# LiDAR Surveys and Flood Mapping of Tignoan River





University of the Philippines Training Center for Applied Geodesy and Photogrammetry Mapua Institute of Technology (MIT)

UP TCAGP

**APRIL 2017** 



© University of the Philippines Diliman and MAPUA Institute of Technology 2017

Published by the UP Training Center for Applied Geodesy and Photogrammetry (TCAGP) College of Engineering University of the Philippines – Diliman Quezon City 1101 PHILIPPINES

This research project is supported by the Department of Science and Technology (DOST) as part of its Grants-in-Aid Program and is to be cited as:

E.C. Paringit and F.A. Uy (eds.) (2017), LiDAR Surveys and Flood Mapping of Tignoan River, Quezon City: University of the Philippines Training Center on Applied Geodesy and Photogrammetry-133pp.

The text of this information may be copied and distributed for research and educational purposes with proper acknowledgement. While every care is taken to ensure the accuracy of this publication, the UP TCAGP disclaims all responsibility and all liability (including without limitation, liability in negligence) and costs which might incur as a result of the materials in this publication being inaccurate or incomplete in any way and for any reason.

For questions/queries regarding this report, contact:

#### Dr. Francis Aldrine A. Uy

Project Leader, Phil-LiDAR 1 Program MAPUA Institute of Technology City of Manila, Metro Manila 1002 E-mail: faauy@mapua.edu.ph

#### Enrico C. Paringit, Dr. Eng.

Program Leader, Phil-LiDAR 1 Program University of the Philippines Diliman Quezon City, Philippines 1101 E-mail: ecparingit@up.edu.ph

National Library of the Philippines ISBN: 978-621-430-064-8

# **TABLE OF CONTENTS**

| LIST OF TABLES                                                                   | v   |
|----------------------------------------------------------------------------------|-----|
| LIST OF FIGURES.                                                                 | vii |
| LIST OF ACRONYMS AND ABBREVIATIONS                                               | x   |
| CHAPTER 1: OVERVIEW OF THE PROGRAM AND TIGNOAN RIVER.                            | 1   |
| 1.1 Background of the Phil-LiDAR 1 Program                                       | 1   |
| 1.2 Overview of the Tignoan River Basin.                                         | 1   |
| CHAPTER 2: LIDAR DATA ACQUISITION OF THE TIGNOAN FLOODPLAIN.                     | 3   |
| 2.1 Flight Plans                                                                 | 3   |
| 2.2 Ground Base Stations.                                                        | 4   |
| 2.3 Flight Missions                                                              | 8   |
| 2.4 Survey Coverage                                                              | 9   |
| CHAPTER 3: LIDAR DATA PROCESSING OF THE TIGNOAN FLOODPLAIN.                      | 11  |
| 3.1 Overview of the LiDAR Data Pre-Processing                                    | 11  |
| 3.2 Transmittal of Acquired LiDAR Data.                                          | 12  |
| 3.3 Trajectory Computation                                                       | 12  |
| 3.4 LiDAR Point Cloud Computation                                                | 14  |
| 3.5 LiDAR Data Quality Checking                                                  | 15  |
| 3.6 LiDAR Point Cloud Classification and Rasterization.                          | 19  |
| 3.7 LiDAR Image Processing and Orthophotograph Rectification.                    | 21  |
| 3.8 DEM Editing and Hydro-Correction.                                            | 22  |
| 3.9 Mosaicking of Blocks .                                                       | 24  |
| 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM) |     |
| 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model.       | 29  |
| 3.12 Feature Extraction.                                                         |     |
| 3.12.1 Quality Checking of Digitized Features' Boundary                          |     |
| 3.12.2 Height Extraction                                                         |     |
| 3.12.3 Feature Attribution                                                       |     |
| 3.12.4 Final Quality Checking of Extracted Features                              |     |
| CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS                              |     |
| OF THE TIGNOAN RIVER BASIN                                                       | 34  |
| 4.1 Summary of Activities.                                                       | 34  |
| 4.2 Control Survey.                                                              | 35  |
| 4.3 Baseline Processing.                                                         |     |
| 4.4 Network Adjustment                                                           |     |
| 4.5 Cross-section and Bridge As-Built survey and Water Level Marking.            | 41  |
| 4.6 Validation Points Acquisition Survey.                                        | 45  |
| 4.7 River Bathymetric Survey.                                                    | 47  |
| CHAPTER 5: FLOOD MODELING AND MAPPING.                                           | 50  |
| 5.1 Data Used for Hydrologic Modeling.                                           | 50  |
| 5.1.1 Hydrometry and Rating Curves.                                              | 50  |
| 5.1.2 Precipitation.                                                             |     |
| 5.1.3 Rating Curves and River Outflow.                                           |     |
| 5.2 RIDF Station                                                                 | 53  |
| 5.3 HMS Model.                                                                   | 55  |
| 5.4 Cross-section Data                                                           | 60  |
| 5.4.1 Manning's n                                                                | 61  |
| 5.5 Flo 2D Model                                                                 | 62  |

|      | 5.6 Results of HMS Calibration                                                 | 64  |
|------|--------------------------------------------------------------------------------|-----|
|      | 5.7 Calculated outflow hydrographs and discharge values                        |     |
|      | for different rainfall return periods                                          | 67  |
|      | 5.7.1 Hydrograph using the Rainfall Runoff Model                               | 67  |
|      | 5.8 River Analysis (RAS) Model Simulation                                      | 68  |
|      | 5.9 Flow Depth and Flood Hazard .                                              | 68  |
|      | 5.10 Inventory of Areas Exposed to Flooding                                    |     |
|      | 5.11 Flood Validation.                                                         |     |
| REFE | RENCES                                                                         | 81  |
| ANNI | EXES                                                                           | 82  |
|      | Annex 1. Optech Technical Specification of the Pegasus Sensor.                 | 82  |
|      | Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey     | 83  |
|      | Annex 3. Baseline Processing Reports of Control Points                         | 84  |
|      | used in the LIDAR Survey                                                       | 84  |
|      | Annex 4. The LIDAR Survey Team Composition                                     | 85  |
|      | Annex 5. Data Transfer Sheet for Tignoan Floodplain                            | 86  |
|      | Annex 6. Flight Logs for the Flight Missions.                                  | 87  |
|      | Annex 7. Flight Status Reports.                                                | 88  |
|      | Annex 8. Mission Summary Reports.                                              | 89  |
|      | Annex 9. Tignoan Model Basin Parameters                                        | 112 |
|      | Annex 10. Tignoan Model Reach Parameters.                                      | 114 |
|      | Annex 11. Tignoan Field Validation Points.                                     | 116 |
|      | Annex 12. Educational Institutions affected by flooding in Tignoan Floodplain. | 123 |
|      | Annex 13. Health Institutions affected by flooding in Tignoan Floodplain       | 123 |
|      |                                                                                |     |

# LIST OF TABLES

| Table 1. Flight planning parameters for the Pegasus LiDAR system.                    | 3  |
|--------------------------------------------------------------------------------------|----|
| Table 2. Details of the recovered NAMRIA horizontal control point RZL-28             |    |
| used as base station for the LiDAR acquisition                                       | 6  |
| Table 3. Details of the established control point BRS-1                              |    |
| used as base station for the LiDAR acquisition                                       | 7  |
| Table 4. Ground control points that were used during the LiDAR data acquisition.     | 7  |
| Table 5. Flight missions for the LiDAR data acquisition of the Tignoan Floodplain    | 8  |
| Table 6. Actual parameters used during the LiDAR data acquisition                    |    |
| of the Tignoan Floodplain                                                            | 8  |
| Table 8. List of municipalities and cities surveyed of the Tignoan Floodplain        |    |
| LiDAR acquisition.                                                                   | 9  |
| Table 8. Self-calibration result values for Tignoan flights                          | 14 |
| Table 9. List of LiDAR blocks for Tignoan Floodplain.                                | 15 |
| Table 10. Tignoan classification results in TerraScan                                | 19 |
| Table 12. LiDAR blocks with its corresponding areas.                                 | 22 |
| Table 13. Shift values of each LiDAR block of Tignoan Floodplain                     | 24 |
| Table 13. Calibration Statistical Measures                                           | 28 |
| Table 14. Validation Statistical Measures                                            | 29 |
| Table 15. Quality Checking Ratings for Tignoan Building Features                     | 31 |
| Table 16. Building Features Extracted for Tignoan Floodplain.                        | 32 |
| Table 17. Total Length of Extracted Roads for Tignoan Floodplain                     | 33 |
| Table 18 Number of Extracted Water Bodies for Tignoan Floodplain.                    | 33 |
| Table 19. List of Reference and Control Points occupied for Tignoan River Survey     | 36 |
| Table 20. Baseline processing report for Tignoan River Basin static survey           | 38 |
| Table 21. Constraints applied to the adjustment of the control points                | 39 |
| Table 22. Adjusted grid coordinates for the control points                           |    |
| used in the Tignoan River Floodplain survey                                          | 39 |
| Table 23. Adjusted geodetic coordinates for control points                           |    |
| used in the Tignoan River Flood plain validation.                                    | 40 |
| Table 24. References and control points used and its location                        | 41 |
| Table 25. RIDF values for Infanta Rain Gauge computed by PAGASA                      | 53 |
| Table 26. Look-up table for Manning's n values (Source: Brunner, 2010)               | 61 |
| Table 27. Range of calibrated values for Tignoan Floodplain                          | 65 |
| Table 28. Summary of the Efficiency Test of the Tignoan HMS Model                    | 66 |
| Table 29. Peak values of the Tignoan HEC-HMS Model outflow using the Infanta RIDF    | 67 |
| Table 30. Municipalities affected in Tignoan Floodplain                              | 68 |
| Table 31. Affected areas in Real, Quezon during a 5-Year Rainfall Return period      | 75 |
| Table 32. Affected areas in Real, Quezon during a 25-Year rainfall return period     | 76 |
| Table 33. Affected areas in Real, Quezon during a 100-year rainfall return period    | 77 |
| Table 34. Areas covered by each warning level with respect to the rainfall scenarios | 78 |
| Table 35. Actual flood depth vs. simulated flood depth in Tignoan                    | 80 |
| Table 36. Summary of accuracy assessment in Tignoan                                  | 80 |

## **LIST OF FIGURES**

| Figure 1. Map of the Tignoan River Basin (in brown)                                              | 2   |
|--------------------------------------------------------------------------------------------------|-----|
| Figure 2. Flight Plan and base stations used for the Tignoan Floodplain survey.                  | 5   |
| Figure 3. GPS set-up over RZL-28 near the lighthouse beside the fishport in Barangay San Isidro, |     |
| Tanay, Rizal (a) and NAMRIA reference point RZL-28 (b) as recovered by the field team            | 6   |
| Figure 4. GPS set-up over BRS-1 as established in the rooftop of D' One Resort & Restaurant      |     |
| in Baras, Rizal                                                                                  | 7   |
| Figure 5. Actual LiDAR survey coverage of the Tignoan Floodplain                                 | .10 |
| Figure 6. Schematic diagram for Data Pre-Processing Component.                                   | .11 |
| Figure 7. Smoothed Performance Metrics of Tignoan Flight 23474P                                  | .12 |
| Figure 8. Solution Status Parameters of Tignoan Flight 23474P.                                   | .13 |
| Figure 9. Best estimated trajectory of the LiDAR missions conducted over Tignoan Floodplain      | .14 |
| Figure 10. Boundary of the processed LiDAR data over Tignoan Floodplain                          | .15 |
| Figure 11. Image of data overlap for Tignoan Floodplain                                          | .16 |
| Figure 12. Pulse density map of merged LiDAR data for Tignoan Floodplain                         | .17 |
| Figure 13. Elevation Difference Map between flight lines for Tignoan Floodplain Survey.          | .18 |
| Figure 14. Quality checking for a Tignoan flight 23474P using the Profile Tool of QT Modeler     | .19 |
| Figure 15. Tiles for Tignoan Floodplain (a) and classification results (b) in TerraScan          | .20 |
| Figure 16. Point cloud before (a) and after (b) classification                                   | .20 |
| Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c)               |     |
| and secondary DTM (d) in some portion of Tignoan Floodplain.                                     | .21 |
| Figure 18. Available orthophotographs near Tignoan floodplain                                    | .22 |
| Figure 19. Sample orthophotograph tiles near Tignoan floodplain                                  | .22 |
| Figure 20. Production of last return DSM (a) and DTM (b), first return DSM (c)                   |     |
| and secondary DTM (d) in some portion of Tignoan Floodplain                                      | .23 |
| Figure 23. Correlation plot between calibration survey points and LiDAR data                     | .28 |
| Figure 24. Correlation plot between validation survey points and LiDAR data                      | .29 |
| Figure 25. Map of Tignoan Floodplain with bathymetric survey points shown in blue                | .30 |
| Figure 26. Blocks (in blue) of Tignoan building features that were subjected to QC               | .31 |
| Figure 27. Extracted features for Tignoan Floodplain.                                            | .33 |
| Figure 28. Extent of the bathymetric survey (in blue) in Tignoan River Basin                     |     |
| and the LiDAR data validation survey (in red)                                                    | .34 |
| Figure 29. GNSS network of Tignoan Field Survey                                                  | .35 |
| Figure 30. GNSS base receiver set-up, Trimble® SPS 882 at QZ-555, Brgy. Gumian, Infanta, Quezon  | .37 |
| Figure 31. GNSS base receiver set-up, Trimble <sup>®</sup> SPS 852 at QZN-58, Tignoan Bridge,    |     |
| along the Infanta National Road, Brgy. Tignoan, Real, Quezon                                     | .37 |
| Figure 32. GNSS base receiver set-up, Trimble® SPS 882 at UP-LUB, Lubayat Bridge                 |     |
| in Brgy. Lubayat, Municipality of Real, Quezon                                                   | .38 |
| Figure 33. New Tignoan Bridge facing downstream                                                  | .41 |
| Figure 34. Tignoan bridge cross-section location map                                             | .42 |
| Figure 35. Tignoan Bridge cross-section diagram                                                  | .43 |
| Figure 36. Tignoan Bridge data form                                                              | .44 |
| Figure 37. MSL water level markings in Tignoan Bridge's pier                                     | .45 |
| Figure 38. Validation points acquisition set-up                                                  | .45 |
| Figure 39. LiDAR ground validation survey along Quezon                                           | .46 |
| Figure 40. Manual bathymetric survey in Tignoan River                                            | .47 |
| Figure 41. Bathymetric points gathered from Tignoan River                                        | .48 |

| Figure 42. The Tignoan riverbed profile.                                                      | 49 |
|-----------------------------------------------------------------------------------------------|----|
| Figure 43. Location map of the Tignoan HEC-HMS model used for calibration                     | 50 |
| Figure 44. Cross-section plot of Tignoan Bridge                                               | 51 |
| Figure 45. Rating curve at Tignoan Bridge, Real, Quezon                                       | 51 |
| Figure 46. Rainfall and outflow data of the Tignoan River Basin used for modeling             | 52 |
| Figure 47. Infanta RIDF location relative to Tignoan River Basin                              | 54 |
| Figure 48. Synthetic storm generated for a 24-hour period rainfall for various return periods | 54 |
| Figure 49. Soil map of Tignoan River Basin                                                    | 55 |
| Figure 50. Land cover map of Tignoan River Basin                                              | 56 |
| Figure 51. Slope map of Tignoan River Basin                                                   | 57 |
| Figure 52. Stream delineation map of Tignoan River Basin                                      | 58 |
| Figure 53. The Tignoan River Basin model generated using HEC-HMS                              | 59 |
| Figure 54. River cross-section of Tignoan River generated through Arcmap HEC GeoRAS tool      | 60 |
| Figure 55.Screenshot of sub-catchment with the computational area                             |    |
| to be modeled in FLO-2D GDS Pro                                                               | 62 |
| Figure 56. Generated 100-year rain return hazard map from FLO-2D Mapper                       | 63 |
| Figure 57. Generated 100-year rain return flow depth map from FLO-2D Mapper                   | 63 |
| Figure 58. Outflow hydrograph of Tignoan produced by the HEC-HMS model                        |    |
| compared with observed outflow                                                                | 64 |
| Figure 59. Outflow hydrograph at Tignoan Station generated using Infanta RIDF                 |    |
| simulated in HEC-HMS                                                                          | 67 |
| Figure 60. Sample output of Tignoan RAS Model                                                 | 68 |
| Figure 61 .100-year flood hazard map for Tignoan Floodplain                                   | 69 |
| Figure 62. 100-year flow depth map for Tignoan Floodplain                                     | 70 |
| Figure 63. 25-year flood hazard map for Tignoan Floodplain                                    | 71 |
| Figure 64. 25-year flow depth map for Tignoan Floodplain                                      | 72 |
| Figure 65. 5-year flood hazard map for Tignoan Floodplain                                     | 73 |
| Figure 66. 5-year flood depth map for Tignoan Floodplain                                      | 74 |
| Figure 67. Affected areas in Real, Quezon during a 5-year rainfall return period              | 75 |
| Figure 68. Affected areas in Real, Quezon during a 25-year rainfall return period             | 76 |
| Figure 69. Affected areas in Real, Quezon during a 100-year rainfall return period            | 77 |
| Figure 70. Flood validation points of Tignoan River Basin                                     | 79 |
| Figure 71. Flood map depth vs. actual flood depth                                             | 80 |

LiDAR Surveys and Flood Mapping of Tignoan River

## LIST OF ACRONYMS AND ABBREVIATIONS

| AAC     | Asian Aerospace Corporation                                       |  |
|---------|-------------------------------------------------------------------|--|
| Ab      | abutment                                                          |  |
| ALTM    | Airborne LiDAR Terrain Mapper                                     |  |
| ARG     | automatic rain gauge                                              |  |
| AWLS    | Automated Water Level Sensor                                      |  |
| BA      | Bridge Approach                                                   |  |
| BM      | benchmark                                                         |  |
| CAD     | Computer-Aided Design                                             |  |
| CN      | Curve Number                                                      |  |
| CSRS    | Chief Science Research Specialist                                 |  |
| DAC     | Data Acquisition Component                                        |  |
| DEM     | Digital Elevation Model                                           |  |
| DENR    | Department of Environment and Natural<br>Resources                |  |
| DOST    | Department of Science and Technology                              |  |
| DPPC    | Data Pre-Processing Component                                     |  |
| DREAM   | Disaster Risk and Exposure Assessment for<br>Mitigation [Program] |  |
| DRRM    | Disaster Risk Reduction and Management                            |  |
| DSM     | Digital Surface Model                                             |  |
| DTM     | Digital Terrain Model                                             |  |
| DVBC    | Data Validation and Bathymetry<br>Component                       |  |
| FMC     | Flood Modeling Component                                          |  |
| FOV     | Field of View                                                     |  |
| GiA     | Grants-in-Aid                                                     |  |
| GCP     | Ground Control Point                                              |  |
| GNSS    | Global Navigation Satellite System                                |  |
| GPS     | Global Positioning System                                         |  |
| HEC-HMS | Hydrologic Engineering Center - Hydrologic<br>Modeling System     |  |
| HEC-RAS | Hydrologic Engineering Center - River<br>Analysis System          |  |
| HC      | High Chord                                                        |  |
| IDW     | Inverse Distance Weighted [interpolation method]                  |  |
|         |                                                                   |  |

| IMU      | Inertial Measurement Unit                                                                    |  |  |
|----------|----------------------------------------------------------------------------------------------|--|--|
| kts      | knots                                                                                        |  |  |
| LAS      | LiDAR Data Exchange File format                                                              |  |  |
| LC       | Low Chord                                                                                    |  |  |
| LGU      | local government unit                                                                        |  |  |
| Lidar    | Light Detection and Ranging                                                                  |  |  |
| LMS      | LiDAR Mapping Suite                                                                          |  |  |
| m AGL    | meters Above Ground Level                                                                    |  |  |
| MIT      | MAPUA Institute of Technology                                                                |  |  |
| MMS      | Mobile Mapping Suite                                                                         |  |  |
| MSL      | mean sea level                                                                               |  |  |
| NSTC     | Northern Subtropical Convergence                                                             |  |  |
| PAF      | Philippine Air Force                                                                         |  |  |
| PAGASA   | Philippine Atmospheric Geophysical<br>and Astronomical Services<br>Administration            |  |  |
| PDOP     | Positional Dilution of Precision                                                             |  |  |
| РРК      | Post-Processed Kinematic [technique]                                                         |  |  |
| PRF      | Pulse Repetition Frequency                                                                   |  |  |
| PTM      | Philippine Transverse Mercator                                                               |  |  |
| QC       | Quality Check                                                                                |  |  |
| QT       | Quick Terrain [Modeler]                                                                      |  |  |
| RA       | Research Associate                                                                           |  |  |
| RIDF     | Rainfall-Intensity-Duration-Frequency                                                        |  |  |
| RMSE     | Root Mean Square Error                                                                       |  |  |
| SAR      | Synthetic Aperture Radar                                                                     |  |  |
| SCS      | Soil Conservation Service                                                                    |  |  |
| SRTM     | Shuttle Radar Topography Mission                                                             |  |  |
| SRS      | Science Research Specialist                                                                  |  |  |
| SSG      | Special Service Group                                                                        |  |  |
| ТВС      | Thermal Barrier Coatings                                                                     |  |  |
| UP-TCAGP | University of the Philippines – Training<br>Center for Applied Geodesy and<br>Photogrammetry |  |  |
| UTM      | Universal Transverse Mercator                                                                |  |  |
| WGS      | World Geodetic System                                                                        |  |  |

# CHAPTER 1: OVERVIEW OF THE PROGRAM AND TIGNOAN RIVER

Enrico C. Paringit, Dr. Eng., Dr. Francis Aldrine Uy, and Engr. Fibor Tan

### 1.1 Background of the Phil-LiDAR 1 Program

The University of the Philippines Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP) launched a research program entitled "Nationwide Hazard Mapping using LiDAR" or Phil-LiDAR 1 in 2014, supported by the Department of Science and Technology (DOST) Grants-in-Aid (GiA) Program. The program was primarily aimed at acquiring a national elevation and resource dataset at sufficient resolution to produce information necessary to support the different phases of disaster management. Particularly, it targeted to operationalize the development of flood hazard models that would produce updated and detailed flood hazard maps for the major river systems in the country.

The program was also aimed at producing an up-to-date and detailed national elevation dataset suitable for 1:5,000 scale mapping, with 50 cm and 20 cm horizontal and vertical accuracies, respectively. These accuracies were achieved through the use of the state-of-the-art Light Detection and Ranging (LiDAR) airborne technology procured by the project through DOST. The methods applied in this report are thoroughly described in a separate publication titled Flood Mapping of Rivers in the Philippines Using Airborne LiDAR: Methods (Paringit et al., 2017).

The implementing partner university for the Phil-LiDAR 1 Program is the Mapua Institute of Technology (MIT). MIT is in charge of processing LiDAR data and conducting data validation reconnaissance, cross section, bathymetric survey, validation, river flow measurements, flood height and extent data gathering, flood modeling, and flood map generation for the 25 river basins in the Southern Tagalog Region. The university is located in Intramuros in the City of Manila.

#### 1.2 Overview of the Tignoan River Basin

The Tignoan River Basin is located in the northern area of Quezon province. Specifically, it is situated in Real, Quezon and bounded by the municipalities of Santa Maria, Famy, and Siniloan in the province of Laguna in the west. It traverses entirely through Real and serves as one of the major sources of income for the local population. It helps stabilize industries such as tourism and agriculture and adds a vital impact on economic growth.

According to the 2015 national census of NSO, a total of 6,771 persons are residing within the immediate vicinity of the river which is distributed among three (3) barangays in the municipality of Real namely: Tanauan, Tignoan, and Malapad (NSO, 2015). Areas in the vicinity of the Tignoan River Basin such as Brgy. Tignoan and Brgy. Tanauan are classified as highly susceptible to flooding based on the 2007 Mines and Geosciences Bureau's (MGB) Geohazard Assessment Prone Areas. Its water, according to its beneficial use, is categorized as Class C by the Department of Environmental Management. It also belongs under Fishery Water for the propagation and growth of fish and other aquatic resources; Recreational Water Class II for purposes such as Boatings; and Industrial Water Supply Class I for manufacturing processes after treatment.

The river basin, due to its location, is frequently hit by typhoons. One of the most devastating typhoons that hit the area is Typhoon Rosing in 1995. Another is Typhoon Winnie in 2004 that dumped huge amount of rainfall causing flooding and landslides. The Philippines at the time was not prepared for such severe events, and, as a result, many lives and properties were lost. More recently, Quezon Province suffered flooding due to immense rain produced by Typhoon Glenda last 17th of July 2014. Typhoon Glenda put Quezon Province under the state of calamity moving families to rehabilitation. Power distribution was heavily affected causing a power down to the community.

To prevent similar outcomes from happening again, a combination of several technologies have been employed to produce flood hazard maps. The first is LiDAR data, which primarily contains elevation values. From the data, one can infer the presence and behavior of water bodies (such as rivers, streams, ponds, and lakes) and structures (such as roads, bridges, and buildings). Additionally, important information such



121°30'0'E



as discharge and rainfall events gathered through fieldwork can be used as inputs to the hydrological model. The gathered data will help generate hydrographs to create the calibrated model. These generated outputs, along with LiDAR data, will then be used for the generation of a river hydraulic model. The final output for these processes will be flood hazard maps of the river basin. The generated maps can be used for urban planning and disaster risk reduction planning.

121°30'0"E

## CHAPTER 2: LIDAR DATA ACQUISITION OF THE TIGNOAN FLOODPLAIN

Engr. Louie P. Balicanta, Engr. Christopher Cruz, Lovely Gracia Acuña, Engr. Gerome Hipolito, Ms. Pauline Joanne G. Arceo, Engr. Renan D. Punto

The methods applied in this Chapter were based on the DREAM methods manual (Sarmiento, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 2.1 Flight Plans

Plans were made to acquire LiDAR data within the delineated priority area for Tignoan Floodplain in Quezon. These missions were planned for 14 lines and ran for at most three (3) hours including take-off, landing, and turning time. The flight planning parameters for Pegasus is found in Table 1. Figure 2 shows the flight plan for Tignoan Floodplain.

| Block<br>Name | Flying<br>Height<br>(m AGL) | Overlap<br>(%) | Field of view<br>(ø) | Pulse Repetition<br>Frequency (PRF)<br>(kHz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn<br>Time<br>(Minutes) |
|---------------|-----------------------------|----------------|----------------------|----------------------------------------------|---------------------------|---------------------------|--------------------------------------|
| BLK18Q        | 1200                        | 30             | 50                   | 200                                          | 30                        | 130                       | 5                                    |

Table 1. Flight planning parameters for the Pegasus LiDAR system.

<sup>&</sup>lt;sup>1</sup> The explanation of the parameters used are in the volume "LiDAR Surveys and Flood Mapping in the Philippines: Methods."

### 2.2 Ground Base Stations

The project team was able to recover one (1) NAMRIA ground control point: RZL-28 which is of second (2nd)order accuracy. The project team also established one (1) ground control points BRS-1. The certifications for the base stations are found in Annex 2 while the baseline processing reports for the established point is found in Annex 3.

These points were used as base stations during flight operations for the entire duration of the survey (June 22, 2016). Base stations were observed using dual frequency GPS receivers, TRIMBLE SPS 985 and TOPCON GR5. Flight plans and location of base stations used during the aerial LiDAR acquisition in Tignoan Floodplain are shown in Figure 2.



Figure 2. Flight Plan and base stations used for the Tignoan Floodplain survey.

Figure 3 to Figure 4 show the recovered NAMRIA reference points within the area. In addition, Table 2 to Table 3 present the details about the NAMRIA control stations while Table 4 shows the list of all ground control points occupied during the acquisition together with the dates these are utilized during the survey.



Figure 3. GPS set-up over RZL-28 near the lighthouse beside the fishport in Barangay San Isidro, Tanay, Rizal (a) and NAMRIA reference point RZL-28 (b) as recovered by the field team

| Table 2. Details of the recovered NAMRIA horizontal control point RZL-28 used as base station for the LiDAR |
|-------------------------------------------------------------------------------------------------------------|
| acquisition                                                                                                 |

| Station Name RZL-28                                                                  |                                             | 28                                                                   |
|--------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| Order of Accuracy                                                                    | 2nd                                         |                                                                      |
| Relative Error (Horizontal positioning)                                              | 1:50,000                                    |                                                                      |
| Geographic Coordinates<br>Philippine Reference of 1992 Datum (PRS 92)                | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 29' 49.44078" North<br>121° 16' 32.56146" East<br>5.86600 meters |
| Grid Coordinates<br>Philippine Transverse Mercator Zone 3<br>(PTM Zone 5 PRS 92)     | Easting<br>Northing                         | 529720.085 meters<br>1603180.963 meters                              |
| Geographic Coordinates<br>World Geodetic System 1984 Datum (WGS 84)                  | Latitude<br>Longitude<br>Ellipsoidal Height | 14°29 '44.06939" North<br>121°16'37.46276"East<br>50.37100 meters    |
| Grid Coordinates<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N PRS1992) | Easting<br>Northing                         | 1,603,302.05 meters<br>314,172.78 meters                             |



Figure 4. GPS set-up over BRS-1 as established in the rooftop of D' One Resort & Restaurant in Baras, Rizal

| Station Name                                                                          | BRS-1                                       |                                                                     |
|---------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| Order of Accuracy                                                                     | 2nd                                         |                                                                     |
| Relative Error (Horizontal positioning)                                               | 1:50,000                                    |                                                                     |
| Geographic Coordinates<br>Philippine Reference of 1992 Datum (PRS 92)                 | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 31′ 32.82507″ North<br>121° 15′ 40.79958″ East<br>15.361 meters |
| Geographic Coordinates<br>World Geodetic System 1984 Datum (WGS 84)                   | Latitude<br>Longitude<br>Ellipsoidal Height | 14° 31'27.44582″ North<br>121° 15' 45.69850″ East<br>59.750 meters  |
| Grid Coordinates<br>Universal Transverse Mercator Zone 51 North<br>(UTM 51N WGS 1984) | Easting<br>Northing                         | 312646.981 meters<br>1606491.077 meters                             |

Table 3. Details of the established control point BRS-1 used as base station for the LiDAR acquisition

Table 4. Ground control points that were used during the LiDAR data acquisition.

| Date Surveyed | Flight Number | Mission Name | Ground Control Points |
|---------------|---------------|--------------|-----------------------|
| 22 June 2016  | 23474P        | 1BLK18Q0173A | BRS-1 and RZL-28      |

### 2.3 Flight Missions

One (1) mission was conducted to complete the LiDAR data acquisition in Tignoan Floodplain, for a total of three hours and seventeen minutes (3+17) of flying time for RP-C9022. The mission was acquired using the Pegasus LiDAR system. Table 5 shows the total area of actual coverage and the corresponding flying hours per mission, while Table 6 presents the actual parameters used during the LiDAR data acquisition.

Table 5. Flight missions for the LiDAR data acquisition of the Tignoan Floodplain.

| Date            | Flight | Flight Plan Surveyed | Surveyed      | Area<br>Surveyed                  | Area Surveyed<br>Outside the<br>Floodplain<br>(km2) | No. of<br>Images<br>(Frames) | Flying<br>Hours |     |
|-----------------|--------|----------------------|---------------|-----------------------------------|-----------------------------------------------------|------------------------------|-----------------|-----|
| Surveyed        | Number | Area<br>(km2)        | Area<br>(km2) | within the<br>Floodplain<br>(km2) |                                                     |                              | Hr              | Min |
| 22 June<br>2016 | 23474P | 121.55               | 146.82        | 10.16                             | 136.66                                              | NA                           | 3               | 17  |

Table 6. Actual parameters used during the LiDAR data acquisition of the Tignoan Floodplain.

| Flight<br>Number | Flying Height<br>(m AGL) | Overlap<br>(%) | FOV<br>(θ) | PRF<br>(khz) | Scan<br>Frequency<br>(Hz) | Average<br>Speed<br>(kts) | Average<br>Turn Time<br>(Minutes) |
|------------------|--------------------------|----------------|------------|--------------|---------------------------|---------------------------|-----------------------------------|
| 23474P           | 1000                     | 60             | 50         | 200          | 32                        | 130                       | 5                                 |

#### 2.4 Survey Coverage

Tignoan Floodplain is situated in Real, Quezon. About 36.73% of Real, Quezon was surveyed as shown in Table 7. The actual coverage of the LiDAR acquisition for Tignoan Floodplain is presented in Figure 5.

| Province | Municipality/<br>City | Area of<br>Municipality/City<br>(km2) | Total Area<br>Surveyed<br>(km2) | Percentage of<br>Area Surveyed |
|----------|-----------------------|---------------------------------------|---------------------------------|--------------------------------|
| Quezon   | Real                  | 382.11                                | 140.35                          | 36.73%                         |

Table 8. List of municipalities and cities surveyed of the Tignoan Floodplain LiDAR acquisition.



Figure 5. Actual LiDAR survey coverage of the Tignoan Floodplain.

## CHAPTER 3: LIDAR DATA PROCESSING OF THE TIGNOAN FLOODPLAIN

Engr. Ma. Rosario Concepcion O. Ang, Engr. John Louie D. Fabila, Engr. Sarah Jane D. Samalburo, Engr. Joida F. Prieto, Engr. Melissa F. Fernandez, Engr. Ma. Ailyn L. Olanda, Engr. Sheila-Maye F. Santillan, Engr. Erica Erin E. Elazegui, Engr. Ezzo Marc C. Hibionada, and Ziarre Anne P. Mariposa

The methods applied in this Chapter were based on the DREAM methods manual (Ang, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

#### 3.1 Overview of the LiDAR Data Pre-Processing

The data transmitted by the Data Acquisition Component were checked for completeness based on the list of raw files required to proceed with the pre-processing of the LiDAR data. Upon acceptance of the LiDAR field data, georeferencing of the flight trajectory was done in order to obtain the exact location of the LiDAR sensor when the laser was shot. Point cloud georectification was performed to incorporate correct position and orientation for each point acquired. The georectified LiDAR point clouds were subject for quality checking to ensure that the required accuracies of the program, which were the minimum point density, vertical and horizontal accuracies, were met. The point clouds were then classified into various classes before generating Digital Elevation Models such as Digital Terrain Model and Digital Surface Model.

Using the elevation of points gathered in the field, the LiDAR-derived digital models were calibrated. Portions of the river that were barely penetrated by the LiDAR system were replaced by the actual river geometry measured from the field by the Data Validation and Bathymetry Component. LiDAR acquired temporally were then mosaicked to completely cover the target river systems in the Philippines. Orthorectification of images acquired simultaneously with the LiDAR data was done through the help of the georectified point clouds and the metadata containing the time the image was captured.

These processes are summarized in the flowchart shown in Figure 6.



Figure 6. Schematic diagram for Data Pre-Processing Component.

#### 3.2 Transmittal of Acquired LiDAR Data

Data transfer sheets for all the LiDAR missions for Tignoan Floodplain can be found in ANNEX 5. Missions flown during the survey conducted on June 2016 both used the Airborne LiDAR Terrain Mapper (ALTM<sup>™</sup> Optech Inc.) Pegasus and Leica systems over Real, Quezon.

The Data Acquisition Component (DAC) transferred a total of 12.7 Gigabytes of Range data, 200 Megabytes of POS data, and 468 Megabytes of GPS base station data to the data server on July 13, 2016 for the survey. The Data Pre-Processing Component (DPPC) verified the completeness of the transferred data. The whole dataset for Tignoan was fully transferred on July 14, 2016, as indicated on the data transfer sheets for Tignoan Floodplain.

#### **3.3 Trajectory Computation**

The Smoothed Performance Metrics of the computed trajectory for flight 23474P, one of the Tignoan flights, which is the North, East, and Down position RMSE values are shown in Figure 7. The x-axis corresponds to the time of flight, which is measured by the number of seconds from the midnight of the start of the GPS week, which on that week fell on June 22, 2016 00:00AM. The y-axis is the RMSE value for that particular position.



Figure 7. Smoothed Performance Metrics of Tignoan Flight 23474P

The time of flight was from 169500 seconds to 179500 seconds, which corresponds to morning of June 22, 2016. The initial spike that is seen on the data corresponds to the time that the aircraft was getting into position to start the acquisition, and the time the POS system started computing for the position and orientation of the aircraft.

Redundant measurements from the POS system quickly minimized the RMSE value of the positions. The periodic increase in RMSE values from an otherwise smoothly curving RMSE values correspond to the turnaround period of the aircraft, when the aircraft makes a turn to start a new flight line. Figure 7 shows that the North position RMSE peaks at 1.40 centimeters, the East position RMSE peaks at 1.80 centimeters, and the Down position RMSE peaks at 3.40 centimeters, which are within the prescribed accuracies described in the methodology.



Figure 8. Solution Status Parameters of Tignoan Flight 23474P.

The Solution Status parameters of flight 23474P, one of the Tignoan flights, which are the number of GPS satellites, Positional Dilution of Precision, and the GPS processing mode used are shown in Figure 8. The graphs indicate that the number of satellites during the acquisition did not go down to 6. Majority of the time, the number of satellites tracked was between 6 and 10. The PDOP value also did not go above the value of 3, which indicates optimal GPS geometry. The processing mode stayed at the value of 0 for majority of the survey with some peaks up to 1 attributed to the turns performed by the aircraft. The value of 0 corresponds to a Fixed, Narrow-Lane mode, which is the optimum carrier-cycle integer ambiguity resolution technique available for POSPAC MMS. All of the parameters adhered to the accuracy requirements for optimal trajectory solutions, as indicated in the methodology. The computed best estimated trajectory for all Tignoan flights is shown in Figure 9.



Figure 9. Best estimated trajectory of the LiDAR missions conducted over Tignoan Floodplain

#### **3.4 LiDAR Point Cloud Computation**

The produced LAS data contains 19 flight lines, with each flight line containing two channels, since the Pegasus system contains two channels.

The summary of the self-calibration results obtained from LiDAR processing in LiDAR Mapping Suite (LMS) software for all flights over Tignoan Floodplain are given in Table 8.

| Parameter                                                  | Acceptable Value | Computed Value |
|------------------------------------------------------------|------------------|----------------|
| Boresight Correction stdev                                 | <0.001degrees    | 0.000335       |
| IMU Attitude Correction Roll and<br>Pitch Correction stdev | <0.001degrees    | 0.000935       |
| GPS Position Z-correction stdev                            | <0.01meters      | 0.0020         |

The optimum accuracy was obtained for all Tignoan flights based on the computed standard deviations of the corrections of the orientation parameters. Standard deviation values for individual blocks are available in ANNEX 8.

## 3.5 LiDAR Data Quality Checking

The boundary of the processed LiDAR data on top of a SAR Elevation Data over Tignoan Floodplain is shown in Figure 10. The map shows gaps in the LiDAR coverage that are attributed to cloud coverage.



Figure 10. Boundary of the processed LiDAR data over Tignoan Floodplain

The total area covered by the Tignoan missions is 152.09 sq km that is comprised of one (1) flight acquisition grouped and merged into two (2) blocks as shown in Table 9.

| LiDAR Blocks                           | Flight Numbers | Area (sq. km) |
|----------------------------------------|----------------|---------------|
| Calabarzon_reflights_Blk18Q            | 23474P         | 142.52        |
| Calabarzon_reflights_Blk18Q_supplement | 23474P         | 9.57          |
| TOTAL                                  |                | 152.09 sq km  |

| Table 9. | List of | LiDAR | blocks | for | Tignoan | Floodpl | ain. |
|----------|---------|-------|--------|-----|---------|---------|------|
|          |         |       |        |     |         |         |      |

The overlap data for the merged LiDAR blocks, showing the number of channels that pass through a particular location, is shown in Figure 11. Since the Pegasus system employs two channels, an average value of 2 (blue) would be expected for areas where there is limited overlap, and a value of 3 (yellow) or more (red) for areas with three or more overlapping flight lines.



Figure 11. Image of data overlap for Tignoan Floodplain.

The overlap statistics per block for the Tignoan Floodplain can be found in Annex 8. It should be noted that one pixel corresponds to 25.0 square meters on the ground. For this area, the maximum percent overlap is 42.49%, which passed the 25% requirement.

The pulse density map for the merged LiDAR data, with the red parts showing the portions of the data that satisfy the 2 points per square meter criterion, is shown in Figure 12. It was determined that all LiDAR data for Tignoan Floodplain satisfy the point density requirement, and the average density for the entire survey area is 2.82 points per square meter.



Figure 12. Pulse density map of merged LiDAR data for Tignoan Floodplain.

The elevation difference between overlaps of adjacent flight lines is shown in Figure 13. The default color range is from blue to red, where bright blue areas correspond to portions where elevations of a previous flight line, identified by its acquisition time, are higher by more than 0.20 m relative to elevations of its adjacent flight line. Bright red areas indicate portions where elevations of a previous flight line are lower by more than 0.20 m relative to elevations of its adjacent flight line. Areas with bright red or bright blue need to be investigated further using Quick Terrain Modeler software.



Figure 13. Elevation Difference Map between flight lines for Tignoan Floodplain Survey.

A screen capture of the processed LAS data from a Tignoan flight 23474P loaded in QT Modeler is shown in Figure 14. The upper left image shows the elevations of the points from two overlapping flight strips traversed by the profile, illustrated by a dashed yellow line. The x-axis corresponds to the length of the profile. It is evident that there are differences in elevation, but the differences do not exceed the 20-centimeter mark. This profiling was repeated until the quality of the LiDAR data becomes satisfactory. No reprocessing was done for this LiDAR dataset.



Figure 14. Quality checking for a Tignoan flight 23474P using the Profile Tool of QT Modeler

#### 3.6 LiDAR Point Cloud Classification and Rasterization

| Pertinent Class   | Total Number of Points |
|-------------------|------------------------|
| Ground            | 730,120,761            |
| Low Vegetation    | 476,358,859            |
| Medium Vegetation | 658,168,041            |
| High Vegetation   | 2,900,490,221          |
| Building          | 33,869,042             |

| Table 10.  | Tignoan  | classification | results in | TerraScan |
|------------|----------|----------------|------------|-----------|
| 1 upic 10. | 1 ignoun | enconnection   | reouteo m  | renuocun  |

The tile system that TerraScan employed for the LiDAR data and the final classification image for a block in Tignoan Floodplain is shown in Figure 15. A total of 215 1 km by 1 km tiles were produced. The number of points classified to the pertinent categories is illustrated in Table 10. The point cloud has a maximum and minimum height of 590.20 meters and 47.79 meters, respectively.



Figure 15. Tiles for Tignoan Floodplain (a) and classification results (b) in TerraScan.

An isometric view of an area before and after running the classification routines is shown in Figure 16. The ground points are in orange, the vegetation is in different shades of green, and the buildings are in cyan. It can be seen that residential structures adjacent or even below canopy are classified correctly due to the density of the LiDAR data.



Figure 16. Point cloud before (a) and after (b) classification

The production of last return (V\_ASCII) and the secondary (T\_ASCII) DTM, first (S\_ASCII) and last (D\_ASCII) return DSM of the area in top view display are shown in Figure 17. It shows that DTMs are the representation of the bare earth while on the DSMs, all features are present such as buildings and vegetation.



Figure 17. The production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Tignoan Floodplain.

## 3.7 LiDAR Image Processing and Orthophotograph Rectification

The 590 1km by 1km tiles of the block covering the Tignoan floodplain is shown in Figure 18. After tie point selection to fix photo misalignments, color points were added to smoothen out visual inconsistencies along the seamlines where photos overlap. The block covering the Tignoan floodplain has a total of 430.77 sq.km orthophotogaph coverage comprised of 931 images. However, the block does not have a complete set of orthophotographs and no orthophotographs cover the area of the Tignoan floodplain. A zoomed in version of sample orthophotographs named in reference to its tile number is shown in Figure 19.



Figure 18. Available orthophotographs near Tignoan floodplain.



Figure 19. Sample orthophotograph tiles near Tignoan floodplain.

### 3.8 DEM Editing and Hydro-Correction

Two (2) mission blocks were processed for Tignoan Floodplain. These blocks are composed of Calabarzon\_ Reflights blocks with a total area of 152.09 square kilometers. Table 11 shows the name and corresponding area of each block in square kilometers.

| LiDAR Blocks                           | Area (sq.km) |
|----------------------------------------|--------------|
| Calabarzon_reflights_Blk18Q            | 142.52       |
| Calabarzon_reflights_Blk18Q_supplement | 9.57         |
| TOTAL                                  | 152.09 sq km |

Table 11. LiDAR blocks with its corresponding areas.

Portions of DTM before and after manual editing are shown in Figure 18. The bridge (Figure 20a) is considered to be an impedance to the flow of water along the river and has to be removed (Figure 20b) in order to hydrologically correct the river. Some data in the mountainous areas were removed in the DTM after classification (Figure 20c) and has to be retrieved to complete the surface (Figure 20d).



Figure 20. Production of last return DSM (a) and DTM (b), first return DSM (c) and secondary DTM (d) in some portion of Tignoan Floodplain

#### 3.9 Mosaicking of Blocks

Calabarzon\_reflights\_Blk18Q was used as the reference block at the start of mosaicking because this is the larger block. Table 12 shows the shift values applied to each LiDAR block during mosaicking.

Mosaicked LiDAR DTM for Tignoan Floodplain is shown in Figure 21. It can be seen that the entire Tignoan Floodplain is 100% covered by LiDAR data.

| Mission Blocks                         | Shift Values (meters) |       |       |  |  |
|----------------------------------------|-----------------------|-------|-------|--|--|
|                                        | х                     | У     | Z     |  |  |
| Calabarzon_reflights_Blk18Q            | 0.00                  | 0.00  | 0.00  |  |  |
| Calabarzon_reflights_Blk18Q_supplement | 0.10                  | -1.73 | -1.01 |  |  |

Table 12. Shift values of each LiDAR block of Tignoan Floodplain.


Figure 21. Map of Processed LiDAR Data for Tignoan Floodplain.

# 3.10 Calibration and Validation of Mosaicked LiDAR Digital Elevation Model (DEM)

The extent of the validation survey done by the Data Validation and Bathymetry Component (DVBC) in Tignoan to collect points with which the LiDAR dataset was validated is shown in Figure 22. A total of 3,041 survey points were used for calibration and validation of Tignoan LiDAR data. Eighty percent of the survey points, which were randomly selected and resulting in 2,433 points, were used for calibration.

A good correlation between the uncalibrated mosaicked LiDAR elevation values and the ground survey elevation values is shown in Figure 23. Statistical values were computed from extracted LiDAR values using the selected points to assess the quality of data and obtain the value for vertical adjustment. The computed height difference between the LiDAR DTM and calibration elevation values is 2.50 meters with a standard deviation of 0.17 meters. Calibration of Tignoan LiDAR data was done by subtracting the height difference value, 2.50 meters, to Tignoan mosaicked LiDAR data. Table 13 shows the statistical values of the compared elevation values between LiDAR data and calibration data.



Figure 22. Map of Tignoan Floodplain with validation survey points in green.



Figure 23. Correlation plot between calibration survey points and LiDAR data.

| Calibration Statistical Measures | Value (meters) |
|----------------------------------|----------------|
| Height Difference                | 2.50           |
| Standard Deviation               | 0.17           |
| Average                          | -2.49          |
| Minimum                          | -2.14          |
| Maximum                          | -2.84          |

Table 13. Calibration Statistical Measures

The remaining 20% of the total survey points, resulting in 608 points, were used for the validation of calibrated Tignoan DTM. A good correlation between the calibrated mosaicked LiDAR elevation values and the ground survey elevation, which reflects the quality of the LiDAR DTM, is shown in Figure 24. The computed RMSE between the calibrated LiDAR DTM and validation elevation values is 0.14 meters with a standard deviation of 0.14 meters, as shown in Table 14.



Figure 24. Correlation plot between validation survey points and LiDAR data.

| Validation Statistical Measures | Value (meters) |
|---------------------------------|----------------|
| RMSE                            | 0.14           |
| Standard Deviation              | 0.11           |
| Average                         | 0.09           |
| Minimum                         | -0.12          |
| Maximum                         | 0.31           |

Table 14. Validation Statistical Measures

#### 3.11 Integration of Bathymetric Data into the LiDAR Digital Terrain Model

For bathy integration, centerline and cross-section data were available for Tignoan with 760 bathymetric survey points. The resulting raster surface produced was done by Kernel Interpolation with Barriers method. After burning the bathymetric data to the calibrated DTM, assessment of the interpolated surface was represented by the computed RMSE value of 0.38 meters. The extent of the bathymetric survey done by the Data Validation and Bathymetry Component (DVBC) in Tignoan integrated with the processed LiDAR DEM is shown in Figure 25.



Figure 25. Map of Tignoan Floodplain with bathymetric survey points shown in blue.

#### 3.12 Feature Extraction

The features salient in flood hazard exposure analysis include buildings, road networks, bridges, and water bodies within the floodplain area with 200 m buffer zone. Mosaicked LiDAR DEM with 1 m resolution was used to delineate footprints of building features, which consist of residential buildings, government offices, medical facilities, religious institutions, and commercial establishments, among others. Road networks comprise of main thoroughfares such as highways and municipal and barangay roads essential for routing of disaster response efforts. These features are represented by a network of road centerlines.

## 3.12.1 Quality Checking of Digitized Features' Boundary

Tignoan Floodplain, including its 200 m buffer, has a total area of 15.04 sq km. For this area, a total of 5.0 sq km, corresponding to a total of 230 building features, are considered for QC. Figure 26 shows the QC blocks for Tignoan Floodplain.



#### Quality checking of Tignoan building features resulted in the ratings shown in Table 15.

| Table 15. Quality Checking I | Ratings for Tignoan | Building Features |
|------------------------------|---------------------|-------------------|
|------------------------------|---------------------|-------------------|

| FLOODPLAIN | COMPLETENESS | CORRECTNESS | QUALITY | REMARKS |
|------------|--------------|-------------|---------|---------|
| Tignoan    | 99.57        | 100.00      | 92.17   | PASSED  |

#### **3.12.2 Height Extraction**

Height extraction was done for 369 building features in Tignoan Floodplain. Of these building features, 17 were filtered out after height extraction, resulting in 352 buildings with height attributes. The lowest building height is at 2.00 m, while the highest building is at 6.83 m.

#### 3.12.3 Feature Attribution

The attributes were obtained by field data gathering. GPS devices were used to determine the coordinates of important features. These points are uploaded and overlaid in ArcMap and are then integrated with the datasets.

Table 16 summarizes the number of building features per type. On the other hand, Table 17 shows the total length of each road type, while Table 18 lists the number of water features extracted per type.

| Facility Type                           | No. of Features |
|-----------------------------------------|-----------------|
| Residential                             | 324             |
| School                                  | 22              |
| Market                                  | 0               |
| Agricultural/Agro-Industrial Facilities | 0               |
| Medical Institutions                    | 2               |
| Barangay Hall                           | 1               |
| Military Institution                    | 0               |
| Sports Center/Gymnasium/Covered Court   | 1               |
| Telecommunication Facilities            | 0               |
| Transport Terminal                      | 0               |
| Warehouse                               | 0               |
| Power Plant/Substation                  | 0               |
| NGO/CSO Offices                         | 0               |
| Police Station                          | 0               |
| Water Supply/Sewerage                   | 0               |
| Religious Institutions                  | 1               |
| Bank                                    | 0               |
| Factory                                 | 0               |
| Gas Station                             | 0               |
| Fire Station                            | 0               |
| Other Government Offices                | 0               |
| Other Commercial Establishments         | 1               |
| Total                                   | 352             |

Table 16. Building Features Extracted for Tignoan Floodplain.

| Floodplain | Road Network Length (km) |                        |                    |               |        |      |
|------------|--------------------------|------------------------|--------------------|---------------|--------|------|
|            | Barangay<br>Road         | City/Municipal<br>Road | Provincial<br>Road | National Road | Others |      |
| Tignoan    | 0.17                     | 2.09                   | 5.49               | 0.00          | 0.00   | 7.75 |

Table 17. Total Length of Extracted Roads for Tignoan Floodplain.

Table 18 Number of Extracted Water Bodies for Tignoan Floodplain.

| Floodplain | Water Body Type       |             |     |     |          |   |
|------------|-----------------------|-------------|-----|-----|----------|---|
|            | <b>Rivers/Streams</b> | Lakes/Ponds | Sea | Dam | Fish Pen |   |
| Tignoan    | 1                     | 1           | 5   | 0   | 0        | 7 |

A total of 1 bridge over small channels that are part of the river network was also extracted for the floodplain.

### 3.12.4 Final Quality Checking of Extracted Features

All extracted ground features were completely given the required attributes. All these output features comprise the flood hazard exposure database for the floodplain. This completes the feature extraction phase of the project.

Figure 27 shows the Digital Surface Model (DSM) of Tignoan Floodplain overlaid with its ground features.



Figure 27. Extracted features for Tignoan Floodplain.

# CHAPTER 4: LIDAR VALIDATION SURVEY AND MEASUREMENTS OF THE TIGNOAN RIVER BASIN

Engr. Louie P. Balicanta, Engr. Joemarie S. Caballero, Ms. Patrizcia Mae. P. dela Cruz, Engr. Dexter T. Lozano, For. Dona Rina Patricia C. Tajora, Elaine Bennet Salvador, and For. Rodel C. Alberto

The methods applied in this Chapter were based on the DREAM methods manual (Balicanta, et al., 2014) and further enhanced and updated in Paringit, et al. (2017).

#### 4.1 Summary of Activities

The Data Validation and Bathymetry Component (DVBC) conducted a field survey in Tignoan River on October 14 to 23, 2015 with the following scope of work: reconnaissance survey to determine the viability of traversing the planned routes for bathymetric survey; courtesy call to LGU Tignoan; control survey for the establishment of control point UP-LUB at Lubayat bridge approach occupied as base station for GNSS surveys; cross-section, bridge-as-built, and MSL water level marking at Tignoan Bridge in Brgy. Tignoan, Municipality of Real, Quezon; validation points data acquisition for LiDAR data with estimated distance of 18.3 km; and bathymetric survey of Tignoan River starting from the upstream from Brgy. Tanauan to Brgy. Tignoan and then to the Tignoan Bridge with an approximate length of 5km utilizing GNSS PPK survey technique, as shown in Figure 28.



Figure 28. Extent of the bathymetric survey (in blue) in Tignoan River Basin and the LiDAR data validation survey (in red)

#### 4.2 Control Survey

A GNSS network from Abulug River Survey was established on September 18, 2015 occupying the control points KAY-3, a second-order GCP, in Brgy. Imelda, Municipality of Pudtol; and CG-343, a first-order BM, in Brgy. Libertad, Muncipality of Abulug; both in Cagayan Province.

The GNSS network used for Tignoan River Basin is composed of four (4) loops established on June 15 and 16, 2016 occupying the following reference points: KAY-3, a second-order GCP from Abulug Survey; CG-343, a first order BM, also from Abulug Survey; and CG-373, a GCP with 95% class accuracy, in Brgy. Bangan, Municipality of Sanchez Mira.

Three (3) control points were established along the approach of bridges namely: UP-CLA, located at Cabicungan Bridge in Brgy. Dibalio, Municipality of Claveria; UP-LIN, at Linao Bridge, Brgy. Bangag-Zingag, Municipality of Aparri; and UP-PAM, at New Tignoan Bridge, Brgy. Masi, Municipality of Tignoan.

The summary of reference and control points and its location is summarized in Table 20 while the GNSS network established is illustrated in Figure 29.



Figure 29. GNSS network of Tignoan Field Survey

| Control<br>Point | Order of<br>Accuracy | Geographic Coordinates (WGS 84) |                  |                                  |                                |                     |
|------------------|----------------------|---------------------------------|------------------|----------------------------------|--------------------------------|---------------------|
|                  |                      | Latitude                        | Longitude        | Ellipsoidal<br>Height<br>(Meter) | Elevation<br>in MSL<br>(Meter) | Date<br>Established |
| QZ-555           | 1st Order,<br>BM     | -                               | -                | 52.570                           | 4.8077                         |                     |
| QZN-58           | 2nd Order,<br>GCP    | 14°33'52.21121"                 | 121°36'54.79419" | 56.518                           | -                              | 2007                |
| UP-LUB           | UP<br>Established    | -                               | -                | -                                | -                              | 2015                |

#### Table 19. List of Reference and Control Points occupied for Tignoan River Survey (Source: NAMRIA; UP-TCAGP)

The GNSS set up for control points QZ-555, QZN-58, and UP-LUB used in the Tignoan survey are shown in Figure 30 to Figure 32, respectively.



Figure 30. GNSS base receiver set-up, Trimble® SPS 882 at QZ-555, Brgy. Gumian, Infanta, Quezon



Figure 31. GNSS base receiver set-up, Trimble® SPS 852 at QZN-58, Tignoan Bridge, along the Infanta National Road, Brgy. Tignoan, Real, Quezon



Figure 32. GNSS base receiver set-up, Trimble® SPS 882 at UP-LUB, Lubayat Bridge in Brgy. Lubayat, Municipality of Real, Quezon

### 4.3 Baseline Processing

GNSS baselines were processed simultaneously in TBC by observing that all baselines have fixed solutions with horizontal and vertical precisions within +/-20 cm and +/-10 cm requirement, respectively. In case where one or more baselines did not meet all of these criteria, masking was performed. Masking is done by removing/masking portions of these baseline data using the same processing software. It is repeatedly processed until all baseline requirements are met. If the reiteration yields out of the required accuracy, resurvey is initiated. Baseline processing result of control points in Tignoan River Basin is summarized in Table 20 generated TBC software.

| Observation      | Date of<br>Observation | Solution<br>Type | H. Prec.<br>(Meter) | V. Prec.<br>(Meter) | Geodetic<br>Az. | Ellipsoid<br>Dist.<br>(Meter) | ∆Height<br>(Meter) |
|------------------|------------------------|------------------|---------------------|---------------------|-----------------|-------------------------------|--------------------|
| QZ-555<br>UP-LUB | 10-19-2015             | Fixed            | 0.011               | 0.057               | 178°31′10″      | 24096.160                     | 1.999              |
| QZN-58<br>QZ-555 | 10-19-2015             | Fixed            | 0.006               | 0.051               | 1°57'02"        | 16851.101                     | -5.270             |
| QZN-58<br>UP-LUB | 10-19-2015             | Fixed            | 0.004               | 0.022               | 170°37'21"      | 7344.919                      | -3.313             |

Table 20. Baseline processing report for Tignoan River Basin static survey

As shown in Table 20, a total of 3 baselines were processed and all of them passed the required accuracy set by the project.

#### 4.4 Network Adjustment

After the baseline processing procedure, network adjustment is as performed using TBC. Looking at the Adjusted Grid Coordinates (Table 23) Table C-of the TBC generated Network Adjustment Report, it is observed that the square root of the sum of the squares of x and y must be less than 20 cm and z less than 10 cm or in equation form:

```
\sqrt{((x_e)^2 + (y_e)^2)} <20cm and z_e < 10 \ cm
```

Where:

xe is the Easting Error, ye is the Northing Error, and ze is the Elevation Error

The six (6) control points, KAY-3, CG-343, CG-373, UP-CLA, UP-LIN and UP-PAM were occupied and observed simultaneously to form a GNSS loop. Coordinates of KAY-3 and CG-343; and elevation values of both controls including CG-373 were held fixed during the processing of the control points as presented in Table 22. Through these reference points, the coordinates and elevation of the unknown control points will be computed.

| Point ID                | Туре  | East σ<br>(Meter) | North σ<br>(Meter) | Height o<br>(Meter) | Elevation σ<br>(Meter) |  |
|-------------------------|-------|-------------------|--------------------|---------------------|------------------------|--|
| QZ-55                   | Grid  |                   |                    |                     | Fixed                  |  |
| QZN-58                  | Local | Fixed             | Fixed              | Fixed               |                        |  |
| Fixed = 0.000001(Meter) |       |                   |                    |                     |                        |  |

Table 21. Constraints applied to the adjustment of the control points.

The list of adjusted grid coordinates, i.e., Northing, Easting, Elevation, and computed standard errors of the control points in the network, is indicated in Table 22. All fixed control points have no values for grid and elevation errors.

Table 22. Adjusted grid coordinates for the control points used in the Tignoan River Floodplain survey.

| Point ID | Easting<br>(Meter) | Easting<br>Error<br>(Meter) | Northing<br>(Meter) | Northing<br>Error<br>(Meter) | Elevation<br>(Meter) | Elevation<br>Error<br>(Meter) | Constraint |
|----------|--------------------|-----------------------------|---------------------|------------------------------|----------------------|-------------------------------|------------|
| QZ-555   | 351492.460         | 0.009                       | 1627447.834         | 0.010                        | 4.808                | ?                             | е          |
| QZN-58   | 350816.073         | ?                           | 1610612.434         | ?                            | 10.028               | 0.093                         | LL         |
| UP-LUB   | 351968.736         | 0.007                       | 1603359.466         | 0.007                        | 6.710                | 0.094                         |            |

The network is fixed at reference points. The list of adjusted grid coordinates of the network is shown in Table 23 .Using the equation for horizontal and for the vertical, below is the computation for accuracy that passed the required precision:

| QZN-58              |   |                                            |
|---------------------|---|--------------------------------------------|
| Horizontal accuracy | = | Fixed                                      |
| Vertical accuracy   | = | 9.3 cm < 10 cm                             |
| QZ-555              |   |                                            |
| Horizontal accuracy | = | √ ((0.9) <sup>2</sup> + (1.0) <sup>2</sup> |
|                     | = | √(0.81+1.0)                                |
|                     | = | 1.4 cm < 20 cm                             |
| Vertical accuracy   | = | Fixed                                      |
| UP-LUB              |   |                                            |
| Horizontal accuracy | = | √ ((0.7) <sup>2</sup> + (0.7) <sup>2</sup> |
|                     | = | √(0.49+0.49)                               |
|                     | = | 1.0 cm < 20 cm                             |
| Vertical accuracy   | = | 9.4 cm < 10 cm                             |
|                     |   |                                            |

Following the given formula, the horizontal and vertical accuracy result of the three (3) occupied control points are within the required accuracy of the program.

Table 23. Adjusted geodetic coordinates for control points used in the Tignoan River Floodplain validation.

| Point ID | Latitude         | Longitude         | Ellipsoid | Height | Constraint |
|----------|------------------|-------------------|-----------|--------|------------|
| QZ-555   | N14°43'00.16787" | E121°37'13.96853" | 50.764    | ?      | е          |
| QZN-58   | N14°33'52.21121" | E121°36'54.79419" | 56.063    | 0.093  | LL         |
| UP-LUB   | N14°29'56.42439" | E121°37'34.76226" | 52.753    | 0.094  |            |

The corresponding geodetic coordinates of the observed points are within the required accuracy as shown in Table 23. Based on the result of the computation, the accuracy condition is satisfied; hence, the required accuracy for the program was met.

The summary of reference and control points used is indicated in Table 24.

| Control<br>Point | Order of<br>Accuracy | Geograph        | ic Coordinates (WGS | UTM ZONE 51 N                |              |                |                    |
|------------------|----------------------|-----------------|---------------------|------------------------------|--------------|----------------|--------------------|
|                  |                      | Latitude        | Longitude           | Ellipsoidal<br>Height<br>(m) | Northing (m) | Easting<br>(m) | BM<br>Ortho<br>(m) |
| QZ-555           | 1st Order,<br>BM     | 14°43'00.16787" | 121°37'13.96853"    | 50.764                       | 1627447.834  | 351492.460     | 4.808              |
| QZN-58           | 2nd Order,<br>GCP    | 14°33'52.21121" | 121°36'54.79419"    | 56.063                       | 1610612.434  | 350816.073     | 10.028             |
| UP-LUB           | UP<br>Established    | 14°29'56.42439" | 121°37'34.76226"    | 52.753                       | 1603359.466  | 351968.736     | 6.710              |

Table 24. References and control points used and its location (Source: NAMRIA, UP-TCAGP)

#### 4.5 Cross-section and Bridge As-Built survey and Water Level Marking

Cross-section and as-built surveys for Tignoan Bridge in Brgy. Tignoan across Tignoan River in Real, Quezon were done simultaneously on October 19, 2015 using GNSS receiver Trimble<sup>®</sup> SPS 882 in PPK survey technique as shown in Figure 33.



Figure 33. New Tignoan Bridge facing downstream

A total of 33 cross-sectional points were gathered with an approximate length of 72.359 meters using QZN-58 as base station. Bridge as-built features determination was also performed to get the distance of piers and abutments from the bridge approach. The location map, cross-section diagram, and the bridge data form are shown in Figure 34 to Figure 36, respectively.



Figure 34. Tignoan bridge cross-section location map



Tignoan Bridge





Figure 36. Tignoan Bridge data form

Water surface elevation of Tignoan River was determined using Trimble<sup>®</sup> SPS 882 in PPK mode survey on October 19, 2015 at 9:56 AM. This was translated onto marking the bridge's pier using a digital level. The resulting water surface elevation data is 1.001 m above MSL. The markings on the bridge pier are shown in Figure 37. This shall serve as a reference for flow data gathering and depth gauge deployment of Mapua Phil-LiDAR 1.



Figure 37. MSL water level markings in Tignoan Bridge's pier

#### 4.6 Validation Points Acquisition Survey

Validation points acquisition survey was conducted on October 17 and October 19, 2015 using a surveygrade GNSS Rover receiver, Trimble<sup>®</sup> SPS 882, mounted on a pole which was attached in front of the vehicle as seen in Figure 38. It was secured with a nylon rope to ensure that it was horizontally and vertically balanced. The antenna height of 2.32 m was measured from the ground up to the bottom of the notch of the GNSS Rover receiver. The survey was conducted using PPK technique on a continuous topography mode using QZN-58 as base station.



Figure 38. Validation points acquisition set-up

Within the two (2) days of ground validation, the team covered the major roads of Maragondon, Tignoan, Malapad, and Lubayat. The survey acquired 3,040 ground validation points with an approximate length of 18.3 km presented in Figure 39.





#### 4.7 River Bathymetric Survey

Bathymetric survey was conducted on October 16 and 22, 2015. The team conducted manual bathymetric survey using Trimble<sup>®</sup> SPS 882 in GNSS PPK survey technique as illustrated in Figure 40. The survey started from upstream in Brgy. Tignoan with coordinates 14°33′38.75594″N, 121°35′35.80651″E and ended down to the mouth of the river with coordinates 14°34′01.56376″N, 121°37′25.09794″ E in Brgy. Tignoan, Real, Quezon as shown in Figure 41. The control point QZN-58 was used as GNSS base station all throughout the entire survey.



Figure 40. Manual bathymetric survey in Tignoan River

The bathymetric survey for Tignoan River gathered a total of 725 points with an estimated length of 4.8 km traversing Brgy. Tanauan down to the mouth of the river in Brgy. Tignoan, Real, Quezon.

About 3.2 km of the Tignoan River were not surveyed due to the difficulties encountered by the team such as slippery pathway, highly steep slope, and the typhoon causing immense rain during the survey. About 5 km of the planned 8.2 km was covered by the bathymetry survey.



Figure 41. Bathymetric points gathered from Tignoan River

A CAD drawing as shown in Figure 42 illustrates the Tignoan Riverbed profile where the highest elevation record is found in Brgy. Tanauan and the lowest is in Tignoan Bridge. An elevation drop of 32.6 meters was observed within the distance of approximately 5 km. The highest elevation is 31.926 m above MSL while the lowest is 1.441m below MSL located in Brgy. Tignoan near the mouth of the river.



Figure 42. The Tignoan riverbed profile.

## **CHAPTER 5: FLOOD MODELING AND MAPPING**

Dr. Alfredo Mahar Lagmay, Christopher Uichanco, Sylvia Sueno, Marc Moises, Hale Ines, Miguel del Rosario, Kenneth Punay, Neil Tingin, and Pauline Racoma

The methods applied in this Chapter were based on the DREAM methods manual (Lagmay, et al., 2014) and further enhanced and updated in Paringit, et al. (2017)

#### 5.1 Data Used for Hydrologic Modeling

#### 5.1.1 Hydrometry and Rating Curves

All components and data that affect the hydrologic cycle of the Tignoan River Basin were monitored, collected, and analyzed. Rainfall, water level, and flow in a certain period of time, which may affect the hydrologic cycle of the Tignoan River Basin were monitored, collected, and analyzed.

#### 5.1.2 Precipitation

Precipitation data was taken from an automatic rain gauge (ARG) deployed by the Mapua Institute of Technology under the Department of Science and Technology – Advanced Science and Technology Institute (DOST-ASTI) The ARG was installed Tanauan Elementary School Real, Quezon (Figure 43). The precipitation data collection started from November 11, 2016 00:10 am to November 12, 2016 at 02:55 am with a 15-minute recording interval.

The total precipitation for this event in Tanauan Elementary School ARG was 55.4 mm. It has a peak rainfall of 13.8 mm on 11 November 2016 at 21:25 pm. The lag time between the peak rainfall and discharge is 2 hours and 35 minutes.



Figure 43. Location map of the Tignoan HEC-HMS model used for calibration.

#### 5.1.3 Rating Curves and River Outflow

A rating curve was developed at Tignoan Bridge, Real, Quezon (14°33'53.21"N, 121°36'56.14"E). It gives the relationship between the observed water levels from the Tignoan Bridge using depth gage and outflow of the watershed recorded using the flow meter at this location.

For Tignoan Bridge, the rating curve is expressed as Q = 3.4458e1.587h as shown in Figure 45.



Figure 44. Cross-section plot of Tignoan Bridge



Figure 45. Rating curve at Tignoan Bridge, Real, Quezon

This rating curve equation was used to compute the river outflow at Tignoan Bridge for the calibration of the HEC-HMS model shown in Figure 53. Peak discharge is 36.66 m3/s at 00:00 AM, November 12, 2016. The Tignoan River Rating Curve measured at Tignoan Bridge is expressed as Q = 305.63e0.5029x (Figure 45).



Figure 46. Rainfall and outflow data of the Tignoan River Basin used for modeling

#### **5.2 RIDF Station**

The Philippines Atmospheric Geophysical and Astronomical Services Administration (PAGASA) computed Rainfall Intensity Duration Frequency (RIDF) values for the Infanta Rain Gauge. The RIDF rainfall amount for 24 hours was converted to a synthetic storm by interpolating and re-arranging the value in such a way certain peak value will be attained at a certain time. This station is chosen based on its proximity to the Tignoan watershed. The extreme values for this watershed were computed based on a 40-year record.

| COMPUTED EXTREME VALUES (in mm) OF PRECIPITATION |         |         |         |       |       |       |       |        |        |
|--------------------------------------------------|---------|---------|---------|-------|-------|-------|-------|--------|--------|
| T (yrs)                                          | 10 mins | 20 mins | 30 mins | 1 hr  | 2 hrs | 3 hrs | 6 hrs | 12 hrs | 24 hrs |
| 2                                                | 20.4    | 30.7    | 39.2    | 57    | 79.5  | 93    | 121.9 | 151.2  | 192.9  |
| 5                                                | 25.7    | 38.3    | 49.3    | 75.4  | 112.9 | 133.1 | 175.3 | 212.7  | 249.6  |
| 10                                               | 29.2    | 43.4    | 56      | 87.6  | 135   | 159.6 | 210.7 | 253.4  | 287.1  |
| 15                                               | 31.2    | 46.2    | 59.8    | 94.5  | 147.4 | 174.5 | 230.7 | 276.4  | 308.2  |
| 20                                               | 32.6    | 48.2    | 62.4    | 99.4  | 156.2 | 185   | 244.6 | 292.4  | 323    |
| 25                                               | 33.7    | 49.7    | 64.4    | 103.1 | 162.9 | 193.1 | 255.4 | 304.8  | 334.4  |
| 50                                               | 37      | 54.5    | 70.7    | 114.5 | 183.6 | 217.9 | 288.6 | 343    | 369.6  |
| 100                                              | 40.3    | 59.2    | 76.9    | 125.9 | 204.2 | 242.6 | 321.5 | 380.9  | 404.4  |

#### Table 25. RIDF values for Infanta Rain Gauge computed by PAGASA

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure 47. Infanta RIDF location relative to Tignoan River Basin



Figure 48. Synthetic storm generated for a 24-hour period rainfall for various return periods

#### 5.3 HMS Model

The soil dataset was taken from and generated by the Bureau of Soils and Water Management (BSWM) under the Department of Agriculture (DA). The land cover dataset is from the National Mapping and Resource information Authority (NAMRIA). The soil and land cover of the Tignoan River Basin are shown in Figure 49 and Figure 50, respectively.



Figure 49. Soil map of Tignoan River Basin



Figure 50. Land cover map of Tignoan River Basin

For Tignoan, the soil classes identified were sandy clay and undifferentiated mountain soil. The land cover types identified were brushland, inland water, and open and closed canopy forest.



Figure 51. Slope map of Tignoan River Basin



Figure 52. Stream delineation map of Tignoan River Basin

The Tignoan basin model consists of 51 subbasins, 25reaches, and 25 junctions. The main outlet is at the easternmost tip of the watershed. This basin model is illustrated in Figure 51. The basins were identified based on soil and land cover characteristics of the area. Precipitation was taken from DOST rain gauges. Finally, it was calibrated using data from the Tignoan Bridge.



Figure 53. The Tignoan River Basin model generated using HEC-HMS

#### 5.4 Cross-section Data

Riverbed cross-sections of the watershed are necessary in the HEC-RAS model setup. The cross-section data for the HEC-RAS model was derived from the LiDAR DEM data. It was defined using the Arc GeoRAS tool and was post-processed in ArcGIS.



Figure 54. River cross-section of Tignoan River generated through Arcmap HEC GeoRAS tool
### 5.4.1 Manning's n

Manning's n is a constant value that depends on the nature of the channel and its surface. Determining the roughness coefficient of the channel is important in determining the water flow. Appropriate selection of Manning's n values is based on the land cover type of the watershed area.

A look-up table was derived to have a standardized Manning's n value for the HEC-RAS model.

| Land-cover Class                   | Corresponding Manning's n Class                          | Manning's n |
|------------------------------------|----------------------------------------------------------|-------------|
| Barren Land                        | Cultivated areas, no crop                                | 0.030       |
| Built-up Area                      | Concrete, float finished                                 | 0.015       |
| Cultivated land, annual crop       | Cultivated areas, mature field crops                     | 0.040       |
| Cultivated land, perennial<br>crop | Cultivated areas, mature row crops                       | 0.035       |
| Fishpond                           | Excavated, earth, straight and uniform                   | 0.018       |
| Inland Water                       | Main channel, clean, straight, no rifts or<br>deep pools | 0.030       |
| Grassland                          | Pasture, no brush, short grass                           | 0.030       |
| Mangrove Forest                    | Trees, heavy stand, flow into branches                   | 0.120       |
| Shrub land                         | Medium to dense brush                                    | 0.100       |

Table 26. Look-up table for Manning's n values (Source: Brunner, 2010)

### 5.5 Flo 2D Model

The automated modelling process allows for the creation of a model with boundaries that are almost exactly coincidental with that of the catchment area. As such, they have approximately the same land area and location. The entire area is divided into square grid elements, 10 meter by 10 meter in size. Each element is assigned a unique grid element number which serves as its identifier, then attributed with the parameters required for modelling such as x-and y-coordinate of centroid, names of adjacent grid elements, Manning coefficient of roughness, infiltration, and elevation value. The elements are arranged spatially to form the model, allowing the software to simulate the flow of water across the grid elements and in eight directions (north, south, east, west, northeast, northwest, southeast, southwest).

Based on the elevation and flow direction, it is seen that the water will generally flow from the west of the model to the east, following the main channel. As such, boundary elements in those particular regions of the model are assigned as inflow and outflow elements respectively.



Figure 55.Screenshot of sub-catchment with the computational area to be modeled in FLO-2D GDS Pro

The simulation is then run through FLO-2D GDS Pro. This particular model had a computer run time of 79.43701 hours. After the simulation, FLO-2D Mapper Pro is used to transform the simulation results into spatial data that shows flood hazard levels, as well as the extent and inundation of the flood. Assigning the appropriate flood depth and velocity values for Low, Medium, and High creates the following food hazard level. For this particular level, the minimum h (Maximum depth) is set at 0.2 m while the minimum vh (Product of maximum velocity (v) times maximum depth (h)) is set at 0 m2/s.



Figure 56. Generated 100-year rain return hazard map from FLO-2D Mapper

The creation of a flood hazard map from the model also automatically creates a flow depth map depicting the maximum amount of inundation for every grid element. The legend used by default in Flo-2D Mapper is not a good representation of the range of flood inundation values, so a different legend is used for the layout. In this particular model, the inundated parts cover a maximum land area of 91488288.00 m2.



Figure 57. Generated 100-year rain return flow depth map from FLO-2D Mapper

There is a total of 51500173.31 m3 of water entering the model. Of this amount, 51500173.31 m3 is due to rainfall. 4795659.00 m3 of this water is lost to infiltration and interception, while 2908155.92 m3 is stored by the flood plain. The rest, amounting up to 43796402.36 m3, is outflow.

### 5.6 Results of HMS Calibration

After calibrating the Tignoan HEC-HMS river basin model, its accuracy was measured against the observed values. Figure 56 shows the comparison between the two discharge data.



Figure 58. Outflow hydrograph of Tignoan produced by the HEC-HMS model compared with observed outflow

Enumerated in Table 27 are the adjusted ranges of values of the parameters used in calibrating the model.

| Hydrologic<br>Element | Calculation Type | Method              | Parameter                        | Range of<br>Calibrated Values |
|-----------------------|------------------|---------------------|----------------------------------|-------------------------------|
|                       | Loss             | SCS Curve           | Initial Abstraction<br>(mm)      | 2.18 - 44.19                  |
|                       | LOSS             | number              | Curve Number                     | 35.19 – 99                    |
| Basin                 | Basin Transform  |                     | Time of<br>Concentration<br>(hr) | 0.15 -3.38                    |
|                       |                  | Hydrograph          | Storage<br>Coefficient (hr)      | 0.57 – 5.26                   |
|                       | Deseflow         | Decession           | Recession<br>Constant            | 0.013 – 1                     |
|                       | Basetiow         |                     | Ratio to Peak                    | 0.35 - 1                      |
| Reach                 | Routing          | Muskingum-<br>Cunge | Manning's<br>Coefficient         | 0.04                          |

Table 27. Range of calibrated values for Tignoan Floodplain

Initial abstraction defines the amount of precipitation that must fall before surface runoff. The magnitude of the outflow hydrograph increases as initial abstraction decreases. The range of values from 2.18 mm to 44.19 mm means that there is minimal to considerable amount of infiltration or rainfall interception by vegetation.

Curve number is the estimate of the precipitation excess of soil cover, land use, and antecedent moisture. The magnitude of the outflow hydrograph increases as curve number increases. The range of values for the basin's curve number is from 35.19 to 99. For Tignoan, the soil classes identified were sandy clay and undifferentiated mountain soil. The land cover types identified were brushland, inland water, and open and closed canopy forest.

Time of concentration and storage coefficient are the travel time and index of temporary storage of runoff in a watershed. The range of calibrated values from 0.15 hours to 5.26 hours determines the reaction time of the model with respect to the rainfall. The peak magnitude of the hydrograph also decreases when these parameters are increased.

Recession constant is the rate at which baseflow recedes between storm events and ratio to peak is the ratio of the baseflow discharge to the peak discharge. The recession constant ranges from 0.013 to 1 and the ratio to peak is from 0.35 to 1. The receding limb of the outflow hydrograph does not recede or return to its original discharge quickly.

Manning's roughness coefficient of 0.04 corresponds to the common roughness in Tignoan watershed.

| Accuracy measure | Value |
|------------------|-------|
| RMSE             | 2.97  |
| r2               | 0.906 |
| NSE              | 0.85  |
| PBIAS            | -5.71 |
| RSR              | 0.38  |

Table 28. Summary of the Efficiency Test of the Tignoan HMS Model

The Root Mean Square Error (RMSE) method aggregates the individual differences of these two measurements. It was identified at 2.97 (m3/s).

The Pearson correlation coefficient (r2) assesses the strength of the linear relationship between the observations and the model. A value close to 1 corresponds to an almost perfect match of the observed discharge and the resulting discharge from the HEC HMS model. Here, it measured 0.906.

The Nash-Sutcliffe (E) method was also used to assess the predictive power of the model. Here, the optimal value is 1. The model attained an efficiency coefficient of 0.85.

A positive Percent Bias (PBIAS) indicates a model's propensity towards under-prediction. Negative values indicate bias towards over-prediction. Again, the optimal value is 0. In the model, the PBIAS is -5.71.

The Observation Standard Deviation Ratio (RSR) is an error index. A perfect model attains a value of 0 when the error in the units of the valuable a quantified. The model has an RSR value of 0.38.

# 5.7 Calculated outflow hydrographs and discharge values for different rainfall return periods

### 5.7.1 Hydrograph using the Rainfall Runoff Model

The summary graph (Figure 59) shows the Tignoan outflow using the Infanta RIDF curves in 5 different return periods (5-year, 10-year, 25-year, 50-year, and 100-year rainfall time series) based on the PAGASA data. The simulation results reveal significant increase in outflow magnitude as the rainfall intensity increases for a range of durations and return periods.



Figure 59. Outflow hydrograph at Tignoan Station generated using Infanta RIDF simulated in HEC-HMS

A summary of the total precipitation, peak rainfall, peak outflow, and time to peak of the Tignoan discharge using the Infanta RIDF curves in five different return periods is shown in Table 29.

| RIDF Period | Total Precipitation<br>(mm) | Peak rainfall (mm) | Peak outflow<br>(m 3/s) | Time to Peak         |
|-------------|-----------------------------|--------------------|-------------------------|----------------------|
| 5-Year      | 249.6                       | 25.70              | 487.4                   | 14 hours, 0 minutes  |
| 10-Year     | 287.1                       | 29.20              | 614.5                   | 14 hours, 0 minutes  |
| 25-Year     | 334.4                       | 33.70              | 762.3                   | 13 hours, 50 minutes |
| 50-Year     | 369.6                       | 37.00              | 867.4                   | 13 hours, 50 minutes |
| 100-Year    | 404.4                       | 40.30              | 972.2                   | 13 hours, 50 minutes |

| T 11 20    | D 1 1        | $(1 - \tau)$  | TIEC ID IO      | N 11 (1       | · .1         | T C C DIDI   |
|------------|--------------|---------------|-----------------|---------------|--------------|--------------|
| Iahle JU   | Peak values  | of the Lignog | 1 H H ( -H M N) | Model outflox | willeing the | Infanta RINE |
| 1 apre 29. | I Can values | of the righta |                 | mouci outilo  | w using the  | manua KIDI   |
|            |              | 0             |                 |               | 0            |              |

### 5.8 River Analysis (RAS) Model Simulation

The HEC-RAS flood model produced a simulated water level at every cross-section for every time step for every flood simulation created.

The resulting model will be used in determining the flooded areas within the model. The simulated model will be an integral part in determining real-time flood inundation extent of the river after it has been automated and uploaded on the DREAM website. The sample generated map of Tignoan River using the calibrated HMS event flow with 25-year rain return scenario is shown in Figure 60.



Figure 60. Sample output of Tignoan RAS Model

### 5.9 Flow Depth and Flood Hazard

The resulting hazard and flow depth maps have a 10 m resolution. Figure 61 to Figure 66 show the 100-, 25-, and 5-year rain return scenarios of the Tignoan Floodplain.

| Municipality | Total Area | Area Flooded | % Flooded |
|--------------|------------|--------------|-----------|
| Real         | 350.69     | 27.79        | 7.92%     |

Table 30. Municipalities affected in Tignoan Floodplain

















Figure 66. 5-year flood depth map for Tignoan Floodplain

### 5.10 Inventory of Areas Exposed to Flooding

Listed below are the barangays affected by the Tignoan River Basin, grouped accordingly by municipality. For the said basin, one (1) municipality consisting of 4 barangay is expected to experience flooding when subjected to a 5-year rainfall return period.

For the 5-year return period, 7.06% of the municipality of Real with an area of 350.69 sq km will experience flood levels of less than 0.20 meters; 0.21% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.10%, 0.08%, 0.11%, and 0.36% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 31 are the affected areas in square kilometers by flood depth per barangay.

| Affected area<br>(sg. km.) by | Area of affected barangays in Luna<br>(in sq. km.) |          |         |         |  |
|-------------------------------|----------------------------------------------------|----------|---------|---------|--|
| flood depth<br>(in m.)        | Malapad                                            | Tagumpay | Tanauan | Tignoan |  |
| 0.03-0.20                     | 5.58                                               | 4.54     | 9.8     | 4.85    |  |
| 0.21-0.50                     | 0.16                                               | 0.11     | 0.3     | 0.15    |  |
| 0.51-1.00                     | 0.066                                              | 0.066    | 0.18    | 0.045   |  |
| 1.01-2.00                     | 0.048                                              | 0.052    | 0.15    | 0.036   |  |
| 2.01-5.00                     | 0.099                                              | 0.081    | 0.17    | 0.043   |  |
| > 5.00                        | 0.18                                               | 0.12     | 0.77    | 0.19    |  |

Table 31. Affected areas in Real, Quezon during a 5-Year Rainfall Return period



Figure 67. Affected areas in Real, Quezon during a 5-year rainfall return period

For the 25-year return period, 6.74% of the municipality of Real with an area of 350.69 sq km will experience flood levels of less than 0.20 meters; 0.30% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.14%, 0.10%, 0.14%, and 0.50% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 32 are the affected areas in square kilometers by flood depth per barangay.

| Affected area                       | Area of affected barangays in Tignoan (in sq. km.) |                  |      |         |  |
|-------------------------------------|----------------------------------------------------|------------------|------|---------|--|
| (sq. km.) by flood<br>depth (in m.) | Malapad                                            | Malapad Tagumpay |      | Tignoan |  |
| 0.03-0.20                           | 5.4                                                | 4.34             | 9.24 | 4.66    |  |
| 0.21-0.50                           | 0.22                                               | 0.17             | 0.4  | 0.25    |  |
| 0.51-1.00                           | 0.11                                               | 0.082            | 0.22 | 0.078   |  |
| 1.01-2.00                           | 0.065                                              | 0.068            | 0.19 | 0.04    |  |
| 2.01-5.00                           | 0.097                                              | 0.11             | 0.24 | 0.061   |  |
| > 5.00                              | 0.24                                               | 0.2              | 1.09 | 0.23    |  |

Table 32. Affected areas in Real, Quezon during a 25-Year rainfall return period



Figure 68.Affected areas in Real, Quezon during a 25-year rainfall return period

For the 100-year return period, 6.58% of the municipality of Real with an area of 350.69 sq km will experience flood levels of less than 0.20 meters; 0.33% of the area will experience flood levels of 0.21 to 0.50 meters; while 0.15%, 0.12%, 0.16%, and 0.58% of the area will experience flood depths of 0.51 to 1 meter, 1.01 to 2 meters, 2.01 to 5 meters, and more than 5 meters, respectively. Listed in Table 33 are the affected areas in square kilometers by flood depth per barangay.

| Affected area | Area of affected barangays in Tignoan (in sq. km.) |                  |      |         |  |
|---------------|----------------------------------------------------|------------------|------|---------|--|
| depth (in m.) | Malapad                                            | Malapad Tagumpay |      | Tignoan |  |
| 0.03-0.20     | 5.33                                               | 4.25             | 8.92 | 4.58    |  |
| 0.21-0.50     | 0.25                                               | 0.19             | 0.44 | 0.29    |  |
| 0.51-1.00     | 0.12                                               | 0.086            | 0.23 | 0.096   |  |
| 1.01-2.00     | 0.077                                              | 0.079            | 0.21 | 0.044   |  |
| 2.01-5.00     | 0.1                                                | 0.12             | 0.28 | 0.067   |  |
| > 5.00        | 0.24                                               | 0.26             | 1.3  | 0.23    |  |

Table 33. Affected areas in Real, Quezon during a 100-year rainfall return period



Figure 69. Affected areas in Real, Quezon during a 100-year rainfall return period

Moreover, the generated flood hazard maps for the Tignoan Floodplain were used to assess the vulnerability of the educational and medical institutions in the floodplain. Using the flood depth units of PAGASA for hazard maps ("Low," "Medium," and "High"), the affected institutions were given their individual assessment for each flood hazard scenario (5-year, 25-year, and 10-year).

| Warning | Area Covered in sq. km. |         |          |  |  |
|---------|-------------------------|---------|----------|--|--|
| Level   | 5 year                  | 25 year | 100 year |  |  |
| Low     | 0.67                    | 0.93    | 1.033    |  |  |
| Medium  | 0.47                    | 0.65    | 0.73     |  |  |
| High    | 1.92                    | 2.62    | 3.0084   |  |  |
| TOTAL   | 3.064                   | 4.21    | 4.77     |  |  |

Table 34. Areas covered by each warning level with respect to the rainfall scenarios

Of the three identified educational institutions in Tignoan Floodplain, one school was discovered exposed to medium-level flooding during the 5- and 25-year scenarios.

For the 100-year scenario, the same school, Tignoan Elementary School in Barangay Malapad, Real, Quezon, was discovered exposed to high-level flooding. The complete details are found in ANNEX 12.

Apart from this, two health institutions were identified in the Tignoan Floodplain, yet only one (1) was discovered exposed to High-level flooding in all three scenarios: the Health Center in Brgy. Malapad, Real, Quezon. The complete details are found in ANNEX 13.

### 5.11 Flood Validation

In order to check and validate the extent of flooding in different river systems, there is a need to perform validation survey work. Field personnel gathered secondary data regarding flood occurrence in the area within the major river system in the Philippines.

From the flood depth maps produced by Phil-LiDAR 1 Program, multiple points representing the different flood depths for different scenarios were identified for validation.

The validation personnel went to the specified points identified in a river basin and gathered data regarding the actual flood level in each location. Data gathering was done by going to a local DRRM office to obtain maps or situation reports about the past flooding events or by interviewing some residents with knowledge of or have had experienced flooding in a particular area.

After which, the actual data from the field were compared to the simulated data to assess the accuracy of the flood depth maps produced and to improve on what is needed.

The flood validation consists of 180 points randomly selected all over the Tignoan Floodplain. It has an RMSE value of 2.929.



Figure 70. Flood validation points of Tignoan River Basin



Figure 71. Flood map depth vs. actual flood depth

| Actual             | Modeled Flood Depth (m) |           |           |           |           |        |       |
|--------------------|-------------------------|-----------|-----------|-----------|-----------|--------|-------|
| Flood<br>Depth (m) | 0-0.20                  | 0.21-0.50 | 0.51-1.00 | 1.01-2.00 | 2.01-5.00 | > 5.00 | Total |
| 0-0.20             | 6                       | 0         | 0         | 0         | 0         | 0      | 6     |
| 0.21-0.50          | 25                      | 12        | 2         | 0         | 0         | 0      | 39    |
| 0.51-1.00          | 9                       | 1         | 2         | 1         | 5         | 1      | 19    |
| 1.01-2.00          | 23                      | 6         | 2         | 10        | 11        | 5      | 57    |
| 2.01-5.00          | 13                      | 4         | 10        | 5         | 5         | 0      | 37    |
| > 5.00             | 10                      | 8         | 4         | 0         | 0         | 0      | 22    |
| Total              | 86                      | 31        | 20        | 16        | 21        | 6      | 180   |

Table 35. Actual flood depth vs. simulated flood depth in Tignoan

The overall accuracy generated by the flood model is estimated at 19.44% with 35 points correctly matching the actual flood depths. In addition, there were 46 points estimated one level above and below the correct flood depths while there were 35 points and 63 points estimated two levels above and below, and three or more levels above and below the correct flood. A total of 4 points were overestimated while a total of 120 points were underestimated in the modeled flood depths of Tignoan.

Table 36. Summary of accuracy assessment in the Tignoan River Basin survey

|                | No. of<br>Points | %      |
|----------------|------------------|--------|
| Correct        | 35               | 19.44  |
| Overestimated  | 25               | 13.89  |
| Underestimated | 120              | 66.67  |
| Total          | 180              | 100.00 |

# REFERENCES

Ang M.O., Paringit E.C., et al. 2014. DREAM Data Processing Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Balicanta L.P., Paringit E.C., et al. 2014. DREAM Data Validation Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Brunner, G. H. 2010a. HEC-RAS River Analysis System Hydraulic Reference Manual. Davis, CA: U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.

Lagmay A.F., Paringit E.C., et al. 2014. DREAM Flood Modeling Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Paringit E.C, Balicanta L.P., Ang, M.O., Sarmiento, C. 2017. Flood Mapping of Rivers in the Philippines Using Airborne Lidar: Methods. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Sarmiento C., Paringit E.C., et al. 2014. DREAM Data Acquisition Component Manual. Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

UP TCAGP 2016, Acceptance and Evaluation of Synthetic Aperture Radar Digital Surface Model (SAR DSM) and Ground Control Points (GCP). Quezon City, Philippines: UP Training Center for Applied Geodesy and Photogrammetry.

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

# ANNEXES

### Annex 1. Optech Technical Specification of the Pegasus Sensor

| Parameter                           | Specification                                                         |
|-------------------------------------|-----------------------------------------------------------------------|
| Operational envelope (1,2,3,4)      | 150-5000 m AGL, nominal                                               |
| Laser wavelength                    | 1064 nm                                                               |
| Horizontal accuracy (2)             | 1/5,500 x altitude, 1σ                                                |
| Elevation accuracy (2)              | < 5-20 cm, 1σ                                                         |
| Effective laser repetition rate     | Programmable, 100-500 kHz                                             |
| Position and orientation system     | POS AV ™AP50 (OEM)                                                    |
| Scan width (FOV)                    | Programmable, 0-75 °                                                  |
| Scan frequency (5)                  | Programmable, 0-140 Hz (effective)                                    |
| Sensor scan product                 | 800 maximum                                                           |
| Beam divergence                     | 0.25 mrad (1/e)                                                       |
| Roll compensation                   | Programmable, ±37° (FOV dependent)                                    |
| Vertical target separation distance | <0.7 m                                                                |
| Range capture                       | Up to 4 range measurements, including 1st, 2nd, 3rd, and last returns |
| Intensity capture                   | Up to 4 intensity returns for each pulse, including last (12 bit)     |
| Image capture                       | 5 MP interline camera (standard); 60 MP full frame (optional)         |
| Full waveform capture               | 12-bit Optech IWD-2 Intelligent Waveform Digitizer                    |
| Data storage                        | Removable solid state disk SSD (SATA II)                              |
| Power requirements                  | 28 V, 800 W, 30 A                                                     |
| Dimensions and weight               | Sensor: 630 x 540 x 450 mm; 65 kg;                                    |
|                                     | Control rack: 650 x 590 x 490 mm; 46 kg                               |
| Operating Temperature               | -10°C to +35°C                                                        |
| Relative humidity                   | 0-95% non-condensing                                                  |

Table A-1.1. Parameters and Specification of Pegasus Sensor

1 Target reflectivity ≥20%

2 Dependent on selected operational parameters using nominal FOV of up to 40° in standard atmospheric conditions with 24-km visibility

3 Angle of incidence ≤20°

4 Target size ≥ laser footprint5 Dependent on system configuration

### Annex 2. NAMRIA Certification of Reference Points Used in the LIDAR Survey

RZL-28 1.





Main : Lawton Aven Branch : 421 Barrac nue, Fort Bonifacic, 1634 Taguig City, Philippines Tel. No.: (632) £10-4831 to 41 ca St. San Nicolas, 1010 Manila, Philippines, Tel. No. (632) 241-3494 to 98 www.namria.gov.ph

ISO 9001: 2008 CERTIFIED FOR MAPPING AND GEOSPATIAL INFORMATION MANAGEMENT

### Annex 3. Baseline Processing Reports of Control Points used in the LIDAR Survey

| BRS-1 - RZL-28 (9:25:08 AM-5:15:34 PM) (S1) |                                       |  |  |  |  |
|---------------------------------------------|---------------------------------------|--|--|--|--|
| Baseline observation:                       | BRS-1 RZL-28 (B1)                     |  |  |  |  |
| Processed:                                  | 6/23/2016 11:42:55 AM                 |  |  |  |  |
| Solution type:                              | Fixed                                 |  |  |  |  |
| Frequency used:                             | Dual Frequency (L1, L2)               |  |  |  |  |
| Horizontal precision:                       | 0.004 m                               |  |  |  |  |
| Vertical precision:                         | 0.018 m                               |  |  |  |  |
| RMS:                                        | 0.006 m                               |  |  |  |  |
| Maximum PDOP:                               | 4.149                                 |  |  |  |  |
| Ephemeris used:                             | Broadcast                             |  |  |  |  |
| Antenna model:                              | NGS Absolute                          |  |  |  |  |
| Processing start time:                      | 6/10/2016 9:25:08 AM (Local: UTC+8hr) |  |  |  |  |
| Processing stop time:                       | 6/10/2016 5:15:34 PM (Local: UTC+8hr) |  |  |  |  |
| Processing duration:                        | 07:50:26                              |  |  |  |  |
| Processing interval:                        | 1 second                              |  |  |  |  |

### Table A-3.1 BRS-1

| From:     |               |           | RZL-28            |           |                   |  |
|-----------|---------------|-----------|-------------------|-----------|-------------------|--|
|           | Grid          |           | Local             | Global    |                   |  |
| Easting   | 314172.786 m  | Latitude  | N14°29'49.44078"  | Latitude  | N14°29'44.06939"  |  |
| Northing  | 1603302.052 m | Longitude | E121°16'32.56145" | Longitude | E121°16'37.46276" |  |
| Elevation | 4.971 m       | Height    | 5.866 m           | Height    | 50.371 m          |  |

| То:       |               |           | BRS-1             |           |                   |
|-----------|---------------|-----------|-------------------|-----------|-------------------|
|           | Grid          |           | Local             |           | Global            |
| Easting   | 312646.981 m  | Latitude  | N14°31'32.82507"  | Latitude  | N14°31'27.44582"  |
| Northing  | 1606491.077 m | Longitude | E121°15'40.79958" | Longitude | E121°15'45.69850" |
| Elevation | 14.362 m      | Height    | 15.361 m          | Height    | 59.750 m          |

|            | Vector      |                 |            |    |            |  |  |  |
|------------|-------------|-----------------|------------|----|------------|--|--|--|
| ΔEasting   | -1525.805 m | NS Fwd Azimuth  | 333°59'56" | ΔX | 1733.279 m |  |  |  |
| ΔNorthing  | 3189.025 m  | Ellipsoid Dist. | 3535.137 m | ΔΥ | 131.879 m  |  |  |  |
| ΔElevation | 9.391 m     | ∆Height         | 9.496 m    | ΔZ | 3078.254 m |  |  |  |

# Annex 4. The LIDAR Survey Team Composition

| Data Acquisition<br>Component Sub-Team | Designation                                 | Name                           | Agency/ Affiliation |
|----------------------------------------|---------------------------------------------|--------------------------------|---------------------|
| PHIL-LIDAR 1                           | Program Leader                              | ENRICO C. PARINGIT, D.<br>Eng. | UP-TCAGP            |
| Data Acquisition<br>Component Leader   | Data Component<br>Project Leader - I        | ENGR. LOUIE P.<br>BALICANTA    | UP-TCAGP            |
|                                        | Chief Science Research<br>Specialist (CSRS) | ENGR. CHRISTOPHER<br>CRUZ      | UP-TCAGP            |
| Survey Supervisor                      | Supervising Science                         | LOVELY GRACIA ACUNA            | UP-TCAGP            |
|                                        | (Supervising SRS)                           | ENGR. GEROME<br>HIPOLITO       | UP-TCAGP            |

Table A-4.1. The LiDAR Survey Team Composition

|                                              | Senior Science Research<br>Specialist (SSRS) | AUBREY MATIRA              | UP TCAGP                      |
|----------------------------------------------|----------------------------------------------|----------------------------|-------------------------------|
| LiDAR Operation                              | Research Associate (RA)                      | ENGR. GRACE<br>SINADJAN    | UP TCAGP                      |
|                                              | RA                                           | JASMIN DOMINGO             | UP TCAGP                      |
| Ground Survey, Data<br>Download and Transfer | RA                                           | KRISTINE JOY ANDAYA        | UP TCAGP                      |
|                                              | Airborne Security                            | FRANK NICOLAS ILEJAY       | UP TCAGP                      |
|                                              |                                              | TSG. CEBU                  | PHILIPPINE AIR FORCE<br>(PAF) |
|                                              |                                              | CAPT. MARK<br>TANGONAN     | ASIAN AEROSPACE<br>CORP (AAC) |
| LiDAR Operation                              | Pilot                                        | CAPT. CAESAR ALFONSO<br>II | AAC                           |
|                                              |                                              | CAPT. DANTHONY<br>LOGRONIO | AAC                           |
|                                              |                                              | CAPT. CEDRIC DE ASIS       | AAC                           |

### FIELD TEAM

Annex 5. Data Transfer Sheet for Tignoan Floodplain

|                      |           |                    |                   |                   |                  |                  |                    | SERVER      | LOCATION            | Z::DACIRAW<br>DATA          | Z!DACIRAIN<br>DATA  |
|----------------------|-----------|--------------------|-------------------|-------------------|------------------|------------------|--------------------|-------------|---------------------|-----------------------------|---------------------|
|                      |           |                    |                   |                   |                  |                  |                    | PLAN        | KML                 | NA                          | NA                  |
|                      | GEDVED    | LOCATION           | CIDACIRAW<br>DATA | CIDACIRAW<br>DATA | CIDACIRAN        | DATA             | ZNDACKRAW<br>DATA  | FUGHT       | Actual              | 355/364/265/<br>464/201/203 | 268/464/2D1/<br>203 |
|                      | (SINOLIS) | Base Info (.txt)   | 1KB 1             | 1KB               | 1KB              | 1KB              | 1KB                | OPERATOR    | (06100)             | 1KB                         | IKB                 |
|                      | BASE STA  | BABE<br>STATION(S) | 649               | 649               | 693              | 663              | 316                | ATION(S)    | Ditt.) oftel exect  | 1KB                         | 1KB                 |
|                      |           | RCD30 RAW          | 22                | 30.5              | 26.7             | Ň                | 36.9               | BASE 51     | BASE<br>STATION(S)  | 316                         | 468                 |
|                      |           | WebCam             | 145               | 262               | 285              | 79.3             | 320                |             | pigm268             | NA                          | YN                  |
|                      |           | RawWFD             | NA                | NA                | NA               | Ň                | NA                 |             | RANGE               | 25.7                        | 12.7                |
| R SHEET<br>//13/2016 | /13/2016  | RawTDC             | 3.88              | 7.55              | 7.2              | 2.66             | 8.83               | MISSION LOG | FILEICASI           | ٧N                          | VN                  |
| ITA TRANSFE          |           | RawLoser           | 4.65              | 66.8              | 12.7             | 3.42             | 13.8               |             | RAIV<br>IMAGESICASI | NA                          | NA                  |
| 20                   |           | TestData           | 7.67              | 215               | 43.8             | 124              | 44                 |             | POS                 | 225                         | 200                 |
|                      |           | LogFiles           | 134               | 96.5              | 130              | 102              | 134                |             | LOGS                | 10.4                        | 8.87                |
|                      |           | Greatmu            | 352               | 363               | 472              | 251              | 454                | LAS         | KML (swath)         | NA                          | NA                  |
|                      |           | (quews) TWS        | W                 | W                 | W                | NA               | NA                 | RAW         | Output: LAS         | 2.76                        | 1.22                |
|                      |           | SENSOR             | ALS 80            | OR STV            | ALS 80           | ALS 20           | ALS 80             |             | SENSOR              | PEGASUS                     | PEGASUS             |
|                      |           | MISSION            | 4BLK18CF          | 48LK18CF<br>S1658 | 4BLK18RN<br>167A | 4BLK18CF<br>1678 | 4BLK18R<br>MNS168A |             | MISSION             | 1BLK18CF<br>S168A           | 1BLK18Q1<br>73A     |
|                      |           | FLIGHT NO.         | 10161L            | 10162L            | 10165L           | 10166L           | 101671             |             | FLIGHT NO.          | 23462P                      | 23474P              |
|                      |           | DATE               | 13-Jun-16         | 13-Jun-16         | 15-Jun-16        | 15-Jun-16        | 16-Jun-16          |             | DATE                | June 16, 2016               | June 22, 2016       |

Received from

P. FANTE z Signeture asition Name

Figure A-5.1. Data Transfer Sheet for Tignoan Floodplain

Signature Position Name

Received by

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)

| LIDAR Operator: 6 - 61m MQ                                                                                           | ATV 2 ALTM Model: AUS GD                                                            | 3 Mission Name: IBLETS Q0                                                                                | s 173A 4 Type: VFR                         | 5 Aircraft Type: Cesnna T206H                                     | 6 Aircraft Identification: 9122 |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|---------------------------------|
| PILOT: M. TANGONAN                                                                                                   | 8 Co-Pilot: D. LOGRANID                                                             | 9 Route:                                                                                                 |                                            |                                                                   |                                 |
| ODate: June 24, 2,                                                                                                   | 12 Airport of Departure                                                             | (Airport, City/Province):                                                                                | 12 Airport of Arrival (.<br>RPUC           | Airport, City/Province):                                          |                                 |
| 3 Engine On:<br>ისქი                                                                                                 | 14 Engine Off: 14 Dog                                                               | 15 Total Engine Time:<br>34/7-                                                                           | 16 Take off:                               | 17 Landing:                                                       | 18 Total Flight Time:           |
| Weather                                                                                                              | chand7                                                                              |                                                                                                          |                                            |                                                                   |                                 |
| Flight Classification<br>a Billable                                                                                  | 20.b Non Billable                                                                   | 20.c Others                                                                                              | 21 Remarks                                 |                                                                   |                                 |
| <ul> <li>Acquisition Flight</li> <li>Ferry Flight</li> <li>System Test Flight</li> <li>Calibration Flight</li> </ul> | <ul> <li>Aircraft Test Flight</li> <li>AAC Admin Flight</li> <li>Others:</li> </ul> | <ul> <li>UDAR System Mainter</li> <li>Aircraft Mainterance</li> <li>Phil-LiDAR Admin Activity</li> </ul> | nance<br>vities                            | Surveyed Acodoplains in Rea                                       | hassed                          |
| Problems and Solutions                                                                                               |                                                                                     | and the second                                                                                           |                                            |                                                                   |                                 |
| Weather Problem     System Problem     Aircraft Problem     Pilot Problem                                            |                                                                                     |                                                                                                          |                                            |                                                                   |                                 |
| o Others:                                                                                                            |                                                                                     |                                                                                                          |                                            |                                                                   |                                 |
| Acquisition Flight Approved by                                                                                       | Acquisition Flight Con<br>TT Q CEO<br>Signature over Printed<br>IPAF Representativ  | tified by Piloting                                                                                       | Ampand<br>TAP (EP. M)<br>over Printed Name | Lidar Operator<br>Cherric Man AQJAN<br>Signature over Enared Name | Aircraft Mechanic/Technician    |

Figure A-6.1. Flight Log for Mission 23474P

LiDAR Surveys and Flood Mapping of Tignoan River

# Annex 6. Flight Logs for the Flight Missions

Flight Log for 23474P

## Annex 7. Flight Status Reports

### CALABARZON

(June 22, 2016)

| FLIGHT NO. | AREA   | MISSION     | OPERATOR                  | DATE<br>FLOWN   | REMARKS                               |
|------------|--------|-------------|---------------------------|-----------------|---------------------------------------|
| 23474P     | BLK18Q | 1BLK18Q173A | G. SINADJAN<br>J. DOMINGO | 22 June<br>2016 | Covered 14 lines<br>over Real, Quezon |

### Table A-7.1. Flight Status Report

### SWATH PER FLIGHT MISSION

| FLIGHT NO.:    | 2842P         |          |
|----------------|---------------|----------|
| AREA:          | BLK2B         |          |
| MISSION NAME:  | 1BLK2B316A    |          |
| ALT: 850 m     | SCAN FREQ: 30 | SCAN ANG |
| SURVEYED AREA: | 136.73 km2    |          |
|                |               |          |

GLE: 25



Figure A-7.1. Swath for Flight No. 2842P

# Annex 8. Mission Summary Reports

| Table A-8.1 Mission | Summary Rep | port for Cala | barzon Refli | ghts Blk18Q |
|---------------------|-------------|---------------|--------------|-------------|
|                     |             |               |              | - ·         |

| Flight Area                                   | CALABARZON                                      |
|-----------------------------------------------|-------------------------------------------------|
| Mission Name                                  | Calabarzon_Reflights_Blk18Q                     |
| Inclusive Flights                             | 23474P                                          |
| Range data size                               | 12.7 GB                                         |
| POS data size                                 | 200 MB                                          |
| Base data size                                | 468 MB                                          |
| Image                                         | n/a                                             |
| Transfer date                                 | July 14, 2016                                   |
|                                               |                                                 |
| Solution Status                               |                                                 |
| Number of Satellites (>6)                     | Yes                                             |
| PDOP (<3)                                     | Yes                                             |
| Baseline Length (<30km)                       | No                                              |
| Processing Mode (<=1)                         | No                                              |
|                                               |                                                 |
| Smoothed Performance Metrics (in cm)          |                                                 |
| RMSE for North Position (<4.0 cm)             | 1.1                                             |
| RMSE for East Position (<4.0 cm)              | 1.6                                             |
| RMSE for Down Position (<8.0 cm)              | 3.2                                             |
|                                               |                                                 |
| Boresight correction stdev (<0.001deg)        | 0.000335                                        |
| IMU attitude correction stdev (<0.001deg)     | 0.001170                                        |
| GPS position stdev (<0.01m)                   | 0.0020                                          |
|                                               |                                                 |
| Minimum % overlap (>25)                       | 42.49%                                          |
| Ave point cloud density per sq.m. (>2.0)      | 2.82                                            |
| Elevation difference between strips (<0.20 m) | Yes                                             |
|                                               |                                                 |
| Number of 1km x 1km blocks                    | 189                                             |
| Maximum Height                                | 590.20                                          |
| Minimum Height                                | 47.79                                           |
|                                               |                                                 |
| Classification (# of points)                  | 41 254 472                                      |
|                                               | 41,354,472                                      |
| Medium vegetation                             | 00 562 722                                      |
|                                               | 577 270 066                                     |
| Ruilding                                      | 10 983 107                                      |
| Orthonhoto                                    | No                                              |
| Processed by                                  | Engr. Irish Cortez, Engr. Melanie Hingnit, Engr |
|                                               | Czarinajean Añonuevo                            |



Figure A-8.1. Solution Status





Figure A-8.3. Best Estimated Trajectory



Figure A-8.4. Coverage of LiDAR Data



Figure A-8.5. Image of data overlap



Figure A-8.6. Density map of merged LiDAR data



Figure A-8.7. Elevation difference between flight lines

| Flight Area                                   | Calabarzon_Reflights                                               |
|-----------------------------------------------|--------------------------------------------------------------------|
| Mission Name                                  | Calabarzon_Reflights_Blk18Q_Supplement                             |
| Inclusive Flights                             | 23474P                                                             |
| Range data size                               | 12.7 GB                                                            |
| POS data size                                 | 200 MB                                                             |
| Base data size                                | 468 MB                                                             |
| Image                                         | n/a                                                                |
| Transfer date                                 | July 14, 2016                                                      |
|                                               |                                                                    |
| Solution Status                               |                                                                    |
| Number of Satellites (>6)                     | Yes                                                                |
| PDOP (<3)                                     | Yes                                                                |
| Baseline Length (<30km)                       | No                                                                 |
| Processing Mode (<=1)                         | No                                                                 |
|                                               |                                                                    |
| Smoothed Performance Metrics (in cm)          |                                                                    |
| RMSE for North Position (<4.0 cm)             | 1.1                                                                |
| RMSE for East Position (<4.0 cm)              | 1.6                                                                |
| RMSE for Down Position (<8.0 cm)              | 3.2                                                                |
|                                               |                                                                    |
| Boresight correction stdev (<0.001deg)        | 0.000335                                                           |
| IMU attitude correction stdev (<0.001deg)     | 0.001170                                                           |
| GPS position stdev (<0.01m)                   | 0.0020                                                             |
|                                               |                                                                    |
| Minimum % overlap (>25)                       | 55.48%                                                             |
| Ave point cloud density per sq.m. (>2.0)      | 2.50                                                               |
| Elevation difference between strips (<0.20 m) | Yes                                                                |
|                                               |                                                                    |
| Number of 1km x 1km blocks                    | 26                                                                 |
| Maximum Height                                | 350.18 m                                                           |
| Minimum Height                                | 47.79 m                                                            |
|                                               |                                                                    |
| Classification (# of points)                  |                                                                    |
| Ground                                        | 5,436,252                                                          |
| Low vegetation                                | 1,865,835                                                          |
| Medium vegetation                             | 7,144,399                                                          |
| High vegetation                               | 33,665,181                                                         |
| Building                                      | 895,541                                                            |
| Orthophoto                                    | No                                                                 |
| Processed by                                  | Engr. Irish Cortez, Engr. Melanie Hingpit, Engr.<br>Monalye Rabino |

Table A-8.2 Mission Summary Report for Calabarzon\_Reflights\_Blk18Q\_Supplement







Figure A-8.9. Smoothed Performance Metric Parameters


Figure A-8.10. Best Estimated Trajectory



Figure A-8.11. Coverage of LiDAR Data

Hazard Mapping of the Philippines Using LIDAR (Phil-LIDAR 1)



Figure A-8.12. Image of data overlap



Figure A-8.13. Density map of merged LiDAR data



Figure A-8.14. Elevation difference between flight lines

| Flight Area                                                  | Calabarzon_Reflights                                                      |
|--------------------------------------------------------------|---------------------------------------------------------------------------|
| Mission Name                                                 | Blk18N                                                                    |
| Inclusive Flights                                            | 10167L                                                                    |
| RawLaser                                                     | 13.8 GB                                                                   |
| GnssImu                                                      | 454 MB                                                                    |
| Image                                                        | 36.9 GB                                                                   |
| Transfer date                                                | 7/13/2016                                                                 |
|                                                              |                                                                           |
| Solution Status                                              |                                                                           |
| Number of Satellites (>6)                                    | Yes                                                                       |
| PDOP (<3)                                                    | Yes                                                                       |
| Baseline Length (<30km)                                      | Yes                                                                       |
| Combined Separation (-0.1 up to 0.1)                         | No                                                                        |
|                                                              |                                                                           |
| Estimated Position Accuracy (in cm)                          |                                                                           |
| Estimated Standard Devation for North Position (<4.0 cm)     | 0.45                                                                      |
| Estimated Standard Devation for East Position (<4.0 cm)      | 0.46                                                                      |
| Estimated Standard Devation for Height Position<br>(<8.0 cm) | 1.20                                                                      |
|                                                              |                                                                           |
| Minimum % overlap (>25)                                      | 33.32%                                                                    |
| Ave point cloud density per sg.m. (>2.0)                     | 2.17                                                                      |
| Elevation difference between strips (<0.20 m)                |                                                                           |
|                                                              |                                                                           |
| Number of 1km x 1km blocks                                   | 340                                                                       |
| Maximum Height                                               | 771.64 m                                                                  |
| Minimum Height                                               | 47.25 m                                                                   |
|                                                              |                                                                           |
| Classification (# of points)                                 |                                                                           |
| Ground                                                       | 100,419,191                                                               |
| Low vegetation                                               | 32,772,585                                                                |
| Medium vegetation                                            | 226,212,330                                                               |
| High vegetation                                              | 518,198,243                                                               |
| Building                                                     | 22,738,410                                                                |
|                                                              |                                                                           |
| Orthophoto                                                   | Yes                                                                       |
| Processed by                                                 | Engr. Don Matthew Banatin, Engr. Harmond<br>Santos, Engr. Gladys Mae Apat |

## Table A-8.3 Mission Summary Report for Blk18N







Figure A-8.16 Estimated Position of Accuracy







Figure A-8.18 Number of Satellites



Figure A-8.19 Best Estimated Trajectory



Figure A-8.20 Coverage of LiDAR data



Figure A-8.21 Image of data overlap



Figure A-8.22 Density map of merged LiDAR data



Figure A-8.23 Elevation difference between flight lines

| Flight Area                                                  | Calabarzon Reflights                                                 |
|--------------------------------------------------------------|----------------------------------------------------------------------|
| Mission Name                                                 | Blk18N_Supplement                                                    |
| Inclusive Flights                                            | 10165L                                                               |
| RawLaser                                                     | 12.7 GB                                                              |
| GnssImu                                                      | 472 MB                                                               |
| Image                                                        | 26.7 GB                                                              |
| Transfer date                                                | 7/13/2016                                                            |
|                                                              |                                                                      |
| Solution Status                                              |                                                                      |
| Number of Satellites (>6)                                    | Yes                                                                  |
| PDOP (<3)                                                    | Yes                                                                  |
| Baseline Length (<30km)                                      | Yes                                                                  |
| Combined Separation (-0.1 up to 0.1)                         | Yes                                                                  |
|                                                              |                                                                      |
| Estimated Position Accuracy (in cm)                          |                                                                      |
| Estimated Standard Devation for North Position<br>(<4.0 cm)  | 0.47                                                                 |
| Estimated Standard Devation for East Position<br>(<4.0 cm)   | 0.50                                                                 |
| Estimated Standard Devation for Height Position<br>(<8.0 cm) | 1.05                                                                 |
|                                                              |                                                                      |
|                                                              |                                                                      |
| Minimum % overlap (>25)                                      |                                                                      |
| Ave point cloud density per sq.m. (>2.0)                     | 1.95                                                                 |
| Elevation difference between strips (<0.20 m)                |                                                                      |
|                                                              |                                                                      |
| Number of 1km x 1km blocks                                   | 269                                                                  |
| Maximum Height                                               | 924.97 m                                                             |
| Minimum Height                                               | 47.20 m                                                              |
|                                                              |                                                                      |
| Classification (# of points)                                 |                                                                      |
| Ground                                                       | 114,228,548                                                          |
| Low vegetation                                               | 36,586,146                                                           |
| Medium vegetation                                            | 161,050,400                                                          |
| High vegetation                                              | 366,252,159                                                          |
| Building                                                     | 18,126,699                                                           |
|                                                              |                                                                      |
| Orthophoto                                                   | Yes                                                                  |
| Processed by                                                 | Engr. Regis Guhiting, Engr. Harmond Santos, Engr.<br>Gladys Mae Apat |

Table A-8.4 Mission Summary Report for Blk18N\_Supplement







Figure A-8.25 Estimated Position of Accuracy







Figure A-8.27 Number of Satellites



Figure A-8.28 Best Estimated Trajectory



Figure A-8.29 Coverage of LiDAR data



Figure A-8.30 Image of data overlap



Figure A-8.31 Density map of merged LiDAR data



Figure A-8.32 Elevation difference between flight lines

Annex 9. Tignoan Model Basin Parameters

| Basin  | SCS CI                         | urve Numbe      | er Loss           | Clark Unit Hydrogr               | aph Transform                  |                 | Re                             | scession Basefl       | ow                |                  |
|--------|--------------------------------|-----------------|-------------------|----------------------------------|--------------------------------|-----------------|--------------------------------|-----------------------|-------------------|------------------|
| Number | Initial<br>Abstraction<br>(mm) | Curve<br>Number | Impervious<br>(%) | Time of<br>Concentration<br>(HR) | Storage<br>Coefficient<br>(HR) | Initial<br>Type | Initial<br>Discharge<br>(M3/S) | Recession<br>Constant | Threshold<br>Type | Ratio to<br>Peak |
| W1000  | 17.48439                       | 64.117          | 0.0               | 1.043                            | 1.85                           | Discharge       | 0.0306471                      | 0.0438642             | Ratio to Peak     | 0.30449          |
| W1010  | 11.41938                       | 40.132          | 0.0               | 0.79385                          | 1.0547                         | Discharge       | 0.0194887                      | 0.0371645             | Ratio to Peak     | 0.2              |
| W1020  | 10.36476                       | 88.24           | 0.0               | 0.5664                           | 2.9136                         | Discharge       | 0.0224999                      | 0.0938519             | Ratio to Peak     | 0.2              |
| W520   | 12.52881                       | 77.574          | 0.0               | 0.56334                          | 3.6063                         | Discharge       | 0.0170944                      | 0.0982189             | Ratio to Peak     | 0.20401          |
| W530   | 15.37893                       | 52.235          | 0.0               | 0.59627                          | 1.7041                         | Discharge       | 0.0326882                      | 0.12238               | Ratio to Peak     | 0.2              |
| W540   | 12.019455                      | 60.284          | 0.0               | 0.72411                          | 2.56                           | Discharge       | 0.0176767                      | 0.221                 | Ratio to Peak     | 0.19289          |
| W550   | 9.46701                        | 35.41           | 0.0               | 1.6242                           | 2.8529                         | Discharge       | 0.0318997                      | 0.31833               | Ratio to Peak     | 0.20399          |
| W560   | 10.54998                       | 63.922          | 0.0               | 0.79661                          | 0.33874                        | Discharge       | 0.0141134                      | 0.32485               | Ratio to Peak     | 0.2              |
| W570   | 16.24077                       | 55.107          | 0.0               | 0.70283                          | 2.8063                         | Discharge       | 0.0291826                      | 0.15073               | Ratio to Peak     | 0.2              |
| W580   | 10.798515                      | 68.485          | 0.0               | 0.8283                           | 2.2724                         | Discharge       | 0.0464024                      | 0.3265                | Ratio to Peak     | 0.18811          |
| W590   | 11.431665                      | 51.703          | 0.0               | 0.87667                          | 2.3016                         | Discharge       | 0.0367056                      | 0.66667               | Ratio to Peak     | 0.18335          |
| W600   | 22.17915                       | 58.298          | 0.0               | 0.78852                          | 0.4133                         | Discharge       | 0.0128853                      | 0.0906533             | Ratio to Peak     | 0.31061          |
| W610   | 13.075965                      | 60.918          | 0.0               | 0.6222                           | 2.0538                         | Discharge       | 0.0499657                      | 0.33697               | Ratio to Peak     | 0.2              |
| W620   | 16.644285                      | 56.97           | 0.0               | 1.1204                           | 2.6069                         | Discharge       | 0.0449782                      | 0.34666               | Ratio to Peak     | 0.19208          |
| W630   | 10.781505                      | 55.366          | 0.0               | 0.38853                          | 3.872                          | Discharge       | 0.0059316                      | 0.34142               | Ratio to Peak     | 0.2              |
| W640   | 13.95954                       | 75.99           | 0.0               | 0.25908                          | 0.18665                        | Discharge       | 0.0025615                      | 0.15477               | Ratio to Peak     | 0.2              |
| W650   | 9.98109                        | 67.008          | 0.0               | 0.83084                          | 4.0304                         | Discharge       | 0.0167600                      | 0.12734               | Ratio to Peak     | 0.68912          |
| W660   | 15.86466                       | 59.653          | 0.0               | 0.56793                          | 1.5793                         | Discharge       | 0.0177964                      | 0.46668               | Ratio to Peak     | 0.1325           |
| W670   | 11.800215                      | 79.519          | 0.0               | 0.51827                          | 0.2987                         | Discharge       | 0.0033658                      | 0.31043               | Ratio to Peak     | 0.46356          |
| W680   | 11.81628                       | 61.568          | 0.0               | 0.56061                          | 1.5164                         | Discharge       | 0.0142374                      | 0.14502               | Ratio to Peak     | 0.19801          |
| W690   | 9.460395                       | 65.374          | 0.0               | 0.52111                          | 2.16                           | Discharge       | 0.0155434                      | 0.21316               | Ratio to Peak     | 1                |
| W700   | 16.914555                      | 59.462          | 0.0               | 0.7869                           | 1.9374                         | Discharge       | 0.0271112                      | 0.15335               | Ratio to Peak     | 0.2              |
| W710   | 16.065945                      | 57.152          | 0.0               | 1.8358                           | 5.2558                         | Discharge       | 0.0463375                      | 0.10223               | Ratio to Peak     | 0.2              |

Table A-9.1. Tignoan Model Basin Parameters

| 0.2           | 0.17139       | 0.17845       | 0.17716       | 0.18447       | 0.196         | 0.18447       | 0.0592593     | 0.0348444     | 0.0803485     | 0.19208       | 0.17015       | 0.19208       | 0.17716       | 0.18078       | 0.0836615     | 0.18078       | 0.18078       | 0.31041       | 0.12806       | 0.18372       | 1             | 0.18912       | 0.18447       | 0.20399       | 0.2           | 0.2           | 0.69504       |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Ratio to Peak |
| 0.0684844     | 0.0463156     | 0.061614      | 0.0298239     | 0.0438412     | 0.0131195     | 0.13509       | 0.31649       | 0.17971       | 0.18622       | 0.52225       | 0.0355392     | 0.041088      | 0.0924587     | 0.2069        | 0.17888       | 0.13047       | 0.5225        | 0.10222       | 0.26506       | 0.34632       | 1             | 0.064159      | 0.12542       | 0.13588       | 0.0870671     | 0.37736       | 0.0651351     |
| 0.0827620     | 0.0462106     | 0.0273980     | 0.0195795     | 0.0246981     | 0.0309123     | 0.0163275     | 0.0035907     | 0.0164875     | 0.0011863     | 0.0070113     | 0.0017139     | 0.0132341     | 0.0017254     | 0.11894       | 0.0020599     | .000771186    | 0.0157668     | 0.0283696     | 0.0334464     | 0.0049255     | 0.0160118     | 0.0386545     | 0.0431504     | 0.0066279     | 0.0245958     | 0.0321102     | 0.0266240     |
| Discharge     |
| 2.8089        | 3.5121        | 1.6155        | 0.13052       | 0.0967263     | 0.0674726     | 2.6286        | 0.0905158     | 0.15105       | 0.0829401     | 0.14385       | 0.0590071     | 3.5644        | 0.0869513     | 3.7163        | 0.0569106     | 0.0635693     | 0.21083       | 0.2013        | 1.4636        | 0.15411       | 0.1424        | 0.5396        | 1.514         | 0.25212       | 1.2706        | 2.8446        | 1.1684        |
| 1.381         | 1.4918        | 3.3774        | 0.66214       | 0.4783        | 0.69228       | 0.18209       | 0.26873       | 0.72975       | 0.88606       | 0.71863       | 0.20961       | 0.34891       | 0.19261       | 1.6598        | 0.46621       | 0.14905       | 0.50261       | 0.58031       | 1.794         | 0.382         | 0.57435       | 2.2003        | 2.3338        | 0.46041       | 0.69626       | 0.40321       | 1.0433        |
| 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           | 0.0           |
| 50.586        | 76.173        | 60.567        | 64.851        | 64.237        | 66.497        | 78.251        | 53.522        | 35.193        | 47.07         | 66            | 66            | 98.418        | 59.297        | 57.449        | 66            | 80.226        | 37.262        | 39.176        | 56.702        | 81.178        | 46.488        | 75.795        | 84.551        | 56.289        | 55.244        | 89.168        | 38.536        |
| 9.777915      | 6.210918      | 11.144385     | 11.14533      | 8.394435      | 7.6296465     | 14.822325     | 14.654115     | 35.463015     | 27.73575      | 3.9294045     | 11.43261      | 20.1852       | 10.82025      | 14.66262      | 2.918727      | 20.063295     | 2.178792      | 6.459453      | 21.46662      | 16.93818      | 3.0316545     | 26.398575     | 24.01812      | 11.43639      | 8.2902015     | 18.8433       | 44.187255     |
| W720          | W730          | W740          | W750          | W760          | W770          | W780          | W790          | W800          | W810          | W820          | W830          | W840          | W850          | W860          | W870          | W880          | W890          | 006M          | W910          | W920          | W930          | W940          | W950          | W960          | W970          | W980          | 066M          |

| Parameters |
|------------|
| Reach      |
| Model      |
| lignoan    |
| 10. ]      |
| Annex      |

|                      | Side<br>Slope                         | Side<br>Slope    | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      | 0.5                      |
|----------------------|---------------------------------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                      | Width                                 | Width            | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       | 28                       |
|                      | Shape                                 | Shape            | Trapezoid                |
| inel Routing         | Manning's n                           | Manning's n      | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     | 0.04                     |
| Muskingum Cunge Chan | Slope                                 | Slope            | 0.0762243                | 0.0266814                | 0.0354605                | 0.0289820                | 0.0261333                | 0.0421822                | 0.0147258                | 0.0038119                | 0.004                    | 0.004                    | 0.0148073                | 0.0115979                | 0.0472148                | 0.004                    | 0.0477072                | 0.0333841                | 0.0041259                | 0.0196520                | 0.0815806                |
|                      | Muskingum<br>Cunge Channel<br>Routing | Length (m)       | 1157.1                   | 796.69                   | 437.28                   | 579.71                   | 2585.2                   | 976.69                   | 1195.7                   | 2130.8                   | 98.995                   | 141.42                   | 2728.1                   | 2987.6                   | 595.27                   | 298.70                   | 257.28                   | 352.84                   | 1244.3                   | 716.98                   | 1115.7                   |
|                      | Reach Number                          | Time Step Method | Automatic Fixed Interval |
|                      |                                       |                  | R100                     | R110                     | R130                     | R140                     | R150                     | R170                     | R180                     | R240                     | R270                     | R280                     | R290                     | R300                     | R320                     | R330                     | R350                     | R360                     | R370                     | R390                     | R40                      |

| R410 | Automatic Fixed Interval | 899.71 | 0.0087369 | 0.04 | Trapezoid | 28 | 0.5 |
|------|--------------------------|--------|-----------|------|-----------|----|-----|
| R430 | Automatic Fixed Interval | 2510.7 | 0.0458811 | 0.04 | Trapezoid | 28 | 0.5 |
| R460 | Automatic Fixed Interval | 1226.4 | 0.0373412 | 0.04 | Trapezoid | 28 | 0.5 |
| R470 | Automatic Fixed Interval | 1148.7 | 0.0254538 | 0.04 | Trapezoid | 28 | 0.5 |
| R480 | Automatic Fixed Interval | 5089.0 | 0.0204656 | 0.04 | Trapezoid | 28 | 0.5 |
| R70  | Automatic Fixed Interval | 1971.7 | 0.0452980 | 0.04 | Trapezoid | 28 | 0.5 |
|      |                          |        |           |      |           |    |     |

Annex 11. Tignoan Field Validation Points

| Point  | Validation | Coordinates | Model Var | Validation Points | Error | Event/Date         | Rain Return / Scenario |
|--------|------------|-------------|-----------|-------------------|-------|--------------------|------------------------|
| Number | Lat        | Long        | Ê,        | Ê,                |       |                    |                        |
| 1      | 14.553287  | 121.625073  | 0.03      | 0.5               | 0.470 | Winnie Nov.30,2004 | 5 -Year                |
| 2      | 14.552946  | 121.625219  | 0.05      | 0.5               | 0.450 | Winnie Nov.30,2004 | 5 -Year                |
| æ      | 14.552468  | 121.62547   | 0.03      | 0.5               | 0.470 | Winnie Nov.30,2004 | 5 -Year                |
| 4      | 14.551553  | 121.625698  | 0.03      | 0.5               | 0.470 | Winnie Nov.30,2004 | 5 -Year                |
| 5      | 14.55132   | 121.625738  | 0.18      | 0.5               | 0.320 | Winnie Nov.30,2004 | 5 -Year                |
| 9      | 14.549243  | 121.626554  | 0.04      | 0.5               | 0.460 | Winnie Nov.30,2004 | 5 -Year                |
| 7      | 14.547057  | 121.626137  | 0.03      | 0.5               | 0.470 | Winnie Nov.30,2004 | 5 -Year                |
| ∞      | 14.564394  | 121.620076  | 0.04      | 0.5               | 0.460 | Winnie Nov.30,2004 | 5 -Year                |
| 6      | 14.563887  | 121.619469  | 0.06      | 1.3               | 1.240 | Winnie Nov.30,2004 | 5 -Year                |
| 10     | 14.56215   | 121.62378   | 0.03      | 1.3               | 1.270 | Winnie Nov.30,2004 | 5 -Year                |
| 11     | 14.561212  | 121.624491  | 60.0      | 1.3               | 1.210 | Winnie Nov.30,2004 | 5 -Year                |
| 12     | 14.556927  | 121.624844  | 0.05      | 1.3               | 1.250 | Winnie Nov.30,2004 | 5 -Year                |
| 13     | 14.556726  | 121.624773  | 0.13      | 1.3               | 1.170 | Winnie Nov.30,2004 | 5 -Year                |
| 14     | 14.553961  | 121.625019  | 0.09      | 1.3               | 1.210 | Winnie Nov.30,2004 | 5 -Year                |
| 15     | 14.563456  | 121.619236  | 0.14      | 1.3               | 1.160 | Winnie Nov.30,2004 | 5 -Year                |
| 16     | 14.562631  | 121.619245  | 0.38      | 1.4               | 1.020 | Winnie Nov.30,2004 | 5 -Year                |
| 17     | 14.562513  | 121.619322  | 0.14      | 1.4               | 1.260 | Winnie Nov.30,2004 | 5 -Year                |
| 18     | 14.556866  | 121.6248    | 60.0      | 1.4               | 1.310 | Winnie Nov.30,2004 | 5 -Year                |
| 19     | 14.563246  | 121.619048  | 0.88      | 1.4               | 0.520 | Winnie Nov.30,2004 | 5 -Year                |
| 20     | 14.554595  | 121.624993  | 0.03      | 1.5               | 1.470 | Winnie Nov.30,2004 | 5 -Year                |
| 21     | 14.554175  | 121.625013  | 0.07      | 1.5               | 1.430 | Winnie Nov.30,2004 | 5 -Year                |
| 22     | 14.563155  | 121.619206  | 0.21      | 1.5               | 1.290 | Winnie Nov.30,2004 | 5 -Year                |
| 23     | 14.562817  | 121.619205  | 0.33      | 1.5               | 1.170 | Winnie Nov.30.2004 | 5 -Year                |

|                    |                    |                    |                    |                    |                    |                    | I                  | <b></b>            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 5 -Year            |
| Winnie Nov.30,2004 |
| 1.430              | 1.230              | 1.470              | 1.460              | 1.470              | 1.470              | 1.420              | 0.940              | 0.970              | 006.0              | -1.720             | -1.810             | 1.590              | 1.970              | -1.600             | -3.950             | -4.710             | -4.260             | -4.120             | 0.380              | -2.850             | -3.110             | -1.430             | -1.570             | 0:330              | 0.510              | 0.320              | 0.550              |
| 1.5                | 1.5                | 1.5                | 1.5                | 1.5                | 1.5                | 1.5                | 1                  | 1                  | 1                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  | 2                  |
| 0.07               | 0.27               | 0.03               | 0.04               | 0.03               | 0.03               | 0.08               | 0.06               | 0.03               | 0.1                | 3.72               | 3.8099999          | 0.41               | 0.03               | 3.5999999          | 5.9499998          | 6.71               | 6.2600002          | 6.1199999          | 1.62               | 4.8499999          | 5.1100001          | 3.4300001          | 3.5699999          | 1.67               | 1.49               | 1.6799999          | 1.45               |
| 121.619512         | 121.61923          | 121.619883         | 121.620188         | 121.623924         | 121.624816         | 121.615688         | 121.61944          | 121.619757         | 121.619277         | 121.619252         | 121.619005         | 121.616344         | 121.615687         | 121.615044         | 121.615043         | 121.614914         | 121.614658         | 121.614465         | 121.620108         | 121.614192         | 121.613969         | 121.613742         | 121.613568         | 121.615013         | 121.619967         | 121.619849         | 121.619757         |
| 14.562483          | 14.563652          | 14.564244          | 14.564469          | 14.562312          | 14.5607            | 14.563497          | 14.562313          | 14.564137          | 14.563045          | 14.565064          | 14.564976          | 14.565175          | 14.564997          | 14.56442           | 14.564535          | 14.564619          | 14.564766          | 14.564862          | 14.565585          | 14.565023          | 14.565168          | 14.565287          | 14.565382          | 14.563924          | 14.565536          | 14.565487          | 14.565445          |
| 24                 | 25                 | 26                 | 27                 | 28                 | 29                 | 30                 | 31                 | 32                 | 33                 | 34                 | 35                 | 36                 | 37                 | 38                 | 39                 | 40                 | 41                 | 42                 | 43                 | 44                 | 45                 | 46                 | 47                 | 48                 | 49                 | 50                 | 51                 |

| 52 | 14.565389 | 121.619609 | 2.7       | 2   | -0.700 | Winnie Nov.30,2004 | 5 -Year |
|----|-----------|------------|-----------|-----|--------|--------------------|---------|
| 53 | 14.565329 | 121.619555 | 3.47      | 2   | -1.470 | Winnie Nov.30,2004 | 5 -Year |
| 54 | 14.565204 | 121.619516 | 4.5100002 | 2   | -2.510 | Winnie Nov.30,2004 | 5 -Year |
| 55 | 14.565117 | 121.619415 | 3.6300001 | 2   | -1.630 | Winnie Nov.30,2004 | 5 -Year |
| 56 | 14.565651 | 121.620063 | 1.23      | 2   | 0.770  | Winnie Nov.30,2004 | 5 -Year |
| 57 | 14.580303 | 121.617601 | 0.06      | 5.5 | 5.440  | Winnie Nov.30,2004 | 5 -Year |
| 58 | 14.563612 | 121.618798 | 0.51      | 5   | 4.490  | Winnie Nov.30,2004 | 5 -Year |
| 59 | 14.563363 | 121.618891 | 0.59      | 5   | 4.410  | Winnie Nov.30,2004 | 5 -Year |
| 60 | 14.56328  | 121.6189   | 0.62      | 5   | 4.380  | Winnie Nov.30,2004 | 5 -Year |
| 61 | 14.563159 | 121.619081 | 0.67      | 5   | 4.330  | Winnie Nov.30,2004 | 5 -Year |
| 62 | 14.563229 | 121.619192 | 0.28      | 5   | 4.720  | Winnie Nov.30,2004 | 5 -Year |
| 63 | 14.580734 | 121.617537 | 0.06      | 5   | 4.940  | Winnie Nov.30,2004 | 5 -Year |
| 64 | 14.580594 | 121.617477 | 0.11      | 5   | 4.890  | Winnie Nov.30,2004 | 5 -Year |
| 65 | 14.579485 | 121.617605 | 0.06      | 5   | 4.940  | Winnie Nov.30,2004 | 5 -Year |
| 66 | 14.57947  | 121.617687 | 0.07      | 5   | 4.930  | Winnie Nov.30,2004 | 5 -Year |
| 67 | 14.566262 | 121.621149 | 0.06      | 5   | 4.940  | Winnie Nov.30,2004 | 5 -Year |
| 68 | 14.579596 | 121.617723 | 0.04      | 5   | 4.960  | Winnie Nov.30,2004 | 5 -Year |
| 69 | 14.579611 | 121.61793  | 0.12      | 5   | 4.880  | Winnie Nov.30,2004 | 5 -Year |
| 70 | 14.580145 | 121.61817  | 0.14      | 5   | 4.860  | Winnie Nov.30,2004 | 5 -Year |
| 71 | 14.580775 | 121.617934 | 0.03      | 5   | 4.970  | Winnie Nov.30,2004 | 5 -Year |
| 72 | 14.566015 | 121.620731 | 0.56      | 5   | 4.440  | Winnie Nov.30,2004 | 5 -Year |
| 73 | 14.565896 | 121.620491 | 0.03      | 5   | 4.970  | Winnie Nov.30,2004 | 5 -Year |
| 74 | 14.565722 | 121.620012 | 0.03      | 5   | 4.970  | Winnie Nov.30,2004 | 5 -Year |
| 75 | 14.565676 | 121.619791 | 0.03      | 5   | 4.970  | Winnie Nov.30,2004 | 5 -Year |
| 76 | 14.5652   | 121.613899 | 4.1399999 | 5   | 0.860  | Winnie Nov.30,2004 | 5 -Year |
| 77 | 14.564502 | 121.615157 | 2.73      | 5   | 2.270  | Winnie Nov.30,2004 | 5 -Year |
| 78 | 14.563539 | 121.615416 | 0.45      | 5   | 4.550  | Winnie Nov.30,2004 | 5 -Year |
| 79 | 14.566396 | 121.621379 | 0.4       | 6.2 | 5.800  | Winnie Nov.30,2004 | 5 -Year |

| 5 -Year            |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Winnie Nov.30,2004 |
| 6.140              | 6.100              | 6.140              | 6.210              | 5.930              | 5.970              | 5.680              | 6.130              | 5.950              | 5.970              | 5.970              | 5.360              | 5.890              | 5.740              | 5.720              | 5.890              | 5.790              | 5.590              | 5.900              | 5.900              | 0.050              | 0.210              | 0.220              | -0.110             | 0.040              | 0.190              | 0.220              | 0.150              |
| 6.2                | 6.3                | 6.4                | 6.5                | 6.5                | 6.5                | 6.5                | 6.5                | 9                  | 9                  | 9                  | 9                  | 9                  | 9                  | 9                  | 9                  | 6                  | 9                  | 9                  | 6                  | 0.25               | 0.25               | 0.25               | 0.25               | 0.25               | 0.25               | 0.25               | 0.25               |
| 0.06               | 0.2                | 0.26               | 0.29               | 0.57               | 0.53               | 0.82               | 0.37               | 0.05               | 0.03               | 0.03               | 0.64               | 0.11               | 0.26               | 0.28               | 0.11               | 0.21               | 0.41               | 0.1                | 0.1                | 0.2                | 0.04               | 0.03               | 0.36               | 0.21               | 0.06               | 0.03               | 0.1                |
| 121.619542         | 121.619387         | 121.61946          | 121.619801         | 121.621261         | 121.620388         | 121.620207         | 121.619293         | 121.619223         | 121.62159          | 121.621774         | 121.620944         | 121.6179           | 121.618631         | 121.618317         | 121.617815         | 121.618813         | 121.618901         | 121.619008         | 121.617771         | 121.618653         | 121.6209           | 121.622192         | 121.619109         | 121.619034         | 121.619093         | 121.619138         | 121.619141         |
| 14.573436          | 14.57389           | 14.571334          | 14.57249           | 14.566331          | 14.565835          | 14.565785          | 14.574075          | 14.574573          | 14.566568          | 14.56666           | 14.566122          | 14.577448          | 14.577055          | 14.577457          | 14.578348          | 14.576253          | 14.57601           | 14.575518          | 14.578782          | 14.573887          | 14.569708          | 14.566908          | 14.573009          | 14.572971          | 14.572772          | 14.572614          | 14.572303          |
| 80                 | 81                 | 82                 | 83                 | 84                 | 85                 | 86                 | 87                 | 88                 | 89                 | 06                 | 91                 | 92                 | 93                 | 94                 | 95                 | 96                 | 97                 | 98                 | 66                 | 100                | 101                | 102                | 103                | 104                | 105                | 106                | 107                |

| 5 -Year            |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Winnie Nov.30,2004 |
| 0.110              | 0.000              | 0.010              | 0.150              | 0.130              | 0.110              | 0.080              | 0.070              | 0.050              | 0.140              | 0.010              | 0.250              | 0.240              | 0.170              | 060.0              | 0.100              | 0.160              | 0.220              | 0.230              | 0.360              | 0.340              | 0.210              | -0.120             | -0.030             | 0.050              | 0.040              | 0.220              | 0.270              |
| 0.25               | 0.25               | 0.25               | 0.25               | 0.2                | 0.2                | 0.2                | 0.2                | 0.2                | 0.2                | 0.3                | 0.3                | 0.3                | 0.3                | 0.3                | 0.3                | 0.3                | 0.3                | 0.3                | 0.5                | 0.5                | 0.5                | 0.5                | 0.5                | 0.5                | 0.5                | 0.5                | 0.5                |
| 0.14               | 0.25               | 0.24               | 0.1                | 0.07               | 0.09               | 0.12               | 0.13               | 0.15               | 0.06               | 0.29               | 0.05               | 0.06               | 0.13               | 0.21               | 0.2                | 0.14               | 0.08               | 0.07               | 0.14               | 0.16               | 0.29               | 0.62               | 0.53               | 0.45               | 0.46               | 0.28               | 0.23               |
| 121.619435         | 121.619523         | 121.61949          | 121.618843         | 121.617703         | 121.617701         | 121.617712         | 121.617724         | 121.617747         | 121.617766         | 121.61867          | 121.617897         | 121.617924         | 121.617966         | 121.618005         | 121.618062         | 121.618513         | 121.61854          | 121.618583         | 121.618368         | 121.618173         | 121.618172         | 121.618205         | 121.618147         | 121.618277         | 121.618289         | 121.618349         | 121.618354         |
| 14.571459          | 14.571448          | 14.571245          | 14.573231          | 14.579073          | 14.579029          | 14.57896           | 14.57883           | 14.578677          | 14.578569          | 14.573809          | 14.577746          | 14.577607          | 14.577412          | 14.57724           | 14.576978          | 14.574471          | 14.574259          | 14.574053          | 14.575225          | 14.576422          | 14.576299          | 14.576172          | 14.575978          | 14.575899          | 14.575728          | 14.575566          | 14.575408          |
| 108                | 109                | 110                | 111                | 112                | 113                | 114                | 115                | 116                | 117                | 118                | 119                | 120                | 121                | 122                | 123                | 124                | 125                | 126                | 127                | 128                | 129                | 130                | 131                | 132                | 133                | 134                | 135                |

| 0.29 0.5 0.210   |
|------------------|
| 1.64 1.5 -0.14   |
| 5799999 1.5 -0.1 |
| 1.62 1.5 -0.1    |
| 1.6 1.5 -0.      |
| 0.04 1.5 1.4     |
| 0.41 1.5 1.0     |
| 0.06 1.5 1.4     |
| 0.13 1.5 1.3     |
| 0.73 1.5 0.7     |
| 0.03 1.5 1.      |
| 2.45 1.5 -0      |
| 0.06 1.5 1       |
| 0.03 1 1 0       |
| 3.7 1 1 -2       |
| 5900001 1 -:     |
| 1399999 1 1      |
| 1 1 1900001 -    |
| 5199999 1 1 -    |
| )200001 1 1      |
| 0.91 1 0         |
| 0.04 1 1 0       |
| 0.09 1 1         |
| 0.05 1 1         |
| 0.03 1 1         |
| 1.29 1 1 -       |
| 0.99 1 1 (       |
| 0.39 1           |

| 5 -Year            |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Winnie Nov.30,2004 |
| 0.970              | 1.450              | 1.730              | 1.400              | 1.790              | 1.110              | 2.610              | 2.190              | 1.510              | 2.920              | -0.560             | 3.360              | 2.710              | 3.590              | 0.300              | 4.480              | 2.310              |
| 1                  | 2.5                | 2.5                | 2.5                | 2.5                | 2.5                | 3                  | 3                  | 3                  | 3                  | 3                  | 4                  | 4                  | 4                  | 5                  | 5                  | 5                  |
| 0.03               | 1.05               | 0.77               | 1.1                | 0.71               | 1.39               | 0.39               | 0.81               | 1.49               | 0.08               | 3.5599999          | 0.64               | 1.29               | 0.41               | 4.6999998          | 0.52               | 2.6900001          |
| 121.621954         | 121.614042         | 121.613959         | 121.613804         | 121.613755         | 121.614149         | 121.615585         | 121.615944         | 121.616041         | 121.618655         | 121.613909         | 121.618827         | 121.618938         | 121.618824         | 121.619265         | 121.619038         | 121.619049         |
| 14.566737          | 14.564425          | 14.564497          | 14.564747          | 14.564844          | 14.564345          | 14.563465          | 14.563704          | 14.563801          | 14.563856          | 14.564936          | 14.563986          | 14.564044          | 14.563747          | 14.56432           | 14.563624          | 14.5642            |
| 164                | 165                | 166                | 167                | 168                | 169                | 170                | 171                | 172                | 173                | 174                | 175                | 176                | 177                | 178                | 179                | 180                |

## Annex 12. Educational Institutions affected by flooding in Tignoan Floodplain

| Quezon                    |          |                   |         |          |  |  |  |  |  |  |
|---------------------------|----------|-------------------|---------|----------|--|--|--|--|--|--|
| Real                      |          |                   |         |          |  |  |  |  |  |  |
| Building Name             | Barangay | Rainfall Scenario |         |          |  |  |  |  |  |  |
|                           |          | 5-year            | 25-year | 100-year |  |  |  |  |  |  |
| Tignoan Elementary School | Malapad  | Medium            | Medium  | High     |  |  |  |  |  |  |
| Tanauan Day Care Center   | Tanauan  |                   |         |          |  |  |  |  |  |  |
| Tanauan Elementary School | Tanauan  |                   |         |          |  |  |  |  |  |  |

Table A-12.1. Educational Institutions in Real, Quezon affected by flooding in the Tignoan Floodplain

## Annex 13. Health Institutions affected by flooding in Tignoan Floodplain

| Table A-13.1. Health institutions in Real, Quezon affected by hooding in the rightan hoodplain |          |        |                   |          |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------|--------|-------------------|----------|--|--|--|--|--|
| Quezon                                                                                         |          |        |                   |          |  |  |  |  |  |
| Real                                                                                           |          |        |                   |          |  |  |  |  |  |
| Building Name                                                                                  | Barangay | F      | Rainfall Scenario |          |  |  |  |  |  |
|                                                                                                |          | 5-year | 25-year           | 100-year |  |  |  |  |  |
| Health Center                                                                                  | Malapad  | High   | High              | High     |  |  |  |  |  |
| Health Center                                                                                  | Tanauan  |        |                   |          |  |  |  |  |  |

Table A-13.1. Health Institutions in Real, Quezon affected by flooding in the Tignoan Floodplain