HAZARD MAPPING OF THE PHILIPPINES USING LIDAR (PHIL-LIDAR I)

LiDAR Surveys and Flood Mapping of Liangan River

University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mindanao State University-Iligan Institute of Technology

APRIL 2017

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

 $\ensuremath{\mathbb{C}}$ University of the Philippines Diliman and Mindanao State University - Iligan Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and A.E. Milano (eds.) (2017), LiDAR Surveys and Flood Mapping of Liangan River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry-145pp

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

Prof. Alan E. Milano

Project Leader, Phil-LiDAR 1 Program Mindanao State University - Iligan Institute of Technology Iligan City, Lanao del Norte, Philippines 9200 E-mail: aemilano1960@yahoo.com

Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-078-5

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF ACRONYMS AND ABBREVIATIONS	x
CHAPTER 1: OVERVIEW OF THE PROGRAM AND LIANGAN RIVER	1
1.1 Background of the Phil-LiDAR 1 Program	1
1.2 Overview of the Liangan River Basin	1
CHAPTER 2: LIDAR DATA ACQUISITION OF THE LIANGAN FLOODPLAIN	3
2.1 Flight Plans	3
2.2 Ground Base Stations	5
2.3 Flight Missions.	13
2 4 Survey Coverage	14
CHAPTER 3: LIDAR DATA PROCESSING OF THE LIANGAN FLOODPLAIN	
3.1 Overview of the LiDAR Data Pre-Processing	16
3.2 Transmittal of Acquired LiDAR Data	17
2.2 Traisfinitian of Acquired LIDAN Data	17
2.4 LiDAR Doint Cloud Computation	10
3.4 LIDAR POINt Cloud Computation	19
3.5 LIDAR Data Quality Checking	20
3.6 LIDAR Point Cloud Classification and Rasterization	
3. / LIDAR Image Processing and Orthophotograph Rectification	26
3.8 DEM Editing and Hydro-Correction	28
3.9 Mosaicking of Blocks	30
3.10 Calibration and Validation of Mosaicked LiDAR DEM	32
3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model	35
3.12 Feature Extraction	37
3.12.1 Quality Checking of Digitized Features' Boundary	37
3.12.2 Height Extraction	
3 12 3 Feature Attribution	38
3 12 4 Final Quality Checking of Extracted Features	39
CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIANGAN RIVER BAS	SIN. 40
A 1 Summary of Activities	10
4.1 Sulfilled y OFACUVILIES	40 //1
4.1 Summary of Activities 4.2 Control Survey	40
4.1 Summary of Activities 4.2 Control Survey 4.3 Baseline Processing	40 41 44
 4.1 Summary of Activities	40
 4.1 Summary of Activities	40 41 44 45 47
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 	40 41 44 45 47 49
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. 	40 41 44 45 47 49 51
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 	40 41 44 45 47 49 51 54
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 	40 41 45 45 47 49 51 54
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 	40 41 45 47 51 54 54
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 	40 41 44 45 47 49 51 54 54 54
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 	40 41 44 45 47 49 51 54 54 54 54
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 55 56
 4.1 Summary of Activities	40 41 45 45 51 54 54 54 54 55 56 58
 4.1 Summary of Activities	40 41 44 45 51 54 54 54 54 55 56 58 58
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5 Flo 2D Model 	40 41 44 45 47 51 54 54 54 54 55 56 56 58 63 63
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5 6 Results of HMS Calibration 	40 41 44 45 47 54 54 54 54 54 56 56 56 58 63 64
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow bydrographs and discharge values for different rainfall return periods. 	40 41 44 45 47 51 54 54 54 54 54 56 58 63 64 65
 4.1 Summary Of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 L Hydrographs and discharge values for different rainfall return periods. 	40 41 44 45 47 51 54 54 54 54 54 54 56 58 63 63 64 65
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 54 55 56 58 63 63 65 67 67
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 54 55 56 63 63 64 65 67 67 68
 4.1 Summary of Activities. 4.2 Control Survey	40 41 44 45 47 49 51 54 54 54 54 54 55 56 63 63 64 65 67 67 67 68 69
 4.1 Summary of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 	40 41 44 45 47 49 51 54 54 54 54 54 55 56 56 63 63 64 65 67 67 68 69 69
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 56 56 56 63 63 64 65 67 67 68 68 69 76 68
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 56 56 56 56 63 63 64 65 67 67 68 69 69 62 82
 4.1 Summary of Activities	40 41 44 45 47 49 51 54 54 54 54 54 56 58 63 63 64 67 67 67 67 68 69 76 82 86
 4.1 Summary Of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.11 Flood Validation. REFERENCES Annex 1. Technical Specifications of the Pegasus Sensor used in the Liangan Floodplain Survey.	40 41 44 45 47 49 54 54 54 54 54 54 56 58 63 63 63 64 65 67 67 68 69 76 82 86 ey86
 4.1 Summary Of Activities	40 41 44 45 47 47 54 56 58 63 63 67 67 67 68 67 68 69 86 86 86 87
 4.1 Summary of Activities	40 41 44 45 47 49 54 56 58 63 63 67 67 67 68 67 68 69 82 86 87 86 87 86 87 86 87 86
 4.1 Summary Of Activities. 4.2 Control Survey. 4.3 Baseline Processing. 4.4 Network Adjustment. 4.5 Cross-section and Bridge As-Built survey and Water Level Marking. 4.6 Validation Points Acquisition Survey. 4.7 River Bathymetric Survey. CHAPTER 5: FLOOD MODELING AND MAPPING. 5.1 Data Used for Hydrologic Modeling. 5.1.1 Hydrometry and Rating Curves. 5.1.2 Precipitation. 5.1.3 Rating Curves and River Outflow. 5.2 RIDF Station. 5.3 HMS Model. 5.4 Cross-section Data. 5.5 Flo 2D Model. 5.6 Results of HMS Calibration. 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods. 5.7.1 Hydrograph using the Rainfall Runoff Model. 5.8 River Analysis (RAS) Model Simulation. 5.9 Flow Depth and Flood Hazard. 5.10 Inventory of Areas Exposed to Flooding. 5.11 Flood Validation. REFERENCES Annex 1. Technical Specifications of the Pegasus Sensor used in the Liangan Floodplain Surve Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey. Annex 4. The LIDAR Survey Team Composition.	40 41 44 45 47 49 51 54 54 54 54 54 54 54 55 63 63 63 63 64 65 67 67 68 69 69 68 69 68 69 68 69 87 86 87 93 93 93

Annex 6. Flight Logs for the Flight Missions	102
Annex 7. Flight Status Reports	109
Annex 8. Mission Summary Reports	117
Annex 9. Liangan Model Basin Parameters	127
Annex 10. Liangan Model Reach Parameters	129
Annex 11. Liangan Field Validation Points	130
Annex 12. Educational Institutions affected by flooding in Liangan Floodplain	134
Annex 13. Health Institutions affected by flooding in Liangan Floodplain	135

LIST OF TABLES

Table 1. Flight planning parameters for the Pegasus LiDAR system	3
Table 2. Details of the recovered NAMRIA horizontal control point LAN-2 used as base station for the LiDAR Acquisition	he 6
Table 3. Details of the recovered NAMRIA horizontal control point LDN-01 used as base station for the LiDARAcquisition	the 7
Table 4. Details of the recovered NAMRIA vertical control point LE-50 used as base station for the L Acquisition with established coordinates	iDAR 8
Table 5. Details of the recovered NAMRIA vertical control point LE-50 used as base station for the L Acquisition with established coordinates	iDAR 9
Table 6. Details of the recovered NAMRIA vertical control point LE-89 used as base station for the L Acquisition with established coordinates	iDAR 10
Table 7. Details of the recovered NAMRIA vertical control point LE-89 used as base station for the L Acquisition with established coordinates	iDAR 11
Table 8. Details of the established reference point ILG-1 used as base station for the LiDAR Acquisit	ion12
Table 9. Ground control points used during the LiDAR data acquisition	13
Table 10. Flight missions for the LiDAR data acquisition of the Liangan Floodplain	13
Table 11. Actual parameters used during the LiDAR data acquisition of the Liangan Floodplain	14
Table 12. List of municipalities and cities surveyed during the Liangan Floodplain LiDAR survey	14
Table 11. Self-calibration Results values for Liangan flights	19
Table 12. List of LiDAR blocks for Liangan Floodplain	20
Table 13. Silaga classification results in TerraScan	24
Table 14. LiDAR blocks with its corresponding areas	28
Table 15. Shift values of each LiDAR block of Liangan Floodplain	30
Table 16. Calibration Statistical Measures	34
Table 17. Validation Statistical Measures	35
Table 18. Quality Checking Ratings for Liangan Building Features	37
Table 19. Building features extracted for Liangan Floodplain	38
Table 20. Total length of extracted roads for Liangan Floodplain	38
Table 21. Number of extracted water bodies for Liangan Floodplain	39
Table 22. References used and control points established in the Liangan River Survey	42
Table 23. Baseline processing report for the Liangan River GNSS static observation survey	44
Table 24. Constraints applied to the adjustment of the control points	45
Table 25. Adjusted grid coordinates for the control points used in the Liangan River Floodplain surv	/ey45
Table 26. Adjusted geodetic coordinates for control points used in the Liangan River Floodplain validation	46
Table 27. The reference and control points utilized in the Liangan River Static Survey, with their corresponding locations	46
Table 28. RIDF values for Cagayan de Oro Rain Gauge computed by PAGASA	56
Table 29. Range of calibrated values for Liangan	65
Table 30. Efficiency Test of the Liangan HMS Model	66
Table 31. Peak values of the Liangan HECHMS Model outflow using Cagayan de Oro RIDF	67
Table 32. Municipalities affected in Liangan Floodplain	69

Table 33. Affected areas in Bacolod, Lanao del Norte during a 5-Year Rainfall Return Period	76
Table 34. Affected Areas in Maigo, Lanao del Norte during 5-Year Rainfall Return Period	77
Table 35. Affected Areas in Bacolod, Lanao del Norte during 25-Year Rainfall Return Period	78
Table 36. Affected Areas in Maigo, Lanao del Norte during 25-Year Rainfall Return Period	79
Table 37. Affected Areas in Bacolod, Lanao del Norte during 100-Year Rainfall Return Period	80
Table 38. Affected Areas in Maigo, Lanao del Norte during 100-Year Rainfall Return Period	81
Table 39. Areas covered by each warning level with respect to the rainfall scenarios	82
Table 40. Actual flood vs simulated flood depth at differnent levels in the Liangan River Basin	84
Table 41. Summary of the Accuracy Assessment in the Liangan River Basin Survey	84

LIST OF FIGURES

Figure 1. Map of the Liangan River Basin (in brown)	2
Figure 2. Flight Plan and base stations used for the Liangan Floodplain survey	4
ا Figure 3. GPS set-up over LAN-2 at Brgy. Pinoyak, Lala Lanao del Norte (a) and NAMRIA reference	point
LAN-2 (b) as recovered by the field team	6
Figure 4. GPS set-up over LDN-01 at at the rooftop of Iligan City Philippine Port Authority Administr	ation
building, inside the Iligan City Pier compound, Iligan City (a) and NAMRIA reference point LDN-01 (b) as
recovered by the field team.	7
Figure 5. GPS set-up over LE-50 at Barogohan Bridge and at the NE of the Covenant Baptist Church, M	laigo,
Lanao del Norte (a) and NAMRIA reference point LE-50 (b) as recovered by the field team	8
Figure 6. GPS set-up over LE-55 at Segapod Bridge, Brgy. Segapod, Maigo, Lanao del Norte (a) and NAI	MRIA
reference point LE-55 (b) as recovered by the field team.	9
Figure 7. GPS set-up over LE-89 in front of St. Peter Life Plan Chapel of Iligan City, Lanao del Norte (a)	
and NAMRIA reference point LE-55 (b) as recovered by the field team	0
Figure 8. GPS set-up over LE-76 at Bulod Bridge footwalk of Brgy. Bulod, Tubud, Lanao del Norte (a)	
and NAMRIA reference point LE-76 (b) as recovered by the field team1	.1
Figure 9. GPS set-up over ILG-1 at Iligan City (a) and reference point ILG-1 (b) as established by the	
field team	2
Figure 10. Actual LiDAR data acquisition for Liangan Floodplain1	.5
Figure 11. Schematic diagram for Data Pre-Processing Component.	.6
Figure 12. Smoothed Performance Metric Parameters of Liangan Flight 1533P1	.7
Figure 13. Solution Status Parameters of Liangan Flight 1533P1	.8
Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Liangan Floodplain1	.9
Figure 15. Boundary of the processed LiDAR data over Liangan Floodplain	20
The total area covered by the Liangan missions is 637.50 sq.km that is comprised of seven (7)	
flight acquisitions grouped and merged into three (3) blocks as shown in Table 122	20
Figure 16. Image of data overlap for Liangan Floodplain2	1
Figure 17. Pulse density map of merged LiDAR data for Liangan Floodplain	2
Figure 18. Elevation Difference Map between flight lines for Liangan Floodplain Survey	:3
Figure 19. Quality checking for Liangan flight 1533P using the Profile Tool of QT Modeler2	4
Figure 20. Tiles for Liangan Floodplain (a) and classification results (b) in TerraScan	25
Figure 21. Point cloud before (a) and after (b) classification2	25
Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary	
DTM (d) in some portion of Liangan Floodplain2	26
Figure 23. Liangan Floodplain with the available orthophotographs.	27
Figure 24. Sample orthophotograph tiles for Liangan Floodplain	27
Figure 25. Portions in the DTM of Liangan floodplain – a bridge before (a) and after (b) manual	
editing; a paddy field before (c) and after (d) data retrieval	29
Figure 28. Correlation plot between calibration survey points and LiDAR data	4
Figure 29. Correlation plot between validation survey points and LiDAR data	5
Figure 30. Map of Liangan Floodplain with bathymetric survey points shown in blue	6
Figure 31. Blocks (in blue) of Liangan building features that were subjected to QC	57
Figure 32. Extracted features of the Liangan Floodplain	9
Figure 33. Extent of the bathymetric survey (in blue line) in Liangan River	0
and the LiDAR data validation survey (in red)	0
Figure 34. The GNSS Network established in the Liangan River Survey	1
Figure 35. GNSS base set up, Trimble [®] SPS 852, at LAN-2, situated on top of a concrete irrigation	

canal gate in Brgy. Maranding, Municipality of Kapatagan, Lanao Del Norte	.42
Figure 36. GNSS base set up, Trimble [®] SPS 852, at LE-92, located at the approach of Maranding	
Bridge, in Brgy. Maranding, Municipality of Lala, Lanao Del Norte	.43
Figure 37. GNSS receiver setup, Trimble [®] SPS 882, at UP-L, located at the approach of Liangan	
Bridge, in Brgy. Liangan West, Municipality of Maigo, Lanao Del Norte	.43
Figure 38. Cross-section survey using Trimble [®] SPS 882 under a hanging bridge in Brgy. Esperanza,	
Bacolod, Lanao del Norte	. 47
Figure 39. Babalaya bridge corss-section location map	.47
Figure 40. Cross-section diagram of Babalaya Hanging Bridge	.48
Figure 41. Ground Validation Set-up, Trimble [®] SPS 882 Rover, for Liangan River Basin	.49
Figure 42. Extent of the LiDAR ground validation survey along Liangan River Basin	.50
Figure 43. Bathymetric survey using Hi-Target™ Single Beam Echo Sounder and mounted	
Trimble [®] SPS 882	.51
Figure 44. Actual execution of manual bathymetric survey along Liangan River	.51
Figure 45. Extent of the Liangan River Bathymetry Survey	.52
Figure 46. Liangan riverbed profile	.53
Figure 47. Location map of the Liangan HEC-HMS model used for calibration.	.54
Figure 48. Cross-section plot of Babalava-Ezperanza Bridge	.55
Figure 49. Rating Curve at Babalava-Ezperanza Bridge	.55
Figure 50 Rainfall and outflow data of the Liangan River Basin used for modeling	56
Figure 51 Location of Cagavan de Oro RIDE station relative to Liangan River Basin	57
Figure 52 Synthetic storm generated for a 24-hour period rainfall for various return periods	57
Figure 53. Soil Man of Liangan River Basin	58
Figure 54 Land Cover Man of Liangan River Basin	59
Figure 55. Slope Man of Liangan River Basin	60
Figure 56. Stream Delineation Man of Liangan River Basin	61
Figure 57. The Liangan Hydrologic Model generated in HEC-GeoHMS	62
Figure 58 River cross-section of Liangan River generated through Arcman HEC GeoRAS tool	.02
Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS	.05
Dro	64
Figure 60. Outflow Hydrograph of Liangan Bridge generated in HEC-HMS model compared with	.04
observed outflow	65
Figure 61 Outflow hydrograph at Liangan Station generated using Cagayan de Oro PIDE simulated	. 05
in HEC. HMS	67
Figure 62 Sample output of Liangan PAS Model	.07
Figure 62. A 100 year flood bazard man for the Liangan Eloodalain	.00
Figure 65. A 100-year flow Donth Man for the Liangan Floodplain	.70
Figure 64. A 100-year Flood Hazard Man for Liangan Floodplain	./1
Figure 65. A 25-year Floud Hazard Map for Liangan Floodplain	.72
Figure 66. A 25-year Flood Upperd Map for Liangan Floodplain	.73
Figure 67. A 5-year Flow Hazard Map for Liangan Floodplain	.74
Figure 68. A 5-year Flow depth map for Liangan Floodplain.	.75
Figure 69. Affected Areas in Bacolod, Lanao del Norte during 5-Year Rainfall Return Period	.76
Figure 70. Affected Areas in Malgo, Lando del Norte during 5-Year Rainfall Return Period	.//
Figure 71. Affected Areas in Bacolod, Lanao del Norte during 25-Year Rainfall Return Period	.78
Figure 72. Affected Areas in Iviaigo, Lanao del Norte during 25-Year Kainfall Return Period	. 79
Figure 73. Affected Areas in Bacolog, Lanao del Norte during 100-Year Rainfall Return Period	.80
Figure 74. Affected Areas in Maigo, Lanao dei Norte during 100-Year Kainfall Keturn Period	.81
Figure 75. validation points for a 5-year Flood Depth Map of the Liangan Floodplain.	.83
Figure 76. Flood map depth vs. actual flood depth	.83

LiDAR Surveys and Flood Mapping of Liangan River

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Asian Aerospace Corporation		
Ab	abutment		
ALTM	Airborne LiDAR Terrain Mapper		
ARG	automatic rain gauge		
ATQ	Antique		
AWLS	Automated Water Level Sensor		
BA	Bridge Approach		
BM	benchmark		
CAD	Computer-Aided Design		
CN	Curve Number		
CSRS	Chief Science Research Specialist		
DAC	Data Acquisition Component		
DEM	Digital Elevation Model		
DENR	Department of Environment and Natural Resources		
DOST	Department of Science and Technology		
DPPC	Data Pre-Processing Component		
DREAM	Disaster Risk and Exposure Assessment for Mitigation [Program]		
DRRM	Disaster Risk Reduction and Management		
DSM	Digital Surface Model		
DTM	Digital Terrain Model		
DVBC	Data Validation and Bathymetry Component		
FMC	Flood Modeling Component		
FOV	Field of View		
GiA	Grants-in-Aid		
GCP	Ground Control Point		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
HEC-HMS	Hydrologic Engineering Center - Hydrologic Modeling System		
HEC-RAS	Hydrologic Engineering Center - River Analysis System		
НС	High Chord		
IDW	Inverse Distance Weighted [interpolation method]		

IMU	Inertial Measurement Unit		
kts	knots		
LAS	LiDAR Data Exchange File format		
LC	Low Chord		
LGU	local government unit		
Lidar	Light Detection and Ranging		
LMS	LiDAR Mapping Suite		
m AGL	meters Above Ground Level		
MMS	Mobile Mapping Suite		
MSL	mean sea level		
MSU-IIT	Mindanao State University - Iligan Institute of Technology		
NSTC	Northern Subtropical Convergence		
PAF	Philippine Air Force		
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services Administration		
PDOP	Positional Dilution of Precision		
РРК	Post-Processed Kinematic [technique]		
PRF	Pulse Repetition Frequency		
PTM	Philippine Transverse Mercator		
QC	Quality Check		
QT	Quick Terrain [Modeler]		
RA	Research Associate		
RIDF	Rainfall-Intensity-Duration-Frequency		
RMSE	Root Mean Square Error		
SAR	Synthetic Aperture Radar		
SCS	Soil Conservation Service		
SRTM	Shuttle Radar Topography Mission		
SRS	Science Research Specialist		
SSG	Special Service Group		
ТВС	Thermal Barrier Coatings		
UP-TCAGP	University of the Philippines – Training Center for Applied Geodesy and Photogrammetry		
UTM	Universal Transverse Mercator		
WGS	World Geodetic System		

CHAPTER 1: OVERVIEW OF THE PROGRAM AND LIANGAN RIVER

Enrico C. Paringit, Dr. Eng., Prof. Alan E. Milano, and Engr. Elizabeth Albiento

1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grant-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods described in this report are thoroughly described in a separate publication entitled "Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit, et. al., 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the Mindanao State University - Iligan Institute of Technology (MSU-IIT). MSU-IIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 16 river basins in the Northern Mindanao Region. The university is located in Iligan City in the province of Lanao del Norte.

1.2 Overview of the Liangan River Basin

Liangan River is the stream that traverses the Liangan River basin. It is where Pangayawan waterfalls can be found flowing in the Municipality of Bacolod. The river basin is located in the Province of Lanao del Norte, Northern Mindanao (ph.geoview.info). The floodplain of Liangan River basin is shared by two municipalities. These municipalities include Bacolod and Maigo, Lanao del Norte. The land features of Bacolod and Maigo evenly rolls up to the Municipality of Munai. The Liangan River is where the Pangayawan waterfall is located with its three (3) tributary falls (bacolodIdn.gov.ph). The flood plain barangays of Liangan River basin include Liangan West, Camp1 and Mahayahay of Maigo, Lanao del Norte, Liangan East, Alegria, Babalaya, Esperanza and Mati of Bacolod, Lanao del Norte.

Liangan river basin has an estimated area of 225.311 square kilometres and had a delineated floodplain area of 12.65 square kilometres. There were a 2,781 building features extracted within the floodplain area. According to the National Disaster Risk Reduction and Management Council (NDRRMC) on their NDRRC update on the effects of Typhoon "Pablo" (Bopha) last Decemeber 8, 2012 that there were 1,910 and 179 affected families in the municipalities of Bacolod and Maigo, Lanao del Norte respectively. This is equivalent to 9,500 persons from Bacolod and 895 persons from Maigo.

When a low pressure area hit the island of Mindanao in the eve of January 13, 2014, the municipality of Bacolod and other neighboring municipalities experienced heavy and continuous rainfall. Pre-emptive evacuation was undertaken in the flood prone barangays which were Brgy. Rupagan, Brgy. Minaulon and Brgy. Liangan East. Flood markers were constantly monitored and when an alert level was reached in the flood marker, a joint operation of the members of the MDRRMC, Bacolod Emergency Rescue Team, BFP, PNP and the 32IB Bravo Company was conducted.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 1. Map of the Liangan River Basin (in brown)

The event was then followed by tropical depression Agaton on January 20, 2014. Continuous monitoring was advised and suspension of classes in accordance to EO 66 was declared by the Local Chief Executive as the chairman of the MDRRMC. Joint monitoring effort was conducted by the MDRRMC with its own Bacolod Emergency Rescue Team and the PDRRMC. There were a total of 223 affected families or 819 persons during these events. These weather disturbances had brought also damages to houses and infrastructure with a total of Php 545,000 and Php 22,000,000 respectively.

CHAPTER 2: LIDAR DATA ACQUISITION OF THE LIANGAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Acuna, Engr. Gerome Hipolito, Engr. Iro Niel D. Roxas, and Engr. Frank Nicolas H. Ilejay

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Liangan Floodplain in Northern Mindanao. The missions were planned for 16 lines that run for at most four and a half (4.5) hours including take-off, landing and turning time. The flight planning parameters for the LiDAR system is found in Table 1. Figure 2 shows the flight plans for Liangan Floodplain.

Block Name	Flying Height (m AGL)	Overlap (%)	Field of view (ø)	Pulse Repetition Frequency (PRF) (kHz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
BLK71A	1000	25	50	200	30	130	5
BLK71B	1000	25	50	200	30	130	5
BLK71C	1000	25	50	200	30	130	5
BLK71E	1000	25	50	200	30	130	5
BLK71F	1000	25	50	200	30	130	5
BLK71G	1000	25	50	200	30	130	5

Table 1. Flight planning parameters for the Pegasus LiDAR system.

¹ The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

Figure 2. Flight Plan and base stations used for the Liangan Floodplain survey.

2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA horizontal ground control points: LAN-2 which is of first (1st) order accuracy and LDN-01, which is of (3rd) order accuracy. Four (4) NAMRIA benchmarks were recovered: LE-50, LE-55, LE-89, which are of first order accuracy, and LE-76 which is of second order accuracy. These benchmarks were used as vertical reference points and were also established as ground control points. The team also established reference point ILG-1. The certifications for the NAMRIA reference points and benchmarks are found in Annex 2, while the processing reports for the NAMRIA reference points, benchmarks, and established points are found in Annex 3. These were used as base stations during the flight operation for the entire duration of the survey (May 31 – July 9, 2014). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 882 and SPS 852. Flight plans and location of base stations used during the aerial LiDAR acquisition in Liangan floodplain are shown in Figure 2. The list of team members are found in Annex 4.

Figure 3 to Figure 9 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 8 show the details about the NAMRIA control point and the established control point while Table 9 shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

Figure 3. GPS set-up over LAN-2 at Brgy. Pinoyak, Lala Lanao del Norte (a) and NAMRIA reference point LAN-2 (b) as recovered by the field team.

Table 2. Details of the recovered NAMRIA horizontal control point LAN-2 used as base station for the LiDAR Acquisition

Station Name	LAN-2		
Order of Accuracy	1st		
Relative Error (Horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference Of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	7° 54' 46.07859" North 123° 46' 0.85333" East 17.35400 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	364,025.74 meters 875,110.149 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	7° 54′ 42.56546″ North 123° 46′ 6.31720″ East 83.92120 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	584,533.45 meters 874,680.35 meters	

Figure 4. GPS set-up over LDN-01 at at the rooftop of Iligan City Philippine Port Authority Administration building, inside the Iligan City Pier compound, Iligan City (a) and NAMRIA reference point LDN-01 (b) as recovered by the field team.

Table 3. Details of the recovered NAMRIA horizontal control point LDN-01 used as base station for the LiDAR
Acquisition

Station Name	LDN-01		
Order of Accuracy	3rd		
Relative Error (Horizontal positioning)	1:20,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 14' 1.44528" North 124° 13' 56.94179" East 11.87000 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 5 (PTM Zone 5 PRS 92)	Easting Northing	415,436.191 meters 910,480.055 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 13' 57.88944" North 124° 14' 2.37264" East 78.9500 meters	
Grid Coordinates, Philippine Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	635,751.93 meters 910,289.41 meters	

Figure 5. GPS set-up over LE-50 at Barogohan Bridge and at the NE of the Covenant Baptist Church, Maigo, Lanao del Norte (a) and NAMRIA reference point LE-50 (b) as recovered by the field team.

Table 4. Details of the recovered NAMRIA vertical control point LE-50 used as base station for the LiDAR
Acquisition with established coordinates.

Station Name	LE	-50	
Order of Accuracy	1st		
Relative Error (horizontal positioning)	1:100,000		
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 09' 54.972" North North 123° 57' 50.357" East 6.91 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 09' 51.11024" North 123° 57' 55.36634" East 73.452 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	606,345.902 meters 902,577.426 meters	

Figure 6. GPS set-up over LE-55 at Segapod Bridge, Brgy. Segapod, Maigo, Lanao del Norte (a) and NAMRIA reference point LE-55 (b) as recovered by the field team.

Table 5. Details of the recovered NAMRIA vertical control point LE-50 used as base station for the LiDAR
Acquisition with established coordinates.

Station Name	LE	-55	
Order of Accuracy	1st		
Relative Error (horizontal positioning)	1:10	0,000	
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 08′ 3.015″ North 123° 55′ 49.058″ East 8.48 meters	
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 07' 59.16191" North 123° 55' 54.06681" East 75.001 meters	
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	602,641.751 meters 899,130.439 meters	

Figure 7. GPS set-up over LE-89 in front of St. Peter Life Plan Chapel of Iligan City, Lanao del Norte (a) and NAMRIA reference point LE-55 (b) as recovered by the field team.

Table 6. Details of the recovered NAMRIA vertical control point LE-89 used as base station for the LiDAR Acquisition with established coordinates.

Station Name	LE	-89
Order of Accuracy	3	rd
Relative Error (horizontal positioning)	1:20	,000
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 15' 51.715" North 124° 15' 12.365" East 6.39 meters
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 15' 47.82322" North 124° 15' 17.37373" East 73.451 meters
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	638,201.305 meters 913,622.047 meters

Figure 8. GPS set-up over LE-76 at Bulod Bridge footwalk of Brgy. Bulod, Tubud, Lanao del Norte (a) and NAMRIA reference point LE-76 (b) as recovered by the field team.

Table 7. Details of the recovered NAMRIA vertical control point LE-89 used as base station for the LiDAR
Acquisition with established coordinates.

Station Name	LE	-76		
Order of Accuracy	1	st		
Relative Error (horizontal positioning)	1:100,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8° 03' 05.36825" North 123° 48' 12.37307"East 9.355 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Latitude Longitude Ellipsoidal Height	8° 03' 01.82183" North 123° 48' 17.82405" East 75.717 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Easting Northing	588,530.790 meters 890,021.013 meters		

Figure 9. GPS set-up over ILG-1 at Iligan City (a) and reference point ILG-1 (b) as established by the field team.

Station Name	ILG-1			
Order of Accuracy	3rd			
Relative Error (horizontal positioning)	1:20,000			
Geographic Coordinates, Philippine Reference of 1992 Datum (PRS 92)	Latitude Longitude Ellipsoidal Height	8°14'35.60437" North 124°14'52.86635" East 6.546 meters		
Geographic Coordinates, World Geodetic System 1984 Datum (WGS 84)	Easting Northing Ellipsoidal Height	8°14'32.04743" North 124°14'58.29621" East 73.645 meters		
Grid Coordinates, Universal Transverse Mercator Zone 51 North (UTM 51N PRS 1992)	Latitude Longitude	637,459.968 meters 911,343.882 meters		

Table 8. Details of the established reference point ILG-1 used as base station for the LiDAR Acquisition.

Date Surveyed	Flight Number	Mission Name	Ground Control Points
May 31, 2014	1533P	1BLK71A151A	ILG-1, LE-89
June 2, 2014	1541P	1BLK71B153A	ILG-1, LE-89
June 27, 2014	1643P	1BLK67ABS178B	LDN-01, LE-89
June 28, 2014	1645P	1BLK71C179A	LE-50, LE-55
July 8, 2014	1685P	1BLK71S189A	LE-50, LAN-2
July 8, 2014	1687P	1BLK71S189B	LE-50, LAN-2
July 9, 2014	1689P	1BLK71S190A	LE-50, LE-76

Table 9. Ground control points used during the LiDAR data acquisition.

2.3 Flight Missions

Seven (7) missions were conducted to complete the LiDAR Data Acquisition in Liangan Floodplain, for a total of twenty-six hours and seventeen minutes (26+17) of flying time for RP-C9022. All missions were acquired using the Pegasus LiDAR system. Table 10 shows the total area of actual coverage and the corresponding flying hours per mission, while 11 presents the actual parameters used during the LiDAR data acquisition.

Date Surveyed	Flight Number	Flight Plan Area	Surveyed Area	urveyed Area Area Area Surveyed Surveyed	No. of Images	Fly Ho	/ing ours	
		(km2)	(km2)	within the Floodplain (km2)	Outside the Floodplain (km2)	(Frames)	Hr	Min
May 31, 2014	1533P	265.97	176.59	21.34	155.24	609	4	47
June 2, 2014	1541P	503.06	270.90	1.40	269.50	275	4	47
June 27, 2014	1643P	265.97	37.02	0.00	37.02	787	1	59
June 28, 2014	1645P	566.66	200.60	0.38	200.23	741	4	11
July 8, 2014	1685P	258.45	158.49	0.00	158.49	569	4	5
July 8, 2014	1687P	329.56	57.29	2.97	54.32	NA	2	11
July 9, 2014	1689P	1197.60	240.77	0.00	240.77	NA	4	17
TOTAL	3387.27	1141.65	26.09	1115.56	2981	26	1	L 7

Table 10. Flight missions for the LiDAR data acquisition of the Liangan Floodplain.

Flight Number	Flying Height (m AGL)	Overlap (%)	FOV (θ)	PRF (khz)	Scan Frequency (Hz)	Average Speed (kts)	Average Turn Time (Minutes)
1533P	800	25	50	200	30	110-130	5
1541P	800	25	50	200	30	110-130	5
1643P	800	25	50	200	30	110-130	5
1645P	800	25	50	200	30	110-130	5
1685P	800	25	50	200	30	110-130	5
1687P	800	25	50	200	30	110-130	5
1689P	800	25	50	200	30	110-130	5

Table 11. Actual parameters used during the LiDAR data acquisition of the Liangan Floodplain.

2.4 Survey Coverage

Liangan floodplain is located in the province of Lanao del Norte covering parts of Bacolod and Maigo. The list of municipalities/cities surveyed in these provinces during the LiDAR acquisition is shown in Table 12. In Figure 10, the actual coverage of the LiDAR acquisition for Liangan floodplain is shown.

Province	Municipality/ City	Area of Municipality/ City (km2)	Total Area Surveyed (km2)	Percentage of Area Surveyed
	Kauswagan	45.08	45.07	100%
	Linamon	22.21	22.20	100%
	Matungao	52.50	52.46	100%
	Bacolod	62.26	62.10	100%
	Maigo	126.36	119.42	95%
	Poona Piagapo	88.11	82.58	94%
	Kolambugan	70.70	65.14	92%
	Baloi	65.18	52.68	81%
	Lala	125.18	62.94	50%
Lanao del Norte	Baroy	62.08	21.68	35%
	Pantao Ragat	71.36	23.57	33%
	Magsaysay	83.06	23.75	29%
	Tubod	121.95	30.83	25%
	Pantar	50.19	7.30	15%
	Tagoloan	25.06	2.87	11%
	Sultan Naga Dimaporo	143.65	13.60	9%
	lligan City	650.87	43.08	7%
	Tangcal	118.94	0.14	0%
Lanao del Sur	Kapatagan	184.76	77.45	42%
Misamis Oriental	Laguindingan	37.87	0.00	0%
	Tukuran	119.01	35.59	30%
Zamboanga del	Aurora	162.22	43.79	27%
Sur	Labangan	176.44	0.51	0%
TOTA	۱L	2665.04	888.75	33.35%

Table 12. List of municipalities and cities surveyed during the Liangan Floodplain LiDAR survey.

Figure 10. Actual LiDAR data acquisition for Liangan Floodplain.

CHAPTER 3: LIDAR DATA PROCESSING OF THE LIANGAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto, Engr. Harmond F. Santos, Ma. Ailyn L. Olanda, Engr. Chelou P. Prado, Engr. James Kevin M. Dimaculangan, Engr. Jommer M. Medina, and John Arnold C. Jaramilla

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 11.

Figure 11. Schematic diagram for Data Pre-Processing Component.

3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Liangan floodplain can be found in Annex 5. Data Transfer Sheets. Missions flown during all the three surveys conducted on April 2013, May 2014 and June 2014 used the Airborne LiDAR Terrain Mapper (ALTM[™] Optech Inc.) Pegasus system over Bacolod and Maigo, Lanao del Norte.

The Data Acquisition Component (DAC) transferred a total of 537.56 Gigabytes of Range data, 5.1 Gigabytes of POS data, 183.25 Megabytes of GPS base station data, and 653.56 Gigabytes of raw image data to the data server on April 28, 2013 for the first survey, June 8, 2014 for the second survey and June 28, 2014 for the third survey. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Liangan was fully transferred on August 1, 2014, as indicated on the Data Transfer Sheets for Liangan floodplain.

3.3 Trajectory Computation

The Smoothed Performance Metric parameters of the computed trajectory for flight 1533P, one of the Liangan flights, which is the North, East, and Down position RMSE values are shown in Figure 12. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on May 31, 2014 00:00 AM. The y-axis is the RMSE value for that particular position.

Figure 12. Smoothed Performance Metric Parameters of Liangan Flight 1533P

The time of flight was from 520500 seconds to 532500 seconds, which corresponds to afternoon of May 31, 2014. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 12 shows that the North position RMSE peaks at 2.40 centimeters, the East position RMSE peaks at 2.80 centimeters, and the Down position RMSE peaks at 4.60 centimeters, which are within the prescribed accuracies described in the methodology.

Figure 13. Solution Status Parameters of Liangan Flight 1533P

The Solution Status parameters of flight 1533P, one of the Liangan flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 13. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 9. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Liangan flights is shown in Figure 14.

Figure 14. Best Estimated Trajectory of the LiDAR missions conducted over the Liangan Floodplain.

3.4 LiDAR Point Cloud Computation

The produced LAS data contains 210 flight lines, with each flight line containing two channel, since the Pegasus system contains two channels. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Liangan floodplain are given in Table 11.

Parameter	Acceptable Value	Computed Value
Boresight Correction (stdev)	<0.001degrees	0.000257
IMU Attitude Correction Roll and Pitch Correction (stdev)	<0.001degrees	0.001011
GPS Position Z-correction (stdev)	<0.01meters	0.0091

Table 11. Self-calibratior	ı Results valı	ues for Liang	an flights.
----------------------------	----------------	---------------	-------------

The optimum accuracy is obtained for all Liangan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in Annex 8. Mission Summary Reports.

3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Liangan Floodplain is shown in Figure 15. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

Figure 15. Boundary of the processed LiDAR data over Liangan Floodplain

The total area covered by the Liangan missions is 637.50 sq.km that is comprised of seven (7) flight acquisitions grouped and merged into three (3) blocks as shown in Table 12.

LiDAR Blocks	Flight Numbers	Area (sq. km)
NorthernMindanao_Blk71ABC	1533P	591.39
	1541P	
	1643P	
	1645P	
	1685P	
	1689P	
NorthernMindanao_Blk71ABC_additional	1687P	18.15
NorthernMindanao_Blk71B_supplement	1541P	27.96
TOTAL		637.50 sq.km

|--|

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 16. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

Figure 16. Image of data overlap for Liangan Floodplain.

The overlap statistics per block for the Liangan floodplain can be found in Annex 8. Mission Summary Reports. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 30.74% and 50.18% respectively, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion is shown in Figure 17. It was determined that all LiDAR data for Liangan floodplain satisfy the point density requirement, and the average density for the entire survey area is 4.12 points per square meter.

Figure 17. Pulse density map of merged LiDAR data for Liangan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 18. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

Figure 18. Elevation Difference Map between flight lines for Liangan Floodplain Survey.

A screen capture of the processed LAS data from a Liangan flight 1533P loaded in QT Modeler is shown in Figure 19. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

Figure 19. Quality checking for Liangan flight 1533P using the Profile Tool of QT Modeler.

3.6 LiDAR Point Cloud Classification and Rasterization

Pertinent Class	Total Number of Points
Ground	971,394,571
Low Vegetation	1,183,110,947
Medium Vegetation	1,755,029,232
High Vegetation	1,519,151,675
Building	46,382,771

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Liangan floodplain is shown in Figure 20. A total of 1,421 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 13. The point cloud has a maximum and minimum height of 951.89 meters and 65.97 meters respectively.

Figure 20. Tiles for Liangan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 21. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly, due to the density of the LiDAR data.

Figure 21. Point cloud before (a) and after (b) classification

The production of last return (V_ASCII) and the secondary (T_ASCII) DTM, first (S_ASCII) and last (D_ASCII) return DSM of the area in top view display are shown in Figure 22. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.

Figure 22. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Liangan Floodplain.

3.7 LiDAR Image Processing and Orthophotograph Rectification

The 514 1km by 1km tiles area covered by Liangan floodplain is shown in Figure 23. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Liangan floodplain has a total of 325.04 sq.km orthophotogaph coverage comprised of 2,154 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 24.

Figure 23. Liangan Floodplain with the available orthophotographs.

Figure 24. Sample orthophotograph tiles for Liangan Floodplain.

3.8 DEM Editing and Hydro-Correction

Three (3) mission blocks were processed for Liangan flood plain. These blocks are composed of NorthernMindanao blocks with a total area of 637.50 square kilometers. Table 14 shows the name and corresponding area of each block in square kilometers.

LiDAR Blocks	Area (sq.km)
NorthernMindanao_Blk71ABC	591.39
NorthernMindanao_Blk71B_supplement	27.96
NorthernMindanao_Blk71ABC_additional	18.15
TOTAL	637.50 sq. km

Portions of DTM before and after manual editing are shown in Figure 25. The bridge (Figure 25) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 25b) in order to hydrologically correct the river. The river embankment (Figure 25c) has been misclassified and removed during classification process and has to be retrieved to complete the surface (Figure 25d) to allow the correct flow of water.

Figure 25. Portions in the DTM of Liangan Floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

3.9 Mosaicking of Blocks

NorthernMindanao_Blk71ABC was used as the reference block at the start of mosaicking because it has the largest area among the four missions. The shift values applied to each LiDAR block during mosaicking is shown in Table 15.

Mosaicked LiDAR DTM for Liangan floodplain is shown in Figure 26. It can be seen that the entire Liangan floodplain is 99.70% covered by LiDAR data.

	0	1	
Mission Blocks	Shift Values (meters)		
	х	У	Z
NorthernMindanao_Blk71ABC	0.00	0.00	0.00000
NorthernMindanao_Blk71B_supplement	0.00	0.00	0.00000
NorthernMindanao_Blk71ABC_additional	-3.25	10.70	-10.44

Table 15. Shift values of each LiDAR block of Liangan Floodplain.

Figure 26 . Map of Processed LiDAR Data for Liangan Floodplain.

3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Liangan to collect points with which the LiDAR dataset is validated is shown in Figure 27. A total of 1573 survey points were used for calibration and validation of Liangan LiDAR data. Random selection of 80% of the survey points, resulting to 1258 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 28. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.19 meters with a standard deviation of 0.07 meters. Calibration of Liangan LiDAR data was done by adding the height difference value, 2.19 meters, to Liangan mosaicked LiDAR data. Table 16 shows the statistical values of the compared elevation values between LiDAR data and calibration data.

Figure 27. Map of Liangan Floodplain with validation survey points in green.

Figure 28. Correlation plot between calibration survey points and LiDAR data.

Calibration Statistical Measures	Value (meters)
Height Difference	2.19
Standard Deviation	0.07
Average	2.19
Minimum	2.04
Maximum	2.53

Table 16. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting to 315 points, were used for the validation of calibrated Liangan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM is shown in Figure 29. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.08 meters with a standard deviation of 0.08 meters, as shown in Table 17.

Figure 29. Correlation plot between validation survey points and LiDAR data.

Validation Statistical Measures	Value (meters)	
RMSE	0.08	
Standard Deviation	0.08	
Average	0.00	
Minimum	-0.15	
Maximum	0.27	

Table 17. Validation Statistical Measures

3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, only centerline data was available for Liangan with 467 bathymetric survey points. The resulting raster surface produced was done by Inverse Distance Weighted (IDW) interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.02 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Liangan integrated with the processed LiDAR DEM is shown in Figure 30.

Figure 30. Map of Liangan Floodplain with bathymetric survey points shown in blue.

3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

3.12.1 Quality Checking of Digitized Features' Boundary

Liangan floodplain, including its 200 m buffer, has a total area of 25.79 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 574 building features, are considered for QC. Figure 31 shows the QC blocks for Liangan floodplain.

Figure 31. Blocks (in blue) of Liangan building features that were subjected to QC

Quality checking of Liangan building features resulted in the ratings shown in Table 18.

FLOODPLAIN	COMPLETENESS	CORRECTNESS	QUALITY	REMARKS
Liangan	99.37	99.79	98.78	PASSED

Table 18. Quality Checking Ratings for Liangan Building Features

3.12.2 Height Extraction

Height extraction was done for 2,843 building features in Liangan floodplain. Of these building features, 62 were filtered out after height extraction, resulting to 2,781 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 7.67 m.

3.12.3 Feature Attribution

Liangan floodplain is shared by two (2) municipalities namely municipality of Bacolod, and municipality of Maigo. The building attribution on the municipalities of Bacolod and Maigo was done with the Barangay Registry Information System (BRIS) approach. In BRIS approach, trainings, assistance and a database system were delivered to barangays and municipalities for them to conduct the building attribution. The attribution of road, bridge and water body features was done using NAMRIA maps, municipal records, and participatory mapping of municipals.

Table 19 summarizes the number of building features per type. On the other hand, Table 20 shows the total length of each road type, while Table 21 shows the number of water features extracted per type.

Facility Type	No. of Features
Residential	2,596
School	57
Market	18
Agricultural/Agro-Industrial Facilities	50
Medical Institutions	4
Barangay Hall	6
Military Institution	0
Sports Center/Gymnasium/Covered Court	3
Telecommunication Facilities	2
Transport Terminal	0
Warehouse	2
Power Plant/Substation	0
NGO/CSO Offices	1
Police Station	0
Water Supply/Sewerage	2
Religious Institutions	29
Bank	0
Factory	0
Gas Station	0
Fire Station	0
Other Government Offices	4
Other Commercial Establishments	7
Total	2,781

Table 19. Building features extracted for Liangan Floodplain.

Table 20. Total length of extracted roads for Liangan Floodplain.

Floodplain	Road Network Length (km)						
	Barangay Road	City/Municipal Provincial Road Road		National Road	Others		
Liangan	30.43	0.00	0.00	5.16	0.00	35.59	

Floodplain	Water Body Type						
	Rivers/Streams Lakes/Ponds Sea Dam Fish Pen						
Liangan	2	0	0	0	0	2	

Table 21. Number of extracted water bodies for Liangan Floodplain.

A total of 5 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 32 shows the Digital Surface Model (DSM) of Liangan floodplain overlaid with its ground features.

Figure 32. Extracted features of the Liangan Floodplain.

CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE LIANGAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie Caballero, Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

4.1. Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Liangan River on October 15 to 26, 2014 with the following scope of work: reconnaissance; control survey for the establishment of a control point in Lanao del Norte; cross-section survey; ground validation data acquisition survey of about 25 km; and bathymetric survey from Brgy. Esperanza down to the mouth of the river in Brgy. Liangan West, then draining to Panguil Bay with an estimated length of 3.7 km. A Hi-Target[™] Single Beam Echo Sounder and a dual frequency GPS receiver were used and GNSS PPK survey technique was utilized for this survey.

Figure 33. Extent of the bathymetric survey (in blue line) in Liangan River and the LiDAR data validation survey (in red).

4.2 Control Survey

The GNSS network used for Maranding River Basin is composed of a single loop established on October 25, 2014 occupying the following reference points; LAN-2, a first order GCP, in Brgy. Maranding, Municipality of Kapatagan; and LE-92, a first order BM, in Brgy. Maranding, Municipality of Lala, all in Lanao Del Norte.

A control point was established along the approach of Liangan Bridge namely UP-L, located in Brgy. Liangan West, Municipality of Maigo, Lanao Del Norte.

The summary of reference and control points and its location is summarized in Table 22 while the GNSS network established is illustrated in Figure 34.

Figure 34. The GNSS Network established in the Liangan River Survey.

Control	Order of	Geographic Coordinates (WGS 84)				
Tome	Accuracy	Latitude	Longitude	Ellipsoidal Height (Meter)	Elevation in MSL (Meter)	Date Established
SME-18	2nd Order GCP	11°21'43.08127"	125°36'37.41862"	78.217	17.66	Sep 12, 2014
SE-85	1st Order BM	11°24'45.65441"	125°32'20.98934"	67.52	6.31	Sep 12, 2014
SME-12	Used as Marker	11°07'19.15395"	125°21'29.28283"	67.212	2.721	Sep 13, 2014
SMR- 3322	Used as Marker	11°17'40.55190"	125°07'10.82309"	70.666	6.636	Sep 17, 016
SE-49	Used as Marker	11°12'34.48802"	125°31'52.42238"	66.981	3.779	Sep 13, 2014
SM-33S	Used as Marker	11°07'33.79721"	125°12'32.14831"	68.705	3.951	Sep 17, 2014
UP-CNG	UP Established	11°35'44.92939"	125°26'23.62776"	67.094	6.035	Sep 12, 2014
UP-SLG	UP Established	11°27'57.66166"	125°01'08.84182"	73.078	9.958	Sep 19, 2014

Table 22. References used and control points established in the Liangan River Survey (Source: NAMRIA, UP-TCAGP).

The GNSS set up in UP-L and control points in Lanao del Norte are shown in Figure 35 to Figure 37.

Figure 35. GNSS base set up, Trimble® SPS 852, at LAN-2, situated on top of a concrete irrigation canal gate in Brgy. Pinoyak, Municipality of Lala, Lanao Del Norte

Figure 36. GNSS base set up, Trimble® SPS 852, at LE-92, located at the approach of Maranding Bridge, in Brgy. Maranding, Municipality of Lala, Lanao Del Norte

Figure 37. GNSS receiver setup, Trimble® SPS 882, at UP-L, located at the approach of Liangan Bridge, in Brgy. Esperanza, Municipality of Bacolod, Lanao Del Norte

4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20cm and +/-10cm requirement, respectively. In cases where one or more baselines did not meet all of these criteria, masking is performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirement are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Static survey was conducted on October 25, 2014 and the Baseline processing result of control points in Liangan River Basin is summarized in Table 23 generated TBC software.

Observation	Date of Observation	Solution Type	H. Prec. (Meter)	V. Prec. (Meter)	Geodetic Az.	Ellipsoid Dist. (Meter)	∆Height (Meter)
LE-92 LAN-2	10-25-2014	Fixed	0.001	0.002	207°34'21"	897.957	-4.965
LE-92 UP-L	10-25-2014	Fixed	0.005	0.014	39°53'57"	37006.02	-16.030
LAN-2 UP-L	10-25-2014	Fixed	0.005	0.015	39°36'31"	37883.78	-11.063

Table 23. Baseline processing report for the Liangan River GNSS static observation survey.

As shown in Table 23, a total of three (3) baselines were processed with reference point LAN-2 held fixed for coordinate values; and LE 92 fixed for elevation values. All of them passed the required accuracy.

4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

20cm and ze < 10 cm

where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

The three (3) control points, LAN-2, LE-92, and UP-L were occupied and observed simultaneously to form a GNSS loop. Coordinates of LAN-2 and elevation values of LE-92 were held fixed during the processing of the control points as presented in Table 24. Through these reference points, the coordinates and elevation of the unknown control points were occupied.

Table 24. Constraints applied to the adjustment of the control points.

Point ID	Туре	East σ (Meter)	North σ (Meter)	Height o (Meter)	Elevation σ (Meter)			
LAN-2	Local	Fixed	Fixed					
LE-92	Grid				Fixed			
Fixed = 0.00000	Fixed = 0.000001 (Meter)							

The list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 25. The fixed control points LAN-2 and LE-02 have no standard errors for coordinate values; and LE-92 for elevation values.

Table 25. Adjusted grid coordinates for	or the control points used in the	Liangan River Floodplain survey.
---	-----------------------------------	----------------------------------

Point ID	Easting (Meter)	Easting Error (Meter)	Northing (Meter)	Northing Error (Meter)	Elevation (Meter)	Elevation Error (Meter)	Constraint
LAN-2	584699.973	?	874628.035	?	13.471	0.009	LL
LE-92	585114.005	0.005	875424.530	0.003	18.440	?	е
UP-L	608790.643	0.012	903851.418	0.009	2.042	0.048	

The network is fixed at reference point LAN-2 with known coordinates and LE-92 with known elevation. With the mentioned equation, $\sqrt{((xe)^2 + (ye)^2)} < 20 cm$ for horizontal and ze < 10 c for the vertical, the computation for the horizontal and vertical accuracy are as follows:

a.	LAN-2		F ¹
	norizontal accuracy	=	Fixed
	vertical accuracy	=	0.90 cm < 10 cm
b.	LE-92		
	horizontal accuracy	=	$\sqrt{(0.50)^2 + (0.30)^2}$
		=	√(0.25 + 0.09)
		=	0.5 cm < 20 cm
	vertical accuracy	=	Fixed
с.	UP-L		
	horizontal accuracy	=	$V((1.20)^2 + (0.90)^2)$
		=	√(1.44 + 0.81)
		=	1.5 cm < 20 cm
	vertical accuracy	=	4.80 cm < 10 cm

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

Table 26. Adjusted geodetic coordinates for	control points used in th	e Liangan Rivei	r Floodplain validatior
---	---------------------------	-----------------	-------------------------

Point ID	Latitude	Longitude	Ellipsoid	Height	Constraint
LAN-2	N7°54'42.56546"	E123°46'06.31720"	82.151	0.009	LL
LE-92	N7°55'08.47531"	E123°46'19.88700"	87.116	?	е
UP-L	N8°10'32.39730"	E123°59'15.35400"	71.088	0.048	

The corresponding geodetic coordinates of LE-92 and UP-L are within the required accuracy as shown in Table 26. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points is indicated in Table 27.

Table 27. The reference and control points utilized in the Liangan River Static Survey, with their corresponding	
locations (Source: NAMRIA, UP-TCAGP)	

Control Point	Order of Accuracy	Geograp	hic Coordinates (WG	UTM ZONE 51 N			
		Latitude	Longitude	Ellipsoidal Height (m)	Northing (m)	Easting (m)	BM Ortho (m)
LAN-2	1st order, GCP	7°54'42.56546"	123°46'06.31720"	82.151	874628.035	584699.973	13.471
LE-92	1st order, BM	7°55'08.47531"	123°46'19.88700"	87.116	875424.53	585114.005	18.44
UP-L	UP Established	8°10'32.39730"	123°59'15.35400"	71.088	903851.418	608790.643	2.042

4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built survey were conducted on October 16, 2014 at the upstream part of a hanging bridge in Brgy. Esperanza, Bacolod, Lanao del Norte. A survey grade GNSS receiver Trimble[®] SPS 882 in PPK technique was utilized for this survey as shown in Figure 38. Babalaya Hanging Bridge was chosen to be cross-sectioned because there were no concrete bridges found in the Liangan River upstream and this is where the partner HEI, MSU-IIT conduct their flow measurement.

Figure 38. Cross-section survey using Trimble® SPS 882 under a hanging bridge in Brgy. Esperanza, Bacolod, Lanao del Norte

The cross-sectional line of Liangan river is about 84 m with thirty-four (34) cross-sectional points gathered using LE-92 as the GNSS base station. The location map and cross-section diagram are shown in Figure 39 and Figure 40.

Figure 39. Babalaya bridge corss-section location map

4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 18, 2014 using a survey grade dual frequency GNSS Rover Trimble[®] SPS 882 receiver mounted on a pole, attached in front of a vehicle as shown in Figure 41. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height was 2.347 m measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with LE-92 occupied as the GNSS base station in the conduct of the survey.

Figure 41. Ground Validation Set-up, Trimble® SPS 882 Rover, for Liangan River Basin

The survey started from Brgy. Binuni, Municipality of Bacolod and traversed major roads going to Brgy. Manga in Kolambugan covering four (4) barangays in Bacolod, fourteen (14) in Municipality of Kolambugan, and five (5) barangays in Municipality of Maigo; and ended in Brgy. Manga, Kolambugan. The survey gathered a total of 1,896 ground validation points with an approximate length of 25 km as illustrated in Figure 42.

Figure 42. Extent of the LiDAR ground validation survey along Liangan River Basin

4.7 River Bathymetric Survey

Bathymetric survey was executed on December 18, 2014 using Trimble[®] SPS 882 in GNSS PPK survey technique and a Hi-Target[™] Single Beam Echo Sounder mounted on a pole attached to a boat as shown in Figure 43. The survey started from Brgy. Alegria, Mun. of Bacolod with coordinates from the upstream part of the river in Brgy. Alegria, Municipality of Bacolod with coordinates 8°10′29.72262″ 124°00′07.74227″ and ended at the mouth of the river in Brgy. Liangan West, Mun. of Maigo with coordinates 8°10′32.30943″ 123°59′03.88597″.

Figure 43. Bathymetric survey using Hi-Target™ Single Beam Echo Sounder and mounted Trimble® SPS 882

Manual bathymetric survey on the other hand was executed on December 16 and 17, 2014 using Trimble[®] SPS 882 in GNSS PPK survey technique as shown in Figure 44. The survey started from the upstream part of the river in Brgy. Alegria, Municipality of Bacolod with coordinates 8°10'12.29611" 124°00'20.24262", walked down the river by foot and ended at the starting point of bathymetric survey using boat.

Figure 44. Actual execution of manual bathymetric survey along Liangan River

The bathymetric survey covered approximately 3.72 km of Liangan River with a total of 466 points acquired from Brgy. Esperanza to Brgy. Liangan West as shown in Figure 45. A CAD drawing was also produced to illustrate the Liangan riverbed profile, shown in Figure 46. There is an abrupt change in elevation between the upstream in Brgy. Esperanza to its downstream in Brgy. Liangan West which is the mouth of the river. The lowest part of the river was observed to be between Brgy. Alegria and Liangan West having an elevation of 6.30 m below Mean Sea Level (MSL). Towards the mouth of the river, the elevation is quite uniform ranging from -2 and -2.96 m (MSL).

Figure 45. Extent of the Liangan River Bathymetry Survey

CHAPTER 5: FLOOD MODELING AND MAPPING

Alfredo Mahar Francisco A. Lagmay, Christopher Noel L. Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, and Neil R. Tingin

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

5.1 Data Used for Hydrologic Modeling

5.1.1 Hydrometry and Rating Curves

All data that affect the hydrologic cycle of the Liangan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Liangan River Basin were monitored, collected, and analyzed.

5.1.2 Precipitation

Precipitation data was taken from the Portable Automatic Rain Gauge (ARG) installed upstream by the Data Validation Component (DVC) of MSU-IIT. The ARG was specifically installed in the municipality of Salvador with coordinates 8°9'33.61"N Latitude and 124°1'29.72"E Longitude. The location of the rain gauge is shown in Figure 47 below.

Figure 47. Location map of the Liangan HEC-HMS model used for calibration.

5.1.3 Rating Curves and River Outflow

HQ curve analysis is important in determining the equation to be used in establishing Q values with R-Squared values closer to 1. A trendline is more accurate if the R-Squared value is closer or at 1.

Figure 48 shows the highest R-Squared value of 0.945 compared to the graphs using the original Q. In this case, Q boxed values with Q at bank-full were plotted versus the stage.

Figure 48. Cross-section plot of Babalaya-Ezperanza Bridge

Figure 49. Rating Curve at Babalaya-Ezperanza Bridge

This rating curve equation was used to compute the river outflow at Babalaya-Ezperanza Bridge for the calibration of the HEC-HMS model shown in Figure 50. Total rainfall taken from the ARG at Mati for this event was 62.6 mm. It peaked to 5.6 mm on 21 June 2016 16:00. Peak discharge is 66.9 cms at 21:10, June 21, 2016. The lag time between the peak rainfall and discharge is 6 hours and 20 minutes.

Figure 50. Rainfall and outflow data of the Liangan River Basin used for modeling.

5.2 RIDF Station

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Cagayan de Oro Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station chosen based on its proximity to the Liangan watershed. The extreme values for this watershed were computed based on a 54-year record.

COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION									
T (yrs)	10 mins	20 mins	30 mins	1 hr	2 hrs	3 hrs	6 hrs	12 hrs	24 hrs
2	18.6	29.5	37	48.3	62.3	69.4	81.6	91.8	100.1
5	24.5	38.4	48.2	63.7	84.3	92.6	109.9	128.1	141.7
10	28.4	44.3	55.6	73.9	98.8	107.9	128.7	152.1	169.2
15	30.6	47.7	59.8	79.6	107.1	116.6	139.3	165.6	184.7
20	32.2	50	62.8	83.7	112.8	122.7	146.7	175.1	195.6
25	33.3	51.8	65	86.8	117.3	127.4	152.4	182.4	204
50	37	57.3	72	96.3	130.9	141.8	170	204.9	229.8
100	40.6	62.8	78.9	105.8	144.5	156.1	187.4	227.3	255.5

Table 28. RIDF values for Cagayan de Oro Rain Gauge computed by PAGASA

Figure 51. Location of Cagayan de Oro RIDF station relative to Liangan River Basin

Figure 52. Synthetic storm generated for a 24-hour period rainfall for various return periods

5.3 HMS Model

The soil texture dataset was generated before 2004 from the Bureau of Soils and Water Management (BSWM); this is under the Department of Agriculture. The soil texture map (Figure 53) of the Liangan River basin was used as one of the factors for the estimation of the CN parameter.

Figure 53. Soil Map of Liangan River Basin

Figure 54. Land Cover Map of Liangan River Basin

For Liangan, the soil classes identified were clay, clay loam, and undifferentiated. The land cover types identified were shrubland, grassland, forest plantation, open forest, closed forest, and cultivated.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure 55. Slope Map of Liangan River Basin

Figure 56. Stream Delineation Map of Liangan River Basin

Using the SAR-based DEM, the Liangan basin was delineated and further subdivided into subbasins. The model consists of 30 sub basins, 15 reaches, and 15 junctions. The main outlet is Lia_Point. This basin model is illustrated in Figure 56. Finally, it was calibrated using hydrological data derived from the depth gauge and flow meter deployed at Liangan Bridge.

Figure 57. The Liangan Hydrologic Model generated in HEC-GeoHMS

5.4 Cross-section Data

Riverbed cross-sections of the watershed are crucial in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived using the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.

Figure 58. River cross-section of Liangan River generated through Arcmap HEC GeoRAS tool

5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the south to northwest, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

Figure 59. Screenshot of subcatchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 22.73016 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s. The generated hazard maps for Liangan are in Figures 63, 65, and 67.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 21148900.00 m2. The generated flood depth maps for Liangan are in Figures 64, 66, and 68.

There is a total of 82386741.24 m3 of water entering the model. Of this amount, 10149608.38 m3 is due to rainfall while 72237132.86 m3 is inflow from other areas outside the model. 1793094.88 m3 of this water is lost to infiltration and interception, while 974120.34 m3 is stored by the floodplain. The rest, amounting up to 79619530.89 m3, is outflow.

5.6 Results of HMS Calibration

After calibrating the Liangan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 60 shows the comparison between the two discharge data.

Figure 60. Outflow Hydrograph of Liangan Bridge generated in HEC-HMS model compared with observed outflow

Enumerated in Table 29 are the adjusted ranges of values of the parameters used in calibrating the model.

Hydrologic Element	Calculation Type	Method	Parameter	Range of Calibrated Values
Basin	Loss	SCS Curve number	Initial Abstraction (mm)	9 - 61
			Curve Number	55 - 89
	Transform	Clark Unit Hydrograph	Time of Concentration (hr)	0.1 – 7.5
			Storage Coefficient (hr)	0.07 - 9
	Baseflow Recession		Recession Constant	0.95
			Ratio to Peak	0.435
Reach	Routing	Muskingum- Cunge	Manning's Coefficient	0.045

Table 29. Range of calibrated values for Liangan

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 9mm to 61mm means that there is a minimal to average amount of infiltration or rainfall interception by vegetation per subbasin.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of 55 to 89 for curve number is advisable for Philippine watersheds depending on the soil and land cover of the area (M. Horritt, personal communication, 2012).

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.07 to 9 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. Recession constant of 0.95 indicates that the basin is unlikely to quickly go back to its original discharge and instead, will be higher. Ratio to peak of 0.435 indicates a steeper receding limb of the outflow hydrograph.

Manning's roughness coefficient of 0.045 corresponds to the common roughness Liangan watershed, which is determined to be cultivated with mature field crops (Brunner, 2010).

Accuracy measure	Value
RMSE	2.16
r2	0.94
NSE	0.91
PBIAS	-1.82
RSR	0.3

Table 30. Efficiency Test of the Liangan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was computed as 2.16 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.94.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.91.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.82.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.3.

5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 61) shows the Liangan outflow using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

Figure 61. Outflow hydrograph at Liangan Station generated using Cagayan de Oro RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Liangan discharge using the Cagayan de Oro Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 31.

RIDF Period	Total Precipitation (mm)	Peak rainfall (mm)	Peak outflow (m 3/s)	Time to Peak
5-Year	141.7	24.5	434.6	16 hours, 30 minutes
10-Year	300.7	37	1205.5	16 hours, 30 minutes
25-Year	373.6	44	1591.5	16 hours, 30 minutes
50-Year	427.6	49.2	1879.8	16 hours, 20 minutes
100-Year	481.2	54.4	2169	16 hours, 20 minutes

Table 31. Peak values of the Liangan HECHMS Model outflow using Cagayan de Oro RIDF

5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Liangan River using the calibrated HMS base flow is shown in Figure 62.

Figure 62. Sample output of Liangan RAS Model

5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 63 to Figure 68 shows the 5-, 25-, and 100-year rain return scenarios of the Liangan floodplain. The floodplain, with an area of 44.65 sq. km., covers two municipalities namely Bacolod and Maigo. Table 34 shows the percentage of area affected by flooding per municipality.

Municipality Total Area		Area Flooded	% Flooded
Bacolod	62.2594	21.69	35%
Maigo	126.356	22.96	18%

Table 32. Munici	palities affected i	in Liangan l	Floodplain
	4	0	

73

5.10 Inventory of Areas Exposed to Flooding

Affected barangays in Liangan river basin, grouped by municipality, are listed below. For the said basin, two municipalities consisting of 17 barangays are expected to experience flooding when subjected to 5-, 25-, and 100-yr rainfall return period.

For the 5-year return period, 30.56% of the municipality of Bacolod with an area of 62.26 sq. km. will experience flood levels of less 0.20 meters. 2.45% of the area will experience flood levels of 0.21 to 0.50 meters while 0.71%, 0.34%, 0.47%, and 0.31% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sg. km.) by	Area of affected barangays in Bacolod (in sq. km.)									
flood depth (in m.)	Alegria	Babalaya	Babalaya Townsite	Esper- anza	Kahayag	Liangan East	Mati	Pagaya- wan	Poblacion Bacolod	
0.03-0.20	1.72	3.16	2.93	3.68	1.86	0.2	2.94	1.77	0.76	
0.21-0.50	0.082	0.16	0.11	0.56	0.081	0.034	0.26	0.1	0.13	
0.51-1.00	0.051	0.1	0.066	0.11	0.039	0.0001	0.026	0.025	0.02	
1.01-2.00	0.054	0.051	0.05	0.037	0.016	0	0.0003	0.0043	0	
2.01-5.00	0.14	0.05	0.068	0.0065	0.026	0	0	0.0015	0	
> 5.00	0.14	0.014	0.029	0.0015	0.0047	0	0	0	0	

Table 33. Affected areas in Bacolod, Lanao del Norte during a 5-Year Rainfall Return Period

Figure 69. Affected Areas in Bacolod, Lanao del Norte during 5-Year Rainfall Return Period

For the municipality of Maigo, with an area of 126.36 sq. km., 15.88% will experience flood levels of less 0.20 meters. 0.87% of the area will experience flood levels of 0.21 to 0.50 meters while 0.74%, 0.48%, 0.15%, and 0.04% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 34 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by		Area of affected barangays in Maigo (in sq. km.)							
flood depth (in m.)	Camp 1	Claro M. Recto	Inoma	Liangan West	Mahayahay	Mentring	Poblacion	Santa Cruz	
0.03-0.20	3.3	1.6	0.62	2.72	6.07	1.21	0.27	4.28	
0.21-0.50	0.12	0.22	0.022	0.15	0.28	0.058	0.014	0.24	
0.51-1.00	0.081	0.27	0.0078	0.11	0.21	0.039	0.015	0.2	
1.01-2.00	0.092	0.13	0.0028	0.14	0.1	0.0054	0.017	0.13	
2.01-5.00	0.04	0.0041	0	0.13	0.0065	0	0.0028	0.0093	
> 5.00	0	0	0	0.055	0	0	0	0.0001	

Table 34. Affected	l Areas in Maigo,	Lanao del Norte	during 5-Year	Rainfall Return Period

Figure 70. Affected Areas in Maigo, Lanao del Norte during 5-Year Rainfall Return Period

For the 25-Year return period, 27.51% of the municipality of Bacolod with an area of 62.26 sq. km. will experience flood levels of less 0.20 meters. 3.34% of the area will experience flood levels of 0.21 to 0.50 meters while 1.54%, 0.75%, 0.50%, and 1.22% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 35 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sg. km.) by	Area of affected barangays in Bacolod (in sq. km.)								
flood depth (in m.)	Alegria	Babalaya	Babalaya Townsite	Esper- anza	Kahayag	Liangan East	Mati	Pagaya- wan	Poblacion Bacolod
0.03-0.20	1.42	3.02	2.73	3.21	1.71	0.098	2.64	1.64	0.66
0.21-0.50	0.085	0.16	0.13	0.71	0.092	0.033	0.49	0.19	0.18
0.51-1.00	0.089	0.14	0.079	0.37	0.07	0.014	0.093	0.044	0.061
1.01-2.00	0.098	0.075	0.062	0.081	0.044	0.082	0.0049	0.019	0.0002
2.01-5.00	0.11	0.05	0.051	0.026	0.054	0.011	0	0.0033	0
> 5.00	0.4	0.097	0.2	0.0045	0.059	0	0	0.0046	0

Table 35. Affected Areas in Bacolod, Lanao del Norte during 25-Year Rainfall Return Period

Figure 71. Affected Areas in Bacolod, Lanao del Norte during 25-Year Rainfall Return Period

For the municipality of Maigo, with an area of 126.36 sq. km., 14.86% will experience flood levels of less 0.20 meters. 0.89% of the area will experience flood levels of 0.21 to 0.50 meters while 0.87%, 0.85%, 0.54%, and 0.16% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometres by flood depth per barangay.

Affected area Area of affected barangays in Maigo (in sq. km.) (sq. km.)								
flood depth (in m.)	Camp 1	Claro M. Recto	Inoma	Liangan West	Mahayahay	Mentring	Poblacion	Santa Cruz
0.03-0.20	3.18	1.24	0.6	2.47	5.82	1.17	0.24	4.07
0.21-0.50	0.14	0.21	0.027	0.15	0.3	0.064	0.017	0.23
0.51-1.00	0.085	0.36	0.013	0.1	0.25	0.053	0.014	0.22
1.01-2.00	0.079	0.32	0.0071	0.15	0.22	0.031	0.024	0.25
2.01-5.00	0.16	0.082	0.0006	0.24	0.09	0.001	0.021	0.087
> 5.00	0.004	0	0	0.19	0	0	0	0.0009

Table 36. Affected Areas in Maigo, Lanao del Norte during 25-Year Rainfall Return Period

Figure 72. Affected Areas in Maigo, Lanao del Norte during 25-Year Rainfall Return Period

For the 100-year return period, 26.28% of the municipality of Bacolod with an area of 62.26 sq. km. will experience flood levels of less 0.20 meters. 3.63% of the area will experience flood levels of 0.21 to 0.50 meters while 1.83%, 0.90%, 0.71%, and 1.49% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sg. km.) by	Area of affected barangays in Bacolod (in sq. km.)									
flood depth (in m.)	Alegria	Babalaya	Babalaya Townsite	Esper- anza	Kahayag	Liangan East	Mati	Pagaya- wan	Poblacion Bacolod	
0.03-0.20	1.35	2.96	2.64	3.03	1.59	0.093	2.51	1.57	0.62	
0.21-0.50	0.079	0.17	0.16	0.71	0.085	0.038	0.57	0.24	0.2	
0.51-1.00	0.069	0.14	0.085	0.48	0.089	0	0.13	0.058	0.08	
1.01-2.00	0.11	0.089	0.063	0.14	0.074	0.056	0.0097	0.022	0.0027	
2.01-5.00	0.13	0.062	0.062	0.039	0.099	0.044	0	0.006	0	
> 5.00	0.46	0.12	0.25	0.0065	0.088	0.0061	0	0.0059	0	

Table 37. Affected Areas in Bacolod, Lanao del Norte during 100-Year Rainfall Return Period

Figure 73. Affected Areas in Bacolod, Lanao del Norte during 100-Year Rainfall Return Period

For the municipality of Maigo, with an area of 126.36 sq. km., 14.56% will experience flood levels of less 0.20 meters. 0.89% of the area will experience flood levels of 0.21 to 0.50 meters while 0.89%, 0.92%, 0.71%, and 0.19% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometres by flood depth per barangay.

Affected area (sq. km.) by	Area of affected barangays in Maigo (in sq. km.)							
flood depth (in m.)	Camp 1	Claro M. Recto	Inoma	Liangan West	Mahayahay	Mentring	Poblacion	Santa Cruz
0.03-0.20	3.13	1.15	0.6	2.41	5.73	1.15	0.23	4
0.21-0.50	0.14	0.2	0.026	0.15	0.31	0.065	0.019	0.22
0.51-1.00	0.093	0.36	0.016	0.12	0.25	0.055	0.015	0.22
1.01-2.00	0.068	0.37	0.0077	0.15	0.25	0.042	0.023	0.26
2.01-5.00	0.18	0.15	0.0014	0.26	0.13	0.002	0.03	0.15
> 5.00	0.023	0	0	0.22	0.000003	0	0	0.0014

Table 38. Affected Areas in Maigo, Lanao del Norte during 100-Year Rainfall Return Period

Figure 74. Affected Areas in Maigo, Lanao del Norte during 100-Year Rainfall Return Period

Among the barangays in the municipality of Bacolod, Esperanza is projected to have the highest percentage of area that will experience flood levels at 7.07%. Meanwhile, Babalaya posted the second highest percentage of area that may be affected by flood depths at 5.68%.

Among the barangays in the municipality of Maigo, Mahayahay is projected to have the highest percentage of area that will experience flood levels at 5.28%. Meanwhile, Santa Cruz posted the second highest percentage of area that may be affected by flood depths at 3.84%.

Moreover, the generated flood hazard maps for the Liangan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

Warning	Area Covered in sq. km.				
Level	5 year	25 year	100 year		
Low	2.61	3.22	3.41		
Medium	1.74	2.90	3.14		
High	1.36	2.81	3.53		
TOTAL	5.71	8.93	10.08		

Table 39. Areas covered by each warning level with respect to the rainfall scenarios

Of the 21 identified Education Institutions in Liangan Flood plain, none was assessed to be exposed to any level of flooding during a 5 year scenario. In the 25 and 100 year scenario, only Esperanza Elementary School was assessed to be exposed to the Low level flooding. See Annex 12 for a detailed enumeration of schools inside Liangan floodplain.

Of the 3 identified Medical Institutions in Liangan Flood plain, none was assessed to be exposed to any level of flooding during a 5, 25, and 100 year scenario. See Annex 13 for a detailed enumeration of medical insitutions inside Liangan floodplain.

5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the Flood Depth Maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios are identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or through interview of some residents with knowledge of or have had experienced flooding in a particular area. The flood validation data were obtained on March 2016.

After which, the actual data from the field will be compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on what is needed. The points in the flood map versus its corresponding validation depths are shown in Figure 77.

The flood validation consists of 156 points randomly selected all over the Liangan floodplain. It has an RMSE value of 0.58.

Figure 75. Validation points for a 5-year Flood Depth Map of the Liangan Floodplain.

Figure 76. Flood map depth vs. actual flood depth

Actual	Modeled Flood Depth (m)							
Flood Depth (m)	0-0.20	0.21-0.50	0.51-1.00	1.01-2.00	2.01-5.00	> 5.00	Total	
0-0.20	54	6	0	0	0	0	60	
0.21-0.50	59	17	10	0	0	0	86	
0.51-1.00	32	8	7	5	2	0	54	
1.01-2.00	19	4	5	10	2	0	40	
2.01-5.00	0	1	0	1	0	0	2	
> 5.00	0	0	0	0	0	0	0	
Total	164	36	22	16	4	0	242	

Table 40. Actual flood vs simulated flood depth at different levels in the Liangan River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 31.06%, with 73 points correctly matching the actual flood depths. In addition, there were 68 points estimated one level above and below the correct flood depths, while there were 46 points and 42 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 25 points were overestimated, while a total of 137 points were underestimated in the modeled flood depths of Liangan River Basin. Table 54 depicts the summary of the Accuracy Assessment in the Liangan River Basin Flood Depth Map.

Table 41. Summary of the Accuracy Assessment in the Liangan River Basin Survey

	No. of Points	%
Correct	88	36.36
Overestimated	25	10.33
Underestimated	129	53.31
Total	242	100

REFERENCES

Ang M.C., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Balicanta L.P, Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Paringit, E.C., Balicanta, L.P., Ang, M.C., Lagmay, A.F., Sarmiento, C. 2017, Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

Sarmiento C.J.S., Paringit E.C., et al. 2014. DREAM Data Aquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry

UP TCAGP 2016. Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

ANNEXES

Annex 1. Technical Specifications of the Pegasus Sensor used in the Liangan Floodplain Survey

Laptop

Control Rack

Figure A-1.1. Pegasus Sensor

Table A-1.1. Parameters and S	Specification of Pe	egasus Sensor
-------------------------------	---------------------	---------------

Parameter	Specification
Operational envelope (1,2,3,4)	150-5000 m AGL, nominal
Laser wavelength	1064 nm
Horizontal accuracy (2)	1/5,500 x altitude, 1σ
Elevation accuracy (2)	< 5-20 cm, 1σ
Effective laser repetition rate	Programmable, 100-500 kHz
Position and orientation system	POS AV ™AP50 (OEM)
Scan width (FOV)	Programmable, 0-75 °
Scan frequency (5)	Programmable, 0-140 Hz (effective)
Sensor scan product	800 maximum
Beam divergence	0.25 mrad (1/e)
Roll compensation	Programmable, ±37° (FOV dependent)
Vertical target separation distance	<0.7 m
Range capture	Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns
Intensity capture	Up to 4 intensity returns for each pulse, including last (12 bit)
Image capture	5 MP interline camera (standard); 60 MP full frame (optional)
Full waveform capture	12-bit Optech IWD-2 Intelligent Waveform Digitizer
Data storage	Removable solid state disk SSD (SATA II)
Power requirements	28 V, 800 W, 30 A
Dimensions and weight	Sensor: 630 x 540 x 450 mm; 65 kg;
	Control rack: 650 x 590 x 490 mm; 46 kg
Operating Temperature	-10°C to +35°C
Relative humidity	0-95% non-condensing

Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

1. LAN-2

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LANAO DEL NORTE			
	TOVINCE. EANAO DEL NORTE			
	Station Name: LAN-2			
	Order: 1st			
Municipality: LALA		Baranga	y: PINC	YAK
	PRS92 Coordinates			
Latitude: 7º 54' 46.07859"	Longitude: 123º 46' 0.85333"	Ellipsoida	al Hgt:	17.35400 m.
	WGS84 Coordinates			
Latitude: 7º 54' 42.56546"	Longitude: 123º 46' 6.31720"	Ellipsoida	al Hgt:	83.92120 m.
	PTM Coordinates			
Northing: 875110.149 m.	Easting: 364025.74 m.	Zone:	5	
	UTM Coordinates			
Northing: 874,680.35	Easting: 584,533.45	Zone:	51	

Location Description

LAN-2

LAN-2 From Iligan City, travel southwest along the National highway for 74.5 kilometers to the municipality of Lala. Travel farther along the national highway for 1.4 kilometers up to Maranding junction. Thence from the junction travel southeast along the national highway for another 1.3 kilometers to a dirt road going to Pinoyak barangay proper. Turn right on the dirt road and national highway intersection and continue travelling westward for 400 meters up to the irrigation canal. Station is located on top of the concrete irrigation canal water gate. Station mark is 0.15 m x 0.01 m in diameter brass rod, with cross cut on top, set in a drill hole on top of the concrete irrigation canal water gate; centered in cement patty and inscribed on top with the station name. All reference marks are 0.15 m x 0.01 m in diameter brass rod, with cross cut on top, set in drill holes on top of the concrete irrigation canal water gate; centered in cement patty and inscribed with the reference mark numbers and arrow pointing to the station.

Requesting Party: Engr. Cruz Pupose: Reference OR Number: 8796376 A T.N .: 2014-1441

th RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca SL. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.1. LAN-2

2. LDN-01

April 18, 2013

CERTIFICATION

To whom it may concern:

LDN-01

This is to certify that according to the records on file in this office, the requested survey information is as follows -

		Pro	vince: LA	NAO DEL NORTE			
			Station N	ame: LDN-01			
Island: M Municipali			Order	: 3rd	Barangay:	POB	LACION
			PRS	92 Coordinates			
Latitude:	8º 14' 1.44528"	L	ongitude:	124° 13' 56.94179"	Ellipsoidal	Hgt:	11.87000 m.
			WGS	84 Coordinates			
Latitude:	8º 13' 57.88944"	L	ongitude:	124° 14' 2.37264"	Ellipsoidal	Hgt:	78.95000 m.
			PTN	/ Coordinates			
Northing:	910480.055 m.	E	asting:	415436.191 m.	Zone:	5	
		-	UTM	/ Coordinates			
Northing:	910,289.41	E	asting:	635,751.93	Zone:	51	

Location Description

From Iligan City, travel northeast going to Iligan City Pier for about 15 minutes drive. The station is located at the roof top of Iligan City PPA Administration building, inside the Iligan City Pier compound. Mark is a 30x30 cm cement putty monument, on top of PPA Administration building, with 4-inches on the center of the cement putty monument inscribed with station name LDN-01 2007 NCIP.

 Requesting Party:
 UP DREAM/ Melchor Nery

 Pupose:
 Reference

 OR Number:
 3943540 B

 T.N.:
 2013-0307

1

RUEL DM. BELEN, MNSA Director, Mapping and Geodesy Department /

NAMRIA OFFICES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. Son Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

Figure A-2.2. LDN-01

Republic of the millippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

June 24, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LANAO DEL NORTE Station Name: LE-50	
Island: Mindanao	Municipality: MAIGO	Barangay: CLARO M. RECTO
Elevation: 5.3895 m.	Order: 1st Order	Datum: Mean Sea Level

Location Description

BM LE-50 is in the Province of Lanao Del Norte, Town of Maigo, Brgy. C.M. Recto, along the Butuan - Zamboanga National Road, and about 50 meters North East of the Covenant Baptist Church. The station is located at the South West end of the Barogohan Bridge footwalk and about 70 meters South West of KM post 1561.

A brass rod is set on a drilled hole and cemented flushed on top of a 15cm x 15cm cement putty with inscription "LE-50, 2007, NAMRIA".

Requesting Party:EngPupose:RefOR Number:879T.N.:201

Engr. Cruz Reference 8796376 A 2014-1440

64 RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch 6

NAMRIA OFFICES:

99082420141118

Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca Si. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.3. LE-50

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

LE-55 4.

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LANAO DEL NORTE Station Name: LE-55	
Island: Mindanao	Municipality: MAIGO	Barangay: SEGAPOD
Elevation: 6.7618 m.	Order: 1st Order	Datum: Mean Sea Level

Location Description

BM LE-55 is in the Province of Lanao Del Norte, Town of Maigo, Brgy. Sogapod, along the Butuan-Zamboanga National Road. The station is located at the south east end of the Segapod Bridge Footwalk, and about 275 north west of KM Post 1565.

A brass rod is set on a drilled hole and cemented flushed on top of a 15 cm x 15 cm cement putty with inscription "LE-55, 2007, NAMRIA".

Requesting Party: UP-TCAGP / Engr. Christopher Cruz Pupose: OR Number: T.N.:

Reference 8799582 A 2014-1722

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch Um

NAMRIA OFFICES:

Main. Lawton Avenue, Fort Bonfacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.4. LE-55

Republic of the Philippines Department of Environment and Natural Resources NATIONAL MAPPING AND RESOURCE INFORMATION AUTHORITY

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LANAO DEL NORTE	
	Station Name, LE-69	
sland: Mindanao	Municipality: LALA	Barangay:
Elevation: 10.8140 m.	Order: 1st Order	Datum: Mean Sea Level

Location Description

BM LE-89

Is in the Province of Lanao del Norte, Municipality of Lala, Brgy. Panguil, along the Iligan - Zamboanga National Road. The station is located on top of a riprap, about 6 meters North West of KM post 1600 and about 8 meters West of centerline of the highway.

A brass rod is set on a drilled hole and cemented flushed on top of a 15cm x 15cm cement putty with inscription "LE-89, 2007 NAMRIA".

Requesting Party: Pupose: OR Number: T.N.:

Requesting Party: UP-TCAGP / Engr. Christopher Cruz Pupose: Reference

8799582 A

2014-1724

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES:

Manni, Lawford Avenue, Fart Bon/facio, 1534 Taguig City, Philippines Tel. No. (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.5. LE-89

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

6. LE-76

July 25, 2014

CERTIFICATION

To whom it may concern:

This is to certify that according to the records on file in this office, the requested survey information is as follows -

	Province: LANAO DEL NORTE Station Name: LE-89	
sland: Mindanao	Municipality: LALA	Barangay:
Elevation: 10.8140 m.	Order: 1st Order	Datum: Mean Sea Level

Location Description

BM LE-89

Is in the Province of Lanao del Norte, Municipality of Lala, Brgy. Panguil, along the Iligan - Zamboanga National Road. The station is located on top of a riprap, about 6 meters North West of KM post 1600 and about 8 meters West of centerline of the highway.

A brass rod is set on a drilled hole and cemented flushed on top of a 15cm x 15cm cement putty with inscription "LE-89, 2007 NAMRIA".

Requesting Party: Pupose: OR Number: T.N.: UP-TCAGP / Engr. Christopher Cruz Reference 8799582 A 2014-1724

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

NAMRIA OFFICES: Main : Lawlon Avenue, Fart Bon/acio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barrace St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.6. LE-76

Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

1. LE-50

Figure A-3.1. LE-50

LE50 - LAN2 (10:05:34 AM-2:59:59 PM) (S1)

LE50 LAN2 (B1)
7/27/2014 10:28:26 PM
Fixed
Dual Frequency (L1, L2)
0.012 m
0.024 m
0.005 m
3.688
Broadcast
NGS Absolute
6/20/2014 10:05:34 AM (Local: UTC+8hr)
6/20/2014 2:59:59 PM (Local: UTC+8hr)
04:54:25
5 seconds

Vector Components (Mark to Mark)

From:	LAN2							
G	rid		Local			Global		
Easting	584699.973 m	Latitud	de	N7°54'42	2.56546	Latitude		N7°54'42.56546"
Northing	874628.035 m	Longit	itude	E123°46'06	3.31720*	Longitude		E123°46'06.31720"
Elevation	15.242 m	Height	nt	8	3.921 m	Height		83.921 m
To: LE50								
G	Grid		Local			Global		
Easting	606345.902 m	Latitud	de	N8°09'51	1.11024" Latitude			N8°09'51.11024"
Northing	902577.426 m	Longit	itude	E123°57'55	5.36634*	Longitude		E123°57'55.36634"
Elevation	4.394 m	Height	nt	7	3.452 m	Height		73.452 m
Vector								
∆Easting	21645.92	29 m N	NS Fwd Azimuth			37°51'51"	ΔX	-15847.070 m
∆Northing	27949.39	92 m E	Ellipsoid Dist.			35361.439 m	ΔY	-15348.392 m
∆Elevation	-10.84	47 m ∆	\Height			-10.469 m	ΔZ	27636.144 m

Figure A-3.2. LE-55

LE50 B - LE55 (9:12:04 AM-1:23:24 PM) (S1)

Baseline observation:	LE50 B LE55 (B1)
Processed:	7/27/2014 10:49:08 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.007 m
Vertical precision:	0.022 m
RMS:	0.003 m
Maximum PDOP:	3.817
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	6/28/2014 9:12:24 AM (Local: UTC+8hr)
Processing stop time:	6/28/2014 1:23:24 PM (Local: UTC+8hr)
Processing duration:	04:11:00
Processing interval:	5 seconds

Vector Components (Mark to Mark)

From:	LE50 B							
G	rid	Lo	Local		Global		bal	
Easting	606345.902 m	Latitude	N8°09'51	.11024*	Latitude		N8°09'51.11024"	
Northing	902577.426 m	Longitude	E123°57'55	5.36634*	Longitude		E123°57'55.36634"	
Elevation	4.394 m	Height	7	3.452 m	Height		73.452 m	
To:	To: LE55							
G	Grid		Local			Global		
Easting	602641.751 m	Latitude	N8°07'59	9.16191*	Latitude		N8°07"59.16191"	
Northing	899130.439 m	Longitude	E123°55'54	.06681*	Longitude		E123°55'54.06681"	
Elevation	5.896 m	Height	Height 75.001 m		Height		75.001 m	
Vector								
∆Easting	-3704.15	1 m NS Fwd Azimuth			227°11'47"	ΔX	2807.203 m	
∆Northing	-3446.98	7 m Ellipsoid Dist.			5061.227 m	ΔY	2479.320 m	
∆Elevation	1.50	2 m AHeight			1.549 m	ΔZ	-3404.292 m	

Figure A-3.3. LE-89

LD	101 - EE03 FW (1.33.14 FW-4.00.45 FW) (01)
Baseline observation:	LDN01 LE89 PM (B1)
Processed:	7/27/2014 10:37:49 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.003 m
Vertical precision:	0.015 m
RMS:	0.002 m
Maximum PDOP:	1.981
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	6/27/2014 1:59:14 PM (Local: UTC+8hr)
Processing stop time:	6/27/2014 4:08:49 PM (Local: UTC+8hr)
Processing duration:	02:09:35
Processing interval:	5 seconds

LDN01 - LE89 PM (1:59:14 PM-4:08:49 PM) (S1)

Vector Components (Mark to Mark)

From:	LDN	01							
	Grid				Local		Global		lobal
Easting		635916.865 m	Latit	tude	N8°13'5	7.88944*	Latitude		N8°13'57.88944"
Northing		910238.155 m	Lon	gitude	E124°14'02	2.37264*	Longitude		E124°14'02.37264"
Elevation		9.384 m	Heig	ght	7	8.950 m	Height		78.950 m
To:	LE8	9 PM							
	Grid			Local			Global		
Easting		638201.305 m	Latit	Latitude N8°15'47.823		7.82322*	Latitude		N8°15'47.82322"
Northing		913622.047 m	Long	gitude	E124°15'17	7.37373*	Longitude		E124°15'17.37373"
Elevation		3.968 m	Height 73.451 m		'3.451 m	n Height		73.451 m	
Vector									
∆Easting		2284.44	0 m	NS Fwd Azimuth			34°12'00"	ΔX	-1621.760 m
∆Northing		3383.89	2 m	Ellipsoid Dist.			4083.501 m	ΔY	-1696.687 m
∆Elevation		-5.41	6 m	∆Height			-5.499 m	ΔZ	3341.640 m

Figure A-3.4. LE-76

Vector Components (Mark to Mark)

From:	LE-50						
Grid		1		Global			
Easting	606180.417 m	Latitude	N8°09'54.6721	7" Latitude		N8°09'51.11024"	
Northing	902629.434 m	Longitude	E123°57'49.9269	9" Longitude		E123°57'55.36634"	
Elevation	4.394 m	Height	6.900	m Height		73.452 m	
To: LE-76							
	Brid	Local			Global		
Easting	588530.790 m	Latitude	N8°03'05.3682	5" Latitude		N8°03'01.82183"	
Northing	890021.013 m	Longitude	E123°48'12.3730	7" Longitude		E123°48'17.82405"	
Elevation	7.017 m	Height	9.335	m Height		75.717 m	
Vector							
∆Easting	-17649.62	27 m NS Fwd Azimut	h	234°35'42"	ΔX	13688.663 m	
ΔNorthing	-12608.42	21 m Ellipsoid Dist.		21696.715 m	ΔY	11332.042 m	
∆Elevation	2.62	23 m AHeight		2.435 m	ΔZ	-12447.993 m	

Standard Errors

Vector errors:							
σ ΔEasting	0.021 m	σ NS fwd Azimuth	0°00'00"	σΔΧ	0.024 m		
σΔNorthing	0.006 m	σ Ellipsoid Dist.	0.015 m	σΔΥ	0.034 m		
σ ΔElevation	0.036 m	σΔHeight	0.036 m	σΔΖ	0.009 m		

Aposteriori Covariance Matrix (Meter²)

	х	Y	Z
х	0.0005606089		
Y	-0.0003223999	0.0011623638	
z	-0.0000556148	0.0002703935	0.0000791896
ILG-1

l	LE-89 - ILG-1 (7:50:33 AM-1:43:04 PM) (S2)
Baseline observation:	LE-89 ILG-1 (B2)
Processed:	07/02/2017 1:00:55 PM
Solution type:	Fixed
Frequency used:	Dual Frequency (L1, L2)
Horizontal precision:	0.003 m
Vertical precision:	0.010 m
RMS:	0.002 m
Maximum PDOP:	2.216
Ephemeris used:	Broadcast
Antenna model:	NGS Absolute
Processing start time:	02/06/2014 7:50:39 AM (Local: UTC+8hr)
Processing stop time:	02/06/2014 1:43:04 PM (Local: UTC+8hr)
Processing duration:	05:52:25
Processing interval:	5 seconds

Figure A-3.4. ILG-1

Vector Components (Mark to Mark)

From:	LE-89				
G	rid	Lo	ocal	Glo	obal
Easting	638036.487 m	Latitude	N8° <u>15'51</u> .38523"	Latitude	N8° <u>15'47</u> .82322"
Northing	913673.269 m	Longitude	E124°15'11.94582"	Longitude	E124°15'17.37373"
Elevation	3.968 m	Height	6.381 m	Height	73.451 m

То:	ILG-1					
	Grid	Lo	cal		G	lobal
Easting	637459.968 m	Latitude	N8° <u>14'35</u> .60437"	Latitude		N8° <u>14'32</u> .04743"
Northing	911343.882 m	Longitude	E124°14'52.86635"	Longitude		E124° <u>14'58</u> .29621"
Elevation	4.039 m	Height	6.546 m	Height		73.645 m
Vector						
∆Easting	-576.5	19 m NSFwd Azimuth		194° <mark>04'52</mark> "	<mark>∆X</mark>	294.412 m
∆Northing	-2329.3	87 m Ellipsoid Dist.		2400.067 m	ΔY	604.978 m
∆Elevation	0.0	71 m <mark>∆Height</mark>		0.165 m	ΔZ	-2303.832 m

Annex 4. The LIDAR Survey Team Composition

Data Acquisition Component Sub-Team	Designation	Name	Agency/ Affiliation
PHIL-LIDAR 1	Program Leader	ENRICO C. PARINGIT, DR.ENG	UP-TCAGP
Data Acquisition Component Leader	Data Component Project Leader - I	ENGR. CZAR JAKIRI SARMIENTO	UP-TCAGP
Curren Curren incu	Chief Science Research Specialist (CSRS)	ENGR. CHRISTOPHER CRUZ	UP-TCAGP
Survey Supervisor	Supervising Science	LOVELY GRACIA ACUÑA	UP-TCAGP
	Research Specialist (Supervising SRS)	LOVELYN ASUNCION	

Table A-4.1. The LiDAR Survey Team Composition

	FIELD	IEAIVI	
LiDAR Operation, Ground Survey, Data	Senior Science Research Specialist (SSRS)	JASMINE ALVIAR	UP-TCAGP
	Research Associate (RA)	ENGR. IRO NIEL ROXAS	UP-TCAGP
	RA	GRACE SINADJAN	UP-TCAGP
	RA	LANCE CINCO	UP-TCAGP
	RA	JONATHAN ALMALVEZ	UP-TCAGP
LiDAR Operation	Airborne Security	SSG. LEE JAY PUNZALAN	PHILIPPINE AIR FORCE (PAF)
	Pilot	CAPT. CESAR ALFONSO II	ASIAN AEROSPACE CORPORATION (AAC)
		CAPT. RANDY LAGCO	AAC

FIELD TEAM

Annex 5. Data Transfer Sheet for Liangan Floodplain

1								F	F	+		-		FLIGHT PL	AN	-
			_	æ	AW LAS			RAW	Log	DAVINE THE	a sau	ASE STATION(S)	OPERATOR LOGS		T	SERVER
	FLIGHT NO.	MISSION NAME	SENSOR	Outcout		LOGS(MB)	POS	SI SI	LEICASI	-	BAR	SE Base Into (JDI	a	Actual	KML.	
				LAS	KML (swath)		+	1	T			1	1KB	40	NAS	Airborne_Rawi1
		A Diversion of the	DECASIIS	1.6	467	9.27	265 m	e .		26.5 NA		9.83 ava		2	12	Althoma Raw/1
14	1525P	TRADIES AND	LEGUODA	-	ICh				-	AN O NA		8 87 1KB	1KB	47/38	NAS	GP
:		181K67151A	PEGASUS	3.32	270	14.4	224 4	4	07	33.3		0,01			N	Vairborne_Raw/1
14	TOSSE	TURNER		-					00	an 674h	8	42 R 1KB	1KB	47/45/40/34	NAG	11P
-	1541P	18UK718153A	PEGASUS	4	242	0	285	1	8	200		10.0	-		2	VAirborne_Raw/1
5				-			0	2 L L		10 + 2728	48	9 95 1KB	1KB	141	NA 5	150
2	1545P	1BUK71C154A	PEGASUS	4.13	2259	13	253 9		-	1.04	+	100	108	EALEDIAR	NAC	Mirbome_Raw1
		401 V710155A	PEGASUS	3.48	150	14.3	264 N	4 H	4	34.6 NA		11.2		21.02.02	1	Wirborne_Rawt1
14	12431	CLARKE AND AND A		+						AN AN		g 1 1KB	TKB	71	NA 5	61P
14	15610	IRXEISBA	PEGASUS	NA	44	NA	187	4	5	27	-				2	Vairbome_Raw/1
	+ 6650	181 K718159A	PEGASUS	NA	. 16	5.35	168 2	2.1	63	13.3 NA	_	7.75 ^{1KB}	IKB	36	NAS	66P

eived fro

RKETU Received by Name Position

6123/2014

Figure A-5.1. Transfer Sheet for Liangan Floodplain - A

FLIGHT PLAN DATA TRANSFER SHEET 07/28/2014(Northern Mindanso - ready)

Noversion (Level) (Lev	7.75 1KB 1KB 36 NA Ra 7.75 1KB 1KB 36 NA Ra 10 1KB 1KB 85 NA Ra 10 1KB 1KB 85 NA Ra	7.75 1 kB 1 kB 36 NA 2 kB 7.75 1 kB 1 kB 36 NA 2 kB 10 1 kB 1 kB 85 NA 2 kB 7.52 1 kB 1 kB 68 NA 2 kB 7.52 1 kB 1 kB 68 NA 2 kB 7.07 1 kB 1 kB 77/76 NA 2 kB	Constant Candition Candition <th< th=""><th>(Mod) (Mod) (Mod) 2.4Mi 7.75 1KB 1KB 36 NA 2.4Mi 110 1KB 1KB 85 NA 2.4Mi 7.75 1KB 1KB 85 NA 2.4Mi 7.52 1KB 1KB 66 NA 2.4Mi 7.52 1KB 1KB 68 NA 2.4Mi 7.07 1KB 1KB 77/76 NA 2.4Mi 5.92 1KB 1KB 46 NA 2.4Mi 5.92 1KB 1KB 5.2/56 NA 2.4Mi</th><th>(Mod) (Mod) (Mod) (Mod) ZMU 7.75 1KB 1KB 36 NA ZMU 10 1KB 1KB 85 NA ZMI 7.52 1KB 1KB 85 NA ZMI 7.52 1KB 1KB 68 NA ZMI 7.07 1KB 1KB 68 NA ZMI 7.07 1KB 1KB 77/76 NA ZMI 7.07 1KB 1KB 77/76 NA ZMI 7.07 1KB 1KB 70/76 NA ZMI 7.07 1KB 1KB 52/56 NA ZMI 4.97 1KB 52/56 NA ZMI 4.97 1KB 73 NA ZMI</th><th>(xed) (xed) <th< th=""><th>Total Luel Luel Luel Luel Luel Luel Luel Luel Zulu 7.75 1KB 1KB 1KB 36 NA Zulu 7.52 1KB 1KB 1KB 85 NA Zulu 7.52 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 66 NA Zulu 5.92 1KB 1KB 65/156 NA Zulu 4.97 1KB 1KB 52/156 NA Zulu 4.95 1KB 52/156 NA Zulu Zulu 7.7 1KB 1KB 77 Ras Zulu Ras</th><th>Total Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Zavi 7.75 1KB 1KB 1KB 85 NA Zavi 7.52 1KB 1KB 1KB 85 NA Zavi 7.07 1KB 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 5.92 1KB 1KB 7776 NA Zavi 4.97 1KB 1KB 52/56 NA Zavi 4.45 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 55/56 NA Zavi 7.7 1KB 1KB 56/65/60/ NA Zavi 7.7 1KB 1KB 65/65/60/</th><th>Total Lad Lad Lad ZuMin 7.75 1KB 1KB 36 NA ZuMin 10 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 2/176 NA ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 6.92 1KB 1KB 52/56 NA ZuMin ZuMin 4.45 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB<</th></th<></th></th<>	(Mod) (Mod) (Mod) 2.4Mi 7.75 1KB 1KB 36 NA 2.4Mi 110 1KB 1KB 85 NA 2.4Mi 7.75 1KB 1KB 85 NA 2.4Mi 7.52 1KB 1KB 66 NA 2.4Mi 7.52 1KB 1KB 68 NA 2.4Mi 7.07 1KB 1KB 77/76 NA 2.4Mi 5.92 1KB 1KB 46 NA 2.4Mi 5.92 1KB 1KB 5.2/56 NA 2.4Mi	(Mod) (Mod) (Mod) (Mod) ZMU 7.75 1KB 1KB 36 NA ZMU 10 1KB 1KB 85 NA ZMI 7.52 1KB 1KB 85 NA ZMI 7.52 1KB 1KB 68 NA ZMI 7.07 1KB 1KB 68 NA ZMI 7.07 1KB 1KB 77/76 NA ZMI 7.07 1KB 1KB 77/76 NA ZMI 7.07 1KB 1KB 70/76 NA ZMI 7.07 1KB 1KB 52/56 NA ZMI 4.97 1KB 52/56 NA ZMI 4.97 1KB 73 NA ZMI	(xed) (xed) <th< th=""><th>Total Luel Luel Luel Luel Luel Luel Luel Luel Zulu 7.75 1KB 1KB 1KB 36 NA Zulu 7.52 1KB 1KB 1KB 85 NA Zulu 7.52 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 66 NA Zulu 5.92 1KB 1KB 65/156 NA Zulu 4.97 1KB 1KB 52/156 NA Zulu 4.95 1KB 52/156 NA Zulu Zulu 7.7 1KB 1KB 77 Ras Zulu Ras</th><th>Total Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Zavi 7.75 1KB 1KB 1KB 85 NA Zavi 7.52 1KB 1KB 1KB 85 NA Zavi 7.07 1KB 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 5.92 1KB 1KB 7776 NA Zavi 4.97 1KB 1KB 52/56 NA Zavi 4.45 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 55/56 NA Zavi 7.7 1KB 1KB 56/65/60/ NA Zavi 7.7 1KB 1KB 65/65/60/</th><th>Total Lad Lad Lad ZuMin 7.75 1KB 1KB 36 NA ZuMin 10 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 2/176 NA ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 6.92 1KB 1KB 52/56 NA ZuMin ZuMin 4.45 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB<</th></th<>	Total Luel Luel Luel Luel Luel Luel Luel Luel Zulu 7.75 1KB 1KB 1KB 36 NA Zulu 7.52 1KB 1KB 1KB 85 NA Zulu 7.52 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 68 NA Zulu 7.07 1KB 1KB 66 NA Zulu 5.92 1KB 1KB 65/156 NA Zulu 4.97 1KB 1KB 52/156 NA Zulu 4.95 1KB 52/156 NA Zulu Zulu 7.7 1KB 1KB 77 Ras Zulu Ras	Total Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Ladi Zavi 7.75 1KB 1KB 1KB 85 NA Zavi 7.52 1KB 1KB 1KB 85 NA Zavi 7.07 1KB 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 7.07 1KB 1KB 7776 NA Zavi 5.92 1KB 1KB 7776 NA Zavi 4.97 1KB 1KB 52/56 NA Zavi 4.45 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 52/56 NA Zavi 7.7 1KB 1KB 55/56 NA Zavi 7.7 1KB 1KB 56/65/60/ NA Zavi 7.7 1KB 1KB 65/65/60/	Total Lad Lad Lad ZuMin 7.75 1KB 1KB 36 NA ZuMin 10 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 85 NA ZuMin 7.52 1KB 1KB 1KB 2/176 NA ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 7.07 1KB 1KB 77/76 NA ZuMin ZuMin 6.92 1KB 1KB 52/56 NA ZuMin ZuMin 4.45 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 52/56 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB 2/165 NA ZuMin ZuMin 7.7 1KB 1KB<
	NA 7.75 NA 7.75	NA 7.75 NA 10 NA 7.52	NA 7.75 NA 7.52 NA 7.67	NA 7.75 NA 10 NA 7.52 NA 7.07 NA 5.92 B86.6 4.97	NA 7.75 NA 7.75 NA 7.62 NA 7.07 86.6 4.97	NA 7.52 NA 7.52 NA 7.07 NA 7.07 NA 5.92 86.6 4.97 NA 4.45	NA 7.52 NA 7.52 NA 7.07 NA 7.07 NA 5.92 86.6 4.97 NA 4.45 NA 4.45	NA 7.75 NA 7.52 NA 7.07 NA 6.92 86.6 4.97 NA 6.97 86.6 7.7 NA 4.45 NA 7.7	NA 7.75 NA 7.77 NA 7.07 NA 7.07 NA 5.92 86.6 4.97 NA 4.45 NA 7.7 87.2 7.7 8 NA 7.7
AN C CF	38.5 NA	38.5 NA 21.3 NA 21.4 NA	38.5 NA 38.5 NA 21.3 NA 22.1 NA 22.1 NA	33.5 NA 38.5 NA 21.3 NA 22.1 NA 33.2 NA 33.2 NA	21.3 NA 21.3 NA 22.1 NA 33.2 NA 33.2 NA 29.4 86.6	21.3 NA 21.3 NA 22.1 NA 33.2 NA 33.2 NA 26.1 NA 26.1 NA	21.3 NA 21.3 NA 22.1 NA 33.2 NA 33.2 NA 29.4 86.6 29.4 86.6 29.4 86.6 29.4 86.6	21.3 NA 21.3 NA 22.1 NA 22.1 NA 33.2 NA 23.2 NA 26.1 NA 26.1 NA 26.9 NA 5.65 NA	21.3 NA 21.3 NA 22.1 NA 22.1 NA 23.2 NA 23.2 NA 26.1 NA 26.1 NA 26.5 NA 5.65 NA 5.65 NA
NA	62 62	86 62 NA	66 62 63 63 63 63 63 63 63 65 63 65 65 65 65 65 65 65 65 65 65 65 65 65	66 62 62 63 509 53 309 437 73 437 145	66 62 66 62 5,3 309 7,3 457 7,3 415	66 62 66 62 53 309 7,3 415 0.3 415 6.3 268	66 62 66 62 53 309 7,3 415 6.3 268 6.3 268 77.4 398	62 62 62 62 62 62 63 509 63 457 75 809 63 754 55 754 756 754 756 754 756 754 756 754 756 754 756 754 756 754 756 754 756 756 756 756 756 756 756 756 756 756	66 62 63 63 437 73 437 6.3 266 6.3 266 77.4 396 77.4 396 77.4 396 8.3 266 8.3 266 8.3 256 8.3 256 8.3 256
168 NA	3.5 290 8.86	5.5 290 8.86 0.5 237 NA	5.5 290 8.96 0.5 237 NA 1.2 259 45.3	5 290 8.86 0.5 290 8.86 1.2 259 453 3.7 258 673	15 290 8.86 15 237 MA 1.2 259 45.3 3.7 255 67.3 1.7 212 60.3	15 290 8.86 15 237 MA 1.2 259 45.3 3.7 258 67.3 1.7 212 60.3 10.7 187 36.2	15 290 8.86 15 237 NA 1.2 259 45.3 3.7 258 67.3 1.7 212 60.3 1.7 212 60.3 10.7 187 36.3 10.7 187 36.3 12.6 268 57	15 290 8.86 15 237 NA 1.2 259 453 1.7 258 673 1.7 212 603 10.7 187 363 10.7 187 363 12.6 268 57 13.433 119 NA	 1.5 290 8.86 1.5 259 45.3 1.2 259 45.3 3.7 259 45.3 1.7 2512 60.3 1.7 2512 60.3 1.7 2512 60.3 1.7 2512 60.3 1.1 4 242 51 11 4 242 51
16 6.93	837 16.5	832 16.5 332 10.5	832 16.5 332 10.5 526 11.2	832 16.5 332 10.5 526 11.2 177 13.1	832 16.5 332 10.6 332 10.5 526 11.2 177 13.1 1112 11.1	832 16.5 332 10.5 332 10.5 526 11.2 177 13.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1	832 16.5 332 10.5 332 10.5 526 11.2 177 13.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 112 12 11995 12	832 16.5 332 10.5 526 11.2 526 11.2 177 13.1 11.1 11.1 11.1 11.1 11.1 11.1 11.2 11.2 12 10.6 370 10.6 370 10.6 12 12 12 12 12 55 55 55 55 55 55 55 55 55 55 55 55 55	832 16.5 332 10.5 332 10.5 526 11.2 177 13.1 1112 11.1 1112 11.1 1112 11.1 1112 11.1 11995 12 95 4.3 95 4.3 11 NA 11 11
VN SUSE	A 4 6	asus 4.16 asus 2.18	asus 4.16 asus 2.18 asus 2.16	asus 4.16 asus 2.18 asus 2.16 pasus 3.44	asus 4.16 asus 2.18 asus 2.16 pasus 3.44 pasus 3.09	asus 4.16 asus 2.18 asus 2.16 pasus 3.44 pasus 3.09 pasus 2.79	asus 4.16 asus 2.18 asus 2.16 pasus 3.44 pasus 3.09 pasus 2.79 gasus 2.94	asus 4.16 asus 2.18 asus 2.16 pasus 3.44 pasus 3.09 pasus 2.79 gasus 2.94 gasus 2.94	asus 4.16 asus 2.18 asus 2.16 asus 2.16 asus 3.44 pasus 3.44 pasus 3.09 pasus 2.79 pasus 2.94 gasus 2.84 gasus
IBLK71B159A Pegasus	and a second	1BLKRXE160A Pegasus 1BLKRXE167A Pegasus	1BLKRXE160A Pegasus 1BLKRXE167A Pegasus 1RXS170A Pegasus	1BLKRXE160A Pegasus 1BLKRXE167A Pegasus 1RXS170A Pegasus 1BLK71G171A Pegasus	IBLKRXE160A Pegasus 1BLKRXE167A Pegasus 1RXS170A Pegasus 1BLK71G171A Pegasus 1BLK67BC174A Pegasus	IBLKRXE160A Pegasus IBLKRXE167A Pegasus IRXS170A Pegasus IBLK71G171A Pegasus IBLK67BC174A Pegasus IBLKRXES175A Pegasus	IBLKRXE160A Pegasus IBLKRXE167A Pegasus IRXS170A Pegasus IBLK71G171A Pegasus IBLK67BC174A Pegasus IBLK68A178A Pegasu	IBLKRXE160A Pegasus IBLKRXE167A Pegasus IRXS170A Pegasus IBLK71G171A Pegasus IBLK67BC174A Pegasus IBLK68A178A Pegasu IBLK68A178A Pegasu	IBLKRXE160A Pegasus IRXS170A Pegasus IRXS170A Pegasus IBLK71G171A Pegasus IBLK67BC174A Pegasu IBLK67BC175A Pegasu IBLK67ABS178B Pegasu IBLK67ABS178B Pegasu
1565P 18LK		1569P 1BLK	1569P 1BLK 1597P 1BLK	1569P 18LK 1597P 18LK 1609P 1RU 1613P 18LJ	1569P 1BLK 1597P 1BLK 1609P 1R 1613P 1BL8 1613P 1BL8 1818 1625P 1BL8	1569P 1BLKi 1597P 1BLKi 1609P 1Rix 1609P 18U 1625P 18U 1629P 18U	1569P 1BLK 1597P 1BLK 1609P 1R 1609P 1R 1609P 1R 1609P 1BLK 1609P 1BLK 1609P 1BLK 1613P 1BLK 1625P 1BLK 1629P 1BL 1629P 1BL 1629P 1BL 1629P 1BL 1629P 1BL 1629P 1BL	1569P 1BLK 1597P 1BLK 1609P 1RL 1613P 1BLK 1 1613P 1BLK 1 1613P 1BLK 1 1625P 1BLK 1 1625P 1BLK 4 1641P 1BL 4 1643P 1BLK	1569P 18LK 1597P 18LK 1609P 1RLK 1613P 1BLK 1613P 1BLK 1613P 1BLK 1613P 1BLK 1613P 1BLK 1613P 1BLK 1625P 1BLK 1641P 1BL 1643P 1BLK 1643P 1BLK

Figure A-5.2. Transfer Sheet for Liangan Floodplain - B

1			RAW	LAS					MISSION LOG			BASE STA	(TION(S)	OPERATOR	FLIGHT PI	AN	SERVER
8	MISSION NAME	SENSOR	Output LAS	KML (swath)	LOGS(MB)	SHP	POS	MAGESICASI	FILEICASI	RANGE	DIGITIZER	BASE STATION(S)	Base Info (Jod)	(001400)	Actual	KML	LOCATION
4	1BI K71ES184A	Pegasus	808	93	4.69	84.5	169 N	×	NA	6.77	NA	6,94	1KB	1KB	36	NA	Z:'Mirbome_ Raw
B	1RI K71FS186A	Pegasus	1.05	379	7.58	335	190 2	2.4	167	12.5	27.8	5.09	1KB	1KB	92/84	NA	Z:\Airborne_ Raw
4	1BLK71S187A	Pegasus	896	689	5.33	188	141	12	8	7.79	NA	4.94	1KB	1KB	130	NA	Z:Mirborne_
SP	1RI K71S189A	Pegasus	2.31	515	11	578	242 3	-	288	22.4	47.4	4,39	1KB	1KB	184	NA	Z'Mirborne_
379	1RI K71S189R	Pegasus	749	52	4.81	176	136 N	N	NA	7.47	NA	4.39	1KB	1KB	NA	NA	Z'Mirborne_
999	1BI K71S190A	Pegasus	256	156	12.6	740	257 h	A	NA	27.1	NA	3.68	1KB	1KB	196/207	NA	Z'Mirborne_
33P	1RXES191A	Pegasus	1.78	551	8.11	448	175	A	NA	16.9	NA	4.08	1KB	1KB	53	NA	Z'Vairborne_ Raw

Figure A-5.3. Transfer Sheet for Liangan Floodplain - C

8/6/14

1 4010P

Name Position Signature

Name TIN ANDA7A Position R.A. Signahue

101

1. Flight Log for Mission 1533P

UDAR Operator: G. Sugad av 2 ALTM Model:	Peractus 3 Mission Name:/Bu	-C(PO)	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	-640
Date: A 20/4 12 Airport of De	parture (Airport, Gty/Province):	12 Airport of Arrival	(Airport, Gty/Province):		
Engine On: 14 Engine Off: 07474	15 Total Engine Time: タナイフ	16 Take off:	17 Landing:	18 Total Flight Time:	
Weather dough					
Remarks: Eurouged BLK 71A	with some Oag.	a due to his	h knoig & daug	2	
				-	
Acquisition Flight Approved by	Acquisition Fight Certified by SSG PANAMAN Signature over Printed Name (PAF Representative)	Pilotin-Com	nand M. Anna M. M. Howsold I. I. Printed Name	Udar Operator	
		٥	saster Risk and Exposure Asse	D R E A M	

fication: RP Cles	ime:				PTIAN I Name	M
6 Aircraft Identi	18 Total Flight		id a	-	Lidar Operator	D R E A
5 Aircraft Type: CesnnaT206H	(Airport, Gty/Province): 0 117 Landine:		Coursel altitu		and Anna II	saster Risk and Exposure Ass
A/J34 4 Type: VFR	12 Airport of Arrival		gla hurrow	P	Pilot-in-Comm	٥
3 Mission Name: /BLK 7	9 Route: 0P0	イタナダ	res due to ta	of posted a	listion Fight Certified by PARAMAN AMARAN Autor over Printed Name Representative)	
and 2 ALTM Model: VESPER	Depilot: J. Limi	Engine UT: 1924 H	ful sme say	esention faile	Acqu Me Sign	
R Operator: 6. Simali	1: C. Al Emso 80	gine On: 0 937 H 14 ather	Mission success	roblems and Solutions: วิจาตะประสา	Acquisition Flight Approve Acquisition Flight Approve Signature over Printed Nat	

Flight Log for 1541P Mission

ч.

103

Afferron Browner: One Denomination 23-1014 12 Airport of Antrine (Infort, ChylProvince): 23 Virgort of Antrine (Infort, ChylProvince): 24 rough 0.411 Unterfine of Construe (Infort, ChylProvince): 13 for a rough of the set of the s	rator G. Sin a dian 2 ALTM Model: Per	3 Mission Name: 18469	ADS/7584 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification: R	- 69022
Array Margina Otti 044 Cloudy Data acquired but shortened wission due to heapy build up Margina puipitation 1 Data acquired but shortened wission due to heapy build up Margina Puipitation	ALFONSO 8 Co-Pilot: J.L. M	9 Route: CAD (Airport, City/Province):	12 Airport of Arrival (Airport, City/Province):		
The serviced but shortened mission due to heavy build up and previpitation mend solutions:	Doi: 14 Engine Off: 04.	us Total Engine Time: 15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:	
Ins and Solutions: Ins and Solutions: Acquisition Fight Agrowed by Acquisition Fight Agrowed	s: Data acquired and p	d but shorten	missim bu	due to heavy	build up .	
Aquisition Flight Agricoved by Aquisition Flight Agricoved by Aquisition Flight Centified by	ms and Solutions:					
Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Approved by Acquisition Flight Approxemative Flight Approxemat		1				
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command W Udar Operator <u>Undar Operator</u> Signature over Printed Name (PAF Representative) In Udar Operator Signature over Printed Name (PAF Representative) In Udar Operator Signature over Printed Name			-			
	Acquisition Flight Approved by ` Acq 	quisition Fight Certified by MMAALAM Inture over Printed Name Le Representative)	Pliot-in-Com	mand ILL Allowed ILL BALSS ILL er Printed Name	Udar Operator	-

ς.

And the formation of th	IM Data Acquisition Flight Log	0				Flight Log No.: /64
Auge of the state of the second of the second second of the second secon	AR Operator: / Roxas 2 ALTMM	Aodel: "Ps	3 Mission Name:	4 Type: VFR	5 Aircraft Type: Ces nna T206H	6 Aircraft Identification: RP - C90 22
Open Le fundine: United to the leagene time: Is Take off: Is Tanding: Is Tanding: <this tanding:<="" th=""> Is Tanding: Is Tandi</this>	ite: 12 Alfronso 12 Airport	t of Departure	Airport, City/Province):	12 Airport of Arrival	(Airport, City/Province):	
Active the second of the second counted gaps in BUK 71B, had to current of the marks: . Data acquired in BUK 71C and counted gaps in BUK 71B, had to cut mission due to heavy build up and high terrain of the maining survey areas: . Data acquired in BUK 71C and counted gaps in BUK 71B, had to cut mission due to heavy build up and high terrain of the maining survey areas: . Data acquired in BUK 71C, and counted gaps in BUK 71B, had to cut mission the maining survey areas: . Data acquired to high terrain of the maining survey areas: . Data acquinton fluth domontly with the full of the and high terrain of the maining survey areas: . Data acquinton fluth domontly with the full of the areas and solutions: . Acquinted the second to the full of the second s	gine On: 14 Engine Off:	2	15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
marks: Data acquired in BUK 71C and counced gaps in BUK 71B, had to cut mission due to heavy build up and high terrain of remaining survey areas. Toblems and solutions: Molen cut and high terrain of remaining the formant of t	eather heavy	y buildy	, 11+4 P			
maries: Data acquired in BUK 71C and counced gaps in BUK 71B, had to cut mission due to Awary build up and high terrain of remouning survey areas: molems and solutions: molems and solutions: Mention right homewells Acquisition right homewells Mention right homewe						
cut mission due to heavy build up and high terrain of remoining survey areas. Terraining survey areas. Toblems and solutions: The moining survey areas. The moini	marks: , Data ,	acquired	in Buk 710	and covinca	appending the	T Per 81
roblems and Solutions: Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Certified by Acquisition Flight Certified by Acquisition Flight Certified by Signature over Printed Name Signature over Printed Name Name Signature over Printed Name Signature over Printed	cut mi. remov	uning s	lue to heavy	build up an	isonat heid b	of of
Acquisition Fight Approved by Acquisition Fight Certified by Acquisition Fight Certified by Fight Certified	roblems and Solutions:					
Acquisition Flight Approved by Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Uder Operator Control of Control						
Acquisition Flight Approved by Acquisition Flight Certified by Pilot-in-Command Udfr Operator Acquisition Flight Certified by Pilot-in-Command Udfr Operator Signature over Printed Name Signature ove						(
	Acquisition Flight Approved by	Acqu	sistion Flight Certified by MMT. PMMT2ALAM sture over Printed Name Representative)	Pliot-In-Com	mand Marve II Marve II er Printed Name	Uddr Operator
				1		

Flight Log for 1545P Mission

Flight Log for 1685P Mission

1 LIDAR Operator: /. Rox	QU 2 ALTM Model	1: Peg	3 Mission Name: 19LK 7/5	874 4 Type: VFR	5 Aircraft Type: Cesnna T206H	6 Aircraft Identification:	RP C9022
7 Pilot: C . ALConed	8 Co-Pilot: J. Li	C W	9 Route: CDO				-
10 Date: Tulu 8.2014	12 Airport of I	Departure	Airport, City/Province):	12 Airport of Arrival ((Airport, City/Province):		
13 Engine On:	14 Engine Off: 140 5 H	4	15 Total Engine Time: 4+5	16 Take off:	17 Landing:	18 Total Flight Time:	
19 Weather	cloudy						
20 Remarks:	Surveyed	Buk	714 of 1200m				
21 Problems and Solution						-	
Acquisition Flight , J. Alver Signature over Pril	Approved by	Acc Sign	uisition Flight Certified by WANTALAM nature over Printed Name LE Representative)	Pliot-in-Com	mand I a man	Udar Operaton	-
			Figure A-6.5. Flight	: Log for Mission	1685P		

	atTM Model: Peg	3 Mission Name: 192K	7/S//SJB 4 Type: VFR	5 Aircraft Type: Cesnna 1206H	
12 Airpoi	t of Departure (Airport, City/Province):	12 Alrport of Arrival	(Airport, City/Province):	18 Total Flight Time:
1705	H , , , ,	15 Total Engine Time: $2 \pm 1/$	16 Take off:	T/ rauous:	
rent	cloudy				
led	gaps it	1 Buc 714	and Burs7	10	
					-
	Acouts	tion Elisht Certified by	Pllot-in-Comi	hand	Udar Operator
	Signati	AND	Signature ow	A Low No IL A LOW SO IT WINGU SO IT	GCACH BOS NARTAN Signature beer Printed Name
			٥] Jisaster Risk and Exposure Asse	O R E A M
	Figu	ire A-6.6. Flight Lc	g for Mission 16	87P	

AM Data Acquisition Flight Log			Uport and a second second	A Merraft Identification: R0-09032
1 IIDAB Operator: 1. ROX dS 2 ALTM Mod	del: Peg 3 Mission Name:	4 Type: VFR	5 Aircraft Type: Les nina 1 2001	
7 Pilot: C. A 150450 8 Co-Pilot: J. L.	of Degarture (Airport, Cty/Province):	12 Airport of Arrival	(Airport, City/Province):	
13 Engine Of: 13 Engine Of: 11 35 H	CDO 15 Total Engine Time:	16 Take off:	17 Landing:	18 Total Flight Time:
19 Weather CLONDY				
20 Remarks:	successful at 1200m	thing he	tyles	
21 Problems and Solutions:				
	ł			
Acquisition Flight Approved by Activity Signature over Printed Name (End User Representative)	Acquisition/Flight Certified by W PUNT A UAN Signature over Printed Name (PAF Representative)	Pilot-in-Com Signature ov	mand A QU Dove D TH A Printed Name	Udar Operator 1. (20/M) Signatura ovýr Printed Nama
		5	C Sisaster Risk and Exposure Asse	OREAM
	Figure A-6.7. Flight L	og for Mission 16	89P	

Annex 7. Flight Status Reports

Nprthern Mindanao May 31 - July 9, 2014

FLIGHT NO.	AREA	MISSION	OPERATOR	DATE FLOWN	REMARKS
1533P	BLK 71A	1BLK71A151A	G. Sinadjan	May 31	Surveyed BLK 71A with some gaps due to high terrain and clouds; 183.36 sq.km
1541P	BLK 71B	1BLK71B153A	G. Sinadjan	June 2	Surveyed BLK 71B with some gaps due to terrain; 290.78 sq.km.
1643P	BLK 71A	1BLK67ABS178B	G. Sinadjan	June 27	Data acquired but shortened mission due to heavy build up and precipitation; 67.506 sq.km (gap- filling)
1645P	BLK 71A, BLK 71B, BLK 71C	1BLK71C179A	I. Roxas	June 28	Data acquired in BLK 71C and covered gaps in BLK 71B, had to cut mission due to heavy build up and high terrain of remaining survey areas; 115.47 sq.km
1685P	BLK 71F	1BLK71S189A	I.Roxas	July 8	Surveyed BLK 71F at 1200m; 233.71 sq.km
1687P	BLK 71ACS	1BLK71S189B	G.Sinadjan	July 8	Filled in gaps in BLK 71A and BLK 71C; gap-filling
1689P	BLK 71E and BLK 71ABCs	1BLK71S190A	I.Roxas	July 9	Surveyed BLK 71E and the gaps in BLK 71ABC; 278.697 sq.km

Table A-7 1	Flight Status	Report
	i ligiti Status	Nepur

LAS BOUNDARIES PER FLIGHT

Flight No. :	1533P		
Area:	BLK 71A		
Mission Name:	1BLK71A151A		
Parameters:	Altitude:	800m;	Scan Frequency: 30Hz;
	Scan Angle:	25deg;	Overlap: 25%

Figure A-7.1. Swath for Flight No. 1533P

Flight No. :	1541P	
Area:	BLK 71B	
Mission Name:	1BLK71B153A	
Parameters:	Altitude:	800m;
	Scan Angle:	25deg;

Figure A-7.2. Swath for Flight No. 1541P

Flight No. : Area: Mission Name: Parameters: 1643P BLK 71A 1BLK67ABS178B Altitude: 800m; Scan Angle: 25deg;

Figure A-7.3. Swath for Flight No. 1643P

Flight No. : Area: Mission Name: Parameters:

1645P BLK 71A, BLK 71B, BLK 71C 1BLK71C179A Altitude: 800m; Scan Angle: 25deg;

Figure A-7.4. Swath for Flight No. 1645P

Flight No. :
Area:
Mission Name:
Parameters:

1685P BLK 71F 1BLK71S189A Altitude: 800m; Scan Angle: 25deg;

Figure A-7.5. Swath for Flight No. 1685P

Flight No. :1687PArea:BLK 71ACSMission Name:1BLK71S189BParameters:Altitude:800m;Scan Frequency: 30Hz;
Scan Angle:Scan Angle:25deg;Overlap: 25%

Figure A-7.6. Swath for Flight No. 1687P

Flight No. :	1689P		
Area:	BLK 71E and BL	K 71ABCs	
Mission Name:	1BLK71S190A		
Parameters:	Altitude:	800m;	Scan Frequency: 30Hz;
	Scan Angle:	25deg; Overlag	o: 25%

Figure A-7.7. Swath for Flight No. 1689P

Annex 8. Mission Summary Reports

Table A-8.1. Mission Summary Report for Mission Blk71ABC

Flight Area	Northern Mindanao
Mission Name	Blk71ABC
Inclusive Flights	1533P, 1541P, 1643P, 1645P, 1685P, 1689P
Range data size	154.85 GB
POS	1369 MB
Base data size	43.49 MB
Image	151.7 GB
Transfer date	August 01, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.2
RMSE for East Position (<4.0 cm)	1.4
RMSE for Down Position (<8.0 cm)	4.0
Boresight correction stdev (<0.001deg)	0.001254
IMU attitude correction stdev (<0.001deg)	0.001356
GPS position stdev (<0.01m)	0.0252
Minimum % overlap (>25)	50.18%
Ave point cloud density per sq.m. (>2.0)	4.23
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	711
Maximum Height	951.89 m
Minimum Height	65.97 m
Classification (# of points)	
Ground	448,326,038
Low vegetation	554,302,928
Medium vegetation	898,361,476
High vegetation	739,706,375
Building	21,364,020
Orthophoto	
Processed by	Engr. Carlyn Ann Ibañez, Engr. Kenneth Solidum, Engr. Melanie Hingpit, Engr. John Dill Macapagal

Figure A-8.1. Solution Status

Figure A-8.2. Smoothed Performance Metrics Parameters

Figure A-8.3. Best Estimated Trajectory

Figure A-8.4. Coverage of LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.5. Image of Data Overlap

Figure A-8.6. Density map of merged LiDAR data

Figure A-8.7. Elevation difference between flight lines

Flight Area	Northern Mindanao
Mission Name	Blk71B_supplement
Inclusive Flights	1541P
Range data size	39 GB
POS	285 MB
Base data size	12.6 MB
Image	19.7 GB
Transfer date	June 23, 2014
Solution Status	
Number of Satellites (>6)	Yes
PDOP (<3)	Yes
Baseline Length (<30km)	No
Processing Mode (<=1)	Yes
Smoothed Performance Metrics (in cm)	
RMSE for North Position (<4.0 cm)	1.3
RMSE for East Position (<4.0 cm)	1.5
RMSE for Down Position (<8.0 cm)	4.5
Boresight correction stdev (<0.001deg)	0.008634
IMU attitude correction stdev (<0.001deg)	0.016988
GPS position stdev (<0.01m)	0.0268
Minimum % overlap (>25)	30.74%
Ave point cloud density per sq.m. (>2.0)	4.17
Elevation difference between strips (<0.20 m)	Yes
Number of 1km x 1km blocks	82
Maximum Height	699.62
Minimum Height	69.85
Classification (# of points)	
Ground	21,553,715
Low vegetation	22,924,976
Medium vegetation	40,296,362
High vegetation	53,453,732
Building	526.883
	,
Orthophoto	
Processed by	Victoria Reiuso, Engr. Mark Joshua Salvacion, Engr.
	Gladys Mae Apat

Table A-8.2. Mission Summary Report for Mission Blk33G

Figure A-8.8. Solution Status Parameters

Figure A-8.9. Smoothed Performance Metrics Parameters

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.10. Best Estimated Trajectory

Figure A-8.11. Coverage of LiDAR data

Figure A-8.12. Image of Data Overlap

Figure A-8.13. Density map of merged LiDAR data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

Figure A-8.14. Elevation difference between flight lines

Annex 9. Liangan Model Basin Parameters

Docio		odanih ova		Clark Hait Haid	muchanar dara			Darof Darof		
	וו כוכ		L LUSS		гарп тапыотт		Лал		MO	
Number	Initial Abstraction (mm)	Curve Number	Impervious (%)	Time of Concentration (HR)	Storage Coefficient (HR)	Initial Type	Initial Discharge (M3/S)	Recession Constant	Threshold Type	Ratio to Peak
W250	14.979	83.101	0	4.98555	6.026911	Discharge	1.0453	0.95	Ratio to Peak	0.435
W260	12.668	85.326	0	4.75146	5.743978	Discharge	1.1499	0.95	Ratio to Peak	0.435
W270	18.904	79.577	0	5.731155	6.928356	Discharge	4.8185	0.95	Ratio to Peak	0.435
W280	13.352	84.655	0	0.349947	0.423046	Discharge	0.0326063	0.95	Ratio to Peak	0.435
W290	19.588	78.994	0	1.84356	2.228736	Discharge	1.1309	0.95	Ratio to Peak	0.435
W300	21.783	77.177	0	2.058885	2.488972	Discharge	1.1859	0.95	Ratio to Peak	0.435
W310	19.842	78.779	0	1.52415	1.842609	Discharge	0.79678	0.95	Ratio to Peak	0.435
W320	17.358	80.929	0	3.268215	3.950899	Discharge	2.0455	0.95	Ratio to Peak	0.435
W330	14.799	83.270	0	3.77136	4.559188	Discharge	5.0930	0.95	Ratio to Peak	0.435
W350	11.163	86.840	0	0.9438255	1.140983	Discharge	0.17907	0.95	Ratio to Peak	0.435
W360	13.673	84.344	0	2.815695	3.403818	Discharge	2.0256	0.95	Ratio to Peak	0.435
W370	28.688	71.970	0	3.844665	4.647724	Discharge	3.3933	0.95	Ratio to Peak	0.435
M390	16.99623	81.252	0	2.132865	2.578436	Discharge	0.41872	0.95	Ratio to Peak	0.435
W400	20.127	78.540	0	1.0148355	1.226827	Discharge	0.20656	0.95	Ratio to Peak	0.435
W410	9.1450	88.956	0	1.332342	1.610652	Discharge	0.0140158	0.95	Ratio to Peak	0.435
W420	26.822	73.307	0	3.808485	4.603974	Discharge	2.6017	0.95	Ratio to Peak	0.435
W430	25.051	74.622	0	1.92186	2.323342	Discharge	1.0336	0.95	Ratio to Peak	0.435
W440	38.192	65.855	0	7.495875	9.061683	Discharge	6.2762	0.95	Ratio to Peak	0.435
W450	38.292	65.796	0	2.92626	3.537598	Discharge	1.1777	0.95	Ratio to Peak	0.435
W460	48.880	60.111	0	4.53384	5.480893	Discharge	1.7307	0.95	Ratio to Peak	0.435
W470	58.227	55.851	0	2.908305	3.515826	Discharge	1.0635	0.95	Ratio to Peak	0.435
W480	60.965	54.715	0	4.287735	5.183412	Discharge	1.8571	0.95	Ratio to Peak	0.435
W500	11.699	86.294	0	1.304586	1.577099	Discharge	0.24057	0.95	Ratio to Peak	0.435

	Ratio to Peak	k 0.435						
	Threshold Type	Ratio to Pea						
sion Baseflo	Recession Constant	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Recess	Initial Discharge (M3/S)	0.19217	0.0905579	.000350396	0.89816	2.0892	0.0022776	.000525594
	Initial Type	Discharge						
Clark Unit Hydrograph Transform	Storage Coefficient (HR)	0.856087	0.600125	0.066874	2.655037	3.944393	0.299219	0.097993
	Time of Concentration (HR)	0.708156	0.496422	0.0553188	2.196315	3.262815	0.2475225	0.0810603
SCS Curve Number Loss	Impervious (%)	0	0	0	0	0	0	0
	Curve Number	81.143	78.535	77	75.562	57.140	29	79
	Initial Abstraction (mm)	17.118	20.133	22.002	23.823	55.251	19.581	19.581
Basin Number		W520	W540	W560	W600	W620	W640	W660

Annex 10. Liangan Model Reach Parameters

Muskingum Cunge Channel Routing	Side Slope	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	Width	34.64	12.768	7.346	8.682	4.686	10.284	18.448	18.858	11.856	11.934	11	7.492	6.416	26.946	11.87
	Shape	Trapezoid	Tranezoid													
	Manning's n	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Slope	0.0081751	0.0152192	0.0240020	0.0136445	0.0118097	0.0717450	0.0262013	0.0180162	0.0066003	0.0132646	0.15377	0.0380181	0.13945	0.0164298	0.0392283
	Length (m)	4142.3	4970.1	463.55	1085.0	1267.3	5068.3	16289	245.56	3393.3	1298.2	501.42	2518.4	462.43	3558.5	339.41
	Time Step Method	Automatic Fixed Interval														
Reach	Number	R10	R100	R140	R150	R170	R210	R30	R40	R510	R530	R550	R610	R650	R70	R80

Table A-10.1. Liangan Model Reach Parameters

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
1	8.008049	123.773	0.03	0.96	-0.59	2011	5-Year
2	8.007788	123.7717	0.03	0.4	-0.11	2011	5-Year
3	8.008853	123.7701	0.03	0.41	-0.15		5-Year
4	8.008981	123.7701	0.03	0.43	-0.27		5-Year
5	8.009294	123.77	0.03	0.41	-0.1	2009	5-Year
6	8.009422	123.7698	0.03	0.54	-0.22		5-Year
7	8.009585	123.7694	0.03	0.19	-1.45		5-Year
8	8.01069	123.7673	0.03	0.42	-0.23		5-Year
9	7.88947	123.7622	0.03	0.58	-0.21	Yolanda / November 2015	5-Year
10	7.88869	123.7743	0.03	0.16	0.06	2010	5-Year
11	7.876198	123.8141	0.03	1.3	0.13	2013	5-Year
12	7.984674	123.7959	0.03	1.8	-0.6		5-Year
13	7.926459	123.6908	0.03	1.1	0.06	Lando / August 2015	5-Year
14	7.923024	123.6876	0.03	1.55	0.06	Lando / August 2015	5-Year
15	7.92303	123.6874	0.03	0.6	0.09	Lando / August 2015	5-Year
16	7.922939	123.6873	0.03	0.6	0.21	Lando / August 2015	5-Year
17	8.011248	123.7678	0.03	0.53	0.06	2011	5-Year
18	7.898086	123.7715	0.03	0.38	0.47	Yolanda / November 2015	5-Year
19	8.008067	123.773	0.03	0.2	-0.17	2011	5-Year
20	7.916233	123.7867	0.07	0.72	0.03	2011	5-Year
21	7.875964	123.8142	0.03	1.3	0.08	Pablo / 2013	5-Year
22	8.009878	123.7687	0.03	0.27	0.07		5-Year
23	8.010399	123.7687	0.06	0.27	-0.07		5-Year
24	8.010392	123.7671	0.08	0.72	-0.09		5-Year
25	7.924133	123.6834	0.07	0.4	-0.11	Lando / August 2015	5-Year
26	8.007821	123.7713	0.03	0.67	0.24	2011	5-Year
27	7.924316	123.6835	0.1	0.7	0.31	Lando / August 2015	5-Year
28	7.924293	123.6836	0.1	0.89	1.21	Lando / August 2015	5-Year
29	7.89798	123.7715	0.09	0.4	0.32	Yolanda / November 2015	5-Year
30	7.890638	123.765	0.03	1.75	0.19	Yolanda / November 2015	5-Year
31	7.926212	123.6925	0.14	1	0.34	Lando / August 2015	5-Year
32	7.926383	123.6918	0.07	1.1	0.34	Lando / August 2015	5-Year
33	8.006125	123.7735	0.06	0.75	0.42	2011	5-Year
34	7.926292	123.6924	0.15	1.1	0.54	Lando / August 2015	5-Year
35	7.926154	123.6926	0.16	1.1	0.37	Lando / August 2015	5-Year
36	7.926376	123.692	0.11	1.1	-1.02	Lando / August 2015	5-Year
37	7.905192	123.7709	0.1	0.37	-0.47	Yolanda / November 2015	5-Year
38	7.92258	123.6873	0.14	0.34	-1.06	Lando / August 2015	5-Year
39	7.904212	123.7713	0.11	0.43	-0.67	Yolanda / November 2015	5-Year
40	7.895726	123.7691	0.14	0.2	-0.42	Yolanda / November 2015	5-Year
41	7.926413	123.6913	0.13	1.1	-0.7	Lando / August 2015	5-Year
42	8.007878	123.7735	0.04	0.12	-0.64	2012	5-Year

Annex 11. Liangan Field Validation Points Table A-11.1. Liangan Field Validation Points

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
43	7.89553	123.7699	0.14	0.2	-0.64	Yolanda / November 2015	5-Year
44	7.926415	123.6915	0.14	1.1	-1.17	Lando / August 2015	5-Year
45	8.007918	123.771	0.14	0.67	-1.52		5-Year
46	8.007869	123.771	0.14	1.64	-0.44		5-Year
47	7.915393	123.702	0.23	0.56	0.4	August 2015	5-Year
48	8.009722	123.769	0.16	0.51	0.48		5-Year
49	8.011805	123.7631	0.24	0.69	0.1		5-Year
50	7.915007	123.7038	0.26	0.3	-0.95	August 2015	5-Year
51	7.901476	123.7689	0.15	0.072	-0.33	Yolanda / November 2015	5-Year
52	7.926416	123.6917	0.2	1.1	-0.42	Lando / August 2015	5-Year
53	7.899485	123.7736	0.03	0.15	-0.94		5-Year
54	7.926368	123.6922	0.21	1.1	-0.38	Lando / August 2015	5-Year
55	7.926336	123.6921	0.21	1.1	-0.86	Lando / August 2015	5-Year
56	7.92635	123.6922	0.21	1.1	-1.09	Lando / August 2015	5-Year
57	7.895501	123.7685	0.23	0.2	-1.11	Yolanda / November 2015	5-Year
58	8.011914	123.7631	0.26	0.69	-1		5-Year
59	7.882893	123.8087	0.09	1.08	-0.69	Pablo / 2013	5-Year
60	7.916952	123.707	0.21	0.54	-0.81	August 2015	5-Year
61	8.011774	123.7632	0.29	0.49	-0.81		5-Year
62	7.891492	123.7654	0.13	0.16	-0.2	2011	5-Year
63	7.901485	123.769	0.24	0.072	-0.12	Yolanda / November 2015	5-Year
64	8.011763	123.7639	0.33	0.62	-0.14		5-Year
65	8.011916	123.7631	0.35	0.62	-1.42	2011	5-Year
66	7.899302	123.7741	0.03	0.15	-0.13		5-Year
67	7.895651	123.7696	0.33	0.38	-0.04	Yolanda / November 2015	5-Year
68	7.90502	123.7712	0.32	0.43	-0.22	Yolanda / November 2015	5-Year
69	7.904041	123.7705	0.29	0.05	-0.12	Yolanda / November 2015	5-Year
70	7.923345	123.69	0.16	0.47	-0.25		5-Year
71	7.898449	123.7754	0.03	0.2	-1.42		5-Year
72	7.883112	123.8084	0.24	1.08	-0.52	Pablo / 2013	5-Year
73	7.923328	123.69	0.19	0.85	-0.46	Lando / August 2015	5-Year
74	8.013006	123.7629	0.43	0.49	-1.21		5-Year
75	7.898736	123.7756	0.06	0.38	0.21		5-Year
76	7.898853	123.7748	0.05	0.2	0.37		5-Year
77	7.89997	123.7738	0.28	0.28	-1.11		5-Year
78	8.007792	123.7711	0.44	0.67	0.09		5-Year
79	7.898566	123.7758	0.06	0.15	0.17		5-Year
80	7.883193	123.8085	0.32	1.08	-1.33	Pablo / 2013	5-Year
81	7.886652	123.8052	0.4	1.02	-0.4	Pablo / 2013	5-Year
82	7.905038	123.7713	0.47	0.43	-0.32	Yolanda / November 2015	5-Year
83	7.904985	123.7714	0.47	0.43	-0.42	Yolanda / November 2015	5-Year
84	7.921037	123.7767	0.03	0.1	-1.42		5-Year
85	7.883141	123.8078	0.41	1.08	0.1	Pablo / 2013	5-Year

Point Number	Validation Coordinates (in WGS84)		Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
	Lat	Long					
86	7.898377	123.7751	0.11	0.2	-1.36	Yolanda / November 2015	5-Year
87	7.980171	123.7929	0.03	2	0.14		5-Year
88	7.909178	123.7714	0.55	0.7	0.14	Yolanda / November 2015	5-Year
89	7.898844	123.7745	0.23	0.15	-0.22		5-Year
90	7.921636	123.7772	0.03	0.4	0.15	Sendong / December 2011	5-Year
91	7.89852	123.7756	0.19	0.2	-0.71		5-Year
92	7.889216	123.7745	0.42	0.79	0.26	Yolanda / November 2015	5-Year
93	7.916166	123.7768	0.17	0.47	0.22	Yolanda / November 2015	5-Year
94	7.888988	123.7599	0.45	0.58	-0.42	Yolanda / November 2015	5-Year
95	7.888591	123.8047	0.03	0.3	-0.15	Pablo / 2013	5-Year
96	7.898437	123.7754	0.21	0.2	-0.4		5-Year
97	7.898557	123.7754	0.22	0.45	-0.24		5-Year
98	7.956313	123.7764	0.12	1.7	-0.01	Frank / 2013	5-Year
99	7.921291	123.7769	0.03	1.34	-0.32		5-Year
100	7.902654	123.7708	0.58	0.1	-0.12	Yolanda / November 2015	5-Year
101	7.898622	123.7749	0.28	0.2	0.03		5-Year
102	8.007904	123.7731	0.66	0.45	-0.38	2011	5-Year
103	7.918463	123.7864	0.03	0.7	0.4	Pablo / 2013	5-Year
104	7.909165	123.7718	0.65	0.42	0.83	Yolanda / November 2015	5-Year
105	7.909201	123.7717	0.66	0.57	-0.55	Yolanda / November 2015	5-Year
106	7.888854	123.7589	0.55	0.58	1.69		5-Year
107	7.920463	123.7754	0.11	0.8	0.02		5-Year
108	7.909238	123.7715	0.71	0.7	-0.88	Yolanda / November 2015	5-Year
109	8.008247	123.7705	0.79	0.76	-0.21		5-Year
110	7.920307	123.775	0.11	0.95	-0.86	2014	5-Year
111	7.909174	123.7717	0.73	0.7	0.06	Yolanda / November 2015	5-Year
112	7.888031	123.804	0.17	1.08	-0.59	Pablo / 2013	5-Year
113	7.888855	123.7591	0.6	0.58	0.04		5-Year
114	7.888916	123.759	0.6	0.58	-1.29		5-Year
115	8.008168	123.7706	0.8	0.82	-0.6		5-Year
116	8.00817	123.7706	0.8	0.79	-0.42		5-Year
117	7.890517	123.7758	0.6	0.35	-0.76	Yolanda / November 2015	5-Year
118	7.909224	123.7716	0.76	0.7	-0.27	Yolanda / November 2015	5-Year
119	7.909224	123.7716	0.76	0.7	0.6	Yolanda / November 2015	5-Year
120	7.923094	123.6898	0.61	1.17	0.22	Lando / August 2015	5-Year
121	7.888814	123.759	0.64	0.58	-0.51	Yolanda / November 2015	5-Year
122	7.888671	123.7589	0.64	0.58	-0.47		5-Year
123	7.916201	123.707	0.75	0.53	-0.47	August 2015	5-Year
124	7.923653	123.6899	0.63	1.3	-0.63	Lando / August 2015	5-Year
125	7.888833	123.7589	0.66	0.58	-0.17		5-Year
126	7.923515	123.69	0.64	2.2	-0.12	Lando / August 2015	5-Year
127	7.890977	123.7747	0.69	0.4	-0.27	Yolanda / November 2015	5-Year
128	7.888952	123.76	0.7	0.58	-0.28	Yolanda / November 2015	5-Year
129	7.888834	123.7591	0.73	0.58	-0.08		5-Year
Point Number	Validation (in W	Coordinates /GS84)	Model Var (m)	Validation Points (m)	Error	Event/Date	Rain Return / Scenario
-----------------	---------------------	-----------------------	------------------	--------------------------	-------	-------------------------	------------------------------
	Lat	Long					
130	7.888835	123.7591	0.73	0.58	-0.08		5-Year
131	7.875455	123.7777	0.62	0.72	0.02	Yolanda / November 2015	5-Year
132	7.890981	123.7652	0.76	0.4	-0.21		5-Year
133	7.979723	123.793	0.41	1.8	-0.56		5-Year
134	7.89759	123.7753	0.56	0.64	0.11	Yolanda / November 2015	5-Year
135	7.898055	123.7744	0.66	0.56	0.08	Yolanda / November 2015	5-Year
136	7.890399	123.7751	0.96	0.35	0.06	Yolanda / November 2015	5-Year
137	7.890429	123.7751	0.96	0.35	0.09	Yolanda / November 2015	5-Year
138	7.979925	123.7938	0.61	1.8	0.03		5-Year
139	7.979925	123.7938	0.61	1.8	-0.18		5-Year
140	7.889377	123.7626	1.08	0.5	-0.2	Yolanda / November 2015	5-Year
141	7.980021	123.7942	1.26	1.5	-0.7		5-Year
142	7.980021	123.7942	1.26	1.5	0.08		5-Year
143	7.920059	123.7752	1.25	0.5	0.08	Pablo / 2013	5-Year
144	7.917468	123.7863	1.11	1.2	0.1		5-Year
145	7.921269	123.777	1.4	1.4	-0.65	Sendong / December 2011	5-Year
146	7.917265	123.7858	1.33	1.5	-0.5	Frank / 2013	5-Year
147	7.92071	123.7789	1.19	0.8	-0.18	Pablo / 2013	5-Year
148	7.920598	123.7789	1.19	0.8	-0.41	Pablo / 2013	5-Year
149	7.921156	123.7769	1.6	1.5	0.03	Sendong / December 2011	5-Year
150	7.917364	123.7858	1.37	1.5	-0.54		5-Year
151	7.980167	123.7934	1.84	2	-0.19		5-Year
152	7.917112	123.7857	1.53	1.5	-0.35		5-Year
153	7.917249	123.7857	1.57	1.6	0.03		5-Year
154	7.917345	123.7857	1.65	1.7	0.03		5-Year
155	7.917361	123.7856	1.86	1.6	-0.32		5-Year
156	7.917309	123.7856	1.86	1.6	-0.7		5-Year

Annex 12. Educational Institutions affected by flooding in Liangan Floodplain

Table A-12.1. Educational Institutions in Bacolod, Lanao del Norte affected by flooding in Liangan
Floodplain

LANAO DEL NORTE					
BACOLOD					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Babalaya Elementary School	Alegria				
Babalaya Elementary School	Babalaya				
Abandoned	Esperanza				
Daycare Center	Esperanza				
Esperanza Elementary School	Esperanza		Low	Low	
Francisco Bornilla	Esperanza				
Felisa Elementary School	Mati				
Felisa Santos Elementary School	Mati				
Felisa Elementary School	Pagayawan				
Felisa Santos Elementary School	Pagayawan				

Table A-12.2. Educational Institutions in Maigo, Lanao del Norte affected by flooding in Liangan Floodplain

MAIGO					
Building Name	Barangay	Rainfall Scenario			
		Building Name	Barangay	Rainfall Scenario	
		5-year	25-year	100-year	
Day Care Center	Liangan West	Medium	High	High	
Liangan East Elementary School	Liangan West				
Liangan National High School	Liangan West				
Liangan West, Elementary School	Liangan West				
School	Liangan West				
Alegria Elementary School	Mahayahay				
Australian Aid Care Center	Mahayahay				
New School Building	Mahayahay				
New School Building	Santa Cruz				
Old School Building	Santa Cruz				
Old School Building	Santa Cruz				

Annex 13. Health Institutions affected by flooding in Liangan Floodplain

		-		-		
	LANAO DEL NORTE					
BACOLOD						
Building Name	Barangay	Rainfall Scenario				
		5-year	25-year	100-year		
Medical Institution	Esperanza					

Table A-13.1. Health Institutions in Bacolod, Lanao del Norte affected by flooding in Liangan Floodplain

Table A-13.2. Health Institutions in Maigo, Lanao del Norte affected by flooding in Liangan Floodplain

LANAO DEL NORTE					
BACOLOD					
Building Name	Barangay	Rainfall Scenario			
		5-year	25-year	100-year	
Botika ng Barangay	Mahayahay				
Health Center	Mahayahay				