LiDAR Surveys and Flood Mapping of Maranding River

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

© University of the Philippines Diliman and Mindanao State University – Iligan Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and A.E. Milano, (Eds.). (2017), LiDAR Surveys and Flood Mapping of Maranding River, Flood Hazard Mapping of the Philippines using LIDAR-244pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Engr. Alan E. Milano Project Leader, PHIL-LiDAR 1 Program Mindanao State University – Iligan Institute of Technology Iligan City, Philippines 9200 E-mail: aemilano1960@yahoo.com

Enrico C. Paringit, Dr. Eng. Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 987-621-430-079-2

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	х
CHAPTER 1: OVERVIEW OF THE PROGRAM AND MARANDING RIVER	
1.1 Background of the Phil-LIDAR 1 Program	1
1.2 Overview of the Maranding River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE MARANDING FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions	15
2.4 Survey Coverage	
CHAPTER 3: LIDAR DATA PROCESSING OF THE MARANDING FLOODPLAIN	19
3.1 Overview of the LIDAR Data Pre-Processing	
3.2 Transmittal of Acquired LiDAR Data	
3.3 Trajectory Computation	
3.4 LiDAR Point Cloud Computation	
3.5 LiDAR Data Quality Checking	
3.5 LIDAR Data Quality Checking	
3.7 LiDAR Image Processing and Orthophotograph Rectification	
3.8 DEM Editing and Hydro-Correction	
3.9 Mosaicking of Blocks	
3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model	
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	
3.12 Feature Extraction	
3.12.1 Quality Checking (QC) of Digitized Features' Boundary	
3.12.2 Height Extraction	
3.12.3 Feature Attribution	39
3.12.4 Final Quality Checking of Extracted Features	40
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MARANDING RIVER BASIN	42
4.1 Summary of Activities	42
4.2 Control Survey	
4.3 Baseline Processing	
4.4 Network Adjustment	
4.5 Cross-section and Bridge As-Built survey and Water Level Marking	
4.6 Validation Points Acquisition Survey	
4.7 River Bathymetric Survey	
CHAPTER 5: FLOOD MODELING AND MAPPING	57
5.1 Data Used for Hydrologic Modeling	
5.1.1 Hydrometry and Rating Curves	
5.1.2 Precipitation	
5.1.3 Rating Curves and River Outflow	
5.2 RIDF Station	
5.3 HMS Model	
5.4 Cross-section Data	
5.5 Flo 2D Model	
5.6 Results of HMS Calibration	
5.7 Calculated Outflow hydrographs and discharge values for different Rainfall Return Perio	
5.7.1 Hydrograph using the Rainfall Runoff Model	
5.8 River Analysis (RAS) Model Simulation	72

5.9 Flow Depth and Flood Hazard	
5.10 Inventory of Areas Exposed to Flooding 5.11 Flood Validation	
REFERENCES	116
ANNEXES	117
Annex 1. Technical Specifications of the LIDAR Sensors used in the Maranding Floodplain Survey	117
Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey	118
Annex 3. Baseline Processing Reports of Reference Points Used	127
Annex 4. The LiDAR Survey Team Composition	131
Annex 5. Data Transfer Sheet for Maranding Floodplain	132
Annex 6. Flight Logs for the Flight Missions	136
Annex 7. Flight Status Reports	148
Annex 8. Mission Summary Reports	163
Annex 9. Maranding Model Basin Parameters	
Annex 10. Maranding Model Reach Parameters	
Annex 11. Maranding Field Validation Points	222
Annex 12. Educational Institutions Affected by flooding in Maranding Floodplain	229
Annex 13. Health Institutions affected by flooding in Maranding Floodplain	

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system.	3
Table 2. Details of the recovered NAMRIA horizontal control point LAN-02 used as base station for LiDAR Acquisition	
Table 3. Details of the recovered NAMRIA horizontal control point ZGN-60 used as base station for LiDAR Acquisition.	
Table 4. Details of the recovered NAMRIA horizontal control point ZGS-16 used as base station for LiDAR Acquisition	
Table 5. Details of the recovered NAMRIA horizontal control point ZGS-17 used as base station for LiDAR Acquisition.	
Table 6. Details of the recovered NAMRIA horizontal control point ZGS-88 used as base station for LiDAR Acquisition.	r the
Table 7. Details of the established point ZN- 53 used as base station for the LiDAR Acquisition Table 8. Details of the recovered NAMRIA vertical control point LE-76 used as base station for the Li	11
Acquisition with established coordinates Table 9. Ground control points used during LiDAR data acquisition	12
Table 10. Flight missions for LiDAR data acquisition in Dipolog floodplain.	14
Table 11. Ground control points used during the LiDAR data acquisition. Table 12. Flight missions for the LiDAR data acquisition of the Maranding Floodplain.	15
Table 13. Actual parameters used during the LiDAR data acquisition of the Maranding Floodplain Table 14. The list of municipalities and cities surveyed of the Maranding Floodplain LiDAR acquisition.	
Table 15. Self-calibration values for all Maranding Floodplain flights. Table 16. List of LiDAR blocks for the Maranding floodplain.	
Table 17. List of LiDAR blocks for the Maranding floodplain. Table 18. List of LiDAR blocks for the Maranding floodplain.	
Table 19. The shift values (in meters) for each LiDAR Block of the Maranding Floodplain. Table 20. The calibration statistical measures of the compared elevation values between the Maran	
LiDAR data and the calibration data Table 21. TStatistical measures for the Maranding River Basin DTM validation.and the calibration data	35
Table 22. Details of the quality checking ratings for the building features extracted for the Maranding R Basin	River
Table 23. Building features that were extracted for the Maranding Floodplain Table 24. Total length of extracted roads for the Maranding Floodplain.	39
Table 25. Number of extracted water bodies in the Maranding Floodplain	40
Table 26. List of references and control points occupied in Lanao del Norte survey (Source: NAMRIA; TCAGP)	44
Table 27. The Baseline processing report for the Maranding River GNSS static observation surveyTable 28. Constraints applied to the adjustment of the control points	47
Table 29. The Baseline processing report for the Maranding River GNSS static observation surveyTable 30. The Baseline processing report for the Maranding River GNSS static observation survey	
Table 31. The reference and control points utilized in the Maranding River Static Survey, with t corresponding locations (Source: NAMRIA, UP-TCAGP)	
Table 32. RIDF values for the Dipolog Rain Gauge, as computed by PAGASA Table 33. RIDF values for the Cagayan de Oro Rain Gauge, as computed by PAGASA	60
Table 34. Summary of the Efficiency Test of the Maranding HMS Model	69
Table 35. The peak values of the Maranding HEC-HMS Model outflow using the Cagayan de Oro RIDF.Table 36. Municipalities affected in Maranding floodplain.	

Table 37. Affected Areas in Aurora, Zamboanga del Sur during 5-Year Rainfall Return Period. 80
Table 38. Affected Areas in Baroy, Lanao del Norte during 5-Year Rainfall Return Period81
Table 39. Affected Areas in Kapatagan, Lanao del Norte during 5-Year Rainfall Return Period83
Table 40. Affected Areas in Lala, Lanao del Norte during 5-Year Rainfall Return Period. 85
Table 41. Affected Areas in Salvador, Lanao del Norte during 5-Year Rainfall Return Period. 87
Table 42. Affected Areas in Sapad, Lanao del Norte during 5-Year Rainfall Return Period
Table 43. Affected Areas in Tubod, Lanao del Norte during 5-Year Rainfall Return Period90
Table 44. Affected Areas in Aurora, Zamboanga del Sur during 25-Year Rainfall Return Period. 91
Table 45. Affected Areas in Baroy, Lanao del Norte during 25-Year Rainfall Return Period92
Table 46. Affected Areas in Kapatagan, Lanao del Norte during 25-Year Rainfall Return Period94
Table 47. Affected Areas in Lala, Lanao del Norte during 25-Year Rainfall Return Period. 96
Table 48. Affected Areas in Salvador, Lanao del Norte during 25-Year Rainfall Return Period. 98
Table 49. Affected Areas in Sapad, Lanao del Norte during 25-Year Rainfall Return Period
Table 50. Affected Areas in Tubod, Lanao del Norte during 25-Year Rainfall Return Period100
Table 51. Affected Areas in Aurora, Zamboanga del Sur during 100-Year Rainfall Return Period. 101
Table 52. Affected Areas in Baroy, Lanao del Norte during 100-Year Rainfall Return Period103
Table 53. Affected Areas in Kapatagan, Lanao del Norte during 100-Year Rainfall Return Period105
Table 54. Affected Areas in Lala, Lanao del Norte during 100-Year Rainfall Return Period. 107
Table 55. Affected Areas in Salvador, Lanao del Norte during 100-Year Rainfall Return Period. 109
Table 56. Affected Areas in Sapad, Lanao del Norte during 100-Year Rainfall Return Period110
Table 57. Affected Areas in Tubod, Lanao del Norte during 100-Year Rainfall Return Period111
Table 58. Actual Flood Depth versuss Simulated Flood Depth at different levels in the Maranding River
Basin
Table 59. The summary of the Accuracy Assessment in the Maranding River Basin Survey. 115

LIST OF FIGURES

Figure 1. Map of Maranding River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Maranding Floodplain survey using Pegasus sensor	: 2.2
Ground Base Stations	4
Figure 3. GPS set-up over LAN-02 on top of a concrete irrigation canal water gate in Brgy. Pinoyak, I	Lala,
Lanao del Norte (a) and NAMRIA reference point LAN-02 (b) as recovered by the field team	5
Figure 4. GPS set-up over ZS-188 (a) at Brgy. Licomo, Zamboanga City, Zamboanga del Sur and NAN	/IRIA
reference point ZS-188 (b) as recovered by the field team	
Figure 5. GPS set-up over ZGS-16 (a) in Purok Nangka, Brgy. Baclay, Tukuran, Zamboanga del Sur	
NAMRIA reference point ZGS-16 (b) as recovered by the field team.	
Figure 6. GPS set-up over ZGS-17 (a) in Purok Kasoy, Brgy. Baclay, Tukuran, Zamboanga del Sur and NAN	
reference point ZGS-17 (b) as recovered by the field team	
Figure 7. GPS set-up over ZGS-88 on a center island in Puroy Saray, Aurora, Zamboanga del Sur (a)	
NAMRIA reference point ZGS-88 (b)as recovered by the field team.	
Figure 8. GPS set-up over LE-50 on the Barogohan Bridge in Maigo, Lanao del Norte (a) and NAMRIA be	
mark point LE-50 (b) as recovered by the field team.	
Figure 9. GPS set-up over LE-76 at Bulod Bridge footwalk of Brgy. Bulod, Tubud, Lanao del Norte (a)	
NAMRIA reference point LE-76 (b) as recovered by the field team	
Figure 10. GPS set-up over ZGN-138 (a) in Katipinan Zamboanga del Norte and NAMRIA reference p	
ZGN-138 (b) as recovered by the field team	
Figure 11. GPS set-up over ZN-53 (a) Brgy. Daanglungsod, Katipunan, Zamboanga del Norte and refere	
point ZN-53 (b) as recovered by the field team	
Figure 12. Actual LiDAR survey coverage of the Maranding Floodplain	
Figure 13. Schematic diagram for the data pre-processing.	
Figure 14. The Smoothed Performance Metrics of Maranding Flight 23088P	
Figure 15. The Solution Status Parameters of Maranding Flight 23008P	
Figure 16. Best Estimated Trajectory of the LiDAR missions conducted over the Maranding Floodplain	
Figure 17. The boundaries of the processed LiDAR data over the Maranding Floodplain.	
Figure 18. Data overlap between missions and flight lines for the Maranding River Floodplain Survey.	
Figure 19. The pulse density map of the merged LiDAR data for the Maranding Floodplain Survey	
Figure 20. Map of elevation difference Map between flight lines for the Maranding Floodplain Survey.	
Figure 21. Screen-capture of the quality checking for Maranding Flight 23088P using the Profile Tool o	
Modeler	
Figure 22. The coverage of the Maranding Floodplain Survey (a) the tile system (b) depicts the classification of the system (b) depicts the system (b)	
results in TerraScan	
Figure 23. The images before (a) and after (b) undertaking classification.	28
Figure 24. Photo (A) features the production of the last return DSM; (B) depicts the production of	the
DTM; (C) portrays the production of the first return DSM; and (D) presents the generation of	f the
secondary DTM in some portions of the Maranding Floodplain	29
Figure 25. The Maranding Floodplain with the available orthophotographs.	30
Figure 26. Sample orthophotograph tiles for the Maranding Floodplain	30
Figure 27. Portions in the DTM of the Maranding Floodplain showing (a) a bridge before underg	oing
manual; (b) bridge after manual editing; (c) a paddy field before undergoing manual edi	ting;
while (d) after data retrieval	32
Figure 28. Portions in the DTM of the Maranding Floodplain showing (a) a bridge before underg	oing
manual; (b) bridge after manual editing; (c) a paddy field before undergoing manual edi	ting;
while (d) after data retrieval	33

Figure 29. Map of Maranding Floodplain with validation survey points in green.	34
Figure 30. Correlation plot between calibration survey points and LiDAR data	35
Figure 31. Correlation plot between the validation survey points and the LiDAR data	36
Figure 32. Map of Maranding floodplain with bathymetric survey points shown in blue	37
Figure 33 Blocks (in blue) of Maranding building features that were subjected to QC	38
Figure 34Extracted features of the Maranding Floodplain	41
Figure 35Extent of the bathymetric survey (in blue line) in Maranding River.	42
Figure 36. GNSS network established in Maranding River Field Survey	43
Figure 37. GNSS base set up, Trimble [®] SPS 852, at LAN-2, situated on top of a concrete irrigation	n canal gate
in Brgy. Maranding, Municipality of Kapatagan, Lanao Del Norte	44
Figure 38. GNSS base set up, Trimble [®] SPS 852, at LE-92, located at the approach of Maranding	g Bridge, in
Brgy. Maranding, Municipality of Lala, Lanao Del Norte	45
Figure 39. GNSS receiver setup, Trimble [®] SPS 882, at UP-L, located at the approach of Liangar	n Bridge, in
Brgy. Liangan West, Municipality of Maigo, Lanao Del Norte	45
Figure 40. Cross-section survey on the downstream side of Maranding Bridge in Brgy. I	Maranding,
Municipality of Lala.Liangan West, Municipality of Maigo, Lanao Del Norte	49
Figure 41. Location Map of Maranding bridge cross-section.	49
Figure 42. The Maranding Bridge cross-section survey drawn to scale	50
Figure 43. Maranding Bridge Data Form.	
Figure 44. Trimble [®] SPS882 set-up on a vehicle for validation points acquisition along the major	roads near
Maranding River.	52
Figure 45. The extent of the LiDAR ground validation survey for Maranding River Basin	52
Figure 46. Set up of Hi-Target [™] Single Beam Echo Sounder integrated with a roving GNSS red	ceiver on a
motor boat for the bathymetric survey in Maranding River	
Figure 47. The extent of the Maranding River Bathymetry Survey	
Figure 48. The Maranding river bed profile (upstream part).	
Figure 49. The Maranding river bed profile (downstream part)	56
Figure 50. The location map of Maranding HEC-HMS model used for calibration.	
Figure 51. Cross-Section Plot of Maranding Bridge.	59
Figure 52. The rating curve plot of the Maranding Bridge.	59
Figure 53. Rainfall and outflow data of the Maranding River Basin, which was used for modeling	g60
Figure 54. Location of Cagayan de Oro RIDF station relative to Maranding River Basin.	61
Figure 55. The synthetic storm generated for a 24-hour period rainfall for various return period	s61
Figure 56. Soil Map of Maranding River Basin	62
Figure 57. Land Cover Map of Maranding River Basin.	63
Figure 58. Slope Map of the Maranding River Basin.	64
Figure 59. The Maranding river basin model generated using HEC-HMS	65
Figure 60. River cross-section of the Maranding River through the ArcMap HEC GeoRas tool	66
Figure 61 A screenshot of the river sub-catchment with the computational area to be modeled	d in FLO-2D
Grid Developer System Pro (FLO-2D GDS Pro)	67
Figure 62. Outflow Hydrograph of Maranding produced by the HEC-HMS model compared wit	h observed
outflow	68
Figure 63. The Outflow hydrograph at the Maranding Station, generated using the Cagayan d	e Oro RIDF
simulated in HEC-HMS	71
Figure 64. The sample output map of the Maranding RAS Model.	72
Figure 65. A 100-year Flood Hazard Map for Maranding Floodplain overlaid on Google Earth in	nagery74
Figure 66. A 100-year Flow Depth Map for Maranding Floodplain overlaid on Google Earth image	gery75
Figure 67. A 25-year Flood Hazard Map for Maranding Floodplain overlaid on Google Earth ima	gery76
Figure 68. A 25-year Flow Depth Map for Maranding Floodplain overlaid on Google Earth image	erv 77

Figure 69. A 5-year Flood Hazard Map for Maranding Floodplain overlaid on Google Earth imagery.78 Figure 70. A 5-year Flow Depth Map for Maranding Floodplain overlaid on Google Earth imagery......79 Figure 71. Affected Areas in Aurora, Zamboanga del Sur during 5-Year Rainfall Return Period.80 Figure 74. Affected Areas in Lala, Lanao del Norte during 5-Year Rainfall Return Period.......86 Figure 78. Affected Areas in Aurora, Zamboanga del Sur during 25-Year Rainfall Return Period.......91 Figure 81. Affected Areas in Lala, Lanao del Norte during 25-Year Rainfall Return Period.......97 Figure 83. Affected Areas in Sapad, Lanao del Norte during 25-Year Rainfall Return Period.100 Figure 84. Affected Areas in Tubod, Lanao del Norte during 25-Year Rainfall Return Period.101 Figure 85. Affected Areas in Aurora, Zamboanga del Sur during 100-Year Rainfall Return Period......102 Figure 86. . Affected Areas in Baroy, Lanao del Norte during 100-Year Rainfall Return Period.104 Figure 87. Affected Areas in Kapatagan, Lanao del Norte during 100-Year Rainfall Return Period.106 Figure 88. Affected Areas in Lala, Lanao del Norte during 100-Year Rainfall Return Period......108 Figure 89. Affected Areas in Salvador, Lanao del Norte during 100-Year Rainfall Return Period......110 Figure 90. Affected Areas in Sapad, Lanao del Norte during 100-Year Rainfall Return Period.111 Figure 91. Affected Areas in Tubod, Lanao del Norte during 100-Year Rainfall Return Period.112 Figure 92. The Validation Points for a 5-year Flood Depth Map of the Maranding Floodplain.114 Figure 93. Flood map depth versus actual flood depth.....114

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
HC	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		
IMU	Inertial Measurement Unit		
kts	knots		

LAS	LiDAR Data Exchange File format			
LC	Low Chord			
LGU	local government unit			
Lidar	Light Detection and Ranging			
LMS	LiDAR Mapping Suite			
m AGL	meters Above Ground Level			
MMS	Mobile Mapping Suite			
MSL	mean sea level			
MSU-IIT	Mindanao State University – Iligan Institute of Technology			
NAMRIA	National Mapping and Resource Information Authority			
NSTC	Northern Subtropical Convergence			
PAF	Philippine Air Force			
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration			
PDOP	Positional Dilution of Precision			
РРК	Post-Processed Kinematic [technique]			
PRF	Pulse Repetition Frequency			
PTM	Philippine Transverse Mercator			
QC	Quality Check			
QT	Quick Terrain [Modeler]			
RA	Research Associate			
RIDF	Rainfall-Intensity-Duration-Frequency			
RMSE	Root Mean Square Error			
SAR	Synthetic Aperture Radar			
SCS	Soil Conservation Service			
SRTM	Shuttle Radar Topography Mission			
SRS	Science Research Specialist			
SSG	Special Service Group			
ТВС	Thermal Barrier Coatings			
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry			
UTM	Universal Transverse Mercator			
WGS	World Geodetic System			
WGS	World Geodetic System			

CHAPTER 1: OVERVIEW OF THE PROGRAM AND MARANDING RIVER

Enrico C. Paringit, Dr. Eng. and Engr. Alan Milano

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Mindanao State University – Iligan Institute of Technology (MSU-IIT). MSU-IIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 16 river basins in the Northern Mindanao Region. The university is located in Iligan City in the province of Lanao del Norte.

1.2 Overview of the Maranding River Basin

Maranding River Basin is situated in the province of Lanao del Norte under Region X at the northern part of Mindanao, Philippines. The main river used in delineating the basin is Maranding River, which traverses within the municipality of Lala.

Maranding River Basin covers the municipalities of Baroy, Kapatagan, Lala, Munai, Nunungan, Salvador, Sapad, Tangcal and Tubod in Lanao del Norte. Geographically, it is bounded on the northwest by Panguil Bay, on the northeast by the municipality of Baroy, on the south by the municipality of Kapatagan, and on the southeast by the municipality of Salvador. The river basin has an estimated area of 653.19 square kilometres. The floodplain area delineated within the river basin has an area of 347.17 square kilometres, which is 53.15% of the whole area of the basin. Furthermore, municipalities of Lala, Baroy, Salvador, Kapatagan, Sapad, and Nunungan are found within the floodplain. A total of 51,797 features were extracted within the floodplain which belong to the municipalities and cities within the flood prone area. In addition, the outlet of the basin where flow measurements were obtained is located specifically at Maranding Bridge, Brgy. Maranding, Lala, Lanao del Norte along Maranding River.

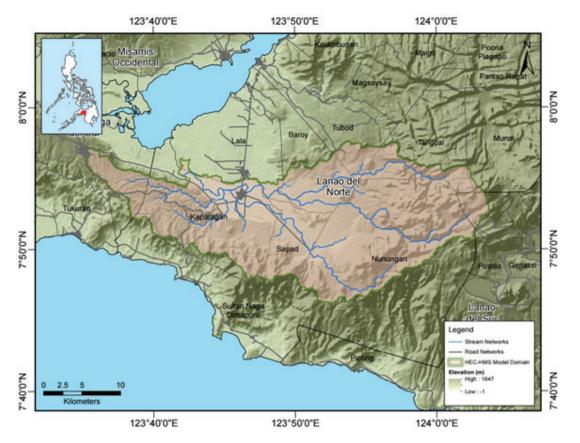


Figure 1. Map of Maranding River Basin (in brown)

Maranding River is one of the major rivers endowed to Lala, which performs both economic and ecological functions. It has been utilized by the National Irrigation Authority (NIA) to cater agriculture industry in the province, particularly rice production in the Kapatagan Valley, which is considered as the province's rice granary, as well as, for domestic uses before it empties into Panguil Bay (lanaodelnorte.gov.ph, N.D.). Its tributaries are the rivers of: Inasagan and Cabuyao rivers. The other major rivers are Butadon River and Kidalos River. Spring and creeks are also present. (worldlibrary.org, N.D.).

In terms of the landcover, this river basin has 8.6 % of Brushland, 0.25% of Built-up, 21.32% of closed canopy forest, 39.12% of cultivated area, 2.66% used as fishponds, 0.95% for grasslands, 0.38% for the inland water, 1.96% for mangroves, 4.91% for open canopy forest and 19.46% for tree plantation and perennial. A great percentage is alloted to cultivated areas.

Maranding is considered as one of the flood prone areas in Northern Mindanao (gmanetwork.com, N.D.). In the past years, Mindanao has been devastated with typhoons and other natural disasters that took thousands of lives and damaged a lot of properties. n August 2015, 130 families were affected by flash floods due to the overflowing of at least three (3) rivers in Lanao, where Maranding was one of the most affected areas. Also, last March 9, 2017, the PAGASA-DOST declared "Orange Warning" over Lanao del Norte and other provinces due to the intense rainfall brought by the tail end of the cold front. Residents in these areas were advised to be alert for possible evacuation as flooding was expected.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE MARANDING FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Engr. Frank Nicolas H. Ilejay

The methods applied in this chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and were further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Maranding floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Maranding Floodplain in Misamis Occidental. Each flight mission had an average of 10 lines and ran for at most four and a half (4.5) hours including takeoff, landing and turning time. The flight planning parameters for the LiDAR system are outlined in Table 1. Figure 2 shows the flight plan for Maranding floodplain survey.

Block Name	Flying Height (AGL)	Overlap (%)	Field of View	Pulse Repetition Frequency (PRF) (kHz)	Scan Fre- quency	Average Speed	Average Turn Time (Minutes)
BLK 71A	1000m	30	50	200	30	130	5
BLK 71B	1000m	30	50	200	30	130	5
BLK 71C	1000m	30	50	200	30	130	5
BLK 71E	1000m	30	50	200	30	130	5
BLK 71ext	1000m	30	50	200	30	130	5
BLK 71F	800/900/1000m	30	50	200	30	130	5
BLK 71G	1000m	30	50	200	30	130	5
BLK 76B	1000m	30	50	200	30	130	5
BLK 76C	1000m	30	50	200	30	130	5
BLK 76H supple- ment	1000m	30	50	200	30	130	5
BLK 76I	1000m	30	50	200	30	130	5
BLK 76J	1000m	30	50	200	30	130	5
BLK 76K	1000m	30	50	200	30	130	5
BLK 76L	1000m	30	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

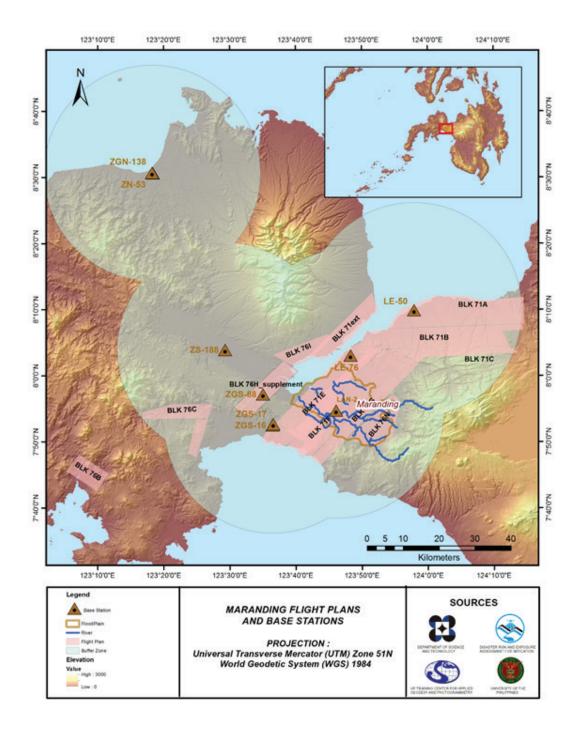


Figure 2. Flight Plan and base stations used for the Maranding Floodplain survey using Pegasus sensor.

2.2 Ground Base Station

The field team was able to recover five (5) NAMRIA ground control points: LAN-2 which is of first (1st) order accuracy, and ZGS-16, ZGS-17, ZGS-88, and ZGN-138 which are of second (2nd) order accuracy. Four (4) benchmarks were recovered: LE-50, LE-76, ZN-53, and ZS-188.

The certifications for the base stations are found in ANNEX 2 while the baseline processing report for established point is found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey from May 22 to July 10, 2014, February 4 to March 4, 2016, and February 23, 2016. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852, TRIMBLE SPS 985, and TOPCON GR5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Maranding floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Maranding Floodplain LiDAR Survey. Figure 3 to Figure 11 show the recovered NAMRIA reference points and established point within the area of the floodplain, while Table 2 to Table 10 show the details about the following NAMRIA control stations and established points. Table 11, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

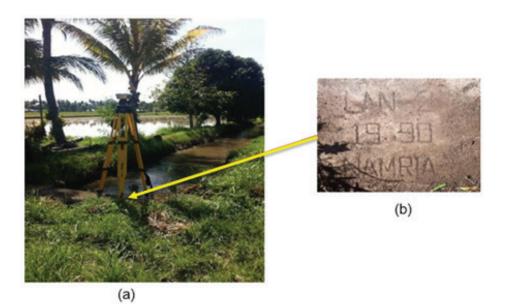


Figure 3. GPS set-up over LAN-02 on top of a concrete irrigation canal water gate in Brgy. Pinoyak, Lala, Lanao del Norte (a) and NAMRIA reference point LAN-02 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point LAN-02 used as base station for the LiDAR Acquisition

Station Name	LAN-2		
Order of Accuracy	1st		
Relative Error (horizontal positioning)	1:	100,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7°54′46.07859″ North 123°46′0.85333″ East 17.35400 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	364025.74 meters 875110.149 meters	
Geographic Coordinates World Geodetic System 1984 Datum (WGS 84)	7°54'46.07859" North	7°54'42.56546" North 123°46'6.31720" East 83.92120 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	584533.45 meters 874680.35 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	584533.45 meters 874680.35 meters	

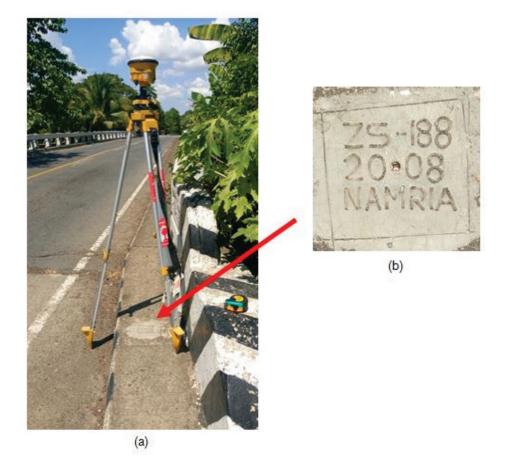
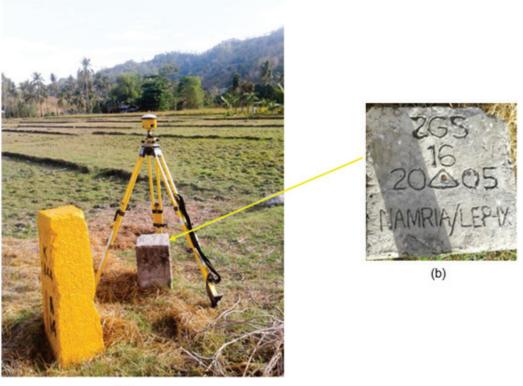



Figure 4. GPS set-up over ZS-188 (a) at Brgy. Licomo, Zamboanga City, Zamboanga del Sur and NAMRIA reference point ZS-188 (b) as recovered by the field team

(a)

Figure 5. GPS set-up over ZGS-16 (a) in Purok Nangka, Brgy. Baclay, Tukuran, Zamboanga del Sur and NAMRIA reference point ZGS-16 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point ZGN-60 used as base station for the LiDAR Acquisition.

Station Name	ZS-188		
Order of Accuracy	1st		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 03' 56.69408" North 123° 29' 12.15500" East 19.832 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing	8° 03' 53.11537" North 123° 29' 17.60722" East 85.400 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Latitude Longitude Ellipsoidal Height	553,627.634meters 891,542.089 meters	

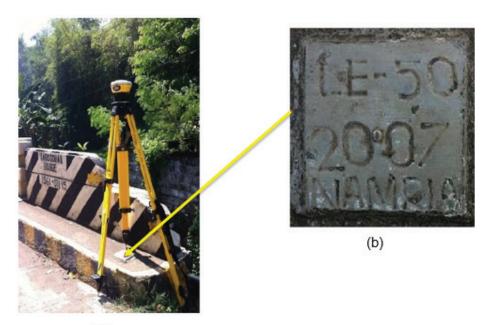
Table 4. Details of the recovered NAMRIA horizontal control point ZGS-16 used as base station for the LiDAR Acquisition

Station Name	ZGS-16		
Order of Accuracy	2rd		
Relative Error (horizontal positioning)	1:5	0,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 03' 56.69408" North 123° 29' 12.15500" East 19.832 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	8° 03' 53.11537" North 123° 29' 17.60722" East 85.400 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	553,627.634meters 891,542.089 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	566857.85 meters 870550.15 meters	

Figure 6. GPS set-up over ZGS-17 (a) in Purok Kasoy, Brgy. Baclay, Tukuran, Zamboanga del Sur and NAMRIA reference point ZGS-17 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA horizontal control point ZGS-17 used as base station for the LiDAR Acquisition.

Station Name	ZGS-1	7
Order of Accuracy	2rd	
Relative Error (horizontal positioning)	1:50,0	00
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 52' 42.71658" North 123° 36' 29.22049" East 29.68400 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	567059.131 meters 871168.108 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 2' 39.19813" North 123° 36' 34.68878" East 95.92400 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	567035.66 meters 870863.18 meters



(a)

Figure 7. GPS set-up over ZGS-88 on a center island in Puroy Saray, Aurora, Zamboanga del Sur (a) and NAMRIA reference point ZGS-88 (b)as recovered by the field team.

Table 6. Details of the recovered NAMRIA horizontal control point ZGS-88 used as base station for the LiDARAcquisition.

Station Name	ZGS-88	3
Order of Accuracy (benchmark)	2nd	
Elevation (horizontal positioning)	1:50,00	0
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°9'54.972" North 123°57'50.357" East 6.91 m meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	385831.49 meters 902974.41 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°09'51.11024" North 123°57'55.36634" East 73.452 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	606345.902 meters 902577.426 meters

(a)

Figure 8. GPS set-up over LE-50 on the Barogohan Bridge in Maigo, Lanao del Norte (a) and NAMRIA bench mark point LE-50 (b) as recovered by the field team.

Table 7. Details of the established point ZN- 53 used as base station for the LiDAR Acquisition.

Station Name	LE-50)
Order of Accuracy (benchmark)	1st	
Elevation (horizontal positioning)	1:100,0	00
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°9'54.972" North 123°57'50.357" East 6.91 m meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92	Easting Northing	385831.49 meters 902974.41 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°09'51.11024" North 123°57'55.36634" East 73.452 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92	Easting Northing	606345.902 meters 902577.426 meters

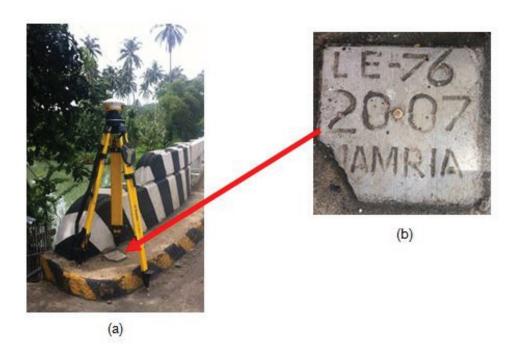


Figure 9. GPS set-up over LE-76 at Bulod Bridge footwalk of Brgy. Bulod, Tubud, Lanao del Norte (a) and NAMRIA reference point LE-76 (b) as recovered by the field team.

Table 8. Details of the recovered NAMRIA vertical control point LE-76 used as base station for the LiDAR Acquisition with established coordinates.

Station Name	LE-76		
Order of Accuracy	1st		
Relative Error (horizontal positioning)	1:100,0	00	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 03' 05.36825" North 123° 48' 12.37307"East 9.355 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 03' 01.82183" North 123° 48' 17.82405" East 75.717 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	588,530.790 meters 890,021.013 meters	

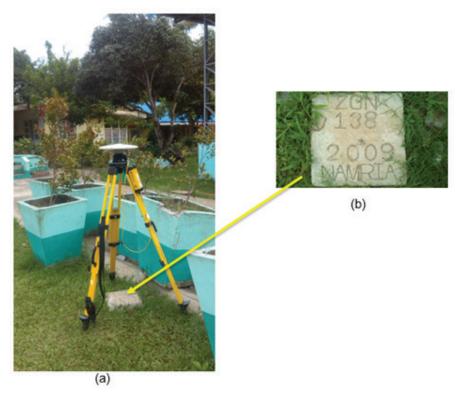
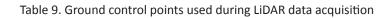



Figure 10. GPS set-up over ZGN-138 (a) in Katipinan Zamboanga del Norte and NAMRIA reference point ZGN-138 (b) as recovered by the field team.

Station Name	ZGN-1	38
Order of Accuracy	2rd	
Relative Error (horizontal positioning)	1:50,00	00
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 30' 40.65974"North 122° 18' 14.44217"East 6.715 meters
Grid Coordinates, Philippine Transverse Mercator Zone 3 (PTM Zone 3 PRS 92)	Easting Northing	533471.036 meters 941106.14 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84))	Latitude Longitude Ellipsoidal Height	8° 30' 36.94779" North 123° 18' 19.85548"East 70.925 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	533459.32 meters 940776.74 meters

(a)

Figure 11. GPS set-up over ZN-53 (a) Brgy. Daanglungsod, Katipunan, Zamboanga del Norte and reference point ZN-53 (b) as recovered by the field team.

Table 10. Flight missions for LiDAR data acquisition in Dipolog floodplain.

Station Name	ZN-53		
Order of Accuracy	2nd		
Relative Error (horizontal positioning)	1:50,00	00	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°30'41.04428" North 123°18'14.33457" East 7.072 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8°30'37.33230" North 123°18'19.74787" East 71.282 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 92)	Easting Northing	533456.022 meters 940788.542 meters	

Table 11. Ground control points used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
June 8, 2014	1565P	1BLK71B159A	LE-50, LAN-2
June 20, 2014	1613P	1BLK71G171A	LE-50, LAN-2
July 3, 2014	1665P	1BLK71ES184A	LE-50, LAN-2
July 5, 2014	1673P	1BLK71ES186A	ZGS-88, LAN-2
July 6, 2014	1677P	1BLK71S187A	ZGS-88, LAN-2
July 8, 2014	1685P	1BLK71S189A	LE-50, LAN-2
July 9, 2014	1689P	1BLK71S190A	LE-50, LE-76
February 12, 2016	23084P	1BLK76JKLCs043A	ZS-188, ZGS-16
February 13, 2016	23088P	1BLK76ILM044A	ZS-188, ZGS-16
February 17, 2016	23104P	1BLK76DLM048A	ZS-188, ZGS-16
February 23, 2016	23128P	1BLK70B054A	ZGS-17, ZGS-16
December 1, 2016	23602P	1BLK76AB336A	ZGN-138, ZN-53
June 4, 2014	1549P	1BLK 71D155A	LE-50, LAN-2
June 8, 2014	1565P	1BLK71B159A	LE-50, LAN-2

2.3 Flight Missions

A total of thirteen (13) missions were conducted to complete the LiDAR data acquisition in Maranding floodplain, for a total of fifty hours and thirty one minutes (50.31) of flying time for RP-C9022 and RP-9122. All missions were acquired using the Pegasus LiDAR systems. Table 12 shows the total area of actual coverage per mission and the flying length for each mission and Table 13 presents the actual parameters used during the LiDAR data acquisition.

			Surveyed	Area yed Surveyed	Area Surveyed	No. of	Average Turn Time (Minutes)	
Date Surveyed	Flight Number	Flight Plan Area (km2)	Area (km2)	within the Floodplain (km2)	Outside the Floodplain (km2)	Images (Frames)	fHr	Min
June 4, 2014	1549P	258.45	285.72	95.20	190.52	NA	4	24
June 8, 2014	1565P	258.45	88.20	32.70	55.50	324	2	53
June 20, 2014	1613P	145.33	281.80	95.64	186.16	NA	4	6
July 3, 2014	1665P	100.30	23.48	0.00	23.48	NA	2	59
July 5, 2014	1673P	100.30	67.03	0.00	67.03	330	3	5
July 6, 2014	1677P	100.30	46.06	0.00	46.06	170	2	35
July 8, 2014	1685P	825.11	163.36	54.85	108.51	569	4	5
July 9, 2014	1689P	825.11	264.52	57.19	207.34	NA	4	17
February 12, 2016	23084P	132.54	299.68	76.47	223.21	NA	4	17
February 13, 2016	23088P	216.61	209.33	94.53	114.80	536	4	23
February 17, 2016	23104P	682.02	170.16	66.91	103.25	NA	4	35
February 23, 2016	23128P	105.75	148.90	0.00	148.90	NA	4	17
December 1, 2016	23602P	67.82	130.58	50.27	80.31	0	4	35
ΤΟΤΑΙ	-	3818.09	2178.79	623.74	1555.06	1929	50	31

Table 12. Flight missions for the LiDAR data acquisition of the Maranding Floodplain

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1549P	1000	30	50	200	30	130	5
1565P	1000	30	50	200	30	130	5
1613P	1000	30	50	200	30	130	5
1665P	1100	30	50	200	30	130	5
1673P	1000	30	50	200	30	130	5
1677P	1000	30	50	200	30	130	5
1685P	1000	30	50	200	30	130	5
1689P	1200	30	50	200	30	130	5
23084P	1000	30	50	200	30	130	5
23088P	1200	30	50	200	30	130	5
23104P	1000	30	50	200	30	130	5
23128P	1000	30	50	200	30	130	5
23602P	1200/1100	30	50	200	30	130	5

Table 13. Actual parameters used during the LiDAR data acquisition of the Maranding Floodplain.

2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Maranding floodplain (See ANNEX 7). It is located in the provinces of Misamis Occidental, with majority of the floodplain situated within the municipality of Jimenez. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage is shown in Table 14. The actual coverage of the LiDAR acquisition for Maranding floodplain is presented in Figure 12.

Province	Municipality/City	Area of Municipality/City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Baroy	62.08	62.08	100%
	Salvador	46.46	46.46	100%
	Lala	125.18	125.09	100%
	Kapatagan	184.76	173.6	94%
	Tubod	121.95	112.66	92%
	Kolambugan	70.7	62.54	88%
	Magsaysay	83.06	68.52	82%
	Sapad	65.13	42.91	66%
	Baloi	65.18	36.87	57%
Lanao del Norte	Sultan Naga Dimaporo	143.65	55.81	39%
	Maigo	126.36	27.8	22%
	Nunungan	418.22	61.12	15%
	Pantar	50.19	6.85	14%
	Linamon	22.21	2.25	10%
	Tagoloan	25.06	2.2	9%
	Tangcal	118.94	7.23	6%
	Iligan City	650.87	21.85	3%
	Matungao	52.5	1.45	3%
	Ozamiz City	149.44	44.44	30%
	Tangub City	141.82	38.16	27%
	Bonifacio	103.87	6.17	6%
	Clarin	113.99	6.06	5%
	Aurora	162.22	99.52	61%
Misamis	Tukuran	119.01	64.3	54%
Occidental	Kumalarang	143.51	51.19	36%
	Labangan	176.44	59.52	34%
	Pagadian City	279.33	70.86	25%
	Tambulig	142.93	27.91	20%
	Dumalinao	108.65	2.5	2%
	Sominot	97.75	2.21	2%
Zamboanga Sibugay	Buug	134.89	3	2%
	Total	4306.35	1393.13	32.35%

Table 14. The list of municipalities and cities surveyed of the Maranding Floodplain LiDAR acquisition.

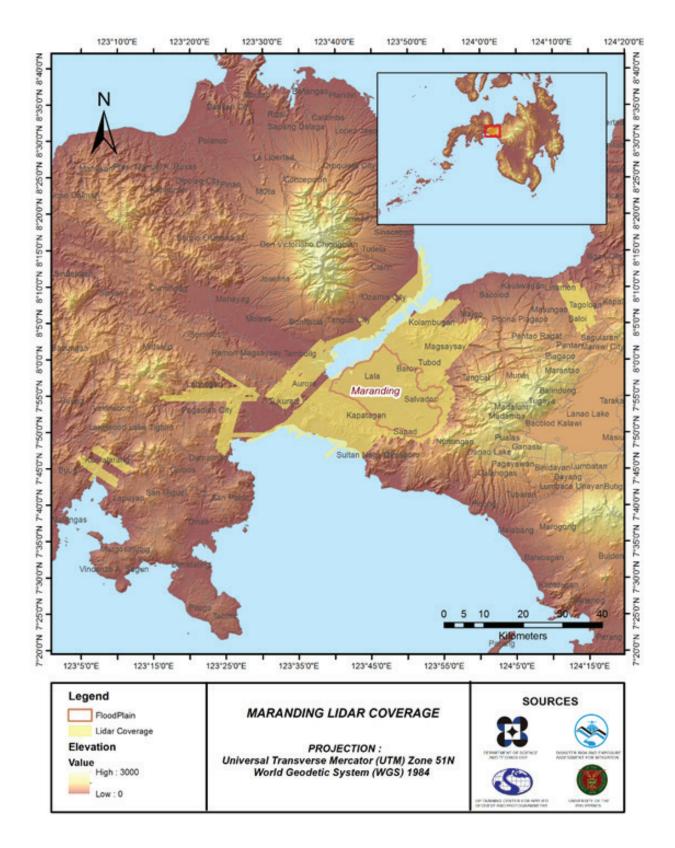
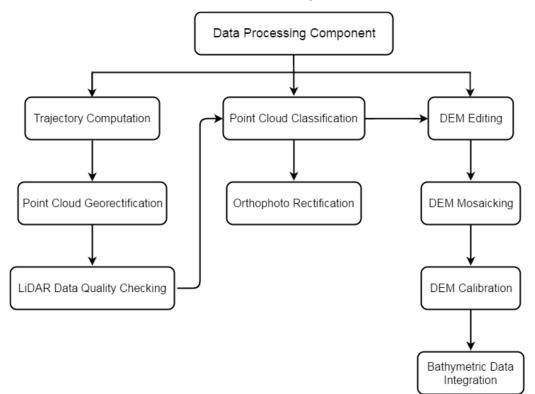


Figure 12. Actual LiDAR survey coverage of the Maranding Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE MARANDING FLOODPLAIN


Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Harmond F. Santos , Engr. Ma. Ailyn L. Olanda, Antonio B. Chua Jr., Engr. James Kevin M. Dimaculangan , Engr. Jommer M. Medina, and John Arnold C. Jaramilla

The methods applied in this chapter were based on the DREAM methods manual (Ang, et al., 2014) and were further enhanced and updated in Paringit, et al. (2017).

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 13.

Figure 13. Schematic diagram for the data pre-processing.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions of the Maranding Floodplain can be found in ANNEX 5. The missions flown during the conduct of the first survey in June 2014 utilized the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system. Missions acquired during the second survey on February 2016 were flown using the same system over Dipolog, Pagadian, and Northern Mindanao.

The Data Acquisition Component (DAC) transferred a total of 253.27 Gigabytes of Range data, 2.81 Gigabytes of POS data, 442.11 Megabytes of GPS base station data, and 576.84 Megabytes of raw image data to the data server on June 23, 2014 for the first survey and on March 10, 2016 for the second survey, which was verified for accuracy and completeness by the DPPC. The whole dataset for the Maranding Floodplain was fully transferred on March 10, 2016, as indicated on the Data Transfer Sheets for the Maranding floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metrics of the computed trajectory for Flight 23088P, one of the Maranding flights, which is the North, East, and Down position RMSE values are shown in Figure 14. The x-axis corresponds to the time of the flight, which was measured by the number of seconds from the midnight of the start of the GPS week, which fell on the date and time of February 13, 2016, 00:00AM. The y-axis, on the other hand, represents the RMSE value for that particular position.

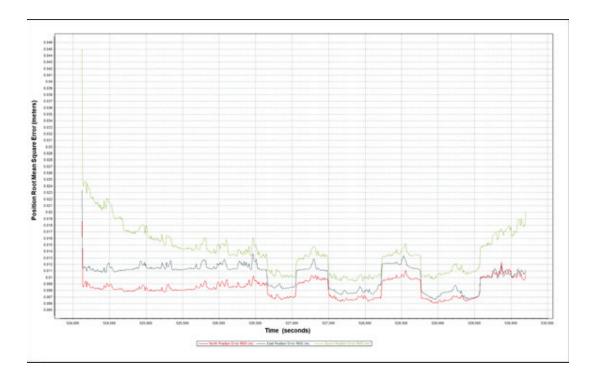


Figure 14. The Smoothed Performance Metrics of Maranding Flight 23088P.

The time of flight was from 524,000 seconds to 530,500 seconds, which corresponds to afternoon of February 13, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 15 shows that the North position RMSE peaks at 1.20 centimeters, the East position RMSE peaks at 1.30 centimeters, and the Down position RMSE peaks at 2.40 centimeters, which are within the prescribed accuracies described in the methodology.

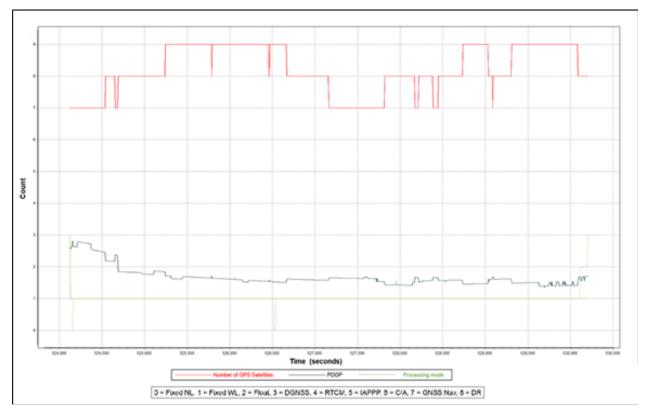


Figure 15. The Solution Status Parameters of Maranding Flight 23008P.

The Solution Status parameters, which indicate the number of GPS satellites; Positional Dilution of Precision (PDOP); and the GPS processing mode used for Maranding Flight 23088P are shown in Figure 15. For the Solution Status parameters, the figure above signifies that the number of satellites utilized and tracked during the acquisition were between 7 and 9, not going lower than 6. Similarly, the PDOP value did not go above the value of 3, which indicates optimal GPS geometry. The processing mode also stayed at the value of 0 for the majority of the survey stayed at the value of 0. The value of 0 corresponds to a Fixed, Narrow-Lane Mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for the POSPAC MMS. Fundamentally, all of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Maranding flights is shown in Figure 16.

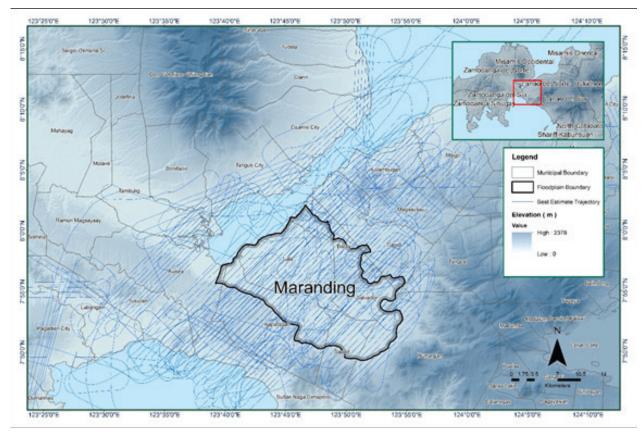


Figure 16. Best Estimated Trajectory of the LiDAR missions conducted over the Maranding Floodplain

3.4 LiDAR Point Cloud Computation

The produced LAS contains 145 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in the LiDAR Mapping Suite (LMS) software for all flights over the Maranding floodplain are given in Table 15.

Table 15. Self-calibration values for all Maranding Floodplain flights.

Parameter	Acceptable Value	Computed Value
Boresight Correction stdev)	<0.001degrees	0.000274
IMU Attitude Correction Roll and Pitch Corrections stdev)	<0.001degrees	0.001049
GPS Position Z-correction stdev)	<0.01meters	0.0073

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Maranding Floodplain is shown in Figure 17. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

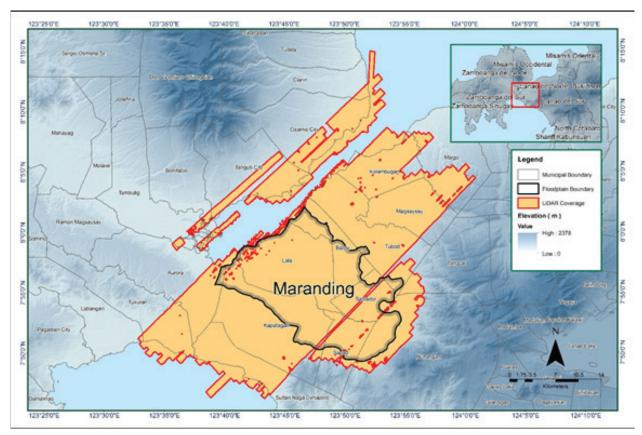


Figure 17. The boundaries of the processed LiDAR data over the Maranding Floodplain.

A total area of 1663.56 square kilometers (sq. kms.) were covered by the Maranding flight missions as a result of twelve (12) flight acquisitions, which were grouped and merged into two (2) blocks accordingly, as portrayed in Table 16.

Table 16. List of LiDAR blocks for the Maranding floodplain.

LiDAR Blocks	Flight Numbers	Area (sq. km)
Pagadian_Blk76J	23088P	37.95
Pagadian_Blk76K	23084P	182.99
Pagadian_Blk76K_additional	23104P	53.29
Pagadian_Blk76M	23128P	71.78
Pagadian_Blk76N	23088P	136.47
Pagadian_Blk76N_additional	23104P	60.44
Pagadian_Blk76N_supplement	23104P	5.30
NorthernMindanao_Blk71_extension	1665P	138.30
	1673P	
	1677P	

NorthernMindanao_Blk71E	1689P	194.58
NorthernMindanao_Blk71F	1565P	500.10
	1549P	
	1685P	
NorthernMindanao_Blk71G	1613P	282.38
Dipolog_reflights_Blk76M	23602P	73.71
TOTAL		1,737.29

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 18. Since the Pegasus system employs one channel, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

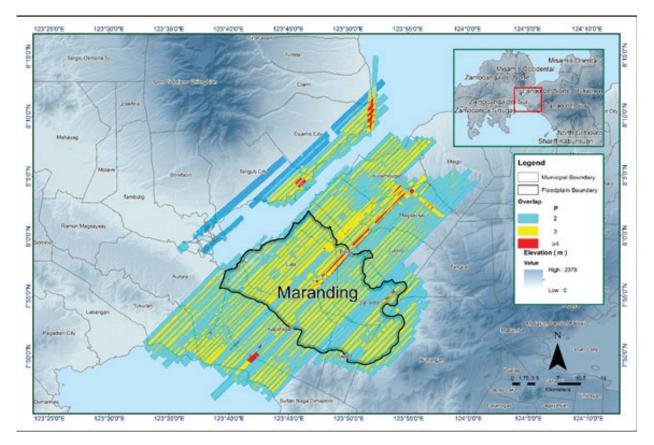


Figure 18. Data overlap between missions and flight lines for the Maranding River Floodplain Survey.

The overlap statistics per block for the Maranding Floodplain Survey can be found in the Mission Summary Reports (ANNEX 7). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 27.83%, and 51.56% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 19. As seen in the figure below, it was determined that all LiDAR data for the Maranding Floodplain Survey satisfy the point density requirement, as the average density for the entire survey area is 3.43 points per square meter.

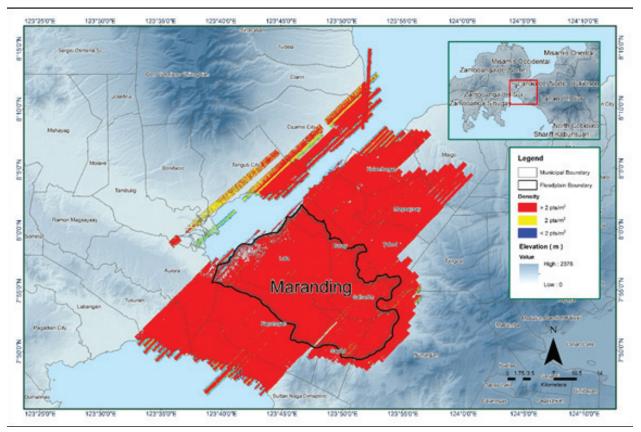


Figure 19. The pulse density map of the merged LiDAR data for the Maranding Floodplain Survey

The elevation difference between overlaps of adjacent flight lines is shown in Figure 20. The default color range is blue to red, where bright blue areas correspond to portions where elevations of a previous flight line are higher by more than 0.20m, as identified by its acquisition time; which is relative to the elevations of its adjacent flight line. Similarly, bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m, relative to the elevations of its adjacent flight line. Areas highlighted in bright red or bright blue necessitate further investigation using the Quick Terrain Modeler software.

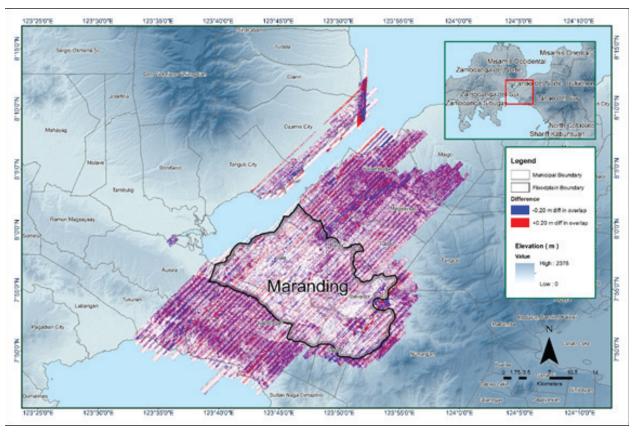


Figure 20. Map of elevation difference Map between flight lines for the Maranding Floodplain Survey.

A screen-capture of the processed LAS data from Maranding flight 23088P loaded in QT Modeler is shown in Figure 21. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data generated satisfactory results. No reprocessing was done for this LiDAR dataset.

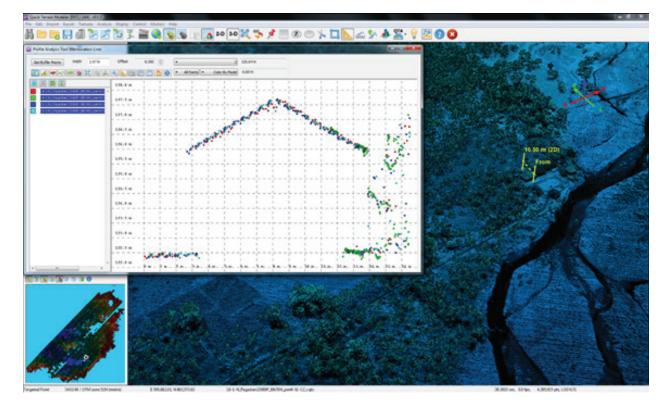


Figure 21. Screen-capture of the quality checking for Maranding Flight 23088P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	1,804,179,263
Low Vegetation	1,570,400,382
Medium Vegetation	1,938,471,528
High Vegetation	2,322,596,111
Building	72, 196, 121

Table 17. List of LiDAR blocks for the Maranding floodplain.

The tile system that TerraScan employed for the LiDAR data as well as the final classification image for a block of the Maranding floodplain is shown in Figure 22. A total of 365 tiles with 1 km. X 1 km. (one kilometer by one kilometer) size were produced. Correspondingly, Table 17 summarizes the number of points classified to the pertinent categories. The point cloud has a maximum and minimum height of 367.21 meters and 53.91 meters respectively.

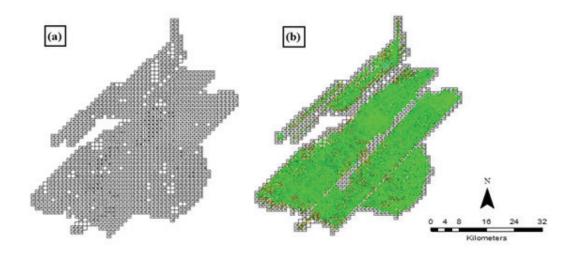


Figure 22. The coverage of the Maranding Floodplain Survey (a) the tile system (b) depicts the classification results in TerraScan

An isometric view of an area before and after running the classification routines is shown in Figure 23. The ground points are highlighted in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

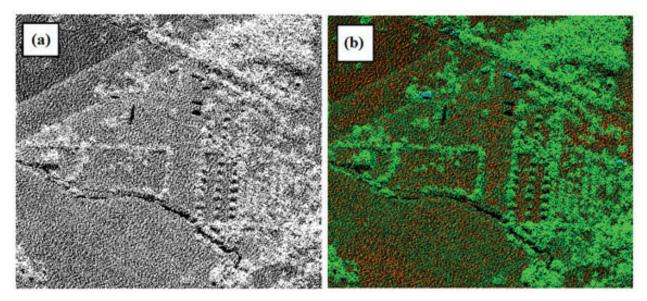


Figure 23. The images before (a) and after (b) undertaking classification.

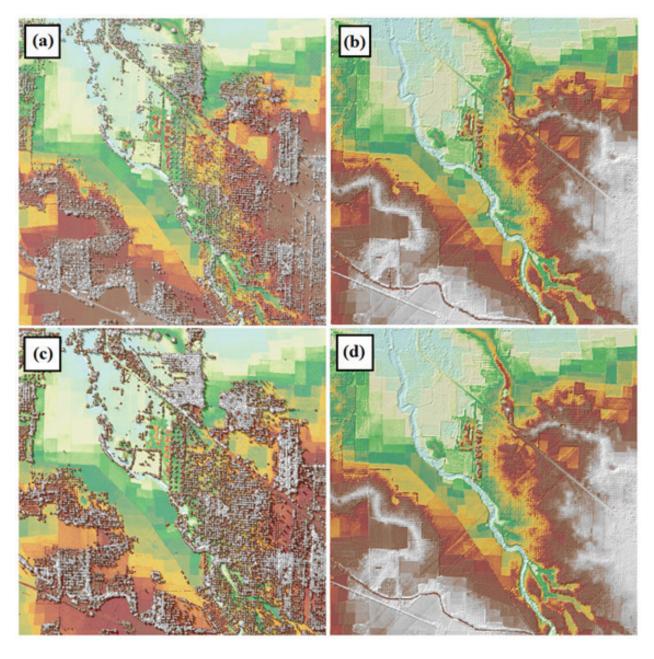


Figure 24. Photo (A) features the production of the last return DSM; (B) depicts the production of the DTM; (C) portrays the production of the first return DSM; and (D) presents the generation of the secondary DTM in some portions of the Maranding Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 1,746 1km by 1km tiles area covered by the Maranding floodplain is shown in Figure 25. After the tie point selection to fix photo misalignments, color points were added to smooth out visual inconsistencies along the seam lines where photos overlap. The Maranding floodplain attained a total of 910.23 sq. kms. in orthophotograph coverage comprised of 3,350 images. A zoomed-in version of sample orthophotographs named in reference to its tile number is shown in Figure 26.

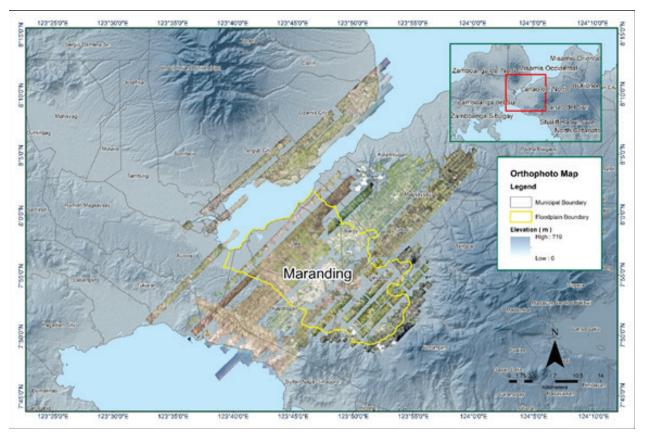


Figure 25. The Maranding Floodplain with the available orthophotographs.

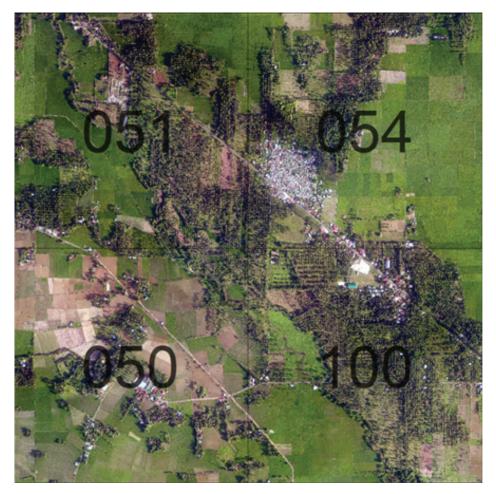


Figure 26. Sample orthophotograph tiles for the Maranding Floodplain.

3.8 DEM Editing and Hydro-Correction

Twelve (12) mission blocks were processed for the Maranding Floodplain Survey. Essentially, these blocks are composed of 'Northern Mindanao' and 'Pagadian' blocks, which arrive at a total area of 1,737.29 sq. kms. As listed in Table 18, the name and corresponding area of each block are measured out in square kilometers (sq. kms.).

LiDAR Blocks	Area (sq. km.)		
NorthernMindanao_Blk71E	194.58		
NorthernMindanao_Blk71F	500.10		
NorthernMindanao_Blk71G	282.38		
NorthernMindanao_Blk71_Extension	138.30		
Pagadian_Blk76J	37.95		
Pagadian_Blk76K	182.99		
Pagadian_Blk76K_additional	53.29		
Pagadian_Blk76M	71.78		
Pagadian_Blk76N	136.47		
Pagadian_Blk76N_additional	60.44		
Pagadian_Blk_76N_supplement	5.30		
Dipolog_reflights_Blk76M	73.71		
TOTAL	1,737.29 sq. km		

Table 18. List of LiDAR blocks for the Maranding floodplain.

Figure 27 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Figure 27a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Figure 27b). The paddy field (Figure 27c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 27d) to allow the correct flow of water.

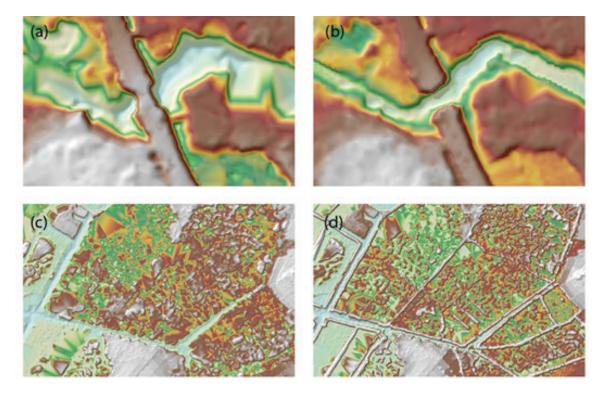


Figure 27. Portions in the DTM of the Maranding Floodplain showing (a) a bridge before undergoing manual; (b) bridge after manual editing; (c) a paddy field before undergoing manual editing; while (d) after data retrieval.

3.9 Mosaicking of Blocks

NorthernMindanao_Blk71F was used as the reference block at the start of mosaicking because it is already vertically calibrated to MSL which is the largest DTM of Maranding river basin. Table 19 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Maranding Floodplain is shown in Figure 28. It can be seen that the entire Maranding floodplain is 98.6% covered by LiDAR data.

Mission Disels	Shi	ft Values (meters)	
Mission Blocks	х	У	z
NorthernMindanao_Blk71E	0.00	0.00	-0.30
NorthernMindanao_Blk71F	0.00	0.00	0.00
NorthernMindanao_Blk71G	0.00	0.00	0.00
NorthernMindanao_Blk71_Extension	0.00	0.00	0.00
Pagadian_Blk76J	-0.20	0.40	0.00
Pagadian_Blk76K	0.00	0.00	0.00
Pagadian_Blk76K_additional	0.00	0.00	0.00
Pagadian_Blk76M	0.00	0.00	0.00
Pagadian_Blk76N	0.00	0.00	0.00
Pagadian_Blk76N_additional	0.75	0.50	-0.45
Pagadian_Blk76N_supplement	0.05	0.05	-0.45
Dipolog_reflights_Blk76M	0.70	-0.60	-0.43
TOTAL	1,737.29 sq. km		

Table 19. The shift values (in meters) for each LiDAR Block of the Maranding Floodplain.

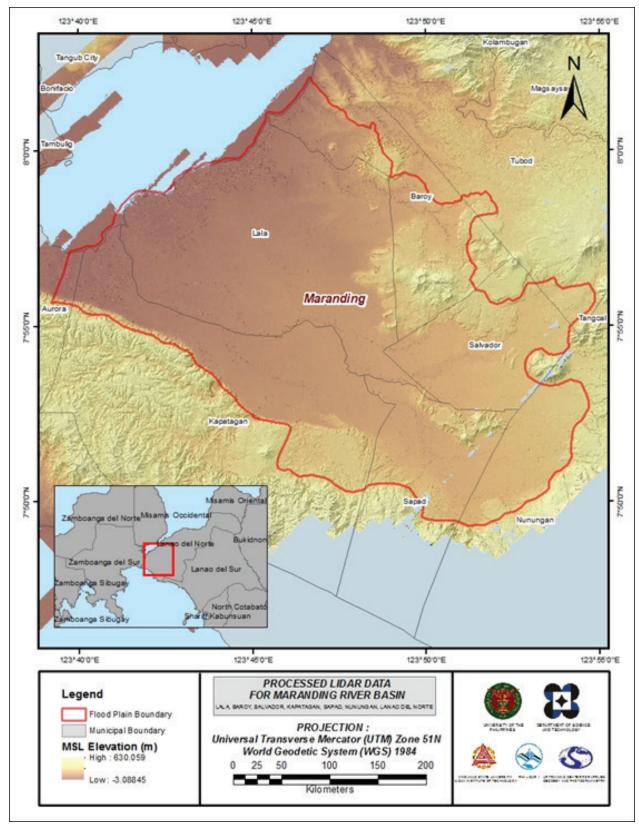


Figure 28. Portions in the DTM of the Maranding Floodplain showing (a) a bridge before undergoing manual; (b) bridge after manual editing; (c) a paddy field before undergoing manual editing; while (d) after data retrieval.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry (DVBC) in Maranding to collect points with which the LiDAR dataset is validated is shown in Figure 29, with the validation survey points highlighted in green. A total of 2,003 survey points were gathered for the Maranding floodplain. Random selection of 80% of the survey points, resulting to 1,602 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and the ground survey elevation values is shown in Figure 30. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of the data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 2.27 meters, with a standard deviation of 0.08 meters. The calibration of the Maranding LiDAR data was accomplished by subtracting the height difference value of 0.08 meters to the Maranding mosaicked LiDAR data. Table 20 shows the statistical values of the compared elevation values between the Maranding LiDAR data and the calibration data.

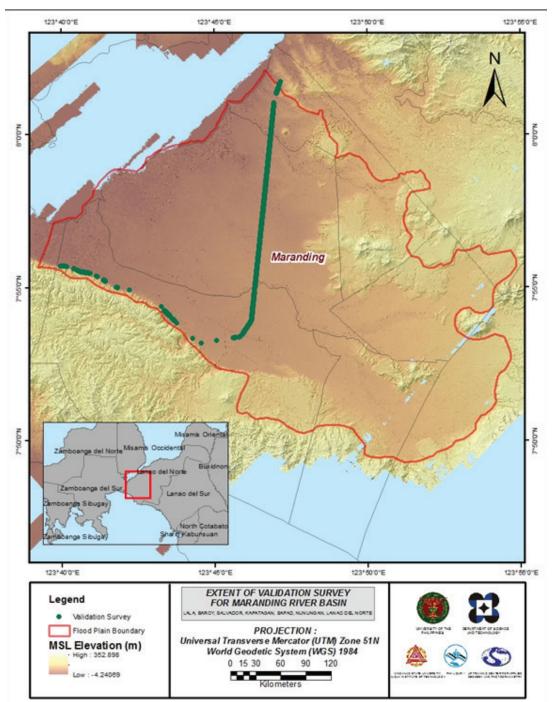


Figure 29. Map of Maranding Floodplain with validation survey points in green.

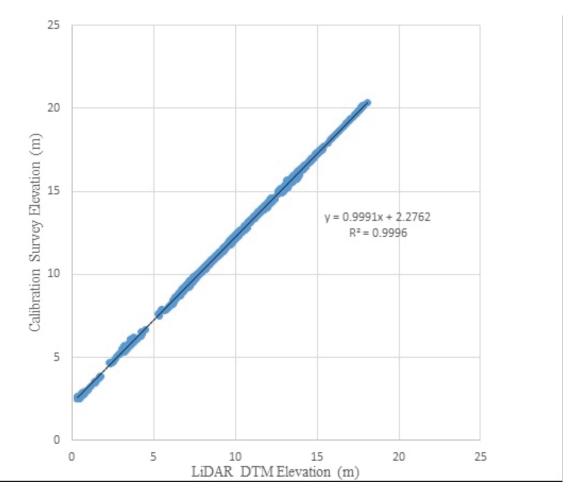


Figure 30. Correlation plot between calibration survey points and LiDAR data.

Table 20. The calibration statistical measures of the compared elevation values between the Maranding LiDAR data

Calibration Statistical Measures	Value (meters)		
Height Difference	0.08		
Standard Deviation	0.08		
Average	0.00		
Minimum	-0.21		
Maximum	0.23		

A total of 401 survey points lie within the Maranding Floodplain; all of which were used to validate the calibrated Maranding DTM. A good correlation between the calibrated mosaicked LiDAR elevation and the ground survey elevation values, which point toward the quality of the LiDAR DTM is shown in Figure 31. The computed RMSE value between the calibrated LiDAR DTM and the validation elevation values is at 0.08 meters with a standard deviation of 0.08 meters, as shown in Table 21.

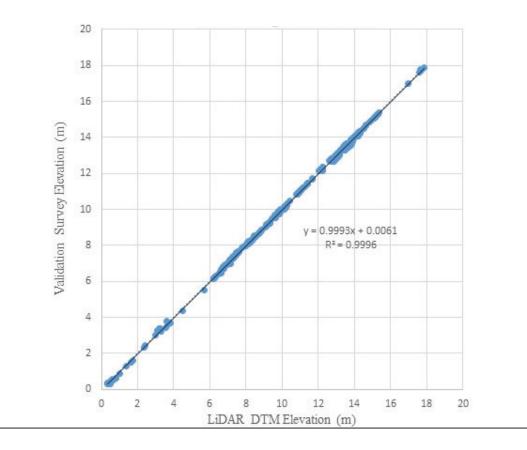


Figure 31. Correlation plot between the validation survey points and the LiDAR data.

Table 21. TStatistical measures for the Maranding River Basin DTM validation and the calibration data.

Calibration Statistical Measures	Value (meters)	
Height Difference	0.08	
Standard Deviation	0.08	
Average	0.00	
Minimum	-0.21	
Maximum	0.23	

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Maranding with a total of 2,223 survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.53 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Maranding integrated with the processed LiDAR DEM is shown in Figure 32.

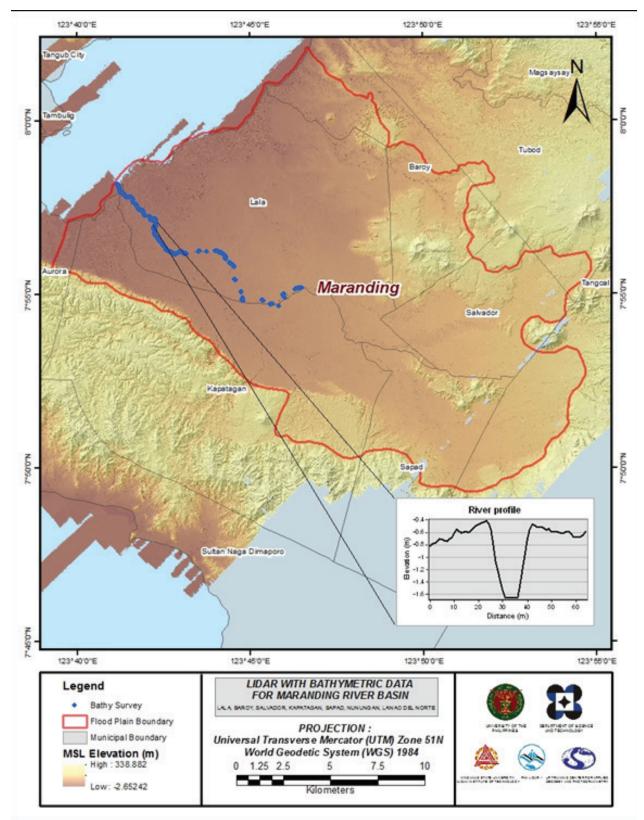


Figure 32. Map of Maranding floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis included buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprised of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Maranding floodplain, including its 200-m buffer, has a total area of 367.13 sq km. For this area, a total of 12.0 sq. km., corresponding to a total of 2,495 building features, were considered for QC. Figure 33 shows the QC blocks for the Maranding floodplain.

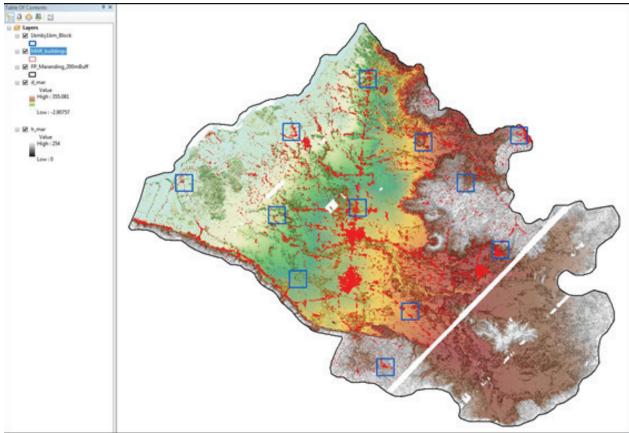


Figure 33. . Blocks (in blue) of Maranding building features that were subjected to QC.

Quality checking of Maranding building features resulted in the ratings shown in Table 22.

Table 22. Details of the quality checking ratings for the building features extracted for the Maranding River Basin

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Maranding	89.11	99.65	83.06	PASSED

3.12.2 Height Extraction

Height extraction was done for 53,418 building features in Maranding floodplain. Of these building features, none was filtered out after height extraction, resulting to 1,621 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 20.37 m.

3.12.3 Feature Attribution

The feature attribution survey was conducted through a participatory community-based mapping in coordination with the Local Government Units of the Municipality/City. The research associates of Phil-LiDAR 1 team visited local barangay units and interviewed key local personnel and officials who possessed expert knowledge of their local environments to identify and map out features.

Maps were displayed on a laptop and were presented to the interviewees for identification. The displayed map include the orthophotographs, Digital Surface Models, existing landmarks, and extracted feature shapefiles. Physical surveys of the barangay were also done by the Phil-LiDAR 1 team every after interview for validation. The number of days by which the survey was conducted was dependent on the number of features and number of barangays included in the flood plain of the river basin.

Table 23 summarizes the number of building features per type, while Table 24 shows the total length of each road type. Table 25, on the other hand, shows the number of water features extracted per type.

Facility Type	No. of Features	
Residential	49,219	
School	700	
Market	23	
Agricultural/Agro-Industrial Facilities	365	
Medical Institutions	84	
Barangay Hall	87	
Military Institution	38	
Sports Center/Gymnasium/Covered Court	34	
Telecommunication Facilities	3	
Transport Terminal	4	
Warehouse	167	
Power Plant/Substation	1	

Table 23. Building features that were extracted for the Maranding Floodplain.

NGO/CSO Offices	3
Police Station	5
Water Supply/Sewerage	7
Religious Institutions	298
Bank	6
Factory	2
Gas Station	13
Fire Station	3
Other Government Offices	308
Other Commercial Establishments	427
Total	51,797

Table 24. Total length of extracted roads for the Maranding Floodplain.

	Road Network Length (km)					
Floodplain	Barangay Road	Barangay Road City/Municipal Provincial Road		National Road	Others	Total
Maranding	303.26	89.29	44.19	71.69	0.00	508.43

Table 25. Number of extracted water bodies in the Maranding Floodplain.

	Water Body Type					
Floodplain	Rivers/Streams	Lakes/Ponds	Sea	Dam	Fish Pen	Total
Maranding	39	0	0	3	231	273

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were given the complete required attributes. Respectively, all these output features comprise the flood hazard exposure database for the floodplain. The final quality checking completes the feature extraction phase of the project.

Figure 34 shows the completed Digital Surface Model (DSM) of the Maranding Floodplain, with all its ground features.

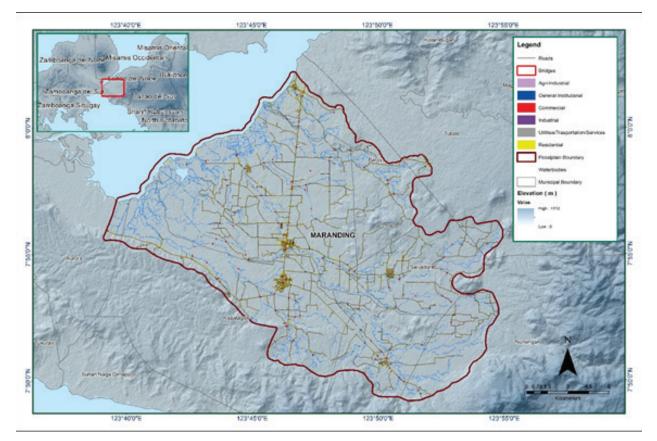


Figure 34. .Extracted features of the Maranding Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE MARANDING RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and were further enhanced and updated in Paringit, et al. (2017).

4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted the field survey in Maranding River from October 15 to 26, 2015 with the following scope of work: reconnaissance; courtesy call to the barangays near the survey area for information dissemination of the team's activities and to ask for a boat and a local aide's assistance; control survey for the establishment of a control point; cross-section and bridge as-built and water level marking in MSL of Lasang Bridge; ground validation data acquisition survey of about 31 km; bathymetric survey from Brgy. Maranding, Lala, Lanao del Norte down to the mouth of the river in Darumawang Bucana, Lanao del Norte using Ohmex[™] Single Beam Echo Sounder integrated with a roving GNSS receiver, Trimble[®] SPS 882 utilizing GNSS PPK survey technique.

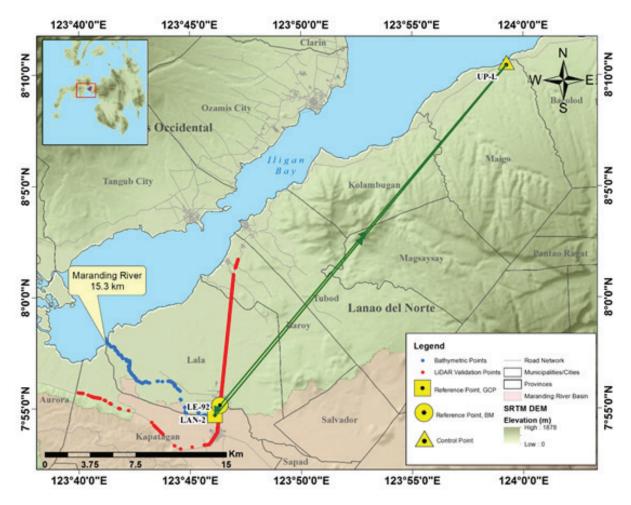


Figure 35. .Extent of the bathymetric survey (in blue line) in Maranding River.

4.2 Control Survey

The GNSS network used for Maranding River Basin is composed of single loop established on October 25, 2014 occupying the following reference points: LAN-2, a first-order GCP, in Brgy. Maranding, Municipality of Kapatagan; and LE-92, a first-order BM, in Brgy. Maranding, Municipality of Lala, all in Lanao Del Norte

Control points were established along approach of Liangan Bridge namely UP-L, located in Brgy. Liangan West, Municipality of Maigo, Lanao Del Norte.

Table 26 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 36 shows the GNSS network established in the Maranding River Survey.

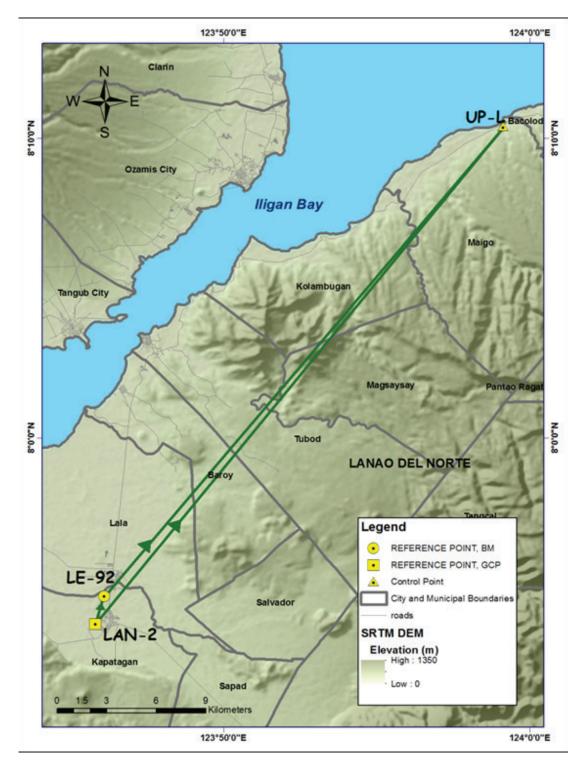


Figure 36. GNSS network established in Maranding River Field Survey

Table 26. List of references and control points occupied in Lanao del Norte survey (Source: NAMRIA; UP-TCAGP).

		Geographic Coordinates (WGS 84)					
Control Point			Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established	
LAN-2	1st order, GCP	7°54'42.56546"	123°46'06.31720"	82.151	-	1990	
LE-92	1st order, BM	-	-	87.116	18.44	2007	
UP-L	UP Established	-	-	71.088	2.042	Oct. 25, 2014	

Figure 37 to Figure 39 depict the setup of the GNSS on recovered reference points and established control points in the Lanao del Norte Survey.

Figure 37. GNSS base set up, Trimble[®] SPS 852, at LAN-2, situated on top of a concrete irrigation canal gate in Brgy. Maranding, Municipality of Kapatagan, Lanao Del Norte.

Figure 38. GNSS base set up, Trimble[®] SPS 852, at LE-92, located at the approach of Maranding Bridge, in Brgy.

Figure 39. GNSS receiver setup, Trimble[®] SPS 882, at UP-L, located at the approach of Liangan Bridge, in Brgy.

4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 28 presents the baseline processing results of control points in the Maranding River Basin, as generated by the TBC software.

Table 27. The Baseline processing report for the Maranding River GNSS static observation survey.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
LE-92 LAN-2	10-25-2014	Fixed	0.001	0.002	207°34'21"	897.957	-4.965
LE-92 UP-L	10-25-2014	Fixed	0.005	0.014	39°53'57"	37006.02	-16.030
LAN-2 UP-L	10-25-2014	Fixed	0.005	0.015	39°36'31"	37883.78	-11.063

As shown in Table 28, a total of three (3) baselines were processed with the coordinates of LAN-2, and the elevation value of reference points LE-92 held fixed; it is apparent that all baselines passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment was performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

 $\sqrt{(((x_e)^2+(y_e)^2))} < 20$ cm and z_e<10 cm where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 29 to Table 32.

The three (3) control points, LAN-2, LE-92, and UP-L were occupied and observed simultaneously to form a GNSS loop. Coordinates of LAN-2 and elevation values of LE-92 were held fixed during the processing of the control points as presented in Table 29. Through these reference points, the coordinates and elevation of the unknown control points were computed.

Table 28. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height σ (Meter)	Elevation σ (Meter)			
LAN-2	Local	Fixed	Fixed					
LE-92	Grid				Fixed			
Fixed = 0.000001 (Meter)								

Table 29. The Baseline processing report for the Maranding River GNSS static observation survey.

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constrain
LAN-2	584699.973	?	874628.035	?	13.471	0.009	LL
LE-92	585114.005	0.005	875424.530	0.003	18.440	?	е
UP-L	608790.643	0.012	903851.418	0.009	2.042	0.048	

The results of the computation for accuracy are as follows:

```
LAN-2
a.
horizontal accuracy
                        =
                                 Fixed
vertical accuracy
                                 0.90 cm < 10 cm
                        =
b.
        LE-92
                                 \sqrt{((0.50)^2 + (0.30)^2)}
horizontal accuracy
                         =
        √(0.25 + 0.09)
=
        0.5 cm < 20 cm
=
vertical accuracy
                        =
                                 Fixed
        UP-L
c.
horizontal accuracy
                         =
                                 \sqrt{((1.20)^2 + (0.90)^2)}
        √(1.44 + 0.81)
=
        1.5 cm < 20 cm
=
vertical accuracy
                                 4.80 cm < 10 cm
                        =
```

Following the given formula, the horizontal and vertical accuracy result of the three occupied control points are within the required precision.

Point ID	Latitude	Longitude	Ellipsoid Height (Meter)	Height Error (Meter)	Constraint
LAN-2	N7°54'42.56546"	E123°46'06.31720"	82.151	0.009	LL
LE-92	N7°55'08.47531"	E123°46'19.88700"	87.116	?	е
UP-L	N8°10'32.39730"	E123°59'15.35400"	71.088	0.048	

Table 30. The Baseline processing report for the Maranding River GNSS static observation survey.

The corresponding geodetic coordinates of LE-92, and UP-L which were derived are within the required accuracy as shown in Table 31. Based on the results of the computation, the accuracy conditions were satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Maranding River GNSS Static Survey are seen in Table 32.

 Table 31. The reference and control points utilized in the Maranding River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

Control	Orden of	Geograph	ic Coordinates (WGS	UTM ZONE 51 N			
Control Point	Order of Accuracy	Latitude	Longitude	Height (m) (m)	Northing (m)	Easting (m)	BM Ortho (m)
LAN-2	1st order, GCP	7°54'42.56546"	123°46'06.31720"	82.151	874628.035	584699.973	13.471
LE-92	1st order, BM	7°55'08.47531"	123°46'19.88700"	87.116	875424.53	585114.005	18.44
UP-L	UP Established	8°10'32.39730"	123°59'15.35400"	71.088	903851.418	608790.643	2.042

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section and as-built surveys were conducted on October 24, 2014 along the downstream side of Maranding Bridge in Brgy. Maranding, Municipality of Lala using the GNSS receiver Trimble[®] SPS 882 in PPK Survey Technique (Figure 40).

Figure 40. Cross-section survey on the downstream side of Maranding Bridge in Brgy. Maranding, Municipality of Lala.Liangan West, Municipality of Maigo, Lanao Del Norte.

The cross-sectional line of Maranding Bridge is about 77 meters with thirty-eight (38) points acquired using LE-92 as the GNSS base station. The cross-section diagram, the location maps and bridge data form are shown in Figure 41 to Figure 43.

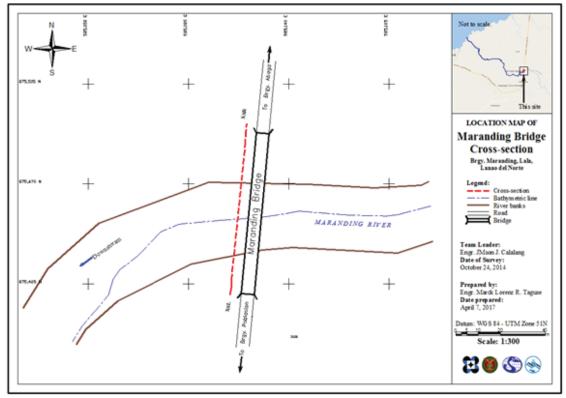
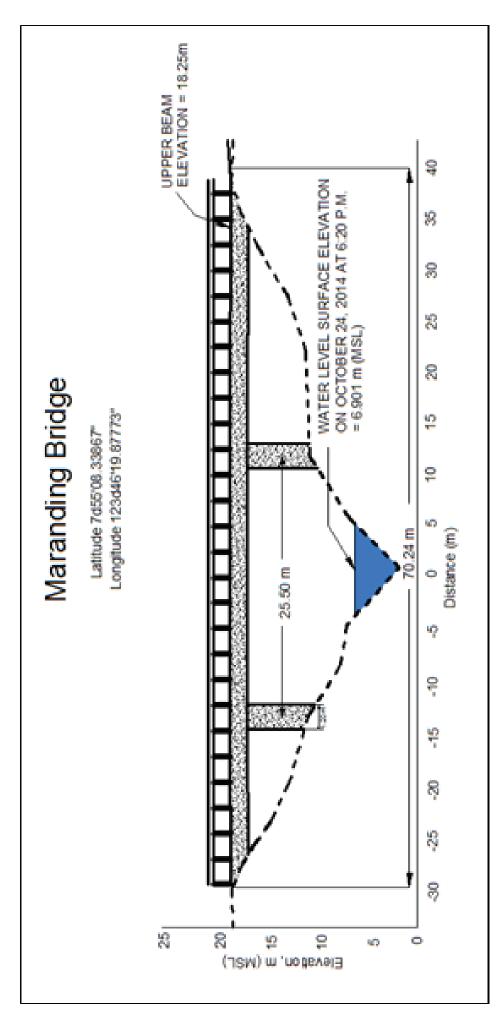



Figure 41. Location Map of Maranding bridge cross-section.

			В	ridge D	ata For	m				
Bridge Name: Maranding Bridge							Date: 10/24/14			
River N	lame:	Maranding River					Time: 6:20	D PM		
Locatio	on (Br	gy, City,Region): Marandir	ng, Lala, L	anao d	lel Nort	e				
Survey	Team	: JMson Calalang, Bernice	Furagga	nan, Re	odel Alb	erto				
Flow c				high			ther Condition:	fair	rainy	
		55' 08.33867"					itude: 123d 46' 1		,	
carrede	/e. <u>/u</u>	55 08.55867				Long	1230 40 1	5.67775	_	
BA1	BA2	R		5	BA3	BA4	Legend: BA = Bridge Approact	h P=Pier LC.	Low Cho	
							Ab = Abutment		= High Ch	
		Ab1		~	Ab2					
		ADI		-					Ш	
		P			н	с —		~		
		Deck (Please start yo	ur measuren	nent from	the left s	de of the bank	(facing downstream)			
levatio	n: 18.4		ith: 6.5 m				Span (BA3-BA2):	78.4 m	10	
		Station (Distance from BA1)	(m)	High	Chord Elev	ation (m) MSL	L Low Chord Elevation (m) MSL			
	1	20.57			18.	30	16.70			
	2	46.07			18.	35	16.65			
		Bridge Approach (#	fease start you	r measurem	ent from the	left side of the be	ink facing downstream)			
Γ		Station(Distance from BA1) (m)		ion (m) SL	Station(Distance from BA1) (m)		tance from BA1) (m)	Elevation (m) MSL	1	
	BA1	0	18.	021	BA3		73.03	18.25	1	
- 1-	BA2	4.2	18	.20	BA4		76.9	18.59	1	
butme	ent:	Is the abutment sloping?	Yes	No;	If ve	, fill in the f	ollowing information	on:		
		Statio	on (Distance	from BA	1) (m)		Elevation (m)	MSL		
	_	Pier (Please start you	r measurem	ent from	the left si	de of the bank	facing downstream)			
		et	De tra	muler		has of Diam				
		Station (Distance fro	e: Rectan	-		ber of Piers vation (m) M		ier Width (m)		
Pie	1	20.57	an array (m)	,	10.71		~ '	1.2		
Pier	12	46.07				10.49		1.2		
		NOTE	: Use the cen	ter of the	pier as refe	rence to its stati	on			

Figure 43. Maranding Bridge Data Form.

4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on October 23, 2015 using a survey grade GNSS rover receiver Trimble[®] SPS 882 mounted on a pole, which was attached in front of the vehicle as shown in Figure 44. It was secured with a steel rod and tied with cable ties to ensure that it was horizontally and vertically balanced. The antenna height was measured from the ground up to the bottom of the notch of the GNSS rover receiver. Points were gathered along concrete roads so that data to be acquired will have a relatively minimal change in elevation, observing vehicle speed of 10 to 20 kph.

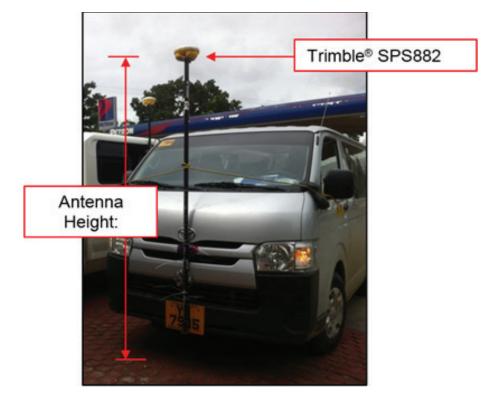


Figure 44. Trimble[®] SPS882 set-up on a vehicle for validation points acquisition along the major roads near Maranding River.

The survey started from the Municipality of Kapatagan, traversing the major roads eastward covering Municipality of Lala and Municipality of Baroy, in Lanao Del Norte. The survey gathered a total of 3,537 ground validation points with an approximated length of 31 km. Figure 45 shows the validation points acquisition survey coverage.

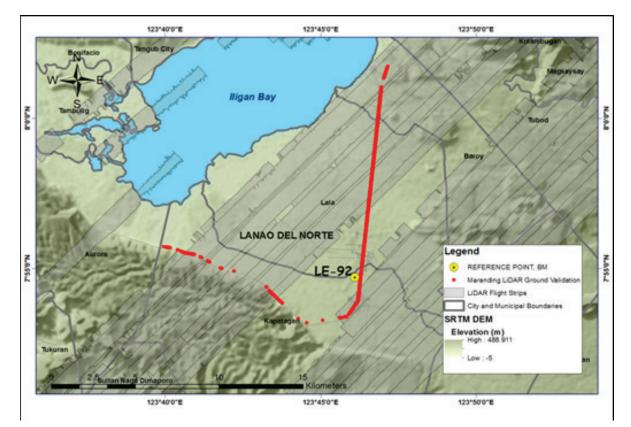


Figure 45. The extent of the LiDAR ground validation survey for Maranding River Basin.

4.7 River Bathymetric Survey

A bathymetric survey was performed on October 23 using Hi-Target[™] Single Beam Echo Sounder integrated with a roving GNSS receiver, Trimble[®] SPS 882 in GNSS PPK survey technique, installed on the boat as shown in Figure 46. The survey started in Brgy. Maranding, Municipality of Lala, with coordinates 7°55′11.1138″N, 123°46′29.56666″E down to the mouth of the river in Brgy. Darumawang, Bucana, also in Lala, with coordinates 7°58′10.37856″N, 123°41′09.23549″E. The control point SE-92 was used as the GNSS base all throughout the survey.

Figure 46. Set up of Hi-Target[™] Single Beam Echo Sounder integrated with a roving GNSS receiver on a motor boat for the bathymetric survey in Maranding River.

The entire bathymetric data coverage for Maranding River is illustrated in the map in Figure 47. The bathymetric line is approximately 15.3 km in length with 4,772 bathymetric points of the river traversing Barangays Butadon and Maranding in Municipality of Kapatagan; and six (6) more barangays in Municipality of Lala, Lanao Del Norte. A CAD drawing was also produced to illustrate the riverbed profile of Maranding River. As shown in Figure 48 and Figure 49, the highest and lowest elevation value has a 11-m difference. The lowest elevation observed was -5.552 m located at the downstream mouth part of the river, and the highest was 6.051 m above MSL located in the upstream most part of the river. There is also an abrupt change in elevation in the upstream from Brgy. Simpak to Brgy. Darumawang Ilaya, for about 2.2-m in every 3000 m and a gradual change of elevation between Brgy. Salvador to Brgy. Darumawang Bucana (mouth of river), having a 1.4 m difference in every 4000 m.

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

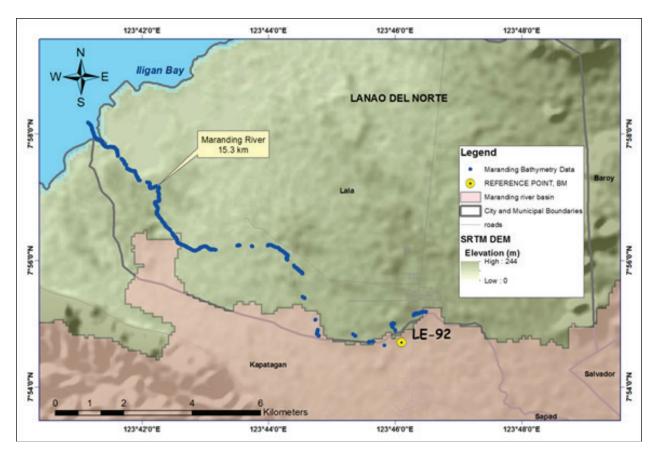
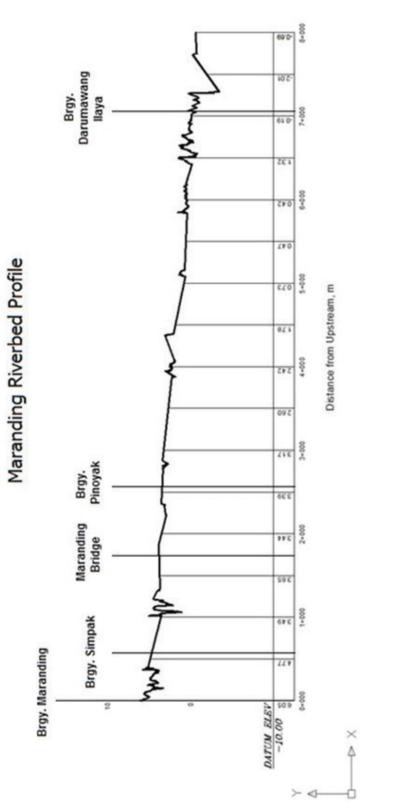
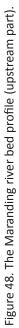
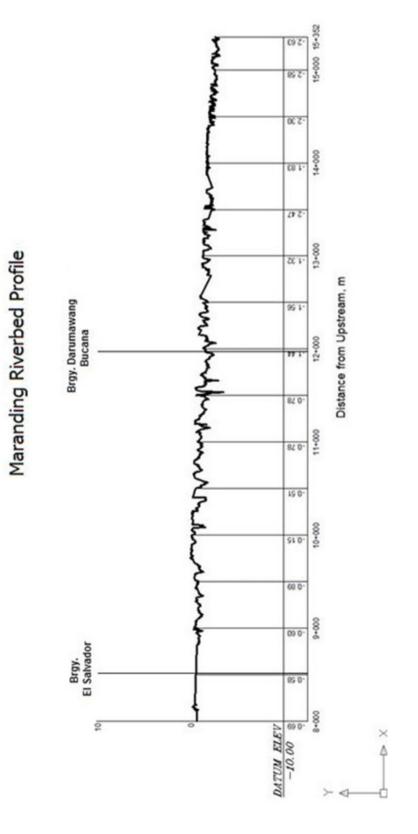





Figure 47. The extent of the Maranding River Bathymetry Survey.

55

CHAPTER 5: FLOOD MODELING AND MAPPING

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin

The methods applied in this chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and were further enhanced and updated in Paringit, et al. (2017).

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Maranding River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Maranding River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the Data Validation Component (DVC) of MSU-IIT. The ARG was specifically installed in the municipality of Salvador with coordinates 7.903553°N Latitude and 123.840789°E Longitude as illustrated in Figure 50.

The total precipitation for this event at Salvador ARG was 40.4 mm. It had a peak rainfall of 10.8 mm. on July 18, 2016 at 6:30 in the morning. The lag time between the peak rainfall and discharge was 6 hours and 20 minutes.

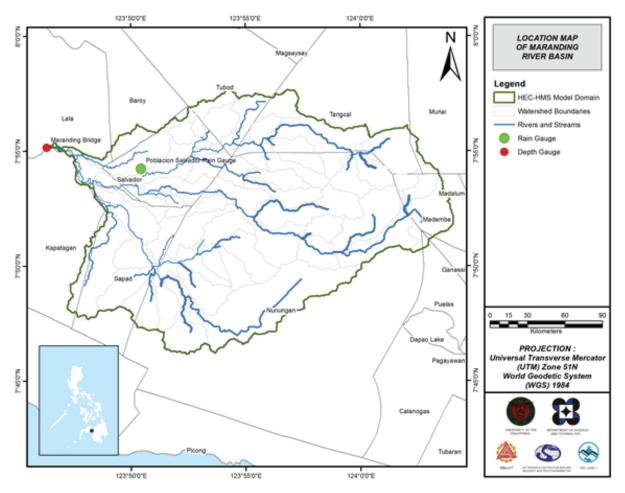


Figure 50. The location map of Maranding HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

A rating curve was developed at Maranding Bridge to establish the relationship between the observed water levels (H) at Maranding Bridge and outflow (Q) of the watershed at this location.

For Maranding Bridge, the rating curve is expressed as Q = 1.8371e0.3655x as shown in Figure 52.

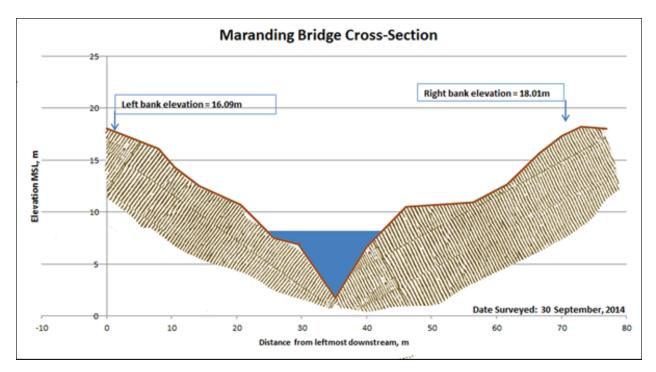


Figure 51. Cross-Section Plot of Maranding Bridge.

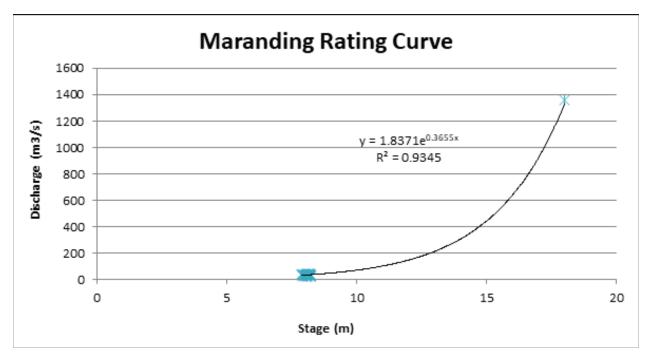


Figure 52. The rating curve plot of the Maranding Bridge.

This rating curve equation was used to compute the river outflow at Maranding Bridge for the calibration of the HEC-HMS model shown in Figure 53. The peak discharge was 33.4 cms at 6:30 in the morning, July 18, 2016.

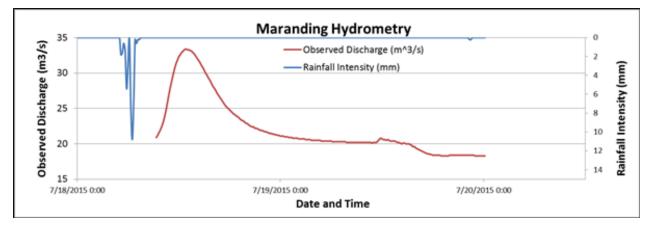


Figure 53. Rainfall and outflow data of the Maranding River Basin, which was used for modeling.

5.2 RIDF Station

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Cagayan de Oro Rain Gauge (Table 33). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 54). This station was selected based on its proximity to the Maranding watershed. The extreme values for this watershed were computed based on a 54-year record.

	COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION										
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs		
2	18.6	29.5	37	48.3	62.3	69.4	81.6	91.8	100.1		
5	24.5	38.4	48.2	63.7	84.3	92.6	109.9	128.1	141.7		
10	28.4	44.3	55.6	73.9	98.8	107.9	128.7	152.1	169.2		
15	30.6	47.7	59.8	79.6	107.1	116.6	139.3	165.6	184.7		
20	32.2	50	62.8	83.7	112.8	122.7	146.7	175.1	195.6		
25	33.3	51.8	65	86.8	117.3	127.4	152.4	182.4	204		
50	37	57.3	72	96.3	130.9	141.8	170	204.9	229.8		
100	40.6	62.8	78.9	105.8	144.5	156.1	187.4	227.3	255.5		

Table 32. RIDF values for the Cagayan de Oro Rain Gauge, as computed by PAGASA

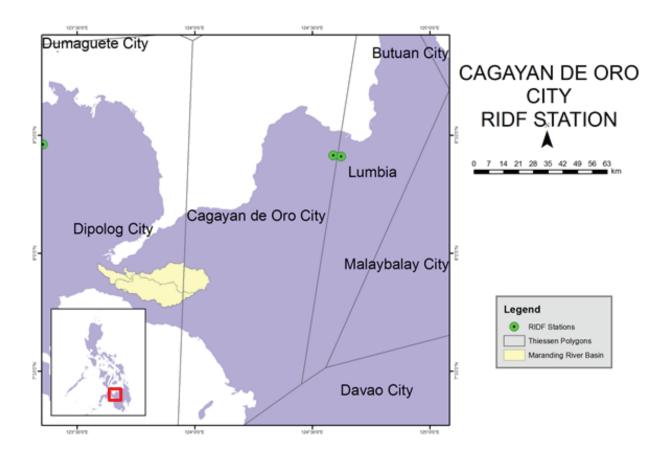


Figure 54. Location of Cagayan de Oro RIDF station relative to Maranding River Basin.

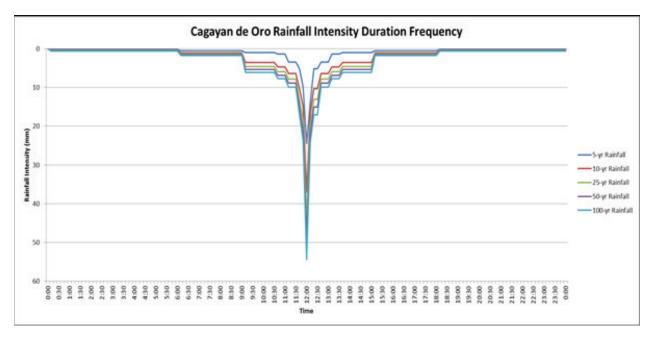


Figure 55. The synthetic storm generated for a 24-hour period rainfall for various return periods.

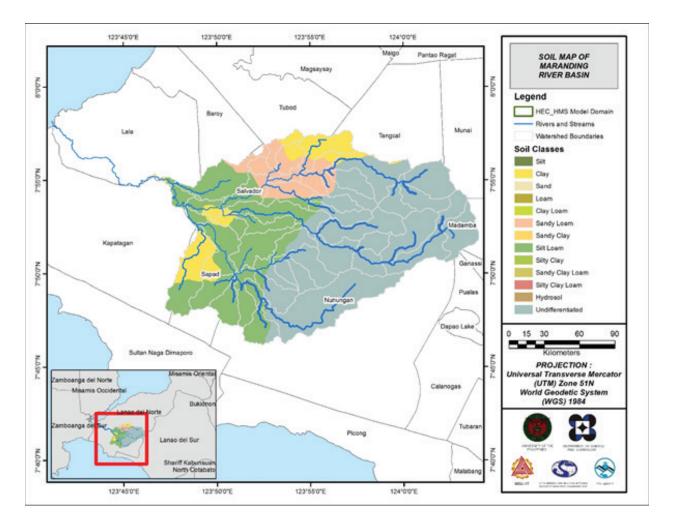


Figure 56. Soil Map of Maranding River Basin.

5.3 HMS Model

This soil dataset was taken on 2004 from the Bureau of Soils and Water Management (BSWM). It is under the Department of Environment and Natural Resources Management (DENR). The land cover dataset was from the National Mapping and Resource information Authority (NAMRIA). The soil, land cover, and slope map of the Maranding River Basin are shown in Figure 56 to Figure 58.

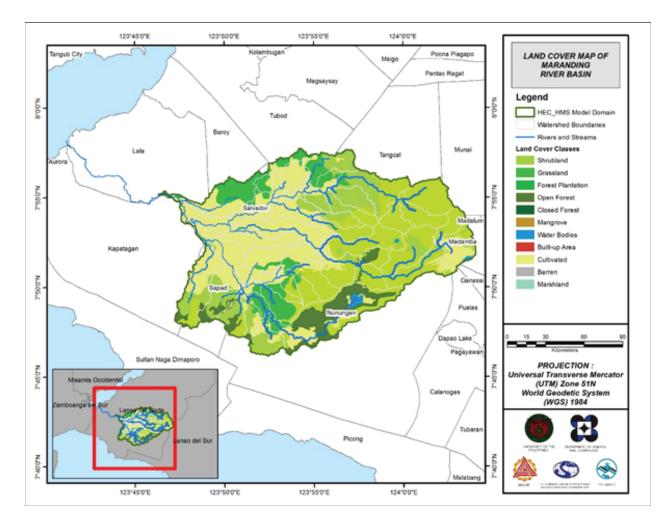


Figure 57. Land Cover Map of Maranding River Basin.

For Maranding, the soil classes identified were clay, sandy clay, sandy loam, silt loam, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, closed forest, and cultivated.

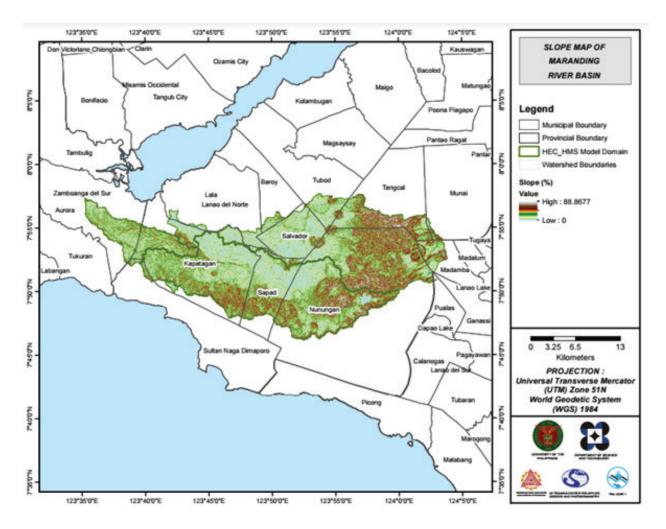


Figure 58. Slope Map of the Maranding River Basin.

Using the SAR-based DEM, the Maranding basin was delineated and further subdivided into subbasins. The model consists of 35 subbasins, 21 reaches, and 21 junctions. The main outlet is Mar_Point. This basin model is illustrated in Figure 59. Finally, it was calibrated using hydrological data derived from the depth gauge and flow meter deployed at Maranding Bridge.

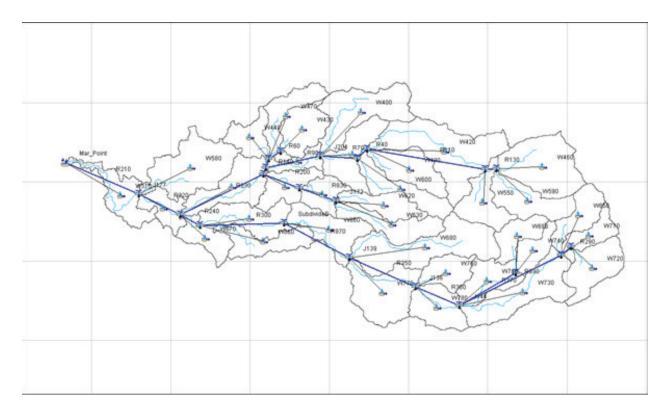


Figure 59. The Maranding river basin model generated using HEC-HMS.

5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the HEC GeoRAS tool and was post-processed in ArcGIS (Figure 60).

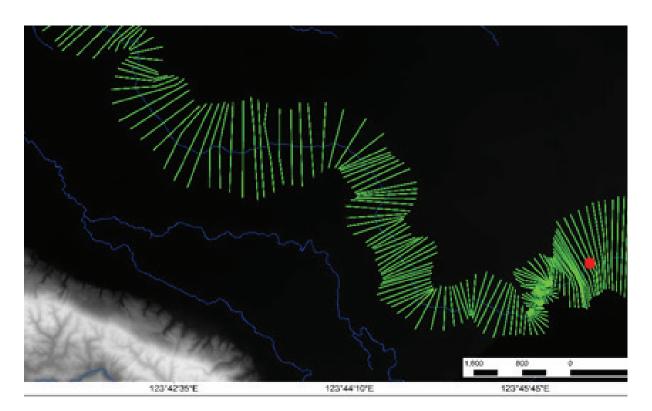


Figure 60. River cross-section of the Maranding River through the ArcMap HEC GeoRas tool.

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the northeast of the model to the west, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

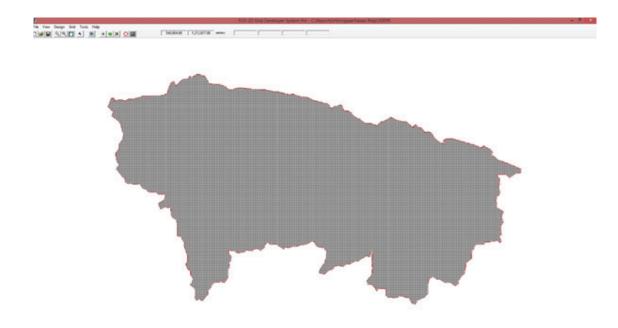


Figure 61. . A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro)

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 22.20007 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Maranding are in Figure 62, 64, and 66.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 22958400.00 m2. The generated flood depth maps for Maranding are in Figure 63, 65 and 67.

There is a total of 61783670.89 m3 of water entering the model. Of this amount, 6072171.66 m3 is due to rainfall while 55711499.22 m3 is inflow from other areas outside the model 4363573.50 m3 of this water is lost to infiltration and interception, while 33831397.31 m3 is stored by the flood plain. The rest, amounting up to 23588699.98 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Maranding HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 62 shows the comparison between the two discharge data.

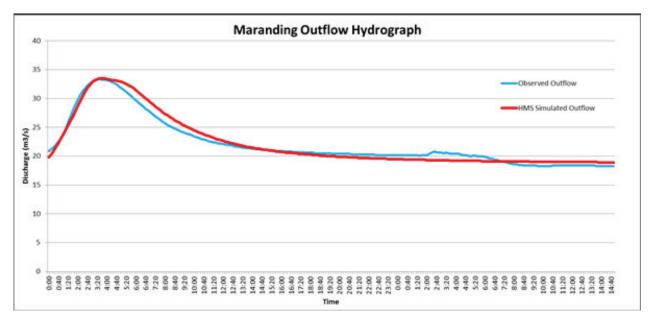


Figure 62. Outflow Hydrograph of Maranding produced by the HEC-HMS model compared with observed outflow.

Table 34 shows adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
	Loss	SCS Curve	Initial Abstraction (mm)	10 - 57
		number	Curve Number	47 - 83
Basin	Transform	Clark Unit	Time of Concentration (hr)	2 - 10
Dasin	nansionn	Hydrograph	Storage Coefficient (hr)	2 - 14
	Baseflow	Recession	Recession Constant	1
	buschow	Recession	Ratio to Peak	0.5
Reach	Routing	Muskingum-Cunge	Manning's Coefficient	0.04

Table 33. RIDF values for the Dipolog Rain Gauge, as computed by PAGASA

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 10 to 57mm means that there is minimal to average amount of infiltration or rainfall interception by vegetation per subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 47 to 83 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 2 to 14 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 1 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.5 indicates a relatively average steepness of receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.04 corresponds to the common roughness in Maranding watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	1.26
r2	0.93
NSE	0.94
PBIAS	-3.25
RSR	0.23

Table 34. Summary of the Efficiency Test of the Maranding HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 1.26 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.93.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.94.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -3.25.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.23.

5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph shows the Maranding outflow using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

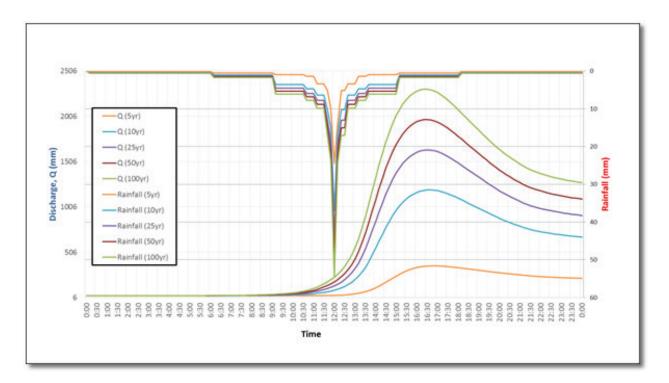


Figure 63. The Outflow hydrograph at the Maranding Station, generated using the Cagayan de Oro RIDF simulated in HEC-HMS.

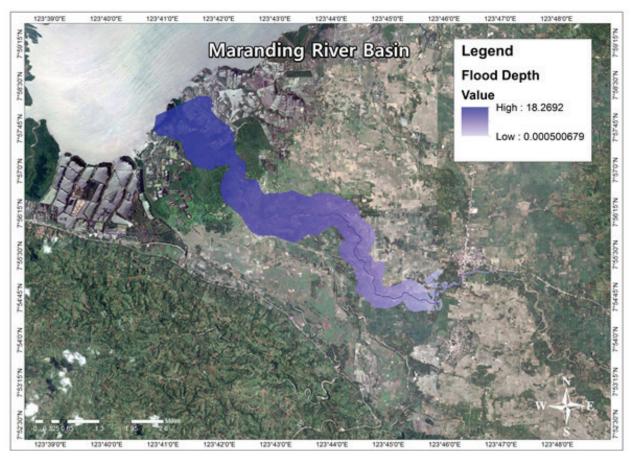
A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Maranding discharge using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 36.

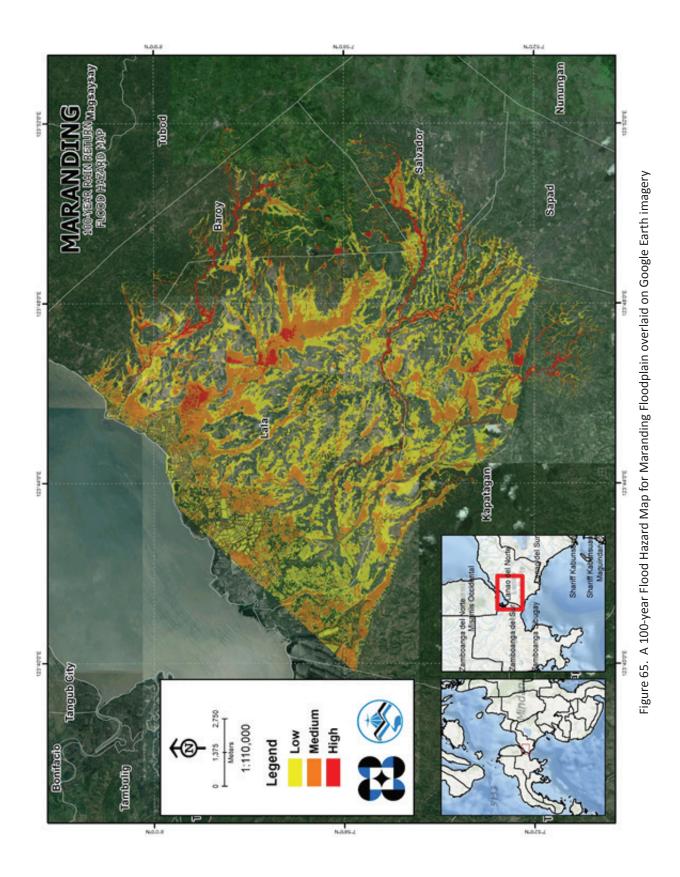
RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	141.7	24.5	355.8	16 hours, 50 minutes
10-Year	300.7	37	1194.5	16 hours, 40 minutes
25-Year	373.6	44	1634.3	16 hours, 30 minutes
50-Year	427.6	49.2	1970	16 hours, 30 minutes
100-Year	481.2	54.4	2305.9	16 hours, 30 minutes

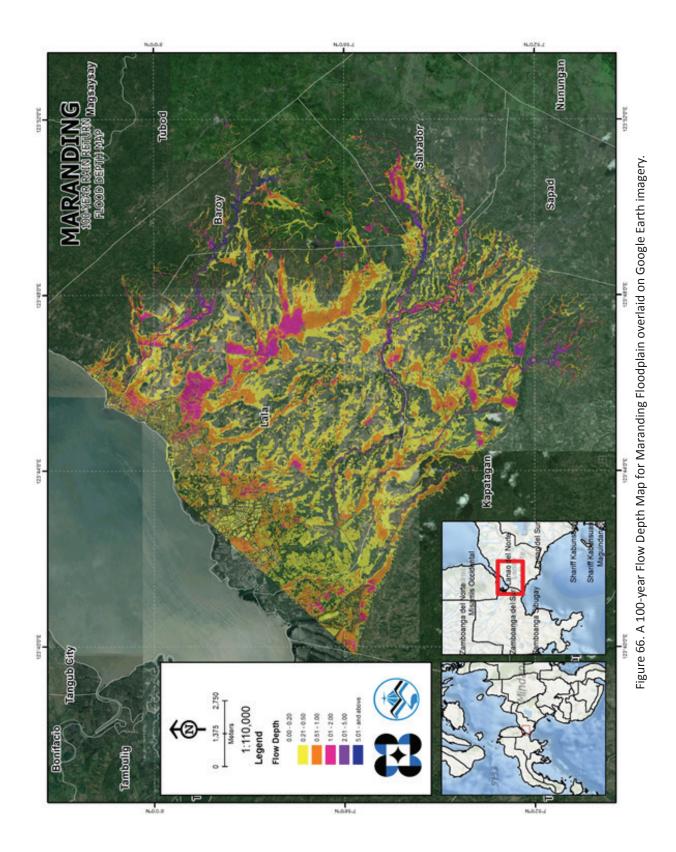
Table 35. The peak values of the Maranding HEC-HMS Model outflow using the Romblon RIDF.

5.8 River Analysis (RAS) Model Simulation

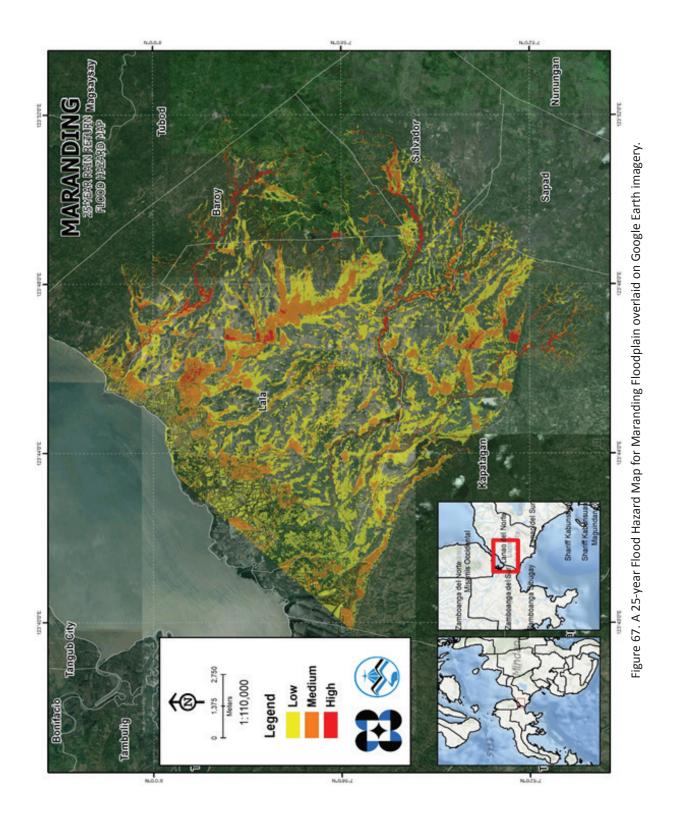
The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. Figure 64 shows a generated sample map of the Maranding River using the calibrated HMS base flow.

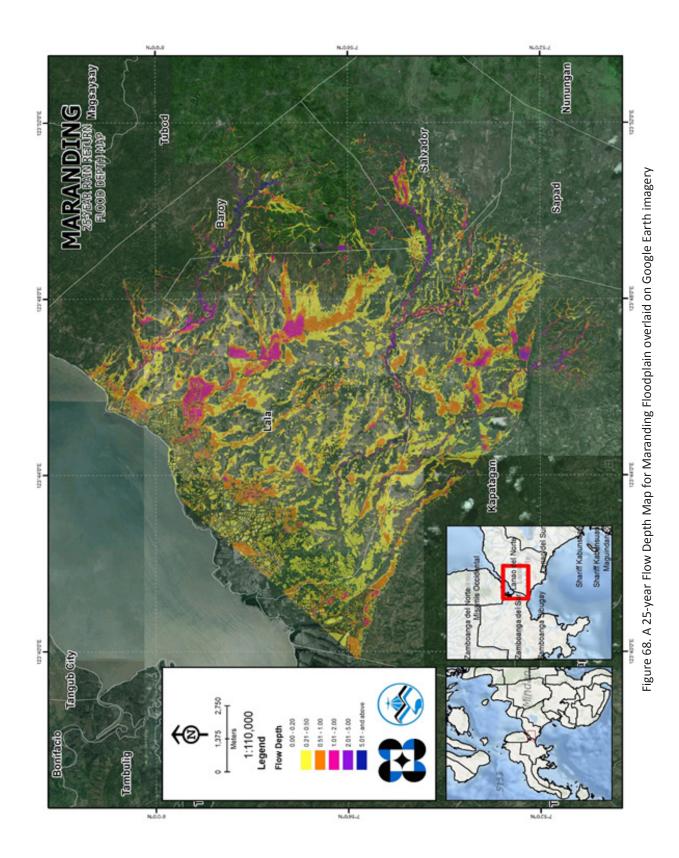


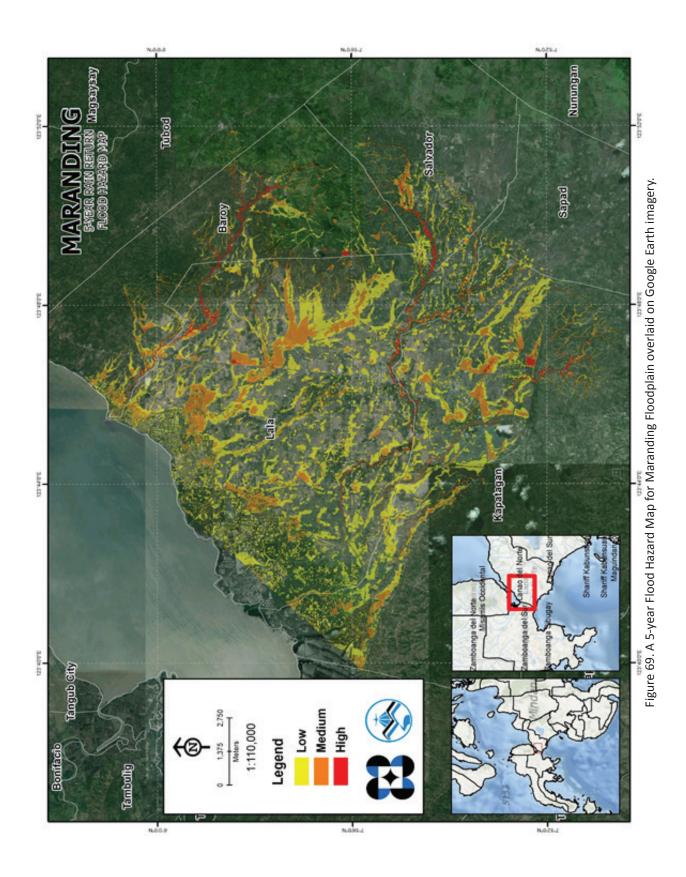

Figure 64. The sample output map of the Maranding RAS Model.

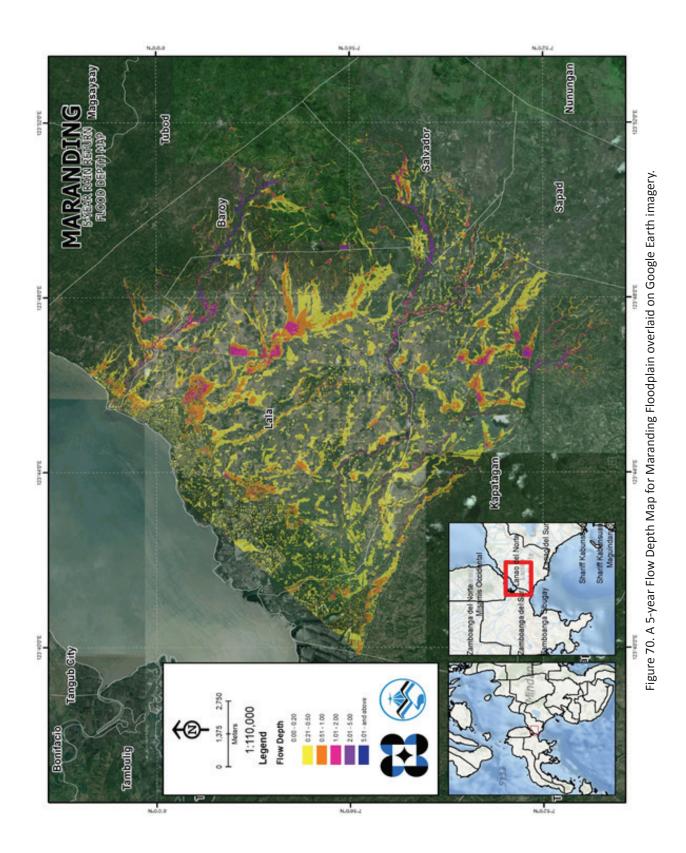

5.9 Flow Depth and Flood Hazard

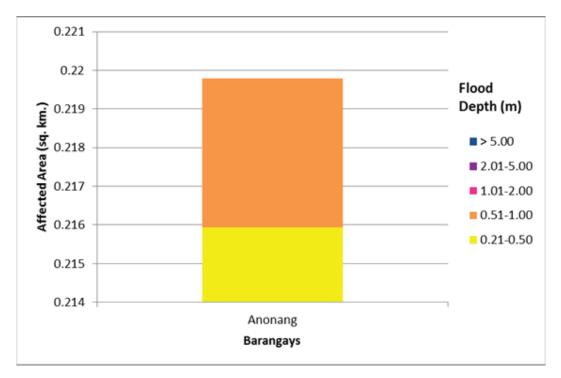
The resulting hazard and flow depth maps for the 5-, 25-, and 100-year rain return scenarios of the Maranding floodplain are shown in Figure 65 to Figure 70. The floodplain, with an area of 254.66 sq. km., covers seven municipalities namely Baroy, Kapatagan, Lala, Salvador, Sapad, Tubod, and Aurora. Table 37 shows the percentage of area affected by flooding per municipality.

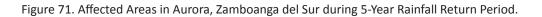

Municipality	Total Area	Area Flooded	% Flooded
Baroy	62.0847	37.0949	60%
Kapatagan	184.766	68.9431	37%
Lala	125.181	123.919	99%
Salvador	46.4634	12.786	28%
Sapad	65.1279	4.03391	6%
Tubod	121.945	1.29683	1%
Aurora	162.225	2.32535	1%


Table 36. Municipalities affected in Maranding floodplain.




75

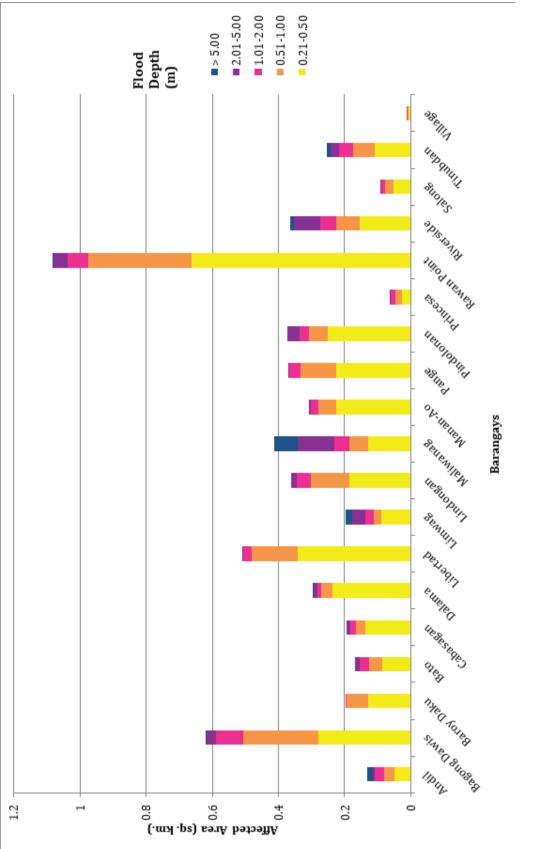

5.10 Inventory of Areas Exposed to Flooding


Affected barangays in Maranding river basin, grouped by municipality, are listed below. For the said basin, seven municipalities consisting of 84 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period.

For the 5-year return period, 1.30% of the municipality of Aurora with an area of 162.23 sq. km. will experience flood levels of less 0.20 meters. 0.13% of the area will experience flood levels of 0.21 to 0.50 meters while 0.002% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

Table 37. Affected Areas in Aurora, Zamboanga o	del Sur during 5-Year Rainfall Return Period.
---	---

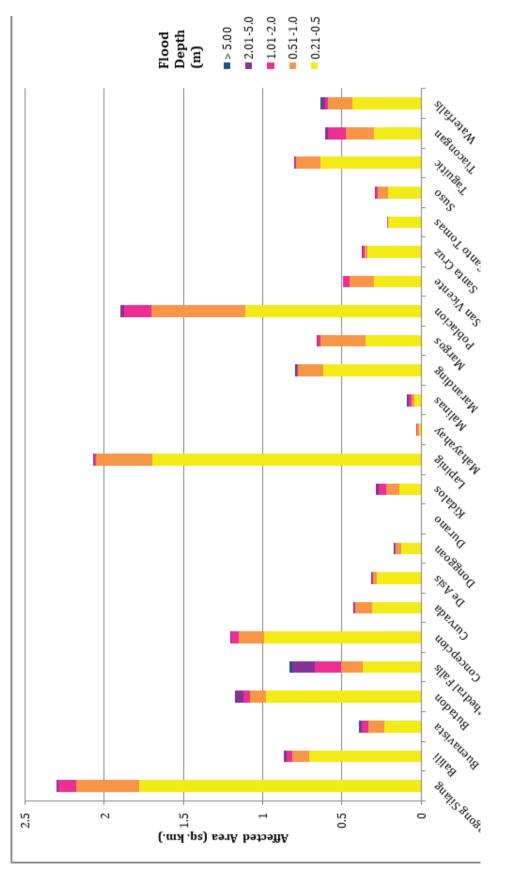
Affected Area (in sq.km.) by flood	Affected Barangays in Aurora (sq.km.)
depth (in m.)	Anonang
0.03-0.20	2.11
0.21-0.50	0.22
0.51-1.00	0.0039
1.01-2.00	0
2.01-5.00	0
> 5.00	0



For the municipality of Baroy, with an area of 62.08 sq. km., 50.15% will experience flood levels of less 0.20 meters. 5.43% of the area will experience flood levels of 0.21 to 0.50 meters while 2.39%, 0.92%, 0.69%, and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

Table 38. Affected Areas in Baroy, Lanao del Norte during 5-Year Rainfall Return Period

Affected Area (in					A	offected Bara	Affected Barangays in Baroy	>				
sq.km.) by 1100a depth (in m.)	Andil	Bagong Dawis	Baroy Daku	Bato	Cabasagan	Dalama	Libertad	Limwag	Lindongan	Maliwanag	Manan-Ao	Pange
0.03-0.20	4.4	1.94	0.95	1.93	2.69	1.97	1.45	1.33	2.51	3.26	1.91	1.93
0.21-0.50	0.15	0.15	0.2	0.061	0.089	0.17	0.25	0.056	0.17	0.2	0.13	0.13
0.51-1.00	0.12	0.052	0.075	0.03	0.028	0.029	0.054	0.017	0.083	0.078	0.048	0.056
1.01-2.00	0.1	0.036	0.011	0.021	0.013	0.012	0.018	0.022	0.03	0.064	0.017	0.037
2.01-5.00	0.094	0.032	0.002	0.011	0.0052	0.0094	0.012	0.044	0.0075	0.095	0.0067	0.015
> 5.00	0.037	0.013	0	0.0008	0.0002	0.001	0.00044	0.018	0	0.059	0	0
Affected Area (in					A	offected Bara	Affected Barangays in Baroy	٨				
sq.km.) by flood depth (in m.)	Pindolonan	Poblacion	Princesa	Rawan Point	Riverside	Sagadan	Sagadan Upper	Salong	San Juan	Tinubdan	Village	ge
0.03-0.20	2.44	1.2	3.97	2.41	5.3	1.69	1.25	3.78	0.39	4.47	1.42	2
0.21-0.50	0.13	0.039	0.13	0.41	0.2	60.0	0.18	0.16	0.047	0.28	0.059	65
0.51-1.00	0.049	0.033	0.088	0.095	0.11	0.07	0.093	0.074	0.027	0.16	0.065	55
1.01-2.00	0.033	0.015	0.11	0.037	0.099	0.061	0.027	0.054	0.0059	0.09	0.042	12
2.01-5.00	0.024	0.0025	0.11	0.05	0.097	0.054	0.018	0.0035	0.00036	0.067	0.013	[3
> 5.00	0	0.022	0.038	0.013	0.019	0.0074	0	0	0	0.032	0	

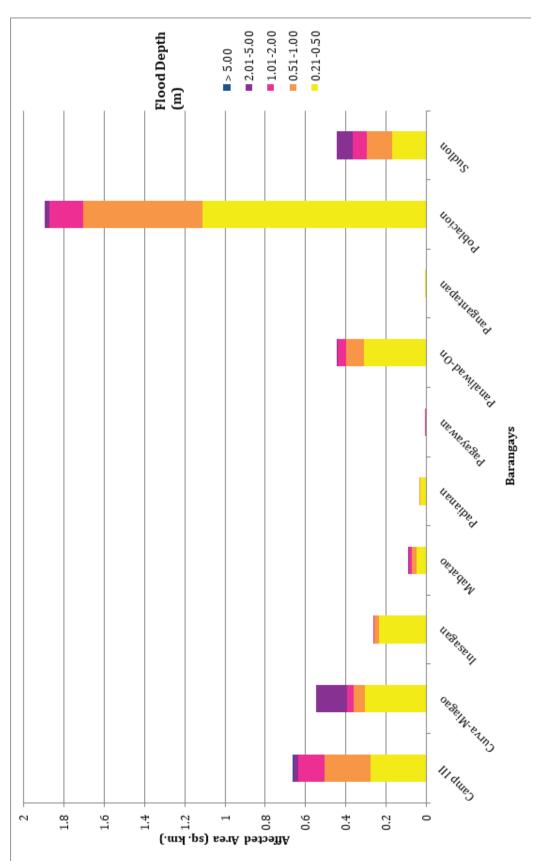


For the municipality of Kapatagan, with an area of 184.77 sq. km., 28.21% will experience flood levels of less 0.20 meters. 6.58% of the area will experience flood levels of 0.21 to 0.50 meters while 1.85%, 0.51%, 0.18%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in					Af	fected Bara	Affected Barangays in Kapatagan	gan				
sq.km.) by flood depth (in m.)	Bagong Silang	Balili	Bansarvil	Buenavista	Butadon	Cathedral Falls	Concepcion	Curvada	De Asis	Donggoan	Durano	Lapinig
0.03-0.20	2.6	2.3	0.12	1.33	2.12	1.04	1.17	0.69	0.9	3.53	0.85	3.64
0.21-0.50	1.58	0.78	0.0022	0.082	1.5	0.49	1.16	0.22	0.96	0.18	0.01	1.64
0.51-1.00	1.36	0.83	0.00019	0.024	1.62	0.26	1.23	0.28	0.34	0.14	0.0031	1.88
1.01-2.00	0.57	0.21	0.0003	0.012	0.16	0.11	0.059	0.14	0.023	0.031	0.0021	0.28
2.01-5.00	0.088	0.069	0	0.0024	0.073	0.028	0.072	0.029	0.024	0.017	0.00041	0.063
> 5.00	0.0075	0.043	0	0.0001	0.067	0.048	0.038	0.0048	0	0.0004	0	0.0002
Affected Area (in					Affected	Affected Barangays in Kapatagan	n Kapatagan					
sq.km.) by flood depth (in m.)	Malinas	Maranding	Margos	Poblacion	San Vicente	Santa Cruz	Santo Tomas	Suso	Taguitic	Tiacongan	Tulatulahan	Waterfalls
0.03-0.20	0.34	0.52	1.4	1.2	0.54	0.59	0.23	1.77	3.74	1.84	0.053	0.98
0.21-0.50	0.012	0.65	0.54	0.039	0.61	0.37	0.51	0.59	0.6	0.19	0	0.48
0.51-1.00	0.0041	1.02	0.42	0.033	0.32	0.035	0.77	0.21	0.099	0.055	0	0.52
1.01-2.00	0.0002	0.34	0.02	0.015	0.11	0.0036	0.015	0.019	0.02	0.021	0	0.37
2.01-5.00	0	0.0072	0.0031	0.0025	0.0038	0.0054	0.013	0.018	0.003	0.0013	0	0.04
> 5.00	0	0.02	0.0001	0.022	0	0.017	0.00074	0.039	0	0	0	0.039

Table 39. Affected Areas in Kapatagan, Lanao del Norte during 5-Year Rainfall Return Period.

Affected Area (in sa.km.) bv							Affected Barangays in Lala	ngays in Lala						
flood depth (in m.)	Abaga	Andil	Cabasagan	Camalan	Darumawang Bucana	Darumawang Ilaya	El Salvador	Gumagamot	Lala Proper	Lanipao	Magpatao	Maranding	Matampay Bucana	Matampay Ilaya
0.03-0.20	2.01	4.4	2.69	2.9	6.94	8.41	3.18	2.67	1.2	1.54	2.87	0.52	2.72	1.37
0.21-0.50	0.19	0.15	0.089	0.7	1	1.46	2.33	0.47	0.21	0.31	0.44	0.65	0.33	0.23
0.51-1.00	0.015	0.12	0.028	0.24	0.12	0.22	2.32	0.13	0.036	0.083	0.29	1.02	0.027	0.039
1.01-2.00	0.051	0.1	0.013	0.0083	0.013	0.026	0.33	0.0002	0.014	0.0012	0.044	0.34	0	0.0041
2.01-5.00	0.01	0.094	0.0052	0	0.0008	0.031	0.17	0	0	0	0.0022	0.0072	0	0
> 5.00	0	0.037	0.0002	0	0	0.0074	0	0	0	0	0	0.02	0	0
Affected Area							Affected Barangays in Lala	ngays in Lala						
flood depth (in m.)	Pacita	Pendolonan	Pinoyak	Raw-An	Rebe	San Isidro Lower	San Isidro Upper	San Manuel	Santa Cruz Lower	Santa Cruz Upper	Simpak	Tenazas	Tuna-An	-An
0.03-0.20	1.8	4.81	4.1	1.37	6.13	3.89	3.67	3.55	5.09	7.27	5.33	2.21	2.17	7
0.21-0.50	0.25	1.04	1.83	0.1	1.37	0.42	0.28	0.64	0.69	1.31	1.33	0.22	0.77	7
0.51-1.00	0.013	0.082	0.27	0.0035	0.47	0.049	0.059	0.19	0.081	0.48	0.38	0.037	0.16	.6
1.01-2.00	0.0001	0.024	0.038	0.0016	0.32	0.036	0.054	0.13	0.0039	0.14	0.072	0.0086	0.023	23
2.01-5.00	0	0.011	0.064	0.000004	0.75	0.0003	0.047	0.37	0	0.06	0.021	0	0.001	01
> 5.00	0	0.0001	0.1	0	0.046	0	0.032	0.088	0	0.041	0.018	0	0	



For the municipality of Salvador, with an area of 46.46 sq. km., 26.90% will experience flood levels of less 0.20 meters. 5.36% of the area will experience flood levels of 0.21 to 0.50 meters while 2.46%, 0.99%, 0.60%, and 0.0002% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 41 are the affected areas in square kilometers by flood depth per barangay.

Table 41. Affected Areas in Salvador, Lanao del Norte during 5-Year Rainfall Return Period.

Affected Area (in sg.km.)					Affected Ba	Affected Barangays in Salvador	vador			
by flood depth (in m.)	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Pagayawan	Panaliwad- On	Pangantapan	Poblacion	Sudlon
0.03-0.20	2.8	1.07	1.07	0.95	0.28	0.042	1.87	0.014	3.36	1.05
0.21-0.50	0.28	0.31	0.24	0.048	0.031	0.002	0.31	0.001	1.11	0.17
0.51-1.00	0.23	0.054	0.024	0.026	0.0006	0.00036	0.092	0	0.59	0.12
1.01-2.00	0.13	0.032	0.0039	0.011	0	0.0000	0.039	0	0.17	0.071
2.01-5.00	0.024	0.15	0	0.0017	0	0	0.0001	0	0.024	0.078
> 5.00	0.0001	0	0	0	0	0	0	0	0	0
> 5.00										

For the municipality of Sapad, with an area of 65.13 sq. km., 5.16% will experience flood levels of less 0.20 meters. 0.78% of the area will experience flood levels of 0.21 to 0.50 meters while 0.15%, 0.06%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 42 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in sq.km.) by flood		Affected Bara	ngays in Sapad	
depth (in m.)	Mabugnao	Mapurog	Pancilan	Panoloon
0.03-0.20	0.83	1.45	0.33	0.75
0.21-0.50	0.13	0.28	0.026	0.081
0.51-1.00	0.04	0.045	0.013	0.0024
1.01-2.00	0.0035	0.034	0.0037	0.00029
2.01-5.00	0.005	0.017	0	0
> 5.00	0	0	0	0

Table 42. Affected Areas in Sapad, Lanao del Norte during 5-Year Rainfall Return Period.

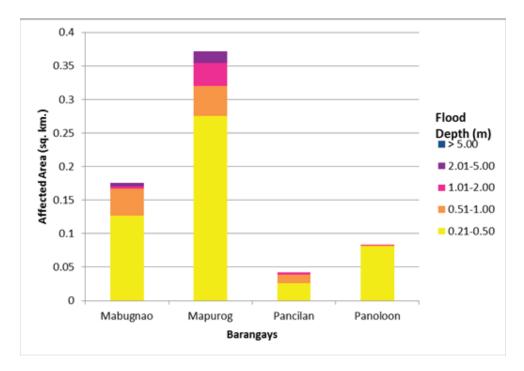


Figure 76. Affected Areas in Sapad, Lanao del Norte during 5-Year Rainfall Return Period.

For the municipality of Tubod, with an area of 121.95 sq. km., 0.99% will experience flood levels of less 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters while 0.02%, 0.01%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 43 are the affected areas in square kilometers by flood depth per barangay.

Table 43. Affected Areas in Tubod, Lanao del Norte during 5-Year Rainfall Return Period.
--

Affected Area (in sq.km.) by flood		Affected Bara	ngays in Tubod			
depth (in m.)	Candis	Licapao	Malingao	Panoloon		
0.03-0.20	0.0099	1.19	0.0043	0.748704		
0.21-0.50	0	0.045	0	0.004309		
0.51-1.00	0	0.029	0	0.002399		
1.01-2.00	0	0.014	0	0.00029		
2.01-5.00	0	0.0042	0	0		
> 5.00	0	0	0	0		

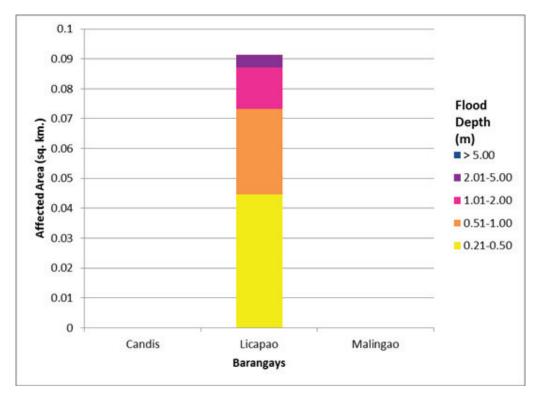


Figure 77. Affected Areas in Tubod, Lanao del Norte during 5-Year Rainfall Return Period.

For the 25-Year return period, 1.04% of the municipality of Aurora with an area of 162.23 sq. km. will experience flood levels of less 0.20 meters. 0.39% of the area will experience flood levels of 0.21 to 0.50 meters while 0.003% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 44 are the affected areas in square kilometers by flood depth per barangay.

Table 44. Affected Areas in Aurora, Zamboanga del Sur during 25-Year Rainfall Return Period.

Affected Area (in sq.km.) by flood	Affected Barangays in Aurora
depth (in m.)	Anonang
0.03-0.20	1.68
0.21-0.50	0.64
0.51-1.00	0.0055
1.01-2.00	0
2.01-5.00	0
> 5.00	0

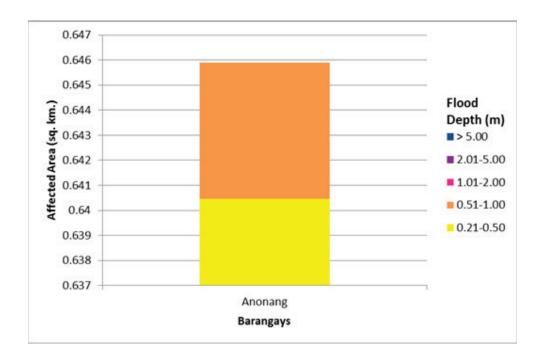
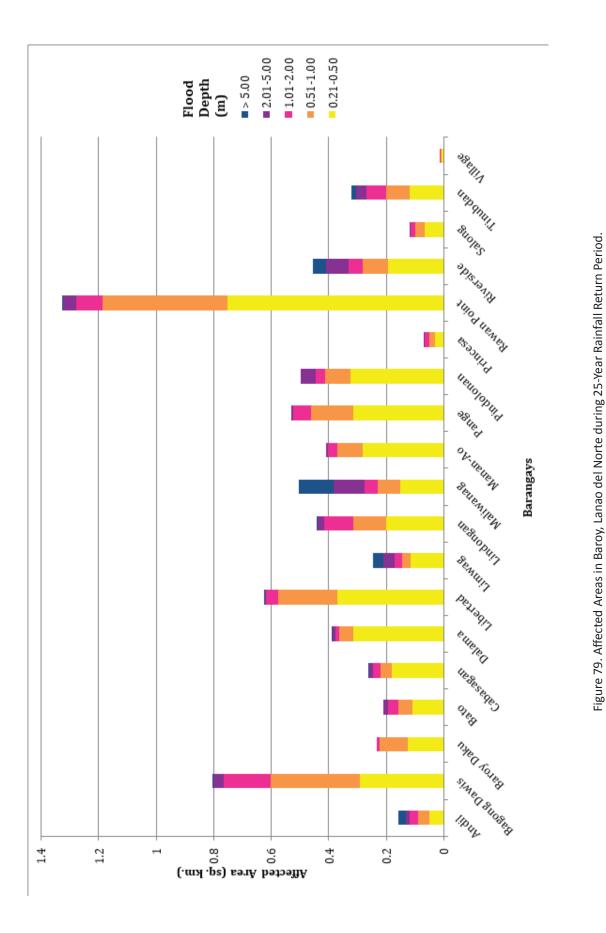
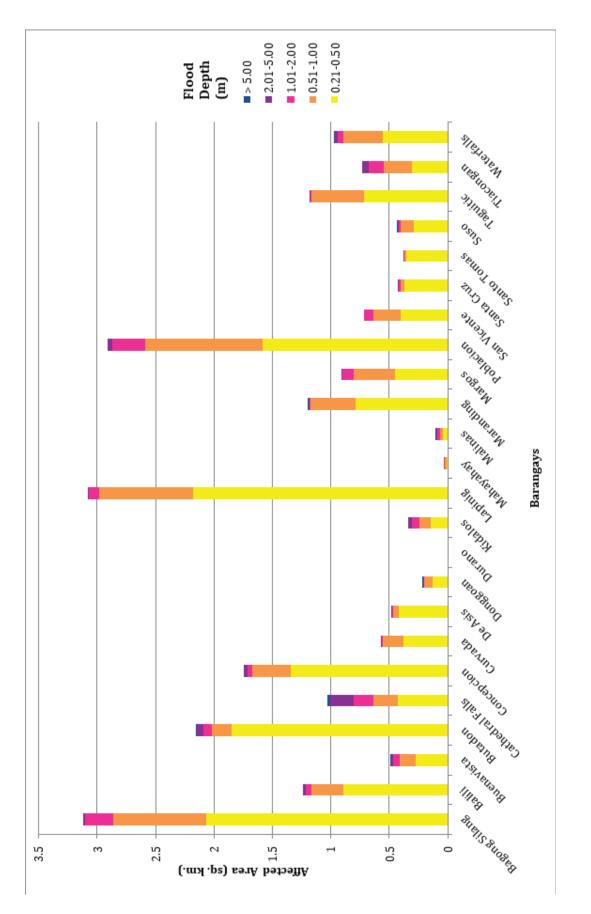



Figure 78. Affected Areas in Aurora, Zamboanga del Sur during 25-Year Rainfall Return Period.

For the municipality of Baroy, with an area of 62.08 sq. km., 47.57% will experience flood levels of less 0.20 meters. 6.43% of the area will experience flood levels of 0.21 to 0.50 meters while 3.22%, 1.40%, 0.80%, and 0.41% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 45 are the affected areas in square kilometers by flood depth per barangay.

Baroy DakuBato CabasaganDalama1.380.521.842.570.290.130.110.180.310.0950.0490.0380.160.0960.0360.0260.03600.0180.014
U.UU33UUU.UU33UUPoblacionPrincesaRawan Point0.481.732.23
0.03 0.75 0.19 0.021 0.44 0.087
0.016 0.091 0.051 0.0018 0.046 0.078
0 0.0017 0.045

Table 45. Affected Areas in Baroy, Lanao del Norte during 25-Year Rainfall Return Period.

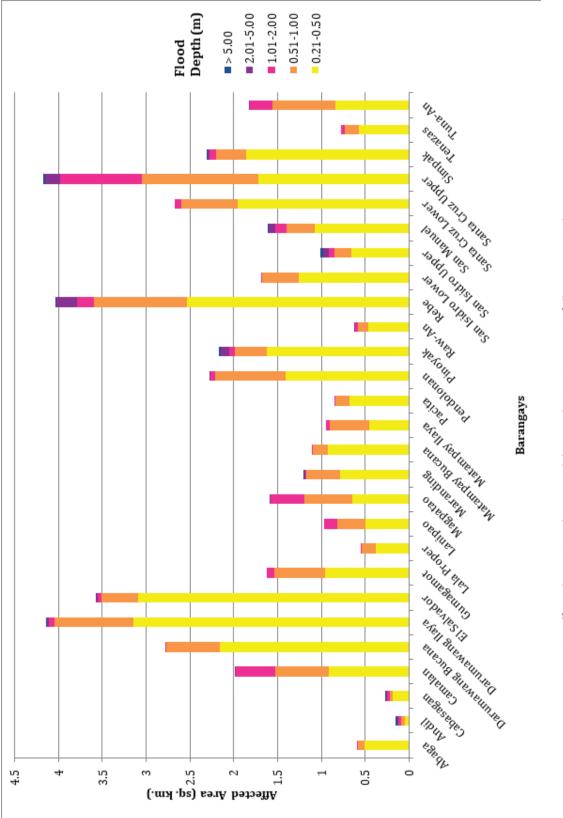


93

For the municipality of Kapatagan, with an area of 184.77 sq. km., 24.18% will experience flood levels of less 0.20 meters. 8.64% of the area will experience flood levels of 0.21 to 0.50 meters while 3.43%, 0.81%, 0.29%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 46 are the affected areas in square kilometers by flood depth per barangay.

	Lapinig	4.11	2.18	0.8	0.086	0.0001	0		Waterfalls	1.39	0.56	0.34	0.041	0.027	0.0015
	Durano	2.36	0.14	0.099	0.068	0.026	0		Tulatulahan	2.85	0.3	0.24	0.13	0.056	0
	Donggoan	0.019	0	0	0	0	0		Tiacongan	2.76	0.72	0.45	0.012	0.00033	0
	De Asis	1.42	0.13	0.076	0.0032	0.0013	0.0007		Taguitic	1.8	0.29	0.11	0.016	0.0053	0.0001
agan	Curvada	1.75	0.42	0.051	0.0051	0.0063	0	agan	Suso	1.16	0.36	0.014	0.0016	0.000027	0
Affected Barangays in Kapatagan	Concepcion	0.81	0.38	0.18	0.005	0.0083	0	Affected Barangays in Kapatagan	Santo Tomas	0.6	0.37	0.03	0.017	0.0031	0
ffected Barar	Cathedral Falls	2	1.35	0.33	0.041	0.032	0	ffected Barar	Santa Cruz	0.88	0.4	0.24	0.079	0	0
A	Butadon	1.75	0.42	0.22	0.16	0.2	0.026	A	San Vicente	2.36	1.58	1.01	0.28	0.038	0
	Buenavista	3.4	1.85	0.17	0.071	0.056	0.0053		Poblacion	1.45	0.45	0.35	0.097	0.000073	0
	Bansarvil	3.31	0.27	0.14	0.057	0.017	0.0006		Margos	1.35	0.79	0.39	0.0061	0.0095	0.0082
	Balili	2.54	0.9	0.27	0.048	0.026	0		Maranding	0.91	0.043	0.026	0.018	0.013	0.0005
	Bagong Silang	3.37	2.06	0.8	0.24	0.018	0		Malinas	0.35	0.013	0.012	0.0087	0	0
Affected Area (in	sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Affected Area (in	sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 46. Affected Areas in Kapatagan, Lanao del Norte during 25-Year Rainfall Return Period.



0.21 to 0.50 meters while 9.56%, 2.58%, 0.61%, and 0.10% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more For the municipality of Lala, with an area of 125.18 sq. km., 58.39% will experience flood levels of less 0.20 meters. 25.02% of the area will experience flood levels of than 5 meters, respectively. Listed in Table 47 are the affected areas in square kilometers by flood depth per barangay.

Affected Area						A	Affected Barangays in Lala	gays in Lala						
flood depth (in m.)	Abaga	Andil	Cabasagan	Camalan	Darumawang Bucana	Darumawang Ilaya	El Salvador	Gumagamot	Lala Proper	Lanipao	Magpatao	Maranding	Matampay Bucana	Matampay Ilaya
0.03-0.20	1.69	1.15	2.57	2.01	4.8	6.03	4.76	1.69	0.91	0.98	2.07	1.35	1.9	0.69
0.21-0.50	0.51	0.049	0.18	0.91	2.16	3.14	3.09	0.95	0.38	0.49	0.64	0.79	0.92	0.45
0.51-1.00	0.067	0.039	0.038	0.61	0.62	6.0	0.42	0.59	0.16	0.32	0.55	0.39	0.18	0.45
1.01-2.00	0.0001	0.032	0.026	0.45	0.0086	0.068	0.045	0.084	0.011	0.15	0.38	0.0061	0.0035	0.043
2.01-5.00	0	0.013	0.014	0.0031	0	0.022	0.02	0	0	0	0.003	0.0095	0	0
> 5.00	0	0.025	0.0015	0	0	0.00056	0	0	0	0	0	0.0082	0	0
Affected Area						A	Affected Barangays in Lala	gays in Lala						
flood depth (in m.)	Pacita	Pendolonan	Pinoyak	Raw-An	Rebe	San Isidro Lower	San Isidro Upper	San Manuel	Santa Cruz Lower	Santa Cruz Upper	Simpak	Tenazas	Tuna-An	-An
0.03-0.20	1.21	3.68	4.27	0.86	5.07	2.72	3.12	3.41	3.19	5.1	4.83	1.72	1.31	11
0.21-0.50	0.67	1.41	1.63	0.46	2.53	1.25	0.65	1.08	1.96	1.72	1.86	0.57	0.84	34
0.51-1.00	0.16	0.8	0.36	0.11	1.06	0.42	0.2	0.32	0.64	1.32	0.34	0.17	0.71	1
1.01-2.00	0.00087	0.054	0.063	0.035	0.19	0.019	0.068	0.13	0.067	0.94	0.068	0.04	0.25	5
2.01-5.00	0	0.0059	0.096	0.00031	0.24	0	0.062	0.078	0	0.17	0.022	0	0.0007	07
> 5.00	0	0	0.021	0	0.0039	0	0.028	0.005	0	0.024	0.01	0	0	

96

Table 47. Affected Areas in Lala, Lanao del Norte during 25-Year Rainfall Return Period.

For the municipality of Salvador, with an area of 46.46 sq. km., 23.04% will experience flood levels of less 0.20 meters. 7.09% of the area will experience flood levels of 0.21 to 0.50 meters while 3.86%, 1.53%, 0.79%, and 0.02% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 48 are the affected areas in square kilometers by flood depth per barangay.

Table 48. Affected Areas in Salvador, Lanao del Norte during 25-Year Rainfall Return Period.

Affected Area (in sg.km.)				A	ffected Barar	Affected Barangays in Salvador	or			
by flood depth (in m.)	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Pagayawan	Panaliwad- On	Pangantapan	Poblacion	Sudlon
0.03-0.20	2.67	0.91	0.91	0.93	0.26	0.041	1.71	0.014	2.36	0.91
0.21-0.50	0.29	0.4	0.35	0.056	0.046	0.0028	0.39	0.0013	1.58	0.18
0.51-1.00	0.28	0.088	0.058	0.032	0.001	0.00036	0.14	0	1.01	0.19
1.01-2.00	0.19	0.032	0.0086	0.015	0.0001	0.0000	0.067	0	0.28	0.12
2.01-5.00	0.038	0.18	0.0002	0.0037	0	0	0.0065	0	0.038	0.1
> 5.00	0.0004	0.0094	0	0	0	0	0	0	0	0.0011

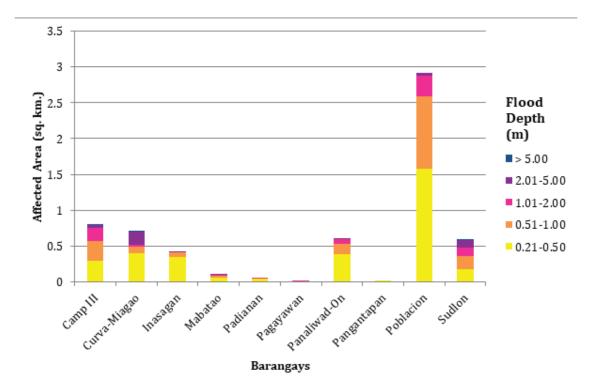


Figure 82. Affected Areas in Salvador, Lanao del Norte during 25-Year Rainfall Return Period.

For the municipality of Sapad, with an area of 65.13 sq. km., 4.75% will experience flood levels of less 0.20 meters. 1.08% of the area will experience flood levels of 0.21 to 0.50 meters while 0.22%, 0.10%, 0.05% and 0.003% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 49 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in sq.km.) by flood		Affected Bara	ngays in Sapad	
depth (in m.)	Mabugnao	Mapurog	Pancilan	Panoloon
0.03-0.20	0.79	1.31	0.31	0.69
0.21-0.50	0.15	0.36	0.044	0.14
0.51-1.00	0.054	0.066	0.013	0.0073
1.01-2.00	0.0065	0.052	0.0083	0.00072
2.01-5.00	0.005	0.03	0	0
> 5.00	0.002	0	0	0

Table 49. Affected Areas in Sapad, Lanao del Norte during 25-Year Rainfall Return Period.

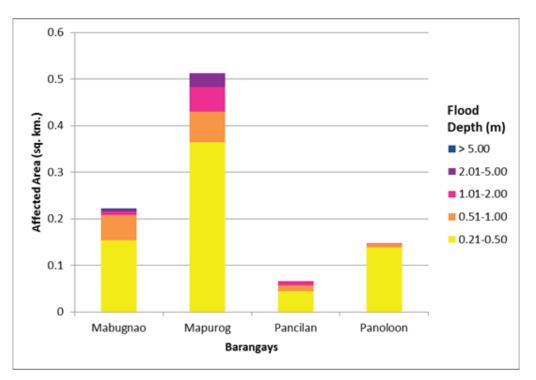


Figure 83. Affected Areas in Sapad, Lanao del Norte during 25-Year Rainfall Return Period.

For the municipality of Tubod, with an area of 121.95 sq. km., 0.98% will experience flood levels of less 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.02%, and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 50 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in sq.km.) by flood	Affecte	d Barangays ir	ı Tubod
depth (in m.)	Candis	Licapao	Malingao
0.03-0.20	0.0099	1.18	0.0043
0.21-0.50	0	0.047	0
0.51-1.00	0	0.033	0
1.01-2.00	0	0.021	0
2.01-5.00	0	0.0058	0
> 5.00	0	0	0

Table 50. Affected Areas in Tubod, Lanao del Norte during 25-Year Rainfall Return Period.

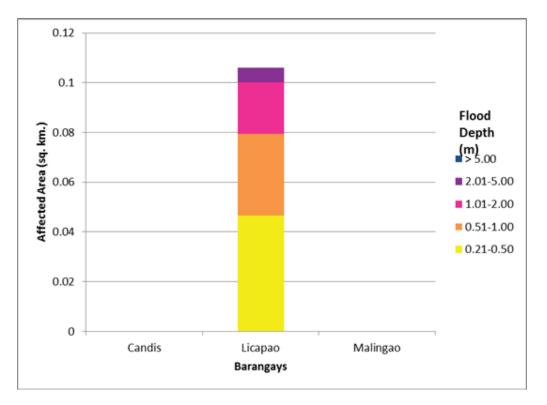


Figure 84. Affected Areas in Tubod, Lanao del Norte during 25-Year Rainfall Return Period.

For the 100-year return period, 0.90% of the municipality of Aurora with an area of 162.23 sq. km. will experience flood levels of less 0.20 meters. 53% of the area will experience flood levels of 0.21 to 0.50 meters while 0.006% of the area will experience flood depths of 0.51 to 1 meter. Listed in Table 51 are the affected areas in square kilometers by flood depth per barangay.

Table 51. Affected Areas in Aurora	Zamboanga del Sur during 100-Year Rainfall Return F	Period.
		000

Affected Area (in sq.km.) by flood depth (in m.)	Affected Barangays in Aurora Anonang
0.03-0.20	1.45
0.21-0.50	0.86
0.51-1.00	0.0097
1.01-2.00	0
2.01-5.00	0
> 5.00	0

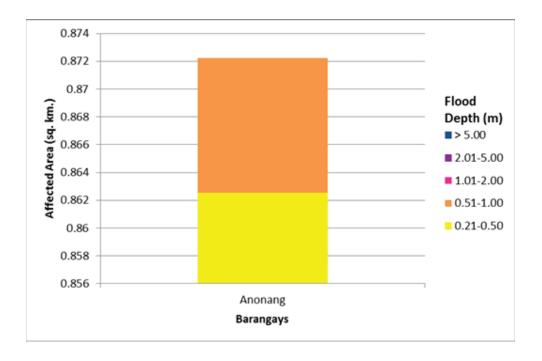


Figure 85. Affected Areas in Aurora, Zamboanga del Sur during 100-Year Rainfall Return Period.

For the municipality of Baroy, with an area of 62.08 sq. km., 45.78% will experience flood levels of less 0.20 meters. 6.83% of the area will experience flood levels of 0.21 to 0.50 meters while 4.00%, 1.77%, 0.89%, and 0.55% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 52 are the affected areas in square kilometers by flood depth per barangay.

Table 52. Affected Areas in Baroy, Lanao del Norte during 100-Year Rainfall Return Period.

Affected Area (in					A	Affected Barangays in Baroy	igays in Baroy					
sq.km.) by flood depth (in m.)	Andil	Bagong Dawis	Baroy Daku	Bato	Cabasagan	Dalama	Libertad	Limwag	Lindongan	Maliwanag	Manan- Ao	Pange
0.03-0.20	1.14	1.29	0.5	1.81	2.52	1.74	1.09	1.19	2.3	1.88	1.62	1.53
0.21-0.50	0.053	0.28	0.13	0.12	0.21	0.35	0.37	0.14	0.21	0.17	0.31	0.35
0.51-1.00	0.042	0.35	0.12	0.057	0.045	0.067	0.25	0.039	0.15	0.1	0.13	0.19
1.01-2.00	0.036	0.22	0.014	0.041	0.033	0.017	0.069	0.032	0.12	0.058	0.038	0.083
2.01-5.00	0.017	0.043	0	0.022	0.015	0.011	0.0075	0.041	0.032	0.11	0.011	0.0098
> 5.00	0.028	0.0038	0	0	0.0033	0.0031	0.001	0.05	0.0005	0.15	0	0
Affected Area (in					A	Affected Barangays in Baroy	ıgays in Baroy					
sq.km.) by flood depth (in m.)	Pindolonan	Poblacion	Princesa	Rawan Point	Riverside	Sagadan	Sagadan Upper	Salong	San Juan	Tinubdan	Villa	Village
0.03-0.20	2.1	0.47	1.6	2.15	1.76	1.53	0.2	2.1	0.47	1.6	2.:	2.15
0.21-0.50	0.36	0.032	0.73	0.22	0.076	0.12	0.0082	0.36	0.032	0.73	0.	0.22
0.51-1.00	0.11	0.024	0.56	0.11	0.038	0.092	0.0055	0.11	0.024	0.56	0.:	0.11
1.01-2.00	0.039	0.018	0.12	0.062	0.018	0.082	0.002	0.039	0.018	0.12	0.062	62
2.01-5.00	0.047	0.0029	0.048	0.075	0.0029	0.056	0	0.047	0.0029	0.048	0.0	0.075
> 5.00	0.015	0	0.0023	0.068	0	0.02	0	0.015	0	0.0023	0.068	68

Flood Depth (m) 2.01-5.00 1.01-2.00 0.51-1.00 0.21-0.50 > 5.00 28EIIIN HEPOPHIII SHORES apises and ¹¹¹⁰d ^{11EME}d S³³¹¹¹¹ HEHOTOPHIA Selle I OV. UPUPP Barangays BEIEMIRW IR BUODUIT SEMULT Peliagin E HIERO HR BRS BOR OJER NARE LAGIRE SIME I SHORE lip_{Up} 1.61.41.2Affected Area (sq. km.) 0.4 0.2 0

104

Figure 86. . Affected Areas in Baroy, Lanao del Norte during 100-Year Rainfall Return Period.

For the municipality of Kapatagan, with an area of 184.77 sq. km., 21.23% will experience flood levels of less 0.20 meters. 9.54% of the area will experience flood levels of 0.21 to 0.50 meters while 4.91%, 1.30%, 0.38%, and 0.03% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 53 are the affected areas in square kilometers by flood depth per barangay.

Affected Area						Affected	Affected Barangays in Kapatagan	patagan					
flood depth (in m.)	Bagong Silang	Balili	Bansarvil	Buenavista	Butadon	Cathedral Falls	Concepcion	Curvada	De Asis	Donggoan	Durano	Lapinig	
0.03-0.20	2.88	2.32	3.25	2.78	1.63	1.62	0.72	1.6	1.39	0.019	2.33	3.31	
0.21-0.50	2.04	0.92	0.29	2.23	0.41	1.49	0.39	0.55	0.13	0	0.14	2.33	
0.51-1.00	1.22	0.43	0.16	0.4	0.29	0.55	0.25	0.072	0.1	0	0.1	1.3	
1.01-2.00	0.33	0.062	0.07	0.081	0.17	0.048	0.0078	0.0093	0.0043	0	0.082	0.24	
2.01-5.00	0.025	0.033	0.021	0.067	0.23	0.039	0.0099	0.0074	0.0013	0	0.039	0.001	
> 5.00	0	0	0.0007	0.0055	0.043	0	0	0	0.0009	0	0	0	
Affected Area						Affected	Affected Barangays in Kapatagan	patagan					
flood depth (in m.)	Malinas	Maranding	Margos	Poblacion	San Vicente	Santa Cruz	Santo Tomas	Suso	Taguitic	Tiacongan	Tulatulahan		Waterfalls
0.03-0.20	0.35	0.89	1.04	1.32	1.7	0.7	0.56	0.97	1.67	2.19	2.76		1.22
0.21-0.50	0.014	0.043	0.85	0.47	1.75	0.47	0.32	0.51	0.37	1.05	0.3		0.54
0.51-1.00	0.013	0.03	0.56	0.39	1.34	0.3	0.11	0.044	0.14	0.61	0.27		0.39
1.01-2.00	0.01	0.02	0.084	0.16	0.44	0.12	0.02	0.003	0.042	0.082	0.15		0.17
2.01-5.00	0	0.018	0.0095	0.000073	0.052	0	0.0044	0.00016	0.012	0.00043	0.1		0.029
> 5.00	0	0.0016	0.0086	0	0	0	0	0	0.0001	0	0.00063		0.0021

Table 53. Affected Areas in Kapatagan, Lanao del Norte during 100-Year Rainfall Return Period.

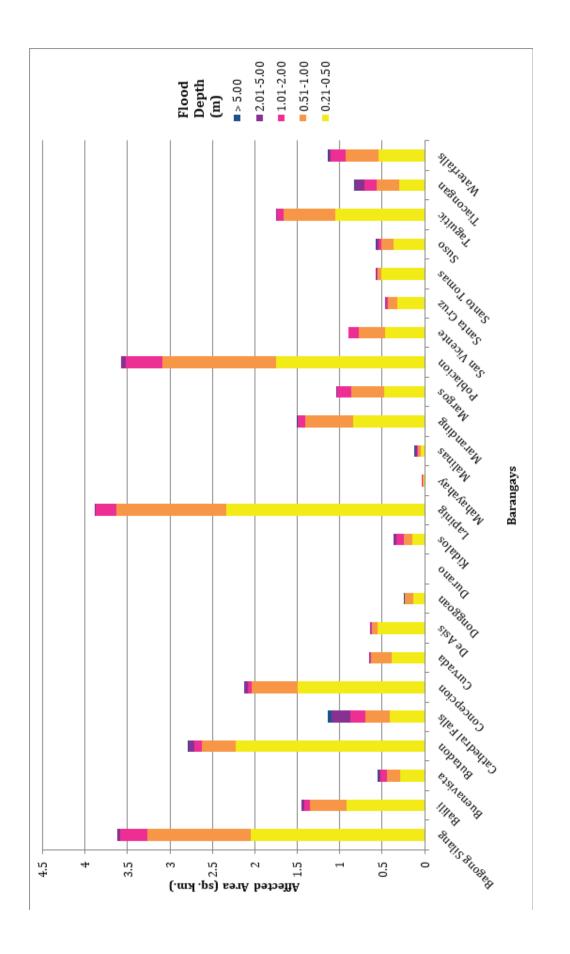
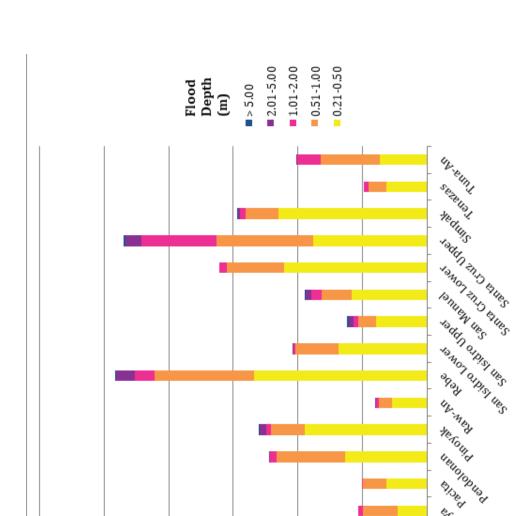



Figure 87. Affected Areas in Kapatagan, Lanao del Norte during 100-Year Rainfall Return Period.

For the municipality of Lala, with an area of 125.18 sq. km., 51.02% will experience flood levels of less 0.20 meters. 27.13% of the area will experience flood levels of 0.21 to 0.50 meters while 13.50%, 3.77%, 0.77%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 54 are the affected areas in square kilometers by flood depth per barangay.

	Matampay Ilaya	0.57	0.46	0.54	0.071	0	0								
	Matampay Ma Bucana	1.7	0.91	0.38	0.0054 (0	0		Tuna-An	1.11	0.73	0.92	0.37	0.0082	0
									S						
	Maranding	1.04	0.85	0.56	0.084	0.0095	0.0086		Tenazas	1.52	0.63	0.26	0.075	0	0
	Magpatao	1.89	0.57	0.6	0.58	0.014	0		Simpak	4.2	2.31	0.5	0.091	0.025	0.01
	Lanipao	0.78	0.53	0.41	0.23	0.005	0		Santa Cruz Upper	4.58	1.76	1.49	1.17	0.25	0.031
	Lala Proper	0.79	0.39	0.25	0.026	0	0		Santa Cruz Lower	2.65	2.21	0.88	0.12	0	0
ays in Lala	Gumagamot	1.36	0.96	0.79	0.21	0	0	ays in Lala	San Manuel	3.13	1.17	0.46	0.16	0.091	0.012
Affected Barangays in Lala	El Salvador	4.01	3.35	6.0	0.059	0.022	0	Affected Barangays in Lala	San Isidro Upper	2.89	0.79	0.27	0.076	0.07	0.035
Af	Darumawang Ilaya	5.13	3.57	1.31	0.13	0.022	0.0007	Af	San Isidro Lower	2.35	1.38	0.66	0.029	0.0004	0
	Darumawang Bucana	3.89	2.61	1.05	0.03	0	0		Rebe	4.28	2.68	1.55	0.3	0.29	0.0041
	Camalan	1.75	0.85	0.75	0.62	0.016	0		Raw-An	0.68	0.54	0.2	0.052	0.00031	0
	Cabasagan	2.52	0.21	0.045	0.033	0.015	0.0033		Pinoyak	3.84	1.89	0.53	0.074	0.095	0.024
	Andil	1.14	0.053	0.042	0.036	0.017	0.028		Pendolonan	3.52	1.27	1.07	0.092	0.011	0
	Abaga	1.49	0.67	0.1	0.0003	0	0		Pacita	1.05	0.63	0.37	0.0024	0	0
Affected Area (in	sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Affected Area (in	sq.km.) by flood depth (in m.)	0.03-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00

Table 54. Affected Areas in Lala, Lanao del Norte during 100-Year Rainfall Return Period.

Barangays

Qise t

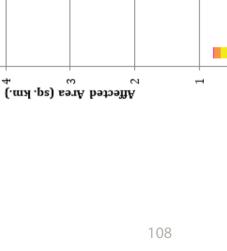
ESEIT SECTURION

EITED DE SECTIEREN

OETECISEM OEdIHET

⁴ado₁t eret POLINE BEILING

topestes 13


HE SESECTES 11Pup

ese qu

0

ESELI SUPAREHINARD

EILESNE SILEMEUINIE

9

ŝ

For the municipality of Salvador, with an area of 46.46 sq. km., 20.17% will experience flood levels of less 0.20 meters. 8.02% of the area will experience flood levels of 0.21 to 0.50 meters while 4.94%, 2.21%, 0.81%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 55 are the affected areas in square kilometers by flood depth per barangay.

Table 55. Affected Areas in Salvador, Lanao del Norte during 100-Year Rainfall Return Period.

Affected Area (in sq.km.)				đ	Affected Barar	Affected Barangays in Salvador	or			
by flood depth (in m.)	Camp III	Curva- Miagao	Inasagan	Mabatao	Padianan	Pagayawan	Panaliwad- On	Pangantapan	Poblacion	Sudlon
0.03-0.20	2.58	0.72	0.79	0.91	0.25	0.04	1.58	0.013	1.7	0.78
0.21-0.50	0.3	0.48	0.44	0.062	0.056	0.0032	0.45	0.0017	1.75	0.19
0.51-1.00	0.27	0.17	0.073	0.035	0.0022	0.00036	0.17	0	1.34	0.22
1.01-2.00	0.25	0.039	0.023	0.02	0.0001	0.0000	0.09	0	0.44	0.17
2.01-5.00	0.059	0.13	0.00021	0.0059	0	0	0.018	0	0.052	0.12
> 5.00	0.0007	0.076	0	0	0	0	0	0	0	0.01

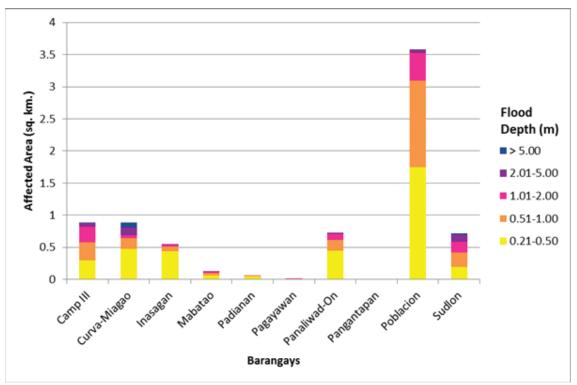


Figure 89. Affected Areas in Salvador, Lanao del Norte during 100-Year Rainfall Return Period.

For the municipality of Sapad, with an area of 65.13 sq. km., 4.42% will experience flood levels of less 0.20 meters. 1.28% of the area will experience flood levels of 0.21 to 0.50 meters while 0.31%, 0.12%, 0.06% and 0.004% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, and more than 2 meters, respectively. Listed in Table 56 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in sg.km.) by flood		Affected Bara	ngays in Sapad	
depth (in m.)	Mabugnao	Mapurog	Pancilan	Panoloon
0.03-0.20	0.75	1.2	0.29	0.64
0.21-0.50	0.17	0.43	0.058	0.18
0.51-1.00	0.069	0.1	0.015	0.019
1.01-2.00	0.0076	0.058	0.0095	0.00092
2.01-5.00	0.0056	0.036	0	0
> 5.00	0.0029	0	0	0

Table 56. Affected Areas in Sapad, Lanao del Norte during 100-Year Rainfall Return Period.

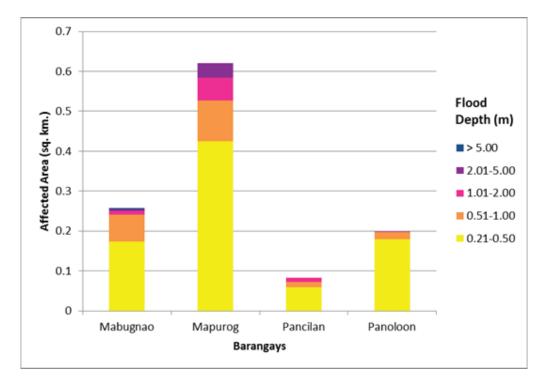


Figure 90. Affected Areas in Sapad, Lanao del Norte during 100-Year Rainfall Return Period.

For the municipality of Tubod, with an area of 121.95 sq. km., 0.97% will experience flood levels of less 0.20 meters. 0.04% of the area will experience flood levels of 0.21 to 0.50 meters while 0.03%, 0.02%, and 0.007% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 57 are the affected areas in square kilometers by flood depth per barangay.

Affected Area (in sq.km.) by flood	Affecte	d Barangays ir	1 Tubod
depth (in m.)	Candis	Licapao	Malingao
0.03-0.20	0.0099	1.17	0.0043
0.21-0.50	0	0.048	0
0.51-1.00	0	0.036	0
1.01-2.00	0	0.026	0
2.01-5.00	0	0.008	0
> 5.00	0	0	0

Table 57. Affected Areas in Tubod, Lanao del Norte during 100-Year Rainfall Return Period.

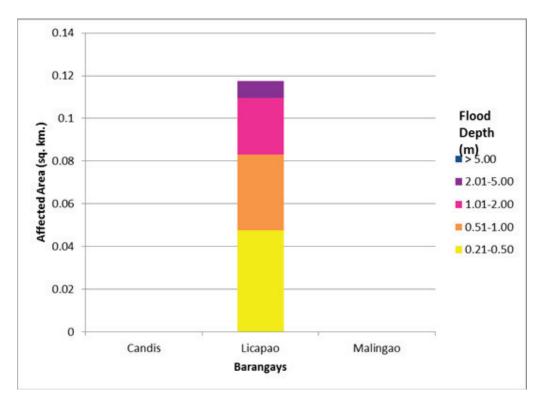


Figure 91. Affected Areas in Tubod, Lanao del Norte during 100-Year Rainfall Return Period.

Among the barangays in the municipality of Aurora, only Anonang is projected to experience flood levels at a percentage of 1.43%.

Among the barangays in the municipality of Baroy, Rawan Point is projected to have the highest percentage of area that will experience flood levels at 4.93%. Meanwhile, Cabasagan posted the second highest percentage of area that may be affected by flood depths at 4.55%.

Among the barangays in the municipality of Kapatagan, Lapinig is projected to have the highest percentage of area that will experience flood levels at 3.89%. Meanwhile, Bagong Silang posted the second highest percentage of area that may be affected by flood depths at 3.52%.

Among the barangays in the municipality of Lala, Darumawang Ilaya is projected to have the highest percentage of area that will experience flood levels at 8.12%. Meanwhile, Santa Cruz Upper posted the second highest percentage of area that may be affected by flood depths at 7.42%.

Among the barangays in the municipality of Salvador, Poblacion is projected to have the highest percentage of area that will experience flood levels at 11.35%.

Meanwhile, Camp III posted the second highest percentage of area that may be affected by flood depths at 7.45%.

Among the barangays in the municipality of Sapad, Mapurog is projected to have the highest percentage of area that will experience flood levels at 2.79%. Meanwhile, Mabugnao posted the second highest percentage of area that may be affected by flood depths at 1.55%.

Among the barangays in the municipality of Tubod, Licapao is projected to have the highest percentage of area that will experience flood levels at 1.05%. Meanwhile, Candis posted the second highest percentage of area that may be affected by flood depths at 0.008%.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering can be done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview of some residents with knowledge of or have had experienced flooding in a particular area. The flood validation data were obtained on June 2016.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 92.

The flood validation consisted of 152 points randomly selected all over the Maranding flood plain (Figure 93). Comparing it with the flood depth map of the nearest storm event, the map has an RMSE value of 0.61m. Table 58 shows a contingency matrix of the comparison. The validation points are found in ANNEX 11.

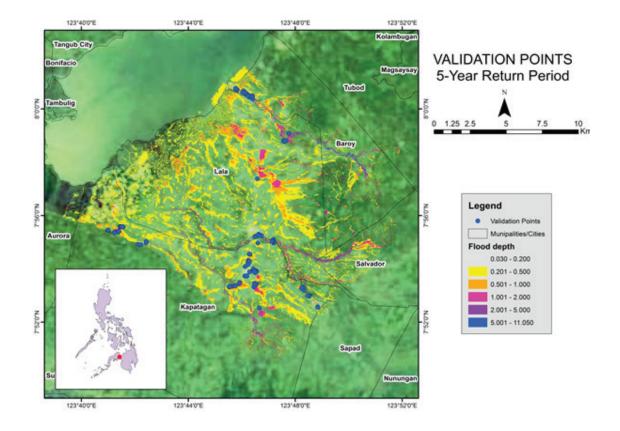


Figure 92. The Validation Points for a 5-year Flood Depth Map of the Maranding Floodplain.

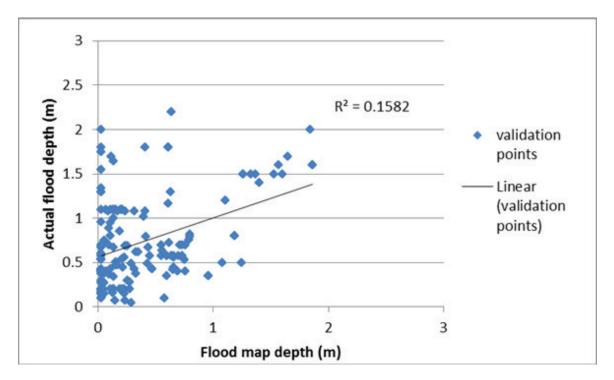


Figure 93. Flood map depth versus actual flood depth.

Actual Flood Depth			Modele	ed Flood De	pth (m)		
(m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total
0-0.20	16	6	1	0	0	0	23
0.21-0.50	18	9	7	2	0	0	36
0.51-1.00	19	9	22	2	0	0	52
1.01-2.00	19	8	4	13	0	0	44
2.01-5.00	0	0	1	0	0	0	1
> 5.00	0	0	0	0	0	0	0
Total	72	32	35	17	0	0	156

Table 58. Actual Flood Depth versuss Simulated Flood Depth at different levels in the Maranding River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 38.46%, with 60 points correctly matching the actual flood depths. In addition, there were 41 points estimated one level above and below the correct flood depths while there were 31 points and 19 points estimated two levels above and below. A total of 18 points were overestimated while a total of 78 points were underestimated in the modelled flood depths of Maranding. Table 59 depicts the summary of the Accuracy Assessment in the Maranding River Basin Flood Depth Map.

Table 59. The summary of the Accuracy Assessment in the Maranding River Basin Survey.

No. of Points	%
60	38.46
18	11.54
78	50.00
156	100
	60 18 78

REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the LIDAR Sensors used in the Maranding Floodplain Survey

1. PEGASUS SENSOR

Parameter	Specification
Operational envelope (1,2,3,4)	150-4000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, (m AGL)
Elevation accuracy (2)	<5-35 cm, 1 σ
Effective laser repetition rate	Programmable, 33-167 kHz
Position and orientation system	POS AV™ AP50 (OEM);
220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver	
Scan width (WOV)	Programmable, 0-50°
Scan frequency (5)	Programmable, 0-70 Hz (effective)
Sensor scan product	1000 maximum
Beam divergence	Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal
Roll compensation	Programmable, ±5° (FOV dependent)
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Video Camera	Internal video camera (NTSC or PAL)
Image capture	Compatible with full Optech camera line (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V; 900 W;35 A(peak)
Dimensions and weight	Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg
Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg	
Operating temperature	-10°C to +35°C (with insulating jacket)
Relative humidity	0-95% no-condensing

Annex 2. NAMRIA Certificate of Reference Points Used in the LiDAR Survey

1. LAN-2

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: LA	NAO DEL NORTE			
		Station	Name: LAN-2			
Island: MIND Municipality:	ANAO	Order	t 1st	Baranga	y: PINO	YAK
		PRS	92 Coordinates			
Latitude: 7º	54" 46.07859"	Longitude:	123º 46' 0.85333"	Ellipsoid	lal Hgt:	17.35400 m.
		WGS	84 Coordinates			
Latitude: 7º	54' 42.56546"	Longitude:	123° 46' 6.31720"	Ellipsoid	lal Hgt:	83.92120 m.
		PTI	/ Coordinates			
Northing: 878	5110.149 m.	Easting:	364025.74 m.	Zone:	5	
		UTI	/ Coordinates			
Northing: 87	4,680.35	Easting:	584,533.45	Zone:	51	

Location Description

LAN-2 From Iligan City, travel southwest along the National highway for 74.5 kilometers to the municipality of Lala. Travel farther along the national highway for 1.4 kilometers up to Maranding junction. Thence from the junction travel southeast along the national highway for another 1.3 kilometers to a dirt road going to Pinoyak barangay proper. Turn right on the dirt road and national highway intersection and continue travelling westward for 400 meters up to the irrigation canal. Station is located on top of the concrete irrigation canal water gate; centered in cement patty and inscribed on top, set in a drill hole on top of the concrete irrigation canal water in diameter brass rod, with cross cut on top, set in drill hole on top of the concrete irrigation canal water gate; centered in cement patty and inscribed with the reference mark numbers and arrow pointing to the station.

Requesting Party: Engr. Cruz Pupose: Reference OR Number: 8796376 A T.N .: 2014-1441

6ha RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

6

pilg City, Philippines Tel No. (632) 810-4831 to 41 Ne, Philippines, Tel No. (632) 241-3454 to 95 Main : Law ton Ave Branch : 421 Barraca St. Son Nicolas www.namria.gov.ph

ISO 9001: 2006 CERTIFIED FOR MAPPING AND GEOSPIKTIAL INFORMATION MANAGEMENT

2. ZGS-8

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 11, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: ZAM	BOANGA DEL SUR			
		Station N	ame: ZGS-88			
Island: MI	INDANAO	Order	2nd	Decesso	- CAN	1005
	INDANAO	PRS	92 Coordinates	Baranga MSL Eler		JOSE
Latitude:	7° 57' 13.25316"	Longitude:	123° 34' 56.50093"	Ellipsoida	al Hgt:	258.34500 m
		WGS	84 Coordinates			
Latitude:	7° 57' 9.71271"	Longitude:	123° 35' 1.96243"	Ellipsoida	al Hgt	324.37300 m
		PTM / PI	RS92 Coordinates			
Northing:	879474.685 m.	Easting:	564207.26 m.	Zone:	4	
		UTM / PI	RS92 Coordinates			
Northing:	879,166.85	Easting:	564,184.79	Zone:	51	

ZGS-88

Is located on the S end of the W wedge-shaped island in Purok Saray, Brgy. San Jose, Aurora. It is about 500 m. N of the municipal hall, 30 m. W of the Seaoil Gasoline Station and 5 m. E of the W side of the road. Mark is the head of a 3 in. copper nail embedded and centered on a 27 cm. x 26 cm. x cement putty, with inscriptions "ZGS-88 2005 NAMRIA LEP IX".

Location Description

 Requesting Party:
 UP TCAGP / Engr. Christopher Cruz

 Pupose:
 Reference

 OR Number:
 8796507 A

 T.N.:
 2014-1601

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMIN OFFICES. Man : Lawton Awrun. Furt Bontlacki, 1834 Taguig City, Philippines – Tel. No.: #523/810-4831 to 41 Barch - 421 Barch & 23 Barch Nobles, 1019 Markle, Philippines, Tel. No. (852) 241-3464 to 38 www.namiria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

3. LE-50

	Resultic of the Philip Department of Binip NATIONAL MAP	DINS IMPIET and Natural Resources PING AND RESOURCE INFORMATION	AUTHORITY	
				July 25, 2014
		CERTIFICATION		
To whom it may co	intern:			
This is to certify	that according to the	e records on file in this office, the requ	uested survey informa	tion is as follows -
U		Province: LANAO DEL NORTE Station Name: LE-50		
Island: Mindana	10	Municipality: MAIGO	Barangay: CLA	RO M. RECTO
Elevation: 5.389	15 m.	Order: 1st Order	Datum: Mean :	Sea Level
		Location Description	1	
West end of the B	d about 50 meters No arogohan Bridge foot	Del Norie, Town of Maigo, Brgy, C.M. offh East, of the Covenant Baptist Cr walk and about 70 meters South We	hurch. The station is k st of KM post 1561.	ocated at the South
A brass rod is set "LE-50, 2007, NAM	on a drilled hole an (RIA*.	d cemented flushed on top of a 15c	cm x 15cm cement p	utty with inscription
Requesting Party:	UP-TCAGP / Engr	Christopher Cruz		
Pupose: OR Number: T.N.:	Reference 8799582 A 2014-1723		OM. BELEN, MINSA	and i
			And the occess of	Dinn

sventar, Oshiggs Main Landor Ammar Bortlandoos (10) Tayog Day, Releptives Ter No. (1920; 110–45) (to 41 Banch - 42 Hanaca B. Bar Hoves, 1000 tarens, Program, Ter Sta, 1920; 245 (1944) (19 WWW, Namr Fair, gov., ph

ISD 900-2008 CERTIFIED FOR MAPPING AND GEOSPATUAL INFORMATION WAVAGEOISM

4. ZGS-17

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 10, 2016

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMI	BOANGA DEL SUR		
	Station N	ame: ZGS-17		
	Order	2nd		
sland: MINDANAO	Barangay:	BACLAY		
Municipality: TUKURAN	MSL Eleval	tion:		
	PRSS	2 Coordinates		
Latitude: 7º 52' 42.71658"	Longitude:	123° 36' 29.22049"	Ellipsoidal H	lgt: 29.68400 m
	WGS	84 Coordinates		
Latitude: 7º 52' 39.19813"	Longitude:	123° 36' 34.68878"	Ellipsoidal H	lgt: 95.92400 m
	PTM / PI	RS92 Coordinates		
Northing: 871168.108 m.	Easting:	567059.131 m.	Zone: 4	r -
	UTM / P	RS92 Coordinates		
Northing: 870,863.18	Easting:	567,035.66	Zone:	51

Location Description

ZGS-17

Is located at Purok Kasoy, Brgy. Baclay, Tukuran. It is situated on the slope of a cultivated hill. It is about 100 m. NW of UCCP chapel and about 200 m. NNE of the roman catholic chapel. Mark is the head of a 4 in. copper nail embedded and centered on a 30 cm. x 30 cm. x 38 cm., with inscriptions "ZGS-17 2005 NAMRIA/LEP-IX".

1

Requesting Party: UP DREAM Purpose: Reference OR Number: 8089774 I T.N.: 2016-0333

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

Hazard Mapping of the Philippines Using LiDAR (Phil-LiDAR 1)

5. ZN-53

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMBOANGA DEL NORTE Station Name: ZN-53	
Island: Mindanao	Municipality: KATIPUNAN	Barangay: DAANGLUNGSOD
Elevation: 10.0561 +/- 0.00 m.	Order: 1st Order	Datum: Mean Sea Level
Latitude:	Longitude:	

Location Description

ZN-53

Along Dipolog Liloy National Road. The station is located at the compound of Taga Central School, near the flagpole and about 50 meters northwest of the centerline of the road. Mark is the head of a 4" copper nail set on a dsrilled hole and cemented flushed on top of 15cm x 15cm cement putty with inscription " ZN-53 2008 NAMRIA".

Requesting Party:	PHIL-LIDAR I
Purpose:	Reference
OR Number:	8075910 I
T.N.:	2014-2589

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 9

NAMRIA OFFICES:

Nothino Christophi Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 96 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

6. ZGS-16

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

February 10, 2016

CERTIFICATION

To whom it may concern:


This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Province: ZAM	BOANGA DEL SUR			
		Station N	lame: ZGS-16			
		Order	: 2nd			
	INDANAO ity: TUKURAN	Barangay: MSL Eleva				
		PRS	92 Coordinates			
Latitude:	7º 52' 32.53106"	Longitude:	123° 36' 23.39905"	Ellipsoid	al Hgt	18.17800 m.
		WGS	84 Coordinates			
Latitude:	7º 52' 29.01321"	Longitude:	123° 36' 28.86762"	Ellipsoid	al Hgt	84.42000 m.
		PTM / P	RS92 Coordinates			
Northing:	870854.959 m.	Easting:	566881.259 m.	Zone:	4	
		UTM / P	RS92 Coordinates			
Northing:	870,550.15	Easting:	566.857.85	Zone:	51	

Location Description

ZGS-16 Is located at Purok Nangka, Brgy. Baclay. It is situated 1 m. NE of Km. Post # 1644 and about 50 m. SW of the chapel, approx. 3 km. from the road junction leading to Aurora town. Mark is the head of a 3 in. concrete nail embedded and centered on a 30 cm. x 30 cm. x 58 cm. concrete monument, with inscriptions "ZGS-16 2005 NAMRIA/LEP-IX".

Requesting Party: UP DREAM Purpose: Reference Purpose: OR Number: 80897741 T.N.: 2016-0334

10

MRIA OFFICES Main Lawton Avenue, Fot Bonitasio, 1634 Taguig City, Philippines Tel. No. (632) 810-4631 to 41 Branch: 421 Berace St. San Nuclas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 66 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION WANAGEMENT

7. ZGN-138

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

October 30, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: ZAMB	OANGA DEL NORTE			
	Station Na	ame: ZGN-138			
	Order	2nd			
Island: MINDANAO	Barangay:				
Municipality: KATIPUNAN	MSL Eleval	tion:			
	PRSS	2 Coordinates			
Latitude: 8º 30' 40.65974"	Longitude:	123º 18' 14.44217"	Ellipsoid	al Hgt:	6.71500 m.
	WGS	84 Coordinates			
Latitude: 8º 30' 36.94779"	Longitude:	123º 18' 19.85548"	Ellipsoid	al Hgt:	70.92500 m.
	PTM / PI	RS92 Coordinates			
Northing: 941106.14 m.	Easting:	533471.036 m.	Zone:	4	
		RS92 Coordinates			
Northing: 940,776.74	Easting:	533,459.32	Zone:	51	

Location Description

The station is marked by an 4" copper nail with its head flushed at the center of an cement putty on a concrete open canal with inscription " ZGN-138, 2009 NAMRIA".Located at brgy. Taga katipunan zamboanga del norte. The monument is situated inside taga central school 10 meters from the main gate going north west 6 meters from the flag pole going south east.

 Requesting Party:
 PHIL-LIDAR I

 Purpose:
 Reference

 OR Number:
 8075910 I

 T.N.:
 2014-2584

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch G

NAMRIA OFFICES: Main 1: Jawton Avenue, Fort Bonilacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch: 421 Baraca 8: San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3464 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

LE-76 8.

	Republic of the Philippines Department of Environment NATIONAL MAPPING	and Natural Resources AND RESOURCE INFORMATION A	UTHORITY
			August 08, 2014
		CERTIFICATION	
To whom it may co			
This is to certify	that according to the reco	ords on file in this office, the reques	ted survey information is as follows -
	Ρ	rovince: LANAO DEL NORTE Station Name: BM LE-76	
Island: Mindana	• M	unicipality: TUBOD (CAPITAL)	Barangay: BULOD
Elevation: 5.025	0 m.	Order: 2nd Order	Datum: Mean Sea Level
NUMPER FORU. THE	Falduon is located at the	SOUTH West and of Bulod Bridge for	Bulod, along the Butuan-Zamboanga votwalk, about 2 meters north west of
KM Post 1587, and	about 4 meters north we	lorte, Municipality of Tubug, Bgry, south west end of Bulod Bridge fo st of the centerline of the road	Bulod, along the Butuan-Zamboanga ootwalk, about 2 meters north west of
Requesting Party: Pupose: DR Number:	Falduon is located at the	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	Bulod, along the Butuan-Zamboanga ootwalk, about 2 meters north west of BELEN, MNSA g And Geodesy Branch
Requesting Party: Pupose: DR Number:	ENGR. CHRISTOPHER Reference 8799670 A	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	otwalk, about 2 meters north west of
Requesting Party: Pupose: DR Number:	ENGR. CHRISTOPHER Reference 8799670 A	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	otwalk, about 2 meters north west of
Requesting Party: Pupose: DR Number:	ENGR. CHRISTOPHER Reference 8799670 A	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	otwalk, about 2 meters north west of
Requesting Party: Pupose: DR Number:	ENGR. CHRISTOPHER Reference 8799670 A	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	otwalk, about 2 meters north west of
NUMPER NORU. 111	ENGR. CHRISTOPHER Reference 8799670 A	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	otwalk, about 2 meters north west of
KM Post 1587, and Requesting Party: Pupose: DR Number: .N.:	ENGR. CHRISTOPHER Reference 8799670 A 2014-1787	lorte, Municipality of Tubug, Bgry. south west end of Bulod Bridge fo st of the centerline of the road	BELEN, MNSA g And Geodesy Branch

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

9. ZS-188

a to be	Department of	e Philippines Environment and Natural Resources MAPPING AND RESOURCE INFORMATION AU	THORITY
A. W. T. L.			
			February 10, 2
		CERTIFICATION	
To whom it may cor This is to certify		to the records on file in this office, the request	ted survey information is as follow
	8	Province: ZAMBOANGA DEL SUR Station Name: ZS-188	
Island: Mindana	0	Municipality: ZAMBOANGA CITY	Barangay: LICOMO
Elevation: 22.13	96 +/- 0.16 m.	Accuracy Class at 95% C.L: 2 CM	Datum: Mean Sea Level
Latitude:	£2	Longitude:	
1.		- Location Description	
Mark is the head of	f a 4" conner i	ail on a drilled hole and cemented flushed or	top of a 15x15cm cement puth
Mark is the head o inscription "ZS-188 Requesting Party: Purpose: OR Number: T.N.:		RUELON	n top of a 15x15cm cement putty

Annex 3. Baseline Processing Reports of Reference Points Used

LE-50

Project Information		Coordinate System	
Name:		Name:	UTM
Size:		Datum:	WGS 1984
Modified:	10/12/2012 4:40:11 PM (UTC:-6)	Zone:	51 North (123E)
Time zone:	Mountain Standard Time	Geoid:	EGMPH
Reference number:		Vertical datum:	
Description:			

Baseline Processing Report

Processing Summary Occup ation Stop Time ∆Z (Meter) Geode Ellipsol tic Az. d Dist. Occupation Start Observatio From То Solutio H. V. ΔX ΔY Δ Proce Proce Prec. (Meter Prec. (Meter sing Start Time sing Stop Time n Type (Met Height n . Time Mete nu and it bie LE50 ---LAN2 (B1) LE50 0.012 0.024 6/20/2 GPS: LAN2 6/20/20 6/20/2 35361 6/20/2 Fixed 27636. 37*51' 15846. 15348 014 014 014 104 51 439 10.469 15 14 10:05:3 2:59:5 890 670 10:05: 2:59:5 GLON 4 AM 9 PM 34 AM 9 PM ASS: 13 Galileo :0 QZSS: 0

Acceptance Summary

Processed	Passed	Flag	P	Fall	Þ
1	1	0		0	

LE-76

Vector Components (Mark to Mark)

From:	LE-50						
Grid			Local		Global		
Easting	606180.417	n Latitude	N8°09'54.672	7" Latitude		N8'09'51.11024"	
Northing	902629.434	n Longitude	E123°57'49.928	9" Longitude		E123°57'55.36634"	
Elevation	4.394 r	m Height	6.900	m Height		73.452 m	
To:	LE-76						
	Grid		Local		Global		
Easting	588530.790	n Latitude	N8°03'05.368	5" Latitude		N8°03'01.82183"	
Northing	890021.013	n Longitude	E123°48'12.373	7" Longitude		E123°48'17.82405"	
Elevation	7.017 (n Height	9.335	m Height		75.717 m	
Vector							
ΔEasting	-17649.0	327 m NS Fwd Azir	muth	234'35'42'	ΔX	13688.663 m	
∆Northing	-12608.4	121 m Ellipsoid Dis	t.	21696.715 m	ΔY	11332.042 m	
∆Elevation	2.	523 m AHeight		2.435 m	۸Z	-12447.993 m	

Standard Errors

Vector errors:								
σ ΔEasting	0.021 m	σ NS fwd Azimuth	0.00.00.	σΔΧ	0.024 m			
σ ΔNorthing	0.006 m	σ Ellipsoid Dist.	0.015 m	σΔY	0.034 m			
σ ΔElevation	0.036 m	σΔHeight	0.036 m	σΔΖ	0.009 m			

Aposteriori Covariance Matrix (Meter*)

	x	Y	z
×	0.0005606089		
Y	-0.0003223999	0.0011623638	
z	-0.0000556148	0.0002703935	0.0000791896

Vector Components (Mark to Mark)

From:	ZGS-1	39-1							
Grid				Local		Global		lobal	
Easting	553899.	482 m Lat	titude	N81042	N8104'26.98335" Latitude		N8°04'23.40249*		
Northing	892472.	300 m Lo	ngitude	E123°29'14	4.53868*	Longitude		E123°29'19.99013*	
Elevation	20.	051 m He	ight	2	22.611 m	m Height		88.163 m	
To:	ZS-188A								
	Grid		Local		Global		lobal		
Easting	553627.	634 m Lat	titude	N8°03'56	6.69408*	Latitude		N8°03'53.11537*	
Northing	891542.	089 m Lo	ngitude	E123'29'12	2.15500*	15500" Longitude		E123°29'17.60722*	
Elevation	17.	277 m He	ight	1	19.832 m	Height		85.400 m	
Vector									
∆Easting		-71.848 m	NS Fwd Azim	nuth		184°29'06"	ΔX	-9.705 m	
∆Northing		930.211 m	Ellipsoid Dist			933.322 m	ΔY	146.900 m	
∆Elevation		-2.773 m	∆Height			-2.778 m	۸Z	-921.644 m	

Standard Errors

Vector errors:							
σ ΔEasting	0.004 m	σ NS fwd Azimuth	0'00'01"	σΔΧ	0.001 m		
σ ΔNorthing	0.001 m	σ Ellipsoid Dist.	0.001 m	σΔY	0.005 m		
σ ΔElevation	0.004 m	σ∆Height	0.004 m	σΔΖ	0.001 m		

Aposteriori Covariance Matrix (Meter^a)

	х	Y	z
x	0.0000013603		
Y	0.0000026352	0.0000296273	
Z	0.0000004069	0.0000057486	0.0000013978

ZN-53

Baseline Processing Report

Processing Summary								
Observation	From	То	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
zgn 138 zn 63 am (81)	zgn 138	zn 53 am	Fixed	0.001	0.002	344*25'59*	12.263	0.357
zgn 138 zn 53 pm (82)	zgn 138	zn 53 pm	Fixed	0.003	0.004	344*25*44*	12.270	0.372

Acceptance Summary									
Processed	Passed	Flag	P	Fail	•				
2	2	0		0					

Vector Components (Mark to Mark)

From:	zgn 138					
Grid		Lo	Local		Global	
Easting	533459.321 m	Latitude	N8*30'40.65974*	Latitude		N8*30'36.94779*
Northing	940776.736 m	Longitude	E123*18'14.44217"	Longitude		E123*18*19.85548*
Elevation	5.484 m	Height	6.715 m	Height		70.925 m
To:	zn 53 am					
Grid		Local		Global		obal
Easting	533456.022 m	Latitude	N8*30/41.04428*	Latitude		N8*30'37.33230*
Northing	940788.542 m	Longitude	E123*18*14.33457*	Longitude		E123*18*19.74787*
Elevation	5.842 m	Height	7.072 m	Height		71.282 m
Vector						
ΔEasting	-3.25	9 m NS Fwd Azimuth		344*25'59"	ΔX	3.517 m
∆Northing	11.80	6 m Ellipsoid Dist.		12.263 m	ΔY	0.641 m
∆Elevation	0.36	8 m AHeight		0.357 m	ΔZ	11.736 m

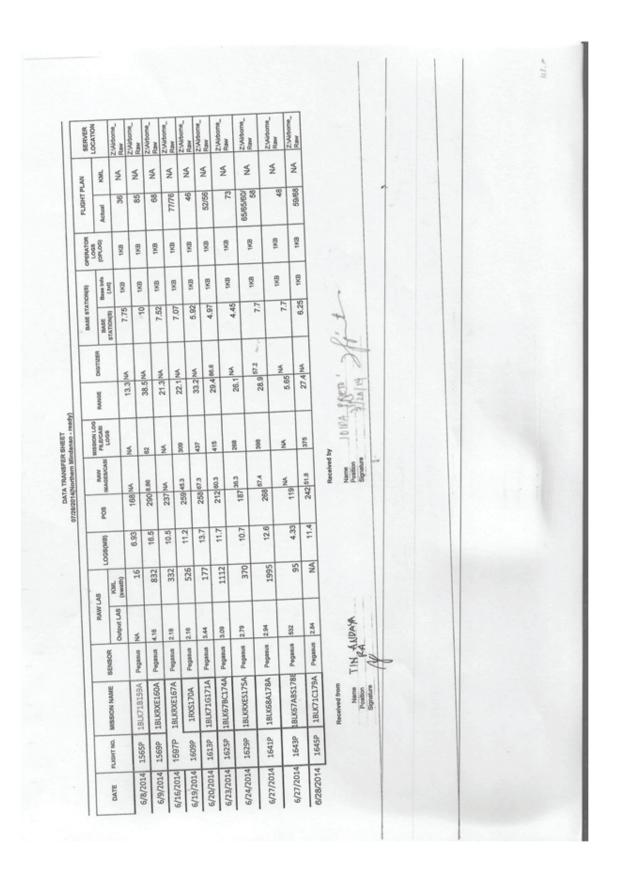
Standard Errors

Vector errors:			
σ ∆Easting	0.001 m o NS fwd Azimuth	0°00'09" σ ΔΧ	0.001 m
σ ∆Northing	0.000 m o Ellipsoid Dist.	0.000 m σ ΔΥ	0.001 m
σ ΔElevation	0.001 m o AHeight	0.001 m a AZ	0.000 m

Aposteriori Covariance Matrix (Meter*)

	X	Y	Z
x	0.0000005629		
Y	-0.0000004033	0.0000010310	
Z	-0.0000000776	0.0000001462	0.0000001693

Annex 4. The LiDAR Survey Team Composition


Data Acquisition Component Sub -Team	Designation	Name	Agency / Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, D.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader – I	ENGR. LOUIE BALICANTA	UP-TCAGP
	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science Research Specialist (Supervising SRS)	LOVELY GRACIA ACUNA	UP-TCAGP

FIELD TEAM

	Supervising Science Research Specialist (Supervising SRS)	ENGR. GEROME HIPOLITO	UP-TCAGP		
	SSRS	PAULINE JOANNE ARCEO	UP-TCAGP		
	5585	ENGR. RENAN PUNTO	UP-TCAGP		
		GEF SORIANO	UP-TCAGP		
LiDAR Operation		JERIEL PAUL ALAMBAN	UP-TCAGP		
		MERLIN FERNANDO	UP-TCAGP		
	Research Associate (RA)	GRACE SINADJAN	UP-TCAGP		
		JONATHAN ALMALVEZ	UP-TCAGP		
		IRO ROXAS	UP-TCAGP		
		KENNETH QUISADO	UP-TCAGP		
		SSG. LEE JAY E. PUNZALAN			
	Airborne Security	SSG. JAYCO S. MANZANO	PILIPPINE AIR FORCE (PAF)		
		SSG. GERONIMO BALICAO III			
LiDAR Operation		CAPT. ANTON RETSE DAYO			
LIDAR Operation		CAPT. ERNESTO SAYSAY JR.	ASIAN AEROSPACE		
	Pilot	CAPT. J. LIM	CORPORATION		
		CAPT. CESAR ALFONSO III	(AAC)		
		CAPT. JERICO JECIEL			

Annex 5. Data Transfer Sheet for Maranding Floodplain

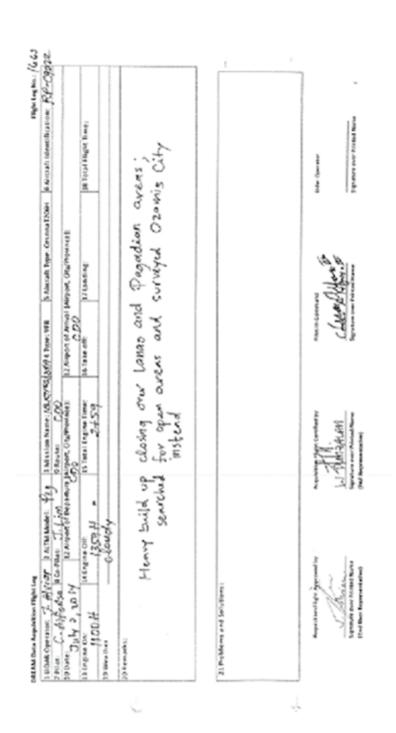
SURVER	LOCATION	NA S25P	Z'Wittome_Rewith	Z'Mittome Rawl	Z'Mittome, Rawl1	SASP 2 Withome, Rawlit	Support Bault	NA SEP	debb	
5	KORL	N	NA	NA	2	×2	ž	NA	N	
FLIGHT PLAN	Actual	40	477.08		tomattel/b	141	54/50/45	14	36	
TOTO I COLORADO	1907-402	805	603	100	2	148	103	190	805	
		005		6.67 m	12.6 True	9.95 108	11.2 1908	8.1 HKB	7.75 548	-
BASE STATIONERS	RADE Base Into (.brt)	annowing and soll		8.67	12.6	9:95	11.2	8,1	7.75	6(23/22)
	KRIZLING	T		33.3 M	39 674MB	40.1 27268	34.6 NA	22 NA	13.3 MA	bardezh Frider
	RAVOE		20.07	\$3.3	39	40.1	34.6	8	13.3	1 Alexandre and a second secon
MILLION	PULDCAGE	-	2	8	139	633	W	M	163	4107
	NAME NOT	T							168 22.1	Received by Name Noteston Bigradure
MERSION	50	T	205 10	224 43.2	285 917	253 69.7	AN AND	187 NA		
	roos(wa)	T	9.27	14.4	0	13	14.9	ALM ALM	6.35	
It	-	KORL (swath)	457	270	242	2259	va.	150	. 16	
		Cuthon Loss	1.6	3.32		4.13			NA	3.1
It	SENSOR	-			505 4				PEONGUS N	1 mg
	8	-	PEGASUS	PEONSUS	PEGASUS	PEONSUS	- Land		1094	3200
	MESSION NAME		18081484	AE21730U81	18UCTR05MA	NU CTC154A		18UK710155A	1002398A	Retent for The second for th
	FUGHT NO.		15259	15339	1000		-	15499	19619	2
	DATE P		29-May-14	32-May-24			Property .	4-1mi-14	7-Jun-14	

SENDOR OxyperLive KML LOGS(MB) SkiP P Programs 600 93 4.69 94.5 Popenus 1.05 379 7.58 335	POS IMAGENCASI PLECASI	CASI PANOE	and the second s			CPERATCR		
606 93 4.69 1.05 379 7.58			-	BASE Ber	Base Info (Jan) (OPLOG)	00) Actual	KML	LOCATION
379 7.58	160 NA NA	6.7	6.77 NA	6.94	1KB 1KB	8	35 NA	Z.Wrborne_ Raw
	190 22.4 167	121	12.5 27.8	5.09	1KB 1KB		92/84 NA	Z.Wittome_
Pegasus 696 68 5.33 188	141 112 00	1.7	7.79 NA	4.94	143 143		130 NA	Z.Wittome_
	242 37 288	22	22.4 47.4	4.30	1KB 1KB	8	184 NA	Z Wittome_
Prepasus 749 79 4.81 176	136 NA NA	7.4	7.47 NA	4.39	1/3 1/3	8	NA NA	Z.Wattome_
Pegasus 2.56 156 12.6 740	257 NA NA	27.	27.1 NA	3,68	140 140		196/207 NA	Z.Wittome_
Preparus 1.78 551 8.11 448	175 NA NA	16.1	16.9 NA	4,08	100 110		63 NA	Z Wittoma Raw

missions
e flight m
ogs for the i
. Fligh
Annex 6

1. Flight Log for 1549P Mission

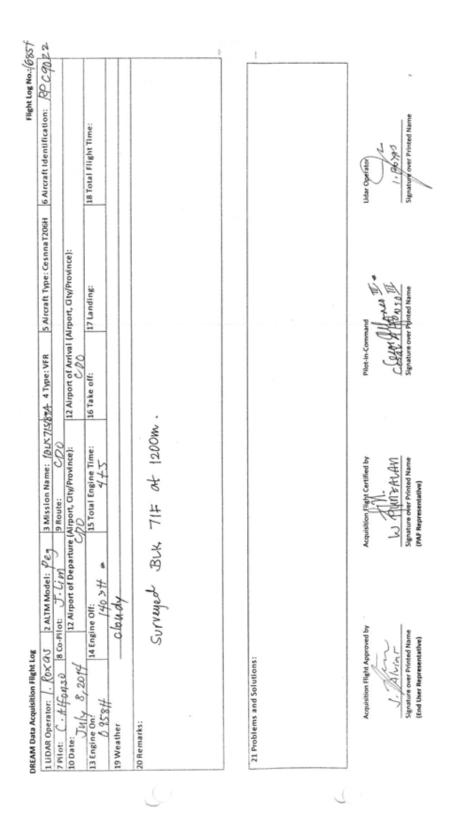
		2	82	M 00	10.92	av B2	an BB	M 10	
	and the second	LOCATION	Z10ACRAW DATA23104	Z-IDACI94W DATAI23100	Z-IDACRAW DATA/23096	Z-IDACIPAIN DATA/23092 P	Z:DACI9AW DATA/20085	ZIDACRAW DATAI23064	
	FLIGHT PLAN	KONL	¥	2	ž	2	N	2	
	FLICH	Actual	80	80	0.8	0.8	0.8	0.0	
	OPERATOR	(00100)	1.06 KB	3418	603 B	279.0	889 B	362 B	
		Base Info (.00)	133.8	132.8	133.8	132.8	133.0	133.8	116
	BASE STATION(S)	BASE STATION(S) B	116.78 MB	103.23 MB	90.32 MB	110.72 MB	101.29 MB	129.73 MB	4 2(1
	ſ	DIG/T/258	80	80	80	0.0	0.8	80	Bornert SSESS
	F	RANGE	18.3 (28	27.31 GB	7.07 GB	22.33 GB	24.65 GB	20.36 68	Received by Name AC Presition SS Signature AO
	DOLUGINO DO	PILECASI LOGS	193.97 KB	297.52 KB	82.64 KB	230.75 KB	001001002	332 83 KB	α Σ Γ 0
DATA TRANSFER SHEET PAGADIAN 2/29/16	-	RAW	25.47 GB	28 08	9.7 GB	28.87 GB	36.45 GB	44.56 GB	
PA0	ŀ	R05	287.01 MB	285.56 MB	164.2 MB	203.45 MB	263.62 MB	276.9 MB	
	ŀ	(sw)soon	10.09 MB	12.33 MB	4.64 MB	10.66 MB	11.64 MB	13.36 MB	e
	8		NA	NA	ž	ž	ž	\$	trom R. Purkto
	RAWLAS	Output LAS KML (swath)	1.81.00	2.63.08	005.91 MB	2.19.08	2.48 GB	3.01 GB	Raceived from Raceived from Name 2. 1 Postion Rules
	ŀ	SENSOR	Pegasus	Pegasus	Propesus	Propasus	Pogasus	Propesus	z α ø
		MISSION NAME	1BUK76DUM6A	18UK060647A	1BU/CENO46A	1BUCT69065A	16LICTELMD44A	18UK78KUMD43A	
		FUGHT NO.	23104P	23100P	23096P	230929	23066P	23084P	
		DATE	2016-02-17	2016-02-16	2016-02-15	2016-02-14	2016-02-13	2016-02-12	

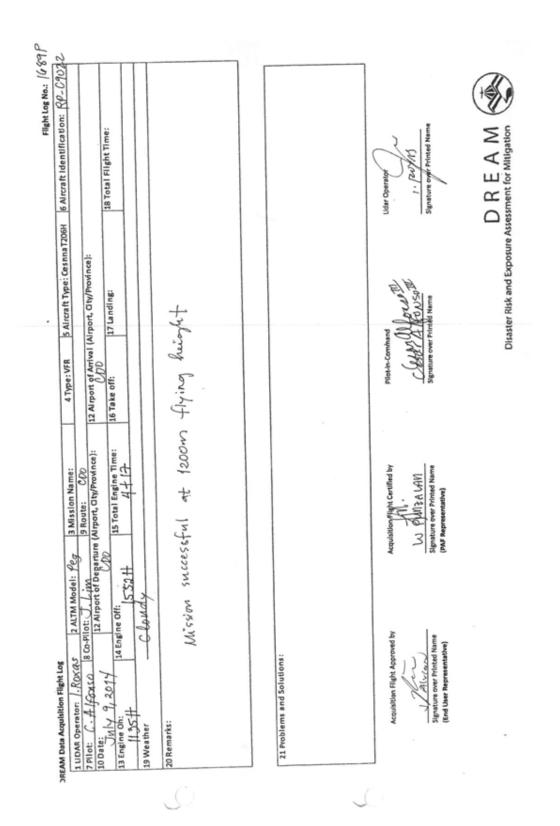

16-14

1 LIDAR Operator: 6 China/ 2 ALT	Chinal and 2 ALTM Model Pressue 3 Mi	3 Mission Name: / BU-7/8/54/4 4 Type: VFR	V57.4 Type: VFR	5 Aircraft Type: Cesnna T206H	H 6 Aircraft Identification: K/- C902 2	P-C9
8 Co-PI	J. Lim 9 Ro	9 Route: 070 - 0	00			
7214	parture (Alrp	ort, Gty/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, Gty/Province):		
14 Engine O	4.65	15 Total Engine Time: でナSう	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	ig downly					
20 Remarks:						
Data agained	but shorting	timed mission	acon due	To knowy build ag	ild ag	
)		
21 Problems and Solutions:						
Acquisition-Flight Approved by	Acquisition Flight Cert Acquisition Flight Cert Supplicing over Phone (PAF Representative)	Acquisition Flight Certified by Acquisition Flight Certified by Signatury over Printed Name (PAF Representative)	Pilot-in-Command Colory	Pilot-in-Command Clock of March 1120	Uder Operator	
			ö	Disaster Risk and Exposure Assessment for Mitidation	D R E A M	(+all

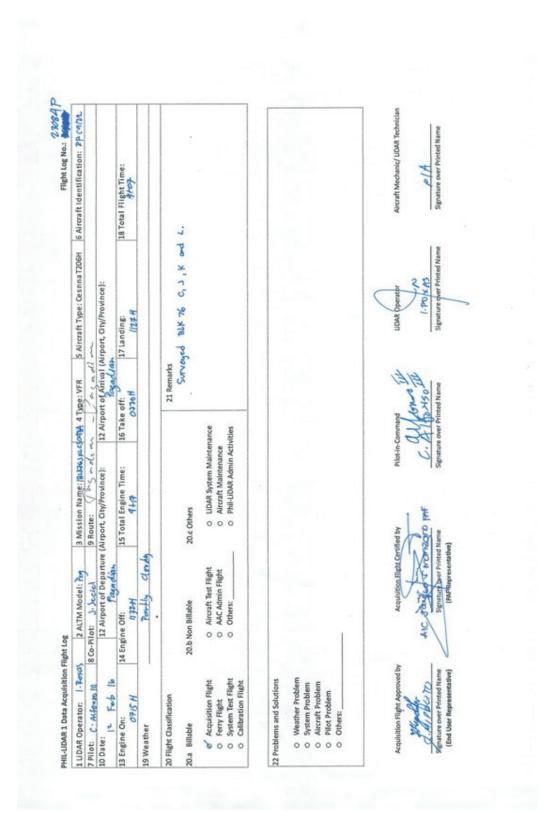
1 LIDAR Operator: G. Stundian 2 ALTM Model: Pagars	3 Mission Name:	4- 4 Type: VFR	5 Aircraft Type: CesnnaT206H	6 Aircraft Identification: /2/	-CADIN
8 Co-Pilot: J. Lini 12 Airport of Departu	lot: J. L/m 12 Airport of Departure (Airport, CtyProvince): 12 A	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province):		
14 Engine Off: 14/0.77	Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
clandy					
successful ; some	him	cut due the Jugh	. 8		
terrain					
8	Acquisition Flight Certified by	Pilotin-Command	The second	Lidar Operator	
)]]	Signature over Printed Name (PMF Representative)	Signature over	Printed Name	21년 KV 원 / 11Kl AD A N Signature Over Brinked Name	
		č	DREAM	REAM	
		5	בפשרה שוואט האוש הפות האנוש		2

137

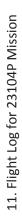



AM Date Acquicition Flight Log					
AM Data Acquisition (Eg)e (1	ļ	ĺ	
AM Data Acquicition Flip	į	2	į	ĺ	
AM Data Acquicitor	1				
(Mi Date Acquir)	ļ	100	ļ		
WI Data Aug	į	Î	í		
Unday My	1	j	Ì	ľ	
N Dr	į	ì			
3	1	i			
	i	3	ŀ		


	077 9 from CDO			CON 2.2
1000 (1. 19) (2. 19) (2. 10) (1. 10) (cloudy 345	22 Autoen of Autoest. Olivitaest. Olivitaestae): 26 Take oli: 29 Useding:	$\frac{C_{12}(h)}{1000000} \frac{C_{12}(h)}{100000000} \frac{C_{12}(h)}{1000000000000000000000000000000000000$	
Alterny	oted to survey Lanas and Tengub and Ozamis due the previous areas	Attempted to survey Lanas and Pagadian but transferred to Tangub and Ozamis due to heavy build up in the previous areas	t transferred to	
21 Problema and Solutions:				-
According to a first programment for V. Marian Particular and Provided House Particular and Provided House	Annothing Tight Conflict In Last Table 2 Ruden	ran in comments	L Poyl	-


Program Tope Cestana Tablet & Annualis I demission (1972-099-23). Annual Conferences.	18 Yetal Fighe Bines	X		the connerse Section for history
VIR. S. Ainstall, Tuper-	16 Take all: 37 Londing:	ourun ; zurruge ri ext		Lester on the second
19 BARE OVERATION OF A LEAK MARKET A CAR A MARKET A CAR A LEAK A	IS Total failing Times IS Take all	Heary build up over all remodering survey areas surveyed supplimentary erres to Blds 710xF		Automotica and the address of the ad
Stradiof 2 ATTM Medel: 200 3	alt and an alter a	Henry Duild up avar Supplimentary	L K Kaŭj	
1 FIAM OPERATOR (Speed]k y 6, 10) (rigine Dir 0,11 4 19 Weamer	20 Remarks	I Papitol (La Landad I C	Angestantingle Approach

7. Flight Log for 1685P Mission

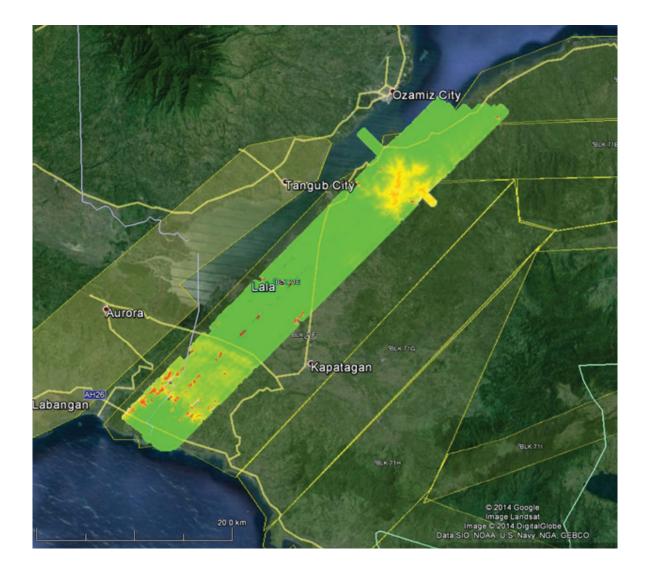


Mile Distance Altreant Surreation Surreating Dist 12 Altroant 3 Mission 3 Mission 3 Mission 6 Altreant Dist 12 Altroant 12 Altroant 3 Mission 13 Altroant 6 Altreant 6 Altreant Dist 12 Altroant 12 Altroant 12 Altroant 12 Altroant 12 Altroant 6 Altreant 6 Altreant Dist 12 Altroant Dist 12 Altroant 12 Altroant 12 Altroant 12 Altroant 12 Altroant 12 Altroant Dist 12 Altroant 12 Altroant 12 Altroant 12 Altroant 12 Altroant Dist 12 Altroant 12 Altroant 12 Altroant 12 Altroant 12 Altroant Mission 0 Articut 14 = 3 12 Altroant 12 Altroant 13 Altroant Mission 0 Articut 13 Facility 13 Facility 13 Facility 14 = 3 Mission 200 Non Blilable 200 Non Blilable 200 Cohess 13 Facility 14 + 13 Mission 0 Articut 13 Facility 14 + 13 14 + 13 14 + 13 Mission 0 Articut	in the matrice of the second second second second second second section flight and second section flight and second secon	ALIM MOGEL: And t: J.J.c.r.l Aliport of Departure and Departure and Departure and Departure and Departure Alicati Tes Filight	3 Mission Name: Rekneurun 9 Route: (Airport, City/Province): 15 Total Engine Time: 4+7-3 20c Others	11 Almost of Animit	5 Aircraft Tuna- Casma Theol	
22 Airport of Experimental Province): 12 Airport of Arrival (Airport, City/Province): 14 Engine Off: 15 Total Engine Time: 16 Take off: 14 Engine Off: 15 Total Engine Time: 16 Take off: 12 Airport of Engine Off: 15 Total Engine Time: 16 Take off: 12 Airport of Arrival Contens: 15 Total Engine Time: 16 Take off: 13 Airport of Arrival Engine Time: 16 Take off: 17 Landing: 14 Engine Off: 17 Landing: 18 Total Filight Time: 200b Non Billable 200 Others 200 Non Billable 200 Others 200b Non Billable 200 Others 21 Remarks 1 L out Mr. 0 Aircraft Nantenance 0 Others: 0 Phil-LIDAR Admin Activities	205 h	Altront of Departure i Off: and J and J Altrach Tes Filight	Al rport, City/Province): (Al rport, City/Province): 15 Total Engine Time: 4+7-3 20.c Others	In the second of Anti-	LONPI BILLEDY TARKI VIALOUT	
12 Airport of Capital Carlo 12 Airport of Arrival (Airport, City/Province): 14 Engine Off: 23 Airport of Arrival (Airport, City/Province): 14 Engine Off: 15 Total Engine Time: 15 Take off: 12 Loudy 15 Total Engine Time: 16 Take off: 12 Loudy 20.0 Others 20.0 Others 0 Aircaft Test Flight 0 LiDAR System Maintenance 21 Remarks 0 Aircaft Test Flight 0 Nith works due to clouds. 0 Others: 0 Phil-UDAR Admin Activities	14 Engl	Arrport of Departure 1000 1001 میران میران ۱۱۵۵ العاد	Aurport, City/Province): (ه.م. 15 Yotal Engine Time: 15 Yotal 4+23 20.c Others	1 1 minut of Automatical		
14 Engine Off: 15 Total Engine Time: 16 Take off: 17 Landing: Cloudy Cloudy 20.5 Cothers 21 Remarks 20.b Non Billable 20.5 Others 20.5 Others 20.b Non Billable 20.5 Others 21 Remarks 0 Aircraft Taret Flight 0 0 Aircraft Maintenance 21 Aircraft With vorks dire to olevels. 0 Others: 0	<u>A</u> .	ble ble	15 Total Engine Time: 4+23 20.c Others	IBAURY IO LIDDIN 77	Airport, City/Province):	
Cloudy Cloudy 20.5 Non Billable 20.5 Others 20.5 Non Billable 20.5 Others 20.6 Non Billable 20.5 Others 20.7 Noveyof 3.1 K 76 21 Remarks 21.1 and M- 0 Alcrash Test Flight 0 LIDAR System Maintenance 0 Others: 0 Phil-LIDAR Admin Activities	· · · · · · · · · · · · · · · · · · ·	and day Billable Aircait Tes Flight	20.c Others			18 Total Flight Time:
20.0 Non Billable 20.0 Others 0 Alrcraft Test Flight 0 UDAS System Maintenance 0 Admin Flight 0 Nintenance 0 Others 0 Others	illication istiton Flight - Flight im Test Flight ration Flight	n Billable Aircraft Test Flight	20.c Others	116-12	1100 11	CHE
20.b Non Billable 20.c Others 20.c Others 20.c Others O Aircraft Test Flight O UDAR System Maintenance With voids due th oten O Ancraft Test Flight O Northers O Aircraft Maintenance O Others O Phil-UDAR Admin Activities	isition Flight r Flight m Test Flight ration Flight	n Billable Aircraft Test Flight	20.c Others	21 Remarks		
O Aircraft Test Flight O LIDAR System Maintenance O AAC Admin Flight O Alcraft Maintenance O Others: O Phil-UDAR Admin Activities	Acquisition Flight Ferry Flight System Test Flight Calibration Flight			Suna	I I PK XTE PUT	
oblems and Solutions Observations O Weather Problem O Alreast Problem O Billot Problem O Others:			 UDAR System Mainte Aircraft Maintenance Phil-UDAR Admin Act 			
	22 Problems and Solutions					
				4		~
	Children &	Le Carrier Chromosol	() The	C. H. Fr. HS. &	J-Mina Wer	N/A

	9 Route:	W MUT We: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: PP-C9/71	PACOINT
10 Date: 12 Feb 16 12 Airport of Departure	ty/Province):	12 Airport of Arrival	12 Airport of Arrival (Airport, Gty/Province):		
14 Engine Off: 1240H	gine Time:	16 Take off: OSCo H	17 Landing:	18 Total Flight Time:	
19 Weather Party	Clondy				
20 Flight Classification 20.6 Billable 20.6 Non Billable	20.c Others	21 Remarks S UI	Surveyed voids over BEKJE PIK LENd M	M Jons 1, X , 4 26	
D Acquisition Flight O Aircraft Test Flight O Ferry Flight O Admin Flight O System Test Flight O Others: O Calibration Flight	O UDAR System Maintenance O Aircraft Maintenance O Phil-UDAR Admin Activities	nce ties	i.		
22 Problems and Solutions O Weather Problem O System Problem O Alrcraft Problem O Pilot Problem O Others: O Others:		÷.			
Acquisition Fligs Approved by Acquisition Flight Cartified by	- Jot	Pilot-in-Command	LIDAR Operator	Alertait Mechanic/ UDAR Technidian	R technidan Name

Morrison 2/32/20/6 2/37/10/61 Confront Confront Armal Kinger, Confront Confront Armal Kinger, Confront Confront Armal Kinger, Confront Confront Armal Kinger, Confront Confr	104 101	7 Pilot: (· ALDANO 8 CO-Pilot:) .) PCLE 9 Route:	3 Mission Name: 9 Route:	4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: RPC9122
Arthy Cloudy 11:43 20.1 minute 20.1 minu	2/23/2016 0n:	12 Airport of Departure (14 Engine Off:	Mirport, Gty/Province): Qtmb0Qnggt_Ole/ Sur 15 Total Eveline Time.	12 Airport of Arrival (A	Airport, Chy/Province);	
Party Cloudy Cloudy ilication 20.6 Mon Blable 20.6 Others Zob Mon Blable 20.6 Others Solution 0 Others Difficition Flight 0 Others Solution Etc Mon Problem Etc Solution Etc Solution Etc Solution Etc Solution Etc Solution Etc Solution Etc Solution <td< td=""><td>06:</td><td>11:47</td><td>七十</td><td>16 lake off:</td><td>17 Landing:</td><td>18 Total Flight Time:</td></td<>	06:	11:47	七十	16 lake off:	17 Landing:	18 Total Flight Time:
20.6 Mon Billable 20.6 Others 20.6 Others 20.6 Others 0 Altrant Test Flight 0 UDAR System Maintenance 0 Austraft Maintenance 0 Pini-UDAR Admin Activities 0 Others: 0 Pini-UDAR Admin Activities 0 Pini-UDAR Admin Activities Pini-UDAR Admin Activities 0 Pini-UDAR Admin Activities Pini-UDAR Admin Activities 0 Pini-UDAR Admin Activities Pini-UDAR Admin Activities				111	71.11	4107
20.0 Mon Billable 20.c Others 20.c Others 20.c Others Marint Test Flight Outsers Others <li< td=""><td>Flight Classification</td><td>3</td><td></td><td>21 Remarks</td><td>-</td><td></td></li<>	Flight Classification	3		21 Remarks	-	
 Altrant, Test Flight UDAN System Maintenance Autrant, Flight Autrant, Autrant, Autrant	La Billable	20.b Non Billable	20.c Others			
Iv Acquisition sliphin Contined with an advised of the Arrived Name Iv Acquisition sliphin Contined With advised Name Iv Acquisition sliphin Contined Name Iv Acquisition sliphin Contined Name Signature Arrived Name Ivon Appendix Ivon Representative) Signature over Minted Name	Acquisition Flight Acquisition Flight System Test Flight Calibration Flight	 Aircraft Test Flight AAG Admin Flight Others: 	 UDAR System Mainter Aircraft Maintenance Phil-UDAR Admin Activ 		ccessful flight	
Acquisition Flight Certified by Acquisition Flight Certified by LEE_LAY/E Duringed En Signature over Finted Name Signature over Finted Name Signature over Finted Name Signature over Finted Name	Problems and Solutions					
Acquisition starts Greated by Acquisition starts Greated by Pilot-in-Command Libora Operator Signature over Printed Name Signature over Minted Name Signature over Minted Name Signature over Minted Name	O Weather Problem					
Acquisition Flight Certified by Acquisition Flight Certified by LEE_LAY/E PUINTOR AN Signature over Kinted Name (DAR Operator Signature over Kinted Name Signature over Kinted Name Signature over Kinted Name						
Acquisition Flight Certified by Piloc-In-Command Libra Operator LEE_LAY/E PUIRORAN Signature over Finited Name Suprature over Finited Name Suprature over Finited Name Suprature over Finited Name						~
Acquisition Flight Certified by Pilot-in-Command UDAR Operator LEE _ JAY/A PUINGARAH Signature over Minted Name Signature over Minted Name Signature over Minted Name Signature over Minted Name						
LEE JAY/A PUNTANAN C. HOUNDONS N LEMARTH AND C. HOUNDONS N LEMARTH AND C. HOUNDONS N LEMARTH AND CONCOURS SUBJECT REPORTS Name Subjective reventations Suprature over Minted Name Suprature over Printed Name	Acquisition Fight Approved by	Acquisition Flight Certifie		TT pure	LIDAR Operator	Aircraft Mechanic/ LIDAR Technician
(PM Representative) Signature over Printed Name Signature over Printed Name	Revenue over Printed Name	LEE LAY & PUNG	E	A PANSA A	Kenneth Ollisallo	XX X
	(End Uter Representative)	(PAL Representative)		wer Printed Name	Signature over Printed Name	Signature over Printed Name

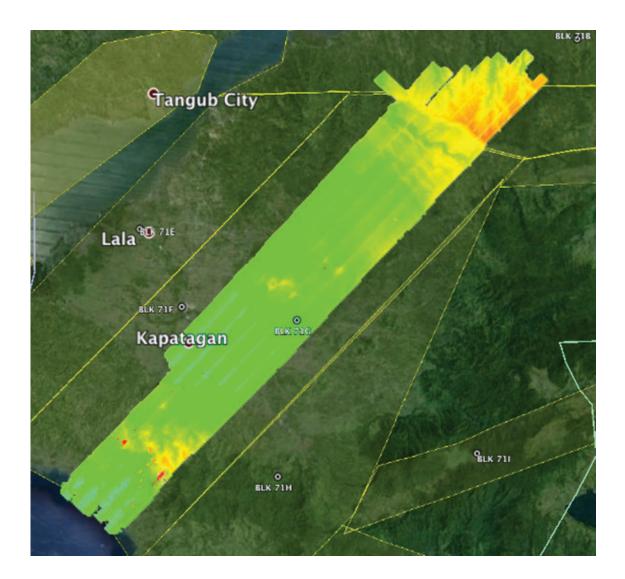
So this is a second back when the second second	and and a second				China and and and and and and
TPILOTE A DAMO BLOC	đ	3 Alission Name: 9 Route:	4 Type: VFK	> AIGTR II Type: Lessning Looki 10 AIGTR LUCATION	
10 Date: 12/ 1/ 2016	12 Alrport of Departure (Alrport, Gty/Province):	Airport, Gty/Province]:	12 Airport of Arrival	12 Airport of Arrival (Airport, City/Province): DiPDLOC	
13 Engine On: OraqH	14 Englae Off: BI4H	15 Total Engine Time: 4 135	16 Take off: 0244H	17 Landing: 13 Og #	18 Total Filght Time: 44.36
19 We ather CLONDY 20 Flight Classification	A AND A AND A A A A A A A A A A A A A A		21 Remarks		
20.a Bilable	20 h fton Billahde	20.c Others	CT LOVER	THE THE TENT OF THE TANK THE THE THE	+ DUBC
Acquisition Flight Acquisition Flight System fest Flight Calibration flight	o Ancratt Test Plight o Add. Admin Flight o Others:	O IIDAR System Maintenance O Aircraft Maintenance O Phil-IIDAR Admin Activities	vities	KUMMENTERING FULD KNONTHEREN.	
22 Problems and Solutions					
Weather Problem System Problem Aircraft Problem Pilot Problem Others					
Acquisition Fight Approved by	Acquitation/Filght Certified by	Pilot-top	O .	LID48 Operator	Alccaft Mechanic/ 11048 Technician
PL MCCO Signature oper Printed Hame	Golf by the second over the second second	an an	ANTON DAYO	Further Printed Name	Signature over Printed Name


Annex 7. Flight Status Reports

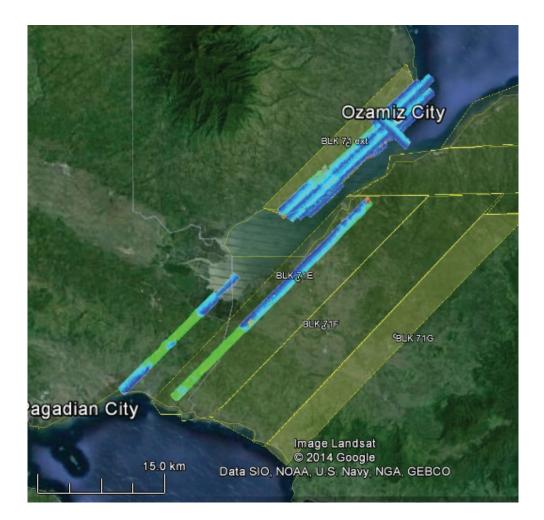
NORTHERN MINDANAO (May 22-July 10, 2014)

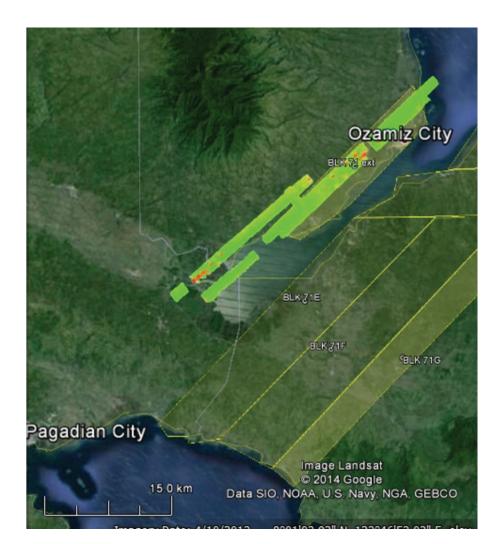
FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1549P	BLK 71E	1BLK69B295A	G. Sinadjan	Oct. 22, 2014	Surveyed BLK 69B, cloudy
1565P	BLK 71F	1BLK69B296A	I. Roxas	Oct. 23, 2014	Surveyed BLK 69 B, still cloudy
1613P	BLK 71G	1BLK69B297A	R. Punto	Oct. 24, 2014	Surveyed parts of BLK 69 A, B and C; images saved in Test folder
1665P	BLK 71 ext	1BLK69C299A	I. Roxas	Oct. 26, 2014	Surveyed BLK 69C
1673P	BLK 71 ext	1BLK6970A299B	R. Punto	Oct. 26, 2014	Surveyed BLK 69A
1677P	BLK 71 ext	1BLk69C304A	J. Alviar	Oct. 31, 2014	Surveyed BLk 69C, gaps in the middle due to clouds and terrain
1685P	BLK 71F	1BLK70B305A	J. Alviar	Nov.1 , 2014	Surveyed BLK 70A and 70B, gaps due to clouds; covered gap in BLK 69A
1689P	BLK 71E and BLK 71ABCs	1BLK70C312A	I. Roxas	Nov. 8, 2014	Filled up gaps in BLK 70B&C

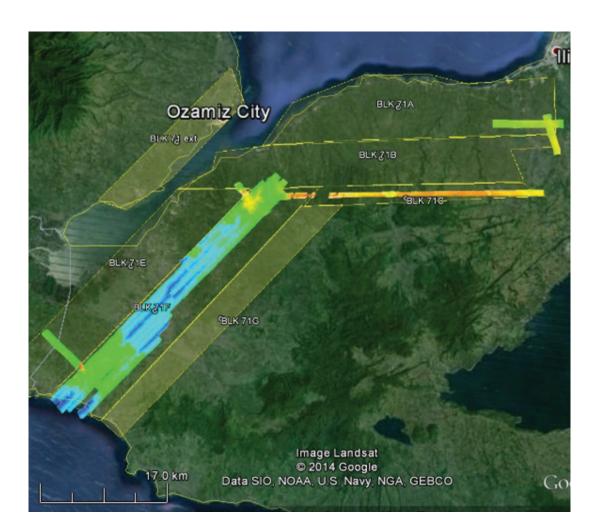
SWATH OF LIDAR BOUNDARIES PER FLIGHT

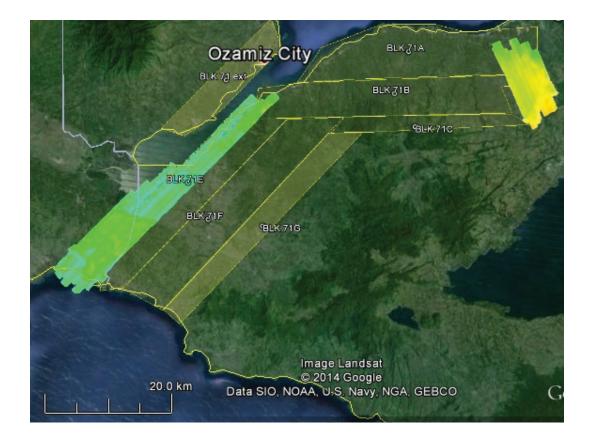

Flight No. :	1549P	
Area:	BLK 71E	
Mission Name:	1BLK71D155A	
Parameters:	Altitude: 1000m;	Scan Frequency: 30Hz;
	Scan Angle: 25deg;	Overlap: 30%

Flight No. :1565PArea:BLK 71FMission Name:1BLK71B159AParameters:Altitude: 1000m;
Scan Angle: 25deg;


1613P BLK 71G 1BLK71G171A Altitude: 1000m; Scan Angle:25deg;


1665P BLK 71E 1BLK71ES184A Altitude: 1100m; Scan Angle: 25deg;


1673P BLK 71 ext 1BLK71ES186A Altitude: 1000m; Scan Angle: 25deg;


1677P BLK 71 ext 1BLK71S187A Altitude: 1000m; Scan Angle:25deg;

1685P BLK 71F 1BLK71S189A Altitude: 1000m; Scan Angle: 25deg;

1689P BLK 71E and BLK 71ABCs 1BLK71S190A Altitude: 1200m; S Scan Angle: 25deg; C

PAGADIAN (BLK 76) WITH REFLIGHTS PEGASUS (9122) FEBRUARY 4 – MARCH 4, 2016

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
23084	BLK C,D,E,H,J,K,L	1BLK76JKLCs043A	IN ROXAS	FEB 12, 2016	Finished BLK76C,J,K. Please also process tie lines as production data, using the intersecting line as tie line for BLK76D,E,H as they cover parts of FP
23088	BLK I,L,M	1BLK76ILM044A	JM ALMALVEZ	FEB 13, 2016	Cloudy over L & M. Pega-sus problem encountered so no tie lines over I; please use 23078's and 23092's tie line
23104	BLK D,L,M	1BLK76DLM048A	JM ALMALVEZ	FEB 17, 2016	Cloudy on BLK76M so no tie line, please use 23088's tie line; also cloudy in BLK76L

SWATH OF LIDAR BOUNDARIES PER FLIGHT


Flight No. : Area: Mission Name: Parameters: 23084P BLK C,D,E,H,J,K,L 1BLK76JKLCs043A Altitude: 1000m; Scan Angle:25deg;

23088P BLK I,L,M 1BLK76ILM044A Altitude: 1200m; Scan Angle:25deg;

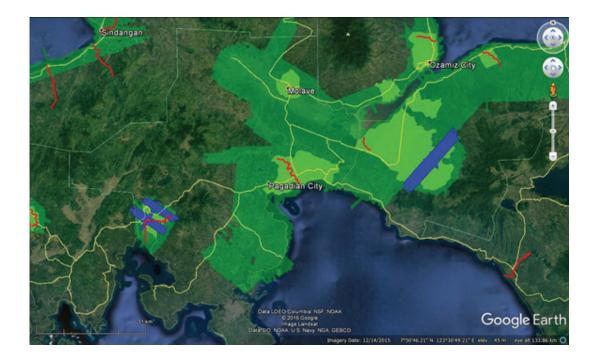
23104P BLK D,L,M 1BLK76DLM048A Altitude: 1000m; Scan Angle: 25deg;

MARANDING (BLK 70, 71, 72,73 AND 69) REFLIGHTS PEGASUS (9122) FEBRUARY 23, 2016

FLIGHT NO	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
23128P	BLK 70B, 71A	1BLK70B054A	K QUISADO	FEB 23, 2016	ENCOUNTERED LOST CHANNEL A ERROR SEVERAL TIMES. SURVEYED BLKS

SWATH OF LIDAR BOUNDARIES PER FLIGHT

Flight No. :	23128P
Area:	BLK 70B, 71A
Mission Name:	1BLK70B054A
Parameters:	Altitude: 1000m;
	Scan Angle:25deg;



MARANDING FLIGHTS (NOVEMBER 20 - 26, 2016)

Date	Flight No.	Operator	Mission Name	Area	Remarks
DECEMBER 1, 2016	23602	PJ ARCEO	1BLK76AB336A	KUMALARANG, KAPATAGAN BLK 76A, 71A	COMPLETED KUMALARANG FLOODPLAIN AND VOIDS OVER KAPATAGAN FLOODPLAIN

SWATH OF LIDAR BOUNDARIES PER FLIGHT

Flight No. :	23602	
Area:	KUMALARANG AND KAPATAO	GAN
Mission Name:	1BLK76AB336A	
Parameters:	Altitude: 1200m, 1100m;	Scan Frequency: 30Hz;
	Scan Angle:25deg;	Overlap: 30%

Flight Area	Pagadian	
Mission Name	Blk76J	
Inclusive Flights	23088P	
Range data size	24.65	
POS data size	283.62	
Base data size	101.29	
Image	n/a	
Transfer date	March 01, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	Yes	
Baseline Length (<30km)	No	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.3	
RMSE for East Position (<4.0 cm)	1.4	
RMSE for Down Position (<8.0 cm)	2.5	
	2.5	
Boresight correction stdev (<0.001deg)	0.000281	
IMU attitude correction stdev (<0.001deg)	0.000180	
GPS position stdev (<0.01m)	0.0014	
Minimum % overlap (>25)	27.90	
Ave point cloud density per sq.m. (>2.0)	3.23	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	72	
Maximum Height	698.51 m	
Minimum Height	68.61 m	
Classification (# of points)		
Ground	24 165 050	
	34,165,050	
Low vegetation	19,594,241	
Medium vegetation	28,178,750	
High vegetation Building	95,242,866	
DUIIUIIIg	801,190	
Orthophoto	Yes	
Processed by	Engr. Regis Guhiting, Engr. Jovelle Anjeanette Canlas, Engr. Krisha Marie Bautista	

Annex 8. Mission Summary Reports

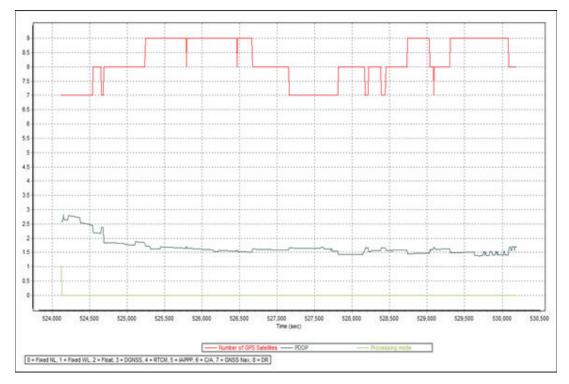


Figure A-8.1 Solution Status

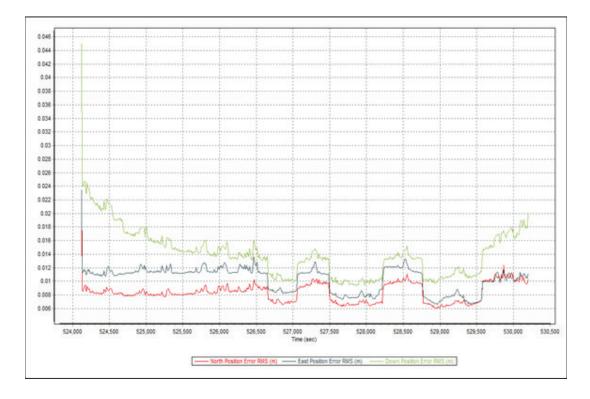


Figure A-8.2 Smoothed Performance Metric Parameters

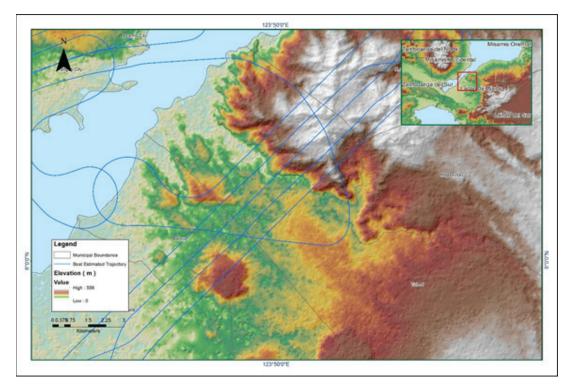


Figure A-8.3 Best Estimated Trajectory

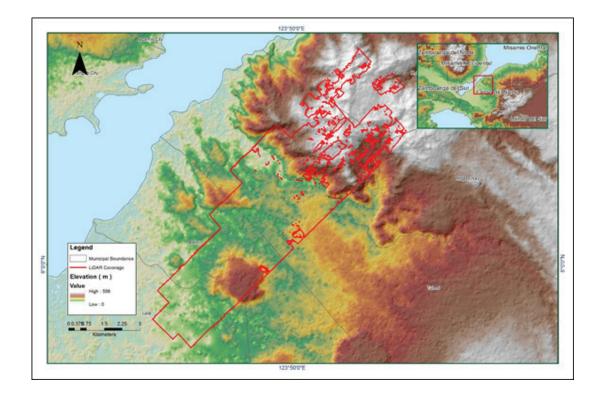


Figure A-8.4 Coverage of LiDAR Data

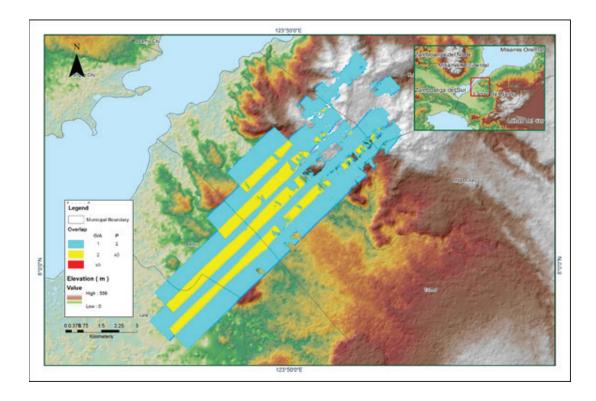


Figure A-8.5 Coverage of LiDAR Data

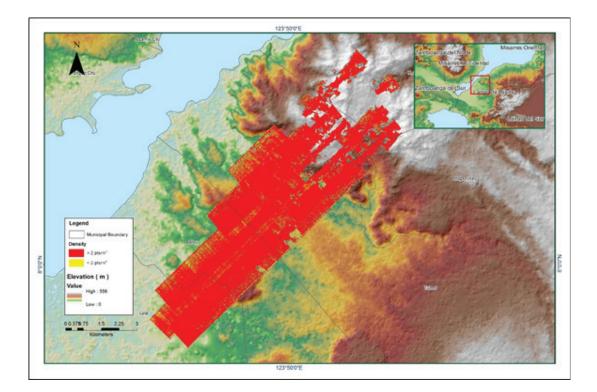


Figure A-8.6 Density map of merged LiDAR data

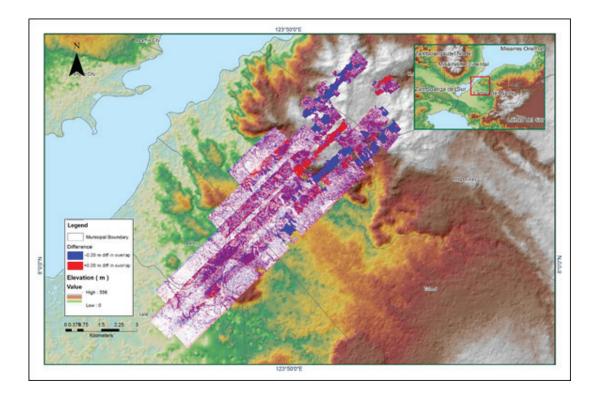


Figure A-8.7 Elevation difference between flight lines

Flight Area	Pagadian	
Mission Name	Blk76N_Additional	
Inclusive Flights	23104P	
Range data size	18.3 GB	
POS data size	287.01 MB	
Base data size	116.78 MB	
Image	25.87 GB	
Transfer date	March 1, 2016	
Solution Status		
Number of Satellites (>6)	Yes	
PDOP (<3)	No	
Baseline Length (<30km)	No	
Processing Mode (<=1)	Yes	
Smoothed Performance Metrics (in cm)		
RMSE for North Position (<4.0 cm)	1.7	
RMSE for East Position (<4.0 cm)	2.2	
RMSE for Down Position (<8.0 cm)	4.2	
Boresight correction stdev (<0.001deg)	N/A	
IMU attitude correction stdev (<0.001deg)	N/A	
GPS position stdev (<0.01m)	N/A	
Minimum % overlap (>25)	10.37	
Ave point cloud density per sq.m. (>2.0)	2.38	
Elevation difference between strips (<0.20 m)	Yes	
Number of 1km x 1km blocks	124	
Maximum Height	436.04 m	
Minimum Height	90.14 m	
Classification (# of points)		
Ground	56,765,012	
Low vegetation	52,157,492	
Medium vegetation	41,240,260	
High vegetation	93,342,982	
Building	1,335,125	
Orthophoto	Yes	
Processed by	Engr. Don Matthew Banatin, Engr. Merven Matthew Natino, Jovy Narisma	

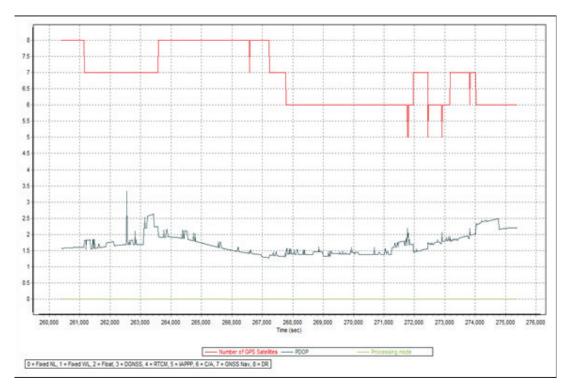


Figure A-8.8 Solution Status

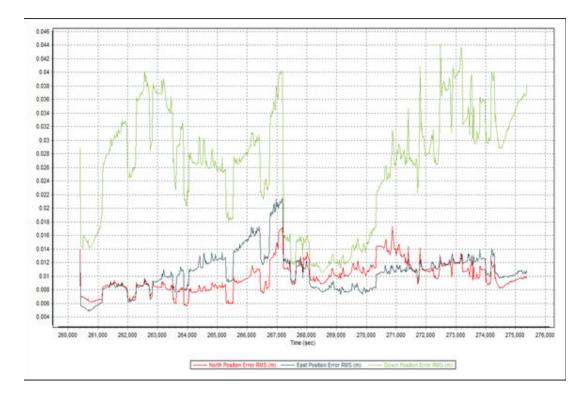


Figure A-8.9 Smoothed Performance Metric Parameters

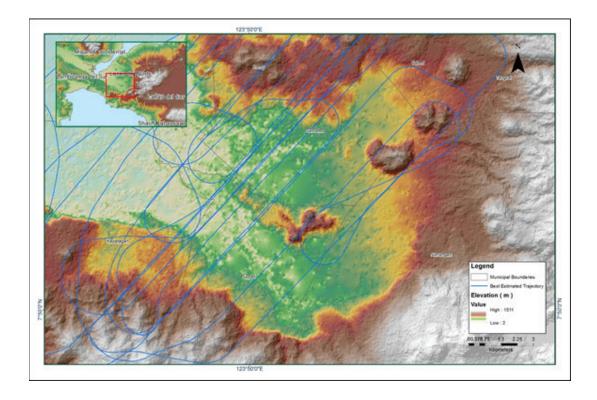


Figure A-8.10 Best Estimated Trajectory

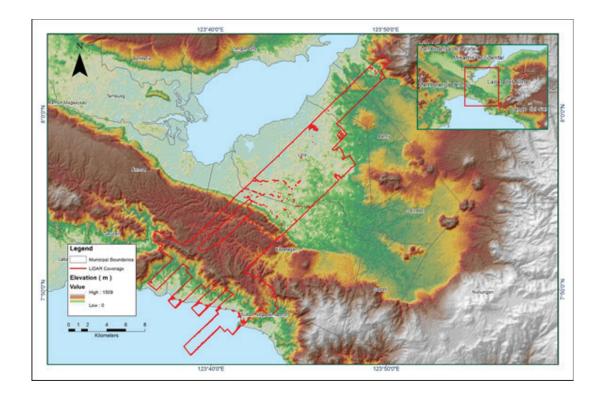


Figure A-8.11 Coverage of LiDAR Data

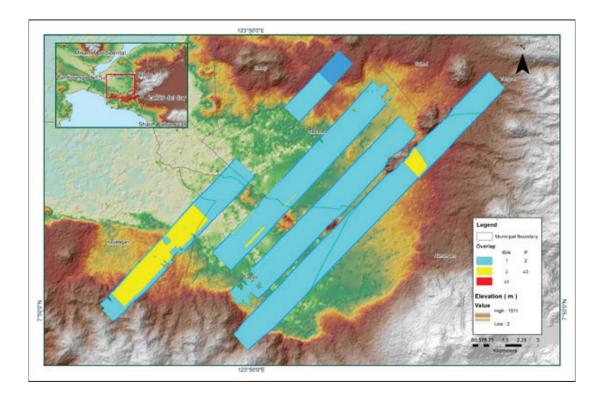


Figure A-8.12 Image of data overlap

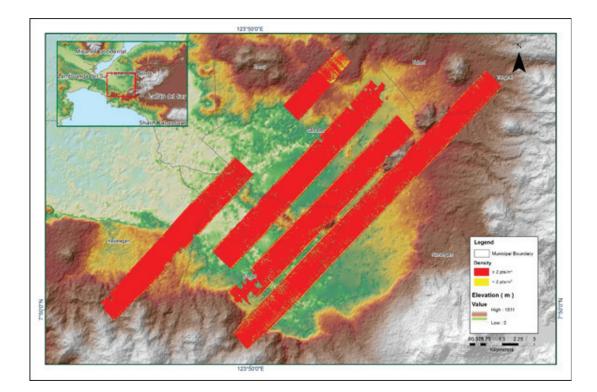


Figure A-8.13 Density map of merged LiDAR data

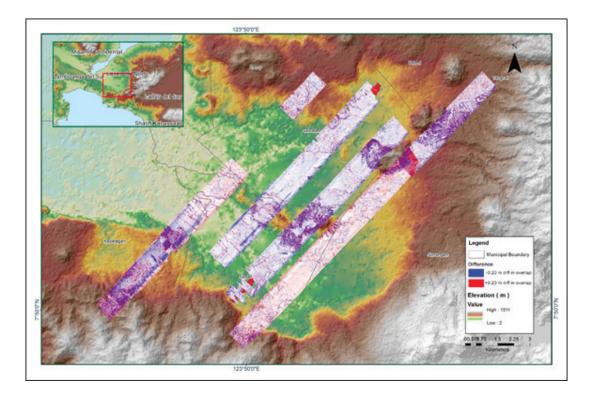


Figure A-8.14 Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	Blk76N_Supplement
Inclusive Flights	23104P
Range data size	18.3 GB
POS data size	287.01 MB
Base data size	116.78 MB
Image	25.87 GB
Transfer date	March 1, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000502
IMU attitude correction stdev (<0.001deg)	0.001509
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	14.43
Ave point cloud density per sq.m. (>2.0)	2.64
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	13
Maximum Height	368.25
Minimum Height	93.58
Classification (# of points)	
Ground	4,438,634
Low vegetation	1,755,258
Medium vegetation	1,534,601
High vegetation	4,444,966
Building	34,342
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Justine Francisco, Engr. Gladys Mae Apat

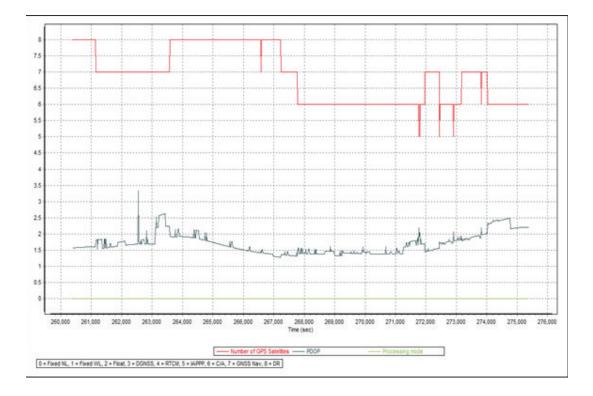


Figure A-8.15 Solution Status

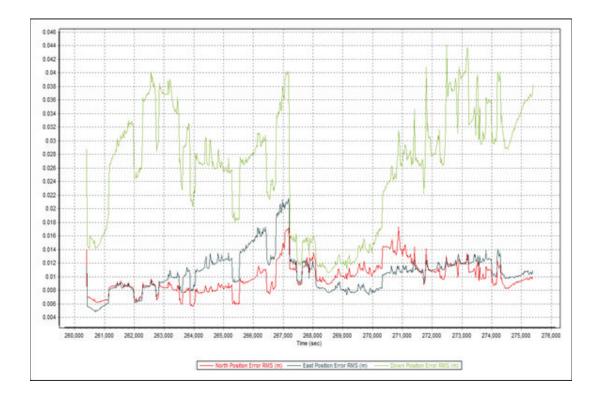


Figure A-8.16 Smoothed Performance Metric Parameters

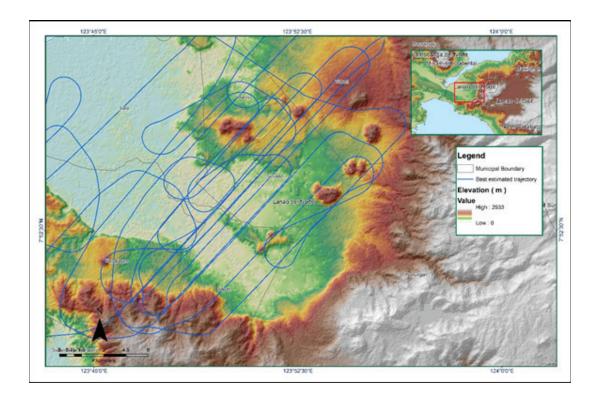


Figure A-8.17 Best Estimated Trajectory

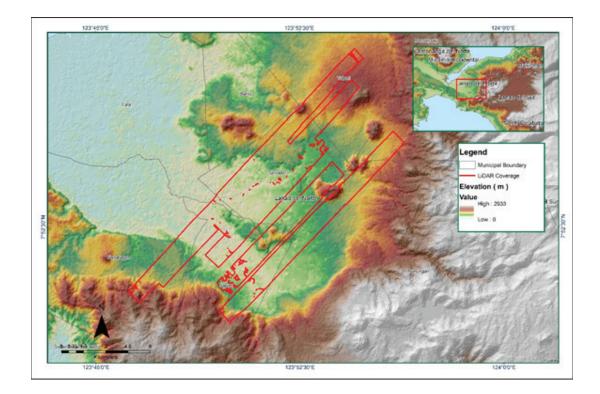


Figure A-8.18 Coverage of LiDAR Data

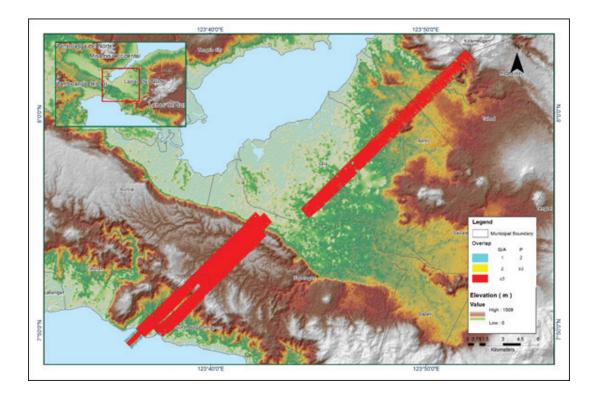


Figure A-8.19 Image of data overlap

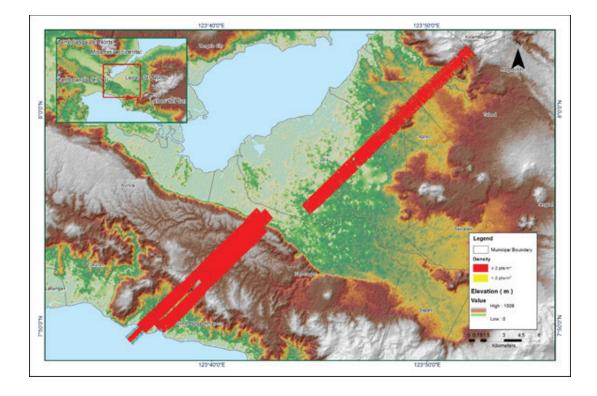


Figure A-8.20 Density map of merged LiDAR data

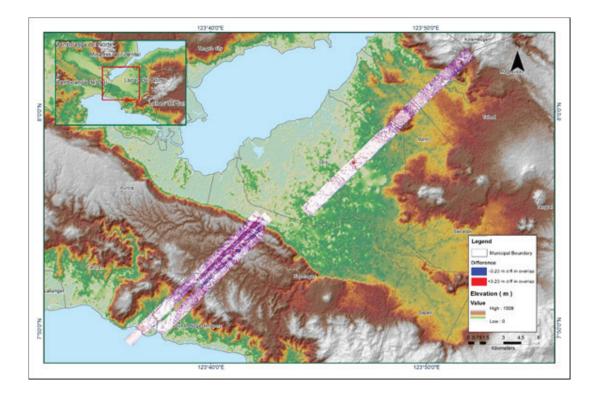


Figure A-8.21 Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	76M
Inclusive Flights	23128P
Range data size	23.30 GB
POS data size	273 MB
Base data size	311 MB
Image	n/a
Transfer date	March 10, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.4
RMSE for East Position (<4.0 cm)	1.9
RMSE for Down Position (<8.0 cm)	4.1
Boresight correction stdev (<0.001deg)	0.000128
IMU attitude correction stdev (<0.001deg)	0.000139
GPS position stdev (<0.01m)	0.0122
Minimum % overlap (>25)	14.01
Ave point cloud density per sq.m. (>2.0)	3.32
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	173
Maximum Height	503.88 m
Minimum Height	67.66 m
initial telbuc	
Classification (# of points)	
Ground	100,531,253
Low vegetation	60,833,381
Medium vegetation	70,336,602
High vegetation	177,937,163
Building	1,895,317
Orthophoto	No
	Engr. Jennifer Saguran, Aljon Rie Araneta, Ma
Processed by	ria Tamsyn Malabanan

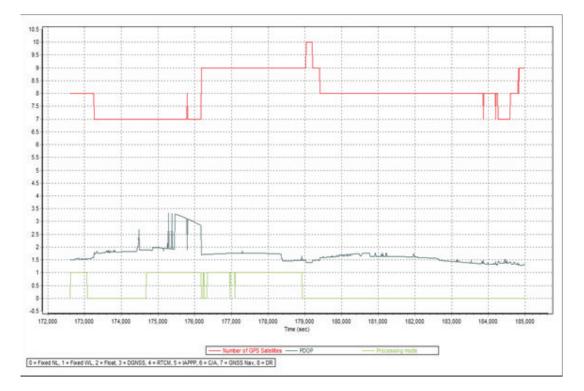


Figure A-8.22 Solution Status

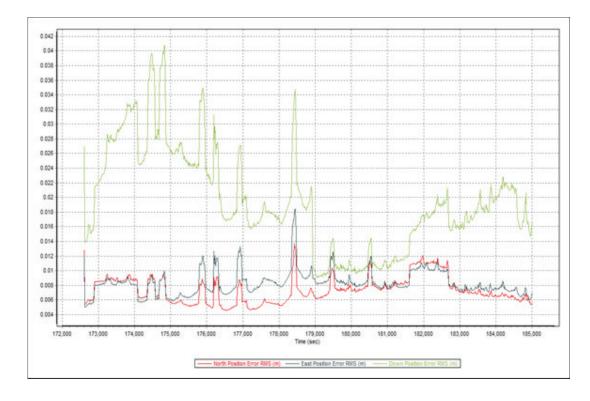


Figure A-8.23 Smoothed Performance Metric Parameters

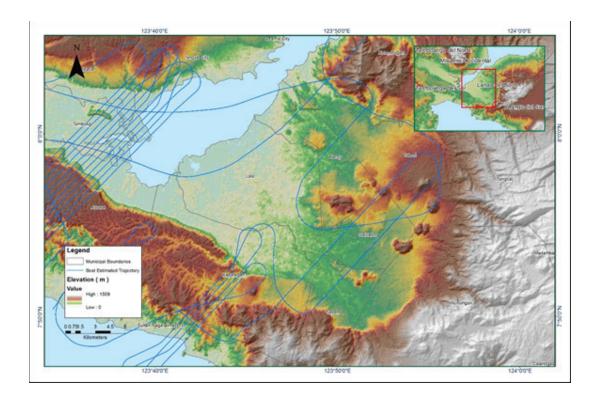


Figure A-8.24 Best Estimated Trajectory

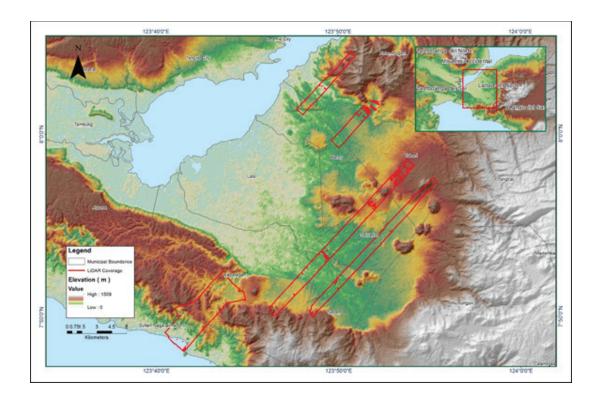


Figure A-8.25 Coverage of LiDAR Data

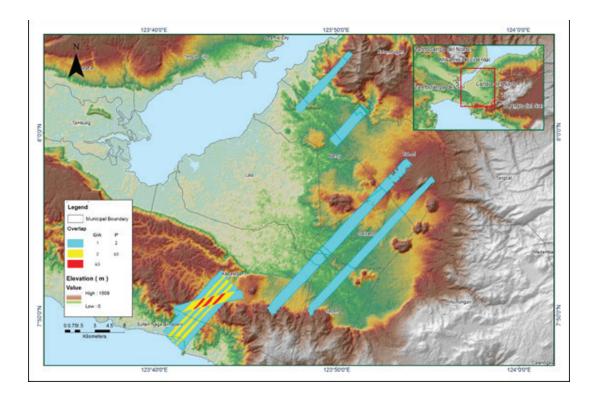


Figure A-8.26 Image of data overlap

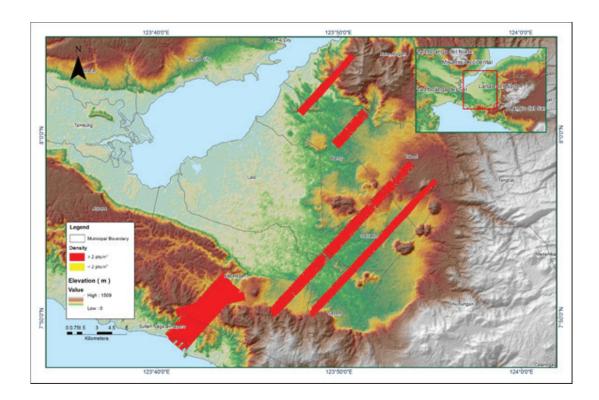


Figure A-8.27 Density map of merged LiDAR data

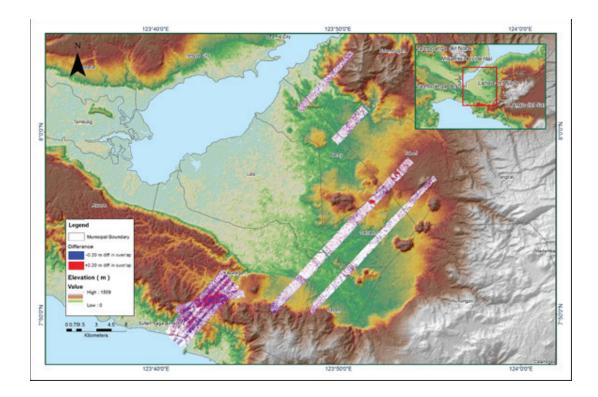


Figure A-8.28 Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	Blk76N
Inclusive Flights	23088P
Range data size	24.65
POS data size	283.62
Base data size	101.29
Image	n/a
Transfer date	March 01, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.5
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	4.6
Boresight correction stdev (<0.001deg)	0.000274
IMU attitude correction stdev (<0.001deg)	0.001049
GPS position stdev (<0.01m)	0.0073
Minimum % overlap (>25)	41.91
Ave point cloud density per sq.m. (>2.0)	2.98
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	189
Maximum Height	726.06 m
Minimum Height	92.16 m
Classification (# of points)	
	140,720,400
Ground	140,736,400
Low vegetation	124,627,028
Medium vegetation	126,549,841
High vegetation	285,028,320
Building	4,597,452
Orthophoto	Yes
Processed by	Engr. Analyn Naldo, Engr. Merven Matthew Natino, Marie Denise Bueno

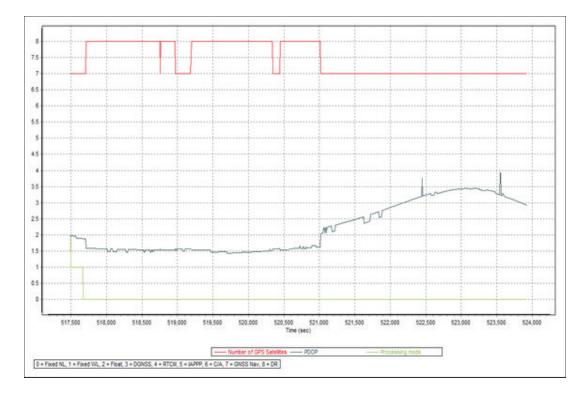


Figure A-8.29 Solution Status

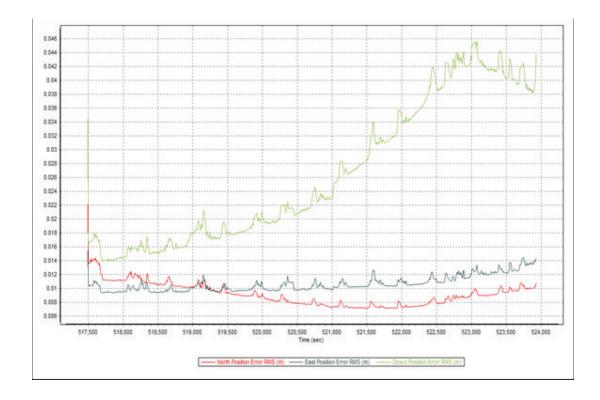


Figure A-8.30 Smoothed Performance Metric Parameters

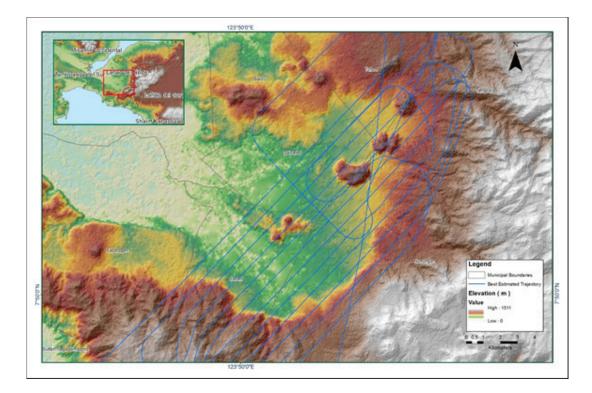


Figure A-8.31 Best Estimated Trajectory

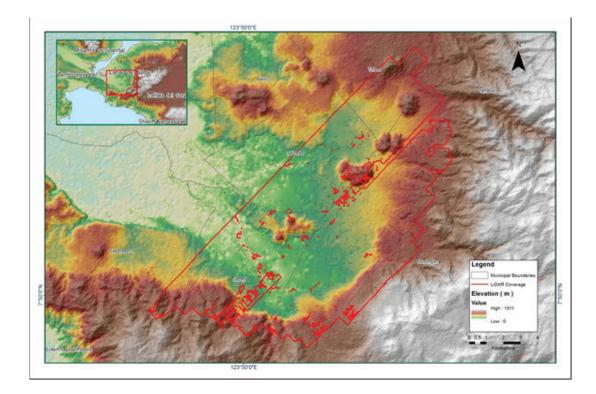


Figure A-8.32 Coverage of LiDAR Data

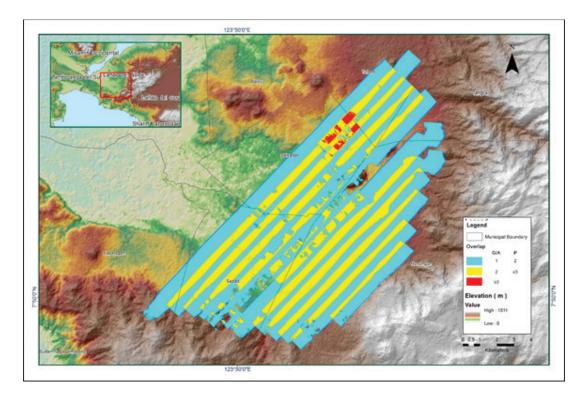


Figure A-8.33 Image of data overlap

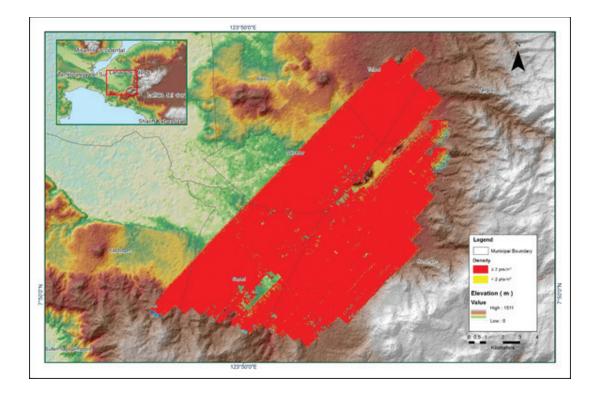


Figure A-8.34 Density map of merged LiDAR data

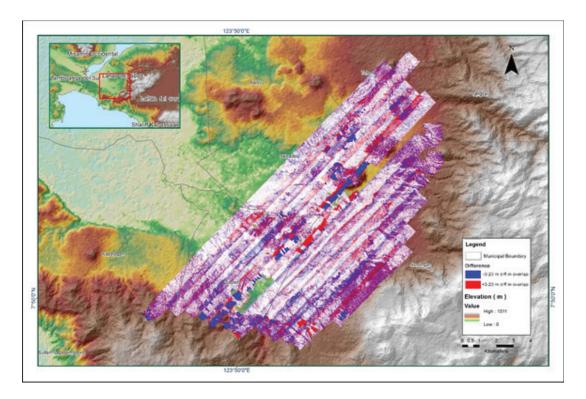


Figure A-8.35 Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	Blk76N_Additional
Inclusive Flights	23104P
Range data size	18.3 GB
POS data size	287.01 MB
Base data size	116.78 MB
Image	25.87 GB
Transfer date	March 1, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	N/A
IMU attitude correction stdev (<0.001deg)	N/A
GPS position stdev (<0.01m)	N/A
Minimum % overlap (>25)	10.37
Ave point cloud density per sq.m. (>2.0)	2.38
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	124
Maximum Height	436.04 m
Minimum Height	90.14 m
Classification (# of points)	
Ground	56,765,012
Low vegetation	52,157,492
Medium vegetation	41,240,260
High vegetation	93,342,982
Building	1,335,125
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Merven Matthew Natino, Jovy Narisma

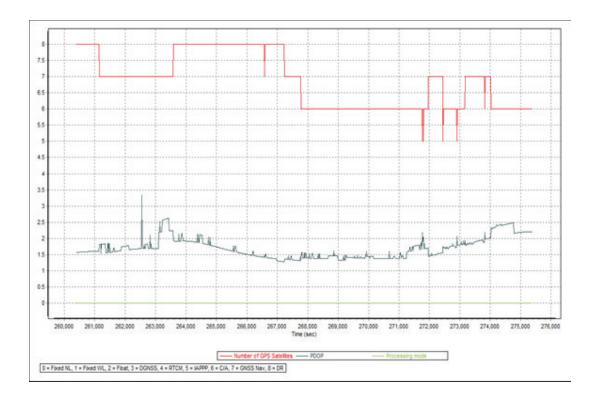


Figure A-8.36 Solution Status

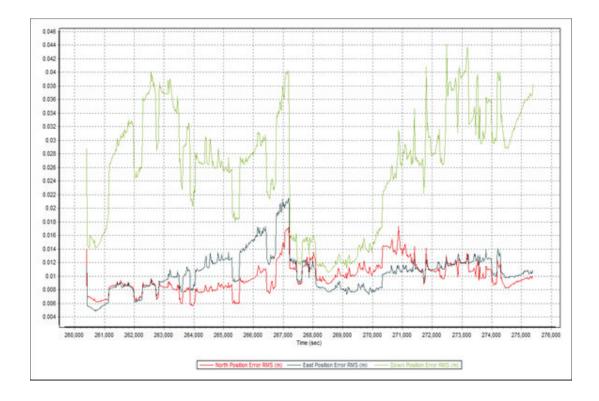


Figure A-8.37 Smoothed Performance Metric Parameters

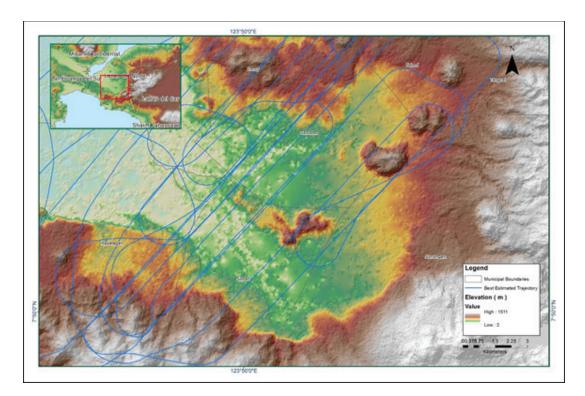


Figure A-8.38 Best Estimated Trajectory

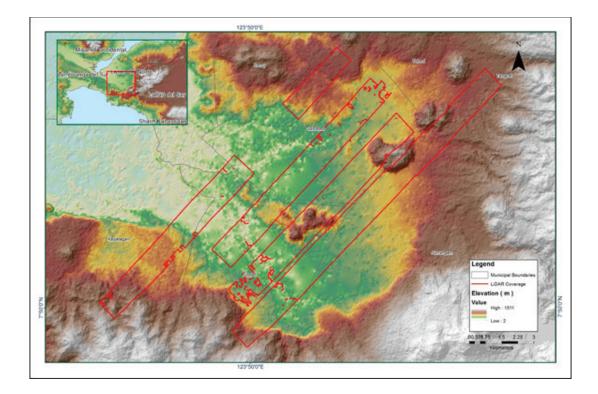


Figure A-8.39 Coverage of LiDAR Data

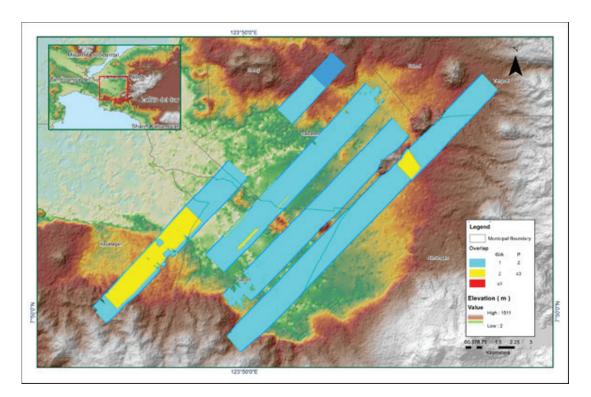


Figure A-8.40 Image of data overlap

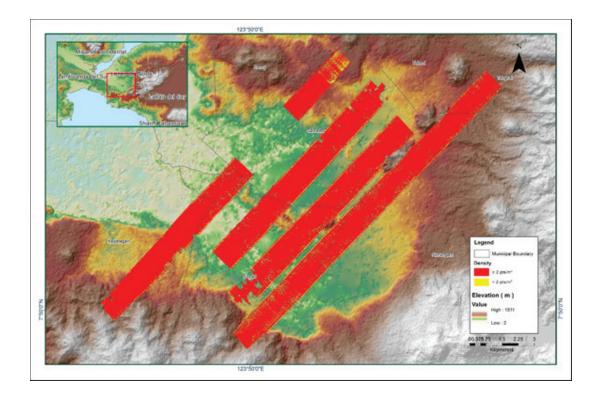


Figure A-8.41 Density map of merged LiDAR data

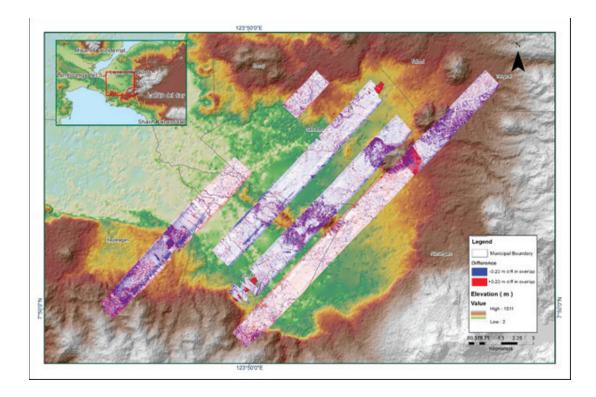


Figure A-8.42 Elevation difference between flight lines

Flight Area	Pagadian
Mission Name	Blk76N_Supplement
Inclusive Flights	23104P
Range data size	18.3 GB
POS data size	287.01 MB
Base data size	116.78 MB
Image	25.87 GB
Transfer date	March 1, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	No
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.7
RMSE for East Position (<4.0 cm)	2.2
RMSE for Down Position (<8.0 cm)	4.2
Boresight correction stdev (<0.001deg)	0.000502
IMU attitude correction stdev (<0.001deg)	0.001509
GPS position stdev (<0.01m)	0.0017
Minimum % overlap (>25)	14.43
Ave point cloud density per sq.m. (>2.0)	2.64
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	13
Maximum Height	368.25
Minimum Height	93.58
Classification (# of points)	
Ground	4,438,634
Low vegetation	1,755,258
Medium vegetation	1,534,601
High vegetation	4,444,966
Building	34,342
Orthophoto	Yes
Processed by	Engr. Don Matthew Banatin, Engr. Justine Francisco, Engr. Gladys Mae Apat

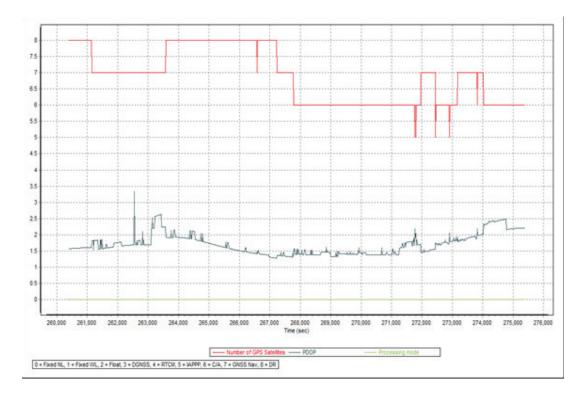


Figure A-8.43 Solution Status

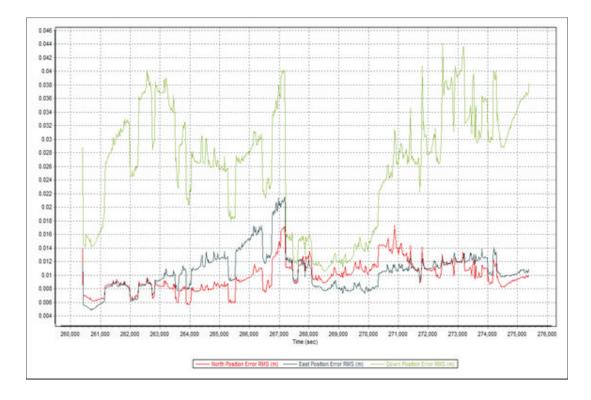


Figure A-8.44 Smoothed Performance Metric Parameters

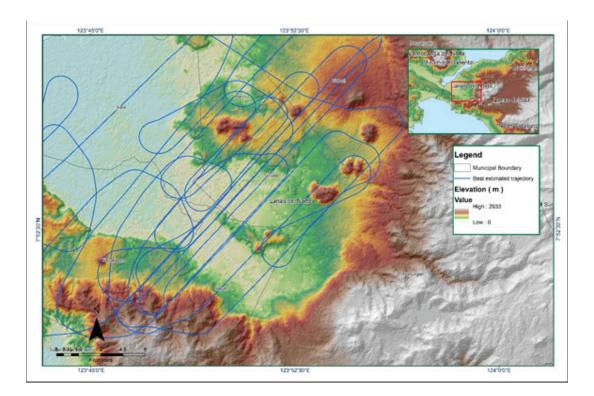


Figure A-8.45 Best Estimated Trajectory

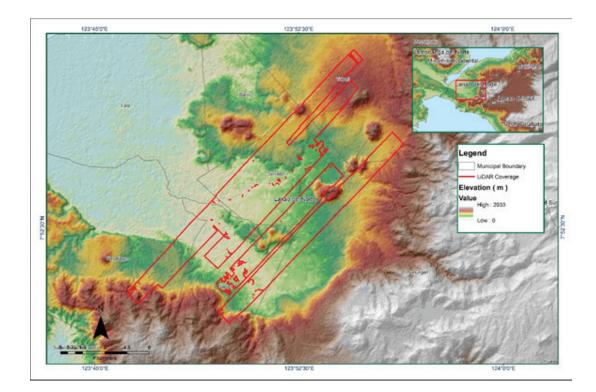


Figure A-8.46 Coverage of LiDAR Data

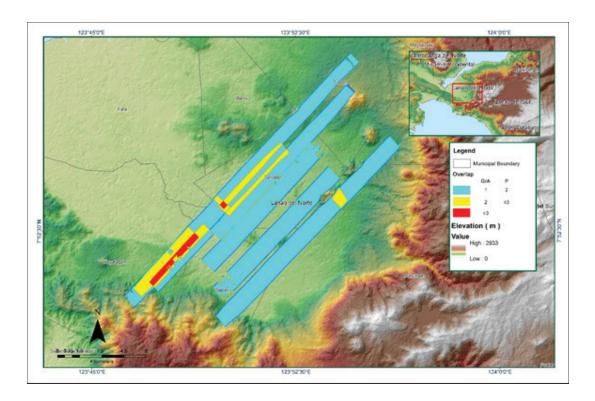


Figure A-8.47 Image of data overlap

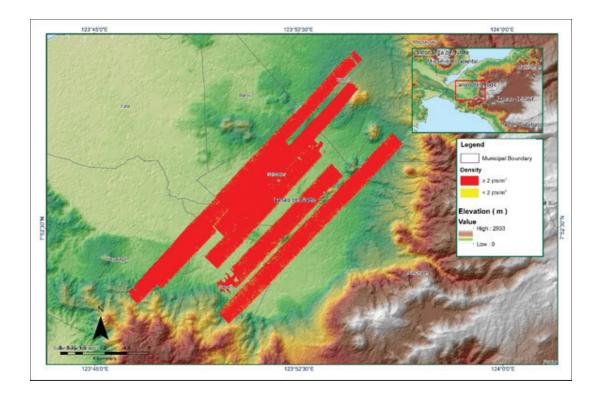


Figure A-8.48 Density map of merged LiDAR data

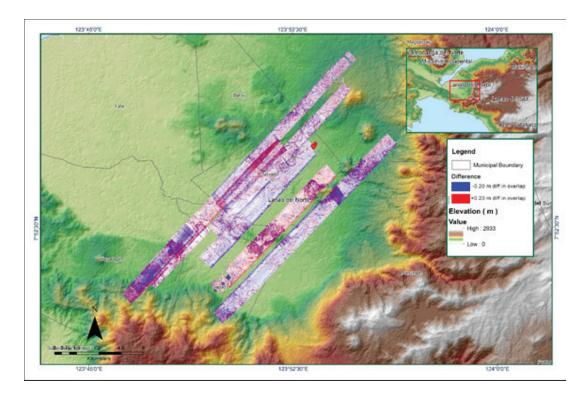


Figure A-8.49 Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71Extension
Inclusive Flights	23104P
Range data size	18.3 GB
POS	287.01 MB
Base data size	116.78 MB
Image	25.87 GB
Transfer date	March 1, 2016
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	3.0
RMSE for East Position (<4.0 cm)	4.0
RMSE for Down Position (<8.0 cm)	5.0
Boresight correction stdev (<0.001deg)	0.000243
IMU attitude correction stdev (<0.001deg)	0.001298
GPS position stdev (<0.01m)	0.0076
Minimum % overlap (>25)	27.83%
Ave point cloud density per sq.m. (>2.0)	2.41
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	243
Maximum Height	868.76 m
Minimum Height	63.2 m
Winning the Buck	00.2 11
Classification (# of points)	
Ground	107,907,148
Low vegetation	96,229,157
-	
Medium vegetation	96,176,102
High vegetation Building	80,601,347 17,253,174
Orthophoto	Yes
·	Engr. Analyn Naldo, Engr. Edgardo Gubatanga,
Processed by	Jr., Engr. Elainne Lopez
Processed by	Engr. Don Matthew Banatin, Engr. Justine Francisco, Engr. Gladys Mae Apat

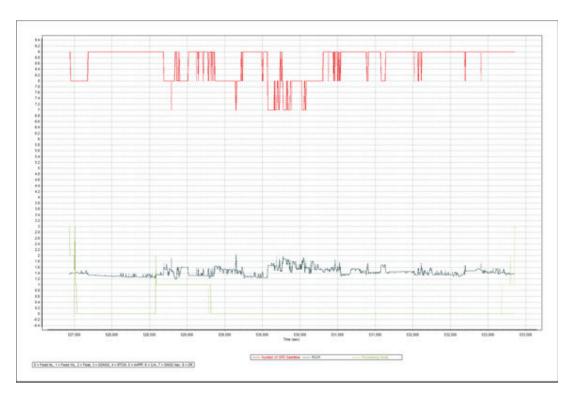


Figure A-8.50 Solution Status

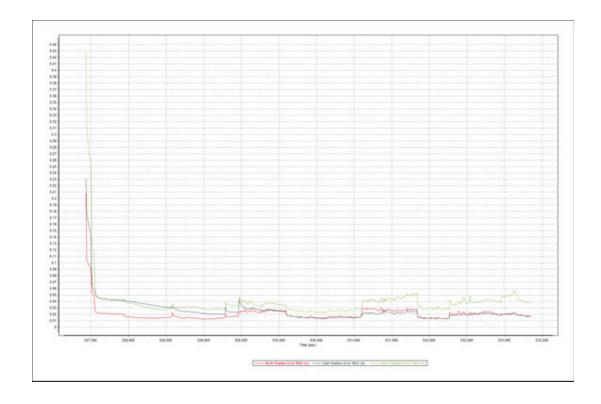


Figure A-8.51 Smoothed Performance Metric Parameters

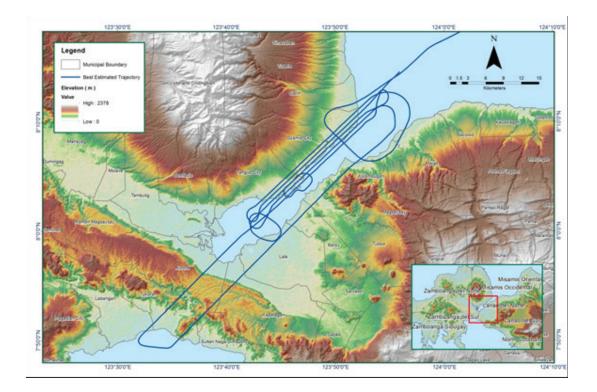


Figure A-8.52 Best Estimated Trajectory

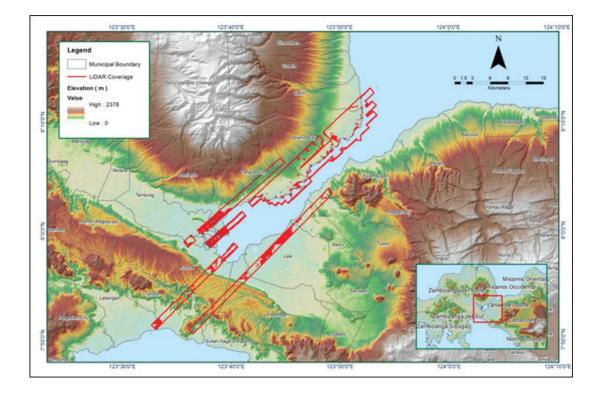


Figure A-8.53 Coverage of LiDAR data

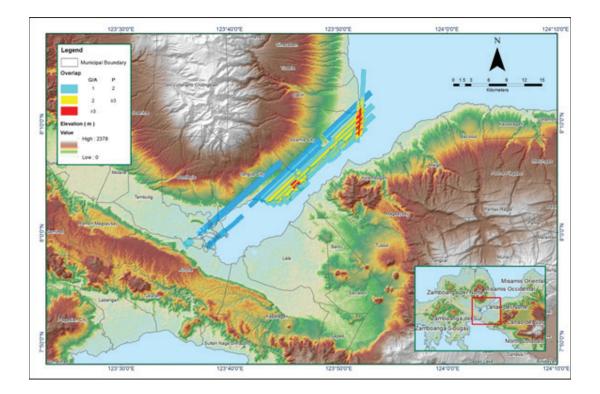


Figure A-8.54 Image of data overlap

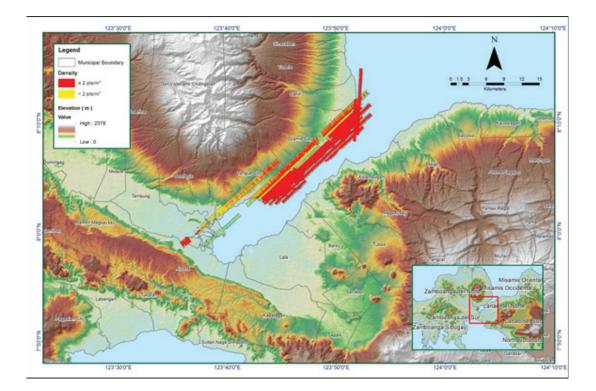


Figure A-8.55 Density map of merged LiDAR data

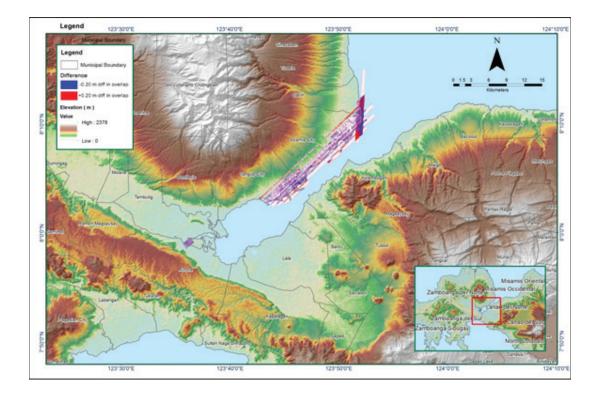


Figure A-8.56 Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71E
Inclusive Flights	1689P
Range data size	27.1 GB
POS	257 MB
Base data size	3.68 MB
Image	n/a
Transfer date	August 6, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	2.5
RMSE for East Position (<4.0 cm)	5.5
RMSE for Down Position (<8.0 cm)	10
Boresight correction stdev (<0.001deg)	0.000536
IMU attitude correction stdev (<0.001deg)	0.001171
GPS position stdev (<0.01m)	0.0079
Minimum % overlap (>25)	35.35%
Ave point cloud density per sq.m. (>2.0)	2.79
Elevation difference between strips (<0.20 m)	Yes
Lievation difference between strips (<0.20 m)	163
Number of 1km x 1km blocks	253
Maximum Height	476.79
Minimum Height	66.37
	00.57
Classification (# of points)	
Ground	157,189,225
Low vegetation	118,155,426
Medium vegetation	118,135,420
High vegetation	168,342,412
Building	7,092,549
Orthophoto	.,,
Processed by	Engr. Carlyn Ann Ibañez, Engr. Chelou Prado, Engr. John Dill Macapagal
Processed by	Engr. Don Matthew Banatin, Engr. Justine Francisco, Engr. Gladys Mae Apat

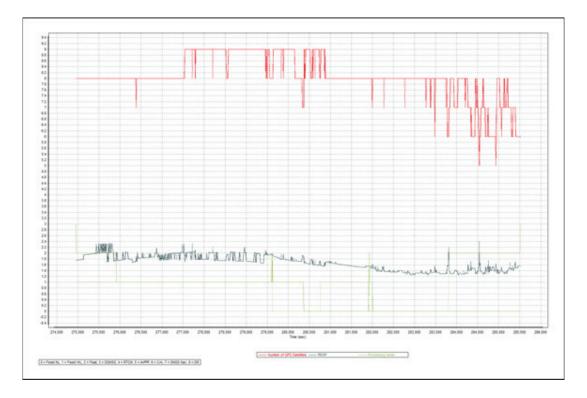


Figure A-8.57 Solution Status

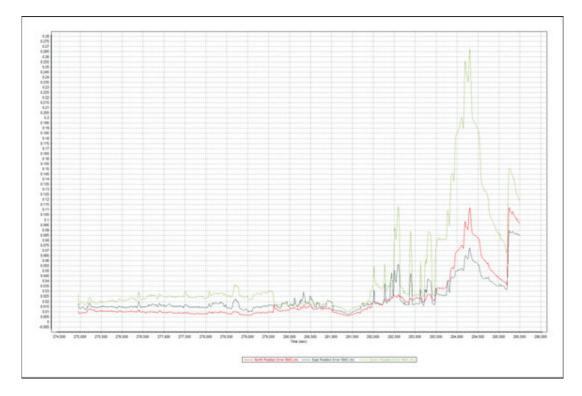


Figure A-8.58 Smoothed Performance Metric Parameters

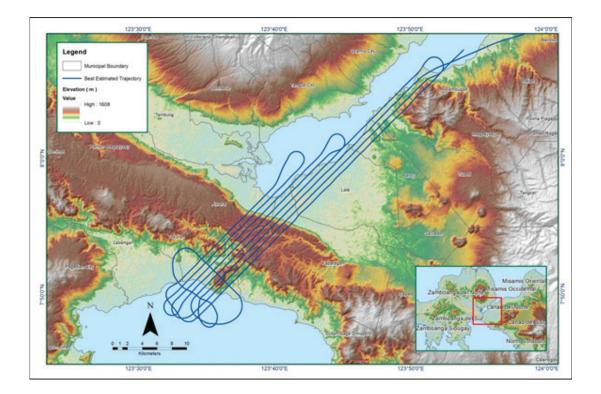


Figure A-8.59 Best Estimated Trajectory

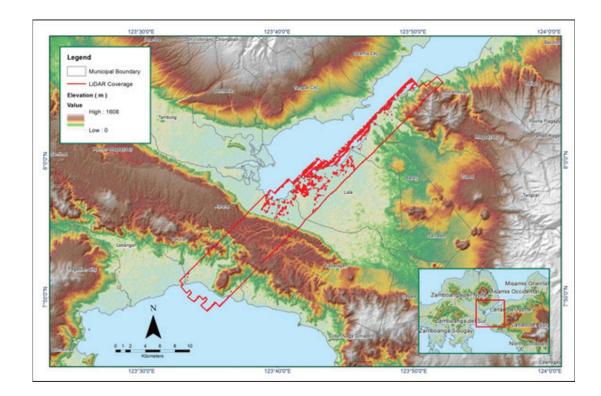


Figure A-8.60 Coverage of LiDAR data

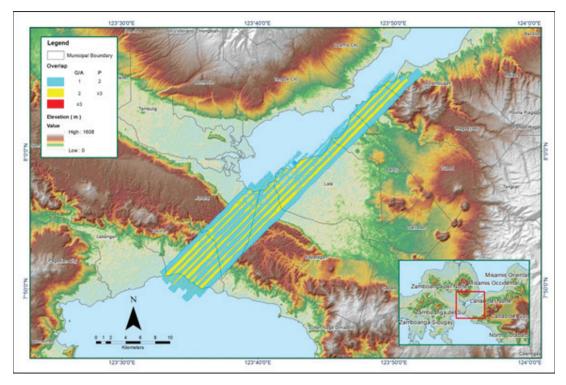


Figure A-8.61 Image of data overlap

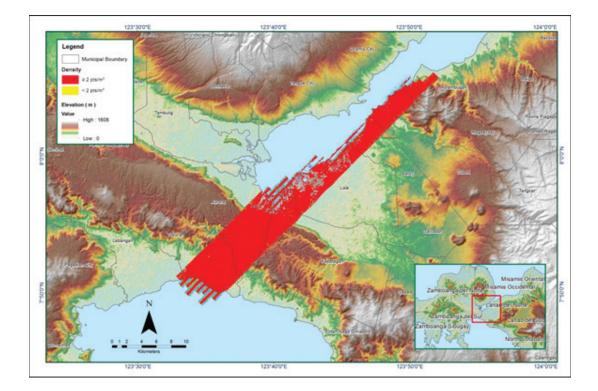


Figure A-8.62 Density map of merged LiDAR data

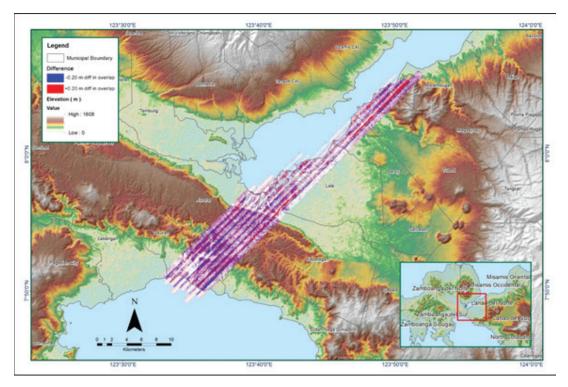


Figure A-8.63 Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71F
Inclusive Flights	1565P, 1549P, 1685P
Range data size	70.3 GB
POS	674 MB
Base data size	23.26 MB
Image	59.1 GB
Transfer date	June 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.1
RMSE for East Position (<4.0 cm)	1.1
RMSE for Down Position (<8.0 cm)	3.8
Boresight correction stdev (<0.001deg)	0.000471
IMU attitude correction stdev (<0.001deg)	0.004323
GPS position stdev (<0.01m)	0.0198
Minimum % overlap (>25)	51.56%
Ave point cloud density per sq.m. (>2.0)	4.06
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	614
Maximum Height	685.55
Minimum Height	64.65
Classification (# of points)	
Ground	591,908,481
Low vegetation	609,869,904
Medium vegetation	757,441,192
High vegetation	606,070,790
Building	21,867,436
Orthophoto	Yes
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Engr. John Dill Macapagal

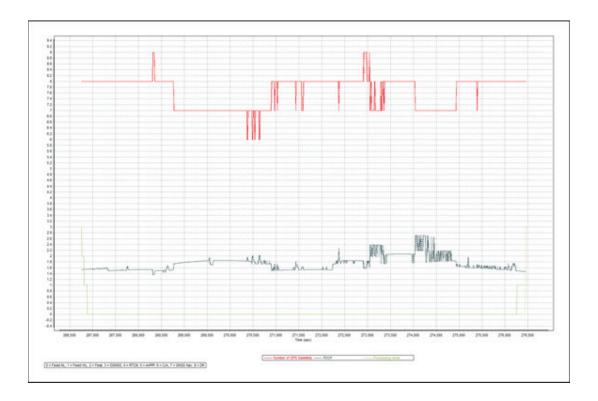


Figure A-8.64 Solution Status

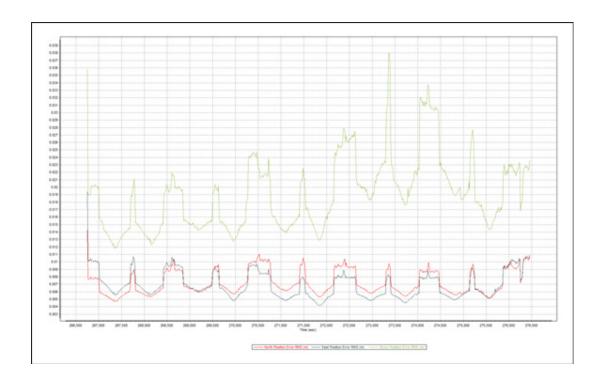


Figure A-8.65 Smoothed Performance Metric Parameters

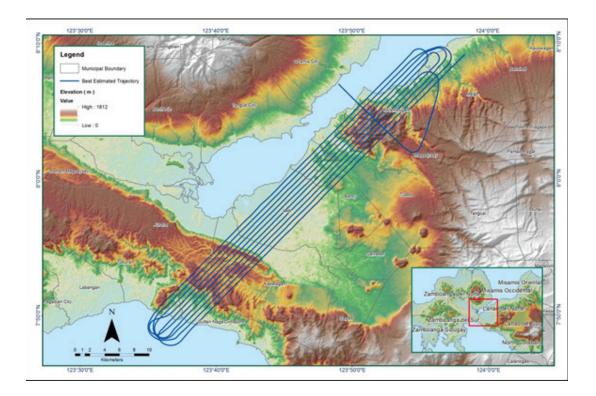


Figure A-8.66 Best Estimated Trajectory

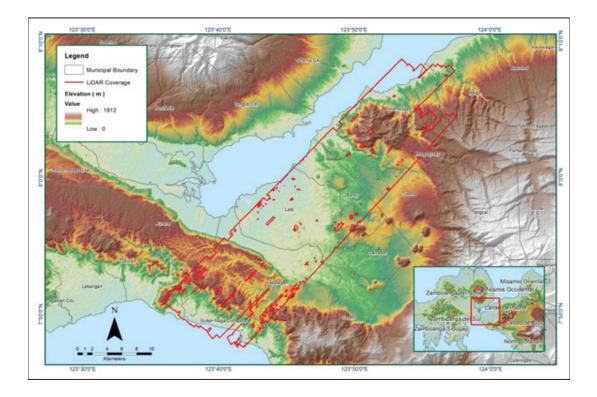


Figure A-8.67 Coverage of LiDAR data

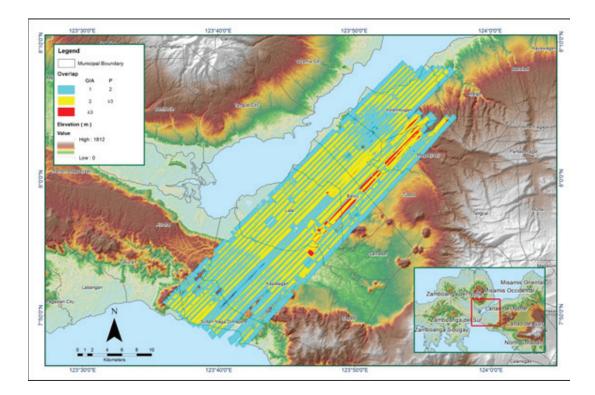


Figure A-8.68 Image of data overlap

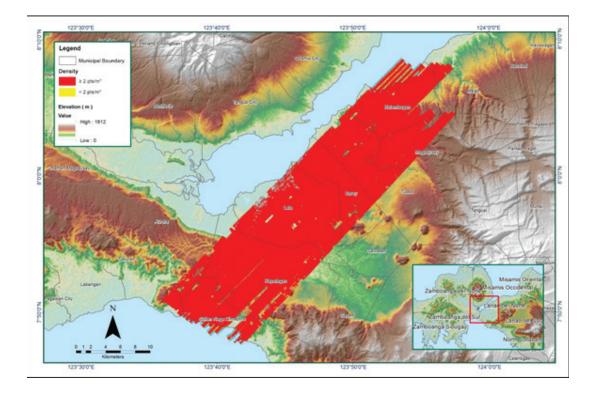


Figure A-8.69 Density map of merged LiDAR data

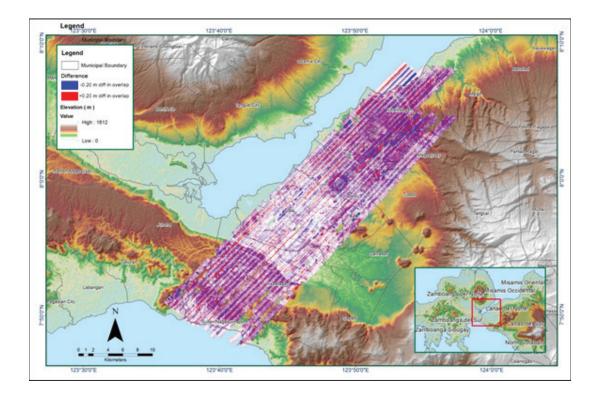


Figure A-8.70 Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71G
Inclusive Flights	1613P
Range data size	33.2 GB
POS	258 MB
Base data size	5.92 MB
Image	67.3 GB
Transfer date	August 1, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.3
RMSE for Down Position (<8.0 cm)	3.0
	0.000000
Boresight correction stdev (<0.001deg)	0.000236
IMU attitude correction stdev (<0.001deg)	0.000781
GPS position stdev (<0.01m)	0.0018
Minimum % overlap (>25)	36.24%
Ave point cloud density per sq.m. (>2.0)	6.63
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	362
Maximum Height	766.63 m
Minimum Height	62.51 m
Classification (# of points)	
Ground	286,954,240
Low vegetation	266,488,104
Medium vegetation	404,520,939
High vegetation	376,191,706
Building	8,947,468
Orthophoto	
Processed by	Engr. Irish Cortez, Engr. Chelou Prado, Engr. Ma. Ailyn Olanda
Processed by	Engr. Jennifer Saguran, Engr. Christy Lubiano, Engr. John Dill Macapagal

Figure A-8.71 Solution Status

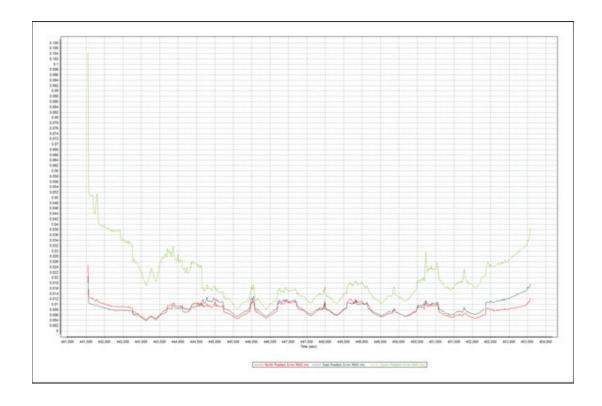


Figure A-8.72 Smoothed Performance Metric Parameters

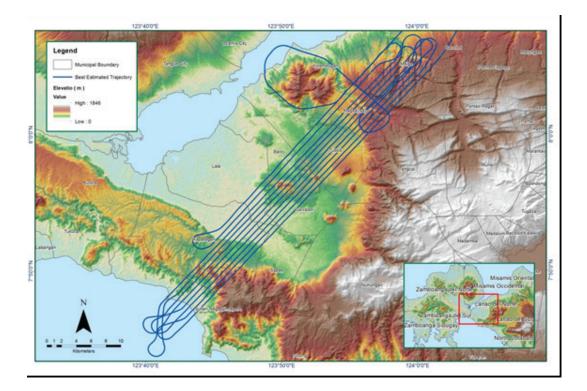


Figure A-8.73 Image of data overlap

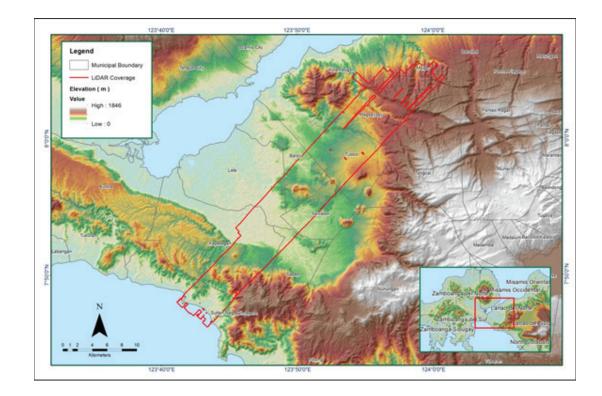


Figure A-8.74 Density map of merged LiDAR data

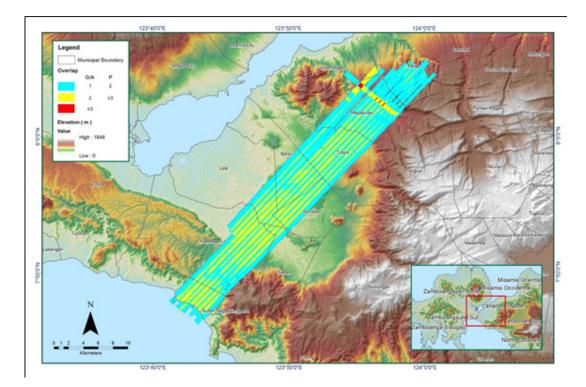


Figure A-8.75 Image of data overlap

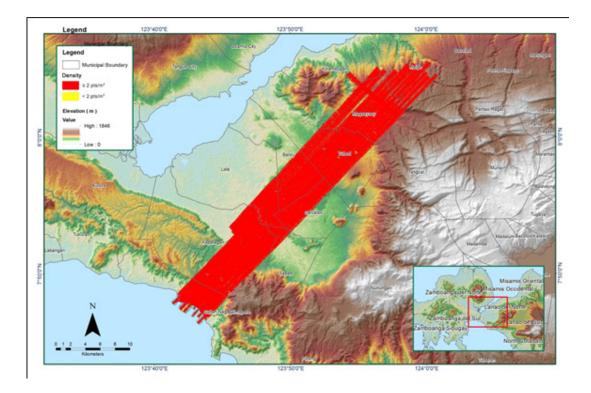


Figure A-8.76 Density map of merged LiDAR data

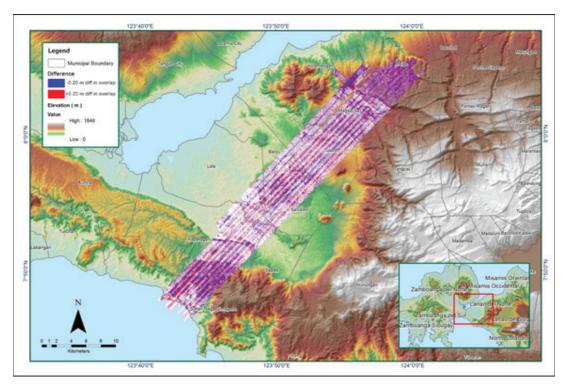


Figure A-8.77 Elevation difference between flight lines

Annex 9. Maranding Model Basin Parameters

	SCS Cur	SCS Curve Number Loss	Loss	Clark Unit Hy	k Unit Hydrograph Transform		R¢	Recession Baseflow	low	
Basin Number	Initial Ab- straction (mm)	Curve Number	Impervious (%)	Time of Concentra-tion (HR)	Storage Coef-ficient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W400	16.8927177	67.7853	0	3.474	4.7247	Discharge	1.2145	1	Ratio to Peak	0.5
W420	40.803	75.03332	0	5.14644	6.9992	Discharge	1.7933	1	Ratio to Peak	0.5
W430	16.543	75.38104	0	1.82592	2.4832297	Discharge	0.67700	1	Ratio to Peak	0.5
W440	48.194	69.43055	0	5.4126	7.3611	Discharge	0.46978	1	Ratio to Peak	0.5
W460	41.564	74.415	0	3.79488	5.1611	Discharge	1.3489	1	Ratio to Peak	0.5
W470	21.323	47.67296	0	3.98784	5.4235	Discharge	0.61504	1	Ratio to Peak	0.5
W480	45.684	71.2368	0	4.16604	5.6659	Discharge	0.78810	1	Ratio to Peak	0.5
W490	56.3255351	64.16061	0	3.62172	4.9255	Discharge	0.77293	1	Ratio to Peak	0.5
W510	13.927	78.428	0	10.04904	13.667	Discharge	0.68807	1	Ratio to Peak	0.5
W520	28.243	64.22285	0	4.58916	6.2413	Discharge	0.29883	1	Ratio to Peak	0.5
W550	41.564	74.415	0	2.77476	3.7737	Discharge	0.68440	1	Ratio to Peak	0.5
W560	18.818	72.91858	0	6.0876	8.2791	Discharge	0.91024	1	Ratio to Peak	0.5

	SCS Cur	SCS Curve Number Loss	Loss	Clark Unit Hy	k Unit Hydrograph Transform		R¢	Recession Baseflow	Mol	
Basin Number	Initial Ab- straction (mm)	Curve Number	Impervious (%)	Time of Concentra-tion (HR)	Storage Coef-ficient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W580	22.949	68.83252	0	6.23388	3.5467	Discharge	0.54554	1	Ratio to Peak	0.5
W590	41.564	74.415	0	3.2424	8.4780	Discharge	1.3693	1	Ratio to Peak	0.5
W600	57.382	63.53417	0	4.07772	4.4096	Discharge	0.79412	1	Ratio to Peak	0.5
W610	11.061	82.0608	0	2.43756	5.5457	Discharge	0.66875	1	Ratio to Peak	0.5
W620	45.419	71.43299	0	3.45228	3.3151	Discharge	0.42477	1	Ratio to Peak	0.5
W630	34.274	59.66865	0	3.951	4.6951	Discharge	0.55193	1	Ratio to Peak	0.5
W650	38.007	57.16154	0	3.26064	5.3734	Discharge	0.70292	1	Ratio to Peak	0.5
W660	14.2923209	77.98692	0	6.42336	6.5150	Discharge	0.80361	1	Ratio to Peak	0.5
W670	10.104	83.35021	0	2.04708	4.4344	Discharge	0.56458	1	Ratio to Peak	0.5
W680	36.106	58.41172	0	5.5722	8.7357	Discharge	0.65475	1	Ratio to Peak	0.5
W690	40.195	75.53393	0	2.79948	2.7841	Discharge	0.47423	1	Ratio to Peak	0.5
W710	30.967	62.08376	0	2.27496	7.5782	Discharge	1.6292	1	Ratio to Peak	0.5
W720	18.733	73.00653	0	2.05752	3.8073	Discharge	0.47852	1	Ratio to Peak	0.5

	SCS Cur	SCS Curve Number Loss	Loss	Clark Unit Hy	Clark Unit Hydrograph Transform		Re	Recession Baseflow	low	
Basin Number	Initial Ab- straction (mm)	Curve Number	Impervious (%)	Time of Concentra-tion (HR)	Storage Coef-ficient (HR)	Initial Type	Initial Dis- charge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W730	36.625	58.06535	0	5.21328	3.0939	Discharge	0.43730	1	Ratio to Peak	0.5
W740	37.910	57.22243	0	2.55468	2.7983	Discharge	0.81457	1	Ratio to Peak	0.5
W750	41.507	74.461	0	3.25404	7.0901	Discharge	1.2075	1	Ratio to Peak	0.5
W760	38.220	57.02489	0	2.08572	3.4744	Discharge	0.39274	1	Ratio to Peak	0.5
W770	32.867	60.67258	0	2.70972	4.4254	Discharge	0.65354	1	Ratio to Peak	0.5
W780	40.935	74.92508	0	2.29548	2.8367	Discharge	0.50733	1	Ratio to Peak	0.5
W800	26.672	60.17738	0	2.60784	3.6853	Discharge	1.1119	1	Ratio to Peak	0.5
W810	34.690	59.37911	0	3.47544	3.1219	Discharge	0.69978	1	Ratio to Peak	0.5
W850	13.9001885	78.46047	0	4.79052	4.7266	Discharge	0.43370	1	Ratio to Peak	0.5
W860	14.4134843	77.84215	0	2.67732	3.6411	Discharge	0.81824	1	Ratio to Peak	0.5

Annex 10. Maranding Model Reach Parameters

Reach			Muskingum Cunge Channel Routing	nge Channel R	outing		
Number	Time Step Method	Length (m)	Slope	Manning's n	Shape	Width	Side Slope
R110	Automatic Fixed Interval	9390.2	0.0458972	0.040	Trapezoid	43.14	1
R130	Automatic Fixed Interval	788.41	0.0160855	0.040	Trapezoid	7.934	1
R140	Automatic Fixed Interval	468.70	.000451763898	0.040	Trapezoid	19.98	1
R200	Automatic Fixed Interval	2667.2	0.0076918	0.040	Trapezoid	32.34	1
R210	Automatic Fixed Interval	8558.1	0.0011039	0.040	Trapezoid	32.2	1
R220	Automatic Fixed Interval	3114.9	0.0029855	0.040	Trapezoid	22.06	1
R230	Automatic Fixed Interval	6397.5	0.0030730	0.040	Trapezoid	28.48	1
R240	Automatic Fixed Interval	1793.3	0.0018726	0.040	Trapezoid	7.246	1
R290	Automatic Fixed Interval	843.26	0.0336655	0.040	Trapezoid	19.3	1
R300	Automatic Fixed Interval	6180.7	0.0064050	0.040	Trapezoid	6.36	1
R350	Automatic Fixed Interval	5333.2	0.0501623	0.040	Trapezoid	30.84	1
R370	Automatic Fixed Interval	4785.8	0.0751335	0.040	Trapezoid	32.78	1
R380	Automatic Fixed Interval	3337.1	0.0531706	0.040	Trapezoid	30.84	1
R390	Automatic Fixed Interval	8469.5	0.0444460	0.040	Trapezoid	33.12	1
R40	Automatic Fixed Interval	1059.4	0.0225242	0.040	Trapezoid	26.5	1
R60	Automatic Fixed Interval	981.84	0.0015347	0.040	Trapezoid	19.6	1
R70	Automatic Fixed Interval	2864.9	0.0171491	0.040	Trapezoid	28.44	1
R80	Automatic Fixed Interval	671.42	0.0098189	0.040	Trapezoid	28.6	1
R830	Automatic Fixed Interval	3300.9	0.0164784	0.040	Trapezoid	37.22	1
R870	Automatic Fixed Interval	6009.1	0.0185912	0.040	Trapezoid	29.64	1
R90	Automatic Fixed Interval	4377.2	0.0089876	0.040	Trapezoid	37.22	1

Annex 11. Maranding Field Validation Points

Point	Validation	Coordinates	Model Var	Validation	Error	Event/Date	Rain Return /
Number	Lat	Long	(m)	Points (m)	LIIO	Lventy Date	Scenario
2	8.007788	123.7717	0.03	0.4	-0.37	2011	5-Year
3	8.008853	123.7701	0.03	0.41	-0.38		5-Year
4	8.008981	123.7701	0.03	0.43	-0.4		5-Year
5	8.009294	123.77	0.03	0.41	-0.38	2009	5-Year
6	8.009422	123.7698	0.03	0.54	-0.51		5-Year
7	8.009585	123.7694	0.03	0.19	-0.16		5-Year
8	8.01069	123.7673	0.03	0.42	-0.39		5-Year
9	7.88947	123.7622	0.03	0.58	-0.55	Yolanda / November 2015	5-Year
10	7.88869	123.7743	0.03	0.16	-0.13	2010	5-Year
11	7.876198	123.8141	0.03	1.3	-1.27	2013	5-Year
12	7.984674	123.7959	0.03	1.8	-1.77		5-Year
13	7.926459	123.6908	0.03	1.1	-1.07	Lando / August 2015	5-Year
14	7.923024	123.6876	0.03	1.55	-1.52	Lando / August 2015	5-Year
15	7.92303	123.6874	0.03	0.6	-0.57	Lando / August 2015	5-Year
16	7.922939	123.6873	0.03	0.6	-0.57	Lando / August 2015	5-Year
17	8.011248	123.7678	0.03	0.53	-0.5	2011	5-Year
18	7.898086	123.7715	0.03	0.38	-0.35	Yolanda / November 2015	5-Year
19	8.008067	123.773	0.03	0.2	-0.17	2011	5-Year
20	7.916233	123.7867	0.07	0.72	-0.65	2011	5-Year
21	7.875964	123.8142	0.03	1.3	-1.27	Pablo / November 2012	5-Year
22	8.009878	123.7687	0.03	0.27	-0.24		5-Year
23	8.010399	123.7687	0.06	0.27	-0.21		5-Year
24	8.010392	123.7671	0.08	0.72	-0.64		5-Year
25	7.924133	123.6834	0.07	0.4	-0.33	Lando / August 2015	5-Year
26	8.007821	123.7713	0.03	0.67	-0.64	2011	5-Year

Point	Validation	Coordinates	Model Var	Validation	Emer	Et (Data	Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
27	7.924316	123.6835	0.1	0.7	-0.6	Lando / August 2015	5-Year
28	7.924293	123.6836	0.1	0.89	-0.79	Lando / August 2015	5-Year
29	7.89798	123.7715	0.09	0.4	-0.31	Yolanda / November 2015	5-Year
30	7.890638	123.765	0.03	1.75	-1.72	Yolanda / November 2015	5-Year
31	7.926212	123.6925	0.14	1	-0.86	Lando / August 2015	5-Year
32	7.926383	123.6918	0.07	1.1	-1.03	Lando / August 2015	5-Year
33	8.006125	123.7735	0.06	0.75	-0.69	2011	5-Year
34	7.926292	123.6924	0.15	1.1	-0.95	Lando / August 2015	5-Year
35	7.926154	123.6926	0.16	1.1	-0.94	Lando / August 2015	5-Year
36	7.926376	123.692	0.11	1.1	-0.99	Lando / August 2015	5-Year
37	7.905192	123.7709	0.1	0.37	-0.27	Yolanda / November 2015	5-Year
38	7.92258	123.6873	0.14	0.34	-0.2	Lando / August 2015	5-Year
39	7.904212	123.7713	0.11	0.43	-0.32	Yolanda / November 2015	5-Year
40	7.895726	123.7691	0.14	0.2	-0.06	Yolanda / November 2015	5-Year
41	7.926413	123.6913	0.13	1.1	-0.97	Lando / August 2015	5-Year
42	8.007878	123.7735	0.04	0.12	-0.08	2012	5-Year
43	7.89553	123.7699	0.14	0.2	-0.06	Yolanda / November 2015	5-Year
44	7.926415	123.6915	0.14	1.1	-0.96	Lando / August 2015	5-Year

Point	Validation	Coordinates	Model Var	Validation	_		Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
45	8.007918	123.771	0.14	0.67	-0.53		5-Year
46	8.007869	123.771	0.14	1.64	-1.5		5-Year
47	7.915393	123.702	0.23	0.56	-0.33	August 2015	5-Year
48	8.009722	123.769	0.16	0.51	-0.35		5-Year
49	8.011805	123.7631	0.24	0.69	-0.45		5-Year
50	7.915007	123.7038	0.26	0.3	-0.04	August 2015	5-Year
51	7.901476	123.7689	0.15	0.072	0.078	Yolanda / November 2015	5-Year
52	7.926416	123.6917	0.2	1.1	-0.9	Lando / August 2015	5-Year
53	7.899485	123.7736	0.03	0.15	-0.12		5-Year
54	7.926368	123.6922	0.21	1.1	-0.89	Lando / August 2015	5-Year
55	7.926336	123.6921	0.21	1.1	-0.89	Lando / August 2015	5-Year
56	7.92635	123.6922	0.21	1.1	-0.89	Lando / August 2015	5-Year
57	7.895501	123.7685	0.23	0.2	0.03	Yolanda / November 2015	5-Year
58	8.011914	123.7631	0.26	0.69	-0.43		5-Year
59	7.882893	123.8087	0.09	1.08	-0.99	Pablo / November 2012	5-Year
60	7.916952	123.707	0.21	0.54	-0.33	August 2015	5-Year
61	8.011774	123.7632	0.29	0.49	-0.2		5-Year
62	7.891492	123.7654	0.13	0.16	-0.03	2011	5-Year
63	7.901485	123.769	0.24	0.072	0.168	Yolanda / November 2015	5-Year
64	8.011763	123.7639	0.33	0.62	-0.29		5-Year
65	8.011916	123.7631	0.35	0.62	-0.27	2011	5-Year
66	7.899302	123.7741	0.03	0.15	-0.12		5-Year
67	7.895651	123.7696	0.33	0.38	-0.05	Yolanda / November 2015	5-Year
68	7.90502	123.7712	0.32	0.43	-0.11	Yolanda / November 2015	5-Year

Point	Validation	Coordinates	Model Var	Validation	Бинои	Event/Dete	Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
69	7.904041	123.7705	0.29	0.05	0.24	Yolanda / November 2015	5-Year
70	7.923345	123.69	0.16	0.47	-0.31		5-Year
71	7.898449	123.7754	0.03	0.2	-0.17		5-Year
72	7.883112	123.8084	0.24	1.08	-0.84	Pablo / November 2012	5-Year
73	7.923328	123.69	0.19	0.85	-0.66	Lando / August 2015	5-Year
74	8.013006	123.7629	0.43	0.49	-0.06		5-Year
75	7.898736	123.7756	0.06	0.38	-0.32		5-Year
76	7.898853	123.7748	0.05	0.2	-0.15		5-Year
77	7.89997	123.7738	0.28	0.28	0		5-Year
78	8.007792	123.7711	0.44	0.67	-0.23		5-Year
79	7.898566	123.7758	0.06	0.15	-0.09		5-Year
80	7.883193	123.8085	0.32	1.08	-0.76	Pablo / November 2012	5-Year
81	7.886652	123.8052	0.4	1.02	-0.62	Pablo / November 2012	5-Year
82	7.905038	123.7713	0.47	0.43	0.04	Yolanda / November 2015	5-Year
83	7.904985	123.7714	0.47	0.43	0.04	Yolanda / November 2015	5-Year
84	7.921037	123.7767	0.03	0.1	-0.07		5-Year
85	7.883141	123.8078	0.41	1.08	-0.67	Pablo / November 2012	5-Year
86	7.898377	123.7751	0.11	0.2	-0.09	Yolanda / November 2015	5-Year
87	7.980171	123.7929	0.03	2	-1.97		5-Year
88	7.909178	123.7714	0.55	0.7	-0.15	Yolanda / November 2015	5-Year
89	7.898844	123.7745	0.23	0.15	0.08		5-Year
90	7.921636	123.7772	0.03	0.4	-0.37	Sendong / December 2011	5-Year
91	7.89852	123.7756	0.19	0.2	-0.01		5-Year

Point	Validation	Coordinates	Model Var	Validation	Funer	Event (Dete	Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
92	7.889216	123.7745	0.42	0.79	-0.37	Yolanda / November 2015	5-Year
93	7.916166	123.7768	0.17	0.47	-0.3	Yolanda / November 2015	5-Year
94	7.888988	123.7599	0.45	0.58	-0.13	Yolanda / November 2015	5-Year
95	7.888591	123.8047	0.03	0.3	-0.27	Pablo / November 2012	5-Year
96	7.898437	123.7754	0.21	0.2	0.01		5-Year
97	7.898557	123.7754	0.22	0.45	-0.23		5-Year
98	7.956313	123.7764	0.12	1.7	-1.58	Frank / 2013	5-Year
99	7.921291	123.7769	0.03	1.34	-1.31		5-Year
100	7.902654	123.7708	0.58	0.1	0.48	Yolanda / November 2015	5-Year
101	7.898622	123.7749	0.28	0.2	0.08	ĺ	5-Year
102	8.007904	123.7731	0.66	0.45	0.21	2011	5-Year
103	7.918463	123.7864	0.03	0.7	-0.67	Pablo / November 2012	5-Year
104	7.909165	123.7718	0.65	0.42	0.23	Yolanda / November 2015	5-Year
105	7.909201	123.7717	0.66	0.57	0.09	Yolanda / November 2015	5-Year
106	7.888854	123.7589	0.55	0.58	-0.03		5-Year
107	7.920463	123.7754	0.11	0.8	-0.69		5-Year
108	7.909238	123.7715	0.71	0.7	0.01	Yolanda / November 2015	5-Year
109	8.008247	123.7705	0.79	0.76	0.03		5-Year
110	7.920307	123.775	0.11	0.95	-0.84	2014	5-Year
111	7.909174	123.7717	0.73	0.7	0.03	Yolanda / November 2015	5-Year
112	7.888031	123.804	0.17	1.08	-0.91	Pablo / 2013	5-Year
113	7.888855	123.7591	0.6	0.58	0.02		5-Year
114	7.888916	123.759	0.6	0.58	0.02		5-Year
115	8.008168	123.7706	0.8	0.82	-0.02		5-Year
116	8.00817	123.7706	0.8	0.79	0.01		5-Year

Point	Validation	Coordinates	Model Var	Validation	F	Et (Dete	Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
117	7.890517	123.7758	0.6	0.35	0.25	Yolanda / November 2015	5-Year
118	7.909224	123.7716	0.76	0.7	0.06	Yolanda / November 2015	5-Year
119	7.909224	123.7716	0.76	0.7	0.06	Yolanda / November 2015	5-Year
120	7.923094	123.6898	0.61	1.17	-0.56	Lando / August 2015	5-Year
121	7.888814	123.759	0.64	0.58	0.06	Yolanda / November 2015	5-Year
122	7.888671	123.7589	0.64	0.58	0.06		5-Year
123	7.916201	123.707	0.75	0.53	0.22	August 2015	5-Year
124	7.923653	123.6899	0.63	1.3	-0.67	Lando / August 2015	5-Year
125	7.888833	123.7589	0.66	0.58	0.08		5-Year
126	7.923515	123.69	0.64	2.2	-1.56	Lando / August 2015	5-Year
127	7.890977	123.7747	0.69	0.4	0.29	Yolanda / November 2015	5-Year
128	7.888952	123.76	0.7	0.58	0.12	Yolanda / November 2015	5-Year
129	7.888834	123.7591	0.73	0.58	0.15		5-Year
130	7.888835	123.7591	0.73	0.58	0.15		5-Year
131	7.875455	123.7777	0.62	0.72	-0.1	Yolanda / November 2015	5-Year
132	7.890981	123.7652	0.76	0.4	0.36		5-Year
133	7.979723	123.793	0.41	1.8	-1.39		5-Year
134	7.89759	123.7753	0.56	0.64	-0.08	Yolanda / November 2015	5-Year
135	7.898055	123.7744	0.66	0.56	0.1	Yolanda / November 2015	5-Year
136	7.890399	123.7751	0.96	0.35	0.61	Yolanda / November 2015	5-Year

Point	Validation	Coordinates	Model Var	Validation	Гинои	Event/Dete	Rain
Number	Lat	Long	(m)	Points (m)	Error	Event/Date	Return / Scenario
137	7.890429	123.7751	0.96	0.35	0.61	Yolanda / November 2015	5-Year
138	7.979925	123.7938	0.61	1.8	-1.19		5-Year
139	7.979925	123.7938	0.61	1.8	-1.19		5-Year
140	7.889377	123.7626	1.08	0.5	0.58	Yolanda / November 2015	5-Year
141	7.980021	123.7942	1.26	1.5	-0.24		5-Year
142	7.980021	123.7942	1.26	1.5	-0.24		5-Year
143	7.920059	123.7752	1.25	0.5	0.75	Pablo / November 2012	5-Year
144	7.917468	123.7863	1.11	1.2	-0.09		5-Year
145	7.921269	123.777	1.4	1.4	0	Sendong / December 2011	5-Year
146	7.917265	123.7858	1.33	1.5	-0.17	Frank / 2013	5-Year
147	7.92071	123.7789	1.19	0.8	0.39	Pablo / November 2012	5-Year
148	7.920598	123.7789	1.19	0.8	0.39	Pablo / November 2012	5-Year
149	7.921156	123.7769	1.6	1.5	0.1	Sendong / December 2011	5-Year
150	7.917364	123.7858	1.37	1.5	-0.13		5-Year
151	7.980167	123.7934	1.84	2	-0.16		5-Year
152	7.917112	123.7857	1.53	1.5	0.03		5-Year
153	7.917249	123.7857	1.57	1.6	-0.03		5-Year
154	7.917345	123.7857	1.65	1.7	-0.05		5-Year
155	7.917361	123.7856	1.86	1.6	0.26		5-Year
156	7.917309	123.7856	1.86	1.6	0.26		5-Year

Annex 12. Educational Institutions Affected by flooding in Maranding Flood Plain

			LANAO DEL	NORTE			
			BARC	γ			
			2		Ra	ainfall Scena	rio
В	iilding Name		Вага	ngay	5-year	25-year	100-year
Building Name	Barangay	Rainfall Scenario					
		5-year	25-year	100-year			
Bagong Dawis Elementary School	Bagong Daw-is						
Bag.ong Dawis Elementary School (Pre- school)	Bagong Daw-is						
Daycare Center	Bagong Daw-is		Low	Low			
Faculty Office	Bagong Daw-is						
Grade Low	Bagong Daw-is	Medium	Medium	Medium			
Grade Medium	Bagong Daw-is	Medium	Medium	Medium			
Grade High	Bagong Daw-is	Medium	Medium	Medium			
Grade 5 and 6	Bagong Daw-is						
Kindergarten	Bagong Daw-is	Medium	Medium	Medium			
daycare	Baroy Daku						
Daycare	Baroy Daku						
Day Care Center	Bato						
Day Care Center	Cabasagan						
Non- functional School	Cabasagan	Low	Low	Medium			
Pendulonan Primary School	Cabasagan						
Daycare	Dalama						
canteen	Libertad			ļ			ļ
Central elementary	Libertad						

	LANAO DEL NORTE						
			BARO	Y			
Computer Room	Libertad	Low	Low	Low			
Diosdado Yap HIgh School	Libertad	Low	Low	Low			
Primary School	Limwag						
Day Care Center	Lindongan						
Daycare	Manan-Ao						
Manan ao Elem	Manan-Ao						
Manan ao Elem Schhol	Manan-Ao						
Manan ao Elem School	Manan-Ao						
Sario de roda elementary school (grade Low)	Pange						
Sario de roda elementary school (grade 4 and High)	Pange						
HE Building	Pindolonan		Low	Low			
Lindongan Elem. School	Pindolonan						
Principal's Office	Pindolonan	Low	Low	Low			
School Canteen	Pindolonan						
Compter Center/ Pre School	Rawan Point	Low	Low	Low			
Grade Low- High-4	Rawan Point	Low	Low	Low			
Grade 6	Rawan Point	Low	Medium	Medium			
Multi- purpose Hall	Rawan Point	Low	Low	Medium			
Raw-an Point Elem. School	Rawan Point	Low	Low	Low			
Mediumnd Yr	Riverside						
Computer Room	Riverside						
Diosdado Yap HIgh School	Riverside	Low	Low	Low			

	LANAO DEL NORTE								
BAROY									
Sr High	Riverside		Low	Low					
Temporary Rooms	Riverside								
Daycare	Tinubdan								
Maliwanag Elem School	Tinubdan								

	LANAO DEL NORTE						
KAPATAGAN							
Duilding News	Damagan	R	ainfall Scena	rio			
Building Name	Barangay	5-year	25-year	100-year			
Computer Room	Bagong Silang		Low	Low			
Day Care Center	Bagong Silang						
Grade Medium	Bagong Silang						
Grade 4	Bagong Silang						
Kinder	Bagong Silang						
Principal's Office	Bagong Silang						
School Canteen	Bagong Silang						
Daycare Center Tiacongan	Bagong Silang						
Classroom	Buenavista						
Mahayahay Elem. School	Buenavista						
Day Care Center	Butadon						
Grade 4	Butadon			Low			
Grade 5-6	Butadon			Low			
Grade 6	Butadon						
Pinoyak Elem. School	Butadon						
Principal's Office	Butadon		Low	Low			
Stage	Butadon						
Grade Low	Cathedral Falls						
Kitchen	Cathedral Falls			1			
Anacurita Elem School	Cathedral Falls	Low	Low	Medium			
Anacurita Elem.	Cathedral Falls	Low	Low	Low			
Day Care	Cathedral Falls			1			
Day Care Center	Cathedral Falls						
Grade High and gade 4	Cathedral Falls						
Grade 5 B	Cathedral Falls						
Grade 6 A	Cathedral Falls						
Preschool	Cathedral Falls						
Day Care	Concepcion			Low			

	LANAO DEL NORTE			
	KAPATAGAN			
Grade High	Concepcion	Low	Medium	Medium
Grade 4	Concepcion	Medium	Medium	Medium
Grade 5&6	Concepcion	Low	Medium	Medium
principals Office	Concepcion	Medium	Medium	Medium
Daycare Center	Concepcion			
Emiliano Dizon Elem School	Concepcion	Low	Low	Low
Curvada Elem	Curvada			
Kindergarten	De Asis			
SCHOOL Stage	De Asis			
Daycare	De Asis			
Adventist School	Donggoan			
Balili Day Care Center	Donggoan			
Grade Low	Donggoan		Low	Low
Grade Low&4	Donggoan	Low	Low	Low
Grade Medium	Donggoan	Medium	Medium	Medium
Grade High	Donggoan	Medium	Medium	Medium
HE Building	Donggoan	Low	Low	Low
Kinder Low	Donggoan			
Learning Center	Donggoan			
Old Buildng	Donggoan		Low	Low
Donggoan Elem School	Donggoan			
Classroom	Kidalos			
Day Care Center	Kidalos			
, Kidalos Elem School	Kidalos			
Daycare center	Lapinig			
placida mequiabas national high school	Lapinig			
Placida Mequiabas National High School	Lapinig			
Dishwashing Area	Maranding		Low	Medium
School of Born Again Church	Maranding	Low	Medium	Medium
Stage	Maranding		Low	Medium
Waiting Shed	Maranding		Low	Medium
Paradero Day Care	Maranding			
Daycare Center	Margos			
Sixto Magnanoy Sr. Central School	Margos			
Abandoned	Poblacion		Low	Low
Abandoned Day Care	Poblacion	Medium	Medium	Medium
Canteen	Poblacion			
District Office	Poblacion			
Grade Low Classroom	Poblacion			
Grade High Classroom	Poblacion			

LANAO DEL NORTE								
	KAPATAGAN							
Grade 5 Classroom	Poblacion							
grade 6	Poblacion			Low				
Grade 6 Classroom	Poblacion							
HE Classroom	Poblacion							
San Vicente Elem. School	Poblacion		Low	Low				
School Room	Poblacion		Low	Low				
Technical School	Poblacion		Low	Low				
Daycare	Poblacion		Low	Low				
Daycare Center	Poblacion							
reading center(purok)	Poblacion							
Day Care Center	Santo Tomas							
Grade Low	Santo Tomas							
Grade 4 Room	Santo Tomas							
Grade 6 Room	Santo Tomas							
Kindergarten	Santo Tomas							
Butadon Elementary	Suso			Low				
Daycare	Suso							
Daycare Center	Suso							
Anacurita Elem.	Waterfalls	Low	Low	Low				
Daycare Center	Waterfalls		Low	Low				
Itans Learning Center	Waterfalls	Low	Low	Low				

LANAO DEL NORTE							
LALA							
Duilding Nome	Deverses	Ra	ainfall Scenar	io			
Building Name	Barangay	5-year	25-year	100-year			
Abaga Central Elementary School	Abaga		Low	Low			
Classroom	Abaga			Low			
CR & Hand Washing	Abaga	Low	Low	Low			
Day Care Center Low	Abaga						
DU Tenazas Memorial Elem. School	Abaga			Low			
Function Hall	Abaga						
Grade Low-High	Abaga						
Grade 4	Abaga						
Grade 5	Abaga						
Grade 6 & Kinder	Abaga		Low	Low			
Hand Washing Area	Abaga	Low	Low	Medium			

LANAO DEL NORTE						
	LALA					
Maranding Christian School KLow- KMedium rooms	Abaga					
MCS Gym	Abaga					
MCS Office	Abaga					
MCS Old Buildings	Abaga					
Principal's Office	Abaga	Low	Low	Low		
School Canteen	Abaga	Low	Low	Low		
School Multipurpose Hall	Abaga	Low	Low	Low		
Science Room	Abaga					
Sario de roda elementary school (grade Low)	Andil					
Sario de roda elementary school (grade 4 and High)	Andil	Low	Low	Low		
Sario de roda elementary school stage	Andil					
Daycare center	Andil					
Sario de roda elementary school (grade 5 and 6)	Andil	Medium	Medium	Medium		
Daycare Center	Cabasagan					
Francisco Bolante Memorial School (Pre-School to grade 6)	Cabasagan					
Purok 4-B Daycare Center	Cabasagan					
Purok 6 Daycare Center	Cabasagan					
Camalan Primary School	Camalan					
Grade High-4	Camalan					
C.R.	Darumawang Ilaya					
Day Care	Darumawang Ilaya					
Grade Low	Darumawang Ilaya					
Grade 4	Darumawang Ilaya					
Grade 5	Darumawang Ilaya					
Grade 6	Darumawang Ilaya					
Guidance Office	Darumawang Ilaya					
Lutuanan	Darumawang Ilaya					
Office and SchoolDormitory	Darumawang Ilaya					
Principal's Office	Darumawang Ilaya					
School Canteen	Darumawang Ilaya					
Simpak Adventist Institute of Technol- ogy	Darumawang Ilaya					
Social hall	Darumawang Ilaya					
Vocational Bldg	Darumawang Ilaya					
Vocational Bldg. Medium	Darumawang Ilaya					
Library	Darumawang Ilaya					
El Salvador Elem. School	El Salvador					
Grade 4	El Salvador					

LANAO DEL NORTE						
	LALA					
Grade 4-5-6	El Salvador					
Principal's Office	El Salvador					
Stage	El Salvador					
Grade Low-6	Gumagamot	Medium	Medium	Medium		
Panadtaran Elem. School	Gumagamot	Low	Medium	Medium		
LALA Elem School Proper	Lala Proper	Low	Low	Medium		
Daycare	Lanipao					
LALA North District School	Lanipao		Low	Low		
Classroom	Magpatao					
Computer Center	Magpatao					
Grade Low-Medium-High	Magpatao					
Grade 6	Magpatao					
HE Room	Magpatao					
Magpatao Elem	Magpatao					
Prk Medium Day Care Center	Magpatao					
School Stage	Magpatao					
Stage	Magpatao					
Daycare center	Magpatao					
Magpatao Elementary School	Magpatao					
Bible Baptist School	Maranding	Low	Low	Low		
Calssroom LowMedium	Maranding					
Canteen	Maranding					
Classroom	Maranding			Low		
Classroom LowLow	Maranding					
Classroom 4	Maranding					
Classroom 5	Maranding	Low	Low	Low		
Classroom 6	Maranding			Low		
Classroom 7	Maranding	Low	Low	Low		
Classroom 8	Maranding		Low	Low		
Classroom 9	Maranding			Low		
ClassroomLow	Maranding	Low	Low	Low		
ClassroomMedium	Maranding			Low		
Faculty Room	Maranding					
Grade Medium	Maranding		Low	Medium		
grade High	Maranding		Low	Low		
Grade 4	Maranding					
Grade 5	Maranding	Low	Low	Low		
Guard House	Maranding					
Lanao Norte-Learning Resource Cen- ter	Maranding					
LNHS Gym	Maranding	Low	Low	Low		
, LNHS Principal's Office	Maranding					

LANAO DEL NORTE					
	LALA				
Mini Canteen	Maranding				
NCMC Building	Maranding		Low	Low	
NCMC Collge Department	Maranding				
NCMC Elementary Department	Maranding		Low	Low	
NCMC Gym	Maranding				
NCMC HRM Department	Maranding		Low	Low	
Preschool	Maranding		Low	Low	
Principal's Office	Maranding				
Prk. Rambutan Day Care Center	Maranding				
PTA Office	Maranding	Low	Low	Low	
School Clinic	Maranding				
Social Hall	Maranding				
Stage	Maranding		Low	Medium	
Grade Low	Maranding	Low	Low	Low	
Day Care Center Old	Matampay Bu-cana				
Matampay Bucana Elem. School	Matampay Bu-cana				
San Roque Chapel	Matampay Bu-cana				
Classrooms Low	Pacita				
Classrooms Medium	Pacita				
Day Care Center	Pacita				
Doggoan Elementary School	Pacita				
Grade Low-Medium	Pacita				
Grade High	Pacita				
Grade 4-5	Pacita				
Grade 6	Pacita				
Matampay Ilaya Elem. School	Pacita				
Prk Medium Day Care Center	Pacita			Low	
School Clinic	Pacita				
Stage	Pacita				
Day Care Center Medium	Pendolonan	Low	Low	Low	
Comfort Room	Pendolonan				
Day Care Center	Pendolonan				
Generoso Lapasaran Memorial School Canteen	Pendolonan				
Grade Low	Pendolonan				
Grade 6	Pendolonan				
Pre-school and Faculty Office	Pendolonan				
School Library	Pendolonan				
Cabrera Day Care Center	Pinoyak		Low	Low	
Saavedra Day Care Center	Pinoyak				
FM Posadas Elementary School	, Raw-An	Medium	Medium	Medium	
Classroom Low	Raw-An	Medium	Medium	Medium	

	LANAO DEL NORTE			
	LALA			
Classroom Medium	Raw-An	Medium	Medium	Medium
Economics building	Raw-An	Medium	Medium	Medium
Grade 5 and 6	Raw-An	Medium	Medium	Medium
Kindergarten	Raw-An	Medium	Medium	Medium
School Canteen	Raw-An	Medium	Medium	Medium
Pedro B. Liwanag Memorial Elem	Rebe			
Antonio Lim Sr. Elem School	San Isidro Lower			
Brgy. Sta. Cruz Lower Elem. School	San Isidro Lower			
Day Care	San Isidro Lower			
daycare	San Isidro Lower			
Grade Low	San Isidro Lower			
Grade Low-Medium-4	San Isidro Lower			
Grade High	San Isidro Lower			
Grade 5-6	San Isidro Lower			
HE Room	San Isidro Lower			
Pre-School	San Isidro Lower			
Canteen	San Isidro Upper			
Computer Laboratory	San Isidro Upper			
Daycare Center	San Isidro Upper			
Grade Low	San Isidro Upper			
Pre-school and faculty room	San Isidro Upper			
San Isidro Elementary School(grade Medium-6)	San Isidro Upper			
Stage	San Isidro Upper			
Daycare	San Manuel			Low
San Manuel Elem	San Manuel			
Daycare	Santa Cruz Low-er			
Daycare	Santa Cruz Up-per	Medium	Medium	Medium
Auditorium	Simpak			Low
Grade Low	Simpak			Low
Grade Medium	Simpak		Low	Low
Grade High	Simpak			
Grade 4	Simpak		Low	Low
Grade 5	Simpak		Low	Low
Kinder Garten	Simpak	Low	Low	Low
Principal's Office	Simpak		Low	Low
Saavedra Elementary School	Simpak	Low	Low	Low
School C.R.	Simpak			
School Canteen	Simpak			Low
School Clinic	Simpak		Low	Low
School Guard House	Simpak			Low
School Old Canteen	Simpak	Low	Low	Low

LANAO DEL NORTE				
	LALA			
Stage	Simpak		Low	Low
Vermi Culture Center	Simpak			
D.U. Tenzasas Elem	Tenazas			
D.u.Tenazasas Elem	Tenazas			
Daycare	Tenazas			
Montesory	Tenazas			Low
BFAR Dorm Low	Tuna-An		Low	Low
BFAR Dorm Medium	Tuna-An		Low	Low
Day Care Center	Tuna-An			
Dorm High	Tuna-An	Medium	Medium	Medium
Dorm 4	Tuna-An			Low
Dorm 5	Tuna-An	Medium	Medium	Medium
Grade Low-4	Tuna-An			
Grade 5-6	Tuna-An			
Library	Tuna-An			
Tunaan Elem. School Stage	Tuna-An			

LANAO DEL NORTE					
SALVADOR					
	Deserves	Ra	ainfall Scena	rio	
Building Name	Barangay	5-year	25-year	100-year	
LANAO DEL NORTE					
SALVADOR					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Daycare Center	Camp III	Low	Medium	Medium	
Grade Low - High	Camp III				
Grade Medium and 5	Camp III			Low	
Grade 5	Camp III			Low	
Grade 6	Camp III			Low	
School Booth	Camp III				
School Stage	Camp III				
Sudlon Elementary School	Camp III	Low	Medium	Medium	
Abandoned School	Curva-Miagao	Low	Low	Low	
Classroom	Curva-Miagao		Low	Low	

LANAO DEL NORTE				
	SALVADOR			
Curva-Miagao Elem. School	Curva-Miagao		Low	Low
Day Care Center	Curva-Miagao			Medium
School Waiting Shed	Curva-Miagao	Low	Low	Low
Stage	Curva-Miagao	Low	Low	Low
San Manuel Elem	Curva-Miagao			
Classroom	Inasagan			Low
Classroom Medium	Inasagan			Low
Classroom High	Inasagan		Low	Low
Day Care Center	Inasagan	Low	Low	Low
Day Care Center Kalahi	Inasagan			Low
Former Canteen	Inasagan			Low
grade Low	Inasagan			Low
Grade Medium	Inasagan			Low
Grade 4	Inasagan			
Grade 5-6	Inasagan			
Grade 6	Inasagan			
Home Economics	Inasagan			
Kinder	Inasagan	Low	Low	Low
Pre-School	Inasagan			Low
Principal's Office	Inasagan			
School Bldg.	Inasagan		Low	Low
School Waiting Shed	Inasagan			
Stock Room	Inasagan			Low
Social Hall	Inasagan	Low	Low	Low
Day Care Center	Mabatao			
Canteen ni Pacilan	Poblacion			
Comfort Room	Poblacion			
Computer Room	Poblacion		Low	Low
Conference Hall	Poblacion			
Faculty Room	Poblacion			
Former Regina High School	Poblacion		Low	Low
Grade Low Room	Poblacion			
Grade Low0 Emerald Room	Poblacion			
Grade 7 Earth Room	Poblacion			
Grade 7 Jupiter Room	Poblacion			
Grade 7 Mercury Room	Poblacion			
Grade 7 Uranus Room	Poblacion			
Grade 8 Archimedes Room	Poblacion			
Grade 8 Bell Room	Poblacion			
Grade 8 Cury Room	Poblacion			
Grade 8 Darwin Room	Poblacion			

LANAO DEL NORTE				
	SALVADOR			
Grade 8 Einstein Room	Poblacion			
Grade 9 Argon Room	Poblacion			
Grade 9 Besmot Room	Poblacion			
Grade 9 Copper Room	Poblacion			
Grade 9 Dabnium Room	Poblacion			
Guardhouse	Poblacion			
Home Economics	Poblacion	Low	Low	Low
Kinder	Poblacion	Low	Low	Low
Kinder II Room	Poblacion			
Non-Advisory Room	Poblacion			
Nurse Room	Poblacion			
Parking Area	Poblacion			
Payag	Poblacion			
School Canteen Low	Poblacion			
School Canteen Medium	Poblacion			
School Guidance Councilor Office	Poblacion			
School Library	Poblacion			
TESDA Faculty and Staff Room	Poblacion			
TESDA Function Hall	Poblacion			
TESDA Room	Poblacion			
Social Hall	Poblacion	Low	Low	Low
Daycare Center	Sudlon	Medium	High	High

LANAO DEL NORTE				
TUBOD				
Building Name	Duilding Name		Rainfall Scenario	
Building Name Baranga	Barangay	5-year	25-year	100-year
Lanao Norte Provincial Science and Technology High School	Licapao			
Licapao Elem. School	Licapao			
LNPSTHS School Bldg	Licapao			
School Stage	Licapao			

LANAO DEL NORTE					
AURORA					
Duilding Norse	Developer	Ra	ainfall Scena	rio	
Building Name	Barangay	5-year	25-year	100-year	
Canteen	Anonang				
Comfort Room	Anonang				
Computer Room	Anonang				
Grade Higha	Anonang				
Grade 4	Anonang				
Grade 5	Anonang				
Margos Elementary School	Anonang				
Principal's Office	Anonang				
School Health Center	Anonang				
School Waiting Shed	Anonang				
Social Hall	Anonang				
grade 6	Anonang				
HE room	Anonang				
School Waiting Shed	Anonang				

Annex 13. Health Institutions affected by flooding in Maranding Floodplain

LANAO DEL NORTE				
BAROY				
Building Name	Dorongou	Ra	ainfall Scenai	rio
Building Name	Barangay	5-year	25-year	100-year
Health Care Center	Bagong Dawis			
Health Center	Bagong Dawis			
Health Center	Cabasagan			
Health center	Dalama			
Health Center	Libertad			
Health Center	Limwag			
Health Center	Lindongan			
Temporary Health Center	Salong			

LANAO DEL NORTE				
	KAPATAGAN			
Rainfall Scenar			rio	
Building Name	Barangay	5-year	25-year	100-year
Clinic	Bagong Silang			
Polipog Health Center	Butadon	Low	Medium	Medium
Health Center	Cathedral Falls	Medium	Medium	Medium
Health Center	De Asis			
Balili Health Center Extension	Donggoan			
Health Center	Donggoan			
Health Center	Kidalos			
Health Center	Maranding	Low	Medium	Medium
Provincial Hospital	Maranding			
Provincial Hospital	Maranding			
Kapatagan Provincial Hospital	Poblacion			
Mercury	Poblacion		Low	Low
RightMeds Pharmacy	Poblacion			Low
Delbert Jon's Hospital	Poblacion			
Dr. Gatchalian Hospital (OLD)	Poblacion		Low	Low
Municipal Health Office	Poblacion			
Old Health Center	Santo Tomas			
Sto Tomas Health Center	Santo Tomas			
Clinic	Waterfalls	Low	Low	Low

	LANAO DEL NORTE		<u> </u>			
LALA						
Building Name	Barangay		Rainfall Scenario			
		5-year	25-year	100-year		
Health Center	Abaga					
School Clinic	Abaga			Low		
Health center	Andil					
Health Center	Cabasagan					
Health Center	Darumawang Ilaya					
Health Center	El Salvador					
Health Center	Lala Proper			Low		
Vet Clinic	Lanipao			Low		
Prk Medium Health Center	Magpatao					
Health Center	Magpatao					
AFC AMY Pharmacy	Maranding					
Asintesta Medical Clinic	Maranding	Low	Low	Low		
Barangay Health Station	Maranding	Low	Low	Low		
Bontilao Country Hospital	Maranding					
Gozo Community Hospital	Maranding					
Maranding Community Hospital	Maranding					
Mendoza Macayan Optical Clinic	Maranding		Low	Low		
Mercury Drug	Maranding					
NCMC Lying In	Maranding					
The Generics Pharmacy	Maranding			Low		
Bulaclac Pharmacy	Maranding			Low		
Health Center	Pacita					
Pacita Health Center	Pacita	Low	Low	Low		
Health Center	Pendolonan					
Health Center	Rebe					
Health Center	San Isidro Lower					
Health Center	San Isidro Upper					
Health Center	San Manuel		Low	Low		
Health Center	Santa Cruz Up-per	1		Low		
Lanipao Health Center	Santa Cruz Up-per	Medium	Medium	Medium		
Health Center	Simpak					
Health Center	Tuna-An					

LANAO DEL NORTE				
SALVADOR				
Rainfall Scenario				
Building Name	Barangay	5-year	25-year	100-year
Barangay Health Center	Camp III		Low	Low
Health Center	Curva-Miagao			
Barangay Health Center	Inasagan			
Health Center	Inasagan	Low	Low	Low
Health Center	Panaliwad-On			
New Rural Health Center	Poblacion			
Old Rural Health Center	Poblacion			
Temporary Health Center	Salong			

LANAO DEL NORTE				
AURORA				
R			Rainfall Scenario	
Building Name	Barangay	5-year	25-year	100-year
Margos Health Center	Anonang			