Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# LiDAR Surveys and Flood Mapping of Vinas River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of Technology

APRIL 2017



© University of the Philippines Diliman and Mapua Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid (GIA) Program and is to be cited as:

E. C. Paringit and F. A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Vinas River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-161pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Dr. Francis Aldrine A. Uy

Project Leader, Phil-LiDAR 1 Program MAPUA Institute of Technology City of Manila, Philippines 1002 E-mail: faauy@mapua.edu.ph

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-066-2

# **TABLE OF CONTENTS**

| LIST OF TABLES                                                                                |        |
|-----------------------------------------------------------------------------------------------|--------|
| LIST OF FIGURES                                                                               |        |
| LIST OF ACRONYMS AND ABBREVIATIONS                                                            | . viii |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND VINAS RIVER                                            | 1      |
| 1.1 Background of the Phil-LIDAR 1 Program                                                    | 1      |
| 1.2 Overview of the Vinas River Basin                                                         |        |
| CHAPTER 2: LIDAR DATA ACQUISITION OF THE VINAS FLOODPLAIN                                     | 3      |
| 2.1 Flight Plans                                                                              | 3      |
| 2.2 Ground Base Stations                                                                      | 5      |
| 2.3 Flight Missions                                                                           | 10     |
| 2.4 Survey Coverage                                                                           | . 11   |
| CHAPTER 3: LIDAR DATA PROCESSING OF THE VINAS FLOODPLAIN                                      | 13     |
| 3.1 Overview of the LIDAR Data Pre-Processing                                                 | 13     |
| 3.2 Transmittal of Acquired LiDAR Data                                                        | 14     |
| 3.3 Trajectory Computation                                                                    |        |
| 3.4 LiDAR Point Cloud Computation                                                             | 17     |
| 3.5 LiDAR Quality Checking                                                                    |        |
| 3.6 LiDAR Point Cloud Classification and Rasterization                                        | 22     |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification                                  |        |
| 3.8 DEM Editing and Hydro-Correction                                                          |        |
| 3.9 Mosaicking of Blocks                                                                      |        |
| 3.10 Calibration and Validation of Mosaicked LiDAR DEM                                        |        |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model                     | 33     |
| 3.12 Feature Extraction                                                                       |        |
| 3.12.1 Quality Checking (QC) of Digitized Features' Boundary                                  |        |
| 3.12.2 Height Extraction                                                                      | 34     |
| 3.12.3 Feature Attribution                                                                    |        |
| 3.12.4 Final Quality Checking of Extracted Features                                           |        |
| CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE VINAS RIVER BASIN                  |        |
| 4.1 Summary of Activities                                                                     |        |
| 4.2 Control Survey                                                                            |        |
| 4.3 Baseline Processing                                                                       |        |
| 4.4 Network Adjustment                                                                        |        |
| 4.5 Cross-section and Bridge As-Built survey and Water Level Marking                          |        |
| 4.6 Validation Points Acquisition Survey                                                      |        |
| 4.7 River Bathymetric Survey                                                                  |        |
| CHAPTER 5: FLOOD MODELING AND MAPPING                                                         |        |
| 5.1 Data Used for Hydrologic Modeling                                                         |        |
| 5.1.1 Hydrometry and Rating Curves                                                            |        |
| 5.1.2 Precipitation                                                                           |        |
| 5.1.3 Rating Curves and River Outflow                                                         |        |
| 5.2 RIDF Station                                                                              |        |
| 5.3 HMS Model                                                                                 |        |
| 5.4 Cross-section Data                                                                        |        |
| 5.5 Flo 2D Model                                                                              |        |
| 5.6 Results of HMS Calibration                                                                |        |
| 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods |        |
| 5.7.1 Hydrograph using the Rainfall Runoff Model                                              |        |
| 5.8 River Analysis (RAS) Model Simulation                                                     |        |
| 5.9 Flow Depth and Flood Hazard                                                               |        |
| 5.10 Inventory of Areas Exposed to Flooding                                                   | ŏZ     |
| 5.11 Flood Validation                                                                         | 105    |

| REFERENCES                                                                                 | 107 |
|--------------------------------------------------------------------------------------------|-----|
| ANNEX                                                                                      | 108 |
| ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Vinas Floodplain Survey | 108 |
| ANNEX 2. NAMRIA certification of reference points used in the LiDAR survey                 | 109 |
| ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey            | 111 |
| ANNEX 4. The LiDAR Survey Team Composition                                                 | 113 |
| ANNEX 5. Data Transfer Sheet for Vinas Floodplain                                          | 114 |
| ANNEX 6. Flight logs for the flight missions                                               | 115 |
| ANNEX 7. Flight Status Reports                                                             | 119 |
| ANNEX 8. Mission Summary Reports                                                           | 124 |
| ANNEX 9. Vinas Model Basin Parameters                                                      | 144 |
| ANNEX 10. Vinas Model Reach Parameters                                                     | 146 |
| ANNEX 11. Vinas Field Validation Points                                                    | 147 |
| ANNEX 12. Educational Institutions affected by flooding Vinas Flood Plain                  | 152 |
| ANNEX 13. Medical Institutions affected by flooding in Vinas Flood Plain                   | 153 |

# **LIST OF TABLES**

| Table 1. Flight planning parameters for Pegasus LiDAR system<br>Table 2. Details of the reprocessed NAMRIA horizontal control point QZN-41 used as base station for<br>LiDAR acquisition | the |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 3. Details of the recovered NAMRIA horizontal control point CMN-33 used as base station for the LiDAR acquisition                                                                  | he  |
| Table 4. Details of the reprocessed NAMRIA horizontal control point QZN-J2 used as base station for LiDAR Acquisition.                                                                   | the |
| Table 5. Details of the recovered NAMRIA horizontal control point CMN-J2 used as base station for th         LiDAR Acquisition.                                                          |     |
| Table 6. Ground control points used during the LiDAR data acquisition                                                                                                                    |     |
| Table 7. Flight missions for LiDAR data acquisition in Vinas floodplain.                                                                                                                 | 10  |
| Table 8. Actual parameters used during LiDAR data acquisition                                                                                                                            |     |
| Table 9. List of municipalities and cities surveyed during Vinas floodplain LiDAR survey.                                                                                                | 11  |
| Table 10. Self-calibration Results values for Vinas flights                                                                                                                              |     |
| Table 11. List of LiDAR blocks for the Vinas floodplain                                                                                                                                  |     |
| Table 12. Vinas classification results in TerraScan                                                                                                                                      |     |
| Table 13. LiDAR blocks with its corresponding areas.                                                                                                                                     |     |
| Table 14. Shift values of each LiDAR block of Vinas Floodplain.                                                                                                                          |     |
| Table 15. Calibration Statistical Measures                                                                                                                                               |     |
| Table 16. Validation Statistical Measures                                                                                                                                                | -   |
| Table 17. Details of the quality checking ratings for the building features extracted for the Vinas River<br>Basin                                                                       |     |
| Table 18. Building features extracted for Vinas Floodplain                                                                                                                               | 35  |
| Table 19. Total length of extracted roads for Vinas Floodplain.                                                                                                                          | 35  |
| Table 20. Number of extracted water bodies for Vinas Floodplain                                                                                                                          | 35  |
| Table 21. List of reference and control points used during the survey in Vinas River (Source: NAMRIA,                                                                                    | UP- |
| TCAGP)                                                                                                                                                                                   | 39  |
| Table 22. The Baseline processing report for the Vinas River GNSS static observation survey                                                                                              | 46  |
| Table 23. Constraints applied to the adjustment of the control points                                                                                                                    | 47  |
| Table 24. Adjusted grid coordinates for the control points used in the Vinas River flood plain survey                                                                                    | 47  |
| Table 25. Adjusted geodetic coordinates for control points used in                                                                                                                       |     |
| the Vinas River Flood Plain validation.                                                                                                                                                  | 48  |
| Table 26. The reference and control points utilized in the Vinas River Static Survey, with their                                                                                         |     |
| corresponding locations (Source: NAMRIA, UP-TCAGP)                                                                                                                                       | 49  |
| Table 27. RIDF values for the Alabat Rain Gauge, as computed by PAGASA                                                                                                                   | 62  |
| Table 28. Range of calibrated values for the Vinas River Basin.                                                                                                                          | 71  |
| Table 29. Summary of the Efficiency Test of the Vinas HMS Model                                                                                                                          | 72  |
| Table 30. The peak values of the Vinas HEC-HMS Model outflow using the Maasin RIDF                                                                                                       | 73  |
| Table 31. Municipalities affected in Vinas floodplain.                                                                                                                                   | 75  |
| Table 32. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period                                                                                                     | 83  |
| Table 33. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period                                                                                                         | 86  |
| Table 34. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period                                                                                                      | 88  |
| Table 35. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period                                                                                                    | 90  |
| Table 36. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period                                                                                                        | 93  |
| Table 37. Affected Areas in Tagkawayan, Quezon during 25-Year Rainfall Return Period                                                                                                     | 95  |
| Table 38. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period                                                                                                   |     |
| Table 39. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period                                                                                                        | 100 |
| Table 40. Affected Areas in Tagkawayan, Quezon during 100-Year Rainfall Return Period                                                                                                    | 102 |
| Table 41. Area covered by each warning level with respect to the rainfall scenarios                                                                                                      | 104 |
| Table 42. Actual Flood Depth versus Simulated Flood Depth at different levels in the                                                                                                     |     |
| Vinas River Basin                                                                                                                                                                        | 106 |
| Table 43. Summary of the Accuracy Assessment in the Vinas River Basin Survey                                                                                                             | 106 |

# **LIST OF FIGURES**

| Figure 1. Map of Vinas River Basin (in brown)<br>Figure 2. Flight plans and base stations used for Vinas floodplain using the Pegasus sensor                          |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure 3. GPS set-up over QZN-41 at Barangay Sabang Uno, Vinas, Quezon (a) and NAMRIA reference                                                                       | c           |
| point QZN-41 (b) as recovered by the field team.                                                                                                                      |             |
| Figure 4. GPS set-up over CMN-33 at Barangay Bato Balani, Jose Panganiban, Camarines Norte. (a) and                                                                   |             |
| NAMRIA reference point CMN-33 (b) as recovered by the field team.                                                                                                     | /           |
| Figure 5. GPS set-up over QZN-J2 as established in at Barangay Sabang Uno, Vinas, Quezon (a) and                                                                      | -           |
| reference point QZN-J2 (b) as established by the field team.                                                                                                          |             |
| Figure 6. GPS set-up over CMN-J2 as established in at Barangay Maibago, Labo, Camarines Norte (a) ar                                                                  |             |
| reference point CMN-J2 (b) as established by the field team.                                                                                                          |             |
| Figure 7. Actual LiDAR survey coverage for Vinas floodplain.                                                                                                          |             |
| Figure 8. Schematic diagram for the data pre-processing.                                                                                                              |             |
| Figure 9. Smoothed Performance Metric Parameters of a Vinas Flight 23230P.                                                                                            | 14          |
| Figure 10. Solution Status Parameters of Vinas Flight 23230P.                                                                                                         |             |
| Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Vinas Floodplain                                                                        |             |
| Figure 12. Boundaries of the processed LiDAR data over the Vinas Floodplain.                                                                                          |             |
| Figure 13. Image of data overlap for Vinas floodplain                                                                                                                 |             |
| Figure 14. Pulse density map of the merged LiDAR data for Vinas floodplain.                                                                                           |             |
| Figure 15. Elevation difference Map between flight lines for the Vinas Floodplain Survey                                                                              |             |
| Figure 16. Quality checking for aVinas flight 23230P using the Profile Tool of QT Modeler                                                                             |             |
| Figure 17. Tiles for Vinas floodplain (a) and classification results (b) in TerraScan                                                                                 |             |
| Figure 18. Point cloud before (a) and after (b) classification                                                                                                        |             |
| Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM                                                                  |             |
| in some portion of Vinas floodplain.                                                                                                                                  |             |
| Figure 20. Vinas floodplain with available orthophotographs                                                                                                           |             |
| Figure 21. Sample orthophotograph tiles for Vinas floodplain.                                                                                                         |             |
| Figure 22. Portions in the DTM of the Vinas Floodplain – a bridge before (a) and after (b) manual editir                                                              |             |
| a paddy field before (c) and after (d) data retrieval.                                                                                                                |             |
| Figure 23. Map of processed LiDAR data for the Vinas Floodplain                                                                                                       |             |
| Figure 24. Map of Vinas Floodplain with validation survey points in green                                                                                             |             |
| Figure 25. Correlation plot between calibration survey points and LiDAR data                                                                                          |             |
| Figure 26. Correlation plot between the validation survey points and the LiDAR data                                                                                   |             |
| Figure 27. Map of Vinas floodplain with bathymetric survey points in blue                                                                                             |             |
| Figure 28. Blocks (in blue) of Vinas building features that was subjected to QC                                                                                       |             |
| Figure 29. Extracted features of the Vinas Floodplain                                                                                                                 |             |
| Figure 30. Vinas River Survey Extent                                                                                                                                  |             |
| Figure 31. Vinas River Basin Control Survey Extent                                                                                                                    |             |
| Figure 32. GNSS base set up, Trimble® SPS 882, at QZN-40, located inside a triangular plant area found                                                                |             |
| the center of a triangular island in Brgy. San Jose, Municipality of Gen. Luna, Quezon                                                                                |             |
| Figure 33. GNSS base set up, Trimble® SPS 882, at QZN-43, located inside the DPWH compound in Brgy                                                                    |             |
| Matandang Sabang Silangan, Municipality of Catanauan, Quezon.                                                                                                         |             |
| Figure 34. GNSS base set up, Trimble® SPS 852, at QZN-47, located at the back of the Principal's Office                                                               |             |
| Mulanay Elementary School in Barangay II, Municipality of Mulanay, Quezon                                                                                             | 42          |
| Figure 35. GNSS base set up, Trimble® SPS 985, at QZ-415, located at the approach of Pansol Bridge in                                                                 |             |
| Brgy. Pansol, Municipality of Lopez, Quezon                                                                                                                           | 42          |
| Figure 36. GNSS base set up, Trimble <sup>®</sup> SPS 852, at QZN-41, located in front of Brgy. Sabang basketball                                                     |             |
| court found in Calauag Port, Barangay I, Municipality of Calauag, Quezon                                                                                              | 43          |
| Figure 37. GNSS base set up, Trimble <sup>®</sup> SPS 882, at UP-CAB, located inside a basketball court in Brgy.                                                      |             |
| Aloneros, Municipality of Guinayangan, Quezon.                                                                                                                        |             |
| Figure 38. GNSS base set up, Trimble <sup>®</sup> SPS 852, at UP-KAN, located at the approach of Kanguinsa in Brg<br>Silongin, Municipality of San Francisco, Quezon. |             |
| Figure 39. GNSS base set up, Trimble <sup>®</sup> SPS 852, at UP-TAL, located at the approach of Talisay Bridge in                                                    | r- <b>T</b> |
| Brgy. Pagsangahan, Municipality of San Francisco, Quezon.                                                                                                             | 44          |

| Figure 40. GNSS base set up, Trimble <sup>®</sup> SPS 882, at UP-VIG, located at the approach of Vigo Bridge in Br<br>Vigo Central, Municipality of San Francisco, Quezon. | 0,   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 41. Cross-Section Survey for Cabibihan River using Trimble <sup>®</sup> Total Station, in Open Traverse                                                             | 4J   |
| Method                                                                                                                                                                     | 10   |
| Figure 42. Location map of the Cabibihan Bridge Cross Section.                                                                                                             |      |
| Figure 43. Location map of the Cabibihan Bridge Cross Section.                                                                                                             |      |
| Figure 44. The Cabibihan Bridge as-built survey data.                                                                                                                      |      |
| Figure 45. Water level markings on Cabibihan Bridge                                                                                                                        |      |
| Figure 46. GNSS Receiver Trimble <sup>®</sup> SPS 882 installed on a vehicle for Ground Validation Survey                                                                  |      |
| Figure 47. The extent of the LiDAR ground validation survey (in red) for Vinas River Basin.                                                                                |      |
| Figure 48. Set up of the bathymetric survey at Cabibihan River                                                                                                             |      |
| Figure 49. The extent of the Cabibihan River Bathymetry Survey.                                                                                                            |      |
| Figure 50. The Cabibihan Riverbed Profile.                                                                                                                                 |      |
| Figure 51. Location Map of the Vinas HEC-HMS model used for calibration                                                                                                    |      |
| Figure 52. Cross-Section Plot of Cabibihan Bridge.                                                                                                                         |      |
| Figure 53. Rating Curve at Cabibihan Bridge, Real, Quezon.                                                                                                                 |      |
| Figure 54. Rainfall and outflow data at Vinas River Basin, which was used for modeling                                                                                     |      |
| Figure 55. Location of Alabat RIDF Station relative to Vinas River Basin                                                                                                   |      |
| Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.                                                                               |      |
| Figure 57. Soil Map of Vinas River Basin.                                                                                                                                  |      |
| Figure 58. Land Cover Map of Vinas River Basin.                                                                                                                            |      |
| Figure 59. Slope Map of the Vinas River Basin.                                                                                                                             |      |
| Figure 60. Slope Map of the Vinas River Basin.                                                                                                                             |      |
| Figure 61. Vinas river basin model generated in HEC-HMS.                                                                                                                   |      |
| Figure 62. River cross-section of the Vinas River through the ArcMap HEC GeoRas tool.                                                                                      |      |
| Figure 63. A screenshot of the river sub-catchment with the computational area to be modeled in FLO                                                                        |      |
| Grid Developer System Pro (FLO-2D GDS Pro)                                                                                                                                 |      |
| Figure 64. Outflow Hydrograph of Vinas produced by the HEC-HMS model compared with observed                                                                                | -    |
| outflow.                                                                                                                                                                   | 71   |
| Figure 65. The Outflow hydrograph at the Vinas Station, generated using the Alabat RIDF simulated in                                                                       |      |
| HEC-HMS.                                                                                                                                                                   |      |
| Figure 66. Sample output map of the Vinas RAS Model.                                                                                                                       | 74   |
| Figure 67. A 100-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery                                                                               |      |
| Figure 68. A 100-year Flow Depth Map for Vinas Floodplain overlaid on Google Earth imagery                                                                                 |      |
| Figure 69. A 25-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery                                                                                | . 78 |
| Figure 70. A 25-year Flow Depth Map for Vinas Floodplain overlaid on Google Earth imagery                                                                                  |      |
| Figure 71. A 5-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery.                                                                                |      |
| Figure 72. A 5-year Flood Depth Map for Vinas Floodplain overlaid on Google Earth imagery.                                                                                 |      |
| Figure 73. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period                                                                                      |      |
| Figure 74. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period                                                                                      |      |
| Figure 75. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period                                                                                      |      |
| Figure 76. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period                                                                                          |      |
| Figure 77. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period                                                                                          | . 87 |
| Figure 78. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period                                                                                       |      |
| Figure 79. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period                                                                                       |      |
| Figure 80. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period                                                                                     |      |
| Figure 81. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period                                                                                     |      |
| Figure 82. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period                                                                                     |      |
| Figure 83. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period                                                                                         |      |
| Figure 84. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period                                                                                         |      |
| Figure 85. Affected Areas in Tagkawayan, Quezon during 25-Year Rainfall Return Period                                                                                      |      |
| Figure 86. Affected Areas in Tagkawayan, Quezon during 25-Year Rainfall Return Period                                                                                      |      |
| Figure 87. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period                                                                                    | 98   |

| Figure 88. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period. |     |
|------------------------------------------------------------------------------------------|-----|
| Figure 89. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period. |     |
| Figure 90. Affected Areas in Calauag, Quezon during 100-Year Rainfall Return Period      | 101 |
| Figure 91. Affected Areas in Calauag, Quezon during 100-Year Rainfall Return Period      | 101 |
| Figure 92. Affected Areas in Tagkawayan, Quezon during 100-Year Rainfall Return Period   | 103 |
| Figure 93. Affected Areas in Tagkawayan, Quezon during 100-Year Rainfall Return Period   | 103 |
| Figure 94. Validation Points for a 5-year Flood Depth Map of the Vinas Floodplain        | 105 |
| Figure 95. Flood depth map vs actual flood depth                                         | 106 |

# LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                    |
|---------|----------------------------------------------------------------|
| Ab      | abutment                                                       |
| ALTM    | Airborne LiDAR Terrain Mapper                                  |
| ARG     | automatic rain gauge                                           |
| AWLS    | Automated Water Level Sensor                                   |
| BA      | Bridge Approach                                                |
| BM      | benchmark                                                      |
| CAD     | Computer-Aided Design                                          |
| CN      | Curve Number                                                   |
| CSRS    | Chief Science Research Specialist                              |
| DAC     | Data Acquisition Component                                     |
| DEM     | Digital Elevation Model                                        |
| DENR    | Department of Environment and<br>Natural Resources             |
| DOST    | Department of Science and Technology                           |
| DPPC    | Data Pre-Processing Component                                  |
| DREAM   | Disaster Risk and Exposure Assessment for Mitigation [Program] |
| DRRM    | Disaster Risk Reduction and<br>Management                      |
| DSM     | Digital Surface Model                                          |
| DTM     | Digital Terrain Model                                          |
| DVBC    | Data Validation and Bathymetry<br>Component                    |
| FMC     | Flood Modeling Component                                       |
| FOV     | Field of View                                                  |
| GiA     | Grants-in-Aid                                                  |
| GCP     | Ground Control Point                                           |
| GNSS    | Global Navigation Satellite System                             |
| GPS     | Global Positioning System                                      |
| HEC-HMS | Hydrologic Engineering Center -<br>Hydrologic Modeling System  |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System       |
| нс      | High Chord                                                     |
| IDW     | Inverse Distance Weighted<br>[interpolation method]            |
| IMU     | Inertial Measurement Unit                                      |
|         |                                                                |

| kts      | knots                                                                                        |
|----------|----------------------------------------------------------------------------------------------|
| LAS      | LiDAR Data Exchange File format                                                              |
| LC       | Low Chord                                                                                    |
| LGU      | local government unit                                                                        |
| Lidar    | Light Detection and Ranging                                                                  |
| LMS      | LiDAR Mapping Suite                                                                          |
| m AGL    | meters Above Ground Level                                                                    |
| MIT      | MAPUA Institute of Technology                                                                |
| MMS      | Mobile Mapping Suite                                                                         |
| MSL      | mean sea level                                                                               |
| NAMRIA   | National Mapping and Resource<br>Information Authority                                       |
| NSTC     | Northern Subtropical Convergence                                                             |
| PAF      | Philippine Air Force                                                                         |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |
| PDOP     | Positional Dilution of Precision                                                             |
| РРК      | Post-Processed Kinematic [technique]                                                         |
| PRF      | Pulse Repetition Frequency                                                                   |
| ΡΤΜ      | Philippine Transverse Mercator                                                               |
| QC       | Quality Check                                                                                |
| QT       | Quick Terrain [Modeler]                                                                      |
| RA       | Research Associate                                                                           |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |
| RMSE     | Root Mean Square Error                                                                       |
| SAR      | Synthetic Aperture Radar                                                                     |
| SCS      | Soil Conservation Service                                                                    |
| SRTM     | Shuttle Radar Topography Mission                                                             |
| SRS      | Science Research Specialist                                                                  |
| SSG      | Special Service Group                                                                        |
| ТВС      | Thermal Barrier Coatings                                                                     |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |
| UTM      | Universal Transverse Mercator                                                                |
| WGS      | World Geodetic System                                                                        |
|          |                                                                                              |

## CHAPTER 1: OVERVIEW OF THE PROGRAM AND VINAS RIVER

Dr. Aldrine Francis A. Uy and Enrico C. Paringit, Dr. Eng.

#### 1.1 Background of the Phil-LIDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR in 2014" or Phil-LiDAR 1, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

Also, the program was aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication entitled "FLOOD MAPPING OF RIVERS IN THE PHILIPPINES USING AIRBORNE LIDAR: METHODS (Paringit, et. al. 2017) available separately.

The implementing partner university for the Phil-LiDAR 1 Program is the MAPUA Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 26 river basins in the CALABARZON and Bicol Region. The university is located in Intramuros, Manila.

#### 1.2 Overview of the Vinas River Basin

The Vinas River Basin covers the Municipalities of Calauag, Guinayangan, and Tagkawayan in Quezon Province. The DENR River Basin Control Office, identified the basin to has a drainage area of 159 km<sup>2</sup> and an estimated annual run-off of 254 million cubic meter (MCM) (RBCO, 2015).

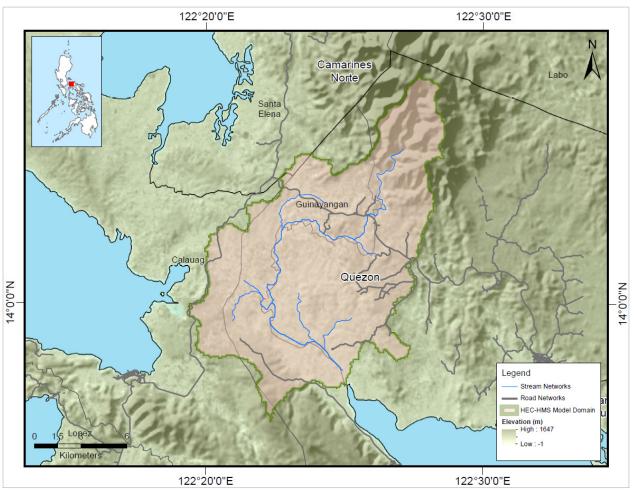



Figure 1. Map of Vinas River Basin (in brown).

Its main stem, Vinas River, is part of the 28 river systems in the Southern Tagalog Region. According to the 2010 national census of NSO, a total of 7,309 locals are residing in the immediate vicinity of the river which are distributed among the five (5) barangays in Municipality of Tagkawayan and six (6) barangays in Municipality of Guinayangan. Community around the river are said to be self-sufficient due to isolation from the main roads. Farming and fishing are the basic sources of income in the two municipalities surrounding Vinas River. Some of the major products are citrus and sugpo (BC J., 2015, August, The Guinayangan Republic from http://peoplesrepublicofguinayangan.blogspot.com/). The most recent and significant flooding in the area that cause evacuation of people was on July 2014 caused by Typhoon "Glenda".

# CHAPTER 2: LIDAR DATA ACQUISITION OF THE VINAS FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Julie Pearl S. Mars, Ms. Kristine Joy P. Andaya

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 2.1 Flight Plans

To initiate the LiDAR acquisition survey of the Vinas floodplain, the Data Acquisition Component (DAC) created flight plans within the delineated priority area for Vinas Floodplain in Quezon Province. These flight missions were planned for 10 lines and ran for at most four hours (4) including take-off, landing and turning time using one sensor – the Pegasus (see ANNEX 1 for sensor specifications). The flight planning parameters for the LiDAR system are outlined in Error! Reference source not found.. Error! Reference source not found.. Error! Reference source not found.. error! Reference source not found..

| Tuble 1. Then planning parameters for Tesuous Enstitle System. |                          |                |                      |                                                 |                           |                        |                                   |
|----------------------------------------------------------------|--------------------------|----------------|----------------------|-------------------------------------------------|---------------------------|------------------------|-----------------------------------|
| Block Name                                                     | Flying Height<br>(m AGL) | Overlap<br>(%) | Field of<br>View (θ) | Pulse<br>Repetition<br>Frequency<br>(PRF) (KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed (kts) | Average<br>Turn Time<br>(Minutes) |
| BLK 20A                                                        | 900                      | 30             | 50                   | 200                                             | 30                        | 130                    | 5                                 |
| BLK 20B                                                        | 700/1100                 | 30             | 50                   | 200                                             | 30                        | 130                    | 5                                 |
| BLK 20C                                                        | 800/900                  | 30             | 50                   | 200                                             | 30                        | 130                    | 5                                 |

Table 1. Flight planning parameters for Pegasus LiDAR system.

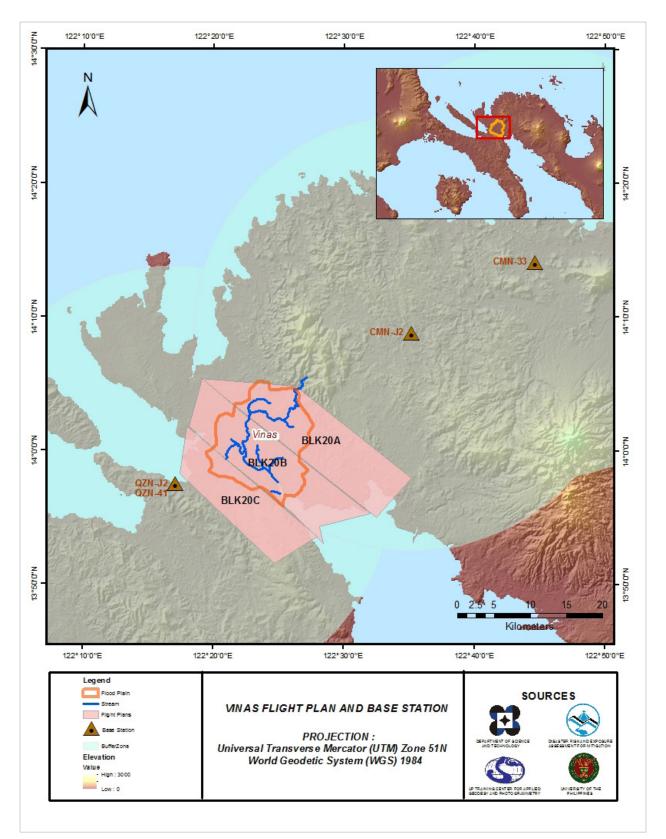



Figure 2. Flight plans and base stations used for Vinas floodplain using the Pegasus sensor.

#### 2.2 Ground Base Stations

The project team was able to recover two (2) NAMRIA ground control points, QZN-41 and QZN-33 which are of second (2<sup>nd</sup>) order accuracy and ABR-3221 which is of fourth (4<sup>th</sup>) order accuracy. The project team established two (2) ground control points, QZN-J2 and QZN-J2.

The certification for the NAMRIA reference points and benchmarks are found in ANNEX 2 while the baseline processing reports for the established control points are found in ANNEX 3. These were used as base stations during flight operations for the entire duration of the survey from April 4 to April 18, 2016. Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 852 and Topcon GR-5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Vinas floodplain are shown in Figure 2.

The succeeding sections depict the sets of reference points, control stations and established points, and the ground control points for the entire Vinas Floodplain LiDAR Survey. Figure 3Error! Reference source not found. to Figure 6 Error! Reference source not found.show the recovered NAMRIA reference points within the area of the floodplain, while Error! Reference source not found. Table 2 to Table 5 show the details about the following NAMRIA control stations and established points. Table 6, on the other hand, shows the list of all ground control points occupied during the acquisition together with the corresponding dates of utilization.

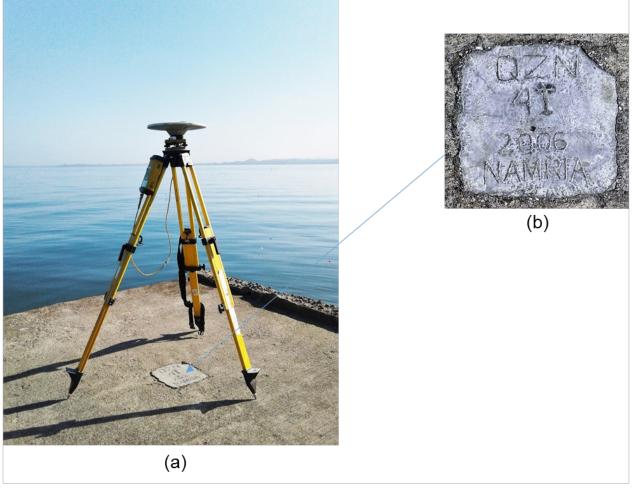



Figure 3. GPS set-up over QZN-41 at Barangay Sabang Uno, Vinas, Quezon (a) and NAMRIA reference point QZN-41 (b) as recovered by the field team.

| 1            | ntal control point QZN-41 used as base station for the LiDAR equisition. |
|--------------|--------------------------------------------------------------------------|
| Station Name | QZN-41                                                                   |

| Station Name                                                                           | QZN-41                                      |                                                                      |  |
|----------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
| Order of Accuracy                                                                      | 2 <sup>nd</sup> order                       |                                                                      |  |
| Relative Error (horizontal positioning)                                                | 1:50,000                                    |                                                                      |  |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 13° 57' 35.21424" North<br>122° 16' 58.66932" East<br>3.94900 meters |  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 422523.318 meters<br>1543840.411 meters                              |  |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)                | Latitude<br>Longitude<br>Ellipsoidal Height | 13° 57' 30.05147" North<br>122° 17' 3.61061" East<br>52.42200 meters |  |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 422550.44 meters<br>1543300.04 meters                                |  |

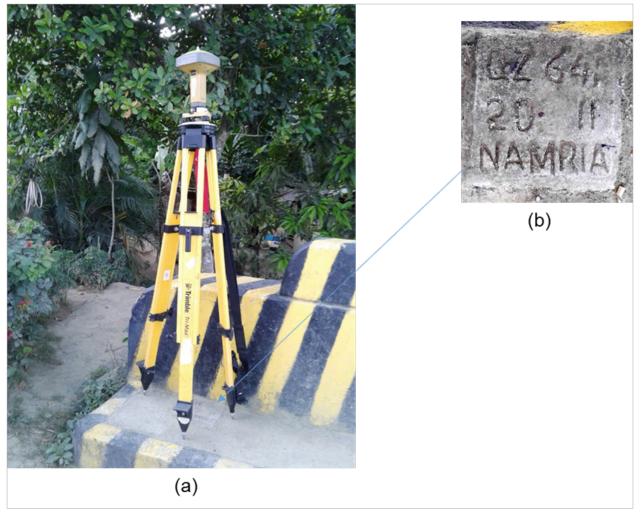



Figure 4. GPS set-up over CMN-33 at Barangay Bato Balani, Jose Panganiban, Camarines Norte. (a) and NAMRIA reference point CMN-33 (b) as recovered by the field team.

| Table 3. Details of the recovered NAMRIA horizontal control point CMN-33 used as base station for the LiDAR |
|-------------------------------------------------------------------------------------------------------------|
| acquisition.                                                                                                |

| Station Name                                                                         | C                                           | MN-33                                                                |
|--------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Order of Accuracy                                                                    | 2"                                          | <sup>rd</sup> order                                                  |
| Relative Error (horizontal positioning)                                              | 1:                                          | 50,000                                                               |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)            | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 14' 11.70144" North<br>122° 44' 31.91442" East<br>8.58900 meters |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)    | Easting<br>Northing                         | 72178.341 meters<br>1574360.987 meters                               |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)              | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 14′ 6.51050″ North<br>122° 44′ 36.82890" East<br>7.40600 meters  |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS 92) | Easting<br>Northing                         | 472188.08 meters<br>1573809.93 meters                                |

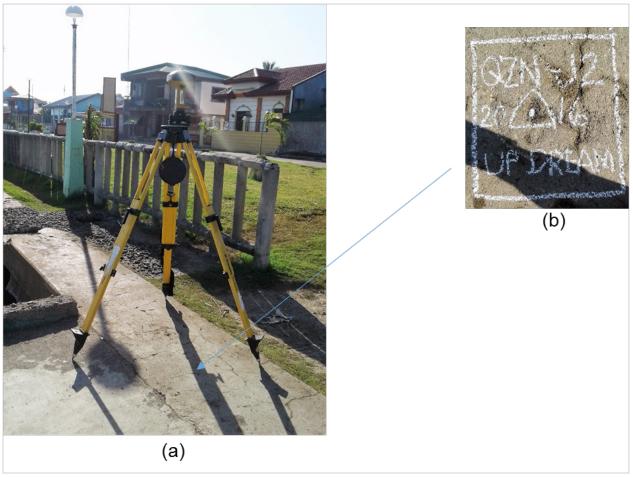



Figure 5. GPS set-up over QZN-J2 as established in at Barangay Sabang Uno, Vinas, Quezon (a) and reference point QZN-J2 (b) as established by the field team.

Table 4. Details of the reprocessed NAMRIA horizontal control point QZN-J2 used as base station for the LiDAR Acquisition.

| Station Name                                                                           | C                                           | ZN-J2                                                               |
|----------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| Order of Accuracy                                                                      | 2 <sup>n</sup>                              | <sup>d</sup> order                                                  |
| Relative Error (horizontal positioning)                                                | 1:                                          | 50,000                                                              |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)              | Latitude<br>Longitude<br>Ellipsoidal Height | 13° 57' 34.99489" North<br>122° 16' 58.78731" East<br>4.043 meters  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92)      | Easting<br>Northing                         | 422553.956 meters<br>1543293.290 meters                             |
| Grid Coordinates,<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 13° 57′ 29.83213″ North<br>122° 17′ 03.72860″ East<br>52.516 meters |



Figure 6. GPS set-up over CMN-J2 as established in at Barangay Maibago, Labo, Camarines Norte (a) and reference point CMN-J2 (b) as established by the field team.

| Table 5. Details of the recovered NAMRIA horizontal control point CMN-J2 used as base station for the LiDAR |
|-------------------------------------------------------------------------------------------------------------|
| Acquisition.                                                                                                |

| Station Name                                                                      | C                                           | MN-J2                                                                |
|-----------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Order of Accuracy                                                                 | 2'                                          | <sup>nd</sup> order                                                  |
| Relative Error (horizontal positioning)                                           | 1                                           | :50,000                                                              |
| Geographic Coordinates,<br>Philippine Reference of 1992 Datum<br>(PRS 92)         | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 08' 53.88940" North<br>122° 35' 03.56309" East<br>51.531 meters  |
| Grid Coordinates,<br>Philippine Transverse Mercator Zone 5<br>(PTM Zone 5 PRS 92) | Easting<br>Northing                         | 455138.726 meters<br>1564071.272 meters                              |
| Geographic Coordinates,<br>World Geodetic System 1984 Datum<br>(WGS 84)           | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 08′ 48.70654″ North<br>122° 37′ 08.48618″ East<br>100.212 meters |

|               | 1             |              |                       |
|---------------|---------------|--------------|-----------------------|
| Date Surveyed | Flight Number | Mission Name | Ground Control Points |
| 08 APR 2016   | 23230P        | 1BLK20A099A  | CMN-33 & CMN-J2       |
| 11 APR 2016   | 23242P        | 1BLK20A102A  | QZN-41 & QZN-J2       |
| 11 APR 2016   | 23244P        | 1BLK20B102B  | QZN-41 & QZN-J2       |
| 13 APR 2016   | 23252P        | 1BLK20104B   | QZN-41 & QZN-J2       |

Table 6. Ground control points used during the LiDAR data acquisition.

#### 2.3 Flight Missions

A total of four (4) missions were conducted to complete the LiDAR data acquisition in Vinas floodplain, for a total of fourteen hours and forty-seven minutes (14+47) minutes of flying time for RP-C9122 (See ANNEX 6). All missions were acquired using the Pegasus LiDAR system. As shown below, the total area of actual coverage per mission and the corresponding flying hours are depicted in Table 7, while the actual parameters used during the LiDAR data acquisition are presented in Table 8.

Table 7. Flight missions for LiDAR data acquisition in Vinas floodplain.

| Date          | Flight | Flight             | Surveyed   | Area<br>Surveyed                               | Area<br>Surveyed<br>outside             | No. of             | Flying Hours |     |
|---------------|--------|--------------------|------------|------------------------------------------------|-----------------------------------------|--------------------|--------------|-----|
| Surveyed      | Number | Plan Area<br>(km²) | Area (km²) | within the<br>Floodplain<br>(km <sup>2</sup> ) | the<br>Floodplain<br>(km <sup>2</sup> ) | Images<br>(Frames) | Hr           | Min |
| 08 APRIL 2016 | 23230P | 186.03             | 240.80     | 59.5                                           | 181.30                                  | NA                 | 4            | 23  |
| 11 APRIL 2016 | 23242P | 169.09             | 232.31     | 108.48                                         | 123.83                                  | 953                | 4            | 35  |
| 11 APRIL 2016 | 23244P | 126.25             | 107.53     | 5.75                                           | 101.79                                  | 357                | 2            | 50  |
| 13 APRIL 2016 | 23252P | 126.25             | 82.26      | 7.26                                           | 75                                      | 12                 | 2            | 59  |
| TOTAL         |        | 607.62             | 662.9      | 180.99                                         | 481.92                                  | 1322               | 14           | 47  |

Table 8. Actual parameters used during LiDAR data acquisition.

| Flight<br>Number | Flying<br>Height<br>(m AGL) | Overlap (%) | FOV (θ) | PRF<br>(KHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|-----------------------------|-------------|---------|--------------|---------------------------|---------------------------|-----------------------------------|
| 23230P           | 900                         | 30          | 50      | 200          | 30                        | 130                       | 5                                 |
| 23242P           | 700/1100                    | 30          | 50      | 200          | 30                        | 130                       | 5                                 |
| 23244P           | 800/900                     | 30          | 50      | 200          | 30                        | 130                       | 5                                 |
| 23252P           | 900                         | 30          | 50      | 200          | 30                        | 130                       | 5                                 |

#### 2.4 Survey Coverage

This certain LiDAR acquisition survey covered the Vinas floodplain (See ANNEX 7). It is situated within the provinces of Quezon and Camarines Norte. The list of municipalities and cities surveyed with at least one (1) square kilometer coverage, is shown in Table 9. Figure 7, on the other hand, shows the actual coverage of the LiDAR acquisition for the Vinas floodplain.

| Province        | Municipality/City | Area of Municipality/<br>City (km <sup>2</sup> ) | Total Area<br>Surveyed (km <sup>2</sup> ) | Percentage of Area<br>Surveyed |
|-----------------|-------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|
| Camarines Norte | Santa Elena       | 210.29                                           | 38.77                                     | 18%                            |
| Camarines Sur   | Del Gallego       | 279.27                                           | 4.09                                      | 1%                             |
|                 | Calauag           | 323.42                                           | 113.02                                    | 35%                            |
| 0               | Guinayangan       | 236.85                                           | 138.38                                    | 58%                            |
| Quezon          | Lopez             | 378.81                                           | 5.43                                      | 1%                             |
|                 | Tagkawayan        | 551.73                                           | 224.28                                    | 41%                            |
| Total           |                   | 1980.37                                          | 523.97                                    | 26.46%                         |

Table 9. List of municipalities and cities surveyed during Vinas floodplain LiDAR survey.

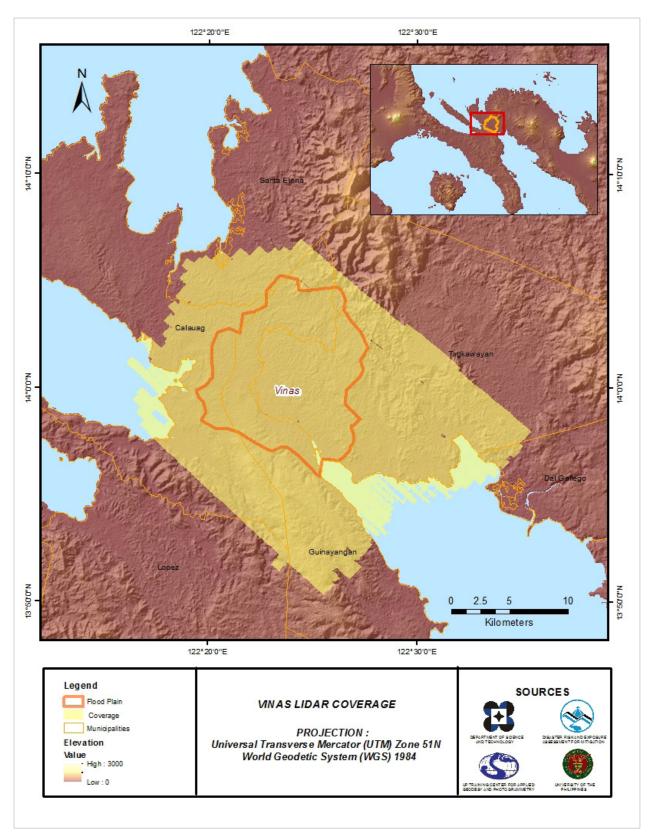
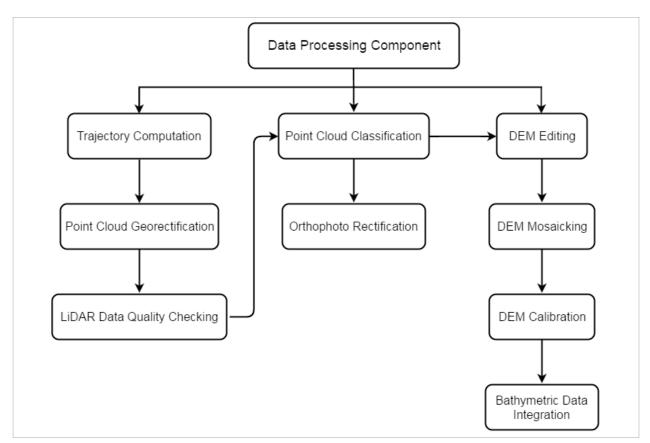



Figure 7. Actual LiDAR survey coverage for Vinas floodplain.

# CHAPTER 3: LIDAR DATA PROCESSING OF THE VINAS FLOODPLAIN


Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo , Engr. Joida F. Prieto , Engr. Melissa F. Fernandez , Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Engr. Jovelle Anjeanette S. Canlas , Engr. Ezzo Marc C. Hibionada, Ziarre Anne P. Mariposa

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

#### 3.1 Overview of the LIDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component are checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory is done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification is performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds are subject for quality checking to ensure that the required accuracies of the program, which are the minimum point density, vertical and horizontal accuracies, are met. The point clouds are then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model

Using the elevation of points gathered in the field, the LiDAR-derived digital models are calibrated. Portions of the river that are barely penetrated by the LiDAR system are replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally are then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data is done through the help of the georectified point clouds and the metadata containing the time the image was captured.



These processes are summarized in the flowchart shown in Figure 8.

Figure 8. Schematic diagram for the data pre-processing.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Vinas floodplain can be found in ANNEX 5. Missions flown during the survey conducted on April 2016 used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Pegasus system over Quezon and Camarines Norte.

The Data Acquisition Component (DAC) transferred a total of 86.20 Gigabytes of Range data, 0.91 Gigabytes of POS data, 532.5 Megabytes of GPS base station data, and 159 Gigabytes of raw image data to the data server on May 11, 2016. The Data Pre-processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Vinas was fully transferred on May 16, 2016, as indicated on the Data Transfer Sheets for Vinas floodplain.

#### **3.3 Trajectory Computation**

The Smoothed Performance Metrics of the computed trajectory for flight 23230P, one of the Vinas flights, which is the North, East, and Down position RMSE values are shown in Figure 9. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on April 8, 2016 00:00 AM. The y-axis is the RMSE value for that particular position.

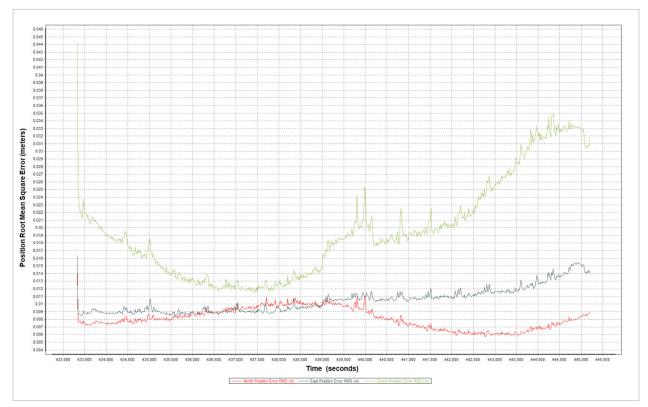



Figure 9. Smoothed Performance Metrics of Vinas Flight 23230P.

The time of flight was from 433,000 seconds to 445,500 seconds, which corresponds to afternoon of April 8, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the POS system starts computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 10 shows that the North position RMSE peaks at 1.10 centimeters, the East position RMSE peaks at 1.50 centimeters, and the Down position RMSE peaks at 3.40 centimeters, which are within the prescribed accuracies described in the methodology.

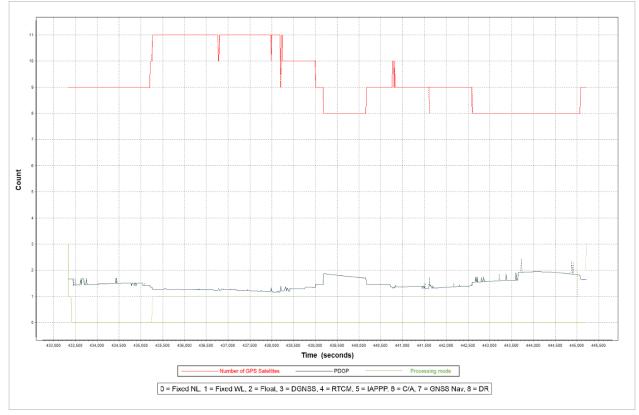



Figure 10. Solution Status Parameters of Vinas Flight 23230P.

#### LIDAR Surveys and Flood Mapping of Vinas River

The Solution Status parameters of flight 23230P one of the Vinas flights, which are the number of GPS satellites, Positional Dilution of Precision (PDOP), and the GPS processing mode used, are shown in Figure 10. The graphs indicate that the number of satellites during the acquisition did not go down to 8. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Vinas flights is shown in Figure 11.

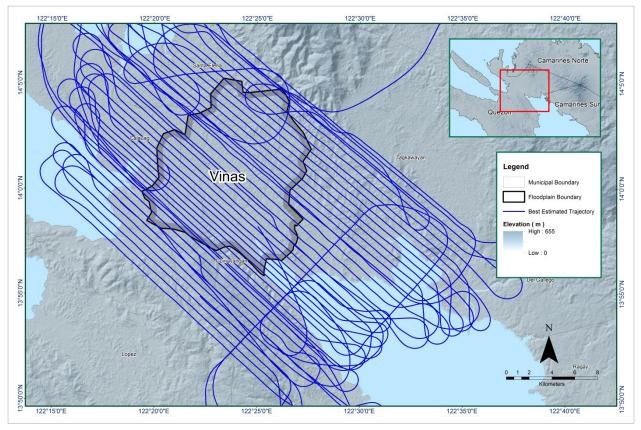



Figure 11. Best Estimated Trajectory of the LiDAR missions conducted over the Vinas Floodplain.

#### 3.4 LiDAR Point Cloud Computation

The produced LAS contains 56 flight lines, with each flight line containing two channel, since the Pegasus system contains two channel only. The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over the Vinas floodplain are given in Table 10.

| Parameter                                                |                 | Acceptable Value |
|----------------------------------------------------------|-----------------|------------------|
| Boresight Correction stdev                               | (<0.001degrees) | 0.000445         |
| IMU Attitude Correction Roll and Pitch Corrections stdev | (<0.001degrees) | 0.000629         |
| GPS Position Z-correction stdev                          | (<0.01meters)   | 0.0022           |

The optimum accuracy were obtained for all Vinas flights based on the computed standard deviations of the corrections of the orientation parameters. The standard deviation values for individual blocks are available in the Mission Summary Reports in Error! Reference source not found.8.

#### 3.5 LiDAR Quality Checking

The boundary of the processed LiDAR data on top of the SAR Elevation Data over the Vinas Floodplain is shown in Figure 12. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.

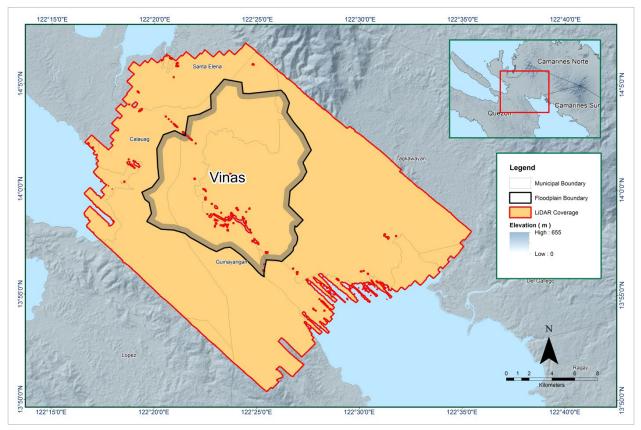



Figure 12. Boundaries of the processed LiDAR data over the Vinas Floodplain.

The total area covered by the Vinas missions is 642.66 square kilometers (sq. kms.) that is comprised of four (4) flight acquisitions grouped and merged into four (4) blocks as shown in Table 11.

| LiDAR Blocks               | Flight Numbers | Area (sq. km) |
|----------------------------|----------------|---------------|
| Bagasbas_Blk20F            | 23230P         | 240.05        |
| Bagasbas_Blk20G            | 23242P         | 226.72        |
| Bagasbas_Blk21A            | 23244P         | 99.14         |
| Bagasbas_Blk21A_supplement | 23252P         | 76.75         |
| TOTAL                      |                | 642.66 sq.km  |

| Table 11. List of LiDAR blocks for the Vinas floodplain. |
|----------------------------------------------------------|
|----------------------------------------------------------|

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location is shown in Figure 13. Since the Pegasus system employs two channels, we would expect an average value of 2 (blue) for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.

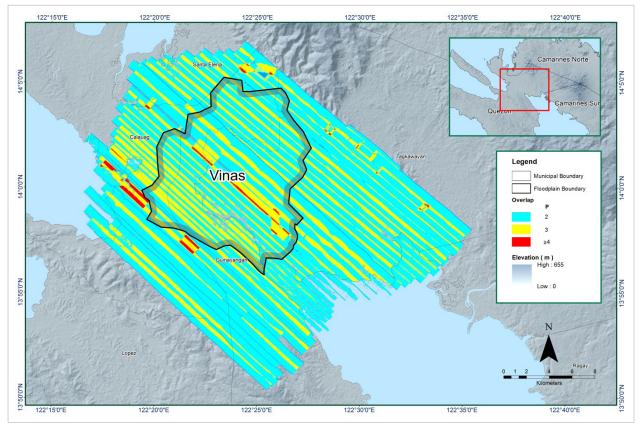



Figure 13. Image of data overlap for Vinas floodplain.

The overlap statistics per block for the Vinas floodplain can be found in the Mission Summary Reports (ANNEX 8). One pixel corresponds to 25.0 square meters on the ground. For this area, the minimum and maximum percent overlaps are 29.12% and 38.27% which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the two (2) points per square meter criterion is shown in Figure 14. It was determined that all LiDAR data for the Vinas floodplain satisfy the point density requirement, and the average density for the entire survey area is 3.46 points per square meter.

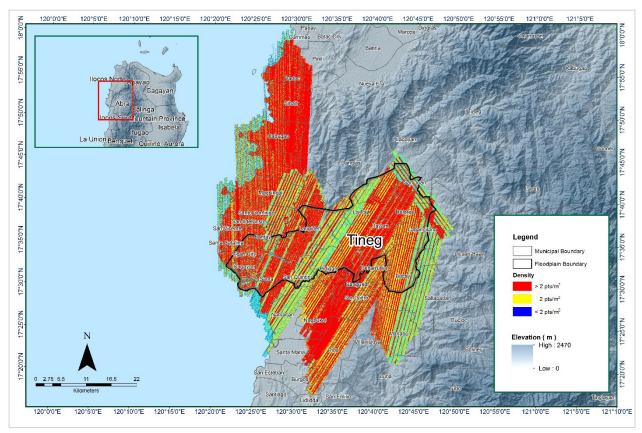



Figure 14. Pulse density map of the merged LiDAR data for Vinas floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 15. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20m relative to elevations of its adjacent flight line. Areas with bright red or bright blue areas of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.

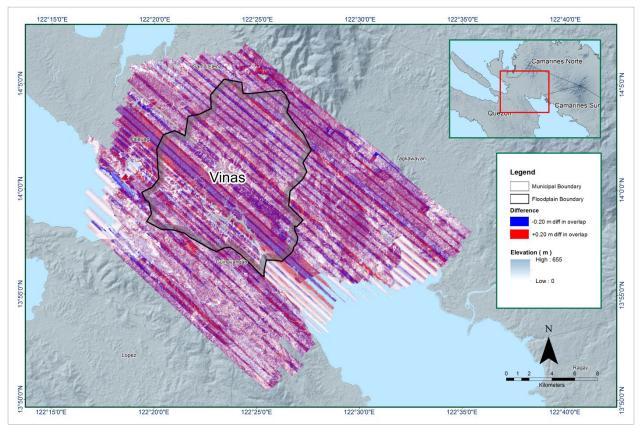



Figure 15. Elevation difference Map between flight lines for the Vinas Floodplain Survey

A screen capture of the processed LAS data from a Vinas flight 23230P loaded in QT Modeler is shown in Figure 16. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed red line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.

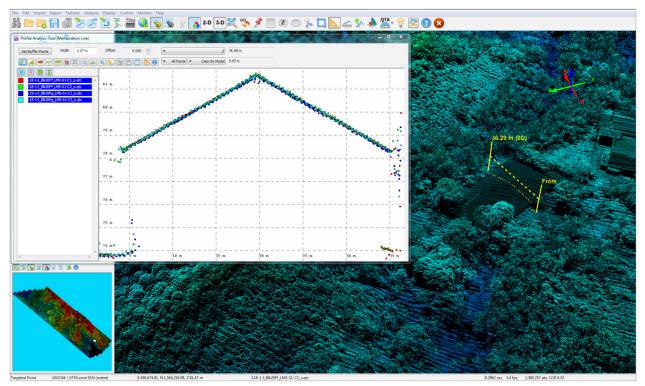



Figure 16. Quality checking for aVinas flight 23230P using the Profile Tool of QT Modeler

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |  |  |
|-------------------|------------------------|--|--|
| Ground            | 522,469,406            |  |  |
| Low Vegetation    | 359,727,918            |  |  |
| Medium Vegetation | 1,063,323,799          |  |  |
| High Vegetation   | 2,186,900,021          |  |  |
| Building          | 36,696,631             |  |  |

Table 12. Vinas classification results in TerraScan.

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Vinas floodplain is shown in Error! Reference source not found.. A total of 913 1km by 1km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 12. The point cloud has a maximum and minimum height of 942.63 meters and 39.01 meters, respectively.

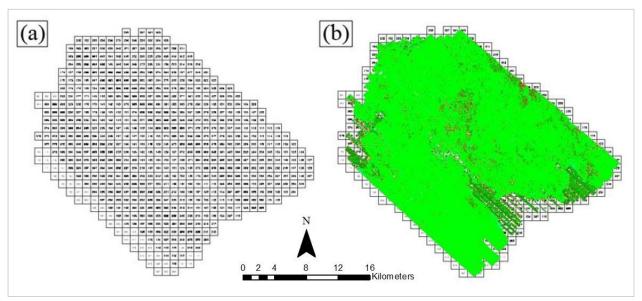



Figure 17. Tiles for Vinas floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 18. The ground points are in orange, while the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below the canopy are classified correctly, due to the density of the LiDAR data.

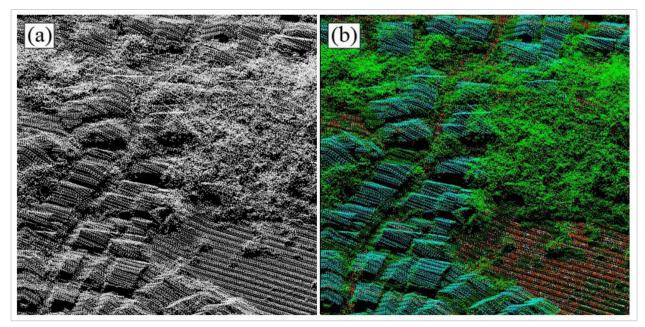



Figure 18. Point cloud before (a) and after (b) classification.

The production of the last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 19Error! Reference source not found.. It shows that DTMs are the representation of the bare earth, while on the DSMs, all features are present, such as buildings and vegetation.

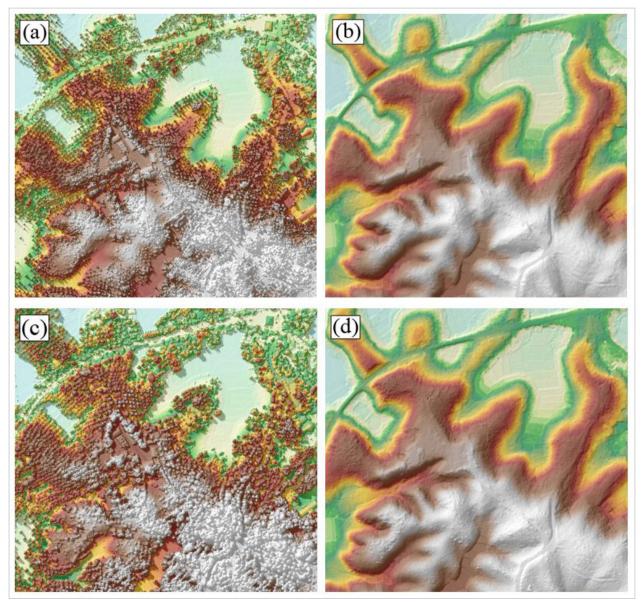



Figure 19. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Vinas floodplain.

#### 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 486 1km by 1km tiles area covered by Vinas floodplain is shown in Figure 20, after tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The Vinas floodplain has a total of 321.78 sq.km orthophotogaph coverage comprised of 1,573 images. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 21.

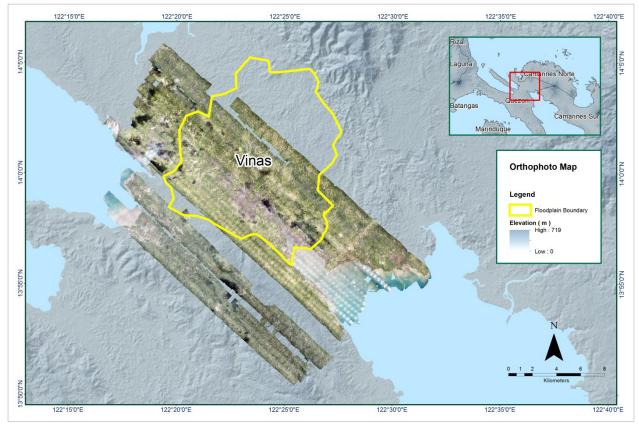



Figure 20. Vinas floodplain with available orthophotographs.



Figure 21. Sample orthophotograph tiles for Vinas floodplain.

#### 3.8 DEM Editing and Hydro-Correction

Four (4) mission blocks were processed for Vinas flood plain. These blocks are composed of Bagasbas blocks with a total area of 624.66 square kilometers. Table 13 shows the name and corresponding area of each block in square kilometers.

Table 13. LiDAR blocks with its corresponding areas.

| LiDAR Blocks               | Area (sq.km) |  |
|----------------------------|--------------|--|
| Bagasbas_Blk20F            | 240.05       |  |
| Bagasbas_Blk20G            | 226.72       |  |
| Bagasbas_Blk21A            | 99.14        |  |
| Bagasbas_Blk21A_supplement | 76.75        |  |
| TOTAL                      | 642.66 sq.km |  |

Figure 22 shows portions of a DTM before and after manual editing. As evident in the figure, the bridge (Error! Reference source not found.a) has obstructed the flow of water along the river. To correct the river hydrologically, the bridge was removed through manual editing (Error! Reference source not found.b). A paddy field (Figure 22c) was misclassified and removed during the classification process. To complete the surface, the road (Figure 22d) was retrieved and reclassified through manual editing to allow the correct water flow.

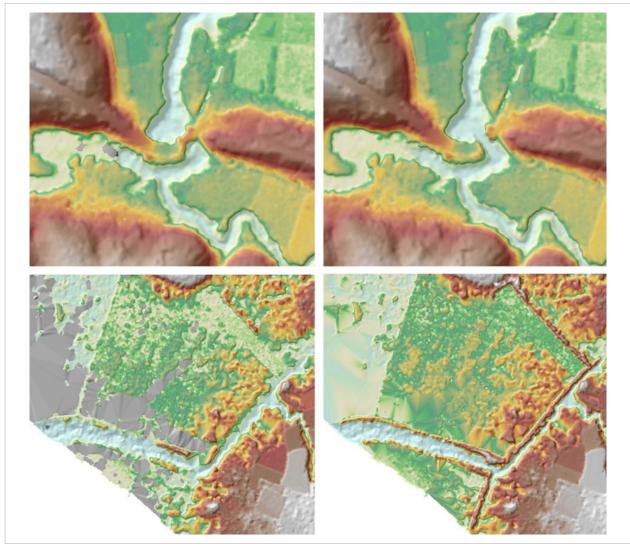



Figure 22. Portions in the DTM of the Vinas Floodplain – a bridge before (a) and after (b) manual editing; a paddy field before (c) and after (d) data retrieval.

#### 3.9 Mosaicking of Blocks

Bagasbas\_Blk20F was used as the reference block at the start of mosaicking because this block was referred to a base with an acceptable order of accuracy. Table 14 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Vinas floodplain is shown in Figure 23. It can be seen that the entire Vinas floodplain is 100% covered by LiDAR data.

|                            | Shift Values (meters) |                       |       |  |
|----------------------------|-----------------------|-----------------------|-------|--|
| Mission Blocks             |                       | Sint values (incleis) |       |  |
|                            | x                     | У                     | Z     |  |
| Bagasbas_Blk20F            | 0.00                  | 0.00                  | 0.00  |  |
| Bagasbas_Blk20G            | 0.00                  | 0.00                  | 0.00  |  |
| Bagasbas_Blk21A            | -3.24                 | 1.76                  | -0.05 |  |
| Bagasbas_Blk21A_supplement | -3.24                 | 1.76                  | 0.40  |  |

Table 14. Shift values of each LiDAR block of Vinas Floodplain.

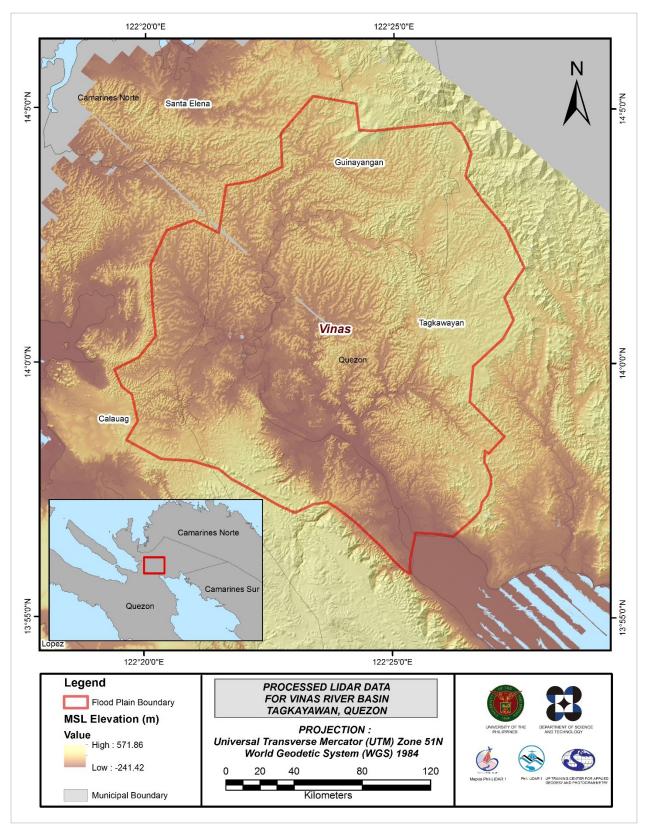



Figure 23. Map of processed LiDAR data for the Vinas Floodplain.

# 3.10 Calibration and Validation of Mosaicked LiDAR DEM

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Vinas to collect points with which the LiDAR dataset is validated is shown in Figure 24. A total of 15,500 survey points were gathered for all the flood plains within the provinces of Quezon and Camarines Sur wherein the Vinas floodplain is located. Random selection of 80% of the survey points, resulting to 12400 points, was used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR DTM and ground survey elevation values is shown in Figure 25. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration points is 3.08 meters with a standard deviation of 0.17 meters. Calibration of the LiDAR data was done by subtracting the height difference value, 3.08 meters, to the mosaicked LiDAR data. Table 15 shows the statistical values of the compared elevation values between the LiDAR data and calibration data.

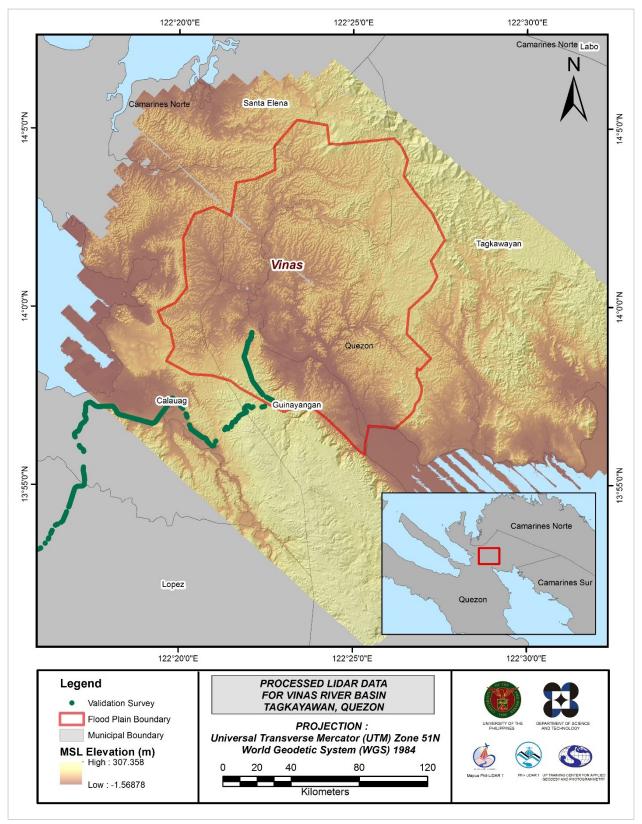



Figure 24. Map of Vinas Floodplain with validation survey points in green.

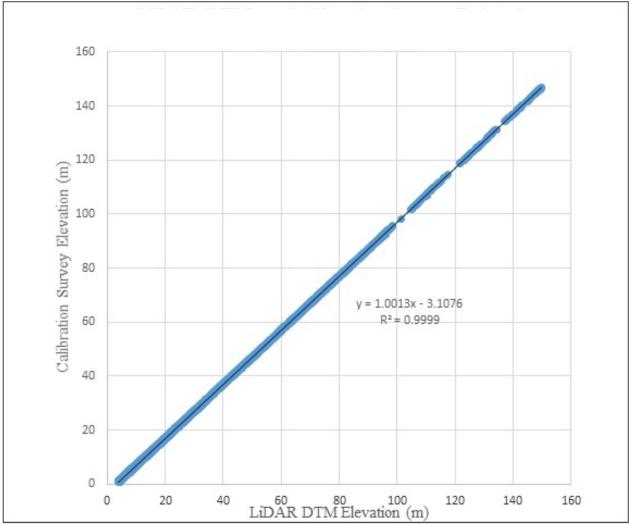



Figure 25. Correlation plot between calibration survey points and LiDAR data.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 3.08           |
| Standard Deviation               | 0.17           |
| Average                          | -3.07          |
| Minimum                          | -3.40          |
| Maximum                          | -2.60          |

The remaining 20% of the total survey points that are near Vinas flood plain, resulting to 477 points, were used for the validation of calibrated Vinas DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 27. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.20 meters with a standard deviation of 0.06 meters, as shown in Table 16.

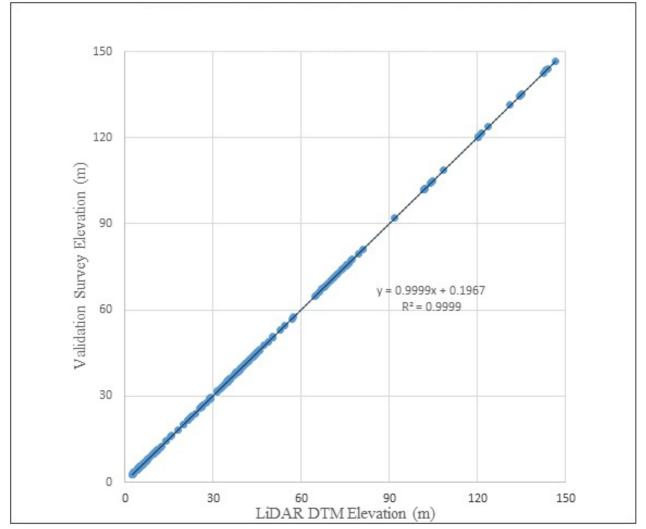



Figure 26. Correlation plot between the validation survey points and the LiDAR data.

| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.20           |
| Standard Deviation              | 0.06           |
| Average                         | 0.19           |
| Minimum                         | 0.04           |
| Maximum                         | 0.29           |

Table 16. Validation Statistical Measures

## 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Vinas with 11,786 bathymetric survey points. The resulting raster surface produced was done by Kernel interpolation method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface is represented by the computed RMSE value of 0.54 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Vinas integrated with the processed LiDAR DEM is shown in Figure 27.

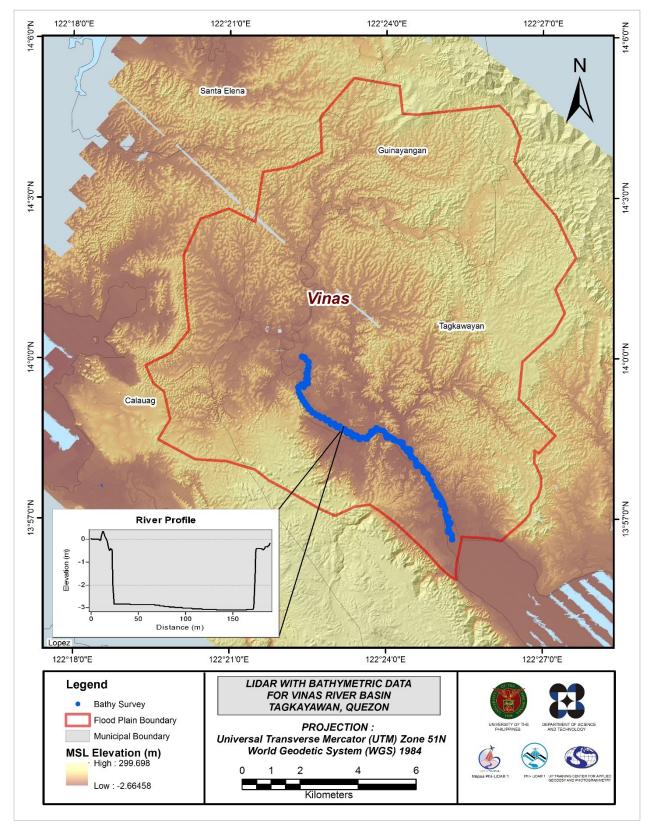



Figure 27. Map of Vinas floodplain with bathymetric survey points in blue.

## 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with a 200-meter buffer zone. Mosaicked LiDAR DEMs with a 1-m resolution were used to delineate footprints of building features, which comprised of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for the routing of disaster response efforts. These features are represented by network of road centerlines.

# 3.12.1 Quality Checking (QC) of Digitized Features' Boundary

Vinas floodplain, including its 200 m buffer, has a total area of 171.49 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 562 building features, are considered for QC. Figure 28 shows the QC blocks for Vinas floodplain.

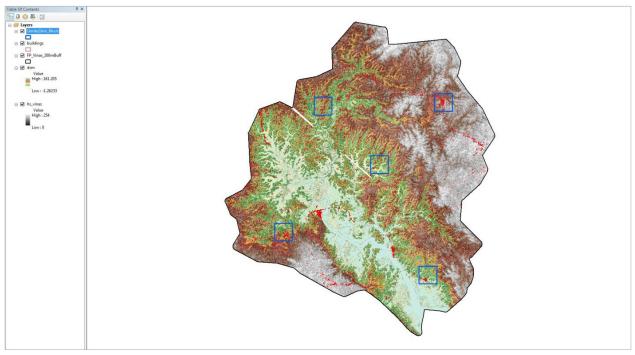



Figure 28. Blocks (in blue) of Vinas building features that was subjected to QC.

Quality checking of Vinas building features resulted in the ratings shown in Table 17

Table 17. Details of the quality checking ratings for the building features extracted for the Vinas River Basin

| FLOODPLAIN | COMPLETENESS | CORRECTNESS | QUALITY | REMARKS |
|------------|--------------|-------------|---------|---------|
| Vinas      | 98.79        | 100         | 95.63   | PASSED  |

### **3.12.2 Height Extraction**

Height extraction was done for 5,085 building features in Vinas floodplain. Of these building features, none was filtered out after height extraction, resulting to 4,769 buildings with height attributes. The lowest building height is at 2.00 meters, while the highest building is at 7.98 meters.

## 3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points are uploaded and overlaid in ArcMap and are then integrated with the shapefiles.

Table 18 summarizes the number of building features per type. On the other hand, Table 19 shows the total length of each road type, while Table 20 shows the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 4,635           |
| School                                  | 51              |
| Market                                  | 0               |
| Agricultural/Agro-Industrial Facilities | 0               |
| Medical Institutions                    | 7               |
| Barangay Hall                           | 33              |
| Military Institution                    | 0               |
| Sports Center/Gymnasium/Covered Court   | 3               |
| Telecommunication Facilities            | 0               |
| Transport Terminal                      | 0               |
| Warehouse                               | 0               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 0               |
| Police Station                          | 0               |
| Water Supply/Sewerage                   | 1               |
| Religious Institutions                  | 28              |
| Bank                                    | 0               |
| Factory                                 | 0               |
| Gas Station                             | 0               |
| Fire Station                            | 0               |
| Other Government Offices                | 5               |
| Other Commercial Establishments         | 6               |
| Total                                   | 4,769           |

Table 18. Building features extracted for Vinas Floodplain.

Table 19. Total length of extracted roads for Vinas Floodplain.

| Floodplain | Barangay<br>Road | City/<br>Municipal<br>Road | Provincial<br>Road | National Road | Others | Total  |
|------------|------------------|----------------------------|--------------------|---------------|--------|--------|
| Vinas      | 163.87           | 4.66                       | 11.46              | 22.54         | 0.00   | 202.53 |

Table 20. Number of extracted water bodies for Vinas Floodplain.

| Water Body Type |                    |             |     |     |          |       |
|-----------------|--------------------|-------------|-----|-----|----------|-------|
| Floodplain      | Rivers/<br>Streams | Lakes/Ponds | Sea | Dam | Fish Pen | Total |
| Vinas           | 2                  | 253         | 0   | 0   | 0        | 255   |

A total of 39 bridges and culverts over small channels that are part of the river network were also extracted for the floodplain.

## 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 29 shows the completed Digital Surface Model (DSM) of the Vinas floodplain overlaid with its ground features.

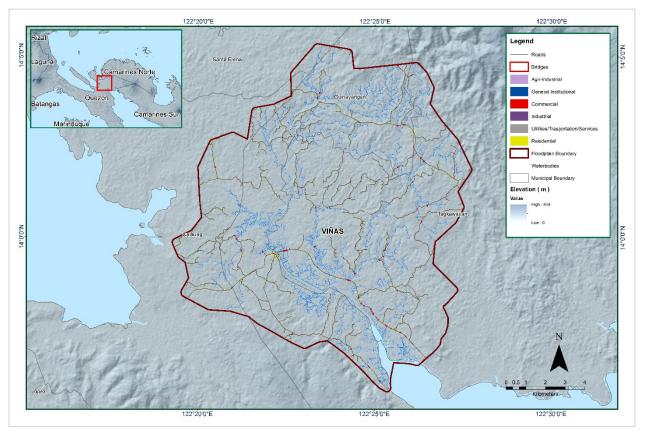



Figure 29. Extracted features of the Vinas Floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE VINAS RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Kristine Ailene B. Borromeo, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, For. Rodel C. Alberto, Cybil Claire Atacador, Engr. Lorenz R. Taguse

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

## 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Vinas River on May 2, 2016 to May 16, 2016. Generally, the scope of work was comprised of (i) initial reconnaissance; (ii) control point survey for the establishment of a control point; (iii) the cross section survey and bridge asbuilt survey, and water level marking at Cabibihan Bridge in Brgy. Cabugwang, Municipality of Tagkawayan; (iv) validation points acquisition of about 67 km covering the Vinas River Basin area; and (v) bathymetric survey from its upstream in Brgy. Cabugwang, Municipality of Tagkawayan down to the mouth of the river in Brgy. Hinabaan, Municipality of Guinayangan, with an approximate length of 9.840 km using Ohmex<sup>™</sup> single beam echo sounder and Trimble<sup>®</sup> SPS 882 GNSS PPK survey technique. Figure 30 illustrates the extent of the entire survey in Vinas River.

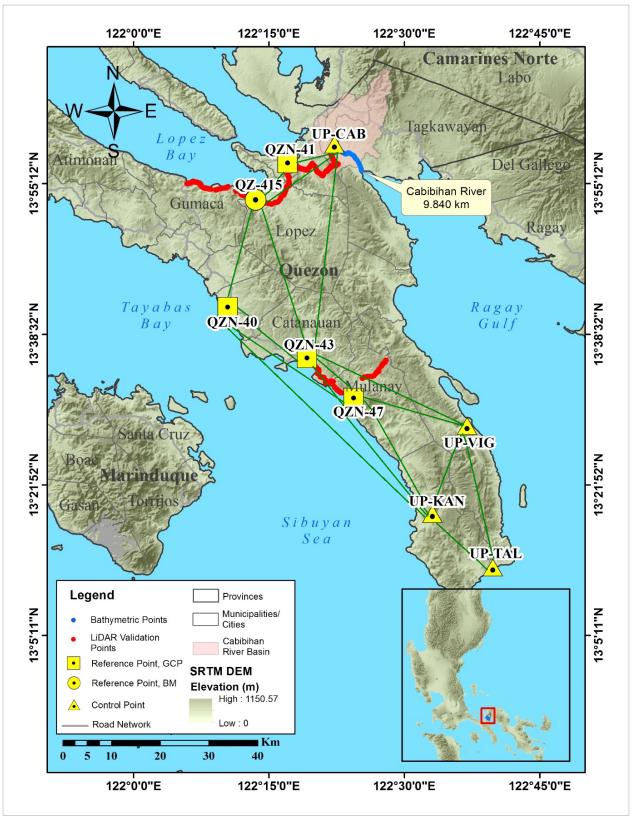



Figure 30. Vinas River Survey Extent

# 4.2 Control Survey

The GNSS network utilized for the Vinas River Basin is composed of nine (9) loops and a baseline that was established on May 4, 2016 and May 11, 2016 which occupied the following reference points: QZN-40, a second-order GCP in Brgy. Matandang Sabang Silangan, Municipality of Catanauan; QZN-47, a second order GCP in Barangay II, Municipality of Mulanay; and QZ-415, a BM with Accuracy Class at 95% CL 8cm in Brgy. Pansol, Municipality of Lopez.

Four (4) control points were established along the approach of bridges, namely: UP-KAN, at Kanguinsa Bridge in Brgy. Silongin, Municipality of San Francisco; UP-TAL at Talisay Bridge in Brgy. Pagsangahan, also in Municipality of San Francisco; and UP-VIG at Vigo Bridge in Brgy. Vigo Central, Municipality of San Narciso. The UP established control point UP-CAB is located in a residential court in Brgy. Aloneros, Municipality of Guinayangan. A NAMRIA established control point; QZN-41, a second order GCP in Barangay I, Municipality of Calauag was also occupied and used as marker for the network.

Table 21 depicts the summary of reference and control points utilized, with their corresponding locations, while Figure 31 shows the GNSS network established in the Vinas River Survey.

|                  |                                 | Geo               | ographic Coordinates (\ | NGS UTM Z                  | one 52N)                  |                               |
|------------------|---------------------------------|-------------------|-------------------------|----------------------------|---------------------------|-------------------------------|
| Control<br>Point | Order of Accuracy               | Latitude          | Longitude               | Ellipsoid<br>Height<br>(m) | Elevation<br>(MSL)<br>(m) | Date of<br>Establish-<br>ment |
| QZN-40           | 2 <sup>nd</sup> Order, GCP      | 13°41'32.47595" N | 122°10'25.77273" E      | 51.703                     | -                         | 2006                          |
| QZN-43           | 2 <sup>nd</sup> Order, GCP      | 13°35'55.81611" N | 122°19'13.53031" E      | 51.015                     | -                         | 2006                          |
| QZN-47           | 2 <sup>nd</sup> Order, GCP      | 13°31'29.52488" N | 122°24'23.44821" E      | 53.862                     | -                         | 2006                          |
| QZ-415           | 1 <sup>st</sup> order Order, BM | -                 | -                       | 57.290                     | 8.613                     | 2007                          |
| QZN-41           | Used as Marker                  | -                 | -                       | -                          | -                         | 2006                          |
| UP-CAB           | UP Established                  | -                 | -                       | -                          | -                         | 05-04-2016                    |
| UP-KAN           | UP Established                  | -                 | -                       | -                          | -                         | 05-11-2016                    |
| UP-TAL           | UP Established                  | -                 | -                       | -                          | -                         | 05-11-2016                    |
| UP-VIG           | UP Established                  | -                 | -                       | _                          | -                         | 05-11-2016                    |

Table 21. List of reference and control points used during the survey in Vinas River (Source: NAMRIA, UP-TCAGP).



Figure 31. Vinas River Basin Control Survey Extent.

Error! Reference source not found. to Figure 40 Error! Reference source not found.depict the setup of the GNSS on recovered reference points and established control points in the Vinas River.

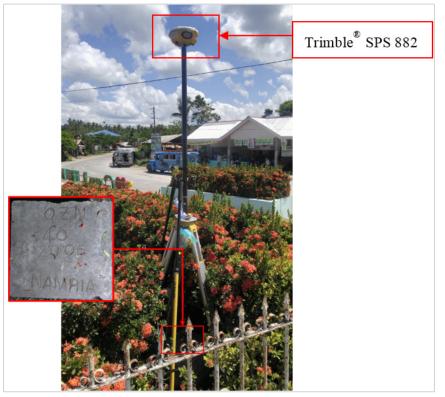



Figure 32. GNSS base set up, Trimble® SPS 882, at QZN-40, located inside a triangular plant area found at the center of a triangular island in Brgy. San Jose, Municipality of Gen. Luna, Quezon.



Figure 33. GNSS base set up, Trimble® SPS 882, at QZN-43, located inside the DPWH compound in Brgy. Matandang Sabang Silangan, Municipality of Catanauan, Quezon.



Figure 34. GNSS base set up, Trimble® SPS 852, at QZN-47, located at the back of the Principal's Office of Mulanay Elementary School in Barangay II, Municipality of Mulanay, Quezon.



Figure 35. GNSS base set up, Trimble® SPS 985, at QZ-415, located at the approach of Pansol Bridge in Brgy. Pansol, Municipality of Lopez, Quezon.



Figure 36. GNSS base set up, Trimble® SPS 852, at QZN-41, located in front of Brgy. Sabang basketball court found in Calauag Port, Barangay I, Municipality of Calauag, Quezon.



Figure 37. GNSS base set up, Trimble® SPS 882, at UP-CAB, located inside a basketball court in Brgy. Aloneros, Municipality of Guinayangan, Quezon.



Figure 38. GNSS base set up, Trimble® SPS 852, at UP-KAN, located at the approach of Kanguinsa in Brgy. Silongin, Municipality of San Francisco, Quezon.



Figure 39. GNSS base set up, Trimble® SPS 852, at UP-TAL, located at the approach of Talisay Bridge in Brgy. Pagsangahan, Municipality of San Francisco, Quezon.



Figure 40. GNSS base set up, Trimble® SPS 882, at UP-VIG, located at the approach of Vigo Bridge in Brgy. Vigo Central, Municipality of San Francisco, Quezon.

#### 4.3 Baseline Processing

The GNSS Baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/- 20 cm and +/- 10 cm requirement respectively. In cases where one or more baselines did not meet all of these criteria, masking was performed. Masking is the removal or covering of portions of the baseline data using the same processing software. The data is then repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, a resurvey is initiated. Table 22 presents the baseline processing results of control points in the Vinas River Basin, as generated by the TBC software.

| Observation   | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic Az. | Ellipsoid Dist.<br>(Meter) |
|---------------|------------------------|------------------|---------------------|---------------------|--------------|----------------------------|
| QZN-47 QZN-40 | 05-11-2016             | Fixed            | 0.003               | 0.011               | 306°22'36"   | 31263.486                  |
| QZN-47 QZN-43 | 05-11-2016             | Fixed            | 0.003               | 0.013               | 131°16'56"   | 12401.416                  |
| QZN-47 UP-VIG | 05-11-2016             | Fixed            | 0.003               | 0.012               | 103°58'19"   | 23335.323                  |
| QZN-47 UP-KAN | 05-11-2016             | Fixed            | 0.005               | 0.019               | 146°21'08"   | 28388.037                  |
| QZN-40 QZ-415 | 05-11-2016             | Fixed            | 0.003               | 0.023               | 14°21'16"    | 22613.475                  |
| UP-CAB QZ-415 | 05-04-2016             | Fixed            | 0.004               | 0.025               | 234°09'16"   | 19401.067                  |
| QZN-40 UP-KAN | 05-11-2016             | Fixed            | 0.011               | 0.027               | 135°49'24"   | 58749.581                  |
| QZN-43 QZ-415 | 05-11-2016             | Fixed            | 0.006               | 0.033               | 342°23'19"   | 33841.349                  |
| QZN-43 UP-KAN | 05-11-2016             | Fixed            | 0.005               | 0.018               | 141°46'15"   | 40492.330                  |
| UP-TAL UP-KAN | 05-11-2016             | Fixed            | 0.005               | 0.018               | 312°01'33"   | 16293.271                  |
| UP-VIG UP-TAL | 05-11-2016             | Fixed            | 0.003               | 0.014               | 169°50'51"   | 29356.882                  |
| UP-VIG QZN-43 | 05-11-2016             | Fixed            | 0.003               | 0.014               | 293°25'54"   | 34821.073                  |
| UP-VIG UP-KAN | 05-11-2016             | Fixed            | 0.005               | 0.021               | 201°04'03"   | 19280.526                  |
| QZN-41 UP-CAB | 05-04-2016             | Fixed            | 0.004               | 0.024               | 247°44'12"   | 10141.643                  |
| QZN-41 QZ-415 | 05-04-2016             | Fixed            | 0.003               | 0.022               | 220°07'13"   | 9835.756                   |
| QZN-40 QZN-43 | 05-11-2016             | Fixed            | 0.003               | 0.014               | 303°07'59"   | 18937.828                  |
| UP-CAB QZN-43 | 05-11-2016             | Fixed            | 0.004               | 0.019               | 7°10'02"     | 43963.480                  |

Table 22. The Baseline processing report for the Vinas River GNSS static observation survey.

As shown in Table 22, a total of seventeen (17) baselines were processed with reference points QZN-40, QZN-43 and QZN-47 fixed for grid values; and QZ-415 held fixed for elevation. All of them passed the required accuracy.

## 4.4 Network Adjustment

After the baseline processing procedure, the network adjustment is performed using the TBC software. Looking at the Adjusted Grid Coordinates table of the TBC-generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm for each control point; or in equation form:

$$\sqrt{((x_{p})^{2} + (y_{p})^{2})} < 20 \text{ cm}$$
 and  $z_{e} < 10 \text{ cm}$ 

Where:

 $x_e$  is the Easting Error,  $y_e$  is the Northing Error, and  $z_e$  is the Elevation Error

For complete details, see the Network Adjustment Report shown in Table 23 to Table 26.

The nine (9) control points, QZN-40, QZN-43, QZN-47, QZ-415, QZN-41, UP-CAB, UP-KAN, UP-TAL and UP-VIG were occupied and observed simultaneously to form a GNSS loop. Elevation value of QZ-415 and coordinates of points QZN-40, QZN-43 and QZN-47 were held fixed during the processing of the control points as presented in Table 23. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

| Point ID        | Туре     | North<br>(Meter) | East<br>(Meter) | Height<br>(Meter) | Elevation<br>(Meter) |
|-----------------|----------|------------------|-----------------|-------------------|----------------------|
| QZN-40          | Global   | Fixed            | Fixed           |                   |                      |
| QZN-43          | Global   | Fixed            | Fixed           |                   |                      |
| QZN-47          | Global   | Fixed            | Fixed           |                   |                      |
| QZ-415          | Grid     |                  |                 |                   | Fixed                |
| Fixed = 0.00000 | 1(Meter) |                  |                 |                   |                      |

Table 23. Constraints applied to the adjustment of the control points.

Likewise, the list of adjusted grid coordinates, i.e. Northing, Easting, Elevation and computed standard errors of the control points in the network is indicated in Table 24Error! Reference source not found.. The fixed control points QZN-40, QZN-43 and QZN-47 has no values for grid and elevation errors.

Table 24. Adjusted grid coordinates for the control points used in the Vinas River flood plain survey.

| Point ID | Easting<br>(Meter) | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| QZN-40   | 410660.624         | ?                        | 1513855.137         | ?                            | 2.622                | 0.075                         | LL         |
| QZN-43   | 426485.118         | ?                        | 1503462.996         | ?                            | 1.574                | 0.073                         | LL         |
| QZN-47   | 435778.405         | ?                        | 1495257.875         | ?                            | 4.163                | 0.079                         | LL         |
| QZ-415   | 416340.495         | 0.010                    | 1535736.431         | 0.010                        | 8.613                | ?                             | е          |
| QZN-41   | 422699.129         | 0.014                    | 1543236.263         | 0.014                        | 1.392                | 0.082                         |            |
| UP-CAB   | 432091.726         | 0.012                    | 1547052.366         | 0.013                        | 3.211                | 0.073                         |            |
| UP-KAN   | 451445.231         | 0.012                    | 1471596.832         | 0.011                        | 25.095               | 0.086                         |            |
| UP-TAL   | 463529.271         | 0.016                    | 1460676.916         | 0.014                        | 4.949                | 0.095                         |            |
| UP-VIG   | 458401.312         | 0.010                    | 1489570.998         | 0.008                        | 6.030                | 0.083                         |            |

The results of the computation for accuracy are as follows:

| a. QZN-40<br>horizontal accuracy                                                      | = Fixed                                                   | f. UP-CAB<br>horizontal accuracy | $= \sqrt{((1.20)^2 + (1.30)^2)^2}$ $= \sqrt{(1.44 + 1.69)^2}$                           |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|
| vertical accuracy                                                                     | = 7.5 cm < 10 cm                                          | vertical accuracy                | = 1.77 cm < 20 cm<br>= 7.3 cm < 10 cm                                                   |
| b. QZN-43                                                                             |                                                           | vertical accuracy                | - 7.5 CHI < 10 CHI                                                                      |
| horizontal accuracy<br>vertical accuracy                                              | = Fixed<br>= 7.3 cm < 10 cm                               | g. UP-KAN<br>horizontal accuracy | $= \sqrt{((1.20)^2 + (1.10)^2)^2}$ $= \sqrt{(1.44 + 1.21)^2}$                           |
| <ul> <li>c. QZN-47</li> <li>horizontal accuracy</li> <li>vertical accuracy</li> </ul> | = Fixed<br>= 7.9 cm < 10 cm                               | vertical accuracy                | = 1.63 cm < 20 cm<br>= 8.6 cm < 10 cm                                                   |
|                                                                                       |                                                           | h. UP-TAL                        |                                                                                         |
| d. QZ-415<br>horizontal accuracy                                                      | $= \sqrt{((1.0)^2 + (1.0)^2)^2}$ $= \sqrt{(1.0 + 1.0)^2}$ | horizontal accuracy              | = v((1.60) <sup>2</sup> + (1.40) <sup>2</sup><br>= v (2.56 + 1.96)<br>= 2.13 cm < 20 cm |
| vertical accuracy                                                                     | = 1.41cm < 20 cm<br>= Fixed                               | vertical accuracy                | = 9.5 cm < 10 cm                                                                        |
| e. QZN-41<br>horizontal accuracy                                                      | $= v((1.40)^2 + (1.40)^2)$ $= v(1.96 + 1.96)$             | i. UP-VIG<br>horizontal accuracy | $= v((1.10)^2 + (0.80)^2)$ $= v(1.21 + 0.64)$ $= 1.36 \text{ cm} < 20 \text{ cm}$       |
| vertical accuracy                                                                     | = 1.98cm < 20 cm<br>= 8.2 cm < 10 cm                      | vertical accuracy                | = 8.3 cm < 10 cm                                                                        |

Following the given formula, the horizontal and vertical accuracy result of the two (2) occupied control points are within the required precision.

| Point ID | Latitude         | Longitude         | Ellipsoid Height<br>(Meter) | Height Error<br>(Meter) | Constraint |
|----------|------------------|-------------------|-----------------------------|-------------------------|------------|
| QZN-40   | N13°41'32.47595" | E122°10'25.77273" | 51.703                      | 0.075                   | LL         |
| QZN-43   | N13°35'55.81611" | E122°19'13.53031" | 51.015                      | 0.073                   | LL         |
| QZN-47   | N13°31'29.52488" | E122°24'23.44821" | 53.862                      | 0.079                   | LL         |
| QZ-415   | N13°53'25.29589" | E122°13'32.50380" | 57.290                      | ?                       | е          |
| QZN-41   | N13°57'30.05268" | E122°17'03.60722" | 50.089                      | 0.082                   |            |
| UP-CAB   | N13°59'35.12930" | E122°22'16.30558" | 52.023                      | 0.073                   |            |
| UP-KAN   | N13°18'40.40211" | E122°33'06.07511" | 75.768                      | 0.086                   |            |
| UP-TAL   | N13°12'45.55145" | E122°39'48.22322" | 55.864                      | 0.095                   |            |
| UP-VIG   | N13°28'25.87675" | E122°36'56.35787" | 56.412                      | 0.083                   |            |

Table 25. Adjusted geodetic coordinates for control points used in the Vinas River Flood Plain validation.

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 25. Based on the results of the computation, the accuracy conditions are satisfied; hence, the required accuracy for the program was met. The computed coordinates of the reference and control points utilized in the Vinas River GNSS Static Survey are seen in Table 26.

| Point ID | Easting (Meter)           | Easting Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|---------------------------|--------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| QZN-40   | 2 <sup>nd</sup> Order GCP | 13°41'32.476" N          | 122°10'25.773" E    | 51.703                       | 1513855.137          | 410660.624                    | 2.622      |
| QZN-43   | 2 <sup>nd</sup> Order GCP | 13°35'55.816" N          | 122°19'13.530" E    | 51.015                       | 1503462.996          | 426485.118                    | 1.574      |
| QZN-47   | 2 <sup>nd</sup> Order GCP | 13°31'29.525" N          | 122°24'23.448" E    | 53.862                       | 1495257.875          | 435778.405                    | 4.163      |
| QZ-415   | 1 <sup>st</sup> Order BM  | 13°53'25.296" N          | 122°13'32.504" E    | 57.290                       | 1535736.431          | 416340.495                    | 8.613      |
| QZN-41   | Used as Marker            | 13°57'30.053" N          | 122°17'03.607" E    | 50.089                       | 1543236.263          | 422699.129                    | 1.392      |
| UP-CAB   | UP Established            | 13°59'35.129" N          | 122°22'16.306" E    | 52.023                       | 1547052.366          | 432091.726                    | 3.211      |
| UP-KAN   | UP Established            | 13°18'40.402" N          | 122°33'06.075" E    | 75.768                       | 1471596.832          | 451445.231                    | 25.10      |
| UP-TAL   | UP Established            | 13°12'45.551" N          | 122°39'48.223" E    | 55.864                       | 1460676.916          | 463529.271                    | 4.949      |
| UP-VIG   | UP Established            | 13°28'25.877" N          | 122°36'56.356" E    | 56.412                       | 1489570.998          | 458401.312                    | 6.030      |

Table 26. The reference and control points utilized in the Vinas River Static Survey, with their corresponding locations (Source: NAMRIA, UP-TCAGP)

# 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

The bridge cross-section was conducted on May 6 and 7, 2016 at the downstream part of Cabibihan Bridge in Brgy. Cabugwang, Municipality of Tagkawayan using GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique paired with an Ohmex<sup>™</sup> single beam echo sounder; and a Total Station through Open Traverse Method (Figure 41).



Figure 41. Cross-Section Survey for Vinas (also known as Cabibihan River) using Trimble® Total Station, in Open Traverse Method.

The length of the cross-sectional line surveyed at Cabibihan Bridge is about 186.373 m with 62 crosssectional points using the control point UP-CAB as the GNSS base station. The location map, cross-section diagram, and the accomplished bridge data form are shown in Figure 42 to Figure 44.

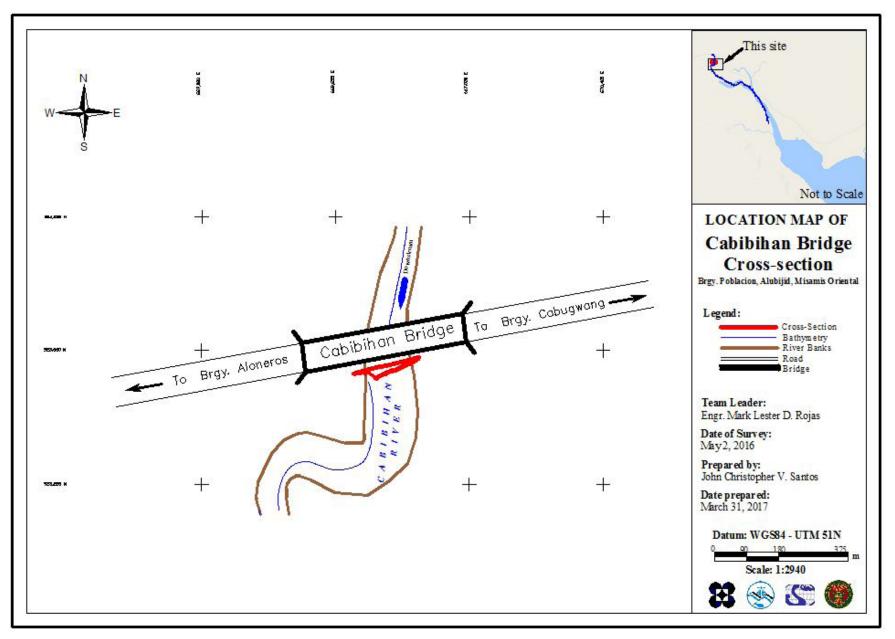



Figure 42. Location map of the Vinas (also known as Cabibihan) Bridge Cross Section.

#### Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

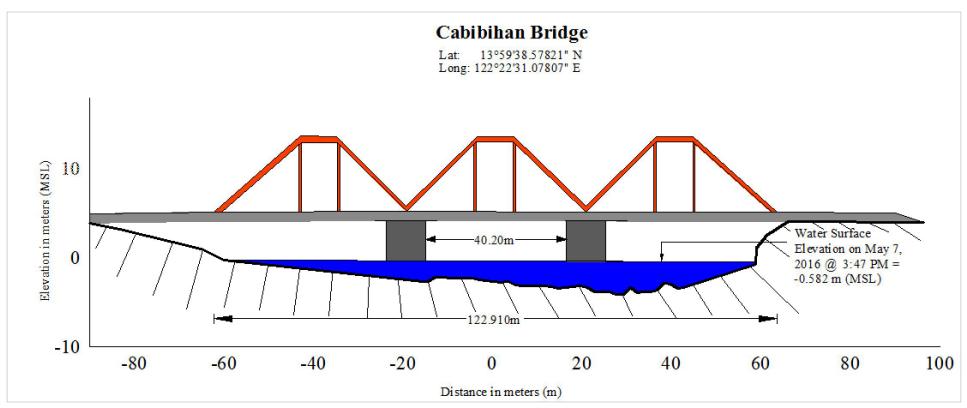



Figure 43. Location map of the Vinas (also known as Cabibihan) Bridge Cross Section.

|                                      |                 |                                                                 | Bridge Da           | ata For                     | m                          |                          |                                       |  |
|--------------------------------------|-----------------|-----------------------------------------------------------------|---------------------|-----------------------------|----------------------------|--------------------------|---------------------------------------|--|
| Bridge Name: <u>Cabibihan Bridge</u> |                 |                                                                 |                     |                             | Date: <u>May 7, 2016</u>   |                          |                                       |  |
| River Name: <u>Cabibihan River</u>   |                 |                                                                 |                     |                             |                            | Time: 03:27              | 7 PM                                  |  |
| Location                             | (Brgy, C        | City,Region): <u>Brgy. Cabugw</u>                               | an, Municip         | ality of                    | Tagkawayan,                | Quezon                   |                                       |  |
| Survey Te                            | am: M           | ichael Labrador, Erlan Me                                       | ndoza, Roma         | alyn Bo                     | ado, Mark Roja             | s, Marla Morris, I       | Pauline Racom                         |  |
| Flow cond                            | dition:         | normal                                                          |                     |                             | Weather                    | Condition: fa            | ir                                    |  |
| Latitude:                            | 13°59'3         | 88.83061" N                                                     |                     |                             | Longitu                    | de: <u>122°22'32.023</u> | 29" E                                 |  |
| BA2<br>BA1                           | Ab1             | D<br>P<br>Deck (Please start your m                             |                     |                             |                            | b = Abutment D =         | Pier LC = Low Ch<br>Deck HC = High Ch |  |
| levation: 3                          | .781 m          | Width:                                                          | N/A                 |                             | (BA3-BA2): <u>122</u>      |                          |                                       |  |
|                                      |                 | Station                                                         |                     |                             |                            |                          | Chord Elevation                       |  |
| 1                                    |                 | Not available                                                   |                     | Not available Not available |                            |                          |                                       |  |
|                                      |                 | Bridge Approach (Please                                         | start your measuren | ment from th                | e left side of the bank fa | ing upstream)            |                                       |  |
|                                      | Stati           | ation(Distance from BA1) Elevation Station(Distance from BA1) E |                     |                             |                            | Elevation                |                                       |  |
| BA1                                  |                 | 0                                                               | 3.781 m             | BA3                         | 3 152.326 m 3.927 r        |                          |                                       |  |
| BA2                                  |                 | 29.416 m                                                        | 3.945 m             | BA4                         | 186                        | .373 m                   | 3.833 m                               |  |
| butment                              | ls t            | he abutment sloping? <b>Yes</b> ;<br><b>Station (D</b> i        | If yes, fill in th  |                             | 0                          | Elevatio                 |                                       |  |
|                                      |                 | t available                                                     |                     |                             | Not available              |                          |                                       |  |
|                                      |                 | 8.839 m                                                         |                     |                             | -0.801 m                   |                          |                                       |  |
|                                      |                 | Pier (Please start your me                                      |                     | n the left :                | side of the bank fac       |                          |                                       |  |
|                                      |                 | Shape: <u>Circular</u> Nu                                       | umber of Piers      | s: <u>2</u>                 | Height of colum            | n footing: <u>N/A</u>    |                                       |  |
| Station (Distance from BA1)          |                 |                                                                 | n BA1)              | 1                           | Elevation                  |                          | Pier Width                            |  |
|                                      | Pier 1 70.716 m |                                                                 |                     | 4.046 m                     |                            | Not available            |                                       |  |
| Pier 1                               |                 | 70.710 11                                                       |                     |                             | 4.040 111                  |                          | vailable                              |  |

Figure 44. The Vinas (also known as Cabibihan) Bridge as-built survey data.

The water surface elevation of Vinas River was determined using a survey grade GNSS receiver Trimble<sup>®</sup> SPS 882 in Open Traverse Method on May 7, 2016 at 3:47 PM with a value of -0.582 m (MSL). This was translated into marking on the top of a bridge's pier using Total Station Open Traverse Method as shown in Figure 45. It now serves as the reference for flow data gathering and depth gauge deployment of the MAPUA Institute of Technology (MIT), the partner HEI responsible for the monitoring of Vinas River.

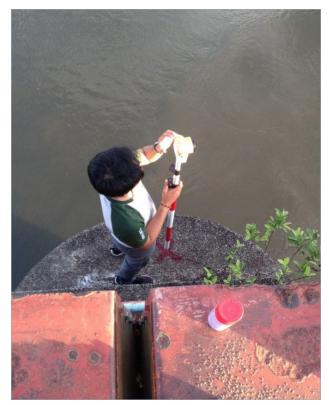



Figure 45. Water level markings on Vinas (also known as Cabibihan) Bridge.

## 4.6 Validation Points Acquisition Survey

The validation points acquisition survey was conducted on May 4, 5, and 6, 2016 using a survey-grade GNSS Rover receiver, Trimble<sup>®</sup> SPS 882, mounted on the roof of the vehicle as shown in Figure 46. It was secured with a cable tie to ensure that it was horizontally and vertically balanced. The antenna height was 1.895 m and measured from the ground up to the bottom of notch of the GNSS Rover receiver. The PPK technique utilized for the conduct of the survey was set to continuous topo mode with QZN-41, QZN-43 and UP-CAB occupied as the GNSS base stations in the conduct of the survey.



Figure 46. GNSS Receiver Trimble® SPS 882 installed on a vehicle for Ground Validation Survey.

The survey started from Brgy. Aloneros in the Municipality of Guinayangan, going west traversing the Municipalities of Calauag, Lopez and ended in Brgy. San Diego Poblacion, Municipality of Gumaca; and from Brgy. Matandang Sabang Silangan, Municipality of Catanauan going south towards Barangay II in Municipality of Mulanay, and ended in Brgy. Anonang also in Mulaay. These routes aim to cut flight strips made by the Data Acquisition Component, perpendicularly. The survey gathered 5,788 points with approximate length of 67.44 km using QZN-41, QZN-43 and UP-CAB as GNSS base stations for the entire extent validation points acquisition survey as illustrated in the map in Figure 47Error! Reference source not found..

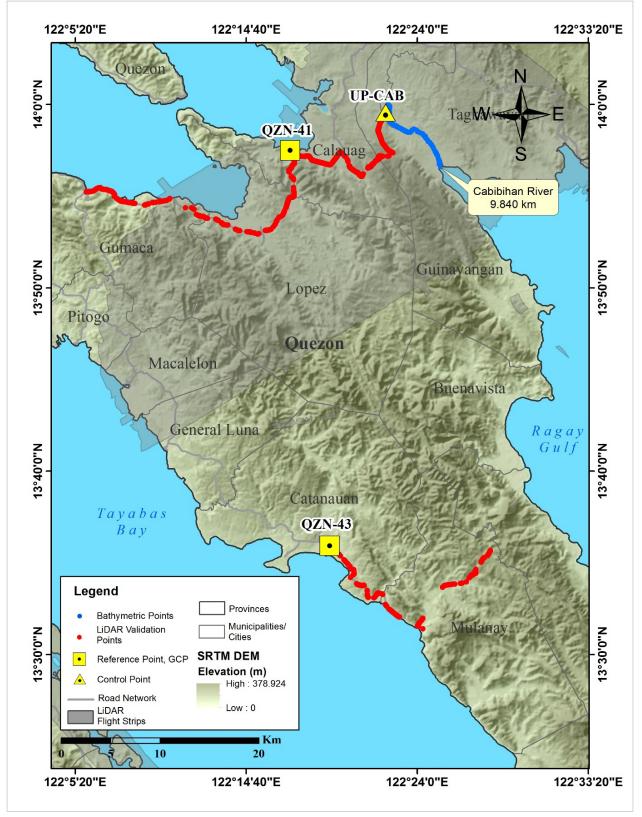



Figure 47. The extent of the LiDAR ground validation survey (in red) for Vinas River Basin.

## 4.7 River Bathymetric Survey

A bathymetric survey was performed on May 6, 2016 using a Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique and Ohmex<sup>™</sup> single beam echo sounder, as illustrated in Error! Reference source not found.. The extent of the survey is from the upstream part of the river in Brgy Cabgwang, Municipality of Tagkawayan with coordinates 14°00′02.22846″N, 122°22′23.37538″E, down to the mouth of the river in Brgy. Hinabaan, in Municipality of Guinayangan with coordinates 13°56′35.85764″N, 122°25′16.15873″E, as shown in the map in Figure 49.



Figure 48. Set up of the bathymetric survey at Cabibihan River.

Overall, the bathymetric survey for Vinas River gathered a total of 11,978 points covering 9.840 km of the river traversing Barangays Aloneros, Balinarin, Bukal Maligaya, Gapas, Hinabaan and Tikay in Municipality of Guinayangan; and Barangays Cabugwang, Manato Station, Mangayao, Sequiwan and Victoria in Municipality of Tagkawayan. To further illustrate this, a CAD drawing of the riverbed profile of the Cabibihan River was produced. As seen in Figure 50, the highest and lowest elevation has a 14-meter difference. The highest elevation observed is -0.607 m below MSL located at the upstream portion of the river near around the Cabibihan Bridge in Brgy. Cabugwang while the lowest elevation observed is -14.864 m below MSL located at the midporion of the river also in Brgy. Cabugwang, in Municipality of Tagkawayan.

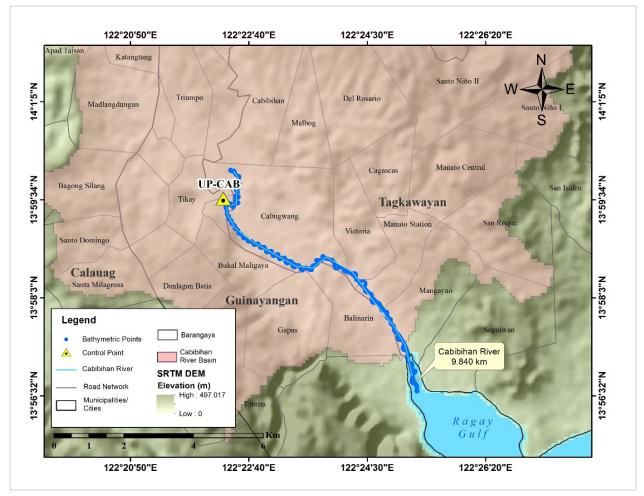



Figure 49. The extent of the Vinas (also known as Cabibihan) River Bathymetry Survey.

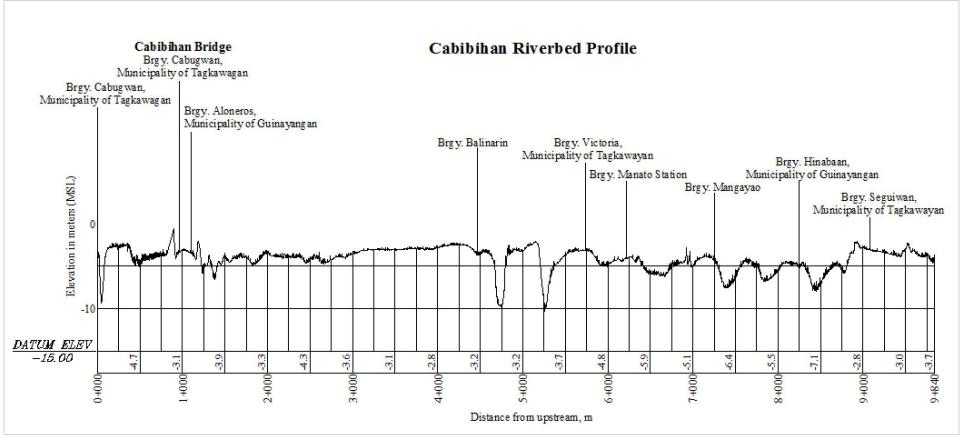



Figure 50. The Vinas (also known as Cabibihan) Riverbed Profile.

# **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this chapter were based on the DREAM methods manual (Ang, et. al., 2014) and further enhanced and updated in Paringit, et. al. (2017).

## 5.1 Data Used for Hydrologic Modeling

#### 5.1.1 Hydrometry and Rating Curves

All components and data, such as rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Vinas River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by Weather Philippines, founded in 2012 by Aboitiz Foundation and Union Bank. The ARG was installed in Santa Elena, Camarines Norte specifically: 122°23'40.115"E 14°11'10.291"N as illustrated in Figure 51. The precipitation data collection started from November 22, 2016 00:00 am to November 23, 2016 at 00:00 am with a 10-minute recording interval.

The total precipitation for this event in Santa Elena ARG was 11 mm. It has a peak rainfall of 2 mm on 22 November 2016 at 13:40 pm as well as on 13:50pm. The lag time between the peak rainfall and discharge is 2 hours and 30 minutes.

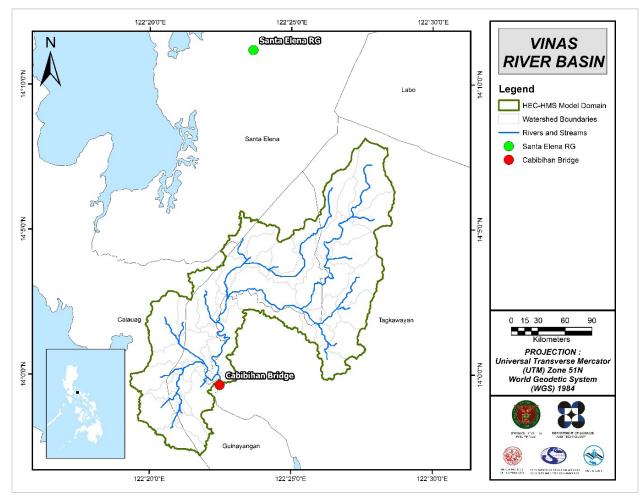



Figure 51. Location Map of the Vinas HEC-HMS model used for calibration.

## 5.1.3 Rating Curves and River Outflow

A rating curve was computed at Cabibihan Bridge, Real, Quezon (122°22'30.949"E 13°59'37.861"N) to establish the relationship between the observed water levels (H) from Cabibihan Bridge and the outflow (Q) of the watershed recorded using the flow meter at this location.

This image is not available for the Vinas River Basin.

Figure 52. Cross-Section Plot of Vinas (also known as Cabibihan) Bridge.

For San Juan Bridge, the rating curve is expressed as Q = 2.5658e0.8518h as shown in Figure 53.

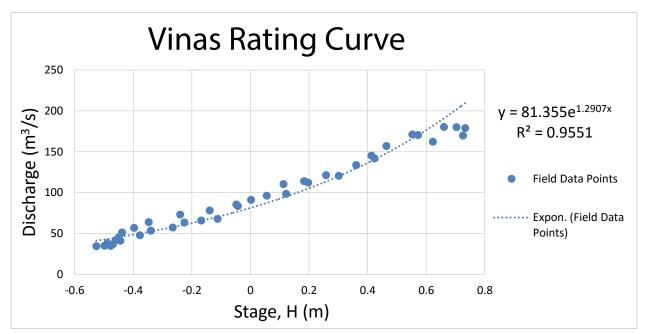



Figure 53. Rating Curve at Cabibihan Bridge, Real, Quezon.

This rating curve equation was used to compute the river outflow at Cabibihan Bridge for the calibration of the HEC-HMS model shown in Figure 54. The peak discharge is 180.2 m<sup>3</sup>/s at 04:20 PM, November 22, 2016.

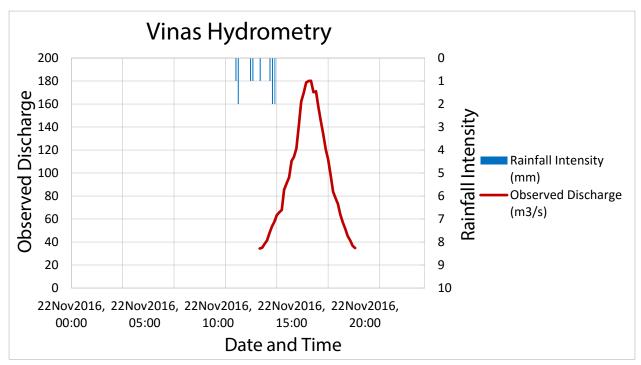



Figure 54. Rainfall and outflow data at Vinas River Basin, which was used for modeling.

### **5.2 RIDF Station**

PAGASA computed the Rainfall Intensity Duration Frequency (RIDF) values for the Laoag Rain Gauge (Table 27). The RIDF rainfall amount for 24 hours was converted into a synthetic storm by interpolating and re-arranging the values in such a way that certain peak values will be attained at a certain time (Figure 56). This station was selected based on its proximity to the Vinas watershed. The extreme values for this watershed were computed based on a 31-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |  |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|--|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |  |
| 2                                                | 20.9    | 31.3    | 39.8    | 55.3  | 77    | 94.2  | 118.3 | 143.2  | 173.4  |  |
| 5                                                | 27.6    | 41.3    | 52.9    | 74.6  | 108.5 | 134.8 | 172.8 | 208.6  | 252    |  |
| 10                                               | 32.1    | 48      | 61.6    | 87.3  | 129.4 | 161.6 | 209   | 251.9  | 303.9  |  |
| 15                                               | 34.6    | 51.8    | 66.5    | 94.5  | 141.1 | 176.8 | 229.3 | 276.3  | 333.3  |  |
| 20                                               | 36.4    | 54.4    | 69.9    | 99.6  | 149.4 | 187.4 | 243.6 | 293.4  | 353.8  |  |
| 25                                               | 37.7    | 56.5    | 72.6    | 103.5 | 155.7 | 195.6 | 254.6 | 306.6  | 369.6  |  |
| 50                                               | 41.9    | 62.7    | 80.7    | 115.4 | 175.3 | 220.7 | 288.4 | 347.2  | 418.4  |  |
| 100                                              | 46.1    | 69      | 88.8    | 127.3 | 194.7 | 245.7 | 322   | 387.5  | 466.7  |  |

Table 27. RIDF values for the Alabat Rain Gauge, as computed by PAGASA.

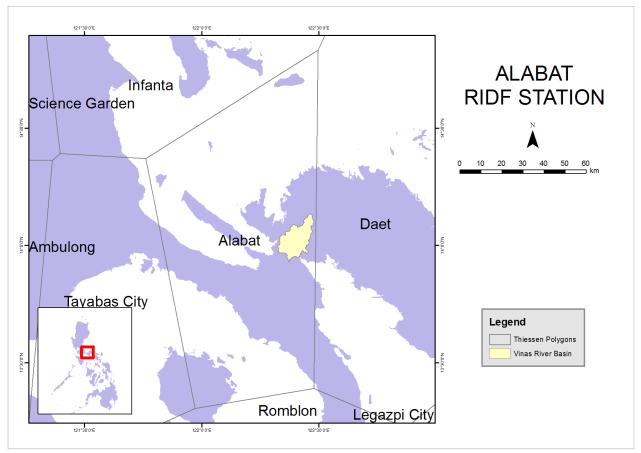



Figure 55. Location of Alabat RIDF Station relative to Vinas River Basin.

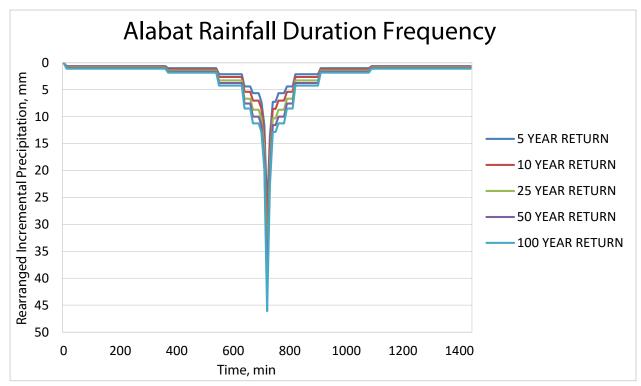



Figure 56. Synthetic storm generated for a 24-hr period rainfall for various return periods.

#### 5.3 HMS Model

The soil dataset was generated before 2004 from the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Vinas River Basin are shown in Figure 57 and Figure 58 respectively.

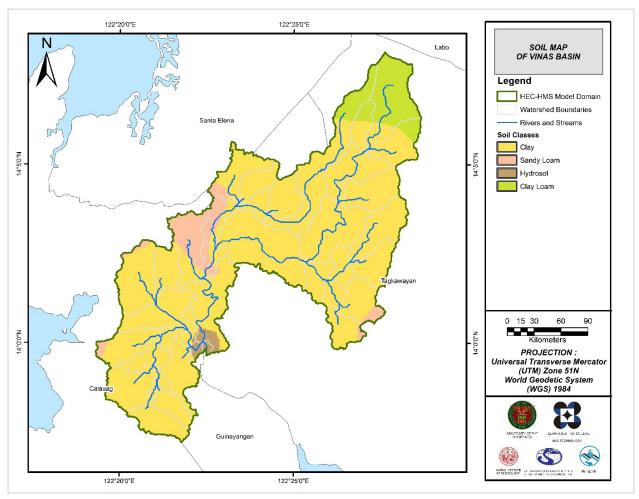



Figure 57. Soil Map of Vinas River Basin.

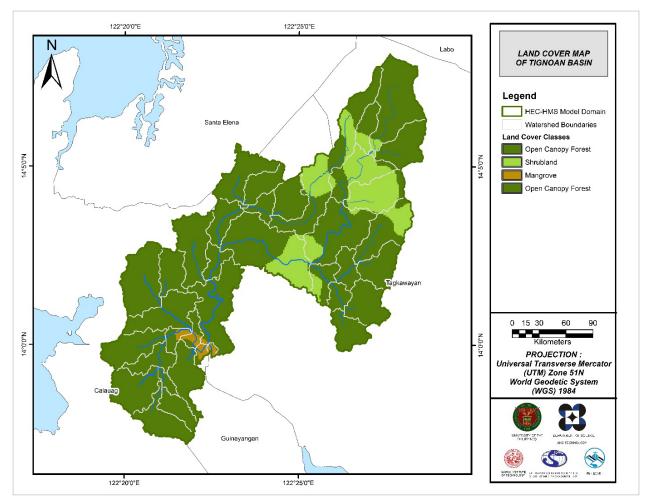



Figure 58. Land Cover Map of Vinas River Basin.

For Vinas, four (4) soil classes were identified. These are clay loam, clay, sandy loam and hydrosols. Moreover, three (3) land cover classes were identified. These are shrubland, mangroves and open canopy forest

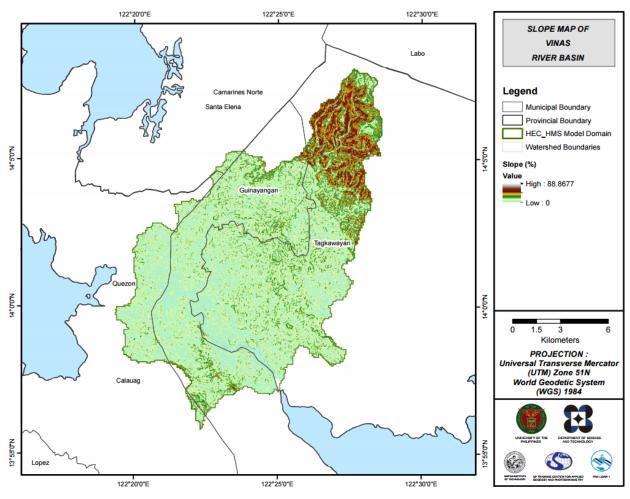



Figure 59. Slope Map of the Vinas River Basin.

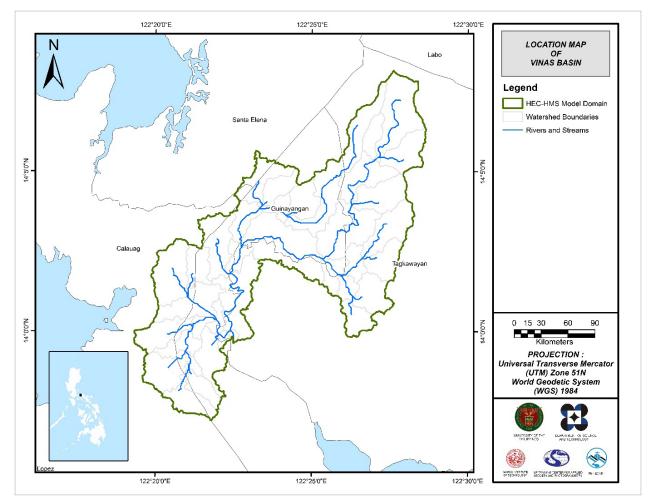



Figure 60. Stream Delineation Map of Vinas River Basin

Using the SAR-based DEM, the Vinas basin was delineated and further subdivided into subbasins. The model consists of 39 sub basins, 19 reaches, and 19 junctions as shown in Figure 61 (See ANNEX 10). The main outlet is at the easternmost tip of the watershed.



Figure 61. Vinas river basin model generated in HEC-HMS.

### 5.4 Cross-section Data

The riverbed cross-sections of the watershed were necessary in the HEC-RAS model setup. The crosssection data for the HEC-RAS model was derived from the LiDAR DEM data, which was defined using the Arc GeoRAS tool and was post-processed in ArcGIS (Figure 62).

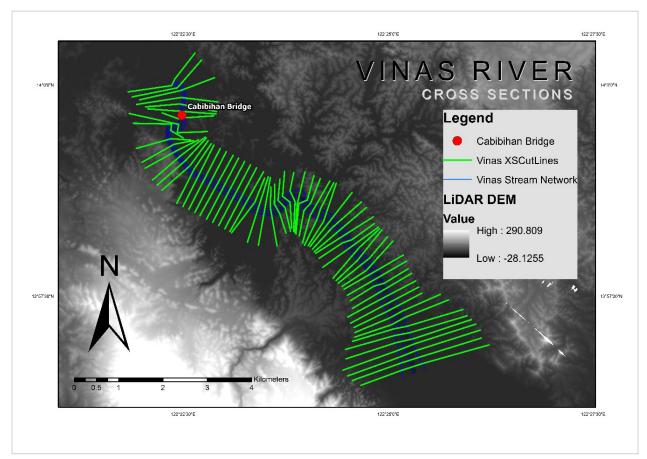



Figure 62. River cross-section of the Vinas River through the ArcMap HEC GeoRas tool.

#### 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the south of the model to the north, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.

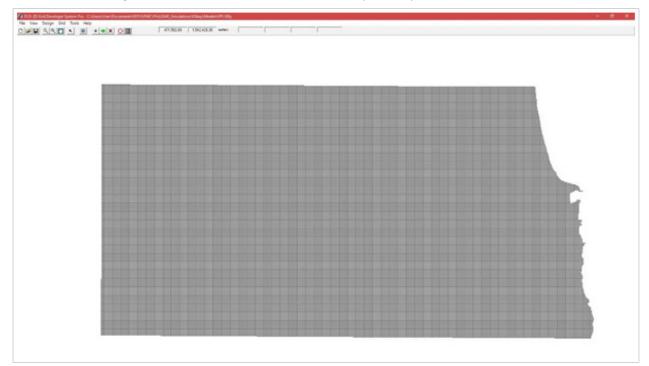



Figure 63. A screenshot of the river sub-catchment with the computational area to be modeled in FLO-2D Grid Developer System Pro (FLO-2D GDS Pro).

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 100.06329 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard map. Most of the default values given by FLO-2D Mapper Pro are used, except for those in the Low hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m<sup>2</sup>/s. The generated hazard maps for Vinas are in Figure 67, 70Error! Reference source not found., and 72.

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 63 792 800.00 m<sup>2</sup>. The generated flood depth maps for Vinas are in Figure 68, 71, and 73.

There is a total of 465 228 177.98 m<sup>3</sup> of water entering the model. Of this amount, 25 253 779.51 m<sup>3</sup> is due to rainfall while 439 974 398.47 m<sup>3</sup> is inflow from other areas outside the model. 11 329 565.00 m<sup>3</sup> of this water is lost to infiltration and interception, while 24 641 579.81 m<sup>3</sup> is stored by the flood plain. The rest, amounting up to 429 257 024.59 m<sup>3</sup>, is outflow.

#### 5.6 Results of HMS Calibration

After calibrating the Vinas HEC-HMS river basin model (See ANNEX 9), its accuracy was measured against the observed values. Error! Reference source not found.Error! Reference source not found. shows the comparison between the two discharge data.

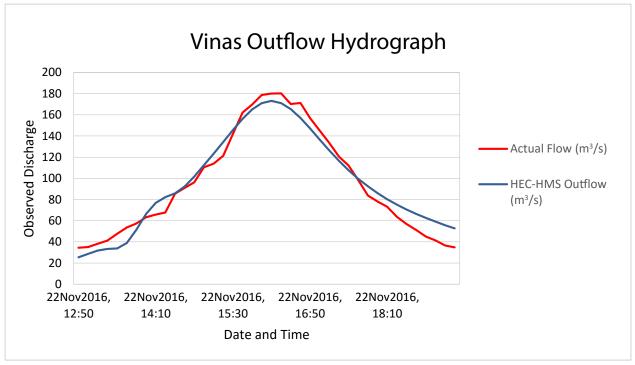



Figure 64. Outflow Hydrograph of Vinas produced by the HEC-HMS model compared with observed outflow.

Table 28 shows the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation<br>Type | Method           | Parameter                  | Range of Calibrated<br>Values |
|-----------------------|---------------------|------------------|----------------------------|-------------------------------|
| Los                   |                     |                  | Initial Abstraction (mm)   | 0.17 – 4.82                   |
|                       | LOSS                | SCS Curve number | Curve Number               | 99                            |
| Dania                 |                     | Clark Unit       | Time of Concentration (hr) | 0.017 – 0.58                  |
| Basin                 | Transform           | Hydrograph       | Storage Coefficient (hr)   | 0.02                          |
|                       | - 0                 | <b>D</b>         | Recession Constant         | 0.00001 - 0.000013            |
|                       | Baseflow            | Recession        | Ratio to Peak              | 0.39 - 1.00                   |
| Reach                 | Routing             | Muskingum-Cunge  | Manning's Coefficient      | 0.00042 - 0.43                |

| Table 28. Range of calibrated values for the Vinas River Basin. |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 0.17mm to 4.82mm means that there is a minimal amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The curve number for all subbasins of Vinas watershed is 99. For Vinas, the soil classes identified were clay loam, clay, sandy loam and hydrosols. The land cover types identified were shrubland, mangroves and open canopy forest.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.017 hours to 0.58 hours determines the reaction

time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. The Recession Constant values in the basin range from 0.00001 to 0.000013 and the Ratio to Peak of the different subbasins range from 0.39 to 1.00. The receding limb of the outflow hydrograph is initially steep but then takes longer to return to its original discharge values.

Manning's roughness coefficients correspond to the common roughness of Philippine watersheds. Vinas river basin reaches' Manning's coefficients that range from 0.00042 to 0.43 showing that there is variety in surface roughness all over the catchment (Brunner, 2010).

| Accuracy measure | Value |  |  |  |
|------------------|-------|--|--|--|
| RMSE             | 10.1  |  |  |  |
| ۲²               | 0.96  |  |  |  |
| NSE              | 0.96  |  |  |  |
| PBIAS            | -1.29 |  |  |  |
| RSR              | 0.21  |  |  |  |

Table 29. Summary of the Efficiency Test of the Vinas HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 10.1(m<sup>3</sup>/s).

The Pearson correlation coefficient (r<sup>2</sup>) assesses the strength of the linear relationship between the observations and the model. This value being close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.96.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here the optimal value is 1. The model attained an efficiency coefficient of 0.96.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -1.29.

The Observation Standard Deviation Ratio, RSR, is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.21.

# 5.7 Calculated Outflow hydrographs and Discharge Values for different Rainfall Return Periods

# 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 65) shows the Vinas outflow using the Alabat Rainfall Intensity-Duration-Frequency curves (RIDF) in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAG-ASA) data. The simulation results show increasing outflow magnitude as the rainfall intensity increases for a range of durations and return periods.

This image is not available for this river basin.

Figure 65. The Outflow hydrograph at the Vinas Station, generated using the Alabat RIDF simulated in HEC-HMS.

A summary of the total precipitation, peak rainfall, peak outflow and time to peak of the Vinas discharge using the Alabat Rainfall Intensity-Duration-Frequency curves (RIDF) in five different return periods is shown in Table 30.

| RIDF Period | Total<br>Precipitation<br>(mm) | n Peak rainfall Peak outflow (mm) (m³/s) |        | Time to Peak         | Lag Time          |
|-------------|--------------------------------|------------------------------------------|--------|----------------------|-------------------|
| 5-yr        | 252                            | 27.6                                     | 2190.1 | 18 hours, 0 minutes  | 1 hour 10 minutes |
| 10-yr       | 303.9                          | 32.1                                     | 2694.6 | 18 hours, 0 minutes  | 1 hour 10 minutes |
| 25-yr       | 369.6                          | 37.7                                     | 3262.2 | 19 hours, 0 minutes  | 1 hour 10 minutes |
| 50-yr       | 418.4                          | 41.9                                     | 3659.4 | 19 hours, 0 minutes  | 1 hour 10 minutes |
| 100-yr      | 466.7                          | 46.1                                     | 4086   | 18 hours, 50 minutes | 1 hour 10 minutes |

Table 30. The peak values of the Vinas HEC-HMS Model outflow using the Maasin RIDF.

# 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS Flood Model produced a simulated water level at every cross-section for every time step for every flood simulation created. The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. For this publication, only a sample output map river was to be shown. Figure 66 shows a generated sample map of the Vinas River using the calibrated HMS event flow.

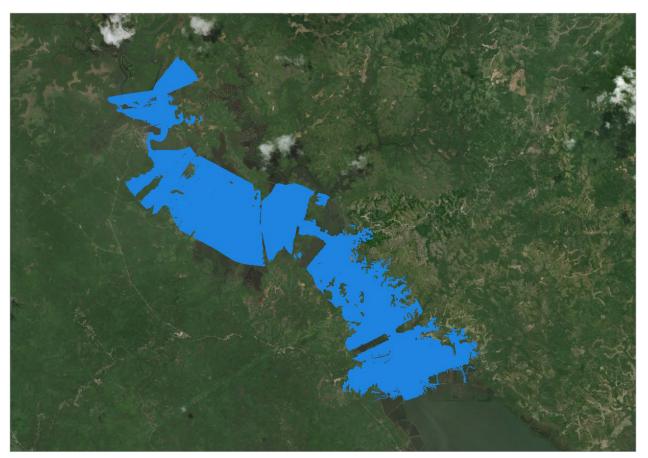



Figure 66. Sample output map of the Vinas RAS Model.

# 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10m resolution. Figure 67 to Figure 72 show the 5-, 25-, and 100-year rain return scenarios of the Vinas floodplain. Table 31 shows the percentage of area affected by flooding per municipality.

| Municipality | Total Area | Area Flooded | % Flooded |
|--------------|------------|--------------|-----------|
| Guinayangan  | 255.57     | 89.639       | 35.07     |
| Calauag      | 312.32     | 19.4         | 7.85%     |
| Tagkawayan   | 551.33     | 98.34        | 17.84%    |

Table 31. Municipalities affected in Vinas floodplain.

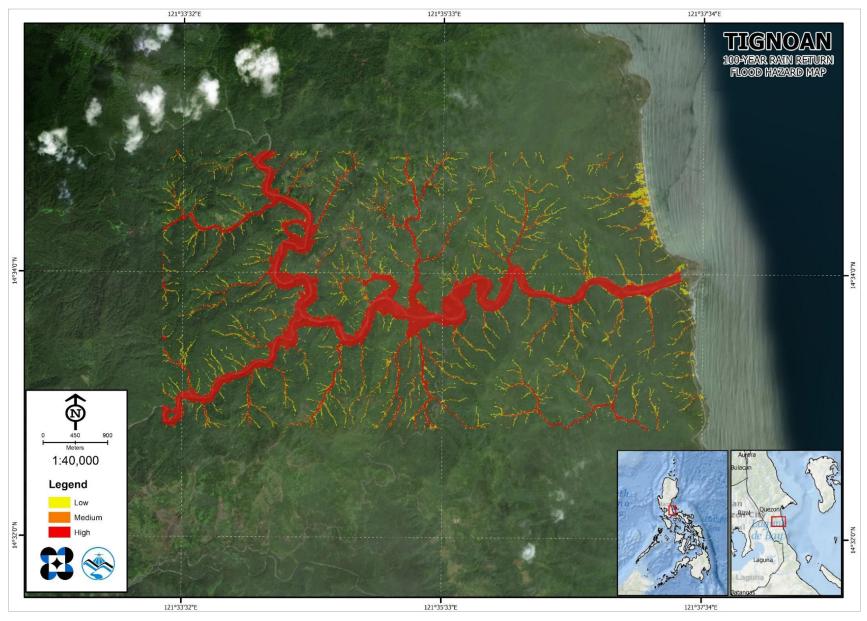



Figure 67. A 100-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery.



Figure 68. A 100-year Flow Depth Map for Vinas Floodplain overlaid on Google Earth imagery.

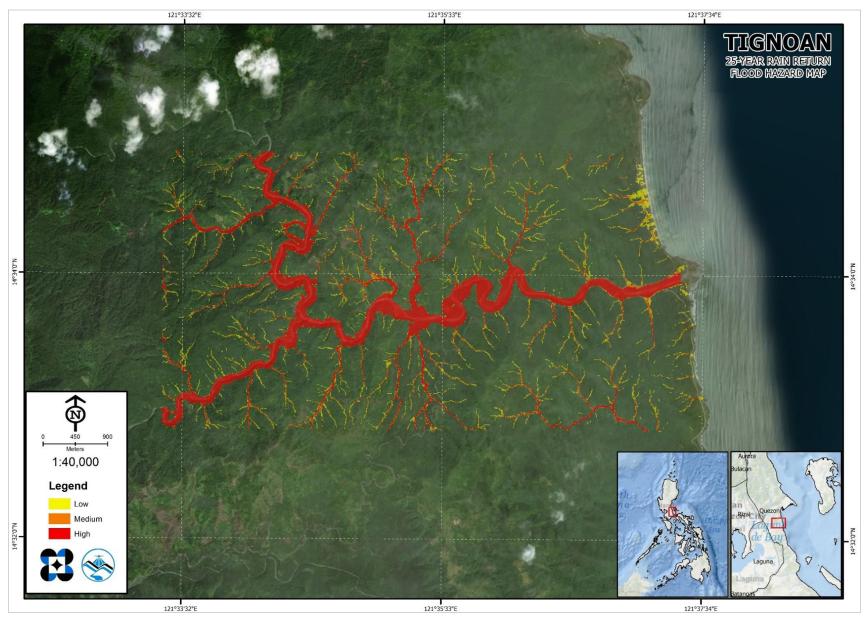



Figure 69. A 25-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery.

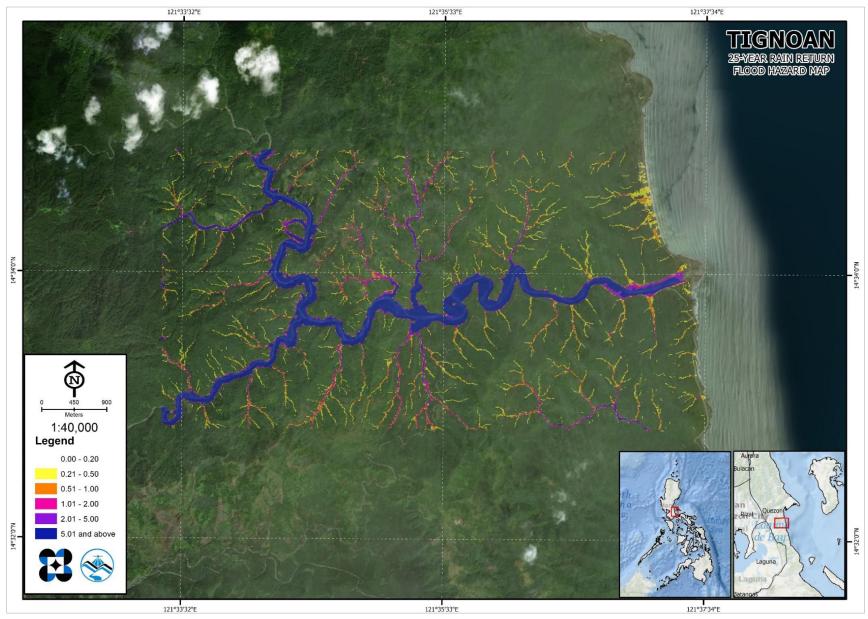



Figure 70. A 25-year Flow Depth Map for Vinas Floodplain overlaid on Google Earth imagery.

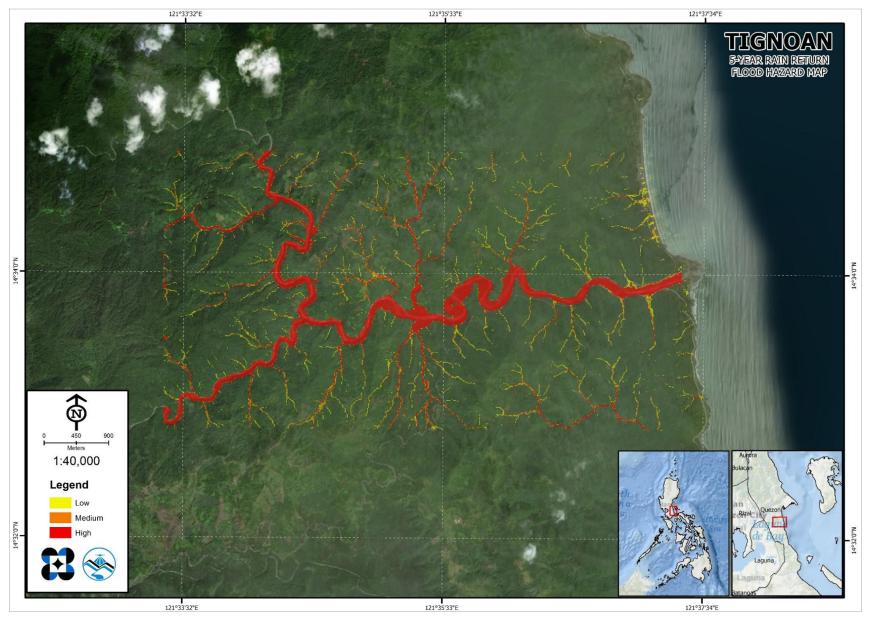



Figure 71. A 5-year Flood Hazard Map for Vinas Floodplain overlaid on Google Earth imagery.



Figure 72. A 5-year Flood Depth Map for Vinas Floodplain overlaid on Google Earth imagery.

### 5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Vinas River Basin, grouped accordingly by municipality. For the said basin, three municipalities consisting of 55 barangays are expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 26.62% of the municipality of Guinayangan with an area of 255.57 sq. km. will experience flood levels of less than 0.20 meters. 1.91% of the area will experience flood levels of 0.21 to 0.50 meters while 2.01%, 1.53%, 1.28%, and 0.34% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 32 are the affected areas in square kilometers by flood depth per barangay. ANNEX 12 and ANNEX 13 show the educational and health institutions exposed to flooding.

| Affected Area                          |          | Area of affected barangays in Guinayangan (in sq. km.) |           |                   |           |                   |                     |                     |                     |             |        |  |  |
|----------------------------------------|----------|--------------------------------------------------------|-----------|-------------------|-----------|-------------------|---------------------|---------------------|---------------------|-------------|--------|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Aloneros | Bagong<br>Silang                                       | Balinarin | Bukal<br>Maligaya | Cabibihan | Danlagan<br>Batis | Banlagan<br>Cabayao | Danlagan<br>Central | Danlagan<br>Reserva | Del Rosario | Ermita |  |  |
| 0.03-0.20                              | 0.38     | 4.18                                                   | 2.55      | 1.77              | 1.33      | 2.41              | 0                   | 1.63                | 1.13                | 2.84        | 2.48   |  |  |
| 0.21-0.50                              | 0.02     | 0.14                                                   | 0.61      | 0.42              | 0.11      | 0.16              | 0                   | 0.2                 | 0.068               | 0.079       | 0.17   |  |  |
| 0.51-1.00                              | 0.019    | 0.13                                                   | 0.37      | 0.46              | 0.21      | 0.1               | 0                   | 0.27                | 0.078               | 0.07        | 0.079  |  |  |
| 1.01-2.00                              | 0.053    | 0.18                                                   | 0.07      | 0.064             | 0.48      | 0.06              | 0                   | 0.39                | 0.073               | 0.091       | 0.02   |  |  |
| 2.01-5.00                              | 0.028    | 0.52                                                   | 0.052     | 0.012             | 0.26      | 0.039             | 0                   | 0.15                | 0.071               | 0.13        | 0.01   |  |  |
| > 5.00                                 | 0.026    | 0.45                                                   | 0.016     | 0                 | 0.0074    | 0.0001            | 0                   | 0.0011              | 0.0007              | 0.013       | 0.0001 |  |  |

Table 32. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period.

| Affected Area                          |       | Area of affected barangays in Guinayangan (in sq. km.) |         |             |          |            |             |            |              |           |            |  |
|----------------------------------------|-------|--------------------------------------------------------|---------|-------------|----------|------------|-------------|------------|--------------|-----------|------------|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Gapas | Hinabaan                                               | Salakan | San Antonio | San Jose | San Luis I | San Luis II | San Miguel | San Pedro II | San Roque | Santa Cruz |  |
| 0.03-0.20                              | 4.32  | 2.08                                                   | 0.35    | 2.76        | 6.82     | 4.23       | 6.7         | 0.26       | 3.55         | 0.28      | 4.68       |  |
| 0.21-0.50                              | 0.51  | 0.5                                                    | 0.018   | 0.22        | 0.2      | 0.17       | 0.2         | 0.055      | 0.12         | 0.011     | 0.26       |  |
| 0.51-1.00                              | 0.92  | 0.6                                                    | 0.032   | 0.12        | 0.21     | 0.28       | 0.22        | 0.13       | 0.091        | 0.0018    | 0.1        |  |
| 1.01-2.00                              | 0.17  | 0.44                                                   | 0.015   | 0.034       | 0.27     | 0.41       | 0.39        | 0.13       | 0.074        | 0.001     | 0.038      |  |
| 2.01-5.00                              | 0.049 | 0.041                                                  | 0.00096 | 0.006       | 0.37     | 0.3        | 0.75        | 0.039      | 0.038        | 0.0011    | 0.014      |  |
| > 5.00                                 | 0.012 | 0                                                      | 0       | 0.003       | 0.02     | 0.022      | 0.27        | 0          | 0.0063       | 0         | 0.0001     |  |

| Affected Area<br>(sq. km.) | Area of affected barangays in Guinayangan (in sq. km.) |         |  |  |  |
|----------------------------|--------------------------------------------------------|---------|--|--|--|
| by flood depth<br>(in m.)  | Tikay                                                  | Triumpo |  |  |  |
| 0.03-0.20                  | 1.45                                                   | 2.36    |  |  |  |
| 0.21-0.50                  | 0.22                                                   | 0.24    |  |  |  |
| 0.51-1.00                  | 0.32                                                   | 0.45    |  |  |  |
| 1.01-2.00                  | 0.16                                                   | 0.36    |  |  |  |
| 2.01-5.00                  | 0.015                                                  | 0.054   |  |  |  |
| > 5.00                     | 0.0001                                                 | 0       |  |  |  |

| 83 |  |
|----|--|

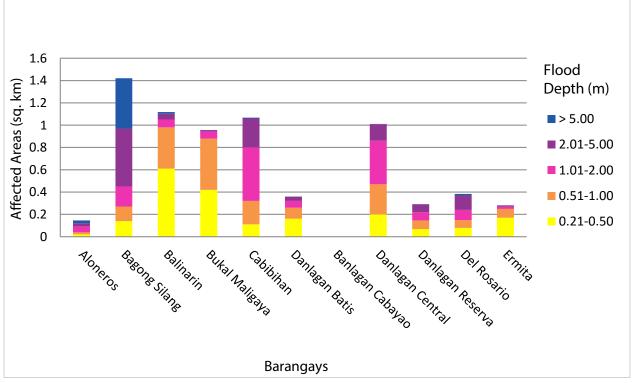



Figure 73. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period.

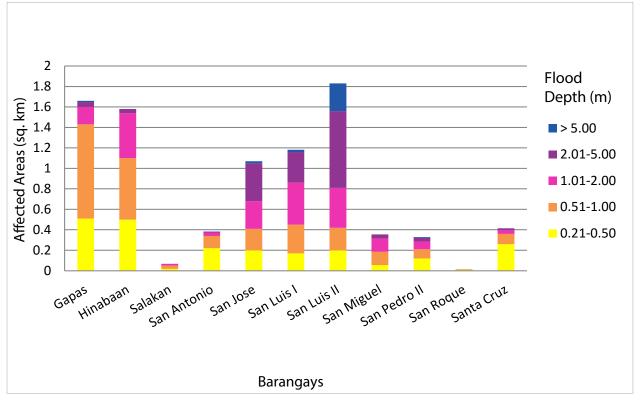



Figure 74. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period.

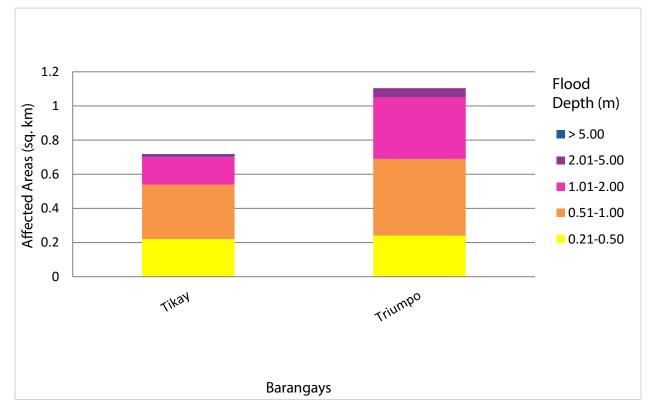



Figure 75. Affected Areas in Guinayangan, Quezon during 5-Year Rainfall Return Period.

For the municipality of Calauag, with an area of 118.377 sq. km., 14.04% will experience flood levels of less 0.20 meters. 0.52% of the area will experience flood levels of 0.21 to 0.50 meters while 0.77%, 0.76%, and 0.13% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Table 33 depicts the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          | Area of affected barangays in Calauag (in sq. km.) |             |               |             |            |        |  |  |  |  |
|----------------------------------------|----------------------------------------------------|-------------|---------------|-------------|------------|--------|--|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Anahawan                                           | Apad Taisan | Bagong Silang | Doña Aurora | Katangtang | Lungib |  |  |  |  |
| 0.03-0.20                              | 0.55                                               | 0.63        | 3.08          | 1.21        | 0.88       | 0.38   |  |  |  |  |
| 0.21-0.50                              | 0.037                                              | 0.021       | 0.17          | 0.042       | 0.084      | 0.015  |  |  |  |  |
| 0.51-1.00                              | 0.015                                              | 0.041       | 0.2           | 0.039       | 0.24       | 0.0095 |  |  |  |  |
| 1.01-2.00                              | 0.0032                                             | 0.012       | 0.18          | 0.046       | 0.079      | 0.0094 |  |  |  |  |
| 2.01-5.00                              | 0 0                                                |             | 0.038         | 0.038 0.017 |            | 0.0091 |  |  |  |  |
| > 5.00                                 | 0                                                  | 0           | 0             | 0           | 0          | 0      |  |  |  |  |

Table 33. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period.

| Affected Area                          |        | Area of affected barangays in Calauag (in sq. km.) |                 |                    |                  |       |  |  |  |  |  |
|----------------------------------------|--------|----------------------------------------------------|-----------------|--------------------|------------------|-------|--|--|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Pansol | Rizal Ilaya                                        | San Roque Ilaya | Santa<br>Milagrosa | Santo<br>Domingo | Viñas |  |  |  |  |  |
| 0.03-0.20                              | 1.5    | 0.19                                               | 1.17            | 2.88               | 1.98             | 1.98  |  |  |  |  |  |
| 0.21-0.50                              | 0.11   | 0.0044                                             | 0.045           | 0.14               | 0.07             | 0.07  |  |  |  |  |  |
| 0.51-1.00                              | 0.08   | 0.0031                                             | 0.016           | 0.13               | 0.069            | 0.17  |  |  |  |  |  |
| 1.01-2.00                              | 0.034  | 0.0016                                             | 0.0027          | 0.1                | 0.08             | 0.05  |  |  |  |  |  |
| 2.01-5.00                              | 0.0014 | 0.0008                                             | 0.0001          | 0.064              | 0.081            | 0.001 |  |  |  |  |  |
| > 5.00                                 | 0.0009 | 0                                                  | 0               | 0.0008             | 0.0002           | 0     |  |  |  |  |  |

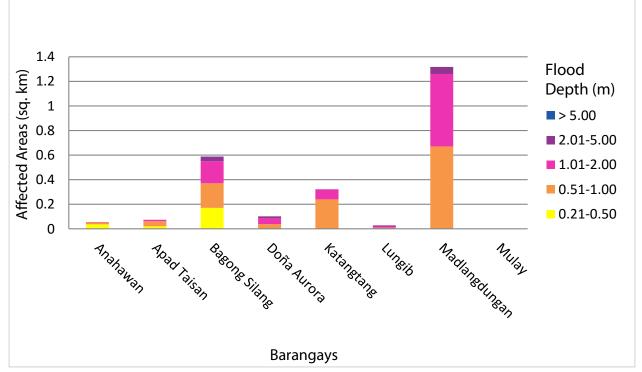



Figure 76. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period.

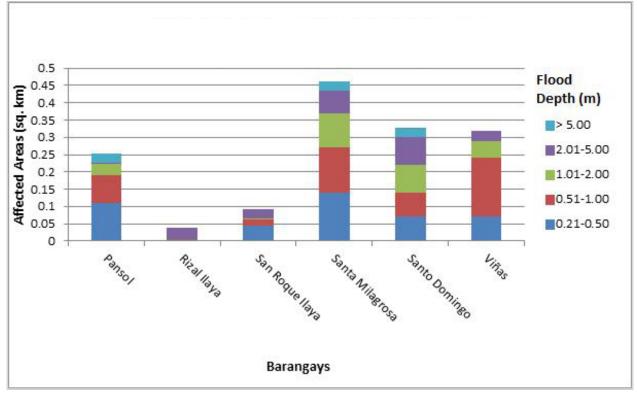



Figure 77. Affected Areas in Calauag, Quezon during 5-Year Rainfall Return Period.

For the municipality of Tagkawayan, with an area of 130.22 sq. km., 3.05% will experience flood levels of less 0.20 meters. 0.10% of the area will experience flood levels of 0.21 to 0.50 meters while 0.14%, 0.11%, and 0.003% of the area will experience flood depths of 0.51 to 1 meter, and 1.01 to 2 meters, respectively. Illustrated in Table 34 are the affected areas in square kilometers by flood depth per barangay.

| - · · · ·                              |                                                       |           |           |          |             |        |             |        |                   |                   |  |
|----------------------------------------|-------------------------------------------------------|-----------|-----------|----------|-------------|--------|-------------|--------|-------------------|-------------------|--|
| Affected Area                          | Area of affected barangays in Tagkawayan (in sq. km.) |           |           |          |             |        |             |        |                   |                   |  |
| (sq. km.)<br>by flood depth<br>(in m.) | Bagong Silang                                         | Cabibihan | Cabugwang | Cagascas | Del Rosario | Katimo | Kinatakutan | Malbog | Manato<br>Central | Manato<br>Station |  |
| 0.03-0.20                              | 13.72                                                 | 4.21      | 4.29      | 2.63     | 7.7         | 4.92   | 1.28        | 2.42   | 4.53              | 2.36              |  |
| 0.21-0.50                              | 0.39                                                  | 0.35      | 1.19      | 0.1      | 0.27        | 0.58   | 0.11        | 0.11   | 0.18              | 0.12              |  |
| 0.51-1.00                              | 0.35                                                  | 0.58      | 1.11      | 0.15     | 0.47        | 0.35   | 0.17        | 0.24   | 0.19              | 0.099             |  |
| 1.01-2.00                              | 0.5                                                   | 0.71      | 1.33      | 0.14     | 0.41        | 0.12   | 0.2         | 0.42   | 0.28              | 0.12              |  |
| 2.01-5.00                              | 0.83                                                  | 0.68      | 0.63      | 0.19     | 0.23        | 0.027  | 0.082       | 0.14   | 0.2               | 0.17              |  |
| > 5.00                                 | 0.19                                                  | 0.11      | 0.1       | 0        | 0.056       | 0      | 0           | 0      | 0                 | 0.000044          |  |

Table 34. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period.

| Affected Area                          |          | Area of affected barangays in Tagkawayan (in sq. km.) |           |              |               |          |          |  |  |  |  |
|----------------------------------------|----------|-------------------------------------------------------|-----------|--------------|---------------|----------|----------|--|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Mangayao | San Isidro                                            | San Roque | Santo Niño I | Santo Niño II | Seguiwan | Victoria |  |  |  |  |
| 0.03-0.20                              | 4.29     | 0.43                                                  | 3.48      | 3.42         | 8.78          | 6.47     | 2.45     |  |  |  |  |
| 0.21-0.50                              | 0.29     | 0.018                                                 | 0.14      | 0.15         | 0.29          | 0.79     | 0.22     |  |  |  |  |
| 0.51-1.00                              | 0.26     | 0.022                                                 | 0.11      | 0.14         | 0.24          | 0.46     | 0.33     |  |  |  |  |
| 1.01-2.00                              | 0.28     | 0.02                                                  | 0.14      | 0.14         | 0.25          | 0.23     | 0.51     |  |  |  |  |
| 2.01-5.00                              | 0.21     | 0.0075                                                | 0.077     | 0.078        | 0.28          | 0.059    | 0.1      |  |  |  |  |
| > 5.00                                 | 0.024    | 0                                                     | 0         | 0            | 0.051         | 0        | 0        |  |  |  |  |

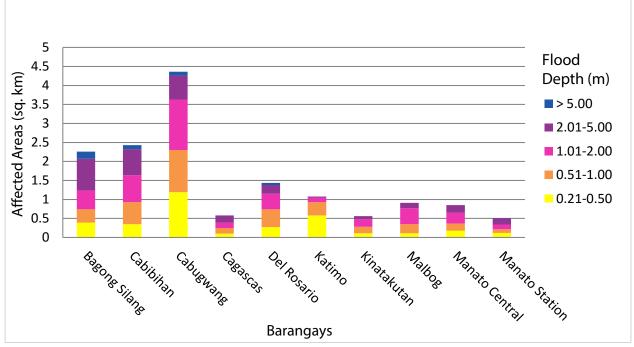



Figure 78. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period.

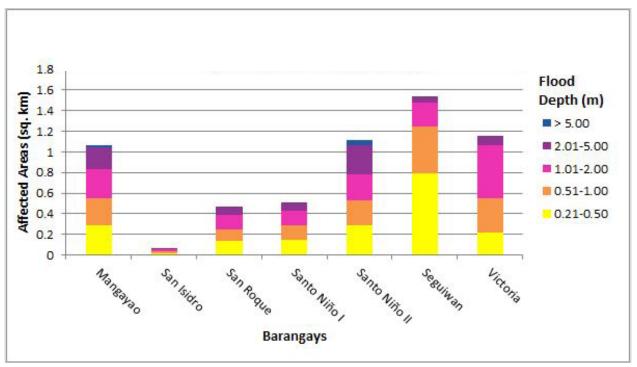



Figure 79. Affected Areas in Tagkawayan, Quezon during 5-Year Rainfall Return Period.

For the 25-year return period, 25.58% of the municipality of Guinayangan with an area of 255.57 sq. km. will experience flood levels of less than 0.20 meters. 1.67% of the area will experience flood levels of 0.21 to 0.50 meters while 1.77%, 2.30%, 1.78%, and 0.65% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Error! Reference source not found. are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          | Area of affected barangays in Guinayangan (in sq. km.) |           |                   |           |                   |                     |                     |                     |             |        |  |
|----------------------------------------|----------|--------------------------------------------------------|-----------|-------------------|-----------|-------------------|---------------------|---------------------|---------------------|-------------|--------|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Aloneros | Bagong<br>Silang                                       | Balinarin | Bukal<br>Maligaya | Cabibihan | Danlagan<br>Batis | Banlagan<br>Cabayao | Danlagan<br>Central | Danlagan<br>Reserva | Del Rosario | Ermita |  |
| 0.03-0.20                              | 0.36     | 3.91                                                   | 2.38      | 1.6               | 1.26      | 2.35              | 0                   | 1.51                | 1.09                | 2.77        | 2.43   |  |
| 0.21-0.50                              | 0.02     | 0.12                                                   | 0.53      | 0.16              | 0.072     | 0.17              | 0                   | 0.13                | 0.066               | 0.085       | 0.18   |  |
| 0.51-1.00                              | 0.016    | 0.13                                                   | 0.51      | 0.21              | 0.12      | 0.12              | 0                   | 0.23                | 0.078               | 0.075       | 0.1    |  |
| 1.01-2.00                              | 0.027    | 0.18                                                   | 0.17      | 0.74              | 0.37      | 0.07              | 0                   | 0.49                | 0.092               | 0.091       | 0.034  |  |
| 2.01-5.00                              | 0.071    | 0.44                                                   | 0.043     | 0.019             | 0.58      | 0.06              | 0                   | 0.28                | 0.094               | 0.16        | 0.013  |  |
| > 5.00                                 | 0.03     | 0.81                                                   | 0.042     | 0.0001            | 0.0091    | 0.00037           | 0                   | 0.011               | 0.0031              | 0.041       | 0.0012 |  |

#### Table 35. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period.

| Affected Area                          |       | Area of affected barangays in Guinayangan (in sq. km.) |         |             |          |            |             |            |              |           |            |
|----------------------------------------|-------|--------------------------------------------------------|---------|-------------|----------|------------|-------------|------------|--------------|-----------|------------|
| (sq. km.)<br>by flood depth<br>(in m.) | Gapas | Hinabaan                                               | Salakan | San Antonio | San Jose | San Luis I | San Luis II | San Miguel | San Pedro II | San Roque | Santa Cruz |
| 0.03-0.20                              | 4.08  | 1.9                                                    | 0.35    | 2.69        | 6.64     | 4.05       | 6.49        | 0.22       | 3.51         | 0.28      | 4.58       |
| 0.21-0.50                              | 0.36  | 0.45                                                   | 0.017   | 0.24        | 0.21     | 0.15       | 0.2         | 0.023      | 0.12         | 0.014     | 0.3        |
| 0.51-1.00                              | 0.58  | 0.58                                                   | 0.033   | 0.15        | 0.22     | 0.22       | 0.19        | 0.055      | 0.1          | 0.0026    | 0.13       |
| 1.01-2.00                              | 0.88  | 0.6                                                    | 0.022   | 0.058       | 0.28     | 0.46       | 0.33        | 0.23       | 0.09         | 0.0013    | 0.055      |
| 2.01-5.00                              | 0.068 | 0.13                                                   | 0.0014  | 0.011       | 0.46     | 0.5        | 0.88        | 0.084      | 0.047        | 0.0013    | 0.021      |
| > 5.00                                 | 0.02  | 0.0004                                                 | 0       | 0.003       | 0.089    | 0.043      | 0.45        | 0          | 0.01         | 0         | 0.0005     |

| Affected Area<br>(sq. km.) | Area of affect<br>in Guinayanga | ed barangays<br>an (in sq. km.) |
|----------------------------|---------------------------------|---------------------------------|
| by flood depth<br>(in m.)  | Tikay                           | Triumpo                         |
| 0.03-0.20                  | 1.31                            | 2.27                            |
| 0.21-0.50                  | 0.18                            | 0.15                            |
| 0.51-1.00                  | 0.31                            | 0.31                            |
| 1.01-2.00                  | 0.26                            | 0.5                             |
| 2.01-5.00                  | 0.11                            | 0.24                            |
| > 5.00                     | 0.0002                          | 0                               |

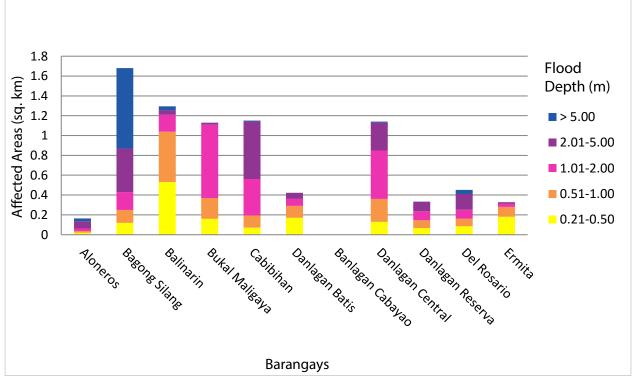



Figure 80. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period.

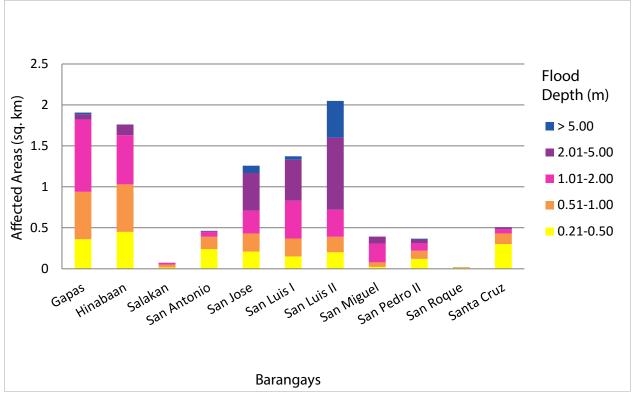



Figure 81. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period.

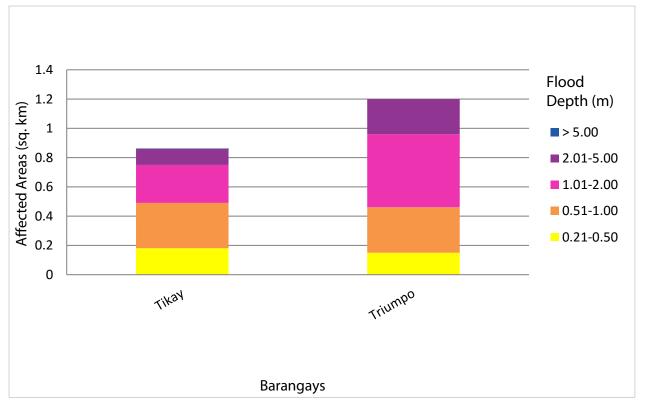



Figure 82. Affected Areas in Guinayangan, Quezon during 25-Year Rainfall Return Period.

For the municipality of Calauag with an area of 312.32 sq. km. will experience flood levels of less than 0.20 meters. 0.33% of the area will experience flood levels of 0.21 to 0.50 meters while 0.50%, 0.55%, 0.18%, and 0.00% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 36 are the affected areas in square kilometers by flood depth per barangay.

|                                        | Tuble 50. Theorem Theorem 10 Culture, Quezon Guiring 25 Tear Tubling Hereith Ferror. |             |               |             |            |        |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------|-------------|---------------|-------------|------------|--------|--|--|
| Affected Area                          |                                                                                      |             |               |             |            |        |  |  |
| (sq. km.)<br>by flood depth<br>(in m.) | Anahawan                                                                             | Apad Taisan | Bagong Silang | Doña Aurora | Katangtang | Lungib |  |  |
| 0.03-0.20                              | 0.54                                                                                 | 0.62        | 2.99          | 1.2         | 0.86       | 0.37   |  |  |
| 0.21-0.50                              | 0.039                                                                                | 0.02        | 0.15          | 0.041       | 0.052      | 0.016  |  |  |
| 0.51-1.00                              | 0.02                                                                                 | 0.035       | 0.21          | 0.041       | 0.2        | 0.011  |  |  |
| 1.01-2.00                              | 0.0056                                                                               | 0.024       | 0.21          | 0.052       | 0.17       | 0.013  |  |  |
| 2.01-5.00                              | 0                                                                                    | 0.0002      | 0.097         | 0.025       | 0.011      | 0.013  |  |  |
| > 5.00                                 | 0                                                                                    | 0           | 0             | 0           | 0          | 0.0011 |  |  |

Table 36. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period.

| Affected Area                          | Area of affected barangays in Calauag (in sq. km.) |             |                 |                    |                  |        |  |  |  |
|----------------------------------------|----------------------------------------------------|-------------|-----------------|--------------------|------------------|--------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Pansol                                             | Rizal Ilaya | San Roque Ilaya | Santa<br>Milagrosa | Santo<br>Domingo | Viñas  |  |  |  |
| 0.03-0.20                              | 1.46                                               | 0.19        | 1.15            | 2.82               | 1.93             | 1.96   |  |  |  |
| 0.21-0.50                              | 0.12                                               | 0.0044      | 0.053           | 0.15               | 0.07             | 0.063  |  |  |  |
| 0.51-1.00                              | 0.095                                              | 0.0034      | 0.023           | 0.14               | 0.069            | 0.15   |  |  |  |
| 1.01-2.00                              | 0.046                                              | 0.0017      | 0.0048          | 0.12               | 0.089            | 0.098  |  |  |  |
| 2.01-5.00                              | 0.0038                                             | 0.0014      | 0.0001          | 0.098              | 0.12             | 0.0017 |  |  |  |
| > 5.00                                 | 0.0009                                             | 0           | 0               | 0.0016             | 0.0043           | 0      |  |  |  |

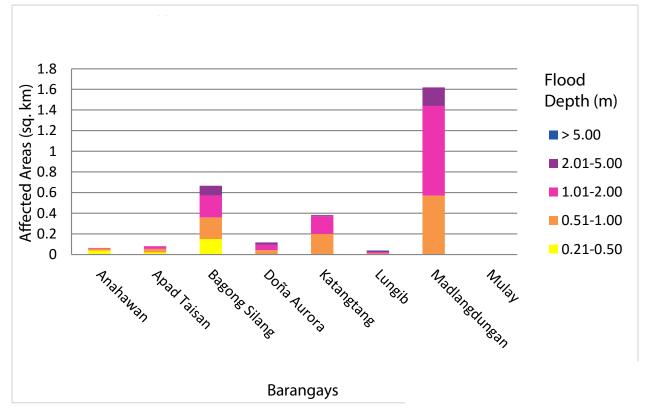



Figure 83. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period.

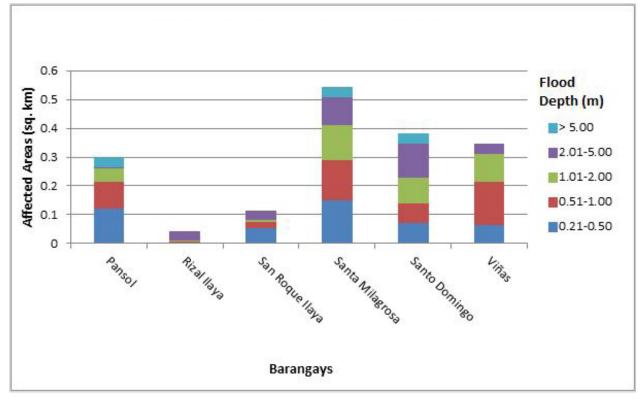



Figure 84. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period.

For the municipality of Tagkawayan with an area of 551.33 sq. km. will experience flood levels of less than 0.20 meters. 0.75% of the area will experience flood levels of 0.21 to 0.50 meters while 0.91%, 1.29%, 1.25%, and 0.21% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 37 are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |               | Area of affected barangays in Tagkawayan (in sq. km.) |           |          |             |        |             |        |                   |                   |  |  |  |
|----------------------------------------|---------------|-------------------------------------------------------|-----------|----------|-------------|--------|-------------|--------|-------------------|-------------------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Bagong Silang | Cabibihan                                             | Cabugwang | Cagascas | Del Rosario | Katimo | Kinatakutan | Malbog | Manato<br>Central | Manato<br>Station |  |  |  |
| 0.03-0.20                              | 13.42         | 3.99                                                  | 2.99      | 2.57     | 7.54        | 4.68   | 1.18        | 2.34   | 4.4               | 2.3               |  |  |  |
| 0.21-0.50                              | 0.38          | 0.19                                                  | 0.32      | 0.082    | 0.27        | 0.62   | 0.1         | 0.092  | 0.18              | 0.13              |  |  |  |
| .51-1.00                               | 0.34          | 0.46                                                  | 0.94      | 0.13     | 0.35        | 0.44   | 0.15        | 0.16   | 0.18              | 0.1               |  |  |  |
| .01-2.00                               | 0.49          | 0.7                                                   | 2.35      | 0.15     | 0.57        | 0.22   | 0.27        | 0.3    | 0.26              | 0.11              |  |  |  |
| 2.01-5.00                              | 0.95          | 1.11                                                  | 1.77      | 0.28     | 0.3         | 0.044  | 0.15        | 0.43   | 0.36              | 0.22              |  |  |  |
| > 5.00                                 | 0.38          | 0.2                                                   | 0.27      | 0.0065   | 0.11        | 0      | 0           | 0.0002 | 0.003             | 0.011             |  |  |  |

| Table 37. Affected Areas in Tagkaway | yan, Quezon during 25-Year Rainfall Return Period. |
|--------------------------------------|----------------------------------------------------|
|                                      |                                                    |

| Affected Area                          | Area of affected barangays in Tagkawayan (in sq. km.) |            |           |              |               |          |          |  |  |  |
|----------------------------------------|-------------------------------------------------------|------------|-----------|--------------|---------------|----------|----------|--|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Mangayao                                              | San Isidro | San Roque | Santo Niño I | Santo Niño II | Seguiwan | Victoria |  |  |  |
| 0.03-0.20                              | 4.15                                                  | 0.42       | 3.41      | 3.33         | 8.58          | 6.19     | 2.38     |  |  |  |
| 0.21-0.50                              | 0.27                                                  | 0.018      | 0.14      | 0.15         | 0.31          | 0.76     | 0.15     |  |  |  |
| 0.51-1.00                              | 0.29                                                  | 0.022      | 0.12      | 0.15         | 0.25          | 0.67     | 0.28     |  |  |  |
| 1.01-2.00                              | 0.27                                                  | 0.023      | 0.13      | 0.16         | 0.27          | 0.29     | 0.56     |  |  |  |
| 2.01-5.00                              | 0.33                                                  | 0.012      | 0.15      | 0.13         | 0.34          | 0.11     | 0.23     |  |  |  |
| > 5.00                                 | 0.046                                                 | 0          | 0.0007    | 0.0015       | 0.14          | 0        | 0.0088   |  |  |  |

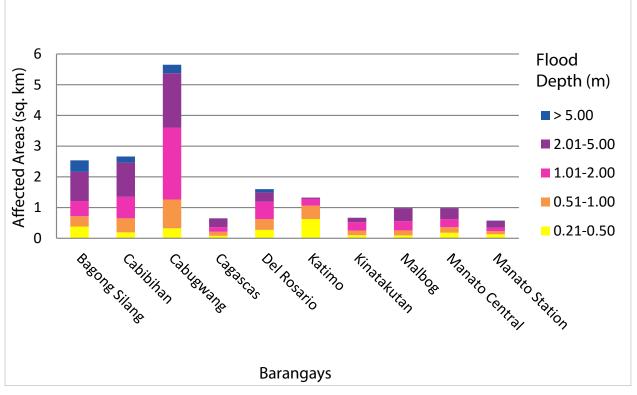



Figure 85. Affected Areas in Tagkawayan, Quezon during 25-Year Rainfall Return Period.

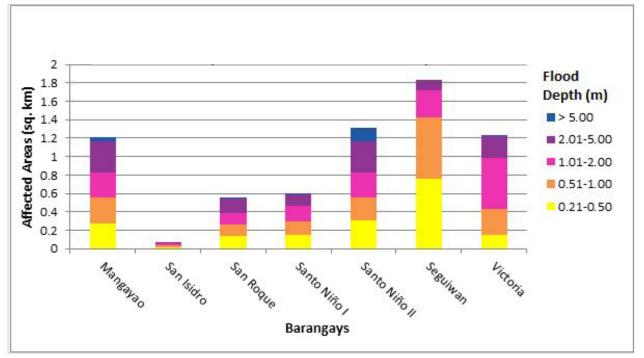



Figure 86. Affected Areas in Tagkawayan, Quezon during 25-Year Rainfall Return Period.

For the 100-year return period, 25.77% of the municipality of Guinayangan with an area of 255.57 sq. km. will experience flood levels of less than 0.20 meters. 1.58% of the area will experience flood levels of 0.21 to 0.50 meters while 1.73%, 2.34%, 2.72%, and 0.93% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 38 are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |          | Area of affected barangays in Guinayangan (in sq. km.) |           |                   |           |                   |                     |                     |                     |             |        |  |
|----------------------------------------|----------|--------------------------------------------------------|-----------|-------------------|-----------|-------------------|---------------------|---------------------|---------------------|-------------|--------|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Aloneros | Bagong<br>Silang                                       | Balinarin | Bukal<br>Maligaya | Cabibihan | Danlagan<br>Batis | Banlagan<br>Cabayao | Danlagan<br>Central | Danlagan<br>Reserva | Del Rosario | Ermita |  |
| 0.03-0.20                              | 0.35     | 3.73                                                   | 2.22      | 1.54              | 1.22      | 2.3               | 0                   | 1.45                | 1.06                | 2.72        | 2.39   |  |
| 0.21-0.50                              | 0.022    | 0.12                                                   | 0.44      | 0.11              | 0.059     | 0.18              | 0                   | 0.083               | 0.072               | 0.09        | 0.19   |  |
| 0.51-1.00                              | 0.014    | 0.12                                                   | 0.58      | 0.13              | 0.092     | 0.13              | 0                   | 0.17                | 0.073               | 0.079       | 0.11   |  |
| 1.01-2.00                              | 0.021    | 0.19                                                   | 0.31      | 0.25              | 0.32      | 0.079             | 0                   | 0.46                | 0.11                | 0.099       | 0.053  |  |
| 2.01-5.00                              | 0.084    | 0.42                                                   | 0.063     | 0.69              | 0.68      | 0.073             | 0                   | 0.43                | 0.11                | 0.16        | 0.017  |  |
| > 5.00                                 | 0.034    | 1.03                                                   | 0.054     | 0.0004            | 0.028     | 0.0012            | 0                   | 0.056               | 0.0069              | 0.073       | 0.0027 |  |

Table 38. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period.

| Affected Area                          |       | Area of affected barangays in Guinayangan (in sq. km.) |         |             |          |            |             |            |              |           |            |
|----------------------------------------|-------|--------------------------------------------------------|---------|-------------|----------|------------|-------------|------------|--------------|-----------|------------|
| (sq. km.)<br>by flood depth<br>(in m.) | Gapas | Hinabaan                                               | Salakan | San Antonio | San Jose | San Luis I | San Luis II | San Miguel | San Pedro II | San Roque | Santa Cruz |
| 0.03-0.20                              | 3.93  | 1.78                                                   | 0.34    | 2.64        | 6.52     | 3.94       | 6.37        | 0.2        | 3.48         | 0.27      | 4.51       |
| 0.21-0.50                              | 0.3   | 0.38                                                   | 0.019   | 0.24        | 0.21     | 0.14       | 0.19        | 0.017      | 0.12         | 0.019     | 0.32       |
| 0.51-1.00                              | 0.32  | 0.58                                                   | 0.023   | 0.17        | 0.21     | 0.19       | 0.19        | 0.034      | 0.11         | 0.0031    | 0.16       |
| 1.01-2.00                              | 0.72  | 0.67                                                   | 0.036   | 0.082       | 0.29     | 0.43       | 0.3         | 0.18       | 0.099        | 0.0016    | 0.073      |
| 2.01-5.00                              | 0.69  | 0.25                                                   | 0.0023  | 0.016       | 0.5      | 0.62       | 0.85        | 0.18       | 0.055        | 0.0015    | 0.027      |
| > 5.00                                 | 0.025 | 0.0022                                                 | 0       | 0.0002      | 0.16     | 0.084      | 0.64        | 0          | 0.014        | 0         | 0.0022     |

| Affected Area<br>(sq. km.) | Area of affect<br>in Guinayanga | • •     |
|----------------------------|---------------------------------|---------|
| by flood depth<br>(in m.)  | Tikay                           | Triumpo |
| 0.03-0.20                  | 1.25                            | 2.22    |
| 0.21-0.50                  | 0.14                            | 0.12    |
| 0.51-1.00                  | 0.27                            | 0.27    |
| 1.01-2.00                  | 0.37                            | 0.47    |
| 2.01-5.00                  | 0.13                            | 0.39    |
| > 5.00                     | 0.0003                          | 0       |

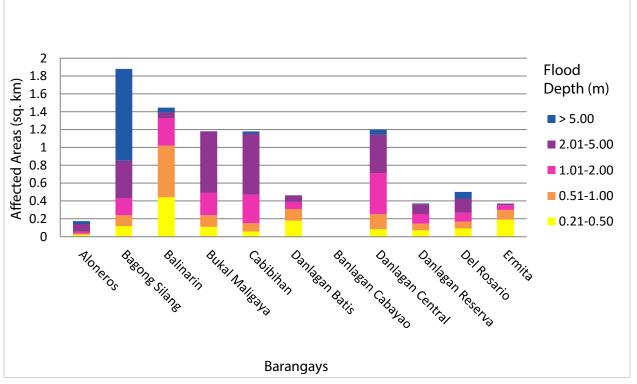



Figure 87. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period.

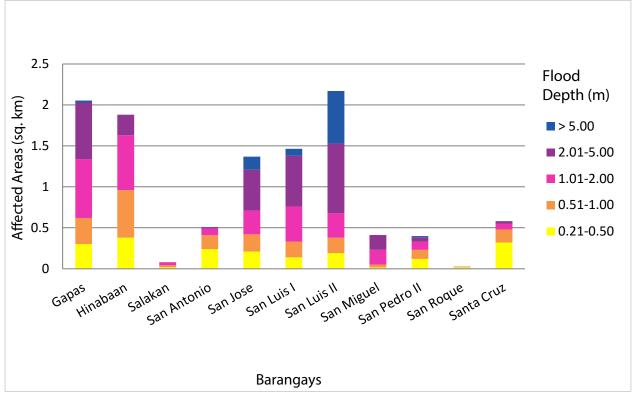



Figure 88. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period.

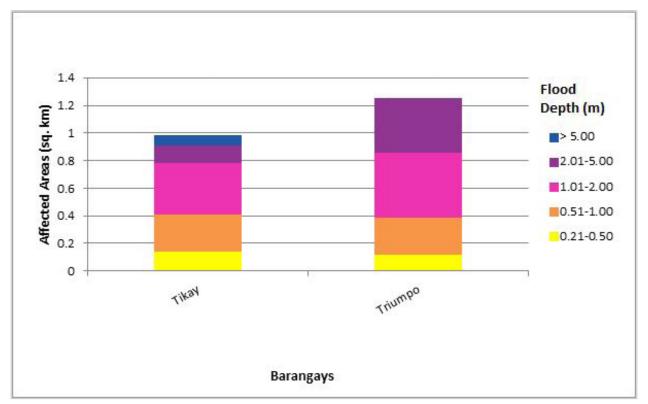



Figure 89. Affected Areas in Guinayangan, Quezon during 100-Year Rainfall Return Period.

#### LIDAR Surveys and Flood Mapping of Vinas River

0.026

0.0083

0

0

0.029

0.035

0.0003

0

0.51-1.00

1.01-2.00

2.01-5.00

> 5.00

For the municipality of Calauag with an area of 312.32 sq. km. will experience flood levels of less than 0.20 meters. 0.31% of the area will experience flood levels of 0.21 to 0.50 meters while 0.46%, 0.53%, 0.33%, and 0.01% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 39 are the affected areas in square kilometers by flood depth per barangay.

|                                        |          |             | 0, 2             | 0                 |            |        |
|----------------------------------------|----------|-------------|------------------|-------------------|------------|--------|
| Affected Area                          |          | Area of     | affected baranga | ys in Calauag (in | sq. km.)   |        |
| (sq. km.)<br>by flood depth<br>(in m.) | Anahawan | Apad Taisan | Bagong Silang    | Doña Aurora       | Katangtang | Lungib |
| 0.03-0.20                              | 0.53     | 0.62        | 2.94             | 1.19              | 0.84       | 0.37   |
| 0.21-0.50                              | 0.039    | 0.02        | 0.15             | 0.038             | 0.045      | 0.015  |

0.21

0.22

0.15

0.00093

0.045

0.052

0.034

0

0.13

0.25

0.014

0

0.012

0.014

0.015

0.0014

Table 39. Affected Areas in Calauag, Quezon during 25-Year Rainfall Return Period.

| Affected Area                          |        | Area of affected barangays in Calauag (in sq. km.) |                 |                    |                  |        |  |  |
|----------------------------------------|--------|----------------------------------------------------|-----------------|--------------------|------------------|--------|--|--|
| (sq. km.)<br>by flood depth<br>(in m.) | Pansol | Rizal Ilaya                                        | San Roque Ilaya | Santa<br>Milagrosa | Santo<br>Domingo | Viñas  |  |  |
| 0.03-0.20                              | 1.44   | 0.19                                               | 1.14            | 2.76               | 1.89             | 1.94   |  |  |
| 0.21-0.50                              | 0.11   | 0.0055                                             | 0.059           | 0.15               | 0.074            | 0.063  |  |  |
| 0.51-1.00                              | 0.1    | 0.0039                                             | 0.026           | 0.15               | 0.067            | 0.12   |  |  |
| 1.01-2.00                              | 0.057  | 0.0016                                             | 0.0081          | 0.13               | 0.095            | 0.14   |  |  |
| 2.01-5.00                              | 0.0067 | 0.0019                                             | 0.0002          | 0.12               | 0.13             | 0.0033 |  |  |
| > 5.00                                 | 0.0009 | 0                                                  | 0               | 0.0061             | 0.023            | 0      |  |  |

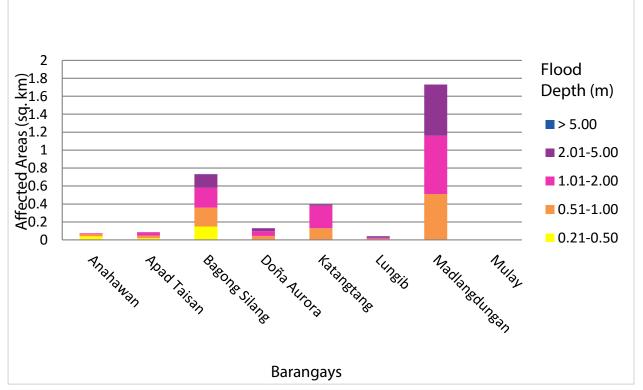



Figure 90. Affected Areas in Calauag, Quezon during 100-Year Rainfall Return Period.

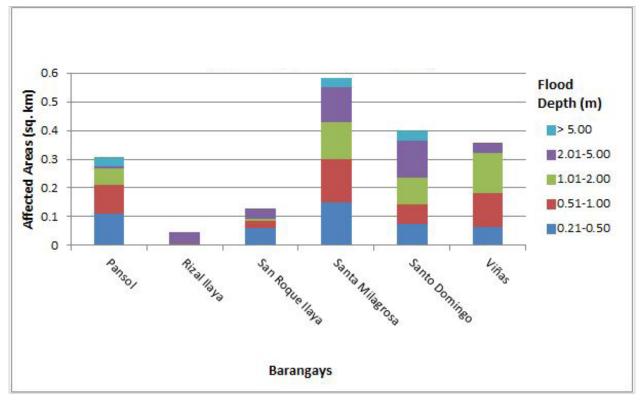



Figure 91. Affected Areas in Calauag, Quezon during 100-Year Rainfall Return Period.

For the municipality of Tagkawayan with an area of 551.33 sq. km. will experience flood levels of less than 0.20 meters. 0.71% of the area will experience flood levels of 0.21 to 0.50 meters while 0.80%, 1.15%, 1.73%, and 0.37% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 40 are the affected areas in square kilometers by flood depth per barangay.

| Affected Area                          |               |           |           | Area of aff | ected barangays | in Tagkawayan | (in sq. km.) |        |                   |                   |
|----------------------------------------|---------------|-----------|-----------|-------------|-----------------|---------------|--------------|--------|-------------------|-------------------|
| (sq. km.)<br>by flood depth<br>(in m.) | Bagong Silang | Cabibihan | Cabugwang | Cagascas    | Del Rosario     | Katimo        | Kinatakutan  | Malbog | Manato<br>Central | Manato<br>Station |
| 0.03-0.20                              | 13.24         | 3.89      | 2.7       | 2.53        | 7.43            | 4.55          | 1.11         | 2.28   | 4.3               | 2.25              |
| 0.21-0.50                              | 0.38          | 0.16      | 0.19      | 0.083       | 0.26            | 0.59          | 0.097        | 0.085  | 0.18              | 0.11              |
| 0.51-1.00                              | 0.34          | 0.32      | 0.36      | 0.1         | 0.31            | 0.52          | 0.15         | 0.13   | 0.18              | 0.14              |
| 1.01-2.00                              | 0.45          | 0.72      | 1.44      | 0.15        | 0.58            | 0.28          | 0.3          | 0.27   | 0.26              | 0.12              |
| 2.01-5.00                              | 0.97          | 1.26      | 3.45      | 0.32        | 0.4             | 0.06          | 0.2          | 0.57   | 0.45              | 0.21              |
| > 5.00                                 | 0.59          | 0.3       | 0.51      | 0.035       | 0.16            | 0             | 0.0012       | 0.0002 | 0.011             | 0.049             |

| Table 40. Affected Areas in 7 | Fagkawayan, Que | zon during 100-Year | Rainfall Return Period. |
|-------------------------------|-----------------|---------------------|-------------------------|
|-------------------------------|-----------------|---------------------|-------------------------|

| Affected Area                          |          | Are        | a of affected ba | rangays in Tagk | awayan (in sq. k | m.)      |          |
|----------------------------------------|----------|------------|------------------|-----------------|------------------|----------|----------|
| (sq. km.)<br>by flood depth<br>(in m.) | Mangayao | San Isidro | San Roque        | Santo Niño I    | Santo Niño II    | Seguiwan | Victoria |
| 0.03-0.20                              | 4.06     | 0.41       | 3.36             | 3.28            | 8.44             | 6.01     | 2.31     |
| 0.21-0.50                              | 0.26     | 0.017      | 0.14             | 0.15            | 0.32             | 0.76     | 0.12     |
| 0.51-1.00                              | 0.31     | 0.023      | 0.13             | 0.16            | 0.26             | 0.73     | 0.23     |
| 1.01-2.00                              | 0.26     | 0.025      | 0.13             | 0.17            | 0.29             | 0.37     | 0.53     |
| 2.01-5.00                              | 0.4      | 0.016      | 0.18             | 0.16            | 0.35             | 0.15     | 0.39     |
| > 5.00                                 | 0.079    | 0          | 0.0057           | 0.0092          | 0.23             | 0.0004   | 0.032    |

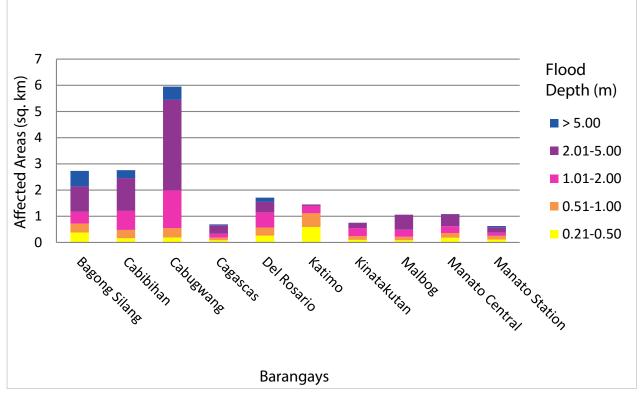



Figure 92. Affected Areas in Tagkawayan, Quezon during 100-Year Rainfall Return Period.

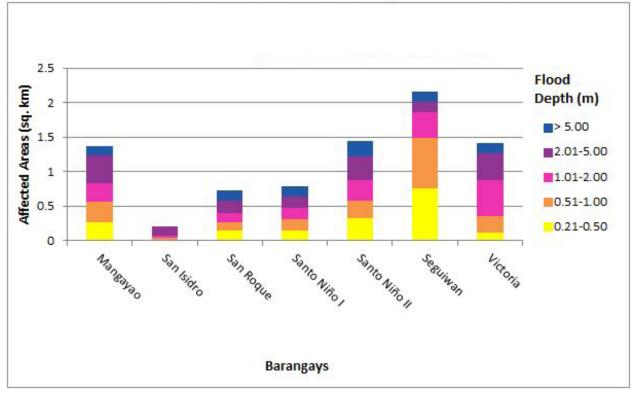



Figure 93. Affected Areas in Tagkawayan, Quezon during 100-Year Rainfall Return Period.

Moreover, the generated flood hazard maps for the Vinas Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAG-ASA for hazard maps - "Low", "Medium", and "High" - the affected institutions were given their individual assessment for each Flood Hazard Scenario (5 yr, 25 yr, and 100 yr).

|               | Area Covered in sq. km. |         |          |  |  |  |
|---------------|-------------------------|---------|----------|--|--|--|
| Warning Level | 5 year                  | 25 year | 100 year |  |  |  |
| Low           | 11.46                   | 9.30    | 8.66     |  |  |  |
| Medium        | 19.74                   | 19.74   | 17.26    |  |  |  |
| High          | 13.25                   | 21.93   | 28.75    |  |  |  |
| Total         | 44.45                   | 50.97   | 54.67    |  |  |  |

| Table 41. Area covered by each warning level with respect to the rainfall scenarios |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

Of the 14 identified Education Institutes in Vinas Flood plain, three (3) schools were found exposed to Medium-level flooding in the 5-year scenario. For the 25- and 100-year scenarios, 1 school was found exposed to medium-level flooding, while 2 schools were discovered exposed to high-level flooding. See ANNEX 12 for a detailed enumeration of schools in the Vinas floodplain.

Of the eight (8) Medical Institutions were identified in the Vinas Floodplain, none were assessed to be exposed to any flood levels for all the rain scenarios. See ANNEX 13 for a detailed enumeration of hospitals and clinics in the Vinas floodplain.

# 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and will gather data regarding the actual flood level in each location. Data gathering was done through a local DRRM office to obtain maps or situation reports about the past flooding events or interview of some residents with knowledge of or have had experienced flooding in a particular area.

The actual data from the field were compared to the simulated data to assess the accuracy of the Flood Depth Maps produced and to improve on the results of the flood map. The points in the flood map versus its corresponding validation depths are shown in Figure 94.

The flood validation survey was conducted in December 2016. The flood validation consists of 180 points randomly selected all over the Vinas flood plain. Comparing it with the flood depth of the nearest storm event, the map has an RMSE value of 0.72m. The validation points are found in ANNEX 11.

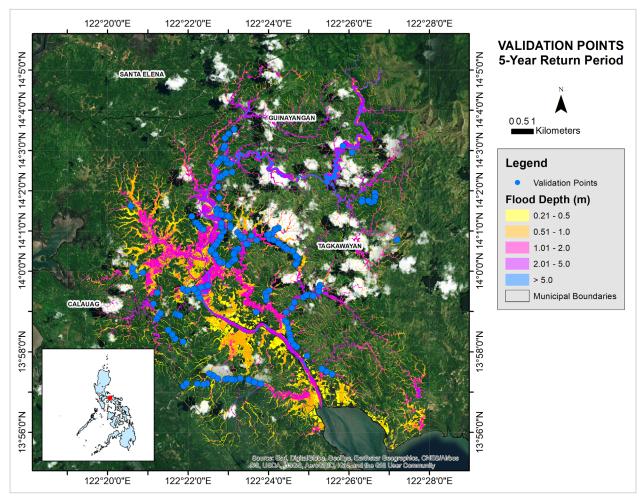



Figure 94. Validation Points for a 5-year Flood Depth Map of the Vinas Floodplain.

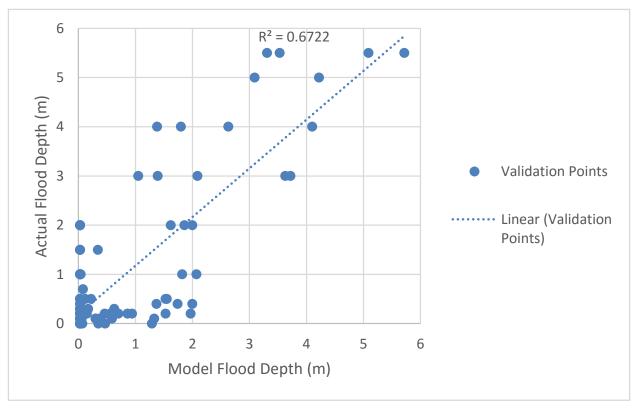



Figure 95. Flood depth map vs actual flood depth.

|              | NAS BASIN |        | MODELED FLOOD DEPTH (m) |           |           |           |        |       |  |
|--------------|-----------|--------|-------------------------|-----------|-----------|-----------|--------|-------|--|
| VII          | NAS DASIN | 0-0.20 | 0.21-0.50               | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00 | Total |  |
| ~            | 0-0.20    | 103    | 6                       | 5         | 4         | 0         | 0      | 118   |  |
| (m) h        | 0.21-0.50 | 18     | 1                       | 1         | 5         | 0         | 0      | 25    |  |
| Depth        | 0.51-1.00 | 8      | 0                       | 0         | 1         | 1         | 0      | 10    |  |
| od E         | 1.01-2.00 | 8      | 1                       | 0         | 3         | 0         | 0      | 12    |  |
| al Flo       | 2.01-5.00 | 0      | 0                       | 0         | 4         | 7         | 0      | 11    |  |
| Actual Flood | > 5.00    | 0      | 0                       | 0         | 0         | 2         | 2      | 4     |  |
| 4            | Total     | 137    | 8                       | 6         | 17        | 10        | 2      | 180   |  |

Table 42. Actual Flood Depth versus Simulated Flood Depth at different levels in the Vinas River Basin.

On the whole, the overall accuracy generated by the flood model is estimated at 64.44%, with 116 points correctly matching the actual flood depths. In addition, there were 32 points estimated one level above and below the correct flood depths while there were 20 points and 12 points estimated two levels above and below, and three or more levels above and below the correct flood depth. A total of 4 points were overestimated while a total of 41 points were underestimated in the modelled flood depths of Vinas. Table 43 depicts the summary of the Accuracy Assessment in the Vinas River Basin Flood Depth Map.

Table 43. Summary of the Accuracy Assessment in the Vinas River Basin Survey.

|                | No. of Points | %      |
|----------------|---------------|--------|
| Correct        | 116           | 64.44  |
| Overestimated  | 23            | 12.78  |
| Underestimated | 41            | 22.78  |
| Total          | 180           | 100.00 |

# **REFERENCES**

Ang M.O., Paringit E.C., et al. 2014. *DREAM Data Processing Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. *DREAM Data Validation Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. *DREAM Flood Modeling Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. *Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods.* Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. *DREAM Data Acquisition Component Manual*. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

# **ANNEX**

# ANNEX 1. Technical Specifications of the LIDAR Sensors used in the Vinas Floodplain Survey

## 1. PEGASUS SENSOR



Control Rack

Laptop

Table A-1.1 Parameters and Specifications of the Pegasus Sensor

| Parameter                       | Specification                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| Operational envelope (1,2,3,4)  | 150-4000 m AGL, nominal                                                                                          |
| Laser wavelength                | 1064 nm                                                                                                          |
| Horizontal accuracy (2)         | 1/5,500 x altitude, (m AGL)                                                                                      |
| Elevation accuracy (2)          | <5-35 cm, 1 σ                                                                                                    |
| Effective laser repetition rate | Programmable, 33-167 kHz                                                                                         |
| Position and orientation system | POS AV <sup>™</sup> AP50 (OEM);<br>220-channel dual frequency GPS/GNSS/Galileo/L-Band receiver                   |
| Scan width (WOV)                | Programmable, 0-50°                                                                                              |
| Scan frequency (5)              | Programmable, 0-70 Hz (effective)                                                                                |
| Sensor scan product             | 1000 maximum                                                                                                     |
| Beam divergence                 | Dual divergence: 0.25 mrad (1/e) and 0.8 mrad (1/e), nominal                                                     |
| Roll compensation               | Programmable, ±5° (FOV dependent)                                                                                |
| Range capture                   | Up to 4 range measurements, including 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> , and last returns     |
| Intensity capture               | Up to 4 intensity returns for each pulse, including last (12 bit)                                                |
| Video Camera                    | Internal video camera (NTSC or PAL)                                                                              |
| Image capture                   | Compatible with full Optech camera line (optional)                                                               |
| Full waveform capture           | 12-bit Optech IWD-2 Intelligent Waveform Digitizer (optional)                                                    |
| Data storage                    | Removable solid state disk SSD (SATA II)                                                                         |
| Power requirements              | 28 V; 900 W;35 A(peak)                                                                                           |
| Dimensions and weight           | Sensor: 260 mm (w) x 190 mm (l) x 570 mm (h); 23 kg<br>Control rack: 650 mm (w) x 590 mm (l) x 530 mm (h); 53 kg |
| Operating temperature           | -10°C to +35°C (with insulating jacket)                                                                          |
| Relative humidity               | 0-95% no-condensing                                                                                              |

# ANNEX 2. NAMRIA certification of reference points used in the LiDAR survey

## 1. QZN-41

|                      | 5 L 9 L 0 Z 7 L 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 6                                                                                                                          |                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
| 0.,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
| sy Branchwy          | NEL DM. BELEN, MI<br>Construction () Might Bedee<br>Construction | I fanDirecto                                                                                                                 |                                                                                                            |
|                      | Henryhun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | R Number: 8084228 I<br>N.: 2016-0911                                                                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | urpose: Reference<br>Bquesting Party: UP DREAM                                                             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ."AIXIMAN 0002 1'4-N20 8                                                                                                     | ri leveled on the ground, with inscriptions                                                                |
| Port is located      | main pier of Calauag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figy. Hall and Police Outpost. The<br>stgy. Hall and Police Outpost. The<br>start in. copper nail centered on a<br>start in. | טות. ונ is approx. 30 m. NE of Sabang of ש. NE of the head o<br>00 m. E of the station. Mark is the head o |
| ng I basketball      | he front of Brgy. Saba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 m. pier on the Calauag Port at I                                                                                          | located 1 m. from the offshore end of a 1<br>ZN-41                                                         |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location Description                                                                                                         | N                                                                                                          |
|                      | La :9noZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UTM / PRS92 Coordinates<br>Easting: 422,550.44                                                                               | Northing: 1,543,300.04                                                                                     |
|                      | A :enoZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Easting: 422523.318 m.                                                                                                       | Northing: 1543840.411 m.                                                                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PTM / PRS92 Coordinates                                                                                                      |                                                                                                            |
| 52.42200 m.          | Ellipsoidal Hgt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Longitude: 122°17' 3.61061"                                                                                                  | Latitude: 13º 57' 30.05147"                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WGS84 Coordinates                                                                                                            |                                                                                                            |
| 3.94900 m.           | Ellipsoidal Hgt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Longitude: 122º 16' 58.66932"                                                                                                | Latitude: 13º 57' 35.21424"                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSL Elevation:<br>PRS92 Coordinates                                                                                          | Municipality: CALAUAG                                                                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Barangay: SABANG 1                                                                                                           |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Station Name: QZN-41<br>Order: 2nd                                                                                           |                                                                                                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Province: QUEZON                                                                                                             |                                                                                                            |
| - SMOILOL SP SL LION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | This is to certify that according to the re                                                                |
| ewellet ac ai deit   | erazojuj novano potooni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oor odt oomoorigt gi olit go obrood                                                                                          | This is to concern:<br>This is to concern:                                                                 |
|                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CERTIFICATION                                                                                                                |                                                                                                            |
| April 14, 2016       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                                                                                            |
| SFOC AF ling A       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | 1 + 1981 + 10                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G AND RESOURCE INFORMATION                                                                                                   |                                                                                                            |
|                      | <b>YTIAOHTUA</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOITAMAOANI ADALIO2AA ONA D                                                                                                  |                                                                                                            |

109

#### 2. CMN-33



Northing: 1,573,809.93

Northing: 1574360.987 m.

Location Description

PTM / PRS92 Coordinates 472178.341 m.

UTM / PRS92 Coordinates

472,188.08

Easting:

Easting:

#### CMN-33

From Mun. of Labo, travel NW along Maharlika Highway for about 5.5 Km. up to Brgy. Talobatib, upon reaching Brgy. Talobatib turn right at road junction, then travel for about 7 Km. up to Brgy. Batobalani. Station is located at Brgy. Batobalani. It was established NW wing of Malaquit Bridge, 100 m S of road junction going to Paracale. Mark is the head of a 3 in. copper nail centered on a drilled hole with 30 cm x 30 cm cement putty, embedded at concrete bridge, with inscriptions, "CMN-33, 2007, NAMRIA".

| Requesting Party: |
|-------------------|
| Purpose:          |
| OR Number:        |
| T.N.:             |

PHIL-LIDAR 1 Reference 8090013 I 2016-0613

RUEL DM. BELEN, MNSA Director, Mapping And Geodesy Branch

4

51

Zone:

Zone:





NAMRIA OFFICES: NAMIKIA WEITIGES: Main : Lawton Avenue, Fort Bonifacio, 1634 Taguig City, Philippines Tel. No.: (632) 810-4831 to 41 Branch : 421 Barraca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

Figure A-2.2 CMN-33

# ANNEX 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

## 1. AQZN-J2

Table A-3.1 QZN-J2

| QZN-41 - QZN-J2 (7:40:15 AM-5:03:12 PM) (S6) |                                       |  |  |  |  |  |
|----------------------------------------------|---------------------------------------|--|--|--|--|--|
| Baseline observation:                        | QZN-41 QZN-J2 (B7)                    |  |  |  |  |  |
| Processed:                                   | 4/17/2016 10:34:34 PM                 |  |  |  |  |  |
| Solution type:                               | Fixed                                 |  |  |  |  |  |
| Frequency used:                              | Dual Frequency (L1, L2)               |  |  |  |  |  |
| Horizontal precision:                        | 0.001 m                               |  |  |  |  |  |
| Vertical precision:                          | 0.001 m                               |  |  |  |  |  |
| RMS:                                         | 0.000 m                               |  |  |  |  |  |
| Maximum PDOP:                                | 3.898                                 |  |  |  |  |  |
| Ephemeris used:                              | Broadcast                             |  |  |  |  |  |
| Antenna model:                               | NGS Absolute                          |  |  |  |  |  |
| Processing start time:                       | 4/11/2016 7:40:15 AM (Local: UTC+8hr) |  |  |  |  |  |
| Processing stop time:                        | 4/11/2016 5:03:12 PM (Local: UTC+8hr) |  |  |  |  |  |
| Processing duration:                         | 09:22:57                              |  |  |  |  |  |
| Processing interval:                         | 1 second                              |  |  |  |  |  |

#### Vector Components (Mark to Mark)

| From:      | QZN-41        | IZN-41         |                 |                    |                            |            |          |                   |  |
|------------|---------------|----------------|-----------------|--------------------|----------------------------|------------|----------|-------------------|--|
| G          | rid           |                | Lo              | cal                |                            | Global     |          |                   |  |
| Easting    | 422550.436 m  | Latit          | tude            | N13°57'35          | 5.21425"                   | Latitude   |          | N13°57'30.05147"  |  |
| Northing   | 1543300.040 m | Long           | gitude          | E122°16'58         | 8.66932"                   | Longitude  |          | E122°17'03.61061" |  |
| Elevation  | 3.725 m       | 3.725 m Height |                 |                    | 3.949 m                    | Height     |          | 52.422 m          |  |
| To: QZN-J2 |               |                |                 |                    |                            |            |          |                   |  |
| G          | irid          |                | Local           |                    |                            | Global     |          |                   |  |
| Easting    | 422553.956 m  | Latit          | tude            | N13°57'34          | 1.99489" Latitude          |            |          | N13°57'29.83213"  |  |
| Northing   | 1543293.290 m | Long           | gitude          | E122°16'58         | 122°16'58.78731" Longitude |            |          | E122°17'03.72860" |  |
| Elevation  | 3.819 m       | Heig           | ght             | 4.043 m Height 52. |                            |            | 52.516 m |                   |  |
| Vector     |               |                |                 |                    |                            |            |          |                   |  |
| ΔEasting   | 3.52          | 20 m           | NS Fwd Azimuth  |                    |                            | 152°17'06" | ΔX       | -3.911 m          |  |
| ΔNorthing  | -6.75         | 50 m           | Ellipsoid Dist. |                    |                            | 7.615 m    | ΔY       | -0.440 m          |  |
| ∆Elevation | 0.09          | 94 m           | ∆Height         |                    |                            | 0.094 m    | ΔZ       | -6.519 m          |  |

### 2. CMN-J2

## Table A-3.2 CMN-J2

#### Vector Components (Mark to Mark)

| From:      | CM   | CMN-33        |       |                 |                   |          |             |           |                   |  |
|------------|------|---------------|-------|-----------------|-------------------|----------|-------------|-----------|-------------------|--|
|            | Grid |               |       | Loc             |                   | Global   |             |           |                   |  |
| Easting    |      | 472188.079 m  | Latit | tude            | N14°14'1          | 1.70144" | Latitude    |           | N14°14'06.51050"  |  |
| Northing   |      | 1573809.933 m | Long  | gitude          | E122°44'3         | 1.91442" | Longitude   |           | E122°44'36.82890" |  |
| Elevation  |      | 8.054 m       | Heig  | Height          |                   | 8.589 m  | Height      |           | 57.406 m          |  |
| To:        | CM   | N-J2          |       |                 |                   |          |             |           |                   |  |
|            | Grid |               | Local |                 |                   |          | Global      |           |                   |  |
| Easting    |      | 455138.726 m  | Latit | tude            | N14°08'53.88940"  |          | Latitude    |           | N14°08'48.70654"  |  |
| Northing   |      | 1564071.272 m | Long  | gitude          | E122°35'03.56309" |          | " Longitude |           | E122°35'08.48618" |  |
| Elevation  |      | 51.090 m      | Heig  | ght             | 5                 | 51.531 m | Height      | 100.212 m |                   |  |
| Vector     |      |               |       |                 |                   |          |             |           |                   |  |
| ∆Easting   |      | -17049.35     | i4 m  | NS Fwd Azimuth  |                   |          | 240°12'06"  | ΔX        | 13031.656 m       |  |
| ∆Northing  |      | -9738.66      | 1 m   | Ellipsoid Dist. |                   |          | 19642.244 m | ΔY        | 11248.492 m       |  |
| ∆Elevation |      | 43.03         | 6 m   | ∆Height         |                   |          | 42.942 m    | ΔZ        | -9458.830 m       |  |

## Standard Errors

| Vector errors: |         |                   |          |     |         |  |  |  |
|----------------|---------|-------------------|----------|-----|---------|--|--|--|
| σ ΔEasting     | 0.002 m | σ NS fwd Azimuth  | 0°00'00" | σΔΧ | 0.007 m |  |  |  |
| σ ΔNorthing    | 0.001 m | σ Ellipsoid Dist. | 0.002 m  | σΔΥ | 0.011 m |  |  |  |
| σ ΔElevation   | 0.014 m | σ ΔHeight         | 0.014 m  | σΔZ | 0.004 m |  |  |  |

#### Aposteriori Covariance Matrix (Meter\*)

|   | x             | Y            | Z            |
|---|---------------|--------------|--------------|
| х | 0.0000516438  |              |              |
| Y | -0.0000773807 | 0.0001288439 |              |
| Z | -0.0000233071 | 0.0000375098 | 0.0000122595 |

#### Occupations

|                            | From                                                                                                           | То                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Point ID:                  | CMN-33                                                                                                         | CMN-J2                                                                                                          |
| Data file:                 | C:\Users\Windows User\Documents<br>\Business Center - HCE\Unnamed(1)\CMN-<br>33 (Topcon) 1.403M [04-08-16].16O | C:\Users\Windows User\Documents<br>\Business Center - HCE\Unnamed(1)\CMN-<br>J2 (Modular) 1.500M [04-08-16].T02 |
| Receiver type:             | Unknown                                                                                                        | SPS852                                                                                                          |
| Receiver serial number:    | U034ESOECQW                                                                                                    | 5217K84538                                                                                                      |
| Antenna type:              | CR.G5                                                                                                          | Zephyr Geodetic 2 RoHS                                                                                          |
| Antenna serial number:     | -Unknown-                                                                                                      |                                                                                                                 |
| Antenna height (measured): | 1.403 m                                                                                                        | 1.500 m                                                                                                         |
| Antenna method:            | Bottom of antenna mount                                                                                        | Bottom of notch                                                                                                 |

Tracking Summary

# ANNEX 4. The LiDAR Survey Team Composition

| Data Acquisition<br>Component<br>Sub-Team | Designation                                     | Name                      | Agency / Affiliation                 |  |  |
|-------------------------------------------|-------------------------------------------------|---------------------------|--------------------------------------|--|--|
| PHIL-LIDAR 1                              | Program Leader                                  | ENRICO C. PARINGIT, D.ENG |                                      |  |  |
| Data Acquisition<br>Component Leader      | Data Component<br>Project Leader – I            | ENGR. LOUIE P. BALICANTA  |                                      |  |  |
|                                           | Chief Science<br>Research Specialist<br>(CSRS)  | ENGR. CHRISTOPHER CRUZ    | UP-TCAGP                             |  |  |
| Survey Supervisor                         | Supervising Science                             | LOVELY GRACIA ACUÑA       |                                      |  |  |
|                                           | Research Specialist<br>(Supervising SRS)        | LOVELYN ASUNCION          |                                      |  |  |
|                                           |                                                 | FIELD TEAM                |                                      |  |  |
| LiDAR Operation                           | Senior Science<br>Research Specialist<br>(SSRS) | JASMINE ALVIAR            |                                      |  |  |
|                                           | Research Associate                              | ENGR. KENNETH QUISADO     | UP-TCAGP                             |  |  |
|                                           | (RA)                                            | JERIEL PAUL ALAMBAN       |                                      |  |  |
| Ground Survey                             | RA                                              | JASMIN DOMINGO            |                                      |  |  |
|                                           | Airborne Security                               | TSG. BENJIE CARBOLLEDO    | Philippine Air Force<br>(PAF)        |  |  |
| LiDAR Operation                           | Pilot                                           | CAPT. CESAR ALFONSO III   | Asian Aerospace<br>Corporation (AAC) |  |  |
|                                           | FIIOL                                           | CAPT. KHALIL ANTHONY CHI  |                                      |  |  |

# ANNEX 5. Data Transfer Sheet for Vinas Floodplain

#### DATA TRANSFER SHEET BAGASBAS 5/11/2016

|               |            |              |         | RAV        | LAS         |      |      | RAW             | MISSION LOG       |       |           | BASE ST            | TATION(S)        | OPERATOR        | FLIGH  | T PLAN |                    |
|---------------|------------|--------------|---------|------------|-------------|------|------|-----------------|-------------------|-------|-----------|--------------------|------------------|-----------------|--------|--------|--------------------|
| DATE          | FLIGHT NO. | MISSION NAME | SENSOR  | Output LAS | KML (swath) | LOGS | POS  | POS IMAGES/CASI | FILE/CASI<br>LOGS | RANGE | DIGITIZER | BASE<br>STATION(S) | Base Info (.txt) | LOGS<br>(OPLOG) | Actual | KML    | SERVER             |
| April 7,2016  | 23226P     | 1BLK20D098A  | PEGASUS | NA         | 506         | 11.3 | 226  | NA              | NA                | 26.6  | NA        | 130                | 1KB              | NA              | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April 8,2016  | 23230P     | 1BLK20A099A  | PEGASUS | NA         | 587         | 14   | 287  | NA              | NA                | 29.8  | NA        | 112                | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW         |
| April 9,2016  | 23234P     | 1BLK20D100A  | PEGASUS | NA         | 213         | 5.3  | 132  | 24              | 202               | 12.6  | NA        | 138                | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW         |
| April 11,2016 | 23242P     | 1BLK20A102A  | PEGASUS | NA         | 32          | 14.2 | 291  | 66              | 478               | 29    | NA        | 165                | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW         |
| April 11,2016 | 23244P     | 1BLK20B102B  | PEGASUS | NA         | 247         | 6.06 | 158  | 24.3            | 180               | 12.9  | NA        | 165                | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April13,2016  | 23250P     | 1BLK20G104A  | PEGASUS | NA         | NA          | 15.4 | 306  | 69.7            | 520               | 34.4  | NA        | 90.5               | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April 13,2016 | 23252P     | 1BLK20C104B  | PEGASUS | NA         | NA          | 6.34 | 174  | 687             | 7.8               | 14.5  | NA        | 90.5               | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April 14,2016 | 23254P     | 1BLK20F105A  | PEGASUS | NA         | NA          | 6.95 | 176  | 14.6            | 114               | 8.7   | NA        | 106                | 1KB              | 1KB             | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April 15,2016 | 23258P     | 1BLK20H106A  | PEGASUS | NA         | NA          | 13.7 | 295  | NA              | NA                | 28.3  | NA        | 184                | 1KB              | NA              | NA     | NA     | Z:\DAC\RAW<br>DATA |
| April 15,2016 | 23260P     | 1BLK20F106B  | PEGASUS | NA         | NA          | 4.92 | 93.7 | NA              | NA                | 11.1  | NA        | 184                | 1KB              | NA              | NA     | NA     | Z:\DAC\RAW         |

Received from

Received by

Name AC BONGOT Position SSRJ Signature ACBgrof 5116116

Name R. PUNTO Position RA Signature

16-30

Figure A-5.1 Transfer Sheet for Vinas Floodplain - A

# ANNEX 6. Flight logs for the flight missions

## 1. Flight Log for 23230P Mission

| - |                                                                                                                             |                                                                                |                                                                                                         |                                                     |                                                                                                |                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|   | 10 Date:<br>10 Date:<br>13 Engine On:<br>0747H<br>19 Weather                                                                | 2 ALTM Model: Pzg                                                              | 3 Mission Name: //3U/22<br>9 Route: 22-24<br>e (Airport-City/Province):<br>15 Total Engine Time:<br>123 | 12 Airport of Arrive                                | 5 Aircraft Type: Cesnna T206/<br>a) (Airport, City/Province):<br>2 J<br>17 Landing:<br>1 2 DSH | Flight Log No.: 232307<br>6 Aircraft Identification: 9/22<br>18 Total Flight Time:<br>4+13 |
|   | 20 Flight Classification<br>20.a Billable<br>Acquisition Flight<br>Ferry Flight<br>System Test Flight<br>Calibration Flight | 20.b Non Billabie<br>O Aircraft Test Flight<br>O AAC Admin Flight<br>O Others: | 20.c Others<br>O LIDAR System Mair<br>O Aircraft Maintenan<br>O Phil-LIDAR Admin A                      | ce                                                  | The Surveyed Blk-                                                                              | 2014                                                                                       |
|   | 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others:                   |                                                                                |                                                                                                         |                                                     |                                                                                                |                                                                                            |
|   | Acquisition Flight Approved Ly<br>J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-                                                    | Acquisition Flight Cer<br>Signature over Printer<br>(PAF Representation        | APSOLLEDO <u>Co</u><br>IName Signatu                                                                    | PCommand<br>WWWW<br>ALGONGO<br>Re over Printed Name | LIDAR Operato:<br>(Cen Ouword (S<br><u>K</u> . Quisa Jo<br>Signature over Printed Name         | Aircraft Mechanic/ LIDAR Technician                                                        |

Figure A-6.1 Flight Log for Mission 23230

#### 2. Flight Log for 23242P Mission

Flight Log No.: 23 2428 Data Acquisition Flight Log 1 LIDAR Operator: K. Quise Lo 2 ALTM Model: Person 3 Mission Name: /BL20ALD2A 4 Type: VFR 7 Pilot: C. Alfree II & Co-Pilot: K. Chi 9 Route: Dart - Dart 5 Aircraft Type: Cesnna T206H 6 Aircraft Identification: 9122 12 Airport of Arrival (Airport, City/Province): 10 Date: 12 Airport of Departure (Airport, City/Province): April 2016 11 Dart 15 Total Engine Time: 16 Take off: 17 Landing: 13 Engine On: 18 Total Flight Time: 14 Engine Off: 1155H 4+25 1150H 07204 4+35 07254 1. 19 Weather cloudy 20 Flight Classification 21 Remarks Summer BCK 2013 20.a Billable 20.b Non Billable 20.c Others Acquisition Flight Aircraft Test Flight O LIDAR System Maintenance O Ferry Flight O AAC Admin Flight O Aircraft Maintenance O Others: O System Test Flight O Phil-LiDAR Admin Activities O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Approved by Acquisition Flight Certified by LIDAR Operator Aircraft Mechanic/ HDAR Technician Pilot-in-Command Keneusado MA 150 K. anisado 4 lar Signature over Printed Name (End User Representative) (PAF Representative)

Figure A-6.2 Flight Log for Mission 23242P

## 3. Flight Log for 23244P Mission

| Data Acquisition I                                                 | light Log                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | ,                            | Flight Log No.: 3090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|--------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| LiDAR Operator: J. Al                                              | VIAT 2 ALTM Model: Perasus                      | 3 Mission Name: /Buk 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Type: VFR           | 5 Aircraft Type: Cesnna T206 | H 6 Aircraft Identification: 9122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
| Pilot: C. Alfonso TI                                               | riar 2 ALTM Model: Perasus<br>8 Co-Pilot: K-Chi | 9 Route: Darf -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Daved                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Date:<br>11 April 2016                                             | 12 Airport of Departure                         | Airport, City/Province):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 Airport of Arrival | (Airport, City/Province):    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                    | 14 Engine Off:<br>1559 H                        | 15 Total Engine Time:<br>2+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 Take off:<br>1314H | 17 Landing: 1554H            | 18 Total Flight Time: 2+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Weather                                                            | doudy                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | . 4.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ) Flight Classification                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 Remarks            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ).a Billable                                                       | 20.b Non Billable                               | 20.c Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | Surveyed Blk                 | 2013 : putrielly<br>b transcrition aron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| <ul> <li>Acquisition Flight</li> </ul>                             | O Aircraft Test Flight                          | O LIDAR System Maint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enance Con            | mptete due 7                 | o transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| O Ferry Flight                                                     | O AAC Admin Flight                              | O Aircraft Maintenanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e                     |                              | , cross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| <ul> <li>System Test Flight</li> <li>Calibration Flight</li> </ul> | o Others:                                       | <ul> <li>Phil-LiDAR Admin Admin</li></ul> | tivities              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 10                                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 |
| 2 Problems and Solutions                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 2 Troblems and Solutions                                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| O Weather Problem                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| <ul> <li>System Problem</li> <li>Aircraft Problem</li> </ul>       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| O Pilot Problem                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| O Others:                                                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Acquisition-Flight Approved by                                     | Acquisition Flight Cert                         | fied by Pilot-in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n-Command T           | LIDAR Operator               | Aircraft Mechanic/ LIDAR Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Acquisition Rint Approved by                                       |                                                 | inter a la construction de la co      | 1 your T              |                              | A state in contract of the state of the stat |   |
| 1 yrs                                                              | the fuete                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alfonso               | TVAL.                        | LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| J. Avjar                                                           |                                                 | OLLEDO C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c / (() (or           | Signature over Printed Nam   | Simple Pitted News                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Signature over Printed Name<br>(End User Representative)           | Signature over Printed<br>(PAF Representative   | 1573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re over Printed Name  | - Signature over Printed Nan | e Signature over Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| (chu oser nepresentative)                                          | I Ar nepresentation                             | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | - A.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

Figure A-6.3 Flight Log for Mission 23244P

#### 4. Flight Log for 23252P Mission

Data Acquisition Flight Log Flight Log No .: 3098 2 ALTM Model: Persus 3 Mission Name: 18420 10413 4 Type: VFR 1 LIDAR Operator: JP Alamban 5 Aircraft Type: CesnnaT206H 6 Aircraft Identification: 9122 Part - Dart 9 Route: 7 Pilot: C. Alfraso III 8 Co-Pilot: K. Chi 10 Date: April 15, 2014 12 Airport of Departure (Airport, City/Province): 12 Airport of Arrival (Airport, City/Province): Dart 15 Total Engine Time: 2+59 17 Landing: 14 Engine Off: 16 Take off: 18 Total Flight Time: 13 Engine On: 131GH 1GOSH 2-1-49 1610H 13114 1. don dy 19 Weather putte 21 Remarks 20 Flight Classification Surveyed BLK 20 C 20.b Non Billable 20.c Others 20.a Billable Acquisition Flight o Aircraft Test Flight O LIDAR System Maintenance O Ferry Flight o AAC Admin Flight O Aircraft Maintenance O System Test Flight o Others: O Phil-LIDAR Admin Activities O Calibration Flight 22 Problems and Solutions O Weather Problem O System Problem O Aircraft Problem O Pilot Problem O Others: Acquisition Flight Certified by Aircraft Mechanic/ LIDAR Technician Acquisition Flight Approved by Pilot-in-Command MA CARBOL EN Signature over Printed Name (PAF Representative) (End User Representative)

Figure A-6.4 Flight Log for Mission 23252P

# **ANNEX 7. Flight Status Reports**

# CAMARINES SUR & QUEZON (April 4-18, 2016)

| Flight<br>No | Area    | Mission     | Operator  | Date Flown | Remarks                                     |
|--------------|---------|-------------|-----------|------------|---------------------------------------------|
| 23230P       | BLK 20A | 1BLK20A099A | K QUISADO | APRIL 8    | SURVEYED BLK 20A<br>244.04 SQ.KM            |
| 23242P       | BLK 20B | 1BLK20A102A | K QUISADO | APRIL 11   | SURVEYED VINAS FP<br>233.83 SQ.KM           |
| 23244P       | BLK 20C | 1BLK20B102B | J ALVIAR  | APRIL 11   | SURVEYED VINAS FP<br>103.27 SQ.KM           |
| 23252P       | BLK 20C | 1BLK20C104B | J ALAMBAN | APRIL 13   | SURVEYED VINAS<<br>VINAS FPs<br>82.65 SQ.KM |

## Table A-7.1. Flight Status Report

## SWATH PER FLIGHT MISSION

| Flight No. :  | 23230P      |
|---------------|-------------|
| Area:         | 20A         |
| Mission Name: | 1BLK20A099A |
| Parameters:   |             |
| ALT           | 900         |
| PRF           | 200         |
| SF            | 30          |



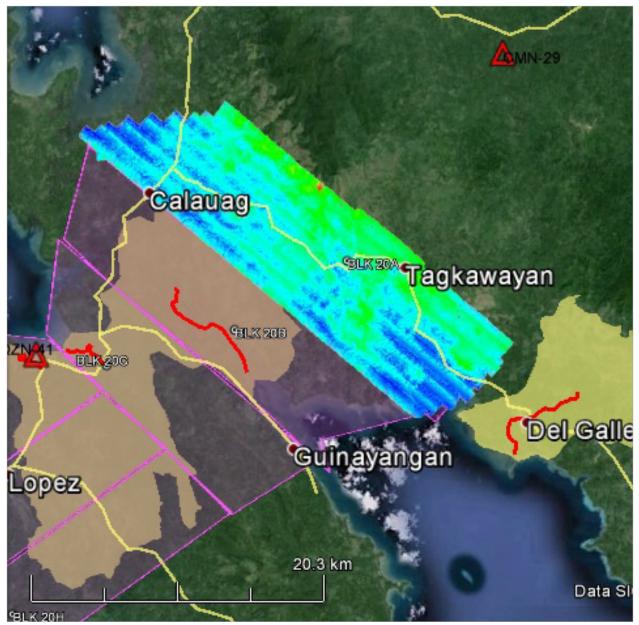



Figure A-7.1 Swath for Flight No. 23230P

 Flight No.:
 23242P

 Area:
 20B

 Mission Name:
 1BLK20A102A

 Parameters:
 4LT

 PRF
 200

 SF
 30

 FOV
 50



Figure A-7.2 Swath for Flight No. 23242P

| Flight No. :  | 23244P      |  |  |  |
|---------------|-------------|--|--|--|
| Area:         | 20C         |  |  |  |
| Mission Name: | 1BLK20B102B |  |  |  |
| Parameters:   |             |  |  |  |
| ALT           | 800/900     |  |  |  |
| PRF           | 200         |  |  |  |
| SF            | 30          |  |  |  |
| FOV           | 50          |  |  |  |

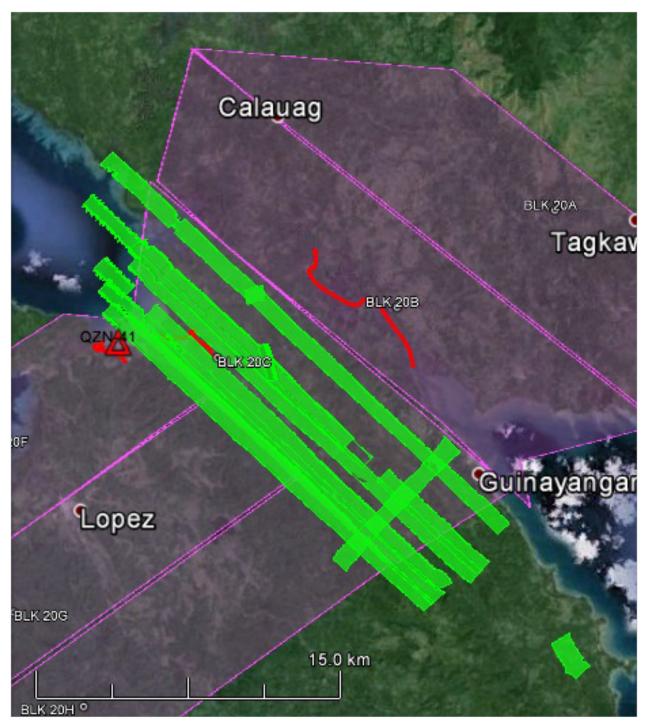



Figure A-7.3 Swath for Flight No. 23244P

 Flight No.:
 23252P

 Area:
 20C

 Mission Name:
 1BLK20C104B

 Parameters:
 900

 PRF
 200

 SF
 30

 FOV
 50

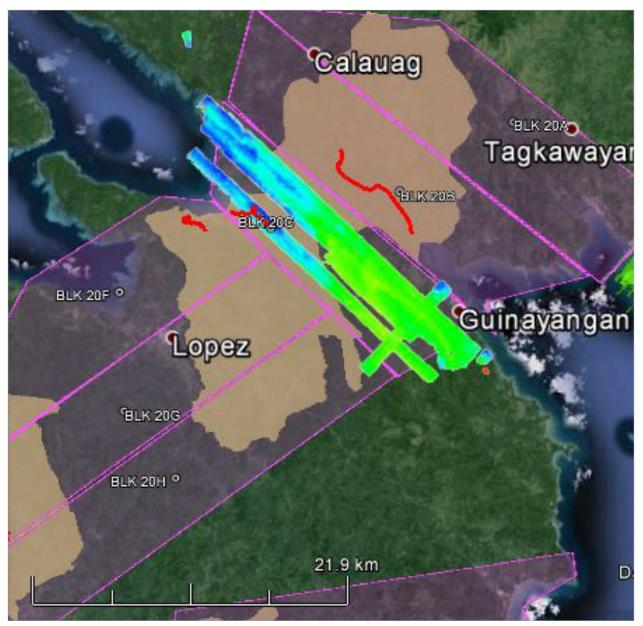



Figure A-7.4 Swath for Flight No. 23252P

# ANNEX 8. Mission Summary Reports

| Table A-8.1. | Mission | Summary | Report | for Mission | Blk20F |
|--------------|---------|---------|--------|-------------|--------|
|--------------|---------|---------|--------|-------------|--------|

| Flight Area                                   | Bagasbas                                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------|
| Mission Name                                  | Bagasbasa_Blk20F                                                         |
| Inclusive Flights                             | 23230P                                                                   |
| Range data size                               | 29.8 GB                                                                  |
| POS data size                                 | 287 MB                                                                   |
| Base data size                                | 112 MB                                                                   |
| Image                                         | n/a                                                                      |
| Transfer date                                 | May 16,2016                                                              |
|                                               |                                                                          |
| Solution Status                               |                                                                          |
| Number of Satellites (>6)                     | Yes                                                                      |
| PDOP (<3)                                     | Yes                                                                      |
| Baseline Length (<30km)                       | No                                                                       |
| Processing Mode (<=1)                         | No                                                                       |
|                                               |                                                                          |
| Smoothed Performance Metrics (in cm)          |                                                                          |
| RMSE for North Position (<4.0 cm)             | 1.1                                                                      |
| RMSE for East Position (<4.0 cm)              | 1.5                                                                      |
| RMSE for Down Position (<8.0 cm)              | 3.4                                                                      |
|                                               |                                                                          |
| Boresight correction stdev (<0.001deg)        | 0.000445                                                                 |
| IMU attitude correction stdev (<0.001deg)     | 7.107568                                                                 |
| GPS position stdev (<0.01m)                   | 0.0022                                                                   |
|                                               |                                                                          |
| Minimum % overlap (>25)                       | 29.12%                                                                   |
| Ave point cloud density per sq.m. (>2.0)      | 3.60                                                                     |
| Elevation difference between strips (<0.20 m) | Yes                                                                      |
|                                               |                                                                          |
| Number of 1km x 1km blocks                    | 296                                                                      |
| Maximum Height                                | 359.82                                                                   |
| Minimum Height                                | 0.0                                                                      |
|                                               |                                                                          |
| Classification (# of points)                  |                                                                          |
| Ground                                        | 200360558                                                                |
| Low vegetation                                | 140127872                                                                |
| Medium vegetation                             | 455595296                                                                |
| High vegetation                               | 846243143                                                                |
| Building                                      | 17105632                                                                 |
|                                               |                                                                          |
| Orthophoto                                    | No                                                                       |
| Processed by                                  | Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr.,<br>Engr. Elainne Lopez |



Figure A-8.1 Solution Status

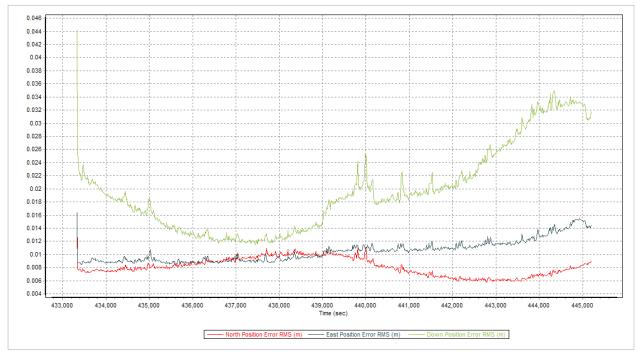



Figure A-8.2 Smoothed Performance Metric Parameters

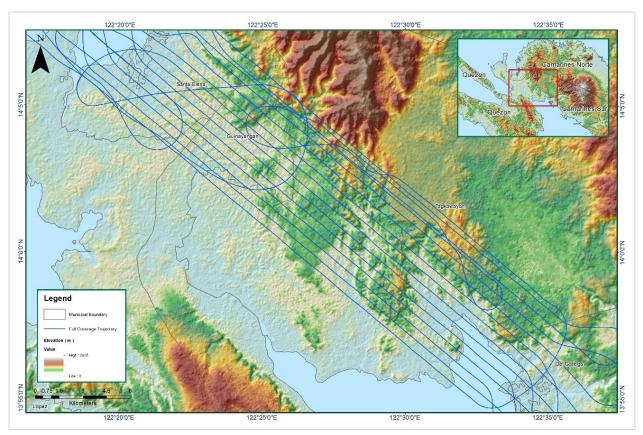



Figure A-8.3 Best Estimated Trajectory

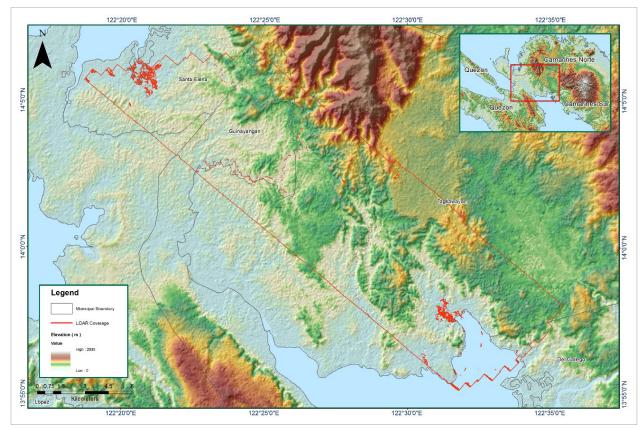



Figure A-8.4 Coverage of LiDAR data

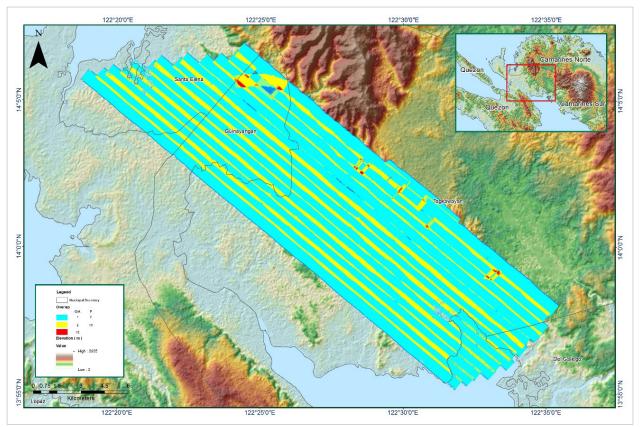



Figure A-8.5 Image of data overlap

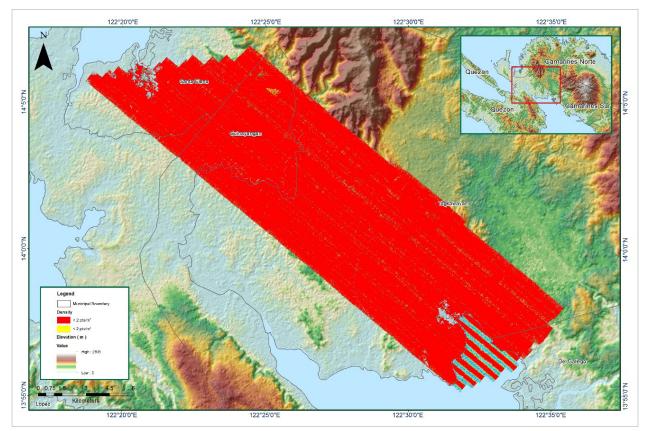



Figure A-8.6 Density map of merged LiDAR data

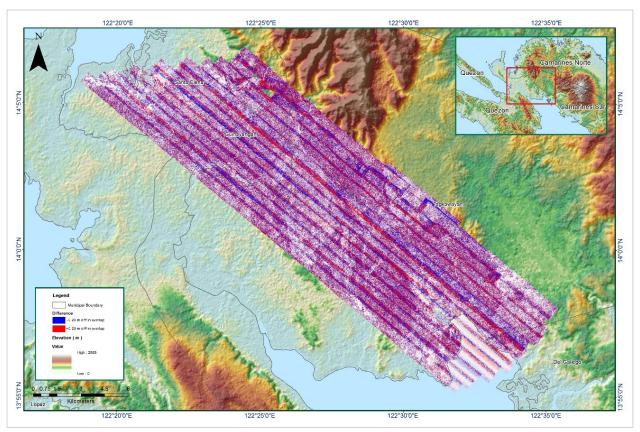



Figure A-8.7 Elevation difference between flight lines

| Flight Area                                   | Bagasbas                                                                 |  |
|-----------------------------------------------|--------------------------------------------------------------------------|--|
| Mission Name                                  | Bagasbasa_Blk20G                                                         |  |
| Inclusive Flights                             | 23242P                                                                   |  |
| Range data size                               | 29 GB                                                                    |  |
| POS data size                                 | 291 MB                                                                   |  |
| Base data size                                | 165 MB                                                                   |  |
| Image                                         | n/a                                                                      |  |
| Transfer date                                 | May 16,2016                                                              |  |
|                                               |                                                                          |  |
| Solution Status                               |                                                                          |  |
| Number of Satellites (>6)                     | Yes                                                                      |  |
| PDOP (<3)                                     | Yes                                                                      |  |
| Baseline Length (<30km)                       | No                                                                       |  |
| Processing Mode (<=1)                         | No                                                                       |  |
|                                               |                                                                          |  |
| Smoothed Performance Metrics (in cm)          |                                                                          |  |
| RMSE for North Position (<4.0 cm)             | 1.3                                                                      |  |
| RMSE for East Position (<4.0 cm)              | 1.7                                                                      |  |
| RMSE for Down Position (<8.0 cm)              | 4.5                                                                      |  |
|                                               |                                                                          |  |
| Boresight correction stdev (<0.001deg)        | 0.000284                                                                 |  |
| IMU attitude correction stdev (<0.001deg)     | 0.001684                                                                 |  |
| GPS position stdev (<0.01m)                   | 0.0026                                                                   |  |
|                                               |                                                                          |  |
| Minimum % overlap (>25)                       | 38.27%                                                                   |  |
| Ave point cloud density per sq.m. (>2.0)      | 3.58                                                                     |  |
| Elevation difference between strips (<0.20 m) | Yes                                                                      |  |
|                                               |                                                                          |  |
| Number of 1km x 1km blocks                    | 289                                                                      |  |
| Maximum Height                                | 276.85                                                                   |  |
| Minimum Height                                | 39.01                                                                    |  |
|                                               |                                                                          |  |
| Classification (# of points)                  |                                                                          |  |
| Ground                                        | 179898818                                                                |  |
| Low vegetation                                | 136928073                                                                |  |
| Medium vegetation                             | 363415763                                                                |  |
| High vegetation                               | 720205860                                                                |  |
| Building                                      | 12564567                                                                 |  |
| Orthophoto                                    |                                                                          |  |
| Processed by                                  | Engr. Irish Cortez, Engr. Edgardo Gubatanga, Jr.,<br>Engr. Elainne Lopez |  |

Table A-8.2. Mission Summary Report for Mission Blk20G



Figure A-8.8 Solution Status

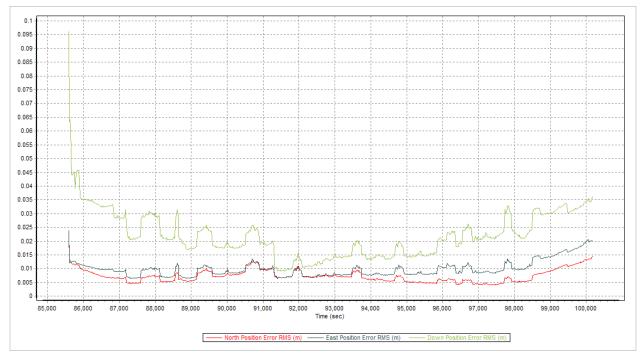



Figure A-8.9 Smoothed Performance Metric Parameters

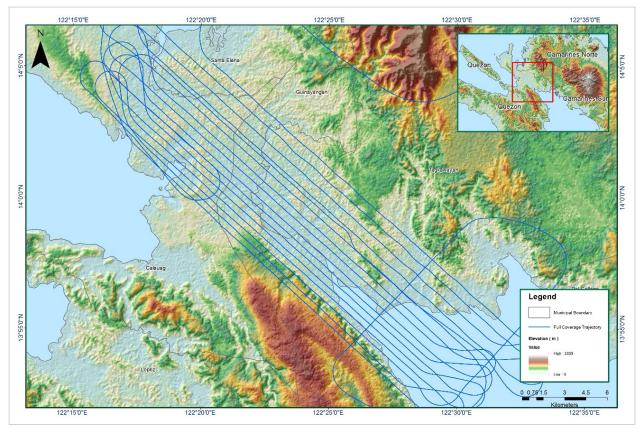



Figure A-8.10 Best Estimated Trajectory

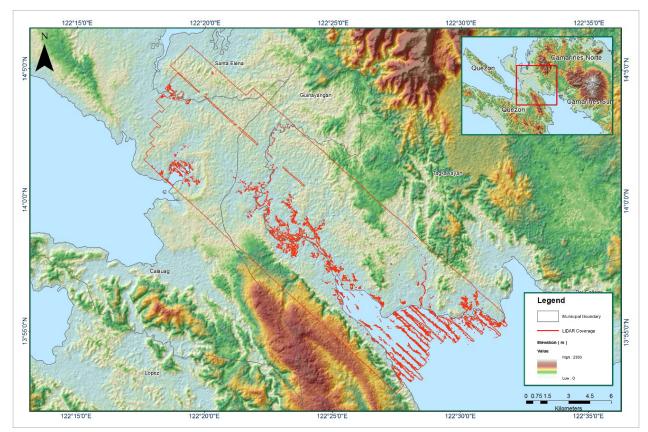



Figure A-8.11 Coverage of LiDAR data

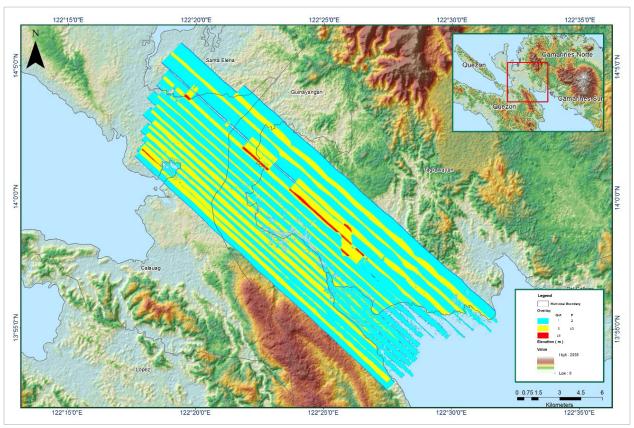



Figure A-8.12 Image of data overlap

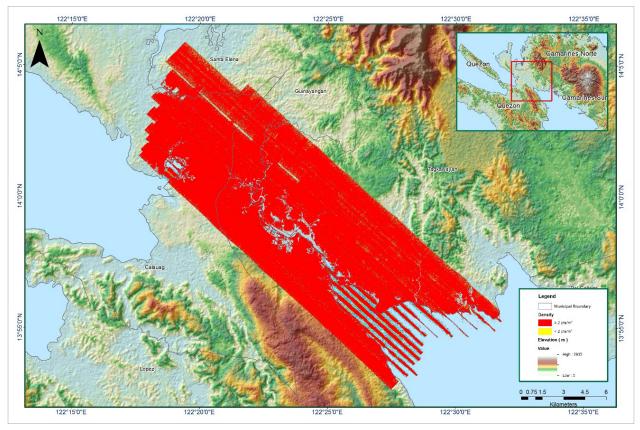



Figure A-8.13 Density map of merged LiDAR data

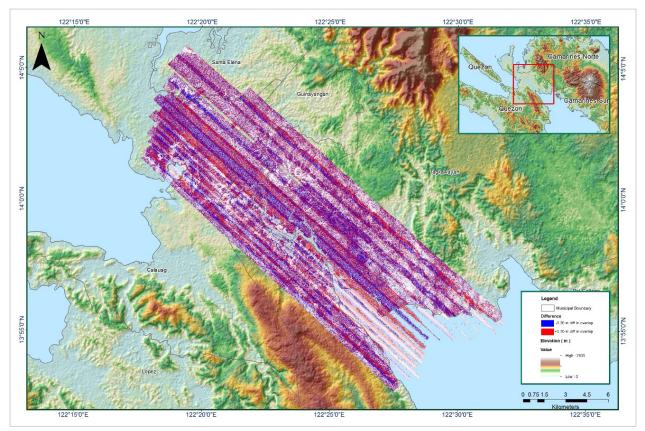



Figure A-8.14 Elevation difference between flight lines

| Table A-8.3. | Mission | Summary | Report | for | Mission | Blk21A |
|--------------|---------|---------|--------|-----|---------|--------|
|              |         |         |        |     |         |        |

| Flight Area                                   | Bagasbas                                                                          |
|-----------------------------------------------|-----------------------------------------------------------------------------------|
| Mission Name                                  | Bagasbas_Blk21A                                                                   |
| Inclusive Flights                             | 23244P                                                                            |
| Range data size                               | 12.9 GB                                                                           |
| POS data size                                 | 158 MB                                                                            |
| Base data size                                | 165 MB                                                                            |
| Image                                         | n/a                                                                               |
| Transfer date                                 | May 16 ,2016                                                                      |
|                                               |                                                                                   |
| Solution Status                               |                                                                                   |
| Number of Satellites (>6)                     | Yes                                                                               |
| PDOP (<3)                                     | Yes                                                                               |
| Baseline Length (<30km)                       | No                                                                                |
| Processing Mode (<=1)                         | No                                                                                |
|                                               |                                                                                   |
| Smoothed Performance Metrics (in cm)          |                                                                                   |
| RMSE for North Position (<4.0 cm)             | 1.0                                                                               |
| RMSE for East Position (<4.0 cm)              | 1.2                                                                               |
| RMSE for Down Position (<8.0 cm)              | 3.0                                                                               |
|                                               |                                                                                   |
| Boresight correction stdev (<0.001deg)        | 0.000384                                                                          |
| IMU attitude correction stdev (<0.001deg)     | 0.000401                                                                          |
| GPS position stdev (<0.01m)                   | 0.0012                                                                            |
|                                               |                                                                                   |
| Minimum % overlap (>25)                       | 17.77%                                                                            |
| Ave point cloud density per sq.m. (>2.0)      | 3.32                                                                              |
| Elevation difference between strips (<0.20 m) | Yes                                                                               |
| Number of 1km x 1km blocks                    | 191                                                                               |
| Maximum Height                                | 379.74                                                                            |
| Minimum Height                                | 49.16                                                                             |
|                                               |                                                                                   |
| Classification (# of points)                  |                                                                                   |
| Ground                                        | 79054250                                                                          |
| Low vegetation                                | 56911616                                                                          |
| Medium vegetation                             | 133134430                                                                         |
| High vegetation                               | 353037263                                                                         |
| Building                                      | 3644040                                                                           |
| Orthophoto                                    | Yes                                                                               |
| Processed by                                  | Engr. Sheila-Maye Santillan,<br>Engr. Velina Angela Bemida, Engr. Monalyne Rabino |

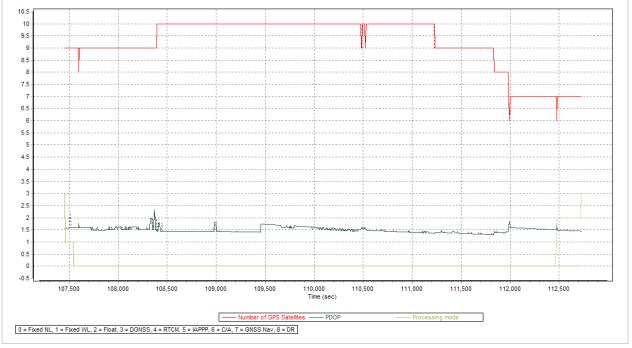



Figure A-8.15 Solution Status

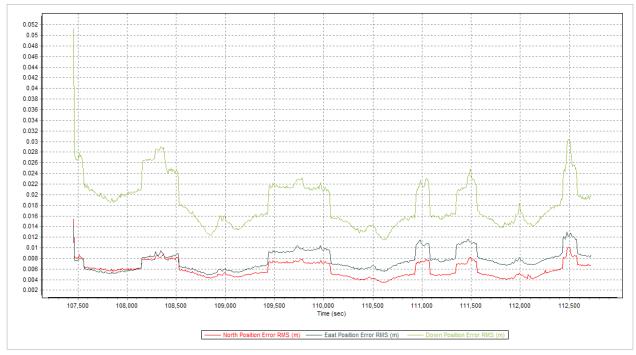



Figure A-8.16 Smoothed Performance Metric Parameters



Figure A-8.17 Best Estimated Trajectory

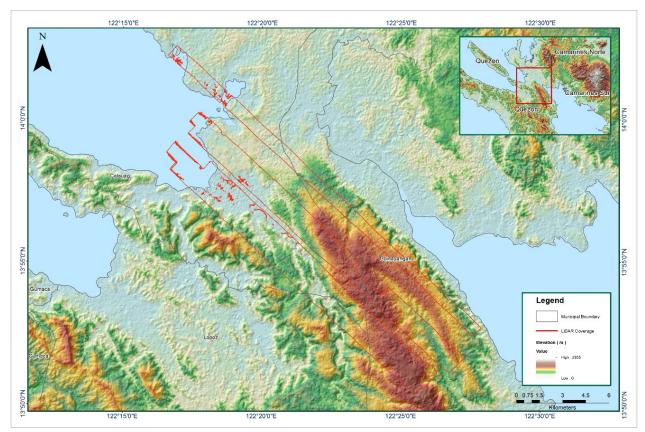



Figure A-8.18 Coverage of LiDAR data

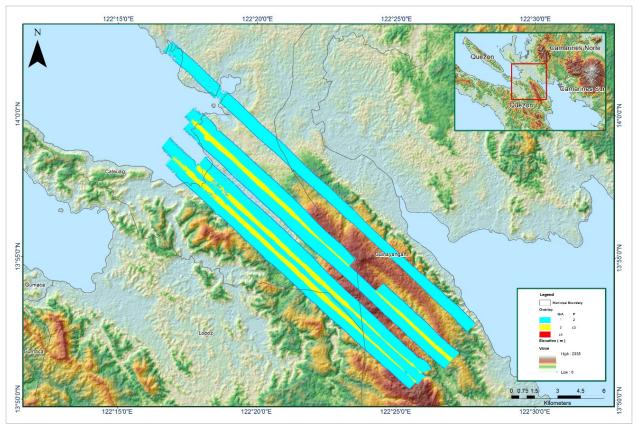



Figure A-8.19 Image of data overlap

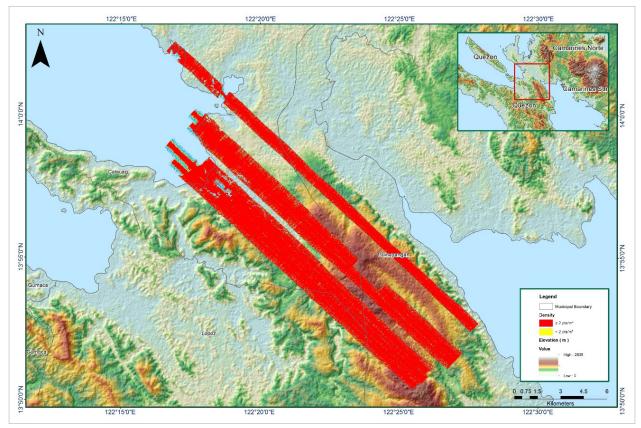



Figure A-8.20 Density map of merged LiDAR data

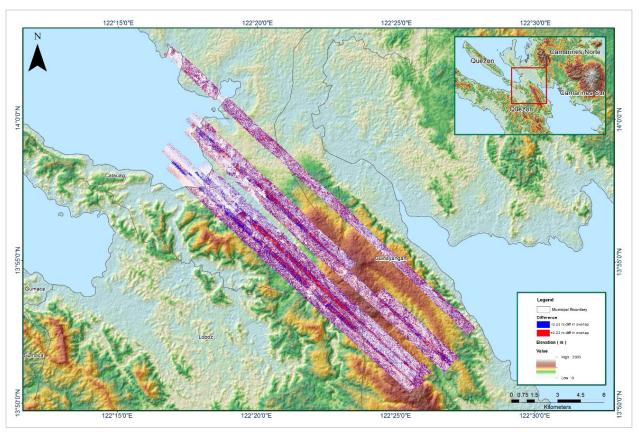



Figure A-8.21 Elevation difference between flight lines

| Flight Area                                   | Bagasbas                                                                         |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| Mission Name                                  | Bagasbasa_Blk21A_supplement                                                      |
| Inclusive Flights                             | 23252P                                                                           |
| Range data size                               | 14.5 GB                                                                          |
| POS data size                                 | 174 MB                                                                           |
| Base data size                                | 90.5 MB                                                                          |
| Image                                         | n/a                                                                              |
| Transfer date                                 | May 16 ,2016                                                                     |
| Colution Ctatus                               |                                                                                  |
| Solution Status                               | Vec                                                                              |
| Number of Satellites (>6)                     | Yes                                                                              |
| PDOP (<3)                                     | Yes                                                                              |
| Baseline Length (<30km)                       | No                                                                               |
| Processing Mode (<=1)                         | No                                                                               |
|                                               |                                                                                  |
| Smoothed Performance Metrics (in cm)          |                                                                                  |
| RMSE for North Position (<4.0 cm)             | 1.3                                                                              |
| RMSE for East Position (<4.0 cm)              | 1.3                                                                              |
| RMSE for Down Position (<8.0 cm)              | 0.3                                                                              |
|                                               |                                                                                  |
| Boresight correction stdev (<0.001deg)        | 0.000333                                                                         |
| IMU attitude correction stdev (<0.001deg)     | 0.000415                                                                         |
| GPS position stdev (<0.01m)                   | 0.0012                                                                           |
|                                               |                                                                                  |
| Minimum % overlap (>25)                       | 20.12%                                                                           |
| Ave point cloud density per sq.m. (>2.0)      | 3.36                                                                             |
| Elevation difference between strips (<0.20 m) | Yes                                                                              |
| Number of 1km x 1km blocks                    | 137                                                                              |
| Maximum Height                                | 942.63                                                                           |
| Minimum Height                                | 39.34                                                                            |
|                                               |                                                                                  |
| Classification (# of points)                  | 62455722                                                                         |
| Ground                                        | 63155780                                                                         |
| Low vegetation                                | 25760357                                                                         |
| Medium vegetation                             | 111178310                                                                        |
| High vegetation                               | 267413755                                                                        |
| Building                                      | 3382392                                                                          |
| Orthophoto                                    | Yes                                                                              |
| Processed by                                  | Engr. Sheila-Maye Santillan, Engr. Erica Erin Elazegui,<br>Engr. Monalyne Rabino |

Table A-8.4. Mission Summary Report for Mission Blk21A\_supplement




Figure A-8.22 Solution Status

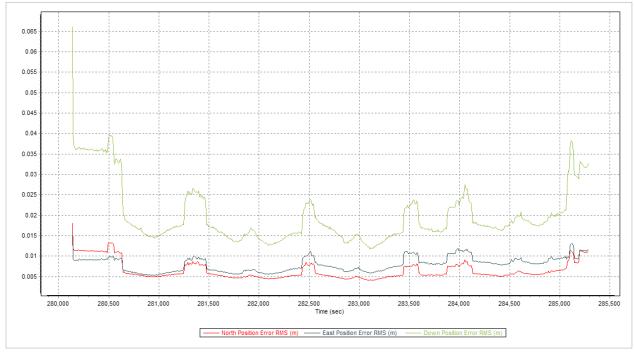



Figure A-8.23 Smoothed Performance Metric Parameters

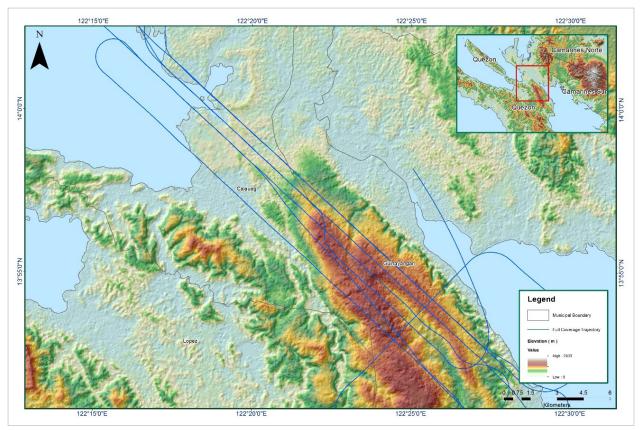



Figure A-8.24 Best Estimated Trajectory

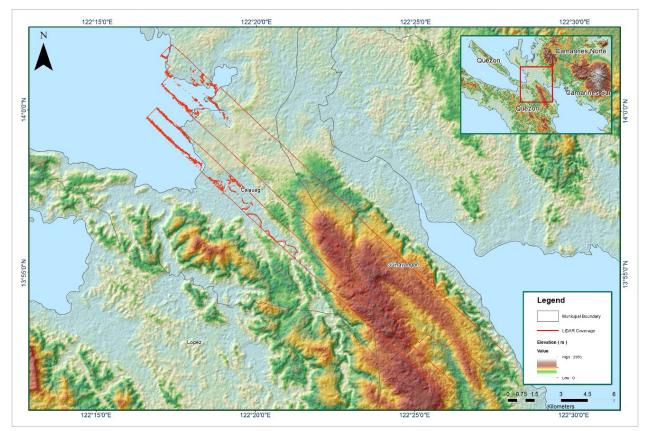



Figure A-8.25 Coverage of LiDAR data

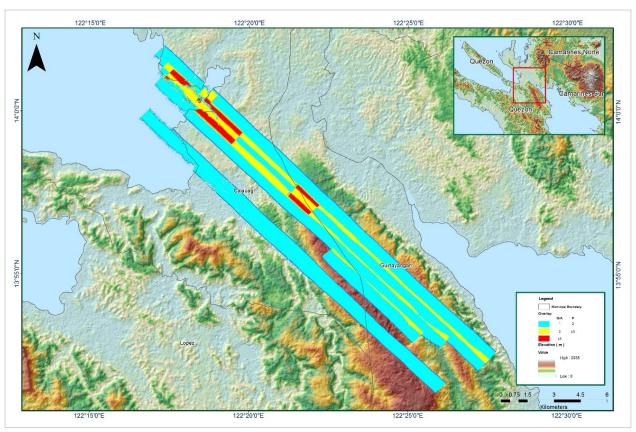



Figure A-8.26 Image of data overlap

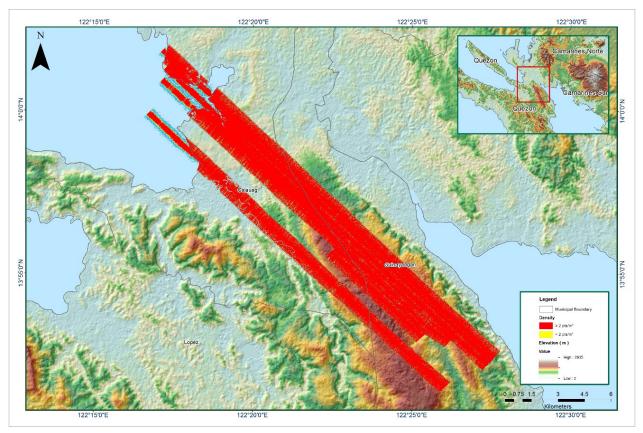



Figure A-8.27 Density map of merged LiDAR data

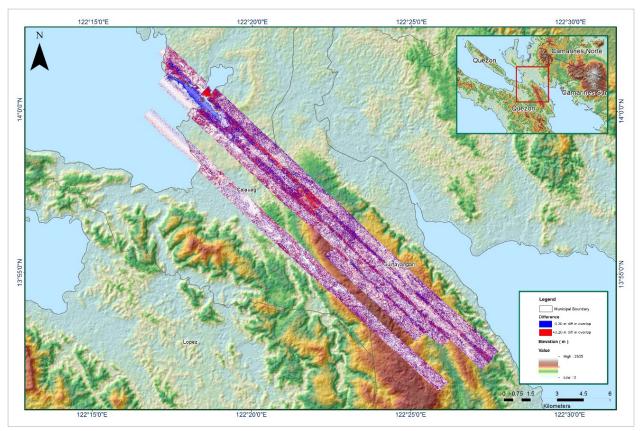



Figure A-8.28 Elevation difference between flight lines

### ANNEX 9. Vinas Model Basin Parameters

| Desin           | SCS C                          | urve Numbe      | r Loss            |                                  | c Unit<br>h Transform       |              |                             | Recession             | 1 Baseflow     |               |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|-----------------------------|--------------|-----------------------------|-----------------------|----------------|---------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient (HR) | Initial Type | Initial Discharge<br>(M³/S) | Recession<br>Constant | Threshold Type | Ratio to Peak |
| W400            | 1.1858                         | 99              | 15                | 0.11017                          | 0.02                        | Discharge    | 0.99811                     | 1.00E-05              | Ratio to Peak  | 1             |
| W410            | 1.6136                         | 99              | 15                | 0.25989                          | 0.02                        | Discharge    | 1.3169                      | 1.00E-05              | Ratio to Peak  | 0.3888        |
| W420            | 0.51021                        | 99              | 15                | 0.02                             | 0.02                        | Discharge    | 0.012785                    | 1.00E-05              | Ratio to Peak  | 0.57042       |
| W430            | 1.0478                         | 99              | 15                | 0.040369                         | 0.02                        | Discharge    | 0.25006                     | 1.00E-05              | Ratio to Peak  | 0.87818       |
| W440            | 1.3136                         | 99              | 15                | 0.055825                         | 0.02                        | Discharge    | 0.50158                     | 1.00E-05              | Ratio to Peak  | 0.59058       |
| W450            | 1.8645                         | 99              | 15                | 0.06402                          | 0.02                        | Discharge    | 0.59654                     | 1.00E-05              | Ratio to Peak  | 0.57875       |
| W460            | 3.3106                         | 99              | 15                | 0.12706                          | 0.02                        | Discharge    | 0.52264                     | 1.00E-05              | Ratio to Peak  | 0.96139       |
| W470            | 1.0593                         | 99              | 15                | 0.05476                          | 0.02                        | Discharge    | 0.58359                     | 1.00E-05              | Ratio to Peak  | 0.62428       |
| W480            | 3.143                          | 99              | 15                | 0.099675                         | 0.02                        | Discharge    | 0.30242                     | 1.00E-05              | Ratio to Peak  | 0.88733       |
| W490            | 2.9179                         | 99              | 15                | 0.024787                         | 0.02                        | Discharge    | 0.012462                    | 1.00E-05              | Ratio to Peak  | 0.89505       |
| W500            | 3.285                          | 99              | 15                | 0.07853                          | 0.02                        | Discharge    | 0.18194                     | 1.00E-05              | Ratio to Peak  | 1             |
| W510            | 1.6862                         | 99              | 15                | 0.22349                          | 0.02                        | Discharge    | 0.31474                     | 1.00E-05              | Ratio to Peak  | 0.9484        |
| W520            | 4.8159                         | 99              | 15                | 0.09403                          | 0.02                        | Discharge    | 0.39503                     | 1.00E-05              | Ratio to Peak  | 0.99494       |
| W530            | 2.0011                         | 99              | 15                | 0.14904                          | 0.02                        | Discharge    | 0.97063                     | 1.00E-05              | Ratio to Peak  | 1             |
| W540            | 1.3517                         | 99              | 15                | 0.08805                          | 0.02                        | Discharge    | 0.63116                     | 1.00E-05              | Ratio to Peak  | 0.62372       |
| W550            | 1.6963                         | 99              | 15                | 0.20553                          | 0.02                        | Discharge    | 1.3644                      | 1.24E-05              | Ratio to Peak  | 0.97881       |
| W560            | 1.5427                         | 99              | 15                | 0.5789                           | 0.02                        | Discharge    | 0.65682                     | 1.27E-05              | Ratio to Peak  | 1             |
| W570            | 3.6506                         | 99              | 15                | 0.17421                          | 0.02                        | Discharge    | 0.21764                     | 1.00E-05              | Ratio to Peak  | 0.94813       |
| W580            | 0.73063                        | 99              | 15                | 0.069595                         | 0.02                        | Discharge    | 0.41402                     | 1.00E-05              | Ratio to Peak  | 0.60118       |
| W590            | 2.3393                         | 99              | 15                | 0.10171                          | 0.02                        | Discharge    | 0.25136                     | 1.00E-05              | Ratio to Peak  | 1             |

Table A-9.1 Vinas Model Basin Parameters

| Desin           | SCS C                          | urve Numbe      | r Loss            |                                  | unit<br>Transform           | Recession Baseflow |                             |                       |                |               |
|-----------------|--------------------------------|-----------------|-------------------|----------------------------------|-----------------------------|--------------------|-----------------------------|-----------------------|----------------|---------------|
| Basin<br>Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient (HR) | Initial Type       | Initial Discharge<br>(M³/S) | Recession<br>Constant | Threshold Type | Ratio to Peak |
| W600            | 3.5421                         | 99              | 15                | 0.016667                         | 0.02                        | Discharge          | 0.78366                     | 1.00E-05              | Ratio to Peak  | 0.9965        |
| W610            | 0.87792                        | 99              | 15                | 0.13784                          | 0.02                        | Discharge          | 0.3606                      | 1.00E-05              | Ratio to Peak  | 0.96499       |
| W620            | 1.4779                         | 99              | 15                | 0.22229                          | 0.02                        | Discharge          | 0.88708                     | 1.00E-05              | Ratio to Peak  | 1             |
| W630            | 3.0756                         | 99              | 15                | 0.099695                         | 0.02                        | Discharge          | 0.2797                      | 1.00E-05              | Ratio to Peak  | 1             |
| W640            | 2.0431                         | 99              | 15                | 0.063605                         | 0.02                        | Discharge          | 0.17528                     | 1.00E-05              | Ratio to Peak  | 1             |
| W650            | 1.7258                         | 99              | 15                | 0.016667                         | 0.02                        | Discharge          | 0.33574                     | 1.00E-05              | Ratio to Peak  | 0.5062        |
| W660            | 3.0163                         | 99              | 15                | 0.12998                          | 0.02                        | Discharge          | 0.47132                     | 1.00E-05              | Ratio to Peak  | 0.60823       |
| W670            | 2.5387                         | 99              | 15                | 0.13531                          | 0.02                        | Discharge          | 0.64199                     | 1.00E-05              | Ratio to Peak  | 0.87845       |
| W680            | 2.1734                         | 99              | 15                | 0.090975                         | 0.02                        | Discharge          | 0.13003                     | 1.00E-05              | Ratio to Peak  | 1             |
| W690            | 1.9713                         | 99              | 15                | 0.08142                          | 0.02                        | Discharge          | 0.1482                      | 1.00E-05              | Ratio to Peak  | 0.99663       |
| W700            | 0.92917                        | 99              | 15                | 0.1367                           | 0.02                        | Discharge          | 0.51446                     | 1.27E-05              | Ratio to Peak  | 1             |
| W710            | 1.0549                         | 99              | 15                | 0.10735                          | 0.02                        | Discharge          | 0.29067                     | 1.31E-05              | Ratio to Peak  | 0.988         |
| W720            | 1.5626                         | 99              | 15                | 0.042006                         | 0.02                        | Discharge          | 0.067523                    | 1.00E-05              | Ratio to Peak  | 0.62634       |
| W730            | 1.1757                         | 99              | 15                | 0.030305                         | 0.02                        | Discharge          | 0.033774                    | 1.00E-05              | Ratio to Peak  | 0.99901       |
| W740            | 1.4944                         | 99              | 15                | 0.11763                          | 0.02                        | Discharge          | 0.47626                     | 1.30E-05              | Ratio to Peak  | 0.81256       |
| W750            | 0.22917                        | 99              | 15                | 0.06402                          | 0.02                        | Discharge          | 0.088551                    | 1.00E-05              | Ratio to Peak  | 0.98314       |
| W760            | 0.1653                         | 99              | 15                | 0.10878                          | 0.02                        | Discharge          | 0.57128                     | 1.00E-05              | Ratio to Peak  | 0.96243       |
| W770            | 0.9773                         | 99              | 15                | 0.09842                          | 0.02                        | Discharge          | 0.45073                     | 1.00E-05              | Ratio to Peak  | 0.43767       |
| W780            | 0.69661                        | 99              | 15                | 0.08019                          | 0.02                        | Discharge          | 0.26519                     | 1.00E-05              | Ratio to Peak  | 0.43752       |

#### ANNEX 10. Vinas Model Reach Parameters

| Reach  |                          |            | Muskingum Cu | nge Channel Routing |           |       |            |  |  |  |
|--------|--------------------------|------------|--------------|---------------------|-----------|-------|------------|--|--|--|
| Number | Time Step Method         | Length (m) | Slope        | Manning's n         | Shape     | Width | Side Slope |  |  |  |
| R100   | Automatic Fixed Interval | 1714.7     | 0.004806     | 0.014838            | Trapezoid | 55    | 0.5        |  |  |  |
| R130   | Automatic Fixed Interval | 3151.2     | 0.001107     | 0.055402            | Trapezoid | 55    | 0.5        |  |  |  |
| R140   | Automatic Fixed Interval | 5515.3     | 0.002653     | 0.030131            | Trapezoid | 55    | 0.5        |  |  |  |
| R170   | Automatic Fixed Interval | 6132.3     | 0.003442     | 0.044017            | Trapezoid | 55    | 0.5        |  |  |  |
| R180   | Automatic Fixed Interval | 1913.7     | 0.002947     | 0.078902            | Trapezoid | 55    | 0.5        |  |  |  |
| R200   | Automatic Fixed Interval | 1577.2     | 0.002898     | 0.033294            | Trapezoid | 55    | 0.5        |  |  |  |
| R210   | Automatic Fixed Interval | 1736.5     | 0.003314     | 0.032013            | Trapezoid | 55    | 0.5        |  |  |  |
| R220   | Automatic Fixed Interval | 1612       | 0.008983     | 0.042946            | Trapezoid | 55    | 0.5        |  |  |  |
| R270   | Automatic Fixed Interval | 2158.8     | 0.002        | 0.16554             | Trapezoid | 55    | 0.5        |  |  |  |
| R280   | Automatic Fixed Interval | 1697.8     | 0.000311     | 0.015626            | Trapezoid | 55    | 0.5        |  |  |  |
| R290   | Automatic Fixed Interval | 5855.1     | 0.000492     | 0.016603            | Trapezoid | 55    | 0.5        |  |  |  |
| R30    | Automatic Fixed Interval | 328.7      | 0.003099     | 0.012647            | Trapezoid | 55    | 0.5        |  |  |  |
| R310   | Automatic Fixed Interval | 1086.4     | 0.001254     | 0.03242             | Trapezoid | 55    | 0.5        |  |  |  |
| R320   | Automatic Fixed Interval | 1004.7     | 0.002741     | 0.024959            | Trapezoid | 55    | 0.5        |  |  |  |
| R330   | Automatic Fixed Interval | 751.27     | 0.002        | 0.11811             | Trapezoid | 55    | 0.5        |  |  |  |
| R350   | Automatic Fixed Interval | 1846.1     | 0.005572     | 0.43408             | Trapezoid | 55    | 0.5        |  |  |  |
| R360   | Automatic Fixed Interval | 963.97     | 0.001633     | 0.002326            | Trapezoid | 55    | 0.5        |  |  |  |
| R70    | Automatic Fixed Interval | 4411       | 0.014545     | 0.000418            | Trapezoid | 55    | 0.5        |  |  |  |
| R90    | Automatic Fixed Interval | 236.27     | 0.017842     | 0.034363            | Trapezoid | 55    | 0.5        |  |  |  |

#### Table A-10.1 Vinas Model Reach Parameters

### **ANNEX 11. Vinas Field Validation Points**

| Point  | Validation | Coordinates | Model   | Validation |        |                    | Rain                |
|--------|------------|-------------|---------|------------|--------|--------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event              | Return/<br>Scenario |
| 1      | 13.98913   | 122.37      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 2      | 13.99112   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 3      | 13.99271   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 4      | 13.99273   | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 5      | 13.99181   | 122.37      | 0.04    | 0          | -0.040 | Rosing Nov. 7,1995 | 5 -Year             |
| 6      | 13.99218   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 7      | 13.99261   | 122.37      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 8      | 13.9708    | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 9      | 13.97196   | 122.36      | 0.05    | 0          | -0.050 | Rosing Nov. 7,1995 | 5 -Year             |
| 10     | 13.97378   | 122.36      | 0.07    | 0          | -0.070 | Rosing Nov. 7,1995 | 5 -Year             |
| 11     | 13.97571   | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 12     | 13.98031   | 122.35      | 0.03    | 0.4        | 0.370  | Rosing Nov. 7,1995 | 5 -Year             |
| 13     | 13.98107   | 122.35      | 0.47    | 0          | -0.470 | Rosing Nov. 7,1995 | 5 -Year             |
| 14     | 13.98261   | 122.36      | 1.29    | 0          | -1.290 | Rosing Nov. 7,1995 | 5 -Year             |
| 15     | 13.9865    | 122.35      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 16     | 13.99105   | 122.35      | 0.03    | 1.5        | 1.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 17     | 13.99941   | 122.35      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 18     | 13.99804   | 122.34      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 19     | 13.99964   | 122.34      | 0.35    | 0          | -0.350 | Rosing Nov. 7,1995 | 5 -Year             |
| 20     | 14.00139   | 122.34      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 21     | 14.02711   | 122.34      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 22     | 14.0227    | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 23     | 14.02015   | 122.37      | 0.04    | 0          | -0.040 | Rosing Nov. 7,1995 | 5 -Year             |
| 24     | 14.02003   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 25     | 14.01903   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 26     | 14.01806   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 27     | 14.01725   | 122.37      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 28     | 13.98231   | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 29     | 13.98202   | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 30     | 13.98166   | 122.36      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 31     | 13.99379   | 122.37      | 5.090   | 5.5        | 0.410  | Rosing Nov. 7,1995 | 5 -Year             |
| 32     | 14.00367   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 33     | 14.00422   | 122.38      | 0.34    | 1.5        | 1.160  | Rosing Nov. 7,1995 | 5 -Year             |
| 34     | 14.00572   | 122.38      | 0.03    | 1.5        | 1.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 35     | 14.00725   | 122.38      | 0.03    | 2          | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 36     | 14.00804   | 122.38      | 0.03    | 2          | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 37     | 14.0101    | 122.38      | 0.03    | 1.5        | 1.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 38     | 14.01181   | 122.38      | 0.03    | 2          | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 39     | 14.01355   | 122.38      | 0.03    | 2          | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |

Table A-11.1 Vinas Field Validation Points

| Point  | Validation | Coordinates | Model   | Validation | _      | _                  | Rain                |
|--------|------------|-------------|---------|------------|--------|--------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event              | Return/<br>Scenario |
| 40     | 14.01653   | 122.38      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 41     | 14.01772   | 122.38      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 42     | 14.01823   | 122.38      | 2       | 2          | 0.000  | Rosing Nov. 7,1995 | 5 -Year             |
| 43     | 14.01846   | 122.38      | 1.86    | 2          | 0.140  | Rosing Nov. 7,1995 | 5 -Year             |
| 44     | 14.02598   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 45     | 14.03035   | 122.38      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 46     | 14.03491   | 122.38      | 0.03    | 0.5        | 0.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 47     | 14.03877   | 122.38      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 48     | 14.03955   | 122.38      | 0.03    | 0.5        | 0.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 49     | 14.04062   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 50     | 14.04109   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 51     | 14.04453   | 122.38      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 52     | 14.04511   | 122.38      | 0.3     | 0.1        | -0.200 | Rosing Nov. 7,1995 | 5 -Year             |
| 53     | 14.04608   | 122.38      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 54     | 14.04652   | 122.38      | 2.07    | 1          | -1.070 | Rosing Nov. 7,1995 | 5 -Year             |
| 55     | 14.04681   | 122.38      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 56     | 14.04658   | 122.38      | 5.72    | 5.5        | -0.220 | Rosing Nov. 7,1995 | 5 -Year             |
| 57     | 14.0453    | 122.38      | 3.53    | 5.5        | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 58     | 14.04482   | 122.38      | 3.31    | 5.5        | 2.190  | Rosing Nov. 7,1995 | 5 -Year             |
| 59     | 14.05096   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 60     | 14.05189   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 61     | 14.05515   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 62     | 14.05691   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 63     | 14.05878   | 122.39      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 64     | 14.05187   | 122.43      | 0.03    | 1          | 0.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 65     | 14.04924   | 122.43      | 0.05    | 0          | -0.050 | Rosing Nov. 7,1995 | 5 -Year             |
| 66     | 14.01299   | 122.45      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 67     | 14.03237   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 68     | 14.03073   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 69     | 14.02899   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 70     | 14.02861   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 71     | 14.02922   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 72     | 14.02977   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 73     | 14.02884   | 122.44      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 74     | 14.01289   | 122.4       | 0.3     | 0.1        | -0.200 | Rosing Nov. 7,1995 | 5 -Year             |
| 75     | 14.01509   | 122.4       | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 76     | 14.0251    | 122.38      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 77     | 14.01436   | 122.38      | 0.06    | 0.1        | 0.040  | Rosing Nov. 7,1995 | 5 -Year             |
| 78     | 14.00252   | 122.38      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 79     | 14.00411   | 122.39      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 80     | 14.00468   | 122.39      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 81     | 14.00492   | 122.39      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |

| Point  | Validation | Coordinates | Model   | Validation |        |                    | Rain                |
|--------|------------|-------------|---------|------------|--------|--------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event              | Return/<br>Scenario |
| 82     | 14.0149    | 122.4       | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 83     | 13.95458   | 122.39      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 84     | 14.01454   | 122.4       | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 85     | 14.01117   | 122.41      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 86     | 14.00838   | 122.41      | 0.04    | 0.1        | 0.060  | Rosing Nov. 7,1995 | 5 -Year             |
| 87     | 14.0049    | 122.41      | 0.59    | 0.1        | -0.490 | Rosing Nov. 7,1995 | 5 -Year             |
| 88     | 14.00356   | 122.41      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 89     | 13.95338   | 122.37      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 90     | 13.95248   | 122.36      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 91     | 13.9942    | 122.42      | 0.37    | 0.1        | -0.270 | Rosing Nov. 7,1995 | 5 -Year             |
| 92     | 13.97331   | 122.41      | 1.33    | 0.1        | -1.230 | Rosing Nov. 7,1995 | 5 -Year             |
| 93     | 14.00922   | 122.39      | 0.03    | 0.1        | 0.070  | Rosing Nov. 7,1995 | 5 -Year             |
| 94     | 13.95512   | 122.39      | 0.04    | 0.1        | 0.060  | Rosing Nov. 7,1995 | 5 -Year             |
| 95     | 13.95356   | 122.37      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 96     | 13.95671   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 97     | 13.95759   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 98     | 13.9922    | 122.42      | 0.86    | 0.2        | -0.660 | Rosing Nov. 7,1995 | 5 -Year             |
| 99     | 13.99301   | 122.42      | 1.97    | 0.2        | -1.770 | Rosing Nov. 7,1995 | 5 -Year             |
| 100    | 13.95518   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 101    | 13.97953   | 122.41      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 102    | 13.97393   | 122.41      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 103    | 13.95844   | 122.42      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 104    | 13.95747   | 122.43      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 105    | 14.00883   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 106    | 14.01134   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 107    | 14.01132   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 108    | 14.01797   | 122.4       | 0.94    | 0.2        | -0.740 | Rosing Nov. 7,1995 | 5 -Year             |
| 109    | 13.9537    | 122.4       | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 110    | 14.01366   | 122.39      | 1.53    | 0.2        | -1.330 | Rosing Nov. 7,1995 | 5 -Year             |
| 111    | 14.01891   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 112    | 14.02212   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 113    | 14.02296   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 114    | 14.02536   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 115    | 14.02487   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 116    | 14.02374   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 117    | 14.01994   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 118    | 13.95407   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 119    | 14.01224   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 120    | 14.01099   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 121    | 14.00879   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 122    | 14.00376   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 123    | 14.01126   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |

| Point  | Validation | Coordinates | Model   | Validation |        |                    | Rain                |
|--------|------------|-------------|---------|------------|--------|--------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event              | Return/<br>Scenario |
| 124    | 14.01015   | 122.41      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 125    | 13.95566   | 122.39      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 126    | 14.00369   | 122.41      | 0.56    | 0.2        | -0.360 | Rosing Nov. 7,1995 | 5 -Year             |
| 127    | 14.00282   | 122.41      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 128    | 13.95498   | 122.39      | 0.05    | 0.2        | 0.150  | Rosing Nov. 7,1995 | 5 -Year             |
| 129    | 13.95529   | 122.38      | 0.03    | 0.2        | 0.170  | Rosing Nov. 7,1995 | 5 -Year             |
| 130    | 13.95355   | 122.37      | 0.46    | 0.2        | -0.260 | Rosing Nov. 7,1995 | 5 -Year             |
| 131    | 13.95311   | 122.37      | 0.7     | 0.2        | -0.500 | Rosing Nov. 7,1995 | 5 -Year             |
| 132    | 13.95547   | 122.38      | 0.15    | 0.2        | 0.050  | Rosing Nov. 7,1995 | 5 -Year             |
| 133    | 13.95519   | 122.38      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 134    | 14.02286   | 122.38      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 135    | 13.99202   | 122.4       | 0.63    | 0.3        | -0.330 | Rosing Nov. 7,1995 | 5 -Year             |
| 136    | 13.9687    | 122.41      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 137    | 13.96491   | 122.42      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 138    | 14.01464   | 122.39      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 139    | 14.01392   | 122.39      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 140    | 14.01608   | 122.39      | 0.03    | 0.3        | 0.270  | Rosing Nov. 7,1995 | 5 -Year             |
| 141    | 13.95548   | 122.38      | 0.17    | 0.3        | 0.130  | Rosing Nov. 7,1995 | 5 -Year             |
| 142    | 13.97243   | 122.41      | 1.37    | 0.4        | -0.970 | Rosing Nov. 7,1995 | 5 -Year             |
| 143    | 13.9696    | 122.41      | 2       | 0.4        | -1.600 | Rosing Nov. 7,1995 | 5 -Year             |
| 144    | 14.01467   | 122.39      | 1.74    | 0.4        | -1.340 | Rosing Nov. 7,1995 | 5 -Year             |
| 145    | 14.01378   | 122.4       | 0.03    | 0.4        | 0.370  | Rosing Nov. 7,1995 | 5 -Year             |
| 146    | 14.01728   | 122.4       | 0.03    | 0.5        | 0.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 147    | 13.97648   | 122.41      | 1.53    | 0.5        | -1.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 148    | 13.97154   | 122.41      | 0.12    | 0.5        | 0.380  | Rosing Nov. 7,1995 | 5 -Year             |
| 149    | 14.00786   | 122.39      | 0.03    | 0.5        | 0.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 150    | 14.01572   | 122.4       | 0.03    | 0.5        | 0.470  | Rosing Nov. 7,1995 | 5 -Year             |
| 151    | 14.01342   | 122.4       | 1.55    | 0.5        | -1.050 | Rosing Nov. 7,1995 | 5 -Year             |
| 152    | 14.0053    | 122.41      | 0.22    | 0.5        | 0.280  | Rosing Nov. 7,1995 | 5 -Year             |
| 153    | 13.97879   | 122.41      | 0.08    | 0.7        | 0.620  | Rosing Nov. 7,1995 | 5 -Year             |
| 154    | 13.99084   | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 155    | 14.01224   | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 156    | 14.01148   | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 157    | 14.00911   | 122.41      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 158    | 14.00627   | 122.41      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 159    | 14.00719   | 122.39      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 160    | 14.01517   | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 161    | 14.01742   | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 162    | 14.0182    | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 163    | 14.02342   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 164    | 14.00693   | 122.38      | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |
| 165    | 14.013     | 122.4       | 0.03    | 0          | -0.030 | Rosing Nov. 7,1995 | 5 -Year             |

| Point  | Validation | Coordinates | Model   | Validation |        |                    | Rain                |
|--------|------------|-------------|---------|------------|--------|--------------------|---------------------|
| Number | Lat        | Long        | Var (m) | Points (m) | Error  | Event              | Return/<br>Scenario |
| 166    | 13.99339   | 122.37      | 1.82    | 1          | -0.820 | Rosing Nov. 7,1995 | 5 -Year             |
| 167    | 13.95335   | 122.4       | 0.04    | 1          | 0.960  | Rosing Nov. 7,1995 | 5 -Year             |
| 168    | 13.98309   | 122.39      | 1.62    | 2          | 0.380  | Rosing Nov. 7,1995 | 5 -Year             |
| 169    | 13.95955   | 122.42      | 0.03    | 2          | 1.970  | Rosing Nov. 7,1995 | 5 -Year             |
| 170    | 13.98812   | 122.4       | 1.05    | 3          | 1.950  | Rosing Nov. 7,1995 | 5 -Year             |
| 171    | 13.98956   | 122.4       | 1.39    | 3          | 1.610  | Rosing Nov. 7,1995 | 5 -Year             |
| 172    | 13.98708   | 122.41      | 2.09    | 3          | 0.910  | Rosing Nov. 7,1995 | 5 -Year             |
| 173    | 13.98911   | 122.41      | 3.63    | 3          | -0.630 | Rosing Nov. 7,1995 | 5 -Year             |
| 174    | 13.99155   | 122.42      | 3.72    | 3          | -0.720 | Rosing Nov. 7,1995 | 5 -Year             |
| 175    | 13.98299   | 122.41      | 1.38    | 4          | 2.620  | Rosing Nov. 7,1995 | 5 -Year             |
| 176    | 13.98476   | 122.41      | 1.8     | 4          | 2.200  | Rosing Nov. 7,1995 | 5 -Year             |
| 177    | 13.99031   | 122.42      | 4.1     | 4          | -0.100 | Rosing Nov. 7,1995 | 5 -Year             |
| 178    | 13.98986   | 122.42      | 2.6     | 4          | 1.370  | Rosing Nov. 7,1995 | 5 -Year             |
| 179    | 13.99004   | 122.42      | 3.09    | 5          | 1.910  | Rosing Nov. 7,1995 | 5 -Year             |
| 180    | 13.99407   | 122.38      | 4.22    | 5          | 0.780  | Rosing Nov. 7,1995 | 5 -Year             |

## ANNEX 12. Educational Institutions affected by flooding Vinas Flood Plain

Table A-12.1 Educational Institutions in Quezon affected by flooding in Vinas Flood Plain.

| Q                            | uezon        |        |                 |          |  |  |  |  |
|------------------------------|--------------|--------|-----------------|----------|--|--|--|--|
| Guinayangan                  |              |        |                 |          |  |  |  |  |
| Duilding Name                | Deveneration | R      | ainfall Scenari | io       |  |  |  |  |
| Building Name                | Barangay     | 5-year | 25-year         | 100-year |  |  |  |  |
| Aloneros High School         | Aloneros     | None   | None            | None     |  |  |  |  |
| Aloneros High School         | Tikay        | None   | None            | None     |  |  |  |  |
| Day Care Center              | Aloneros     | None   | None            | None     |  |  |  |  |
| Day Care Center              | Gapas        | Medium | Medium          | Medium   |  |  |  |  |
| Gapas Elemetary School       | Gapas        | None   | None            | None     |  |  |  |  |
| San Luis I Elementary School | San Luis I   | None   | None            | None     |  |  |  |  |

|                                  | Quezon         |        |                |          |  |  |  |  |
|----------------------------------|----------------|--------|----------------|----------|--|--|--|--|
| Tagkawayan                       |                |        |                |          |  |  |  |  |
| Building Name                    | Barangay       | R      | ainfall Scenar | io       |  |  |  |  |
|                                  | Darangay       | 5-year | 25-year        | 100-year |  |  |  |  |
| Cabibihan Elementary School      | Cabibihan      | None   | None           | None     |  |  |  |  |
| Cabibihan National High School   | Cabibihan      | None   | None           | None     |  |  |  |  |
| Del Rosario Elemetary School     | Del Rosario    | None   | None           | None     |  |  |  |  |
| Manato Central Elementary School | Manato Central | None   | None           | None     |  |  |  |  |
| Manato High School               | Victoria       | None   | None           | None     |  |  |  |  |
| Manato Station Elementary School | Manato Station | Medium | High           | High     |  |  |  |  |
| Manato Station Elementary School | Victoria       | Medium | High           | High     |  |  |  |  |

| Quezon                  |          |                   |          |      |  |  |
|-------------------------|----------|-------------------|----------|------|--|--|
| Calauag                 |          |                   |          |      |  |  |
| Duilding Nome           | Parangau | Rainfall Scenario |          |      |  |  |
| Building Name           | Barangay | 5-year            | 100-year |      |  |  |
| Viñas Elementary School | Viñas    | None              | None     | None |  |  |

# ANNEX 13. Medical Institutions affected by flooding in Vinas Flood Plain

Table A-13.1 Medical Institutions in Quezon affected by flooding in Vinas Flood Plain

| Quezon<br>Guinayangan |                  |                   |         |          |  |  |
|-----------------------|------------------|-------------------|---------|----------|--|--|
|                       |                  | Rainfall Scenario |         |          |  |  |
| Building Name         | Barangay         | 5-year            | 25-year | 100-year |  |  |
| Health Center         | Aloneros         | None              | None    | None     |  |  |
| Health Center         | Danlagan Central | None              | None    | None     |  |  |
| Health Center         | Danlagan Batis   | None              | None    | None     |  |  |
| Health Center         | San Luis II      | None              | None    | None     |  |  |

| Quezon        |              |                   |         |          |  |  |  |
|---------------|--------------|-------------------|---------|----------|--|--|--|
| Tagkawayan    |              |                   |         |          |  |  |  |
| Building Name | Barangay     | Rainfall Scenario |         |          |  |  |  |
|               |              | 5-year            | 25-year | 100-year |  |  |  |
| Health Center | Cagascas     | None              | None    | None     |  |  |  |
| Health Center | Santo Niño I | None              | None    | None     |  |  |  |
| Health Center | Victoria     | None              | None    | None     |  |  |  |

| Quezon<br>Calauag |               |             |                                           |      |  |  |
|-------------------|---------------|-------------|-------------------------------------------|------|--|--|
| Building Name     | Barangay      | R<br>5-year | Rainfall Scenario<br>ear 25-year 100-year |      |  |  |
| Health Center     | Bagong Silang | None        | None                                      | None |  |  |