0038	0.0065	0.0069	0.021	0.0048	
1.01-2.00	0.00027	0	0	0	0.0016	0.0042	
2.01-5.00	0	0	0	0	0	0.036	

Table 57. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by		Areas of affected Barangays in Bacarra (in sq.km.)San Roque IISan Simon ISan Simon IIISan VicenteSangilSanta Filomena						
flood depth (in m.)	San Roque II							
0.03-0.20	0.058	0.086	0.064	0.046	1.06	0.048		
0.21-0.50	0.0083	0.027	0.0091	0.024	0.21	0.011		
0.51-1.00	0.0007	0.03	0.0014	0.006	0.23	0.0076		
1.01-2.00	0.0012	0.055	0.00023	0.0001	0.12	0.0019		
2.01-5.00	0.02	0.083	0	0	0.11	0.03		

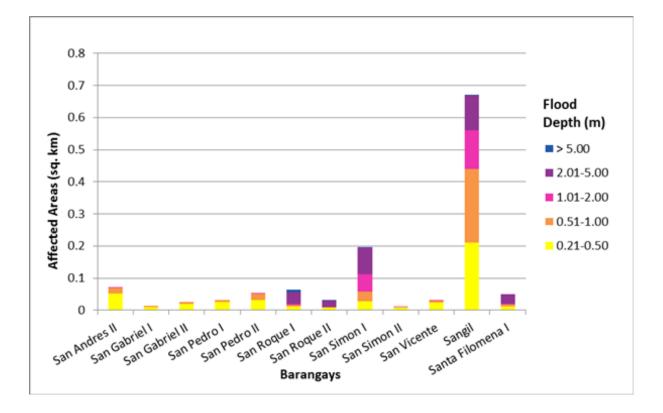


Figure 92. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Santa Filomena II	Santa Rita					
0.03-0.20	0.076	0.56	0.059	0.042	1.52		
0.21-0.50	0.013	0.16	0.061	0.021	0.53		
0.51-1.00	0.01	0.16	0.026	0.0077	0.49		
1.01-2.00	0.0019	0.34	0.003	0.0002	0.29		
2.01-5.00	0.029	0.24	0.0001	0	0.18		

Table 58. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affe	Areas of affected Barangays in Bacarra (in sq.km.)						
flood depth (in m.)	Teppang	Tubburan						
0.03-0.20	0.47	0.53						
0.21-0.50	0.093	0.12						
0.51-1.00	0.11	0.21						
1.01-2.00	0.5	0.32						
2.01-5.00	0.14	0.023						

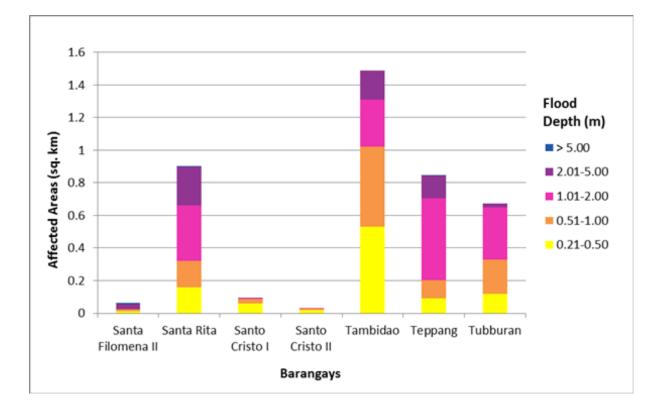


Figure 93. Affected Areas in Bacarra, Ilocos Norte during 100-Year Rainfall Return Period.

For the municipality of Laoag City with an area of 114.355 sq. km., 0.30% will experience flood levels of less than 0.20 meters. 0.02% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03% and 0.02% of the area will experience flood depths of 0.51 to 1 meter and 1.01 to 2 meters, respectively. Listed in Table 59 are the affected areas in square kilometers by flood depth per barangay.

Table 59. Affected Areas in L	aoag, Ilocos Norte durin	g 100-Year Rainfall Return Period.
	0,	0

Affected area								
(sq. km.) by flood depth (in m.)	Bgy. No. 55-A, Barit-Pandan	Bgy. No. 55-B, Salet-Bulangon	Bgy. No. 59-B, Dibua North	Bgy. No. 60-B, Madiladig				
0.03-0.20	0.0079	0.094	0.16	0.086				
0.21-0.50	0	0.000077	0.0077	0.013				
0.51-1.00	0	0	0.0027	0.028				
1.01-2.00	0	0	0.000001	0.024				
2.01-5.00	0	0	0.000033	0.00045				
> 5.00	0	0	0	0				

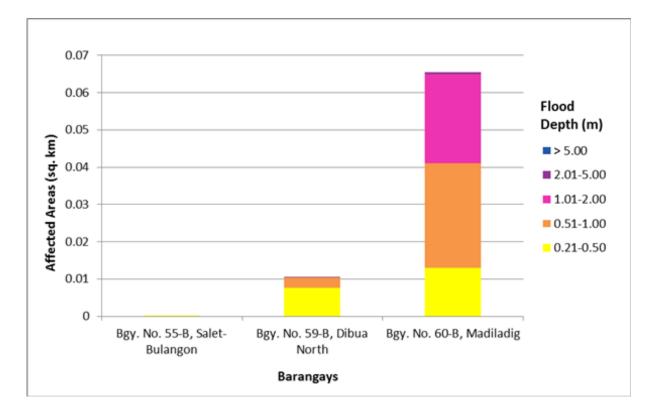


Figure 94. Affected Areas in Laoag City, Ilocos Norte during 100-Year Rainfall Return Period.

For the municipality of Pasuquin with an area of 154.156 sq. km., 23.85% will experience flood levels of less than 0.20 meters. 4.45% of the area will experience flood levels of 0.21 to 0.50 meters while 4.77%, 4.12%, 3.32%, and 0.49% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 60, 61, and 62 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Batuli	Binsang	Caruan	Carusipan	Dadaeman	Darupidip	
0.03-0.20	1.07	1.85	0.00018	0.37	0.84	1.3	
0.21-0.50	0.54	0.68	0	0.16	0.12	0.17	
0.51-1.00	0.36	0.85	0	0.17	0.17	0.088	
1.01-2.00	0.22	0.83	0	0.026	0.12	0.021	
2.01-5.00	0.031	0.17	0	0.0002	0.021	0	

Table 60. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by		(in sq.km.)				
flood depth (in m.)	Dilanis	Estancia	Naglicuan	Nagsanga	Nalvo	Ngabangab
0.03-0.20	2.8	1.32	0.72	0.027	0.063	0.75
0.21-0.50	0.15	0.63	0.45	0.058	0.063	0.4
0.51-1.00	0.084	0.34	0.75	0.12	0.14	0.64
1.01-2.00	0.053	0.22	0.37	0.22	0.28	0.36
2.01-5.00	0.04	0.017	0.088	0.15	0.36	0.0018

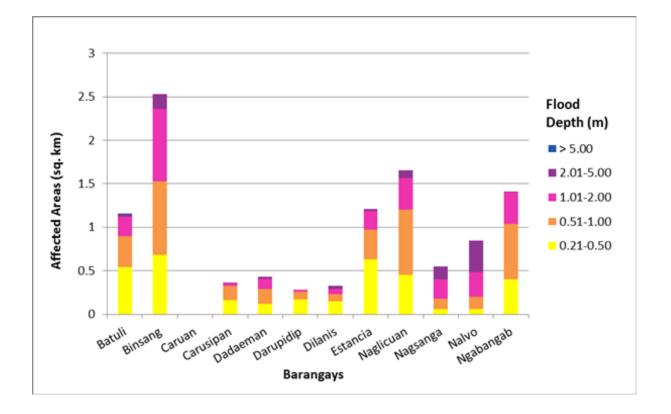


Figure 95. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Pangil	Poblacion 1	Poblacion 4	Pragata			
0.03-0.20	0.91	0.02	0.073	0.055	0.015	0.11	
0.21-0.50	0.09	0.0096	0.063	0.085	0.012	0.053	
0.51-1.00	0.063	0.012	0.052	0.03	0.021	0.14	
1.01-2.00	0.041	0.03	0.067	0	0.037	0.52	
2.01-5.00	0.013	0.17	0.09	0	0.057	1.83	

Table 61. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)						
flood depth (in m.)	Puyupuyan	Puyupuyan Salpad San Juan Santa Santa Catalina Matilde					
0.03-0.20	1.1	0.3	9.68	1.56	3.12	4.27	
0.21-0.50	0.52	0.32	0.79	0.13	0.22	0.24	
0.51-1.00	0.64	0.46	0.51	0.12	0.1	0.19	
1.01-2.00	0.67	0.12	0.56	0.35	0.045	0.16	
2.01-5.00	0.47	0.0066	0.6	0.19	0.1	0.13	

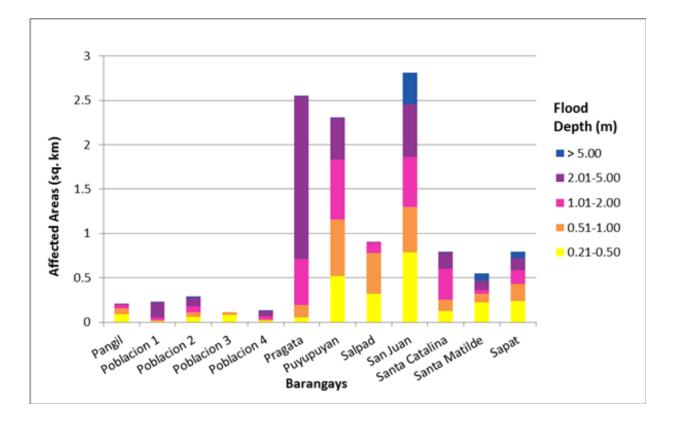


Figure 96. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Pasuquin (in sq.km.)							
flood depth (in m.)	Sulbec	Sulongan	Surong	Susugaen	Tabungao			
0.03-0.20	0.57	1.24	0.91	0.31	1.42			
0.21-0.50	0.34	0.22	0.062	0.19	0.099			
0.51-1.00	0.47	0.3	0.034	0.43	0.076			
1.01-2.00	0.36	0.075	0.042	0.46	0.094			
2.01-5.00	0.3	0.011	0.15	0.096	0.033			

Table 62. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

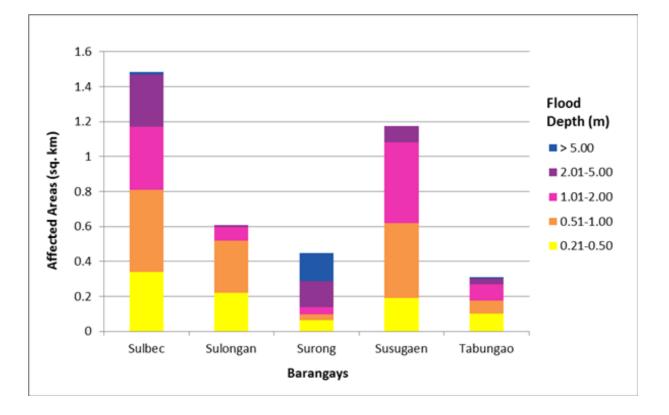


Figure 97. Affected Areas in Pasuquin, Ilocos Norte during 100-Year Rainfall Return Period.

For the municipality of Vintar with an area of 497.395 sq. km., 7.36% will experience flood levels of less than 0.20 meters. 1.16% of the area will experience flood levels of 0.21 to 0.50 meters while 0.95%, 0.77%, 1.33%, and 1.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 63, 64, and 65 are the affected areas in square kilometers by flood depth per barangay.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)							
flood depth (in m.)	Abkir	Alejo Malasig	Alsem	Bago	Bulbulala	Cabayo		
0.03-0.20	4.73	0.97	0.14	0.67	0.32	0.29		
0.21-0.50	1.24	0.34	0.0065	0.031	0.0084	0.019		
0.51-1.00	1.12	0.17	0.0063	0.024	0.0027	0.012		
1.01-2.00	1	0.096	0.015	0.032	0.001	0.014		
2.01-5.00	0.99	0.0058	0.034	0.055	0.00025	0.036		

Table 63. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of attected Barangays in Vintar (in so km					
flood depth (in m.)	Cabisocolan	Columbia	Dagupan	Dipilat	Esperanza	Ester
0.03-0.20	2.31	2.66	0.0072	1.69	0.37	1.18
0.21-0.50	0.25	0.5	0.013	0.21	0.17	0.18
0.51-1.00	0.12	0.6	0.012	0.075	0.1	0.074
1.01-2.00	0.09	0.29	0.011	0.092	0.11	0.039
2.01-5.00	0.032	0.017	0.0024	0.48	0.48	0.028

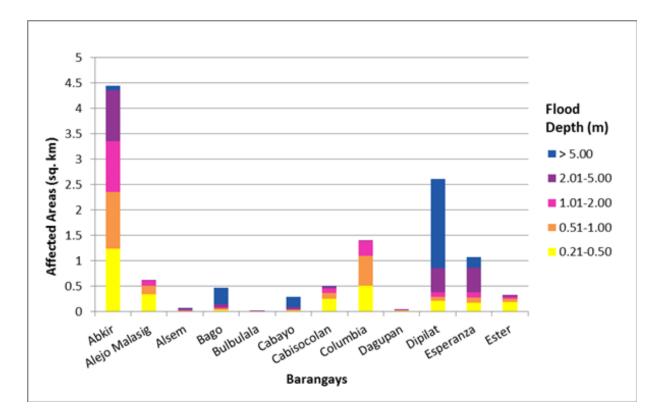


Figure 98. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)				n sq.km.)	
flood depth (in m.)	Lubnac	Malampa	Manarang	Margaay	Parparoroc	Parut
0.03-0.20	1.59	1.9	1.36	1.41	2.64	0.96
0.21-0.50	0.19	0.1	0.089	0.42	0.34	0.34
0.51-1.00	0.063	0.062	0.054	0.29	0.29	0.3
1.01-2.00	0.051	0.057	0.054	0.07	0.21	0.18
2.01-5.00	0.053	0.11	0.14	0.0054	0.8	0.015

Table 64. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.

Affected area (sq. km.) by		Areas of affected Barangays in Vintar (in sq.km.)						
flood depth (in m.)	Pedro F. Alviar	Salsalamagui	San Jose	San Nicolas	San Pedro	San Ramon		
0.03-0.20	1.03	4.33	0.94	0.16	0.13	0.27		
0.21-0.50	0.043	0.34	0.085	0.064	0.022	0.095		
0.51-1.00	0.02	0.21	0.057	0.1	0.028	0.1		
1.01-2.00	0.0038	0.26	0.082	0.042	0.045	0.044		
2.01-5.00	0.0041	1.4	0.24	0.046	0.0023	0.045		

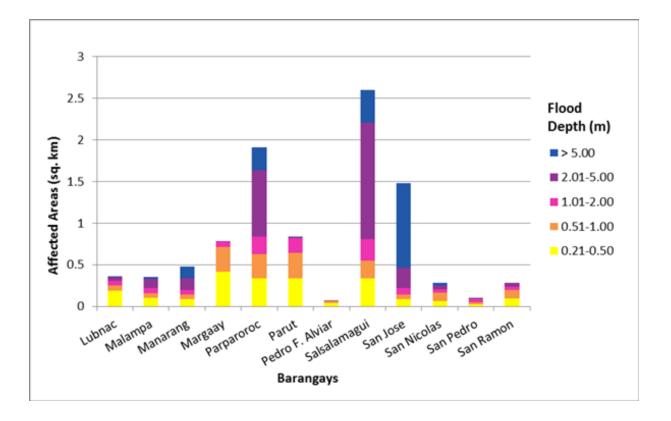


Figure 99. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.

Table 65. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return	Period.
--	---------

Affected area (sq. km.) by	Areas of affected Barangays in Vintar (in sq.km.)					
flood depth (in m.)	San Roque	Santa Maria	Tamdagan	Visaya		
0.03-0.20	0.2	0.095	1.72	2.54		
0.21-0.50	0.18	0.041	0.2	0.27		
0.51-1.00	0.25	0.048	0.33	0.21		
1.01-2.00	0.16	0.075	0.53	0.17		
2.01-5.00	0.12	0.0054	0.87	0.58		

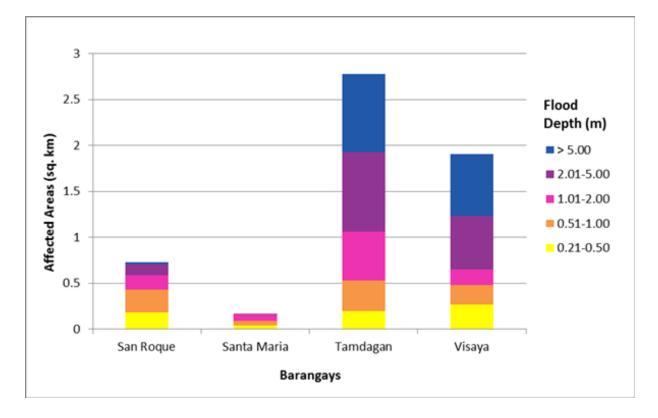


Figure 100. Affected Areas in Vintar, Ilocos Norte during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Bacarra in Ilocos Norte, Buyon is projected to have the highest percentage of area that will experience flood levels at 9.42%. Meanwhile, Cabaruan posted the second highest percentage of area that may be affected by flood depths at 8.10%.

Among the barangays in the municipality of Laoag City in Ilocos Norte, Bgy. No. 59-B, Dibua North is projected to have the highest percentage of area that will experience flood levels at 0.15%. Meanwhile, Bgy. No. 60-B, Madiladig posted the second highest percentage of area that may be affected by flood depths at 0.13%.

Among the barangays in the municipality of Pasuquin in Ilocos Norte, San Juan is projected to have the highest percentage of area that will experience flood levels at 8.10%. Meanwhile, Sapat posted the second highest percentage of area that may be affected by flood depths at 3.28%.

Among the barangays in the municipality of Vintar in Ilocos Norte, Abkir is projected to have the highest percentage of area that will experience flood levels at 1.85%. Meanwhile, Salsalamagui posted the second highest percentage of area that may be affected by flood depths at 1.39%.

Moreover, the generated flood hazard maps for the Bacarra Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

	Area Covered in sq. km.				
Warning Level	5 year	25 year	100 year		
Low	0.15315	0.15652	0.16761		
Medium	0.31632	0.19045	0.16419		
High	0.73306	0.96915	1.04159		

Table 66. Area covered by each warning level with respect to the rainfall scenarios

Of the three (3) identified educational institutions in the Quinonoan floodplain, none are supposedly at risk for any of the flood hazards. See Annex 12. Additionally, no medical institutions were identified in the said floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel then went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 101.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

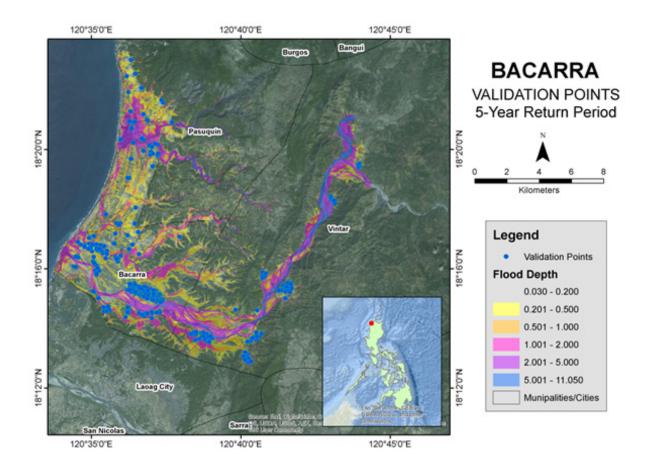


Figure 101. Validation Points for a 5-year Flood Depth Map of the Bacarra Floodplain.

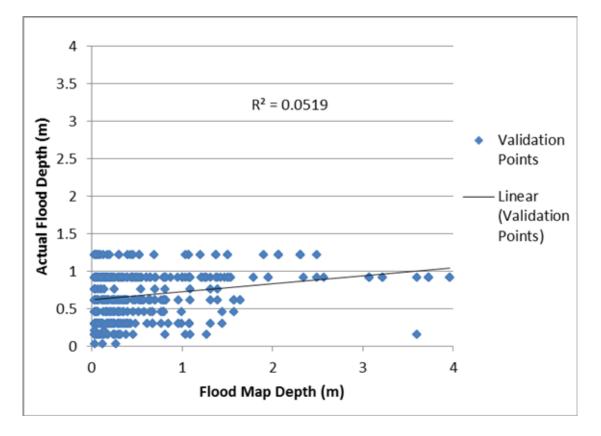


Figure 102. Flood Map depth versus Actual Flood Depth.

DACAT		Modeled Flood Depth (m)						
BACARRA BASIN		0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
	0-0.20	17	9	1	3	1	0	31
	0.21-0.50	77	45	17	7	0	0	146
Actual	0.51-1.00	156	80	56	36	14	0	342
Flood Depth	1.01-2.00	21	5	3	9	7	0	45
(m)	2.01-5.00	0	0	0	0	0	0	0
	> 5.00	0	0	0	0	0	0	0
	Total	271	139	77	55	22	0	564

Table 67. Actual Flood Depth versus Simulated Flood Depth at different levels in the Bacarra River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 22.52%, with 127 points correctly matching the actual flood depths. In addition, there were 229 points estimated one level above and below the correct flood depths while there were 183 points and 25 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 95 points were overestimated while a total of 342 points were underestimated in the modelled flood depths of Bacarra. Table 68 depicts the summary of the Accuracy Assessment in the Bacarra River Basin Flood Depth Map.

Table 68. Summary of the Accuracy Assessment in the Bacarra River Basin Survey.

	No. of Points	%
Correct	127	22.52
Overestimated	95	16.84
Underestimated	342	60.64
Total	564	100

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Quinonoan Floodplain Survey

1. GEMINI SENSOR

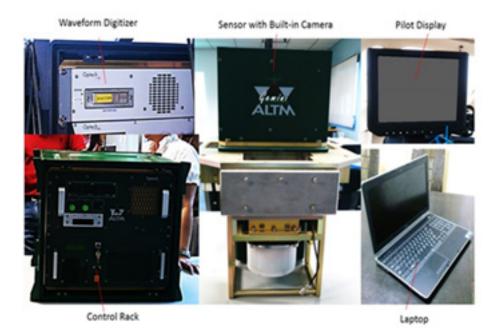


Figure A-1.1. Gemini Sensor

Parameter	Specification		
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal		
Laser wavelength	1064 nm		
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)		
Elevation accuracy (2)	<5-35 cm, 1 σ		
Effective laser repetition rate	Programmable, 33-167 kHz		
Position and orientation system	POS AV™ AP50 (OEM);		
220-channel dual frequency GPS/GNSS/Galileo/L- Band receiver			
Scan width (WOV)	Programmable, 0-50°		
Scan frequency (5)	Programmable, 0-70 Hz (effective)		
Sensor scan product	1000 maximum		
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal		
Roll compensation	Programmable, ±5° (FOV dependent)		
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns		
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)		
Video Camera	Internal video camera (NTSC or PAL)		
Image capture	Compatible with full Optech camera line (optional)		
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)		
Data storage	Removable solid state disk SSD (SATA II)		
Power requirements	28 V; 900 W;35 A(peak)		
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg		
Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg			
Operating temperature	-10°C to +35°C (with insulating jacket)		
Relative humidity	0-95% no-condensing		

Table A-1.1. Parameters and Specifications of Gemini Sensor

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. ILN-11

				,	February 19, 2014
		CER	TIFICATION		
whom it may co	ncern:				
This is to certify	that according to	the records on f	file in this office, the requ	ested survey informa	tion is as follows -
		Province: I	LOCOS NORTE		
		Station I	Name: ILN-11		
		Order	2nd	D	40101
Island: LUZON Municipality: BA				Barangay: POBI	LACION
monopolity. Dr		PRS	92 Coordinates		
Latitude: 18º 3	26.86785"	Longitude:	120° 33' 49.91547"	Ellipsoidal Hgt:	42.96000 m.
		WGS	84 Coordinates		
Latitude: 18º 3	20.64552"	Longitude:	120° 33' 54.52048"	Ellipsoidal Hgt:	74.87400 m.
		PTI	Coordinates		
Northing: 1997	176.225 m.	Easting:	453827.436 m.	Zone: 3	
			Coordinates		
Northing: 1,99	8,122.81	Easting:	242,121.13	Zone: 51	
. E of a small ant ofton respective	enna tower. It is at ly. Mark is the head ushed on the ceme	out 1.9 m. and t of a 3" copper	s located near the E end 2.8 m. perpendicular dis nail centered and embe th inscriptions "ILN-11, 2 R Director	tance from the N and dded on top of a 22 of	I E edge of the m. x 22 cm.

Figure A-2.1. ILN-11

2. ILN-16

					February 26, 2
		CER	TIFICATION		
To whom it may This is to cer		the records on f	- ile in this office, the requ	ested survey info	rmation is as follo
		Province: I	LOCOS NORTE		
		Station N	ame: ILN-16		
Island: LUZO Municipality:		Order	2nd	Barangay: PC	BLACION
monopony.		PRS	2 Coordinates		
Latitude: 18	15' 10.11635"	Longitude:	120° 36' 24.06955"	Ellipsoidal Hg	t 22.50000 m
		WGS	84 Coordinates		
Latitude: 184	15' 3.85580"	Longitude:	120° 36' 28.65812"	Ellipsoidal Hg	t: 53.87800 m
		PTM	Coordinates		
Northing: 201	18785.646 m.	Easting:	458407.057 m.	Zone: 3	
Northing: 2,	019,690.45	UTA Easting:	Coordinates 246,937.75	Zone: 5	1
situated near the W and S wall fer	SW corner of the bo	undary lot of the k is the head of	carra Central Elem. Sch e school. It is 4 m. and 4 a 3" copper nail ceneter re the ground surface, w	75 m. perpendicu d and embedded	lar distance from on top of a 25 cm
Requesting Party Pupose:	Reference				
OR Number: T.N.:	8795440 A 2014-392			- the	
				Mapping And Ge	
					9,

Figure A-2.2 ILN-16

							March 25, 2014
			CER	TIFICATION			
o whom it i	may con	cern:					
This is t	o certify	that according to	the records on	file in this office, the req	uested survey	inform	ation is as follows -
			Province: I	LOCOS NORTE	1020.00		
				Name: ILN-17			
Island: L	UZON		Order	2nd	Barangay	POB	
Municipal	lity: PAS	SUQUIN	PPS	92 Coordinates			
Latitude:	18º 20	6.62958"		120° 37' 1.30945"	Ellipsoida	I Hot	16.73900 m.
			-	84 Coordinates			
Latitude:	18º 20'	0.35240"		120° 37" 5.89113"	Ellipsoida	Hat	47.87100 m.
					Cirpsoida	gr	47.67 IVO M.
Northing	202780	98.996 m.	Easting:	Coordinates 459520.118 m.	Zone:	3	
	101103	10.000 m.			zone:	3	
Northing:	2,028	794.85	Easting:	Coordinates 248,151,17	Zone:	51	
						201	
0001 0000	Contra Lan	vel N for about 1	7 km. up to Pase	uquin Mun. Hall. Station	is located abo	ut 70 n	m. SW of a kipsk
all, about 4 nd about 9 osk area lo ark is a 3 is scriptions "	0 Km. W m. E of 1 ccated bin n. coppe "ILN-17 : Party:	f of the church m the SE corner of etween the Rizal	ain entrance, ab Pasuquin Elem, monument and t	out 30 m. SW of Rizal i School. It is on the SW he playground and 1.7 cm. concrete block and	corner of the of the 7th	ightpo ie grou	e fence of the N ost from the N nd surface, with

Figure A-2.3 ILN-17

4. ILN-3234

	public of the Philippin partment of Environm ATIONAL MAPPI		SOURCE INFORMATION A	UTHORITY		
10					F	ebruary 19, 2014
		CERT	IFICATION			
		UL.				
whom it may concern This is to certify that	according to the	e records on fil	e in this office, the requ	uested survey	informa	tion is as follows -
		Province: IL	OCOS NORTE			
			me: ILN-3234			
		Order	4th	Barangay	QUIL	ING SUR
Island: LUZON Municipality: BATAC						
Municipality. Brine			2 Coordinates	Ettlesside	llat	22.63200 m.
Latitude: 18º 3' 41.	82025"	Longitude:	120° 32' 50.31072"	Ellipsoida	a Hgt	22.03200 11.
			84 Coordinates	100000000		
Latitude: 18º 3' 35.	59528"	Longitude:	120° 32' 54.91553"	Ellipsoid	al Hgt	54.49200 m.
		PTM	I Coordinates			
Northing: 1997640.	111 m.	Easting:	452075.694 m.	Zone:	3	
		UTI	M Coordinates			
Northing: 1,998,60	5.86	Easting:	240,373.73	Zone:	51	
		Loca	tion Description			
LN-3234 s located at Brgy. Quil 50 m. S of the admin. t hail centered and embe	ing, Mun. of Bat bldg. and 10 m. edded on a 20 d	tac, inside the NW of the Ma cm. x 20 cm. o	Mariano Marcos Memo riano Marcos monumer oncrete monument, wit	nial State Univ nt. Mark is the h inscriptions "	ersity. I head o ILN-32	t is situated about f a 4 in. copper 34 2007 NAMRIA".
icdaeania . a.d.	DREAM			10	1	
ruposo.	eference 95394 A			, AA	41	
OIT HOILED	14-351				1)	
			Direct	RUEL/DM. B	nd Geo	desy Branch
			Direct			6
				/		
			1			
			•	0 2 1 9 2 0		
O PAB	NUMERA OFFICES Nais : Lawton Aven Branch : 421 Barrac www.namria.g	a St. See Niceles, 1010 A	Togoig City, Philippines - Tel. No.: (63 tonilo, Philippines, Tel. No. (637) 241-3	17) 810-4831 to 41 9494 to 98		

Figure A-2.4. ILN-3234

whom it m						March 04, 2014
whom it m		CER	TIFICATION			
	ay concern:					
This is to	certify that according to	the records on t	file in this office, the requ	ested survey	informa	tion is as follows -
		Province: I	LOCOS NORTE			
		Station N	ame: ILN-3302			
	2011	Order	. 4th	Pauras		
Island: LU Municipality	VINTAR			baranga)	. SAN	NICOLAS (POB.)
		PRS	92 Coordinates			
Latitude	18º 13' 22.82114"	Longitude:	120° 38' 50.91391"	Ellipsoida	al Hgt	37.53500 m.
		WGS	84 Coordinates			
Lattude:	18° 13' 16.56953"	Longitude:	120° 38' 55.50479"	Ellipsoida	Hgt	69.10800 m.
		PTI	I Coordinates			
Northing:	2015478.316 m.	Easting:	462714.303 m.	Zone:	3	
		UTI	I Coordinates			
		011				
Northing	2.016,334.86	Easting	251,210.34	Zone	51	
	2,016,334.86			Zone:	51	
N-3302 om Laoag (gen continue gy. road, 40 SE of stati cm. concre	City Proper, travel N for e traveling for another 5 00 m, SE of the new put on ILN-15 (BBM No. 8), the monument, with inst arty. UP-DREAM Reference	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachingy. San Nicolas, Mun. of also about 4 m. from the d of a 4 in. copper nail o	ng the bridge Vintar, Static prov/L road c	at Km. I	ated along the e and about 300
N-3302 om Laoag (en continue yy, road, 40 SE of stati cm. concre rquesting P pose	City Proper, travel N for e traveling for another 5 00 m, SE of the new put on ILN-15 (BBM No. 8), the monument, with inst arty. UP-DREAM Reference	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the d of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static prov/L road c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x
N-3302 om Laoag (en continue yy, road, 40 SE of stabi cm. concre equesting P pose: R Number.	City Proper, travel N for e traveling for another 5 0 m. SE of the new put on ILN-15 (BBM No. 8), ate monument, with inst arty. UP-DREAM Reference 8795470 A	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static provil, road c entered and c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x
N-3302 om Laoag (en continue yy, road, 40 SE of stabi cm. concre questing P pose: R Number.	City Proper, travel N for e traveling for another 5 0 m. SE of the new put on ILN-15 (BBM No. 8), ate monument, with inst arty. UP-DREAM Reference 8795470 A	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static provil, road c entered and c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x
4-3302 om Laoag (en continue y, road, 40 SE of stabi cm. concre questing P pose: 8 Number.	City Proper, travel N for e traveling for another 5 0 m. SE of the new put on ILN-15 (BBM No. 8), ate monument, with inst arty. UP-DREAM Reference 8795470 A	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static provil, road c entered and c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x
N-3302 om Laoag (en continue yy, road, 40 SE of stabi cm. concre questing P pose: R Number.	City Proper, travel N for e traveling for another 5 0 m. SE of the new put on ILN-15 (BBM No. 8), ate monument, with inst arty. UP-DREAM Reference 8795470 A	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static provil, road c entered and c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x
N-3302 om Laoag (en continue yy, road, 40 SE of stabi cm. concre questing P pose: R Number.	City Proper, travel N for e traveling for another 5 0 m. SE of the new put on ILN-15 (BBM No. 8), ate monument, with inst arty. UP-DREAM Reference 8795470 A	Local about 6 km. and km. to reach Br lic market. It is a Mark is the hea	251,210.34 tion Description I turn right before reachin gy. San Nicolas, Mun. of also about 4 m. from the of a 4 in. copper nail o 02 2007 NAMRIA*.	ng the bridge Vintar, Static provil, road c entered and c	at Km. I in is loc enterlin embedd	ated along the e and about 300 ed on a 20 cm. x

Figure A-2.5. ALN-3302

Annex 3. Baseline Processing Reports of Control Points used in the LiDAR Survey

1. SE-16

Table A-3.1. SE-16

Baseline observation:		SM	E-3139 SE	-16 (B2)		
Processed:			0/2014 5:42:19			
Solution type:		Fixe				
Frequency used:			al Frequency (L1. L2)		
Horizontal precision:			01 m			
Vertical precision:		0.00	02 m			
RMS:		0.00	00 m			
Maximum PDOP:		3.43	34			
Ephemeris used:		Bro	adcast			
Antenna model:		Trin	nble Relative			
Processing start time:		6/9/	2014 6:11:10	AM (Loca	al: UTC+8hr)	
Processing stop time:		6/9/	2014 11:04:00	2 AM (Loo	cal: UTC+8hr)	
Processing duration:		04:6	52:52	-	-	
Processing interval:		1 se	econd			
Vector Components	s (Mark to Mark)					
From:	SME-3139					
	SME-3139 rid	Lo	cal		G	ilobal
			cal N11*50'0	2.95701"		ilobal N11*49'58.577
G	rid	Latitude			Latitude	
G	rid 765219.591 m	Latitude Longitude	N11°50'0		Latitude Longitude	N11*49'58.577
G Easting Northing	rid 765219.591 m 1309289.260 m	Latitude Longitude	N11°50'0	3.02189"	Latitude Longitude	N11*49/58.5771 E125*26'08.1216
G Easting Northing Elevation To:	rid 765219.591 m 1309289.260 m 2.987 m	Latitude Longitude Height	N11°50'0	3.02189"	Latitude Longitude Height	N11*49/58.5771 E125*26'08.1216
G Easting Northing Elevation To:	rid 765219.591 m 1309289.260 m 2.987 m SE-16	Latitude Longitude Height Lo	N11°50'0. E125°26'0.	3.02189" 0.356 m	Latitude Longitude Height	N11*49'58.577 E125*26'08.1216 62.185
G Easting Northing Elevation To: G	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid	Latitude Longitude Height Lo Lo	N11°50'0 E125°26'0	3.02189" 0.356 m 3.05106"	Latitude Longitude Height G Latitude	N11*49'58.5771 E125*26'08.1216 62.185
G Easting Northing Elevation To: G Easting	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid 765219.942 m	Latitude Longitude Height Lo Latitude Longitude	N11°50'0 E125°26'0 cal N11°50'0	3.02189" 0.356 m 3.05106"	Latitude Longitude Height G Latitude Longitude	N11*49'58.5771 E125*26'08.1216 62.185 ilobal N11*49'58.6711
G Easting Northing Elevation To: G Easting Northing Elevation	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid 765219.942 m 1309292.154 m	Latitude Longitude Height Lo Latitude Longitude	N11°50'0 E125°26'0 cal N11°50'0	3.02189" 0.356 m 3.05106" 3.03429"	Latitude Longitude Height G Latitude Longitude	N11*49'58.5771 E125*26'08.1216 62.185 N0bal N11*49'58.6711 E125*26'08.1340
G Easting Northing Elevation To: G Easting Northing Elevation Vector	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid 765219.942 m 1309292.154 m 3.103 m	Latitude Longitude Height Lo Latitude Longitude Height	N11°50'00 E125°26'00 cal N11°50'00 E125°26'00	3.02189" 0.356 m 3.05106" 3.03429"	Latitude Longitude Height G Latitude Longitude Height	N11*49'58.5771 E125*26'08.1216 62.185 ilobal N11*49'58.6711 E125*26'08.1340 62.301
G Easting Northing Elevation To: G Easting Northing Elevation Vector ΔEasting	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid 765219.942 m 1309292.154 m 3.103 m	Latitude Longitude Height Lo Latitude Longitude Height	N11°50'00 E125°26'00 cal N11°50'00 E125°26'00	3.02189" 0.356 m 3.05106" 3.03429"	Latitude Longitude Height G Latitude Longitude Height 7°23'58° ΔX	N11*49'58.5771 E125*26'08.1216 62.185 Robal N11*49'58.6711 E125*26'08.1340 62.301
G Easting Northing Elevation To: G Easting Northing Elevation Vector	rid 765219.591 m 1309289.260 m 2.987 m SE-16 rid 765219.942 m 1309292.154 m 3.103 m 0.36 2.89	Latitude Longitude Height Lo Latitude Longitude Height	N11°50'00 E125°26'00 cal N11°50'00 E125°26'00	3.02189" 0.356 m 3.05106" 3.03429"	Latitude Longitude Height G Latitude Longitude Height	N11*49'58.5771 E125*26'08.1216 62.185 ilobal N11*49'58.6711 E125*26'08.1340 62.301

Annex 4. The LiDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Component Leader	Data Component Project Leader – I	ENGR. LOUIE P. BALICANTA	UP-TCAGP
	Supervising Science Re- search Specialist (SSRS)	ENGR. LOVELYN ASUNCION	UP-TCAGP
Survey Supervisor	Supervising Science Re- search Specialist (Super-	LOVELY GRACIA ACUÑA	UP-TCAGP
	vising SRS)	LOVELYN ASUNCION	UP-TCAGP
	FIELD TE	AM	
	Senior Science Research Associate (SSRS)	AUBREY PAGADOR	UP-TCAGP
LiDAR Operation	RA	MA. VERLINA TONGA MARY CATHERINE ELIZABETH BALIGUAS	UP-TCAGP
Ground Survey, Data Download and Transfer	RA	ENGR. IRO NIEL ROXAS	UP-TCAGP
	Airborne Security	DIOSCORO SOBERANO	PHILIPPINE AIR FORCE (PAF)
LiDAR Operation	Pilot	CAPT. RAUL CZ SAMAR	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. CESAR SHERWIN ALFONSO III	AAC

Table A-4.1. The LiDAR Survey Team Composition

FUGHT PLAN	04564706 (04106)	BASE STATION(3) Base Into (202) Actual XML	11.5MB 21.W1000M_Raw700602	Freedom Income Parente Bartons 2 Without Bart70970	7 2046 W3 1148 2677/77X8 848 2440044	0001/2weB_windowy 2 With 10152107 8X1 8X1 8X1 8X1	0000 MIS 000 000 000 000 000 000 0000 00		SSRS
	0001268		ž	×	34.508	2	2		725
Trocos	RANGE		9,7708	19.308	10.768	12.868	8.908		SSRS
	NIGSPILE LOG FLE		¥	2	N	ž	×	F	
1	BUNCES	3	12	N	29.908	×	28.568	Received by	Patien Name
	ŝ		BACIS	218MB	EM421	210MB	BMX1		
	L065		42748	6778	20943	873KB	16 M G		
	5	KML (swath)	23.448	2408	8,611	2008	10403		
1	2	Ovtput LAS		ž	N	¥	W		717
	SENSOR		CENIN	CEMIN	GEMIN	GEMIN	GENIN		MIL Ha
	MISSION NAME		ZBUCOSIOSRA	28UK04A0588	2CASITEST0608	28UK04E061A & 2+8UK04D061A	2CASITEST0618	Received from	Processon (
	PLOHT M	i	109602	20670	7101GC	21020	710000		
	DATE		feb 27, 2014	Feb 27, 2014	Mar 1, 2014	Mar 2, 2014	Mar 2, 2014		

Figure A-5.1. Transfer Sheet for Bacarra Floodplain - A

Annex 5. Data Transfer Sheet for Bacarra Floodplain

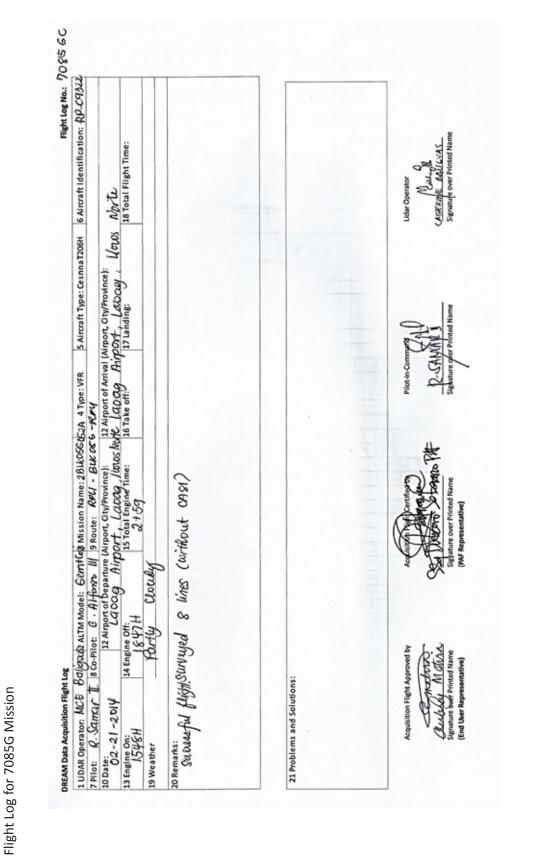

			RA			F	428	(11/Merry	fuodence femilie (102522	4125/2014() WBay 4044000						
DATE DATE	MISSION NAME	SENSOR			1003	Pos	NAM	MISSION	PANOE	DIGTICER	BASE STATION(3)		OPERATOR LOGS	FLIGHT PLON	5	SERVER LOCATION
2			Output	KML (swath)		- 6			_		EASE STATION(S) Base Info (LUI)	-	(ouroo)	Actual	KML	
1/2014 708	2/21/2014 7085G 2BLK05G052A	GEWIN	ž	180	330	158	NA	NA	13.9	NIA	11.6	200	639	44.8	6.91	Z-Wintorne_Raw/2085G
2/2014 708	2/22/2014 7086G 28LK05H053A	GEMINI	MA	81	522	227	NA	NA	27.5	NN	12.9	179	327	408	122	8.7 Z'Mintome_Raw/70650
2/2014 708	2/22/2014 7087G 28LK05GS+F0538	GEMINI	ž	98.3	601	247	NVA	NA	26.2	NN	12.3	179	586	366	3930	12.2 ZWittoms Raw00870
3/2014 708	2/23/2014 7088G 28LK05F5+E054A	GEMINI	ž	71.2	2800	467 211	NA	NIA	21.2	NA	11.2	163	749	201	12.1	12.1 Z.Wittome_RawU0880
3/2014 708	2/23/2014 7089G 2BLK05I054B	OEMIN	¥	191	949	\$	NA	MA	15	NA	10.7	163	372	263	9.63	9.53 Z.Withome_Raw/7089GG
	Received from						Received by									

Figure A-5.2. Transfer Sheet for Bacarra Floodplain - A

123

	BAGE STATISTICS	ŀ			
RANGE DIGITZER	BASE Ba	Base Info CPERATOR	Actual VILAN	Τ.	SERVER
+		+			
a 11.0	na 1KB	1KB	2	2	DATA
15.8 na	na 1KB	THE	5	e	ZYDACRAW
11.8 na		txn	5		OACRAW
+			in the		DATA
+		1KB	24	602 N	Z-IDACIRAW DATA
15.1 na	11.4 1KB	1KB	60/2/5	-	ZYDACIRAW
+		1			DATA
11.8 15.1 2.76	2 2 2 2	13.3	13 1KB 13.3 1KB 11.4 1KB	13 1KB 1KB 13.3 1KB 1KB 11.4 1KB 1KB 1KB 1KB	13 1KB 1KB 5/7 1 13.3 1KB 1KB 2/4 6/5 1 11.4 1KB 1KB 6/3/25 1 1 11.4 1KB 1KB 6/3/25 1 1


Figure A-5.3. Transfer Sheet for Bacarra Flood
plain - A

125

Annex 6. Flight logs for the flight missions

÷

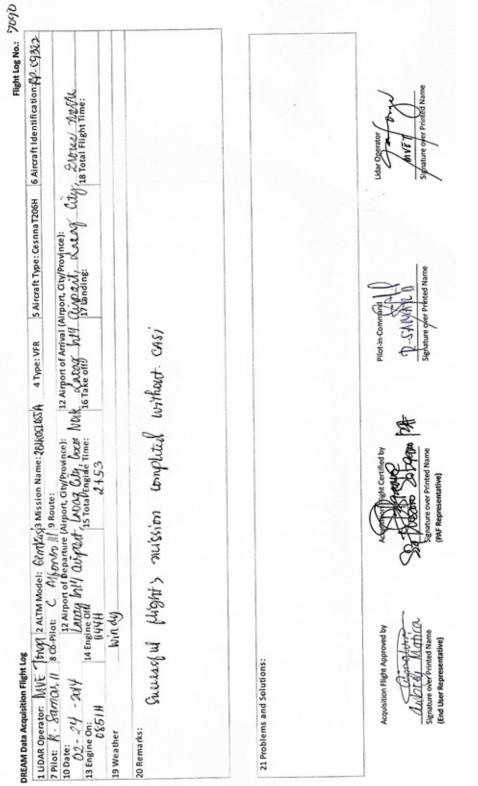

126

Figure A-6.2. Flight Log for Mission 7087G

ъ.

Figure A-6.3. Flight Log for Mission 7088G

128

Figure A-6.4. Flight Log for Mission 7091G

Plantin Grimmand Plantin Grimmand PL-LANNIN Signaphe over Printed Name Signaphe over Printed Name
Pliotin-Command
Pilotin-Comm
Academan Then Certified by Martine Control of Anna Signature over Printed Name (PAT Representative)
Acquisition Flight Approved by <u> <u> <u> </u> <u> </u></u></u>


Figure A-6.5. Flight Log for Mission 7092G

<u>ю</u>.

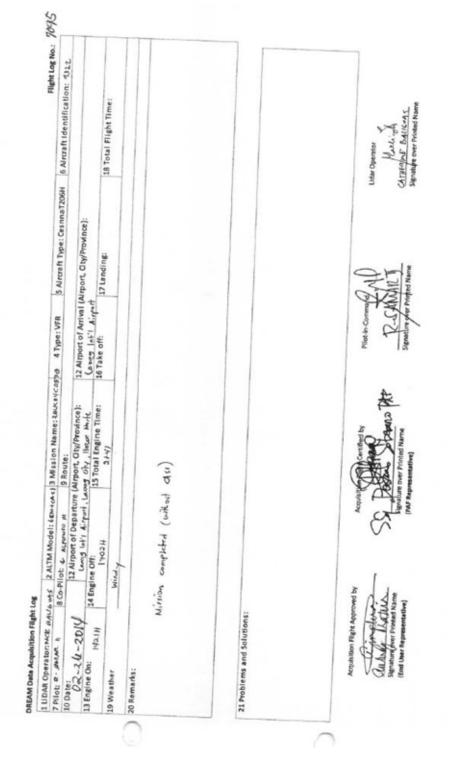

1 LIDAR Operator: MCE 64	1 UDAR Operator: MCE 64U6VA_C 2 ALTM Model: 6EW 1 0/15 Mission Name 24VK-05 K-3564	151 3 Mission Name 2014 us k	Case 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 9322	Г
7 Pilot: R. SAMAR 4	8 CO-PILOT: C. ALPONSO A	9 Route:				Т
10 Date: 02-25-2014	12 Airport of Departure Laws Int'l Airport, Lo	12 Airport of Departure (Airport, City/Province): Laws inti'l Airport, Laws City, Heave Norte	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
13 Engine On: 어택/ 뉴	14 Engine Off: 13 22 14	15 Total Engine Time: 3441	16 Take off: 17 Landing:	17 Landing:	18 Total Flight Time:	1
19 Weather	sartly deady					
20 Remarks:	Mission completed (milliout dsr)	(134 Manhan				
21 Problems and Solutions						7,
Acquisition Flight Approved by Carton UV C QUIDTOO M. OT IT CA Signature over Printed Name (End Uber Representative)	e la	Acquirement with the certified by	Plotin-Comm	Pllot-in-Command H	Udar Operator CATHFUME ANULUSA Signature over Printed Name	

Figure A-6.6. Flight Log for Mission 7092G

Non-standing constant states A standing constant states A state of the states A stat		1	26LK 01	SAS OSMA		Fight Log No.: / - /	-
Reci Is Total Engine Time: Is Airport, Gly/Province); Reci Is Total Engine Time: Is Total Engine Time: Reci Is Total Engine Time: Is Total Engine Time: Reci Is Total Engine Time: Is Total Engine Time: Reci Is Total Engine Time: Is Total Engine Time: Reci Is Start Is Face off: Is Tanding: Reci Is Start Is Eake off: Is Tanding: Reci Is Start Is Completed Is Completed Reci Is Start Is Completed Is Completed Reci Is Completed Is Completed Is Completed	1 LIDAR Operator: MVC 13 7 Pilot: R- 54MAR U	8 Co-Pilot: C. Adfandel: 6EM 1 C	און 3 Mission Name: למּנְגְּטַן 9 Route:	4 Fos 34 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: 7312	
Idensities Off: Is Total Engine Time: Is Take off: Is Tanding: windy windy Is Tanding: Is Tanding: windy windy Is Tanding: Is Tanding: windy windy Is Tanding: Is Tanding: windy windy windy Is Tanding: of Buts outpressed windy Interconnection of Buts outpressed Manual Tarnage of Buts outpressed Interconnection	10 Date: 02-24-20	A Airport of Departure	: (Airport, Gity/Province):	12 Airport of Arrival	(Airport, Gity/Province):		-
United The serve of a serve of a serve of a lines of a lines of a serve of a lines of a	13 Engine On: 0850H	14 Engine Off: 12 낙구뷰	15 Total Engine Time: 3137	16 Take off:	17 Landing:	18 Total Flight Time:	1
Blocks of 051 & 058 completed and surgery of lass of Bits arts (without asi) is and solutions: is a possible of the net of	19 Weather	Windy					11
noved by Advanced	Block		to proposed on (1	liars			
round by round by Additution							
Achieve for the former of the	21 Problems and Solution	15:					
Advector of the sector of the							
	Acquisition Flight, Acquisition Flight, Act (Frid) Signature bear Prin (End User Represe	3	Hereford Ph. Certified by Borton Certified by Borton Certified by Borton Certified by Baptesentative)		APL 1 APL 1 APPL	Udar Offington for In 154 Signature over Printed Name	

Figure A-6.8. Flight Log for Mission 7094G

132

Figure A-6.9. Flight Log for Mission 7095G

I UDAR Operator: MOR BALLOAS 2	ALTM Model: CEMILON	ci 3 Miccion Nama: Souranovic on 40			Flight Log No.: 7/D.L	011
7 Pliot: R - SAMAA II 8 Co-Pliot: C. Alectuda II 9 BANA.	DE C. ALACTARIO N	9 RAINA	solid 4 Type: VFR	5 Aircraft Type: Cesnna 1206H	6 Alreraft Identification: 0110	2
10 Date: 03 -02 - 20/ 12	2 Airport of Departure	12 Airport of Departure (Airport, Cty/Province):	12 Almost of Autom		77 81 1000 00000000000000000000000000000	-
14 Eng	PLI RPLI		RPLI R	RPLI		-
Hollo	HEPSI	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Elleht Time.	
19 Weather	Party dougy	11.0				_
20 Remarks: Mirsfirth _{Con}	Mission completed (militad das)					
21 Problems and Solutions:						
Acquisition flight Approved by <u>Apple Color</u> <u>Apple Color</u> Signature dok Printed Name (End Uker Representative)	Accel and a second	Acourte and a contract of the second	PILOT-IN-COMMARK		Lider Operator Macai Landia (ATB = 6 / 12 - 6 /	

133

		Iodel: 61with card	2 ALTM Model: 65WH chc 3 Miselon Name: 24h			FIIS	FIISHT LOG NO.: "//C
7 Mlot: A. SAMAR U	5	herewso III	9 Route:	ryoup 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Alrcraft Identification: 9322	9322
3		t of Departure (A	12 Airport of Departure (Airport, City/Province): R Rul	12 Airport of Arrival	12 Alrport of Arrival (Alrport, City/Province):		
13 thgine on:	14 Engine Off:	1 ster h	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time.	
19 Weather	Fair		Louis				
40 Remarks: 21 Problems and Solutions:	Test Rigs	Test Right of Chil					
Acquisition Flight Approved by Acquisition Flight Approved by Actual Barrier Anneed Name (End User Representative)	ved by 	A Stream	And Angel I and Carding by Barrier And Angel Ang	Pluchin Contrand		Udar Oppositer - Der	
						/	

Figure A-6.11. Flight Log for Mission 7103G

3

Annex 7. Flight status reports

Bacarra Mission February 18, 2014 to March 14, 2014

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
7085	BLK05	2BLK05G052A	MCE BALIGU- AS	21 FEB 14	Surveyed 8 line (without CASI)
7087	BLK05	2BLK05GS053B & 2BLK05F053B	MCE BALIGU- AS	22 FEB 14	Completed area of BLK05G and surveyed 8 lines at BLK05F (without CASI)
7088	BLK05	2BLKFS054A & 2BLKE054A	MCE BALIGU- AS	23 FEB 14	Completed area of BLK05F and surveyed 7 lines at BLK05E (without CASI)
7091	BLK05	2BLK05ES055B & 2BLK05D055B	MCE BALIGU- AS	24 FEB 14	Mission completed (without CASI)
7092	BLK05	2BLK05DS056A & 2BLK05K056A	MCE BALIGU- AS	25 FEB 14	Mission completed (without CASI)
7093	BLK05	2BLK05C056B & 2BLK05A056B	MVE TONGA	25 FEB 14	Mission completed (without CASI)
7094	BLK05 and BLK04	2BLK05B057A & 2BLK05AS057A & 2BLK04F057A	MVE TONGA	26 FEB 14	Blocks 05A and 05 B completed and surveyed 9 lines of BLK04F (without CASI)
7095	BLK04	2BLK04C057B	MCE BALIGU- AS	26 FEB 14	Mission completed (without CASI)
7097	BLK04	2BLK04A058B & 2BLK04B059B	MVE TONGA	27 FEB 14	Mission completed (without CASI)
7102	BLK04	2BLK04E061A & 2BLK04D061A	MCE BALIGU- AS	02 MAR 14	Mission completed (without CASI)
7103	BLK05	2CASITEST061B	MVE TONGA	02 MAR 14	Test Flight of CASI

Table A-7.1. Flight Status Report

SWATH PER FLIGHT MISSION

Flight No. :	7085G
Area:	BLOCK 5
Mission Name:	2BLK05G052A
Altitude:	1000m
PRF:	40 kHz
Lidar FOV:	25 deg
Overlap:	25%

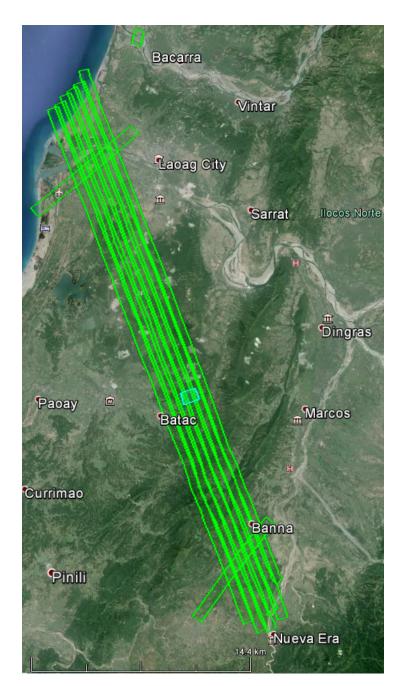


Figure A-7.1. Swath for Flight No. 7085G

Flight No. :	7087G
Area:	BLOCK 5
Mission Name:	2BLK05GS053B & 2BLK05F053B
Altitude:	1000m
PRF:	50 kHz
Lidar FOV:	20 deg
overlap:	30%

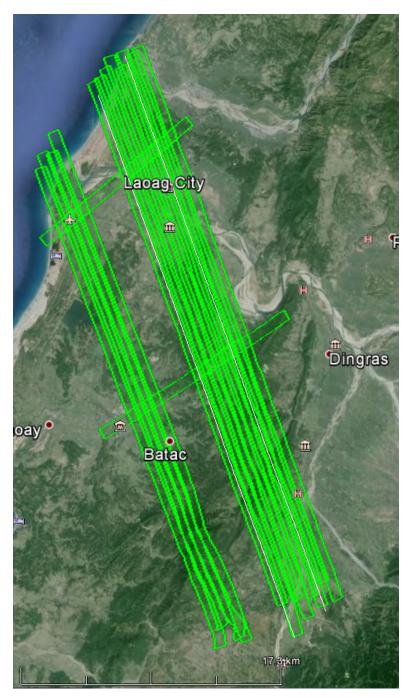
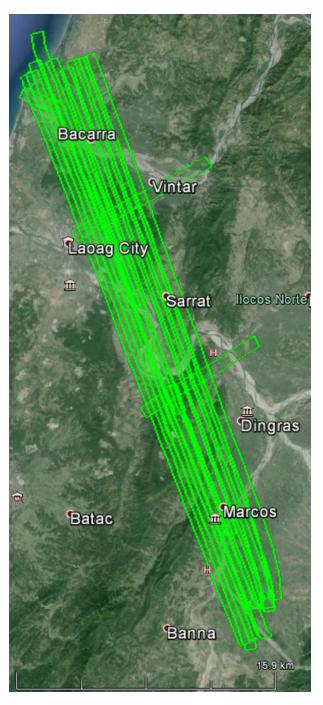
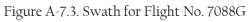




Figure A-7.2. Swath for Flight No. 7087G

7088G
BLOCK 5
2BLK05FS053B & 2BLK05E054A
1000m
50 kHz
20 deg
25%

Flight No. :	7091G
Area:	BLOCK 5
Mission Name:	2BLK05ES055B & 2BLK05D055B
	2BLK05ES055B
Altitude:	1000m
PRF:	50 kHz
Lidar FOV:	20 deg
Overlap:	25%

Figure A-7.4. Swath for Flight No. 7091G

Flight No. :	7092G
Area:	BLOCK 5
Mission Name:	2BLK05DS056A & 2BLK05K056a
Altitude:	1400m
PRF:	50 kHz
Lidar FOV:	20 deg
Overlap:	30%

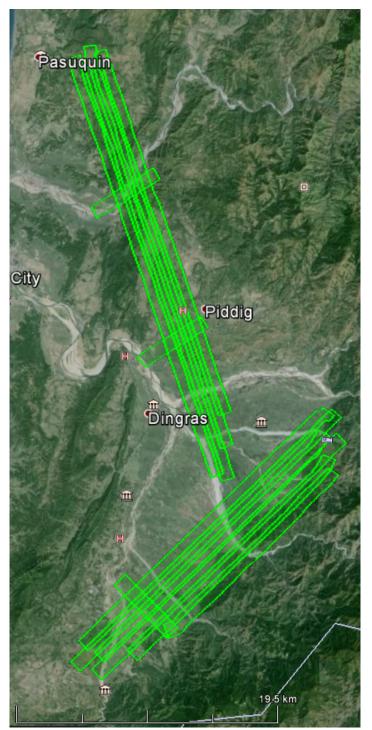


Figure A-7.5. Swath for Flight No. 7092G

Flight No. :	7093G
Area:	BLOCK 5
Mission Name:	2BLK05C056B & 2BLK05A056B
Altitude:	1400m to 1200m
PRF:	50 kHz
Lidar FOV:	20 deg
Overlap:	30% to 25%

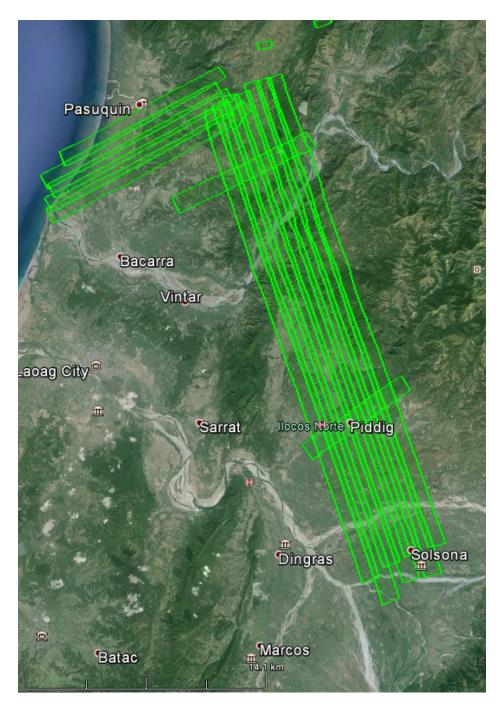


Figure A-7.6. Swath for Flight No. 7093G

Flight No. :	7094G
Area:	BLOCK 5 & BLOCK 4
Mission Name:	2BLK05B057A & 2BLK05AS057A & 2BLK04F057A
Altitude:	1500m to 1200m to 1100m
PRF:	50 kHz
Lidar FOV:	20 deg
Overlap:	15% to 20% to 15%

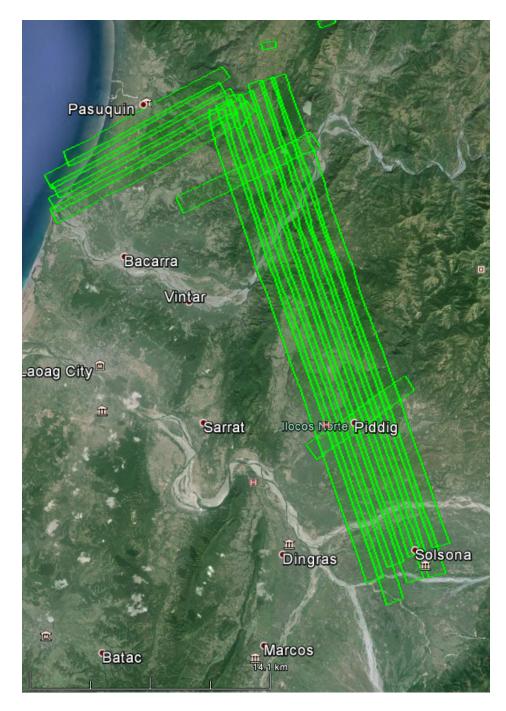


Figure A-7.7. Swath for Flight No. 7094G

Flight No. :	7095G
Area:	BLOCK 4
Mission Name:	2BLK04C057B
Altitude:	1200m
PRF:	50 kHz
Lidar FOV:	15 deg
Overlap:	30%

Figure A-7.8. Swath for Flight No. 7095G

Flight No. :	7097G
Area:	BLOCK 4
Mission Name:	2BLK04A058B & 2BLK04B059B
Altitude:	1200m
PRF:	50 kHz
Lidar FOV:	15 deg
Overlap:	40%

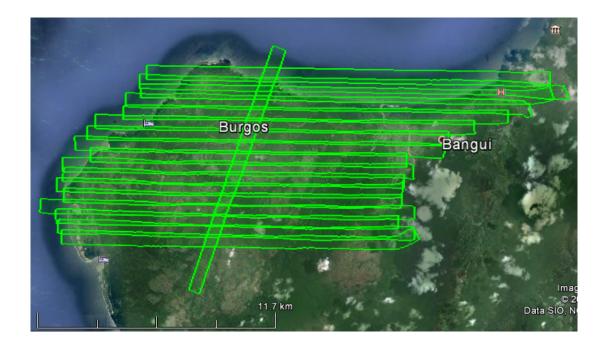


Figure A-7.9. Swath for Flight No. 7097G

Flight No. :	7102G
Area:	BLOCK 4
Mission Name:	2BLK04E061A & 2BLK04D061A
Altitude:	1700m
PRF:	50 kHz
Lidar FOV:	15 deg
Overlap:	40%

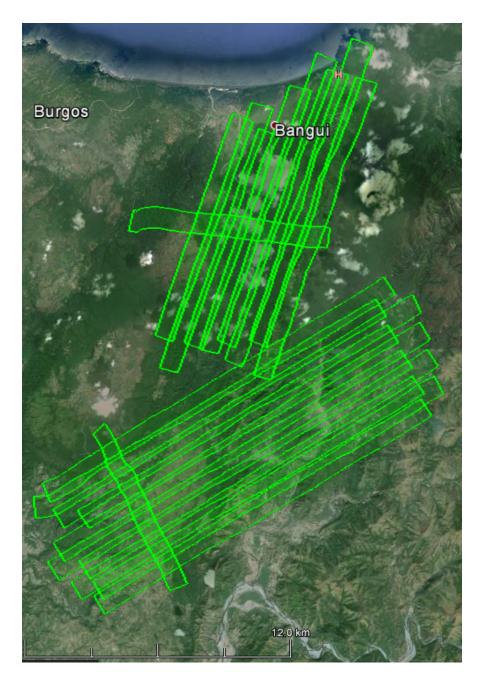


Figure A-7.10. Swath for Flight No. 7102G

Flight No. :	7103G
Area:	BLOCK 5
Mission Name:	2CASITEST061B
Altitude:	1000m
PRF:	50 kHz
Lidar FOV:	20 deg
Overlap:	30%

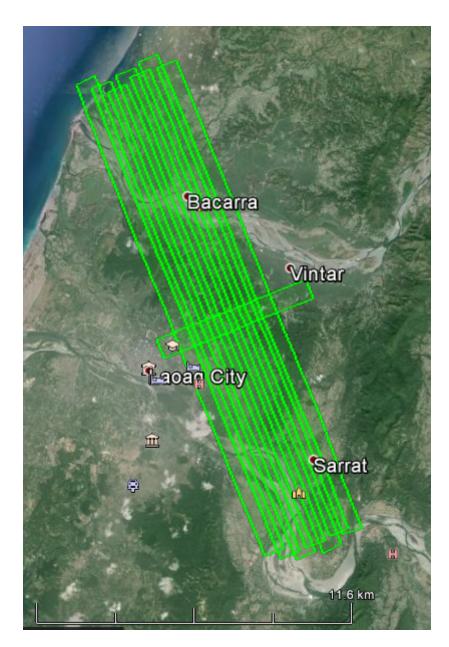


Figure A-7.11. Swath for Flight No. 7103G

Annex 8. Mission Summary Reports



Table A-8.1. Mission Summary Report for Mission Blk4AB

Figure A-8.1 Solution Status

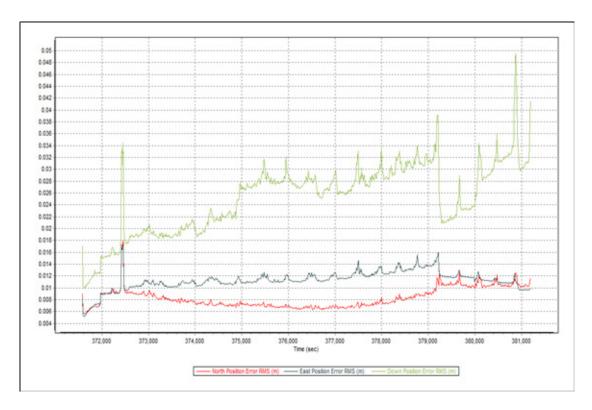


Figure A-8.2 Smoothed Performance Metric Parameters

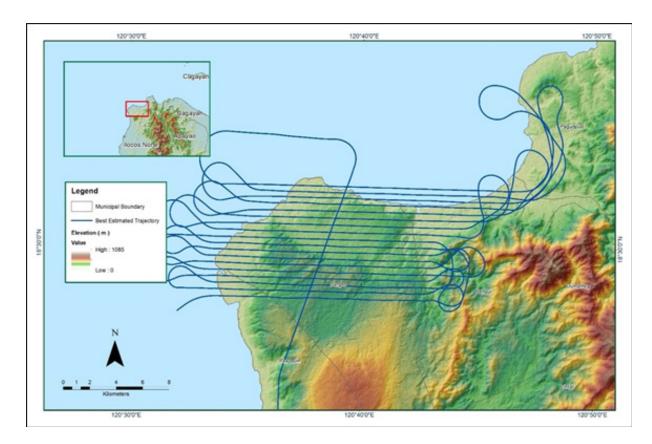


Figure A-8.3 Best Estimated Trajectory

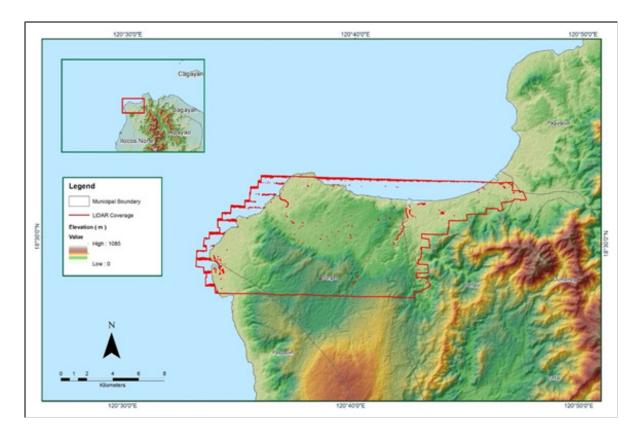


Figure A-8.4 Coverage of LiDAR data

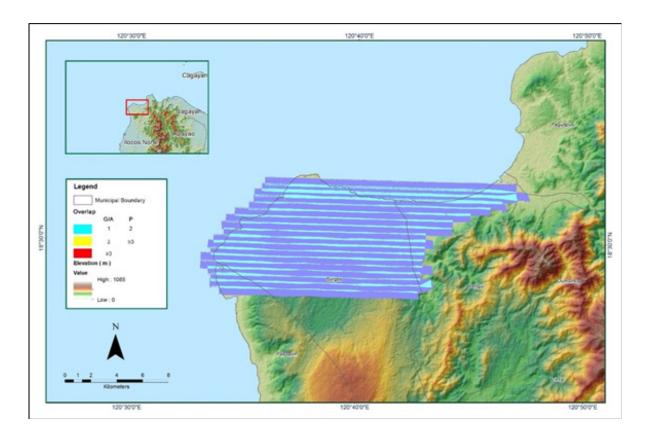


Figure A-8.5 Image of data overlap

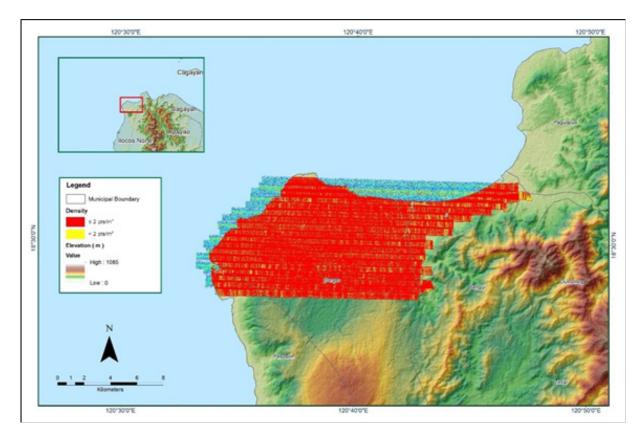


Figure A-8.6 Density map of merged LiDAR data

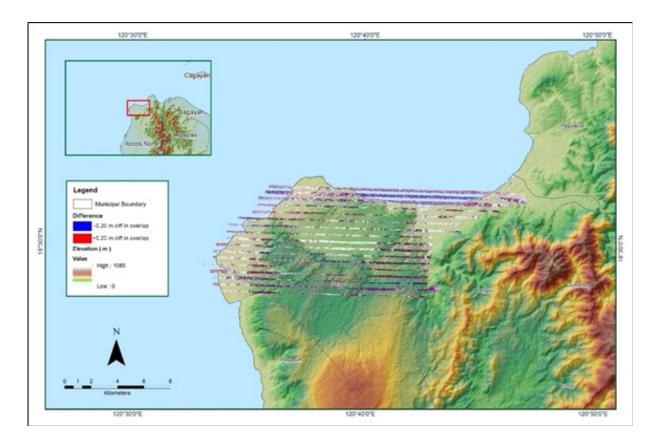


Figure A-8.7 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk4C
Inclusive Flights	7095G
Range data size	7.76 GB
Base data size	11.5 MB
POS	143 MB
Image	N/A
Transfer date	July 28, 2015
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000261
IMU attitude correction stdev (<0.001deg)	0.000865
GPS position stdev (<0.01m)	0.0111
Minimum % overlap (>25)	24.64
Ave point cloud density per sq.m. (>2.0)	2.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	106
Maximum Height	487.85 m
Minimum Height	39.19 m
Classification (# of points)	
Ground	24,508,502
Low vegetation	14,017,716
Medium vegetation	25,357,669
High vegetation	106,079,278

Table A-8.2. Mission Summary Report for Mission Blk4C

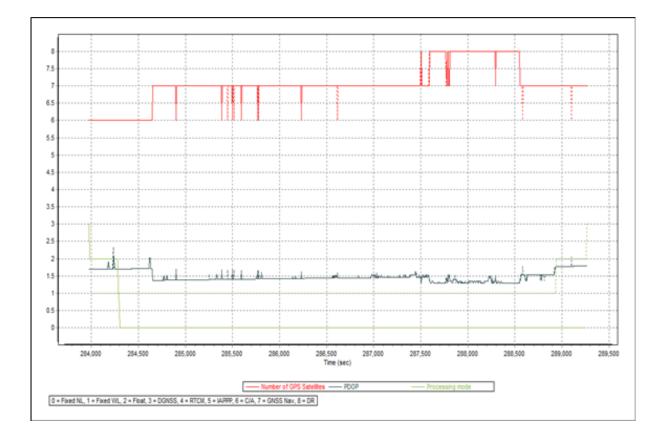


Figure A-8.8 Solution Status

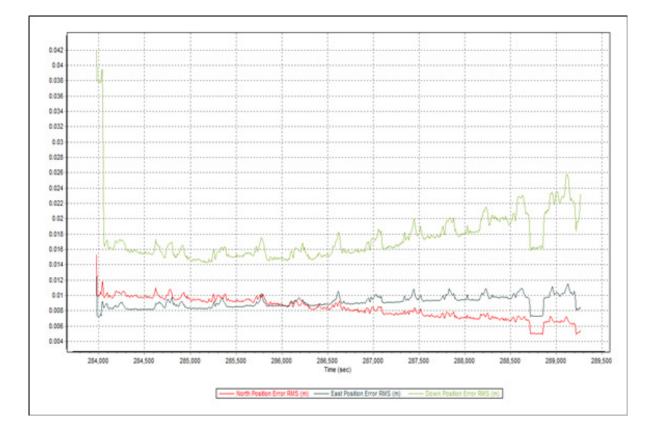


Figure A-8.9 Smoothed Performance Metric Parameters

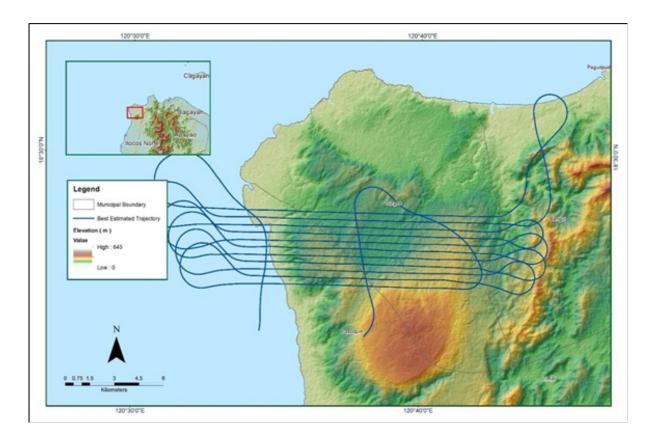


Figure A-8.10 Best Estimated Trajectory

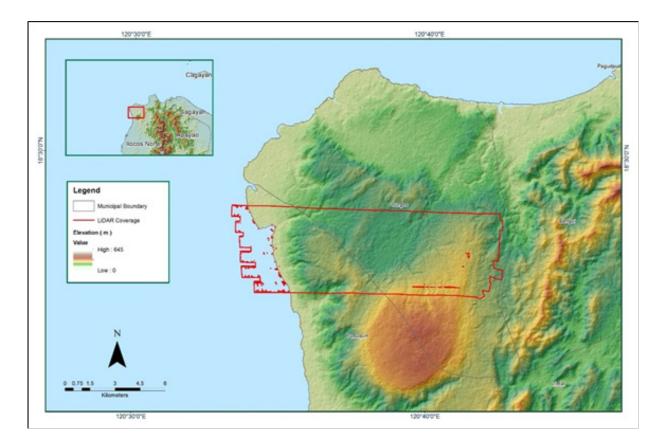


Figure A-8.11 Coverage of LiDAR data

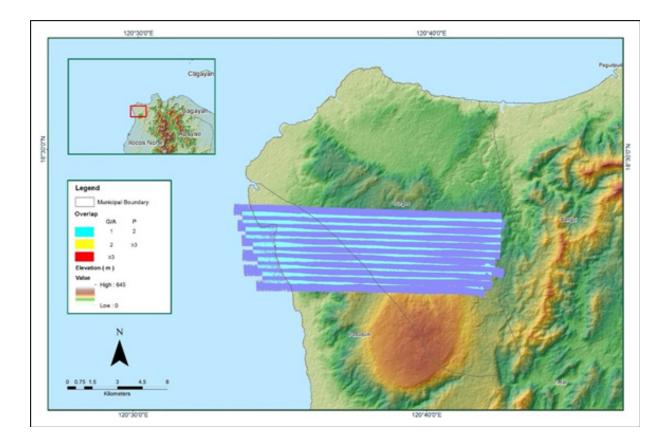


Figure A-8.12 Image of data overlap

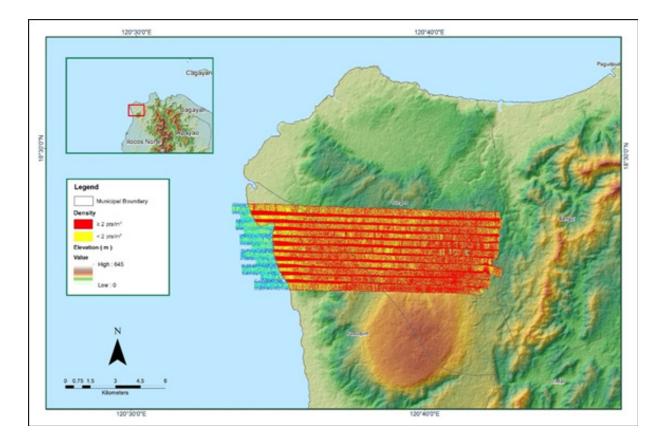


Figure A-8.13 Density map of merged LiDAR data

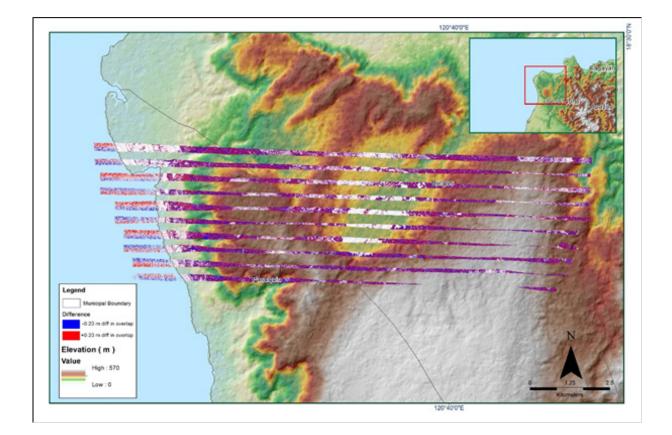


Figure A-8.14 Elevation difference between flight lines

Flight Area	llocos
Mission Name	BIk4DE
Inclusive Flights	7102G
Range data size	12.8 GB
Base data size	7.72 MB
POS	210 MB
Image	N/A
Transfer date	March 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000177
IMU attitude correction stdev (<0.001deg)	0.000278
GPS position stdev (<0.01m)	0.0024
Minimum % overlap (>25)	32.75%
Ave point cloud density per sq.m. (>2.0)	2.00
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	248
Maximum Height	615.81 m
Minimum Height	39.31 m
Classification (# of points)	
Ground	66,181,369
Low vegetation	30,838,792
Medium vegetation	57,075,976

Table A-8.3. Mission Summary Report for Mission Blk4DE

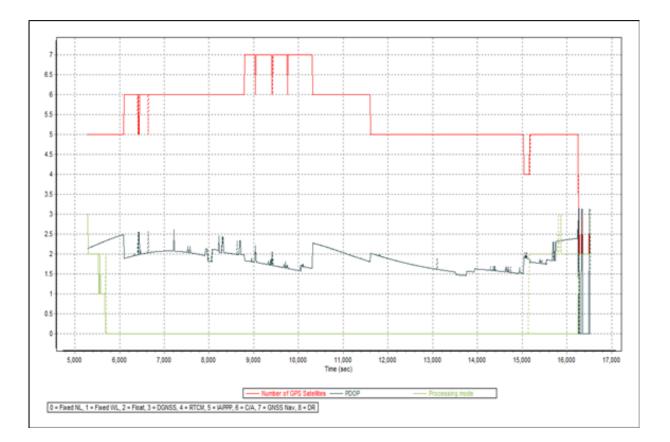


Figure A-8.15 Solution Status

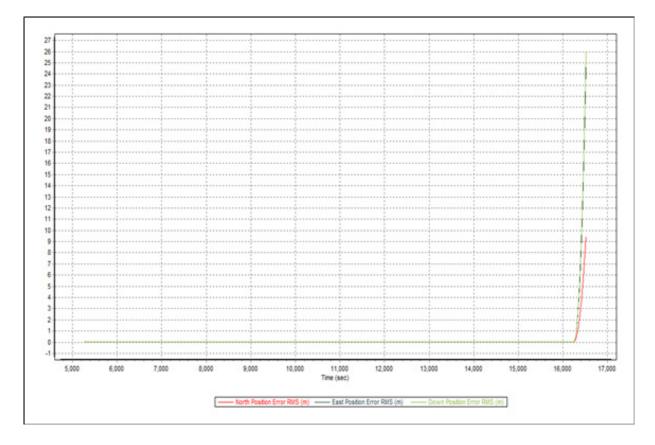


Figure A-8.16 Smoothed Performance Metric Parameters

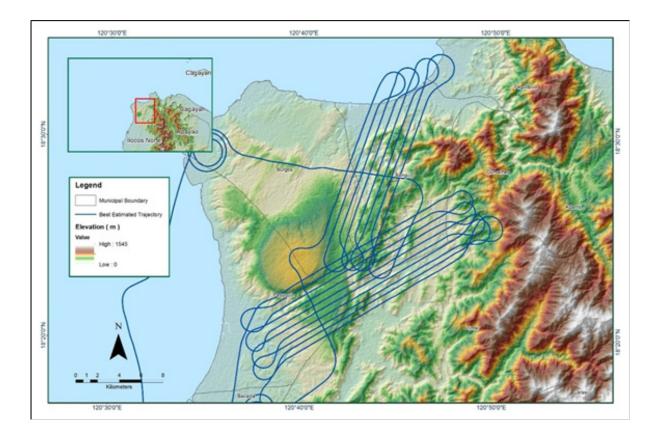


Figure A-8.17 Best Estimated Trajectory

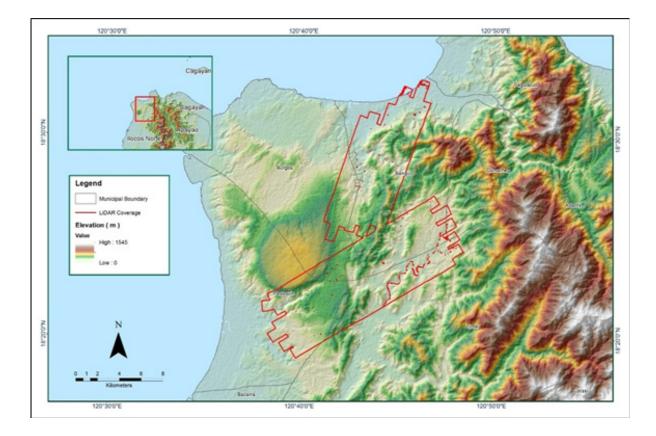


Figure A-8.18 Coverage of LiDAR data

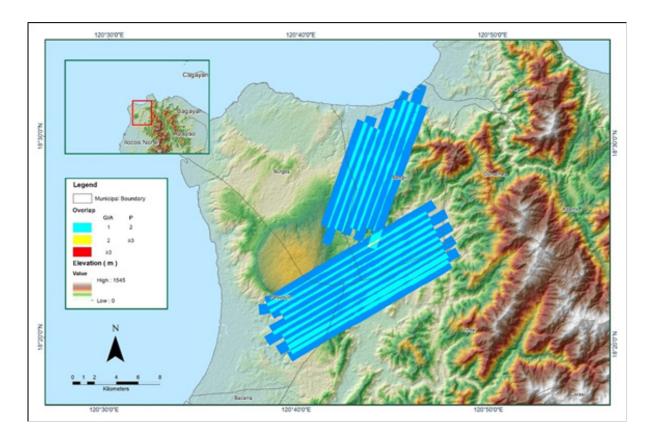


Figure A-8.19 Image of data overlap

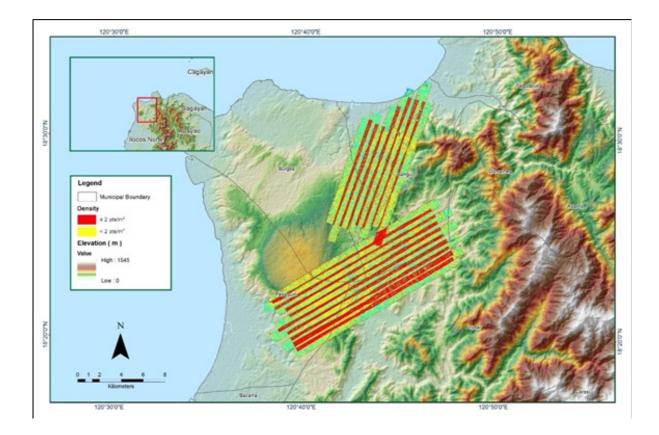


Figure A-8.20 Density map of merged LiDAR data

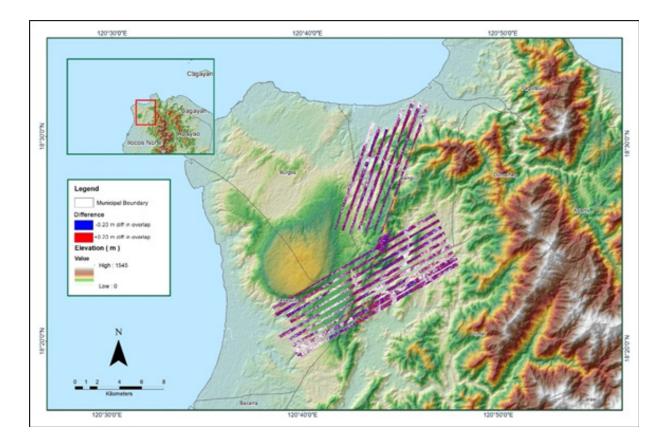


Figure A-8.21 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk4F
Inclusive Flights	7094G
Range data size	15.1 GB
Base data size	11.4 MB
POS	231 MB
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.4
RMSE for East Position (<4.0 cm)	2.0
RMSE for Down Position (<8.0 cm)	9.4
Boresight correction stdev (<0.001deg)	0.000309
IMU attitude correction stdev (<0.001deg)	0.000682
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	23.14%
Ave point cloud density per sq.m. (>2.0)	2.37
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	65
Maximum Height	363.27 m
Minimum Height	39.11 m
Classification (# of points)	
Ground	16,593,168
Low vegetation	11,356,639
Medium vegetation	12,478,283
High vegetation	4,2150,256
Building	704,787
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Melanie Hingpit, Marie Joyce Ilagan

Table A-8.4. Mission Summary Report for Mission Blk4F

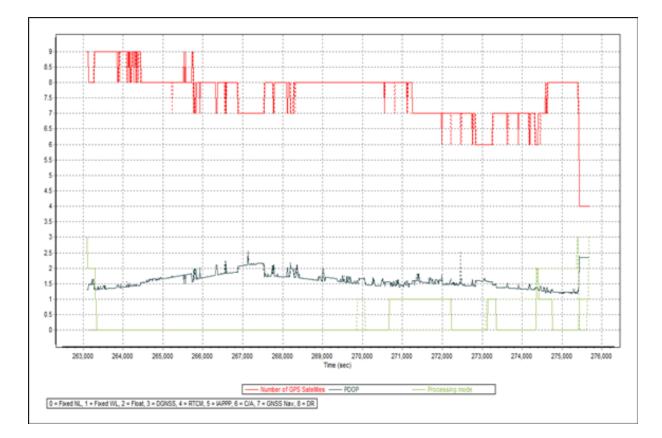


Figure A-8.22 Solution Status

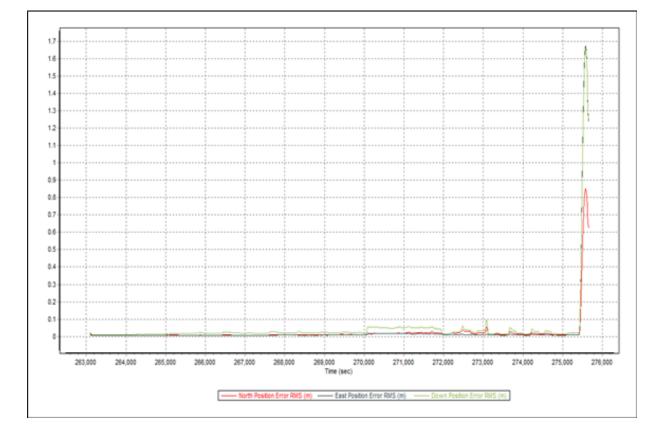


Figure A-8.23 Smoothed Performance Metric Parameters

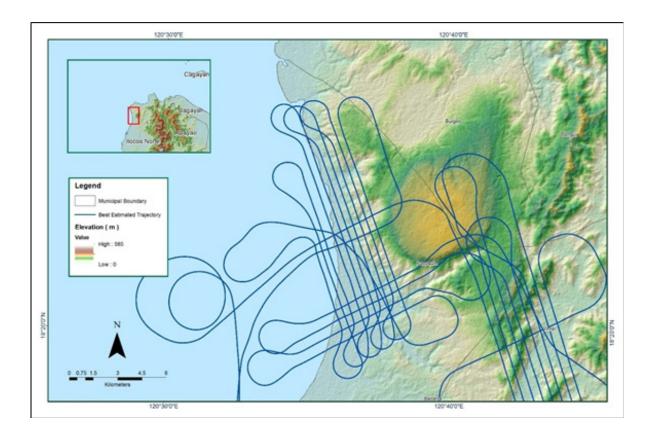


Figure A-8.24 Best Estimated Trajectory

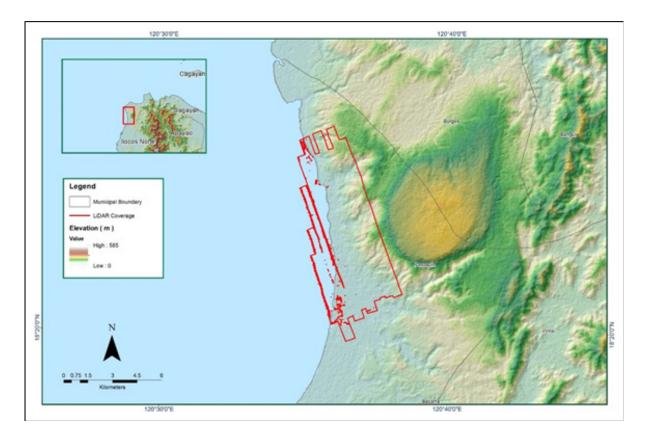


Figure A-8.25 Coverage of LiDAR data

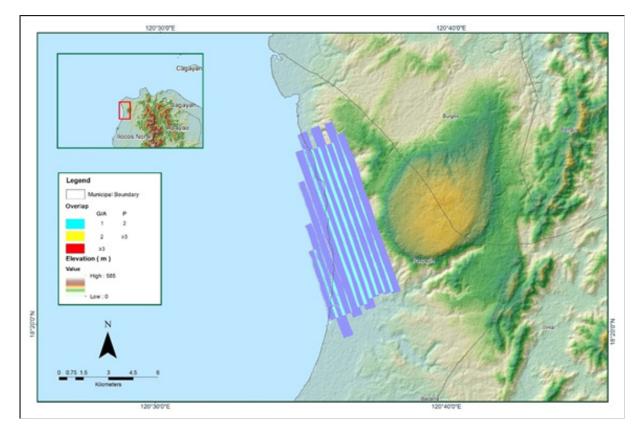


Figure A-8.26 Image of data overlap

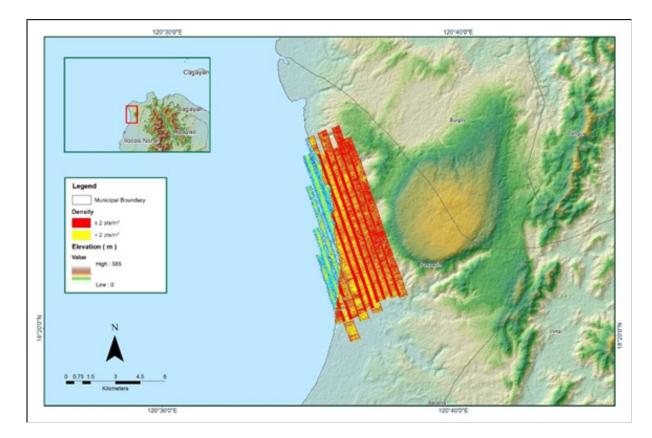


Figure A-8.27 Density map of merged LiDAR data

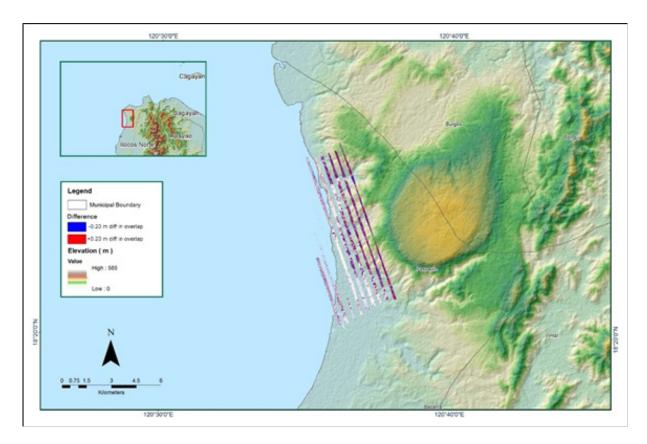


Figure A-8.28 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5A
Inclusive Flights	7093G and 7094G
Range data size	28.1 GB
Base data size	24.7 MB
POS	428 MB
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.4
RMSE for East Position (<4.0 cm)	3.2
RMSE for Down Position (<8.0 cm)	3.9
Boresight correction stdev (<0.001deg)	0.000177
IMU attitude correction stdev (<0.001deg)	0.001821
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	31.94%
Ave point cloud density per sq.m. (>2.0)	1.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	248
Maximum Height	502.99 m
Minimum Height	39.12 m
Classification (# of points)	
Ground	72,403,808
Low vegetation	49,318,800
Medium vegetation	62,219,702
High vegetation	98,593,809
Building	1,272,957
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Melanie Hingpit, Ryan James Nicholai Dizon

Table A-8.5. Mission Summary Report for Mission Blk5A

Figure A-8.29 Solution Status

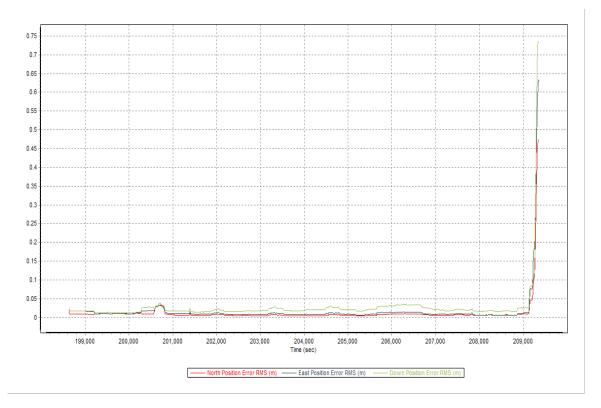


Figure A-8.30 Smoothed Performance Metric Parameters

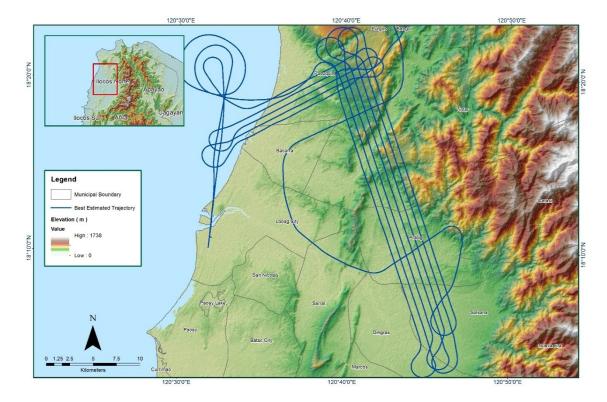


Figure A-8.31 Best Estimated Trajectory

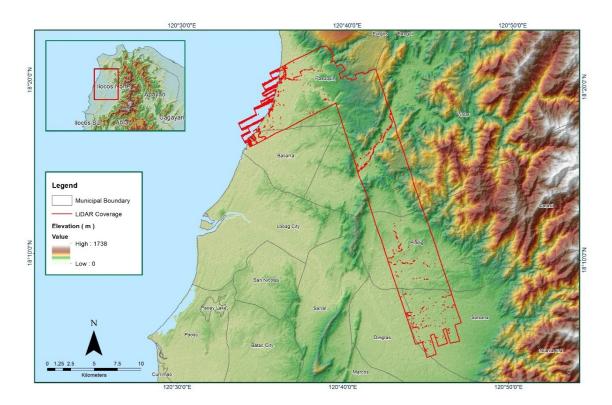


Figure A-8.32 Coverage of LiDAR data

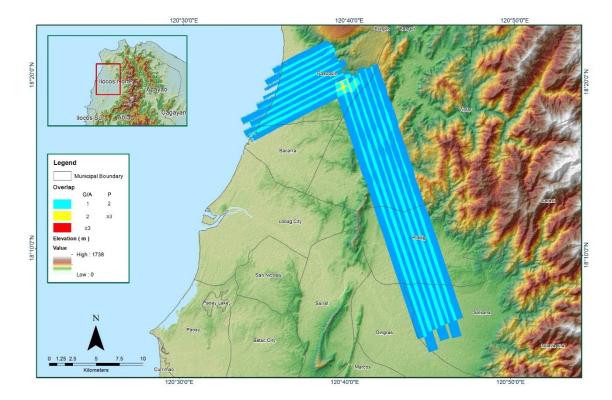


Figure A-8.33 Image of data overlap

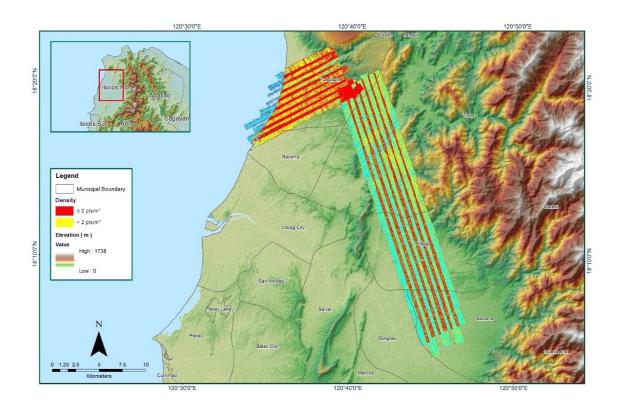


Figure A-8.34 Density map of merged LiDAR data

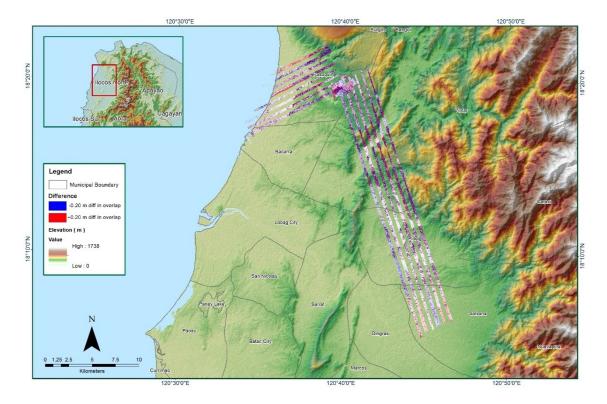


Figure A-8.35 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5B
Inclusive Flights	7094G
Range data size	15.1 GB
Base data size	11.4 MB
POS	231 MB
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	5.4
RMSE for East Position (<4.0 cm)	2.0
RMSE for Down Position (<8.0 cm)	9.4
Boresight correction stdev (<0.001deg)	0.000309
IMU attitude correction stdev (<0.001deg)	0.000682
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	23.14%
Ave point cloud density per sq.m. (>2.0)	2.37
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	152
Maximum Height	629.52 m
Minimum Height	75.34 m
Classification (# of points)	38,645,276
Ground	14,305,851
Low vegetation	22,951,466
Medium vegetation	44,471,526
High vegetation	83,933,604
Building	732,377
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Christy Lubiano, Engr. Gladys Mae Apat

Table A-8.6. Mission Summary Report for Mission Blk5B

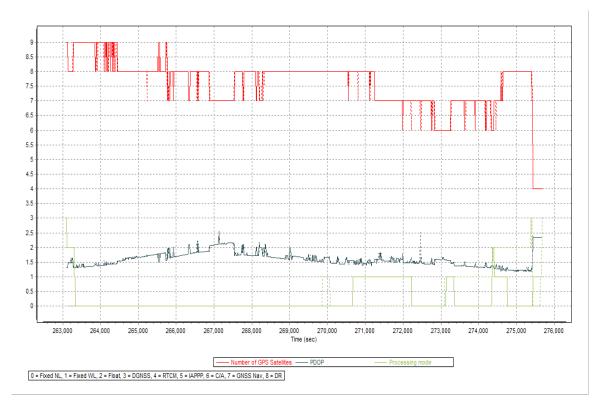


Figure A-8.36 Solution Status

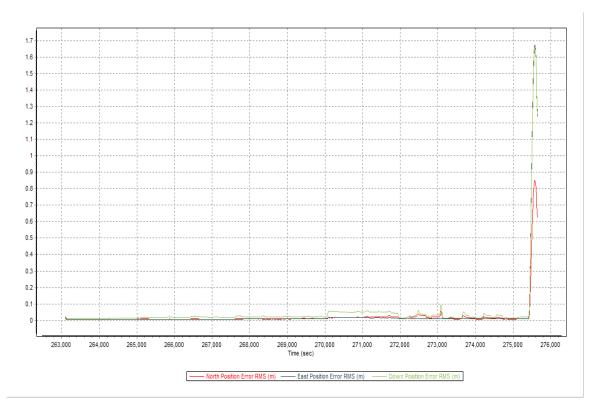


Figure A-8.37 Smoothed Performance Metric Parameters

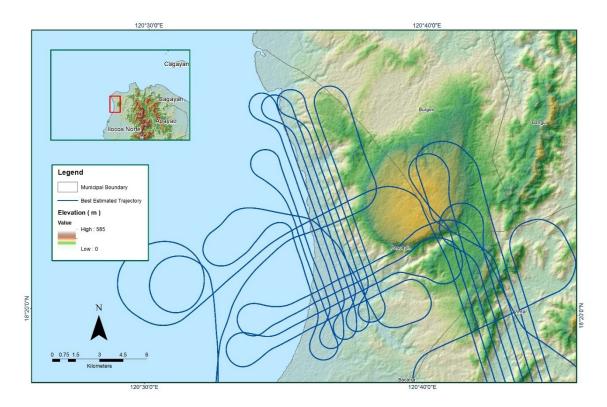


Figure A-8.38 Best Estimated Trajectory

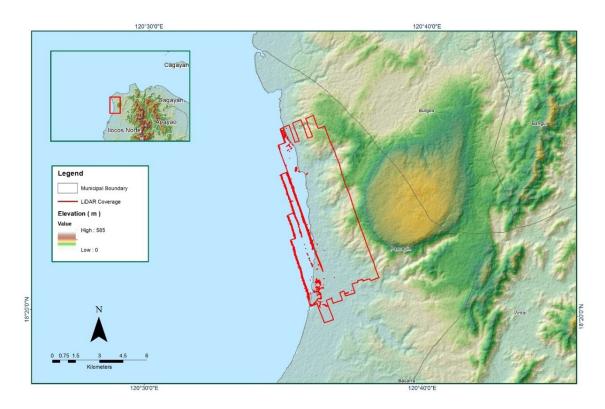


Figure A-8.39 Coverage of LiDAR data

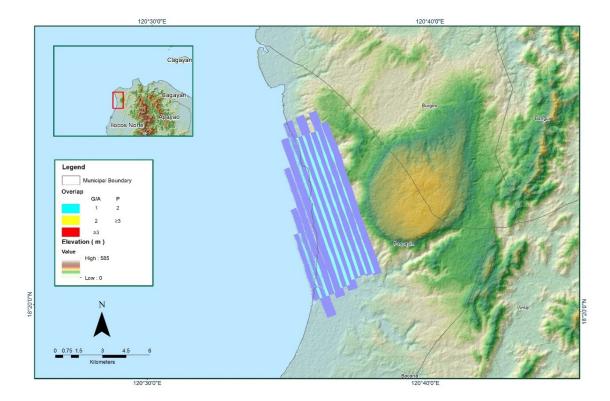


Figure A-8.40 Image of data overlap

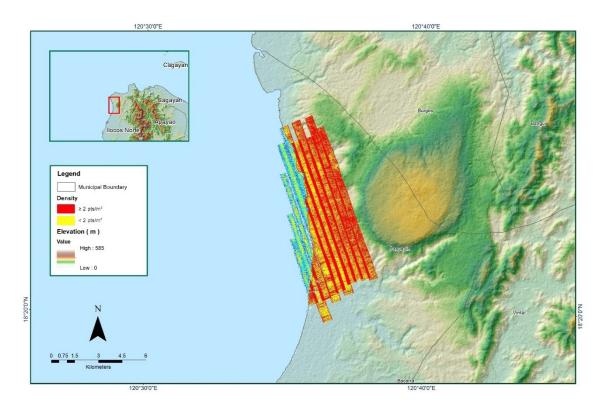


Figure A-8.41 Density map of merged LiDAR data

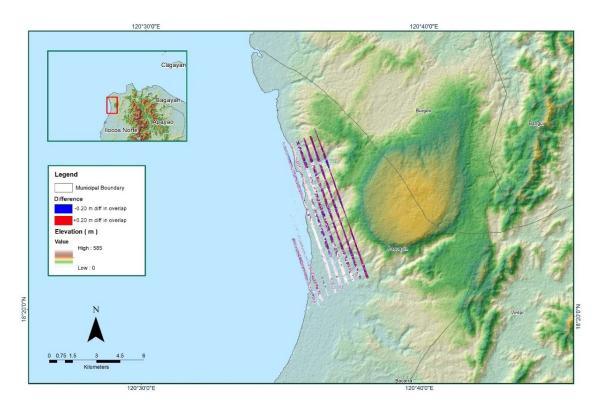


Figure A-8.42 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5C
Inclusive Flights	7093G
Range data size	13.0 GB
Base data size	13.3 MB
POS	197 MB
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.4
RMSE for East Position (<4.0 cm)	3.2
RMSE for Down Position (<8.0 cm)	3.9
Boresight correction stdev (<0.001deg)	0.000177
IMU attitude correction stdev (<0.001deg)	0.001821
GPS position stdev (<0.01m)	0.0029
Minimum % overlap (>25)	31.94%
Ave point cloud density per sq.m. (>2.0)	1.78
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	204
Maximum Height	503.01 m
Minimum Height	61.68 m
Classification (# of points)	
Ground	36,640,456
Low vegetation	38,807,563
Medium vegetation	38,435,176
High vegetation	76,650,235
Building	1,181,514
Orthophoto	No
Processed by	Engr. Carlyn Ann Ibañez, Celina Rosete, Engr. Elainne Lopez

Table A-8.7. Mission Summary Report for Mission Blk5C

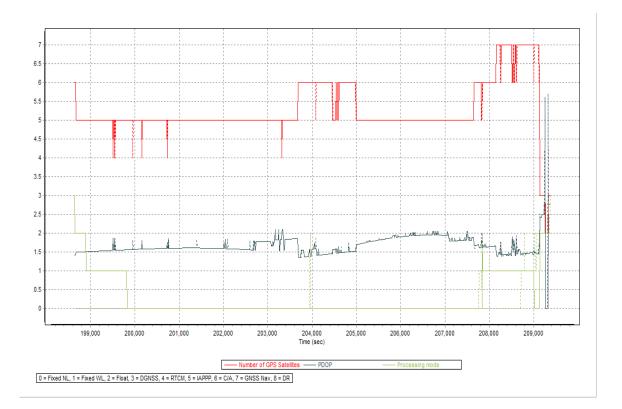


Figure A-8.43 Solution Status

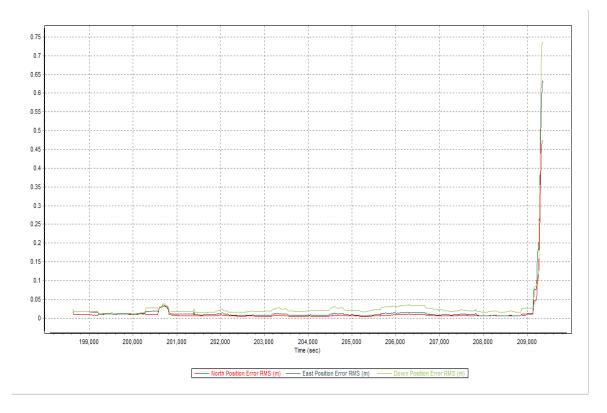


Figure A-8.44 Smoothed Performance Metric Parameters

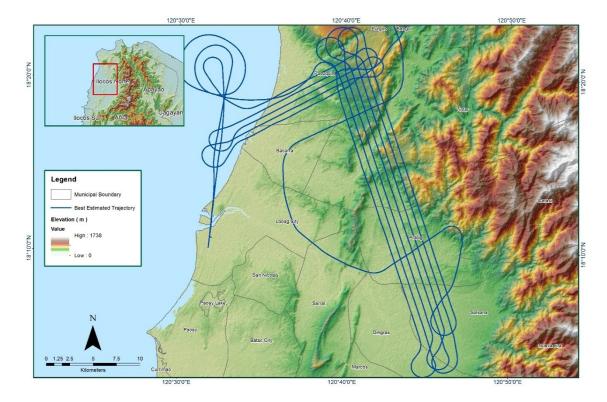


Figure A-8.45 Best Estimated Trajectory

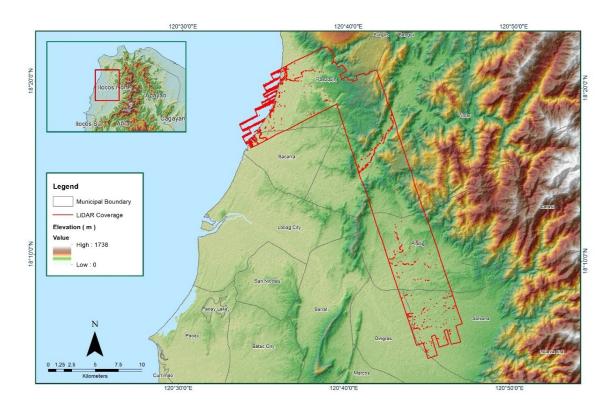


Figure A-8.46 Coverage of LiDAR data

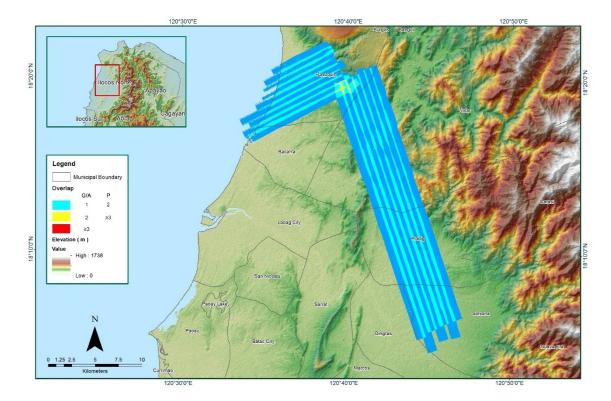


Figure A-8.47 Image of data overlap

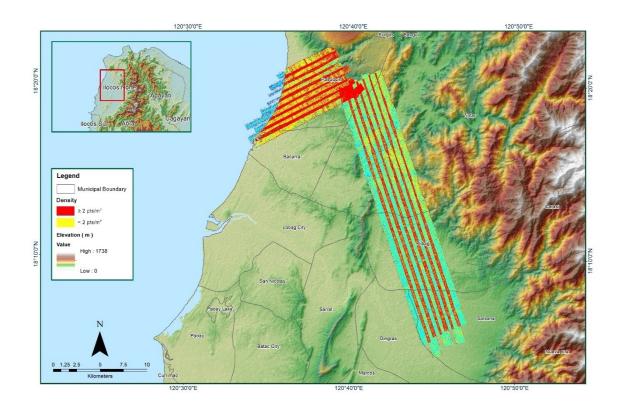


Figure A-8.48 Density map of merged LiDAR data

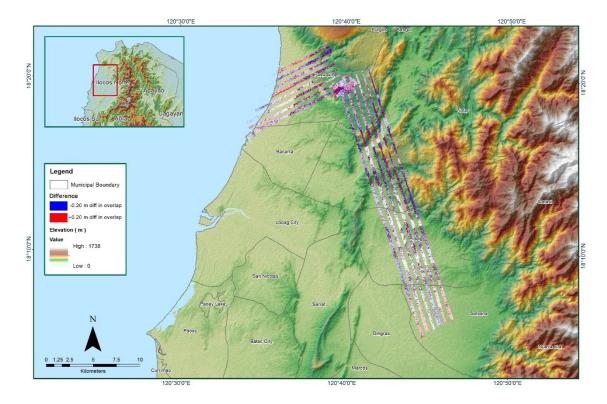


Figure A-8.49 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5D
Inclusive Flights	7092G
Range data size	11.8 GB
Base data size	13 MB
POS	199 MB
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.6
RMSE for East Position (<4.0 cm)	2.5
RMSE for Down Position (<4.0 cm)	3.3
	5.5
Boresight correction stdev (<0.001deg)	0.000314
IMU attitude correction stdev (<0.001deg)	0.000547
GPS position stdev (<0.01m)	0.0104
Minimum % overlap (>25)	68.68%
	1.62
Ave point cloud density per sq.m. (>2.0)	
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	136
Maximum Height	453.01 m
Minimum Height	47.27 m
Classification (4 - f int.)	
Classification (# of points)	42.020.225
Ground	43,938,236
Low vegetation	24,884,917
Medium vegetation	19,773,139
High vegetation	41,805,680
Building	978,440
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Christy Lubiano, Engr. Ma. Ailyn Olanda

Table A-8.8. Mission Summary Report for Mission Blk5D

Figure A-8.50 Solution Status

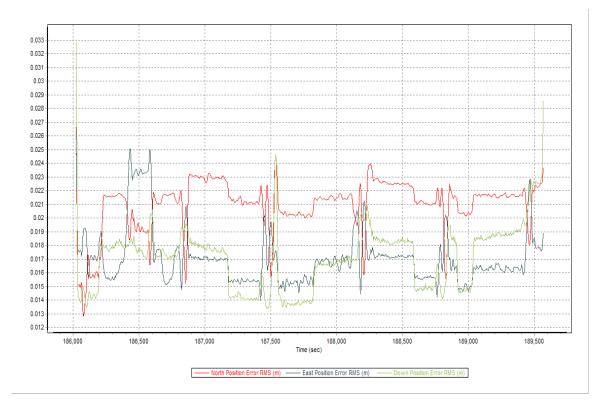


Figure A-8.51 Smoothed Performance Metric Parameters

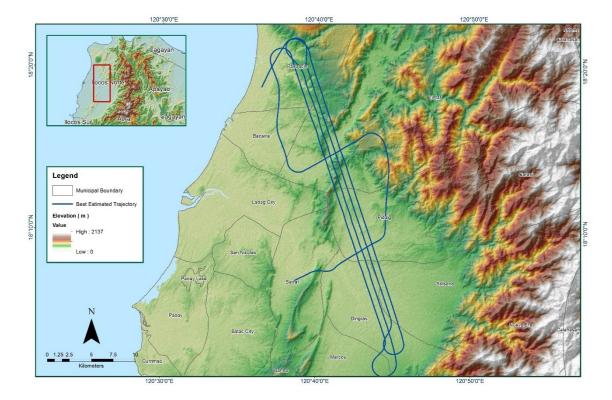


Figure A-8.52 Best Estimated Trajectory

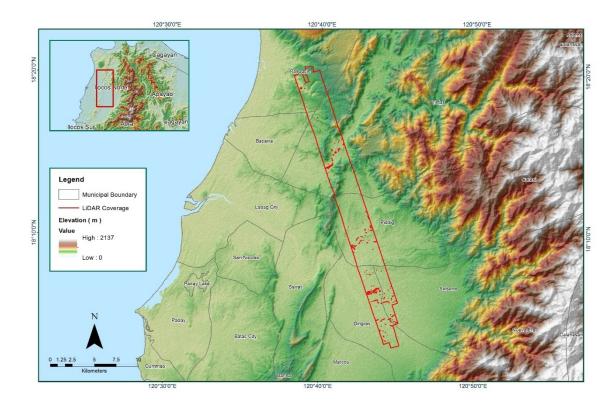


Figure A-8.53 Coverage of LiDAR data

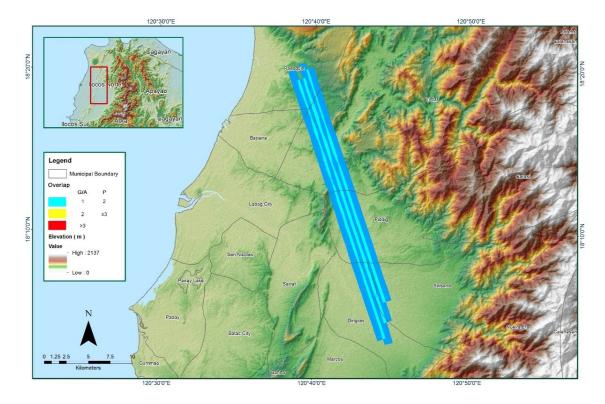


Figure A-8.54 Image of data overlap

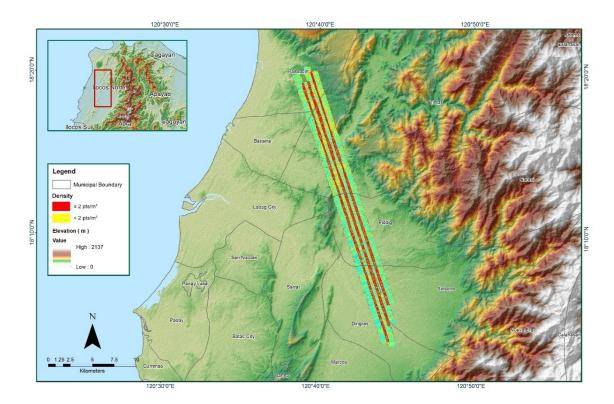


Figure A-8.55 Density map of merged LiDAR data

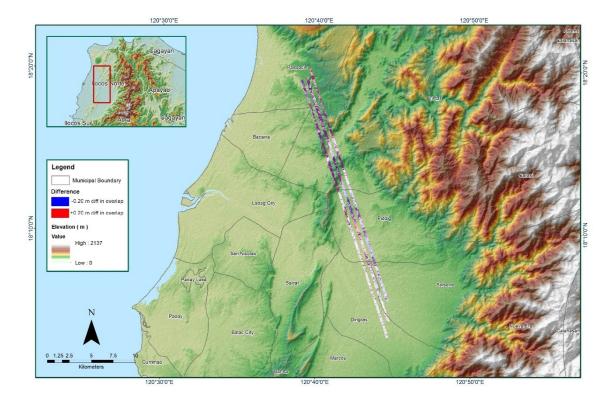


Figure A-8.56 Elevation difference between flight lines

Flight Area	llocos
Mission Name	5DsEs
Inclusive Flights	7091G
Range data size	15.8
Base data size	N/A
POS	N/A
Image	N/A
Transfer date	July 28, 2014
Solution Status	
Number of Satellites (>6)	N/A
PDOP (<3)	N/A
Baseline Length (<30km)	N/A
Processing Mode (<=1)	N/A
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	N/A
RMSE for East Position (<4.0 cm)	N/A
RMSE for Down Position (<8.0 cm)	N/A
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A
Minimum % overlap (>25)	98.51
Ave point cloud density per sq.m. (>2.0)	5.09
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	196
Maximum Height	387.52 m
Minimum Height	42.55 m
Classification (# of points)	
Ground	91289416
Low vegetation	164468879
Medium vegetation	211773161
High vegetation	198073691
Building	11618600
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Harmond Santos, Ailyn Biñas

Table A-8.9. Mission Summary Report for Mission 5DsEs

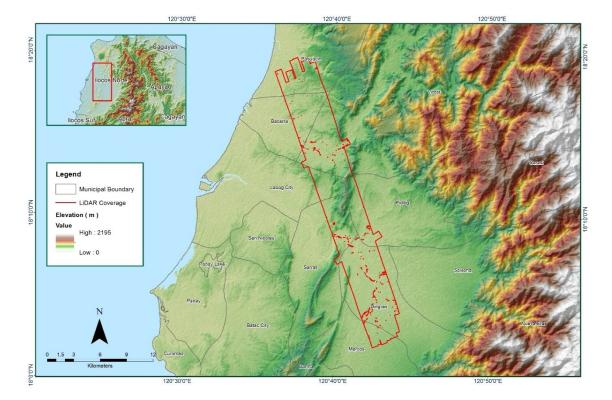


Figure A-8.57 Coverage of LiDAR data

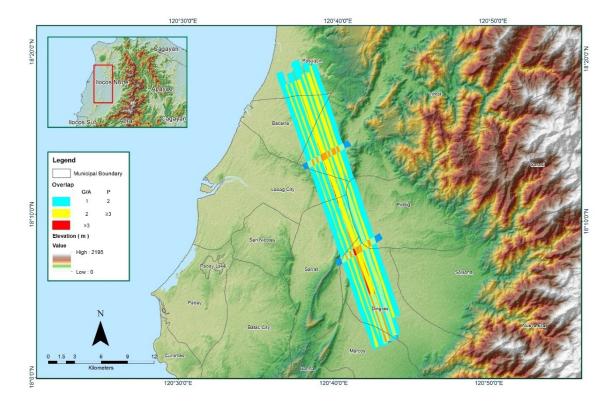


Figure A-8.58 Image of data overlap

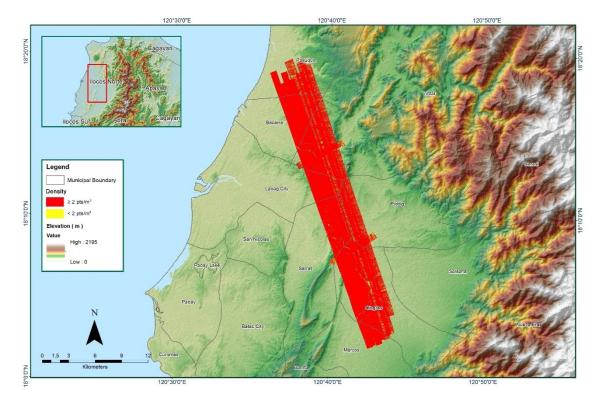


Figure A-8.59 Density map of merged LiDAR data

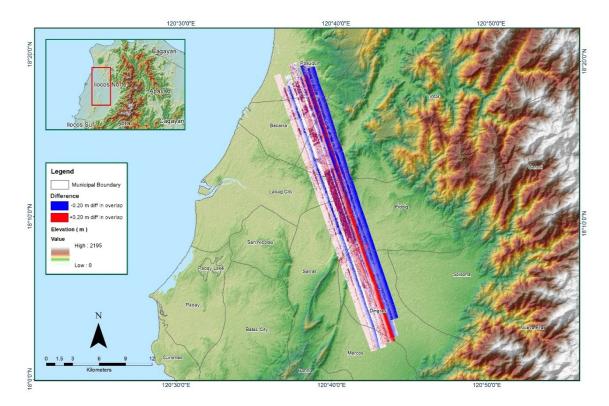


Figure A-8.60 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5Es
Inclusive Flights	7103GC
Range data size	8.39 GB
Base data size	6.92 KB
POS	136 MB
Image	N/A
Transfer date	March 19, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	6.1
RMSE for East Position (<4.0 cm)	5.4
RMSE for Down Position (<8.0 cm)	1.1
Boresight correction stdev (<0.001deg)	0.000312
IMU attitude correction stdev (<0.001deg)	0.001893
GPS position stdev (<0.01m)	0.0093
Minimum % overlap (>25)	37.72%
Ave point cloud density per sq.m. (>2.0)	3.05
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	103
Maximum Height	180.33 m
Minimum Height	39.57 m
Classification (# of points)	
Ground	45,668,783
Low vegetation	55,842,716
Medium vegetation	48,568,491
High vegetation	46,041,084
Building	4,125,980
Orthophoto	No
Processed by	Engr. Angelo Carlo Bongat, Engr. Harmond Santos, Engr. Carlyn Ann Ibañez

Table A-8.10. Mission Summary Report for Mission Blk5Es

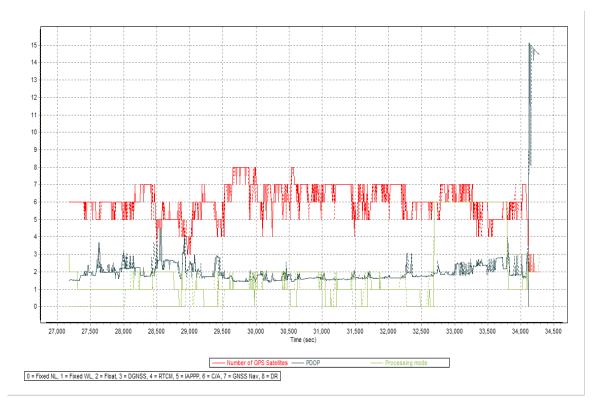


Figure A-8.61 Solution Status

Figure A-8.62 Smoothed Performance Metric Parameters

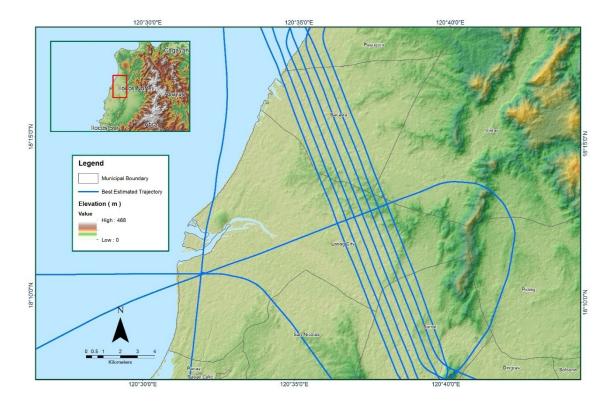


Figure A-8.63 Best Estimated Trajectory

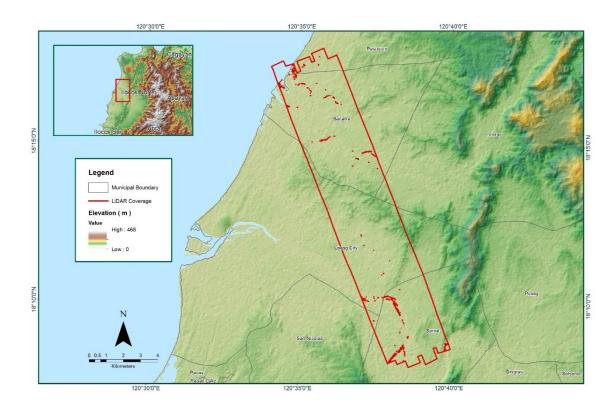


Figure A-8.64 Coverage of LiDAR data

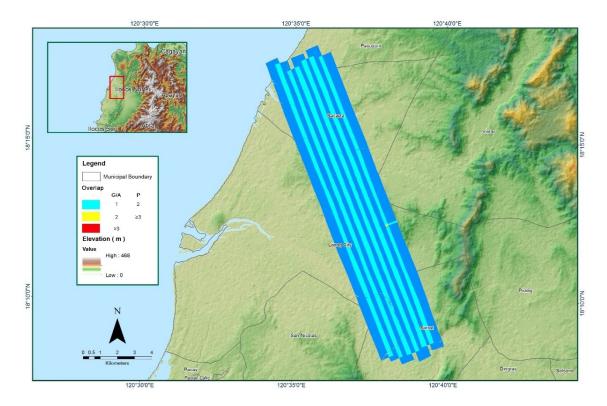


Figure A-8.65 Image of data overlap

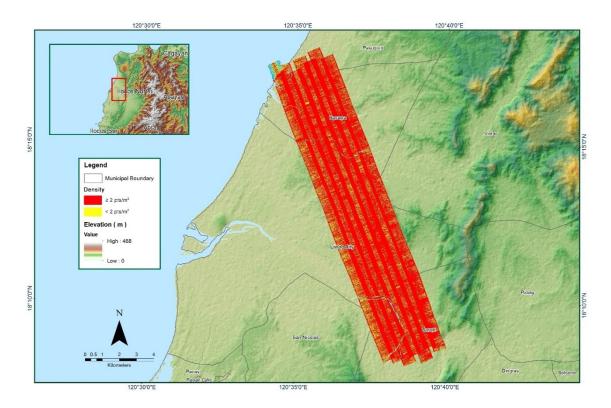


Figure A-8.66 Density map of merged LiDAR data

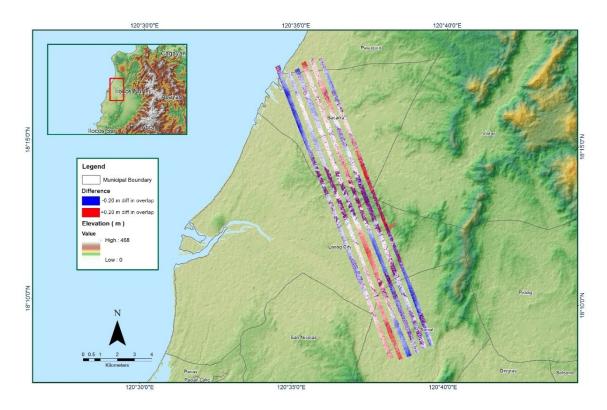


Figure A-8.67 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5EF
Inclusive Flights	7088G
Range data size	21.2 GB
Base data size	11.2 MB
POS	211 MB
Image	N/A
Transfer date	April 25, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	2.9
Boresight correction stdev (<0.001deg)	0.000312
IMU attitude correction stdev (<0.001deg)	0.0001893
GPS position stdev (<0.01m)	0.0093
Minimum % overlap (>25)	50.57%
Ave point cloud density per sq.m. (>2.0)	3.56
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	222
Maximum Height	349.30 m
Minimum Height	39.75 m
Classification (# of points)	
Ground	129,214,820
Low vegetation	316,462,897
Medium vegetation	240953904
High vegetation	257358666
Building	24520904
Orthophoto	No
Processed by	Engr. Irish Cortez, Engr. Harmond Santos, Engr. Roa Shalemar Redo

Table A-8.11. Mission Summary Report for Mission Blk5EF

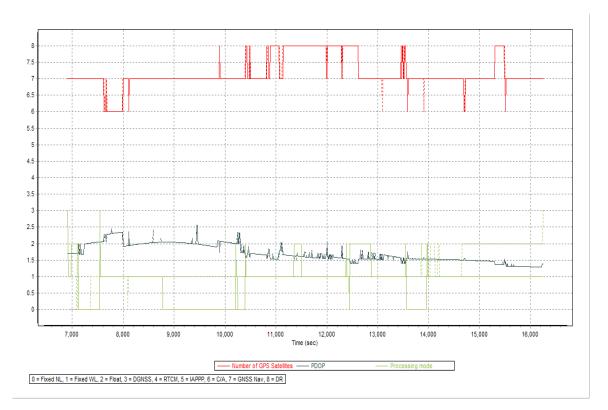


Figure A-8.68 Solution Status

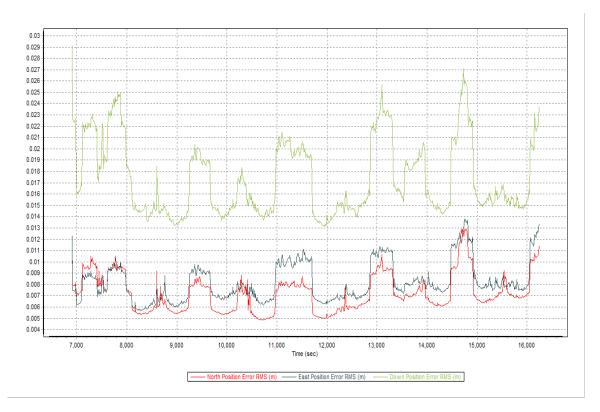


Figure A-8.69 Smoothed Performance Metric Parameters

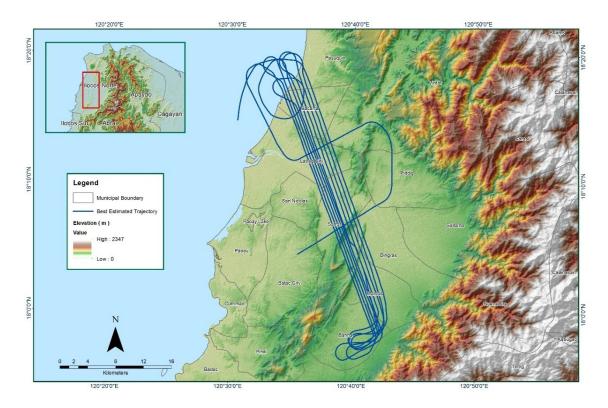


Figure A-8.70 Best Estimated Trajectory

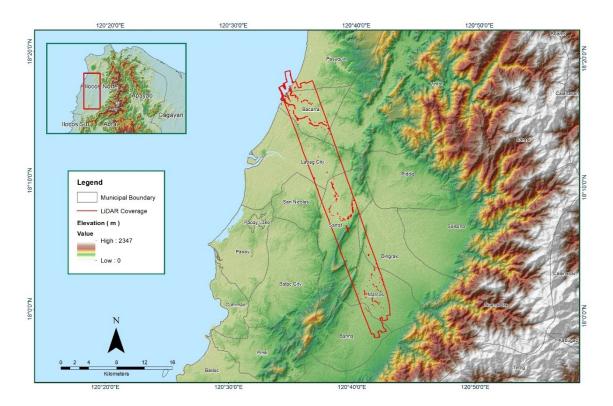


Figure A-8.71 Coverage of LiDAR data

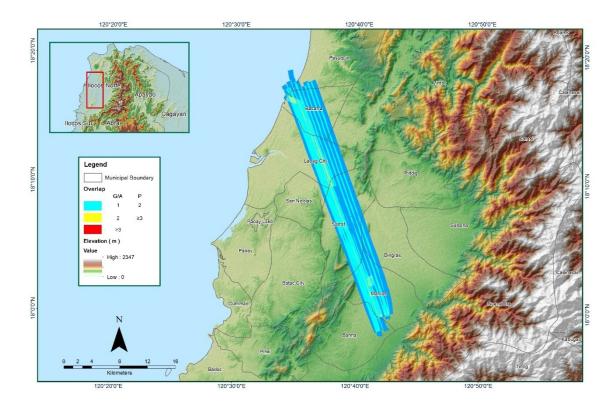


Figure A-8.72 Image of data overlap

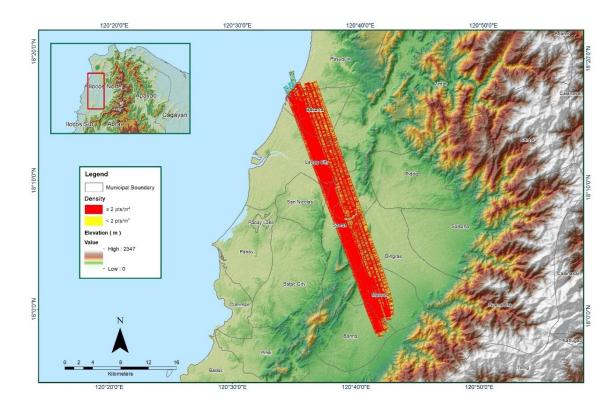


Figure A-8.73 Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

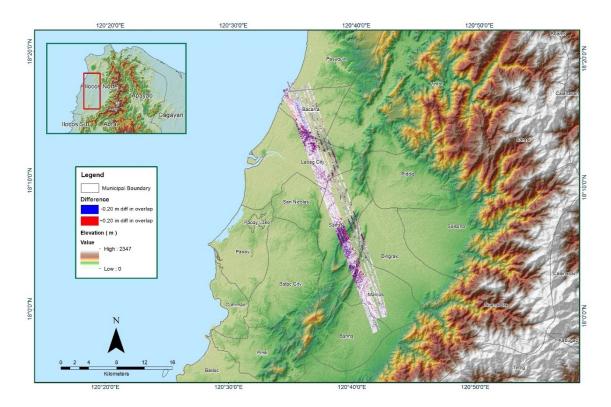


Figure A-8.74 Elevation difference between flight lines

Flight Area	llocos
Mission Name	Blk5EFadditional
Inclusive Flights	7087G
Range data size	26.2 GB
Base data size	12.3 MB
POS	247 MB
Image	N/A
Transfer date	April 25, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	4.6
RMSE for East Position (<4.0 cm)	7.7
RMSE for Down Position (<8.0 cm)	8.4
Boresight correction stdev (<0.001deg)	0.000353
IMU attitude correction stdev (<0.001deg)	0.001157
GPS position stdev (<0.01m)	0.0031
Minimum % overlap (>25)	32.82%
Ave point cloud density per sq.m. (>2.0)	3.09
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	222
Maximum Height	466.06 m
Minimum Height	39.20 m
Classification (# of points)	
Ground	83,228,672
Low vegetation	90,581,648
Medium vegetation	104,895,186
High vegetation	167,061,020
Building	8,465,630
Orthophoto	No
Processed by	Victoria Rejuso, Aljon Rie Araneta Engr. Ma. Ailyn Olanda

Table A-8.12. Mission Summary Report for Mission Blk5EFadditional

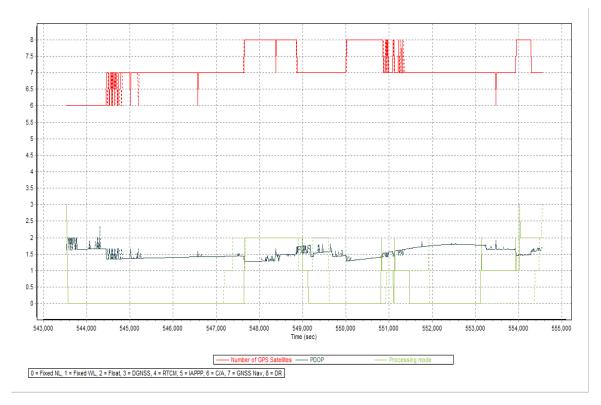


Figure A-8.75 Solution Status

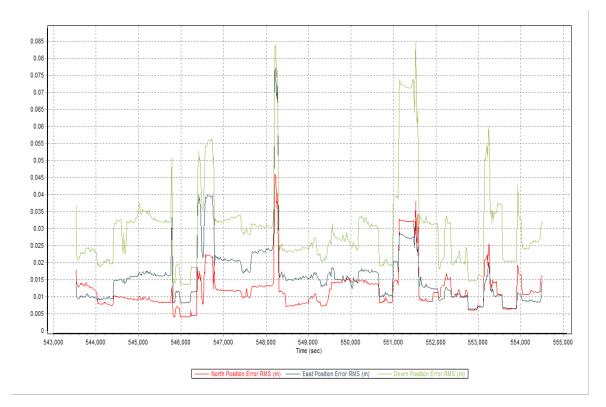


Figure A-8.76 Smoothed Performance Metric Parameters



Figure A-8.77 Best Estimated Trajectory

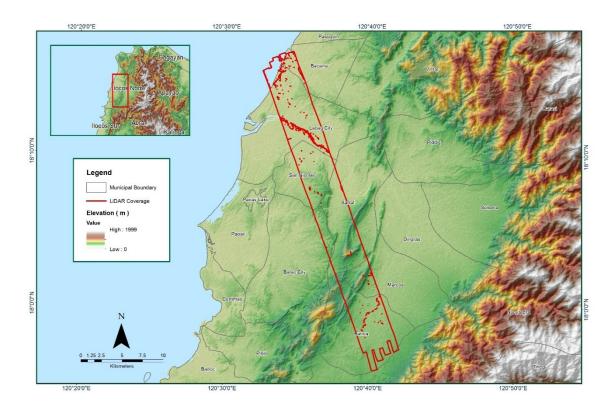


Figure A-8.78 Coverage of LiDAR data

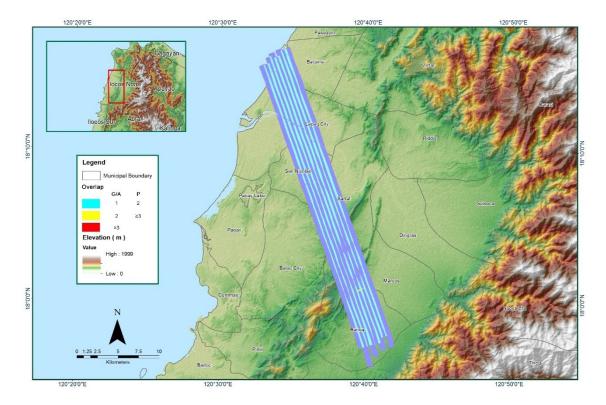


Figure A-8.79 Image of data overlap

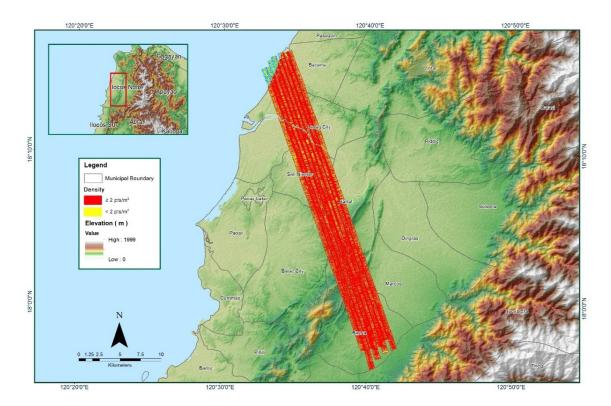


Figure A-8.80 Density map of merged LiDAR data

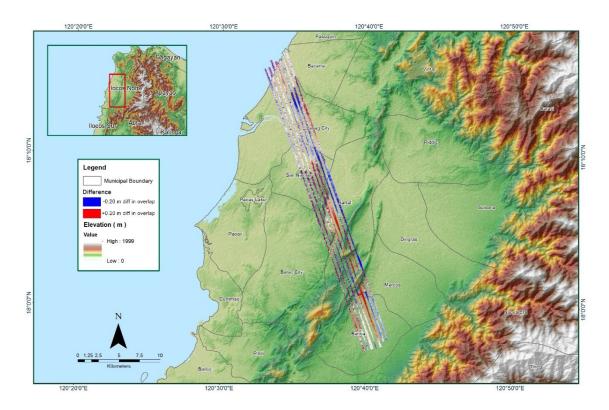


Figure A-8.81 Elevation difference between flight lines

Flight Area	Oriental Mindoro
Mission Name	Blk05_G
Inclusive Flights	7085G
Range data size	13.9 GB
Base data size	11.6 MB
POS	158 MB
Image	N/A
Transfer date	April 25, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	Yes
Processing Mode (<=1)	No
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.1
RMSE for East Position (<4.0 cm)	3.7
RMSE for Down Position (<8.0 cm)	9.2
Boresight correction stdev (<0.001deg)	0.000673
IMU attitude correction stdev (<0.001deg)	0.000756
GPS position stdev (<0.01m)	0.0112
Minimum % overlap (>25)	84.28%
Ave point cloud density per sq.m. (>2.0)	5.65
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	176
Maximum Height	537.85 m
Minimum Height	38.95 m
Classification (# of points)	
Ground	62,450,922
Low vegetation	62,751,467
Medium vegetation	74,301,334
High vegetation	133,270,609
Building	3,941,158
Orthophoto	No
Processed by	Victoria Rejuso, Engr. Antonio Chua Jr., Engr. Gladys Mae Apat

Table A-8.12. Mission Summary Report for Mission Blk5G

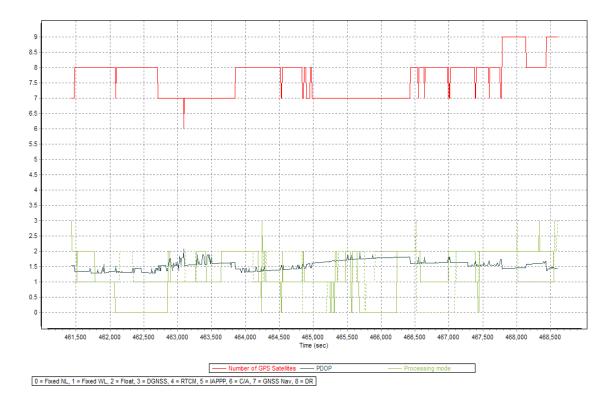


Figure A-8.82 Solution Status

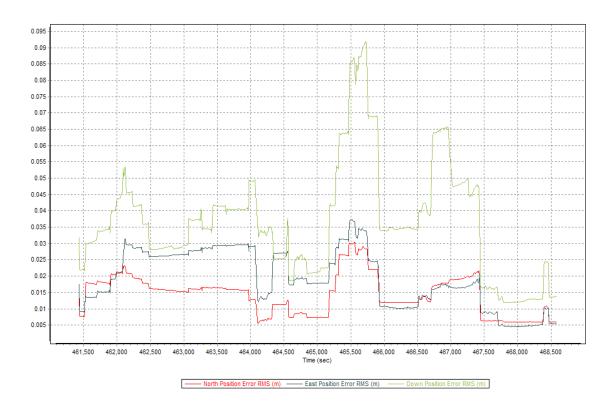


Figure A-8.83 Smoothed Performance Metric Parameters

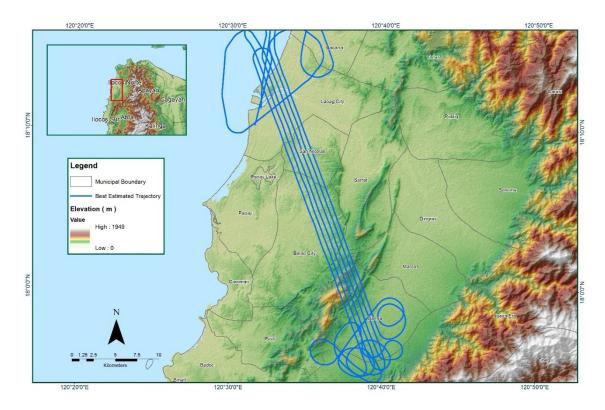


Figure A-8.84 Best Estimated Trajectory

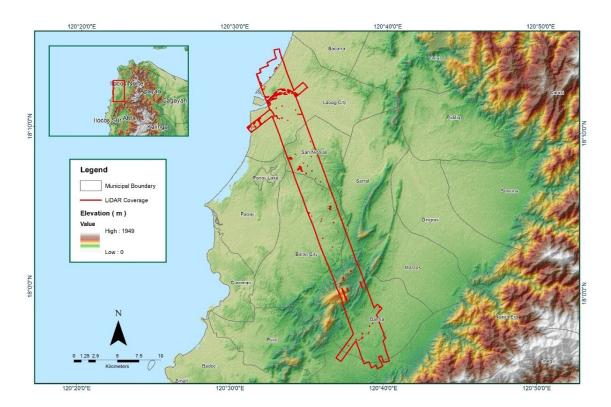


Figure A-8.85 Coverage of LiDAR data

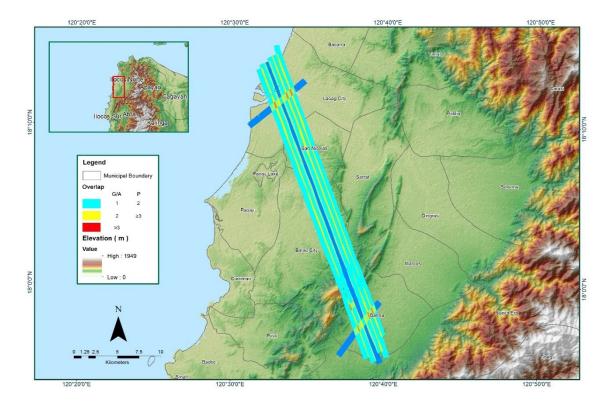


Figure A-8.86 Image of data overlap

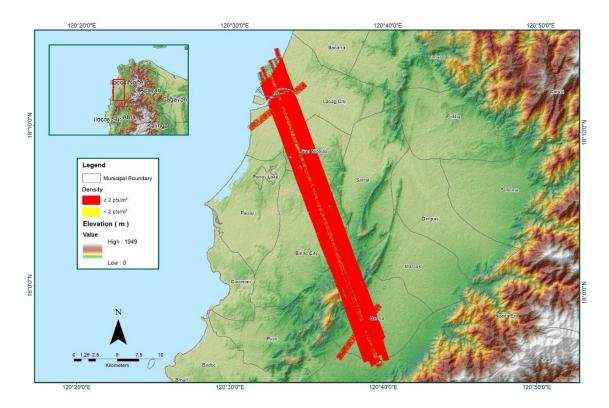


Figure A-8.87 Density map of merged LiDAR data

Figure A-8.88 Elevation difference between flight lines

Annex 9. Bacarra Model Basin Parameters

Table A-9.1. Bacarra Model Basin Parameters

	Ratio to Peak	0.741	0.99415	0.70079	0.46029	1	0.71835	0.494	0.70753	0.52	0.42885	0.32274	0.29047	1	0.69317	0.23983	0.80601
M	Threshold Type	Ratio to Peak															
Recession Baseflow	Recession Constant	0.65333	0.4821	0.78908	0.81117	0.85395	0.78724	0.66667	0.86209	1	0.81086	0.77134	0.48	1	0.80484	0.52527	0.76186
Rec	Initial Discharge (cms)	0.033832	0.43405	0.13949	0.20937	0.14672	0.27554	0.004118	0.097116	0.88762	0.11103	0.44394	0.37724	0.55265	0.27648	0.013326	0.12286
	Initial Type	Discharge															
Jnit Transform	Storage Coefficient (HR)	12.8	16.555	4.4248	2.3061	10.326	5.8161	16.045	6.1565	11.673	1.0377	4.7951	5.2183	20.978	6.153	4.062	6.9371
Clark Unit Hydrograph Transform	Time of Concentration (HR)	3.0852	8.4806	0.65576	0.51024	2.2814	6.5718	8.0652	7.2465	1.9074	0.50207	3.5409	0.75282	3.0602	9.0911	1.3497	7,6004
Loss	Impervious (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U
SCS Curve Number Loss	Curve Number	35	37.462	35	56.291	37.512	35.188	68.823	42.442	35	46.806	35	46.295	35	54.687	68.104	35
SCS CL	Initial Ab- straction (mm)	2.7877	5.2584	19.152	8.0186	5.9319	5.157	29.593	2.8734	11.75372	3.4179	2.2456	5.3086	7.4964	1.7371	3.0523	5.7596
<u>.</u>	Number	W1000	W1010	W1020	W1030	W1040	W1050	W1060	W1070	W1080	W1090	W1100	W560	W570	W580	W590	W600

SCS Curve Number Loss		Clark Unit Hvdroøranh Transform	Unit Transform		8	Recession Baseflow	iflow	
Curve In Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
40.038	0	0.16612	0.75104	Discharge	0.10392	1	Ratio to Peak	0.72032
41.844	0	4.8755	6.6519	Discharge	0.35123	0.69149	Ratio to Peak	0.55096
38.96	0	1.5098	4.6611	Discharge	0.12263	0.75295	Ratio to Peak	0.43077
43.694	0	2.8166	8.0397	Discharge	0.66207	0.432	Ratio to Peak	0.49774
45.301	0	0.9968	10.483	Discharge	0.014838	1	Ratio to Peak	0.49895
	0	1.2019	4.8465	Discharge	0.23558	0.81006	Ratio to Peak	0.72057
36.416	0	3.8195	11.634	Discharge	0.041128	1	Ratio to Peak	0.49401
39.588	0	0.97284	6.4074	Discharge	0.459171	0.72	Ratio to Peak	0.49476
45.982	0	0.50037	1.4067	Discharge	0.36262	0.81047	Ratio to Peak	0.47284
52.339	0	0.72581	5.1243	Discharge	0.05809	0.81178	Ratio to Peak	0.69016
39.989	0	2.577	7.9137	Discharge	0.095495	0.969	Ratio to Peak	0.6702
64.211	0	4.5736	9.668	Discharge	0.040506	0.76946	Ratio to Peak	0.66667
42.36	0	0.29196	6.565	Discharge	0.30314	0.79125	Ratio to Peak	0.6927
	0	2.3159	7.3025	Discharge	0.19618	1	Ratio to Peak	0.33097
41.721	0	0.33316	1.538	Discharge	0.204	0.81045	Ratio to Peak	0.46889
37.364	0	1.1388	7.8302	Discharge	0.12732	0.52594	Ratio to Peak	0.51629
	0	1.2927	7.6996	Discharge	0.12554	1	Ratio to Peak	0.32226
35.065	C	2.4103	10.159	Discharge	0.25782	1	Ratio to Peak	0.31778

			-	Clark Unit	Unit				c	
اــــــــــــــــــــــــــــــــــــ	2020	SCS Curve Number Loss	r Loss	Hydrograph Transform	Transform		X	Kecession Baseflow	TIOW	
Number	Initial Ab- straction (mm)	Curve Number	Impervious (%)	Time of Con- centration (HR)	Storage Coef- ficient (HR)	Initial Type	Initial Discharge (cms)	Recession Constant	Threshold Type	Ratio to Peak
W790	1.0329	54.723	0	0.14714	0.95807	Discharge	0.093754	0.80326	Ratio to Peak	0.32124
W800	15.351	81.7	0	0.50794	1.5592	Discharge	0.038824	0.80343	Ratio to Peak	0.33097
W810	1.3882	53.812	0	3.7685	7.3229	Discharge	0.25599	0.53595	Ratio to Peak	0.53468
W820	28.99	41.545	0	2.0383	6.4588	Discharge	0.1453	1	Ratio to Peak	0.55672
W830	5.3606	40.43	0	2.8983	6.19	Discharge	0.2306	0.52267	Ratio to Peak	0.50582
W840	4.5764	39.578	0	3.2564	7.7193	Discharge	0.082473	0.7878	Ratio to Peak	0.67951
W850	3.2376	40.25	0	0.82516	3.7582	Discharge	0.095164	0.784	Ratio to Peak	0.31454
W860	4.8053	42.833	0	0.72886	7.4446	Discharge	0.11569	0.52267	Ratio to Peak	0.33889
W870	5.1442	43.07	0	1.6427	7.7614	Discharge	0.18539	0.76832	Ratio to Peak	0.56447
W880	2.2429	60.922	0	3.2227	5.9486	Discharge	0.032218	1	Ratio to Peak	0.46871
W890	37.449	35	0	1.3689	4.2335	Discharge	0.40432	1	Ratio to Peak	0.32275
006W	3.1052	38.307	0	9.0929	11.364	Discharge	0.001193	0.76832	Ratio to Peak	0.73566
W910	3.2151	69.388	0	3.1034	4.3826	Discharge	0.11548	0.76832	Ratio to Peak	0.32433
W920	3.9905	44.747	0	2.6672	7.909	Discharge	0.10494	0.53584	Ratio to Peak	0.48582
W930	8.2582	35	0	2.3428	6.2911	Discharge	0.12041	0.80569	Ratio to Peak	0.65925
W940	5.1406	35	0	2.9936	8.0757	Discharge	0.10615	0.76832	Ratio to Peak	0.65982
W950	12.348	36.353	0	0.26124	0.8745	Discharge	0.20883	0.80758	Ratio to Peak	0.46709
W960	14.858	52.647	0	0.54784	1.122	Discharge	0.076699	1	Ratio to Peak	0.32475

		Ratio to Peak	1	0.44279	0.64668
~		Threshold R Type	Ratio to Peak	Ratio to Peak 0	Ratio to Peak 0
Recession Baseflow		Recession Constant	0.80461 R	0.76832 R	0.78489 R
Re		Initial Discharge (cms)	0.247495	0.19835	0.25403
		Initial Type	Discharge	Discharge	Discharge
Jnit	Iransform	Storage Coefficient (HR)	22.606	6.2713	6.2931
Clark Unit	Hydrograph Transform	Time of Concentration (HR)	11.028	0.66874	6.2066
200		Impervious (%)	0	0	0
SCS Curve Number Loss		Curve Number	35	38.666	37.423
		Initial Abstraction (mm)	3.1565	3.9396	7.0109
	2010	Number	079W	W980	066M

Annex 10. Bacarra Model Reach Parameters

		Mus	kingum Cun	ge Channel Rou	Iting		
Reach		Length					Side
Number	Time Step Method	(m)	Slope	Manning's n	Shape	Width	Slope
R100	Automatic Fixed Interval	3831.9	0.002945	0.010044	Trapezoid	21.267	1
R120	Automatic Fixed Interval	2536.5	0.004541	0.006667	Trapezoid	31.7	1
R150	Automatic Fixed Interval	1991.4	0.010764	0.010135	Trapezoid	12.26	1
R160	Automatic Fixed Interval	2409.9	0.004145	0.006667	Trapezoid	69	1
R170	Automatic Fixed Interval	7626	0.006236	0.009991	Trapezoid	113.6	1
R210	Automatic Fixed Interval	4153.6	0.002322	0.0098	Trapezoid	24.6	1
R230	Automatic Fixed Interval	2651.8	0.042105	0.010034	Trapezoid	78.067	1
R250	Automatic Fixed Interval	2851.4	0.031365	0.009957	Trapezoid	25.333	1
R260	Automatic Fixed Interval	1988.1	0.0001	0.010047	Trapezoid	50.1	1
R290	Automatic Fixed Interval	3770.9	0.002633	0.0098	Trapezoid	31.1	1
R30	Automatic Fixed Interval	1100.1	0.002932	0.015	Trapezoid	34.867	1
R300	Automatic Fixed Interval	4231.3	0.037466	0.014177	Trapezoid	94.967	1
R310	Automatic Fixed Interval	1637.5	0.079126	0.010036	Trapezoid	34.367	1
R320	Automatic Fixed Interval	427.99	0.0001	0.010048	Trapezoid	40	1
R340	Automatic Fixed Interval	3039.2	0.02404	0.0098	Trapezoid	29.567	1
R370	Automatic Fixed Interval	5828.5	0.006621	0.0098	Trapezoid	101.7	1
Reach		Musl	kingum Cun	ge Channel Rou	ıting		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R380	Automatic Fixed Interval	2985.6	0.00455	0.006667	Trapezoid	56.9	1
R390	Automatic Fixed Interval	5005.9	0.017326	0.009779	Trapezoid	126.6667	1
R400	Automatic Fixed Interval	2647.1	0.005727	0.01003	Trapezoid	96.333	1
R410	Automatic Fixed Interval	1272.8	0.0001	0.010047	Trapezoid	79.233	1

Table A-10.1. Bacarra Model Reach Parameters

R430	Automatic Fixed Interval	5380.7	0.003368	0.0098	Trapezoid	64.2	1
R480	Automatic Fixed Interval	4880.6	0.028357	0.010025	Trapezoid	56.3	1
R490	Automatic Fixed Interval	701.13	0.020912	0.015	Trapezoid	86.9	1
R50	Automatic Fixed Interval	2969.8	0.003936	0.01	Trapezoid	44.933	1
R510	Automatic Fixed Interval	5979.4	0.002057	0.0098	Trapezoid	24.167	1
R540	Automatic Fixed Interval	16786	0.0001	0.01	Trapezoid	178	1
R80	Automatic Fixed Interval	424.26	0.0001	0.01005	Trapezoid	264.6667	1

Annex 11. Bacarra Field Validation Points

Point	Validation	Coordinates	Model	Validation	Error (m)	Event/Date	Rain Return/
Number	Lat	Long	Var (m)	Points (m)			Scenario
1	18.274759	120.609849	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
2	18.264605	120.586189	0.080	0.914	0.696	Igme/ July 24-28, 2008	5-Year
3	18.25382	120.617466	0.120	0.610	0.240	Igme/ July 24-28, 2008	5-Year
4	18.25266	120.617054	0.240	0.457	0.047	Igme/ July 24-28, 2008	5-Year
5	18.251599	120.617046	0.670	0.305	0.133	Igme/ July 24-28, 2008	5-Year
6	18.253347	120.617001	0.400	0.305	0.009	Igme/ July 24-28, 2008	5-Year
7	18.255979	120.606297	0.550	0.610	0.004	Igme/ July 24-28, 2008	5-Year
8	18.255749	120.606594	0.170	0.457	0.082	Igme/ July 24-28, 2008	5-Year
9	18.256364	120.60699	0.080	0.305	0.051	Igme/ July 24-28, 2008	5-Year
10	18.255836	120.607522	0.300	0.305	0.000	Igme/ July 24-28, 2008	5-Year
11	18.257424	120.608209	0.820	0.610	0.044	Igme/ July 24-28, 2008	5-Year
12	18.257153	120.608469	0.120	0.305	0.034	Igme/ July 24-28, 2008	5-Year
13	18.258542	120.607293	0.320	0.305	0.000	Igme/ July 24-28, 2008	5-Year
14	18.257824	120.60752	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
15	18.254242	120.611507	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
16	18.254247	120.610919	0.330	0.914	0.342	Igme/ July 24-28, 2008	5-Year
17	18.253779	120.6098	0.490	0.914	0.180	Igme/ July 24-28, 2008	5-Year
18	18.254135	120.612484	0.120	0.914	0.631	Igme/ July 24-28, 2008	5-Year
19	18.25397	120.611686	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
20	18.253387	120.610944	0.810	0.914	0.011	Igme/ July 24-28, 2008	5-Year
21	18.254772	120.609912	1.090	0.762	0.108	Igme/ July 24-28, 2008	5-Year
22	18.248974	120.620246	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
23	18.26558	120.587676	0.810	0.610	0.040	Igme/ July 24-28, 2008	5-Year
24	18.255047	120.610638	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
25	18.255112	120.614146	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
26	18.254451	120.61293	0.600	0.914	0.099	Igme/ July 24-28, 2008	5-Year
27	18.254343	120.611893	1.080	0.914	0.027	Igme/ July 24-28, 2008	5-Year
28	18.250335	120.617264	0.040	0.610	0.324	Igme/ July 24-28, 2008	5-Year
29	18.2541	120.612534	0.290	0.610	0.102	Igme/ July 24-28, 2008	5-Year
30	18.248543	120.621152	0.250	0.457	0.043	Igme/ July 24-28, 2008	5-Year
31	18.248743	120.622763	0.210	0.457	0.061	Igme/ July 24-28, 2008	5-Year
32	18.247889	120.622026	0.180	0.305	0.016	Igme/ July 24-28, 2008	5-Year
33	18.273152	120.596927	0.520	0.457	0.004	Igme/ July 24-28, 2008	5-Year
34	18.243402	120.603368	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
35	18.255792	120.606213	0.220	0.914	0.482	Igme/ July 24-28, 2008	5-Year
36	18.244408	120.603555	0.030	0.762	0.536	Igme/ July 24-28, 2008	5-Year
37	18.251358	120.611789	0.030	0.762	0.536	Igme/ July 24-28, 2008	5-Year
38	18.244982	120.603559	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
39	18.255171	120.608109	0.080	0.610	0.280	Igme/ July 24-28, 2008	5-Year
40	18.250863	120.613359	0.350	0.305	0.002	Igme/ July 24-28, 2008	5-Year
41	18.268335	120.586338	0.270	0.025	0.060	Igme/ July 24-28, 2008	5-Year
42	18.251303	120.614141	0.290	0.305	0.000	Igme/ July 24-28, 2008	5-Year

	Table A-11.1. Ba	acarra Field	Validation	Points
--	------------------	--------------	------------	--------

r							
43	18.251064	120.612765	0.240	0.152	0.008	Igme/ July 24-28, 2008	5-Year
44	18.25298	120.607978	0.030	0.152	0.015	Igme/ July 24-28, 2008	5-Year
45	18.253762	120.605507	1.000	0.914	0.007	Igme/ July 24-28, 2008	5-Year
46	18.254205	120.608862	0.250	0.762	0.262	Igme/ July 24-28, 2008	5-Year
47	18.254921	120.605896	0.030	0.762	0.536	Igme/ July 24-28, 2008	5-Year
48	18.253444	120.60873	0.060	0.305	0.060	Igme/ July 24-28, 2008	5-Year
49	18.253858	120.608041	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
50	18.253295	120.607156	0.080	0.305	0.051	Igme/ July 24-28, 2008	5-Year
51	18.254623	120.606688	0.050	0.305	0.065	Igme/ July 24-28, 2008	5-Year
52	18.263126	120.586213	0.120	0.025	0.009	Igme/ July 24-28, 2008	5-Year
53	18.254323	120.605656	1.080	0.305	0.601	Igme/ July 24-28, 2008	5-Year
54	18.254593	120.605465	0.400	0.305	0.009	Igme/ July 24-28, 2008	5-Year
55	18.254165	120.606951	0.040	0.305	0.070	Igme/ July 24-28, 2008	5-Year
56	18.258356	120.604319	0.430	0.914	0.235	Igme/ July 24-28, 2008	5-Year
57	18.258211	120.604715	0.230	0.914	0.468	Igme/ July 24-28, 2008	5-Year
58	18.257443	120.604951	0.040	0.610	0.324	Igme/ July 24-28, 2008	5-Year
59	18.258073	120.604853	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
60	18.242721	120.60373	0.340	0.914	0.330	Igme/ July 24-28, 2008	5-Year
61	18.24513	120.590072	1.080	0.914	0.027	Igme/ July 24-28, 2008	5-Year
62	18.26982	120.584691	0.030	0.025	0.000	Igme/ July 24-28, 2008	5-Year
63	18.245495	120.592701	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
64	18.243799	120.604357	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
65	18.242668	120.590366	0.870	0.914	0.002	Igme/ July 24-28, 2008	5-Year
66	18.245038	120.604039	0.180	0.914	0.539	Igme/ July 24-28, 2008	5-Year
67	18.243915	120.59223	0.350	0.914	0.319	Igme/ July 24-28, 2008	5-Year
68	18.24333	120.59341	0.440	0.914	0.225	Igme/ July 24-28, 2008	5-Year
69	18.243031	120.591902	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
70	18.24409	120.59302	0.100	0.914	0.663	Igme/ July 24-28, 2008	5-Year
71	18.250163	120.587382	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
72	18.253667	120.607792	0.090	0.914	0.680	Igme/ July 24-28, 2008	5-Year
73	18.279919	120.585167	2.070	1.219	0.724	Igme/ July 24-28, 2008	5-Year
74	18.2528	120.608964	0.060	0.914	0.730	Igme/ July 24-28, 2008	5-Year
75	18.254303	120.607705	0.150	0.914	0.584	Igme/ July 24-28, 2008	5-Year
76	18.241683	120.617194	1.470	0.914	0.309	Igme/ July 24-28, 2008	5-Year
77	18.242409	120.616946	0.710	0.914	0.042	Igme/ July 24-28, 2008	5-Year
78	18.254446	120.607678	0.180	0.914	0.539	Igme/ July 24-28, 2008	5-Year
79	18.230696	120.644641	0.210	0.914	0.496	Igme/ July 24-28, 2008	5-Year
80	18.254208	120.609757	0.240	0.914	0.455	Igme/ July 24-28, 2008	5-Year
81	18.254194	120.609607	0.480	0.914	0.189	Igme/ July 24-28, 2008	5-Year
82	18.253418	120.609668	0.150	0.914	0.584	Igme/ July 24-28, 2008	5-Year
83	18.252672	120.610216	0.160	0.914	0.569	Igme/ July 24-28, 2008	5-Year
84	18.279808	120.58851	2.310	1.219	1.190	Igme/ July 24-28, 2008	5-Year
85	18.254396	120.608516	0.180	0.914	0.539	Igme/ July 24-28, 2008	5-Year
86	18.252088	120.610261	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
87	18.254587	120.608901	0.400	0.914	0.265	Igme/ July 24-28, 2008	5-Year
88	18.248597	120.618776	0.230	0.914	0.468	Igme/ July 24-28, 2008	5-Year
	18.241372	120.613272	0.450	0.914	0.216	Igme/ July 24-28, 2008	5-Year
89	10.241.7//	120,013///					

91	18.252873	120.608062	0.390	0.914	0.275	Igme/ July 24-28, 2008	5-Year
92	18.243011	120.621215	0.460	0.914	0.206	Igme/ July 24-28, 2008	5-Year
93	18.249363	120.616939	0.070	0.914	0.713	Igme/ July 24-28, 2008	5-Year
94	18.28021	120.586293	1.370	1.219	0.023	Igme/ July 24-28, 2008	5-Year
95	18.249363	120.616939	0.070	0.914	0.713	Igme/ July 24-28, 2008	5-Year
96	18.242255	120.60358	0.300	0.914	0.377	Igme/ July 24-28, 2008	5-Year
97	18.242261	120.621425	0.700	0.610	0.008	Igme/ July 24-28, 2008	5-Year
98	18.242145	120.619676	1.310	0.610	0.491	Igme/ July 24-28, 2008	5-Year
99	18.250092	120.616954	0.540	0.610	0.005	Igme/ July 24-28, 2008	5-Year
100	18.24012	120.612576	1.390	0.610	0.609	Igme/ July 24-28, 2008	5-Year
101	18.241566	120.614457	0.770	0.457	0.098	Igme/ July 24-28, 2008	5-Year
102	18.24164	120.609854	0.460	0.457	0.000	Igme/ July 24-28, 2008	5-Year
103	18.228895	120.646953	0.070	0.457	0.150	Igme/ July 24-28, 2008	5-Year
104	18.24091	120.611727	0.990	0.305	0.469	Igme/ July 24-28, 2008	5-Year
105	18.254216	120.615215	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
106	18.276592	120.591947	1.070	1.219	0.022	Igme/ July 24-28, 2008	5-Year
107	18.228376	120.646522	0.340	0.305	0.001	Igme/ July 24-28, 2008	5-Year
108	18.251551	120.621181	0.670	0.457	0.045	Igme/ July 24-28, 2008	5-Year
109	18.251485	120.62161	0.070	0.457	0.150	Igme/ July 24-28, 2008	5-Year
110	18.251903	120.620651	0.580	0.457	0.015	Igme/ July 24-28, 2008	5-Year
111	18.250204	120.621853	0.200	0.305	0.011	Igme/ July 24-28, 2008	5-Year
112	18.250294	120.621018	0.420	0.305	0.013	Igme/ July 24-28, 2008	5-Year
113	18.251461	120.620312	0.070	0.305	0.055	Igme/ July 24-28, 2008	5-Year
114	18.251994	120.621678	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
115	18.24958	120.622964	0.050	0.152	0.010	Igme/ July 24-28, 2008	5-Year
116	18.249806	120.622098	0.030	0.152	0.015	Igme/ July 24-28, 2008	5-Year
117	18.279184	120.59057	1.500	1.219	0.079	Igme/ July 24-28, 2008	5-Year
118	18.249989	120.621278	0.240	0.152	0.008	Igme/ July 24-28, 2008	5-Year
119	18.250584	120.620084	0.290	0.152	0.019	Igme/ July 24-28, 2008	5-Year
120	18.252418	120.621132	0.170	0.152	0.000	Igme/ July 24-28, 2008	5-Year
121	18.252854	120.61934	0.390	0.914	0.275	Igme/ July 24-28, 2008	5-Year
122	18.253238	120.618465	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
123	18.251318	120.620307	0.030	0.762	0.536	Igme/ July 24-28, 2008	5-Year
124	18.253176	120.619276	0.030	0.762	0.536	Igme/ July 24-28, 2008	5-Year
125	18.252322	120.618612	0.250	0.305	0.003	Igme/ July 24-28, 2008	5-Year
126	18.254281	120.619336	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
127	18.254386	120.618554	0.180	0.305	0.016	Igme/ July 24-28, 2008	5-Year
128	18.274958	120.592009	0.650	0.914	0.070	Igme/ July 24-28, 2008	5-Year
129	18.250903	120.619217	0.110	0.305	0.038	Igme/ July 24-28, 2008	5-Year
130	18.25249	120.618919	0.170	0.305	0.018	Igme/ July 24-28, 2008	5-Year
131	18.22744	120.643637	1.220	0.914	0.093	Igme/ July 24-28, 2008	5-Year
132	18.226737	120.641275	1.250	0.914	0.113	Igme/ July 24-28, 2008	5-Year
133	18.228708	120.644884	0.530	0.610	0.006	Igme/ July 24-28, 2008	5-Year
134	18.230235	120.647065	0.060	0.610	0.302	Igme/ July 24-28, 2008	5-Year
135	18.226364	120.647027	1.440	0.305	1.289	Igme/ July 24-28, 2008	5-Year
136	18.227727	120.65061	0.060	0.305	0.060	Igme/ July 24-28, 2008	5-Year
1						, ,	
133	18.275397	120.589632	0.790	0.914	0.015	Igme/ July 24-28, 2008	5-Year

					Ì		
139	18.248284	120.619656	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
140	18.250846	120.61544	0.100	0.914	0.663	Igme/ July 24-28, 2008	5-Year
141	18.249239	120.617482	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
142	18.238846	120.617046	0.650	0.914	0.070	Igme/ July 24-28, 2008	5-Year
143	18.256716	120.604906	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
144	18.27821	120.586801	0.280	0.610	0.109	Igme/ July 24-28, 2008	5-Year
145	18.26558	120.587676	0.810	0.610	0.040	Igme/ July 24-28, 2008	5-Year
146	18.273856	120.599719	0.290	0.305	0.000	Igme/ July 24-28, 2008	5-Year
147	18.265842	120.585772	0.050	0.914	0.747	Igme/ July 24-28, 2008	5-Year
148	18.269328	120.585327	0.290	0.914	0.390	Igme/ July 24-28, 2008	5-Year
149	18.26982	120.584691	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
150	18.279919	120.585167	2.070	1.219	0.724	Igme/ July 24-28, 2008	5-Year
151	18.279808	120.58851	2.310	1.219	1.190	Igme/ July 24-28, 2008	5-Year
152	18.28021	120.586293	1.370	1.219	0.023	Igme/ July 24-28, 2008	5-Year
153	18.276592	120.591947	1.070	1.219	0.022	Igme/ July 24-28, 2008	5-Year
154	18.276486	120.589118	0.160	0.610	0.202	Igme/ July 24-28, 2008	5-Year
155	18.279184	120.59057	1.500	1.219	0.079	Igme/ July 24-28, 2008	5-Year
156	18.274958	120.592009	0.650	0.610	0.002	Igme/ July 24-28, 2008	5-Year
157	18.275397	120.589632	0.790	0.610	0.033	Igme/ July 24-28, 2008	5-Year
158	18.27821	120.586801	0.280	0.305	0.001	Igme/ July 24-28, 2008	5-Year
159	18.276486	120.589118	0.160	0.305	0.021	Igme/ July 24-28, 2008	5-Year
160	18.272493	120.591313	0.090	0.152	0.004	Igme/ July 24-28, 2008	5-Year
161	18.277888	120.586285	0.120	0.152	0.001	Igme/ July 24-28, 2008	5-Year
162	18.280122	120.606147	0.090	0.152	0.004	Igme/ July 24-28, 2008	5-Year
163	18.286135	120.596732	0.380	0.152	0.052	Igme/ July 24-28, 2008	5-Year
164	18.283775	120.582026	0.810	0.152	0.432	Igme/ July 24-28, 2008	5-Year
165	18.278973	120.589723	0.430	0.305	0.016	Igme/ July 24-28, 2008	5-Year
166	18.273603	120.575452	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
167	18.269797	120.585165	0.290	0.914	0.390	Igme/ July 24-28, 2008	5-Year
168	18.277888	120.586285	0.120	0.305	0.034	Igme/ July 24-28, 2008	5-Year
169	18.267849	120.573513	0.030	0.152	0.015	Igme/ July 24-28, 2008	5-Year
170	18.273347	120.574554	0.140	0.152	0.000	Igme/ July 24-28, 2008	5-Year
171	18.270739	120.598049	0.460	0.152	0.095	Igme/ July 24-28, 2008	5-Year
172	18.277615	120.60438	0.950	0.914	0.001	Igme/ July 24-28, 2008	5-Year
173	18.280128	120.577464	1.040	0.152	0.788	Igme/ July 24-28, 2008	5-Year
174	18.239552	120.602297	1.270	0.152	1.249	Igme/ July 24-28, 2008	5-Year
175	18.280685	120.596006	0.060	0.152	0.009	Igme/ July 24-28, 2008	5-Year
176	18.280626	120.582108	1.950	0.914	1.072	Igme/ July 24-28, 2008	5-Year
177	18.276449	120.583691	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
178	18.280075	120.583916	0.650	0.914	0.070	Igme/ July 24-28, 2008	5-Year
179	18.276946	120.586596	0.130	0.457	0.107	Igme/ July 24-28, 2008	5-Year
180	18.278418	120.582899	0.400	0.457	0.003	Igme/ July 24-28, 2008	5-Year
181	18.273202	120.58465	0.030	0.152	0.015	Igme/ July 24-28, 2008	5-Year
182	18.285283	120.603438	0.040	0.132	0.765	Igme/ July 24-28, 2008	5-Year
182	18.277733	120.581607	0.040	0.152	0.015	Igme/ July 24-28, 2008	5-Year
185	18.277755	120.609423	0.260	0.152	0.013	Igme/ July 24-28, 2008	5-Year
185	18.254666	120.603444	3.600	0.152	11.886	lgme/ July 24-28, 2008	5-Year
186	18.25473	120.60464	1.090	0.152	0.879	Igme/ July 24-28, 2008	5-Year

187	18.25521	120.615091	0.170	1.219	1.101	Igme/ July 24-28, 2008	5-Year
188	18.253862	120.614479	0.360	0.610	0.062	Igme/ July 24-28, 2008	5-Year
189	18.2534	120.61411	0.810	0.610	0.040	Igme/ July 24-28, 2008	5-Year
190	18.252546	120.615293	0.260	0.610	0.122	Igme/ July 24-28, 2008	5-Year
191	18.252777	120.61601	0.180	0.305	0.016	Igme/ July 24-28, 2008	5-Year
192	18.248284	120.619656	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
193	18.284798	120.584646	0.080	0.914	0.696	Igme/ July 24-28, 2008	5-Year
194	18.25519	120.616322	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
195	18.255981	120.614233	0.080	0.305	0.051	Igme/ July 24-28, 2008	5-Year
196	18.25329	120.613437	0.110	0.305	0.038	Igme/ July 24-28, 2008	5-Year
197	18.254358	120.614751	1.080	0.305	0.601	Igme/ July 24-28, 2008	5-Year
198	18.253993	120.611746	0.290	0.914	0.390	Igme/ July 24-28, 2008	5-Year
199	18.254997	120.610037	0.150	0.914	0.584	Igme/ July 24-28, 2008	5-Year
200	18.254164	120.612247	0.380	0.610	0.053	Igme/ July 24-28, 2008	5-Year
201	18.255109	120.612121	0.630	0.610	0.000	Igme/ July 24-28, 2008	5-Year
202	18.25557	120.610036	0.700	0.610	0.008	Igme/ July 24-28, 2008	5-Year
203	18.256665	120.612715	0.320	0.305	0.000	Igme/ July 24-28, 2008	5-Year
204	18.270584	120.584248	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
205	18.256548	120.610263	0.390	0.305	0.007	Igme/ July 24-28, 2008	5-Year
206	18.255568	120.611159	0.090	0.305	0.046	Igme/ July 24-28, 2008	5-Year
207	18.253207	120.618263	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
208	18.253808	120.617632	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
209	18.251506	120.617528	0.190	0.610	0.176	Igme/ July 24-28, 2008	5-Year
210	18.252075	120.617738	0.340	0.610	0.073	Igme/ July 24-28, 2008	5-Year
211	18.253982	120.617764	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
212	18.251128	120.617751	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
213	18.251784	120.618049	0.120	0.305	0.034	Igme/ July 24-28, 2008	5-Year
214	18.254536	120.617967	0.400	0.305	0.009	Igme/ July 24-28, 2008	5-Year
215	18.252666	120.617831	0.240	0.305	0.004	Igme/ July 24-28, 2008	5-Year
216	18.25382	120.617466	0.120	0.914	0.631	Igme/ July 24-28, 2008	5-Year
217	18.25266	120.617054	0.240	0.610	0.137	Igme/ July 24-28, 2008	5-Year
218	18.251599	120.617046	0.670	0.305	0.133	Igme/ July 24-28, 2008	5-Year
219	18.253347	120.617001	0.400	0.305	0.009	Igme/ July 24-28, 2008	5-Year
220	18.255979	120.606297	0.550	0.914	0.133	Igme/ July 24-28, 2008	5-Year
221	18.255749	120.606594	0.170	0.610	0.193	Igme/ July 24-28, 2008	5-Year
222	18.256364	120.60699	0.080	0.152	0.005	Igme/ July 24-28, 2008	5-Year
223	18.255836	120.607522	0.300	0.152	0.022	Igme/ July 24-28, 2008	5-Year
224	18.257424	120.608209	0.820	0.914	0.009	Igme/ July 24-28, 2008	5-Year
225	18.26757	120.574592	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
226	18.257153	120.608469	0.120	0.610	0.240	Igme/ July 24-28, 2008	5-Year
227	18.258542	120.607293	0.320	0.152	0.028	Igme/ July 24-28, 2008	5-Year
228	18.257824	120.60752	0.030	0.152	0.015	Igme/ July 24-28, 2008	5-Year
229	18.254242	120.611507	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
230	18.254247	120.610919	0.330	0.914	0.342	Igme/ July 24-28, 2008	5-Year
231	18.253779	120.6098	0.490	0.914	0.180	Igme/ July 24-28, 2008	5-Year
232	18.254135	120.612484	0.120	0.914	0.631	Igme/ July 24-28, 2008	5-Year
233	18.25397	120.611686	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
234	18.253387	120.610944	0.810	0.914	0.011	Igme/ July 24-28, 2008	5-Year
204	10.233307	120.010344	0.010	0.914	0.011	1 15111C/ July 24-20, 2000	J-icai

I							
235	18.254772	120.609912	1.090	0.914	0.031	Igme/ July 24-28, 2008	5-Year
236	18.248974	120.620246	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
237	18.255047	120.610638	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
238	18.255112	120.614146	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
239	18.254451	120.61293	0.600	0.914	0.099	Igme/ July 24-28, 2008	5-Year
240	18.254343	120.611893	1.080	0.914	0.027	Igme/ July 24-28, 2008	5-Year
241	18.250335	120.617264	0.040	0.610	0.324	Igme/ July 24-28, 2008	5-Year
242	18.2541	120.612534	0.290	0.610	0.102	Igme/ July 24-28, 2008	5-Year
243	18.248543	120.621152	0.250	0.305	0.003	Igme/ July 24-28, 2008	5-Year
244	18.248743	120.622763	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
245	18.247889	120.622026	0.180	0.305	0.016	Igme/ July 24-28, 2008	5-Year
246	18.272751	120.574993	0.040	0.914	0.765	Igme/ July 24-28, 2008	5-Year
247	18.243402	120.603368	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
248	18.255792	120.606213	0.220	0.914	0.482	Igme/ July 24-28, 2008	5-Year
249	18.244408	120.603555	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
250	18.258016	120.60537	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
251	18.251358	120.611789	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
252	18.244982	120.603559	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
253	18.252382	120.611562	0.160	0.610	0.202	Igme/ July 24-28, 2008	5-Year
254	18.272959	120.575351	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
255	18.250863	120.613359	0.350	0.457	0.011	Igme/ July 24-28, 2008	5-Year
256	18.251303	120.614141	0.290	0.457	0.028	Igme/ July 24-28, 2008	5-Year
257	18.251064	120.612765	0.240	0.305	0.004	Igme/ July 24-28, 2008	5-Year
258	18.25298	120.607978	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
259	18.253762	120.605507	1.000	0.914	0.007	Igme/ July 24-28, 2008	5-Year
260	18.254205	120.608862	0.250	0.610	0.129	Igme/ July 24-28, 2008	5-Year
261	18.254921	120.605896	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
262	18.258073	120.604853	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
263	18.245495	120.592701	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
264	18.253667	120.607792	0.090	1.219	1.275	Igme/ July 24-28, 2008	5-Year
265	18.254587	120.608901	0.400	1.219	0.671	Igme/ July 24-28, 2008	5-Year
266	18.248597	120.618776	0.230	0.914	0.468	Igme/ July 24-28, 2008	5-Year
267	18.241372	120.613272	0.450	0.914	0.216	Igme/ July 24-28, 2008	5-Year
268	18.250055	120.618041	0.210	0.914	0.496	Igme/ July 24-28, 2008	5-Year
269	18.252873	120.608062	0.390	0.914	0.275	Igme/ July 24-28, 2008	5-Year
270	18.243011	120.621215	0.460	0.914	0.206	Igme/ July 24-28, 2008	5-Year
271	18.249363	120.616939	0.070	0.914	0.713	Igme/ July 24-28, 2008	5-Year
272	18.242255	120.60358	0.300	0.914	0.377	Igme/ July 24-28, 2008	5-Year
273	18.242261	120.621425	0.700	0.914	0.046	Igme/ July 24-28, 2008	5-Year
274	18.242145	120.619676	1.310	0.914	0.156	Igme/ July 24-28, 2008	5-Year
275	18.250092	120.616954	0.540	0.914	0.140	Igme/ July 24-28, 2008	5-Year
276	18.24012	120.612576	1.390	0.914	0.226	Igme/ July 24-28, 2008	5-Year
277	18.229792	120.645454	0.210	0.914	0.496	Igme/ July 24-28, 2008	5-Year
278	18.272974	120.575955	0.030	0.203	0.030	Igme/ July 24-28, 2008	5-Year
279	18.22744	120.643637	1.220	0.914	0.093	Igme/ July 24-28, 2008	5-Year
280	18.226737	120.641275	1.250	0.914	0.113	Igme/ July 24-28, 2008	5-Year
281	18.228708	120.644884	0.530	0.610	0.006	Igme/ July 24-28, 2008	5-Year
282	18.230235	120.647065	0.060	0.610	0.302	Igme/ July 24-28, 2008	5-Year

202	10 272247	120 574554	0.1.40	0.202	0.004	lama / July 24 20, 2000	F \/
283	18.273347	120.574554	0.140	0.203	0.004	Igme/ July 24-28, 2008	5-Year
284	18.226364	120.647027	1.440	0.457	0.966	Igme/ July 24-28, 2008	5-Year
285	18.227727	120.65061	0.060	0.457	0.158	Igme/ July 24-28, 2008	5-Year
286	18.284407	120.632459	0.430	1.219	0.623	Igme/ July 24-28, 2008	5-Year
287	18.268713	120.585612	0.030	1.219	1.414	Mario/ September 18-22, 2014	5-Year
288	18.270739	120.598049	0.460	1.219	0.576	Mario/ September 18-22, 2014	5-Year
289	18.279919	120.585167	2.070	1.219	0.724	Igme/ July 24-28, 2008	5-Year
290	18.279808	120.58851	2.310	1.219	1.190	Igme/ July 24-28, 2008	5-Year
291	18.28021	120.586293	1.370	0.914	0.208	Igme/ July 24-28, 2008	5-Year
292	18.276592	120.591947	1.070	0.914	0.024	Igme/ July 24-28, 2008	5-Year
293	18.279184	120.59057	1.500	0.914	0.343	Igme/ July 24-28, 2008	5-Year
294	18.274958	120.592009	0.650	0.610	0.002	Igme/ July 24-28, 2008	5-Year
295	18.275397	120.589632	0.790	0.610	0.033	Igme/ July 24-28, 2008	5-Year
296	18.27821	120.586801	0.280	0.457	0.031	Igme/ July 24-28, 2008	5-Year
297	18.276486	120.589118	0.160	0.457	0.088	Igme/ July 24-28, 2008	5-Year
298	18.272493	120.591313	0.090	0.305	0.046	Igme/ July 24-28, 2008	5-Year
299	18.277888	120.586285	0.120	0.305	0.034	Igme/ July 24-28, 2008	5-Year
300	18.248597	120.618776	0.230	0.914	0.468	Igme/ July 24-28, 2008	5-Year
301	18.241372	120.613272	0.450	0.914	0.216	Igme/ July 24-28, 2008	5-Year
302	18.250055	120.618041	0.210	0.914	0.496	Igme/ July 24-28, 2008	5-Year
303	18.252873	120.608062	0.390	0.914	0.275	Igme/ July 24-28, 2008	5-Year
304	18.243011	120.621215	0.460	0.914	0.206	Igme/ July 24-28, 2008	5-Year
305	18.242255	120.60358	0.300	0.914	0.377	Igme/ July 24-28, 2008	5-Year
306	18.242261	120.621425	0.700	0.762	0.004	Igme/ July 24-28, 2008	5-Year
307	18.242145	120.619676	1.310	0.762	0.300	Igme/ July 24-28, 2008	5-Year
308	18.250092	120.616954	0.540	0.762	0.049	Igme/ July 24-28, 2008	5-Year
309	18.272324	120.59805	0.030	0.203	0.030	Igme/ July 24-28, 2008	5-Year
310	18.24012	120.612576	1.390	0.762	0.394	Igme/ July 24-28, 2008	5-Year
311	18.241566	120.614457	0.770	0.610	0.026	Igme/ July 24-28, 2008	5-Year
312	18.24164	120.609854	0.460	0.610	0.022	Igme/ July 24-28, 2008	5-Year
313	18.228895	120.646953	0.070	0.610	0.291	Igme/ July 24-28, 2008	5-Year
314	18.24091	120.611727	0.990	0.457	0.284	Igme/ July 24-28, 2008	5-Year
315	18.228376	120.646522	0.340	0.457	0.014	Igme/ July 24-28, 2008	5-Year
316	18.254216	120.615215	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
317	18.248284	120.619656	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
318	18.250846	120.61544	0.100	0.762	0.438	Igme/ July 24-28, 2008	5-Year
319	18.249239	120.617482	0.140	0.610	0.221	Igme/ July 24-28, 2008	5-Year
320	18.238846	120.617046	0.650	0.457	0.037	Igme/ July 24-28, 2008	5-Year
321	18.26558	120.587676	0.810	0.762	0.002	Igme/ July 24-28, 2008	5-Year
322	18.272082	120.597392	0.250	0.610	0.129	Igme/ July 24-28, 2008	5-Year
323	18.267002	120.586756	0.770	0.305	0.216	Igme/ July 24-28, 2008	5-Year
324	18.26373	120.586325	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
325	18.26982	120.584691	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
326	18.280128	120.577464	1.040	1.219	0.032	Mario/ September 18-22, 2014	5-Year
327	18.280685	120.596006	0.060	1.219	1.344	Mario/ September 18-22, 2014	5-Year

328	18.228708	120.644884	0.530	1.219	0.475	Mario/ September 18-22, 2014	5-Year
329	18.276449	120.583691	0.030	1.219	1.414	Mario/ September 18-22, 2014	5-Year
330	18.254242	120.611507	0.140	0.914	0.600	Igme/ July 24-28, 2008	5-Year
331	18.254247	120.610919	0.330	0.914	0.342	Igme/ July 24-28, 2008	5-Year
332	18.253779	120.6098	0.490	0.914	0.180	Igme/ July 24-28, 2008	5-Year
333	18.254135	120.612484	0.120	0.914	0.631	Igme/ July 24-28, 2008	5-Year
334	18.25397	120.611686	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
335	18.253387	120.610944	0.810	0.914	0.011	Igme/ July 24-28, 2008	5-Year
336	18.254772	120.609912	1.090	0.610	0.231	Igme/ July 24-28, 2008	5-Year
337	18.248974	120.620246	0.030	0.610	0.336	Igme/ July 24-28, 2008	5-Year
338	18.255047	120.610638	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
339	18.255112	120.614146	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
340	18.254451	120.61293	0.600	0.914	0.099	Igme/ July 24-28, 2008	5-Year
341	18.254343	120.611893	1.080	0.914	0.027	Igme/ July 24-28, 2008	5-Year
342	18.250335	120.617264	0.040	0.610	0.324	Igme/ July 24-28, 2008	5-Year
343	18.253526	120.585036	0.090	0.305	0.046	Igme/ July 24-28, 2008	5-Year
344	18.2541	120.612534	0.290	0.610	0.102	Igme/ July 24-28, 2008	5-Year
345	18.248543	120.621152	0.250	0.305	0.003	Igme/ July 24-28, 2008	5-Year
346	18.248743	120.622763	0.210	0.305	0.009	Igme/ July 24-28, 2008	5-Year
347	18.247889	120.622026	0.180	0.152	0.001	Igme/ July 24-28, 2008	5-Year
348	18.253667	120.607792	0.090	1.219	1.275	Mario/ September 18-22, 2014	5-Year
349	18.250846	120.61544	0.100	0.762	0.438	Igme/ July 24-28, 2008	5-Year
350	18.253723	120.58475	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
351	18.254111	120.584283	0.120	0.305	0.034	Igme/ July 24-28, 2008	5-Year
352	18.280128	120.577464	1.040	0.914	0.016	Igme/ July 24-28, 2008	5-Year
353	18.281667	120.575749	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
354	18.279657	120.579539	0.290	0.610	0.102	Igme/ July 24-28, 2008	5-Year
355	18.278873	120.57951	0.030	0.305	0.076	Igme/ July 24-28, 2008	5-Year
356	18.250027	120.6145	0.070	0.762	0.479	Igme/ July 24-28, 2008	5-Year
357	18.239552	120.602297	1.270	0.914	0.126	Igme/ July 24-28, 2008	5-Year
358	18.280685	120.596006	0.060	0.914	0.730	Igme/ July 24-28, 2008	5-Year
359	18.280626	120.582108	1.950	0.914	1.072	Igme/ July 24-28, 2008	5-Year
360	18.276449	120.583691	0.030	0.914	0.782	Igme/ July 24-28, 2008	5-Year
361	18.280075	120.583916	0.650	0.914	0.070	Igme/ July 24-28, 2008	5-Year
362	18.277606	120.587788	0.060	0.610	0.302	Igme/ July 24-28, 2008	5-Year
363	18.278418	120.582899	0.400	0.610	0.044	Igme/ July 24-28, 2008	5-Year
364	18.273202	120.58465	0.030	0.457	0.182	Igme/ July 24-28, 2008	5-Year
365	18.277733	120.581607	0.030	0.457	0.182	Igme/ July 24-28, 2008	5-Year
366	18.249239	120.617482	0.140	0.762	0.387	Igme/ July 24-28, 2008	5-Year
367	18.287069	120.609423	0.260	0.914	0.428	Igme/ July 24-28, 2008	5-Year
368	18.254666	120.603444	3.600	0.914	7.212	Igme/ July 24-28, 2008	5-Year
369	18.25473	120.60464	1.090	0.914	0.031	Igme/ July 24-28, 2008	5-Year
370	18.25521	120.615091	0.170	0.914	0.554	Igme/ July 24-28, 2008	5-Year
371	18.253862	120.614479	0.360	0.610	0.062	Igme/ July 24-28, 2008	5-Year
372	18.2534	120.61411	0.810	0.610	0.040	Igme/ July 24-28, 2008	5-Year
373	18.252546	120.615293	0.260	0.610	0.122	Igme/ July 24-28, 2008	5-Year

52777 120.616 5519 120.616 5519 120.616 55981 120.614 5329 120.614 5329 120.614 53993 120.614 53993 120.614 53993 120.611 54358 120.612 55109 120.612 55109 120.612 5557 120.610 56665 120.612 56548 120.610 58846 120.617 53207 120.618 53808 120.617 53808 120.617 53982 120.617 53982 120.617 51784 120.617 51784 120.617 52666 120.617 52666 120.617 52666 120.617 52666 120.617	322 0.03(014 0.03(233 0.08(437 0.110 751 1.08(746 0.29(037 0.15(247 0.38(121 0.63(036 0.700 715 0.32(263 0.39(046 0.65(159 0.09(263 0.31(632 0.17(528 0.19(738 0.34(751 0.03(049 0.12(967 0.40(0 0.30 0 0.76 0 0.30 0 0.30 0 0.30 0 0.30 0 0.30 0 0.30 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.076 0.536 0.051 0.038 0.0601 0.390 0.584 0.053 0.000<	Igme/ July 24-28, 2008 Igme/ July 24-28, 20	5-Year
51926 120.615 55981 120.613 5329 120.613 54358 120.614 53993 120.611 54997 120.610 54164 120.612 55109 120.610 54164 120.612 5557 120.610 56665 120.612 5558 120.610 58846 120.617 53207 120.618 53808 120.617 51506 120.617 53808 120.617 53982 120.617 51205 120.617 53982 120.617 51784 120.617 54536 120.617 54536 120.617 54536 120.617 52666 120.617	014 0.030 233 0.080 437 0.110 751 1.080 746 0.290 037 0.150 247 0.380 121 0.633 036 0.700 715 0.320 263 0.030 632 0.110 738 0.340 751 0.036 049 0.120 967 0.400	0 0.76 0 0.30 0 0.30 0 0.30 0 0.30 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.30 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.536 0.051 0.038 0.601 0.390 0.584 0.000 0.001 0.002 0.0046 0.0782 0.073 0.336 0.0076 0.034	Igme/ July 24-28, 2008	5-Year
55981 120.614 5329 120.613 54358 120.614 53993 120.611 54997 120.610 54164 120.612 55109 120.612 5557 120.610 56665 120.612 55568 120.611 53207 120.613 53808 120.617 51506 120.617 53808 120.617 53982 120.617 51205 120.617 52075 120.617 53808 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 51784 120.618 54536 120.617 52666 120.617	233 0.080 437 0.110 751 1.080 746 0.290 037 0.150 247 0.380 121 0.630 036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.170 528 0.190 738 0.340 751 0.036 049 0.120 967 0.400	0 0.30 0 0.30 0 0.30 0 0.30 0 0.30 0 0.91 0 0.91 0 0.91 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30	0.051 0.038 0.601 0.390 0.584 0.053 0.0000 0.0000	Igme/ July 24-28, 2008	5-Year
5329 120.613 5329 120.614 53993 120.611 54997 120.610 54164 120.612 55109 120.612 5557 120.610 56665 120.612 56548 120.610 58846 120.617 53207 120.617 53808 120.617 51506 120.617 53808 120.617 51506 120.617 512075 120.617 5120617 120.617 5120617 120.617 5120617 120.617 5120617 120.617 5120617 120.617 51784 120.618 54536 120.617 52666 120.617	437 0.110 751 1.080 746 0.290 037 0.150 247 0.380 121 0.630 036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.170 528 0.190 738 0.340 751 0.036 049 0.120 967 0.400	0 0.30 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.30 0 0.41 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.038 0.601 0.390 0.584 0.053 0.000 0.001 0.002 0.0046 0.782 0.176 0.073 0.336 0.0076	igme/ July 24-28, 2008	5-Year
54358 120.614 53993 120.611 54997 120.610 54164 120.612 55109 120.612 5557 120.610 56665 120.612 56548 120.611 53207 120.613 53808 120.617 51506 120.617 53808 120.617 53808 120.617 53808 120.617 53808 120.617 51506 120.617 53808 120.617 53808 120.617 53808 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	751 1.080 746 0.290 037 0.150 247 0.380 121 0.630 036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.170 528 0.190 738 0.340 751 0.030 049 0.120 967 0.400	0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61	0.601 0.390 0.584 0.053 0.000 0.001 0.002 0.0046 0.782 0.176 0.073 0.336 0.034	Igme/ July 24-28, 2008	5-Year
53993 120.611 54997 120.610 54164 120.612 55109 120.610 5557 120.610 56665 120.612 56548 120.610 58846 120.617 55568 120.617 53808 120.617 53808 120.617 53982 120.617 512075 120.617 51206 120.617 51206 120.617 51206 120.617 51206 120.617 51206 120.617 51206 120.617 5128 120.617 51784 120.618 54536 120.617 52666 120.617	746 0.290 037 0.150 247 0.380 121 0.630 036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.170 528 0.190 738 0.340 751 0.030 049 0.120 967 0.400	0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.61 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.30	0.390 0.584 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.0046 0.782 0.554 0.176 0.073 0.336 0.0076 0.034	igme/ July 24-28, 2008	5-Year
54997 120.610 54164 120.612 55109 120.612 5557 120.610 56665 120.612 56548 120.611 55568 120.611 53207 120.613 53808 120.617 51506 120.617 53808 120.617 53982 120.617 53128 120.617 51784 120.618 54536 120.617 51784 120.618 54536 120.617 51784 120.618 54536 120.617 52666 120.617	037 0.150 247 0.380 121 0.630 036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.170 528 0.190 738 0.340 751 0.030 049 0.120 967 0.400	0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.61 0 0.30 0 0.61 0 0.61 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.584 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.0046 0.782 0.176 0.073 0.336 0.0076 0.034	igme/ July 24-28, 2008	5-Year
54164 120.612 55109 120.612 5557 120.610 56665 120.612 56548 120.610 38846 120.617 55568 120.617 53808 120.617 51506 120.617 53808 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 51784 120.618 54536 120.617 51784 120.618 54536 120.617 52666 120.617	247 0.38(121 0.63(036 0.700 715 0.32(263 0.39(046 0.65(159 0.09(263 0.03(632 0.17(528 0.19(738 0.34(751 0.03(049 0.12(967 0.40(0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.61 0 0.30 0 0.61 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30 0 0.30	0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.0046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	igme/ July 24-28, 2008	5-Year
55109 120.612 5557 120.610 56665 120.612 56548 120.617 55568 120.617 53207 120.618 53808 120.617 51506 120.617 52075 120.617 53982 120.617 51784 120.618 54536 120.617 52666 120.617	121 0.63(036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.030 632 0.170 528 0.190 738 0.340 751 0.030 049 0.120 967 0.400	0 0.61 0 0.61 0 0.30 0 0.30 0 0.30 0 0.61 0 0.30 0 0.61 0 0.61 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.000 0.008 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.002 0.0046 0.782 0.782 0.176 0.073 0.336 0.076 0.034	igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year
5557 120.610 56665 120.612 56548 120.610 38846 120.617 55568 120.611 53207 120.618 53808 120.617 51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.617 52666 120.617	036 0.700 715 0.320 263 0.390 046 0.650 159 0.090 263 0.330 632 0.170 528 0.190 738 0.340 764 0.030 049 0.120 967 0.400	0 0.61 0 0.30 0 0.30 0 0.61 0 0.61 0 0.30 0 0.61 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.008 0.000 0.000 0.007 0.002 0.046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year
566665 120.612 565665 120.612 56548 120.617 55568 120.617 53207 120.618 53808 120.617 51506 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	715 0.320 263 0.390 046 0.650 159 0.090 263 0.030 632 0.170 528 0.190 738 0.340 764 0.030 049 0.120 967 0.400	0 0.30 0 0.30 0 0.61 0 0.30 0 0.30 0 0.30 0 0.91 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.000 0.007 0.002 0.046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year
56548 120.610 38846 120.617 55568 120.611 53207 120.618 53808 120.617 51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	263 0.390 046 0.650 159 0.090 263 0.030 632 0.170 528 0.190 738 0.340 764 0.030 049 0.120 967 0.400	0 0.30 0 0.61 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.007 0.002 0.046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year
38846 120.617 355568 120.611 33207 120.618 33808 120.617 51506 120.617 52075 120.617 53982 120.617 51784 120.618 54536 120.617 52666 120.617	046 0.650 159 0.090 263 0.030 632 0.170 528 0.190 738 0.340 764 0.030 049 0.120 967 0.400	0 0.61 0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30	0.002 0.046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year
55568 120.611 53207 120.618 53808 120.617 51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	159 0.090 263 0.030 632 0.170 528 0.190 738 0.340 764 0.030 049 0.120 967 0.400	0 0.30 0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.046 0.782 0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year 5-Year 5-Year
53207 120.618 53808 120.617 51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	263 0.030 632 0.170 528 0.190 738 0.340 764 0.030 751 0.030 049 0.120 967 0.400	0 0.91 0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.782 0.554 0.176 0.0073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year 5-Year
53808 120.617 51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	632 0.170 528 0.190 738 0.340 764 0.030 751 0.030 049 0.120 967 0.400	0 0.91 0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30	0.554 0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year 5-Year
51506 120.617 52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	528 0.190 738 0.340 764 0.030 751 0.030 049 0.120 967 0.400	0 0.61 0 0.61 0 0.61 0 0.61 0 0.61 0 0.30 0 0.30	0.176 0.073 0.336 0.076 0.034	Igme/ July 24-28, 2008	5-Year 5-Year 5-Year 5-Year
52075 120.617 53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	738 0.340 764 0.030 751 0.030 049 0.120 967 0.400	0 0.61 0 0.61 0 0.30 0 0.30	0.073 0.336 0.076 0.034	lgme/ July 24-28, 2008 Igme/ July 24-28, 2008 Igme/ July 24-28, 2008	5-Year 5-Year 5-Year
53982 120.617 51128 120.617 51784 120.618 54536 120.617 52666 120.617	764 0.030 751 0.030 049 0.120 967 0.400	0 0.61 0 0.30 0 0.30	0 0.336 0.076 0.034	Igme/ July 24-28, 2008 Igme/ July 24-28, 2008	5-Year 5-Year
51128 120.617 51784 120.618 54536 120.617 52666 120.617	751 0.030 049 0.120 967 0.400	0.30	0.076	Igme/ July 24-28, 2008	5-Year
51784 120.618 54536 120.617 52666 120.617	049 0.120 967 0.400	0.30	0.034		
54536 120.617 52666 120.617	967 0.400			Igme/ July 24-28, 2008	5-Year
52666 120.617		0.30	0.009		
	831 0.240		0.005	Igme/ July 24-28, 2008	5-Year
12075 120 647	001 0.1	0.30	0.004	Igme/ July 24-28, 2008	5-Year
23875 120.617	442 0.230	0.91	0.468	Igme/ July 24-28, 2008	5-Year
7561 120.607	822 0.030	0.91	0.782	Igme/ July 24-28, 2008	5-Year
17316 120.604	396 0.060	0.91	0.730	Igme/ July 24-28, 2008	5-Year
50006 120.614	126 0.330	0.91	0.342	Igme/ July 24-28, 2008	5-Year
19483 120.614	682 3.070	0.91	4.647	Igme/ July 24-28, 2008	5-Year
2023 120.599	399 0.060	0.91	0.730	Igme/ July 24-28, 2008	5-Year
35929 120.620	218 2.490	0.91	2.483	Igme/ July 24-28, 2008	5-Year
31138 120.620	534 0.200	0.91	0.510	Igme/ July 24-28, 2008	5-Year
32004 120.616	539 0.060	0.91	0.730	Igme/ July 24-28, 2008	5-Year
7021 120.591	434 0.130	0.91	0.615	Igme/ July 24-28, 2008	5-Year
35678 120.615	885 0.530	0.91	0.148	Igme/ July 24-28, 2008	5-Year
15557 120.605	751 1.250	0.91	0.113	Igme/ July 24-28, 2008	5-Year
38875 120.599	738 3.730	0.91	7.928	Igme/ July 24-28, 2008	5-Year
120.605	968 1.540	0.91	0.391	Igme/ July 24-28, 2008	5-Year
		0.91	2.032	Igme/ July 24-28, 2008	5-Year
		0.91		Igme/ July 24-28, 2008	5-Year
				Igme/ July 24-28, 2008	5-Year
		0.91	0.782	Igme/ July 24-28, 2008	5-Year
				Igme/ July 24-28, 2008	5-Year
				Igme/ July 24-28, 2008	5-Year
				Igme/ July 24-28, 2008	5-Year
				Igme/ July 24-28, 2008	5-Year
					5-Year
					5-Year
	49483 120.614 92023 120.599 35929 120.620 31138 120.620 32004 120.616 97021 120.591 35678 120.615 45557 120.605 38875 120.605 38875 120.605 3878 120.611 35348 120.612 59541 120.623 30025 120.620 48445 120.628 3238 120.605	49483 120.614682 3.070 92023 120.599399 0.060 35929 120.620218 2.490 31138 120.620534 0.200 32004 120.616539 0.060 32004 120.616539 0.060 32004 120.616539 0.060 32004 120.616539 0.060 32004 120.615885 0.530 45557 120.605751 1.250 38875 120.605968 1.540 48641 120.605369 2.340 3878 120.611631 1.790 35348 120.615482 1.000 32494 120.623169 0.030 30025 120.620192 0.030 3238 120.605434 0.510 3238 120.605434 0.510 30356 120.61623 0.210	49483 120.614682 3.070 0.914 92023 120.599399 0.060 0.914 35929 120.620218 2.490 0.914 31138 120.620534 0.200 0.914 32004 120.616539 0.060 0.914 32004 120.616539 0.060 0.914 32004 120.616539 0.060 0.914 32004 120.616539 0.060 0.914 32004 120.616539 0.060 0.914 35678 120.615885 0.530 0.914 35678 120.605751 1.250 0.914 48783 120.605968 1.540 0.914 48641 120.605369 2.340 0.914 3878 120.611631 1.790 0.914 32494 120.612348 0.030 0.914 32494 120.628286 0.140 0.914 3238 120.605434 0.510 0.914 32338 120.605434 0.	49483120.6146823.0700.9144.6472023120.5993990.0600.9140.73035929120.6202182.4900.9142.48331138120.6205340.2000.9140.51032004120.6165390.0600.9140.73097021120.5914340.1300.9140.61535678120.6158850.5300.9140.14845557120.6057511.2500.9140.11338875120.5997383.7300.9147.92848783120.6059681.5400.9140.39148641120.6053692.3400.9142.0323878120.6116311.7900.9140.76735348120.6123480.0300.9140.78230025120.6201920.0300.9140.78238238120.6054340.5100.9140.60033238120.6054340.5100.9140.644	49483120.6146823.0700.9144.647Igme/ July 24-28, 200820203120.5993990.0600.9140.730Igme/ July 24-28, 200835929120.6202182.4900.9142.483Igme/ July 24-28, 200831138120.6205340.2000.9140.510Igme/ July 24-28, 200832004120.6165390.0600.9140.730Igme/ July 24-28, 200832004120.615890.0600.9140.730Igme/ July 24-28, 200837021120.5914340.1300.9140.615Igme/ July 24-28, 200835678120.6158850.5300.9140.148Igme/ July 24-28, 200838875120.6057511.2500.9140.113Igme/ July 24-28, 200848783120.6059681.5400.9140.391Igme/ July 24-28, 20083878120.6116311.7900.9140.767Igme/ July 24-28, 20083878120.6116311.7900.9140.767Igme/ July 24-28, 200832494120.6123480.0300.9140.782Igme/ July 24-28, 200830025120.6201920.0300.9140.782Igme/ July 24-28, 20083025120.6054340.5100.9140.600Igme/ July 24-28, 200830356120.616230.2100.9140.782Igme/ July 24-28, 200830356120.616230.2100.9140.164Igme/ July 24-28, 2008

-							
422	18.297021	120.591434	0.130	1.219	1.186	Igme/ July 24-28, 2008	5-Year
423	18.291937	120.597373	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
424	18.36531	120.603984	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
425	18.291093	120.598685	0.180	0.914	0.539	Igme/ July 24-28, 2008	5-Year
426	18.317401	120.603594	0.070	1.219	1.321	Igme/ July 24-28, 2008	5-Year
427	18.352906	120.612238	1.200	1.219	0.000	Igme/ July 24-28, 2008	5-Year
428	18.354525	120.605183	0.690	1.219	0.280	Igme/ July 24-28, 2008	5-Year
429	18.300733	120.607985	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
430	18.335929	120.620218	2.490	1.219	1.615	Igme/ July 24-28, 2008	5-Year
431	18.331138	120.620534	0.200	1.219	1.039	Igme/ July 24-28, 2008	5-Year
432	18.332004	120.616539	0.060	1.219	1.344	Igme/ July 24-28, 2008	5-Year
433	18.335678	120.615885	0.530	1.219	0.475	Igme/ July 24-28, 2008	5-Year
434	18.339631	120.611939	1.430	0.914	0.266	Igme/ July 24-28, 2008	5-Year
435	18.344974	120.605779	1.210	0.914	0.087	Igme/ July 24-28, 2008	5-Year
436	18.348974	120.604424	3.070	0.914	4.647	Igme/ July 24-28, 2008	5-Year
437	18.348612	120.607592	3.220	0.914	5.316	Igme/ July 24-28, 2008	5-Year
438	18.339088	120.611807	3.730	0.914	7.928	Igme/ July 24-28, 2008	5-Year
439	18.337225	120.606628	3.960	0.914	9.276	Igme/ July 24-28, 2008	5-Year
440	18.328009	120.605403	0.040	1.219	1.391	Igme/ July 24-28, 2008	5-Year
441	18.336416	120.618816	1.900	1.219	0.463	Igme/ July 24-28, 2008	5-Year
442	18.334717	120.616974	0.030	1.219	1.414	Igme/ July 24-28, 2008	5-Year
443	18.374185	120.60301	0.300	1.219	0.845	Igme/ July 24-28, 2008	5-Year
444	18.330947	120.617573	0.070	1.219	1.321	Igme/ July 24-28, 2008	5-Year
445	18.360906	120.62244	0.040	1.219	1.391	Igme/ July 24-28, 2008	5-Year
446	18.338548	120.612454	1.510	0.914	0.355	Igme/ July 24-28, 2008	5-Year
447	18.348613	120.606309	2.570	0.914	2.741	Igme/ July 24-28, 2008	5-Year
448	18.348974	120.604424	3.070	0.914	4.647	Igme/ July 24-28, 2008	5-Year
449	18.348612	120.607592	3.220	0.914	5.316	Igme/ July 24-28, 2008	5-Year
450	18.339446	120.611422	3.730	0.914	7.928	Igme/ July 24-28, 2008	5-Year
451	18.337225	120.606628	3.960	0.914	9.276	Igme/ July 24-28, 2008	5-Year
452	18.374185	120.60301	0.300	1.219	0.845	Mario/ September 18-22, 2014	5-Year
453	18.291874	120.607581	0.030	1.219	1.414	Mario/ September 18-22, 2014	5-Year
454	18.328009	120.605403	0.040	1.219	1.391	Mario/ September 18-22, 2014	5-Year
455	18.226561	120.649051	0.150	0.610	0.211	Mario/ September 18-22, 2014	5-Year
456	18.220005	120.66897	0.310	0.457	0.022	Mario/ September 18-22, 2014	5-Year
457	18.261778	120.679589	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
458	18.254982	120.689132	0.110	0.610	0.250	Mario/ September 18-22, 2014	5-Year
459	18.254599	120.689224	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
460	18.258755	120.694688	0.070	0.610	0.291	Mario/ September 18-22, 2014	5-Year
461	18.250086	120.691455	0.540	0.610	0.005	Mario/ September 18-22, 2014	5-Year
462	18.262522	120.678866	0.380	0.610	0.053	Mario/ September 18-22, 2014	5-Year

463	18.264738	120.678775	0.290	0.610	0.102	Mario/ September 18-22, 2014	5-Year
464	18.254465	120.687863	0.630	0.610	0.000	Mario/ September 18-22, 2014	5-Year
465	18.262746	120.680114	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
466	18.258526	120.693565	0.350	0.610	0.067	Mario/ September 18-22, 2014	5-Year
467	18.23001	120.647679	0.790	0.457	0.111	Mario/ September 18-22, 2014	5-Year
468	18.257428	120.694668	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
469	18.258741	120.693074	0.320	0.610	0.084	Mario/ September 18-22, 2014	5-Year
470	18.255784	120.695064	0.220	0.610	0.152	Mario/ September 18-22, 2014	5-Year
471	18.257934	120.694473	0.040	0.610	0.324	Mario/ September 18-22, 2014	5-Year
472	18.253524	120.694119	0.110	0.610	0.250	Mario/ September 18-22, 2014	5-Year
473	18.231093	120.645731	0.180	0.610	0.185	Mario/ September 18-22, 2014	5-Year
474	18.229697	120.639358	1.570	0.610	0.922	Mario/ September 18-22, 2014	5-Year
475	18.230245	120.63881	1.640	0.610	1.062	Mario/ September 18-22, 2014	5-Year
476	18.229973	120.641575	0.790	0.610	0.033	Mario/ September 18-22, 2014	5-Year
477	18.231126	120.640499	0.960	0.610	0.123	Mario/ September 18-22, 2014	5-Year
478	18.228598	120.648498	0.090	0.305	0.046	Mario/ September 18-22, 2014	5-Year
479	18.231177	120.641722	0.480	0.610	0.017	Mario/ September 18-22, 2014	5-Year
480	18.231093	120.645731	0.180	0.610	0.185	Mario/ September 18-22, 2014	5-Year
481	18.229697	120.639358	1.570	0.457	1.238	Mario/ September 18-22, 2014	5-Year
482	18.230479	120.646034	0.080	0.305	0.051	Mario/ September 18-22, 2014	5-Year
483	18.231126	120.640499	0.960	0.305	0.429	Mario/ September 18-22, 2014	5-Year
484	18.231177	120.641722	0.480	0.305	0.031	Mario/ September 18-22, 2014	5-Year
485	18.21684	120.669593	0.200	0.457	0.066	Ineng/ August 20-23, 2015	5-Year
486	18.257348	120.690064	0.040	0.457	0.174	Ineng/ August 20-23, 2015	5-Year
487	18.257293	120.691415	0.150	0.457	0.094	Ineng/ August 20-23, 2015	5-Year
488	18.255131	120.690529	0.030	0.457	0.182	Ineng/ August 20-23, 2015	5-Year
489	18.218832	120.670692	0.050	0.457	0.166	Ineng/ August 20-23, 2015	5-Year
490	18.243334	120.6757	0.030	0.457	0.182	Ineng/ August 20-23, 2015	5-Year
491	18.256268	120.691558	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
492	18.253789	120.691538	0.040	0.305	0.070	Ineng/ August 20-23, 2015	5-Year
492	18.21933	120.669764	0.250	0.305	0.003	Ineng/ August 20-23, 2015	5-Year
493	18.21333	120.670372	0.230	0.305	0.003	Ineng/ August 20-23, 2015	5-Year
494	18.217324	120.670372	0.040	0.305	0.070	Ineng/ August 20-23, 2015	5-Year
496	18.228756	120.676978	0.060	0.305	0.060	Ineng/ August 20-23, 2015	5-Year

	,						
497	18.216526	120.671039	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
498	18.227085	120.675156	0.050	0.305	0.065	Ineng/ August 20-23, 2015	5-Year
499	18.214254	120.670944	1.310	0.305	1.010	Ineng/ August 20-23, 2015	5-Year
500	18.228449	120.674411	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
501	18.230384	120.678144	0.850	0.305	0.297	Ineng/ August 20-23, 2015	5-Year
502	18.303788	120.719454	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
503	18.228858	120.675508	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
504	18.231006	120.67526	0.610	0.305	0.093	Ineng/ August 20-23, 2015	5-Year
505	18.257032	120.692923	0.060	0.305	0.060	Ineng/ August 20-23, 2015	5-Year
506	18.25445	120.694364	0.370	0.305	0.004	Ineng/ August 20-23, 2015	5-Year
507	18.256549	120.692523	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
508	18.254377	120.69324	0.220	0.305	0.007	Ineng/ August 20-23, 2015	5-Year
509	18.214868	120.67228	0.030	0.305	0.076	Ineng/ August 20-23, 2015	5-Year
510	18.307102	120.716758	0.060	0.610	0.302	Mario/ September 18-22, 2014	5-Year
511	18.217797	120.668149	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
512	18.303137	120.718924	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
513	18.227907	120.673153	0.350	0.610	0.067	Mario/ September 18-22, 2014	5-Year
514	18.323835	120.733027	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
515	18.323228	120.732209	0.040	0.610	0.324	Mario/ September 18-22, 2014	5-Year
516	18.324849	120.731838	0.320	0.610	0.084	Mario/ September 18-22, 2014	5-Year
517	18.3062	120.717143	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
518	18.225628	120.648963	0.570	0.610	0.002	Mario/ September 18-22, 2014	5-Year
519	18.264013	120.680685	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
520	18.261778	120.679589	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
521	18.254982	120.689132	0.110	0.610	0.250	Mario/ September 18-22, 2014	5-Year
522	18.254599	120.689224	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
523	18.258755	120.694688	0.070	0.610	0.291	Mario/ September 18-22, 2014	5-Year
524	18.250086	120.691455	0.540	0.610	0.005	Mario/ September 18-22, 2014	5-Year
525	18.262522	120.678866	0.380	0.610	0.053	Mario/ September 18-22, 2014	5-Year
526	18.261655	120.678741	0.060	0.610	0.302	Mario/ September 18-22, 2014	5-Year
527	18.254465	120.687863	0.630	0.610	0.000	Mario/ September 18-22, 2014	5-Year
528	18.262746	120.680114	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
529	18.227236	120.646578	0.570	0.610	0.002	Mario/ September 18-22, 2014	5-Year
530	18.258526	120.693565	0.350	0.610	0.067	Mario/ September 18-22, 2014	5-Year

531	18.257428	120.694668	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
532	18.258741	120.693074	0.320	0.610	0.084	Mario/ September 18-22, 2014	5-Year
533	18.255784	120.695064	0.220	0.610	0.152	Mario/ September 18-22, 2014	5-Year
534	18.257934	120.694473	0.040	0.457	0.174	Mario/ September 18-22, 2014	5-Year
535	18.253524	120.694119	0.110	0.305	0.038	Mario/ September 18-22, 2014	5-Year
536	18.231093	120.645731	0.180	0.610	0.185	Mario/ September 18-22, 2014	5-Year
537	18.229697	120.639358	1.570	0.610	0.922	Mario/ September 18-22, 2014	5-Year
538	18.230245	120.63881	1.640	0.610	1.062	Mario/ September 18-22, 2014	5-Year
539	18.229973	120.641575	0.790	0.457	0.111	Mario/ September 18-22, 2014	5-Year
540	18.225883	120.670361	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
541	18.231126	120.640499	0.960	0.305	0.429	Mario/ September 18-22, 2014	5-Year
542	18.231177	120.641722	0.480	0.610	0.017	Mario/ September 18-22, 2014	5-Year
543	18.226561	120.649051	0.150	0.610	0.211	Mario/ September 18-22, 2014	5-Year
544	18.217797	120.668149	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
545	18.227907	120.673153	0.350	0.610	0.067	Mario/ September 18-22, 2014	5-Year
546	18.225628	120.648963	0.570	0.610	0.002	Mario/ September 18-22, 2014	5-Year
547	18.227236	120.646578	0.570	0.610	0.002	Mario/ September 18-22, 2014	5-Year
548	18.225883	120.670361	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
549	18.215726	120.66884	0.140	0.610	0.221	Mario/ September 18-22, 2014	5-Year
550	18.215726	120.66884	0.140	0.610	0.221	Mario/ September 18-22, 2014	5-Year
551	18.228864	120.649745	0.130	0.610	0.230	Mario/ September 18-22, 2014	5-Year
552	18.228925	120.64593	0.230	0.610	0.144	Mario/ September 18-22, 2014	5-Year
553	18.220005	120.66897	0.310	0.457	0.022	Mario/ September 18-22, 2014	5-Year
554	18.23001	120.647679	0.790	0.457	0.111	Mario/ September 18-22, 2014	5-Year
555	18.228598	120.648498	0.090	0.305	0.046	Mario/ September 18-22, 2014	5-Year
556	18.230479	120.646034	0.080	0.305	0.051	Mario/ September 18-22, 2014	5-Year
557	18.243656	120.663664	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year
558	18.228864	120.649745	0.130	0.610	0.230	Mario/ September 18-22, 2014	5-Year
559	18.228925	120.64593	0.230	0.610	0.144	Mario/ September 18-22, 2014	5-Year

560	18.304751	120.717838	0.030	0.914	0.782	Mario/ September 18-22, 2014	5-Year
561	18.323923	120.732325	0.030	0.914	0.782	Mario/ September 18-22, 2014	5-Year
562	18.325243	120.732783	0.100	0.914	0.663	Mario/ September 18-22, 2014	5-Year
563	18.304712	120.718589	0.030	0.914	0.782	Mario/ September 18-22, 2014	5-Year
564	18.264013	120.680685	0.030	0.610	0.336	Mario/ September 18-22, 2014	5-Year

RMSE 0.68772

Annex 12. Educational Institutions affected by flooding in Bacarra Flood Plain

Table A-12.1. Educational Institutions in Bacarra, Ilocos Norte affected by flooding in Bacarra Flood Plain

llo	ocos Norte				
	Bacarra				
Durilding Manua	D	Rainfall Scenario			
Building Name	Barangay	5-year	25-year	100-year	
BANGSIRIT ES	Bani				
BUYON ES	Buyon				
CABARUAN ES	Cabaruan				
CABULALAAN ES	Cabulalaan			Low	
CALIOET ES	Calioet-Libong				
CASILIAN PS	Casilian				
CASILIAN PS - TAGUIPURO ANNEX	Casilian				
PARANG ES	Duripes				
TUBBURAN ES	Duripes	Medium	Medium	Medium	
PASIOCAN ES	Pasiocan				
THE RIVERDEEP ACADEMY, INC.	Pasngal	Low	Low	Medium	
PULANGI ES	Pulangi				
BACARRA MEDICAL CENTER SCHOOL OF MIDWIFE- RY	San Andres II				
SAN AGUSTIN ES	San Pedro I			Low	
SANTO CRISTO ELEMENTARY SCHOOL	San Roque I	Low	Low	Low	
APALENG-LIBTONG ES	San Simon II				
TAMBIDAO ELEMENTARY SCHOOL	San Vicente	Low	Low	Low	
GANAGAN ELEMENTARY SCHOOL	Sangil				
SABAS-SAGISI MEMORIAL ELEM. SCHOOL	Sangil				
BACARRA CES	Santa Rita				
BACARRA NCHS	Santa Rita	Low	Low	Low	
SPECIAL EDUCATION CENTER	Santa Rita				
ST. ANDREW ACADEMY	Santa Rita	Low	Low	Low	
ST. ANDREW GRADE SCHOOL	Santa Rita				
	Bangui	•		•	
Ruilding Name	Barangay	R	ainfall Scena	io	
Building Name	Barangay	5-year	25-year	100-year	
CABAYO ES	Рауас				
L	aoag City				
Building Name	Barangay	R	ainfall Scena	io	
Dunung Name	Barangay	5-year	25-year	100-year	
ALEJO MALASIG ES	Bgy. No. 54-A, Lagui-Sail				
PILA ES	Bgy. No. 57, Pila				

D. G. R. RAFALES MEMORIAL ES	Bgy. No. 59-A, Dib-				
	ua South Bgy. No. 61, Cata-				
CATABAN PS	bgy. No. 61, Cata- ban				
NAVOTAS ES	Bgy. No. 62-A, Navotas North				
CAAOACAN ES	Bgy. No. 6-A, Caao- acan				
	Pasuquin				
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
ILOCOS NORTE AGRICULTURAL COLLEGE	Batuli			Low	
SAN ISIDRO PS	Batuli		Low	Low	
BINSANG DAYCARE CENTER	Binsang				
BINSANG ELEMENTARY SCHOOL	Binsang		Low	Low	
CADARATAN DAY CARE	Binsang			Low	
CADARATAN ES	Binsang				
CADARATAN NATIONAL HIGH SCHOOL	Binsang			Low	
PUNGTO PS	Carusipan				
DADAEMAN ELEMENTARY SCHOOL	Dadaeman		Low	Medium	
NAGLICUAN ES	Naglicuan				
PANGIL ES	Pangil				
EAST CENTRAL ELEMENTARY SCHOOL (HERITAGE BUILDING)	Poblacion 1		Medium	Medium	
SAINT JAMES ACADEMY OF PASUQUIN, ILOCOS NORTE, INC.	Poblacion 2				
PASUQUIN CENTRAL ELEMENTARY SCHOOL	Poblacion 3	Low	Medium	Medium	
NAGSANGA ES	Pragata				
GABALDON ES	Puyupuyan		Low	Low	
PUYUPUYAN ES	Puyupuyan		Low	Low	
DILANIS ES	San Juan				
MACUPIT ELEMENTARY SCHOOL	Santa Catalina			Low	
STA. CATALINA ES	Santa Catalina				
CARUAN ES	Sulongan		Low	Low	
SURONG PS	Surong		High	High	
CABABAAN ES	Susugaen				
	Vintar			•	
Building Name	Barangay	R	ainfall Scena	rio	
	Barangay	5-year	25-year	100-year	
ABKIR ES	Abkir				
SALPAD INTEGRATED SCHOOL	Abkir				
ALSEM ES	Alsem				
ISIC ISIC ELEMENTARY SCHOOL	Cabayo				
ISIC-ISIC ES	Cabayo				
ISIC-ISIC NHS	Cabayo				

CABISUCULAN-COLUMBIA ES	Cabisocolan			
COLUMBIA PS	Columbia			
VINTAR CES	Columbia	Low	Low	Low
DIPILAT ES	Dipilat			
SAGPAT ES	Dipilat		Medium	High
DIMAMAGA ELEMENTARY SCHOOL	Esperanza			
VINTAR NHS	Esperanza			
ISIC ISIC NATIONAL HIGH SCHOOL	Isic Isic			
LUBNAC ES	Lubnac			
MALAMPA ES	Malampa	Low	Low	Low
MANARANG ES	Manarang			
MARGAAY PS	Margaay	Low	Low	Medium
PARPAROROC ES	Parparoroc	Low	Low	Medium
LIPAY ES	San Jose			
SALPAD INTEGRATED SCHOOL	San Pedro			
F. CAMAQUIN INTEGRATED SCHOOL	Santa Maria	Medium	Medium	Medium
TAMDAGAN ES	Tamdagan			
VISAYA ES	Visaya			

Annex 13. Medical Institutions affected by flooding in Bacarra Flood Plain

Table A-13.1. Medical Institutions in Bacarra, Ilocos Norte affected by flooding in Bacarra Flood Plain.

	llocos Norte			
	Bacarra			
Building Name	Parangau	Rainfall Scenario		
	Barangay	5-year	25-year	100-year
CABULALAAN HEALTH CENTER	Cabulalaan			
SALDUA DENTAL CLINIC	San Simon II			
BRGY. HEALTH CENTER	Sangil			
DENTAL CLINIC	Santa Rita			
	Pasuquin	<u> </u>		
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
CADARATAN HEALTH CENTER	Binsang			
	 Vintar	1		
Building Name	Barangay	Rainfall Scenario		
		5-year	25-year	100-year
VINTAR DISTRICT HOSPITAL	Esperanza			